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School of Information Technologies
The University of Sydney

Australia
meenakrajani@gmail.com,

{uwe.roehm,akon.dey}@sydney.edu.au

http://www.usyd.edu.au

Abstract. Dynamic websites rely on caching and clustering to achieve
high performance and scalability. While queries benefit from middle-tier
caching, updates introduce a distributed cache consistency problem. One
promising approach to solving this problem is Freshness-Aware Caching
(FAC): FAC tracks the freshness of cached data and allows clients to
explicitly trade freshness of data for response times. The original proto-
col was limited to single-object lookups and could only handle complex
requests if all requested objects had been loaded into the cache at the
same time. In this paper we describe the Multi-Object Freshness-Aware
Caching (MOFAC) algorithm, an extension of FAC that provides a con-
sistent snapshot of multiple cached objects even if they are loaded and
updated at different points of time. This is done by keeping track of
their group valid interval, as introduced and defined in this paper. We
have implemented MOFAC in the JBoss Java EE container so that it
can provide freshness and consistency guarantees for cached Java beans.
Our evaluation shows that those consistency guarantees come with a rea-
sonable overhead and that MOFAC can provide significantly better read
performance than cache invalidation in the case of concurrent updates
and reads for multi-object requests.

Keywords: Freshness, Distributed cache, Replication, Invalidation,
Consistency.

1 Introduction

Large e-business systems are designed as n-tier architectures: Clients access a
web-server tier, behind which an application server tier executes the business
logic and interacts with a back-end database. Such n-tier architectures scale-out
very well, as both the web and the application server tiers can be easily clustered
by adding more servers. However, there is a certain limit to the performance and
scalability of the entire system due to the single database server in the back-
end. It is essential to minimize the number of database calls to alleviate this
bottleneck.
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A distributed cache layer at the application server level strives to minimize
these access costs between the application server tier and the database tier.
While this works very well for read-only access, updates induce a distributed
cache consistency problem. Keeping the contents of the cache consistent with
the backend database is necessary to ensure correctness of the overall system.
The well-known techniques for handling this are cache invalidation and cache
replication, both of which have certain disadvantages with regard to the best
performance of either read- or update-intensive workload. In an n-tier architec-
ture, business logic is processed in the application server making it more efficient
by keeping the data closer to it.

The Java application server comes with Enterprise Java Bean (EJB) to man-
age business logic and persist application state. An entity bean usually represents
a row from the database table and is hence costly to to create, presenting the
need for a a second level cache. As a result, when an entity bean is updated
in one node, either a replication or invalidation message is sent across all the
nodes in the cluster. Both synchronous and asynchronous replication of entity
beans are costly when data consistency issues are created due to invalidation.
Invalidation of entity beans on the other hand causes cache misses and in-turn
can cause database bottlenecks.

FAC showed that we can trade-off freshness with high availability but was
limited to freshness management on the basis of a single Enterprise Java Bean
(EJB). However, in real world applications most transactions access more than
one object that exist in binary or ternary relationships with other objects. As a
result, when an object is updated in a database, that object and all its associated
objects are removed from the cache resulting in a high performance penalty. This
must be avoided in order to maintain high performance. In this paper, we make
the following contributions:

– We present a Multi-Object Freshness Aware Caching (MOFAC) algorithm
which guarantees both the freshness and inter-object consistency of the
cached data.

– We implemented this algorithm in the JBoss 6 middle-tier application server
cache.

– We present results of a performance evaluation and quantify the impact of
the different parameters of MOFAC on its performance.

2 Freshness-Aware Caching

In Freshness-Aware Caching (FAC) [11], each cache node keeps track of how
stale its content is and only returns data that is fresher than the freshness limits
set by the client. In this paper, we describe algorithms that can support this,
and which also ensures that every request that touches multiple objects is given
a consistent view of them; that is, there was a time, within the freshness limit,
when all the information read was simultaneously up-to-date.



264 M. Rajani, U. Röhm, and A. Dey

2.1 Freshness Concept

Freshness of data is a measure on how outdated (stale) a cached object is in
comparison to the up-to-date master copy in the database [12]. There are several
approaches to measuring this: Time-based metrics rely on the time duration since
the last update of the master copy, while value-based metrics rely on the value
differences between cached object and its master copy. A time-based staleness
metric has the advantage that it is independent of data types and does not
need to access the back-end database. On the other hand, a value-based metric
needs the up-to-date value to determine the value differences allowing for local
freshness decisions without making a trip to database to improve scalability.
Hence, MOFAC uses a time-based metric.

Definition 1 (Staleness Metric). The staleness of an object o is the time
duration since the object’s stale-point, or 0 for freshly cached objects. The stale-
point tupdate(o) of object o is the point in time when the master copy of o was
last updated while the cached object itself remained unchanged.

stale(o) :=

{
(tnow − tupdate(o)) | if master(o) updated at tupdate(o)
0 | otherwise

Definition 2 (Freshness Intervals). The cache lifetime of an object o consists
of two disjoint intervals, vi(o) and di(o). Its valid interval, vi(o), is the half open
interval [tload, tupdate) when the object is loaded into the cache. The object is in
the valid interval when it retains its state over a period of time until some event
occur in the present or future that changes its state in database. The object’s
deferred interval di(o) is defined as the half open interval [tupdate, texpire) such
that the object enters the deferred interval as soon as it is updated in database.

Fig. 1. Cache Objects Freshness Intervals

The timestamp of the object is
recorded when it is loaded from the
database to the cache node. When an
object is updated via the cache node
or any other cache nodes in the clus-
ter, the update timestamp is recorded.
The expiry time is calculated using
the update timestamp and freshness
constraint. In other words, the length
of the deferred interval is adjusted by
the freshness constraint. This is illus-
trated in Figure 1.

If an object is inside the valid in-
terval, it is considered to be fresh and
consistent with the backend database;
if its timestamp falls inside the de-
ferred interval, it means that the mas-
ter copy on the database has been up-
dated, but the staleness of the object
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still meets the freshness constraint. Only objects that have exceeded the expiry
timestamp, are considered to be too old with respect to the freshness constraint
and are evicted from the cache.

3 Multi-Object Freshness-Aware Caching (MOFAC)

The FAC algorithm, as described, cannot guarantee the consistency of several
related objects that are accessed within the same transaction. We introduce a
concept of object grouping to address this limitation.

An object group represents a set of logically related objects in which two enti-
ties are considered to be part of the same group of objects if they are associated
with each other in an explicit or implicit relationship. For example, this can be
done by leveraging the foreign-key-relationships in the schema of the underlying
database which is often explicitly defined in the object-relational mapping at the
middle-tier.

Fig. 2. Multi Object Group Freshness

The objects in a group are mu-
tually consistent when all of them
have been persisted together in the
database. Object grouping enables
snapshot consistency to the objects
in the group by ensuring that mod-
ifications to any object in the group
results in notifications making all
cached copies of the group stale. How-
ever, they may continue to reside in
the cache as long as the freshness con-
ditions are met using the formula de-
scribed in Section 3.1. All members of
the group are guaranteed to be loaded
with the same snapshot of the database reflecting the freshness interval of the
entire object group.

Definition 3 (Group Freshness Intervals). Suppose we have a group of ob-
jects G = {o1, o2, ..., on}. The group’s valid interval, denoted by gvi, is the in-
tersection of all valid intervals of its group members:

gvi(G) := vi(o1) ∩ vi(o2) ∩ ... ∩ vi(on), oi ∈ G

In other words, the gvi is the half-open time interval defined as

gvi(G) := [MAX(tload(oi)),MIN(tupdate(oi))),

1 ≤ i ≤ n, oi ∈ G
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Figure 2 illustrates an example in which o1, o2, o3 and o4 are a group of
objects with the same meaning of freshness interval in Figure 1. The objects
have been loaded into the cache at different points in time within the interval
(t1 and t2).

When an object from this group is requested, the group’s valid interval is
calculated to verify that all the objects were in their valid interval together at
some point of time; in this case, it is [t2..t3). If this satisfies the user’s freshness
constraint, the user can access the cached group of objects. If an object in a
group is updated by some other cache node, the stale point is registered (t3 or t4
in this example). Note that subsequent updates on already stale objects do not
change the staleness point. We call a cache consistent group where all members
are in their valid interval, fresh, and otherwise, stale.

Currently we have considered objects which are in one to many and many to
one associations. This can be easily extended to many to many associations. If
two different transactions require the same group of objects, only one instance
of that group exists in the cache.

Definition 4 (Group Staleness Metric). The staleness of a group of objects,
G, is the time duration since the first update to any object in G until now, or is
0 for cached group G, if the master copy of all o in G is not updated since G is
loaded into the cache.

stale(G) :=

{
(tnow −MIN(tupdate(oi))) | if master(o)updated at tupdate(o)
0 | otherwise

In order to ensure that an application gets a group of objects which are
mutually consistent and are fresh enough to serve a user request, each object in
the group must be in the valid interval and the staleness of group G must satisfy
the user-defined freshness limit.

Definition 5 (Group Consistency and Freshness). A group of objects G
is fresh enough and consistent if the group is present in cache, the group valid
interval is not empty (i.e. at some point in time in the past, all group objects
were valid at the same time), and the staleness of G is within the application’s
freshness limit.

freshcon(G) : G ∈ Cache ∧ gvi(G) �= ∅ ∧ stale(G) ≤ freshlimit

3.1 Example

Let us consider an online bookstore application where a book entity is brought
into the application cache together with its authors and reviews as a group G.
This could be because all the parts are needed to construct the content of a
dynamic web page.

Cache := {(b, {a}, {r})|b ∈Books , a ∈Authors, r ∈Reviews :
a.id ∈ b.authors ∧ r.isbn = b.isbn}
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Here, each group consists of one Book object, and a set of corresponding
Author and Review objects. In this example, we can guarantee a user is accessing
a consistent data snapshot, which is within the required freshness constraint, by
using Definition 5.

Figure 3 is an example of a book group. It has one book instance which is
associated with two collections: one review collection and one author collection.
The key of collection is generated from the root object’s key, which is 1 here.
When any object is updated in one of the cache nodes, the rest of the cache
nodes receive the modified timestamp with the key of the corresponding object.
They then register that timestamp and convert the group’s status from fresh to
stale.

4 MOFAC Algorithm

Fig. 3. Example of a book group with
two child collections

In this section we describe the multi-
object freshness-aware caching (MOFAC)
algorithm that handles freshness of multi-
objects freshness in the application-tier
cache. It consists of three sub-algorithms:
the handling of MOFAC reads, the han-
dling of user-level updates to a local
cache node, and the processing of update-
notifications on a remote cache node.

4.1 Multi Object Freshness Read

A freshness-aware cache tracks the load and stale points of each cached object,
group memberships and each groups valid intervals. This meta-data is used to
decide whether an object can be returned from the cache or whether it has to
be (re-)loaded from the backend database.

In Algorithm 1, it is worth to noting that on an initial cache miss for the whole
group, all objects that form the group are loaded into the cache together. This is
typically done by the cacheable and association annotations of an application.
In addition, the usual cache granularity is at the level of individual objects and
not cache groups. So in most applications, this algorithm is initiated multiple
times in a row while the application is traversing the different object links within
the same group. Most of these end us as fast in-memory operations because the
whole group (complex object) is loaded into the cache due to the earlier cache
misses. This cache miss behaviour is handled in detail in the MOFAC read-
algorithm in Algorithm 1.

This algorithm assumes that the cache has mechanisms to determine depen-
dencies between associated objects, such as to iterate over all direct child objects
of a given object in the cache or to determine whether a complex object is com-
pletely cached with all its associated child objects (predicate isComplete() in
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Algorithm 1. MOFAC Read Algorithm for an arbitrary complex object

input : an object key k
input : freshness limit flimit

output: object reference O

O ← lookup(k)
if O /∈ Cache ∨ ¬isComplete(O) then

for all oi ∈ O, oi /∈ Cache : do
retrieve oi (evtl. with child objects) from database
tload(oi)← tnow
tupdate(oi)← tmax

Cache ← Cache ∪ oi
end for

end if
if gvi(O) = ∅ then

for all oi ∈ O, vi(oi) /∈ gvi(O) : do
evict oi from Cache and reload (evtl. with child objects) from database
tload(oi)← tnow
tupdate(oi)← tmax

Cache ← Cache ∪ oi
end for

end if
if stale(O) > flimit then

evict stale O from Cache and reload (evtl. with child objects) from database
tload(O)← tnow
tupdate(O)← tmax

Cache ← Cache ∪O
end if
return O

above’s algorithm). This functionality is provided by the Java Persistence API
(JPA) layer. The cache can determine, which objects should be cached together
and whether a complex object (including (or references) sub-objects is com-
pletely cached or not, based on meta-data that is extracted from the annotations
in the Java application code.

4.2 Update Handling on Local Cache Node

We have to distinguish between two cases when processing updates on a multi-
object freshness aware cache: Firstly, how should updates be processed locally
on the cache node that received the user transaction. Secondly, how should the
update notifications be processed on the other nodes of the distributed cache.

Algorithm 2 listed in the Appendix describes how updates should be handled
at a local cache node: The object to be updated is first persisted to the backend
database and then corresponding update-notifications are sent to the other cache
nodes in the cluster. These notifications differ slightly based on what kind of
object was updated in the cache group (i.e. whether it is the root node, a child



Consistent Multi-Object Freshness-Aware Caching 269

object or a child collection). All update notifications are sent within the original
user transaction, so that we have a synchronous freshness update to all the nodes.
It does not require any expensive 2-phase-commit protocol since the only issue
that can arise on a remote node is that it may not have the object in the cache
when the update message is received. In this case, the message can safely be
ignored on the update-notification. All we need to have is a guarantee that the
notifications are delivered so that nodes who indeed do cache the same object
get notified.

4.3 Update Handling: Processing Update-Notifications

The second part of the MOFAC update algorithm is the reception of the update-
notification on a remote node. Although we conceptually get three different
kinds of update-notifications, for either a whole group or just a child object or
child collection, the actual handling is the same just differing in the type of
target object.

Algorithm 3 listed in the Appendix describes these steps. An update notifica-
tion not only specifies which object has been modified (the request specifies the
unique object identifier, but not the object itself) and the timestamp on when
this happened at the original node. If the modified object is also present in the
receiving local cache, and no message was received with respect to an earlier
update, then the stale point of the cached copy of the updated object is set to
the received timestamp.

The algorithm assumes that all nodes in the cluster are time synchronised
so that these timestamps between nodes are comparable. This is not difficult
assumption for a typical closely-coupled cluster of today’s standard. However,
when the caches are distributes over a wide-area, we recommend switching to
local timestamps of receiving notifications. This might be later than when the
original update happened on the remote machine, but would be more consistent
with all other timestamps used for MOFAC comparison which also are all locally
determined (such as load time or time of an application request).

5 Evaluation

We have implemented the MOFAC algorithm inside the in-memory cache of a
Java EE platform version 5.0 server and evaluated the performance character-
istics of our proposed method using an exemplified dynamic web application: a
simplified online bookstore.

5.1 Benchmark Application

The bookstore benchmark application consists of three components: A client
emulator, the clustered bookstore server application, and the backend database.

The client emulator is a multi-threaded Java application that simulates a
configurable number of clients that access the bookstore with either browsing
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(read-only) or buying (read-write) request. For the browsing workload, a method
is invoked to find a certain book with all its authors and reviews.

The bookstore server application consists of a session bean, that provides
the corresponding browsing and buying calls, as well as the implementation
of the three entity beans representing Book, Author and Review entities. It is
deployed into a JBoss 6 application server container and configured to run on a
variable number of cluster nodes. For the caching side, we configured JBoss to
use Infinispan as a distributed caching tier. Note that although Infinispan is a
separate product and comes with its own configuration files, it is indeed loaded
as part of the JBoss installation into the same JVM when the application server
starts. We configured Infinispan so that it tightly integrates with the JBoss
container by installing a caching interceptor into the JBoss interceptor chain, so
that it gets invoked with any EJB access.

Finally, the bookstore state is stored in a single backend PostgreSQL database
that is shared among all JBoss/Infinispan instances. We have used entity bean
POJO entity class to persist and load data to and from the database into three
kinds of entity beans: Book, Author and Review. Book and Author are in a
one-to-many relationship, while Book and Review are also in a one-to-many
relationship. The details of these ORM definitions of the three entity beans are
shown in the Appendix in Listing 1.1.

5.2 Evaluation Setup

All experiments were conducted on an evaluation system consisting of a small
cluster of eight Dell Optiplex servers, each equipped with a quad-code Intel
Core2 Q9400 CPU (2.66 GHz), 4 GB RAM, two 500 GB HDDs, and running
RedHat Fedora Linux 10 (kernel version 2.6.27.30).

We used a Java-based test client simulator and JBoss version 6.0 applica-
tion server. The client simulator was running on a dedicated separate computer,
and another dedicated server was used as back-end database server, running
PostgreSQL Server 9.1. All nodes were interconnected via Fast Ethernet. The
communication between the JBoss Server instances in the cluster (partition)
is handled by the JGroups group communication library via channel for node
discovery and reliably exchanging messages among cluster nodes. We have con-
figured the cluster to use a round robin load balancing policy.

Client simulator and application server were Java applications executed under
Java version 1.6. The server was executed with a Java heap size of up-to 512
MB (option −Xmx512m).

5.3 Evaluation of MOFAC’s Overhead

In the first evaluation series, we are interested in measuring the general overhead
induced by MOFAC in comparison to the standard cache invalidation techniques
of JBoss/Infinispan. We compare the following cache functionalities:

INV synchronous cache invalidation (cache invalidation with synchronous no-
tifications to remote nodes)



Consistent Multi-Object Freshness-Aware Caching 271

0 5 10 15 20

10

60

110

160

210

260

310

360

 updates  %

M
ea

n
 R

es
p

o
n

se
 T

im
e[

m
s]

8   MPL
16  MPL
32  MPL
64  MPL

0 5 10 15 20

100

300

500

700

900

1100

1300

1500

1700

1900

2100

2300

update %

N
u

m
b

er
 o

f 
T

ra
n

sa
ct

io
n

s 
p

er
 S

ec
o

n
d 8   MPL

16  MPL
32  MPL
64  MPL

Fig. 4. Mean Response Time and Throughput of Cache Invalidation on Cluster Size 8
with varying Update Ratio
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Fig. 5. Mean Response Time and Throughput of MOFAC on Cluster Size 8 with
varying Update Ratio and Freshness Limit 0

MOFAC using the synchronous communication mechanism to send freshness
notification to remote nodes.

In order to determine the costs of the caching control code, we fixed the
freshness limit for all client requests to 0. This ensures that MOFAC caching
produces about the same number of cache misses than cache invalidation - any
update will trigger the eviction of any of its replica in other cache nodes. We
evaluated both the MOFAC cache and the invalidation cache for varying update
rates and varying multi programming level (MPL – number of concurrent clients)
(Figures 4 and 5). The main difference is that with cache invalidation, this
happens eagerly, directly at the end of the original update transaction. While on
the other hand, with multi-object freshness-aware caching, it happens ’lazily’,
only when another transaction with freshness limit 0 tries to access a stale copy
in a cache node.

Figures 4 and 5 shows that there is no measurable overhead for multi-object
freshness aware caching as compared to the standard cache setting with cache
invalidation. The two curves are always within a certain confidence interval of
each other, in particular for the higher ratio of updates when a lot of invalidations
are triggered within the system.
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5.4 Evaluation of Invalidation vs. MOFAC with Varying Update
Ratio

In this experiment we have multi-object read and update transaction, and we
compare MOFAC with the Invalidation algorithm to measure the impact of the
update ratio on the performance. The multi-programming level (MPL) is 64 is
kept constant throughout this experiment. Figure 6 shows that increase in update
ratio impacts performance of both the MOFAC and Invalidation algorithms.

However, if we increase the freshness level of MOFAC, we see a clear difference
in throughput and response time between the two algorithms. As we relax the
freshness limit, MOFAC shows reduced response time and increased throughput
(even with higher update ratio). Where as in the case of invalidation, even a
slight increase in the update ratio results in reduced throughput and increased
mean response time.
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Fig. 6. Mean Response Time and Throughput of MOFAC vs Invalidation on Cluster
Size 8 with varying Update Ratio

5.5 Evaluation of Varying Freshness Limit and Varying MPL

In the third experiment, we investigate the effect of varying the freshness limits
and MPL. We fix the cluster size to 8 nodes and vary the MPL from 8, 16, 32
through to 64 and use a workload in which read-only transactions concurrently
and randomly access a book object with it reviews and authors, while update
transactions write to an existing book object. We vary both the amount of
update transactions and the freshness limit from 0, 15, 30, 45, 60 to 90 seconds
for books, authors and reviews.

As we can see in Figure 7, as the freshness limit increases, we get faster
response times. This is exactly what we aim for with multi-object freshness-
aware caching – to be able to trade freshness of data for query performance.
When the freshness limit is set to 5 seconds, the response time is close to that of
cache invalidation. With a freshness limit of 90 seconds, the response time is up-
to just half of that of cache invalidation for an update ratio of 20%. With lower
update ratios, the saving is proportionally less. We also observe that there is a
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Fig. 7. Performance of MOFAC on Cluster Size 8 with MPL 8, 16, 32 and 64 varying
Update Ratio and varying Freshness limit

throughput gain as well as reduced response time when we relax the freshness
constraint.

From this experiment we can conclude that with multi-object freshness-aware
caching, the more we relax the freshness constraint, the better the throughput
and response time of the system becomes.

In the above experiments, we have seen that MOFAC can reduce mean re-
sponse times and increase throughput for each update level with varying MPL.
If we compare MOFAC for MPL 32 in Figure 7 with the invalidation cache algo-
rithm results from Figure 4 we can clearly see that MOFAC performs better. At
an update ratio of about 20%, the improvement in response time is about 50%
with MOFAC and a (reasonable) freshness limit of 30 seconds. The higher the
chosen freshness limit, the more this benefit increases since stale objects can be
continue to used in the cache, thus improving throughput.

6 Related Work

Application-Tier Caching. Web caching is an attractive solution for reducing
bandwidth demands, improving web server availability, and reducing network la-
tencies. However web caching only supports static content [14]. But the dynamic
nature of modern applications requires pages to be generated on the fly.

The state-of-the-art for clustered application servers is an asynchronous cache
invalidation approach, as used in, e.g., the BEA WebLogic and JBoss applica-
tion servers [3, 13]: When a cached object is updated in one application server
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node, that server multicasts a corresponding invalidation message throughout
the cluster after the commit of the update transaction. Cache invalidation hence
leads to more cache misses. After an update, all copies of the updated object get
invalidated in the remaining cluster nodes. Hence, the next access to that object
will result in a cache miss.

Earlier work [11] in this domain introduced the notion of freshness-aware
caching (FAC). FAC tracks the freshness of cached data and allows clients to
explicitly trade freshness-of-data for response times by specifying a freshness
limit. However, the FAC algorithm presented in the paper [11] treats each object
separately; thus, a client could place a freshness limit on the data seen, but if
several objects were read then there is either a chance of high abort rates (Plain
FAC) or they could be mutually inconsistent (δ-FAC). In this paper, we extend
the theoretical foundations of FAC with ideas from [4] and [8], so that the new
MOFAC can deal with freshness intervals and the grouping of related objects
into consistency groups.

Middle-Tier Caching. Midle-tier caching approaches such as IBM’s DB-
Cache [1,5,10]or MTCache from Microsoft [9] are out-of-process caching research
prototypes with an relatively heavy-weight SQL interface. Due to the lazy repli-
cation mechanisms, these approaches cannot guarantee distributed cache consis-
tency, although some work around MTCache started at least specifying explicit
currency and consistency constraints [8]. Our work differs in that we keep track
of the freshness of data of each object separately and only notify about updates
to objects that are actually modified; the remaining objects of a group still re-
main in their valid interval. Furthermore, MTCache works with the relational
model while we are working on objects and object relational model.

Data Grid Caching and Replication. In recent years, service infrastructures
for sharing large scientific datasets that are geographically distributed have been
developed in the form of so-called data grids [6]. A core underlying concept of
data grids is caching via adaptive data replication protocols [7]. There are three
core differences to the work presented in this paper. Firstly, data grids deal with
relatively static, read-mostly datasets, while we are focusing on dynamic web-
based applications with frequent updates. Secondly, data grids are optimized for
periodically exchanging large datasets, while our focus is on on-demand caching
of individual interrelated objects. Thirdly, data grids target the data distribu-
tion problem over a wide-area network, while our proposed MOFAC algorithm
assumes a closely-coupled caching system inside the same data center.

7 Conclusions and Future Work

This paper proposes a new and promising approach to distributed caching:Multi-
Object Freshness-Aware Caching (MOFAC). MOFAC tracks the freshness of the
cached data and provides clients a consistent snapshot of data with reduced re-
sponse time if the client agrees to lower its data freshness expectation. MOFAC
gives application developers an interesting tuning knob: The more parts of an ap-
plication can tolerate (slightly) stale data, the better MOFAC canmake use of the
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existing cache content and hence provide a better mean response times compared
to cache invalidation. The choice is between performance versus data freshness.

The location within the application where this choice has to be made is ap-
plication specific. In our evaluations, implemented using a MOFAC cache in the
JBoss 6.0 application server, we measured savings of up-to 25% on response
times, albeit in settings which may not be considered to be very realistic in the
context of a real-life bookstore with lots of updates on books objects. However,
even with more conservative freshness settings, such as freshness 0 for core book
states and more relaxed freshness requirements for reviews, we have observed
that a MOFAC cache can improve performance in the of range of 10% to 15%.

When in doubt, a developer has the choice of picking a freshness limit of
0 for requests, in which case, the proposed MOFAC algorithm behaves similar
to normal cache invalidation. This makes the proposed multi-object freshness-
aware caching a very attractive approach for distributed caching for dynamic
web applications delivering significant performance improvements in comparison
to cache invalidation, while at the same time providing actual data freshness
guarantee within the constraints specified by the application.

We intend to further evaluate and study the characteristics ofMOFACand com-
pare it with FAC and other traditional approached like cache invalidation in more
complex and interesting application scenarios. We will use this to develop tech-
niques and tools to enable application developers to choose appropriate settings
that best suite the different aspects of the business object hierarchy of the applica-
tion.
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Appendix

Algorithm 2. Update Handling on Local Cache Node

input : object identifier o
input : current transaction context tx
output: object o updated in cache and on backend database
output: update notifications broadcasted to other cache nodes

if object o ∈ Cache then
update o in local cache node
persist o in database
if isGroup(o) = true then

send update-notification to neighbour nodes for group key k
else if isCollection(o) = true then

send update-notification to neighbour nodes for collection key k
else

send update-notification to neighbour nodes for object o
end if
commit

end if

Algorithm 3. Processing of Update-Notifications

input : object identifier o
input : update-notification timestamp ts
output: object’s o stale point is updated if present in cache

if object o ∈ Cache then
if stale(o) = 0 then

tupdate(o)← ts {update meta-data of cache entry o}
end if

end if
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1 @Entity
2 @Cacheable
3 @Cache( usage = CacheConcurrencyStrategy .TRANSACTIONAL)
4 @Table(name = ”BOOKENTITY”)
5 public c lass BookEntity implements S e r i a l i z a b l e {
6 private stat ic f ina l long s e r i a lVer s ionUID = 1L ;
7 @Id
8 private int ISBN ;
9 private St r ing t i t l e ;

10 private St r ing de s c r i p t i o n ;
11
12 @Cache( usage = CacheConcurrencyStrategy .TRANSACTIONAL)
13 @OneToMany( cascade = CascadeType .ALL, f e t ch = FetchType .LAZY,
14 ta rg e tEnt i ty = AuthorEntity . class , mappedBy = ”bookEntity” )
15 private Col l e c t i on<AuthorEntity> authors ;
16
17
18 @Cache( usage = CacheConcurrencyStrategy .TRANSACTIONAL)
19 @OneToMany( cascade = CascadeType .ALL, f e t ch = FetchType .EAGER,
20 ta rg e tEnt i ty = ReviewEntity . class , mappedBy = ”bookEntity” )
21 public Col l e c t i on<ReviewEntity> rev i ews ;
22 }
23
24 @Entity
25 @Cacheable
26 @Cache( usage = CacheConcurrencyStrategy .TRANSACTIONAL)
27 public c lass ReviewEntity implements S e r i a l i z a b l e {
28 @Id
29 private int i d ;
30 private St r ing bookReview ;
31
32 @Cache( usage = CacheConcurrencyStrategy .TRANSACTIONAL)
33 @ManyToOne( cascade = CascadeType .ALL, f e t ch = FetchType .EAGER)
34 @JoinColumn(name = ”ISBN” )
35 private BookEntity bookEntity ;
36 }
37
38 @Id
39 private int autho r id ;
40 S t r ing authorName ;
41 S t r ing authAddress ;
42
43 @Cache( usage = CacheConcurrencyStrategy .TRANSACTIONAL)
44 @ManyToOne( cascade = CascadeType .ALL, f e t ch = FetchType .LAZY)
45 @JoinColumn(name = ”ISBN” )
46 private BookEntity bookEntity ;
47 }

Listing 1.1. ORM definitions of the three entity beans of the Bookstore JEE applica-
tion including the Java annotations for the cache configuration.
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