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Abstract. Environmental sensing is becoming a significant way for un-
derstanding and transforming the environment, given recent technology
advances in the Internet of Things (IoT). Current environmental sensing
projects typically deploy commodity sensors, which are known to be un-
reliable and prone to produce noisy and erroneous data. Unfortunately,
the accuracy of current cleaning techniques based on mean or median
prediction is unsatisfactory. In this paper, we propose a cleaning method
based on incrementally adjusted individual sensor reliabilities, called in-
fluence mean cleaning (IMC). By incrementally adjusting sensor reliabil-
ities, our approach can properly discover latent sensor reliability values in
a data stream, and improve reliability-weighted prediction even in a sen-
sor network with changing conditions. The experimental results based on
both synthetic and real datasets show that our approach achieves higher
accuracy than the mean and median-based approaches after some initial
adjustment iterations.
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1 Introduction

In environmental sensing, sensors are deployed in physical environments to mon-
itor environmental attributes such as temperature, humidity, water pressure,
and pollution gas concentration. With the emergence of the Internet of Things
(IoT), which connects billions of small devices such as sensors and RFID tags
to the Internet, environmental sensing is becoming a significant means towards
understanding and transforming the environment [12]. Many IoT-inspired en-
vironmental sensing projects have emerged recently, including the Air Quality
Egg1 and the Cicada Tracker2.

In most environmental sensing projects, commodity sensors are deployed to
minimize the cost. Commodity sensors, however, are widely known to be unre-
liable and prone to producing noisy and erroneous data [2, 8]. Data cleaning is
therefore an important issue in environmental sensing, especially when critical
realtime decisions need to be made based on the collected data. Recent works

1 http://airqualityegg.com/
2 http://project.wnyc.org/cicadas/
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have proposed solutions to extract the truthful information from noisy sensor
data [8, 14, 16]. A common approach to automatically predict truthful readings
is by aggregating spatially correlated readings, using either mean [8, 16] or me-
dian [14]. However, it is documented that such approaches have not achieved
satisfying accuracy [4].

Intuitively, knowing individual sensor reliability can improve prediction accu-
racy by, for example, giving unreliable sensors less weight when aggregating the
readings. In this paper, we propose a sensor data cleaning technique based on
incrementally adjusted individual sensor reliabilities. We adopt a data-centric
approach to sensor reliabilities, and identify potential sensor malfunctioning
through faulty data. There are two types of sensor malfunctioning exist, namely,
systematic and random [3]. Faulty data caused by systematic malfunctioning
typically can be fixed by a single change in the calibration parameter, as proposed
by several works [3, 7]. In this paper, we focus on the random malfunctioning,
which can be caused by unpredictable issues such as sensor damage or battery
exhaustion.

Our proposed reliability-based sensor data cleaning method, called influence
mean cleaning (IMC), weights the mean prediction based on individual sensor
reliabilities, and incrementally updates sensor reliabilities based on the readings
in each data collecting iteration. We validate our approach extensively by using
both synthetic and real datasets. The experimental results show that IMC can
significantly improve prediction accuracy over the traditional mean and median
methods. When there are sensor condition changes in the network, our method
also accurately captures different types of changes, and allows the predictions to
adjust to new sensor conditions quickly.

The remainder of this paper is organized as follows. In Section 2, we overview
the related work. In Section 3, we present the proposed IMC, which consists of
a weighted mean prediction and an incremental reliability update model. We
report the experimental results with the simulated and real datasets in Section
4. In Section 5, we provide some concluding remarks.

2 Related Work

A data-centric approach to detect sensor faults has been studied in several re-
search projects. Ni et al. [10] investigated different types of sensor malfunctioning
(e.g., battery exhaustion and hardware malfunction) and associated faulty data
patterns with them. Sharma et al. [11] identified three faulty data patterns in
a number of real datasets, and proposed techniques for their detection. In the
evaluation of their techniques, they injected faulty data patterns into known
clean data, and used the original clean data as the ground truth. We adopted
this data synthesis method when designing our experiments.

A large number of works exist on data cleaning in wireless sensor networks
[8, 14–16]. Most of the proposed techniques are based on the assumption that
sensor readings are aggregated when transmitted, and individual sensor readings
are not available or difficult to obtain. The IoT inspired environmental sensors,
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however, are assumed to be connected to the Internet directly, like those used by
Devarakonda et al. in [4]. Such direct Internet connection of individual sensors
allows individual sensor readings to be accessed and preserved, which creates an
opportunity for studying individual sensor behaviors.

Data source reliability has appeared in truth prediction in information re-
trieval. In the Web environment, it is not unusual to have multiple data sources
that may have different views on a same fact. Most of the existing works are
based on probabilistic inference [6, 13]. The probability-based solutions for truth
finding, however, are ineffective for environmental sensing data, where sensor
reliabilities can be influenced by unpredictable external factors over time. We
argue that our incremental update approach is more effective for reflecting un-
predictable changes of sensor reliabilities in continuous sensing data streams.

3 Reliability-Weighted Prediction

In this section, we first discuss generic faulty data patterns in real sensor datasets
and introduce our proposed data cleaning procedure, which we will explain in
two parts: the reliability-based prediction called influence mean cleaning (IMC),
and the incremental reliability update model.

3.1 The Faulty Data Patterns and the Cleaning Procedure

Sensors can produce noisy and erroneous data when operating in less than ideal
working conditions. Fig. 1 shows three patterns of faulty data found in real sensor
data that may be caused by sensor malfunctioning. According to the research
by Ni et al. [10], high volatility, characterized by a sudden rise of variance in
the data, can be caused by hardware failure or a weakening in battery supply.
Single spikes, occasional unusually high or low readings occurred in a series of
otherwise normal reading, can be caused by battery failure. Intense single spikes
that occur with high frequency, may indicate hardware malfunction.
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Fig. 1. Faulty sensor data patterns
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Our intention is not to detect the type and cause of sensor faults, but to calcu-
late a representative reliability value for each individual sensor that can be used
to improve prediction accuracy. In engineering, reliability is defined as “the prob-
ability that a device will perform its intended function during a specified period
of time under stated conditions” [5]. The intended function of an environmental
sensor is to generate readings according to the environmental feature that it is
monitoring. Consequently, when a sensor produces a reading, the sensor reliabil-
ity indicates the probability that this reading is the same as the presumed true
value.

Our proposed influence mean cleaning (IMC) predicts true readings based on
incrementally updated individual sensor reliabilities. The general procedure of
applying our approach to a sensing data stream is depicted in Fig. 2. Following
the data-centric approach, we do not assume any prior hardware information
that can be used to infer the reliability of individual sensors, and our approach
allows initial reliabilities to be set arbitrarily. The continuous operation of the
cleaning method consists of iterations. In each iteration, new sensing data are
collected, predictions of true readings are made, and the reliabilities are updated
by comparing individual readings to the prediction. The procedure repeats as
the data being continuously collected.

Establishing 
Initial Sensor 

Reliability

Collecting 
Sensing 

Data

Influence 
Mean 

Cleaning

Incremental 
Reliability

Update

Fig. 2. Continuous cleaning procedure on a sensing data stream

3.2 Influence Mean Cleaning

In an environmental sensing application, the true reading value can be predicted
as the mean of the readings made by a group of spatially correlated sensors:

PMEAN (R) =
1

k

∑
R (1)

where R = {r1, r2, ..., rk} is the set of k readings produced by the spatially
correlated sensors.

Suppose the set of the sensors are {s1, s2, ..., sl}. Let {srlb1, srlb2, ..., srlbl} be
each sensor’s reliability. We can define the reliability of a reading as the reliability
of the sensor that produced it:

rlb(r) = srlbi, if r was produced by si (2)

Consequently, rlb(R) = {rlb(r1), rlb(r2), ..., rlb(rk)} is the reliability of each
reading. The reliability of a reading indicates the probability of the reading being
the true reading. Thus we can use a weighted prediction formulated as:

PIMC(R) =

∑
R× rlb(R)

∑
rlb(R)

(3)
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We call the prediction defined by Equation (3) influence mean, in the sense
that it does not aggregates specific readings, but the influences of the sensors
on the prediction, which are determined by their reliabilities.

3.3 Incremental Reliability Update

After the prediction is made, the reliability update compares individual readings
with the prediction. Since the reading value is typically a real number, it is rare
to get two readings exactly the same. Therefore, to compare a reading value
with the prediction, we use a tolerance threshold tol. If the difference between
the reading value and the prediction is within the threshold, the reading is
considered as consistent with the prediction. We define the consistency of a
reading r ∈ R as the following:

cons(r) =

{
1, |r − PIMC(R)| ≤ tol
0, otherwise

(4)

We calculate the reliability of a sensor as the percentage of the readings made
by the sensor that are consistent with the prediction, from the total number of
readings it has made during an observation period:

srlb =
1

n

n∑

i=1

cons(ri) (5)

where {r1, r2, ..., rn} are the readings made by the sensor. When applying the
method to continuous streams, the observation period is usually a moving time
window with a fixed length. In practice, the choice of observation period length
usually depends on the type of temporary interference that can occur in the
deployment.

Now we can derive an incremental reliability update formula. Suppose that
after making n readings, the reliability calculated for a sensor using Equation
(5) is srlb. If the sensor has made another reading since then, the new reliability
srlb′ can be calculated as:

srlb′ =
1

n+ 1

n+1∑

i=1

cons(ri)

Substituting Equation (5) into above formula will give:

srlb′ = srlb × n

n+ 1
+

1

n+ 1
cons(rn+1) (6)

Equation (6) can be used as an incremental formula for calculating the new
reliability given the current reliability and a new reading. Substituting Equation
(4) into the formula gives a reward or penalty function, which lets the sensor
gain or lose some reliability based on its new reading:

srlb′ =

⎧
⎪⎨

⎪⎩

srlb+
1− srlb

n+ 1
, if cons(rn+1) = 1

srlb− srlb

n+ 1
, if cons(rn+1) = 0

(7)
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4 Experimental Analysis on Synthetic and Real Dataset

In this section, we describe our experiments for testing our approach on synthetic
and real datasets. In both cases, we first obtained a set of clean data, then
injected faulty data to simulate sensor malfunctions.

4.1 Influence Meaning Cleaning in a Synthetic Dataset

Our first experiment simulated a scenario of attaching sensors to motor vehicles
to monitor air pollution in urban areas. Such a scenario has been run in several
projects such as OpenSense, which put air quality sensors on trams in Zurich
[9], and Common Sense, which put air quality sensors on street sweepers in San
Francisco [1]. The dataset in such projects usually contains sensor readings and
time and location of the sensor readings. In addition, each reading is associated
with a sensor, which changes its location frequently.

We first simulated a pollution map. The pollution map consists of 100× 100
location points, and the corresponding pollution information at each point, as
shown in Fig. 3a. The size of a dot on the map indicates the pollution level: the
larger the dot, the higher the pollution level at the corresponding location. The
maximum pollution level is 1, and the minimum pollution level is 0. We then
simulated 20 mobile sensors. In each data collection iteration, a sensor made
50 readings at random locations on the map, and a total of 1,000 readings were
made, similar to the readings shown in Fig. 3b. These are clean readings, as they
are exactly the same as the ground truth pollution level at their report locations.
We used the faulty data injection method introduced in [11] to simulate sensor
malfunctioning. We injected high volatility faults, similar to those shown in Fig.
1a, which are commonly found in air quality sensors.
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Fig. 3. The ground truth pollution map and generated readings

We ran the IMC procedure shown in Fig. 2. First we set an initial reliabil-
ity of 1 for all sensors. In each iteration, we generated a set of noisy readings
similar to the one shown in Fig. 3c. To divide the readings into spatially cor-
related groups, we divided the map into 100 10 × 10 blocks, and the readings
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whose coordinates fall within the same block were grouped. In each iteration,
one prediction was made for each block. The ground truth pollution level of each
block is calculated as the mean of pollution levels of all location points in the
block. We also recorded the predictions of mean and median methods in each
iteration. The mean prediction is defined in Equation (1). The median is defined
as PMED(R) = median(R), where R is the set of readings in one block.

We measured the precision and the mean square error for the predictions
made by three methods in each iteration, as shown in Fig. 4. We notice that the
performance of the mean and median methods remain stable over the iteration.
The performance of IMC, however, quickly improves in the first 20 iterations,
before it becomes stable. The reason is that the reliability update process is pick-
ing up appropriate individual reliabilities, thus allowing the reliability-weighted
method to become more accurate. After 20 iterations, IMC steadily outperforms
the other two methods. For instance, in the last ten iterations of the 50 iteration
run, the average precisions for mean, median and IMC are 0.6, 0.78 and 0.85,
respectively, while the average mean square error are 0.017, 0.011, and 0.006,
respectively. In the long run, the IMC has the potential to have nearly a 10
percent higher precision than the mean and median methods.
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Fig. 4. The precision and mean square error of three prediction methods

4.2 Influence Mean Cleaning in a Real Dataset

We tested our approach on a real dataset provided by the Intel Berkeley Research
Lab, called Intel Lab data3. The data contains environmental readings, such as
humidity and temperature, reported by 52 Mica2Dot sensors. The sensors were
installed in an indoor area, and had the same reporting frequency of once per
31 seconds. In our experiment, we chose a portion of temperature data in the
Intel Lab data made by nine motes with ID 1, 2, 3, 4, 6, 7, 8, 9, 10. These nine

3 http://db.csail.mit.edu/labdata/labdata.html

http://db.csail.mit.edu/labdata/labdata.html
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sensors were installed next to each other in a continuous open area, and can be
considered as spatially correlated. We chose a study period of roughly 75 hours,
between March 2 and March 5, 2004. There were 9,000 report epochs in this
period. We visually confirmed that the readings produced by the nine sensors
for these epochs are clean, as shown in Fig. 5a.
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Fig. 5. The data used for testing. (b) and (c) show the injected faulty data

To generate the noises, we injected faulty data into the dataset. We injected
intense spikes, which can be found in other parts of the Intel Lab data. To imitate
sensor condition changes over time, we injected the faults in three stages. First
we grouped the sensors into three groups: the first group contained sensors 1,
4, 8, the second group contained sensors 2, 6, 9, and the third group contained
sensors 3, 7, 10. We made the second group of sensors fail in stage one and two,
and the third group of sensors fail in stage two and three. So in the first fault
stage, which lasted from epoch 2250 to 4500, readings from the sensors in the
second group were injected with faulty data, as shown in Fig. 5b. In the second
fault stage, which lasted from epoch 4500 to 6750, readings from the sensors in
the second and third groups were injected with faulty data, as shown in Fig.
5c. In the third stage with remaining epochs, only readings from the sensors in
the third group were injected with faulty data. When being injected with faulty
data, each reading had a probability of 0.5 to be replaced by a spike sensor value
(60 in our case).

Similar to our experiments with the synthetic dataset, we ran the IMC proce-
dure with the generated noisy data, as well as the mean and median prediction.
Since these nine sensors were considered as a single spatially correlated group,
only one prediction was generated in each iteration. We recorded the predictions
made by three methods in each iteration. When updating reliabilities, we used
a modified version of reward or penalty function, by adding a constant value
of 0.01 to the penalty defined in Equation (7). The higher penalty is chosen to
mitigate the effect of extremeness of faulty values. How to dynamically change
the reward or penalty amount in the case of unpredictable extreme faulty values
is a topic of future work.
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We measured the performance of the three prediction methods as the square
error of the prediction, given the ground truth as the mean of the clean data.
Fig. 6a shows predictions of the three methods and the ground truth over 9,000
epochs. Fig. 6b shows the square error of the three methods over 9,000 epochs.
To avoid showing high volatility in the graph, the data was smoothed by 100
epochs before plotting.
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Fig. 6. The prediction and square error of three prediction methods

As shown in the figures, IMC is affected the least by the intense faults in the
second stage, and produces only small errors comparing to other methods. At
the beginning of the first and second fault stages where the portion of faulty
sensors increases, the performance of IMC experiences sudden declines, but can
always recover in a short time. This was because our method adjusted the sensor
reliability to the new sensor conditions. In the third fault stage, the performance
of IMC improves from the second stage, and becomes similar to what it is in the
first stage. This adjustment shows that our reliability update process not only
detects sensor faults, but also captures sensors’ recovery from the faults.

5 Conclusion and Future Work

In this paper, we propose a sensor reliability-based method for sensor data clean-
ing, called influence mean cleaning (IMC). Our experiment results show that for
noisy datasets with different types of faulty data patterns, IMC can achieve
higher accuracy than mean and median methods over time. By updating the
reliability incrementally, our method can properly discover the latent sensor re-
liability values. The experimental results with the real dataset from Intel Lab
show that our method can capture both sensor malfunctioning and recovery.
While individual sensor reliability is largely overlooked in current sensor net-
work research, we show that individual sensor reliabilities can be leveraged to
create positive impacts. In the future, we plan to investigate the performance of
our approach in datasets with mixed or changing faulty data patterns.
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