
Model-Based Search and Ranking of Web APIs

across Multiple Repositories

Devis Bianchini, Valeria De Antonellis, and Michele Melchiori

Dept. of Information Engineering University of Brescia
via Branze, 38, 25123 Brescia, Italy

{devis.bianchini,valeria.deantonellis,michele.melchiori}@unibs.it

Abstract. Web API search and reuse for agile Web application devel-
opment may benefit from selection criteria that combine several perspec-
tives: they can be performed based on features used to describe APIs,
or according to the co-occurrence of Web APIs in the same applications,
or they can be driven through ratings assigned by designers who used
the Web APIs for their own mashups. Nevertheless, different Web API
repositories usually focus on a subset of these perspectives, thus provid-
ing complementary Web API descriptions. In this paper, we propose a
unified model for Web API characterization. The model enables a cross-
repository search of Web APIs and mashups, based on different kinds
of similarity between them, identified regardless the complementarity of
their descriptions. This unified representation improves retrieval results
if compared with a Web API search performed over multiple repositories
considered separately.

1 Introduction

Web API selection and aggregation, performed for mashup and short-living ap-
plication development, may benefit from the adoption of criteria that combine
different perspectives [1]: a component perspective (based on features used to de-
scribe Web APIs); an application perspective (i.e., information about mashups
composed of the Web APIs); an experience perspective (including ratings as-
signed by web designers, who used Web APIs to develop their own mashups).
The advantages coming from a multi-perspective Web API search have been
confirmed by several approaches, that combined categories, tags and technical
features like the adopted protocols and data formats in Web API descriptions
with the co-occurrence of APIs in the same applications [2], with a quality-based
model for Web APIs [3], with the network traffic around APIs and mashups, as
an indicator of their success, and ratings assigned by designers [4]. Existing ap-
proaches rely on a single Web API repository. The ProgrammableWeb repository1

is the most common one for sharing Web APIs and mashups. It contains over
11,500 Web APIs, where about 1,200 of them have been registered in the last
year. APIs have been used in more than 7,400 mashups, while over 2,800 mashup

1 http://www.programmableweb.com/

B. Benatallah et al. (Eds.): WISE 2014, Part I, LNCS 8786, pp. 218–233, 2014.
c© Springer International Publishing Switzerland 2014

Model-Based Search and Ranking of Web APIs across Multiple Repositories 219

owners are registered in the repository. Nevertheless, different repositories em-
phasize complementary aspects to be considered for Web API search. Although
ProgrammableWeb constitutes a well-known meeting point for the community of
mashup developers, it does not provide a comprehensive Web API model that
includes all the perspectives: it is mainly focused on a feature-based description
of Web APIs (through categories, tags and technical features) and on the list
of mashups that have been developed using the Web APIs. Another repository,
Mashape2, a cloud API hub leveraging a twitter-like organization, associated
each Web API with the list of developers who adopted or declared their interest
for it, denoted as consumers and followers, respectively. Other public reposi-
tories, such as apigee or Anypoint API Portal3, focus on different and only
partially overlapping aspects as well. This scenario brings to situations where:
(i) the same Web APIs or mashups are registered multiple times within different
repositories; (ii) Web APIs (resp., mashups) are searched and ranked according
to distinct criteria in separate repositories, to meet different Web API (resp.,
mashup) descriptions (for instance, in ProgrammableWeb Web APIs are ranked
with respect to the number of mashups they have been used in, Web API rank-
ing performed on Mashape repository depends on the number of API followers).
As proved in [1], performing Web API search and ranking on a comprehensive
API descriptor, that includes different and complementary descriptive aspects,
would improve retrieval results. This implies that it is not enough to search for
APIs within distinct repositories considered separately and simply merge search
results, but a real unified view over the repositories before starting the search is
required. In this sense, similarity between Web APIs and mashups across differ-
ent repositories should be exploited to enrich search results. Current Web API
search scenarios lack of a model that provides a unified representation of Web
APIs and mashups, to ease the identification of similar resources regardless the
complementarity of their descriptions across different repositories [5]. Behind the
advantage of avoiding multiple copies of the same API among the search results,
although described with different properties depending on the repository from
where API has been extracted, such a unified view would improve the retrieval
outcomes as expected.

In this paper, we discuss about the definition of this model such that: (i)
its unified representation covers the three perspectives mentioned above in Web
API description, namely component, application and experience perspectives;
(ii) it is part of a framework that enables the identification of different kinds of
similarity between Web APIs and mashups, to provide a cross-repository search
of these resources; (iii) it is integrated with aWeb API and mashup search engine,
that exploits similarity measures to properly access complementary information
across repositories. A preliminary experimental evaluation confirms the improved
search results, obtained by applying our approach, compared with Web API
search performed on multiple repositories considered separately.

2 https://www.mashape.com/
3 https://api-portal.anypoint.mulesoft.com

220 D. Bianchini, V. De Antonellis, and M. Melchiori

The paper is organized as follows: Section 2 presents a motivating example for
introducing the unified model, that is discussed in Section 3; similarity criteria
are presented in Section 4; in Section 5 we describe the Web API and mashup
search based on the model; results of the preliminary evaluation are discussed
in Section 6; a comparison with related work is provided in Section 7; Section 8
closes the paper.

2 Motivating Example

Let’s consider a web designer who aims at including a face recognition function-
ality to access the private area of his/her own web site. Since developing this kind
of applications from scratch would require very specific competencies and could
be costly and time-consuming, the designer prefers to look for existing available
Web APIs, that implement the desired functionalities, and examples of their use
in mashups shared by other designers. Now let’s consider the situation depicted
in Figure 1. The figure reports some mashups and Web APIs that are rele-
vant for the designer’s purpose, obtained from ProgrammableWeb and Mashape

repositories, by issuing a query with “face recognition” keywords. For exam-
ple, the Recognizer mashup, where the LambdaLabs Face and SkyBiometry

APIs are used together to provide multiple recognition services based on bio-
metrics features, might fit the designer’s goal. The Recognizer mashup can be
used by the designer to infer how LambdaLabs Face and SkyBiometry APIs can
be fruifully used together. Nevertheless, while the SkyBiometry API has been
used in 49 mashups (including Recognizer, Art4Europe, SaveUp applications)
and has been positively rated by other designers, the LambdaLabs Face API
did not reached the same popularity. However, the latter API is similar to the
ReKognition API in a different repository. This API is rated better than the
LambdaLabs Face one and has 237 consumers and 372 followers on Mashape.
Therefore, a satisfactory search should return ReKognition API ranked better
than LambdaLabs Face API to be used, for instance, together with SkyBiometry

API for developing a face recognition application.
If we would consider the two repositories separately, the ReKognition API

taken from Mashape can not be associated with any mashup that is relevant
for the designer’s search, since in this repository mashups information are not
shared. Similarly, the SkyBiometryAPI can not be suggested to be used together
with the successful ReKognition API on Mashape. Public Web API repositories
(e.g., ProgrammableWeb, Mashape, apigee, Anypoint API Portal) provide fa-
cilities that enable to search for both Web APIs and mashups (if available) by
specifying one or more keywords, that are matched against textual descriptions
of APIs and mashups, but they do not enable any advanced search and rank-
ing strategy relying on the component, application and experience perspectives
highlighted in the introduction. The only way a designer may combine different
viewpoints for Web API ranking is to manually analyze basic sorting facilities
provided by existing repositories (such as, the popularity on ProgrammableWeb,
meant as the number of mashups where a Web API has been included, and the

Model-Based Search and Ranking of Web APIs across Multiple Repositories 221

Recognizer

similar
Web APIs

LambdaLabs Face

SkyBiometry

ReKognition.com

Mashup
Web API
ComposedOfRepository 1 (ProgrammableWeb)

Repository 2 (Mashape)
Art4Europe, SaveUp, …
(and other 46 mashups)

237 consumers, 372 followers

Followers/consumers
Designers' average rating

Fig. 1. The scenario considered in the motivating example, where a subset of face recog-
nition APIs and mashups taken from the ProgrammableWeb and Mashape repositories
is shown

number of followers of an API on Mashape). Finally, a seamless selection of Web
APIs and mashups is necessary to be exploited as suggestions for a designer
who aims at developing a new application from scratch (he/she may start from
a single API, e.g., SkyBiometry) or at completing an existing one (he/she may
learn from available mashups, viewed as sets of already aggregated APIs, e.g.,
Recognizer).

To overcome these limitations, in the following, we provide the designer with a
unified model that enables a cross-repository search of Web APIs and mashups.

3 Web API and Mashup Unified Model

We introduce a unified Web Mashup resource Descriptor (hereafter, WMD), that
embraces: (i) Web APIs as extracted from repositories; (ii) Web mashups, com-
posed of one or more APIs. WMDs collect together these two kinds of resources
by abstracting the set of their common features, as emerged through the analysis
of the most popular public repositories and of state of the art approaches on Web
API selection. Web APIs and mashups are basic elements of the component and
application perspectives proposed in [1]. On top of this representation, ratings
assigned by designers to Web mashup resources are considered to estimate their
popularity (experience perspective). The WMD representation, derived from the
proper combination of the three perspectives above, enables advanced search
and ranking capabilities as described in the next sections. WMDs are collected
and stored within a relational database, as shown in Figure 2.

Modeling Web Mashup Resources. A WMD is denoted by a unique identi-
fier, corresponding to the URL of the Web API or the mashup, a human-readable

222 D. Bianchini, V. De Antonellis, and M. Melchiori

Fig. 2. The relational schema of the database containing the Web Mashup resource
Descriptors, represented according to the unified model

name, a resource type, whose values, either m or w, denote the fact that WMD
represents a Web API or a mashup. Each WMD is associated with a set of ter-
minological items, that correspond to: (a) categories extracted from top-down
classifications imposed within a given repository, where the resource is regis-
tered; (b) a term with explicit semantics, either a term extracted from WordNet
or a concept extracted from an ontology in the Semantic Web context [6]; (c)
a simple keyword or tag without an explicit representation of semantics. We
distinguish keywords and tags as follows: tags are designer-assigned, bottom-
up terms aimed at classifying WMDs in a folksonomy-like style, keywords are
recurrent terms extracted from WMD textual descriptions using common IR
techniques. A terminological item is in turn described by a representative name,
an optional property that denotes the vocabulary, ontology, taxonomy or Word-
Net sense where the item is defined (denoted with Vocabulary URI in Figure 2)
and a set of other terms (denoted as bag of words) used to further characterize
the item (optional). In particular, given an item ti, if ti is a category, the item
name corresponds to the category name, its bag of words is empty and ti is
described by the taxonomy or the classification the category belongs to. If ti is
extracted from WordNet, its bag of words coincides with the list of synonyms
of the term, and it is described by a reference to the WordNet sense the term
belongs to. If ti is a concept extracted from an ontology, its bag of words is
composed of the names of other concepts related to ti by semantic relationships
in the ontology (in the current version of our approach, we consider OWL/RDF
equivalence and direct subsumption relationships); moreover, ti is described by
the URI of the ontology where it is defined. Finally, if ti is a keyword or a tag
without explicit semantics, its bag of words is empty and the item does not refer
to any vocabulary or taxonomy where its meaning is properly defined. A WMD
is further characterized through the set of technical features (e.g., protocols, data

Model-Based Search and Ranking of Web APIs across Multiple Repositories 223

formats, security mechanisms) that have been adopted for the Web API (if the
WMD represents a single component) or for the APIs that compose the mashup
(if the WMD represents a whole web application). A self-relationship is defined
on WMDs, to denote Web API composition into mashups. The abstraction of
Web API and mashup descriptions through a single data structure, namely the
Web Mashup resource Descriptor table, is meant to support the unified search
of Web APIs and mashups as shown in the motivating example (Section 2).
The search might start from a Web API (e.g., SkyBiometry in Figure 1), pass
through mashups that contain the API (e.g., Recognizer) and find other Web
APIs that have been used in the same mashups. Or it might start from a mashup
and retrieve all the Web APIs that have been used together in the mashup. The
final goal is to retrieve APIs or mashups that are relevant for the keywords, tags
or categories specified in the request. In this sense, collecting both Web API
and mashup representations as records in a single table ensures the maximum
search flexibility. Conceptually, it is equivalent to a pair of entities, represent-
ing Web APIs and mashups, and a parent entity that collects common features.
Moreover, a unique table, if properly indexed, allows for good performance while
inspecting the database during search.

Modeling the Experience Perspective. Each WMD is also associated with
ratings assigned to it by designers, who may be either Web API providers, Web
mashup owners, or they may be WMD consumers, who rate resources according
to their personal opinion. In [1] the value of quantitative ratings is selected by
the designers according to the NHLBI 9-point Scoring System. In this paper, we
assume the same system as well. Since we refer to quantitative ratings uniformly
distributed over a continuous range, the mapping from a different scoring sys-
tem to this one is possible. In our previous work, we discussed how designers
can be further characterized by their development skill, that is self-declared, as
shown in [1]. Designers’ skill can be exploited to properly weight their ratings,
considering as more trustworthy the opinions of more expert designers. In [1]
designers’ skills have been used by the system for Web API search, but have
not been published to preserve the anonymity of designers’ reputation stored
in the database. A designer is allowed to know his/her own skill only. More so-
phisticated anonymization techniques can be investigated, if necessary, as well
as methods to automatically estimate designers’ skill based on their experience
in mashup development. In our unified model, we did not considered designers’
skills yet, since they can not be directly extracted from public repositories we
considered. Future efforts will be devoted to the integration of this aspect as well.

Extracting and Organizing Descriptors. WMDs are acquired by means of
wrappers, designed to invoke specific methods made available by public repos-
itories to query their contents4. Moreover, wrappers may interact with proper
modules implemented on the Java platform to extract specific kinds of

4 See, for instance, http://api.programmableweb.com for the ProgrammableWeb

repository or http://www.mashape.com/mashaper/mashape#!documentation for the
Mashape repository.

224 D. Bianchini, V. De Antonellis, and M. Melchiori

terminological items: a module based on jWordNet library, used to extract syn-
onyms and senses; a module implemented on Jena, to parse concept definitions
from OWL/RDF ontologies; an IR-based module, to extract keywords from tex-
tual descriptions of resources (when available). Other wrappers can be added
to the system according to the modularized architecture, that requires only to
create wrappers and connect them to the specific modules listed above. Within
the database, similarity values between WMDs are stored as well, as detailed in
the next section.

4 Cross-Repository Similarity Metrics

Similarity metrics have been defined to compare Web mashup resources, repre-
sented according to the unified model. We will distinguish among the following
kinds of similarity, that will be detailed in the following:

– terminological similarity, based on terminological items;
– technical similarity, computed as the number of common values of technical

features among the compared resources;
– compositional similarity, aimed at measuring the degree of overlapping be-

tween two mashups or compositions of Web APIs, evaluated as the number
of common or similar Web APIs in the two compositions.

As for the abstraction of Web API and mashup features within the same table,
also these different kinds of similarity are abstracted using a single table in Fig-
ure 2, that is, Similarity table, where the type attribute denotes the kind of
similarity (among terminological, technical and compositional), similarity value
is always normalized in the [0, 1] range and is computed between two WMDs,
namely the source WMD and the target WMD. All metrics are symmetric. The aim
is at exploiting similarity values to cluster descriptors in order to support their
search (see Section 5). Starting from the hypothesis that clustered resources tend
to be relevant for the same request [7], similarity-based clustering is exploited
to identify a unique resource, that represents a bundle of similar ones (i.e., the
cluster representative). The request is then compared against the representative
resource instead of against each clustered ones, in order to filter out not rele-
vant results, thus improving the resource retrieval effectiveness (see Section 6 on
experiments).

Terminological Similarity between Web Mashup Resources. The termi-
nological similarity between two Web mashup resources res1 and res2, denoted
with TermSim(res1, res2)∈[0, 1], is based on the comparison of their termino-
logical items, that is:

TermSim(res1, res2) =
2 ·

∑
t1∈T1,t2∈T2

itemSim(t1, t2)

|T1|+ |T2|
∈[0, 1] (1)

where we denote with Ti the set of terminological items used to characterize
resi, t1 and t2 are terminological items, |Ti| denotes the number of items in
Ti set and itemSim(·) values are aggregated through the Dice formula. Pairs

Model-Based Search and Ranking of Web APIs across Multiple Repositories 225

to be considered for the TermSim computation are selected according to a
maximization function that relies on the assignment in bipartite graphs. The
point here is how to compute itemSim(t1, t2)∈[0, 1] given the different types
of involved terminological items. The algorithm for the itemSim(·) calculus is
shown in Algorithm 1.

Algorithm 1. The itemSim(·) calculus algorithm
Input : Two terminological items t1 and t2.
Output: The calculated itemSim(t1, t2) value.

if (t1.type == C) and (t2.type == C) (categories) then1

itemSim(t1, t2) = Simcat(t1, t2) (using Simcat∈[0, 1] defined in [1]);2

else if (t1.type == WD) and (t2.type == WD) (WordNet terms) then3

itemSim(t1, t2) = Simtag(t1, t2) (using Simtag∈[0, 1] defined in [1]);4

else if (t1.type == O) and (t2.type == O) (ontological concepts) then5

itemSim(t1, t2) = H-MATCH(t1, t2) (using the H-MATCH∈[0, 1]6

function, given in [8]);

else if (t1.type == K) and (t2.type == K) (keywords) then7

itemSim(t1, t2) = StringSim(t1, t2)∈[0, 1] (using the Levenshtein8

measure);

else9

Υ1 = {t1.name} ∪ t1.bagOfWords;10

Υ2 = {t2.name} ∪ t2.bagOfWords;11

itemSim(t1, t2) = maxi,j{StringSim(ti1, t
j
2)}, where ti1∈Υ1 and tj2∈Υ2;12

return itemSim(t1, t2);13

When the types of t1 and t2 coincide, proper metrics from the literature
are used for the comparison. In all the other cases, a comparison between the
names of terminological items using the Levenshtein string similarity measure
(StringSim(·)) is performed, except for the case of WordNet terms and onto-
logical concepts, that are expanded with the bag of words assigned to each item
in order to look for a better matching term in the set (in fact, for these kinds of
items only, bagOfWords is not empty).

Technical Similarity between Web Mashup Resources. The technical
similarity between two Web mashup resources res1 and res2, denoted with
TechSim() ∈[0, 1], evaluates how many common feature values the two resources
share. This metric is used to quantify the degree of compatibility between the
resources in terms of protocols, data formats and other technical features. Fea-
ture values are compared only within the context of the same feature. Let Fres1

X

(resp., Fres2
X) the set of values admitted for the technical feature X associated

with the Web mashup resources res1 and res2, respectively. The technical simi-
larity between the Web mashup resources res1 and res2 is computed as follows:

TechSim(res1, res2) =
1

N

[∑

j

2 · |Fres1
j ∩Fres2

j |
|Fres1

j |+ |Fres2
j |

]
∈[0, 1] (2)

226 D. Bianchini, V. De Antonellis, and M. Melchiori

where j iterates over the kinds of technical features, |Fres1
j ∩Fres2

j | denotes the
set of common values for the technical feature j on res1 and res2, |Fresk

j | de-
notes the number of values admitted for technical feature j on resource resk,
N is the number of kinds of technical features on which the comparison is
based. For example, if res1 presents {XML, JSON, JSONP} as data formats and
{REST} as protocol, while res2 presents {XML, JSON} as data formats and {REST,
Javascript, XML} as protocols, the TechSim() value is computed as:

1

2

[2 · |{XML, JSON, JSONP}∩{XML, JSON}|
|{XML, JSON, JSONP}|+ |{XML, JSON}| +

2 · |{REST}∩{REST, Javascript, XML}|
|{REST}|+ |{REST, Javascript, XML}|

]
(3)

In this example, XML is used both as data format and as XML-RPC protocol and it
is considered separately in the two cases. The terminological and the technical
similarity measures are equally weighted to compute the overall Web resource
similarity, computed as follows:

WebResourceSim(res1, res2) = 0.5 · TermSim(res1, res2)+
+0.5 · TechSim(res1, res2)∈[0, 1] (4)

By contruction, if res1 = res2, then WebResourceSim(res1, res2) = 1.0.

Compositional Similarity between Web Mashup Resources. The com-
positional similarity between two Web mashup resources res1 and res2, that
represent two Web mashups, denoted as MashupCompSim(·)∈[0, 1], measures
the degree of overlapping between two mashups as the number of common or
similar APIs between them, that is

MashupCompSim(res1, res2) =
2 ·

∑
i,j WebResourceSim(resi1, res

j
2)

|res1|+ |res2|
(5)

where resi1 and resj2 are two Web APIs, used in res1 and res2 mashups, respec-
tively, |res1| (resp., |res2|) denotes the number of Web APIs in res1 (resp., res2).
WebResourceSim(·) values are aggregated through the Dice formula. Pairs to
be considered for the MashupCompSim computation are selected according to
a maximization function that relies on the assignment in bipartite graphs.

5 Web Mashup Resource Search

The similarity metrics introduced in the previous section have been exploited
for Web mashup resource search, that relies on the unified representation of re-
sources through the model presented in Section 3. The basic idea of our search
approach is to avoid a pairwise comparison of the Web API request R against
eachWMD extracted from the multiple repositories. Instead, we provide a WMD
clustering based on terminological similarity. The request is compared against
a representative WMD for each cluster, in order to identify the most relevant
cluster(s) of WMDs. After the identification and the selection of such clusters,
we perform a more in depth comparison between R and each relevant WMD
according to all the types of similarities described in the previous section, dis-
tinguishing between WMDs that represent Web APIs and WMDs that represent

Model-Based Search and Ranking of Web APIs across Multiple Repositories 227

mashups, and we provide the designer with a ranked list of relevant resources
(either APIs or mashups) to be selected for his/her purposes. Finally, a further
modification of the ranking is based on ratings (if available) assigned by other
designers to Web mashup resources. In the following, we present the main phases
of the search procedure.

Request Formulation. The request for a resource is formulated by the de-
signer as follows: R = 〈KR,FR,MR〉, where KR is a set of keywords, FR is a
set of pairs 〈tech feature=value〉 and MR is a mashup (that is, a set of Web
APIs) where the Web API to search for will be aggregated. The elements FR and
MR in the request are optional. In particular, the latter is used to differentiate
the kind of search that is being performed: (i) if MR = ∅, then the designer is
looking for a single Web API, for instance to start a new mashup application
from scratch; (ii) otherwise, if MR �=∅, the designer’s purpose is to find a Web
API to be included in an existing mashup, to complete it or to substitute a Web
API within the mashup.

Clustering. The clustering procedure is performed off-line, thus not affecting
the performance of the approach. We employ a hierarchical bottom-up cluster-
ing algorithm [9]. The term ”hierarchical” means that this technique classifies
WMDs into clusters at different levels of similarity. Pairwise comparisons be-
tween WMDs is performed according to the terminological similarity. In this
way, we give more importance first to the terminological items, that are usu-
ally adopted to give a functional characterization of Web APIs and mashups
in current repositories. Roughly speaking, we agree on the fact that categories,
(semantic) tags, ontological concepts and keywords are adopted to categorize
or classify the repository contents. The technique operates in a bottom-up way
since it places a WMD into its own cluster and then proceeds through a progres-
sive merging of clusters until all WMDs are clustered. Two clusters are merged
first if they contain two WMDs, one from each cluster, with the maximum ter-
minological similarity. The result of clustering is a similarity tree, where single
WMDs are the leaves and intermediate nodes have an associated value repre-
senting the TermSim() value at which a pair of clusters is merged. Only those
nodes whose associated TermSim() value is equal or greater than a threshold
δ∈[0, 1] are considered as candidate clusters. Higher values of δ determine higher
similarity between cluster members, but also an higher number of clusters with
few members. This will impact on performance, as discussed in the experimental
results. For each cluster Ck, the centroid is selected as Ck representative, de-
noted with ̂Ck, that is the descriptor closest to all the other descriptors in Ck,
considering the terminological similarity.

Search. The search procedure, starting from the set of clusters and the request
R formulated by the designer, is described in Algorithm 2. In the algorithm, the
set W of relevant Web APIs, the set M of relevant mashups and a buffer set
Ω are initialized as empty sets to be further populated (row 1). The request R
is compared against the centroids of clusters according to the TermSim() sim-
ilarity (rows 2-4). Clustering enables to apply terminological comparison only

228 D. Bianchini, V. De Antonellis, and M. Melchiori

Algorithm 2. Web mashup resource search algorithm

Input : The set {Ck} of clusters; the request R = 〈KR,FR,MR〉
formulated by the designer.

Output: The set W of ranked relevant Web APIs; the set M of ranked
relevant mashups.

W = ∅; M = ∅; Ω = ∅;1

foreach Centroid Ĉk do2

if TermSim(R,Ĉk) ≥γ1 then3

Ω = Ck ∪ Ω;4

foreach WMDi ∈ Ω do5

Compute the WebResourceSim(R, WMDi);6

if WebResourceSim(R, WMDi) ≥γ2 then7

if WMDi.type == W then8

Add WMDi to W;9

else if WMDi.type == M then10

Add WMDi to M;11

M = Rank(M, ρ1); W = Rank(W, ρ2);12

W = ApplyRatings(W); M = ApplyRatings(M);13

return W and M;14

to cluster centroids, thus avoiding overloading due to the pairwise comparison
between the request R and each WMD extracted from the repositories. Relevant
Web mashup resource descriptors are temporarily stored within the Ω buffer set
(row 4). At this point, a more in depth comparison between the request and
each relevant descriptor is performed according to the WebResourceSim() met-
ric, that takes into account both the terminological and the technical similarity.
We note that two thresholds, namely γ1 and γ2, are used in rows 3 and 7 to filter
out not relevant results. These thresholds are set within the [0, 1] range and must
be chosen according to the following considerations: (i) the higher the thresholds,
the faster the search, since less resources are marked as relevant, but the search
recall is obviously decreased; (ii) according to this viewpoint, the value of γ1
dominates the one of γ2, since resources are filtered out according to γ1 first. We
performed preliminary experiments on a training set of resources and we fixed
γ1 � 0.7 to increase filtering and ensuring best precision; the recall reduction is
balanced by the clustering procedure performed off-line, which collect together
very close resources. On the other hand, we kept γ2 low (i.e., γ2∈[0.3, 0.5]) in
order to accept as much search results as possible.

Ranking. The ranking procedure applied in the last part of the algorithm en-
sures that the most relevant results are proposed to the designer first, moving
the less relevant ones at the end of the results list. It is worth noting that, if the
descriptor extracted from one of the repositories is incomplete (e.g., the technical
features are not specified), the overall WebResourceSim() value is lower. This

Model-Based Search and Ranking of Web APIs across Multiple Repositories 229

meets our aim of proposing first Web resource descriptors that present a more
complete specification, as extracted from available repositories.

Ranking is performed by invoking the Rank() function (row 12), that is differ-
entiated with respect to the type of Web mashup resources. In case of mashups,
a ranking function ρ1 : M �→ [0, 1] is used, that is computed as follows:

ρ1(WMD) = WebResourceSim(R,WMD)·
·MashupCompSim(MR,WMD)∈[0, 1] (6)

According to this equation, the closer the WMD, that in this case represents a
mashup, toMR in the request, according to the compositional similarity between
mashups, the better the ranking of WMD in the results list. This means that
those mashups, that are more similar to the mashup where the designer will
insert the API he/she is looking for, will be suggested to the designer first. In
case of APIs, a ranking function ρ2 : W �→ [0, 1] is computed as a variant of ρ1,
that is:

ρ2(WMD) = WebResourceSim(R,WMD)·
· 1
|MWMD |

∑|MWMD|
k=1 MashupCompSim(MR,Mk) ∈ [0, 1]

(7)

where MWMD is the set of mashups that contain the resource WMD, that
in this case represents a Web API, Mk∈MWMD is one of these mashups and
|MWMD| denotes the number of mashups. According to this equation, the closer
the mashups to MR where WMD is used, according to the compositional simi-
larity, the better the ranking of WMD in the results list.

Finally, a further promotion/penalty mechanism is implemented to take into
account the ratings assigned by designers to Web mashup resources (row 13).
The mechanism starts from the scoring system we adopted in our approach, that
has been widely described in [1]. Here, we further extended this rating system
adding ranking promotions/penalties as reported in Table 1. Depending on the
rating in which the average score of a Web mashup resource falls, the position
of the resource in the results list is increased or decreased as shown in the third
column of the table.

Table 1. The 9-point Scoring System for the assignment of ranking promotions and
penalties to the Web mashup resources

Rating (additional guidance on strengths/weaknesses) Score Ranking
promotion or

penalty

Poor (completely useless and wrong) 0.2 -4
Marginal (several problems during execution) 0.3 -3
Fair (slow and cumbersome) 0.4 -2
Satisfactory (small performance penalty) 0.5 -1
Good (minimum application requirements are satisfied) 0.6 0
Very Good (good performance and minimum application requirements
are satisfied)

0.7 +1

Excellent (discreet performance and satisfying functionalities) 0.8 +2
Outstanding (very good performance and functionalities) 0.9 +3
Exceptional (very good performance and functionalities and easy to
use)

1.0 +4

230 D. Bianchini, V. De Antonellis, and M. Melchiori

6 Experimental Evaluation

The aim of the preliminary experiments described in this section has been to
check the capability of our approach to provide improved search results com-
pared with the separated use of multiple repositories. For the experiments, we
considered: (i) the ProgrammableWeb repository, focused on mashups (built with
Web APIs), Web API technical features, tags and categories; (ii) the Mashape

repository, where APIs are classified through categories and associated with the
number of designers interested in the Web APIs; (iii) the Anypoint API Portal

repository, where interested designers, categories and technical features are con-
sidered for Web API characterization. We considered the application scenario
presented in the motivating example. Moreover, we extracted about 1,400 Web
APIs and related mashups (if available) from the three repositories, also con-
sidering other orthogonal application domains, related to different categories.
Experiments have been run on an Intel laptop, with 2.53 GHz Core 2 CPU,
2GB RAM and Linux OS. Experiments have been performed ten times using
different requests. In each experiment, we randomly chose a mashup M and we
extracted from the mashup a Web API W . We then issued a request using the
features of W , given a mashup M ′ = M/{W}. The same request has been issued
multiple times using different synonyms. For each request, we manually tagged
as relevant the Web API W itself and all those Web APIs close to W in terms of
protocols, data formats, similarity of mashups where they have been included,
functionalities provided by the Web APIs (according to the documentation for
the Web APIs provided in the considered repositories). We also asked five expert
users to validate our choices. We selected as expert users a set of designers who
developed at least ten mashups in the domain of interest, using different kinds of
APIs, different data formats and protocols. The idea was to evaluate the search
results using the classical IR measures of precision and recall and the average
position of W among the first 10 search results. Precision refers to the number
of relevant Web APIs within the set of search results, that is:

precision =
|{relevant Web APIs}∩{retrieved Web APIs}|

|{retrieved Web APIs}| ∈[0, 1] (8)

Recall refers to the percentage of relevant Web APIs that have been effectively
retrieved, that is:

recall =
|{relevant Web APIs}∩{retrieved Web APIs}|

|{relevant Web APIs}| ∈[0, 1] (9)

Precision and recall measure the effectiveness of the retrieval process and should
be maximized. The average position of W among the first 10 search results is a
measure to evaluate Web API ranking. If, among search results, we find mashups,
as allowed by our model, we considered as positive those mashups that contain
at least a relevant API for the request. The results are shown in Table 2.

We note that, even if we merge the results from the considered repositories,
queried separately, our approach presents better precision, recall and overall
ranking. Better precision and recall are due to the particular itemSim(·) simi-
larity we considered in our approach, that enables to overcome discrepancies due

Model-Based Search and Ranking of Web APIs across Multiple Repositories 231

Table 2. Preliminary evaluation results

Precision recall average W position
ProgrammableWeb 0.62 0.59 7.9
Mashape 0.58 0.4 -
Anypoint API Portal 0.60 0.51 8.1
Union of results (considering repositories separately) 0.59 0.5 9.3
Our approach 0.91 0.79 2.1

to the adoption of synonyms instead of using the same term. Moreover, different
repositories use different categories to classify the same APIs. This limitation
cannot be solved simply merging search results coming from distinct repositories,
while our approach is able to mitigate it by combining different kinds of similarity
measures. Better ranking results are ensured since our approach enables to con-
sider partially overlapping aspects coming from different repositories in a joint
way. Given its relative complexity compared with simple keyword-based search
and basic ranking facilities provided by available repositories, our approach pays
in terms of response times, as shown in the second column of Table 3. However,
by applying the clustering procedure, times significantly decrease, as evident in
the third column of Table 3, using γ1 = 0.7 and γ2 = 0.5 (see Section 5).

Table 3. Response times (with and without clustering) in the experimental evaluation

times without clustering (sec.) times with clustering (sec.)
ProgrammableWeb 4.464 -
Mashape 3.234 -
Anypoint API Portal 2.360 -
Union of results (considering ∼10.058 -
repositories separately)
Our approach 19.894 7.091

Of course, the cut-off imposed by thresholds γ1 and γ2 has an impact on the
precision, recall and ranking of search results. But if we consider these values
with and without clustering (see Table 4), they still outperform the values of
the same measures if the search is performed on ProgrammableWeb, Mashape or
Anypoint API Portal and by simply merging the sets of search results coming
from these repositories. The considered public repositories do not present any
difference with and without clustering, since a clustering mechanism is not pro-
vided on them. By varying γ1 and γ2 thresholds, precision, recall, ranking and
response times change. For instance, if we decrease γ1 to 0.5, the recall increases
by 3%, but response times increase by 26%. Therefore, the increment of recall
values does not justify decreased performance. Better response times are also
ensured through the proper setup of δ threshold during cluster identification. If
δ increases, more clusters are obtained, thus requiring an higher number of com-
parisons between the request and cluster centroids. However, also in this case,
precision, recall and ranking slightly vary due to the more in-depth compari-
son between the request and each WMD within a candidate cluster as shown in
rows 5-11 of Algorithm 2. Experimental results shown in Tables 2-4 have been
obtained with δ = 0.6.

232 D. Bianchini, V. De Antonellis, and M. Melchiori

Table 4. Preliminary evaluation results: impact of clustering on precision, recall and
ranking of search results (γ1 = 0.7, γ2 = 0.5)

Without clustering With clustering
Precision recall average times Precision Recall average times

W ranking (sec.) W ranking (sec.)
Our approach 0.91 0.79 2.1 19.894 0.85 0.71 2.1 7.091

7 Related Work

Model-driven Web API selection and mashup development have been addressed
by several approaches in the last years. Advanced solutions for mashup devel-
opment [10] provide technologies, models and CASE tools to ease the designers
in aggregating the component Web APIs, setting the interactions between them
and generating the glue code required to deploy the mashup application. These
models are not targeted at Web API or mashup search and ranking over public
or private repositories. In [11] the formal model based on Datalog rules defined
in [12] is proposed to search for mashup components (called mashlets): when the
designer selects a mashlet, the system suggests other mashlets to be connected
on the basis of recurrent patterns of components in the existing mashups. In [13]
semantic annotations have been proposed to enrich Web API modeling in pres-
ence of high heterogeneity and proper metrics based on such annotations have
been defined to improve recommendation of Web APIs. These approaches rely on
a complex Web API model and a complex request formulation, that are unfea-
sible for Web designers’ expertise, that is mainly focused on Web programming
technologies. Different approaches followed, where simpler models have been dis-
cussed, not based on formal specifications or semantic annotations, and further
extended with other aspects, such as the collective knowledge on Web API use,
coming from experiences of other designers, and ratings assigned to APIs and
mashups [1–4] (see [1] for a detailed survey).

With respect to these most recent approaches for Web API selection, we aim
at providing a unified representation of Web APIs and mashups over multiple
repositories, aggregating complementary descriptions of resources to search for,
and we proposed a more flexible search, that enables seamless selection of Web
APIs and mashups. To the best of our knowledge, this is the first attempt to
provide a cross-repository search of Web APIs and mashups.

8 Concluding Remarks

In this paper, we discussed a unified model forWeb API andmashup characteriza-
tion and search across multiple repositories, based on selection criteria, that com-
bine several complementary perspectives. As proved in [1], performing Web API
search and ranking on a comprehensive API descriptor, that includes different and
complementary descriptive aspects, would improve retrieval results. Preliminary
experiments have been run to test effectiveness of Web API search in terms of pre-
cision and recall. Experiments demonstrated an improved search results, obtained

Model-Based Search and Ranking of Web APIs across Multiple Repositories 233

by applying our approach, compared with Web API search performed on multi-
ple repositories considered separately. Evolutions of this approach will be investi-
gated to check how the productivity of Web designers is increased through the use
of multiple repositories for Web API selection, where different repositories focus
on complementary Web mashup resource descriptions. The possibility of further
enriching the model through semantic aspects (e.g., semantic annotation of the
unified view over the resources) will be investigated as well.

References

1. Bianchini, D., De Antonellis, V., Melchiori, M.: A Multi-perspective Framework
for Web API Search in Enterprise Mashup Design. In: Salinesi, C., Norrie, M.C.,
Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 353–368. Springer, Heidelberg
(2013)

2. Torres, R., Tapia, B., Astudillo, H.: Improving Web API Discovery by leveraging
social information. In: Proceedings of the IEEE International Conference on Web
Services, pp. 744–745 (2011)

3. Cappiello, C., Matera, M., Picozzi, M., Daniel, F., Fernandez, A.: Quality-Aware
Mashup Composition: Issues, Techniques and Tools. In: Proc. of 8th Int. Conference
on Quality of Information and Communications Technologies (QUATIC 2012), pp.
10–19 (2012)

4. Gomadam, K., Ranabahu, A., Nagarajan, M., Sheth, A., Verma, K.: A Faceted
Classification Based Approach to Search and Rank Web APIs. In: Proc. of Inter-
national Conference on Web Services (ICWS), pp. 177–184 (2008)

5. Upadhyaya, B., Xiao, H., Zou, Y., Ng, J., Lau, A.: A Framework for Composing
Personalized Web Resources. In: Chignell, M., Cordy, J.R., Kealey, R., Ng, J.,
Yesha, Y. (eds.) The Personal Web. LNCS, vol. 7855, pp. 65–86. Springer, Heidel-
berg (2013)

6. Bianchini, D., De Antonellis, V., Melchiori, M., Salvi, D.: Semantic-enriched service
discovery. In: Proc. of the 22nd International Conference on Data Engineering
(ICDE), pp. 38–47 (2006)

7. Trombos, A., Villa, R., van Rijsbergen, C.: The effeeffective of query-specific hi-
erarchic clustering in information retrieval. Information Processing & Manage-
ment (38), 559–582 (2002)

8. Castano, S., Ferrara, A., Montanelli, S.: Matching Ontologies in Open Networked
Systems: Techniques and Applications. Journal on Data Semantics 2, 25–63 (2006)

9. Castano, S., De Antonellis, V., De Capitani di Vimercati, S.: Global Viewing of
Heterogeneous Data Sources. IEEE TKDE 13(2), 277–297 (2001)

10. Matera, M., Picozzi, M., Pini, M., Tonazzo, M.: PEUDOM: A mashup platform for
the end user development of common information spaces. In: Daniel, F., Dolog, P.,
Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 494–497. Springer, Heidelberg (2013)

11. Greenshpan, O., Milo, T., Polyzotis, N.: Autocompletion for Mashups. In: Proc.
of the 35th Int. Conference on Very Large DataBases (VLDB), Lyon, France, pp.
538–549 (2009)

12. Abiteboul, S., Greenshpan, O., Milo, T.: Modeling the Mashup Space. In: Proc. of
the Workshop on Web Information and Data Management, pp. 87–94 (2008)

13. Bianchini, D., De Antonellis, V., Melchiori, M.: Semantics-Enabled Web API Or-
ganization and Recommendation. In: De Troyer, O., Bauzer Medeiros, C., Billen,
R., Hallot, P., Simitsis, A., Van Mingroot, H. (eds.) ER 2011 Workshops. LNCS,
vol. 6999, pp. 34–43. Springer, Heidelberg (2011)

	Model-Based Search and Ranking of Web APIs
across Multiple Repositories

	1 Introduction
	2 Motivating Example
	3 Web API and Mashup Unified Model
	4 Cross-Repository Similarity Metrics
	5 Web Mashup Resource Search
	6 Experimental Evaluation
	7 Related Work
	8 Concluding Remarks
	References

