
End-User Browser-Side Modification
of Web Pages

Oscar Díaz1, Cristóbal Arellano1, Iñigo Aldalur1,
Haritz Medina1, and Sergio Firmenich2

1 University of the Basque Country (UPV/EHU), San Sebastián, Spain
{oscar.diaz,cristobal.arellano,inigo.aldalur}@ehu.es

2 LIFIA, Universidad Nacional de La Plata and CONICET, Argentina
sergio.firmenich@lifia.info.unlp.edu.ar

Abstract. The increasing volume of content and actions available on
the Web, combined with the growing number of mature digital natives,
anticipate a growing desire of controlling the Web experience. Akin to the
Web2.0 movement, webies’ desires do not stop at content authoring but
look for controlling how content is arranged in websites. By content, we
mainly refer to HTML pages, better said, their runtime representation:
DOM trees. The vision is for users to “prune” (removing nodes) or “graft”
(adding nodes) existing DOM trees to improve their idiosyncratic and
situational Web experience. Hence, Web content is no longer consumed
as canned by Web masters. Rather, users can remove content of no
interest, or place new content from somewhere else. This vision accounts
for a post-production user-driven Web customization (referred to as
“Web Modding”). Being user driven, appropriate abstractions and tools
are needed. The paper introduces a set of abstractions (formalized in
terms of a domain-specific language) and an IDE (realized as an add-on
from Google Chrome) to empower non-programmers to achieve HTML
rearrangement. The paper discusses the technical issues and the results
of a first validation.

Keywords: Web Modding, Web Widget, End User Programming,
Visual Programming, Domain Specific Languages, WebMakeUp.

1 Introduction

Modding is a slang expression that is derived from the verb “modify”. Modding
refers to the act of modifying hardware, software, or virtually anything else,
to perform a function not originally conceived or intended by the designer
[19]. The rationales for modding should be sought in the aspiration of users
to contextualize to their own situation the artefact at hand. This ambition is
not limited to video games, cars or computer hardware. The need also arises
for the Web. As an example, consider a TV-guide website (e.g. www.tvguia.es).
For a given user, favourite channels might be scattered throughout the channel
grid, hence, forcing frequent scrolling. In addition, users might move to
other websites (e.g. www.filmaffinity.com) to get more information about the

B. Benatallah et al. (Eds.): WISE 2014, Part I, LNCS 8786, pp. 293–307, 2014.
c© Springer International Publishing Switzerland 2014



294 O. Díaz et al.

scheduled movies. If tvguia is recurrently visited, this results in a poor user
experience. Traditionally, this is addressed through Web Personalization, i.e.
a set of techniques for making websites more responsive to the unique and
individual needs of each user [3]. Similar to other software efforts, traditional
personalization scenarios prioritize the most demanded requirements while
minority requests are put aside. However, as a significant portion of our social
and working interactions are migrated to the Web, we can expect an increase
in “long-tail” personalization petitions. These idiosyncratic petitions might be
difficult to foresee or too residual to be worth the effort. “Web modding”
moves the power to the users. Web modding (hereafter, just modding) aims at
Web content being consumed in ways other than those foregone by Web masters.
Rather, users are empowered to rearrange Web content “after manufacture”, e.g.
removing content of no interest (leading to less cluttered pages while reducing
scrolling) or placing new content obtained from somewhere else (reducing moving
back and forth between sites so that a single viewing context is provided). The
research question is how to achieve this empowerment.

This question admits different answers depending on the target audience.
We frame our work along three main requirements: available time (30’),
available expertise (no programming experience), and sparking motivation
(improving the Web experience). This rules out fine-grained, absorbing pro-
grammatic approaches, and demands more declarative and abstract means.
This is what Domain-Specific Languages (DSLs) are good for. DSLs are full-
fledged languages tailored to specific application domains by using domain-
specific terms. Domain abstractions are closer to how users conceive the
problem, facilitating engagement, production and promptness. This work’s
contribution rests on the three pillars of DSLs applied to Web modding,
i.e. ascertaining the right concerns (Section 3), finding appropriate DSL con-
structs to capture those concerns (Section 4), and finally, developing suit-
able editors that ease the production of DSL expressions (Section 5). The
later is realized through WebMakeup, a Google Chrome extension that turns
this browser into an editor for defining Web mods. WebMakeup is available
at the Chrome Web Store: https:// chrome.google.com/webstore/detail/
alnhegodephpjnaghlcemlnpdknhbhjj. Mods are exported as Google Chrome
extensions that once installed, will transparently customize the page next time
is visited. A first evaluation is provided in Section 6. We start by characterizing
Web Modding.

2 Characterizing Web Modding through Related Work

Web Modding sits in between Web Personalization [17] and Web Mashup [20].
As a personalization technique, modding aims at improving the user experience
by customizing Web content. There are also important differences. In Web
Personalization, the website master (the “who”) decides the personalization rules
(the “how”), normally at the inception of the website (the “when”), preferentially
using a server-centric approach (the “where”). By contrast, modding aims at

https:// chrome.google.com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj
https:// chrome.google.com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj


End-User Browser-Side Modification of Web Pages 295

Fig. 1. www.tvguia.es before (left) and after (right) being modded: channel “La 1” is
removed & filmaffinity ratings are introduced

empowering end-users (the “who”) to rearrange Web content once in operation
(the “when”) by acting on the DOM tree (runtime realization of HTML pages)
(the “how”) at the client side (the “where”). Nevertheless, modding also shares
similitudes with mashups: both tap into external resources. However, and unlike
mashups, modding does not create a bright new website. Rather, it sticks with
the modded website. Just like modding a car does not build a new car, modding
a website does not create a new website but just operates on the browser side
to change its DOM tree.

Web modding pays off for websites frequently visited but unsatisfactory Web
experience. As an example, consider www.tvguia.es. This website provides the
channel grid plus the-movie-of-the-day recommendation (see Figure 1 (left)).
A user might just focus on some few channels, hence a thorough channel
grip becomes a nuisance. In addition, content from other websites about
the recommended movie might be of interest. Figure 1 (right) depicts a
modded version: channel “La 1” is removed whereas additional content about
the recommended movie is obtained from www.filmaffinity.com. The fragment
extracted from filmaffinity is referred to as a widget, in this case, the filmAffinity
widget.

The bottom line is that mod scenarios are characterized as being idiosyncratic,
situational, and, potentially, short-lived, aiming not so much at synergistically
combining third-party data (as mashups do) but improving the user experience of
existing websites. Since these scenarios are very dependent on Web consumption
habits and user interests, modding necessarily has to be do-it-yourself (DIY).
This implies keeping the modding effort on a scale within the time and the
skills of end users. This scale is a main driver in finding a balance between
expressiveness (what can be modded) and effort (the cost of developing the mod).



296 O. Díaz et al.

Fig. 2. Feature diagram for DIY Web Modding

Our target is for Web Modding to be conducted by users with no programming
skills in around 30 minutes.

Implementation wise, modding implies browser-based programming. Modding
is already possible for skilful JavaScript programmers but certainly outside the
scope of end users [16]. This rules out fine-grained, absorbing programmatic
approaches (e.g. Chickenfoot [1], Co-Scripter [12]), and calls for coarser grained,
light-weight component-based standpoints. Unfortunately, most works on Web
components (e.g. widgets) favours a programmer perspective, addressing the
definition [18], implementation [6,9] and cloning of Web components [13,7]. A
higher-level of abstraction is needed. Domain-Specific Languages (DSLs) come
to the rescue. DSLs are full-fledged languages tailored to specific application
domains by using domain-specific terms [8]. To increase the chances for
DSLs to be adopted, three main landmarks stand out: ascertaining the right
concerns, finding appropriate constructs to capture those concerns, and finally,
developing appropriate editors that intuitively permit users to come up with
DSL expressions. Next sections address each of these landmarks for modding.

3 Ascertaining the Right Concerns

Web Modding sits within the field of Web Augmentation [2], i.e. conducting
changes upon the runtime representation of HTML pages (i.e. DOM trees) at
the time the page is loaded into the browser. Those changes can affect the
content, rendering, layout or dynamics of the page. Among the numerous uses
of Web Augmentation, modding focuses on performing a function not originally
conceived or intended by the host designer [5]. Finally, DIY modding addresses
the empowerment of end-users to mod by themselves. As in other areas of



End-User Browser-Side Modification of Web Pages 297

end-user design, more (expressiveness) can be less (usage). Therefore, DIY
modding is necessarily going to be less expressive (i.e. more domain-specific)
than general modding. We focus on improving the user experience through
content rearrangement, i.e. content removal (leading to less cluttered pages)
and content cloning, i.e. taking content from somewhere else (providing a single
viewing context while cutting down moving back and forth between browser
tabs). This sets the domain.

Along DSL good practices [14], concerns raised during DIY modding are
captured as a feature diagram [10]. A feature diagram represents a hierarchical
decomposition of the main concepts (i.e. features) found in the domain. The
diagram also captures whether features are mandatory, alternative or optional.
Figure 2 depicts the feature diagram for the domain “DIY modding”. Issues
include, hosting (i.e. setting the ambit of the modding), widgetization (i.e.
the definition of widgets whose addition and removal shape the modding),
animation (i.e. defining possible dynamics among the widgets), and finally,
the rendering directives for the mod. Next paragraphs delve into the details
(bold font is used for the features).

3.1 Hosting

A mod is a set of changes conducted upon the runtime representation of an
HTML page at the time the page is loaded. Therefore modding does not happen
in a vacuum but within the setting of an existing website, i.e. the host. The
host can be characterised by a URL expression or a regular expression (e.g.
www.amazon.com/*) so that all pages meeting the expression are subject to the
mod. The expressiveness much depends on the target audience. For our purpose,
we limit url regexp to those ending by “*”. More complex expressions are not
supported.

3.2 Widgetization

Modding is about customizing HTML content. HTML pages are conceived as
DOM documents. The granularity at which HTML customization happens influ-
ences complexity. A finer-grained approach will certainly improve expressiveness
but at the cost of complexity and learnability. Therefore, we opt for a coarser
grained approach: widgets. For the purpose of this work, a widget is a coarse-
grained DOM node (a.k.a. fragment), which accounts for a meaningful mod unit.

A widget can be defined from scratch through HTML and JavaScript. This
is not possible for non-programmers. Alternatively, 3rd parties can help. But
this also contradicts our setting that is characterized as being idiosyncratic,
situational, and, potentially, short-lived, hence, the introduction of 3rd parties
does not payoff. We are then forced to explore a different approach: widget
mining. That is, users do not create widgets on their own but extract them
from existing pages at the time the need arises. We then do not talk about
widget creation but widgetization of existing code. To this end, we support tree
variants: pinpoint, crop and clone.



298 O. Díaz et al.

Pinpoint supports inside-the-host widgetization, i.e. the widget is obtained
from the host. In this case, extraction points hold the host’s URL and a structure-
based coordinate, i.e. an XPath expression that pinpoints the DOM node to be
turned into a widget (see later). Widget movie-of-the-day is a case in point. It
singularizes the DOM node that holds the content for the recommended movie.
However, outside-the-host widgetization is more complex. A naive approach to
extract existing functionality from a web page is just copy&paste. However, since
HTML, CSS, and JavaScript are all “context-dependent”, moving fragments from
their original scope is rarely feasible. This moves us to the other two variants.

Clone is used for outside-the-host widgetization when the fragment to be
extracted is “static”, i.e. it holds content and style but not functionality (no JS
scripts associated). The aim is for the widget to look like the raw content in
the original page. Here, widgetization is achieved through cloning. Since style
needs to be replicated, cloning is not limited to the selected DOM node but
also its ancestors’ CSS styles are inherited1. Since code is replicated, what if the
original is upgraded? How are changes propagated to the replica? To this end,
we introduce refreshTimer, a parameter that sets the refresh polling time to four
possible values: onload (i.e. the widget is calculated every time the host page is
loaded), daily, weekly or never.

So far, we assume widgets to be obtained from a single HTML fragment
(singleCloned). However, the content of interest might be spread across
different nodes. An interesting case is that of the Deep Web. Deep Web sources
store their content in searchable databases that only produce results dynamically
in response to a direct request. Here, the “meaningful functional unit” (i.e. the
node to be widgetized) includes two fragments (complexCloned): the request
fragment and the response fragment. The filmAffinity widget illustrates this
situation. The “functional unit” includes not only the ranking table (i.e. the
output) but also the search entry form to type the movie title. Hence, creating
filmAffinity implies two extractions: one to collect the ranking table; another to
obtain the entry form2. Last but not least, so-created widgets are parameterized
by the form entries. This permits to fix some form entries (e.g. set “Gone with
the wind” as the movie title) or even better, bind the entry to some data which
is dynamically extracted from the hosting page at runtime (so called “binding
points”, see later).

Crop is used for outside-the-host widgetization when the fragment is
“dynamic”, i.e. it holds scripts. In this scenario, cloning does not work.
Functionality is difficult to extract in an automatic way (refer to [13] for the
difficulties on extracting JS code). Here, we resort to pixel-based cropping. Using
iframes, it is possible to load the source webpage on the background. Next, the
desired fragment can be addressed by referencing the height and width w.r.t the
cropping start coordinates.

1 HTMLClipper (http://www.betterprogramming.com/htmlclipper.html) is used to
propagate replication from content to the associated CSS-like directives.

2 Labelling a newly created widget with an existing name, makes the extraction engine
glue them together and be offered as a unit (provided they come from the same page).

http://www.betterprogramming.com/htmlclipper.html


End-User Browser-Side Modification of Web Pages 299

Once DOM nodes are turned into widgets, they start exhibiting some
additional characteristics. Widgets can have parameters and a state (i.e. visible
or collapsed). But most importantly, widgets might hold reference points, i.e.
directives that refer to some location in terms of Web coordinates. We distinguish
tree kind of reference points:

– Location points, which indicate from where the widget was obtained. They
contain a Web coordinate plus the framing page.

– Anchoring points, which refer to the new setting where the widget is to be
rendered, i.e. the position (i.e. before or after) w.r.t a given Web coordinate.

– Binding points, which denote how widget parameters can be bound to
content from the host. It holds the name of the parameter and the host’s
Web coordinate. As an example, consider filmAffinity. This widget needs
to be recalculated every time guiaTV ’s movie-of-the-day changes. To this
end, filmAffinity holds the title parameter. This parameter holds a binding
point to the DOM node in guiaTV that keeps the title of the recommended
movie. At runtime, the movie-of-the-day is recovered, and filmAffinity is
dynamically computed after the current title.

Previous paragraphs refer to Web coordinates. A Web coordinate is a means to
address content within a DOM tree (a.k.a. locators). For considerations about
locators refer to [11].

3.3 Animation

Modding is about rearranging content. But this rearrangement does not need
to happen in a single shot. Specifically, widgets can be in two states: visible or
collapsed. When visible, widgets have the capacity to respond to events, such
as keystrokes or mouse actions. When collapsed, widgets leave no trace in the
screen. A widget has an initial state, i.e. the state at the time the hosting page
is loaded (e.g. if visible, the widget is rendered as soon as the page is loaded).
This state might be amenable to be changed by interacting with other widgets.
A common approach for describing GUI dynamics is through statecharts [4].
However, statecharts are far too complex for our target audience. A simpler
mechanism is needed.

Broadly, state changes can be described as event-condition-action rules. First
studies, however, demonstrate that rules were a too fine-grained specification.
Needed are higher abstractions that permit to capture recurrent patterns as a
single construct. Based on previous evaluations, we noticed a recurrent animation
pattern. Let’s illustrate it with two widgets: movieOfTheDay and filmAffinity.
Consider the later is to be made visible or collapsed upon mouse in/mouse out
movieOfTheDay. This can be captured through a pair of rules:

ON mouse-in movieOfTheDay WHEN filmAffinity.state = “col-
lapsed” DO filmAffinity.state = “visible”

ON mouse-out movieOfTheDay WHEN filmAffinity.state = “visi-
ble” DO filmAffinity.state = “collapsed”



300 O. Díaz et al.

We found this pattern so common that decided to introduce a DSL primitive for
it: the blink. A blink accounts for a directed relationship between two widgets
W1 and W2. We say “W1 blinks W2”, if acting upon W1 (e.g. clicking) causes
W2 to change its state (from visible to collapsed or vice versa, depending on the
W2 current state). Previous example can now be expressed as “movieOfTheDay
blinks filmAffinity on clicking”. So far, we limit animation to blinks. Blink events
are limited to mouse-in (being mouse-out its blink counterpart) and click (being
click also its blink counterpart).

3.4 Rendering

Inlaying new widgets into an existing DOM structure can make the host’s
layout be disrupted. Specifically, HTML introduces some attributes to de-
scribe the rendering strategies for DOM nodes, namely: the layout strategy
(HTML’s “display” attribute) which can be arranging the content horizontally
(inline) or vertically (block); minimum and maximum size intervals (HTML’s
attributes minHeight, minWidth, maxHeight, maxWidth); and the overflow
strategy (HTML’s “overflow” attribute) that indicates what to do in case the
content exceeds the size intervals (i.e. make container scrollable, show the
overflowed content or hide the overflowed content). Widget inlaying might
disturb the page layout, causing one-dimension distortion or even worse, two-
dimension distortion. We decide this concern to be hardwired within the DSL
engine. Better said, the engine supports contingency actions to alleviate this
situation (e.g. if container is 80% full then, WA overflow strategy is set to “warn”;
if container is 90% full and the widget fits inside then, WA overflow strategy =
“resize”, etc.).

4 Finding Appropriate Constructs

Previous feature diagram captures main concerns to be solved during DIY
modding. Next, these abstractions are realized in a language by looking into
variabilities and commonalities in the feature diagram [14]. Variable parts must
be specified directly in or be derivable from DSL expressions. In the first case, the
variants become DSL constructs. However, some alternatives can be hardwired
into the DSL engine as heuristics. Being heuristics, they might fail and hence,
they are not as reliable as if provided by the user. The upside is that they
simplify the user’s life, hence, improving learnability and development. We
decided rendering to be hardwired into the engine. That is, widget placement
is to be assisted by the DSL engine. The rest of features are set by the user
through the DSL. This section introduces the DSL metamodel.

Figure 3 provides the metamodel for mod description. A mod is a set of
changes conducted upon the runtime representation of an HTML page (i.e. the
host). These changes are described in terms of widgets. Widgets are characterized
by a locationPoint (i.e. how to obtain it), an anchoringPoint (i.e. where to
locate it), and, optionally, distinct bindingPoints (i.e. how widget parameters



End-User Browser-Side Modification of Web Pages 301

Fig. 3. A DSL for Web Modding: abstract syntax

can be obtained from the host’s content). Each widget stands for a rearrangement
operation as follows:

– If locationPoint exists without anchoringPoint, this accounts for content
removal (only for host-based widgets).

– If locationPoint differs from anchoringPoint, this accounts for content
displacement (only for host-based widgets).

– Otherwise, the widget captures content addition.

But not all contents need to be added/removed at loading time. Blinks
permit to hand this decision over to the current user. This makes content
rearrangement dependent upon user interactions. For instance, “movieOfTheDay
blinks filmAffinity on clicking” permits to postpone till runtime the decision
of rendering filmAffinity. If you click, you get filmAffinity. If complementary
outside-the-host widgets exists (e.g. filmIMDB extracts the ratings from the
IMDB website), then this content can be shown either simultaneously (e.g.
“movieOfTheDay blinks filmIMDB on clicking”) or in a cascade way (“filmAffinity
blinks filmIMDB on clicking”). But not only additions, also removals can be
left pending until interaction time: “movieOfTheDay blinks movieOfTheDay on
clicking” permits current users decide whether they want to delete (i.e. collapse)
movieOfTheDay by clicking on it. Next, we address how to make mods affordable
to end users.



302 O. Díaz et al.

Fig. 4. WebMakeup: mod initialization

5 An Editor for DIY Mods

DSL acceptance is heavily influenced by the existence of appropriate editors,
more to the point if targeting end users. This section outlines WebMakeup, an
editor for DIY mods. This editor is available at the Chrome Web Store: https://
chrome.google.com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj.
TVguia is used as an example. The description goes along the creation of a mod,
i.e. a model conforming to the metamodel presented in the previous section. A
demo video is available at http://onekin.org/downloads/public/WebMakeup/
video.mov.

Mod creation (Figure 4). WebMakeup is a plugin for Google Chrome
browser. Its installation is reflected by the WebMakeup button at the right of the
address bar. On clicking this button, a scrollable menu pops up. By clicking “New
makeup”, the user initializes the mod model (Figure 4 (bottom)). WebMakeup
turns the current page into the editor canvas: the pointer is turned into a camera,
a grid-like structure is interspersed on top of the current DOM tree, and the
piggyBank tab pops up.

Mod populating (Figure 5). A widget is a DOM node but not all DOM
nodes are widgets. We need to singularize the selected DOM node that accounts
for a meaningful HTML fragment. Meaningfulness is not inferred by the tool
but indicated by the user. To this end, and, as the user moves the cursor around
the screen, the DOM node under the current cursor location is highlighted. By
clicking, the user singularizes this node as a meaningful HTML fragment, i.e.
a widget. A nuisance is the handling of “hidden nodes”. These nodes are those
that do not have a graphical counterpart and hence, they cannot be pinpointed
through the cursor. For instance, a table row (<tr>) is graphically hidden if its
graphical space is totally taken by its content. If the row does not explicitly have
some graphical counterpart (e.g. a border), then all the space is occupied by the
row’s content so that the cursor will always select the row’s content rather than
the row element itself. To overcome this problem, we resort to the keyboard.
Keys “w”, “s”, “a” and “d” help to move up, down, left and right along the DOM
tree, respectively, w.r.t to the node being pinpointed by the cursor.

https://chrome.google.com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj
https://chrome.google.com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj
http://onekin.org/downloads/public/WebMakeup/video.mov
http://onekin.org/downloads/public/WebMakeup/video.mov


End-User Browser-Side Modification of Web Pages 303

Fig. 5. WebMakeup: mod filling up. The piggyBank tab is displayed.

No matter the selection mechanism (i.e. cursor vs. keyword), the selected node
is surrounded by a decorator. This decorator permits to set the initial widget
state by clicking on the “eye” icon (decorators’ upper left-hand side corner):
visible (open eyes) & collapsed (closed eyes). The example contains two inside-
the-host widgets (i.e. movieOfTheDay and TVE1channel) and outside-the-host
widget (i.e. filmAffinity). The latter is dragged&dropped from piggyBank3 . Click
on this tab to expose the widgets collected from other pages (see it in display in

3 Outside-the-host widgets can be obtained at any time. To this end, the right-click
contextual menu is extended with the widgetizeIT item. At any time, select it for a
grid-like structure to be interspersed on top of the page you are looking at. As the
user moves the cursor around the screen, the DOM node under the current cursor
location is highlighted. By clicking, the selected node is turned into a widget and
kept in the extension’s variable: piggyBank.



304 O. Díaz et al.

Fig. 6. WebMakeup: defining blinks

Figure 5). Placement heuristics will warn or prevent from dropping widgets in
certain places. In all cases, WebMakeup works out the Web coordinates.

Mod enhancement (Figure 6). At any time during editing, widgets can be:

– Deleted. Widget removal is achieved by clicking upon the X icon on the
widget decorator. In the example, we remove TVE1channel. Model wise, this
is reflected by deleting its anchoring point. An important remark: banners
cannot be removed. Though this is a common desire among users, up to 84%
of the top 100 websites rely on advertising to generate revenue [15]. Though
adverts can be a nuisance, they are the ones that pay the bill. So for the
time being, we take the decision of making WebMakeup ad-friendly.

– Rearranged. This is conducted through drag&drop once the widget is
selected. Model wise, this is reflected as an update on the anchoring point.



End-User Browser-Side Modification of Web Pages 305

– “Blinked”. Blinks are graphically represented through pipes. Widget deco-
rators have in their right-hand side a yellow circle. This circle denotes a
pipe start. Click and drag from this point to expand till reaching another
widget. This sets a blink from the triggering widget (the pipe’s start) to the
triggered widget (the pipe’s end). An entry field on top of the pipe serves
to indicate the blink’s event. Figure 6 illustrates the case “movieOfTheDay
blinks filmAffinity on clicking”.

Once the edition finishes, the mod can be exported as a Chrome extension. Once
the extension is installed, the mod will be automatically enacted next time the host
page is loaded. For our running example, the generated extension is available at
http://onekin.org/downloads/public/WebMakeup/extension.zip.

6 Usability Evaluation

ISO definition of usability (ISO 9241-11, Guidance on Usability (1998)) refers
to the extent to which a system (e.g. WebMakeup) can be used by specified
users (e.g. end users) to achieve specified goals (e.g. content re-arrangement)
with effectiveness (e.g. mod completion), efficiency (e.g. 30’) and satisfaction in
a specified context of use (e.g. browsing sessions). This section provides first
insights not only about WebMakeup but also about the satisfaction of users on
the result of the mod.

Research Method. The study was conducted in a laboratory of the
Computer Science Faculty of San Sebastián. Before the participants started, they
were informed about the purpose of the study and were given a brief description
of it (5 minutes). Then, a WebMakeup sample was presented to illustrate the
main functionality of the tool. The sample mod adapts a conference website by
removing the logo of the conference and adding information about the weather
forecast and information about the authors obtained from the DBLP. Next,
participants were handed out a sheet with the instructions to create a new mod
similar to the one used here as a running example. Participants were asked to
write down the time when “New WebMakeup” button is clicked and again when
they saw the augmentation. Last, participants were directed to a Google Forms
online questionnaire.

Ten students participated in the study. The majority of participants were
male (80.0%). Regarding age, 80.0% were in the 20-29 age range and all
participants were below thirty five years old. Concerning the participants’
browsing behaviour, 80% accesses to more than 10 websites every day and in the
last year participants had installed between 2 and 20 applications/plugins/add-
ons, with a mean of 6.5.

An online questionnaire served to gather users’ experience. It consisted of
four parts, the first one to gather the participants’ background, another one to
measure the satisfaction, other one to effectiveness and the last one to measure
the productivity. In order to evaluate effectiveness, the questionnaire contained
the proposed tasks so that participants could indicate if they had performed
them, while productivity was measured using the minutes taken in such tasks.

http://onekin.org/downloads/public/WebMakeup/extension.zip


306 O. Díaz et al.

Table 1. Satisfaction results from 1 (completely disagree) to 5 (completely agree)

Item Mean St. Dev.
1. I found the tool easy to use 3.4 0.966
2. I have made all the things that I wanted 3.1 0.994
3. I have always known how to do the things 2.1 0.738
4. There was no errors 4.0 0.817
5. It is fast 3.9 0.850
6. I am satisfied with the things I made 4.1 1.197
7. Removing content improves my Web experience 3.2 1.174
8. Adding content in a single view improves my experience 4.5 0.699
9. Demo is interesting to be told to friends 3.9 1.229

Satisfaction was measured using 9 questions, respectively, with a 5-point Likert
scale (1=completely disagree, 5=completely agree). Descriptive statistics were
used to characterize the sample and to valuate the participants’ experience using
WebMakeup.

Results. All participants but one successfully created the proposed augmen-
tation. Those who successfully ended the sample took between 19 and 35 minutes
with a mean of 24.2 minutes to fulfil the task. Table 1 shows scores for the
satisfaction survey. As for the tool itself (items 1 to 5), subjects were reasonably
happy. A shortcoming detected during the experiment was the lack of facilities
to store work-in-progress mods. So far, WebMakeup forces to obtain the mod
in a single session. Also, two subjects found the blink relationship misleading.
On the upside, most of users finished under 30’. As for the notion of modding
itself, subjects found content deletion and content rearrangement effective means
to improve their web experience (items 7 and 8). Interesting enough, providing
a single viewing context was found more interesting than content removal. In
general, users found the experience rewarding (items 6 and 9).

7 Conclusions

Webies 2.0 no longer take the Web as it is but imagine fancy ways of
customizing it for their own purposes. This work presents our vision for DIY
modding along three main requirements: available time (30’), available expertise
(no programming experience), and spark motivation (improving the Web
experience). These requirements ground a coarse-grained, light-weight approach
to DIY modding that is so far limited to content rearrangement. A fully-working
editor, WebMakeup, demonstrates the feasibility of this vision. First evaluation
is encouraging about the potentiality of Web Modding to improve the Web
experience, and hence, the need for tools that make this vision possible.

Acknowledgments. This work is co-supported by the Spanish Ministry of
Education, and the European Social Fund under contract TIN2011-23839.
Aldalur has a doctoral grant from the Spanish Ministry of Science & Education.



End-User Browser-Side Modification of Web Pages 307

References

1. Bolin, M., Webber, M., Rha, P., Wilson, T., Miller, R.C.: Automation and
Customization of Rendered Web Pages. In: UIST 2005, pp. 163–172 (2005)

2. Bouvin, N.O.: Unifying Strategies for Web augmentation. In: HyperText 1999, pp.
91–100 (1999)

3. Cingil, I., Dogac, A., Azgin, A.: A Broader Approach to Personalization.
Communications of the ACM 43(8), 136–141 (2000)

4. Daniel, F., Furlan, A.: The interactive API (iAPI). In: Sheng, Q.Z., Kjeldskov, J.
(eds.) ICWE 2013 Workshops. LNCS, vol. 8295, pp. 3–15. Springer, Heidelberg
(2013)

5. Díaz, O., Arellano, C.: The Augmented Web: Rationales, Opportunities &
Challenges on Browser-side Transcoding. ACM Transactions on the Web (2014)

6. Ennals, R., Brewer, E.A., Garofalakis, M.N., Shadle, M., Gandhi, P.: Intel Mash
Maker: Join the Web. SIGMOD Record 36, 27–33 (2007)

7. Firmenich, S., Winckler, M., Rossi, G., Gordillo, S.E.: A Crowdsourced Approach
for Concern-Sensitive Integration of Information across the Web. Journal of Web
Engineering 10(4), 289–315 (2011)

8. Fowler, M.: Domain-Specific Languages. Addison-Wesley Professional (2010)
9. Han, H., Tokuda, T.: A Method for Integration of Web Applications Based on

Information Extraction. In: ICWE 2008, pp. 189–195 (2008)
10. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-

Oriented Domain Analysis (FODA) Feasibility Study. Technical report, Carnegie-
Mellon University (1990)

11. Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Visual vs. DOM-Based Web
Locators: An Empirical Study. In: Casteleyn, S., Rossi, G., Winckler, M. (eds.)
ICWE 2014. LNCS, vol. 8541, pp. 322–340. Springer, Heidelberg (2014)

12. Leshed, G., Haber, E.M., Matthews, T., Lau, T.: CoScripter: Automating &
Sharing How-To Knowledge in the Enterprise. In: CHI 2008, pp. 1719–1728 (2008)

13. Maras, J., Stula, M., Carlson, J., Crnkovic, I.: Identifying Code of Individual
Features in Client-Side Web Applications. IEEE Transactions on Software
Engineering 39(12), 1680–1697 (2013)

14. Mernik, M., Heering, J., Sloane, A.M.: When and How to Develop Domain-Specific
Languages. ACM Computing Surveys 37, 316–344 (2005)

15. PageFair. The Rise of Adblocking (2013),
http://blog.pagefair.com/2013/the-rise-of-adblocking/

16. Pilgrim, M.: Greasemonkey Hacks: Tips & Tools for Remixing the Web with
Firefox. In: Getting Started, 12. Avoid Common Pitfalls, ch. 1, pp. 33–45. O’Reilly
(2005)

17. Rossi, G., Schwabe, D., Guimarães, R.: Designing Personalized Web Applications.
In: WWW 2010, pp. 275–284 (2001)

18. W3C. Requirement For Standardizing Widgets (2006),
http://dev.w3.org/2006/waf/widgets-reqs/

19. Wikipedia. Modding (2014), https://en.wikipedia.org/wiki/Modding
20. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development.

IEEE Internet Computing 12, 44–52 (2008)

http://blog.pagefair.com/2013/the-rise-of-adblocking/
http://dev.w3.org/2006/waf/widgets-reqs/
https://en.wikipedia.org/wiki/Modding

	End-User Browser-Side Modification of Web Pages
	1 Introduction
	2 Characterizing Web Modding through Related Work
	3 Ascertaining the Right Concerns
	3.1 Hosting
	3.2 Widgetization
	3.3 Animation
	3.4 Rendering

	4 Finding Appropriate Constructs
	5 An Editor for DIY Mods
	6 Usability Evaluation
	7 Conclusions
	References




