
REST as an Alternative to WSRF:

A Comparison Based
on the WS-Agreement Standard

Florian Feigenbutz, Alexander Stanik, and Andreas Kliem

Technische Universität Berlin, Complex and Distributed IT Systems,
Secr. EN 59, Einsteinufer 17, 10587 Berlin, Germany

{florian.feigenbutz}@campus.tu-berlin.de,
{alexander.stanik,andreas.kliem}@tu-berlin.de

http://www.cit.tu-berlin.de

Abstract. WS-Agreement and WS-Agreement Negotiation are speci-
fications that define a protocol and a language to dynamically negoti-
ate, renegotiate, create and monitor bi-lateral service level agreements
in distributed systems. While both specifications are based on the Web
Services Resource Framework standard, that allows using stateful SOAP
services, the WSAG4J reference implementation additionally provides
a RESTful service implementation of the same operations. This paper
evaluates the performance disparity between the standard conformable
and the RESTful implementation of WS-Agreement and WS-Agreement
Negotiation.

Keywords: SLA, WS-Agreement (Negotiation), WSAG4J, REST,
WSRF.

1 Introduction

Nowadays, software architects and developers have the fundamental choice be-
tween two major approaches when creating web services: WS-* based or REST-
ful web services [13]. Both acronyms describe popular approaches for distributed
services: the WS-* family describes a large stack of specifications based on the
Simple Object Access Protocol (SOAP) [12] while Representational State Trans-
fer (REST) is more an ”architectural style” [10] than a standard that strongly
relies on the Hypertext Transfer Protocol (HTTP) as the application-level pro-
tocol [19]. There is a notable number of well defined WS-* specifications which
are modularly designed in a way that they can be changed, combined, and used
independently of each other [8]. Many of these specifications specify interfaces
which are usually defined by the Web Service Description Language (WSDL)
[6]. With the upcoming of Web Application Description Language (WADL) [14]
as equivalent to WSDL, such a specification chain can also applied to REST.

This paper investigates to what extent a specific WS-* specification could be
ported to RESTful services and be extended with WADLs. Furthermore it stud-
ies both the SOAP and the REST based implementation in terms of the feature

B. Benatallah et al. (Eds.): WISE 2014, Part II, LNCS 8787, pp. 294–303, 2014.
c© Springer International Publishing Switzerland 2014

http://www.cit.tu-berlin.de


REST as an Alternative to WSRF 295

set and the performance. For the comparison we use theWS-Agreement (WSAG)
[4] and the WS-Agreement Negotiation (WSAN) [23] specifications which are
built on top of the Web Services Resource Framework (WSRF) [1] standard.
The intention of WSRF is to provide a stateful WS-* web service which can
be used to model, access and manage states in distributed systems [11]. Our
comparison is based on an existing open source software framework, named WS-
Agreement for Java (WSAG4J) [22] [24], that implements the WS-Agreement
and the WS-Agreement Negotiation standards. The reason for choosing these
specifications and this framework is that a significant effort to design a RESTful
approach of both specifications was already investigated by [15] [20] [5]. Any
WSAG service acts as a neutral component between a service provider and a
service consumer for SLA agreement and contracting. As such it needs to be
available to both at any time which implies hard requirements for availability
and scalability of such a service. Therefore we expect our performance bench-
marks to indicate whether WSRF or REST based WSAG allows to handle more
concurrent clients with given hardware. Furthermore, the WSAG4J framework
itself provides also both a SOAP and a RESTful service [24] with an appropriate
client implementation.

The rest of the paper is structured as follows: In section 2 we present our prac-
tical approach for this comparison, where performance benchmarks had been
performed and show the differences in terms of scalability, availability, and ef-
ficiency. For this evaluation a test scenario was designed that respects not only
atomic operations but also workflows for which both WS-Agreement standards
were conceived. Moreover, we interpret results, discuss the reasons and analyze
their origin. Next we present related work, that compares WS-* based services
to RESTful ones in section 3. Finally, section 4 concludes this paper.

2 Evaluation

In order to compare both the RESTful and the WSRF variants it is important
to select a real life usage scenario with significant complexity. A typical use
case for WSAG is automated SLA negotiation which is already used by research
projects in the area of fully automated service-level agreements [22] [7]. Web
services handling SLAs via WSAG and WSAN act as neutral notaries which
must always be reachable to both agreement parties guaranteeing verification of
concluded contracts. For this reason performance, scalability and availability are
hard requirements for any production system.

2.1 Test Scenarios

Based on the use case of automated SLA agreement we picked three sample
tests that reflect WSAG usage in the field of cloud computing. Terminology is
adapted from the WS-Agreement and WS-Agreement Negotiation specifications
[4] [23]. Basically every WSAG and WSAN service provides at least one Agree-
ment Factory containing one or more Agreement Templates that describe the



296 F. Feigenbutz, A. Stanik, and A. Kliem

provided services and serve as a sample for incoming Agreement Offers the ser-
vice is willing to accept. Templates also hold information for agreement creation
such as context or terms and can optionally define creation constraints allowing
customization of Agreement Offers. Offers are created by the Agreement Initia-
tor and sent to the Agreement Responder. If the latter accepts an Agreement
is created, otherwise the responder replies with a Fault. For the given scenarios
both WSRF and REST services were configured with one Agreement Factory
holding three templates and are specified as follow:

– GetFactories. The first scenario is a very basic step in which an Agreement
Initiator requests all Agreement Factories served by the Agreement Respon-
der. This use case is usually the first step an initiator has to go through to
discover services of an unknown responder.

– GetTemplates. The next scenario reflects the follow-up step in service dis-
covery: The initiator needs to gain knowledge about available Agreement
Templates for any factory of interest.

– Negotiation Scenario. The third scenario runs a complex negotiation pro-
cess between the initiator and the responder. In this case the responder
implements the agreement on behalf of the Service Provider while the ini-
tiator acts on behalf of the Service Consumer. The offered service computes
resources for certain time frames using negotiable templates. Within the
scenario the initiator sends a first Negotiation Counter Offer to which the
responder replies with another counter offer for less resources at the same
time or an equal amount of resources at a later time. The initiator evalu-
ates given options and sends a third counter offer which is finally accepted
leading to a Negotiated Offer used by the initiator to create the offer.

2.2 Test Infrastructure

The load tests used two commodity servers providing four virtual machines as
shown in figure 1. Each server was equipped with two Intel Xeon E5430 2.66
GHz CPUs (four cores per CPU) and 32 GB RAM. The nodes were connected
via regular Gigabit Ethernet links and ran Linux (kernel version 3.2.0-57). Both
nodes ran KVM virtual machines with two cores. Inside the virtual machines we
used Ubuntu Linux 12.04 (kernel version 3.2.0-57) and Java 1.6.0.26 (OpenJDK).
Tests were coordinated using the Java based load testing framework The Grinder
in version 3.11 [3].

Host 1 provided vm1 which ran Apache Tomcat 7.0.50 and served theWSAG4J
web apps with a maximum of 2 GB heap space. To allow dedicated usage of avail-
able heap space only one of both apps (WSRF and REST) was deployed simul-
taneously. Host 2 provided vm2, vm3 and vm4 which executed the test runner
component of the Grinder framework named grinder-agent. The three agents were
coordinated by another host running the Grinder’s grinder-console component
which handled code distribution, test synchronization and collection of measure-
ment results.



REST as an Alternative to WSRF 297

Fig. 1. Physical architecture of test environment

This infrastructure allowed short network paths avoiding biased results due
to network issues while still being close enough to real life scenarios in which
clients will always be located on different machines than the WSAG service.

2.3 Impact of Security Technology

In the context of SLA negotiation security features such as non-repudiation form
the technological foundation for general feasibility and acceptance. We aimed to
ensure a comparable level of trust for both approaches: WSRF and REST.

WSAG4J’s WSRF based solution utilized WS-Security standards such as Bi-
narySecurityToken and XML signature [18] [9] by default while the RESTful
distribution shipped without adequate replacement. Therefore we chose to run
all tests with HTTPS and replaced WSRF’s security tokens with TLS Client
Certificates which verify the identity of request senders. Because message pay-
load was neither encrypted with WSRF nor REST by default we enabled TLS for
both variants considering the sensitive nature of SLA agreement to protect com-
munication from any kind of eavesdropping. Nevertheless this setup could not



298 F. Feigenbutz, A. Stanik, and A. Kliem

ensure message integrity if any intermediate host would be able to tamper with
the message’s content. Given that intercepting a TLS connection would require
substantial effort this discrepancy was assessed as negligible for test results.

2.4 Measurement Results

Our load tests measured 200 test runs for each test scenario with both WSRF
and REST code bases. Each test scenario was executed with a different num-
ber of concurrent clients to evaluate the scalability of both solutions. All tests
started with a single client and increased up to 8 concurrent clients. All JVMs
of the Grinder agents as well as Apache Tomcat were restarted after each run
to minimize effects of JVM internal optimizations.

Figure 2, 3 and 4 show response times of all test scenarios. The results of our
load tests reveal that the RESTful code base provides better performance than
WSRF in most cases. More specifically there is only two results which show
better response times of WSRF: GetFactories with 1 and 2 concurrent users.
Starting with 4 concurrent users the RESTful stack performs better.

Fig. 2. Response times for GetFactories

For GetTemplates and the Negotiation Scenario results reveal lower response
time of the RESTful approach in all cases. It is important to point out that while
running the Negotiation Scenario an increasing number of test failures appeared
with rising numbers of concurrent users. Using the WSRF stack the first failures
appeared with 4 concurrent users and concerned already 80% of all tests while
the RESTful stack showed 59% of failures under the same load. This is also the
reason why figure 4 only reveals times up to 4 concurrent users. With more than 4



REST as an Alternative to WSRF 299

Fig. 3. Response times for GetTemplates

Fig. 4. Response times for NegotiationScenario

concurrent users the number of failures increased rapidly leading to unreliable
measurement results.

Last figure 5 compares response times of all test scenarios proving increased
complexity of the last scenario in terms of computation time.

Due to the modularity of WSAG4J, the implementation of functionalities for
processing agreement offers, creating agreements, monitoring the service quality,
and evaluating agreement guarantees is comprised in the SLA Engine Module



300 F. Feigenbutz, A. Stanik, and A. Kliem

Fig. 5. Response times of all test scenarios with 4 concurrent users

which is used by both web service stacks the WSRF as well as the REST. There-
fore we follow the black box approach where we did not separate between per-
formance of internal components like the Engine Module and the frontend Web
Service Modules. We focus on the performance comparison of WSRF to REST
where the overhead for parsing the WS-Agreement language, for persistence of
agreements or for business logic is the same.

Besides measuring response times we also evaluated the amount of network
traffic each solution required during the tests. HTTP request and response in
the case of GetFactories are compared and show that in this sample case REST
required nearly one-tenth of WSRF’s network traffic by using the very basic
media type text/uri-list instead of a more complex and verbose XML structure.
Both numbers of 3637 and 378 bytes were aggregated over the relevant payload.
In order to compare only payload required for the specific use case, security data
such as WS-Security headers or client certificates was neglected.

3 Related Work

The comparison of WS-* respectively SOAP and RESTful web services has al-
ready been performed by several scientists [13] [19] [16] [21] [17]. However, the
comparison of stateful approaches with the intention to include WADL in a WS-*
standard is still an open issue. Thus, the following papers either compared both
in different contexts or migrated applications between WS-* and RESTful ap-
proaches.



REST as an Alternative to WSRF 301

Pautasso et al. [19] compared both WS-* and RESTful web services from
a conceptual and technological perspective and developed advices when to use
which approach. They presented a general and comprehensive summary to sup-
port architectural decisions. In contrast, the focus of this paper is on a specific
standard (WSAG) that requires stateful web services by presenting a perfor-
mance comparison of both approaches.

Upadhyaya et al. [21] provided a semi-automatic approach to migrate ex-
isting SOAP based services into RESTful services and compared performance
measurements of both solutions showing slightly better performance of REST
based services. Compared to their work, our paper focuses on one single WS-*
standard and compares already existing services rather than generating them
which allows a more detailed inspection of both solutions.

Mulligan and Gračanin [17] developed a middleware component for data trans-
mission offering both a SOAP and a REST interface. They evaluated their imple-
mentations with regard to performance and scalability requirements. Other than
their work, this paper compares both approaches using very specific WS-* stan-
dards: WSRF and WSAG. We also evaluate the performance of both approaches
with real life use cases from SLA contracting.

Kübert et al. [15] analyzed the WSRF basedWSAG specification and designed
a RESTful service with a feature set close to the standard. Their work proved
that porting a WSAG service to REST is possible in theory but their scope
ended with the proof of feasibility. We use an existing software framework and
gain insights about performance gaps between both solutions. Based on their
work as well as the existing RESTful implementation of WSAG4J this paper
adds an evaluation of both approaches which has not been shown before.

4 Conclusion

In terms of performance it becomes apparent with an increasing number of con-
current clients that the RESTful stack of WSAG4J scales better than the WSRF
based solution. In the given test infrastructure we could test the GetFactories
case with 24 concurrent REST clients without running into failures while WSRF
reported 50% failures with a number of 8 concurrent clients. These results are
likely to be influenced by the amount of required network traffic which is sig-
nificantly larger in the case of WSRF and therefore puts a higher load on the
latter’s serialization engine.

All tests were executed with HTTPS terminated by Apache Tomcat. To
enhance the latter’s TLS performance future work could include the Apache
Portable Runtime (APR) [2] to enhance Apache Tomcat’s TLS performance.
We expect that enabling APR will reduce RESTful response times as the REST
setup relies on Tomcat to verify and handle client certificates while WSRF uses
its inbuilt logic to handle WS-Security tokens and would therefore profit less
from enabling APR.

Finally we underline that web services providing WS-Agreement and WS-
Agreement Negotiation act as neutral notaries which must by definition al-
ways be reachable to both agreement parties enabling 24/7 verification of SLAs.



302 F. Feigenbutz, A. Stanik, and A. Kliem

As proved by our measurements the RESTful implementation of the WSAG4J
framework scales better than the WSRF based solution and can therefore reduce
operation costs and complexity when using WSAG4J for SLA negotiation and
monitoring.

The second reason for the REST based solution is its enhanced interoperability
compared to the WSRF variant. When providing a public WSAG service it
is advisable to support as many different clients as possible. Because REST’s
technological footprint is lighter than the one of WSRF, it is open to more
development environments possibly attracting a larger number of users.

As future work we see a higher investigation into specifying RESTful oper-
ations for WS-* specifications, especially for the WS-Agreement and the WS-
Agreement Negotiation standards. This is also one of the hot discussed top-
ics of the Grid Resource Allocation and Agreement Protocol Working Group
(GRAAP-WG) of the Open Grid Forum (OGF).

Acknowledgment. The research leading to these information and results was
partially supported by received funding from the European Commission’s Com-
petitveness and Innovation Programme (CIP-ICT-PSP.2012.5.2) under the grant
agreement number 325192. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed or implied, of the MO-BIZZ
project or the European Commission.

References

1. Web services resource 1.2 (ws-resource) (April 2006),
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf

2. The apache software foundation: Apache portal runtime (2013),
http://apr.apache.org

3. The grinder, a java load testing framework (2013),
http://grinder.sourceforge.net

4. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,
Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web services agreement specifica-
tion (ws-agreement) (March 2007), http://www.ogf.org/documents/GFD.192.pdf
(updated version 2011)

5. Blumel, F., Metsch, T., Papaspyrou, A.: A restful approach to service level agree-
ments for cloud environments. In: 2011 IEEE Ninth International Conference on
Dependable, Autonomic and Secure Computing (DASC), pp. 650–657 (December
2011)

6. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., et al.: Web services
description language (wsdl) 1.1 (2001), http://www.w3.org/TR/wsdl

7. Comuzzi, M., Spanoudakis, G.: Dynamic set-up of monitoring infrastructures
for service based systems. In: Proceedings of the 2010 ACM Symposium
on Applied Computing, SAC 2010, pp. 2414–2421. ACM, New York (2010),
http://doi.acm.org/10.1145/1774088.1774591

8. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Un-
raveling the web services web: an introduction to soap, wsdl, and uddi. IEEE
Internet Computing 6(2), 86–93 (2002)

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://apr.apache.org
http://grinder.sourceforge.net
http://www.ogf.org/documents/GFD.192.pdf
http://www.w3.org/TR/wsdl
http://doi.acm.org/10.1145/1774088.1774591


REST as an Alternative to WSRF 303

9. Eastlake, D., Reagle, J.: Xml signature (2000), http://www.w3.org/Signature/
10. Fielding, R.T.: Architectural Styles and the Design of Network-based Software

Architectures. Ph.D. thesis, University of California (2000), AAI9980887
11. Foster, I., Czajkowski, K., Ferguson, D., Frey, J., Graham, S., Maguire, T., Snelling,

D., Tuecke, S.: Modeling and managing state in distributed systems: The role of
ogsi and wsrf. Proceedings of the IEEE 93(3), 604–612 (2005)

12. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J., Nielsen, H.F., Karmarkar,
A., Lafon, Y.: Simple object access protocol (soap) 1.2 (2002),
http://www.w3.org/TR/soap/

13. Guinard, D., Ion, I., Mayer, S.: In search of an internet of things service architec-
ture: Rest or ws-*? a developers perspective. In: Puiatti, A., Gu, T. (eds.) MobiQui-
tous 2011. Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, vol. 104, pp. 326–337. Springer, Heidelberg
(2012), http://dx.doi.org/10.1007/978-3-642-30973-1_32

14. Hadley, M.J.: Web application description language (wadl) specification (2009),
http://www.w3.org/Submission/wadl/

15. Kübert, R., Katsaros, G., Wang, T.: A restful implementation of the ws-
agreement specification. In: Proceedings of the Second International Workshop
on RESTful Design, WS-REST 2011, pp. 67–72. ACM, New York (2011),
http://doi.acm.org/10.1145/1967428.1967444

16. Muehlen, M., Nickerson, J.V., Swenson, K.D.: Developing web services chore-
ography standards the case of {REST} vs. {SOAP}. Decision Support Sys-
tems 40(1), 9–29 (2005), http://www.sciencedirect.com/science/article/pii/
S0167923604000612 WS-REST 2011

17. Mulligan, G., Gracanin, D.: A comparison of soap and rest implementations of a
service based interaction independence middleware framework. In: Proceedings of
the 2009 Winter Simulation Conference (WSC), pp. 1423–1432 (2009)

18. Nadalin, A., Kaler, C., Hallam-Baker, P., Monzillo, R.: Web services security:
Soap message security 1.0 (2004), http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-soap-message-security-1.0.pdf

19. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. ”big”’ web
services: Making the right architectural decision. In: Proceedings of the 17th Inter-
national Conference on World Wide Web, WWW 2008, pp. 805–814. ACM, New
York (2008), http://doi.acm.org/10.1145/1367497.1367606

20. Stamou, K., Aubert, J., Gateau, B., Morin, J.H.: Preliminary requirements on
trusted third parties for service transactions in cloud environments. In: 2013 46th
Hawaii International Conference on System Sciences (HICSS), pp. 4976–4983 (Jan-
uary 2013)

21. Upadhyaya, B., Zou, Y., Xiao, H., Ng, J., Lau, A.: Migration of soap-based services
to restful services. In: 2011 13th IEEE International Symposium on Web Systems
Evolution (WSE), pp. 105–114 (2011)

22. Wäldrich, O.: Orchestration of Resources in Distributed, Heterogeneous Grid En-
vironments Using Dynamic Service Level Agreements. Ph.D. thesis, Technische
Universität Dortmund, Sankt Augustin (December 2011)

23. Wäldrich, O., Battre, D., Brazier, F., Clark, K., Oey, M., Papaspyrou, A.,
Wieder, P., Ziegler, W.: Ws-agreement negotiation version 1.0 (March 2011),
http://www.ogf.org/documents/GFD.193.pdf

24. Wäldrich, O., et al.: Wsag4j: Web service agreement for java,
http://wsag4j.sourceforge.net, version 2.0, Project Website

http://www.w3.org/Signature/
http://www.w3.org/TR/soap/
http://dx.doi.org/10.1007/978-3-642-30973-1_32
http://www.w3.org/Submission/wadl/
http://doi.acm.org/10.1145/1967428.1967444
http://www.sciencedirect.com/science/article/pii/S0167923604000612
http://www.sciencedirect.com/science/article/pii/S0167923604000612
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://doi.acm.org/10.1145/1367497.1367606
http://www.ogf.org/documents/GFD.193.pdf
http://wsag4j.sourceforge.net

	REST as an Alternative to WSRF:A Comparison Basedon the WS-Agreement Standard
	1 Introduction
	2 Evaluation
	2.1 Test Scenarios
	2.2 Test Infrastructure
	2.3 Impact of Security Technology
	2.4 Measurement Results

	3 Related Work
	4 Conclusion
	References




