

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 223–238, 2014.
© Springer International Publishing Switzerland 2014

Insights on the Use of OCL
in Diverse Industrial Applications

Shaukat Ali1, Tao Yue1, Muhammad Zohaib Iqbal2,3,
and Rajwinder Kaur Panesar-Walawege1

1 Simula Research Laboratory, P.O. Box 134, Lysaker, Norway
2 National University of Computer & Emerging Sciences, Islamabad, Pakistan

3 SnT Luxembourg, Luxembourg
{shaukat,tao,rpanesar}@simula.no,

zohaib.iqbal@nu.edu.pk

Abstract. The Object Constraint Language (OCL) is a widely accepted lan-
guage, standardized by OMG, for specifying constraints at various meta levels
(e.g., meta-models and models). Despite its wide acceptance, there is a lack of
understanding about terminology and purposes for which OCL can be used. In
this paper, we aim to reduce this gap and provide guidance for applying OCL in
practical contexts and we report our experience of applying OCL for different
industrial projects in diverse domains: Communications and Control, Oil and
Gas production, Energy Equipment and Services, and Recycling. Based on our
experience, first, we unify the commonly used terminology in the literature for
applying OCL in different ways for addressing diverse industrial problems.
Second, we report the key results of the industrial application of OCL. Finally,
we provide guidance to researchers and practitioners for choosing an appropri-
ate meta level and purpose for their specific industrial problem at hand.

Keywords: Object Constraint Language, Industrial Applications, Constraint
Solving, Constraint Parsing.

1 Introduction

The Object Constraint Language (OCL – http://www.omg.org/spec/OCL/2.3.1/) is the
Object Management Group’s (OMG) standard language for specifying constraints on
models. Constraints can be specified at all the meta levels provided by the Meta-
Object Factory (MOF – http://www.omg.org/mof/)—the OMG’s framework for
meta-modeling. Thus, constraints can be specified on meta-meta models (e.g., an
implementation of MOF), meta-models (e.g., UML meta-model), customized profiles
on meta-models (e.g., MARTE profile for UML – http://www.omgmarte.org/), and
models (e.g., UML models).

The OCL has been used in industrial projects for various purposes, such as for con-
figuration management in energy and maritime and seismic acquisition [1] and test
case generation in communication and control [2, 3]. OCL is also being used as the

224 S. Ali et al.

language for writing constraints on models in many commercial Model-Based Testing
(MBT) tools such as CertifyIt1 and Fokus!MBT2.

For the past several years, we have used OCL in several industry-driven research
projects. The most significant projects include: model-based functional and robust-
ness testing of embedded systems and communication and control systems, configura-
tion of product lines of large-scale integrated control systems, and certification of
subsea production systems according to safety standards. In this paper, we present our
experience of applying the OCL in these domains. Our key findings are: 1) a small
subset of OCL can be sufficient for a given industrial application; 2) specification and
enforcement of constraints at the different MOF meta levels works in the same way;
3) evaluation of constraints was the most common purpose for the use of OCL. Based
on our findings, we present guidelines for practitioners to choose the right meta level
and purpose to apply OCL for their particular problem. Notice that all the definitions
and discussions presented in this paper are within the context of our industrial appli-
cations, and may need to be adapted to other contexts.

The contributions of this paper can be summarized as follows: 1) clear and precise
definitions of commonly used terminology related to the use of OCL; 2) a clear rela-
tionship among the different purposes (e.g., OCL solving and evaluation) that OCL
can be used for; 3) key results from our industrial applications of OCL; 4) a detailed
discussion that can guide practitioners in choosing when to apply OCL for a particular
purpose and at which meta level. These contributions are aimed at reducing the gap
between the academic understanding of OCL and its industrial application.

The rest of the paper is organized as follows: Section 2 presents various classifica-
tions of our OCL applications, Section 3 reports results from our industrial applica-
tions, Section 4 provides discussion, and Section 5 concludes the paper.

2 Classification of Various OCL Applications

This section provides an overview of our industrial applications (Section 2.1), defini-
tions and examples in Section 2.2 and Section 2.3, and the relationships between vari-
ous purposes for which OCL can be used in Section 2.3.

2.1 Overview

We use a conceptual model to discuss the overall picture of our experience of apply-
ing OCL in various projects (Fig. 1). We characterize our applications mainly from
two aspects: 1) Purpose of applying OCL: e.g., Constraint Solving and Constraint
Evaluation, and 2) Meta Level, at which OCL constraints are applied. Moreover, we
discuss each application (e.g., TestDataGeneration) based on the type(s) of models on
which OCL was used (e.g., Structural and Behavioral model) and the types of dia-
grams used for each type of model (e.g., UML class diagrams as structural models).

1 http://www.smartesting.com/en/product/certifyit
2 http://www.fokusmbt.com/index.html

 Insights on the Use of OCL in Diverse Industrial Applications 225

Fig. 1. Conceptual model of OCL applications

2.2 Definitions

This section presents definitions of the terms that we use in the rest of the paper.

Meta Levels. Meta-Object Facility (MOF) is a standard defined by Object Manage-
ment Group (OMG) for model-driven engineering. MOF is designed as a four-level
architecture, which allows modeling at four levels: meta-meta level (M3), meta level
(M2), model level (M1), and Object level (M0). In other words, we define the term
Meta Levels as a set of these four levels: Meta Levels = {M3, M2, M1, M0}.

Specification Levels. Specification levels are a subset of Meta Levels, on which OCL
constraints can be specified: Specification Levels = {M3, M2, M1}.

Enforcement Levels. Enforcement levels are a subset of Meta Levels, at which OCL
constraints are enforced (e.g., evaluated, solved). An enforcement level is one level
lower than the level at which constraints are specified. It is defined as Enforcement
Level = {M2, M1, M0}.

Purposes of Using OCL. In this section, we provide definitions and examples of the
various purposes for which we have used OCL.

Constraint Specification (CSpec). Given a model M at one of the Meta Levels,
CSpec means defining a constraint C on M. Based on the example given in the first
row of Table 2, we define a constraint ((2/self.a1 > 0) and self.a2 > 0) on class X (at
M1 level). We also show examples of OCL constraints at each meta level in Table 1.
For example, in the third column of Table 1, we define a constraint on the definition
of stereotype MyStereotype (self.name = ‘’) in a profile diagram at the M2 level.

Constraint Parsing (CP). Given a model M at one of the Meta Levels and a con-
straint C specified on M, CP means parsing C and obtaining an abstract syntax tree of
C for further manipulation (e.g., calculating branch distances to generate test data
from OCL constraints using a search algorithm [4]). An example of CP is shown in

226 S. Ali et al.

the second row of Table 2,
is shown.

Constraint Evaluation/Va
tion Levels, an instance oi o
than the level of M, and a c
tisfied, dissatisfied, or resu
constraint means, the cons
straint evaluates to false, or
An example of CE is shown
on a UML class X at the M
level. First instance (o1), s
second instance (o2) evalua
fined since (2/self.a1) resu
luates to undefined.

Constraint Solving (CSolv
instance O of M at one me
vels, and a constraint C defi
which evaluates C to be tr
Table 2, row 5. Given the
class X (at M1 level), a con
ing C. In this particular exa
the constraint solver may pr

Table 1. E

Level

M3

M2

M1

M0

 where an abstract tree of ((2/self.a1 > 0) and self.a2 >

alidation (CE). Given a model M at one of the Specifi
of M at one level lower (belonging to Enforcement Lev
constraint C in OCL, CE means checking whether C is
ults in an error situation by oi. In OCL, satisfaction o
traint is evaluated to true, dissatisfaction means the c
r undefined when a constraint results in an error situati
n in the third row of Table 2, where a constraint is defi

M1 level and is evaluated on its three instances at the
satisfies the constraint and hence it evaluates to true,
ates to false, and the third instance (o3) evaluates to un
lts in being divided by 0, and overall the constraint e

v). Given a model M at one of the Specification Levels
eta level lower than M, i.e., belonging to Enforcement
ined on M, CSolv means finding at least one instance of

rue, false, or undefined. An example of CSolv is shown
constraint C= (2/self.a1 > 0) and self.a2 > 0 defined

nstraint solver provides an instance oi (at M0 level) satis
ample, oi can be instance x4 shown in the table. Notice t
rovide multiple instances depending on the application.

Examples of OCL constraints at various levels

Example Constraint

Specification:
context EClass inv:
 self.name <> ‘’

Evaluation/Validation: true

Specification:
context Class inv:
 self.isActive
Specification:
context MyStereotype inv:
 self.name = ‘’

Evaluation/Validation: false

Specification:
context EClass inv:
 self.a1 > 0

Evaluation/Validation: true

> 0)

fica-
els)
 sa-
of a
con-
ion.
ned
M0
the

nde-
eva-

, an
Le-

f M,
n in
d on
sfy-
that

 Insigh

OCL Querying (OQ). Giv
instances O = {o1, o2, o3,
Levels), OCL querying OQ
constraint specified in OQ.
constraint C= (2/self.a1 > 0
constraint querying returns
ple, such an instance is o1 (x

2.3 Relationships betw

OCL Querying. Fig. 2 sho
specification. The first step
A query in OCL then return
using OCL evaluation.

OCL Solving. Fig. 3 show
purposes for which OCL c
constraint C on a model at
dom instance of a model at
(C is specified at M2) or M
luated using OCL evaluatio
erwise OCL solving is guid

Table

Example

A class X with two Integ-

ers a1 and a2, and with

three instances available:

x1, x2, and x3.

Specification

cont

 (2/s

self.a

Parsing

Evaluation/Validation

Solving

Querying

hts on the Use of OCL in Diverse Industrial Applications

ven a model M at one of the Specification Levels, a set of
..on} at one meta level lower (belonging to Enforcem

Q returns one or more instances of M, which satisfy
. An example is shown in Table 2, row 6, where give
0) and self.a2 > 0 and a set of instances O = {o1, o2 , o3

instances from O that satisfies C. In this particular exa
x1).

een Various Purposes of Using OCL

ows the relationship among OCL querying, evaluation,
p is specification of a constraint C at M3, M2, or M1 lev
ns a model at one meta level lower (M2, M1, or M0) le

ws the relationship of how OCL solving is related to
can be used. The first step in OCL solving is to specif

M3, M2, or M1 level. OCL solving then starts with a r
t one meta level lower, i.e., M2 (C is specified at M3),

M0 (C is specified at M1) level. This instance is then e
on. If the instance satisfies C the OCL solving stops. O
ded towards another instance (using OCL parsing and O

2. Examples of various purposes of OCL

Model (M) Instance (o1) Instance (o2) Instanc

(o3)

text X inv:

elf.a1 > 0) and

a2 > 0

N/A

true false
unde

fined

227

f its
ment

the
en a
3}, a
am-

and
vel.
evel

the
fy a
ran-
M1

eva-
Oth-
OCL

e

e-

228 S. Ali et al.

querying) using for example a search algorithm (see [4] for details) and a new in-
stance is generated, which is again evaluated by OCL evaluation. OCL solving con-
tinues until an instance is found that satisfies C.

Fig. 2. OCL querying

Fig. 3. OCL solving

3 Industrial Applications

In this section, we present our industrial applications of OCL based on the concepts
and definitions presented in Section 2.

3.1 Model-Based Testing of Video Conferencing Systems

In this section, we discuss six applications of OCL, which are related to testing a
commercial Video Conferencing System (VCS) developed by Cisco Systems.

Case Study Description. Our first case study is a VCS called Saturn developed by
Cisco Systems Inc, Norway. The core functionality of Saturn manages establishing
and disconnecting video conferences. In total, Saturn consists of 20 subsystems such
as audio/video subsystems [5]. Each subsystem can run in parallel to the subsystem
implementing the core functionality. Saturn’s implementation consists of more than
three million lines of C code. Our second case study is about a product line of VCSs

 Insights on the Use of OCL in Diverse Industrial Applications 229

called Saturn Product Line, developed in Cisco Systems Inc, Norway. The Saturn
family consists of various hardware codecs ranging from C20 to C90. C20 is the low-
est end product with minimum hardware and has lowest performance in the family.

Table 3. Mapping of applications to various aspects of OCL

Application Case

Study
Model Elements #Constraints

Constructs/

Operations
Types of Attributes

A1
Test Data
Generation

VCS Guards 144 - Enumeration, Integer,

Boolean, String

MSM (Guards,

Change Events)

(11, 3) select, forAll,

implies, oclInState

Integer, Boolean,

String, Enumeration,

NFP_Real
BRE (11,1)

A2
Test Oracle
Generation

VCS State Invariants 100 select, collect,

forAll, exists,

includes, excludes

Enumeration, Integer,

Boolean, String

MSM/

BRE

Guards 3 select, forAll,

oclInState

Integer, Boolean,

NFP_Real

A3

Fault
Emulation

VCS Change Events 57 select, collect Enumeration, Integer,

Boolean, NFP_Real,

NFP_Percentage

A4

Crosscutting
Behavior
Modeling

VCS Change Events 57 select, collect Enumeration, Integer,

Boolean, NFP_Real,

NFP_Percentage

State Invariants 10 - Enumeration, Integer,

Boolean, NFP_Real,

NFP_Percentage

A5

Specifying
Non-
Functional
Properties

VCS Pointcuts 12 - Enumeration, Integer,

Boolean, String

Advice 144 - Enumeration, Integer,

Boolean, String

A6

Variability
Modeling

VCS Configuring UML

State Machine

52 select, forAll,

exists, includes,

excludes

Enumeration, Integer,

Boolean, String

Configuring

Aspect State

Machines

44 select, forAll,

exists, includes,

excludes

Enumeration, Integer,

Boolean, String,

NFP_Real,

NFP_Percentage

A7

Safety
Certification

SPCS Stereotypes 218 select, collect,

forAll, exists,

includes

No variables used.

A8

Configuration SCM Package, Stereo-

type, Class, Tem-

plateSignature,

Dependency

6 select, forAll,

allInstances,

Integer, Boolean,

String

230 S. Ali et al.

Problem Description. The first problem in this project is about supporting auto-
mated, model-based robustness testing of Saturn. Saturn should be robust enough to
handle the possible abnormal situations that can occur in its operating environment
and invalid inputs. For example, Saturn should be robust against hostile environment
conditions (regarding the network and other communicating VCSs), such as high
percentage of packet loss and high percentage of corrupt packets. Such behavior is
very important for a commercial VCS and must be tested systematically and automat-
ically to be scalable. More details on the robustness behavior of Saturn and its model-
ing can be found in [5]. The second problem in this project emerged while working
with model-based robustness testing discussed in the last paragraph. We wanted to
significantly reduce the amount of modeling effort required for MBT by devising a
product line modeling and configuration methodology since Video Conferencing
Systems (VCSs) are product lines.

Objectives. 1) Test Data Generation (A1) aims to solve OCL constraints to generate
data required to generate executable test cases. 2) Test Oracle Generation (A2) has
the objective of evaluating OCL constraints to determine if the execution of a test
case passed or failed. 3) Fault Emulation in Environment (A3) is to solve OCL con-
straints defined on the environment of a real-time embedded system with the goal of
generating the data that violates the constraints so that various faults can be emulated
in the environment to test the robustness of a system. 4) Specifying Non-Functional
Properties (NFPs) with MARTE (A4) aims to specify constraints on NFPs defined in
the UML MARTE profile using OCL. 5) Crosscutting Behavior Modeling (A5) was
proposed to model crosscutting behavior using Aspect State Machine (ASM) [2, 5, 6].
OCL queries are used to model Pointcuts [7] (a feature in Aspect-Oriented Model-
ing)— modeling elements of a standard UML state machine, on which an ASM
should be weaved. 6) Behavioral Variability Modeling (A6): The objective of this
application is to model and resolve various types of variability that exist in UML state
machines with the ultimate aim of reducing the modeling effort required for MBT of
different products in a product line.

Solution. Saturn consists of 20 subsystems. To model the functional behavior, for
each subsystem, we modeled a class diagram to capture APIs and state variables. In
addition, we modeled one or more state machines to capture the behavior of each
subsystem. On average each subsystem has five states and 11 transitions, with the
biggest subsystem having 22 states and 63 transitions. Note that, though an individual
subsystem may not look complex in terms of number of states and transitions, all
subsystems run in parallel to each other and therefore the space of system states and
possible execution interleaving are very large.

Saturn’s robustness behavioral models consist of five aspect class diagrams and
five aspect state machines. An ASM is a UML state machine extended with a UML
profile for AOM called AspectSM [5]. The largest ASM specifying robustness beha-
vior has three states and ten transitions, which would translate into 1604 transitions in
standard UML state machines without having AspectSM applied. The modeling of
ASM is systematically derived from a fault taxonomy [5] categorizing different types
of faults (faults in the environment such as communication medium and media

 Insights on the Use of OCL in Diverse Industrial Applications 231

streams that lead to faulty situations in the environment). Each ASM has a corres-
ponding aspect class diagram modeling different properties of the environment using
the MARTE profile, whose violations lead to faulty situations in the environment.

Saturn Product Line family also consists of 20 subsystems and each subsystem has
at least one configurable state machine specifying its functionality and on average
such state machine has five states and 11 transitions. Saturn product line family mod-
els also consist of 124 hardware configuration parameters and 99 software configura-
tion parameters.

Results. Table 3 provides a summary of the key results of applying OCL for all the
applications of all the projects. For each application, we report on which model ele-
ments OCL was specified and how many constraints were there in our industrial case
studies. In addition, for each application we provide OCL constructs and operations
used and also types of attributes used in the constraints. For example, for A3, we
modeled 57 change events with OCL Select and Collect operations. In addition, we
used attributes of types: Enumeration, Integer, Boolean, and a couple of NFPs from
MARTE. In all the applications, we used relational and logical operations, and hence
we do not mention them explicitly in the table.

3.2 Safety Certification

Case Study Description. This case study concerns the certification of the software
used in a subsea production control system (SPCS) developed by a large energy com-
pany in Norway. SPCS is a complex safety-critical system consisting of a myriad of
equipment types. An oil field consists of subsea oil wells that have an assembly of
control valves, pressure gauges and chokes attached to them that control the flow
of oil. These are all housed on a structure called a template attached to which is a
system of steel tubes, electrical and fiber optic cables that transport power and com-
munication signals from the surface to the subsea equipment. Finally there is equip-
ment to carry the oil to the surface. SPCS controls this entire system by sending and
receiving data between the surface and the subsea equipment thus allowing the engi-
neers at the surface to control and monitor the sub-sea equipment.

Problem Description. SPCS are subject to various industry and governmental regula-
tions and undergo a process of certification by a third-party certification. In our case
the SPCS was subject to a certification process against the IEC61508 standard for
electrical, electronic, or programmable electronic systems that are used in safety-
critical environments. The supplier of the system provides evidence that the system is
compliant with the criteria set in the requisite standard. Hence, there should be a con-
sistent interpretation of the standard being used by all parties involved. Without this
explicit interpretation there can be problems between the certifier and the supplier due
to the variance that exists. A systematic procedure is also needed for creating the ne-
cessary evidence, such that the supplier can properly interpret the standard in the con-
text of its application domain and verify whether sufficient evidence exists to satisfy
all the requirements of the standard [8].

232 S. Ali et al.

Objective. Certification Standards Modeling (A7). The objective of using OCL is to
assist system suppliers in establishing a relationship between a domain model of a
safety-critical application and the evidence model of a certification standard.

Solution and Results. A conceptual model of the evidence requirements of a safety
standard is created. This conceptual model is used as the basis for a UML profile of
the standard. The UML profile is used for stereotyping the elements of a domain
model of the system to be certified. When a stereotype from the profile is applied to a
domain model element, it shows how that element fulfills the requirements from the
standard. OCL constraints are added to the stereotypes to ensure certain properties of
the stereotypes as well as to guide system developers in refining the domain model.
When the OCL constraints associated with a stereotype are validated, they will start
the guidance process for augmenting the domain model with other stereotypes. This
may require the domain model to be updated so that the stereotype constraints are
satisfied. Table 3 summarizes our results of applying OCL for certification in row A7.

3.3 Architecture Variability Modeling for Supporting Automated Product
Configuration

Case Study Description. This case study is a product line of subsea control modules
(SCMs) developed by FMC Technologies, Norway. SCMs control all the equipment
and services located in the subsea, but communicates (via Network) with the topic
control units. SCMs are deployed with software, which can be configured differently
according to customers’ requirements, some of which include environment factors
(e.g., depth of the seabed), to control the subsea wells. An SCM contains subsea elec-
tronic modules, software applications deployed on them, and mechanical and electric-
al devices that are controlled and monitored by the software. The software application
deployed to the control modules is configured mainly based on the number, type, and
details of devices (e.g., sensors) connected to and controlled by the subsea electronic
module on which the software application is deployed.

Problem Description. Integrated Control Systems (ICSs) are typically large-scale,
highly configurable systems of systems such as SCMs. Such systems consist of large
number of subsystems typically geographically distributed and connected through
network. A family of ICSs share the same software code base, which is configured
differently for each product to form a unique installation and, therefore, a large num-
ber of interdependent variability points are introduced by both hardware and software
components. Due to the complexity of such systems and inadequate automation sup-
port, product configuration is typically error-prone and costly, and therefore an auto-
mated product configuration support is needed.

Objective. This application is about specifying the guidelines as OCL constraints for
the purpose of automated product configuration in the context of ICSs (A8).

Solution and Results. We developed a UML-based product line modeling methodol-
ogy (named as SimPL) that provides a foundation for supporting semi-automated
product configuration in the specific context of ICSs [9]. The SimPL profile together

 Insights on the Use of OCL in Diverse Industrial Applications 233

with inherent features of UML (i.e., templates and packages) enables comprehensive
modeling of variability points, tracing variability points to software and hardware
model elements, and grouping and hierarchically organizing the variability points. As
part of the SimPL methodology, we defined guidelines for modeling each view (e.g.,
software view, hardware view). To guide users through the process of applying
SimPL, a modeling environment was constructed to automatically enforce six OCL
constraints that correspond to these guidelines. Table 3 summarizes our results of
applying OCL for specifying and evaluating constraints that correspond to modeling
guidelines proposed as part of SimPL (Row A8).

3.4 Environment Model-Based Testing

Case Study Description. We apply the environment model-based testing to two in-
dustrial case studies. The first case study from WesternGeco is of a very large and
complex control system for marine seismic acquisition. The system controls tens of
thousands of sensors and actuators in its environment. The timing deadlines on the
environment are in the order of tenths of seconds. The system was developed using
Java. The second case study is an automated bottle-recycling machine developed by
Tomra AS. The system under test (SUT) was an embedded device ‘Sorter’, which was
responsible to sort the bottles into their appropriate destinations. The system commu-
nicated with a number of components to guide recycled items through the recycling
machine to their appropriate destinations. It is possible to cascade multiple sorters
with one another, which results in a complex recycling machine. The SUT was devel-
oped using C. Both the systems are Real-Time and Embedded Systems (RTESs) and
were running in environments that enforce time deadlines in the order of tenths of
seconds with acceptable jitters of a few milliseconds in response time.

Problem Description. RTESs typically work in environments comprising large num-
bers of interacting components. The interactions with the environment can be bound
by time constraints. Violating such time constraints, or violating them too often for
soft real-time systems, can lead to serious failures leading to threats to human life or
the environment. For effective testing of industrial scale RTESs, systematic auto-
mated testing strategies that have high fault revealing power are essential. The system
testing of RTESs requires interactions with the actual environment. Since the cost of
testing in real conditions tends to be high, environment simulators are typically used
for this purpose. For the industrial systems of WesternGeco and Tomra, we applied
one such approach for black-box system level testing based on the environment mod-
els of the systems. These models were used to generate an environment simulator [10,
11], test cases, and obtain test oracles [3]. For test case generation, we applied various
testing strategies, including search-based testing [12], adaptive random testing [13],
and a hybrid approach combining these two strategies [12].

Objectives. 1) Test Data Generation (A1). The objective of this application is to gen-
erate test data by solving OCL constraints in order to reach states in the environment
that represent a failure of the SUT (the “error” states). 2) Test Oracle Generation

234 S. Ali et al.

(A2). The objective of this application is to evaluate OCL constraints to determine if
the execution of a test case reached the “error” states or not.

Solution and Results. For the purpose of environment model-based testing, the envi-
ronment of the SUT was modeled using our proposed UML & MARTE Real-time
Embedded systems Modeling Profile (REMP) [14]. REMP provided extension to the
standard UML class diagram and state machine notations, and used the MARTE pro-
file for modeling timing details and non-deterministic events. The models developed
were constrained by OCL for the purposes mentioned in the previous section. The
structural details of an RTES environment were modeled as an environment domain
model, which captures the information of various environment components, their
properties, and their relationships. The behavioral details of the environment were
modeled using the state machine notation annotated with REMP. Such state machines
contain information of the nominal behavior of the components, their robustness be-
havior (e.g., breakdown of a sensor), and “error states” that should never be reached
(e.g., hazardous situations). Table 3 summarizes the results of applying OCL in our
context (rows A1 & A2).

4 Overall Discussion

In this section, we provide an overall discussion together with guidelines for practi-
tioners based on our experience of applying OCL.

4.1 Selecting a Subset of OCL

From Table 4, we can see that in most of the applications, select, collect, and forAll
were the most frequently used operations. Based on this observation, we can conclude
that even though OCL provides a rich collection of constructs and operations, in prac-
tice the complete specification is not usually required. This means that for applying
OCL in industrial applications one can select a well-defined subset of OCL that is
sufficient to serve a required purpose. Note that this is similar to the use of a subset of
UML and MARTE in practice as suggested in [1]. This also means that less training is
required to teach the subset of OCL, which aids its adoption in industry.

4.2 Choosing a Meta Level

From the last column in Table 4, we can see that six out of eight applications are re-
lated to MBT, all of which required specifying constraints at M1 and enforcing these
at M0. This observation is perfectly explainable because when dealing with test case
generation we are very close to the system/software design and implementation (low
level of abstraction). Recall that constraints specified at M1 correspond to the actual
system variables of the design or implementation while at the M0 level these con-
straints are enforced based on the runtime values of the variables.

 Insights on the Use of OCL in Diverse Industrial Applications 235

For A7 and A8, as we were dealing with UML profiles, therefore we specified the

constraints at the M2 level and these were enforced at the M1 level. Notice that in
these two applications, our problems were at a higher meta level than implementation,
i.e., architecture and design modeling of product lines for supporting configuration
(A7) and standard modeling for supporting safety certification (A8). In these two
cases, the resulting models to which the profiles were applied were UML class dia-
grams, which are at the M1 level.

Based on the above observations, we can conclude that constraint specification and
enforcement at all applicable levels works in the same way (i.e., specified at one level
and enforced in one level lower) and with pretty much the same set of OCL con-
structs. The only challenge, as far as we can see, is to select a right meta level for
specifying constraints, which heavily depends on the problem to be solved. If the
problem is related to the implementation, the most appropriate meta level is the pair
(M1, M0) as is the case for (A1-A6). If we are dealing with UML profile, the obvious
choice is to specify constraints at the M2 level and they will be automatically en-
forced at the profiled M1 level models. Moreover, the specification at the highest
meta level (M3) is needed to enforce constraints at the M2 level, which is commonly
used to define meta-models. This is suggested when there is a need in a particular

Table 4. Mapping of OCL applications to various purposes and meta level*

App. Industry Case Study Domain Modeling Diagrams Purpose (Spec.,
Enf.)

A1 CCS,
EES,
REC

VCS, MSM,
BRE

RTES System Behavior,
System Structure

CDs & SMs CSolv (M1, M0)

A2 CCS,
EES,
REC

VCS, MSM,
BRE

RTES System Behavior,
System Structure

CDs & SMs CE (M1, M0)

A3 CCS VCS, MSM,
BRE

RTES Environment Behavior CDs, SMs, &
ASMs

CE,
CSolv

(M1, M0)

A4 CCS VCS RTES System Behavior,
System Structure,
Environment Behavior

CDs & SMs OQ (M1, M0)

A5 CCS VCS RTES System Behavior,
System Structure,
Environment Behavior,
Architecture

CDs CSolv,
CE

(M1, M0)

A6 CCS VCS RTES Class Diagram-based,
State Based Variability

CDs & SMs CSolv (M1, M0)

A7 OGP SPCS ICS,
RTES

Safety Standard Profile, CDs CE (M2,M1)

A8 OGP SCM ICS,
RTES

Architecture CDs CE (M2,M1)

* CCS: Communication and Control System, EES: Energy Equipment and Services, REC: Recycling,
OGP: Oil and Gas Production, VCS: Video Conferencing System, MSM: Marine Seismic Acquisition,
BRE: Bottle Recycling, SPCS: Subsea Production Control System, RTES: Real-Time Embedded
System, ICS: Integrated Control System, CD: Class Diagram, SM: State Machine, ASM: Aspect State
Machine, Profile: UML Profile, SCM: Subsea Control Module, MM: Metamodel

236 S. Ali et al.

industry to define a new MOF-based domain specific language to solve a particular
problem in hand.

4.3 Choosing Diagram

In all our applications, class diagrams were used as the basis for modeling attributes
that required specifying OCL constraints. In addition, for the applications where be-
havior was required to be modeled, we used state machines as our case studies exhibit
state-based behavior. Of course, other behavioral diagrams (e.g., sequence diagrams)
can also be used in other contexts. Based on this observation, we can then conclude
that though choosing an appropriate diagram depends on application contexts; how-
ever at a minimum a UML class diagram representing various concepts required at
various meta levels is needed to hold attributes required for specifying OCL con-
straints. Moreover, choosing a particular diagram does not impact what OCL con-
structs are applied and which meta level to use.

4.4 Selecting a Purpose of OCL

In our applications, the most common use of OCL was to perform evaluation (6 out of
8 applications) followed by solving (4 out of 8). In addition, recall that specification
of constraints is required in solving, evaluating, parsing, and query as we discussed in
Section 2. This observation can be explained from the fact that to support automation,
e.g., test data generation, the specified constraints are required to be evaluated and/or
solved. Of course, if an application is only for the purpose of bringing additional pre-
cision to models, specification of constraints is sufficient. Notice that as we discussed
in Section 2.3., the most important step is OCL evaluation as it is also required for
OCL solving and thus suggesting that OCL evaluation is at the core of any automated
constraints manipulation activity. This is the reason that a wide variety of OCL evalu-
ators exist, such as OCLE 2.0 [15], OSLO [16], IBM OCL parser [17], and EyeOCL
Software (EOS) evaluator [18]. In all our applications except A7 and A8, we chose
EOS as it is one of the most efficient evaluators for OCL. Notice that for A4 and A9,
where we used OCL for querying, we again used EOS. For A7 and A8, we used the
OCL evaluator built-in in IBM Rational Software Architect, because it has a good
support for enforcing the constraints specified on UML profiles on M1 level models.

Several OCL solvers exist in the literature that translate OCL into other formalisms
[19-24] such as Alloy and Satisfiability Problem (SAT) to solve them. In our industri-
al applications, we developed our own OCL Solver called EsOCL [4] based on search
algorithms since the existing solvers either did not handle important features of OCL
such as collections or their operations [19, 20], were not scalable, or lacked proper
tool support [21].

5 Conclusion

This paper presents our experiences of applying the Object Constraint Language
(OCL) on six industrial case studies. The case studies belong to diverse industrial

 Insights on the Use of OCL in Diverse Industrial Applications 237

domains including Communication and Control, Energy Equipment and Services,
Recycling, and Oil and Gas Production. In these case studies, OCL is applied solving
various industrial problems including model-based testing, safety certification, and
automated product configuration. The results of the industrial case studies showed
that a well-selected subset of OCL notations was sufficient for various problems for
various purposes including constraint evaluation, solving, and querying. We found
that OCL constraint specification and enforcement at various meta levels of MOF
works in the same way, i.e., specified at Mx level and enforced at Mx-1 where x={1, 2,
3}. OCL evaluation is a fundamental activity and is the core of all our industrial ap-
plications. Based on our findings, we presented guidelines for practitioners that can
help them choose an appropriate purpose of OCL and meta level.

Acknowledgments. Muhammad Zohaib Iqbal was partly supported by ICT R&D
Fund, Pakistan (ICTRDF/MBTToolset/2013) and by National Research Fund, Lux-
embourg (FNR/P10/03).

References

1. Iqbal, M.Z., Ali, S., Yue, T., Briand, L.: Experiences of Applying UML/MARTE on Three In-
dustrial Projects. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012.
LNCS, vol. 7590, pp. 642–658. Springer, Heidelberg (2012)

2. Ali, S., Briand, L., Arcuri, A., Walawege, S.: An Industrial Application of Robustness
Testing using Aspect-Oriented Modeling, UML/MARTE, and Search Algorithms. In:
Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 108–122.
Springer, Heidelberg (2011)

3. Arcuri, A., Iqbal, M., Briand, L.: Black-Box System Testing of Real-Time Embedded Sys-
tems Using Random and Search-Based Testing. In: Petrenko, A., Simão, A., Maldonado,
J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 95–110. Springer, Heidelberg (2010)

4. Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.: Generating Test Data from OCL Constraints
with Search Techniques. IEEE Trans. Softw. Eng. 39(10), 1376–1402 (2013)

5. Ali, S., Briand, L.C., Hemmati, H.: Modeling Robustness Behavior Using Aspect-Oriented
Modeling to Support Robustness Testing of Industrial Systems. Software and Systems
Modeling 11(4), 633–670 (2012)

6. Ali, S., Yue, T., Briand, L.C.: Does Aspect-Oriented Modeling Help Improve the Reada-
bility of UML State Machines? Software & Systems Modeling 13(3), 1189–1221 (2014)

7. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning Publica-
tions (2003)

8. Panesar-Walawege, R.K., Sabetzadeh, M., Briand, L.: Supporting the verification of com-
pliance to safety standards via model-driven engineering: Approach, tool-support and em-
pirical validation. Information and Software Technology 55(5), 836–864 (2013)

9. Behjati, R., Yue, T., Briand, L., Selic, B.: SimPL: A Product-Line Modeling Methodology
for Families of Integrated Control Systems. Information and Software Technology 55(3),
607–629 (2013)

10. Iqbal, M.Z., Arcuri, A., Briand, L.: Code Generation from UML/MARTE/OCL Environ-
ment Models to Support Automated System Testing of Real-Time Embedded Software.
Simula Research Laboratory, Technical Report (2011-04) (2011)

238 S. Ali et al.

11. Iqbal, M.Z., Arcuri, A., Briand, L.: Environment modeling and simulation for automated
testing of soft real-time embedded software. Softw Syst. Model. 1–42 (2013)

12. Iqbal, M.Z., Arcuri, A., Briand, L.: Combining search-based and adaptive random testing
strategies for environment model-based testing of real-time embedded systems. In: Fraser,
G., Teixeira de Souza, J. (eds.) SSBSE 2012. LNCS, vol. 7515, pp. 136–151. Springer,
Heidelberg (2012)

13. Iqbal, M.Z., Arcuri, A., Briand, L.: Automated System Testing of Real-Time Embedded
Systems Based on Environment Models. Simula Research Laboratory, Technical Report
(2011-19) (2011)

14. Iqbal, M.Z., Arcuri, A., Briand, L.: Environment Modeling with UML/MARTE to Support
Black-Box System Testing for Real-Time Embedded Systems: Methodology and Industrial
Case Studies. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I.
LNCS, vol. 6394, pp. 286–300. Springer, Heidelberg (2010)

15. Chiorean, D., Bortes, M., Corutiu, D., Botiza, C., Cârcu, A.: OCLE. (September 2009),
http://lci.cs.ubbcluj.ro/ocle/

16. Hein, C., Ritter, T., Wagner, M.: Open Source Library for OCL (2009)
17. Drusinsky, D.: Modeling and Verification using UML Statecharts: A Working Guide to

Reactive System Design, Runtime Monitoring and Execution-based Model Checking.
Newnes (2006)

18. Egea, M.: EyeOCL Software (September 2009), http://maude.sip.ucm.es/eos/
19. Aertryck, L.V., Jensen, T.: UML-Casting: Test synthesis from UML models using con-

straint resolution. Approches Formelles dans l’Assistance au Développement de Logiciels
(AFADL 2003) (2003)

20. Benattou, M., Bruel, J., Hameurlain, N.: Generating test data from OCL specification. In:
Proceedings of the Workshop:Workshop on Integration and Transformation of UML Mod-
els at ECOOP 2002 (WITUML) (2002)

21. Bao-Lin, L., Zhi-shu, L., Qing, L., Hong, C.Y.: Test case automate generation from UML-
sequence diagram and OCLexpression. In: International Conference on Computational In-
telligence and Security, pp. 1048–1052 (2007)

22. Clavel, M., Dios, M.A.G.D.: Checking unsatisfiability for OCL constraints. In: Proceed-
ings of the Workshop: The Pragmatics of OCL and Other Textual Specification Languages
at MoDELS 2009, Electronic Communications of the EASST, vol. 24 (2009)

23. Kyas, M., Fecher, H., Boer, F.S.D., Jacob, J., Hooman, J., Zwaag, M.V.D., Arons, T.,
Kugler, H.: Formalizing UML Models and OCL Constraints in PVS. Electron. Notes
Theor. Comput. Sci. 115, 39–47 (2005)

24. Brucker, A.D., Krieger, M.P., Longuet, D., Wolff, B.: A specification-based test case gen-
eration method for UML/OCL. In: Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS,
vol. 6627, pp. 334–348. Springer, Heidelberg (2011)

	Insights on the Use of OCL in Diverse Industrial Applications
	1 Introduction
	2 Classification of Various OCL Applications
	2.1 Overview
	2.2 Definitions
	2.3 Relationships between Various Purposes of Using OCL

	3 Industrial Applications
	3.1 Model-Based Testing of Video Conferencing Systems
	3.2 Safety Certification
	3.3 Architecture Variability Modeling for Supporting Automated Product Configuration
	3.4 Environment Model-Based Testing

	4 Overall Discussion
	4.1 Selecting a Subset of OCL
	4.2 Choosing a Meta Level
	4.3 Choosing Diagram
	4.4 Selecting a Purpose of OCL

	5 Conclusion
	References

