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Abstract. In this paper, we investigate applying semi-supervised clus-
tering to audio-visual emotion analysis, a complex problem that is tradi-
tionally solved using supervised methods. We propose an extension to the
semi-supervised aligned cluster analysis algorithm (SSACA), a temporal
clustering algorithm that incorporates pairwise constraints in the form of
must-link and cannot-link. We incorporate an exhaustive constraint prop-
agation mechanism to further improve the clustering process. To validate
the proposed method, we apply it to emotion analysis on a multimodal
naturalistic emotion database. Results show substantial improvements
compared to the original aligned clustering analysis algorithm (ACA)
and to our previously proposed semi-supervised approach.
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1 Introduction

Analysis of naturally occurring human emotions has become the main focus of
recent research in the field of affective computing. Emotional analysis is consid-
ered a vital step towards building efficient and more realistic intelligent human-
computer interfaces. The focus is now directed towards recognition in terms of
dimensional and continuous description, rather than a small number of discrete
emotion categories. Numerical representation of emotions in a multi-dimensional
space is considered a more appropriate representation that can reflect the gra-
dated nature of emotions. Moreover, human natural affective behavior is mul-
timodal, subtle, and complex, which makes it challenging to map the affective
human state into a single label or discrete number of classes [4].

Facial expressions and speech are the two modalities most commonly used to
analyze emotions in human interaction. While facial expressions are considered
the major modality in human communication, according to [8], speech is the
fastest and most natural method of communication between humans.
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The bulk of the approaches found in the literature are on supervised learning,
despite the fact that the labeling process is demanding. With the abundance
of data available in this domain and the burdensome nature of the labeling
process, it is understandable that unsupervised methods should be pursued more
intensively. However, purely unsupervised methods may not produce desirable
results due to the complexity of the problem at hand. This need to balance
the demands of process and accuracy of results motivated us to pursue a semi-
supervised approach.

In this paper, we extend our previously proposed Semi-Supervised Aligned
Cluster Analysis (SSACA) method [1] by using an exhaustive constraint propa-
gation approach and apply it to the AVEC audio-visual database.

2 Related Work

Very few works have applied unsupervised methods to emotion analysis in gen-
eral. This observation is true for both of the two most-used modalities: facial
expressions and speech. A possible reason for the shortage of unsupervised work
is due to the lack of the temporal aspect of the traditional clustering algorithms.
The bulk of the methods are supervised, with HMM being the most used method
in terms of audio. In terms of visual features, Relevance Vector Machine (RVM)
has shown very good results [7].

Some supervised works that tackle the problem as a dimensional and con-
tinuous emotion recognition are [11] [7] [3]. Wollmer et al. [11] have studied the
estimation of emotions from speech in the valence and activation dimensions
using Long- Short-Term Recurrent Neural Networks. Nicolaou et al. [7] have
proposed the use of Output-Associative Relevance Vector Machine (OA-RVM)
for dimensional and continuous estimation of emotions from facial expressions.
Grimm et al. [3] have compared the performance of Support Vector Regression,
Fuzzy k-Nearest Neighbor, and Rule-based Fuzzy Logic classifiers as estimators
of spontaneously expressed emotions in speech from three continuous-valued
emotion primitives.

In terms of unsupervised methods for emotion analysis, one recent publication
is the work of De la Torre et al. [2], who have proposed a temporal segmentation
method of facial gestures to cluster similar facial actions. Zhou et al. [13] have
examined facial events directly from naturally occurring videos, using tempo-
ral clustering. They use two algorithms for this task: Aligned Cluster Analysis
(ACA) and a multi-subject correspondence for matching expressions.

Both of these works, however, analyze only one modality, and they use either
categorical labels or action units. In the case of speech and unsupervised meth-
ods, most of the research is on speech segmentation for speech recognition or on
speech separation.

Recently, we proposed a semi-supervised method, SSACA [1], which uses
pairwise constraints in the form of must-links and cannot-links as a way to add
side information to help the clustering process, and to boost its performance
with minimal supervised information. We applied this method to a naturalis-
tic database, and the results showed improvements compared to the original
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approach. In this paper, we build on our previous approach, adding an exhaus-
tive constraint propagation artifact to the framework, and we apply the proposed
method to a larger multimodal naturalistic database, using audio-visual features.

3 Model Description

The emotional behavior of a person can be treated as a time series, wherein
the specific emotion primitive being evaluated varies over time. The goal is to
factorize (segment) multiple time series into disjointed segments that belong to
k temporal clusters. Essentially, we have a temporal clustering problem. The
idea is to have frames within a segment that are similar to each other and non-
overlapping segments that belong to k temporal clusters.

3.1 Semi-Supervised Aligned Cluster Analysis (SSACA)

This section describes SSACA [1], a transformation of the temporal clustering
algorithm ACA into a semi-supervised temporal clustering method. In contrast
to ACA, SSACA adds some side information to its framework in the form of
pairwise constraints, improving the accuracy and performance of the temporal
clustering. ACA is a combination of kernel k-means and Dynamic Time Align-
ment Kernel (DTAK).

The goal of ACA is to decompose a segment X = [X1,...,X,] € into m
disjoint segments, where each segment belongs to a single cluster. Each segment
is constrained by a maximum length 7,,4,, which also serves as a way to control
the temporal granularity of the segmentation. The segments begin at position
s; and end at s;y1 — 1, such that n; = s;31 — 5; < Nypae. An indicator matrix
G € {0,1}**™ assigns each segment to a cluster; g.; = 1 if Z; belongs to
cluster c.

ACA combines kernel k-means with DTAK to achieve temporal clustering
by minimizing:

Rdxn

Jaca(G,8) = Zzgci H¢(X[Si75i+1)) - ZC||2 = ||[¢(Y17 v (Ym) — ZG”?”

c=1i=1

dist?, (Y5, zc)
5.t.GT1, = 1,, and s;11 — 55 € [1, Nna),

(1)

where G € {0,1}¥*™ is a cluster indicator matrix, and s € R™*! is the
segment vector Y = Xy, .. ), which is one of the differences between ACA and
kernel k-means. In the case of ACA, the disti(Yi, Z.) is the squared distance
between the ith segment and the center of cluster ¢ in the nonlinear mapped
feature space represented by 1 (.).

In order to add the semi-supervised component to the proposed method,
we rely on the discovery of Kulis et al. [5], which has shown that the objec-
tive function for semi-supervised clustering, based on Hidden Markov Random
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Fields (HMRF), with squared Euclidean distance and a certain class of constraint
penalty function, can be expressed as a special case of the weighted kernel k-
means. SSACA, which is based on kernel k-means, may use the same framework
of HMRF semi-supervised clustering. Thus, we can write the SSACA objective
function as:

m
Jsbaca G S = Zzgw H¢ [sisi+1) ZCH Z wij + Z Wij

c=11i=1 — Xi,X;EM Xi,x;EC
dzstw(Yi,zc) 9i=9gj 9i=9;

where M is the set of must-link constraints, C is the set of cannot-link con-
straints, w;; is the penalty cost for violating a constraint x; and x;, and g; refers
to the cluster label of x;. There are three terms in this objective function. The
first term is the unsupervised k-means term of the objective function. Note that
the distance disti)(Yi, z.) can be represented as a matrix of pairwise squared
Euclidean distances among the data points (see proof in [5]). We refer later to
this distance matrix as S. The second term is based on the must-link constraints,
and states that for every must-link x; and x; that are in the same cluster, the
objective function is rewarded by subtracting some pre-specified weight. Simi-
larly, the third term in the objective function states that for every cannot-link
X;i, X; in the same cluster has violated that constraint, so the objective func-
tion is penalized by some pre-specified penalty weight. We will refer later to the
second and third term of the function as W.

Kulis et al. [5] have also shown that, for the equivalence of the HMRF k-
means and the weighted kernel k-means to hold, it is necessary to construct a
certain kernel matrix and set weights in a specific way. A kernel matrix K should
have two components: K = S+W. S is the similarity matrix, and comes from the
unsupervised term, while W is the constraint matrix. This matrix W has a pre-
specified w;; weight for must-link and —w;; for cannot-link, and zero otherwise.
Thus, this objective function is mathematically equivalent to the weighted kernel
k-means objective function. In other words, we can run weighted kernel k-means
to decrease the objective function.

Because the constraints are held in the segment level, we have two kernel
matrices, K and T. K is the frame kernel matrix, which defines the similarity
between two frames, x; and X;. T = [7yj]mxm € R™*™ is the segment kernel
matrix that represents the similarity of the segments X g;,,1 and X, s;, 4]
using the distance DTAK. The segment kernel matrix T is be constructed as the
sum of T + W. To avoid excessive notation we will also use T to designate the
result of T + W.

In ACA, the method adopted to solve this optimization problem is a dynamic
programming (DP)-based algorithm, which has a complexity of O(n?nmaz)
to exhaustively examine all possible segmentations. In SSACA, we adapt the
DP-based search to a semi-supervised framework, incorporating the pairwise
constraints into the algorithm. We call the new algorithm SS DPSearch (See
Algorithm 1). SS DPSearch optimizes SSACA w.a.t G and s, as well as
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rewarding or penalizing the distance between segments 7(X[; ., Y]) according
to constraints.

Algorithm 1. SS DPSearch
parameter: Npaz, K, mi, Nel
input: G € {0,1}**™ 5 e R"D K e R™" T e R™™ M e Z"*2 ¢ ¢ znex?
output: G € {0,1}"*™ ¢ R™+Y

1: headTail = getHeadTails(M, C);

2: for v=1to n do
J(v) — o0;
4:  if v > headTail(:,1) and v < headTail(:,2) then
5 continue;
6: end if
7.
8

if isTail(v) then
: for j =1tom do )
9: Retrive directly from T (X ), Y;);

10: end for

11: c* — argmin, disty(X[; ], Zc);
12: J — disty(X(i,0), Zex);

130 J([i0]) T, Gy € i — i
14: else

15: for n, = 1 to min(nmaz,v) do
16: { Same as DPSearch}

17: end for

18: end if

19: end for

{Perform backward segmentation}

3.2 Exhaustive and Efficient Constraint Propagation

The pairwise constraints are used to adjust the similarity matrix for the kernel k-
means clustering algorithm. However, using this technique, only the constrained
segment similarities are affected. In order to make the propagation of constraints
more efficient, we borrow the idea of exhaustive and efficient constraint propa-
gation from Lu and Ip [6] and adapt it to our framework. The rationale behind
this method is to spread the effects of the constraints throughout the whole
similarity matrix S.

Exhaustive and Efficient Constraint Propagation (E?CP) tackles the prob-
lem of constraint propagation by decomposing it into sets of label propagation
subproblems. Given the dataset X = [x1,...,x,] € R¥" a set of must-link M
and a set of cannot-link C, we can represent all the pairwise constraints in a
single matrix W = Z;; . n¢

+1, (aci,xj) eM
Wij =4 —L (zi,z;) €C 3)
0, otherwise
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Each j-th column of W ; can now be seen as a two-class semi-supervised
learning problem, in which the positive class (W;; > 0) represents the segments
that should be on the same cluster, and the negative class (W;; < 0) represents
the segments that should not be in the same cluster. If (W;;) =0, x; x; are not
constrained. Then, each column is solved by label propagation in parallel [12].
The same process is repeated for the rows, ensuring that all the segments will
be affected by the propagation. The algorithm can be described as follows:

1. Create the similarity matrix 7" or a symmetric £-NN graph.

2. Create the matrix £ = DleTDle7 where D is a diagonal matrix with its
(i,9)-element equal to the sum of the i-th row of T'.

3. Tterate F,(t + 1) = aLF,(t) + (1 — a)W for vertical constraint propagation
until convergence, where F,(t) € F and « is a parameter in the range of
(0,1).

4. Tterate Fj(t+1) = aFy,(t)L+ (1 —a)F* for horizontal constraint propagation
until convergence, where Fy,(t) € F and F; is the limit of {F,}.

5. Output F* = F}} as the final representation of the pairwise constraints, where
Fy; is the limit of {F,) }-

Intuitively, the algorithm receives information from its neighbor at each iter-
ation, and the parameter o controls the relative amount of information passed
from the neighbors. The final label of segments is set to be the cluster from
which it has received the most information during the iteration process.

Without loss of generality, [12] shows that {F(¢)} can be calculated in a
closed form. The output F* represents an exhaustive set of pairwise constraints
with the associated confidence scores |F*|. Now, we can adjust the similarities
in T with the output scores of F™*, as described in Equation 4.

S [1-(Q-F)-Wy), F5>0 )
i (1—|—F*)Ww, F; <0

Algorithm 2 shows SSACA with the exhaustive propagation.

Algorithm 2. SSACA + Exhaustive propagation (EP)

input: S € R"*": input frame kernel matrix, T € R™*": input segment kernel matrix,
W € R™ ™: constraint penalty, k: number of clusters, M: set of must-link con-
straints, C: set of cannot-link constraints, $: initial segmentation.

output G € {0,1}**™: Final partitioning of the points

: Propagate the constraints F* — W

: Form the matrix T according to equation 4.

: Diagonal-shift T' by adding o/ to guarantee positive definiteness of 7.

. Get initial clusters G©) using constraints.

: Return s = SSDPSearch(G(0>, 5,8, T, M, C, k).

QU W N =
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4 Experiments

We performed experiments on a naturalistic emotion speech database, and com-
pared the performance of the exhaustive propagation SSACA (SSACA+EP)
with SSACA and ACA. The accuracy evaluation criterion is the same used in
[1], and is based on the Hungarian algorithm.

4.1 AVEC Database

AVECJ10] is an audio-visual emotion recognition database created for the emo-
tion recognition challenge (AVEC 2012). It consists of conversations between par-
ticipants and four stereotyped characters. Each character has a specific emotion
stereotype: sensible, happy, angry, and sad. The train partition of the database
contains 31 sections, wherein each session contains one dialogue with a specific
character. The database is labeled for arousal, valence, power, and expectancy.

We used the Word-Level Sub-Challenge (WLSC) portion of the database.
Because we used a temporal-clustering-based approach, we categorized the con-
tinuous values of the affective dimensions, which range from [-1, 4+1], in 6 cate-
gories: [-1,-0.66], [-0.66, -0.33], [-0.33, 0], [0, 0.33], [0.33, 0.66], and [0.66, 1].

The audio features used consist of 1871 features, including 25 energy and
spectral related low-level descriptors (LLD) x 42 functionals, 6 voicing related
LLD x 32 functionals, and 10 voiced/unvoiced durational features. Details for
LLD and functionals can be found in [10]. For visual features, we extracted Local
Binary Patterns (LBP), based on the approach described in [9]. For arousal, we
used audio features, since it has been shown consistently in other works [9] that
audio features are more suitable for this type of affect dimension. For valence,
power, and expectancy, we used visual features.

Figure 1 shows the average results of 20 random initializations on the train
portion of the AVEC database for three different methods on arousal, valence,
power, and expectancy, respectively. Note that both SSACA and SSACA+EP
had superior performance compared to the baseline algorithm, ACA, in almost all
of the sessions, with the addition of only 5% percent of the possible constraints as
side information. SSACA+EP and SSACA showed very similar results; however,
for the sessions with higher number of segments and high variability, SSACA+EP
showed significantly better results, (e.g., session 22, Figure 1(a)).

Emotion variability seems to play a big role in influencing the results of
SSACA+EP. We define variability in this context as the variation of emotions.
When there are a lot of transitions from one category to another, we say we
have a high variability; when there are few transitions, we say we have low
variability. In order to observe this aspect on the AVEC database, we set up
another experiment. In this experiment, we used the dialogue of a participant
with 4 different characters and combined them, so we had a longer conversation
with the possibility of a high variability. Table 1 shows the average result of 20
random initializations.

Note that in this setup, SSACA+EP improved the results in all emotion
dimensions. For arousal, it improved from 0.74 to 0.78 with a lower standard
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Fig. 1. Average accuracy of SSACA+EP, SSACA and ACA on the AVEC dataset for
all sessions, at approximately 5% of the total number of possible constraints

deviation, using the same amount of constraints. Similar improvement was
observed for valence, which improved from 0.71 to 0.75. For power, we observed
improvements from 0.75 to 0.77. Finally, expectancy improved from 0.81 to 0.84.
In terms of the baseline algorithm, the proposed method had a very significant
increase in performance, in some cases doubling the accuracy with the addition
of only 5% of the possible number of constraints.

Table 1. Average accuracy results on high variance segments

Average Accuracy

Arousal Valence Power |Expectancy
SSACA+EP|0.78 £ 0.07|0.75 £ 0.08]0.77 4+ 0.11{0.84 +£ 0.08
SSACA 0.74 £ 0.09|0.71 £ 0.08|0.75 £ 0.12|0.81 £ 0.07
ACA 0.46 + 0.02|0.51 + 0.05/0.40 + 0.12|0.40 £ 0.02

5 Conclusion

In this work, we propose SSACA+EP, a temporal clustering algorithm that exte-
nds SSACA. SSACA+EP incorporates a mechanism for constraint propagation
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into its framework, spreading the must-link and cannot-link constraints through-
out the similarity matrix and making the process more efficient. Results on an
audio-visual naturalistic emotion conversation database show improvement in
all four dimensional emotions. One of the drawbacks of our approach is its com-
plexity, which is quadratic in the number of frames. In future work, we plan
on extending this approach to other temporal clustering methods and applying
these methods to other temporal clustering problems.
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