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Abstract. In recent years, MapReduce has become a popular comput-
ing framework for big data analysis. Join is a major query type for
data analysis and various algorithms have been designed to process join
queries on top of Hadoop. Since the efficiency of different algorithms dif-
fers on the join tasks on hand, to achieve a good performance, users need
to select an appropriate algorithm and use the algorithm with a proper
configuration, which is rather difficult for many end users. This paper
proposes a cost model to estimate the cost of four popular join algo-
rithms. Based on the cost model, the system may automatically choose
the join algorithm with the least cost, and then give the reasonable con-
figuration values for the chosen algorithm. Experimental results with the
TPC-H benchmark verify that the proposed method can correctly choose
the best join algorithm, and the chosen algorithm can achieve a speedup
of around 1.25 times over the default join algorithm.
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1 Introduction

In recent years, MapReduce [1] has become a popular computing framework for
big data analysis. Hadoop [2], an open-source implementation of MapReduce, has
been widely used. One example of the big data analysis is log processing, such as
the analysis of click-streams, application access logs, and phone call records. Log
analysis often requires a join operation between log data and reference data (such
as information about users). Unfortunately, MapReduce was originally designed
for the processing of a single input, and the join operation typically requires two
or more inputs. Consequently, it has been an open issue to improve Hadoop for
the join operation.

Many works have appeared in the literature that tackle the join operation
in Hadoop. Such works roughly fall into the two categories. The first is to de-
sign novel join algorithms on top of Hadoop [6][7][8][9][10][11]. The second is to
change the internals of Hadoop or build a new layer on top of Hadoop for the
optimization of traditional join algorithms [3][12][14][15][16][18][19].
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Given the many existing join algorithms, it is hard for users to choose the
best one for their particular join tasks since different algorithms differ signifi-
cantly in their performance when used on different tasks. Usually Hadoop users
have to define a map function and a reduce function and to configure their own
MapReduce jobs. It’s a much harder task for the users to change the internals
of Hadoop or build a new layer on top of Hadoop. Hive system [3] is probably
the most popular open source implementation to execute join queries on top of
Hadoop. However, even with the help of Hive, it is still hard for a Hive user to
choose the best join algorithm among all those implemented in Hive. Finally,
suppose that a join algorithm is chosen, the users are required to tune some
key parameters. Unfortunately, choosing the best join algorithm and tuning the
parameters involve non-trivial efforts.

To help the end users select the best join algorithm and tune the associated
parameters, in this paper, we propose a general cost model for four widely used
join algorithms. Based on our cost model, we adaptively choose one of the join
algorithms with the least cost, and then set the reasonable configuration values.

In summary, we make the following contributions:

– First, we design a cost model for the four popular join algorithms in Hive,
and propose a tree structure based on which a pruning method is designed
for the automated selection of the best join algorithm.

– Second, as a part of the selection process, we provide a method to tune the
key parameters needed by the chosen join algorithm.

– Third, based on the TPC-H benchmark [4], we conduct experiments to eval-
uate our proposed method. The experimental results verify that our method
can correctly choose the best join algorithm. Moreover, the chosen algorithm
can achieve a speedup of around 1.25, compared with the default join algo-
rithm.

The rest of the paper is organized as follows. In Section 2, we introduce the
background of our work. We present the cost model in Section 3, and in Section
4 design an algorithm, along with a tree-structured pruning strategy, to choose
the best join algorithm. We report an evaluation of our method in Section 5.
In Section 6, we investigate related works, and finally conclude the paper with
Section 7.

2 Background

In this section, we first introduce the two popular open source systems: Hadoop
and Hive (Section 2.1), and review four join algorithms that are implemented in
Hive (Section 2.2).

2.1 Hadoop and Hive

Hadoop, an open-source implementation of MapReduce, has been widely used
for big data analysis. The Hadoop system mainly contains two components:
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Hadoop Distributed File System (HDFS) [5] and MapReduce computing frame-
work. Hadoop reads input data from HDFS and writes output data to HDFS.
The input and output data are maintained on HDFS with data blocks of 64
MB by default. To process a query job, Hadoop starts map tasks (mappers) and
reduce tasks (reducers) concurrently on clustered machines. Each mapper reads
a chunk of input data, extracts <key, value> pairs, applies the map function
and emits intermediate <key’, value’> pairs. Those intermediate pairs with the
same key are grouped together as <key’, list<value’>>. After that, the grouped
pairs are then shuffled to reducers. Each reducer, after receiving the grouped
pairs, applies the reduce function onto the grouped pairs, and finally writes the
outputs back to HDFS.

Hive is a popular open-source data warehousing solution, which facilitates
querying and managing large datasets on top of Hadoop. Hive supports queries
expressed in an SQL-like declarative language, called HiveQL. Using HiveQL
lets users create summarizations of data, perform ad-hoc queries, and analysis of
large datasets in the Hadoop cluster. For those users familiar with the traditional
SQL language, they can easily use HiveQL to execute SQL queries. HiveQL also
allows programmers who are familiar with MapReduce to plug-in their custom
mappers and reducers. In this way, Hive can perform complex analysis that may
not be supported by the built-in capabilities of the HiveQL language. Based
on the queries written in HiveQL, Hive compiles the queries into MapReduce
jobs, and submits them to Hadoop for execution. Since Hive can directly use the
data in HDFS, operations can be scaled across all the datanodes and Hive can
manipulate huge datasets.

2.2 Join Algorithms in Hadoop

In this section, we review four join algorithms that are widely used in MapReduce
framework. All of such algorithms are supported in the Hive system. We will
design our selection method based on these four join algorithms.

– Common Join: We consider that two tables are involved in a join task. In
the map function, each row of the two join tables is tagged to identify the
table that the row comes from. Next, the rows with the same join keys are
shuffled to the same reducer. After that, each reducer joins the rows from
the two join tables on the key-equality basis. Common Join can always work
correctly with any combinations of sizes of the join tables. However, this join
algorithm may incur the worst performance efficiency due to a large amount
of shuffled data across clustered machines.

– Map/Broadcast Join: For two join tables, this algorithm first starts a local
MapReduce task to build a hashtable of the smaller table. The task next
uploads the hashtable to HDFS and finally broadcasts the hashtable to every
node in the cluster (Note that the hashtable is maintained on the local
disk of each node in form of a distributed cache). After finishing the local
MapReduce task, this algorithm starts a map-only job to process the join
query as follows. First, each mapper reads the hashtable (i.e., the smaller
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table) from its local disk into main memory. Second, the mapper scans the
large table and matches record keys against the hashtable. By combining
the matches between the two tables, the mapper finally writes the output
onto HDFS. This algorithm does not start any reducer, but requires that the
hashtable of the smaller table is small enough to fit into local memory.

– Bucket Map Join: Differing from Map Join, Bucket Map Join considers that
the data size of join tables is big. Thus, in order to reduce the memory
limitation of Map Join from keeping the whole hashtable of the smaller
table, this algorithm bucketizes join tables into smaller buckets on the join
column. When the number of buckets in one table is a multiple of the number
of buckets in the other table, the buckets can be joined with each other. In
this way, as Map Join, a local MapReduce task is launched to build the
hashtable of each bucket of the smaller table, and then broadcast those
hashtables to every nodes in the cluster. Now, instead of reading the entire
hashtable of smaller table, mappers only read the required hashtable buckets
from distributed cache into memory. Thus, Bucket Map Join reduces the
used memory space.

– Sort-Merge-Bucket (SMB) Join: If data to be joined is already sorted and
bucketized on the join column with the exactly same number of buckets,
the creation of hashtable is unneeded. Each mapper then reads records from
the corresponding buckets from HDFS and then merges the sorted buckets.
The SMB algorithm allows the query processing to be faster than an ordinary
map-only join. The SMB Join is thus fast for the tables of any size with no
limitation of memory though with the requirement that the data should be
sorted and bucketized before the query processing.

3 Cost Model

Given the four popular join algorithms, in this section, we design a cost model
to estimate the cost of the four algorithms that are used to process a join query.
Here, we only consider the fundamental join SQL query without WHERE con-
ditions (and other sub-queries such as GROUP BY, etc.):

SELECT C FROM T1 JOIN T2 ON T1.ci = T2.cj;

where C denotes the projected columns from join tables T 1 and T 2, and ci and
cj are the query join keys.

Before presenting our cost model, we first make the following assumptions:

– Firstly, we assume that T2 is the smaller table. Thus, when theMap/Broadcast
Join orBucket Map Join algorithm is used, the cost of broadcasting and build-
ing the hashtable involves only the table T2.

– Secondly, for Bucket Map Join and SMB Join, we assume that the big table
T1 and small table T2 are associated with the same number of buckets, i.e.,
N1 = N2. As described in Section 2, SMB Join does require N1 = N2.
Instead for Bucket Map Join, it requires that N1%N2 = 0 or N2%N1 = 0,
where % is the modulus operator. As a special case, the assumption N1 = N2

still makes sense for Bucket Map Join.
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– Lastly, we don’t distinguish the cost of building sorted buckets and unsorted
buckets in our cost model. The assumption is reasonable because in the
MapReduce framework, the sorted bucketizing job only takes a slightly more
time than the unsorted one, which doesn’t influence the correctness of our
cost model.

With the above assumptions, we proceed to presenting our cost model. In this
model, the cost of each join algorithm consists of the following five parts.

– Bucketize cost to bucketize both join tables, if any.
– Broadcast cost to build and broadcast hashtables to all mapper nodes, if any.
– Map cost for mappers to read input data from HDFS.
– Shuffle cost to shuffle mappers’ output to reducers’ nodes.
– Join cost to operate join.

Table 1 defines the symbols and cost functions we will use in our cost model.

Table 1. Cost Model Symbols

Symbol Description

Nnodes Number of nodes in the Hadoop cluster

B Block size in HDFS

Nmappers Number of mappers Hadoop sets up for the join query

R(T ) Number of rows of table T

S(C(T )) The total field size of query columns C of table T

S(T ) The size of input join table T

Sc(T ) The size of table T only with the query columns C

Nbuckets Number of buckets for join tables

Bi(T ) The ith bucket of table T

S(Bi(T )) The size of the ith bucket of table T

R(Bi(T )) Number of rows of the ith bucket of table T

SHashtable(r) The size of hashtable of tableT / bucket B with r rows

Nbucket−query Number of queries with the same join key need bucketizing

Cost Function Description

THashtable(r) Cost to build hashtable of table T / bucket B with r rows

TJoin(r1, r2) Cost to join two tables or buckets with r1 and r2 rows

TReadHDFS(m) Cost to read m GB data from HDFS

TTransfer(m) Cost to transfer m GB data through network

TBucketize(t) Cost to bucketize join table t

We highlight the cost used by the four join strategies in terms of the five
aforementioned parts:

1. Common Join
Bucketize cost = 0
Broadcast cost = 0
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Map cost = TReadHDFS(S(T 1) + S(T 2))
Shuffle cost = TTransfer(Sc(T 1) + Sc(T 2))
Join cost = TJoin(R(T 1), R(T 2))

2. Map/Broadcast Join
Bucketize cost = 0
Broadcast cost = TReadHDFS(S(T 2)) + THashtable(R(T 2))+

TTransfer(SHashtable(R(T 2))) ∗Nnodes

Map cost = TReadHDFS(S(T 1) + SHashtable(R(T 2)) ∗Nmappers)
Shuffle cost = 0
Join cost = TJoin(R(T 1), R(T 2))

3. Bucket Map Join
Bucketize cost = (TBucketize(T 1) + TBucketize(T 2))/Nbucket−query

Broadcast cost = TReadHDFS(S(T 2)) + THashtable(R(T 2))+
TTransfer(SHashtable(R(T 2))) ∗Nnodes

Map cost = TReadHDFS(S(Bi(T 1)) + SHashtable(R(Bi(T2)))) ∗Nmappers

= TReadHDFS(Sc(T 1) + SHashtable(T 2))
Shuffle cost = 0
Join cost = TJoin(

⋃
R(Bi(T 1)),

⋃
R(Bi(T 2)))

=TJoin(R(T 1), R(T 2))
4. SMB Join

Bucketize cost = (TBucketize(T 1) + TBucketize(T 2))/Nbucket−query

Broadcast cost = 0
Map cost = TReadHDFS(S(Bi(T1)) + S(Bi(T2))) ∗Nmappers

= TReadHDFS(Sc(T 1) + Sc(T 2))
Shuffle cost = 0
Join cost = TJoin(

⋃
R(Bi(T 1)),

⋃
R(Bi(T 2)))

=TJoin(R(T 1), R(T 2))

Before giving the details to compute the cost of each algorithm, we first look
at the map tasks lunched by Hadoop:

Nmappers =

⎧
⎨

⎩

S(T 1)

B
Common Join / Map Join, (1)

Nbuckets Bucket Map Join / SMB Join (2)

In case (1), for the Common Join and Map Join, the number of map tasks is
determined by the number of splits of the big join table. By default, the split’s
size is equal to the HDFS block size. In case (2), for Bucket Map Join and SMB
Join, because the tables are bucketized, the number of map tasks is determined
by the number of buckets.

Now, we compute the cost of the four algorithms one by one. First for Common
Join, in the map phase, mappers need to read the whole join tables’ data S(T )
from HDFS. During the map function, unused columns will be filtered, and the
records that are relevant to the join query are shuffled to reducers. Thus, the
size of shuffle data is Sc(T ) = S(C(T )) ∗R(T ). The cost of join is estimated by
comparing the entire records R(T 1) and R(T 2) in two tables from begin to end.
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Second for Map Join, it is required to build the hashtable of the smaller ta-
ble T 2, and the associated cost includes the one used to read T 2 from HDFS,
to build the hashtable, and finally to broadcast the hashtable to the number
Nnodes of clustered nodes. After that, each mapper reads a split of T 1 and the
whole hashtable of T 2. Hence, all mappers in total read the entire T 1 and the
number Nmappers of times to load the hashtable of T 2. The size of hashtable,
SHashtable(r), depends on the number of rows to build the hastable, and we com-
pute SHashtable(r) = β ∗ r bytes . In Hadoop, each row of the hashtable occupies
around 1 byte, for simplicity, we set β = 1.

Next, for Bucket Map Join, we first need to bucketize both tables. We divide
the total bucketizing cost by Nbucket−query , which means the bucketizing cost
can be shared by Nbucket−query queries and all these queries will benefit from the
bucketizing job. Each bucket needs to be broadcasted to all other Nnodes nodes,
so in total the broadcast cost is the same as Map Join. For map cost, Nmappers

mappers need to read buckets of T 1 and corresponding hashtable of buckets
of T 2. Since we don’t take WHERE conditions into account, all buckets of T 1
and buckets’ hashtables of T 2 will be read. For the join cost, the

⋃
R(Bi(T ))

represents the required buckets in T . Given the two tables T1 and T2, the buckets
in T1 are loaded to compare with the ones in T2 for the join processing. All
buckets will be read and compared with no WHERE clause in current model.

Finally, for SMB Join, its cost is different from Bucket Map Join in two parts:
(i) It doesn’t have to build and broadcast hashtables, and (ii) the mappers need
to read all the buckets of T 1 and T 2, instead of hashtable of T 2.

4 Cost-Based Selector

Based on the aforementioned cost model, in this section, we first design a tree
structure (Section 4.1) and next propose a method to select one of the four join
algorithms (i.e., Common Join, Map Join, Bucket Map Join and SMB Join) as
the best algorithm to process a join query (Section 4.2).

4.1 Pruned Join Algorithm Candidates Tree

We design a Join Algorithm Candidates Tree (JACTree), shown in Fig. 1, as a
pruning method for the automated selection of best join algorithm.

In this tree structure, the root means the bucket size of the smaller join table.
We compare it with the size of the smaller table. If bucket size is larger than the
table size (i.e., the left brunch), it means it’s unnecessary to create any bucket.
Otherwise, the tables need to be bucktized (i.e., the right brunch).

Now for the internal node with bucket size >= table size, we next need to
consider the hashtable size of the bucket, and compare it with the available
memory of the task nodes in the cluster. In case that the hashtable size is larger
than the memory size, we then reach the leave node 1© Common Join, and
otherwise the leave node 2© Common Join and Map Join. Similarly in the right
branch, we can compare the hashtable size with the memory size and reach either
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Fig. 1. Join Algorithm Candidates Tree

the leave node 3© or the leave node 4©. As we can see, the two input parameters
including the table size and available memory may lead to the selection of a
different join algorithm.

In the tree structure of Fig. 1, we note that due to limited buckets, the leaf
node 3© SMB Join always perform worse than the leaf node 4©. Common Join
has already been contained in all the rest leave nodes. Consequently, we further
prune the leave node 3©, and have a new structure as shown in Fig. 2. In the
new tree structure, namely Pruned Join Algorithm Candidates Tree (Pruned -
JACTree), now only one leave node contains the SMB Join.

4.2 Select Join Algorithm Based on Cost Model

In order to enable the proposed cost model, we need to know the values of key
parameters used by the cost model. To this end, we estimate such parameters
as follows.

We first estimate the parameters including the size of join tables S(T1), S(T2),
the number of rows of them R(T1), R(T2), and the total field size of query
columns S(C(T1)), S(C(T2)). In detail, when a table is uploaded to HDFS,
with the help of Hive log, we can find the values of S(T1), S(T2) and R(T1),
R(T2). Next, we use MapReduce RandomSampler utility to estimate the total
field size of query columns. By the RandomSampler, we first set the number of
input splits that will be sampled. The sampler will then randomly sample the
selection columns of two join tables for the estimation of S(C(T1)) and S(C(T2)).
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Fig. 2. Pruned Join Algorithm Candidates Tree

Second, we estimate the available mem by the minimum JVM memory in
task nodes. In terms of the memory used by the hashtable, we can compute the
value by the number of rows in the table.

Hashtable Mem(T ) = R(T ) ∗ α (3)

In Eq. (3), the parameter α indicates the number of bytes per record in the
hashtable needed by the main memory. In our experiment, we empirically set α
by 200 bytes.

Finally, we need to decide the suitable bucket number Nbuckets. A small data
size per bucket may lead to too many but small size of files in HDFS and slow
down the query. Alternatively, a very large data size per bucket will incur very
few map tasks, and the hashtable of one single bucket is too large to fit into
memory for Bucket Map Join. Thus, we determine the number of bucket number
with the following function:

Bucket Num(T, available mem) =
β ∗Hashtable Mem(T )

available mem
(4)

In the Eq. (4), a higher β (> 1) means a larger number of buckets, to en-
suring that the buckets should be loaded into memory on the node with higher
probability. In our experiment environment, we empirically set β = 1.3.

When the above parameters are ready, we use Fig. 3 to describe the steps that
our selection method (namely a selector) chooses the best algorithm among the
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Fig. 3. Cost-based Selector Workflow

four available join algorithms. 1© For an input workload, selector first collects
join tables’ information for cost model. 2© Selector next makes a decision to
choose an algorithm by following either of the two brunches. 3© If one of the join
table in the query is small enough to fit into memory, the selector computes the
cost of Common Join and Map Join, and finds the one with a smaller cost as
the chosen join algorithm. 4© Otherwise, our selector uses Eq. (4) to calculate
the reasonable bucket number for the join tables. 5© Based on the proposed cost
model, the selector next decides to use either bucketed join (i.e., Bucket Map
Join or SMB Join) or Common Join. 6© If the bucketed join is chosen, our
selector will only select the columns needed by the queries in the workload to
the buckets while bucketizing.

5 Experiment

We present experiments to evaluate our proposed selection method, and study
(1) how the number of buckets affects the performance of bucketed joins, and
(2) whether the proposed selection method can correctly choose the best join
algorithm for a given workload.

Cluster Setup. We evaluate the experiments on a 5-node cluster with 1 namen-
ode and 4 datanodes. Each of the nodes is installed with Ubuntu Linux (kernel
version 2.6.38-16) and equipped with 750 GB local disk and 4 GB main memory.
We implement our cost-based join algorithm selector on the top of Hadoop 1.2.1
and Hive 0.11.0. The default block size is 64 MB.
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Table 2. # Rows and Size of Data Sets

Table Name # Rows Size

lineItem0.5x 3,000,000 365 M

lineItem30x 180,000,000 22.0 G

lineItem100x 600,000,000 74.1 G

orders1x 1,500,000 164 M

orders30x 45,000,000 4.9 G

orders100x 150,000,000 16.6 G

Datasets. We generate the synthetic data sets (LineItems and Orders) by
the TPC-H benchmark, and generate different scales of join tables to simulate
different combinations of input tables. Table 2 shows the size and number of
rows of different scales of input join tables.

Workload. We only generate the join query workload with the simple equi-join
queries between the LineItems and Orders tables. In our experiment, we design
the following queries:

Q1: SELECT l.l_shipmode, o.o_orderstatus

FROM lineitem100x l JOIN orders1x o ON l.l_orderkey = o.o_orderkey;

Q2: SELECT l.l_shipmode, o.o_orderstatus

FROM lineitem0.5x l JOIN orders1x o ON l.l_orderkey = o.o_orderkey;

Q3: SELECT l.l_shipmode, o.o_orderstatus

FROM lineitem30x l JOIN orders30x o ON l.l_orderkey = o.o_orderkey;

Q4: SELECT l.l_linenumber, o.o_orderkey

FROM lineitem30x l JOIN orders30x o ON l.l_orderkey = o.o_orderkey;

Q5: SELECT l.l_shipmode, o.o_orderdate

FROM lineitem30x l JOIN orders30x o ON l.l_orderkey = o.o_orderkey;

Q6: SELECT l.l_shipmode, o.o_orderstatus

FROM lineitem100x l JOIN orders100x o ON l.l_linestatus = o.o_orderstatus;

Practical Cost Estimation. During our experiment, to use the proposed cost
model, we need to estimate the cost of some key operations such as reading
HDFS blocks, etc. At first, we denote the cost of transferring 1 GB data through
network cost as 1 G, and the CPU cost of comparing 106 times as 1 C. Based
on the denotation, by around tens of empirical test, we empirically draw the
following equations:

(1) TReadHDFS(m) = 0.6 ∗ TTransfer(m) = 0.6 ∗m G
(2) TBucketize(t) = TReadHDFS(S(t)) + 4 ∗ TTransfer(Sc(t)) G
(3) THashtable(r) = 30 ∗ r ∗ 10−6 C
(4) TJoin(r1, r2) = (r1 + r2) ∗ 10−6 C
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In the above first equation, considering that the data is partially located on local
nodes, we empirically compute the cost of reading HDFS by 60% of the cost of
transferring data through network. Next, we estimate the bucketizing cost by
the cost of reading, transferring and writing data. Since writing data to HDFS
is always ineffcient, we empirically set the cost of writing HDFS 3 times as the
cost of transferring data. After that, we calculate the cost of building one key-
value pair of hashtable as 30 times of CPU comparison. Finally, the cost of join
operation is estimated as processing all rows of two join tables.

In our experiments’ environment, the network bandwith is about 100 M/s and
CPU latency for one comparison is around 0.1 microsecond, we determine 1 C
= 10−2 G.

5.1 Effect of the Number of Buckets

In order to demonstrate how the number of buckets can affect the performance
of Bucket Map Join and SMB Join, we have conducted an experiment with the
query Q6 on the tables LineItems and Orders of scale 30. We vary the number
of buckets from 1 to 2000, and the corresponding query time is shown in Fig. 4.

Fig. 4. Effect of the Number of Buckets

As shown in Fig. 4, with a smaller number of buckets, each bucket contains
a larger data size, and the mapper has to process a large amount of data. For
Bucket Map Join, since the hashtable of the buckets may be too large to fit
into memory, it may fail to broadcast the hashtable and Hive has to use the
default Common Join. On the other hand, too many buckets will trigger too
many mappers and each mapper only joins a very fewer number of records.

In addition, Fig. 4 indicates that the number 20 of buckets can achieve the
best performance, which is consist with our analysis. In our experiment cluster,
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the maximum JVM memory on each tasknode is around 900 MB and the average
usage of it is around 25%. So we assume the minimum JVM memory available
on the tasknode is 600 MB. orders30x has 45,000,000 rows. According to Eq.
(3), the hashtable of it will need 9,000 MB memory space. With Eq. (4), our
selector will set the reasonable bucket number as 20. The result shows when the
bucket number is 20, the join performance is the best for both bucketed joins.

5.2 Correctness of Cost-Based Selector

In this section, given multiple scenarios, we evaluate the correctness of our cost
model and verify whether or not our selector can pick the best join algorithm.

One Small Table First, we consider the scenario that one of the join table’s
hashtable is small enough to fit into memory. For the Q1 and Q2 in our work-
load, orders1x’s hashtable can be fit into memory. Table 3 illustrates the real
execution time and our cost model theoretical result. We can see the order of
the cost result is roughly the same as the order of execution time, which means
our selector can pick the join algorithm with the lowest query latency.

Table 3. Compare with the Cost-model Result

Query Join Algorithm Execution Time(s) Cost Result(G)

Q1
Common Join 1022 59.5
Map Join 659 52.0

Q2
Common Join 31 0.41

Map Join 39 0.78

Two Large Tables. Next we consider the scenario with two large tables. For
the queries from Q3 to Q6, neither of the join tables can fit into memory. Given
this case, our selector will decide whether or not to bucketize the tables, tune the
best number of buckets and choose one best algorithm among Common Join,
Bucket Map Join and SMB Join.

From Table 4, we can see for the queries Q3, Q4 and Q5, our selector chooses
SMB Join. It is because all these three queries benefit from bucketizing tables.
Therefore the cost of bucketizing is divided by 3. In terms of Q6, it is the only
query to join the tables on l linestatus and o orderstatus, and our selector
chooses Common Join because bucketizing is also a time-consuming MapRe-
duce job.

In addition, the experiments results indicate that our selector does not pick
Bucket Map Join for any of the six queries. By careful analysis, we find that the
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Table 4. Compare with the Cost-model Result

Query Join Algorithm Execution Time(s) Cost Result(G)

Q3
Common Join 367 24.3

Bucket Map Join 498/3+269=435 32.2/3+24.7=29.1
SMB Join 498/3+40=206 32.2/3+4.7=15.4

Q4
Common Join 356 23.8

Bucket Map Join 498/3+249=415 32.2/3+24.7=29.1
SMB Join 498/3+40=206 32.2/3+4.7=15.4

Q5
Common Join 368 24.7

Bucket Map Join 498/3+218=484 32.2/3+24.7=29.1
SMB Join 498/3+43=209 32.2/3+4.7=15.4

Q6
Common Join 1237 72.5

Bucket Map Join 1271+1700=2971 86.4+59.7=146.1
SMB Join 1399+184=1583 86.4+13.9=100.3

reason why Bucket Map Join always performs worst is that it not only needs to
bucketize in advance but also needs to build and then broadcast the hashtable
for each bucket. These efforts incur expensive cost.

As a summary, for the given workload with six queries fromQ1 toQ6, the order
of our cost model result is roughly the same as the real execution time. With
our cost-based selector, the total execution time of the workload is accelerated
24.4%, compared with the default join algorithm (Common Join). Compared
with the wrong join algorithm, which new users may randomly pick, the total
execution time is accelerated 58.7%.

6 Related Work

First, some previous works implement new join algorithms on top of MapReduce.
For example, Lin et al propose a new scheme called “schimmy” to save the
network cost during the Common Join [6]. In this scheme, mappers only emit
messages and reducers read the data directly from HDFS and do the reduce-
side join between the messages and data. Okcan et al propose how to efficiently
perform θ−join with a single MapReduce job [7]. Their algorithm uses a Reducer-
centered cost model that calculates the cost of Cartesian product of mapped
output. With this cost model, they assign the mapped output to the reducers
that minimizes job completion time. Blanas et al propose the process of Semi-
Join and Per-Split Semi-Join in MapReduce framework [8]. Lin et al propose
the concurrent join that performs a multi-way join in parallel with MapReduce
[9]. Afrati et al focus on how to minimize the cost of transferring data to reducers
for multi-way join [10]. Verica et al propose a method to efficiently parallelize
set-semilarity joins with MapReduce [11].

Second, there exist some works to hackle the internals of MapReduce. Map-
Reduce-Merge is the first that attempts to optimize join operation in the MapRe-
duce framework [12]. Map-Reduce-Merge extends MapReduce model by adding
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Merge stage after Reduce Stage. Yang et al have proposed an approach for
improving Map-Reduce-Merge framework by adding a new primitive called Tra-
verse [13]. This primitive can process index file entries recursively, select data
partitions based on query conditions and feed only selected partitions to other
primitives. Jiang et al propose Map-Join-Reduce for one-phase joining in MapRe-
duce Framework. This work introduces a filtering-join-aggregation model as an-
other variant of the standard MapReduce framework [14]. This model adds a
Join Stage before the original Join Stage to perform the join. Besides the in-
troduction of more stages, some works columnar to improve the join queries.
Llama [15] is a recent system that combines columnar storage and tailored join
algorithm. Llama also proposed joining more than two tables at a time using a
concurrent join algorithm. Clydesdale [16], a novel system for structured data
processing is aimed at star schema, using columnar storage, tailored plans for
star schemas and multi-core aware execution plans to accelerate joins.

Finally, some works propose to build new layer on top of Hadoop in order to
process a join query. A typical work is Hive, a data warehouse infrastructure built
on top of Hadoop. Hive optimizes the chains of map joins with the enhancement
for star joins. Olston et al have presented a language called Pig Latin [17] that
takes a middle position between expressing task using the high-level declarative
querying model in the spirit of SQL and the low-level/procedural programming
model using MapReduce. Pig Latin is implemented in the scope of the Apache
Pig project [18]. Pig Latin programs are compiled into sequences of MapReduce
jobs which are executed using the Hadoop MapReduce environment. Pig opti-
mizes join by using several specialized joins, such as fragment replicate joins,
skewed joins, and merge joins. The Tenzing system [19] has been presented by
Google as an SQL query execution engine which is built on top of MapReduce
and provides a comprehensive SQL92 implementation with some SQL99 exten-
sions. Tenzing’s query optimizer applies various optimizations and generates a
query execution plan that consists of one or more MapReduce jobs.

7 Conclusion

In this paper, we proposed a general cost model for the four popular join algo-
rithms in Hive and designed a method to choose the best join algorithm with
least cost. Our experiment results verified that our cost-based selector can cor-
rectly choose the best join algorithm and tune the key parameters (such as the
number of buckets). As the future work, we will further extend our work to
generally support more complex join queries such as multiway join.
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