
Daniel Amyot
Pau Fonseca i Casas
Gunter Mussbacher (Eds.)

 123

LN
CS

 8
76

9

8th International Conference, SAM 2014
Valencia, Spain, September 29–30, 2014
Proceedings

System Analysis
and Modeling:
Models and Reusability

Lecture Notes in Computer Science 8769
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Daniel Amyot Pau Fonseca i Casas
Gunter Mussbacher (Eds.)

System Analysis
and Modeling:
Models and Reusability

8th International Conference, SAM 2014
Valencia, Spain, September 29-30, 2014
Proceedings

13

Volume Editors

Daniel Amyot
University of Ottawa
School of Electrical Engineering and Computer Sience
800 King Edward St., Ottawa, ON K1N 6N5, Canada
E-mail: damyot@eecs.uottawa.ca

Pau Fonseca i Casas
Universitat Politècnica de Catalunya - Barcelona Tech
Department of Statistics and Operations Research
North Campus - C5218 Room, 08034 Barcelona, Spain
E-mail: pau@fib.upc.edu

Gunter Mussbacher
McGill University
Department of Electrical and Computer Engineering
3480 University Street, Montreal, QC H3A 0E9, Canada
E-mail: gunter.mussbacher@mcgill.ca

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-11742-3 e-ISBN 978-3-319-11743-0
DOI 10.1007/978-3-319-11743-0
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014949191

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The System Analysis and Modeling (SAM) conference provides an open arena for
participants from academia and industry to present and discuss the most recent
innovations, trends, experiences, and concerns in modeling, specification, and
analysis of distributed, communication, and real-time systems using the Spec-
ification and Description Language (SDL-2010) and Message Sequence Chart
(MSC) notations from the International Telecommunication Union (ITU-T), as
well as related system design languages such as UML, ASN.1, TTCN-3, SysML,
and the User Requirements Notation (URN).

While the first seven instances of SAM (Berlin 1998, Grenoble 2000, Aberys-
twyth 2002, Ottawa 2004, Kaiserslautern 2006, Oslo 2010, and Innsbruck 2012)
were workshops, in 2014, SAM has become a conference to better reflect its
structure, audience, and overall quality.

This 8th SAM conference (http://sdl-forum.org/Events/SAM2014/) was
co-located with the ACM/IEEE 17th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2014) in Valencia, Spain, during
September 29-30, 2014.

Theme for 2014: Models and Reusability

Model reuse is a powerful concept defined as the process of creating new mod-
els using existing model artefacts. To make model reuse applicable, reusing an
artefact should be easier than constructing it from scratch. This entails that the
reusable artefacts are easy to understand, find, and apply. Commonly reusable
artefacts include classes, components, patterns, frameworks, and, services, and
emerging ones include product lines, aspects, and concerns.

SAM 2014 invited contributions related but not limited to the reuse of model
artefacts and the design of reusable artefacts for ITU-T languages and other re-
lated system design languages. In addition to models and reusability, researchers
and practitioners were invited to provide contributions on language development,
model-driven development, and applications.

Review Process

SAM 2014 utilized a multi-tier review process. First, all papers were reviewed by
at least three Program Committee members. The papers and reviews were then
made available to Program Committee members who did not have a conflict of
interest with the authors. The papers were discussed during a three-day, online
meeting before the final decisions were made.

Out of 63 long papers and 8 short papers received (for a total of 71 submis-
sions), 18 long papers (acceptance rate: 29%) and 3 short papers (acceptance
rate: 37%) were selected.

VI Preface

SAM 2014 is truly an international conference. We received submissions from
27 different countries covering all continents. Among the accepted papers, we
have authors from 13 countries in Europe, North-America, South-America, Asia,
and Africa.

Proceedings Overview

This volume contains the 21 papers selected for presentation at SAM 2014 as
well as the abstracts of two keynote presentations. The volume structure reflects
the six sessions of the conference.

The first day was closely aligned with the conference theme with a session on
Reuse followed by a keynote presentation from Prof. Jean-Marc Jézéquel (Uni-
versité de Rennes and IRISA, France) on Safely Reusing Model Transformations
through Family Polymorphism, a second session on Availability, Safety, and Op-
timization, and a third session on Sequences and Interactions.

The volume contents for the second day are a session on Testing followed by
a second keynote presentation, this time from Prof. Lionel Briand (FNR PEARL
chair in software engineering and Vice-Director at the Centre for ICT Security,
Reliability, and Trust (SnT), University of Luxembourg) about Making Model-
Driven Verification Practical and Scalable: Experiences and Lessons Learned.
The last two sessions target Metrics, Constraints, and Repositories, and finally
SDL and Validation & Verification.

Acknowledgments

The 8th edition of SAM was made possible by the dedicated work and contri-
butions of many people and organizations. We thank the authors of submitted
papers, the 46 members of the Program Committee, the 18 additional reviewers,
and the board members of the SDL Forum Society. We thank the MODELS 2014
local Organization Committee at the Universitat Politècnica de València for their
logistic support. The submission and review process was run with the EasyChair
conference system (http://www.easychair.org/), and we therefore thank the
people behind this great tool. We finally thank the sponsors of SAM 2014: SDL
Forum Society, ITU-T, ACM, IEEE, Springer, the University of Ottawa, McGill
University, and the Universitat Politècnica de Catalunya.

September 2014 Daniel Amyot
Pau Fonseca i Casas
Gunter Mussbacher

Preface VII

SDL Forum Society

The SDL Forum Society is a not-for-profit organization that, in addition to
running the System Analysis and Modeling (SAM) conference series of events
(once every two years), also:

– Runs the System Design Languages Forum (SDL Forum) conference series
every two years between SAM conference years;

– Is a body recognized by ITU-T as co-developing System Design Languages
in the Z.100 series (Specification and Description Language), Z.120 series
(Message Sequence Chart), Z.150 series (User Requirements Notation), and
other language standards;

– Promotes the ITU-T System Design Languages.

For more information on the SDL Forum Society, see
http://www.sdl-forum.org.

Organization

Organizing Committee

Chairs

Daniel Amyot University of Ottawa, Canada
Pau Fonseca i Casas Universitat Politècnica de Catalunya, Spain
Gunter Mussbacher McGill University, Canada

SDL Forum Society

Reinhard Gotzhein Chairman (TU Kaiserslautern, Germany)
Ferhat Khendek Secretary (Concordia University, Canada)
Martin von Löwis Treasurer (Beuth-Hochschule für Technik

Berlin, Germany)
Rick Reed Non-voting board member (TSE, UK)

Local Facilities Chair

Javier González Huerta Universitat Politècnica de València, Spain

Program Committee

Program Chairs

Daniel Amyot University of Ottawa, Canada
Pau Fonseca i Casas Universitat Politècnica de Catalunya, Spain
Gunter Mussbacher McGill University, Canada

Members

Shaukat Ali Simula Research Laboratory, Norway
Rolv Bræk NTNU Trondheim, Norway
Reinhard Brocks HTW Saarland, Germany
Jean-Michel Bruel University of Toulouse, France
Laurent Doldi TransMeth, France
Anders Ek IBM Rational, Sweden
Stein Erik Ellevseth ABB Corporate Research, Norway
Joachim Fischer Humboldt University of Berlin, Germany
Emmanuel Gaudin PragmaDev, France
Birgit Geppert Avaya, USA

Abdelouahed Gherbi École de technologie supérieure, Canada

X Organization

Reinhard Gotzhein TU Kaiserslautern, Germany
Jens Grabowski University of Göttingen, Germany
Øystein Haugen SINTEF, Norway
Löıc Hélouët Inria Rennes, France
Peter Herrmann NTNU Trondheim, Norway
Dieter Hogrefe University of Göttingen, Germany
Ferhat Khendek Concordia University, Canada
Tae-Hyong Kim Kumoh National Institute of Technology, Korea
Jacques Klein University of Luxembourg, Luxembourg
Finn Kristoffersen Cinderella, Denmark
Anna Medve University of Pannonia, Hungary
Pedro Merino Gómez University of Malaga, Spain
Birger Møller-Pedersen University of Oslo, Norway
Patricio Moreno Montero ACCIONA, Spain
Ileana Ober University of Toulouse, France
Iulian Ober University of Toulouse, France
Fei Peng Siemens CT, China
Dorina Petriu Carleton University, Canada
Andreas Prinz Agder University College, Norway
Rick Reed TSE, UK
Laurent Rioux Thales R&T, France
José Luis Risco-Mart́ın Universidad Complutense de Madrid, Spain
Manuel

Rodriguez-Cayetano Valladolid University, Spain
Richard Sanders SINTEF, Norway
Amardeo Sarma NEC Laboratories Europe, Germany
Ina Schieferdecker Freie Universität Berlin, Germany
Edel Sherratt University of Wales Aberystwyth, UK
Eugene Syriani University of Alabama, USA
Maria Toeroe Ericsson, Canada
Peter Tröger Potsdam University, Germany
Hans Vangheluwe University of Antwerp, Belgium and McGill

University, Canada
Martin von Löwis Beuth-Hochschule für Technik Berlin, Germany
Thomas Weigert Missouri University of Science and Technology

and UniqueSoft, USA
Manuel Wimmer Technische Universität Wien, Austria
Steffen Zschaler King’s College London, UK

Additional Reviewers

Sabas Arsène
Bruno Barroca
Robert Bill
Tegawende Bissyande

Franck Chauvel
Amine El Kouhen
Fabian Glaser
Patrick Harms

Christopher Henard
Steffen Herbold
Tanja Mayerhofer
Assaad Moawad

Organization XI

Phu Nguyen
Frank Roessler

Margarete Sackmann
Markus Scheidgen

Daniel Varro
Anatoly Vasilevskiy

Sponsoring Organizations and Institutions

Keynotes

Safely Reusing Model Transformations through

Family Polymorphism

Jean-Marc Jézéquel

IRISA, University of Rennes, France

jean-marc.jezequel@irisa.fr

First Keynote Speaker – Abstract. The engineering of systems involves
many different stakeholders, each with their own domain of expertise. Hence
more and more organizations are adopting Domain Specific Languages (DSLs)
to allow domain experts to express solutions directly in terms of relevant domain
concepts. This new trend raises new challenges about designing DSLs, evolving
a set of DSLs and coordinating the use of multiple DSLs. In this talk we explore
various dimensions of these challenges, and outline a possible research roadmap
for addressing them. We detail one of these challenges, which is the safe reuse of
model transformations.

Indeed both DSL definition and tooling (e.g., checkers, document or code
generators, and model transformations) require significant development efforts,
for a limited audience (by definition), because the current state of the art of
Model Driven Engineering still makes it hard to reuse and evolve these defini-
tions and tooling across several DSLs, even when these DSLs are conceptually
very close to one other. We outline a new extension to the Kermeta language
that leverages Family Polymorphism to allow model polymorphism, inheritance
among DSLs, as well as evolution and interoperability of DSLs.

Making Model-Driven Verification Practical

and Scalable: Experiences and Lessons Learned

Lionel C. Briand

SnT Centre for Security, Reliability and Trust, University of Luxembourg

lionel.briand@uni.lu

Second Keynote Speaker – Abstract. Verification challenges in the software
industry, including testing, come in many different forms, due to significant dif-
ferences across domains and contexts. But one common challenge is scalability,
the capacity to test and verify increasingly large, complex systems. Another
concern relates to practicality. Can the inputs required by a given technique
be realistically provided by engineers? Though, to a large extent, Model-Driven
Engineering (MDE) is a significant component of many verification techniques,
a complete solution is necessarily multidisciplinary and involves, for example,
machine learning or evolutionary computing components.

This talk reports on 10 years of research tackling verification and testing
problems, in most cases in actual industrial contexts, relying on MDE but also
metaheuristic search, optimization, and machine learning. The focus of the talk
will be on how to scale to large system input spaces and achieve practicality by
decreasing the level of detail and precision required in models and abstractions.
I will draw from past and recent experiences to provide practical guidelines and
outline possible avenues of research.

Concrete examples of problems we have addressed, and that I will cover in
my talk, include schedulability analysis, stress/load testing, CPU usage analysis,
robustness testing, testing closed-loop dynamic controllers, and SQL Injection
testing. Most of these projects have been performed in industrial contexts and
solutions were validated on industrial software.

Further information is available in the following selected references.

References

1. Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.C.: Generating test data from OCL con-
straints with search techniques. IEEE Transactions on Software Engineering 39(10),
1376–1402 (2013)

2. Briand, L., Labiche, Y., Shousha, M.: Using genetic algorithms for early schedula-
bility analysis and stress testing in real-time systems. Genetic Programming and
Evolvable Machines 7(2), 145–170 (2006)

3. Iqbal, M.Z., Arcuri, A., Briand, L.: Empirical investigation of search algorithms for
environment model-based testing of real-time embedded software. In: Proc. ISSTA
2012, pp. 199–209. ACM, New York (2012)

4. Matinnejad, R., Nejati, S., Briand, L., Bruckmann, T., Poull, C.: Search-based auto-
mated testing of continuous controllers: Framework, tool support, and case studies.
Information and Software Technology (to appear, 2014)

Making Model-Driven Verification Practical and Scalable XVII

5. Nejati, S., Briand, L.C.: Identifying optimal trade-offs between CPU time usage and
temporal constraints using search. In: Proc. ISSTA 2014, pp. 351–361. ACM, New
York (2014)

6. Nejati, S., Di Alesio, S., Sabetzadeh, M., Briand, L.: Modeling and analysis of cpu
usage in safety-critical embedded systems to support stress testing. In: France, R.B.,
Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp.
759–775. Springer, Heidelberg (2012)

Table of Contents

Reuse

BVR – Better Variability Results . 1
Øystein Haugen and Ommund Øg̊ard

MID: A MetaCASE Tool for a Better Reuse of Visual Notations 16
Amine El Kouhen, Abdelouahed Gherbi, Cédric Dumoulin,
Pierre Boulet, and Sébastien Gérard

An Empirical Study on the Anticipation of the Result of Copying and
Pasting among UML Editors . 32

Daniel Liabeuf, Xavier Le Pallec, and José Rouillard

Availability, Safety and Optimization

Toward a UCM-Based Approach for Recovering System Availability
Requirements from Execution Traces . 48

Jameleddine Hassine and Abdelwahab Hamou-Lhadj

Architecture Framework for Software Safety . 64
Havva Gülay Gürbüz, Nagehan Pala Er, and Bedir Tekinerdogan

Search-Based Model Optimization Using Model Transformations 80
Joachim Denil, Maris Jukss, Clark Verbrugge, and Hans Vangheluwe

Sequences and Interactions

Associativity between Weak and Strict Sequencing 96
Gregor v. Bochmann

Efficient Representation of Timed UML 2 Interactions 110
Alexander Knapp and Harald Störrle

Integrating Graph Transformations and Modal Sequence Diagrams for
Specifying Structurally Dynamic Reactive Systems 126

Sabine Winetzhammer, Joel Greenyer, and Matthias Tichy

Testing

A Systematic Approach to Automatically Derive Test Cases from Use
Cases Specified in Restricted Natural Languages . 142

Man Zhang, Tao Yue, Shaukat Ali, Huihui Zhang, and Ji Wu

XX Table of Contents

Acceptance Test Optimization . 158
Mohamed Mussa and Ferhat Khendek

Verifying Hypermedia Applications by Using an MDE Approach 174
Delcino Picinin Júnior, Cristian Koliver, Celso A.S. Santos, and
Jean-Marie Farines

Revisiting Model-Driven Engineering for Run-Time Verification of
Business Processes . 190

Wei Dou, Domenico Bianculli, and Lionel Briand

Model-Based Testing: An Approach with SDL/RTDS and
DIVERSITY . 198

Julien Deltour, Alain Faivre, Emmanuel Gaudin, and Arnault Lapitre

Metrics, Constraints and Repositories

On Bringing Object-Oriented Software Metrics into the Model-Based
World – Verifying ISO 26262 Compliance in Simulink 207

Lukas Mäurer, Tanja Hebecker, Torben Stolte, Michael Lipaczewski,
Uwe Möhrstädt, and Frank Ortmeier

Insights on the Use of OCL in Diverse Industrial Applications 223
Shaukat Ali, Tao Yue, Muhammad Zohaib Iqbal, and
Rajwinder Kaur Panesar-Walawege

Model-Based Mining of Source Code Repositories . 239
Markus Scheidgen and Joachim Fischer

SDL and V&V

Towards an Extensible Modeling and Validation Framework for
SDL-UML . 255

Alexander Kraas

SDL Implementations for Wireless Sensor Networks – Incorporation of
PragmaDev’s RTDS into the Deterministic Protocol Stack BiPS 271

Tobias Braun, Dennis Christmann, Reinhard Gotzhein, and
Alexander Mater

Formal Technical Process Specification and Verification for Automated
Production Systems . 287

Georg Hackenberg, Alarico Campetelli, Christoph Legat,
Jakob Mund, Sabine Teufl, and Birgit Vogel-Heuser

Table of Contents XXI

Prototyping SDL Extensions . 304
Andreas Blunk and Joachim Fischer

Author Index . 313

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 1–15, 2014.
© Springer International Publishing Switzerland 2014

BVR – Better Variability Results

Øystein Haugen1 and Ommund Øgård2

1 SINTEF, P.O. Box 124 Blindern, NO-0314 Oslo, Norway
oystein.haugen@sintef.no

2 Autronica Fire & Security, P.O. Box 5620, NO-7483 Trondheim, Norway
Ommund.Ogaard@autronicafire.no

Abstract. We present BVR (Base Variability Resolution models), a language
developed to fulfill the industrial needs in the safety domain for variability
modeling. We show how the industrial needs are in fact quite general and that
general mechanisms can be used to satisfy them. BVR is built on the OMG
Revised Submission of CVL (Common Variability Language), but is simplified
and enhanced relative to that language.

Keywords: Variability modeling, Typing, BVR, CVL.

1 Introduction

BVR (Base Variability Resolution models) is a language built on the Common
Variability Language (CVL) [1-3] technology, but enhanced due to needs of the
industrial partners of the VARIES project1, in particular Autronica. BVR is built on
CVL, but CVL is not a subset of BVR. In BVR, we have removed some of the
mechanisms of CVL that we are not using in our industrial demo cases that apply
BVR. We have also made improvements to what CVL had originally.

Our motivation has mainly been the Fire Detection demo case at Autronica, but we
have also been inspired by the needs of the other industrial partners of VARIES
through their expressed requirements to a variability language.

This paper contains a quick presentation of the Common Variability Language in
Chapter 2. In Chapter 3, we relate our work to its motivation in the Autronica fire
alarm systems, but argue that we need a more compact and pedagogical example and
our car case is presented in Chapter 4. Then we walk through our new BVR concepts
in Chapter 5, discuss the suggested improvements in Chapter 6, and conclude in
Chapter 7.

2 CVL – The Common Variability Language

The Common Variability Language is the language that is now a Revised Submission
in the Object Management Group (OMG) [3] defining variability modeling and the

1 http://www.varies.eu

2 Ø. Haugen and O. Øgård

means to generate product models. CVL is in the tradition of modeling variability as
an orthogonal, separate model such as Orthogonal Variability Model (OVM) [4] and
the MoSiS CVL [1], which formed one of the starting points of the OMG CVL. The
principles of separate variability model and how to generate product models are
depicted in Fig. 1.

Fig. 1. CVL principles

The CVL architecture is described in Fig. 2. It consists of different inter-related
models. The variability abstraction consists of a VSpec model supplemented with
constraints, and a corresponding resolution model defining the product selections.

The variability realization contains the variation points representing the mapping
between the variability abstraction and the base model such that the selected products
can be automatically generated. The configurable units define a layer intended for
module structuring and exchange. In this paper we have not gone into that layer.

The VSpec model is an evolution of the Feature-Oriented Domain Analysis
(FODA) [5] feature models, but the main purpose of CVL has been to provide a
complete definition such that product models can be generated automatically from the
VSpec model, the resolution model and the realization model.

BVR (named from Base, Variability, Resolution models) is an evolution from CVL
where some constructs have been removed for improved simplicity and some new
constructs have been added for better and more suited expressiveness. The new
constructs are those presented in this paper.

DSL

Variability
model

BVR/
CVL

Base
model

Generic

resolution
models

Focused on
a domain

Execute CVL

Resolved
models

Specification
in BVR of

base model
variabilities

Product line
model in any
MOF-
compliant
language

Selection of a set
of choices in the
variation model

Product models fully
described in the base
language.

All regular base
language tools can
be applied to these
models

 BVR – Better Variability Results 3

Fig. 2. CVL architecture

3 The Autronica Fire Detection Case

The main motivator has been the Autronica Fire Detection Case. Autronica Fire &
Security2 is a company based in Trondheim that delivers fire security systems to a
wide range of high-end locations such as oil rigs and cruise ships. Their turnover is
around 100 MEUR a year.

The Autronica demo case is described schematically in Fig. 3.

Fig. 3. The Autronica demo case

The purpose of the demo case was to explore the ways in which the Autronica

specific model "AutroSafe" could be applied for two different purposes. Firstly, after
transforming the MOF metamodel into CVL the CVL tools could be used to define
AutroSafe configurations. Secondly, and possibly more interestingly, from the CVL

2 http://www.autronicafire.com

Base Model

Variability AbstractionVariability Realization

Constraints

Resolutions

Configurable Units Variability Interfaces

VSpecsVariation Points

AutroSafe:
eMOF

AutroCVL:
CVL

MOF2CVL
engine

ICPL
engine

CVL
resolution

editor

The
Autronica
hardware

4 Ø. Haugen and O. Øgård

description it would be possible to apply analysis tools to AutroSafe which were made
generally for CVL. In particular the ICPL tool [6-8] could be used to find an optimal
set of configurations to test AutroSafe.

For our purpose in this paper, the Autronica use-case provided the real background
for understanding what kinds of product line they have to manage. In performing our
use case at Autronica, we explored the transition from the AutroSafe model to a CVL
model. The AutroSafe model was a UML model that can be understood as a reference
model or a conceptual model of how the fire detection system concepts are
associated [9]. We realized that this conceptual model could be considered a
metamodel, which could be used to generate language specific editors that would be
limited to describing correct fire detection systems. Furthermore, we realized that the
conceptual model could be used as base for a transformation leading to a variability
model. We explored this route by manually transforming the AutroSafe metamodel
through transformation patterns that we invented through the work. At the same time
Autronica explored defining variability models for parts of the domain directly, also
for the purpose of using the variability model to generate useful test configurations.

4 The Example Case – The Car Configurator

Since the Autronica case is rather large and requires special domain knowledge we
will illustrate our points with an example case in a domain that most people can relate
to, namely to configure the features of a car.

Our example case is that of configuring a car. In fact our starting point for making
the variability model was the online configurator for Skoda Yeti in Norway3, but we
have made some adaptations to suit our purpose as example.

Our car product line consists of diesel cars that can have either manual or
automatic shift. The cars with automatic shift would only be with all wheel drive
(AWD) and they would need the 140 hp engine. On the other hand the cars with
manual shift had a choice between all wheel drive and front drive. The front wheel
drive cars were only delivered with the weaker 110 hp engine, while the all wheel
drive cars had a choice between the weak (110 hp) or the strong (140 hp) engine.

Following closely the natural language description given above, we reach the CVL
model shown in Fig. 4.

Readers unfamiliar with CVL should appreciate that solid lines indicate that the
child feature (or VSpecs as we call them in BVR/CVL) is mandatory when the parent
is present in a resolution. Dashed lines on the other hand indicate optionality. A small
triangle with associated numbers depicts group multiplicity giving the range of how
many child VSpecs must and can be chosen. Thus when AWD has children hp140 and
hp110 associated with a group multiplicity of 1..1, this means that if AWD is chosen,
at least 1 and at most 1 out of hp140 and hp110 must be selected.

3 http://cc-cloud.skoda-auto.com/nor/nor/nb-no/

 BVR – Better Variability Results 5

Fig. 4. The example diesel car in CVL

5 The BVR Enhancements

In this chapter, we will walk through the enhancements that we have made to
accommodate for general needs inspired by and motivated by industrial cases.

5.1 Targets – The Power of the Variability Model Tree Structure

Our CVL diagram in Fig. 4 is not difficult to understand even without the natural
language explanation preceding it given some very rudimentary introduction to CVL
diagrams (or feature models for that matter). We see that the restrictions are
transparently described through the tree structure and our decisions are most easily
done by traversing the tree from the top.

It is also very obvious that the diesel car has only one engine, and that it has only
one gear shift and one kind of transmission. Therefore everybody understands that
even though there are two elements named "hp140" they refer to the same target,
namely the (potential) strong engine. In the same way "AWD" appears twice in the
diagram, but again they both refer to the same target. It turns out that CVL and other
similar notations do not clearly define this. In fact CVL defines that the two choices
named "hp140" are two distinct choices with no obvious relationship at all.

When does this become significant? Does it matter whether the two choices refer
to the same target? It turns out that it does both for conceptual reasons and technical
ones.

6 Ø. Haugen and O. Øgård

Fig. 5. Adding a Parking assistant

In Fig. 5, we have added an optional parking assistant to the car. However, to be
allowed a parking assistant, you need to buy the strong engine. This is intuitive and
easily understood, but formally this means that any of the occurrences of "hp140"
should satisfy the constraint. Thus, constraints talk about the targets and not the
choices.

5.2 Beyond One Tree

We see that the tree structure of variability models convey in a very transparent way
the restrictions of the decisions to be made. However, trees are sometimes not
enough. In our Autronica experiment, we wanted to reflect in the CVL model the
structure of variability in a way that would abstract the actual configurations of fire
detection systems in airports and cruise ships. In this way our variability model
became close to the structures of the base model. Our car example model has the
opposite focus as it highlights the restrictions of interrelated decisions.

In variability models that are close to the base model, one can expect that tree
structures are insufficient to describe the necessary relationships and in the Autronica
case the physical layout of detectors and alarms was overlaid by an equally important
structure of logical relationships and groups. To represent the alternative, overlaid
structures, we need ways to refer between variability elements and our obvious
suggestion is to introduce references (or pointers as they are also called).

References can also serve as traces and indicate significant places in other parts of
the model.

 BVR – Better Variability Results 7

In our Autronica experiment we had to encode references since references were not
available as a concept in CVL. To encode references, we used integers to indicate
identifiers and corresponding pointers. This required a lot of manual bookkeeping that
turned out to be virtually impossible to perform and even more impossible to read.

In BVR, we want to reflect the physical structure that is represented in the
conceptual model as composition through the main hierarchical VSpec tree. The
logical structure that is modeled by associations in the conceptual UML model would
be represented by variability references in BVR.

5.3 From Proper Trees to Properties

Judging from the tool requirements elicited from the VARIES partners, they wanted a
lot of different information stored in the variability (and resolution) models. Some of
the information would be intended for their own proprietary analysis tools, and
sometimes they wanted to associate temporary data in the model.

When working with the Autronica case and experiencing the difficulties with
encoding the needed references we ourselves found that we wished that we had a way
to explain the coding in a natural language sentence. Thus we felt the very common
need for having comments.

5.4 Reuse and Type – The First Needs for Abstraction

Fire alarming is not trivial. Autronica delivers systems with thousands of detectors
and multiple zones with or without redundancy to cruise ships and oil rigs where
running away from the fire location altogether is not the obvious best option since the
fire location is not easily vacated. In such complicated systems it was not a big
surprise that recurring patterns would be found.

Without going into domain-specific details, an AutroSafe system will contain IO
modules. Such IO modules come in many different forms and they represent a whole
product line in its own right; this actually applies for most of the parts a fire alarm
system is composed of, e.g., smoke detectors, gas detectors, panels, etc. Some IO
modules may be external units and such external units may appear in several different
contexts. As can be guessed, external units have a very substantial variability model
and it grows as new detectors come on the market.

In our experiment, we encoded these recurring patterns also by integers as we did
with references with the same plethora of integers and need for bookkeeping as a
result. It was clear that concepts for recurring patterns would be useful in the
language. We investigate introducing a type concept combined with occurrences
referring the types.

Our example car product line has no complicated subproduct line, but we have
already pointed out that AWD recurs twice in the original model. We express AWD as
a type and apply two occurrences of it.

The observant reader will have seen that replacing the two occurrences of AWD in
Fig. 6 with replications of the type will not yield exactly the tree shown in Fig. 5 since
for Automatic shift only the strong engine can be chosen. Such specialization should
be expressed by a constraint associated with the occurrence.

8 Ø. Haugen and O. Øgård

Fig. 6. The AWD variability type

We note that the type itself is defined on a level in the tree which encloses all of
the occurrences. It is indeed not obvious where and how the type should be defined
and we have shown here what was sufficient to cover the Autronica case.

In Fig. 6 awdautomatic:AWD is a ChoiceOccurrence, which represents an
occurrence or instantiation of the AWD VType. A question is whether a
ChoiceOccurrence can itself contain a tree structure below it since it is indeed a
VNode? If there was a subtree with a ChoiceOccurrence as root, what would be the
semantics of that tree acknowledging that the referred VType defines a tree, too? It is
quite obvious that there must be some consistency between the occurrence tree and
the corresponding VType tree. Intuitively, the occurrence tree should define a
narrowing of the VType tree. There are, however, some serious challenges with this.
Firstly, to specify the narrowing rules syntactically is not trivial. Secondly, to assert
that the narrowing rules are satisfied may not be tractable by the language tool.
Thirdly, the narrowing structures may not be intuitive to the user. Therefore, we have
decided that only constraints will be allowed to be used to further specify a choice
occurrence. In our example case, the diagram in Fig. 6 would add a constraint below
awdautomatic:AWD with exactly one target reference to hp140 and thus the semantics
would be the same as in Fig. 5.

Our example model has only Choices as VSpecs, but the Autronica system has
multiple examples of elements that are sets rather than singular choices. Such decision
sets that represent repeated decisions on the same position in the VSpec tree are
described by VClassifiers. Similar to ChoiceOccurrences that are typed Choices, we
have VClassOccurrences that are typed VClassifiers. We appreciate that VClassifiers

 BVR – Better Variability Results 9

are not VTypes even though they represent reuse in some sense, but sets are not types.
A type may have no occurrences or several occurrences in different places in the
VSpec tree.

5.5 Resolution Literals – Describing Subproducts

Once we have the VType with corresponding occurrences in the variability model, we
may expect that there may be consequences of these changes in the associated
resolution models and realization models.

What would be the VType counterpart in the resolution model?

Fig. 7. Resolution literals

In Fig. 7, we show a resolution model of an imaginary electric car that has one
engine for each wheel. We have defined two literals of the Engine type, one named
Strong and one named Weak. The literals represent sub-products that have been fully
resolved and named. In reality, it is often the case that there are named sub-products
that already exist and have product names. Thus such literals make the resolution
models easier to read for the domain experts.

5.6 Staged Variation Points – Realizing Occurrences

Having seen that the VType has consequences for the resolution model, the next
question is what consequences can be found in the realization model that describes the
mapping between the variability model and the base model?

We have already reuse related to the realization layer since with fragment
substitutions we can reuse replacement fragment types. Replacements represent
general base model fragments that are cloned and inserted other places in the base
model base.

Replacement fragment types do not correspond to VType directly and we find that
with fragment substitutions as our main realization primitive we would need a

10 Ø. Haugen and O. Øgård

hierarchical structure in the realization model to correspond to the hierarchy implied
by occurrences of VTypes in the variability model. The "staged variation points"
correspond closely with subtrees of the resolution model. They are not type symbols,
but rather correspond to the expansion of occurrences (of VTypes and resolution
literals).

In BVR (and CVL) variation points refer to a VSpec each. Materialization of a
product is driven by the resolutions. They refer to VSpecs and trigger those variation
points that refer to that same VSpec. A staged variation point refers to an occurrence
of a VType.

The semantics of a staged variation point is to limit the universe of variation points
from which to choose. The VSpec being materialized is an occurrence which refers to
a VType. That VType has a definition containing a tree of VSpecs. The resolution
element triggering the staged variation point has a subtree of resolution elements that
can only trigger variation points contained in the staged variation point.

Fig. 8. Staged Variation Points example

In Fig. 8, we illustrate how staged variation points work. In the upper right, we
have the resolution model and we will concentrate on resolutions of w1 and w2. w1 is
resolved to true and the rightmost staged variation point refers the w1:Engine choice
on the very left in the VSpec model indicated by the (green) line. Now since the
w1:Engine has been chosen, we need to look into the Engine VType for what comes
next, and the choice of the power of the engine comes next. For w1 the resolution
model indicates that kw500 is chosen and this is also indicated by a (yellow) line from
the resolution element to that of the VSpec model. The actual transformation of the
base model is given by the variation points in the realization model, and we are now
limited to the variation points enclosed by the staged variation point already found

Staged
VariationPoint

Staged
VariationPoint

Fragment
Substitution

kw300

kw500

kw300

kw500

Fragment
Substitution

Fragment
Substitution

Fragment
Substitution

 BVR – Better Variability Results 11

(the rightmost one). The rightmost fragment substitution of said staged variation point
refers to the chosen kw500 VSpec inside the Engine VType and thus this is the one
that will be executed. The figure indicates that what it does is to remove the kw300
option and leaving only the kw500 engine option on the right wheel of the car.

In the very same way, we may follow the resolution of w2 and we find that due to
the staged variation point for w2 is the leftmost one, a different fragment substitution
referring the kw500 of the Engine VType will be executed for w2, which is exactly
what we need.

6 Discussion and Relations to Existing Work

Here we discuss the new mechanisms and why they have not appeared just like this
before.

6.1 The Target

Introducing targets was motivated by how the VSpec tree structure can be used to
visualize and define restrictions to decisions. The more the tree structure is used to
define the restrictions, the more likely it is that there is a need to refer to the same
target from different places in the tree.

Our example car in Fig. 4 can be described in another style as shown in Fig. 9
where the restrictions are given explicitly in constraints and the tree is very shallow.
The two different styles, tree-oriented and constraint-oriented, can be used
interchangeably and it may be personal preference as well as the actual variability that
affects what style to choose. It is not in general the case that one style is easier or
more comprehensible but constraints seem to need more familiarity with feature
modeling [10].

Fig. 9. The example car with explicit constraints

12 Ø. Haugen and O. Øgård

Given that a tree-oriented style is applied and there are duplications of target, why
is this a novelty? It is a novelty because CVL does not have this concept and it is
unclear whether other similar feature modeling notations support the distinction that
we have named targets as distinguished from VSpecs (or features). Batory [11] and
Czarnecki [12, 13] seem to solve duplication by renaming to uniqueness. The Atego
OVM tool4 implicitly forces the user into the style of using explicit constraints and
thus circumvents the problem. OVM [4] does not contain the general feature models
of FODA [5].

VSpecs are distinct decision points and every VSpec is in fact unique due to the
tree path to the root. Targets are also unique, but for a different reason. Targets are
unique since they represent some substance that is singular. This substance needs not
be base-model specific, but it is often closely related to the base model. What makes
this distinction essential is that explicit constraints talk about targets and not VSpecs.
In Fig. 5 we have a variability model which is properly satisfied by (Parkassist,
Manual, AWD, hp140) and by (Parkassist, Automatic, AWD, hp140) showing that
hp140 may refer to any of two distinct VSpecs.

6.2 The Type and Its Consequences

Introducing a type concept to BVR should come as no surprise. As pointed out in [14]
concepts for reuse and structuring normally come very early in the evolution of a
language. Since the feature models have a fairly long history [5], it may be somewhat
surprising that type concepts for subtrees have not been introduced before. A type
concept was introduced in the MoSiS CVL [1], and this was fairly similar to the one
we introduce to BVR. The CVL Revised Submission [3] has a set of concepts related
to "configurable units" that are related to our suggested VType concept, but those
concepts were intended mainly for sub-product lines of larger size. The concept was
also much related to how variabilities are visible from the outside and the inside of a
product line definition.

Other notations have not introduced type concepts and this may indicate that the
suggested notations were not really seen as modeling languages, but more as
illustrations. Another explanation may be that type concepts do introduce some
complexity that imply having to deal with some challenges.

One challenge is related to notation. The type must be defined and then used in a
different place. In the singular world definition and usage were the same. VTypes
must appear somewhere. We have chosen to place them within the VSpec tree, but it
would also be attractive to be able to define VTypes in separate diagrams. A VType
in fact defines a product line in its own right. Our Engine VType implied in Fig. 7
could contain much more than only horse power choice.

In the modeling language Clafer, which has served as one of the inspiration sources
of BVR, the type declarations must be on the topmost level [15], which in our
example would have made no difference. Locally owned types, however, have been
common in languages in the Simula/Algol tradition [16] for many years. The local
ownership gives tighter encapsulation while the top ownership is semantically easier.

4 http://www.atego.com

 BVR – Better Variability Results 13

The usage occurrences refer to the type. How should this be depicted? We have
chosen to use textual notation for this indicating the type following a colon. The colon
is significant for showing that the element is indeed an occurrence of a VType.

Another challenge is related to how the VType and its occurrences are placed in
the model at large. This has to do with what is often called scope or name space. We
have defined that VTypes or VPackages (collections of VTypes) can be name spaces
and thus occurrences of a VType X can only appear within the VType enclosing the
definition of X, but VTypes may be nested. Similar to the discussion on targets, again
names are significant because they designate something unique within a well-defined
context.

Are targets and types related? Could we say that targets appearing in multiple
VSpecs are in fact occurrences of a VType (named by the target name)? At first
glance this may look promising, but they are conceptually different. The target is
something invariant that the decisions mentioning it are talking about. A VType is a
pattern for reuse, a tree structure of decisions representing a subproduct line. There
are cases where the two concepts will coincide, but they should be kept distinct.
While VTypes are defined explicitly and separately, we have chosen to let targets be
defined implicitly through the names of VSpecs.

CVL already recognized types as it had VariableType, which was quite elaborate
and which also covered ReplacementFragmentType and ObjectType. Could VType
be a specialized VariableType and the occurrences specialized variables? This may
also be tempting, but variables are given values from the base model by the
resolutions, while occurrences refer to patterns (VTypes) of the variability model.

6.3 The Note

The Note is about a significant element that has no direct significance in the language.
Adding a note concept is an acknowledgement of the fact that there may very well be
information that the user wants to associate closely with elements of the BVR model,
but which is of no consequence to the BVR language or general BVR tooling.

Such additional information may be used for tracing, for expressing extra-
functional properties or it may be pure comments. The text may be processed by
proprietary tooling or by humans. Having no such mechanism made it necessary to
accompany a CVL diagram with a textual description if it should be used by more
than one person or more than one community.

Since variability modeling is oblivious to what varies, the Note can be more
important than it might seem. The Note is where you can associate safety critical
information with the variants and the possibilities. The Note is where you can contain
traces to other models. The Note is where you can put requirements that are not
connected to the variability model itself.

The Note will be significant for the tools doing analysis.
We foresee that once we have experimented with using notes in BVR, there will be

recurring patterns of usage which may deserve special BVR constructs in the future,
but at this point in time we find such constructs speculative.

14 Ø. Haugen and O. Øgård

6.4 The Reference

References in the BVR model are similar to what can be found in commercial tools
like pure::variants5. A reference in the variability model is defined as a variable and as
such it enhances the notion that variables hold base model values only. A Vref
variable is resolved by a VRefValueSpecification where the pointers of the resolution
model and the pointers of the variability model correspond in a commutative pattern.

Why are references necessary? They represent structure beyond the tree and this
can represent dependencies that are hard to express transparently in explicit
constraints.

In our motivation from the Autronica case our need for references came from
describing an alternative product structure that overlaid the hierarchical physical
structure of the configured system. We may say that our Autronica variability model
is a very product-oriented (or base-oriented) variability model meaning that structures
of the product was on purpose reflected in the variability model. The opposite would
have been a property-oriented variability model where VSpecs would have
represented more abstract choices such as "Focus on cost" vs. "Focus on response
time".

7 Conclusions and Further Development

We have been motivated by needs of the use cases and found that the needs could be
satisfied by introducing some fairly general new mechanisms. At the same time we
have made the BVR language more compact than the original CVL language such
that it serves a more focused purpose.

Our next step is to modify our CVL Tool Bundle to become a true BVR Tool
Bundle to verify that the demo cases can more easily be expressed and maintained
through the new language.

The future will probably see improvements along two development paths. One line
of improvements will be related closely with needs arising from variability analysis
techniques for safety critical systems. We suspect that the generic Note construct
could be diversified into several specific language mechanisms associated with
analysis techniques. This would migrate the insight from the analysis tools to the
BVR language.

The second line of improvements will follow from general language needs. The
VType concept should potentially form the basis for compact concepts of interface
and derived decisions serving some of the same goals as the elaborated mechanisms
around "configurable units" in CVL. We think this line of development will also
include partial binding and default resolutions without introducing additional
conceptual complexity.

Acknowledgements. This work has been done in the context of the ARTEMIS
project VARIES with Grant agreement no: 295397.

5 http://www.pure-systems.de

 BVR – Better Variability Results 15

References

1. Haugen, O., Møller-Pedersen, B., Oldevik, J., Olsen, G.K., Svendsen, A.: Adding
Standardized Variability to Domain Specific Languages. In: Geppert, B., Pohl, K. (eds.)
SPLC 2008, vol. 1, pp. 139–148. IEEE Computer Society, Limerick (2008)

2. Haugen, O., Wasowski, A., Czarnecki, K.: CVL: common variability language. In:
Proceedings of the 17th International Software Product Line Conference, pp. 277–277.
ACM, Tokyo (2013)

3. Object Management Group: Common Variability Language (CVL). Revised Submission,
OMG (2012)

4. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering. Springer
(2005)

5. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Software Engineering Institute, Carnegie Mellon University
(1990)

6. Johansen, M.F., Haugen, Ø., Fleurey, F.: An algorithm for generating t-wise covering
arrays from large feature models. In: SPLC 2012 Proceedings of the 16th International
Software Product Line Conference, vol. 1, pp. 46–55. Association for Computing
Machinery (ACM) (2012)

7. Johansen, M.F., Haugen, Ø., Fleurey, F., Eldegard, A.G., Syversen, T.: Generating Better
Partial Covering Arrays by Modeling Weights on Sub-product Lines. In: France, R.B.,
Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 269–284.
Springer, Heidelberg (2012)

8. Johansen, M.F.: Testing Product Lines of Industrial Size: Advancements in Combinatorial
Interaction Testing. Ph.D. thesis, Department of Informatics, University of Oslo, Oslo
(2013)

9. Berger, T., Stanciulescu, S., Ogaard, O., Haugen, O., Larsen, B., Wasowski, A.: To Connect or
Not to Connect: Experiences from Modeling Topological Variability. In: SPLC 2014. ACM
(to appear, 2014)

10. Reinhartz-Berger, I., Figl, K., Haugen, Ø.: Comprehending Feature Models Expressed in
CVL. In: Dingel, J., van de Stadt, R. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 501–517.
Springer, Heidelberg (2014)

11. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H., Pohl,
K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

12. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration Using Feature Models.
Software Process Improvement and Practice 10(2), 143–169 (2005)

13. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature models
and their specifications. Software Process Improvement and Practice 10(1), 7–29 (2005)

14. Haugen, O.: Domain-specific Languages and Standardization: Friends or Foes? In:
Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds.) Domain Engineering,
pp. 159–186. Springer, Heidelberg (2013)

15. Bąk, K., Czarnecki, K., Wąsowski, A.: Feature and Meta-Models in Clafer: Mixed,
Specialized, and Coupled. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010.
LNCS, vol. 6563, pp. 102–122. Springer, Heidelberg (2011)

16. Birtwistle, G.M., Dahl, O.-J., Myhrhaug, B., Nygaard, K.: SIMULA BEGIN.
Petrocelli/Charter, New York (1975)

MID: A MetaCASE Tool

for a Better Reuse of Visual Notations

Amine El Kouhen1, Abdelouahed Gherbi1, Cédric Dumoulin2, Pierre Boulet2,
and Sébastien Gérard3

1 Software Engineering Dept., École de technologie supérieure, Montréal, Canada
{amine.el-kouhen.1,abdelouahed.gherbi}@etsmtl.ca

2 University of Lille, LIFL CNRS UMR 8022,
Cité scientifique - Bâtiment M3, Villeneuve d’Ascq, France

{cedric.dumoulin,pierre.boulet}@lifl.fr
3 CEA LIST, Gif-sur-Yvette, France

sebastien.gerard@cea.fr

Abstract. Modeling tools facilitate the development process from mod-
eling to coding. Such tools can be designed using a Model-Driven ap-
proach in metamodeling environments called MetaCASE tools. However,
current MetaCASE tools still require, in most cases, manual program-
ming to build full tool support for the modeling language. In this paper,
we want to specify, using models, diagram editors with a high graphi-
cal expressiveness without any need for manual intervention. The second
axis is dedicated to the reuse of this specification in other contexts. The
redundancy in a diagram editor specification raises the problem of in-
consistency during the evolution or the update of this specification. We
propose then MID, a tool based on a set of metamodels supporting the
easy specification of modeling editors with reusable components.

Keywords: Graphical user interface design, Visual languages, Model
reuse, Concrete syntax, Design tools.

1 Introduction

After the object-oriented paradigm in the 80’s and a brief stint in aspect-oriented
approaches, software engineering is moving today towards model-driven engi-
neering (MDE), in which the studied system is not seen as a sequence of lines
of code but as a set of more abstract models describing each concern or point of
view of this system.

The evolution of a paradigm requires the evolution of the tools and lan-
guages that support it. We can see then the rise of UML (Unified Modeling
Language)[20], which has emerged as the most used modeling language in indus-
trial and academic environments.

While models are very widespread, an explicit definition of a modeling lan-
guage and an explicit manipulation of its models are closely connected to some
specific tools, called Computer-Aided Software Engineering tools, or simply

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 16–31, 2014.
c© Springer International Publishing Switzerland 2014

MID: A MetaCASE Tool for a Better Reuse of Visual Notations 17

“CASE tools”. These tools have been very successful in software engineering:
they manipulate models to generate code and vice versa (reverse engineering).

The design and generation of such tools can be done either using program-
based environments or by applying model-based approaches supported by Meta-
CASE tools. The intent of MetaCASE tools is to capture the specification of the
required CASE tool and then generate it automatically.

However, many modeling environments still require a considerable amount of
manual programming to build diagram editors. Existing MetaCASE tools allow
one to specify diagram editors but in a very superficial way. The ergonomics of a
generated editor is often not up to expectations. Additional programming effort
is required to specify complex forms, manage interactions, edit labels, providing
property views, etc. This becomes a problem for developers, who must invest a
significant amount of time and other resources to complete tasks considered as
secondary to their main purpose: the development and integration of language
modeling and code generation.

In addition to manual intervention to specify that kind of tools, several gaps
did appear [6,11,16], mainly in terms of their low visual expressiveness and of
the limited reuse of their specifications.

To explain these issues, we evaluated the technologies currently used to spec-
ify diagram editors [11]. The design of a graphical tool such as Papyrus [7] for
example, brings up an important need in terms of diagram definition reuse. The
main reason for these gaps is the lack of reusability in this kind of technologies.
UML diagrams for example have several common elements, yet these elements
are manually duplicated in the specification, thus increasing risks of errors, prob-
lems of consistency, redundancy in the specification, and maintenance effort.

At a high level of abstraction, the study of editor specification tools al-
lows us to identify some needs and criteria in terms of reusability, graphical
completeness, model consistency and maintainability of diagram specifications.
Compliance with these criteria led us ultimately to produce an alternative meta-
tool based on a set of metamodels called Metamodels for user Interfaces and
Diagrams (MID), to easily design, prototype and evolve graphical editors for a
wide range of visual languages.We base MID’s design on two overarching require-
ments: graphical expressiveness and simplicity of diagram editor (de)composition
for a better reusability. The main goal of this work is the specification of mod-
eling tools from reusable, pre-configured components. For that purpose, we take
advantage from MDE benefits, component-based modeling, separation of con-
cerns and an inheritance mechanism to increase the reuse of editors’ components.
In this paper, we present a more comprehensive version of MID metamodels that
offers a high visual expressiveness and advanced reuse capabilities.

2 Foundations

The concrete syntaxes (CS) of a language provide users one or more formalisms,
graphical and/or textual, to manipulate abstract syntax concepts and thus create
instances (i.e., models). Thus, models obtained are conforming to the structure

18 A. El Kouhen et al.

defined by the abstract syntax (i.e, metamodel). Our proposal is at the level of
graphical concrete syntax definition. A key concept of this syntax is the Diagram.

In the literature, numerous definitions can be found for the concept of dia-
gram. The widely accepted ones include Kosslyn’s [10] and Larkin’s [13]: Dia-
grams are an effective medium of human thinking and problem solving. Diagrams
are thus bi-dimensional, geometric, symbolic and human-oriented representations
of information; they are created by humans for humans. They have little or no
value for communicating with computers, whose visual processing capabilities are
primitive at best [18].

According to Moody [17], elementary components of a visual representation
are called visual notations (visual language, diagramming notations or graphical
notations) and consist of a set of graphical symbols (visual vocabulary), a
set of compositional / structural rules (visual grammar) and definitions of
the meaning of each symbol (semantics). The visual vocabulary and visual
grammar form together the concrete (or visual) syntax.

Fig. 1. The nature of a visual notation [17]

Graphical symbols are used to symbolize (perceptually represent) semantic
constructs, typically defined by a metamodel. The meanings of graphical sym-
bols are defined by mapping them to the constructs they represent. A valid
expression in a visual notation is called a visual sentence or diagram. Di-
agrams are composed of symbol instances (tokens), arranged according to the
rules of the visual grammar [17]. Such distinction between the content (seman-
tics) and the form (syntax: vocabulary and grammar) allows us to separate the
different concerns of our proposition. These definitions are illustrated in Fig. 1.

The seminal work in the graphical communication field is Jacques Bertin’s
Semiology of Graphics [1]. Bertin identified eight elementary visual variables,
which can be used to graphically encode information. These are categorized into
planar variables (the two spatial dimensions x,y) and retinal variables (Shape,
Color, Size, Brightness, Orientation, Texture). The set of visual variables define a
vocabulary for graphical communication: a set of atomic building blocks that can
be used to construct any graphical representation. Different visual variables are

MID: A MetaCASE Tool for a Better Reuse of Visual Notations 19

suitable for encoding different types of information. The choice of visual variables
has a major impact on cognitive effectiveness [3,14,23].

3 Metamodels for User Interfaces and Diagrams (MID)

The aim of our work is to design diagram editors and to allow reusing parts
of such design. For that, we propose to use a model-driven approach, to ensure
the independence from technology, the ease of maintenance and to enable better
sustainability.

Fig. 2. MID: involved artifacts

Figure 2 shows the linkage of the metamodels involved in our proposal. First,
we separate the domain content (abstract syntax) and the form (visual syn-
tax or concrete syntax) of a diagram at a high level of abstraction (language
level). The semantics is out of scope of our paper; it is widely treated in tools
and technologies like EMF/Ecore. The form is separated into two parts: the vi-
sual vocabulary (different variables of shape, color, size, etc.) and the visual
grammar that describes composition rules of visual representations. The link
between the syntax and the semantics is also specified in a separate “binding”
model. Thus, our proposal is made of several metamodels, each one used to
describe one concern: a visual grammar metamodel, a visual vocabulary meta-
model and a mapping metamodel. This work has resulted in our metamodels
called MID : Metamodels for user Interfaces and Diagrams1.

3.1 Visual Grammar: Graphical Elements Composition

To improve reusability, we propose a component-based approach. This approach
aims to take advantage of encapsulation (ease of maintenance and composition)
and the benefits of interfacing (interfaces naming mechanism). In addition, our

1 MID artifacts are available on: http://www.lifl.fr/~elkouhen/MID-Updates

http://www.lifl.fr/~elkouhen/MID-Updates

20 A. El Kouhen et al.

approach allows the reuse through inheritance: a component can inherit from
another one and it can also override some of its characteristics (style, structure,
behaviors, etc.).

The component concept is the main concept of our set of metamodels. It rep-
resents the composition of a visual notation. A component could have three kinds
of interfaces: domain interface, style interface and event interface. Interfaces are
used as an attachment point between (sub)components and the corresponding
concern of each interface (semantics, rendering and interactions). Thus, it helps
to improve the maintainability of components by externalizing their descriptions
in a unique place.

Fig. 3. Diagram grammar

The visual grammar is used to describe the structure of diagrams’ elements.
This description is hierarchical: a root element can contain other elements. We
propose two main types of elements: vertices to represent diagrams complex
elements and edges to represent links between complex elements.

A Vertex is node abstraction that consists of main nodes (top nodes), sub-
nodes (contained vertices in Fig. 3) and attached nodes (nodes that can be affixed
to other nodes). A Label is a vertex that allows access to nodes textual elements
via their accessors (getters and setters). This will synchronize the data model
with the text value represented. A Bordered node is a node that can be affixed to
other nodes. Containers (Compartments) are specific nodes that contain diagram
elements. A Diagram is itself a Container. An Edge is a connection between
two diagram elements; this relationship could be specified semantically (in the
domain metamodel) or graphically and could be more complex than a simple
line (e.g., buses in Fig. 4).

MID: A MetaCASE Tool for a Better Reuse of Visual Notations 21

Fig. 4. Bus between two elements

Conceptually, we have added several concepts for a complete description of
hybrid visual languages (i.e., languages that combine the characteristics of spa-
cially defined languages, Connection-based or Entity/Relation languages and
Containment languages). We can thus describe complex diagrams such as UML
sequence and timing diagrams.

3.2 Visual Vocabulary: Visual Variables

The visual vocabulary allows describing the graphical symbols (visual represen-
tation) of diagrams’ elements. This description is composed of Bertin’s [1] visual
variables; we regroup all of them in the Style concept (Fig. 5) representing the
shape, color, size, layout, etc.

Fig. 5. Visual vocabulary description

All diagram components are associated via their style interfaces to visual
vocabularies represented in the metamodel by the Style concept. As other char-
acteristics of diagrams elements, this relationship can be reused and overloaded
through the proposed mechanism of inheritance.

The style is divided into four main categories. The text style (TextStyle) is a
graphical representation that renders a sequence of characters in a box (label).
Text styles specify the alignment of the displayed data, positions and informa-
tion about the size, color and font. The curve style is the graphical definition of a

22 A. El Kouhen et al.

connection. This is the abstract superclass of all connection styles. It is also
possible to create custom styles (CustomStyle) with a code implementation.

The shape style (ShapeStyle) represents the atomic unit of graphical infor-
mation used to construct the shapes of the visual notation. It is characterized
by the layout attribute, which represents the different arrangement rules in the
host figure. We propose around ten default shapes in our metamodel (Fig. 6),
and we let users create their own shapes with polygons, images or more complex
shapes (ComposedStyle).

Fig. 6. Shape styles

3.3 CASE Tools (De)Composition

In the current version, the description of bindings with abstract syntax is used
as an entry point to the full description of the Diagram editor (Fig. 7).

This is represented by the element DiagramEditor containing all bindings.
This concept is associated with a diagram and contains tools such as palette,
which allows to create graphical elements into diagrams, menus and properties
view, which allows to view/edit the properties of the selected item in the diagram.

3.4 Representation Formalism

For simplicity, we propose a graphical formalism to present our concepts. This
formalism allows to see graphically the diagrams specification instead of a tex-
tual or tree-based form. Diagram components are represented as rectangles with
interfaces on their borders. Style interfaces are red and domain ones are blue.

MID: A MetaCASE Tool for a Better Reuse of Visual Notations 23

Fig. 7. Diagram editor assembling

We have defined our concrete syntax with MID (auto-description), allowing us
to propose a modeling tool for our metamodels. Figure 8 shows an example of a
component specification with the graphical view (left side) and its result.

Fig. 8. MID graphical formalism

24 A. El Kouhen et al.

3.5 Inheritance Mechanism

Edges and nodes have both the ability to inherit from each others. When a
diagram component inherits from another (Fig. 9), it gets back all its structure,
style and behavior.

Fig. 9. MID: graphical inheritance

If the inheriting component contains an element with the same name as the
inherited component (Fig. 10), this is interpreted by an overload and then we
can override the structure, style and behavior. This feature maximizes compo-
nents reuse and allows creating other derivatives components. Visual grammar
elements only represent the structure and should be associated to a visual vo-
cabulary describing its rendering.

Fig. 10. Example of graphical overriding

MID: A MetaCASE Tool for a Better Reuse of Visual Notations 25

Figure 10 shows the overriding of inherited elements. The component “Node
B” inherits from the component “Node A”. Both have sub-components named
“Node x”, in this case the element “Node x” of B overrides the description of
“Node x” of A (initially represented by an ellipse).

4 Validation

The specification method chosen for our approach is based on models. This
approach allows us to benefit from the undeniable advantages of MDE in the
editors’ development cycle. These benefits are reflected in multiple aspects, such
as ease of specification and technology independence, which allow greater col-
laboration and flexibility in the metamodeling cycle of editors.

To validate our metamodels, we have developed several chains of transfor-
mations allowing the full generation of designed editors code. Note that MID
metamodels are completely independents from technological targets. In the ac-
tual implementation, we choose Spray [8] and GMF as technological targets.

4.1 Graphical Expressiveness

A circuit diagram (also known as electrical diagram) is a simplified conventional
graphical representation of an electrical circuit [22]. A circuit diagram shows the
components of the circuit as simplified standard symbols (left side of Fig. 11).

Fig. 11. Electrical symbols (left side) and an example of a circuit diagram (right side)

Our goal is to specify editors able to draw and manipulate electrical com-
ponents concepts and construct diagrams such as shown in the right part of
Fig. 11. Despite its graphical complexity, we could describe this visual language
with MID. The result of this specification is shown in Fig. 12.

The graphical completeness is defined by the capability to use fully the shape
variable (the use of any kind of shapes: complex, composites, 2D/3D, etc.). Un-
like tools we have evaluated in [11], our metamodels have a great capacity to
use the full range of these variables; we were inspired by tools based on graph

26 A. El Kouhen et al.

Fig. 12. Electrical diagram editor generated with MID

grammar and their approaches to define those variables. We have proposed also
other representation mechanismes like SVG representations, and other prede-
fined figures. We solve some problems identified in existing tools and methods
found in the industry and in the literature [6]. For example, we have succeeded
to specify diagram editors as complex as circuit diagram editors, at a high level
of abstraction, without the need for manual programmatic intervention.

4.2 Reuse of Specification

We choose as case study, the reuse between UML concepts, especially Classifiers.
The Classifier concept is the basic element of several concepts (Class, Interface,
Component, etc.). Such elements have generally the same graphical representa-
tion except for a few variations. They are formed from a rectangular node that
contains a label followed by a compartment that contains properties.

Thus, the graphical redundancy in UML can be treated with this mechanism
of inheritance. The advantage in terms of the spent time on specification and
maintenance is substantially reduced by using reusable graphical elements.

To specify a Component, we have to inherit from Classifier and add to its
structure, a border node representing the ports (attached on components bor-
ders).

To Specify the graphical elements Class and Interface, we have to inherit
from Classifier and add to its structure two other compartments, the first for
operations and the other one for nested classifiers (Fig. 13). In this example,
and for simplification, the Interface inherits from the graphical definition of the
Class to show the graphical similarity between the two concepts. Fig. 14 shows
the generated result.

MID: A MetaCASE Tool for a Better Reuse of Visual Notations 27

Fig. 13. Reuse of UML graphical elements

Fig. 14. Generated editor for UML

The specification of UML concrete syntax, allows us to evaluate the reuse rate
of UML visual notations with MID. Table 1 shows the diagrams specified with
MID, the number of visual notations in each diagram and the reuse rate of these
notations in each diagram. The rate of reuse is calculated as follows:

UML Reuse Rate = number of reused notations
global number of UML notations × 100

Reusability was, since the beginning of our research work, the most impor-
tant and desirable criterion. This criterion motivated us to seek methods that
allow more reuse of specification models. For this reason, we chose to introduce
the concept of component-based metamodeling to specify graphical editors. A
component-based approach ensures better readability and better maintenance
of models. It is particularly useful for teamwork and allows industrializing

28 A. El Kouhen et al.

Table 1. Reuse rate of UML notations

Diagram Nbr. of notations Nbr. of reused notations Reuse rate

Class 33 18 54,5%

Component 15 8 53,3%

Composite Structure 16 14 87,5%

Deployment 11 8 72,7%

Package 9 9 100%

State Machine 16 7 43,7%

Activity 16 12 75%

Use Case 17 14 82,3%

Sequence 16 5 31,2%

Communication 5 4 80%

Interaction Overview 20 20 100%

UML Reuse Rate 71 %

software development. Reusability of a component brings significant produc-
tivity gain because it reduces development time, especially as the component is
reused often.

Unlike existing tools for diagrams specification, we separate the editor’s as-
pects and concerns initially between the semantic and graphical aspects, then we
separate the two graphical aspects, which are the visual vocabulary (visual vari-
ables) and the visual grammar that represents the composition rules of diagrams.
Subsequently, it becomes important to create another part that would make the
mapping between the different aspects, in particular between the semantic and
graphic aspects.

The separation of concerns is also carried out in the transformation chain,
by introducing several intermediate level models and by delaying the introduc-
tion of technical details in the latest models of the chain. This allows for better
maintainability of the transformation chain in case of a change/evolution in
metamodels. A strong separation of concerns allows a better reuse and mainte-
nance of models, it decreases development costs in terms of maintenance time
in case of changes in these models and it should allow designing new applica-
tions by assembling existing models. It also allows to reuse a complete diagram
description in another domain model.

Through the examples presented in this sub-section, we validated our ap-
proach in terms of reusability. This approach allowed us to reuse more than
70% of components created in our UML specification, which is not negligible.
This approach allowed us to define easily the editors’ specificities with a model-
driven approach and without any need to redefine or manually program changes,
which increases the level of maintainability of editors generated with our solu-
tion.

Furthermore, we evaluated the reuse rate for other existing approaches: we
found that our proposal offers a reuse rate much higher than the other ones.
Table 2 shows the UML reuse rate with the other approaches.

MID: A MetaCASE Tool for a Better Reuse of Visual Notations 29

Table 2. UML reuse rates for the other tools

Tool UML Reuse Rate

MetaEdit+ 46,9 %

GMF 52,3 %

Obeo Designer 34,8 %

Spray/Graphiti 64 %

MID 71 %

Practically, when we developed the Papyrus UML modeler [7], we tried all
existing frameworks including GMF, Graphiti, Sirius and other approaches such
as those of Bottoni and Costagliola [2]. All of them are limited to design Entity/
Relation-like languages and no more. These tools have been widely discussed
and compared with our approach in [6,11,16].

Tools based on graph grammars (e.g., AToM3 [12] and DiaGen [15]) provide
visual separation between visual vocabulary and visual grammar. However, to
define a visual language, developers must invest significant effort to analyze and
identify all rules [5].

In [4], the authors propose a tool called VLDesK, which is based on compo-
nents for specifying visual languages. However, this approach is suffering from
several limitations. Using a textual description to define components, this ap-
proach rises an additional cost to learn and write the implementation of each
component. Users are soon confronted to the difficulty of components mainte-
nance. In addition, users of this tool require specific skills: a good understanding
of the Extended Positional Grammars [5] and of YACC [9].

Most diagrams specification methods mix concerns. The common form of
mixing is between the visual vocabulary and visual grammar definitions. Most of
the tools offering the separation of the graphical part from the semantic one, like
GMF tooling, TopCased-Meta and even standards like Diagram Definition [19],
fail to separate the two graphical syntax concerns, which are visual vocabulary
(shapes, colors, styles, etc.) and visual grammar (composition rules of the visual
notation).

5 Conclusion

In this article, we present an approach based on MDE and components modeling,
allowing the easy specification of diagram graphical editors at a high level of ab-
straction, in order to model, reuse, compose and generate code. In our proposal,
we focus on the component concept, to describe and then assemble concepts
emerging from visual languages. We first solved some major problems identified
in existing tools and methods found in industry and in the literature, such as the
specification at a high level of abstraction without the need for manual program-
matic intervention, the separation of concerns, the graphical effectiveness and
finally the reusability of editors. To validate our approach, we have developed
transformation chains targeting technologies like GMF and Spray, which enable

30 A. El Kouhen et al.

the generation of functional editor’s code. This allows us to successfully design
diagrams by reusing existing components, and to generate their implementation.
We validated our approach on several diagrams.

Our approach presents many advantages. Firstly, through the reuse of models:
the models are theoretically easier to understand and to manipulate by business
users; which corresponds to a goal of MDE. Secondly, this reuse brings consid-
erable gains of productivity through ease of maintenance of components. It also
allows better teamwork and helps for the industrialization of software develop-
ment; it becomes possible to build libraries of components, and then build the
diagram by assembling these components.

Briefly, we can say that our approach opens a new way that shows promises for
a wider use of modeling tools and automatic generation of applications. Com-
pared to the current development technologies, the promises of this approach
are high due to the ability to create complex applications by assembling ex-
isting simple model/components fragments, and especially the possibility for
non-computer specialists, experts in their business domain, to create their own
applications from a high-level description using an adapted formalism, easy to
understand and manipulate for them.

In the current state of our research, many studies are still required to reach
a full generation of modeling tools. Firstly, we need to be able to describe and
generate ergonomic aspects and interactions with our approach. We can thus
use task models [21] to specify user interactions regardless of the modality or
implementation technologies. Finally, we need to define other metamodels that
would allow describing the other parts of such tools (tree editors, tables/matrices,
etc.) following the same approach of component reuse and inheritance.

Acknowledgements. This work was supported by the LIST laboratory of the
French Atomic Commission (CEA). This work has also been supported by the
Natural Sciences and Engineering Research Council of Canada (NSERC) and
the Fond de l’internationalisation de la recherche (FIR) - Bureau de coordination
internationale (BCI) of the École de technologie supérieure (ÉTS).

References

1. Bertin, J.: Semiology of graphics: diagrams, networks, maps. University of Wiscon-
sin Press, Madison (1983)

2. Bottoni, P., Costagliola, G.: On the definition of visual languages and their edi-
tors. In: Hegarty, M., Meyer, B., Hari Narayanan, N. (eds.) Diagrams 2002. LNCS
(LNAI), vol. 2317, pp. 305–319. Springer, Heidelberg (2002)

3. Cleveland, W.S., McGill, R.: Graphical perception: Theory, experimentation, and
application to the development of graphical methods. Journal of the American
Statistical Association 79(387), 531–554 (1984)

4. Costagliola, G., Francese, R., Risi, M., Scanniello, G., De Lucia, A.: A component-
based visual environment development process. In: SEKE 2002, pp. 327–334. ACM,
New York (2002)

MID: A MetaCASE Tool for a Better Reuse of Visual Notations 31

5. Costagliola, G., Deufemia, V., Polese, G.: A framework for modeling and imple-
menting visual notations with applications to software engineering. ACM Trans.
Softw. Eng. Methodol. 13(4), 431–487 (2004)

6. El Kouhen, A.: Spécification d’un métamodèle pour l’adaptation des outils UML.
Ph.D. thesis, Université de Lille 1, France (2013)

7. Gérard, S., Dumoulin, C., Tessier, P., Selic, B.: Papyrus: A UML2 tool for domain-
specific language modeling. In: Giese, H., Karsai, G., Lee, E., Rumpe, B., Schätz,
B. (eds.) Model-Based Engineering of Embedded Real-Time Systems. LNCS,
vol. 6100, pp. 361–368. Springer, Heidelberg (2010)

8. Itemis: A quick way of creating graphiti (2012),
http://code.google.com/a/eclipselabs.org/p/spray

9. Johnson, S.C.: Yacc: Yet another compiler-compiler. Tech. rep., AT&T Corporation
(1970)

10. Kosslyn, S.M.: Image and Mind. Harvard University Press (1980)
11. Kouhen, A.E., Dumoulin, C., Gérard, S., Boulet, P.: Evaluation of modeling tools

adaptation. Tech. rep., CNRS (2011),
http://hal.archives-ouvertes.fr/hal-00706701

12. de Lara, J., Vangheluwe, H.: Atom3: A tool for multi-formalism and meta-
modelling. In: Kutsche, R.D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306,
pp. 174–188. Springer, Heidelberg (2002)

13. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science 11(1), 65–100 (1987)

14. Lohse, G.L.: A cognitive model for understanding graphical perception. Hum.-
Comput. Interact. 8(4), 353–388 (1993)

15. Minas, M., Viehstaedt, G.: Diagen: A generator for diagram editors providing di-
rect manipulation and execution of diagrams. In: 11th Int. IEEE Symp. on Visual
Languages, pp. 203–210. IEEE CS, USA (1995)

16. Mohagheghi, P., Haugen, Ø.: Evaluating domain-specific modelling solutions. In:
Trujillo, J., et al. (eds.) ER 2010. LNCS, vol. 6413, pp. 212–221. Springer,
Heidelberg (2010)

17. Moody, D.: The “physics” of notations: Toward a scientific basis for constructing
visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779
(2009)

18. Moody, D., van Hillegersberg, J.: Evaluating the visual syntax of UML: An analysis
of the cognitive effectiveness of the UML family of diagrams. In: Gašević, D.,
Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 16–34. Springer,
Heidelberg (2009)

19. Object Management Group: Diagram Definition. Version 1.0. OMG Document
Number: formal/2012-07-01 (2012), http://www.omg.org/spec/DD/1.0/

20. Object Management Group: OMG Unified Modeling Language (OMG UML), In-
frastructure. Version 2.5 - Beta 2. OMG Document Number: ptc/2013-09-05 (2013),
http://www.omg.org/spec/UML/2.5/Beta2/

21. Rich, C.: Building task-based user interfaces with ansi/cea-2018. Computer 42(8),
20–27 (2009)

22. Wikipedia: Circuit diagram (2013), http://bit.ly/1mVvwMI
23. Winn, W.: Learning from maps and diagrams. Educational Psychology Review 3,

211–247 (1991)

http://code.google.com/a/eclipselabs.org/p/spray
http://hal.archives-ouvertes.fr/hal-00706701
http://www.omg.org/spec/DD/1.0/
http://www.omg.org/spec/UML/2.5/Beta2/
http://bit.ly/1mVvwMI

An Empirical Study on the Anticipation

of the Result of Copying
and Pasting among UML Editors

Daniel Liabeuf, Xavier Le Pallec, and José Rouillard

Université de Lille 1, Laboratoire d’Informatique Fondamentale de Lille,
59655 Villeneuve d’Ascq Cédex, France

{daniel.liabeuf,xavier.le-pallec,jose.rouillard}@univ-lille1.fr

Abstract. Copy and paste is a function that is very popular in software
programming. In software modeling, when a person performs a copy and
paste, she/he expects that the copy will be similar to the original. The
similarity refers to a selection of what properties and references from the
original element have to be copied. This problem seems difficult because
this feature is not addressed in scientific literature, is rarely available
in — de-facto standard — editors of UML class diagram or functions
differently from one editor to another. In this article, we will show that a
significant part of the solution depends on the metrics used. We propose
three families of metrics that produce various copy and paste behaviors.
We adopted an empirical approach to assess their ergonomic qualities. We
asked 67 people to predict results of a series of copy-pasting experiments.
We observed two populations, one influenced by the visual representation
and the other by semantics.

Keywords: Copy and paste, Diagram editor, Empirical study.

1 Introduction

Model Driven Engineering (MDE) is claimed to be a convincing way to deal with
the increasing complexity of information systems [20]. First, meta-modeling al-
lows the stakeholders of a project to specify requirements, structure and behavior
of the future system through different focused models that are easy to visualize.
Second, model weaving/transformation techniques allow to merge those sub-
models and make them productive [6]. However, modeling remains a software
development activity and inherits from the same demands. Reusing is part of
them and generally receives great attention from the software engineering com-
munity. Nevertheless, one of the easiest reuse technique, which is widespread in
programming [9,11], did not receive much attention in the MDE community:
the Copy and Paste (CnP).

During the practical courses on UML that we oversaw, we observed that most
students were not satisfied with the CnP provided by UML editors (Papyrus,
Magic Draw, RSA, and Enterprise Architect) and generally did not use it. If

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 32–47, 2014.
© Springer International Publishing Switzerland 2014

Anticipation of the Result of Copying and Pasting among UML Editors 33

we look closer at current UML tools, we see that there is no consensus among
them for this functionality. Our recent discussions with developers of Papyrus
and OpenFlexo have convinced us that implementing CnP in graphical modeling
tools is not trivial and have motivated us to deeply investigate this issue. We
first analyzed the dimensions that must be considered when CnP-ing graphical
model elements. Then we asked UML users to forecast the behavior of CnP
(on a series of examples) to see what seemed to be the most intuitive one for
them. The results allowed us to determine to what extent previous dimensions
intervened within users’ anticipation and to detect the type of situations where
there would be a problem (i.e., no consensus). We concluded by giving directions
to solve such problems.

The remainder of the paper is organized as follows. Section 2 reminds us why
CnP is strategic in Software Development and why it is more complex when
dealing with graphical model elements than the usual CnP or Copy and Paste
Special of classic application suites. Here, we also explain why we focus on UML
class diagrams. Section 2.4 demonstrates that there is no consensus among UML
editors for CnP on class diagrams. Section 3 aims to explain the complexity of the
CnP issue by noting the difficulty in finding answers from the three underlying
dimensions (syntax, semantics and visual notation) of graphical model elements.
Section 4 describes the methodology we adopted to study the anticipations of
UML users. In the last section, we discuss the results.

2 Copy and Paste in Software Engineering and in
Software Modeling

In this section, we first discuss why CnP is useful in Software Development. After
discussing how CnP is implemented in usual application suites, we will identify
the reasons why this classic behavior is not suited to the context of Software
Modeling.

2.1 A Valuable Tool in Software Development

It is commonly accepted that duplications due to CnP slow down the spread of
fixes and improvements. This is one of the main causes of degrading software
quality. Despite these shortcomings, the scientific community does not propose
replacing CnP and prefers to find solutions for the problems it causes [10,12].
CnP is popular and therefore, it is difficult to imagine alternatives.

This functionality is particularly popular among programmers. In his study
on the psychology of programming, Burkhardt [4] shows that CnP is a major
player in the understanding of code fragments. Programmers use it to understand
a snippet via a trial and error strategy. Thus CnP, combined with the ability
to quickly run proto-programs and efficient debugging tools, helps to quickly
understand a candidate artifact to reuse. This ability to quickly test artifacts is
also present within model-oriented environments thanks to model transformation
and code generation mechanisms. CnP remains relevant in Software Modeling.

34 D. Liabeuf, X. Le Pallec, and J. Rouillard

2.2 Copy and Paste in Editing Tools

In the beginning (Xerox PARC, in the 70s), the CnP technique was limited to
text duplication. Today, most editing softwares (for images, text, spreadsheets,
diagrams, etc.) propose it. From an interactive perspective, copying and pasting
occurs most commonly in an ordered sequence of commands: the selection of
what will be copied, the invocation of the copy function, the destination selection,
and the invocation of the paste function. We also find a more advanced forms
of copy and paste called special. Paste special is distinguished by an additional
step where the operator can reduce their original selection. For example, when
one copies rich text with editors like LibreOffice Writer or Microsoft Word, paste
special will prompt a choice between the full selection (rich text) or a reduced
version of it (plain text). This interactional difference between the regular and
special CnP incites us to consider copying and pasting from a functional point of
view: it is a reproduction technique of editing objects that requires the selection
of what should be reproduced and where it should be reproduced. From this
point of view, Copy and Paste Special is a regular CnP but offers an internal
refinement of what should be copied.

2.3 Copy and Paste in Software Modeling

There is little attention from the scientific community given to CnP in Soft-
ware Modelling. Domain-Specific Modeling: Enabling Full Code Generation [7]
is probably the most advanced work in this area. In their book that guides the
creation of graphical model editors, Kelly & Tolvanen distinguish copy by value
versus copy by reference. The first method is similar to the usual CnP: the se-
lected element is duplicated and becomes independent from the original. The
originality of the second method comes from the model-diagram duality: it con-
sists in replicating only the graphical element representing its model element.
This method creates a new graphic element without creating a new model el-
ement or changing the model. But in both cases, the operator must select the
graphical representation of the element to be copied. This problem is often solved
in UML editors by providing a paste special that allows the operator to specify
if the selection refers to the model element or to its representation.

Still in their book, Kelly & Tolvanen specify that copy by value thus always
includes the idea that the copy is to a certain depth. Indeed, the model element is
defined by its properties and its relationship with other model elements. When
copying by value, it is expected that the copy retains some characteristics to
consider it in keeping with the original. When copying to an external model, a
copied element will be accompanied by extra elements to the initial selection.
Otherwise, the copied element boils down to being a new instance of the same
type as the original but with a loss of meaning that will be more or less important
according to the context. However, Kelly & Tolvanen did not define how to
measure depth and the critical value beyond which elements cease to be added.
These inaccuracies allow a wide range of interpretations and thus, many ways
to perform CnP by value.

Anticipation of the Result of Copying and Pasting among UML Editors 35

2.4 CnP in UML Editors: The Case of Class Diagrams

CnP does not seem to be trivial when dealing with graphical model elements.
Do all authors of modeling tools agree on how CnP has to behave? Rather
than analyzing all current software modeling editors, we limit ourselves to UML
editors with a focus on class diagrams. First, UML is widespread, so we can
benefit from a large panel of editors. Second, as class diagrams are the most
supported type of diagrams in UML editors, we can compare many of them on
the same basis. Finally, a class diagram (CD) is a type of very basic diagram
with no logic or temporal operators that may alter the way CnP is implemented:
structural considerations of CD can be found in many meta-models.

Table 1. Support of copy-paste among editors of UML class diagrams

Product Release date
Destination model
source foreign

Astah 2014-01-16 Yes Yes
Modelio 2013-12-20
Software Ideas Modeler 2013-03-23 Yes Yes
Visual Paradigm 2013-03-07 Yes
Papyrus 2013-02-13 Yes
Enterprise Architect 2013-01-15 Yes
Innovator 2012-12-13 Yes Yes
MagicDraw 2012-12-06 Yes
Together 2012-11-07 Yes
Metamill 2012-10-30 Yes
Umodel 2012-10-19 Yes
Visual Studio 2012-09-12 Yes Yes
Rational Rhapsody Modeler 2012-09-11 Yes Yes
eUML2 Modeler 2012-08-30
AmaterasUML 2012-07-16 Yes Yes
Rational Software Architect 2012-06-27
Artisan Studio 2012-05-23
Open ModelSphere 2012-04-13 Yes Yes
ArgoUML 2011-12-15
BOUML 2010-07-14
EclipseUML 2010-05-09
Posëıdon for UML 2009-12-01 Yes
Apollo 2007-12-18

We performed some CnP on a set of 23 UML editors (listed in Table 1)
to determine what relations or properties an editor keeps when CnP-ing a class
(attributes, references, associated classes, components, container, etc.). The CnP
has been done within two configurations: internal CnP, meaning the source and
target (models) are the same, and external CnP, where the source and target
are different. Table 1 shows the status of CnP among the set of tested UML
editors in their most recent version. A majority of editors (15 out of 23) support
internal CnP (by value) whereas only 7 out of 23 support external CnP.

Table 2 shows the different classes of UML editors that we observed when we
performed our series of tests. The classification is related to the UML editors
that keep or add an element to/from the initial selection during an external CnP.
If the latter is not supported, tests are performed with internal CnP in order to

36 D. Liabeuf, X. Le Pallec, and J. Rouillard

compare the maximum number of editors. The largest family (Cutters) includes
seven editors, where four support external CnP. When one copies and pastes a
class from an editor of this family, it duplicates the name and attributes of the
class and the name and cardinality of the attributes. However, the types of at-
tributes are not duplicated but referenced. In the context of external CnP (when
the editor supports it), this reference is inconsistent (!) and sometimes causes
bugs1. This problem of inconsistent relationships is particularly common because
it affects five of the seven editors concerned. Associations and generalization links
are not duplicated/referenced. It is the same for the concerned properties (that
reference associations or superclasses). The Brokers family works in almost the
same way but duplicates the property related to generalization and references
corresponding superclasses in the case of internal CnP (otherwise it stays in-
consistent). Astah is similar to the Cutters family but duplicates types involved
in attributes of copied class. Innovator adds the duplication of the superclasses
(and their referencing). Both editors from the Preservatives family, where only
internal CnP is available, duplicate types of attributes and associations, but they
only reference superclasses.

Table 2. Classification of UML Editors about CnP / class diagrams

As we can see, all elements at a distance/depth of 1 (attribute and general-
ization property) are not considered in the same way by all editors. It is the
same with those at distance/depth of 2 (attribute types, superclass reference,
association) or 3 (the other end of an association). A way to better understand
why there is no consensus is to see if there are as many differences between a
set of UML users and to examine those differences with an analytical framework
that goes further than the simple syntactic distance.

1 We may mention the model import mechanisms that allow extra-model references
and could solve some inconsistent issues. However, this dependence is in conflict with
established practice whereby clones are indistinguishable from their originals.

Anticipation of the Result of Copying and Pasting among UML Editors 37

3 Dimensions to Measure the Depth

We just saw that CnP by value implies a decision problem. This problem is
choosing what model elements will be added to the explicit selection. These
decisions are based on the critical depth and the distance between the explicitly
selected model element and the additional candidates. However, no work has
been done that mentions the correct critical depth and how to measure said
depth. In this section, we focus on how to measure the depth.

We have established that measuring depth is, in fact, measuring a distance
between two model elements. However, it is possible to have different results de-
pending on the selected viewpoint. For example, we may decide that the distance
between two model elements correspond to the Levenshtein distance2 between
their names. This proposal does not make much sense but it shows that we need
a dimension to create a metric. Modeling languages are typically defined by
three viewpoints [8]: abstract syntax, concrete syntax and semantics. We pro-
pose to use them as dimensions and we will see that the produced distances are
different. These differences are illustrated in Fig. 1.

3.1 Abstract Syntax

An abstract syntax defines symbols and construction rules that are allowed in
a modeling language. According to its abstract syntax, a model element may
be linked to other elements. In practice, a model element is not linked to any
other model and should rather be viewed as a directed graph. From this point of
view, a model element may have an indirect relationship with a known amount of
intermediates. We propose to use this property to create a metric: the syntactic
path is the shortest directed path between two model elements and the
syntactic distance is the number of arcs in the corresponding syntactic
path. For example, the syntactic path between a subclass and its superclass is
Class::generalizations::general and its syntactic distance is two.

3.2 Concrete Syntax

Although not essential, models are most commonly displayed through diagrams.
Such types of diagrams have to respect the visual vocabulary and grammar that
are associated to the applied abstract syntax. This visual mapping is called the
concrete syntax. For example, UML specifications recommend that a class be
graphically represented by a rectangle with one, two or three horizontal com-
partments [14] (respectively containing class name, properties and operations
representations). It is highly probable that one considers all these graphic sym-
bols as constituting a single form because they are visually inside the class shape.
This natural phenomenon can be used to decide which items should be kept dur-
ing a CnP.

2 The Levenshtein distance is the minimum number of single-character edits (i.e.,
insertions, deletions or substitutions) required to change one word into the other.

38 D. Liabeuf, X. Le Pallec, and J. Rouillard

The Gestalt perceptual grouping principles describe the factors that influ-
ence the groupings made by our visual perception [22]. Table 3 summarizes the
principles to consider when dealing with software diagrams. Gestalt’s theory ex-
plains how our perception combines visual forms. However, it fails to quantify a
visual distance between visual forms only for very simple cases [21]. To the best
of our knowledge, measuring visual distances in diagrams cannot be done in a
formal way. We set (but not quantify) visual distances according to the theory
of Gestalt and get five types of grouping whose influence on visual distance can
be ordered.

Table 3. Principles of perceptual grouping most frequently encountered in UML class
diagrams

Principles Effects

Proximity Spatially close forms tend to be grouped together.
Similarity The most similar elements (in color, size, and orientation for

these examples) tend to be grouped together.
Good Gestal Forms arranged to create a regular and simple pattern

(aligned, curved, hierarchical, radial etc) tend to be grouped
together.

Common region Forms placed inside a closed shape tend to be viewed as
components of the enclosing form [16].

Connectedness Forms connected by a link are more likely to be perceived as
components of a larger form [15].

Common fate &
synchrony

Forms with correlated behaviors (e.g., moving in the same
direction) tend to be grouped together[1,22].

In the case of class diagrams, we consider that the visual encapsulation (which
is based on the principle of common region) generates the smallest perceptual
distances. Thus, the class’s name, properties and operations (or package’s classes
and sub-packages) are visually very close. Even without being visually connected,
classes may be perceptually grouped when they are similar (e.g., size and color),
spatially close or arranged remarkably (e.g., hierarchically). Although not as
powerful as encapsulation, connectedness (observed particularly when the as-
sociation or the generalization are used) decreases significantly the perceptual
distance. Finally, the largest visual distance is between elements that benefit
only from grouping by proximity. This relates in particular to the association
between classes when the property is located outside of the class, close to the
associated class.

Risks of inconsistencies are observed if the visual distance is used to solve
the problem of decision. These risks vary depending on the critical depth used.
In the first step of visual distance (embedded elements), classes are copied with
their name, properties and operations. In turn, the properties and operations are
copied with their name, cardinality and a reference to their type but not neces-
sarily the concerned type itself. In this scenario, the properties and operations

Anticipation of the Result of Copying and Pasting among UML Editors 39

are of a type that is not present in the target model, which will make it incon-
sistent. In the second step (linked elements), the associated classes are grouped
perceptually but not in their indissociable properties.

3.3 Semantics

If the abstract syntax defines the building blocks (concepts and their associa-
tions) that are to be used to create models, the designer should refer to the
semantics of the modeling language to understand their meaning. Semantics has
a major impact on how a designer perceives a modeling language and has to be
included in the calculation of the distance between two elements. Semantic defi-
nition of the modeling language and its interpretation are the two key elements
to consider for this goal. The interpretation consists in assigning meaning to
a syntactic structure and extracting relevant information. In our case, relevant
information is the contribution of a model element in the definition of elements
that are selected to be CnP-ed. For example, what is the contribution of Prop-
erties in the definition of a Class? This objective differs from those encountered
in the literature. Indeed, the work that operates semantic metrics is designed to
determine the similarity between two elements [2,17,18,19].

The second key to achieve a distance based on semantics is the semantic
definition of the language. This definition is the material from which useful
material to interpret can be extracted. We have identified several sources/sites
that an interpreter could use: the semantic domain, the meta-model and the
visual notation.

According to Harel et al., a [semantic domain] specifies the very concepts
that exist in the universe of discourse [5]. The semantic domain defines what
is the concept, its effects and the constraints associated with it. For example,
one of the effects of specialization (inheritance) in UML is that “each instance
of the specific classifier is also an instance of the general classifier” [14]. One
can interpret this definition by a very short semantic distance from a specialized
class to its superclass (although not necessarily in the other direction). The UML
editor Innovator behaves according to this example.

Meta-models define the major part of the abstract syntax, especially “the
legal connections between language elements” [7]. These connections are ruled
and corresponding rules can be interpreted. The UML meta-model is written
with MOF, which allows two kinds of connections: composition or association.
The difference between them is important: an object can be associated with
several other objects, but on the other hand, an object can be the component of
only one. This exclusive relationship created by composition can be interpreted
as a shorter semantic distance between composed classes than between associated
classes. The editors of the family Brokers (cf. Table 2) have such a behavior.

When reading a diagram, a human reader is likely to give meaning to visual
elements through their positions relative to each other, their sizes, their connec-
tions, the direction of arrows, etc. This intuitive interpretation is studied about
the quality of visual notations that Moody named semantic transparency. “Se-
mantic transparency is defined as the extent to which the meaning of a symbol

40 D. Liabeuf, X. Le Pallec, and J. Rouillard

can be inferred from its appearance” [13]. According to Moody, the semantic
transparency of a representation can be immediate, opaque or perverse. When
transparency is immediate, the semantic is fully deductible from the representa-
tion – even a novice can understand its meaning. When it is opaque, the seman-
tic is not deductible from the representation. When it is perverse, the semantic
deduced from the representation is false. Since UML class diagrams can be qual-
ified as opaque, it is difficult to distinguish the influence of visual perception
from the influence of semantic transparency. However the influence of semantic
transparency decreases with experience of the reader. As a consequence, we will
be able to make this distinction if the knowledge level of the reader allows it.

Perceptual Syntactic Meta-model’s se-
mantic

Semantic domain Key

The measurement origin is the upper-left class

Fig. 1. Distances produced through presented metrics

4 Methodology and Experience

We now propose to empirically assess the relevance of the three previous dimen-
sions and their ergonomic qualities for the CnP. To do this, we asked 73 people
to predict the behavior of CnP performed by UML editors. We used the series
illustrated in section 3 for this purpose. This series has been designed to assess
the impact of each of the previous dimensions. In this section, we will describe
the details of the methodology we applied.

4.1 Participants

Our target population is compose of people capable to read and draw UML class
diagrams. Our sample is composed of 73 people who are mainly students. There
are two factors that may have an impact on our survey: the level of knowledge
of UML and the CnP experience.

Knowledge of UML. As the level of UML knowledge varies among software
practitioners, we have selected participants to reflect these different levels of
knowledge thus, attaining a representative sample of UML users. This also al-
lows to evaluate its impact. Our set of participants is composed of 10 students in a

Anticipation of the Result of Copying and Pasting among UML Editors 41

Master of Biology and 61 students in Computer Science, where 19 are in license
2nd year, 16 in license 3rd year and 26 in Master 1st year. The sample also
includes one software practitioner and a psychologist. Students in biology will
be the main group used to test the impact of semantics in their responses. More
than half of the participants claimed to know class diagrams quite well.

Copy and Paste Experience. An operator anticipates the behavior of a tool
when she/he invokes one of its functionalities. The quality of this anticipation
may vary according to her/his knowledge of the tool and thus can be improved
through learning. When one seeks to improve the ergonomics, that means that
one wants to reduce the learning curve. So, if we are looking for an ergonomic
CnP of model elements, that means that we are aiming to specify it in a way that
produces results that conform to anticipations of operators who have no previ-
ous experience. Only two participants used a tool that allows CnP by value.
They mentioned that their use of CnP was limited. Because of the small number
of experienced participants and their low-level of experience, we chose to in-
clude them in our sample. Six participants provided incomplete or non-readable
responses; therefore, our sample has been ultimately reduced to 67 participants.

4.2 Task

We requested the participants to predict the outcome of a CnP that should
produce a UML editor. To ensure that experience is relevant, it was necessary
that the subject had a minimum of experience in the assigned task. This is the
reason why we deliberately chose participants with little experience in UML and
associated editors.

To perform the requested task, it was necessary to specify the class to be
copied. The class was designated by a marker introduced by a mouse click.
In this way, one limits the uploading visual disturbances and makes the task
more realistic. If we had chosen to designate the class, such as the surrounding,
this would have resulted in a significant decrease in visual distance between all
elements inside the selection shape and therefore introduce a bias. Still to limit
the insertion of bias, the responses are requested free design and without time
limit. Finally, we specified that the pasting destination be a blank environment
that would not tolerate links with the source environment.

There were eight questions concerning four types of connections : composition
represented by an attribute [3], composition represented by an association link,
inheritance and packages. These types were tested twice, by selecting each end
of the connection.

4.3 Variables

Studied Variable. A strong assumption of our approach is that a subject
decides to keep an extra element when its distance is below a critical threshold.
A second assumption of our approach is that this distance is assessed through
the presented metrics. Consequently, metrics and critical depth used by a subject

42 D. Liabeuf, X. Le Pallec, and J. Rouillard

are independent and invoked variables (they are inherent to the individual and
we can not have an effect on them). Our experiment aims to evaluate to what
extent dimensions occur in their decision.

Distance. We assume that distances between graphical model elements are pa-
rameters of forecast production. So, we consider them as independent variables.
Except for syntactic and meta-model based semantic distances, it is impossible
to accurately measure a distance. Nevertheless, it is sometimes possible to de-
cide if a distance is superior to another (ordinal data). For example, two classes
connected by a line are closer perceptually than without.

Knowledge of the Subject. We asked people to forecast the result of a copy-
paste in a diagram editor. It is possible that subjects have already done this task
before. In these circumstances, a subject is likely to answer the observed result
rather than the result of its assessment of distances. This variable was supervised
during sampling and task development; making it an invoked, independent and
secondary variable.

Answers. The answer of a subject is composed of the explicitly selected item
and additional items to this selection. According to our theoretical model, the
set of additional items depends on the metric used by the subject. Therefore,
answers are the dependent variable of the target variable (used metric).

5 Experiment Results

First, we check some hypotheses from simple situations. These hypotheses are
specific and it is difficult to draw general conclusions. Still, they can provide
credit on the influence of presented metrics. Second, we propose a more descrip-
tive method that is able to take into account more observations simultaneously.

5.1 Influence of Visual Representation

We assume that a decrease in the visual distance between two classes increases
the probability that the class connected to the copied class is part of prognostic.
To verify this hypothesis, we must compare situations where only visual distance
changes. These situations are produced using the dual notation of the compo-
sition in UML [3]. In the first group, we represent the composition by a class
attribute. In the second, the composition is represented using an association.
This attribute is visually within the composite class. In the second, the com-
position is represented using an association. This time, the property is visually
outside the composite class. Furthermore, composite and component classes are
visually connected. With the connectedness property, this connection reduces
the visual distance between classes.

Table 4 shows that participants add a class most often when it is visually
connected to the copied class. A Fisher exact test shows a probability less than
1‰ (p-value) that connecting the classes did not influence the response, which
means that our hypothesis is correct with less than 1‰ risk of being wrong. The

Anticipation of the Result of Copying and Pasting among UML Editors 43

Table 4. Effect of reducing the visual distance between two classes

Opposite added?
Total

No Yes

Linked
No 121 13 134
Yes 88 46 134

Total 209 59 268

visual representation appears to play an important role in prognostics because
the visually connected class is added 4.9 as much as the unconnected class. This
odd ratio is an average ; there is a 95% chance that the real value is in [2.5; 9.5]
(the 95% confidence level). However, we must be careful to not jump to con-
clusions. Indeed, metric based on semantic transparency is strongly associated
with visual distances. Therefore, these observations can be explained because
the participants use a perceptual or a semantic transparency-based metric.

5.2 Influence of Semantic Transparency

The previous observation can be explained by the influence of semantic trans-
parency. To demonstrate its influence, we proposed determining whether the
perceived distance between two visually associated classes is the same from one
class to the other. Indeed, the visual metric is symmetric, that is to say that
the distance is substantially the same in both directions. However, the semantic
transparency based metric is asymmetric: the distances can vary, for example,
the direction of an arrow. As the composition association uses a diamond or
an arrow at each end, the situation can be analyzed. Discriminatory behavior
means that transparency semantic influences the prognosis. On the contrary, ho-
mogeneous behavior means that semantic transparency has no influence on the
prognosis.

Table 5. Asymmetry in the perception of inter-class distances visually composed

Opposite added?
Total

No Yes

Selected Component 52 15 67
class Composite 36 31 67

Total 46 88 134

Table 5 provides more detail concerning the numbers on the second line of
Table 4. This table shows whether their prognostic adds or not the opposite class
according to the selected class. A Fisher exact test rejects the independence of
answers with a p-value less than 1%. The effect is important because it is 3.0
times more likely that a component class will be added than the composite
(95% confidence level = [1.4; 6.3]). It is concluded that semantic transparency
significantly and strongly influences the prognosis of participants. Yet it is not
enough to completely exclude the use of this visual metric.

44 D. Liabeuf, X. Le Pallec, and J. Rouillard

5.3 Influence of the Semantic Domain

We have seen that semantic transparency affects the prognosis of participants.
According to Moody, semantic transparency has a role in the semantic interpreta-
tion of a diagram. However, the importance of this role decreases with increasing
knowledge of the interpreter. As our sample is largely composed of students, the
level of UML knowledge of our sample is certainly lower than the level of the
target population. Therefore, it is essential to ensure that semantic transparency
gives way to semantic domain when the level of knowledge increases.

Therefore, we want to verify that the knowledge improvement affects the prog-
nosis of CnP and, in turn, that the semantic domain affects the prognosis of
CnP. To improve the level of knowledge, questions about visual composition are
reproduced and then names are changed3. Previously anonymous (Unnamed-
{two random letters}), the names are switched to be meaningful. In this way,
names provide information about the nature of the model elements and their
relationships. Thus, the composite and the component classes are respectively
named Car and Wheel.

Table 6. Influence of class names on the prognosis

Output varies?
Total

No Yes

Semantic No 62 5 67
distance varies? Yes 44 22 66

Total 106 27 133

To demonstrate the influence of knowledge (and therefore the distance seman-
tics), we check prognostic changes when no manipulations are done and when
meaningful names are used. Table 6 counts prognostic changes between these
two situations. A Fisher exact test shows a significant difference with a p-value
less than 1 ‰. It is concluded that improving UML knowledge of a subject (with
low initial knowledge) leads to a significant change in his prognosis. The odds
ratio indicates that a subject changes 6.2 times more often on average (95%
confidence level = [2.2; 17.6]) his prognostic when names become meaningful.

5.4 Overall View and Discussion

To demonstrate the influence of a metric, we created situations in which one
distance varies. This method showed significant and powerful effects of visual
representation, semantic transparency and semantic domain but has some lim-
itations. First, we can neither confirm nor deny the influence of the syntax or
meta-model semantic. We were not able to vary these distances independently
of others. The second limitation relates to the problem of the internal validity of

3 These questions are at the end of the questionnaire. They were asked for an answer
in order and without changing previous answers.

Anticipation of the Result of Copying and Pasting among UML Editors 45

the study. Indeed, there is one specific hypothesis to support each of the three
metrics tested. Therefore, it is difficult to expand the scope of our observations.
Finally, our demonstrations seem confused because they supported contradic-
tory hypotheses and did not clearly indicate to editor designers what metrics
they should focus on.

To address these limitations, we propose a compatibility score for each subject-
metric tuple4. Our score is the ratio between the amount of non-contradictory
observations and the total of observations done for a tuple. The first issue is
resolved by searching the contradictions between the responses of a subject’s
responses to a theoretical model characterized by a couple metric-critical dis-
tances5. The second is partially solved because the score is the synthesis of
several observations. Consequently, it is easier to compare these scores and draw
a conclusion.

Syntactic Meta-model’s semantic Semantic domain Visual

Fig. 2. Compatibility scores of some metric

Figure 2 shows the distribution of compatibility scores for metrics based on
syntax, meta-model, semantic domain and visual perception. Added to cluster
analysis, these scores reveal two groups. One group performs the prognostic
according to the use of a metric based on visual distances with encapsulation
as the best critical distance. That is to say, these people are forecasting a copy
that retains all graphic shapes located within the copied container and only
those shapes. The second group brings together subjects who tend to maintain
relationships and elements that play a strong role in the definition of the copied
element. For example, three out of four members of this group retain the entire
composition if the composite class is copied (not the reverse) or the superclass
if the subclass is copied (and not the reverse).

Pearson’s correlation coefficient between visual and semantic metric is very
significant (p-value less than 1‰) and strong (−0.71). This means that mem-
bership in a group causes the exclusion from the other group. This duality is

4 The influence of semantic transparency has only one observation. It is therefore not
included.

5 When the critical distance is an important parameter, we retain the critical distance
with the best score, that is to say one that generates the least contradictions and
therefore has the highest score.

46 D. Liabeuf, X. Le Pallec, and J. Rouillard

even more important that the two group’s behavior are in contradiction with
each other. This large difference in behavior mean that these metrics are in fact
additional. Therefore, we recommend offering both behaviors rather than one or
the other. Editors may propose either one through a paste special. Therefore, the
prognostic based on semantic transparency can be seen as a transition period.
Indeed, we have shown that the domain knowledge affects prognosis.

We note that it is possible to hide visual elements, such as attributes, among
many UML editors. Considering the strong influence of representation, we recom-
mend paying attention to these hidden elements. Indeed, it is likely that copying
them is not the behavior expected by the person that predicted in accordance
with a visual perception-based metric. For the same reason, it is recommended
to avoid adding copy of in the name of the copied element (only one subject
showed this behavior).

Syntactic and semantic meta-model-based metrics produce the lowest scores.
These metrics are both based on the abstract syntax of the language. The low
score can be explained by the fact that participants do not know the existence of
the underlying abstract syntax of a diagram or they do not take it into account
when they face a diagram.

6 Conclusions

In this article, we have shown that there are many ways to make a copy and
paste in graphical modeling. One way to do is to extend the initial selection
to a certain depth. We proposed several metrics to define the notion of depth
in graphical modeling and then we experimentally evaluated their ergonomic
qualities. To do this, we asked 67 participants to forecast the result of some
copy-paste instances. Their answers allowed us to demonstrate the influence of
visual perception and semantics on their prognosis. With these demonstrations,
we concluded that copy and paste are made according to these observations.
These recommendations are contradictory to most implementations of current
UML class diagram editors.

References

1. Alais, D., Blake, R., Lee, S.H.: Visual features that vary together over time group
together over space. Nature Neuroscience 1(2), 160–164 (1998)

2. Blok, M.C., Cybulski, J.L.: Reusing UML specifications in a constrained applica-
tion domain. In: Proceedings of 1998 Asia Pacific Software Engineering Conference,
pp. 196–202 (December 1998)

3. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison Wesley Professional (2005)

4. Burkhardt, J.M., Détienne, F., Wiedenbeck, S.: Object-oriented program compre-
hension: Effect of expertise, task and phase. Empirical Software Engineering 7(2),
115–156 (2002), http://dx.doi.org/10.1023/A%3A1015297914742

5. Harel, D., Rumpe, B.: Meaningful modeling: what’s the semantics of “semantics”?
Computer 37(10), 64–72 (2004)

http://dx.doi.org/10.1023/A%3A1015297914742

Anticipation of the Result of Copying and Pasting among UML Editors 47

6. Jézéquel, J.M.: Model driven design and aspect weaving. Software & Systems Mod-
eling 7(2), 209–218 (2008)

7. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. John Wiley & Sons, Inc., Hoboken (2007)

8. Caskurlu, B.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.)
IFM 2002. LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002)

9. Kim, M., Bergman, L., Lau, T., Notkin, D.: An ethnographic study of copy and
paste programming practices in oopl. In: Proceedings of 2004 International Sym-
posium on Empirical Software Engineering, ISESE 2004, pp. 83–92 (August 2004)

10. Koschke, R.: Identifying and removing software clones. In: Software Evolution,
pp. 15–36. Springer, Heidelberg (2008)

11. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: Cp-miner: finding copy-paste and re-
lated bugs in large-scale software code. IEEE Transactions on Software Engineer-
ing 32(3), 176–192 (2006)

12. Mann, Z.: Three public enemies: cut, copy, and paste. Computer 39(7), 31–35
(2006)

13. Moody, D.: The “physics” of notations: Toward a scientific basis for constructing
visual notations in software engineering. IEEE Transactions on Software Engineer-
ing 35(6), 756–779 (2009)

14. Object Management Group: OMG Unified Modeling Language (OMG UML), In-
frastructure. Version 2.4.1. OMG Document Number: formal/2011-08-05 (August
2011), http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/

15. Palmer, S., Rock, I.: Rethinking perceptual organization: The role of uniform con-
nectedness. Psychonomic Bulletin & Review 1(1), 29–55 (1994)

16. Palmer, S.E.: Common region: A new principle of perceptual grouping. Cognitive
Psychology 24(3), 436–447 (1992)

17. Robles, K., Fraga, A., Morato, J., Llorens, J.: Towards an ontology-based retrieval
of UML class diagrams. Information and Software Technology 54(1), 72–86 (2012)

18. Roddick, J.F., Hornsby, K., de Vries, D.: A unifying semantic distance model for
determining the similarity of attribute values. In: Proceedings of the 26th Aus-
tralasian Computer Science Conference, ACSC 2003, pp. 111–118. Australian Com-
puter Society, Inc., Darlinghurst (2003)

19. Rufai, R.A.: New Structural Similarity Metrics for UML Models. Ph.D. thesis,
King Fahd University of Petroleum & Minerals, Saudi Arabia (2003)

20. Schmidt, D.: Guest editor’s introduction: Model-driven engineering. Com-
puter 39(2), 25–31 (2006)

21. Wagemans, J., Elder, J.H., Kubovy, M., Palmer, S.E., Peterson, M.A., Singh, M.,
von der Heydt, R.: A century of Gestalt psychology in visual perception: I. Per-
ceptual grouping and figure-ground organization. Psychological Bulletin 138(6),
1172–1217 (2012)

22. Wertheimer, M.: Untersuchungen zur lehre von der gestalt. ii. Psychologische
Forschung 4(1), 301–350 (1923)

http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/

Toward a UCM-Based Approach

for Recovering System Availability
Requirements from Execution Traces

Jameleddine Hassine1 and Abdelwahab Hamou-Lhadj2

1 Department of Information and Computer Science,
King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

jhassine@kfupm.edu.sa
2 Electrical and Computer Engineering Department,

Concordia University, Montréal, Canada
abdelw@ece.concordia.ca

Abstract. Software maintenance accounts for a significant proportion
of the cost of the software life cycle. Software engineers must spend a
considerable amount of time understanding the software system func-
tional attributes and non-functional (e.g., availability, security, etc.) as-
pects prior to performing a maintenance task. In this paper, we propose
a dynamic analysis approach to recover availability requirements from
system execution traces. Availability requirements are described and vi-
sualized using the Use Case Maps (UCM) language of the ITU-T User
Requirements Notation (URN) standard, extended with availability an-
notations. Our UCM-based approach allows for capturing availability re-
quirements at higher levels of abstraction from low-level execution traces.
The resulting availability UCM models can then be analyzed to reveal
system availability shortcomings. In order to illustrate and demonstrate
the feasibility of the proposed approach, we apply it to a case study
of a network implementing the HSRP (Hot Standby Router Protocol)
redundancy protocol.

1 Introduction

Software comprehension is an essential part of software maintenance. Gaining a
sufficient level of understanding of a software system to perform a maintenance
task is time consuming and requires studying various software artifacts (e.g.,
source code, documentation, etc.) [5]. However, in practice, most existing systems
have poor and outdated documentation, if it exists at all. One common approach
for understanding what a system does and why it does in a certain way is to
analyze its run-time behavior, also known as dynamic analysis [6]. Dynamic
analysis typically comprises the analysis of system behavioral aspects based on
data gathered from a running software (e.g., through instrumentation). Dynamic
analysis, however, suffers from the size explosion problem [23]; typical execution
traces can be millions of line long. In fact, executing even a small system may
generate a considerably large set of events. Hence, there is a need to find ways

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 48–63, 2014.
c© Springer International Publishing Switzerland 2014

UCM-Based Approach for Recovering System Availability Requirements 49

to create higher abstractions from low-level traces that can later be mapped to
system requirements. To tackle this issue, many abstraction-based techniques
have been proposed [19,16,21], allowing for the grouping of execution points
that share certain properties, which results in a more abstract representation of
software.

The widespread interest in dynamic analysis techniques provides the major
motivation of this research. We, in particular, focus on recovering non-functional
requirements, such as availability requirements, from system execution traces.
This is particularly important for critical systems to verify that the running
implementation supports availability requirements, especially after the system
has undergone several ad-hoc maintenance tasks. Avizienis et al. [1] have defined
the availability of a system as being the readiness for a correct service. Jalote [15]
deemed system availability is built upon the concept of system reliability by
adding the notion of recovery, which may be accomplished by fault masking,
repair, or component redundancy.

In this paper, we propose the use of Use Case Maps [14] language, part of
the ITU-T User Requirements Notation (URN) standard, as a visual means to
facilitate the capturing of system availability features from execution traces.
Previous work [11,12,10,8,9] has considered availability tactics, introduced by
Bass et al. [2], as a basis for extending the UCM [14] language with availability
annotations. Bass et al. [2] have introduced the notion of tactics as architectural
building blocks of architectural patterns. These tactics address fault detection,
recovery, and prevention.

This paper serves the following purposes:

– It provides an approach based on the high-level visual requirements descrip-
tion language Use Case Maps to recover system availability features from
execution logs. Using our approach, an analyst can select a particular feature
of interest, exercise the system with this feature and analyze the resulting
execution trace to determine whether or not availability is taken into ac-
count. Although, other visualization techniques can be employed, we have
selected the UCM language as our visualization method because it allows
for an abstract description of scenarios, that can be allocated to a set of
components. Furthermore, through the UCM stub/plugin concept, different
levels of abstractions can be considered. The resulting UCM can be later
analyzed using the UCM-based availability evaluation technique introduced
in [9].

– It extends the set of UCM-based availability features introduced in [10,8,9]
by introducing UCM-based distributed redundancy modeling. The proposed
extensions are implemented using metadata within the jUCMNav [20] tool.

– It demonstrates the feasibility of our proposed approach using a case study of
a network implementing the Cisco Hot Standby Router Protocol (HSRP) [4].

The remainder of this paper is organized as follows. The next section in-
troduces briefly the availability description features in Use Case Maps. Our
proposed approach for the recovery of availability requirements from execu-
tion traces is presented in Section 3. Section 4 demonstrates the applicability

50 J. Hassine and A. Hamou-Lhadj

of the proposed approach to the Cisco proprietary Hot Standby Router Protocol
(HSRP). A discussion of the benefits of our approach and a presentation of the
threats to validity is provided in Section 5. Finally, conclusions and future work
are presented in Section 6.

2 Describing Availability Requirements in Use Case
Maps

In this section, we recall the UCM-based availability requirements descriptions
that are relevant to this research. We mainly focus on (1) the implementation of
the exception tactic, part of the UCM fault detection modeling category, and on
(2) the redundancy modeling, part of the UCM fault recovery modeling category.
For a detailed description of UCM-based availability features, interested readers
are referred to [9], where the UCM-based availability extensions are described
using a metamodel.

2.1 Exception Modeling

Exceptions are modeled and handled at the scenario path level. Exceptions may
be associated with any responsibility along the UCM scenario execution path. A
separate failure scenario path, starting with a failure start point, is used to han-
dle exceptions. The failure path guard condition (e.g., R1-FD-Cond in Fig. 1(a))
can be initialized as part of a scenario definition (i.e., scenario triggering con-
dition) or can be modified as part of a responsibility expression. The handling
of the exception, embedded within a static stub (e.g., R1-ExceptionHandling
in Fig. 1(a)), is generally subject to the implementation of fault recovery tac-
tic through some redundancy means (see Section 2.2). Figure 1(c) shows the
metadata attributes of a responsibility (within the R1-ExceptionHandling stub)
implementing the StateResynchronization tactic. After handling the R1 excep-
tion, the path continues explicitly with responsibility R2.

(a) C1 exception handling sce-
nario

(b) R1 metadata (c) Fault recovery meta-
data

Fig. 1. UCM exception handling tactic

UCM-Based Approach for Recovering System Availability Requirements 51

In addition to the three metadata attributes associated with responsibility R1
(AvCat (specifies the availability category, e.g., FaultDetection), Tactic (specifies
the deployed tactic, e.g., Exception), and Severity (fault severity, e.g., 1 being
the most severe) that have been introduced in previous research [9,10], we add
a timestamp attribute to be able to capture the occurrence time of the respon-
sibility (extracted from the log files). Other time-based attributes such as delay
and duration, introduced as part of the Timed Use Case Maps language [13], are
not necessary in our context.

2.2 Redundancy Modeling

Fault recovery tactic focuses mainly on redundancy modeling in order to keep
the system available in case of the occurrence of a failure. To model redundancy,
UCM components are annotated with the following attributes: (1) GroupID
(identify the group to which a component belongs in a specific redundancy
model), (2) Role (active or standby role), (3) RedundancyType (specifies the
redundancy type, e.g., hot, warm, or cold, (4) ProtectionType (denotes the re-
dundancy configuration, e.g., 1+1, 1:N, etc.), and (5) Voting (specifies whether
a component plays a voting role in a redundancy configuration).

(a) Two redun-
dant compo-
nents

(b) C1 attributes (c) C2 attributes

Fig. 2. UCM node protection

Figure 2 illustrates an example of a system with two components C1 (active)
and C2 (standby) participating in a 1+1 hot redundancy configuration. It is
worth noting that the above redundancy annotations refer to the initial system
configuration state. The operational implications, in case of failure for instance,
can be described using the UCM scenario path, e.g., as part of an exception
handling path (see Section 2.1).

2.3 UCM Distributed Redundancy Modeling

The generic UCM-based annotations describing redundancy [9,10], presented in
the previous section, can be refined to cover redundancy of components that are
not physically collocated. Two or more components can be part of a redundancy
configuration without being physically on the same device. Such a redundancy

52 J. Hassine and A. Hamou-Lhadj

can be achieved through a redundancy protocol such as HSRP (Hot Standby
Router Protocol) [17] and VRRP (Virtual Router Redundancy Protocol) [18] in
IP-based networks.

(a) Distributed UCM Architecture

C2 2 Metadata

C1 2 Metadata

C1 1 Metadata

C2 1 Metadata

(b) Component Metadata Attributes

Fig. 3. Distributed UCM architecture implementing more than one redundancy con-
figuration

In order to describe redundancy protocols in UCM, additional metadata at-
tributes need to be incorporated:

– RedundancyProtocol : denotes the protocol name, e.g., HSRP, VRRP, etc.
– RedundancyProtocolGroup: denotes the redundancy group associated with

the redundancy protocol).
– VirtualIP : denotes the virtual IP address shared by one or more distributed

components.
– RedundancyProtocolState: denotes the redundancy protocol state, e.g., ac-

tive, standby, init, etc.).

Depending on the targeted abstraction level, other relevant metadata attributes
may be added like MacAddress. Figure 3(a) illustrates a generic UCM architec-
ture with 2 main components C1 and C2. Two HSRP redundancy configurations

UCM-Based Approach for Recovering System Availability Requirements 53

are described, one for group 1 that involves subcomponents C1-1 (active state)
and C2-1 (standby state), and the other for group 2 that involves subcomponents
C1-2 (standby state) and C2-2 (active state). More details about HSRP can be
found in Section 4.

3 Recovery of Availability Requirements from Execution
Traces

Figure 4 illustrates our proposed approach. The first step consists of collecting
system logs (from a single or multiple systems). Typically, a log file is composed
of individual log entries ordered in chronological order. Each entry is described
as a single line in plain text format and may contain one or more of the follow-
ing attributes: a timestamp, the process ID generating the event/error, opera-
tion/event prefix, severity of the error, and a brief description of the event/error.
Some systems (e.g., Apache and IIS) generate separate log files for access and
error.

Log of Component C1 Log of Component Ci…

Phase 1

Extraction and refinement of execution phases

Identification of a set of interacting components
with respect to one or many features

Merging logs

Phase 2 Phase N…

Collect log from a single
component

Log Customization

• Feature(s) keywords (e.g., protocol/feature name)
• User actions (e.g., new configurations, shutdown an interface, etc.)
• Events to monitor (e.g., new/lost neighbor, session timeout, etc.)
• Application ID, thread ID, Database name, etc.

Creation of correlations between execution phases

• Exception path triggers and
their respective severity

• Exception path actions/events

Phases correlation aids

Construction of a UCM with availability annotations

UCM normal path +
UCM exception path

Responsibilities
metadata

Components
metadata

Fig. 4. Recovery of availability requirements from execution traces approach

54 J. Hassine and A. Hamou-Lhadj

In case we are targeting systems with more than one component, a prior knowl-
edge of the possible interactions between the involved components (e.g., protocols
used to coordinate the interacting components) is required. After identifying the
interacting components, their respective log files are merged and sorted based
on timestamps. In order to have a focused analysis of the resulting log, we may
reduce its size by applying analyst-defined customization criteria. An analyst
may reduce or extend a log window, include or exclude log entries based on fea-
tures/protocols names, administrator operator actions (e.g., add/remove config-
uration, shut/unshut network interfaces, etc.), events to monitor (e.g., session
timeout, network interfaces state changes, neighbors up/down, etc.). To make
an insightful decision, these criteria are applied to the merged log rather than
individual logs.

The next step deals with the extraction of the system execution phases. An
execution phase is a grouping of a set of log entries (into clusters) based on a
predefined set of criteria, such as functionality, component ID, system events,
user actions, etc. Our ultimate goal is to be able to map log traces into UCMs
(the final step of our approach) using the availability annotations presented in
Section 2. Given the sequential nature of log file structures, additional analyst
input is required in order to distinguish a normal scenario path from an exception
path, and to construct correlations between execution phases. Analyst input may
include:

– List of potential events/actions/errors/failures triggering the exception path
and their respective severity (optional), e.g., shut/unshut a network inter-
face, protocol state changes (down/up), etc. These triggers should be placed
in the normal scenario path.

– List of potential events that should be placed in the exception path, e.g.,
failover, rollback, process restart, HSRP state changes, etc. Typically, an
exception path describes the system reaction to an error/failure (i.e., system
recovery). Hence, administrator actions should not be placed in the exception
path.

Furthermore, an analyst may specify the format and keywords that would
help the extraction of components metadata attributes. Section 4 provides an
example of component metadata recovery from HSRP log traces. In addition,
the following guidelines are developed in order to construct the execution phases
and to promote separation of concerns:

– Log entries from different components should be placed into separate phases
(i.e., an execution phase cannot span more than one component unless it is
part of a component containment configuration).

– Log entries describing different features’ events/errors should be placed into
separate phases.

– Log entries relative to user actions should be separated from system response
log.

It is worth noting that the segmentation of a log into execution phases should
not break the causality between different log entries. Finally, the last step con-
sists of mapping the execution phases into UCM models and generating the

UCM-Based Approach for Recovering System Availability Requirements 55

UCM component related attributes. The following recommendations guide the
mapping process:

– Each log entry is mapped to one responsibility.
– An execution phase with more than one responsibility is described using a

plugin enclosed within a static stub (named with the name of the execution
phase).

– A phase, part of the exception path, having a single responsibility should be
enclosed within a static stub.

– Depending on the targeted level of abstraction, sequential stubs bound to
the same component and belonging to one path (regular or exception), may
be refactored into a static stub.

– Component related information such as the redundancy protocol, the redun-
dancy group, etc., are mapped to component metadata attributes.

– In case two log entries have the same timestamp, their corresponding re-
sponsibilities should be enclosed within an AND-Fork and an AND-Join.

4 Case Study: Hot Standby Router Protocol (HSRP)

In what follows, we apply our proposed approach to the HSRP [4] redundancy
protocol.

4.1 Hot Standby Router Protocol (HSRP)

Hot Standby Router Protocol (HSRP) is a Cisco proprietary protocol that pro-
vides network redundancy for IP networks [4]. By sharing an IP address and a
MAC (Layer 2) address, two or more routers can act as a single “virtual” router,
known as an HSRP group or a standby group. A single router (i.e., Active router)
elected from the group is responsible for forwarding the packets that hosts send
to the virtual router. If the Active router fails, the Standby router takes over
as the Active router. If the Standby router fails or becomes the Active router,
then another router is elected as the Standby router. HSRP has the ability to
trigger a fail-over if one or more interfaces on the router go down. For detailed
information about HSRP, the reader is referred to RFC 2281 [17].

4.2 Experimental Setup

Figure 5 illustrates our testbed topology, used to implement and collect router
logs relative to the HSRP feature. The testbed has been built using the Graphical
Network Simulator 3 (GNS3) simulation software [7]. GNS3 allows researchers
to emulate complex networks, since it can combine actual devices and virtual
devices together. GNS3 supports the Cisco IOS by using Dynamips, a software
that emulates Cisco IOS on a PC. In our setup, we have used 4 Cisco c7200
routers (R1, R2, Site1, and Site2) and two Ethernet switches (SW1 and SW2).
Two networks are configured (10.10.10.0/24 on the left hand side of the topology,

56 J. Hassine and A. Hamou-Lhadj

and 10.10.20.0/24 on the right hand side of the topology). Two HSRP groups
are configured: Group1 (virtual IP address: 10.10.10.10) on interfaces f0/0 of R1
and R2, and Group2 (virtual IP address: 10.10.20.20) on interfaces f0/1 on R1
and R2. R1 is the active router for Group 1, while R2 is the active router for
Group 2.

Fig. 5. HSRP experimental setup

4.3 Cisco IOS Logging System

Logs can be collected from Cisco IOS routers through console logging (default
mode), terminal logging (displays the log messages on VTY lines), buffered log-
ging (use the router’s RAM to store logs), syslog server logging (use of external
syslog servers for log storage), and SNMP trap logging (send log messages to an
external SNMP server).

Any collected log may have one or more components from the following three
types:

1. System log messages: They can contain up to 80 characters and a percent
sign (%), which follows the optional sequence number or/and timestamp
information, if configured [3]. Messages are displayed in this format:

seq no:timestamp: %facility-severity-MNEMONIC:description

The seq no provides sequential identifiers for log messages (it can be enabled
using the command “service sequence-numbers” in configuration mode). The
timestamp is configured using the command service timestamps log date-
time msec in configuration mode. In this case study, we enable timestamp
only. facility refers to the system on the device for which we want to set
logging (e.g., Kern (Kernel), SNMP, etc.). Severity is a single-digit code
from 0 to 7 specifying the severity of the message (e.g., 0:emergencies,
1:alerts, 2:critical, 3:errors, 4:warnings, 5:notifications, 6:informational, 7:de-
bugging). MNEMONIC is a text string that uniquely describes the mes-
sage. description is a text string containing detailed information about the
event being reported.

UCM-Based Approach for Recovering System Availability Requirements 57

2. User actions: Cisco IOS stores configuration commands entered by users
(e.g., configuring an interface or a protocol) using the config logger. For
example, the following log shows that the user has shut down the FastEth-
ernet0/0 interface:
*May 27 09:04:37.227: %PARSER-5-CFGLOG LOGGEDCMD: User:console

logged command:interface FastEthernet0/0

*May 27 09:04:38.475: %PARSER-5-CFGLOG LOGGEDCMD: User:console

logged command:shutdown

3. Debug messages: They should only be used to troubleshoot specific prob-
lems because debugging output is assigned high priority in the CPU process.
Hence, it can render the system unusable. The following debug output is pro-
duced after enabling debugging for the HSRP feature (using the command
“debug standby events”). It illustrates a state change from Speak to Standby
on interface Fa0/0 for Group 1:
*May 24 11:15:41.255: HSRP: Fa0/0 Grp 1 Redundancy ”hsrp-Fa0/0-1” state

Speak -> Standby

4.4 Log Collection and Segmentation

Figure 6 illustrates the collected log from router R1 (without enabling the se-
quence number and debugging options). Following the guidelines introduced in
Section 3, the log has been decomposed into 10 execution phases, where each
phase targets a single component and describes one and only one type of ac-
tions/events. We distinguish two sub-components R1-F0/0 and R1-F0/1, de-
noting the FastEthernet interfaces within router R1. Phase numbering follows
sequential order and are provided for each component separately. For instance,
the first phase, named R1-F0/0, in Fig. 6 illustrates system log messages describ-
ing the state of the interface FastEthernet0/0, while the second phase of R1-F0/0
component describes an HSRP state change (i.e., %HSRP-5-STATECHANGE)
from Standby to Active. Phase 3 of R1-F0/0 shows that the user has entered
the config mode and shut down the interface F0/0.

Next, correlations between the extracted execution phases are identified. In
our context, exception path triggering events/actions/errors include interface
state changes (e.g., up or down) and the administrator shutting/unshutting down
interfaces. Events involving HSRP state changes are considered to be part of ex-
ception paths since they are supposed to implement fault recovery mechanism.
For example, shutting down the interface F0/0 in phase 3 of R1-F0/0 have trig-
gered an HSRP state change moving the protocol state from Active to Init.
Finally, the correlations between the execution phases are mapped to the UCM
notation as shown in Fig. 7(a). Figures 7(b), 7(c), 7(d), 7(e), and 7(f) illus-
trate examples of UCM plugins corresponding to some execution phases stubs.
Figure 7(g) illustrates metadata attributes relative to the responsibility HSRP-
STATECHANGE-F0/0-Grp1-Listen-Active, while Fig. 7(h) illustrates the meta-
data attributes relative to the subcomponent F0/0.

To demonstrate the applicability of our approach in the presence of more than
one system log, we have captured the log from router R2. Figure 8 illustrates the

58 J. Hassine and A. Hamou-Lhadj

*May 27 09:49:51.739: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
*May 27 09:49:51.763: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
*May 27 09:49:52.863: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
*May 27 09:49:52.867: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up
*May 27 09:50:33.063: %HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Standby -> Active
*May 27 09:50:56.043: %HSRP-5-STATECHANGE: FastEthernet0/1 Grp 2 state Speak -> Standby
*May 27 09:50:57.315: %PARSER-5-CFGLOG_LOGGEDCMD: User:console logged command:interface FastEthernet0/0
*May 27 09:50:58.287: %PARSER-5-CFGLOG_LOGGEDCMD: User:console logged command:shutdown
*May 27 09:50:58.295: %HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Active -> Init
*May 27 09:51:00.267: %LINK-5-CHANGED: Interface FastEthernet0/0, changed state to administratively down
*May 27 09:51:01.267: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to down
*May 27 09:51:16.447: %PARSER-5-CFGLOG_LOGGEDCMD: User:console logged command:no shutdown
*May 27 09:51:17.931: %HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Listen -> Active
*May 27 09:51:18.395: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
*May 27 09:51:19.395: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
R1#

Phase

1

2

3

4

5
6
7

8

R1-F0/0

Component

R1-F0/1 1

2
R1-F0/0
R1-F0/1

R1-F0/0
R1-F0/0

R1-F0/0

R1-F0/0
R1-F0/0

R1-F0/0

Fig. 6. Log from router R1

merged log for routers R1 and R2. Sixteen phases, involving 4 subcomponents,
have been identified. The resulting UCM is depicted in Fig. 9.

It is worth noting that our choice to consider the entire log without nei-
ther customization nor chopping some parts is two-fold. First, we would like to
demonstrate the UCM visualization of more than one subcomponent. Second,
although the scenario focuses on the HSRP group 1, it is important to show
that actions/events related to this group do not impact group 2 (i.e., absence of
feature interactions).

5 Discussion and Threats to Validity

One important objective of this research is to capture non-functional requirements
from system execution traces. Our approach uses the high-level requirement de-
scription language Use Case Maps to describe visually and using metadata avail-
ability requirements. UCMs offer a flexible way to represent such requirements at
different levels of abstractions using the stub/plugin concept. However, our pro-
posed approach and the experimental case study are subject to several limitations
and threats to validity, categorized here according to three important types of
threats identified by Wright et al. [22].

Regarding internal validity, it might not be sufficient to establish accurate
correlations between execution phases without additional semantic information
about the running system. For example, in our case study, the log entries cor-
responding to stubs R1-F0/0-Ph2 and R1-F0/1-Ph2 take place after both inter-
faces F0/0 and F0/1 came up (Fig. 7(a)). Although, these two events represent
the triggers for the R1-F0/0-Ph2 (HSRP group 1) and R1-F0/1-Ph2 (HSRP
group 2) phases, we cannot refine such correlation with the available informa-
tion at hand (i.e., triggers and exception path events). Actually, R1-F0/0-Ph2
and R1-F0/1-Ph2 should be triggered by R1-F0/0-Ph1 and R1-F0/1-Ph1, re-
spectively. Additional, semantic rules are needed in order to achieve accurate

UCM-Based Approach for Recovering System Availability Requirements 59

(a
)
U
C
M

o
f
R
o
u
te
r
R
1

(b
)
R
1
-F

0
/
0
-P

h
a
se
1
p
lu
g
in

(c
)
R
1
-F

0
/
0
-P

h
2
p
lu
g
in

(d
)
R
1
-F

0
/
0
-P

h
3
p
lu
g
in

(e
)
R
1
-F

0
/
0
-P

h
4
p
lu
g
in

(f
)
R
1
-F

0
/
0
-P

h
7
p
lu
g
in

(g
)

H
S
R
P
-

S
T
A
T
E
C
H
A
N
G
E
-

F
0
/
0
-G

rp
1
-L
is
te
n
-

A
ct
iv
e
m
et
a
d
a
ta

(h
)
F
0
/
0
m
et
a
d
a
ta

F
ig
.
7
.
R
1
U
C
M

a
n
d
it
s
re
la
te
d
p
lu
g
in
s
a
n
d
m
et
a
d
a
ta

a
tt
ri
b
u
te
s

60 J. Hassine and A. Hamou-Lhadj

R1*May 27 09:49:51.739: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
R1*May 27 09:49:51.763: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
R2*May 27 09:49:52.351: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
R2*May 27 09:49:52.371: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
R1*May 27 09:49:52.863: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
R1*May 27 09:49:52.867: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up
R2*May 27 09:49:53.595: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
R2*May 27 09:49:53.603: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up
R1*May 27 09:50:33.063: %HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Standby -> Active
R2*May 27 09:50:33.979: %HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Speak -> Standby
R2*May 27 09:50:42.011: %HSRP-5-STATECHANGE: FastEthernet0/1 Grp 2 state Standby -> Active
R1*May 27 09:50:56.043: %HSRP-5-STATECHANGE: FastEthernet0/1 Grp 2 state Speak -> Standby
R1*May 27 09:50:57.315: %PARSER-5-CFGLOG_LOGGEDCMD: User:console logged command:interface FastEthernet0/0
R1*May 27 09:50:58.287: %PARSER-5-CFGLOG_LOGGEDCMD: User:console logged command:shutdown
R1*May 27 09:50:58.295: %HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Active -> Init
R2*May 27 09:50:59.199: %HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Standby -> Active
R1*May 27 09:51:00.267: %LINK-5-CHANGED: Interface FastEthernet0/0, changed state to administratively down
R1*May 27 09:51:01.267: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to down
R1*May 27 09:51:16.447: %PARSER-5-CFGLOG_LOGGEDCMD: User:console logged command:no shutdown
R1*May 27 09:51:17.931: %HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Listen -> Active
R2*May 27 09:51:17.899: %HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Active -> Speak
R2*May 27 09:51:18.395: %HSRP-5-STATECHANGE: FastEthernet0/0 Grp 1 state Speak -> Standby
R1*May 27 09:51:18.867: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
R1*May 27 09:51:19.395: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up

Phase

1

1

1

2
2

2

3

5

R1-F0/0

Component

R2-F0/0 1

R1-F0/1

R2-F0/1

R1-F0/0
R2-F0/0

R1-F0/1

R1-F0/0

R1-F0/0

R2-F0/1

R1-F0/0

R1-F0/0
R1-F0/0

R2-F0/0

R1-F0/0

2

4

6
7

4

8

R2-F0/0 3

Fig. 8. Resulting log from routers R1 and R2

Fig. 9. UCM visualization of the recovery of the merged logs from routers R1 and R2

UCM-Based Approach for Recovering System Availability Requirements 61

correlations. Another possible risk is log complexity. In the presented case study,
we have used routers with simple configuration and limited sets of configured
interfaces. In production networks, dozens of features and protocols are config-
ured and interacts with each other. This issue can be mitigated by applying log
customization based on a thorough understanding of the deployed protocols and
their possible interactions.

In terms of external validity, there is some risk related to merging logs coming
from different devices. This issue is more serious when we deal with equipments
from different vendors. Indeed, depending on the device type and its configura-
tion, discrepancies may arise in terms of the time reference and the event logger
priority (e.g., an event logger can have a low priority on one device and a high
priority on another), which may lead to a merged log with incorrect chrono-
logical order of events. The time reference issue can be mitigated by using the
NTP (Network Time Protocol) protocol, which allows for clock synchronization
between computer systems over packet-switched, variable-latency data networks.

As for the construct validity, scalability represents the most important limita-
tion. As logs becomes more complex, the number of phases becomes difficult to
manage and hence, difficult to visualize and to navigate through. Although, the
UCM language offers a good encapsulation mechanism through the stub/plugin
concept, models can rapidly become messy with overlapping paths and com-
ponents. However, log customization (e.g., using abstraction techniques) and
reduction (e.g., reduce the time stamp window) may help reduce the severity of
the scalability issue.

6 Conclusions and Future Work

In this paper, we have proposed a novel UCM-based approach to recover and
visualize availability requirements from execution traces. To this end, our pro-
posed approach is built upon previous extensions of the UCM language with
availability annotations covering the well-known availability tactics by Bass et
al. [2]. Logs from various interacting components can be merged, customized,
then segmented into execution phases. The resulting execution stages are then
visualized using a combination of UCM regular and exception paths bound to
the set of interacting components. Metadata of responsibilities and components
implementing fault detection and recovery tactics are captured in an integrated
UCM view.

As a future work, we aim to automate the proposed approach. Furthermore,
we plan to investigate the design of semantic rules to better correlate the different
execution phases. This would allow for more accurate UCM availability models.

Acknowledgements. The authors would like to acknowledge the support
provided by the Deanship of Scientific Research at King Fahd University of
Petroleum & Minerals (KFUPM) for funding this work through project No.
IN131031.

62 J. Hassine and A. Hamou-Lhadj

References

1. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Secur. Com-
put. 1(1), 11–33 (2004)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley Longman Publishing Co., Inc., Boston (2003)

3. Cisco Systems: Internetworking Technologies Handbook. Cisco Press networking
technology series. Cisco Press (2004), http://bit.ly/1rr8b89

4. Cisco Systems: Hot Standby Router Protocol Features and Functionality (2006),
http://www.cisco.com/c/en/us/support/docs/ip/hot-standby-router-

protocol-hsrp/9234-hsrpguidetoc.pdf

5. Corbi, T.A.: Program understanding: Challenge for the 1990s. IBM Systems Jour-
nal 28(2), 294–306 (1989)

6. Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., Koschke, R.: A sys-
tematic survey of program comprehension through dynamic analysis. IEEE Trans-
actions on Software Engineering 35(5), 684–702 (2009)

7. GNS3: Graphical network simulator, gns3 v0.8.6 (2014), http://www.gns3.net/
8. Hassine, J.: Early availability requirements modeling using use case maps. In:

ITNG, pp. 754–759. IEEE Computer Society (2011)
9. Hassine, J.: Describing and assessing availability requirements in the early stages

of system development. Software & Systems Modeling, 1–25 (2013),
http://dx.doi.org/10.1007/s10270-013-0382-0

10. Hassine, J., Gherbi, A.: Exploring early availability requirements using use case
maps. In: Ober, I., Ober, I. (eds.) SDL 2011. LNCS, vol. 7083, pp. 54–68. Springer,
Heidelberg (2011)

11. Hassine, J., Hamou-Lhadj, A.: Towards the generation of AMF configurations from
use case maps based availability requirements. In: Khendek, F., Toeroe, M., Gherbi,
A., Reed, R. (eds.) SDL 2013. LNCS, vol. 7916, pp. 36–53. Springer, Heidelberg
(2013)

12. Hassine, J., Mussbacher, G., Braun, E., Alhaj, M.: Modeling early availability re-
quirements using aspect-oriented use casemaps. In:Khendek,F.,Toeroe,M.,Gherbi,
A., Reed, R. (eds.) SDL 2013. LNCS, vol. 7916, pp. 54–71. Springer, Heidelberg
(2013)

13. Hassine, J., Rilling, J., Dssouli, R.: Timed use case maps. In: Gotzhein, R., Reed,
R. (eds.) SAM 2006. LNCS, vol. 4320, pp. 99–114. Springer, Heidelberg (2006)

14. ITU-T: Recommendation Z.151 (10/12), User Requirements Notation (URN) lan-
guage definition, Geneva, Switzerland (2012),
http://www.itu.int/rec/T-REC-Z.151/en

15. Jalote, P.: Fault Tolerance in Distributed Systems. Prentice-Hall, Inc., Upper Sad-
dle River (1994)

16. Koskimies, K., Mössenböck, H.: Scene: Using scenario diagrams and active text
for illustrating object-oriented programs. In: Proceedings of the 18th International
Conference on Software Engineering, ICSE 1996, pp. 366–375. IEEE Computer
Society, Washington, DC (1996)

17. Li, T., Cole, B., Morton, P., Li, D.: Cisco Hot Standby Router Protocol (HSRP).
RFC 2281 (Informational) (March 1998), http://www.ietf.org/rfc/rfc2281.txt

18. Nadas, S.: Virtual router redundancy protocol (vrrp) version 3 for ipv4 and ipv6.
RFC 5798 (Proposed Standard) (March 2010),
http://www.ietf.org/rfc/rfc5798.txt

http://bit.ly/1rr8b89
http://www.cisco.com/c/en/us/support/docs/ip/hot-standby-router-protocol-hsrp/9234-hsrpguidetoc.pdf
http://www.cisco.com/c/en/us/support/docs/ip/hot-standby-router-protocol-hsrp/9234-hsrpguidetoc.pdf
http://www.gns3.net/
http://dx.doi.org/10.1007/s10270-013-0382-0
http://www.itu.int/rec/T-REC-Z.151/en
http://www.ietf.org/rfc/rfc2281.txt
http://www.ietf.org/rfc/rfc5798.txt

UCM-Based Approach for Recovering System Availability Requirements 63

19. Reiss, S.P.: Visualizing program execution using user abstractions. In: Proceedings
of the 2006 ACM Symposium on Software Visualization, SoftVis 2006, pp. 125–134.
ACM, New York (2006), http://doi.acm.org/10.1145/1148493.1148512

20. jUCMNav v5.5.0: jUCMNav Project, v5.5.0 (tool, documentation, and meta-
model) (2014), http://jucmnav.softwareengineering.ca/jucmnav
(last accessed, June 2014)

21. Walker, R.J., Murphy, G.C., Freeman-Benson, B., Wright, D., Swanson, D., Isaak,
J.: Visualizing dynamic software system information through high-level models. In:
Proc. 13th ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA 1998, pp. 271–283. ACM, New York (1998)

22. Wright, H.K., Kim, M., Perry, D.E.: Validity concerns in software engineering re-
search. In: Roman, G.C., Sullivan, K.J. (eds.) FoSER, pp. 411–414. ACM (2010)

23. Zaidman, A.: Scalability solutions for program comprehension through dynamic
analysis. In: Proceedings of the Conference on Software Maintenance and Reengi-
neering, CSMR 2006, pp. 327–330. IEEE Computer Society, Washington, DC
(2006)

http://doi.acm.org/10.1145/1148493.1148512
http://jucmnav.softwareengineering.ca/jucmnav

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 64–79, 2014.
© Springer International Publishing Switzerland 2014

Architecture Framework for Software Safety

Havva Gülay Gürbüz1, Nagehan Pala Er2, and Bedir Tekinerdogan1

1 Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey
havva.gurbuz@bilkent.edu.tr, bedir@cs.bilkent.edu.tr

2 ASELSAN MGEO, P.O. Box: 30 Etlik, Ankara 06011, Turkey
npala@aselsan.com.tr

Abstract. Currently, an increasing number of systems are controlled by soft-
ware and rely on the correct operation of software. In this context, a safety-
critical system is defined as a system in which malfunctioning software could
result in death, injury or damage to environment. To mitigate these serious
risks, the architecture of safety-critical systems needs to be carefully designed
and analyzed. A common practice for modeling software architecture is the
adoption of software architecture viewpoints to model the architecture for par-
ticular stakeholders and concerns. Existing architecture viewpoints tend to be
general purpose and do not explicitly focus on safety concerns in particular. To
provide a complementary and dedicated support for designing safety critical
systems, we propose an architecture framework for software safety. The archi-
tecture framework is based on a metamodel that has been developed after a tho-
rough domain analysis. The framework includes three coherent viewpoints,
each of which addressing an important concern. The application of the view-
points is illustrated for an industrial case of safety-critical avionics control
computer system.

Keywords: Software Safety, Safety-Critical Systems, Architectural Modeling,
Architecture Design, Architectural Viewpoints.

1 Introduction

Currently, an increasing number of systems are controlled by software and rely on the
correct operation of software. In this context, a safety-critical system is defined as a
system in which malfunctioning software could result in death, injury or damage to
environment. Software can be considered safe if it does not produce an output that
causes a catastrophic event for the system. Several methods, processes and models are
developed in order to make the software safe. System safety engineering is the appli-
cation of engineering and management principles, criteria, and techniques to optimize
all aspects of safety within the constraints of operational effectiveness, time, and cost
throughout all phases of the system life cycle [8][12].

Designing appropriate software architectures of a safety-critical system is impor-
tant to meet the requirements for the communication, coordination and control of
the safety-critical concerns. A common practice in the software architecture design

 Architecture Framework for Software Safety 65

community is to model and document different architectural views for describing the
architecture according to the stakeholders’ concerns. An architectural view is a repre-
sentation of a set of system elements and relations associated with them to support a
particular concern. Having multiple views helps to separate the concerns and as such
support the modeling, understanding, communication and analysis of the software
architecture for different stakeholders. Architectural views conform to viewpoints that
represent the conventions for constructing and using a view. An architectural frame-
work organizes and structures the proposed architectural viewpoints. Different archi-
tectural frameworks have been proposed in the literature [1][4][5][10].

For modeling the software architecture of safety-critical systems, we can consider
the approaches of both the safety engineering domain and the software architecture
modeling domain. From the safety engineering perspective, we can observe that many
useful models such as fault trees and failure modes and effect analysis have been
identified. In addition, several guidelines and patterns have been proposed to support
the architecture design of safety critical systems. Unfortunately, the safety engineer-
ing domain does not provide explicit modeling abstractions for modeling the architec-
ture of safety-critical systems. On the other hand, existing software architecture
frameworks tend to be general purpose and do not directly focus on safety concerns in
particular. However, if safety is an important concern, then it is important to provide
explicit abstraction mechanisms at the architecture design level to reason about to
communicate and analyze the architectural design decisions from an explicit safety
perspective. In particular, this is crucial for safety-critical systems which have indeed
demanding requirements.

To address the safety concern explicitly and assist the architect, we propose an ar-
chitecture framework for modeling architecture for software safety. The architecture
framework is based on a metamodel that has been developed after a thorough domain
analysis. The framework includes three coherent viewpoints, each of which address-
ing an important concern. The framework is not mentioned as a replacement of exist-
ing general purpose frameworks but rather needs to be considered complementary to
these. The application of the viewpoints is illustrated with an industrial case of safety-
critical avionics control computer system.

The remainder of the paper is organized as follows. In Section 2, we describe the
problem statement in more detail using a real industrial case study. Section 3 presents
the metamodel on which the framework is based. Section 4 presents the three view-
points of the architecture framework. Section 5 illustrates the application of the
framework for the described industrial case study. Section 6 presents the related work
and finally Section 7 concludes the paper.

2 Problem Statement

In this section, we describe the general approach for designing safety-critical systems
that is adopted in safety engineering practices. For this purpose, we will use an indus-
trial case study of an avionics control system project. Based on the case study, we
illustrate the need for architecture viewpoints for safety.

66 H.G. Gürbüz, N. Pala Er, and B. Tekinerdogan

The industrial case that we discuss is in the avionics domain. Several reported
accidents show that the faults in avionics systems could lead to catastrophic conse-
quences that cause loss of life, and likewise we can consider avionics as a safety-
critical system. There are several standards, such as the DO-178B [11], used to
regulate software development and certification activities for the avionics domain.
Usually, avionics control systems have to meet hundreds of requirements related to
safety concerns. Table 1 shows an example subset of the requirements that we have
selected to describe our case study. In fact, each of these requirements needs to be
properly addressed in order to avoid unsafe situations.

Table 1. Requirements of our case study

Requirement Explanation
Display aircraft
altitude data

Altitude is defined as the height of the aircraft above sea level. Altitude informa-
tion is shown to pilots, as well as, also used by other avionics systems such as
ground collision detection system. Pilots depend on the displayed altitude infor-
mation especially when landing.

Display aircraft
position data

Position is the latitude and longitude coordinates of the aircraft received from
GPS (Global Positioning System). Route management also uses aircraft position.
Aircraft position is generally showed along with the other points in the route.
Pilots can see the deviation from the route and take actions according to the devia-
tion.

Display aircraft
attitude data

Attitude is defined with the angles of rotation of the aircraft in three dimensions,
known as roll, pitch and yaw angles. For instance, the symbol, called as ADI
(Attitude Direction Indicator), is used to show roll and pitch angles of the aircraft.

Display fuel
amount

Fuel amount is the sum of fuel in all fuel tanks. Fuel amount is generally
represented with a bar chart in order to show how much fuel remains in the air-
craft.

Display radio
frequency channel

The radio frequency channel is used to communicate with ground stations.

In practice, requirements such as those shown in Table 1 are used to identify possi-
ble hazards and define safety requirements from possible hazards. This overall activi-
ty is performed together with domain experts (avionics engineers and pilots), system
engineers and safety engineers using several hazard identification methods such as
defined in [8]. A hazard is a presence of a potential risk situation that can result or
contribute to a mishap. Some of the identified hazards for our case study are given in
Table 2 along with possible causes, consequences, severity classification, probability
and risk definition. The severity class of the hazards numbered from HZ1 to HZ4 is
identified as catastrophic since a possible consequence of these hazards is an aircraft
crash. For instance, if a high altitude is displayed instead of its correct value, the pi-
lots could assume that the aircraft is high enough not to crash to the ground especially
when landing. This assumption could lead to aircraft crash that causes deaths, system
loss, and in some cases severe environmental damage. When the consequence of HZ5
is considered, its severity class is identified as negligible because this hazard results in
only a communication error with ground station.

Hazard identification is followed by safety requirement identification. For exam-
ple, Table 3 lists the safety requirements related with HZ1. Similarly various safety
requirements can be defined for the other identified hazards.

 Architecture Framework for Software Safety 67

Table 2. Hazard identification for the case study

Hazard Possible Causes Cons. Severity Probability Risk
[HZ1]
Displaying wrong
altitude data

Loss of/Error in altimeter,
Loss of/Error in communica-
tion with altimeter, Error in
display

Aircraft
crash

Catastrophic Improbable Me-
dium

[HZ2]
Displaying wrong
position data

Loss of/Error in GPS, Loss
of/Error in communication
with GPS, Error in display

Aircraft
crash

Catastrophic Improbable Me-
dium

[HZ3]
Displaying wrong
attitude data

Loss of/Error in gyroscope,
Loss of/Error in communica-
tion with gyroscope, Error in
display

Aircraft
crash

Catastrophic Improbable Me-
dium

[HZ4]
Displaying wrong
fuel amount

Loss of/Error in fuel sensor,
Loss of/Error in communica-
tion with fuel sensor, Error
in display

Aircraft
crash

Catastrophic Improbable Me-
dium

[HZ5]
Displaying wrong
radio frequency

Loss of/Error in radio, Loss
of/Error in communication
with radio, Error in display

Com-
munica-
tion
error

Negligible Occasional Low

Table 3. Safety requirements derived from HZ1

ID Definition

SR1 Altitude data shall be received from two independent altimeter devices.

SR2 If altitude data can be received from only one altimeter device, the altitude data received shall

be displayed and a warning shall be generated.

SR3 If altitude data can be received from neither altimeter device, the altitude data shall not be dis-

played and a warning shall be generated.

SR4 If the difference between two altitude values received from two altimeter devices is more than a

given threshold, the altitude data shall not be displayed and a warning shall be generated.

SR5 Altitude data shall be displayed on two independent display devices.

Figure 1 shows the component and connector view [1] of the architecture design of
the case study, using a UML component diagram. Altimeter1Mgr and Altimeter2Mgr
are the managers of altimeter device 1 and 2, respectively. Each altimeter manager
receives the aircraft’s altitude data from the specified altimeter device and provides it
to NavigationMgr. Gyro1Mgr and Gyro2Mgr are the managers of gyroscope device 1
and 2, respectively. Each gyroscope manager receives the aircraft’s attitude data from
the specified gyroscope device and provides it to NavigationMgr. Gps1Mgr and
Gps2Mgr are the managers of GPS device 1 and 2, respectively. Each GPS manager
receives the aircraft’s position data from the specified GPS device and provides it to
NavigationMgr. Fuel1Mgr and Fuel2Mgr are the managers of fuel sensor 1 and 2,
respectively, and each receives the aircraft’s fuel data from the specified fuel sensor
and provides it to PlatformMgr. RadioMgr is the manager of radio device. RadioMgr
receives radio frequency data from the radio device and provides it to Communica-
tionMgr. NavigationMgr reads the aircraft’s altitude, attitude and position data from
the specified managers and provides them to graphics managers. PlatformMgr reads

68 H.G. Gürbüz, N. Pala Er, and B. Tekinerdogan

fuel data from the fuel managers and provides it to graphics managers. Communica-
tionMgr reads radio frequency data from RadioMgr and provides it to graphics man-
agers. Graphics1Mgr and Graphics2Mgr read the aircraft’s altitude, attitude, position,
fuel and radio frequency data and show these on the graphics displays.

Fig. 1. Component and connector view of the case study

It should be noted that existing general purpose views including the component and
connector view of Fig. 1 do not directly address the safety concerns. For example, the
information about whether a component is safety-critical is not explicit. Safety-critical
components implement safety-critical requirements but the general purpose views do
not answer the question which safety requirements are implemented in which compo-
nents. Another missing knowledge is about the tactics and patterns that are applied to
handle safety requirements.

The goal of providing safety concerns in views is two-fold: (1) communicating the
design decisions related with safety concerns through views (2) accomplishing safety
analysis of the architecture from views. The first goal, communicating the design
decisions related with safety concerns, is important for safety engineers, system engi-
neers and software engineers. Safety and system engineers perform hazard identifica-
tion and provide safety requirements, a subset of which is allocated to software. Then,
the software engineers design and implement the software according to the safety
requirements. Thus, these views would help bridge the gap between them by commu-
nicating safety information from the safety and system engineers to software engi-
neers. The second goal, accomplishing safety analysis of the architecture, supports the
safety assessment of the design. If safety-related information can be obtained from the
views, the architecture can be properly analyzed. Typically, safety analysis is per-
formed from the early stages of the design and the architecture can be updated after
safety analysis, if deemed necessary. For example, an important guideline is not to
include not-safety-critical software inside safety-critical software. If the safety-critical
and not-safety-critical components can be differentiated, such an analysis can be per-
formed. After the analysis is accomplished and if there is a safety-critical component
which includes not-safety-critical components, then the architecture is reshaped.

To address the safety concerns at the architecture design level, we can now proceed
in different ways. We could adopt the guidelines and tactics in the safety engineering

 Architecture Framework for Software Safety 69

domain to reshape the architecture of Fig. 1 using existing general purpose viewpoint
approaches. In this case, all the applied knowledge on safety would be implicit in the
architecture and it will be hard to communicate the design decisions and analyze the
architecture with respect to safety concerns. In addition to the usage of existing gen-
eral purpose viewpoints, we will define a framework that includes explicit viewpoints
for addressing safety concerns.

3 Metamodel for Software Safety

In this section, we provide a metamodel for software safety to represent the safety-
related concepts. The metamodel shown in Fig. 2 has been derived after a thorough
domain analysis to safety design concepts and considering existing previous studies
such as [2][14][17]. The metamodel in Fig. 2 reuses the common concepts of existing
metamodels and provides an integrated model. It consists of three parts that form the
basis for the architecture viewpoints. The bottom part of the metamodel includes the
concepts related to hazards in the system. A Hazard describes the presence of a poten-
tial risk situation that can result or contribute to mishap. A Hazard causes some Con-
sequences. Safety Requirements are derived from identified Hazards. We define FTA
Node, Operator and Fault to conduct Fault Tree Analysis, which is a well-known
method. Fault Tree Analysis [7] aims to analyze a design for possible faults that lead
to hazard in the system using Boolean logic. FTA Nodes, Faults and Operators are the
elements of a Fault Tree. Faults are the leaf nodes of the Fault Tree. Operator is used
to conduct Boolean logic. Operator can be AND or OR. A Hazard is caused by one or
more FTA Nodes.

The middle part of the metamodel includes the concepts related to applied safety
tactics in the design. Different studies, such as [3] and [16], have proposed architec-
tural tactics or patterns for supporting safety design. In [16], Wu and Kelly propose
safety tactics by adopting the SEI’s tactic work. Based on these studies we have iden-
tified well-known safety tactics: fault avoidance, fault detection and fault tolerance.
The fault avoidance tactic aims to prevent faults from occurring in the system. When
a fault has occurred, the fault is detected by applying fault detection tactics. Fault
tolerance is the ability of the system to continue properly when the fault has occurred
and maintain a safe operational condition. Therefore, applied Safety Tactic can be
Fault Avoidance Tactic, Fault Detection Tactic or Fault Tolerance Tactic in order to
deal with faults.

The top part of the metamodel includes the concepts that present elements in the archi-
tecture design. These elements are Monitoring Element, Safety-Critical Element and
Non-Safety Critical Element where Architectural Element is their superclass. An Archi-
tectural Element can read data from another Architectural Element, write data to another
Architectural Element, and command to another Architectural Element. Monitoring
Element monitors one or more Safety-Critical Elements by checking their status. If there
is a problem in a Safety-Critical Element, it can react by stopping/starting/restarting/
initializing the related Safety-Critical Element. Safety-Critical Element presents the ele-
ment that includes safety-critical operations. One Safety-Critical Element can be element
of another Safety-Critical Element. Safety-Critical Elements can report occurred
faults to other Safety-Critical Elements. A Safety-Critical Element has States to

70 H.G. Gürbüz, N. Pala Er, and B. Tekinerdogan

describe its condition. Safe State is one type of the State. If a Fault is detected that can
lead to a Hazard and is there is a Safe State that can prevent this Hazard, the Safety-
Critical Element can switch its state to that Safe State. Safety-Critical Elements
should not include the elements that do not have safety-critical operations. Therefore,
Non-Safety-Critical Element is defined to represent the elements that do not include
safety-critical operations. One Non-Safety-Critical Element can be element of another
Non-Safety-Critical Element. A Monitoring Element or Safety-Critical Element im-
plements the Safety Tactics in order to ensure the safety of the system. A Safety-
Critical Element can implement one or more Safety Requirements in order to provide
the desired functionality.

Fig. 2. Metamodel for software safety

 Architecture Framework for Software Safety 71

4 Viewpoint Definition for Software Safety

Based on the metamodel discussed in the previous section, we derive and explain the
viewpoints defined for software safety. We have identified three coherent viewpoints
that together form the safety architecture framework: Hazard Viewpoint, Safety Tac-
tics Viewpoint and Safety-Critical Viewpoint.

Table 4 shows the Hazard Viewpoint. It aims to support the hazard identification
process and shows each hazard along with the fault trees that can cause the hazard,
the derived safety requirements and the possible consequences of the hazard.

Table 4. Hazard viewpoint

Section Description

Overview This viewpoint describes the identified hazards, their possible causes and consequences,

derived safety requirements from these hazards and possible faults in the system.

Concerns Which safety requirements are derived from which hazards? Which faults can cause

which hazards? What are the possible consequences of the identified hazards?

Stakeholders Software Architect, Safety Engineer

Constraints • One or more safety requirements can be derived from a hazard.
• A hazard can cause one or more consequences.
• A hazard can be caused by one or more FTA Nodes.

Elements

Hazard Consequence Safety Requirement

Fault FTA Node for AND FTA Node for OR

Relationships

derived from causes caused by

Table 5 presents the safety tactics viewpoint that models the tactics and their rela-
tions to cope with the identified hazards. In general we can distinguish among fault
avoidance, fault detection and fault tolerance tactics. In the metamodel definition, we
define avoids, detects and tolerates relationship from Safety Tactic element to Fault.
However, one Fault can be handled by different Safety Tactics, we define an attribute
handledFaults in Safety Tactic element instead of presenting each handled faults as an
element and constructing relationships between Safety Tactics and Faults. This
approach improves the readability of the view and shows traceability between Faults
and Safety Tactics.

72 H.G. Gürbüz, N. Pala Er, and B. Tekinerdogan

Table 5. Safety tactics viewpoint

Section Description

Overview This viewpoint describes the safety tactics implemented in the system. Also it shows the

faults handled by the safety tactics.

Concerns What are the applied safety tactics? Which faults are handled by which safety tactics?

Stakeholders Software Architect, Safety Engineer, Software Developer

Constraints A safety tactic can extend different safety tactics.

Elements

Safety Tactic, Fault Avoidance, Fault

Detection, Fault Tolerance

Relation-

ships
extends

Table 6. Safety-critical viewpoint

Section Description

Overview This viewpoint shows the safety-critical elements, monitoring elements, non-safety-

critical elements and relations between them. It presents also the implemented safety

tactics by related safety-critical elements and monitoring elements. Additionally it

shows the implemented safety requirements by related safety-critical elements.

Concerns What are the safety-critical elements and their relations? What are the monitoring ele-

ments and relations between monitoring and safety-critical elements? What are the

implemented safety tactics and safety requirements by safety-critical elements and

monitoring elements? What are the non-safety-critical elements and their relations?

Stakeholders Software Architect, Software Developer, Safety Engineer

Constraints • A safety-critical element can read data from one or more safety-critical elements.

• A safety-critical element can write data to one or more safety-critical elements.

• A safety-critical element can command one or more safety-critical elements.

• A safety-critical element can report fault to one or more safety-critical elements.

• A monitoring element can monitor one or more safety-critical elements.

• A monitoring element can stop/start/init/restart one or more safety-critical elements.

Elements

Safety-Critical Element Non-Safety-Critical Element Monitoring Element

Relation-

ships

reads writes commands

reports fault reacts monitors

 Architecture Framework for Software Safety 73

Table 6 explains the safety-critical viewpoint. In the metamodel definition, we de-
fine an implements relationship from Monitoring Element and Safety-Critical Element
to Safety Tactic. One Safety Tactic can be implemented by different Monitoring
Elements or Safety-Critical Elements. Therefore, we define an attribute implemented-
Tactics in both Monitoring Element and Safety-Critical Element instead of showing
Safety Tactics as an element in this viewpoint. This modification is also done for the
implements relationship between Safety-Critical Element and Safety Requirement.
This relation is shown as an attribute implementedSReqs in Safety-Critical Element.

5 Application of the Architecture Framework

We have applied the viewpoints approach to the case study described in Section 2.
The following subsections illustrate the application of defined viewpoints on the case
study.

5.1 Hazard View

The hazard view for HZ1 is shown in Fig. 3. Other hazards are excluded for the sake
of simplicity. Such a filter can be implemented with a tool. The filter takes the ha-
zards as a parameter and shows the faults and safety requirements related only with
the specified hazards. This view answers the following questions for our case study.

• Which safety requirements are derived from which hazards?
The safety requirements derived from HZ1 are displayed in Fig. 3. These safety re-
quirements are defined in Table 3.
• What are the possible consequences of the identified hazards?
As shown in Fig. 3, aircraft crash is possible consequence of the HZ1.
• Which faults can cause which hazards?

The faults that can cause HZ1 are shown as the leaf nodes of a fault tree generated
by using Fault Tree Analysis, which is a well-known method [7]. The faults are num-
bered from F1 to F13. Their definitions are given in Table 7. The names of the FTA
Nodes are numerated from N1 to N9. N1 and N2 indicate “Loss of Altimeter1” and
“Loss of Altimeter2”. N3 and N4 represent “Error in Altimeter1” and “Error in Alti-
meter2”. Wrong altimeter data can be displayed when one of the followings occur:
when altimeter1 is lost and there is an error in altimeter2 (N5), when altimeter2 is lost
and there is an error in altimeter1 (N6), when there is an error in both altimeters (N7)
and the difference between them is not greater than the threshold, when there is an
error in display device 1 and the graphics manager 2 fails (N8), when there is an error
in display device 2 and the graphics manager 1 fails (N9), when the navigation man-
ager fails.

74 H.G. Gürbüz, N. Pala Er, and B. Tekinerdogan

Fig. 3. Hazard view for HZ1

Table 7. Fault table

Fault Description Fault Description

[F1] Loss of altimeter device 1 [F9] Error in display device 1

[F2] Loss of communication with altimeter device 1 [F10] Error in display device 2

[F3] Loss of altimeter device 2 [F11] Altimeter1Mgr fails

[F4] Loss of communication with altimeter device 2 [F12] Altimeter2Mgr fails

[F5] Error in altimeter device 1 [F13] NavigationMgr fails

[F6] Error in communication with altimeter device 1 [F14] Graphics1Mgr fails

[F7] Error in altimeter device 2 [F15] Graphics2Mgr fails

[F8] Error in communication with altimeter device 2

5.2 Safety Tactics View

The safety tactics view shows the tactics implemented in the architecture along with
the handled faults. This view answers the question “Which tactics are applied to han-
dle which faults?”. Fig. 4 displays the implemented tactics to handle the faults related
with HZ1. Such a filter can be developed within a tool. The filter takes the hazards
that the user wants in order to see the tactics to handle the faults that can cause these
hazards.

The tactics named T1, T4, T5, T8 and T9 are generated as fault tolerance tactics.
T1 is a redundancy tactic for altitude data. Altitude data is received from two different
altimeter devices. By applying the tactic T1, the faults from F1 to F8 are handled. T5
is a redundancy tactic for displaying altitude data. Altitude data is displayed on
two different displays. The tactic T5 is applied to handle faults F9 and F10. T4 is a

 Architecture Framework for Software Safety 75

warning tactic for altitude data. An altitude warning is generated when there is a dif-
ference between two altitude values received from two different altimeters, or when
altitude data is received from only one of the altimeters, or when altitude data cannot
be received from both altimeters (different warnings are generated to distinguish these
cases). By applying the tactic T4, the faults from F1 to F8 are handled. T8 is a recov-
ery tactic for navigation manager. When navigation manager fails, it is recovered. The
tactic T8 is applied to handle faults F11, F12 and F13. T9 is a recovery tactic for
graphics managers. When one of the graphics managers fails, it is recovered. The
tactic T9 handles the faults F14 and F15.

The tactics named T2, T3, T6 and T7 are fault detection tactics. T2 is a comparison
tactic and it compares the altitude values received from two different altimeter devic-
es and detects if there is a difference. The tactic T2 is applied to handle faults from F5
to F8. T3 is a comparison tactic and it compares the received altitude value with its
minimum and maximum values in order to detect out of range altitude value. By ap-
plying the tactic T3, the faults from F5 to F8 are handled. T6 is a monitoring tactic
that monitors the graphics managers’ failures. The tactic T6 handles the faults F14
and F15. T7 is a monitoring tactic that monitors the navigation manager’s failure. The
tactic T7 is applied to handle faults F11, F12 and F13.

Fig. 4. Safety tactics view related to HZ1

76 H.G. Gürbüz, N. Pala Er, and B. Tekinerdogan

5.3 Safety-Critical View

The safety-critical view for our case study is shown in Fig. 5. The figure shows the
related modules with HZ1. A filtering approach can also be applied for this view.
Safety-critical modules and their monitors are filtered according to the specified ha-
zards. CommunicationMgr and RadioMgr modules are displayed in Fig. 5 in order to
show an example of non-safety-critical modules.

As explained in Section 2 the Altimeter1Mgr and Altimeter2Mgr are the managers
of the altimeter devices and the Graphics1Mgr and Graphics2Mgr are the managers
of the graphics devices. NavigationMgr reads the altitude data from Altimeter1Mgr
and Altimeter2Mgr. Graphics1Mgr and Graphics2Mgr read the altitude data from
NavigationMgr. If a warning should be generated NavigationMgr notifies the Graph-
ics1Mgr and Graphics2Mgr through commands relation. If a fault is occurred in Alti-
meter1Mgr and Altimeter2Mgr, they report the occurred fault to NavigationMgr
through reportsFault relation. NavigationMonitor monitors Altimeter1Mgr, Altime-
ter2Mgr and NavigationMgr. It detects the failure when one of these managers fails
and recovers from failures by stopping/starting/initializing the failed modules. Simi-
larly, GraphicsMonitor monitors the Graphics1Mgr and Graphics2Mgr. It detects the
failure when one of these managers fails and recovers from failures by stop-
ping/starting/initializing the failed modules.

Fig. 5. Safety-critical view for alternative 1

 Architecture Framework for Software Safety 77

As it can be observed from Fig. 5, NavigationMgr causes single-point of failure
that can also be inferred from the fault tree shown in the hazard view in Fig. 3. In this
particular case, the identification of the failures is easy to identify, but for more com-
plex systems typically component dependency analysis is needed. The analysis of
failures and the required design decisions is beyond the scope of this paper since we
focus primarily on the modeling of the safety concerns. However, using the architec-
tural views both the analysis and design of safety critical systems will be supported.
For solving the single point of failure of Fig. 5, we can provide another design alter-
native, which is illustrated in Fig. 6. (Note that changing this view also affects hazard
and safety tactics views. Since the changes are straightforward, they are not given.) In
the second design alternative, (1) redundancy technique is also applied to navigation
manager by defining two navigation managers, (2) navigation monitor controls only
navigation managers, and (3) a new monitor called AltimeterMonitor is added to con-
trol altimeter managers. There are two new tactics implemented by altimeter monitor,
which are called as HealthCheckForAltimeter (T10) and RecoverAltimeter (T11). By
applying a redundancy tactic for navigation manager, the single-point of failure prob-
lem is solved. This design increases the safety of the system. However, addition of the
new monitor and manager also increases the relations (function calls) between the
related modules and this impacts the performance of the system.

Fig. 6. Safety-critical view for alternative 2

78 H.G. Gürbüz, N. Pala Er, and B. Tekinerdogan

6 Related Work

Various studies [2][14][17] propose a metamodel for safety. Douglas [2] provides a
UML profiling for safety analysis including profiling for FTA (Fault Tree Analysis)
diagrams. Taguchi [14] provides a metamodel that includes safety concepts expressed
with the ISO/FDIS 26262 standard [5] from scratch. In [17], they define a metamodel
that includes safety concepts extracted from the airworthiness standard, RTCA DO-
178B [11], by extending UML.

In [10], Rozanski and Woods state that quality concerns are crosscutting concerns
on the viewpoints and for each quality concern creating a new viewpoint seems less
appropriate. Therefore, they propose a concept of architectural perspective that in-
cludes a collection of activities, tactics and guidelines that require consideration
across a number of the architectural views. In this way, the architectural views pro-
vide the description of the architecture, while the architectural perspectives can help
to analyze and modify the architecture to ensure that system exhibits the desired
quality properties. Rozanski and Woods do not seem to have addressed the safety in
their architectural perspective approach.

In our earlier work, we have considered the explicit modeling of viewpoints for
quality concerns [13][15]. Hereby, each quality concern, such as adaptability and recove-
rability, require a different decomposition of the architecture. To define the required
decompositions for the quality concerns, architectural elements and relations are defined
accordingly. Earlier work on local recoverability has shown that this approach is also
largely applicable. We consider this work complementary to the architectural perspec-
tives approach. It seems that both alternative approaches seem to have merits.

Many other different publications have been provided to reason about software
safety. But none of these seem to have addressed the solution at a software architec-
ture perspective using an integrated set of viewpoints.

7 Conclusion

We have observed that designing a safety-critical system requires to show design
decisions related to safety concerns explicitly at the architectural level. Existing
viewpoint approaches tend to be general purpose and deliberately do not directly fo-
cus on the architectural modeling of software safety concerns. However, in particular
for safety-critical systems, it is crucial to represent these concerns early on at the ar-
chitecture design level. For this purpose, we have introduced the architecture frame-
work for software safety to address the safety concerns explicitly. The framework
includes three coherent viewpoints, each of which addressing an important concern.
The framework with its viewpoints has been developed based on a metamodeling
approach, which is a common practice. We did not encounter many problems in de-
fining the metamodels, in particular because of the broad knowledge on safety and the
reuse of concepts of existing metamodels.

The application of the viewpoints is illustrated for an industrial case on safety-critical
avionics control computer system. These viewpoints have formed the basis for analysis
and support for the detailed design of the safety-critical systems. Using the viewpoints
we could (1) analyze the architecture in the early phases of the development life cycle,

 Architecture Framework for Software Safety 79

(2) analyze the design alternatives, (3) increase the communication between safety engi-
neers and software developers and (4) communicate the design decisions related with
safety. We have shown how the architecture framework can be used for a real design of a
safety critical system in the avionics domain. The framework appeared indeed to be use-
ful to support architecture design of safety critical systems. We have focused on support-
ing explicit modeling of safety concerns. We believe that with the current framework, the
design of safety critical systems can now be better supported. As future work, we will
focus on design heuristics to define metrics and develop tools to analyze several design
alternatives for safety-critical systems based on the proposed viewpoints.

References

1. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.:
Documenting Software Architectures: Views and Beyond. Addison-Wesley, Boston
(2003)

2. Douglass, B.P.: Analyze System Safety using UML within the IBM Rational Rhapsody
Environment. IBM Rational White Paper, IBM Software Group (2009)

3. Gawand, H., Mundada, R.S., Swaminathan, P.: Design Patterns to Implement Safety and
Fault Tolerance. International Journal of Computer Applications 18, 6–13 (2011)

4. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley, MA
(2000)

5. ISO/DIS 26262, Road vehicles - Functional safety. International Organization for Standar-
dization, Geneva, Switzerland (2009)

6. Kruchten, P.: The 4+1 View Model of Architecture. IEEE Software 12(6), 42–50 (1995)
7. Leveson, N.G., Harvey, P.R.: Analyzing Software Safety. IEEE Transactions on Software

Engineering 9(5), 569–579 (1983)
8. Leveson, N.G.: Safeware: System Safety and Computers. Addison-Wesley, NY (1995)
9. Meta Object Facility (MOF), http://www.omg.org/mof/

10. Rozanski, N., Woods, E.: Software Architecture Systems Working with Stakeholders Us-
ing Viewpoints and Perspectives. Addison-Wesley (2005)

11. RTCA DO-178B, Software Considerations in Airborne Systems and Equipment Certifica-
tion (1992)

12. Software Safety Guide Book, NASA Technical Standard, http://www.nasa.gov/
13. Sözer, H., Tekinerdogan, B., Aksit, M.: Optimizing Decomposition of Software Architec-

ture for Local Recovery. Software Quality Journal 21(2), 203–240 (2013)
14. Taguchi, K.: Meta Modeling Approach to Safety Standard for Consumer Devices. Seminar

on Systems Assurance & Safety for Consumer Devices (2011)
15. Tekinerdogan, B., Sözer, H.: Defining Architectural Viewpoints for Quality Concerns. In:

Crnkovic, I., Gruhn, V., Book, M. (eds.) ECSA 2011. LNCS, vol. 6903, pp. 26–34. Sprin-
ger, Heidelberg (2011)

16. Wu, W., Kelly, T.: Safety Tactics for Software Architecture Design. In: Proceedings of the
28th Annual International Computer Software and Applications Conference, pp. 368–375.
IEEE Computer Society, USA (2004)

17. Zoughbi, G., Briand, L., Labiche, Y.: A UML Profile for Developing Airworthiness-
Compliant (RTCA DO-178B), Safety-Critical Software. In: Engels, G., Opdyke, B.,
Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 574–588. Springer,
Heidelberg (2007)

Search-Based Model Optimization

Using Model Transformations

Joachim Denil1,2, Maris Jukss2, Clark Verbrugge2, and Hans Vangheluwe1,2

1 University of Antwerp, Belgium
2 McGill University, Canada

{Joachim.Denil,mjukss,clump,hv}@cs.mcgill.ca

Abstract. Design-Space Exploration (DSE) and optimization look for
a suitable and optimal candidate solution to a problem, with respect to
a set of quality criteria, by searching through a space of possible solution
designs. Search-Based Optimization (SBO) is a well-known technique
for design-space exploration and optimization. Model-Driven Engineer-
ing (MDE) offers many benefits for creating a general approach to SBO,
through a suitable problem representation. In MDE, model transforma-
tion is the preferred technique to manipulate models. The challenge thus
lies in adapting model transformations to perform SBO tasks. In this
paper, we demonstrate that multiple SBO techniques are easily incor-
porated into MDE. Through a non-trivial example of electrical circuit
generation, we show how this approach can be applied, how it enables
simple switching between different SBO approaches, and integrates do-
main knowledge, all within the modeling paradigm.

1 Introduction

Design-Space Exploration and optimization look for a suitable candidate solu-
tion, with respect to a set of quality criteria, by searching through a design
space. Examples of quality metrics include performance and cost. Different ap-
proaches to design-space exploration are currently in common use in different
engineering disciplines. Examples include mathematical optimization techniques
such as Mixed Integer Linear Programming [27], Constraint-Satisfaction tech-
niques [9,23] and Search-Based Optimization techniques (SBO) [1,26].

Applying SBO to an engineering problem requires four components: (a) a
representation of the problem, (b) a method to create a candidate solution to
the problem, (c) a goal-function or fitness metric to evaluate if a candidate
solution is “good”, and (d) an optimization method. The theory of SBO currently
offers little guidance as to the choice of representation, fitness metric, and search
method, therefore such choices are often made on a problem-by-problem basis [2].

Model-Driven Engineering (MDE) [22] uses abstraction to bridge the cog-
nitive gap between the problem space and the solution space in complex sys-
tem problems in general and in software engineering problems in particular. To
bridge this gap, MDE uses models to describe complex systems at multiple levels
of abstraction, using appropriate modeling formalisms. These suitable problem

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 80–95, 2014.
c© Springer International Publishing Switzerland 2014

Search-Based Model Optimization Using Model Transformations 81

representations, in the form of models, form a strong basis for creating a general
approach to SBO.

Burton and Poulding [2] propose models as a suitable problem and solution
representation for SBO. Models indeed enable the representation of the prob-
lem in a highly structured and consistent way. This eliminates the need to find
a suitable problem-specific representation amenable for search. Model-Driven
Engineering also has a tool-set available for manipulating these models using
systematic transformations of problem-level abstractions into their implementa-
tions. Model transformation is even regarded as the “heart and soul of model-
driven software and system development [24]”. Finally, MDE also allows one
to visualize the obtained solutions without an additional translation cost from
the problem-specific search representation to a representation in the problem
domain.

Although model transformation is proposed as the tool for the manipulation of
models, little work has been done in integrating search in model transformation
models. The contributions of this paper can be summarized as follows:

– We propose a strategy for integrating multiple, common, single-state search
techniques directly into a model transformation approach.

– Our design is demonstrated through a non-trivial running example of auto-
matic electrical circuit construction. Through this example, we show how to
easily apply different SBOs to the same problem space, and thus evaluate
and explore, and potentially integrate different search strategies.

– A model transformation approach has the further advantage of naturally in-
corporating domain knowledge. We illustrate this by showing how an addi-
tional rule, encoding higher-level knowledge of circuit design, is easily added,
and how this results in improved/optimal output.

The rest of this paper is organized as follows: Other motivations are discussed
in Section 2 . Section 3 introduces the running example. Section 4 introduces the
components of a rule-based model transformation language. In Section 5, model
transformation models with search are created. The results of the experiments
are shown in Section 6. In Section 7, we discuss the approach. Section 8 discusses
related work. Finally, in Section 9, we conclude and look at future work.

2 Motivation

Including Search-Based Optimization techniques in model transformation mod-
els has multiple advantages over creating a search-specific representation of the
same problem, avoiding out-of-paradigm translation, exposing and more easily
integrating domain knowledge, and allowing for natural integration into MDE.
Transformations used to create candidate solutions for the search method make
domain knowledge explicit. Indeed, they show where the variation points in the
model are and how we can create candidate solutions to the problem. In the
proposed approach, the model remains at the center of the problem. Complex
problems for searching are described in the natural language of the engineers
since both the model and the transformation rules share a common (possibly

82 J. Denil et al.

visual) representation. This removes the difficult need to create a problem-
specific search representation of the problem. No transformations need to be
created to transform the model to and from this search representation.

There is however another advantage to the use of model transformation rules
to explicitly model the variation points. Domain experts’ knowledge can be easily
integrated in the search problem by either adding another rule or augmenting
the existing rules with extra constraints.

Using a transformation-based approach to search problems allows for the full
integration of the optimization in the MDE-cycle. The Formalism Transforma-
tion Graph and Process Model (FTG+PM) [15] allows for the creation of com-
plex model transformation chains with non-linear control- and data-flow. Model
optimization can be entirely represented as an FTG+PM [16]. The FTG+PM
as well allows for the creation of optimization chains, where the search problem
is divided into different parts, to create complex, hybrid optimization chains [5].
Manual optimization steps are also possible in this approach, where a selection
of steps can be done using human interaction. The overall approach allows for
the full integration of search in the MDE cycle resulting in documented, reusable
optimization models.

3 Running Example

The essential contribution of this paper is demonstrated using an example from
the electronic circuit design community. The example focuses on the creation
of an electrical signal filter from a given number of electrical components, each
with specified parameter values. The signal filter’s behavior should be as close as
possible to a specified filter specification. Electronic filters are electronic circuits
that remove unwanted frequency components and/or increase desired frequen-
cies. We focus on the design of passive analog filters. This type of filter only
uses passive components such as Resistors (R), Inductors (I) and Capacitors
(C). They do not depend on external power supplies and/or active components
such as transistors or operational amplifiers. Different types of passive filters can
be constructed in various ways: low-pass filters, for example, let through low-
frequency signals and attenuate signals with a frequency higher than the cutoff
frequency (ωc). Similarly, high-pass filters attenuate frequencies lower than the
cutoff frequency while letting the frequencies higher than the cutoff frequency
through. Other types include bandpass filters, band-stop filters, notch filters,
etc. The frequency response of a filter is usually represented using a Bode plot.
A Bode (magnitude) plot shows the magnitude of the signal response gain in
decibels (db) versus the frequency, on a logarithmic scale. The Bode plot of a
low-pass filter is shown in Fig. 1a. The example low-pass filter has a cutoff fre-
quency of 5kHz. Frequencies above this point are attenuated with at least half
of their power compared to the original power at that frequency. On the Bode
plot this evaluates to the -3db point.

Search-Based Model Optimization Using Model Transformations 83

frequency

de
ci

be
l

1 100 10^4 10^6
Hz

-50

-40

-30

-20

-10

0

dB db(out)

(a)

Gain (db)

f (Hz)Fpass Fstop

0

(b)

Fig. 1. (a) An example Bode plot of a low-pass filter with ωc 5kHz; (b) A low-pass
filter specification example

Value: string
Name: string
InNetwork:Boolean

Component

Capicitor Inductor Resistor

Name:string
Node

ToPlus

ToMinus

Fig. 2. Meta-model of the passive filter network

The specifications of filters
are also expressed using a
Bode plot. Figure 1b shows
the specification of a low
pass filter. The white areas
show the attenuation ranges
at the different frequencies.
The grey areas show the no-go
zones of the filter characteris-
tic. Different well known tech-
niques are available to create
filters with different charac-
teristics. In the running ex-
ample, we will use generative techniques with search to create a filter. Figure 2
shows the meta-model of our passive filter network. Three components can be
used in a model: resistor, capacitor and inductor. Each component has a name, a
value (for the resistor in Ohm, the capacitor in Farad and the inductor in Henry)
and a boolean attribute that states whether the component is a mandatory part
of the network or whether it is a spare component that can be used in the search
problem. Components connect to a Node via a plus or minus connection. Three
nodes should always be present in the network: the out-node, the ground-node
and the in-node. In our start model for the exploration, these three nodes are
present and connected via resistors.

The creation of filter circuits using generative techniques is a non-trivial prob-
lem appropriate for DSE because of the large solution space of physically real-
izable models. The problem has a clear specification and known solutions using
traditional circuit design techniques, allowing us to validate our results. Finally,
the circuit design community has a host of domain knowledge available that is
readily usable in the model transformations.

84 J. Denil et al.

4 Transformation Languages and T-Core

The developed search augmented transformation models are based on the T-Core
transformation framework. T-Core is a minimal collection of model transforma-
tion primitives, defined at the optimal level of granularity, presented in [25].
T-Core is not restricted to any form of specification of transformation units,
be it rule-based, constraint-based, or function-based. It can also represent bidi-
rectional and functional transformations as well as queries. T-Core modularly
encapsulates the combination of these primitives through composition, re-use,
and a common interface. It is an executable module that can be easily integrated
with a programming or modeling language. We briefly discuss the model trans-
formation components we use in creating the different search transformations.

Rule-based model transformation languages work on typed, attributed and
directed graphs that represent the model. A transformation rule represents a
manipulation operations on the represented model. A rule consists of a left-hand
side (LHS) pattern representing the precondition for the applicability of the
rule. The right-hand side (RHS) pattern defines the outcome of the operation.
A set of negative application condition (NAC) patterns can be defined to block
the application of the rule. Pattern elements in the LHS, RHS and NAC are
uniquely labeled to refer to matched instances. The transformation rule outcome
is decided based on these unique labels.

We use several T-Core primitive building blocks and combine them using a
scheduling language. The blocks are:

– Matcher: binds elements in the input model to the corresponding elements
in the precondition pattern. The complete binding forms a “match”. The
different matches are stored in a match-set. The matcher can be parameter-
ized to find a certain number of matches or all of the available matches in
the model. Using graph-based models, the matching problem leads to the
subgraph isomorphism problem that is known to be NP-complete [3]. Per-
formance may be approved by providing an initial binding, often called a
pivot.

– Iterator: gives the modeler explicit control to select a single match from the
match-set, as input to the Rewriter. The iterator can be set up to always
select the first match in the set or to randomly select a match in the set.

– Rewriter: rewrites the model using a match and the RHS pattern.
– Rollbacker: enables backtracking (typically to different matches in the match-

set) in the transformation language.

A “scheduling language” is used to compose different transformation primi-
tives. To execute a single transformation rule, a matcher first creates the match-
set containing the matches that comply to the LHS pattern of the rule. One of
these matches is chosen by the iterator. The rewriter adapts the model based on
the chosen match and the RHS pattern. At a higher level, the scheduling lan-
guage allows for composition of rules. Different kinds of scheduling languages can
be used such as activity diagrams, DEVS, or a common procedural programming
language [25].

Search-Based Model Optimization Using Model Transformations 85

5 Including Search in Transformation Models

To include search in model transformation models, the different components of
a search-based optimization techniques need to be present in the model trans-
formation.

5.1 Problem Representation

The model itself is used as the problem representation without any augmen-
tations for search. Figure 3 shows an example start model for circuit design.
The search is finite because the number of components that can be used in the
problem is limited.

1

1

1m 1m 5m 10m …

…
1u 1u 5u 10u

…1 1 5 10

Fig. 3. Example start model for circuit design

5.2 Creation of Candidate Solutions

To create a single candidate solution, a model transformation or a set of model
transformations are used. Depending on the problem, the model transformation
rules create only feasible solutions or, because of the complexity of the problem,
feasible and non-feasible solutions. A non-feasible solution is a model that is
syntactically correct (i.e., conforms to the modeling language’s meta-model), but
does not satisfy all the constraints of the search problem. Non-feasible candidate
solutions should be pruned on evaluation.

Some example rules to explore the design space of the electrical filters are:

– CreateSeries: The transformation selects a component from the set of unused
components (denoted by an attribute of the component in the model) and
adds this component in series with an already present component in the
circuit. Figure 4a depicts the transformation rule.

– CreateParallel: The transformation rule adds a component from the set of
unused components in parallel to a component already used in the network.
The transformation rule is shown in Fig. 4b.

– AddRandom: An unused component is randomly added between two arbi-
trary different nodes in the circuit. This rule may create non-feasible solu-
tions.

– ChangeComponent: A component in the circuit is replaced with another
component from the set of unused components.

86 J. Denil et al.

3

4

1 2

1

2

8

3

4

+-

-

-

+

+

(a) Adding a series connection

3

6

1 2

1 2

3

6

+-

-

-

+

+

(b) Adding a parallel connection

Fig. 4. Example transformation rules to create candidate solutions

Depending on the used optimization technique, not all operations may be
used. The opposite operation of the transformation rules may also be available.
Creation of a circuit, for example, could potentially use the creation rules alone,
but optimization might need to remove components as well to traverse the entire
design-space.

5.3 Evaluation of Candidate Solutions

A metric is needed to evaluate if a solution is first “feasible” and additionally
“good.” Metrics can be calculated depending on the domain using (a) a model
transformation, when the metric is based on structural properties of the model or
when the model transformations incrementally keep the metrics consistent with
the model as in [6] or, by (b) transforming the model to another representation
(e.g., a simulation model, algebraic equation, etc.) if the metric is based on the
behaviour, structure or a derived property of the model. We explicitly make
the distinction between a“feasible” and a “good” candidate solution. A feasible
candidate solution is a model that is within all the constraints of the search
problem. In our running example this means that the created network is correct
with respect to the laws of circuit design. A “good” solution or “better” solution
is a comparison of two feasible solutions with respect to the filter specification.

A design candidate of the exploration process is evaluated by transforming
the model to a SPICE simulation model [17]. The SPICE simulator executes a
frequency sweep on the created circuit and creates a Bode plot of the candidate
as shown in Fig. 1a. The evaluation function compares this Bode plot (expressed
in the SPICE trace language) with the filter specification and assigns a score
based on the difference between the solution and the specification. The distance
between the required characteristic and the number of components is used to
define a metric on how “good” a candidate solution is. Infeasible solutions are
candidate solutions that are not physically possible (for example, no path to
ground). Infeasible solutions are detected by the SPICE simulator.

5.4 Optimization Technique

In the following paragraphs we show how to include different optimization pro-
cesses in model transformation models. The optimization process is implemented

Search-Based Model Optimization Using Model Transformations 87

using the scheduling language of the model transformation language. Four
well-known search techniques that are used in optimization are constructed:
exhaustive search, randomized search, Hill Climbing and Simulated Annealing.
We define for each of the proposed search techniques what the requirements of
the model transformation language are. Transformation rules are created for the
running example to create the candidate solutions.

Exhaustive Search: While the exhaustive search is not practical for most prob-
lems, as a potentially huge search space needs to be explored, it can be used
for the optimization of small problems. Exhaustive search will generate all so-
lutions in the design space that are reachable by the defined transformations.
Figure 5 shows an activity diagram of the implementation of the exhaustive
search method. The transformation schedule performs a depth-first-search-like
traversal of the search-space by exhaustively trying all possibilities. At each rule
application, the search creates a checkpoint that is used by the Rollbacker com-
ponent to implement the backtracking. The checkpoint contains (a) the model,
(b) the selected match and (c) the match-set, without the chosen match. With
each backtracking step, another match is used, creating a new branch in the
search tree. Depending on the problem, each of the intermediate steps repre-
sents a candidate solution or only a partial solution (with a full solution on the
leaf node of the tree).

Randomized Search: In randomized search, a set of solutions are created in a
random way. The technique is used to get an overview of the search-space. It can
also be used to create a starting point for other search techniques that require
a candidate solution to start optimizing. Random search uses only the matcher,
iterator and rewriter. After matching all occurrences of the pattern in the model,
a random match is selected for rewrite. This requires a different iterator than
in the exhaustive case. The rewriter applies the randomly chosen match on the
model. Afterwards, another rule or the same rule can be executed until a solution
point is obtained. The rules can be applied a random number of times or until
no more matches can be found in the model. A loop is used to create multiple
solution points.

Hill Climbing: Hill climbing is a local search technique that uses an incremental
method to optimize a single solution. The algorithm starts with an arbitrary
solution to the problem and iteratively optimizes this solution by changing a
single element. If the change is a better solution to the optimization problem,
the change is accepted. This procedure is repeated until no better result is found.
Figure 5 shows the building blocks of the hill climbing transformation. After
matching all occurrences in a (set of) rule(s), the iterator picks one match at
random and rewrites this in the model. The solution is evaluated and compared
with the original solution. In case the solution is not better, the original solution
(with the matches) is restored and another match is randomly selected and
evaluated. If the solution is a better one, it is accepted. The evaluator contains a
set of transformation rules to calculate the metrics of the solution or to generate

88 J. Denil et al.

Exhaustive

Match

Iterate

Rewrite

Exhaustive
Next Rule

Checkpoint

nextRule?

true
Restore

Next Match

Save Solution
Point

success?

success?

false
true

false

Random

Match

Iterate

Rewrite

Hill Climbing

Match

Iterate

Rewrite

Checkpoint

Evaluate

better?

Restore

Next Match

success?

false

no

true

Random
Next Rule

Save Solution
Point

stop?

false

true

nextRule?

true false

Simulated Annealing

Match

Iterate

Rewrite

Checkpoint

Evaluateaccept?

Restore

false

temp?

iterate?

Decrease temp

true

false

true

Store Best;
Clear Checkp.

false
true

Fig. 5. Activity diagram of Exhaustive Search, Random Optimization, Hill climbing
and Simulated Annealing using T-Core primitives

an analysis or simulation model that can be executed. The metrics obtained are
used by the scheduling language to decide if the solution is more optimal than
the previous solution. When a better solution has been found, the process is
restarted until no more improvements can be found.

Search-Based Model Optimization Using Model Transformations 89

Simulated Annealing: Simulated annealing is a generic probabilistic optimization
algorithm [13]. The algorithm is inspired by metallurgy where controlled cooling
is used to reduce defects in the crystal structure of the metal. The controlled
cooling is used in simulated annealing to decrease the probability in accepting
not only a more optimal solutions but also a less optimal solution. By not only
accepting better solutions, the search algorithm is able to escape a local opti-
mal result. Again, all occurrences are matched where only a single one is picked
for rewriting. Based on the difference between the previous solution and the
candidate solution, and the temperature, the candidate solution is accepted or
rejected (resulting in a backtracking step). At low temperatures only better and
equal solutions are accepted. Backtracking is thus more intensive at lower tem-
peratures. This process is iterated for a predefined number of times. Afterwards,
the temperature is decreased and the optimization algorithm resumes with a new
temperature. The best overall solution is stored during the optimization cycle.

6 Experimental Evaluation

In this section, we look at the results of the design-space exploration of the
running example. A small optimization chain is created and domain knowledge
is added to the transformations.

6.1 Optimization Results

Our experimental setup uses two start models to generate different types of fil-
ters. The first model has 25 spare components to create a filter. The second model
has 38 spare components. The experimental setup uses three filter specifications
(the first uses the first model, the second and third use the second model). The
parameters of the search algorithms are chosen based on initial experiments, for
example simulated annealing has 40 temperature drops with each 20 different
changes (800 different solutions are examined). We repeat each experiment ten
times and record the number of used components in the filter, the difference
between the specification of the filter and the results and finally, the optimiza-
tion time. Table 1 shows the results for hill climbing and simulated annealing.
Both optimization methods have similar results. A filter within specification or
very close to the specification is created from the available components. Figure 6
shows the application of a hill climbing on the generation of a filter. All the
previously presented rules (and the opposite rules) are used in the optimization.
The filter resulting from the search is entirely within the requested specification.
Figure 7 shows the result of a Simulated Annealing experiment. On the left side,
a filter with band-pass characteristics is shown. The search method finds a solu-
tion very close to the requested filter characteristic but not completely according
to the specification. On the right side the evolution of the score is shown per
temperature drop. The start score for the start model is 108 but is left out of
the graph to better show the evolution.

90 J. Denil et al.

Table 1. Results of the hill climbing (HC) and simulated annealing (SA) experiment.
The difference from the specification at the sample points (dB per sample point) is
used as a measure for the quality of the filter.

Difference Nr. of Components Time (s)
Within Spec.

Average Std. Dev. Average Std. Dev. Average Std. Dev.

Spec. 1
SA 0.0531 0.1596 4.1666 0.9374 312.9743 24.5175 70%
HC 0.0594 0.097 4 1.154 49.449 17.2671 70%

Spec. 2
SA 0.063 0.1263 5.6 1.0749 527.0944 44.0954 60%
HC 0.5325 0.8554 4.4 1.505 44.0690 21.2225 60%

Spec. 3
SA 5.087459 7.4341 8.4 2.3190 486.4568 80.8747 20%
HC 1.4242 1.8716 9 3.0912 135.6770 64.0912 40%

6.2 Optimization Chains

As shown in [5], the FTG+PM allows us to combine different transformations,
search-based transformations and Model-to-Model transformations, in sequence
or in parallel, to optimize a system. In the running example, the created filter
networks usually contain some components that do not have any effect on the
characteristic of the filter. Removing these elements would benefit the architec-
ture of our generated filter circuit as well as the production cost of our filter. The
FTG+PM allows us to encode and operationalize this optimization chain. The
first transformation creates the filter as described above. The resulting model
is then optimized using hill-climbing with a single rule that tries to remove a
component in the model. On certain occasions the transformation removes one
to five components.

6.3 Adding Domain Knowledge

As already stated, model transformation rules allow for an elegant encoding of
domain knowledge in the constraints and model transformation rules. For the
design of passive filters, a well-known topology is the ladder network. A ladder
network consists of cascaded asymmetrical L-sections. For a low-pass filter, the
ladder would consist of series inductors and shunt (connected to the ground)
capacitors. A model transformation rule can nicely capture the creation of this
L-section to grow a ladder topology. Figure 8 shows a transformation rule to add
a new L-section to a ladder topology.

The exhaustive and random search methods are used to create different ladder
networks using only the presented rule (eight components are available). As
expected, the exhaustive method finds the optimal ladder order and components
to use in the ladder. The search created 62216 different solutions instead of the
millions of solutions available if all rules would be used. Figure 9 shows a created
ladder network and corresponding Bode plot for a low-pass filter requirement.
Randomly sampling the design space is not performant for this application.

Search-Based Model Optimization Using Model Transformations 91

10

5

5

15

100

15u

50u

1m

(a) Low-pass filter net-
work (b) Frequency sweep for the low-pass filter

Fig. 6. Hill climbing example results

10

1m

5m

10m

50

10u
5u 30u

50u 50u

(a) Band-Pass Filter example

0 10 20 30

Temperature Drop

1000

1500

2000

2500

3000

S
ol

ut
io

n
S

co
re

SA Evolution per Temperature Drop

(b) Evolution of the goal function metric

Fig. 7. Simulated annealing example results

3

7

8

252

6

2

6

9

25

3 7

8

- + -

-

+

+

- +

Fig. 8. Creation of an L-section for a ladder topology

7 Discussion

In this section, we discuss some of the issues and opportunities of using a rule-
based model transformation approach to search-based optimization.

The proposed search algorithms can be used as a starting point for more ad-
vanced optimization techniques. Multiple variants of the presented algorithms
are proposed in the literature. The exhaustive search, for example, can be con-
verted to a branch-and-bound algorithm [14]. By adding an extra evaluation on
partial candidates, solution branches can be pruned very early during search to

92 J. Denil et al.

1

1

318u

159u

243u

299u

(a) Ladder network example (b) Ladder network Bode plot

Fig. 9. Example network using the ladder rule for a low-pass filter

find the optimal solution when the branch is already less optimal than the cur-
rently found best solution. In hill-climbing, extra features can be added in the
scheduling language to allow for random restarts, selecting the steepest descent,
etc. Other domain knowledge can be discovered by mining the traces of the
transformations. The mining of the traces can uncover the sensitivity of param-
eters, where the changes of certain parameters have more effect than the effects
of other parameters. These are the choices that should be focused on during
search.

Because matching is a modular feature of model transformation, the correct
choice of a matching technique can have a positive influence on the performance
of the overall approach. In [6], a performance analysis of the search techniques
and different matching techniques (VF2, Rete and Search Plans) together with
a coded implementation are used in a resource allocation case study. The results
show that creating candidate solutions using model transformations is computa-
tionally more expensive compared to optimal representations. This is attributed
to the complexity of finding of sub-graphs in the model. Using the correct type of
matching technique on a model-to-model basis can help boost the performance
of the approach. Furthermore, a rule-based approach to search exposes the par-
allelism in branching search techniques. Parallelism can thus further enhance
the performance of the approach. Finally, all matches are always matched in
the underlying model even when this is not always necessary. Using a random
matcher that creates just a single random match should be more performant
for random -and simulated annealing searches. Another approach to improving
the performance of the matching is to use a divide and conquer strategy. Scop-
ing [10] can be used to select subparts of the model to optimize. The scoping
can dynamically change (and broaden over time) to reduce the cost of matching
during hill climbing where all matches are required for the algorithm to work.

8 Related Work

Related work can be found in Search-Based Software Engineering (SBSE) and in
Model-Driven DSE. To the best of our knowledge, the integration of single-state

Search-Based Model Optimization Using Model Transformations 93

SBO techniques in model transformations has not been previously explored in a
structured way. SBSE solves software engineering problems using SBO. An ex-
ample of the use of models and search can be found in [11]. The authors search
for a model transformation to translate a sequence diagram into a colored Petri
net. Simulated annealing as well as Particle Swarm Optimizations are used to
search in the large design-space of such a problem. The authors use this experi-
ence in [12] to create a framework for using genetic algorithms with models. A
generic encoding meta-model is proposed as well as the use of model transforma-
tions for encoding and decoding the domain specific models. Another approach
is proposed in [1]. The authors introduce a MDE solution to solving acquisition
problems. Model transformations are used to create an initial population for
a genetic algorithm and to evaluate candidate solutions. Finally, evolutionary
algorithms have been used before to search for optimized models [26]. Our ap-
proach does not require the model to be transformed to another representation
for meta-heuristic search.

Two transformation-based approaches have been previously used for design-
space exploration. In the first approach, models are transformed to another
representation more suitable for exploration or having a dedicated solver for
exploration. For example, the DESERT tool-suite [18] provides a framework for
design-space exploration. It allows an automated search for designs that meet
structural requirements. Possible solutions are represented in a binary encoding
that can generate all possibilities. A pruning tool is used to allow the user to se-
lect the designs that meet the requirements. These can then be reconstructed by
decoding the selected design. In [20], Saxena and Karsai present an MDE frame-
work for general design-space exploration. It comprises an abstract design-space
exploration language and a constraint specification language. Model transfor-
mation is used to transform the models and constraints to an intermediate lan-
guage. This intermediate language can be transformed to a representation that
is used by a solver. Model generation techniques can also be used to search in a
design-space. The FORMULA tool is able to construct instances from a meta-
model [9]. Sen et al. uses Alloy to generate models for testing purposes [23]. A
second approach, similar to our approach, uses model transformation to search
the design-space using the model itself. Schätz et al. developed a declarative,
rule-based transformation technique [21] to generate the constrained solutions
of an embedded system. The rules are modified interactively to guide the explo-
ration activity. In [4], a transformation-based approach is proposed to generate
the full design-space of a cyber-physical system. The transformation language
is based on Answer-Set Programming. Different approximation levels are intro-
duced where non-feasible solutions can be pruned. In [8], a framework for guided
design-space exploration using graph transformations is proposed. The approach
uses hints, provided by analysis, to reduce the traversal of states. Finally, Drago
et al. introduce an extension to the QVTR transformation language to repre-
sent rational information about alternative designs, and to provide performance
feedback to engineers while transforming [7]. In our work, meta-heuristics are
added to search the design space.

94 J. Denil et al.

9 Conclusions and Future Work

In this paper, we demonstrated that multiple SBO techniques are easily incorpo-
rated into MDE. Through a non-trivial example of electrical circuit generation,
we showed how this approach can be applied and how it enables simple switching
between different SBO approaches, and how it allows for the elegant integration
of domain knowledge, all within the modeling paradigm. Our strategy can be
easily extended to facilitate different search processes, taking advantage of the
modular nature of the underlying model transformation systems.

Our next steps in including search in transformation models include improv-
ing the current performance of the approach. We will focus on creating a non-
deterministic and random matcher, so a single non-deterministic or random
match can be found in the model without the need to match all the possible
neighbors of a solution.

References

1. Burton, F.R., Paige, R.F., Rose, L.M., Kolovos, D.S., Poulding, S., Smith, S.:
Solving acquisition problems using model-driven engineering. In: Vallecillo, A.,
Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS,
vol. 7349, pp. 428–443. Springer, Heidelberg (2012)

2. Burton, F.R., Poulding, S.M.: Complementing metaheuristic search with higher
abstraction techniques. In: Paige et al. [19], pp. 45–48

3. Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. Third Annual
ACM Symp. on Theory of Computing (STOC 1971), pp. 151–158. ACM, USA
(1971)

4. Denil, J., Cicchetti, A., Biehl, M., De Meulenaere, P., Eramo, R., Demeyer, S.,
Vangheluwe, H.: Automatic Deployment Space Exploration Using Refinement
Transformations. Electronic Communications of the EASST Recent Advances in
Multi-paradigm Modeling 50 (2011)

5. Denil, J., Han, G., Persson, M., De Meulenaere, P., Zeng, H., Liu, X., Vangheluwe,
H.: Model-Driven Engineering Approaches to Design Space Exploration. Tech. rep.,
McGill University, SOCS-TR-2013.1 (2013)

6. Denil, J., Jukss, M., Verbrugge, C., Vangheluwe, H.: Search-based model optimiza-
tion using model transformation. Tech. Rep. SOCS-TR-2014.2, School of Computer
Science, McGill University (January 2014)

7. Drago, M.L., Ghezzi, C., Mirandola, R.: QVTR2: A rational and performance-
aware extension to the relations language. In: Dingel, J., Solberg, A. (eds.)
MODELS 2010. LNCS, vol. 6627, pp. 328–328. Springer, Heidelberg (2011)

8. Hegedus, A., Horvath, A., Rath, I., Varro, D.: A model-driven framework for guided
design space exploration. In: Proc. ASE 2011, pp. 173–182. IEEE CS, USA (2011)

9. Jackson, E.K., Kang, E., Dahlweid, M., Seifert, D., Santen, T.: Components, plat-
forms and possibilities: Towards generic automation for mda. In: Proc. EMSOFT
2010, pp. 39–48. ACM, USA (2010)

10. Jukss, M., Verbrugge, C., Elaasar, M., Vangheluwe, H.: Scope in model transforma-
tions. Tech. Rep. SOCS-TR-2013.4, School of Computer Science, McGill University
(January 2013)

Search-Based Model Optimization Using Model Transformations 95

11. Kessentini, M., Wimmer, M., Sahraoui, H., Boukadoum, M.: Generating transfor-
mation rules from examples for behavioral models. In: Proc. Second International
Workshop on Behaviour Modelling Foundation and Applications, BM-FA 2010,
pp. 1–7. ACM Press, New York (2010)

12. Kessentini, M., Langer, P., Wimmer, M.: Searching models, modeling search: On
the synergies of SBSE and MDE. In: Paige et al. [19], pp. 51–54

13. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing.
Science 220(4598), 671–680 (1983)

14. Land, A., Doig, A.: An Automated Method of Solving Discrete Programming Prob-
lems. Econometrica 28(3), 497–520 (1960)

15. Lúcio, L., Mustafiz, S., Denil, J., Vangheluwe, H., Jukss, M.: FTG+PM: An inte-
grated framework for investigating model transformation chains. In: Khendek, F.,
Toeroe, M., Gherbi, A., Reed, R. (eds.) SDL 2013. LNCS, vol. 7916, pp. 182–202.
Springer, Heidelberg (2013)

16. Mustafiz, S., Denil, J., Lúcio, L., Vangheluwe, H.: The FTG+PM framework
for multi-paradigm modelling: An automotive case study. In: Proc. MPM 2012,
pp. 13–18. ACM, USA (2012)

17. Nagel, L., Pederson, D.: SPICE (Simulation Program with Integrated Circuit Em-
phasis). Tech. Rep. UCB/ERL M382, EECS Department, University of California,
Berkeley (April 1973)

18. Neema, S., Sztipanovits, J., Karsai, G., Butts, K.: Constraint-based design-space
exploration and model synthesis. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS,
vol. 2855, pp. 290–305. Springer, Heidelberg (2003)

19. Paige, R.F., Harman, M., Williams, J.R. (eds.): CMSBSE@ICSE 2013. IEEE CS
(2013)

20. Saxena, T., Karsai, G.: Mde-based approach for generalizing design space explo-
ration. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I.
LNCS, vol. 6394, pp. 46–60. Springer, Heidelberg (2010)

21. Schätz, B., Hölzl, F., Lundkvist, T.: Design-Space Exploration through Constraint-
Based Model-Transformation. In: 2010 17th IEEE International Conference and
Workshops on Engineering of Computer-Based Systems, pp. 173–182. IEEE (2010)

22. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. IEEE
Computer 39(2), 25–31 (2006)

23. Sen, S., Baudry, B., Vangheluwe, H.: Towards domain-specific model editors with
automatic model completion. Simulation 86(2), 109–126 (2010)

24. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-
driven software development. IEEE Software 20(5), 42–45 (2003)

25. Syriani, E., Vangheluwe, H., LaShomb, B.: T-Core: a framework for custom-built
model transformation engines. Software & Systems Modeling, 1–29 (2013)

26. Williams, J.R., Poulding, S., Rose, L.M., Paige, R.F., Polack, F.A.C.: Identifying
desirable game character behaviours through the application of evolutionary algo-
rithms to model-driven engineering metamodels. In: Cohen, M.B., Ó Cinnéide, M.
(eds.) SSBSE 2011. LNCS, vol. 6956, pp. 112–126. Springer, Heidelberg (2011)

27. Zeng, H., Natale, M.D.: Improving real-time feasibility analysis for use in lin-
ear optimization methods. In: 22nd Euromicro Conference on Real-Time Systems
(ECRTS), pp. 279–290. IEEE CS (2010)

Associativity between Weak and Strict

Sequencing

Gregor v. Bochmann

School of Electrical Engineering and Computer Science, University of Ottawa,
Ottawa, Ontario, Canada

bochmann@eecs.uottawa.ca

Abstract. In this paper, we consider workflows (called collaborations)
involving several system components (or roles) where different compo-
nents may independently start their participation in the collaboration,
or terminate their participation. We consider a global workflow that is
composed out of several sub-collaborations which should be executed
in a specified order. For sequential execution, strict and weak sequenc-
ing have been defined. With strict sequencing all actions of the first
sub-collaboration must be completed before the second sub-activity may
start. Weak sequencing was introduced for sequencing distributed activ-
ities, in particular sequence diagrams, and implies only local sequencing
at each system component, but no global sequencing rule. We define the
semantics of a collaboration in terms of the partial order among its in-
ternal actions, and we also use partial orders to define the semantics of
strict and weak sequencing of sub-collaborations. Then we concentrate
on the associativity between weak and strict sequencing. Based on the
given definitions, it is shown that such associativity is satisfied in most
situations, however, its validity depends on certain conditions about the
participation of the different system components in the sequenced sub-
collaborations and on the question whether they play an initiating or
terminating role in these activities. The lack of associativity may lead to
ambiguities when the dynamic behavior of complex workflows is devel-
oped and specified. These difficulties can be avoided by conventions for
priorities between weak or strict sequencing, and/or some appropriate
bracketing structure in the workflow notation.

1 Introduction

Execution in sequence is a basic structuring concept in programming languages
and also for the definition of the dynamic system behavior in requirements spec-
ifications. At the requirement specification level, the behavior of the system is
normally specified at a high level of abstraction. This means that the activi-
ties that are described as an individual action are relatively large. The strict
sequencing requirement between two activities, say first A then B, means that
activity A must be completely finished before any part of activity B may start.
However, such a requirement may be too strong, since some limited form of con-
currency may be allowable for performance reasons or for simplifying the design

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 96–109, 2014.
c© Springer International Publishing Switzerland 2014

Associativity between Weak and Strict Sequencing 97

of the system. In particular, if the system is to be implemented in a distributed
context and some of the activities are performed in collaboration by different
system components, the implementation of strict sequencing may require a large
number of coordination messages and therefore lead to ineffective implementa-
tions.

Lamport pointed out in 1978 [8] that the ordering of events in a distributed
system is naturally described by a partial order. This led later to the definition
of weak sequencing for the sequential execution of two collaborations, each
defined by a sequence diagram [9]. The sequence diagrams identify the different
system components that participate in the behavior, and weak sequencing means
that each component imposes local sequencing, however, no global sequencing is
enforced. This leads to some form of concurrency, since one system component
may already start with the second collaboration while another component is still
involved in the first. The ITU-T Message Sequence Chart notation that Mauw
and Reniers described [9] is in most respects interchangeable with UML sequence
diagrams, so that in this paper “sequence diagrams” refers to both.

UML allows strict and weak sequencing for defining the order of execution of
different sequence diagrams, however, the semantics of UML activity diagrams is
geared at strict sequencing of activities. In the context of describing requirements
of distributed applications at a high level of abstraction, we have used the term
“collaboration” to designate an activity that is performed by several components
within a distributed system and where the different components may indepen-
dently initiate or terminate their involvement in the collaboration [2]. The static
aspect of such a “collaboration” can be described by a UML Collaboration. For
describing the order in which the different sub-collaborations within a specified
system should be executed, we proposed the notation of UML activity diagrams
with slightly modified semantics allowing for strict and weak sequencing. Similar
notations have also be used for deriving distributed system designs from global
descriptions of service requirements [1, 3].

In this context, the requirements engineer may define some system behav-
ior that includes several collaborations between various components which are
scheduled in sequence, where some of the sequencing operators are weak and oth-
ers strict. To our surprise, it turns out that strict and weak sequencing operators
are not associative with one another, that is, the behavior of ((A

s−→ B)
w−→ C) is

not necessarily equal to (A
s−→ (B

w−→ C)), where A, B and C are collaborations

and “
w−→” and “

s−→” stand for weak and strict sequencing, respectively.
The purpose of this paper is to explore these issues in detail. In Section 2.1,

we describe the nature of collaborations in more detail, define the meaning of
strict and weak sequencing and give some examples. In Section 2.2, we give a
formal meaning to these concepts by using the formalism of partial orders for
describing the semantics. This formal definition is the basis for the analysis of
the association rules discussed in Section 3.

Section 3 starts by proving that several consecutive weak sequencing operators
are associative by showing that ((A

w−→ B)
w−→ C) and (A

w−→ (B
w−→ C)) give rise

to the same partial order of events for the different parties involved (and similarly

98 G.v. Bochmann

for strong sequencing). Then mixed sequencing, such as (A
s−→ B

w−→ C) is
considered and it is shown that associativity does not hold in general. It turns out
that associativity is broken in certain cases depending on which collaborations
the different parties are involved in. In addition, this question also depends on
whether certain parties play an initiating or terminating role within the first
or last collaboration, as explained in detail in Section 3. This means that the
notation “(A

s−→ B
w−→ C)” is ambiguous if the associativity is not satisfied.

The conclusion points out that a notational convention is needed to avoid such
ambiguity either by giving priority to weak or strict sequencing or by using some
notation equivalent to bracketing.

The section on related work discusses another sequencing operator, called lay-
ered sequencing, which imposes certain sequencing constraints in order to avoid
conflicts with variables shared among the different sub-collaborations. Algebraic
properties have been defined when this sequencing operator is combined with
concurrency.

2 System Design with Collaborations and Partial Orders

2.1 Using Collaborations and Roles for Structuring Global
Behaviors

For describing the structural as well as the behavioral aspects of complex activi-
ties in a hierarchical manner that allows the description of an activity in terms of
its sub-activities and further its sub-sub-activities, we proposed in [2] a notation
that combines the UML Collaborations for structural aspects with a variation
of UML activity diagrams for the description of the behavior of an activity by
describing the order in which its sub-activities would be executed. We note that
UML allows already that several roles are involved in a single activity. However,
we introduce three important modifications to the semantics of UML:

1. Within a given instance of an activity, several roles may independently
start their sub-activities (often due to independent incoming data flows).
We call these roles initiating roles and their starting sub-activities initial
sub-activities. (Note that UML requires that all initial sub-activities of an
activity be initiated simultaneously, which may be unrealistic if the activity
is performed within a distributed system).

2. Within a given instance of an activity, several roles may independently ter-
minate their sub-activities (which means that their output can be produced
in any order). We call these roles terminating roles and their ending sub-
activities terminal sub-activities. (Note that UML requires that all outputs
of sub-activities be generated simultaneously which, again, is unrealistic if
the activity is performed within a distributed system).

3. Besides the usual sequencing operators of activity diagrams, namely (strict)
sequence, alternatives, concurrency and loops, we also allow for weak se-
quencing.

Associativity between Weak and Strict Sequencing 99

In the following, we call activities with this semantics “collaborations”. An
example of a collaboration with its sub-collaborations is shown in Fig. 1(a). The
roles are indicated by the vertical lines, collaborations are represented by ovals,
and local activities performed by a single role are represented as small circles.
We show for each role the first and last sub-activity in which the role is involved
and possibly some other local activities. The initial and terminal sub-activities
are indicated by a dark circles. The basic ordering relationships between the
sub-activities are indicated by dotted arrows. We see that the starting activity
of role-2 has to wait for the completion of the starting activity of role-1 (the
former is not initiating). The collaboration A shown in the figure has a sub-
collaboration, called B, which has one initial and one terminal sub-activity.
The diagram shows that the terminal sub-activity of role-1 has to wait for the
completion of the last sub-activity of role-2 (because the latter is not terminal
in collaboration B).

There is some similarity between our notation for collaborations and sequence
diagrams. The sequence diagram of Fig. 1(b) represents the same ordering rela-
tionships as Fig. 1(a). However, it highlights exchanged messages and does not
explicitly show the local sub-activities.

In many situations, we want to make abstraction from the inner workings
of a collaboration. In that case, we only represent the starting and ending sub-
activities and indicate whether they are initial or terminal, respectively, as shown
in Fig. 1(c).

Fig. 1. (a) Example of a collaboration (dark circles are initial or terminal sub-
activities); (b) corresponding sequence diagram; (c) abstracted view

For defining the sequential execution of two collaborations A and B, two
important sequencing operators have been defined: strict (or strong) sequencing
and weak sequencing. We note that the definition of weak sequencing requires the
distinction of the different roles (or system components) that participate in the
realization of the collaborations. In the case of sequence diagrams, these roles are
the vertical “lifelines”, and in UML activity diagrams, these are the swimlanes.
Weak sequencing is the natural concept for sequencing of sequence diagrams and
was introduced for the composition in Hierarchical Message Sequence Charts (H-
MSC) [9] and was later included in UML.

100 G.v. Bochmann

These sequencing concepts can be defined as follows:

Strict Sequence: We write (A
s−→ B) to state that B is executed strictly after

A, which means that all sub-activities of A must be completed before any sub-
activity of B may start. This is, in a sense, the default meaning of “sequencing”.

Weak Sequence: We write (A
w−→ B) to state that B is weakly sequenced

after A, which means that each role participating in A must complete all the
sub-activities of A in which it is involved before it may get involved in any sub-
activity of B. This means that there is a local strict order enforced for each role,
but no global ordering.

We give in the following a few examples of workflow activities that will be
used for demonstration throughout the paper. The activity shown in Fig. 2(a)
represents a construction project, where a product is built by a team and the
project leader, and then delivered to the client after it has been checked out by
the project leader. When the building of the product is completed, the team will
also perform a clean-up of the workshop. The sequencing (strict or weak) between
the different activities and sub-activities is indicated by annotated arrows (s
stands for strict,w for weak sequencing). The roles are indicated by vertical lines,
similarly as in sequence diagrams. We note that the clean-up can be performed
concurrently with the check activity because they are performed by different
roles and they are weakly sequenced.

The activity in Fig. 2(b) represents the organization of a concert for the king
(an imagined process from the Middle Ages) where the king contracts an artist
to prepare and produce a concert for the king and his court. The artist has to
prepare himself for the concert, and a helper has to reserve the place where the
concert will take place. Finally, the concert takes place and the king attends. We
note that in this example, the activity reserve can be performed quite early in
the process because of weak sequencing.

Fig. 2. (a) A construction project; (b) The king’s concert

Associativity between Weak and Strict Sequencing 101

2.2 Defining Sequencing Operators Using Partial Orders

In his paper from 1978 [8], Lamport pointed out that partial orders are useful
for understanding the meaning of sequence diagrams. In particular, he noted
that two events are ordered in time if and only if this order can be derived
from the basic ordering relationships of certain events. In the case of a sequence
diagram, the basic ordering relationships are two-fold: (1) the reception of a
message occurs after the sending of that message, and (2) an event on a vertical
line (representing the actions of a single role) occurs after all events on that same
line that lie above (at locally earlier times).

For a single activity, as shown in Fig. 1, we have a partial order for the
execution of the sub-activities based on the following basic ordering relationship:

1. The sub-activities of a given role are executed in the given local order.
2. Basic ordering relationships between sub-activities of different roles are ex-

plicitly indicated by a dotted arrow and/or implied by the designation of
certain local sub-activities as initial or terminal sub-activities.

3. Additional ordering relationships are implied by the transitivity rule of par-
tial orders. For instance, the second action of role-3 will be after the initial
action of role-1.

It is important to note that we can give a formal definition of the initiating
and terminating roles of a collaboration based on the partial order of its sub-
activities.

Definition 1: Given a collaboration and the partial order among its sub-
activities, a role r is initializing (terminating) if the first (last) sub-activity
X of r is a minimal (maximal) element of the partial order, that is, there is
no other sub-activity B in the collaboration that is earlier (later) in the partial
order than X .

We will see that the initiating and terminating roles have a specific role to
play in the definition of strict sequencing. Therefore, we often represent a collab-
oration abstractly as shown in Fig. 1(c), ignoring the internal sub-activities and
the internal partial order of the collaboration, and representing only the first
and last sub-activities of each role, and also indicating whether they are initial
or terminal.

The concept of partial orders can also be used for defining strict and weak se-
quencing for collaborations, as proposed in [5,6]. Figures 3(a) and 3(b), adapted
from [4], show the semantics of strict and weak sequencing, respectively. These
diagrams show the general case where the collaborations A and B involve differ-
ent subsets of roles - the roles with index A (B) are only involved in collaboration
A (B), and the roles with index AB are involved in both collaborations. For the
definition of the strong sequence, a virtual event (called e in the figure) is in-
troduced which represents the moment when all sub-activities of A have been
executed and the execution of B has not yet started. The representation of weak
sequencing is straightforward.

For the implementation of complex workflows in a distributed environment,
it is often useful to start out with a specification of the global system behavior

102 G.v. Bochmann

Fig. 3. Definition of sequencing through partial orders: (a) weak sequencing; (b)
strict sequencing; (c) strict sequencing under consideration of initial and terminal sub-
activities; (d) coordination messages for strict sequencing

in terms of the ordering of sub-activities and the involved roles, and later to
allocate these roles to specific distributed system components and then derive
the behavior of these system components, including their exchange of messages
for the coordination of the global actions, from the given global system behavior.
The difficulties in the design of these system components due to possible race
conditions between the exchanged coordination messages was discussed in [2],
and a derivation algorithm allowing for strict and weak sequencing is described
in [1]. The coordination messages are required for imposing certain partial or-
der relationships among the sub-activities that are implemented in the different
components of the distributed system.

From the definition of weak sequencing shown in Fig. 3(a), it is clear that no
coordination messages are required between the different roles, since only local
ordering is imposed.

The definition of strict sequencing, as shown in Fig. 3(b) can be simplified
when it is known which roles of A are terminating and which roles of B are
initiating. It is easy to see that the simplified definition of Fig. 3(c) defines the

Associativity between Weak and Strict Sequencing 103

same partial order as the one defined in Fig. 3(b). This can be seen as follows: For
each last sub-activity x of A that is not terminal, there is an ordering relationship
implied by transitivity to the event e because there is an ordering relationship
from x to one of the terminal sub-activities of A (otherwise x would itself be
terminal).

Coordination messages for strict sequencing of complex behaviors were first
introduced in [3]. These messages correspond to the thick arrows in Fig. 3(d).
It is clear that the ordering relationship between the terminating sub-activities
of A and the initiating sub-activities of B is the same in Figs. 3(c) and 3(d),
although Fig. 3(d) does not contain the artificial event e. These considerations
provide a simple proof that the coordination messages introduced in [3] realize
the definition of strict sequencing presented in Fig. 3(b).

3 Association Rules

3.1 Associativity of Strict and Weak Sequencing

Lemma: Weak (strict) sequencing is associative, which means that for three
given activities A, B and C, we have ((A → B) → C) = (A → (B → C)), where

“→” stands for “
w−→” (“

s−→”).
In the following, we use the partial order sequencing definitions given in Sec-

tion 2.2 in order to show that this lemma is indeed true. In order to decide this
question, we consider the partial orders between the sub-activities of the three
activities A, B and C implied by the two behavior expressions, and we say that
the two behaviors are equal if and only if the corresponding partial orders are
the same.

The partial orders implied by the expressions ((A → B) → C) and (A →
(B → C)) are shown in Fig. 4, on the left for weak sequencing and on the
right for strong sequencing. These diagrams are derived from the partial order
definitions of Figs. 3(a) and 3(b), respectively. In these diagrams, a vertical line
RX represents all roles that are only involved in activity X (X = A, B or C),
a line RXY represents all roles that are involved in activities X and Y (but not
the third activity), and RXY Z represents all roles that are involved in all three
activities.

Concerning the partial order defined for weak sequencing, the behaviors ((A
w−→

B)
w−→ C) and (A

w−→ (B
w−→ C)) give rise to the same partial order shown in

Fig. 4 (on the left). Therefore these two behaviors are the same.

The corresponding expression ((A
s−→ B)

s−→ C) with strict sequencing gives
rise to the partial order shown in Fig. 4 (on the right) including the dashed
dependencies, but excluding the dotted dependencies. We note, however, that
the dashed dependencies are redundant since they are implied by the other
dependencies shown as full arrows. For instance, the dependency from the last
sub-activity of A for the roles RA to the synchronization event e2 is already
implied by the following dependencies: (1) from the last sub-activity of A for the
roles RA to the synchronization event e1, (2) from that event to the first sub-
activity of B for the rolesRAB , (3) from that sub-activity to the last sub-activity

104 G.v. Bochmann

Fig. 4. Associativity of (a) weak and (b) strict sequencing

in B of those roles, and (4) from that sub-activity to the synchronization point
e2. Therefore these dashed dependencies do not change the partial order, and
they can be dropped. Similarly, we obtain for the behavior (A

s−→ (B
s−→ C)) the

partial order shown in Fig. 4(b) including the dotted dependencies, but excluding
the dashed dependencies. Again, the dotted dependencies are redundant and can
be dropped. Therefore, we obtain the same partial order for both behaviors.

3.2 Association between Strong and Weak Sequencing

The situation is not so simple when we combine strict and weak sequencing
within one expression. We ask in particular the following question: Is the be-
havior of ((A

s−→ B)
w−→ C) equal to the behavior (A

s−→ (B
w−→ C))? Again,

we use the partial orders implied by these expressions to decide whether they
represent the same behavior. The partial orders implied by these two expressions
are shown in Fig. 5 using the same conventions as in Fig. 4. We see that these
two partial orders are the same except that the behavior (A

s−→ (B
w−→ C)) has

two additional dependencies (shown as dotted arrows in the figure):

1. Additional Dependency for RC : The roles only involved in C have to wait
for all roles to have completed activity A. In the case of ((A

s−→ B)
w−→ C),

they can start immediately.
2. Additional Dependency for RAC : The roles involved in A and C (but

not in B) have to wait for all roles to have completed activity A. In the

case of ((A
s−→ B)

w−→ C), they only have to wait that they have completed
A themselves (weak sequencing).

As an example we consider the workflow of the Kings Concert shown in
Fig. 2(b). It can be represented by the expression (find-artist

s−→ contract)
s−→

Associativity between Weak and Strict Sequencing 105

Fig. 5. Partial orders implied by two expressions

prepare
w−→ ((decorate ‖ reserve)

s−→ concert) or by (A
s−→ B

w−→ C) where

A = (find−artist
s−→ contract), B = prepare, and C = ((decorate ‖ reserve)

s−→
concert). The diagram of Fig. 2(b) does not indicate in which order the strict and
weak sequencing operators between A, B and C should be applied. If we give pri-
ority to the strict sequence, that is, we take the interpretation ((A

s−→ B)
w−→ C),

then the assistant can start with the decoration as soon as he has found the
artist, and the helper can reserve the place of the concert even before the artist
has been identified. However, if we give priority to weak sequencing, that is, we
take the interpretation (A

s−→ (B
w−→ C)), the additional dependencies for RC

and RAC apply, and the decoration and reservation actions can only be started
when the contract has been signed.

We now consider the case that the order of strict and weak sequencing is
exchanged, that is, we consider the situation where weak sequencing is followed
by strict sequencing. We note that the definitions of weak and strict sequencing
given by Fig. 3 are symmetric in respect to the reversal of time. If we reverse the
time we have simply to consider the arrows in the opposite direction. We also note
that the expressions (A

s−→ B
w−→ C) under time reversal becomes (C

w−→ B
s−→ A).

Therefore we can use the diagrams of Fig. 5 to determine whether the behavior
of (C

w−→ (B
s−→ A)) is equal to the behavior ((C

w−→ B)
s−→ A). Similar to above,

we see that ((C
w−→ B)

s−→ A) imposes two additional constraints, namely:

1. Additional Dependency on RC: All sub-activities of A can only start
after the last sub-activities in C by the roles RC have completed. In the
case of (C

w−→ (B
s−→ A)), there is no such dependency.

2. Additional Dependency on RAC : All sub-activities of A can only start
after the last sub-activities in C by the roles RAC have completed. In the
case of (C

w−→ (B
s−→ A)), the roles RAC may start with activity A as soon

as they have completed their sub-activities of C.

As an example, we may consider the construction project shown in Fig. 2(a).

Its behavior may be represented by the expression ((build
s−→ clean-up)

w−→

106 G.v. Bochmann

check
s−→ deliver). Again, the priority between the weak sequence and the later

strict sequence is not specified. In this example, the Team is a role belonging to
RC . Therefore the additional dependency on RC applies if one takes the inter-
pretation ((C

w−→ B)
s−→ A), where weak sequencing has priority. This additional

dependency implies that the delivery of the constructed product can only be
performed after the clean-up of the workshop was completed (which is probably
not the intention of the workflow designer). We conclude that in this example,
it is preferable to give priority to strict sequencing.

We conclude from the above discussion that

((A
s−→ B)

w−→ C) = (A
s−→ (B

w−→ C)) and (C
w−→ (B

s−→ A) = ((C
w−→ B)

s−→ A)

if there is no role in the sets RC and RAC , that is, if there is no role that is
involved in C and not involved in B.

However, this is not a necessary condition, as shown by the example of Fig. 6.
Let us consider here the first three activities: (meet

s−→ define-destination
w−→

query). The Flight-database belongs to the roles RC . Therefore the “additional
dependency for RC” would apply if we assume that weak sequencing has priority.
However, this dependency is redundant in this example, since the Flight-database
has no initiating role, but must wait for the query activity to be initiated by the
Travel-agent. Therefore the “additional dependency for RC” would not introduce
any additional ordering constraint and therefore we obtain the same partial order
whether we assume priority for weak or strict sequencing.

Fig. 6. Example: workflow for a travel agency

This example indicates how we can obtain an “if an only if” condition for
associativity of weak and strict sequencing. We note that each arrow to the
event e in Fig. 5 actually represents a set of order relationships, one for each
role in the set RX from where the arrow comes, and similarly each arrow from e
represents a set of “arrows”, one for each role in the set pointed to by the arrow.

Associativity between Weak and Strict Sequencing 107

If we use the strict sequencing definition of Fig. 3(c) (instead of Fig. 3(b)) in
the construction of the diagrams of Fig. 5, then we retain among the “arrows”
that enter e only those that come from a terminating role of A, and among the
“arrows” that leave e, we only retain those that lead to an initializing role of B
or C.

In particular, among the dotted arrows leaving e (which are of particular
interest), we would only retain those that lead to initializing roles of C. This
observation leads to the following proposition:

Proposition 1: The expressions ((A
s−→ B)

w−→ C) and (A
s−→ (B

w−→ C)) define
the same behavior if and only if each initiating role of C is involved in B.

By considering the same situation with reversed direction of time (as discussed
above), we obtain the following:

Proposition 2: The expressions ((C
w−→ B)

s−→ A) and (C
w−→ (B

s−→ A)) define
the same behavior if and only if each terminating role of C is involved in B.

4 Related Work

Other algebraic laws, besides rules like associativity in the form ((A
s−→ B)

w−→
C) = (A

s−→ (B
w−→ C)), have been discussed in other contexts with different se-

quencing operators. For instance, Olderog [10] considers the following operators:

Concurrency: This means there is no sequencing; the two activities are exe-
cuted concurrently, independently from one another. We write (A ‖ B) for the
concurrent execution of two activities A and B.

Layered Sequence: In order to define this concept, one needs another extension
of the model of “collaborations”. In this case, one assumes that the sub-activities
of a collaboration communicate through shared global variables that can be read

or updated. We write (A
l−→ B) to state that B is executed in layered sequence

after A, which means [10] that A and B are executed concurrently, except that a
sub-activity of B which uses certain global variables can only be executed when
all updates and read usages of these variables by A have already been completed.

It is interesting to note that layered sequencing can be used to model weak

sequencing [11]. The weak sequence (A
w−→ B) can be modeled by (A

l−→ B) if
one assumes that for each role associated with A or B (according to the weak
sequence), there is a global variable used to define the layered sequence, and
each sub-activity of A or of B that involves a given role will update or read
the global variable associated with this role. Then the execution orders of the
sub-activities of A and B allowed by weak sequencing are exactly the same as
those allowed according to the corresponding layered sequencing.

In [10], the following so-called “communication closed layer” law is proven:
Given four collaborations A1, A2, B1 and B2 with the property that A1 and
B2 have no common global variable, and B1 and A2 have no common global
variable, then the following two behaviors are equivalent:

(A1
l−→ A2) ‖ (B1

l−→ B2) = (A1 ‖ B1)
l−→ (A2 ‖ B2)

108 G.v. Bochmann

Using the modeling of weak sequencing through layered sequencing mentioned
above, we obtain a similar property for weak sequencing:

Lemma: Given four collaborations A1, A2, B1 and B2 with the property that
A1 and B2 have no common role and B1 and A2 have no common role, the
following two behavior definitions are equivalent:

(A1
w−→ A2) ‖ (B1

w−→ B2) = (A1 ‖ B1)
w−→ (A2 ‖ B2)

Using this lemma with empty behavior for A2 and B1, we obtain (A1 ‖ B2) =

(A1
w−→ B2) if A1 and B2 have no common role (which is well known).

5 Summary and Conclusions

Strict and weak sequencing are two different sequencing concepts supported in
UML. While the sequence of two activities A and B with strict sequencing
means that all sub-activities of A must be completed before any sub-activity
of B may start, weak sequencing allows for more concurrency in a distributed
environment. With weak sequencing, the order is enforced only locally for each
role participating in these activities, but not in the global context.

We have shown that the meaning of a workflow may be ambiguous if it con-
tains several sequencing operators in sequence, some weak and some strong. The
above two propositions define exactly under which conditions such ambiguity
does not occur.

We have discussed these issues using a formal definition of weak and strong
sequencing based on the partial order of the events that define the execution,
by the different roles, of the different sub-activities included in the sequenced
activities. In this context, it is also important to consider which roles are ini-
tiating and terminating for a given activity. We recall that a role is initiating
(terminating) if its first (last) sub-activity in the collaboration is not preceded
(followed) by another sub-activity of the same collaboration.

In order to resolve the ambiguity, if it arises in the specification of some
workflow, one could adopt one of the following schemes:

1. Define a default priority between strict and weak sequencing. It is not clear
whether weak or strict sequencing should obtain higher priority. Laamarti [7]
suggested weak; our current intuition goes towards strict sequencing.

2. Use parenthesis to indicate the order in which the sequencing operations
should be applied (as done in the text discussing the examples above). How-
ever, often graphical notations are used to define the workflows, and it is not
clear how best to include parenthesis structures in graphical notations. In
UML activity diagrams, the notation of regions may be used, or the region
of a parenthesis may be represented as a separate abstract activity.

We note that it may be interesting to consider other algebraic properties in-
volving the different sequencing operators considered in this paper, in particular
the associativity between strong sequencing and layered sequencing.

Associativity between Weak and Strict Sequencing 109

Acknowledgements. I would like to thank Fedwa Laamarti for pointing out
for the first time that weak sequencing does not always associate with strict
sequencing. I would also like to thank Toqeer Israr for many discussions on
the formalization of the semantics of weak and strong sequencing, and for useful
comments on the draft of this paper. Finally, I would like to thank Ernst-Rüdiger
Olderog and Mani Swaminathan from the University of Oldenburg for interesting
discussions on layered sequencing.

References

1. Bochmann, G.V.: Deriving component designs from global requirements. In: Bae-
len, S.V., Graf, S., Filali, M., Weigert, T., Gérard, S. (eds.) Proceedings of the
First International Workshop on Model Based Architecting and Construction of
Embedded Systems (ACES-MB 2008). CEUR Workshop Proceedings, vol. 503,
pp. 55–69 (2008)

2. Castejón, H., von Bochmann, G., Bræk, R.: On the realizability of collaborative
services. Software & Systems Modeling 12(3), 597–617 (2013)

3. Gotzhein, R., Bochmann, G.V.: Deriving protocol specifications from service spec-
ifications including parameters. ACM Trans. Comput. Syst. 8(4), 255–283 (1990)

4. Israr, T.: Modeling and Performance Analysis of Distributed Services with Collab-
oration Behaviour Diagrams. Ph.D. thesis, EECS - University of Ottawa (2014)

5. Israr, T., Bochmann, G.V.: Performance modeling of distributed collaboration ser-
vices. In: Kounev, S., Cortellessa, V., Mirandola, R., Lilja, D.J. (eds.) ICPE 2011,
pp. 475–480. ACM Press (2011)

6. Israr, T., von Bochmann, G.: Performance modeling of distributed collaboration ser-
vices with independent inputs/outpus. In: Bernardi, S., Boskovic, M., Merseguer,
J. (eds.) NiM-ALP@MoDELS. CEUR Workshop Proceedings, vol. 1074, pp. 16–23.
CEUR-WS.org (2013)

7. Laamarti, F.: Derivation of component designs from a global specification. Master’s
thesis, EECS - University of Ottawa (2010)

8. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

9. Mauw, S., Reniers, M.: High-level message sequence charts. In: Cavalli, A., Sarma,
A. (eds.) SDL 1997: Time for Testing - SDL, MSC and Trends, pp. 291–306. Elsevier
Science B.V. (1997)

10. Olderog, E.-R., Swaminathan, M.: Structural transformations for data-enriched
real-time systems. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940,
pp. 378–393. Springer, Heidelberg (2013)

11. Swaminathan, M.: Private communication (2013)

Efficient Representation of Timed UML 2 Interactions

Alexander Knapp1 and Harald Störrle2

1 Universität Augsburg, Germany
knapp@informatik.uni-augsburg.de

2 Danmarks Tekniske Universitet, Denmark
hsto@dtu.dk

Abstract. UML 2 interactions describe system behavior over time in a declara-
tive way. The standard approach to defining their formal semantics enumerates
traces of events; other representation formats, like Büchi automata or prime event
structures, have been suggested, too. We describe another, more succinct format,
interaction structures, which is based on asymmetric event structures. It simplifies
the integration of real time, and complex operators like alt and break, and leads
to an efficient semantic representation of interactions. We provide the formalism,
and a prototypical implementation highlighting the benefits of our approach.

1 Introduction

Among the many languages defined in UML 2, interactions are among the most widely
used [2,3]. They describe system behavior over time in a declarative way, focusing on
the message exchange between instances. Thus, interactions are well-suited to specify
temporal constraints. A sample UML 2 interaction is shown in Fig. 1 below.

Type-1-Request(x)SD

Clientx Bus Server

request

reply

fail

strict

alt

request

reply

<150ms

150ms> <20 ms <40 ms

<20ms

Interaction

Lifeline

OccurrenceSpecification

Message

IntervalConstraint

Fig. 1. A first example of a UML 2 interaction. Time constraints are highlighted in red, explana-
tions of UML concepts are shown blue.

Equipped with a suitable formal semantics, UML 2 interactions can be used for rig-
orous analysis of system specifications, in particular, checking the consistency between

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 110–125, 2014.
c© Springer International Publishing Switzerland 2014

Efficient Representation of Timed UML 2 Interactions 111

different parts of a specification. In the context of run-time verification and online check-
ing, it is particularly interesting whether a given interaction specifying a system’s be-
havior is temporally sound. More precisely, are the temporal constraints logically con-
sistent? Do they hold for a given trace? Do they hold for all traces?

Existing formal semantics for UML 2 interactions such as [14] already allow to an-
swer such questions, though only in theory: simply compute the set of all traces and
check for emptiness of the set (logical consistency) or inclusion of the target trace. So,
clearly, we can decide the above consistency questions for all finite traces in principle.
However, due to the existence of interaction operators like par, the number of traces is
exponential in the size of the interaction, so we would have to enumerate a very large
set of traces before we can answer the questions raised above. Clearly, this approach is
of little practical value.

Unfortunately, all existing semantics that include real time and the interaction oper-
ators (which distinguish UML 2 from UML 1 interactions) suffer from this limitation
(or use an exponentially sized semantic representation of the interaction to begin with).
In contrast, the approach presented in this paper introduces a novel semantic representa-
tion that represents the set of all traces of an interaction in a format that grows linearly
in the size of the underlying interaction. It allows to check whether a concrete run
complies with an interaction and its temporal constraints, and it can be implemented
efficiently, with very modest effort. This is reminiscent of the way binary decision dia-
grams (BDDs) improved model checking of propositional logic formulas.

Synopsis. After discussing related work in Sect. 2, we summarize the sub-language of
UML 2 interactions that we consider in Sect. 3. Our format of symbolic representations
of these interactions is introduced in Sect. 4, where we also discuss the resulting traces
and the translation of UML 2 interactions into a symbolic representation. In Sect. 5, we
give an overview of our prototypical implementation and its performance. We conclude
and discuss future work in Sect. 6.

2 Related Work

A comprehensive survey of UML 2 interaction semantics is found in [9]. Among other
things, the transition from UML 1 to UML 2 introduced a novel semantics for inter-
actions, which is why the first investigations of UML 2 interactions [14,13] focused
on understanding and interpreting the standard document. Since the UML specification
informally suggests that the meaning of interactions are sets of sequences of so-called
“interaction occurrences”, this is what the first semantics defined formally.

While this point of view was well-suited to understand and formalize the prose speci-
fication of UML 2, it is less-well suited for the analysis of interactions and their possible
traces, since interactions give rise to an exponential number of traces. The same prob-
lem is encountered by approaches using an automata-based representation (e.g., [7]),
as they need to encode traces in states, which again leads to an exponential number
of states. The declarative representation we propose in this paper, on the other hand,
encodes UML 2 interaction as sets of constraints whose size is linear in the size of
the interaction. Furthermore, it allows to include real-time annotations seamlessly. It

112 A. Knapp and H. Störrle

is suitable for checking whether a given trace of time-stamped events is a valid trace
according to the interaction without having to compute all its possible traces.

An approach similar to ours has first been pursued by Küster-Filipe [8]. While Küster-
Filipe employed prime event structures, we propose to use a format inspired by asym-
metric event structures [1], which yields a more compact symbolic representation by
avoiding duplications that are required when using prime event structures. At the same
time, asymmetric event structures also allow us to integrate UML 2’s break operator for
breaking scenarios, an important practical scenario not covered by Küster-Filipe.

There is a rich body of work on timed Message Sequence Diagrams and timed
UML 1 interactions, but there are only three approaches to study timed UML 2 interac-
tions according to [9]. None of these has been implemented; in contrast, we do present
a prototypical implementation for checking the conformance of timed traces w.r.t. an
interaction, and discuss its performance.

There have also been other approaches that focus on different aspects of interactions.
For model checking against the automaton-based specification format of UML 2 state
machines, a representation of an interaction as an additional observer Büchi automaton
is a closer fit [7]; also, the relation of interactions to safety and liveness properties
can be expressed when using Büchi automata [4]. For testing, a representation as a
structured composite graph makes the decision structure more transparent, which can
be used to derive test data [10]. For studying the concurrency inherent in an interaction,
the use of (prime) event structures, a denotational framework for true concurrency, [8]
or lattices [5] turned out to be fruitful.

3 UML 2 Interactions

The main building block is the basic interaction, which represents orderings of so-called
“occurrence specifications” directly, as a partial order. An occurrence specification cap-
tures that an event (like the sending or receiving of a message) happens on an instance
partaking in the interaction; the ordering relations define the sequences in which these
events may happen. Basic interactions form an “interaction fragment” that may be com-
bined by the “interaction operators” strict (strict sequential composition), seq (lifeline-
wise sequential composition), par (parallel composition), alt (alternative composition),
break (aborting composition), and ref (including a named interaction). Additionally, all
fragments may be equipped with timing constraints. For later reuse by ref, interaction
fragments can be given a name.

We assume three primitive, finite domains for instances I, messages M, and inter-
action names N . We always assume that all identifiers of occurrence specifications are
globally unique. An occurrence specification is of the form o : τ , where o is the iden-
tifier of the occurrence specification and τ is its type. The type of an occurrence speci-
fication is of one of the forms SND(s , r ,m) or RCV(s , r ,m), representing the dispatch
and the arrival of message m from sender instance s to receiver instance r , respectively.
The set O comprises all occurrence specifications over I and M. For an o : τ ∈ O, we
write τ(o) for τ .

A basic interaction B is given by a directed acyclic graph (O ,→) with O �= ∅ and
O ⊆ O a finite, non-empty set of occurrence specifications such that the identifiers of

Efficient Representation of Timed UML 2 Interactions 113

the occurrence specifications in O are all different, and → ⊆ O × O such that the
reflexive-transitive closure of → on O forms a partial order. The abstract syntax of our
fragment of UML 2 interactions is given by the grammar in Fig. 2.

TimingConstraint � Γ ::= o2 − o1 �� d | � �� d
| true | Γ1 ∧ Γ2 | Γ1 ∨ Γ2

Interaction � I ::= sd(name,T)

InteractionFragment � T ::= B | CF | tmconstr(T , Γ)

CombinedFragment � CF ::= strict(T1,T2) | seq(T1,T2) | par(T1,T2)
| alt(T1,T2) | break(T1,T2) | ref(name)

Fig. 2. Abstract syntax of timed interactions: o1, o2 ∈ O, �� ∈ {<,≤,≥, >}, and d ∈ Q≥0; B
ranges over the basic interactions, name over the interaction names N

For expressing timing constraints, we use clauses of the form Γ specified in Fig. 2.
Intuitively, a timing constraint o2 − o1 �� d means that the difference in time between
any occurrence of an event conforming to o2 and any event conforming to o1 is bounded
by d w.r.t. to the relation ��. A timing constraint � �� d means that the duration of the
interaction fragment to which this timing constraint is attached is bounded by d w.r.t.
to ��. Furthermore, true represents the timing constraint that is always true, and Γ1 ∧
Γ2 and Γ1 ∨ Γ2 respectively mean the conjunctive and disjunctive combination of the
timing constraints Γ1 and Γ2. Though we have restricted ourselves to binary relations
over occurrence specifications, this language can be extended easily for correlating an
arbitrary number of occurrence specifications.

Example 1. Consider the following UML 2 interaction diagram:

A B

ring

rang

bang

a

c

e

b

d

f

≥ 2

≤ 4

seq

sd ex

In the abstract syntax, this is represented by sd(ex, tmconstr(seq(tmconstr(B1,T1),
B2),T2)) with basic interaction B1 and B2, and timing constraints T1 and T2 given by

B1 = ({ a : SND(A,B, ring), b : RCV(A,B, ring),

c : SND(A,B, rang), d : RCV(A,B, rang)},
{ a → b , c → d , a → c , b → d }) ,

B2 = ({ e : SND(A,B, bang), f : RCV(A,B, bang)}, { e → f }) ,

T1 = d − b ≥ 2 ,

T2 = d − b ≤ 4 .

114 A. Knapp and H. Störrle

The language of interactions can be extended by introducing syntactical abbrevia-
tions like, e.g., a finite upper-bounded loop(k ,T) setting

loop(1,T) ≡ T

loop(k + 1,T) ≡ alt(T , seq(Tρ1, loop(k ,Tρ2)))

where the renamings ρ1 with ρ1(o) = seq.o and ρ2 with ρ2(o) = loop.o, written in
postfix notation, introduce consistently new names for the occurrence specifications of
T .

4 Symbolic Representation of UML 2 Interactions

According to the UML 2 standard, (timed) UML 2 interactions describe “emergent
behavior” [12], i.e., UML 2 interactions can be considered to specify which traces of
events are allowed (or disallowed) to be observed from an implemented system. The
occurrence specifications of a UML 2 interaction express the possible events. On the
one hand, the orderings of these occurrence specifications, be they directly given by
a basic interaction, or be they expressed by the interaction operators strict, seq, or par,
restrict the possible sequences of events. On the other hand, compositions of interaction
fragments via alt and break specify choices between different sequences. Usages of ref
merely correspond to macro expansions. Finally, the timing constraints restrict timing
distances between events for the occurrence specifications.

Formally, a (timed) event e = 〈τ, t〉 consists of two parts: the type τ of an occurrence
specification, saying whether it is a sending or receiving event, for which message, and
between which instances; and the time point t ∈ R≥0 at which it occurs. We write τ(e)
for τ , and t(e) for t . We say that an event e conforms to an occurrence specification o,
if τ(e) = τ(o). A sequence of events e1 e2 . . . ek is a trace if t(e1) ≤ t(e2) ≤ . . . ≤
t(ek).

We now want to capture the prescriptions mandated by a UML 2 interaction in a sym-
bolic format that succinctly expresses the requirements on what the allowed traces of
(timed) events are. We call this format an interaction structure of a UML 2 interaction.
Such an interaction structure (O ,R,X , Θ) consists of the following components:

– a finite set of occurrence specifications O ; it specifies all the occurrence specifica-
tions for which events are allowed to be observed: in a trace e1 . . . ek , all events
ei have to conform to one of the occurrence specifications in O . However, there
may be several choices for conformance and we have to provide an injective map
λ : {e1, . . . , ek} → O with τ(e) = τ(λ(e)) for all e ∈ {e1, . . . , ek} in order to fix
which event represents which occurrence specification.

– a binary relation R ⊆ O × O specifying a causality relation over O , i.e., a partial
ordering on O . This relation says in which order the events conforming to O are
allowed to occur, if they occur at all: if for a trace e1 . . . ek the events ei and ej with
i ≤ j shall represent the occurrence specifications oi and oj in O , then it must not
be the case that oj �R oi in the partial order �R generated by R.

– a binary relation X ⊆ O ×O specifying an R-compatible inhibition relation over O ,
i.e., an irreflexive relation �(R,X) ⊆ O ×O with o2�(R,X) o3 iff there is an o1 ∈ O

Efficient Representation of Timed UML 2 Interactions 115

with o1 �R o2 and (o1, o3) ∈ X . This relation expresses which events inhibit others:
if o1�(R,X)o2, then an event e representing the occurrence specification o1 excludes
events conforming to o2 from occurring after e in a trace.

– a timing constraint Θ, which is a conjunctive or disjunctive combination of timing
constraints of the form true or o2 − o1 �� d ; it says which timing conditions the
time-stamps of events have to obey (where duration constraints of the form � �� d
are reduced to combinations of occurrence constraints).

For the traces of an interaction structure (O ,R,X , Θ), we require that before each
event on the trace a maximal, consistent set of events w.r.t. to R, X , and Θ occurs: All
the causes of the event w.r.t. the causality relation �R which are not present on the trace
have to be excluded by the inhibition relation �(R,X), and all timing constraints from
Θ have to be satisfied for the chosen events; see Sect. 4.1.

Example 2. Consider the following UML 2 interaction diagram:

A B

ring

bang

a

c

b

d

≤ 1
alt

The traces of events allowed by this interaction are of one of the following two forms:

〈SND(A,B, ring), t1〉 〈RCV(A,B, ring), t2〉, t1, t2 ∈ R≥0, t2 − t1 ≤ 1 ;

〈SND(A,B, bang), t3〉 〈RCV(A,B, bang), t4〉, t3, t4 ∈ R≥0 .

The requirements on the occurrence specifications themselves are: a is ordered before
b , and c before d ; either the upper operand can be observed, i.e., a and b occur,

or the lower operand can be observed, i.e., c and d occur; at most a single time unit
elapses between a and b . We can express these requirements by the following interac-
tion structure:

O = { a , b , c , d } ,

R = { a → b , c → d } ,

X = { a � c , a � d , b � c , b � d ,

c � a , d � a , c � b , d � b } ,

Θ = b − a ≤ 1 ,

where we write o � o′ for a pair (o, o′) ∈ X . Relation R requires that a only may
be observed before b , and that c may only be observed before d . The interpretation
of X is that an observation of a or b must not be followed by an observation of c

or d in the future, and, symmetrically, that the observation of c or d must not be
followed by an observation of a or b in the future. In combination, R and X say that

116 A. Knapp and H. Störrle

an observation of b not only cannot be followed by an observation of c or d but must
be preceded by an observation of a , since a → b , and not a � b .

Thus the following non-empty sequences of occurrence specifications conform to
both the ordering constraints R and the inhibition constraints X :

a , a b , c , c d .

Generally, we would require that either the upper or the lower operand are observed
completely, which then only leaves a b and c d .

For taking into account the timing constraints, we look for all traces of events for
which we can find a bijective labeling from the set of events in the trace to a sequence of
occurrence specifications conforming to the interaction structure such that the concrete
time-stamps of the events satisfy the conditions of the timing constraints. For a b this
results in

〈SND(A,B, ring), t1〉 〈RCV(A,B, ring), t2〉, t1, t2 ∈ R≥0, t2 − t1 ≤ 1

using the labeling λ(〈SND(A,B, ring), t1〉) = a (both the event and the occurrence
specification have the same type), and λ(〈RCV(A,B, ring), t2〉) = b . Similarly, c d

yields

〈SND(A,B, bang), t3〉 〈RCV(A,B, bang), t4〉, t1, t2 ∈ R≥0

using the labeling λ(〈SND(A,B, bang), t3〉) = c and λ(〈RCV(A,B, bang), t4〉) = d ;
here the timing constraint Θ = b − a ≤ 1 is satisfied, since the labeling does not
mention a and b .

For an interaction structure S = (O ,R,X , Γ), we write O(S), R(S), X (S), and
Γ (S) for O , R, X , and Γ , respectively.

The format of interaction structures is inspired by the notion of prime event struc-
tures (E ,≤, �), where E is a set of events, ≤ ⊆ E × E is a partial order describ-
ing the causal relationship of events, and � is an irreflexive, symmetric binary relation
� ⊆ E × E , specifying which events are in conflict with each other [11]. In a configu-
ration C ⊆ E of the prime event structure, all causes of each event have to be present
and any two events must not be in conflict.

Küster-Filipe [8] has suggested to capture a UML 2 interaction as a prime event struc-
ture, where its (partial) executions correspond to the configurations of the prime event
structure. However, when expressing alt by the symmetric conflict relation of a prime
event structure, it is necessary to duplicate all future events: Consider strict(alt(a , b),
T), where a and b represent basic interactions of a single occurrence specification;
here, a and b are in conflict. If all occurrence specifications of the interaction frag-
ment T get a and b as their causes, no configuration containing a or b could also
contain any occurrence specification from T , since then also all the causes of this oc-
currence specification, which are both a and b , would have to be present, which is
impossible. Thus, the occurrence specifications of T are duplicated and one copy gets
only a as its cause, the other copy b .

Efficient Representation of Timed UML 2 Interactions 117

We circumvent this duplication process by using the notion of asymmetric conflicts
taken from asymmetric event structures [1]. There, conflicts are expressed by weak
causes saying that if an event e is a weak cause for another event e ′ and both events e
and e ′ occur in a configuration then e has to precede e ′; in fact, if e ′ also would be a
weak cause for e, then e and e ′ could not occur simultaneously in one configuration. In
our approach, we rely exclusively on such weak causes, i.e., both R and X of an inter-
action structure (O ,R,X , Θ) are interpreted in this way. This makes the presentation
more uniform, though at the expense of requiring that all possible weak causes of an
occurrence specification have to be present in a trace.

4.1 Traces of an Interaction Structure

For an interaction structure (O ,R,X , Θ), we now define its traces of events following
the recipe of the last example. We proceed in two steps: First, we define all sequences
of occurrence specifications (not events) that are allowed by the interaction structure.
Then we take the timing constraints into account and define the traces of (O ,R,X , Θ).

For the first step, let o1 . . . ok be a sequence of different occurrence specifications
with {o1, . . . , ok} ⊆ O . Let �R be the partial order relation generated by R through
taking the reflexive, transitive closure of R on O , and let �(R,X) be the inhibition
relation generated from R and X by taking the upwards closure of X w.r.t. �R. We say
that o1 . . . ok conforms to the ordering constraints R and the inhibition constraints X
if for all 1 ≤ j ≤ k the occurrence specification oj is a minimal element of the partial
order (Oj ,�R ∩ (Oj ×Oj)) with

Oj = O \ ({o1, . . . , oj−1} ∪ {o ∈ O | ∃1 ≤ i ≤ j − 1 . oi �(R,X) o}) .

The sequence of occurrence specifications o1 . . . ok is allowed by (O ,R,X , Θ) if
it conforms to R and X and is maximal w.r.t. conformance, i.e., there is no o ∈ O \
{o1, . . . , ok} such that also o1 . . . ok o conforms to R and X .

Example 3. Consider the following interaction structure (O ,R,X , true) (where we
omit the occurrence specification types):

O = { a , b , c , d } ,

R = { a → b , c → d } ,

X = { c � a , c � b , d � a , d � b } .

Here, every sequence of occurrence specifications allowed by (O ,R,X , Θ) must not
show a or b after c or d . On the other hand, b c is not allowed, since a → b , i.e.,
b is not a minimal element of �R. By the maximality condition, the allowed sequences

of occurrence specifications are:

c d , a c d , a b c d .

For the second step, taking the timing constraints Θ into account, let e1 . . . ek
be a trace of events. We say that e1 . . . ek conforms to a sequence of occurrence
specifications o1 . . . ol allowed by (O ,R,X , Θ) via a function λ : {e1, . . . , ek} →

118 A. Knapp and H. Störrle

{o1, . . . , ol} if λ is bijective and τ(e) = τ(λ(e)) for all e ∈ {e1, . . . , en}; we call
such a function a labeling. Now, let e1 . . . ek conform to o1 . . . ol via the labeling λ.
The trace of events e1 . . . ek satisfies a time constraint o′

2 − o′
1 �� d w.r.t. λ if either

{λ(e) | e ∈ {e1, . . . , ek}} �= {o′
1, o

′
2}, i.e., at least one of the occurrence specifica-

tions mentioned by the timing constraint is not covered by the trace of events; or if
t(λ−1(o′

2))− t(λ−1(o′
1)) �� d , i.e., the time difference between the events representing

o′
2 and o′

1, respectively, is bounded by d w.r.t. �� (with its usual meaning on the real
numbers). The trace satisfies a time constraint Θ1 ∧ Θ2 w.r.t. λ if it satisfies both Θ1

and Θ2 w.r.t. λ; and it satisfies a time constraint Θ1 ∨Θ2 w.r.t. λ if it satisfies Θ1 or Θ2

w.r.t. λ.
Summing up, a trace of events e1 . . . ek satisfies the interaction structure (O ,R,X ,

Θ) if there is a sequence of occurrence specifications o1 . . . ol allowed by (O ,R,X , Θ)
such that e1 . . . ek conforms to o1 . . . ol via a labeling λ : {e1, . . . , ek} → {o1, . . . , ol}
and e1 . . . ek satisfies Θ w.r.t. λ.

Example 4. Consider the interaction structure of the previous example where now the
occurrence specification types are

a : SND(A,B, ring) , b : RCV(A,B, ring) ,

c : SND(A,B, ring) , d : RCV(A,B, ring) ;

and where we replace the timing constraint true by b − a ≤ 1. Then the trace
of events 〈SND(A,B, ring), 0.2〉 〈RCV(A,B, ring), 1.3〉 satisfies this interaction struc-
ture, since it conforms to the sequence of occurrence specification c d via the la-
beling λ(〈SND(A,B, ring), 0.2〉) = c and λ(〈RCV(A,B, ring), 0.2〉) = d ; it satis-
fies the timing constraint b − a ≤ 1 trivially, since neither a nor b are part of
c d . Also, the longer trace 〈SND(A,B, ring), 0.2〉 〈RCV(A,B, ring), 0.9〉 〈SND(A,B,
ring), 1.1〉 〈RCV(A,B, ring), 2.4〉 conforms to the sequence of occurrence specifica-
tions a b c d and satisfies the timing constraint b − a ≤ 1.

4.2 Deriving an Interaction Structure

We now define a function S�−�Σ that yields an interaction structure (O ,R,X , Θ) for
an interaction fragment given a context Σ = {sd(name1,T

′
1), . . . , sd(namek ,T

′
k)} of

interactions, where the names namei are pairwise different. In the definition, we pro-
ceed recursively by the structure of our abstract syntax of UML 2 interaction fragments,
where we always assume that the identifiers of occurrence specifications are globally
unique. We write Min(O ,�) and Max(O ,�) for the set of minimal and maximal ele-
ments of a partial order (O ,�).

Basic Interactions. For a basic interaction B = (O ,→), the occurrence specifications
O make up the occurrence specifications component of the resulting interaction struc-
ture, and the ordering relation → ⊆ O ×O yields the ordering constraints:

S�(O ,→)�Σ = (O ,→, ∅, true) .

Note that for any interaction structure, we only need to record the skeleton of the partial
ordering resulting from the order component which, in general, may reduce the number
of pairs to be stored considerably.

Efficient Representation of Timed UML 2 Interactions 119

Combined Fragments. We give the definitions for strict, seq, par, alt, break, and ref,
abbreviating S�Ti �Σ by (Oi ,Ri ,Xi , Θi):

A strict composition strict(T1,T2) of two timed fragments T1 and T2 requires that
T1 has to have completely finished before T2 starts. For S�strict(T1,T2)�Σ we there-
fore not only take the union (resp. conjunction) of all the components of the interaction
structures for T1 and T2, but also add the constraint that any occurrence specification
from S�T1�Σ has to occur before any occurrence specification from S�T2�Σ:

S�strict(T1,T2)�Σ = (O1 ∪O2,

R1 ∪ R2 ∪ {o1 → o2 | o1 ∈ O1, o2 ∈ O2},
X1 ∪ X2, Θ1 ∧Θ2) .

Example 5. Consider the following UML 2 interaction diagram:

A B

ring

bang

a

c

b

d

strict

The two inner fragments have the interaction structure

({ a : SND(A,B, ring), b : RCV(A,B, ring)}, { a → b }, ∅, true) ,

({ c : SND(A,B, bang), d : RCV(A,B, bang)}, { c → d }, ∅, true) .

Combining these strictly adds a → c , a → d , b → c , and b → d , thus the
interaction structure is

({ a , b , c , d },
{ a → b , a → c , a → d , b → c , b → d , c → d }, ∅, true) ,

where we have omitted the types of the occurrence specifications; taking the skeleton
of the partial order specified in the order component, this can be expressed equivalently
by

({ a , b , c , d }, { a → b , b → c , c → d }, ∅, true) .

A weak sequential composition seq(T1,T2) of two timed fragments T1 and T2 only
requires that T1 has to have finished before T2 lifeline-wise, i.e., all occurrence speci-
fications of T1 on some lifeline have to happen before all occurrence specifications of
T2 on the same lifeline. Let us write o1 <> o2 when o1 and o2 are active for the same
lifeline where a SND(s , r ,m) is active for the sender s , and a RCV(s , r ,m) is active for
the receiver r :

S�seq(T1,T2)�Σ = (O1 ∪O2,

R1 ∪R2 ∪ {o1 → o2 | o1 ∈ O1, o2 ∈ O2, o1 <> o2},
X1 ∪X2, Θ1 ∧Θ2) .

120 A. Knapp and H. Störrle

Example 6. Consider the UML 2 interaction diagram of the previous example but with
strict replaced by seq. The two inner fragments have the same interaction structure as
before, but the ordering constraints added now are only a → c and b → d .

A parallel fragment par(T1,T2) allows for an arbitrary interleaving of the occurrence
specifications in T1 and T2, as long as the constraints for T1 and T2 are satisfied sepa-
rately; therefore we take the union resp. conjunction of all components of the respective
interaction structures:

S�par(T1,T2)�Σ = (O1 ∪O2,R1 ∪R2,X1 ∪X2, Θ1 ∧Θ2) .

An alternative fragment alt(T1,T2) represents a choice of either T1 or T2. Here,
we express the two possibilities by making the occurrence specifications of T1 and T2

mutually exclusive:

S�alt(T1,T2)�Σ = (O1 ∪O2,R1 ∪ R2,

X1 ∪ X2 ∪ {o1 � o2 | o1 ∈ O1, o2 ∈ O2} ∪
{o2 � o1 | o1 ∈ O1, o2 ∈ O2},

Θ1 ∧Θ2) .

An example for alt has been given in Ex. 2. However, the representation of the inhibition
constraints X = { a � c , a � d , b � c , b � d , c � a , d � a , c �
b , d � b } given there can be reduced to { a � c , a � d , c � a , d � a }

using the ordering constraints R = { a → b , c → d }.
A break fragment break(T1,T2) says that T1 may be aborted at any time during

its execution, and T2 is performed on abortion. (Note that the UML 2 specification in-
troduces break as a unary interaction operator showing only one interaction fragment
as operand; it aborts its enclosing interaction fragment. We prefer to make break bi-
nary in order to clarify the two operands.) The translation of break is thus similar to the
translation of alt; however, we only require that after T2 has started, no occurrence spec-
ification of T1 is allowed any more, and if T1 has finished, no occurrence specification
from T2 is allowed:

S�break(T1,T2)�Σ = (O1 ∪O2,R1 ∪ R2,

X1 ∪ X2 ∪ {o2 � o1 | o1 ∈ O1, o2 ∈ O2} ∪
{o1 � o2 | o1 ∈ Max(O1,�R1), o2 ∈ O2},

Θ1 ∧Θ2) .

Example 7. Consider the following UML 2 interaction diagram:

A B

ring

bang

a

c

b

d

break

Efficient Representation of Timed UML 2 Interactions 121

The resulting inhibition constraints are { c � a , c � b , d � a , d � b , b �
c , b � d }. This is similar to Ex. 3, but { b � c , b � d } is added. The resulting

allowed sequences of occurrence specifications are a b , a c d , and c d .

Finally, a reference fragment ref(name) amounts to yielding the interaction structure
of the interaction fragment T from sd(name,T) ∈ Σ; in order keep all identifiers of
occurrence specifications unique, we use a renaming ρ with ρ(o) = name.o (where
name.o is assumed to be fresh), which we write in postfix notation:

S�ref(name)�Σ = (Oρ,Rρ,X ρ,Θρ) if sd(name,T) ∈ Σ and

S�T �Σ = (O ,R,X , Θ) .

Timing Constraints. For a timed fragment tmconstr(T , Γ), we first reduce each duration
constraint � �� d in Γ to an expanded form resulting in a timing constraint Θ, character-
izing the duration of the interaction fragmentT in terms of its occurrence specifications.
Then we add this expanded Θ conjunctively to the timing constraints of the interaction
structure S�T �Σ:

S�tmconstr(T , Γ)�Σ = (O(S�T �Σ),R(S�T �Σ),X (S�T �Σ), Θ(S�T �Σ)∧Θ) .

The expansion of an � �� d uses the partial order (O ,�) = (O(S�T �Σ),�R(S�T�Σ))
and has to distinguish between the two cases whether �� ∈ {<,≤} and �� ∈ {≥, >}.
In the case of an upper bound where �� ∈ {<,≤}, the expansion is the conjunction
of upper bounds between the minimal and the maximal occurrence specifications of T ;
i.e., all occurrence specifications must happen within time bound d :

∧{o2 − o1 �� d | o2 ∈ Max(O ,�), o1 ∈ Min(O ,�)} .

In the case of a lower bound where �� ∈ {≥, >}, the expansion is the disjunction of
lower bound between the minimal and the maximal occurrence specifications of T ; i.e.,
the difference in time between some occurrence specifications must be at least d :

∨{o2 − o1 �� d | o2 ∈ Max(O ,�), o1 ∈ Min(O ,�)} .

Example 8. Consider the following UML 2 interaction diagram:

A B

ring

bang

a

c

b

d

par

� ≥ 2

The duration of the par-fragment shall be at least 2. The minimal elements of the overall
interaction structure are { a , c }, the maximal elements { b , d }. The expansion of
� ≥ 2 therefore is

(b − a ≥ 2) ∨ (b − c ≥ 2) ∨ (d − a ≥ 2) ∨ (d − c ≥ 2) .

122 A. Knapp and H. Störrle

5 Validation

We validate our approach by a prototypical implementation with a large number of test
cases, and an extended example, where we check whether given traces comply with an
interaction without computing all the traces of the interaction first. The transformation
of interactions into interaction structures is straightforward and directly follows the defi-
nitions given in Sect. 4 above. Algorithm 1 shows how trace prefixes of arbitrary length
can be checked for conformance against a given interaction structure. The successor
function simply takes an ordering or time constraint and extracts the event occurrence
with a higher time-stamp. The choose-operation is necessary since it is possible that con-
current fragments start with event occurrences with the same signature, as our example
shows. In this situation, all alternative paths have to be explored; using Prolog’s built
in backtracking features allows straightforward handling of this situation. While one
can construct abnormal cases where this is indeed occurring, leading to deterioration of
performance, it may be argued that this is a modeling mistake, so that most practical
scenarios will not suffer from this drawback. Without it, the computational effort of this
algorithm is linear in the size of the interaction and the trace.

Algorithm 1. Check whether a trace conforms to an interaction structure
Input: an interaction structure IS and a trace of events e1 . . . ek
for i = 1..k do

// Compute unconstrained (i.e., enabled) occurrence specifications
Ui ← O(IS);
for c ∈ R(IS) ∪ constraints(Θ(IS)) do

Ui ← Ui \ successor(c);
// Choose enabled, conforming occurrence specification, if possible
Oi ← {o ∈ Ui | ei conforms to o};
if Oi = ∅ then

abort “trace does not conform”;
else

oi ← choose Oi ;

// Propagate choice removing irrelevant occurrence specifications and constraints
Xi ← conflicting(oi ,X);
IS ← remove occurrence specifications {oi} ∪ Xi from IS ;
IS ← remove constraints related to {oi} ∪Xi from IS ;
IS ← simplify Θ(IS) with time-stamp t(ei) for oi ;

// Check all timing constraints
evaluate Θ(IS);

We have also implemented the symbolic representation and the above algorithm to
demonstrate its feasibility. We used SWI-Prolog [15] for this purpose to be able to align
the implementation closely with the definitions of this paper. The implementation con-
sists of 5 modules with less than 800 lines of code/1000 clauses, plus a few generic aux-
iliary libraries. The implementation allows to check interactions for well-formedness,

Efficient Representation of Timed UML 2 Interactions 123

transform them into timed event structures, expand them to trace sets, and, of course,
check traces against interaction structures. Another set of modules (approx. 300 lines of
code) defines approx. 100 test cases and run-time measurement scaffold. We have used
this implementation to analyze the sample interaction shown in Fig. 1 and Fig. 3. We
have defined ten examples and counter-examples of valid traces manually, and checked
them for compliance against the interaction, validating that our implementation does
indeed truthfully implement our approach. The smallest of these samples for Client(1)-
Server is shown in Fig. 3 (bottom, left).

In order to validate the scalability of our approach, we created a loop wrapping a
simple elementary interaction (see Fig. 4, top), and checked it against traces of increas-
ing length. In Fig. 4, bottom, we show the length of traces as the x-axis (corresponds to
the number of occurrence specifications in the interaction structure), the number of con-
straints arising from it (y-axis, grey bar chart/graph), and the time used for converting
an interaction to an interaction structure (y-axis, red graph). The time to check a trace
against an interaction structure was too small to be measured. All measurements are the
average of ten runs, to cancel out delays due to garbage collection and similar issues.
All measurements were taken on an outdated sub-notebook computer (Intel Core Duo,
1.2GHz, 2GB RAM).

Client(x)-ServerSystem SDSD

Clientx Bus Server

seq

ok

register

accept

ref Type-1-Request

par

loop

ref Client(1)-Server

par

ref Client(2)-Server

register

accept
<snd(Client1, Bus, register), 0.000>
<rcv(Client1, Bus, register), 0.002>
<snd(Bus, Client1, ok), 0.013>
<rcv(Bus, Client1, ok), 0.015>
<snd(Bus, Server, register), 0.019>
<rcv(Bus, Server, register), 0.023>
<snd(Server, Bus, accept), 0.029>
<rcv(Server, Bus, accept), 0.033>
<snd(Bus, Client1, accept), 0.054>
<rcv(Bus, Client1, accept), 0.056>
<snd(Client1, Bus, request), 0.081>
<rcv(Client1, Bus, request), 0.083>
<snd(Bus, Server, request), 0.087>
<rcv(Bus, Server, request), 0.090>
<snd(Server, Bus, reply), 0.103>
<rcv(Server, Bus, reply), 0.107>
<snd(Bus, Client1, reply), 0.112>
<rcv(Bus, Client1, reply), 0.115>

Fig. 3. An extended example for validating our approach and implementation. Observe, that the
interaction shown in Fig. 1 is re-used.

The measurements clearly show that, with increasing length of loop unrolling and
trace length, the number of constraints increases linearly, while the conversion times
increase polynomially. Recall, that this translation occurs only once, at model com-
pile time; afterwards, all checks are executed in constant time. Even when including the

124 A. Knapp and H. Störrle

236

796

1596

2396

1.28
33.3

248.4

794.9

0

500

1000

1500

2000

2500

3000

0

500

1000

1500

2000

2500

3000

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

20

40

60

80

100

120

140

160

180

4 8 16 32 48 64 80

Number of Constraints Duration of Conversion [s]x-axis: Trace Length

register
ok

loop(k)

client bus

a b

cd

 : snd(client, bus, register)
 : rcv(client, bus, register)
 : snd(bus, client, ok)
 : rcv(bus, client, ok)

Traces
k=1: a1.b1.c1.d1
k=2: a1.b1.c1.d1.a2.b2.c2.d2
k=3: a1.b1.c1.d1.a2.b2.c2.d2.a3.b3.c3.d3
. . .

[s]
[s]

constraints constraints

[events][events]

a
b
c
d

Fig. 4. Measuring the scalability of the implementation: transforming interactions into interac-
tion structures takes linear space and polynomial time. “Constraints” include ordering, timing
constraints, and conflicts.

translation time, a naive implementation on weak hardware results in acceptable run-
times: checking a (timed) trace against an interaction takes less than a second for traces
of up to 100 events, and about half a minute for traces of around 500 events.

6 Conclusions and Future Work

With interaction structures, we have presented a compact and versatile format for repre-
senting the positive trace sets of a UML 2 interaction. Based on asymmetric event struc-
tures, interaction structures provide flexible means for specifying alternative scenarios.
The format is declarative rather than operational; it relies on constraints for expressing
orderings and exclusions and includes timing constraints for expressing real-time re-
quirements in interactions. We have also described a prototypical implementation for
translating a UML 2 interaction into an interaction structure and checking the confor-
mance of a trace with the interaction structure.

The approach presented in this paper is the first to cover time for UML 2 interac-
tions in an efficient way, including the major interaction operators. This is essential for
practical tool support, which we demonstrate with a proof-of-concept implementation.
Previous approaches either suffered from exponential blow-up of the representations, or
considered only a much smaller language fragment.

Efficient Representation of Timed UML 2 Interactions 125

One of the open issues is the inclusion of interaction fragments with empty traces,
like opt. This would require a small extension of the notion of interaction structures
with “virtual” occurrence specifications that indicate the beginning and ending of an
interaction fragment and which can be interpreted as “silent actions” [8], though we
would like to minimize their number. A proper integration of the notorious negative
behavior specification operators neg and assert is more challenging, where, e.g., modal
sequence diagrams may be an interesting approach [6]. We would also like to investigate
the use of our algorithm for checking the conformance of a trace to an interaction for
run-time verification.

References

1. Baldan, P., Corradini, A., Montanari, U.: Contextual Petri Nets, Asymmetric Event Struc-
tures, and Processes. Inf. Comput. 171(1), 1–49 (2001)

2. Dobing, B., Parsons, J.: How UML Is Used. Comm. ACM 49(5), 109–113 (2006)
3. Dobing, B., Parsons, J.: Dimensions of UML Diagram Use: Practitioner Survey and Research

Agenda. In: Siau, K., Erickson, J. (eds.) Principle Advancements in Database Management
Technologies: New Applications and Frameworks, pp. 271–290. IGI Publishing (2010)

4. Grosu, R., Smolka, S.A.: Safety-Liveness Semantics for UML 2.0 Sequence Diagrams. In:
Proc. 5th Conf. Appl. of Concurrency to System Design (ACSD 2005), pp. 6–14. IEEE Com-
puter Society (2005)

5. Hammal, Y.: Branching Time Semantics for UML 2.0 Sequence Diagrams. In: Najm, E.,
Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 259–274.
Springer, Heidelberg (2006)

6. Harel, D., Maoz, S.: Assert and Negate Revisited: Modal Semantics for UML Sequence
Diagrams. J. Softw. Syst. Model. 7(2), 237–252 (2008)

7. Knapp, A., Wuttke, J.: Model Checking of UML 2.0 Interactions. In: Kühne, T. (ed.) MoD-
ELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007)

8. Küster-Filipe, J.: Modelling Concurrent Interactions. Theo. Comp. Sci. 351(2), 203–220
(2006)

9. Micskei, Z., Waeselynck, H.: The Many Meanings of UML 2 Sequence Diagrams: A Survey.
J. Softw. Syst. Model. 10(4), 489–514 (2011)

10. Nayak, A., Samanta, D.: Automatic Test Data Synthesis using UML Sequence Diagrams. J.
Obj. Techn. 9(2), 75–104 (2010),
http://www.jot.fm/issues/issue201003/article2/

11. Nielsen, M., Plotkin, G., Winskel, G.: Petri Nets, Event Structures and Domains, Part I. Theo.
Comp. Sci. 13, 85–108 (1981)

12. Object Management Group: OMG Unified Modeling Language (OMG UML), Superstruc-
ture. Version 2.4.1. OMG Document Number: formal/2011-08-06. Tech. rep., Object Man-
agement Group (August 2011), http://www.omg.org/spec/UML/2.4.1/

13. Störrle, H.: Assert, Negate and Refinement in UML-2 Interactions. In: Jürjens, J., Rumpe,
B., France, R., Fernandey, E.B. (eds.) Proc. Ws. Critical Systems Development with UML.
Technical report TUM-I0317. pp. 79–94 (2003)

14. Störrle, H.: Semantics of Interactions in UML 2.0. In: Hosking, J., Cox, P. (eds.) Proc. IEEE
Symp. Human Centric Computing Lang. and Env., pp. 129–136. IEEE Computer Society
(2003)

15. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory and Practice of
Logic Programming 12(1-2), 67–96 (2012)

http://www.jot.fm/issues/issue201003/article2/
http://www.omg.org/spec/UML/2.4.1/

Integrating Graph Transformations

and Modal Sequence Diagrams for Specifying
Structurally Dynamic Reactive Systems

Sabine Winetzhammer1, Joel Greenyer2, and Matthias Tichy3

1 Chair of Applied Computer Science 1, Software Engineering
Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany

sabine.winetzhammer@uni-bayreuth.de
2 Software Engineering Group

Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
greenyer@inf.uni-hannover.de
3 Software Engineering Division

Chalmers, University of Gothenburg, 412 96 Gothenburg, Sweden
matthias.tichy@cse.gu.se

Abstract. Software-intensive systems, for example service robot sys-
tems in industry, often consist of multiple reactive components that in-
teract with each other and the environment. Often, the behavior depends
on structural properties and relationships among the system and environ-
ment components, and reactions of the components in turn may change
this structure. Modal Sequence Diagrams (MSDs) are an intuitive and
precise formalism for specifying the interaction behavior among reactive
components. However, they are not sufficient for specifying structural
dynamics. Graph transformation rules (GTRs) provide a powerful ap-
proach for specifying structural dynamics. We describe an approach for
integrating GTRs with MSDs such that requirements and assumptions
on structural changes of system resp. environment objects can be speci-
fied. We prototypically implemented this approach by integrating Mod-
Graph with ScenarioTools. This allows us not only to specify MSDs
and GTRs in Eclipse, but also to simulate the specified behavior via
play-out.

Keywords: scenario-based specification, reactive systems, embedded
systems, automotive, simulation, validation, testing.

1 Introduction

In many areas, such as industry and transportation, we find increasingly com-
plex, interconnected, software-intensive systems. In industry, for example, service
robots support workers and decentralized control components control complex
production processes; advanced driver assistance systems in cars rely on the
inter-vehicle communication to realize collision avoidance or vehicle platooning.

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 126–141, 2014.
c© Springer International Publishing Switzerland 2014

Integrating Graph Transformations and Modal Sequence Diagrams 127

Fig. 1. Example of an autonomous robot transport system in a production plant

As an example, Fig. 1 shows an autonomous robot transport system in a
production plant. Workers at assembly stations can order items to be delivered
to them by a transport system. Upon receiving an order, the transport system
control assigns a job to a robot, which executes it by requesting access to the
given location (a warehouse), picking up the item, and delivering it.

These systems often consist of multiple, physically distributed mechatronic
components that comprise hardware, mechanical parts, and software. It is the
software that mainly realizes the systems’ complex functionality. The software
processes environment events, performs the coordination of the components, han-
dles interactions with users, and acts on the physical environment via actuators.
We therefore view these systems as distributed reactive systems.

The challenge in the design of these systems is that the requirements often
span multiple components, and components may have to satisfy multiple re-
quirements at the same time. To exemplify this, consider a worker that orders
an item: the worker inputs the order via a terminal at the assembly station,
the terminal then notifies the transport system control, which then assigns a
job to a service robot, etc. At the same time, the transport system may receive
notification of a robot’s malfunction and must notify service personnel.

Moreover, the requirements often relate to the system’s structure, which can
be its physical structure or logical structures within or shared among its software
components. For example, which robot the transport system control assigns a
job to depends on the robot’s availability and proximity to the pick-up location
(physical structure). Which warehouse the robot requests access to depends on
the job it received (logical structure). In turn, reactions of the software can
change physical or logical structures. For example, when ordering the robot to
move to a certain location, we can assume that it will eventually arrive there
(physical structure). An example for changes in the logical structure would be
the transport system control creating a job object and assigning it to a robot.

128 S. Winetzhammer, J. Greenyer, and M. Tichy

We propose to specify these systems using Modal Sequence Diagrams (MSDs),
a formal interpretation of UML sequence diagrams [10] based on the concepts
of Live Sequence Charts (LSCs) [4]. MSDs allow us to formally, but intuitively
specify sequences of events between system and environment components that
may, must, or must not happen. One advantage of this formalism is that the
specifications can be executed via the play-out algorithm [11,12]. We recently
extended MSDs and the play-out algorithm to not only consider requirements
on what the system must do, but also to support assumptions on what will and
will not happen in the system’s environment [3]. Further extensions allow us
to express simple structural changes, like changes of attribute values. Complex
structural changes, however, cannot be modeled adequately.

In this paper, we therefore propose integrating graph transformation rules
(GTRs) with MSDs to eliminate this drawback. We explain the semantics and
the extension of the play-out algorithm with the help of an illustrative example.
The main idea of the integration is straightforward: use GTRs to model side-
effects that messages have on the system structure. However, our integration
goes further: GTRs can also constrain in which structural contexts the system
is allowed to perform certain actions (requirements) and in which structural
contexts certain events can occur in the environment (assumptions). We im-
plemented our approach prototypically by integrating ModGraph1 [19], a tool
for modeling and executing GTRs, and ScenarioTools2 [3], a tool suite that
supports the modeling and play-out of MSDs.

The resulting modeling and analysis approach supports an iterative and incre-
mental specification of message-based interaction behavior and structural sys-
tem reconfiguration behavior. The advantage of the scenario-based approach is
that adding single scenarios to a specification can extend as well as constrain
previously specified behavior [13]. Integrating GTRs adds intuitive means for ex-
pressing structural changes. The declarative style of specifying rules with object-
patterns as pre- and post-conditions, combined with the graphical, color-coded
notation, makes complex changes on the object system easy to understand.

This paper is structured as follows. Section 2 provides the foundations. Sec-
tion 3 then describes the concepts of the integration, and Sect. 4 describes the
tool integration. We discuss related work in Sect. 5 and conclude in Sect. 6.

2 Foundations

In the following, we describe the basics of MSDs and graph transformation rules.

2.1 Modal Sequence Diagrams

MSDs [10] are a formal interpretation of UML sequence diagrams, based on the
concepts of LSCs [4,12]. An MSD specification consists of a set of MSDs. MSDs
can be either existential or universal. Existential MSDs describe sequences of

1 http://btn1x4.inf.uni-bayreuth.de/modgraph/homepage
2 http://scenariotools.org

http://btn1x4.inf.uni-bayreuth.de/modgraph/homepage
http://scenariotools.org

Integrating Graph Transformations and Modal Sequence Diagrams 129

Fig. 2. Class diagram of production plant systems and an object diagram of a small
instance system (cf. Fig. 1)

events that must be possible to occur, whereas universal MSDs describe proper-
ties that must hold for all sequences of events. Here, we focus on universal MSDs
only.

The lifelines of an MSD represent objects in an object system. The objects are
either controllable system objects or uncontrollable environment objects. The set
of environment objects is also called the environment ; the set of system objects
is also called the system.

We consider the object system to be a valid instance of a class model that can
define associations and attributes. Objects then carry attribute values according
to the attribute definitions and there can exist links among the objects according
to the associations. As an example, Fig. 2 shows the class diagram of our factory
system and a possible object system; the object system represents a very simple
plant with one assembly station, one robot, and one warehouse. Environment
objects have a cloud-like shape; system objects have a rectangular shape.

130 S. Winetzhammer, J. Greenyer, and M. Tichy

The objects can interchange messages. A message has a sending and receiving
object and refers to an operation that must be defined by the receiving ob-
ject’s class. Here, we consider only synchronous messages where the sending and
receiving together is a single event, also called message event.

Lifelines of the MSDs each represent an object in the object system. A message
in an MSD, also called a diagram message, represents a message event in the
object system. The diagram message has a sending and receiving lifeline and
refers to an operation.

A diagrammessage has a temperature and an execution kind. The temperature
can be either hot (red arrow, labeled h) or cold (blue arrow, labeled c); the
execution kind can be either monitored (dashed arrow, labeled m) or executed
(solid arrow, labeled e). Intuitively, messages that are monitored may occur,
while messages that are executed must eventually occur. If a message is hot,
it means that when a point is reached in the scenario where this message is
expected, no other event that is expected at another point in the scenario is
allowed to occur.

In order to explain the message temperature and execution kind in more
detail, we must first introduce the concepts of unification, active MSDs and the
cut. We say a diagram message can be unified with a message event if its sending
and receiving lifeline represent the sending and receiving object of the message
event and the diagram message and the message event both refer to the same
operation. When an event occurs in the system that can be unified with the first
message in an MSD, an active MSD is created. As further events occur that
can be unified with the subsequent messages in the diagram, the active MSD
progresses. This progress is represented by the cut, which marks for every lifeline
the locations of the messages that were unified with the message events. If the
cut reaches the end of an active MSD, the active MSD is terminated.

The semantics of the messages temperature and execution kind is as follows. If
the cut is in front of a message on its sending and receiving lifeline, the message
is enabled. If a hot message is enabled, the cut is also hot. Otherwise the cut is
cold. If an executed message is enabled, the cut is also executed. Otherwise the
cut is monitored. A violation of an MSD occurs if a message event occurs that
can be unified with a message in the MSD that is not currently enabled. If the
cut is hot, it is a safety violation; if the cut is cold, it is called a cold violation.
Safety violations must never happen, while cold violations are allowed to occur
and result in terminating the respective active MSD. If the cut is executed, this
means that the active MSD must progress and it is a liveness violation if it does
not. Instead, an active MSD is not required to progress in a monitored cut.

A (universal) MSD accepts an infinite sequence of message events in an object
system, also called a run of an object system, if it does not lead to a safety or
liveness violation of that MSD. An object system satisfies an MSD specification
(consisting of a set of universal MSDs), iff all possible runs of the object system
are accepted by all universal MSDs. We assume that at some point the specifi-
cation will be implemented by a software controller for the system objects. This
controller can be a single, centralized control program for all system objects, or

Integrating Graph Transformations and Modal Sequence Diagrams 131

Fig. 3. MSDs to order an item

it can be a set of distributed controllers, e.g., one controller per system object.
We say that a controller for the system objects implements an MSD specification
if the closed system formed of the system controller with any possible environ-
ment are accepted by all universal MSDs in the specification. Additionally it is
assumed that the system is always fast enough to take any finite number of steps
before the next environment event occurs [12]. Note that an MSD specification
can contain contradictions and then no implementation exists [2,7,8,9].

For more details on the MSD semantics, we refer to Harel and Maoz [10].
Note, however, that our interpretation of the message modalities differs slightly
from the original definition where hot messages also encode the liveness require-
ment (must eventually occur). In our interpretation, the execution kind defines
whether a message may or must eventually occur. Hot messages are typically
also executed and cold messages are monitored, but there are also cases where
hot monitored messages (may occur but must not be violated) or cold executed
ones (must eventually occur but may be violated) are used.

As an example of MSD, consider the MSD WorkerOrdersItem in Fig. 3. It says
that when a worker tells the assembly station to order an item of a particular
kind, the assembly station must send an order to the storage management. Then
the storage management can reply that the item is not available; in that case the
assembly station must then forward this information to the worker. Alternatively,
the storage management can command the transport system to create a job (for
some robot) to pick up an item of the given kind a certain location and deliver it
to another location. When the message createJob is sent, this activates a copy
of the MSD OrderRobotToStartJob, which requires then that a robot be ordered
to do the job3.

3 Here, the job sent to the robot is the one that the transport system control points to
via its createdJob link. We assume that this link points to the job that was created
last. However, how we model the creation of a job will be explained in Sect. 3, where
we also introduce a more elegant way of assigning the new job to the robot.

132 S. Winetzhammer, J. Greenyer, and M. Tichy

This example MSD also introduces several advanced concepts. First, it is pos-
sible that lifelines do not only represent one particular object, but they can be
symbolic and represent any object of a certain class [12, Chap. 7]. As events oc-
cur between certain objects, lifelines can be bound dynamically to objects. The
sending and receiving lifelines of the first message are bound during the unifica-
tion of the first message with a message event. The objects that the remaining
lifelines are bound to are specified by binding expressions that are attached to
the lifelines. In our case, these expressions are OCL expressions where lifelines
names can be used as variables. For more details, see Brenner et al. [3]. Note
that there can be several active copies of the same MSD with different lifeline
bindings, or with the same lifeline bindings, but then with different cuts.

The second advanced concept is that messages can have parameters. A list
of parameters that a message has is defined by the operation of the message.
Parameters can have a primitive type, e.g., Boolean, integer, string, or they can
by typed by classes. A message event must carry values for each parameter that
the operation defines, which are thus concrete primitive values or, in the case
that the parameter is typed by a class, pointers to objects. A diagram message in
an MSD can specify values for message parameters, either by defining constant
values or by referring to lifeline names, or other variables.

For example, by referring to the lifeline a in the MSD WorkerOrdersItem, we
specify that the destination of the transport job should be the assembly station
where the worker placed the order initially (observe that the third parameter of
the operation TransportSystemControl.createJob(. . .) is toLoc).

An MSD can also contain further variables, called diagram variables, which are
only visible in the scope of an active MSD. They can be bound or unbound if no
value was yet assigned to them. In the MSD WorkerOrdersItem, for example, the
variable itemKind specifies the parameter value for the two orderItemmessages.
Initially, the variable is unbound and in that case the diagram message can be
unified with any orderItem message sent between a worker and an assembly
station, regardless which item kind object it carries as parameter value. After
unification, the variable itemKind is bound to the item kind object carried by the
unified message event. For the next orderItem message sent from the assembly
station to the storage management, the diagram variable itemKind is bound and,
in that case, the diagram message can only be unified to a message event when
the carried parameter value matches the specified value.

If a message event occurs that can be unified with the diagram message,
but only carries a parameter value that does not match the specified value,
this is a violation of the MSD (cold violation or safety violation, depending on
the cut temperature). In the MSD WorkerOrdersItem, this means that the item
kind transmitted to the storage management (msg. 2) and the item kind for the
creation of the job (msg. 3) must be the same item kind as originally sent by the
worker to the assembly station (msg. 1). For more details on message parameters,
see Harel and Marelly [12, Chap. 7] and Brenner et al. [3].

The third advanced concept is the alt-fragment, which allows us to specify
decisions or non-deterministic choices. Here, there is a non-deterministic choice

Integrating Graph Transformations and Modal Sequence Diagrams 133

as to whether to create a job or to reply that an item is not available. What
this decision depends on can be modeled in another MSD that, for example,
checks whether an item of that kind is available in a warehouse. We omit this
for brevity.

An MSD specification can be executed by the play-out algorithm, which pro-
vides an operational semantics to MSD/LSC specifications [12,15]. It roughly
works as follows: when an environment event occurs that activates or progresses
one or multiple MSDs into cuts where executed system messages are enabled,
then a system event is executed that can be unified with one of the enabled
executed system messages and does not lead to a safety violation.

We recently extended the play-out algorithm to execute not only MSD spec-
ification consisting of MSDs that describe what the system objects are required
to do, but we also support assumption MSDs that describe assumptions on what
the environment can, will or will not do. We can think of the set of assumption
MSDs, also called environment assumptions, as the dual to the requirements: a
system is expected to satisfy its requirements as long as the environment satisfies
the assumptions [8]. This extension of play-out is implemented in Scenario-
Tools [3]. We give an example of an assumption MSD in Sect. 3.

The ScenarioTools play-out supports messages that can have simple side-
effects on the objects in the object system. For example, by convention, if a class
defines an attribute a:〈Type〉 and an operation setA(a:〈Type〉) (with a parameter
of the same type), then message events referring to that operation will change
the attribute value of the receiving object according to the value carried by the
message event. This also works for single-valued references. Maoz et al. describe
an implementation of the play-out algorithm that supports the creation of ob-
jects [16]. Complex changes, for example, the creation of a job object as shown
in Fig. 2, with its links to other objects, are currently very difficult to express;
they require one message per creation of an object or link.

2.2 Graph Transformation Rules

Graph transformation rules (GTRs) [6] describe changes on a typed graph in a
declarative way. Since software models can be considered graphs, typed by their
meta-model, GTRs can be used to describe changes on models.

An existing graph, called host graph, is changed into a target graph using a
graph transformation rule, which consists of a left-hand and a right-hand side as
shown on the left of Fig. 4. They are marked with LHS and RHS, respectively.
The figure shows the GTR arrived that describes the movement of an agent from
one location oldLoc to another location newLoc.

The left-hand side defines a pattern for which a match, an isomorph subgraph,
needs to exist in the host graph in order to apply the rule. The right-hand side
defines the replacement to be performed on the host graph that changes it into
the target graph. Hence, the two sides of the rules can be interpreted as follows:
(1) nodes and edges occurring on the left-hand and right-hand side are kept
in the host graph, (2) nodes and edges occurring on the left-hand but not the

134 S. Winetzhammer, J. Greenyer, and M. Tichy

Fig. 4. Two representations of a GTR for an agent arriving at a new location

right-hand side are removed from the host graph, and (3) nodes and edges oc-
curring only on the right-hand side are added to the host graph.

In our example, the left hand side requires the agent to be at a location.
The right-hand side defines that the agent must be at another location after the
transformation.

We use a short-hand notation for GTRs as shown on the right of Fig. 4.
Elements marked red and with “−−” belong to the right-hand side whereas
element marked green and with “++” belong to the left-hand side. Unmarked
elements belong to both sides.

There exists a range of tools that support the modeling and execution of graph
transformations. They often add concepts like positive and negative conditions.
Positive conditions are additional conditions that must hold in order to apply the
rule. Conversely, negative conditions, also called negative application conditions
(NACs), must not hold in order to apply the rule. Conditions can be specified
using additional graph patterns or expressions, for example in OCL.

ModGraph [20] is a tool for model-driven software engineering with GTRs.
It is based on and built for the Eclipse Modeling Framework (EMF) [18]. The
vision of ModGraph is to provide a model-driven software engineering tool
that combines the advantages of EMF, Xcore4 and ModGraph’s GTRs. EMF,
with its meta-modeling language Ecore, supports the modeling of object-oriented
structures. Xcore is a textual language for Ecore, extended with the program-
ming language Xbase. On top, ModGraph’s GTRs provide a higher level of
abstraction for operations that involve complex matching and transformation.

A ModGraph GTR implements an operation defined in an Ecore or Xcore
class model. A rule comprises a rule pattern in short-hand notation (as shown
in Fig. 4) and, optionally, textual pre- and post-conditions and graphical NACs.
If the operation is called on an object, the rule, if applicable, will be applied. If
the rule is not applicable, an exception is thrown.

A graph pattern can consist of several kinds of nodes. First, there is a special
node, called the current node, which is named this. This node represents the
object on which the operation is called. When the operation is called on an
object, this node is bound to the called object, which means that, in order to
apply the rule, a match of the LHS-pattern must be found in the model where
the this-node maps to the called object.

4 http://wiki.eclipse.org/Xcore

http://wiki.eclipse.org/Xcore

Integrating Graph Transformations and Modal Sequence Diagrams 135

Fig. 5. The GTR for Agent.arrived(newLoc:Location) with a current node and NAC

Also, other nodes in the rule can have a pre-defined binding. If a node’s name
equals the name of an accordingly typed parameter of the operation, these nodes,
when the operation is called, will be bound to the objects that are provided as
parameter values by the call. Again the match for the rule’s LHS must respect
these pre-defined node bindings. Parameter names can also be used in conditions
and nodes with pre-defined bindings can also appear in graphical NACs.

All other nodes are unbound and can be mapped to any object in a match.
Figure 5 shows a modified version of the GTR arrived. We suppose that ar-

rived(. . .) is an operation of the class Agent. The agent node is now the this-node.
The node newLoc has a pre-defined binding due to the operation’s corresponding
newLoc-parameter. The node oldLoc is unbound and will be bound to whatever
location the agent is at the time the operation is called. The figure also shows
a NAC that says that the rule can only be applied when there is currently no
(other) agent at the new location. This expresses that, in our factory example,
only one robot may be at a warehouse or assembly station at a time; we can
think of each location having only one loading/unloading apparatus.

Technically, for execution, ModGraph GTRs are transformed into Java code
or Xcore operations. The transformation to Xcore enables the indirect interpre-
tation of the GTRs [20].

3 Integration of MSDs and GTRs

The basic idea of our integration of MSDs and GTRs is straightforward. As be-
fore, we use GTRs to describe implementations of operations. As message events
occur during a system run, GTRs are executed as side-effects. More specifically,
for each message event referring to an operation that is implemented by a GTR,
that GTR is executed. The execution is synchronous, which means that the next
message event occurs only after the execution of the GTR is completed.

In addition, GTRs can also constrain the allowed sequences of events: We
define that, if the precondition for applying a GTR is not satisfied, that is, there
is no match for the LHS, a positive precondition is not satisfied, or there is a
match for a NAC, then this implies that the corresponding event must not occur.
In other words, an occurrence of an event that demands the execution of an
inexecutable GTR leads to a safety violation. If the event is a message sent by a
system object, then it is a safety violation of the requirements ; if it is a message
sent by an environment event, it is a safety violation of the assumptions.

136 S. Winetzhammer, J. Greenyer, and M. Tichy

Fig. 6. GTRs for creating a job and assigning it to an agent with a more elegant version
of MSD OrderRobotToStartJob

In the following, we illustrate the integration by two examples:
As a first example, consider the two GTRs that implement the operations

TransportSystemControl.createJob(. . .) and Agent.doJob(job:Job) shown in Fig. 6.
While the second could be modeled equally with a message referring to an opera-
tion Agent.setAssignedTo(job:Job) (see the convention for set-messages explained
in Sect. 2.1), the structural change intended by TransportSystemControl.create-
Job(. . .) is much more elaborate and the GTR provides a concise, visual way for
modeling the creation of a job object and the setting of the all the links.

Furthermore, the LHS of the rule also contains an item node. This node will
not be connected to the job via any link—its only purpose is to constrain the
application of the rule in such a way that the rule will be applied only if at least
one item of the specified kind is at the the specified pick-up location. If this is
not the case, sending the respective message event would be a safety violation
of the requirements.

We furthermore extend the integration so that now an operation’s return
value can be assigned to a MSD diagram variable. We extend the example so
that now the operation TransportSystemControl.createJob(. . .) returns the newly
created job. In the MSDs, we then use the return value. In the new version of the
MSD OrderRobotToStartJob shown on the right of Fig. 6, we use the reference to
the newly created job to more easily model that the newly created job must be
assigned to a robot (cf. Fig. 3). This way, we no longer require the association
TransportSystemControl.createdJob to point to the newly created job (see the
class diagram in Fig. 2).

Figure 7 shows the MSD RobotMoveToPickUpLocation. It specifies that the
Robot, after being ordered to perform the job, must move to the pick-up
location as indicated by the job (Job.fromLoc). This is modeled as a message

Integrating Graph Transformations and Modal Sequence Diagrams 137

Fig. 7. MSD for a robot to execute a job

to the environment, which abstracts from the robot’s software controller ordering
its drives to physically move to the location. The arrival is modeled as a message
from the environment to the robot, which abstracts from the robot’s sensors
telling the robot that it arrived at the desired location.

Upon arrival at that location, which is a warehouse that will be bound to the
w:Warehouse lifeline, the robot must order the warehouse to load an item of the
kind specified by the job onto the robot. Again, we abstract by a message to
the environment that the warehouse’s software orders some physical/mechanical
loading mechanism (maybe even a human worker) to load an item onto the robot.
Also, the effective loading of the item onto the robot, which will be recognized by
a sensor of the robot, is again modeled as a message from the environment to the
robot. After the item is loaded, the robot moves to the destination as specified
by the job (Job.toLoc). The unloading of the item is modeled in another MSD
that we omit here for brevity.

There are two aspects about the process modeled in the MSD RobotMoveTo-
PickUpLocation that are not expressed in this diagram.

The first missing aspect is that arriving at a certain location is a spatial change
of the robot in the factory. It should be accompanied with a structural change
in the object system. We model this with the GTR arrived that we discussed
previously (see Fig. 5). Note that, due to the NAC, this rule is only applica-
ble if no other agent is currently at the target location. Since arrived(...)

is an environment message (sent by an environment object), an occurrence of
that message in this case would lead to a safety violation of the environment
assumptions. It means that we assume that this will never happen.

Extending the play-out algorithm to consider the safety properties implied by
GTRs is conceptually quite simple: The play-out algorithm selects only events

138 S. Winetzhammer, J. Greenyer, and M. Tichy

for execution that do not lead to safety violations in any MSDs. Now, addi-
tionally, we only need to check that events selected for execution do not violate
an application precondition of a corresponding GTR. The technical dimension
for realizing this in our tool environment is a little more involved, as will be
explained in Sect. 4.

Second, the diagram RobotMoveToPickUpLocation does not model that we
assume that when a robot moves to a location, it will eventually arrive there.
That is, when the third message in RobotMoveToPickUpLocation is enabled, the
environment could also decide that the robot arrives at a different location,
which would lead to a cold violation of the diagram. Also, it may never arrive
anywhere, i.e., the environment will not send any arrived(...) message. In
both cases, the MSD RobotMoveToPickUpLocation will not progress.

To express that we assume that the robot will also arrive at the location that it
moves to, we need the assumption MSD RobotWillArrive as shown on the bottom
left of Fig. 7. It models that if a robot starts moving to a certain location, it will
eventually arrive at that location. The forbidden message says that if the robot
decides to move to another location before arriving at the previously indicated
location, we do not assume that it will arrive at the previously indicated location.
The idea behind the assumption MSD ItemWillBeLoaded is very similar.

4 Integrating ScenarioTools and ModGraph

In the following, we describe how we implement the integration of MSDs and
GTRs by integrating the tools ModGraph and ScenarioTools.

The interaction between both tools is shown in Fig. 8. In ScenarioTools,
MSD specifications are modeled in UML, using the Papyrus editor (see step 1
in Fig. 8). UML is extended with a profile to add modalities to sequence dia-
gram messages, for example. The UML class model is then transformed into an
Ecore class model (step 2), from which an object system can be instantiated
(step 5). Based on the object system, ScenarioTools can interpret the MSDs
and perform play-out (step 6) [3].

When integrating ModGraph with ScenarioTools, before performing
play-out, we model GTRs and compile them into an executable Xcore model.
The basis for modeling GTRs with ModGraph is the Ecore model created in
step 2. The behavior of the operations in the Ecore class model can be specified
by GTRs (step 3). These GTRs are then compiled into an Xcore model (step 4).
The Xcore implementation of the GTRs can now be called by ScenarioTools
when corresponding message events are executed during play-out.

In the Xcore model, for each GTR, two Xcore operations are generated, a
check-operation and a do-operation. The check-operation is used to check the
precondition for the applicability of the rule; the do-operation executes the trans-
formation. When the ScenarioTools play-out selects possible messages events
for execution, it first calls the check-operation. Only if this message returns
a valid match of the precondition, play-out may choose to safely execute the
corresponding message event. Otherwise, as described in Sect. 3 executing the
message leads to a safety violation.

Integrating Graph Transformations and Modal Sequence Diagrams 139

Fig. 8. Overview of the ScenarioTools-ModGraph-integration

One limitation of our tool integration is that currently ScenarioTools only
supports messages with one parameter. We plan to extend ScenarioTools so
that multiple parameters will be supported. For realizing our example with the
current limitation, we use multiple messages to transmit each parameter individ-
ually. This complicates the current example implementation, but conceptually,
the tool integration demonstrates a successful integration of the two modeling
paradigms.

5 Related Work

While there is extensive work on scenario-based specification and analysis ap-
proaches based on LSCs/MSDs or other kinds of sequence diagrams, e.g.,
STAIRS [14], to the best of our knowledge, none of the them rigorously supports
the reconfiguration of the participating objects or components at run-time.

Thus, we will in the following discuss two different approaches that combine
models for structural reconfiguration behavior and message-based interaction
behavior.

The MechatronicUML [1] is a design method for self-adaptive mechatronic
systems. This method consists of a family of languages for modeling real-time
behavior and architectural reconfiguration [17]. The behavior of the components
is specified using state machines with real-time annotations. The architectural
reconfiguration is specified using graph transformations on the component struc-
ture. Similar to our approach, the execution of graph transformation changes
the structure of the active components and their behavior. However, in Mecha-
tronicUML, the message based interaction is defined by intra-component state

140 S. Winetzhammer, J. Greenyer, and M. Tichy

machines and not inter-component scenario models. For the early design of com-
plex interaction behavior, the latter are much more intuitive.

Diethelm et al. [5] take a complementary approach for the combination of sce-
narios and graph transformation. They use a set of simple graph transformation
scenarios as input and synthesize a state machine that contains the graph trans-
formations in the states. The basic idea is that all similar graph transformations
are mapped to a common state in the state machine. An additional difference
to our approach is that they do not consider that the graph transformations
can change the object structure, which in turn would affect the execution of the
scenarios as in our approach.

6 Conclusion and Future Work

In many software-intensive systems, there is a tight interdependency between the
message-based interaction of its components and the structural dynamics of the
system. In order to intuitively, yet precisely design such systems, we presented an
approach that integrates scenario-based specifications using MSDs with graph
transformation. MSDs support an incremental refinement and extension of the
message-based interaction behavior and GTRs offer easy-to-understand, declara-
tive, pattern-oriented means for expressing structural change. The integration of
the two formalisms works in two ways: structural transformations are executed
as side effects of messages, but GTRs can also constrain when certain actions
can be performed.

One interesting direction of future research is how to systematically and effi-
ciently analyze the resulting specification for realizability. Simulation via play-
out is, of course, a first method to search for contradictions, but one can hardly be
sure to simulate all possible sequences of events in all structural configurations.
We are working on an extension of the ScenarioTools realizability-checking
capabilities [7] to be able to explore different object system reconfigurations.

Acknowledgments. We thank Fabian Schmidt for his work on the factory
example.

References

1. Becker, S., Dziwok, S., Gerking, C., Schfer, W., Heinzemann, C., Thiele, S., Meyer,
M., Priesterjahn, C., Pohlmann, U., Tichy,M.: TheMechatronicUML designmethod
– process and language for platform-independent modeling. Tech. Rep. tr-ri-14-337,
Heinz Nixdorf Institute, University of Paderborn, version 0.4 (March 2014)

2. Bontemps, Y., Heymans, P.: From live sequence charts to state machines and back:
A guided tour. Transactions on Software Engineering 31(12), 999–1014 (2005)

3. Brenner, C., Greenyer, J., Panzica La Manna, V.: The ScenarioTools play-out of
modal sequence diagram specifications with environment assumptions. In: Proc.
12th Int. Workshop on Graph Transformation and Visual Modeling Techniques
(GT-VMT 2013), vol. 58, EASST (2013)

Integrating Graph Transformations and Modal Sequence Diagrams 141

4. Damm, W., Harel, D.: LSCs: Breathing life into message sequence charts. In: For-
mal Methods in System Design, vol. 19, pp. 45–80. Kluwer Academic (2001)

5. Diethelm, I., Geiger, L., Maier, T., Zündorf, A.: Turning collaboration diagram
strips into storycharts. In: Workshop on Scenarios and State Machines: Models,
Algorithms, and Tools (SCESM 2002) ICSE Workshop, Florida, Orlando, USA
(2002)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Berlin (2006)

7. Greenyer, J., Brenner, C., Cordy, M., Heymans, P., Gressi, E.: Incrementally
synthesizing controllers from scenario-based product line specifications. In: Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pp. 433–443. ACM, New York (2013)

8. Greenyer, J., Kindler, E.: Compositional synthesis of controllers from scenario-based
assume-guarantee specifications. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A.,
Clarke, P. (eds.) MODELS 2013. LNCS, vol. 8107, pp. 774–789. Springer, Heidelberg
(2013)

9. Harel, D., Kugler, H.: Synthesizing state-based object systems from LSC specifi-
cations. International Journal of Foundations of Computer Science 13(01), 5–51
(2002)

10. Harel, D., Maoz, S.: Assert and negate revisited: Modal semantics for UML se-
quence diagrams. Software and Systems Modeling (SoSyM) 7(2), 237–252 (2008)

11. Harel, D., Marelly, R.: Specifying and executing behavioral requirements: The play-
in/play-out approach. Software and System Modeling (SoSyM) 2(2), 82–107 (2002)

12. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer (August 2003)

13. Harel, D., Marron, A., Weiss, G.: Behavioral programming. Commun. ACM 55(7),
90–100 (2012)

14. Haugen, Ø., Husa, K., Runde, R., Stølen, K.: STAIRS towards formal design with
sequence diagrams. Software & Systems Modeling 4(4), 355–357 (2005)

15. Maoz, S., Harel, D.: From multi-modal scenarios to code: Compiling LSCs into
AspectJ. In: Proc. 14th Int. Symp. on Foundations of Software Engineering,
SIGSOFT 2006/FSE-14, pp. 219–230. ACM, New York (2006)

16. Maoz, S., Harel, D., Kleinbort, A.: A compiler for multimodal scenarios: Trans-
forming LSCs into AspectJ. ACM Trans. Softw. Eng. Methodol. 20(4), 18:1–18:41
(2011)

17. Priesterjahn, C., Steenken, D., Tichy, M.: Timed hazard analysis of self-healing
systems. In: Cámara, J., de Lemos, R., Ghezzi, C., Lopes, A. (eds.) Assurances for
Self-Adaptive Systems. LNCS, vol. 7740, pp. 112–151. Springer, Heidelberg (2013)

18. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley, Boston (2009)

19. Winetzhammer, S.: ModGraph – generating executable EMF models. In: Margaria,
T., Padberg, J., Taentzer, G., Krause, C., Westfechtel, B. (eds.) Proc. 7th Int.
Workshop on Graph Based Tools (GraBaTs 2012). Electronic Communications of
the EASST, vol. 54, pp. 32–44. EASST, Bremen (2012)

20. Winetzhammer, S., Westfechtel, B.: Compiling graph transformation rules into
a procedural language for behavioral modeling. In: Pires, L.F., Hammoudi, S.,
Filipe, J., das Neves, R.C. (eds.) Proc. 2nd Int Conf. on Model-Driven Engineering
and Software Development (MODELSWARD 2014), pp. 415–424. SCITEPRESS
Science and Technology Publications, Portugal (2014)

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 142–157, 2014.
© Springer International Publishing Switzerland 2014

A Systematic Approach to Automatically Derive Test
Cases from Use Cases Specified in Restricted Natural

Languages

Man Zhang1, Tao Yue2, Shaukat Ali2, Huihui Zhang1, and Ji Wu1

1 Software Engineering Institute, Beihang University, Beijing, China
{zhangman1126,pkuzhhui}@cse.buaa.edu.cn,

wuji@buaa.edu.cn
2 Simula Research Laboratory, Oslo, Norway

{tao,shaukat}@simula.no

Abstract. In many domains, such as avionics, oil and gas, and maritime, a
common practice is to derive and execute test cases manually from require-
ments, where both requirements and test cases are specified in natural language
(NL) by domain experts. The manual execution of test cases is largely depen-
dent on the domain experts who wrote the test cases. The process of manual
writing of requirements and test cases introduces ambiguity in their description
and, in addition, test cases may not be effective since they may not be derived
by systematically applying coverage criteria. In this paper, we report on a sys-
tematic approach to support automatic derivation of manually executable test
cases from use cases. Both use cases and test cases are specified in restricted
NLs along with carefully-defined templates implemented in a tool. We evaluate
our approach with four case studies (in total having 30 use cases and 579 steps
from flows of events), two of which are industrial case studies from the oil/gas
and avionics domains. Results show that our tool was able to correctly process
all the case studies and systematically (by following carefully-defined structure
coverage criteria) generate 30 TCSs and 389 test cases. Moreover, our approach
allows defining different test coverage criteria on requirements other than the
one already implemented in our tool.

Keywords: Use Cases, Restricted Use Case Modeling, Test Case Specification,
Restricted Test Case Specification, Natural Language, Test Generation, Test
Cases, Transformation and Automation.

1 Introduction

Test cases in many critical domains such as avionics and maritime are derived ma-
nually by domain experts from requirements specified in natural language (NL) and
domain experts manually execute test cases. Such a process has the following draw-
backs: 1) The overall process is largely dependent on domain experts; 2) Require-
ments and test cases written in NL are often ambiguous and are interpreted differently
by different domain experts; 3) The process of deriving test cases from NL is not

 A Systematic Approach to Automatically Derive Test Cases 143

systematic since the process does not follow any systematic process; and 4) Traceabil-
ity links from requirements to test cases and vice versa, which serve several purposes
such as verifying tests against requirements, are not systematically established.

To overcome the above-mentioned drawbacks of the current practice, an ideal situ-
ation should be deriving textual, easy-to-understand, and manually-executable test
cases from textual, informal requirements automatically and at the same time estab-
lish traceability links between requirements and tests. Moreover, a more systematic
process, e.g., considering coverage criteria, is required to generate effective test cases.
To deal with these drawbacks of the current process, we propose an automated ap-
proach based on the Restricted Use Case Modeling approach (RUCM) [1] and the
Restricted Test Case Modeling approach (RTCM) [2], to systematically and automati-
cally derive Test Case Specifications (TCSs) (in RTCM) and test cases (in RTCM)
from requirements (in RUCM), based on structural test coverage criteria.

RUCM is based on a template and a set of restriction rules for textual Use Case
Specifications (UCSs). Using template and restriction rules is a common feature of
NL analysis approaches for reducing imprecision and incompleteness in UCSs. The
main factor to consider is that the restricted NL should be expressive and convenient
enough for use by developers. Experimental results [1] further suggest that RUCM
has enough expressive power, is easy to apply, helps achieve better understandability
of use cases and improves the quality of manually-derived analysis models.

Inspired and based on RUCM, RTCM was proposed to specify TCSs. TCSs are a
common way of documenting a set of test cases for a System Under Test (SUT) at a
high level. TCSs are commonly written in NL and the transition to executable test
cases requires much test engineer effort regarding test coverage criteria to implement.
Moreover, the quality of manually developed test cases might not be satisfactory, as
test engineers might not systematically apply test coverage criteria. In the context of
our industrial partners, test cases are implemented manually; therefore, it is important
to have a language that has sufficient expressive power and is easy to apply to specify
TCSs and test cases. This particularity motivates us to design RTCM.

All the concepts of RTCM are formalized in TCMeta [2], a metamodel defining the
language by extending the UCMeta metamodel [3] formally defining RUCM. The
editors for RUCM and RTCM have been implemented in a modeling framework
called Lightweight Modeling Framework (LMF [4]), similar to Eclipse Modeling
Framework (EMF) except that LMF reduces the tight coupling with Eclipse to ease
transformations to other platforms.

In this paper, we propose an automated solution to derive TCSs and test cases by
implementing carefully-defined structure test coverage criteria on TCSs. Notice that
our transformation is divided into two steps: generating TCSs and generating test
cases. The rationale behind this is that when introducing different test coverage crite-
ria, generating TCSs can remain untouched.

To assess our approach, we evaluated it with four case studies: Crisis Management
Systems, Banking System, Subsea Production Systems and Autopilot System. The
last two are industrial case studies. There are in total 30 use cases with 579 steps of
flow of events collected for the case studies, which lead to the automated and syste-
matic generation of 30 TCSs and 389 test cases.

The rest of the paper is organized as follows: Section 2 presents the background
necessary to understand the paper and Section 3 describes the transformation from

144 M. Zhang et al.

RUCM to RTCM. Section 4 presents the evaluation of the transformation, and related
work is presented in Section 5. Last, we conclude the paper in Section 6.

2 Background

In this section, we summarize the key features of RUCM for use case modeling and
RTCM for specifying TCSs and test cases, respectively.

2.1 Restricted Use Case Modeling (RUCM)

Previously, we have devised the RUCM methodology, which encompasses a use case
template and 26 restriction rules for the textual UCSs [1]. The goal of RUCM is to be
easy to use, to reduce ambiguity and improve understanding, and to facilitate auto-
mated analysis. We therefore performed a controlled experiment to evaluate RUCM
in terms of its ease of use [1]. The results showed that RUCM is overall easy to use,
and that it leads to significant improvements over the use of a standard use case tem-
plate [5] (without restrictions to the use of NL) in terms the UCS understandability.

A RUCM UCS has one basic flow and can have one or more alternative flows. An
alternative flow always depends on a condition occurring in a specific step in a flow
of reference, called reference flow, which is either the basic flow or an alternative
flow. We classify alternative flows into three types: A specific alternative flow refers
to a specific step in the reference flow; A bounded alternative flow refers to more than
one step (consecutive or not) in the reference flow; A global alternative flow (called
general alternative flow in [6]) refers to any step in the reference flow. The different
types of alternative flows specify precisely the interactions between the reference
flow and its alternative flows. For specific and bounded alternative flows, a RFS
(Reference Flow Step) section specifies one or more (reference flow) step numbers.
We also classify action sentences of steps of flows of events according to their seman-
tic functions into five types: 1) Initiation: the primary actor sends a request and data to
the system; 2) Validation: the system validates a request and data; 3) Internal Transac-
tion: the system alters its internal state (e.g., recording or modifying something); 4)
Response2PrimaryActor: the system replies to the primary actor with a result; and 5)
Response2SecondaryActor: the system sends requests to a secondary actor. These five
types can be automatically identified using our tool.

RUCM also defines a set of keywords to specify conditional logic sentences (IF-
THEN-ELSE-ELSEIF-ENDIF), concurrency sentences (MEANWHILE), condition
checking sentences (VALIDATES THAT), and iteration sentences (DO-UNTIL).
These keywords limit opportunities for ambiguities in UCSs. They also greatly facili-
tate the automated generation of other models such as UML sequence diagrams and
test cases. Keywords ABORT and RESUME STEP are used to describe an exception-
al exit action and where an alternative flow merges back in its reference flow, respec-
tively. An alternative flow ends either with ABORT or RESUME STEP, which means
that the last step of the alternative flow should clearly specify whether the flow re-
turns back to the reference flow and where (using keywords RESUME STEP fol-
lowed by a returning step number) or terminates (using keyword ABORT).

One example is provided in Fig. 1, where use case WithdrawFund is specified us-
ing RUCM, implemented in an editor we developed, named as RUCMEditor.

 A Systematic Approach to Automatically Derive Test Cases 145

Fig. 1. Use case Withdraw Fund specified using RUCM (in RUCMEditor)

2.2 Restricted Test Case Modeling (RTCM)

RTCM is inspired by RUCM by reusing the core part of RUCM, that is, specifying
scenarios. The essential idea of Scenario Specification is that a flow of events is com-
posed of a sequence of steps (Sentences) and a Post Condition. Flows of events are

146 M. Zhang et al.

further classified into Basic Flow and Alternative Flow, which are further classified
into four types: Specific Alternative, Bounded Alternative, Global Alternative and
Oracle Verification Flow. The first three types were inherited from RUCM and Oracle
Verification Flow is a newly proposed for RTCM.

Fig. 2. TCS corresponding to use case WithdrawFund (Fig. 1)

 A Systematic Approach to Automatically Derive Test Cases 147

Test Item is a concept borrowed from the international ISO/IEC/IEEE 29119
standard [7], where Test Item (an alternate to commonly used term SUT) is defined as
“work product that is an object of testing. The test item is composed of a set of Test
Setup and TCS, both of which should be specified using the Scenario Specification
template. Test Setup can be shared/reused across TCSs. We define Test Setup as a set
of steps to get the test item ready for executing flows of events defined in a TCS.
TCS, as defined in the ISO 29119 standard [7], is “documentation of a set of one or
more test cases”. A tester interacts with a test setup or TCS by either manually per-
forming or verifying steps specified in the test setup or the TCS. In both cases, it is
impossible to execute test cases on the test item and hence steps specified in either the
test setup or the TCS have to be run manually, which is very common in many do-
mains involving both software and (mechanical and electrical) hardware components.

In addition to the RUCM keywords, RTCM introduces a set of keywords includ-
ing: INCLUDE TCS and VERIFIES THAT.

We define the keyword INCLUDE TEST CASE SPECIFCATION to specify that a
TCS includes another one with the objective to facilitating reuse of specification
fragments. This keyword, from the perspective of tooling, corresponds to the Include
semantics of the UML use case diagram notation and can therefore be formalized in
TCMeta to facilitate automated transformations to test cases.

We define the keyword VERIFIES THAT to provide the capability for testers to
manually verify a test sequence step and, therefore, subjects of sentences with this
keyword must be Tester. This keyword will be used during the generation of test cas-
es as an indication of manual steps that have to be performed. Sentences with this
keyword only appear in Oracle Verification Flows. We provide an example of the
TCS corresponding to use case WithdrawFund in Fig. 2. We will discuss in Section 3
how such a TCS can be derived from a UCS automatically.

3 Transformation

Fig. 3 shows an overview of the transformation from RUCM specifications to TCSs
in RTCM and test cases in RTCM using a set of transformations implemented in our
tool called aToucan4Test. In the section, we discuss its main components.

Fig. 3. An overview of aToucan4Test

148 M. Zhang et al.

3.1 RUCMEditor and RTCMEditor

UCSs and TCSs are specified in the RUCM editor and RTCM editor, respectively
implemented in our modeling framework called Lightweight Modeling Framework
(LMF [4]). The framework implements similar kinds of functionalities as the Eclipse
Modeling Framework (EMF), but with a lightweight design that aims to reduce tight
coupling with Eclipse to facilitate easier transformations to other platforms. For ex-
ample, RUCM and RTCM can be easily deployed to different platforms such as Java
Web Applications and C++ in the future.

Both LMF and EMF have two editors: reflective model and metamodel editors.
The Reflective Editor is a simple model editor that can automatically adapt metamo-
del changes based on the LMF metamodel reflection mechanism. When a user regis-
ters a domain-specific metamodel extension (e.g., UCMeta and TCMeta in our
context) to the framework, the reflective editor is instantly ready for editing model
instances that conform to the newly registered metamodel. The LMF metamodel edi-
tor allows users to implement UCMeta extensions easily (TCMeta in our case). With
this editor, users can create new packages, new metaclasses and enumerations and it is
also possible to append new attributes to existing metaclasses in UCMeta. The editor
can also automatically generate Java code for the newly introduced metamodel or
extension. Moreover, the framework predefines a set of extension points to ease the
process of extending the graphical notations such as adding a new keyword and hig-
hlighting it with a different color. We utilized this facility of LMF to implement
TCMeta.

Based on LMF, we implemented RUCMEditor and RTCMEditor and it was used to
conduct the industrial case studies reported in this paper. Built-in and domain-specific
keywords (can be embedded additionally) are automatically highlighted in both edi-
tors. Keywords can be enabled or disabled depending on the application.

3.2 TCS Generator (TCSG)

This transformation automatically generates a TCS for each use case. Here, the gener-
ated TCS mostly keeps the control flow of the use case but with additional testing
information such as having sentences with Tester and Test System as subjects of test
steps. For example, the TCS in Fig. 2 is automatically generated from the UCS of
WithdrawFund given in Fig. 1. We summarize the transformation rules in Table 1,
where one can see that the transformation is straightforward. This is because RTCM
itself is an extension of RUCM. In addition, the formalization of RTCM (i.e., TCMe-
ta) is an extension of the formalization of RUCM: UCMeta. The transformation keeps
the control flow structure of a use case in the generated TCS. For example, as indi-
cated in R1.1.1.2.1, conditional sentences (IF-THEN-ELSE-ENDIF) and iterative
sentences (DO-UNTIL) remain the same during the transformation. The structure of
the basic flow and alternative flows also remain the same (R1.1.1.2.3 and R1.1.1.2.4).
However, the transformation changes simple sentences in a UCS into different sen-
tences of the corresponding TCS, depending on sentence semantics of the simple
sentences (Section 2.1). For example, as shown in R1.1.1.2.1, for a simple sentence,
when it is with semantics of type Initiation, its subject is changed from the name of an
actor that initiated the use case to “Tester or the test system”.

 A Systematic Approach to Automatically Derive Test Cases 149

Table 1. Transformation rules from UCSs to TCSs

Rule# Description
R1 Transform a UCMeta instance to a TCMeta instance
R1.1 UseCase SUT, which groups a set of TCSs
R1.1.1 UseCaseSpecification TestCaseSpecification
R1.1.1.1 Precondition TestDataSpecification
R1.1.1.2 FlowOfEvents FlowOfEvents for TestScenarios
R1.1.1.2.1 <Sentence> steps -> <Sentence> steps
R1.1.1.2.1 Sentence Sentence4Test
Simple Sentence 1. Initiation: Test System or Tester < the predicate of the sentence>

2. InternalTransaction: None
3. Response2PrimaryActor and Response2SecondaryActor:

Test System or Tester VERIFIES THAT < the predicate of the sentence>
Complex Sentence 1. ConditionalSentence, IterativeSentence and Parrallel-

Sentence remain the same.
2. ConditionCheckSentence: Test System or Tester VERFIES THAT

<internal condition> is <True or False>
Special Sentence 1. ResumeStepSentence and AbortSentence remain the same.

2. IncludeSentece IncludeTCSpecNature
3. ExtendSentence ExtendTCSpecNature

R1.1.1.2.2 Postcondition -> TestOracle
R1.1.1.2.3 Structure of the basic flow remains the same.
R1.1.1.2.4 Structures of the alternative flows remain the same.
R1.2 See R1.1.1.2.1, special sentence for handling Include and Extend. We did not

see the need to transformation Generalization between two use cases.
R1.3 Test Setup cannot be automatically generated since such information is not

contained in use case models. Users are required to manually add them if
needed.

3.3 Test Case Generator (TCG)

The second step transformation is to generate test cases from the generated TCSs in
TCSG. During this transformation, each test case scenario is transformed into a set of
test cases, each of which defines a unique set of test steps without containing any

Fig. 4. One test case generated from the TCS in Fig. 2

150 M. Zhang et al.

condition and branch. The transformation is based on the structural coverage. Below,
we provide a brief description of the structure coverage criteria implemented in TCG
inspired from traditional software testing coverage criteria [8,9].

Structural coverage criteria focus on covering certain structural features of RTCM
specifications. We implemented the following two types of structural coverage crite-
ria: Branch Coverage Criteria and Loop Coverage Criterion. The former focus on
traversing branches (Alternative Flow) in TCSs specified using RTCM. We imple-
mented the following criteria: 1) All Branch Coverage: This coverage criterion gene-
rates a set of test cases that cover all branches of RTCM specifications at least once;
2) All Condition Coverage: This coverage criterion ensures that all conditions of all
branches are covered at least once. As for the Loop Coverage Criterion, it ensures
that each loop (DO UNTIL) is exercised exactly one, none, and x number of times,
where x can be specified by a user beforehand. In our current implementation of the
Loop Coverage Criterion, we exercise each loop exactly once.

(Part A)

(Part B)

(Part C)

Fig. 5. Structures of the RUCM Model (Part A), generated RTCM TCS model (Part B) and
generated RTCM test case model (Part C) for use case WithdrawFund

Moreover, from the perspective of UCSs (requirements), our current implementa-
tion of TCG achieved All Sentence Coverage and All FlowOfEvents Coverage. All
Sentence Coverage generates a set of test cases that covers all sentences of RTCM
TCSs at least once. All FlowOfEvent Coverage ensures that the basic flow and all the
alternative flows are covered at least once. During the transformation, all three types
of alternative flows are properly handled. For a specific or bounded alterative flow,
one or more branches are derived based on the information in the RFS sentence,
where the location (one or more steps in the reference flow) that the flow should

 A Systematic Approach to Automatically Derive Test Cases 151

branch from is defined. For a global alternative flow, we derive branches for one se-
lected step of the reference flow of events, from which the global alternative flow
branches. Of course, depending on their needs, users can provide input on which cri-
terion to apply when generating test cases.

During the transformation, we also systematically handled all complex and special
sentences to ensure that for each flow of events (either basic or alternative flows), we
achieved All Sentence Coverage and All Condition Coverage. With this implementa-
tion, for use case WithdrawFund, aToucan4Test generated in total 154 test cases
including the proper handling of the special sentence of INCLUDE USE CASE Vali-
date PIN. One of these generated use cases is provided in Fig. 4 for illustration pur-
pose. In Fig. 5, we provide the structures of the model elements (in our RUCMEditor
and RTCMEditor) of three models: the RUCM model for the WithdrawFund use cas-
es, the automatically generated RTCM TCS model from the RUCM model, and the
automatically generated RTCM test case model from the RTCM TCS model.

4 Evaluation

4.1 Description of Case Studies

Banking System: Gomma [10] defined this case study by providing UCSs on how a
user interacts with an Automated Teller Machine (ATM) to, for example, withdraw
money and transfer money. We rewrote the UCSs provided in the book using RUCM
for our previous experiments [11] and this one.

Crisis Management System: Capozucca et al. [12] defined requirements of a soft-
ware product line of Crisis Management Systems (CMS), called bCMS-SPL, with the
aim to manage car crash crises. We modeled one key use case named Communicate
with other coordinator using RUCM and results were presented in the
CMA@MODELS2013 workshop [13]. The RUCM model was evaluated by modeling
experts and was deposited to the ReMoDD repository for public access. In this paper,
we used the modeled specifications to generate the TCS and test cases.

Autopilot: Autopilot System (AS) is an industrial case study that we used to assess
our test case generation approach. AS controls and guides an aircraft, based on control
law computation that takes data sampled from sensors as input and sends commands
to actuators. The AS has two operating modes: Auto mode (that does not need any
instruction from a pilot) and Manual mode (that needs instructions from a pilot). A
pilot can switch the modes during flight. We modeled 11 use cases for this case study
using RUCM, including Start, Synchronize, Handle Faults, Power-up Build-in-Test
(PUBIT), Sample Data, Transmit Input Data, Vote Input Data, Calculate Control
Rate, Transmit Output Data, Vote Output Data and Output Flight Data. The modeling
inputs of these 11 use cases are real requirements from our industrial partner in the
avionics domain. Our industrial partner is a company that provides commercial aero-
nautical computing techniques to the market in China. We do not provide the name of
the company due to confidentiality issues (this restriction applies to the next one too).

Subsea Control: Subsea Production Systems (SPSs) are used for managing the
exploitation of oil and gas production fields. These systems consist of hundreds of

152 M. Zhang et al.

mechanical, hydraulic, electrical and software components that are typically geo-
graphically distributed and connected through networks. Subsea control systems are a
very important part of subsea production systems, with configurable software dep-
loyed to monitor and control various types and large number of sensors and actuators.
For this case study, based on given requirements, we derived 14 use cases and speci-
fied them using RUCM, which covers functionalities of waking up the control system,
handling sensors, handling various types of actuators such as chokes and handle
communication loss.

In Table 2, we provide the descriptive statistics of the key elements of the RUCM
models we derived for the case studies, in total with 30 use cases specified and 579
sentences captured as the steps of the flows of events of all the use cases.

Table 2. Descriptive Statistics of the RUCM Models

Case
Studies # UCSs # Depen-

dencies # Flows # Flow
steps

Condi-
tion sen.

Valida-
tion sen.

Resume

ATM 4 3 14 70 3 10 1
CMS 1 0 8 60 13 1 5
AS 11 5 34 212 11 16 3
SPS 14 6 28 237 28 15 2

Total 30 14 84 579 55 42 11

4.2 Results of TCS and Test Case Generation

Table 3 summarizes the results of TCS and test case generation from the RUCM spe-
cifications of the case studies (Table 2). Notice that each UCS in RUCM is mapped to
exactly one TCS and thus we have in total 30 UCSs (Table 2) and correspondingly 30
TCSs in RTCM as shown in Table 3. In total, we generated 389 test cases for the four
case studies based on the structure test coverage criteria discussed in Section 3.

Table 3. Results of the Generation of TCSs and Test Cases

Case Studies
TCS (30 in total)

Test Cases
Condition sentences # Validation sentences # Resume sentences

ATM 3 10 1 154
CMS 7 1 5 60
AS 11 16 3 69
SPS 28 15 2 106

Total 49 42 11 389

4.3 Discussion

We summarize below the benefits of using our approach in practice.

Systematic and Automated. In many organizations, a common practice is to write
UCSs and TCSs in NL. Using RUCM, one is forced to specify specifications syste-
matically in a restricted NL, thus enabling precision and facilitating automation. With
our approach, UCSs can be specified more systematically and thoroughly and test
cases can be generated automatically based on systematic coverage criteria.

 A Systematic Approach to Automatically Derive Test Cases 153

Precise and Easy to Understand Specifications. Using RUCM/RTCM, use cas-
es/TCSs can be specified precisely and are understandable by various stakeholders.
Compared to the common practice, where use cases and TCSs are specified in free
text, the latter may not be understandable by everyone because of the high ambiguity
inherent to free text. By specifying use cases/TCSs in RUCM/RTCM, the specifica-
tions should be more understandable by different stakeholders since it combines re-
stricted NL, templates and keywords specifying use cases/TCSs.

Easier than Modeling Behavioral Models for Testing. While working with model-
based testing, the most difficult activity is the development of complex UML models
such as UML state machines, which are commonly used for supporting model-based
testing as we experienced in our previous works [14]. On the other hand, practitioners
are more comfortable with writing textual specifications than developing UML mod-
els. Therefore, specifying use cases/TCSs with RUCM/RTCM provides an alternative
way for test case generation for model-based testing using behavioral models. How-
ever, we need to conduct more systematic empirical studies in the future to come to a
definitive conclusion.

Reducing Reliance on Domain Experts. Our tool support, i.e., aToucan4Test, gene-
rates test cases in a unified format, namely RTCM. This means that these test cases
are understandable by anyone familiar with RTCM and thus can be executed by dif-
ferent testers. In contrast, test cases written by a tester in NL might not be precisely
understandable by different testers and thus execution of a particular set of test cases
is dependent on the availability of a particular domain expert. With our proposed
approach, the use of a standardized format for TCSs reduces the reliance on the avail-
ability of domain experts.

Traceability. Our proposed approach maintains traceability among three different
types of artifacts, i.e., UCSs, TCSs, and test cases. Maintaining such traceability faci-
litates automated change impact analysis, which we plan to investigate in the future.

Easier Test Case Maintenance. Using RUCM/RTCM, use case/test case mainten-
ance is much easier as compared to the common practice, where every change in a
specification has to be reflected manually in all the impacted specifications. With our
approach, changes must be reflected in UCSs and test cases can be generated again.

Separation of Concerns. Our approach is implemented in a two-step transformation,
where the first transformation maintains control structure of RUCM specifications in
RTCM specifications. In the second step, various structural and data coverage criteria
are implemented to generate test cases in RTCM. Such separation facilitates integrat-
ing more sophisticated coverage criteria in the future in the second transformation
without changing the first transformation.

Conformance to Existing Standards. RTCM borrows some concepts from [7] such
as Test Item, Test Case Specification and Test Data Specification. Future extensions
of RTCM will be designed to conform to existing standards as much as possible.

Notice that we did not assess the effectiveness of the generate test cases, which re-
quire much support from our industrial partners since test cases have to be manually
executed. This will be investigated in the future.

154 M. Zhang et al.

5 Related Work

We classified the related work into three research streams: requirements-based test-
ing, keywords-based testing and behavior-based testing.

5.1 Requirements Based Testing

A controlled NL, named ucsCNL, was proposed by Barris et al. in [15] for UCSs with
the objective of facilitating automated generation of test cases by taking use cases
written with this controlled NL as input. To compare with RUCM, the proposed
method does not include a use case template, which is commonly required when
documenting a UCS and considered as an important means to structure textual re-
quirements. RUCM however includes a comprehensive and well-evaluated use case
template, which is also the foundation for structuring RTCM TCSs. In addition, both
RUCM and RTCM rely on the keyword mechanism to enhance the precision of speci-
fications and enable automation. uscCNL, however, defines a rather comprehensive
list of grammars for using English. RUCM/RTCM specifications can be automatically
formalized as instances of UCMeta/TCMeta. Therefore, the identification of English
sentence patterns and grammar can be automated.

In [16], Badri et al. have proposed a methodology to generate test cases using use
cases and collaboration diagrams. Their process starts with constructing use cases for
the system, which are realized by constructing a sequence diagram corresponding to
each use case. In order to manipulate the collaboration diagram for test case genera-
tion, a customized formal language known as Collaboration Description Language
was used. This language represents description of the collaboration diagram in a tex-
tual format. Our approach directly takes RUCM specifications as input to automati-
cally generate test cases. No additional modeling notations are required in between.

In [17], Nebut et al. have proposed a methodology to generate test cases for system
testing by taking use cases with associated contracts and parameters as input. Once
use cases are parameterized (with inputs defined), the contracts including pre- and
post-conditions of the use case are defined. These conditions are defined in the form
of logical expressions. In addition, the system and application properties are also spe-
cified using these contracts. The relationships between the use cases (e.g., include,
exclude, and extend) are also defined within logical expressions. Finally test cases
were generated by instantiating the use case parameters. Notice that no detailed steps
of UCSs are exercised to generate test cases in their approach. We, however, generate
test cases by taking into account flows of events and their steps of each TCS while
applying coverage criteria.

In [18], Ryser et al. have proposed a methodology to generate test cases for system
testing from the scenarios, which represent requirements in NL. Therefore, scenarios
tend to be more ambiguous, so a formal model was needed in which scenarios are
converted. Test cases are then generated from the generated model. In this approach
state machines were used as converted models to generate test cases. RTCM is rigor-
ous to compare with free style NL. Moreover, we have an automated solution to for-
malize RTCM specifications as instances of TCMeta. Further derivation of test cases
based on the formalized representation becomes easy to achieve.

 A Systematic Approach to Automatically Derive Test Cases 155

Tahan et al. [19] proposed a requirements-based, black-box test generation
approach to generate test cases from requirements specified using the System De-
scription Language (SDL) [20,21,22,23]. Each individual SDL requirement is first
automatically transformed into a SDL system model. Manual combination of individ-
ual SDL system models to an integrated one is required. The combined SDL model is
then automatically transformed into Extended Finite State Machine (EFSM), which is
provided as input to a test generator for generating test cases. To compare our work
with this approach, which takes three transformation steps (with manual intervention
in between), our approach provides a direct transition from RUCM to test cases.

5.2 Keyword Driven Testing

Tang et al. [24] propose a keyword driven automated testing framework to support the
conversion of the keyword-based test cases into different kinds of test scripts. Key-
words are used to identify operations or atomic actions in test execution and they are
very specific to applications such as ‘Click’ for GUI applications. Test engineers use
these keywords (via a GUI) to specify test cases, which are then transformed into test
scripts. Notice that each test case defines a sequence of actions or operations. There-
fore, there is no branch or loop in each test case description. Our approach, however,
aims to generate test cases from use cases.

Hametner et al. [25] proposed a keyword-driven testing approach for industrial au-
tomation systems, with the aim to specify test cases in a high abstraction level and
enable non-programmers to read and write test cases. Test engineers write test cases
manually, in a tabular format using predefined keywords, but automated generation of
executable tests from the tabular format is not supported.

5.3 Behavior Driven Development (BDD)

BDD [26] is a software development process based on Test Driven Development
(TDD) [27], which describes the cycle of writing a test first before writing the code
being tested. For TDD, to write a test, the developer must clearly understand the re-
quirements specification of a feature to be implemented. Such a requirements specifi-
cation is often written as use cases and user stories, which essentially describes the
behavior of the feature. BDD however concentrates on specifying desired behavior
(e.g., business requirements) of SUT, which leads to the derivation of tests.

BDD chooses to use a semi-formal format for specifying behavior, which is similar
to user story specifications. During the process, BDD specifies that business analysts
and developers should collaborate and specify behavior in terms of user stories. Simi-
larly to our approach, BDD aims to become a communication medium among all
stakeholders in a project. Some templates have been proposed to specify user stories.
For example, North [28] suggested a textual format template including keywords like
‘in order to’, ‘given’ and ‘when’. Based on this textual format, North proposed a
number of frameworks that support BDD, including JBehave [29] for Java and RBe-
have [29] for Ruby, which was the basis for Cucumber [30], recently proposed. There
also exist other BDD-based tools (e.g., Fitnesse [31]), which use different formats
such as decision tables. All these BDD tools do not support the automated generation
of test cases from requirements like what we do. They instead aim to achieve agile

156 M. Zhang et al.

development of software applications, including facilitating software design, specify-
ing software behavior and documenting code. Our framework however can generate
test cases to test not only software but also software-intensive systems.

6 Conclusion and Future Work

TCSs document a set of test cases for a SUT and are commonly used to either ma-
nually code executable test cases in a test scripting language or execute TCSs manual-
ly. Such TCSs are usually derived from requirements specified in NL and require
transitions from requirements to TCSs and to test cases. The overall process of these
transitions has several drawbacks such as: ambiguity in NL, lack of systematic ap-
proach due to a manual process, and the whole process largely dependent on domain
experts. To overcome these drawbacks, we proposed an approach where requirements
are specified in restricted NL and TCSs and test cases are generated automatically by
applying systematic coverage criteria. We extended our existing Restricted Use Case
Modeling (RUCM) approach that was developed to specify requirements in restricted
NL and developed a TCS language called Restricted Test Case Modeling (RTCM)
that is used to specify TCSs in restricted NL. Both RUCM and RTCM have easy-to-
use editors for specifying requirements and TCSs. We reported an automated trans-
formation from requirements specified in RUCM into corresponding TCSs and test
cases in RTCM by applying systematic coverage criteria on RTCM.

To assess the applicability of our proposed approach, we modeled four systems, in-
cluding two that are industrial systems from the avionics and oil/gas domains. Using
our test generation tool, called aToucan4Test, which implements structure coverage
criteria on RTCM specifications, we managed to systematically and automatically
generate TCSs and test cases from the RUCM specifications.

References

1. Yue, T., Briand, L.C., Labiche, Y.: Facilitating the Transition from Use Case Models to
Analysis Models: Approach and Experiments. ACM Trans. Softw. Eng. Methodol. 22 (1),
Article 5 (2011)

2. Zhang, M., Yue, T., Ali, S.: A Keyword and Restricted NL Based TCS Language for Au-
tomated Testing. Simula Research Laboratory, Norway, Technical Report (2014-01)

3. Yue, T., Briand, L., Labiche, Y.: Automatically Deriving a UML Analysis Model from a
Use Case Model. Simula Research Laboratory, Norway, Technical Report (2013)

4. Zhang, G., Yue, T., Wu, J., Ali, S.: Zen-RUCM: A Tool for Supporting a Comprehensive
and Extensible Use Case Modeling Framework. In: Liu, Y., et al. (eds.) Demos/Posters/
StudentResearch@MoDELS. CEUR-WS, vol. 1113, pp. 41–45 (2013)

5. Bruegge, B., Dutoit, A.H.: Object-Oriented Software Engineering Using UML, Patterns
and Java. Prentice Hall (2004)

6. Bittner, K.: Use Case Modeling. Addison-Wesley, Boston (2002)
7. Reid, S.: Software and systems engineering Software testing Part 1: Concepts and defini-

tions. ISO/IEC/IEEE 29119-1, pp. 1–64 (2013)
8. Myers, G.J., Sandler, C., Badgett, T.: The art of software testing. John Wiley & Sons (2011)

 A Systematic Approach to Automatically Derive Test Cases 157

9. Binder, R.: Testing object-oriented systems: models, patterns, and tools. Addison-Wesley
Professional (2000)

10. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with UML.
In: 23rd International Conference on Software Engineering, pp. 737–738. IEEE CS (2001)

11. Briand, L., Falessi, D., Nejati, S., Sabetzadeh, M., Yue, T.: Traceability and SysML De-
sign Slices to Support Safety Inspections: A Controlled Experiment. ACM Trans. Softw.
Eng. Methodol. 23 (1), Article 9 (2014)

12. Capozucca, A., et al.: Requirements Definition Document for a Software Product Line of
Car Crash Management Systems. ReMoDD (2011), http://bit.ly/1jUkIhN

13. Zhang, G., Yue, T., Ali, S.: Modeling Crisis Management System with the Restricted Use
Case Modeling Approach. In: Moreira, A., et al. (eds.) CMA@MODELS. CEUR-WS,
vol. 1079, paper 2 (2013)

14. Ali, S., Hemmati, H.: Model-based Testing of Video Conferencing Systems: Challenges,
Lessons Learnt, and Results. In: IEEE International Conference on Software Testing, Veri-
fication, and Validation (ICST), pp. 353–362. IEEE CS (2014)

15. Barros, F.A., Neves, L., Hori, E., Torres, D.: The ucsCNL: A Controlled Natural Language
for Use Case Specifications. In: SEKE, pp. 250–253 (2011)

16. Badri, M., Badri, L., Naha, M.: A use case driven testing process: Towards a formal approach
based on UML collaboration diagrams. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003.
LNCS, vol. 2931, pp. 223–235. Springer, Heidelberg (2004)

17. Nebut, C., Fleurey, F., Le Traon, Y., Jézéquel, J.M.: Requirements by contracts allow au-
tomated system testing. In: ISSRE 2003, pp. 85–96. IEEE CS (2003)

18. Ryser, J., Glinz, M.: A scenario-based approach to validating and testing software systems
using statecharts. In: Proc. 12th International Conference on Software and Systems Engi-
neering and their Applications (1999)

19. Tahat, L.H., Vaysburg, B., Korel, B., Bader, A.J.: Requirement-based automated black-
box test generation. In: COMPSAC 2001, pp. 489–495. IEEE CS (2001)

20. Algayres, B., Lejeuhe, Y., Hugonnet, F.: GOAL: Observing SDL Behavior with Object Code.
In: Braek, R., Sarma, A. (eds.) SDL 1995 with MSC in CASE, pp. 26–29. Elsevier (1995)

21. Bochmann, G., Petrenko, A., Bellal, O., Maguiraga, S.: Automating the process of test de-
rivation from SDL specifications. In: Cavalli, A., Sarma, A. (eds.) SDL 1997: Time for
Test-ing: SDL, MSC and Trends, pp. 261–276. Elsevier (1997)

22. Brömstrup, L., Hogrefe, D.: TESDL: Experience with generating test cases from SDL spe-
cifications. In: Linn, R.J., Uyar, Ü. (eds.) Conformance Testing Methodologies and Archi-
tectures for OSI Protocols, pp. 455–467. IEEE CS (1995)

23. Dssouli, R., Saleh, K., Aboulhamid, E., Bourhfir, C.: Test development for communication
protocols: towards automation. Computer Networks 31(17), 1835–1872 (1999)

24. Tang, J., Cao, X., Ma, A.: Towards adaptive framework of keyword driven automation
testing. In: Automation and Logistics, ICAL 2008, pp. 1631–1636. IEEE CS (2008)

25. Hametner, R., Winkler, D., Zoitl, A.: Agile testing concepts based on keyword-driven test-
ing for industrial automation systems. In: IECON 2012, pp. 3727–3732. IEEE CS (2012)

26. Chelimsky, D., et al.: The RSpec book: Behaviour driven development with RSpec, Cu-
cumber, and friends. Pragmatic Bookshelf (2010)

27. Beck, K.: Test-driven development: by example. Addison-Wesley Professional (2003)
28. North, D.: What’s in a story (2009), http://dannorth.net/whatsin-a-story
29. North, D.: Introducing BDD. Better Software (2006)
30. Cucumber, http://cukes.info/
31. FitNesse, http://fitnesse.org/FitNesse

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 158–173, 2014.
© Springer International Publishing Switzerland 2014

Acceptance Test Optimization

Mohamed Mussa and Ferhat Khendek

Electrical and Computer Engineering Department, Concordia University,
Montreal, Quebec, Canada

{mm_abdal,khendek}@ece.concordia.ca

Abstract. Test case generation and execution may be time and effort consum-
ing. At a given testing phase, test case execution can be optimized by avoiding
the consideration of test cases that have already been exercised in a previous
phase. For instance, one can avoid test case redundancy between integration
testing and acceptance testing. Characterizing this redundancy is not straight-
forward since some integration test cases are applied on an incomplete system
with test stubs emulating system components and therefore cannot be substi-
tuted to acceptance test cases. In this paper, we propose an approach that maps
acceptance test cases to integration test cases and eliminates test cases that have
already been exercised on the system during the integration testing phase.

Keywords: Acceptance testing, Integration testing, Test optimization, Model
Based Testing, Sequence diagrams.

1 Introduction

Testing improves the quality of software products. It aims to detect software defects
before deployment. Large software systems are generally composed of several com-
ponents that are developed separately and then integrated. On the other hand, tests are
designed and applied on individual components, subsystems and complete systems
during component testing, integration testing and system/acceptance testing, respec-
tively. There are many software testing approaches and tools that cover a wide
spectrum of domains. However, they target specific testing phases: component, inte-
gration, system or acceptance testing. To the best of our knowledge, there is no a
systematic testing approach/tool that links the different testing phases. The lack of
such connections hampers the efficiency of the testing process. In [1], we proposed a
Model Based Testing (MBT) [2] framework that links three testing phases: compo-
nent, integration and acceptance testing. The framework re-utilizes the test models of
a testing phase to generate/optimize the test model(s) of the subsequent testing phase.
In this framework, the UML testing profile (UTP) [3] is used for the specification of
test models, which consist of a set of test cases and of a test architecture. Test cases
describe the test behavior, while the test architecture specifies the identity of the par-
ticipated test objects and relations among them.

In this paper, we propose an approach that optimizes the acceptance test model by re-
lating it to the integration test models. We aim to reduce the acceptance test execution

 Acceptance Test Optimization 159

time by reducing the number of acceptance test cases. This can be achieved by elimi-
nating acceptance test cases that have already been exercised on the system during
integration testing. The approach maps the acceptance test cases to the integration test
cases and excludes the ones that have already been exercised during the integration
phase.

Mapping two or more models to identify differences and similarities is not new.
Text/Code comparison has been investigated for a long time [4, 5]. Several mature
approaches exist to solve the problem of software versioning and code-cloning [6, 7].
However, these approaches cannot be applied to graphical models, since they do not
consider model hierarchy and model semantics [7-9]. Different approaches have been
proposed to handle graphical models [7-9]. Some are domain specific or modeling
notation specific while others are more general and domain independent [8]. These
approaches target different aspects of the software development lifecycle: Version
Control Systems (VCS) [10], Model-Cloning [6, 11], and Model Transformation Test-
ing [12, 13]. One characteristic is common to all these approaches: the assumption
that all models have evolved from the same source model/fragment, called the base
model. These approaches are actually classified into two categories depending on the
required information for the comparison: three-way comparison and two-way compar-
ison [5]. Three-way comparison techniques require the existence of a base model, or
changes log, in addition to the two models to compare. Two-way comparison tech-
niques compare two models without external references; however, they are also based
on the assumption of the existence of the base model. In this paper, the acceptance
test model is compared to the integration test model(s). In our approach, we cannot
assume that test models evolved from the same base model since they are built inde-
pendently. Our approach eliminates acceptance test cases that have been exercised
during the integration testing phase. However, not all integration test cases are applied
on complete systems during integration testing. Integration test cases may be applied
on subsystems with test stubs for system components that are not yet realized at the
time of the test execution. Such integration test cases cannot be substituted to accep-
tance test cases to be applied on a complete system. Therefore, we need to analyze the
integration test cases and select those that have been applied on the complete system
and compare them to the acceptance test cases.

The structure of this paper is as follows. We present the acceptance test case opti-
mization approach in Section 2. An example for illustration purposes is discussed in
Section 3. Section 4 reviews and discusses related work. We conclude in Section 5.

2 Acceptance Test Case Optimization Approach

Acceptance testing is about validating the software product against user requirements.
Acceptance test models are generated from the user requirement specifications. There
are two steps in acceptance testing: Alpha & Beta. They usually consist of the same
set of test cases, but they are applied at different locations and times. Alpha is per-
formed on the development platform before the deployment of the product; while

160 M. Mussa and F. Khendek

Beta is executed on the target platform at the user site during the deployment of the
product and mostly performed by the user. In this work, we are concerned more with
the optimization of the Alpha acceptance testing. The approach can be applied to the
Beta too; if the development platform and environment are identical to the user plat-
form and environment.

Integration testing focuses on the interoperability between the integrated system
components. It is performed during the integration phase of the development process.
Different integration strategies and orders can be adopted to build the system. Test
stubs, dummy components, are used to emulate the system environment and/or system
components that are not realized yet during an integration round. Since integration
testing is performed before acceptance testing, our goal is to develop an approach to
optimize the acceptance test model to avoid the redundant execution of test cases that
have already been exercised during integration testing.

Our approach maps the acceptance test cases against the integration test cases. Test
cases are specified with UML sequence diagrams. The ones that match are removed
from the acceptance test model. However, syntax and semantic matching are not suf-
ficient for elimination of acceptance test cases as the corresponding integration test
cases may have been exercised on systems that contain test stubs as system compo-
nents. To eliminate an acceptance test case, the matching integration test case should
have been applied to a system without stubs representing components. The optimiza-
tion approach consists of two algorithms:

1. Selection algorithm: to analyze and select integration test cases that do not use test
stubs as system components.

2. Mapping algorithm: to compare acceptance test cases to the selected integration
test cases and remove any acceptance test case that is contained in an integration
test case.

Before introducing these two algorithms, we provide some preliminary definitions.
A test case is specified with a UML sequence diagram. It is composed of a set of in-
stances and a set of events. Instances represent test objects, which interact with each
other through messages. The role of each instance, in a test model, is identified using
UTP stereotypes. UTP TestContext is used to identify the test control. UTP SUT is
used to identify the implementation under test (IUT); it can be a component under test
(CUT) or a system under test (SUT). UTP TestComponent is used to identify a test
stub. In a well-formed test case, there must be a test control and one or more IUTs.
Test controls exercise test cases on the IUT and provide verdicts. Test stubs emulate
the system environment and/or system components that are not yet realized during the
test execution. Test stubs can be specified explicitly or implicitly by embedding their
behavior within the test control. Each instance, in a UML sequence diagram, is
represented by a vertical lifeline that represents the time progress from top to bottom.
Events are specified on lifelines. With the exception of UML co-regions and UML
combined-fragments, events are in total order along the lifeline of each instance.

 Acceptance Test Optimization 161

Definition 1 (Test case): A test case T is a tuple (I, E, R), where

 I : a set of instances
 E : a set of events (defined further in Definition 2)

R ⊆ (E x E): a partial order reflecting the transitive closure of the order rela-
tion between events on the same axis and the sending and reception
events of the same message.

We will use the test cases in Fig. 1 to illustrate our definitions throughout this sec-
tion. Event names are in italic. The test case tcase1 is formally defined as:

tcase1 = (I, E, R),
I = { TC, C1 }
E = { e1, e2, e3, e4, e5, e6, e7 }
R = { (e1,e2), (e1,e3), (e1,e4), (e1,e5), (e1,e6), (e1,e7), (e2,e3), (e2,e4), (e2,e5), (e2,e6),
(e2,e7), (e3,e4), (e3,e5), (e3,e6), (e3,e7), (e4,e5), (e4,e6), (e4,e7), (e5,e6), (e5,e7), (e6,e7) }

Fig. 1. Examples of test cases

We classified events into three categories: message events, time events and miscella-
neous events. Message events, the sending event and receiving event, represent the
two ends of messages exchanged between two instances referred to as the sender and
the receiver, respectively. Time events represent events related to timers. Each timer
is associated with one instance. We classify the rest of event types, such as instance
termination and UTP verdict, into the third category. Notice that the association be-
tween events and instances is part of the event definition in this work.

Definition 2 (Event): An event is defined as a tuple. We have three different kinds of
events and therefore three definitions:

1. A message event Emsg is a tuple (ty, nm, owner, msg, oIns), where
(a) ty ∈ {send, receive}
(b) nm is the event name
(c) owner is the instance where the event belongs to. owner = (nm, st) where

«TestContext»

TC
«SUT»

C1

m1
e

2
e

6

m2 e
3

e
7

PASS

t(1.0)

t

e
1

e
4

e
5

(a) tcase1

«TestContext»

TC
«SUT»

C2

m7 e
22

e
26

m8 e
23 e

27

PASS

t(0.5)

t

e
21

e
24

e
25

(b) tcase2

162 M. Mussa and F. Khendek

(i) nm is the instance name
(ii) st is the UTP stereotype of the instance

(d) msg is the message the event is related to
(e) oIns is the other instance related to msg, oIns = (nm, st) where

(i) nm is the instance name
(ii) st is the UTP stereotype of the instance

2. A time related event Etime is a tuple (ty, nm, tm, owner, pd), where
(a) ty ∈ {TimeOut, SetTimer, ResetTimer, StopTimer}
(b) nm is the event name
(c) tm is the timer name
(d) owner is the instance where the event belongs to, owner = (nm, st) where

(i) nm is the instance name
(ii) st is the UTP stereotype of the instance

(e) pd is the timer value;it is used by SetTimer events and set to zero for the other
two events (TimeOut, ResetTimer)

3. A miscellaneous event Emisc is a tuple (ty, nm, v, owner) , where
(a) ty ∈ {Action, Terminate, UTPverdict}
(b) nm is the event name
(c) v is the value associated with the event. This value can be pass, fail, inconclu-

sive, error in case ty = UTPverdict.
(d) owner is the instance where the event belongs to, owner = (nm, st) where

(i) nm is the instance name
(ii) st is the UTP stereotype of the instance

We use three different kinds of events, e6, e1 and e5, from Fig. 1.a to illustrate the
different types of events and their formal definitions:

e6 = (receive, e6, (C1,SUT), m1, (TC,TestContext))
e1 = (SetTimer, e1, t, (TC,TestContext), 1.0)
e5 = (UTPverdict, e5, pass, (TC,TestContext))

2.1 Test Case Selection Algorithm

Software integration goes through several rounds starting from the first two compo-
nents until the integration of all system components. In parallel, the integration test
model, composed of a set of test cases, is generated for each integration round to test
the compatibility of the integrated system component with the rest of the system.
Integration test cases exercised during the last round of integration are performed on
the complete system, so they can be directly selected for the mapping algorithm dis-
cussed in the next section. The rest of integration test cases, from the other rounds, are
passed to the selection algorithm to check if they do not contain test stubs for system
components. We need to analyze these test cases and the identities of the potential test
stubs they may contain and compare them to identities of the system components.

The comparison is based on event of the same type comparison. For this we need
to define the concept of event matching. The easiest way is to match event names.
Störrle [11] shows the effectiveness of such an approach on UML models. This may

 Acceptance Test Optimization 163

be applicable in other domains such as clone-detection, but it may not work well in
our case. While we strongly recommend the usage of a consistent naming convention,
at least, across the same project, test developers may use different naming conven-
tions for different test models. Moreover, modeling tools may use/generate the same
names to different events of different models. Furthermore, test stubs can be embed-
ded in the test control; in this case, name matching is irrelevant. Hence, we use event
attributes to define event matching Matchmsg, Matchtime and Matchmisc, for the case of
Emsg, Etime and Emisc, respectively.

Definition 3 (Event matching): Let e1 and e2 be two events of the same type from
two different test cases, then e1 and e2 match (and noted e1 = e2) if and only if:

1. Matchmsg(e1, e2) = { e1 ∈ Emsg, e2 ∈ Emsg | (e1.ty = e2.ty) ∧ (e1.msg = e2.msg) ∧
((e1.nm = e2.nm) ∨ (((e1.owner.nm = e2.owner.nm) ∨ (e1.owner.st ≠ SUT) ∨
(e2.owner.st ≠ SUT)) ∧ ((e1.oIns.nm = e2.oIns.nm) ∨ (e1.oIns.st ≠ SUT) ∨ (e2.oIns.st
≠ SUT)))) } .

2. Matchime(e1, e2) = { e1 ∈ Etime, e2 ∈ Etime | (e1.ty = e2.ty) ∧ (e1.tm = e2.tm) ∧
(e1.pd = e2.pd) ∧ ((e1.nm = e2.nm) ∨ (e1.owner.nm = e2.owner.nm) ∨ (e1.owner.st
≠ SUT) ∨ (e2.owner.st ≠ SUT)) } .

3. Matchmisc(e1, e2) = { e1 ∈ Emisc, e2 ∈ Emisc | (e1.ty = e2.ty) ∧ (e1.v = e2.v) ∧
((e1.nm = e2.nm) ∨ (e1.owner.nm = e2.owner.nm) ∨ (e1.owner.st ≠ SUT) ∨
(e2.owner.st ≠ SUT)) }.

Let us consider again the test cases in Fig. 1. We compare the events of test case
tcase1 to events of the same type in test case tcase2. The results of the comparison of
message events are negative, false, since they are associated to different sets of mes-
sages. The term (e1.msg = e2.msg) is evaluated to false; thus the whole expression is
evaluated to false. The results of the comparison of time related events are negative
too. The events belong to the same instance, TC, and timer t, but they have different
periods, 1.0 and 0.5. The term (e1.pd = e2.pd) is evaluated to false, therefore the
whole expression is evaluated to false. The comparison of the UTP verdicts, e5 and
e25, is positive since they have the same type, ty=UTPVerdict, the same value,
v=pass, belong to the same instance, e1.owner.nm = TC, and their owner instance is
not an SUT. The term (e1.nm = e2.nm) is evaluated to false but it does not affect the
expression.

An integration test case has to be free of stubs of system components in order to be
considered for mapping to acceptance test cases. To select these test cases, integration
test cases at a given integration round have to be mapped to integration test cases of
subsequent integration rounds in order to examine whether they hold test stubs of
subsequently integrated system components. The last integration round builds the
complete system. Hence, integration test cases applied in the last integration round are
exercised on complete systems and selected for the mapping algorithm. Integration
test cases from other integration rounds have to be investigated. We adopted a map-
ping approach, which depends on the behavior of the test stubs. Since the components
under test (CUTs) are the system components, the approach compares the behavior of
the components under test (CUTs) against the behavior of test stubs, i.e., it compares

164 M. Mussa and F. Khendek

the events located on CUT lifelines and the events located on the test stubs lifelines.
We compare the behavior of each CUT with the behavior of the test stubs that are
specified in the integrated test cases of the preceding integration rounds. In case of a
match, we conclude that a test stub is emulating a system component in that test case.
Therefore, we exclude that test case. Event matching (Definition 3) is used to com-
pare events. The selection algorithm maps each integration test case to test cases of
subsequent integration rounds and stops as soon as the selection condition fails as
expressed in line 11 of the algorithm shown in Algorithm 1.

Definition 4 (Selection condition): Let Tkh = (Ikh, Ekh, Rkh) be the integration test
case h at integration round k and Tij = (Iij, Eij, Rij) be the integration test case j at inte-
gration round i, where i > k, then Tkh does not use a test stub for the CUT of Tij if and
only if:

, . , | . . .

1 read integration test models: TM[1..n]
2 initialize the set of selected test cases:

SelectionSet = {}
3 for k = 1 to n-1 do
4 traverse through test cases of test model TM[k]:

T[h = 1..m]
5 isSelected = true
6 for i = k+1 to n do
7 traverse through test cases of test model

TM[i]: T[j = 1..w]
8 evaluate Selkh
9 isSelected = Selkh
10 if isSelected = false then
11 exit
12 endif
13 endfor
14 if isSelected = true then
15 SelectionSet.add(TM[k].T[h])
16 endif
17 endfor

Algorithm 1. The selection algorithm

Informally, a test case Tkh does not contain a test stub for a component inte-
grated/tested at round i if and only if in case of event matching, these events do not
belong to the CUT at stage i. The integration test cases selection algorithm is outlined

 Acceptance Test Optimization 165

in Algorithm 1. It is based on Definition 3 and Definition 4. To illustrate this
algorithm, let us consider the example in Fig. 2. We have two integration test cases, Tk
and Ti, from two different integration rounds, k and i. Round k is performed before
round i. In round k, we are testing the integration of component Ck; while in round i,
we are testing the integration of component Ci. The subsystem sbSys represents the
system components, including Ck, integrated prior to Ci. In this example, we want to
examine if the test case Tk in round k, Fig. 2.b, contains a test stub for Ci. By inspect-
ing the test case alone, we cannot reach a conclusion especially that we do not have
the specifications of the components. We apply our algorithm and use test cases of the
subsequent integration rounds, in this example Ti,, to examine the test case Tk. The
algorithm compares the events ei1 to ei10 of the test case Ti to the events ek1 to ek8 of
the test case Tk using Definitions 3 and 4. Events ei9 and ei10 do not match any events
of test case Tk since they correspond to a different message msg5. Events ei1, ei2, ei3,
ei4, ei6 and ei7 do match events ek1, ek2, ek3, ek4, ek6 and ek7 respectively, and these
events do not belong to the CUT Ci. However, events ei5 and ei8 match events ek5 and
ek8, respectively, and they fail the selection condition Selkh of Definition 4 since the
events belong to the CUT Ci. We conclude that the test control TCk of the integration
test case Tk emulates the system component Ci. Therefore, the integration test case Tk
is excluded by the selection algorithm since it contains a stub for a system component.
The selection algorithm stops with the comparison of events ei5 and ek5, which
evaluates Selkh to false.

Fig. 2. Test cases from different integration rounds

The results of the selection algorithm depend on the integration order. The usage of
test stubs of system components depends on the integration order. We may not require
any test stub when we choose the right integration order. There is a lot of research
work being done on the selection of the right integration order [14-16]. Our algorithm
selects different sets of intermediate integration test cases for different integration
orders. However, the same number of test cases is selected whatever is the order. We
use the example in Fig. 3 to illustrate this. The system in this example is composed of

«TestContext»
TC

k

«SUT»
C

k

msg1e
k1

e
k2

msg2e
k4

e
k3

msg3e
k5

e
k6

msg4e
k8

e
k7

«TestContext»
TC

i

«SUT»

sbSys

msg1 e
i1

 e
i2

msg2 e
i4

 e
i3

msg3 e
i5

 e
i6

msg4 e
i8

 e
i7

same events

(a) Test case (Ti)

(b) Test case (Tk)
msg5 e

i9
 e

i10

«SUT»

Ci

166 M. Mussa and F. Khendek

four components, C1, C2, C3 and C4, and provides five services, S1, S2, S3, S4 and
S5. Each component contributes to some of these services as shown in the figure with
the dotted rectangles. We selected a set of integration test cases T1, T2, T3, T4 and
T5 to target the different services S1, S2, S3, S4 and S5 respectively. We apply these
test cases on subsystems composed of components that contribute to the correspond-
ing services. To be able to execute these test cases, we used test stubs for the compo-
nents that are not available at the time of test execution. Table 1 shows the results of
the selection algorithm for different integration orders. As shown in the table, the
selected test cases differ from an integration order to the other. However, for each
integration order, all test cases T1, T2, T3, T4 and T5 are selected at different rounds.

Fig. 3. System specification

Table 1. Selection algorithm for different integration orders

Integration Applicable test

cases
Selected
test cases Order Round

1
((C1+C3)+C4)+C2

C1+C3 T1, T2, T4, T5 T1
2 (C1+C3)+C4 T2, T3, T4, T5 T2, T4
3 ((C1+C3)+C4)+C2 T3, T5 T3, T5
4

((C1+C4)+C3)+C2
C1+C4 T1, T2, T3, T4, T5 T2

5 (C1+C4)+C3 T1, T3, T4, T5 T1, T4
6 ((C1+C4)+C3)+C2 T3, T5 T3, T5
7

((C2+C4)+C1)+C3
C2+C4 T2, T3, T4, T5 T3

8 (C2+C4)+C1 T1, T2, T4, T5 T2
9 ((C2+C4)+C1)+C3 T1, T4, T5 T1, T4, T5
10

(C2+C4)+(C1+C3)
C2+C4 T2, T3, T4, T5 T3

11 C1+C3 T1, T2, T4, T5 T1
12 (C2+C4)+(C1+C3) T2, T4, T5 T2, T4, T5

2.2 Test Case Mapping Algorithm

The integration test cases, selected by the previous algorithm, are mapped to the ac-
ceptance test cases. The mapping algorithm has to examine if the acceptance test cas-
es are contained (identical to or part of) in the selected integration test cases. It is
given in Algorithm 2. We have to take into account that the events specified on an
axis of an acceptance test case may be distributed over several entities in the integra-
tion test case as shown in Fig. 4. Acceptance test cases are usually composed of two

C1 C2

C3 C4

S3 and S5

S2, S3, S4 and S5

S1, S2, S4 and S5

S1, S4 and S5

 Acceptance Test Optimization 167

test objects: the test control (TCa) and the system under test (SUT) while integration
test cases are composed of at least three test objects: the test control (TCi), the CUT
and the subsystem (SbSys). Hence, the behavior of the two test objects, TCa and
SUT, in the acceptance test cases is distributed over three test objects, TCi, CUT and
SbSys, in the integration test cases. Moreover, integration test cases may have extra
behaviors that reflect internal interactions between the CUT and SbSys. In other
words, we should not expect the acceptance test case to be a complete fragment/block
within the integration test case. To illustrate this, let us consider the test cases shown
in Fig. 4. We can compare the behavior of the test controls, TCa and TCi, as block
since they have identical sets of events, (e1, e10). However, the behavior, (e2, e9), of
the system, SUT, is distributed among two test objects. The event e2 belongs to the
integrated component CUT while event e9 belongs to the subsystem SbSys. Further-
more, the behavior of the integration test case (e1, e2, e3, e4, e5, e6, e7, e8, e9, e10)
contains internal events e3, e4, e5, e6, e7 and e8 that are not specified in the accep-
tance test case and divide the behavior of the acceptance test case (e1, e2, e9, e10)
into two fragments. The first fragment consists of e1 and e2, and the second fragment
consists of e9 and e10. Therefore, the mapping algorithm checks for the behavior of
the acceptance test cases in the behavior of the integration test cases. Test case inclu-
sion is defined hereafter.

Definition 5 (Test case inclusion): Let Ta = {Ia, Ea, Ra} be an acceptance test case
and Ti = {Ii, Ei, Ri} be an integration test case, then the acceptance test is included in
the integration test case if and only if the following conditions are satisfied:

 1

 2
The first condition states that the events specified in the acceptance test case are all

specified in the integration test case. The second condition checks that all the order
relations among the events of the acceptance test case are respected in the integration
test case specification. There is no mapping between the instances of the acceptance
test cases and the instances of the integration test cases as they are usually different.
Actually, the integration subsystem is different from one integration round to the oth-
er. On the first round, the subsystem is composed of one system component. On the
second integration round, the subsystem is composed of two system components, and
so on. On the last integration round, the subsystem is composed of all the system
components except one that to be integrated on this round. Acceptance test cases that
meet the two conditions are removed from the acceptance test model as this is done
with the mapping algorithm given in Algorithm 2. This comparison is possible as test
cases have finite behaviors.

168 M. Mussa and F. Khendek

1 read acceptance test cases: TCa[1..n]
2 read selected integration test cases: TCi[1..m]
3 for i = 1 to n do
4 for j = 1 to m do
5 isContained = true;
6 isContained = isContained AND (TCa[i].E⊆TCi[j].E)
7 isContained = isContained AND (TCa[i].R⊆TCi[j].R)
8 if isContained = true then
9 remove TCa[i]
10 exit interior for loop "for j = ..."
11 endif
12 endfor
13 endfor

Algorithm 2. The mapping algorithm

Fig. 4. Matching test cases

3 Illustration Example

We use the system specification shown in Fig. 5 as our case study. The system is
composed of three components, C1, C2 and C3, and provides three services, S1, S2
and S3. Messages are named with three different letters, A, B and C, to relate them to
the aforementioned services provided by the system, S1, S2 and S3, respectively.

In this case study, we focus on the behavioral part of the test model. A subset of
the acceptance test cases are shown in Fig. 6. There are four test cases. There is a test
case for each provided service. The fourth test case, test case 4, is for the combination
of the three services in a certain order. Please notice that the UTP stereotypes are not
present in the test behavior because they are omitted, for the time being, in the UTP
metamodel.

msg1

msg5

(a) Acceptance test case

e1 e2

e9 e10

«TestContext»

TCa
«SUT»

SUT

msg1

msg5

msg2

msg3

msg4

(b) Integration test case

e2
e3 e4

e5 e6

e7 e8

e9 e10

e1

«TestContext»

TCi
«SUT»

CUT
«SUT»

SbSys

The system components
(C1 + C2) + C3, i.e., in th
round, we add the third co
shown in Fig. 7. Two test c
round while the third one, T

Fi

Fig

Acceptance Test Optimization

are integrated according to the following integration ord
he first round, we integrate C1 and C2 and in the seco
omponent, C3. A subset of the integration test cases

cases, Ti1 and Ti2, are generated during the first integrat
Ti3, is generated during the second integration round.

g. 5. Case study: system specification

g. 6. Case study: acceptance test cases

169

der:
ond
are

tion

170 M. Mussa and F. Kh

Fig

The first step in our opt
with the selection algorithm
tion test case, Ti3, of the se
it has been applied on the c
ponents. This test case is au
rithm on the test cases, Ti1
system component as test s
compared to Ti3 using the
has a different set of event
matching events, B3r and B
result, two integration test
against the given acceptanc
tion 5 and the mapping alg
umn, Condition 1, represe
column, Condition 2, repr
acceptance test cases, Ta1
moved from the test mode
successful mapping with an
test case are not considered

Tab

Acceptance
Test Cases

1 Ta1
2 Ta1
3 Ta2
4 Ta2
5 Ta3
6 Ta3
7 Ta4
8 Ta4

hendek

g. 7. Case study: integration test cases

timization approach is to analyze the integration test ca
m. We do not apply the selection algorithm on the integ
cond round since it is the last round and we are certain t

complete system and there is no test stubs for system co
utomatically selected. We have to apply the selection al
1 and Ti2, of the first round to examine if any contain
stub in its specification. The two test cases Ti1 and Ti2

selection condition (Definition 4). Ti1 is selected sinc
ts. Test case Ti2, however, is not selected since there
B5s, and both events belong to CUT C3, respectively. A
cases, Ti1 and Ti3, out of three are selected for mapp

ce test cases. We perform the mapping according to Def
gorithm. The results are shown in Table 2. The forth c
ents the first condition of Definition 5, whereas the f
esents the second condition of Definition 5. Two of
 and Ta2, meet the two conditions and are therefore

el. In this table, when a test case is eliminated because
n integration test case, other mappings for this accepta
. This is the case, for instance, for Ta1 and Ti3.

le 2. Case study: results of the mapping

e Integration
Test Cases

Condition 1 Condition 2

Ti1
Ti3
Ti1
Ti3
Ti1
Ti3
Ti1
Ti3

ases
gra-
that
om-
lgo-
ns a
are

ce it
are

As a
ping
fini-
col-
fifth
the
re-

e of
ance

 Acceptance Test Optimization 171

4 Related Work

Model comparison is an important research stream in Model-Driven Engineering
(MDE) [17], especially for version control systems, model-cloning and model trans-
formation testing. It targets a variety of model types: structural, behavioral and data-
flow. For UML models, the research focused more on structural diagrams [9, 18, 19],
particularly the class diagram, than on behavioral diagrams [20, 21]. As far as we
know, there is no test model comparison in the testing domain. We are not aware of a
systematic testing approach that compares test models taking into account their spe-
cific characteristics. The nearest approach to our work is proposed by Liu et al. [21].
Their work was on model-cloning using UML sequence diagrams. The approach con-
verts the sequence diagrams into an array. This array is represented as a suffix tree.
Duplication is detected by traversing the tree and applying the longest common prefix
algorithm. Our approach is different in two aspects. First, this approach handles only
synchronous messages; while ours handles asynchronous messages as well. More
importantly, the approach in [21] is restricted to contiguous behavior.

Much work has been done for the comparison of Message Sequences Charts
(MSCs) [22, 23]. This work tackled the basic MSCs (bMSCs) and high-level MSCs
(HMSCs) from a theoretical perspective considering more complex and infinite beha-
viors while we focused on finite behaviors for test case cases. Genest et al. [24] pro-
pose a pattern matching approach. The approach considers nested MSCs (bMSCs and
HMSCs). The matching method relies on the FIFO order of the received events for
the processes/instances. Thus, events are linearized for each process and can be com-
pared. The approach considers asynchronous message and non-contiguous behavior
too. However, it requires the existence of the same set of instances in both MSCs,
which limits its applicability for our purposes as the numbers of instances and the
instances may be different in the compared test cases. Tallam et al. [25] propose a test
suite reduction algorithm. The algorithm requires a set of test cases and a set of test
requirements. Each test case covers a set of test requirements. This information is
provided as input in a table. They process the table to select the minimum set of test
cases that covers all the test requirements. This approach can be used as a first step in
our approach to select the set of acceptance test cases that covers all the test require-
ments, if provided, before comparing them to integration test cases. The approach
proposed in [25] does not relate acceptance test cases to integration test cases.

5 Conclusion

We proposed an optimization approach that eliminates acceptance test cases that have
been already applied during integration testing, hence leading to fewer acceptance test
cases without sacrificing quality. Integration test cases are examined in order to be
selected for the optimization process. Selected integration test cases have to be exer-
cised on the actual system components and not only on test stubs of the system com-
ponents. Our approach has been implemented in a prototype tool. We are currently
experimenting with this prototype. On the other hand, some theoretical aspects of our

172 M. Mussa and F. Khendek

approach need to be investigated further, for instance the complexity of the selection
algorithm. We may also define some heuristics to improve this selection algorithm.
Furthermore, our approach can be extended to include the test stimuli. Test stimuli
consist of both test inputs and their corresponding expect outputs. UTP specification
facilitates the design of the test stimuli within the test model. It can be specified in the
test architecture and/or the test behavior.

Acknowledgements. This work has been partially supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC), Concordia University and
the Libyan-North American Scholarship Program.

References

1. Mussa, M., Khendek, F.: Towards a Model Based Approach for Integration Testing. In:
Ober, I., Ober, I. (eds.) SDL 2011. LNCS, vol. 7083, pp. 106–121. Springer, Heidelberg
(2011)

2. Utting, M., Legeard, B.: Practical Model-Based Testing:A Tools Approach. Morgan
Kaufmann Publishers, Amsterdam (2007)

3. Baker, P., Dai, Z.R., Grabowski, J., Schieferdecker, I., Williams, C.: Model-Driven Test-
ing: Using the UML Testing Profile. Springer (2008)

4. Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and Evaluation of Code Clone Detection
Techniques and Tools: A Qualitative Approach. Science of Computer Programming 74(1),
470–495 (2009)

5. Fortsch, S., Westfechtel, B.: Differencing and Merging of Software Diagrams: State of the
Art and Challenges. In: Proc. Second Intl. Conf. Software and Data Technologies
(ICSOFT 2007), pp. 90–99. INSTICC Press (2007)

6. Roy, C.K., Cordy, J.R.: A Survey on Software Clone Detection Research. Technical Re-
port 2007-541.Queen’s University, Canada (2007)

7. Stephan, M., Cordy, J.R.: A Survey of Model Comparison Approaches and Applications.
In: 1st International Conference on Model-Driven Engineering and Software Development
(MODELSWARD 2013), pp. 265–277. INSTICC Press (2013)

8. Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Transactions on Software
Engineering 28(5), 449–462 (2002)

9. Stephan, M., Cordy, J.R.: A Survey of Methods and Applications of Model Comparison.
Technical Report2011-582, Queen’s Univ., Canada (2011)

10. Brosch, P., Kappel, G., Langer, P., Seidl, M., Wieland, K., Wimmer, M.: An Introduction
to Model Versioning. In: Bernardo, M., Cortellessa, V., Pierantonio, A. (eds.) SFM 2012.
LNCS, vol. 7320, pp. 336–398. Springer, Heidelberg (2012)

11. Störrle, H.: Towards clone detection in UML domain models. In: Proceedings of the
Fourth European Conference on Software Architecture: Companion, pp. 285–293. ACM,
New York (2010)

12. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model comparison: A foundation for model
composition and model transformation testing. In: Proceedings of the 2006 International
Workshop on Global Integrated Model Management, pp. 13–20. ACM, USA (2006)

13. Stephan, M., Cordy, J.R.: Application of model comparison techniques to model transfor-
mation testing. In: 1st International Conference on Model-Driven Engineering and Soft-
ware Development (MODELSWARD 2013), pp. 307–311. INSTICC Press (2013)

 Acceptance Test Optimization 173

14. Wang, Z., Li, B., Wang, L., Li, Q.: A brief survey on automatic integration test order gen-
eration. In: SEKE 2011 - Proceedings of the 23rd International Conference on Software
Engineering and Knowledge Engineering, pp. 254–257. Knowledge Systems Institute
Graduate School, Miami (2011)

15. Abdurazik, A., Offutt, J.: Using Coupling-Based Weights for the Class Integration and
Test Order Problem. The Computer Journal 52(5), 557–570 (2009)

16. Briand, L.C., Labiche, Y., Wang, Y.: An Investigation of Graph-Based Class Integration
Test Order Strategies. IEEE Transactions on Software Engineering 29(7), 594–607 (2003)

17. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. Computer 39(2),
25–31 (2006)

18. Xing, Z., Stroulia, E.: UMLDiff: An algorithm for object-oriented design differencing. In:
Proceedings of the 20th IEEE/ACM International Conference on Automated Software En-
gineering, pp. 54–65. ACM, New York (2005)

19. Maoz, S., Ringert, J.O., Rumpe, B.: A manifesto for semantic model differencing. In: Din-
gel, J., Solberg, A. (eds.) MODELS 2010. LNCS, vol. 6627, pp. 194–203. Springer, Hei-
delberg (2011)

20. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and merging
of statecharts specifications. In: 29th International Conference on Software Engineering,
pp. 54–64. IEEE CS (2007)

21. Liu, H., Niu, Z., Ma, Z., Shao, W.: Suffix Tree-Based Approach to Detecting Duplications
in Sequence Diagrams. IET Software 5(4), 385–397 (2011)

22. Klein, J., Caillaud, B., Hélouët, L.: Merging scenarios. In: Proc. Ninth International Workshop
on Formal Methods for Industrial Critical Systems (FMICS 2004), vol. 133, pp. 193–215.
Elsevier, Amsterdam (2005)

23. Hélouët, L., Hénin, T., Chevrier, C.: Automating Scenario Merging. In: Gotzhein, R.,
Reed, R. (eds.) SAM 2006. LNCS, vol. 4320, pp. 64–81. Springer, Heidelberg (2006)

24. Genest, B., Muscholl, A.: Pattern Matching and Membership for Hierarchical Message Se-
quence Charts. Theory Comput. Syst. 42, 536–567 (2008)

25. Tallam, S., Gupta, N.: A Concept Analysis Inspired Greedy Algorithm for Test Suite Mi-
nimization. In: Proc. 6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, pp. 35–42. ACM, USA (2005)

Verifying Hypermedia Applications

by Using an MDE Approach

Delcino Picinin Júnior1,4, Cristian Koliver2, Celso A.S. Santos3,
and Jean-Marie Farines4

1 Federal Institute of Santa Catarina, Brazil
delcino.junior@ifsc.edu.br

2 Catarinense Federal Institute, Brazil
ckoliver@ifc-camboriu.edu.br

3 Federal University of Espirito Santo, Brazil
saibel@inf.ufes.br

4 Federal University of Santa Catarina, Brazil,
picinin@das.ufsc.br, j.m.farines@ufsc.br

Abstract. Authoring tools for editing hypermedia documents should
be able to describe temporal and spatial relationships among objects,
and user interactions as well. These tools can also support modifications
in the document structure during the exhibition time. In all these situ-
ations, hypermedia document correctness should be guaranteed. In this
paper, we describe an approach supporting the formal verification of doc-
uments in the Nested Context Language (NCL) and Synchronized Mul-
timedia Integration Language (SMIL) standards. Using usual authoring
tools, NCL and SMIL models are generated and, though an MDE design
environment, transformed into formal verification models to be used fol-
lowing a method proposed in this paper and supported by an appropriate
tool. A designer-oriented interface allows an easy and understandable de-
scription of properties to be checked and of required observers for more
complex properties. The results of the verification are also presented
in a comprehensive way for designers (as counterexamples) or executed
step-by-step in a common displaying tool. Our approach allows designers
to deal with the validation of their documents, built in a rigorous and
consistent way, without prior knowledge of verification models and tools.

Keywords: MDE, Hypermedia, IDTV, Verification, Model checking.

1 Introduction

Technological advances in computers and electronics have led to the emergence of
new ways of document communication, such as the Interactive Digital Television
(IDTV) and the Interactive Television over IP (IPTV). IDTV must reach a broad
audience of users, not always covered by the Web and often with little technical
knowledge. In this context, the TV application becomes a hypermedia document,
and the user does not just watch TV passively, but he/she can interact with its
content.

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 174–189, 2014.
c© Springer International Publishing Switzerland 2014

Verifying Hypermedia Applications by Using an MDE Approach 175

A hypermedia document, commonly written in languages such as the Nested
Context Language (NCL)1 and the Synchronized Multimedia Integration Lan-
guage (SMIL)2, is composed of different media objects3 with different exhibition
times and characteristics. An object can interact with other objects and applica-
tion user’s devices and must be executable on various target platforms. Moreover,
interactions (such as starting, pausing, and stopping a video presentation) are
dynamic and can occur at any time. Consequently, if the document structure
is not already verified, the synchronization among different objects may not be
achieved properly during the presentation. This characterizes a time conflict,
defined by Yu et al. [21] as conflicting attribute values in a temporal document
specification.

Two types of time conflicts are possible: (1) intra-object and (2) inter-objects
time conflicts. The first type corresponds to the case of conflicting attributes
within a single object. For example, the difference between start and stop times
does not match its specified duration. The second type is the case of conflicting
attributes among different objects. An inter-objects time conflict is more difficult
to identify because it can depend on the interactions between objects and users.
The difficulty increases when the begin or the end of an object presentation is
related to some event triggered by another object, or by a user’s event, i.e., the
event is not associated with a prefixed time [6].

In the development of hypermedia applications, usually the editing phase
occurs before the presentation. However, in more recent scenarios involving doc-
ument live editing (with IDTV and IPTV [8,13]) such phases can be concomi-
tantly performed. As described by Asnawi et al. [2], beyond IDTV and IPTV
applications, there exist other domain areas requiring that processes of authoring
and presentation occur on-the-fly. For instance, classrooms, training, surveillance
security, and entertainment often need a real-time or live presentation. The tem-
poral conflict analysis in live applications has real-time constraints, so a quick
scan is needed. That is also a relevant issue to be dealt with in the multimedia
domain.

Guaranteeing temporal and spatial consistency of hypermedia documents re-
quires special attention during the design process and leads to improvements
to existing hypermedia authoring tools [19]. Two approaches are differentiated:
(1) authoring tools [7,16]) are based on visual inspection and commonly use a
structured timeline view to edit and show the hierarchical structure from which
timing constraints are derived. When the complexity of hypermedia applications
increases, visual inspection becomes very complex for analysis by human eyes.
(2) formal verification methods (model checking), integrated to the application
design process, verify correctness of hypermedia documents against properties
(mainly temporal properties), with good results as shown in [10,12].

Model checking uses formal languages for representing the hypermedia docu-
ment structures and the set of properties to be checked. Nevertheless, the use of

1 http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=H.761
2 http://www.w3.org/TR/SMIL/
3 Hereafter, we will simply use the word “object” for media object.

http:// www.itu.int/ITU-T/recommendations/rec.aspx?rec=H.761
http://www.w3.org/TR/SMIL/

176 D.P. Júnior et al.

model checking in the domain of hypermedia document design is difficult since
designers do not have sufficient knowledge and expertise for using languages to
specify and code correct formulas to be checked.

In this paper, we describe a design method based on model-checking in which
the designer continues to use his/her well-known languages for hypermedia au-
thoring. The system model designed with these languages is translated using a
Model Driven Engineering (MDE) [20] approach to an appropriate language to
be used for property verification. We also present an environment intended for
non-expert users, bringing facilities to specify properties and to use verification
tools. Our approach has the following contributions: (1) the use of MDE in a
toolchain that allows to obtain formal models (input of verification tools) from
hypermedia applications by successive translations; (2) the reduction of formal
models by slicing, making possible the use of formal verification in live applica-
tions; (3) a comprehensive way for the designer to specify properties; and (4) the
presentation of counterexamples in an understandable way, helping the designer
with the correction of the spatial and temporal structure of the application.

This paper is organized as follows. Section 2 describes the proposed method
for developing hypermedia documents, highlighting the main challenges for hy-
permedia document design and the phases of the proposed method. Section 3
focuses on the formal model used as input to the model-checking tool. Section 4
presents the design environment with its verification toolchain associated with
the proposed method. Section 5 shows how the method and the toolchain are
used by means of a short example. Section 6 reviews previous work and compares
it with the proposed approach. Conclusions are presented in Section 7.

2 Proposed Design Method

The goal of our method is to aid designers build hypermedia applications free
of temporal and spatial inconsistencies. More specific objectives include: (1) the
validation of temporal and spatial relationships among objects, considering ex-
ternal interactions; (2) the reduction of the formal model of the application by
slicing techniques, allowing a live application verification in an acceptable time;
and (3) the use of the environment by users non expert in formal verification.

2.1 Main Challenges

Verification for hypermedia applications – particularly for the IDTV context –
poses some interesting issues:

Time Relationships Verification. In IDTV, objects can be presented when:
(1) the application starts; (2) a message is sent from another running object;
or (3) the user triggers the presentation by using the remote control. Likewise,
an object can be stopped when: (1) it receives a message from another object
or from the remote control, or (2) the presentation time runs out. Unexpected
temporal behavior, e.g., an object presented endlessly, can occur due timing
errors.

Verifying Hypermedia Applications by Using an MDE Approach 177

Spatial Relationships Verification. In IDTV, visual objects (e.g., image,
video, and text) must be presented in predefined regions of the screen. The
placement of an object in the full screen and of other object regions defines
spatial relationships. Unexpected placement, such as an important part of video
content overlapped by a static image on the screen, should be identified.

Live Editing of the Application Spatio-temporal Structure. Verification
requires a significant computational effort due to state explosion. Whereas this is
often not a critical problem for pre-recorded applications, in which authoring and
presentation are disjoint phases, the full scan of a new version and the correction
of errors of a live IDTV application, edited on-the-fly, may be impractical due
to real-time constraints.

Application Designer Facilities. Verification of IDTV applications also re-
quires an environment that can be used easily by designers without expertise
in formal models. Such environment should include facilities to define desired
properties, and to identify and correct errors of the application.

2.2 Design Method

When developing a hypermedia application, the designer expects that it follows
the planned behavior regarding relationships among objects, user interactions,
and the placement of objects on display devices. Verification by model-checking
allows one to identify and correct undesired behaviors from design or coding
errors. However, this requires the translation of the hypermedia application to a
formal model and the specification of the properties to be verified in a suitable
language. A manual translation may introduce errors and is not viable in the
case of live IDTV applications. In addition, an application designer who is also
expert in formal modeling is uncommon. To avoid the need for knowledge about
formal languages from designers, and to limit the possibility of creating erroneous
formal models during translation, our work proposes a method to perform model
transformations based on MDE, hence ensuring a correct translation. Our design
method is divided into three phases, as follows:

Modeling Phase. The designer writes the application using hypermedia lan-
guages (e.g., NCL or SMIL) as usual. Also, by using the proposed high-level
language, he/she creates a set of behavior properties to be checked.

Transformation Phase. The NCL or SMIL application and the set of prop-
erties are automatically translated into a model coded in a formal verification
language by means of transformation rules defined in the MDE approach.

Verification Phase. Using model-checking principles, properties are verified
and, when a property is not satisfied, a counterexample is generated. Such coun-
terexample corresponds to a sequence of actions that led to the violation of the
property and, consequently, it helps the designer fix the application errors.

178 D.P. Júnior et al.

3 Formal Verification

Once the application has been translated to a language suitable for use by a
model-checker tool, the designer must define what behaviors must be verified.
Most approaches (see Section 6) check only the end of an object exhibition.
Our approach defines a set of behaviors, selected by the designer, that should
be verified, represented through the use of formal properties expressed in Lin-
ear Temporal Logic (LTL) formulas, or by observers when a property requires
checking some elapsed time.

An observer is a state machine in which the change from one state to another
occurs upon the arrival of messages or elapsed time. Messages have as source
or target observed object, and are also received by the observer. In comparison
with formulas, observers have two drawbacks: they increase the size of the formal
model, and they do not present counterexamples. The problem caused by the
model growth can be tackled by means of a reduction approach. Moreover to
obtain a counterexample for all properties not satisfied, we adopted LTL formulas
to check the reachability of the same states, when using observers.

The sequence of actions representing a counterexample does not indicate the
time when each action occurred. To add such information, a global time observer
discretizes the passage of time in seconds, thus each change of state of this
observer indicates the passage of one second in the global time.

3.1 Mapping Hypermedia Application to Fiacre

The formal verification is performed from a Fiacre model generated for SMIL
or NCL applications using MDE. Fiacre [4] is a verification-oriented language,
developed in the TOPCASED project4, to represent temporal and behavioral
aspects of systems for verification and simulation purposes. The language is
strongly typed and its basic syntactic constructors are the process, used to de-
scribe sequential behavior, and the component, used to represent the system
through the composition of processes and other components. Process behav-
ior is defined from a set of states and transitions. For each state, expressions
specify transitions towards the next state. These expressions depend on: (1) de-
terministic and non-deterministic constructors, as in a programming language;
(2) communication events through ports; and (3) time delays (wait). The main
component is the parallel composition of components or processes commnicating
via synchronous ports and shared variables. Asynchronous communication is per-
formed by adding a special process called glue, which allows one to desynchronize
sender and receiver ports. Time in Fiacre code can progress in communication
ports or in processes as delays. Non-determinism can be represented in the body
of the process.

As shown in Fig. 1, the application language-to-Fiacre translation takes into
account: the hypermedia document, the possible interactions of the user, the
player features, and the behavior to be checked. As represented in the figure,

4 http://www.topcased.org/

http://www.topcased.org/

Verifying Hypermedia Applications by Using an MDE Approach 179

Fig. 1. Environment for the transformation of hypermedia applications to Fiacre

for each object, a Fiacre component is created considering characteristics of
the presentation platform and the media. Each component has a media process
and an associated glue process. A media process represents the object behavior,
whereas its glue process represents the player features where the object will be
displayed (such as asynchrony in sending messages with discard behavior). In
addition, a Fiacre process named Remote Control is created for each interactive
object. For each object, the translator also creates another Fiacre process whose
role is to observe the object behavior based on information from the object
and properties. Finally, there is an observer for the global time. The internal
structure of these Fiacre processes (except the global time observer) depends
directly on the characteristics of the existing objects in the application. Example
of characteristics described by Fiacre processes are: interactivity, end by message,
end by time, multiple types of end, and use of temporal anchors.

3.2 Observers

Observers aim to verify temporal intramedia and intermedia relationships. Fig-
ure 2 shows the basic observer, which allows the identification of the elapsed time
between the arrival of the begin obs and end obs messages. It supports three pos-
sible time intervals: (1) elapsed time < tmin; (2) tmin ≤ elapsed time ≤ tmax;
and (3) elapsed time > tmax. This basic observer captures all the well-known
relationships between medias proposed by Allen [1]. Such observers can be au-
tomatically built to be used for verification purpose.

Fig. 2. Basic observer

180 D.P. Júnior et al.

3.3 Properties to be Verified

Our work takes into account four categories of properties to be checked:

Intramedia Relationship. The basic observer (Fig. 2), where begin obs is the
start and end obs is the end of the object, enables checking time limits (minimum
and maximum) of object display.

Intermedia Relationship. The basic observer also enables the verification of
Allen’s relationships. Figure 3 shows some relations for objects A and B: (a) B-
start after A-start: (b) B-stop after A-stop (c) A overlapping B. These can
be used to observe full or partial time overlapping in object presentation.

Fig. 3. Allen’s relationships

Causal Relationship. Links between A and B represent causal relationships
indicating that an event in object A results in an action on B. Checking the
activation of a link allows verification of this relationship.

Spatial Relationship. Full or partial spatial overlap of objects on regions of
the presentation device (screen area, audio channel, etc.) are generally unwanted
when they occur in conjunction with time overlap. In our approach, we can
identify when two or more objects are in this situation. To identify overlapping
regions, we adopt an esthetic analysis of the Cartesian coordinates of each region.
As for identifying temporal overlap, we use observers.

4 The Toolchain Associated with the Proposed Method

As described in Section 2, our method is composed of three phases: modeling,
transformation and verification. A toolchain supports this design method as
explained in this section by means of an example.

4.1 A Case Study

In this section, we use a hypermedia application to exemplify how our approach
works. The application is coded in the Nested Context Language (NCL) [9],
an XML application language standardized as ITU-T Recommendation H.761
for IPTV services in 2009 [15]. NCL is the standard declarative language of

Verifying Hypermedia Applications by Using an MDE Approach 181

the Brazilian terrestrial IDTV system. NCL is a causal language in which each
action is preceded by another one and triggered by an NCL condition, such as:
user interaction (onSelection), beginning (onBegin) or end (onEnd) of media
presentation. NCL Connectors and Links are used to define these conditions and
actions. A condition is satisfied when an event occurs; an event can be triggered
by actions such as user interaction(selection action), start object (start action)
or stop object (stop action). Connectors and links are defined by the designer,
as well as by the device and the presentation regions. In NCL documents, time
features are associated with object duration, object anchors and delays on the
connectors. Finally, the non-determinism due to user interactions can be also
represented in NCL.

Our case study is the Live Longer (“Viva Mais” in Portuguese) application5.
Such application is concerned with several subjects related to health and welfare
and it offers opportunities for an active participation of the TV viewer. The
“Healthy Food” interactive part asks the TV viewer to choose her/his prefer-
ence among four different dish options. Once a dish is chosen, the TV viewer is
informed of the quality of his/her choice in terms of excess or lack of nutrients.
Code 1 is a fragment of the application as written by the actual designer. The
designer decided to use the RED button for two purposes in different moments.
The selection of the button RED (lines 1 and 2 of the code) enables interactive
objects dish1, dish2, dish3, and dish4 (line 4). If the viewer selects the button
RED again (lines 6 and 7), corresponding to the choice of dish1, objects dish2,
dish3, and dish4 are disabled (line 8).

Code 1. NCL - part of the original code, developed by the designer
1 <link id="l1" xconnector="x1"><bind component="icon" role="onSelection">

2 <bindParam name="keyCode" value="RED"/></bind>

3 <bind component="icon" role="stop"/>

4 <bind component="dish1","dish2","dish3","dish4" role="start"/>

5 </link>

6 <link id="l2" xconnector="x2"><bind component="dish1" role="onSelection">

7 <bindParam name="keyCode" value="RED"/></bind>

8 <bind component="dish2","dish3","dish4" role="stop"/>

9 <bind component="dish1-quality" role="start"/>

10 </link>

Indeed, when the icon is enabled, the selection of the RED button enables
objects dish1, dish2, dish3 and dish4, and disables icon. Then, four alternative
selection buttons (“RED”, “BLUE”, “YELLOW” and “GREEN”) are presented.
If the button RED is selected again in a short time (e.g., less than one second),
the objects are enabled and disabled so fast that the viewer cannot see the set of
alternatives and consequently dish1 (corresponding to RED button) will always

5 http://clube.ncl.org.br/node/29

http://clube.ncl.org.br/node/29

182 D.P. Júnior et al.

be selected. This situation comes from a design error that permits dishes to be
displayed too fast for human visual senses (this situation is different from not
displaying the dishes). This error is due to to use of the same RED button for
two sequential interactive selections. It can be easily corrected when detected,
but detection is difficult via testing.

4.2 Translating Hypermedia Language to Intermediary Graph (IG)

In our toolchain, initially an MDE transformation of type model-to-model (M2M)
translates the application from the hypermedia language (NCL) to the Interme-
diary Graph (IG) representation, as shown in Fig. 4. Transformation rules of the
NCL2IG translator were coded in the model transformation language ATL [3].
Note that the use of IG enables the integration of different hypermedia languages
(SMIL for example) in the toolchain, needing only the construction of a specific
translator from the source language to IG.

Fig. 4. NCL2IG transformation

Figure 5 shows an IG corresponding to Code 1. In IG, edges are labeled by
(< event, action >) and states represent object presentations.

Fig. 5. IG of the fragment of code of the NCL application

4.3 Property Editor

Developed in Java, the Property Editor (PE) is used to define the properties to
be checked, which were described in Section 3.3: Intramedia, Intermedia, Causal
and Spatial Relationships.

Verifying Hypermedia Applications by Using an MDE Approach 183

To allow the definition of Causal and Spatial Relationships, PE analyzes IG
and identifies the links between medias in a causal module and as a spatial
overlay in a spatial module, as represented in Fig. 6. The results are presented
in a Graphical User Interface (GUI) to assist the designer.

Fig. 6. Properties modules

Figure 7 illustrates the information provided to designer by the GUI. The
behaviors list shows behaviors to be checked by formulas or observers. The de-
signer then selects medias and behaviors to be used through this GUI. In the
example of Fig. 7, the designer has selected the behavior 5, the dish2 media and
minimum time 2 for property checking: when presented, dish2 always reaches
the minimum time 2.

Fig. 7. Properties Editor (GUI)

4.4 Reducing IG Graph Sizes

In order to reduce the computational cost of the verification process, a very im-
portant requirement for live editing, our toolchain uses a module named S licer.
Developed in Java, the slicer receives as inputs an IG and a set of properties,
and performs a reduction for each associated media and property. This phase
produces a reduced slice graph named IG’. The slicer follows a set of rules whose
main goals are: (1) to eliminate parts of the model unnecessary to check the de-
sired properties, and (2) to join multiple elements into a single one, if possible.
The slicer aims to reduce the size of IG that represents the document presen-
tation, without changing the original presentation behavior, and preserving the
relevant parts of this graph for checking the desired properties.

184 D.P. Júnior et al.

4.5 Translating the IG to Formal Representations

From the IG, two MDE transformations lead to a verification domain repre-
sented by Fiacre and LTL models. They are shown in Fig. 8(a) and Fig. 8(b):
IG2Fiacre involves the analysis of application semantics, properties to be ver-
ified, as well as the environment in which the application is inserted (detailed
in Section 3.1) whereas IG2LTL is responsible for translating a set of properties
(detailed in Section 3.3) to LTL formulas. We coded these model-to-text (M2T)
transformations in the transformation language ACCELEO [17].

(a) From IG to Fiacre (b) From IG to LTL

Fig. 8. Transformations from IG to formal languages

4.6 Verification

The code in Fiacre is compiled by the FRAC tool, hence generating equivalent
code in Time Transition Systems (TTS) [14], which is the input format of the
Time Petri Net (TPN) Analyzer (TINA) tool [5]. TINA is a toolbox to edit
and analyze TPNs, with an extension to handle TTS data. SELT is the model
checker tool of the TINA toolbox and allows the verification of formulas written
in LTL. A LTL formula is formed by: (1) a finite set of atomic propositions; and
(2) temporal operators: O (next), U (until), true, � (always), ♦ (in the future).

The result of verification for a given formula can be true or false (when not
satisfied). When false, a counterexample is generated to help the designer. Since
the counterexample is expressed in a rather unclear language, our approach
transforms it into a more user-friendly representation, as shown in Section 5.

4.7 General Structure of Toolchain

Figure 9 presents the general view of the method and its toolchain. In this
representation, rectangular elements represent the software that performs tasks.
The other elements are files generated during the process. Elements with multiple
layers indicate the existence of multiple instances.

5 Design Method and Environment in Practice

As we highlighted, the erroneous behavior of the “Live Longer” application per-
mits dishes to be displayed outside human visual perception. Aiming to identify

Verifying Hypermedia Applications by Using an MDE Approach 185

Fig. 9. A general view of the method and its toolchain

and avoid such undesirable behavior, the designer uses PE to specify a property
to be verified: when presented, media dish2 always remains visible for a mini-
mum time allowing human vision, as show in Fig. 7. We considered two seconds
as an acceptable minimum time for human vision (in future work, we will make
further pratical experiments on this issue). The property to check the elapsed
time is represented by an observer (as presented in Fig. 2). The following LTL
formula allows the verification of the observed behavior:

(�(ob dish2 running1 =⇒ (¬(♦(ob dish2 end1))))). (1)

This formula verifies that when dish2 is presented (ob dish2 running1 ob-
server state), the dish2 end will be never observed in the future before a mini-
mum time (ob dish2 end1 observer state). The non-reachability of the end1 state
indicates that the exhibition time of the observed media dish2 always meets the
minimum time. Figure 10 contains part of the interface listing the verification
results. The last line corresponds to the verification of Eq. 1.

Fig. 10. List of results (Graphical User Interface)

The counterexample, which is the sequence of actions which leads to this
property non-satisfaction, is show in Fig. 11. It also allows to obtain the time of
action occurence and consequently the designer can know the residence time in
Running state and compare it with requirements for human vision. From this
information (in our case, the time is below the required minimum), the designer
must modify the application code to avoid this erroneous situation.

The code correction requires human intervention since an automatic change
could cause an unwanted change in its semantics. One possible solution to correct
this situation consists in dividing the display of interactive media in two steps.

186 D.P. Júnior et al.

Fig. 11. Counterexample of Dish2 (GUI)

The first step presents the media image. The second step, after 2 seconds, allows
interaction. In NCL, the implementation of this solution requires the use of two
medias.

Performance Analysis: one of the main issues that we faced was how the
designer verifies some formal properties in a hypermedia application, using ob-
servers (and in an acceptable response time). To deal with this issue, we propose
an initial performance analysis, comparing IG with its IG’ version, which repre-
sents the document presentation dynamics.

Table 1 shows a comparison of six cases. To get a fair comparison, in all cases,
the target media to verifiy was always dish2. In all cases, LTL formulas were
verified; the formula presented in Eq. 1 refers to case 4.

The results indicated that in all cases, the slicing resulted in a decrease in the
size of the model, as well as in lower response times, which makes the approach
suitable for on-the-fly checking (live applications). Note that case 6 is bigger than
case 1, but its response time is smaller, possibly due to the low connectivity and
absence of cycles in observers.

These results was obtained running on a AMD Phenom II P820 triple-core
processor with 4 Gigabytes of RAM on Ubuntu Linux. These experiments were
performed sequentially, but the proposed approach can be easily extended to
allow verification of various model slices in the same time, by using a cluster of
computers in a parallel way.

Table 1. Complete model (IG) vs. sliced model (IG’)

Case Description States Transitions Response Time

1 Complete model without observer 26448 94454 18 seconds

2 Sliced model without observer 18576 66198 3 seconds

3 Complete model with 1 observer 33678 120688 29 seconds

4 Sliced model with 1 observer 22830 79928 4 seconds

5 Complete model with 2 observers 44105 161067 37 seconds

6 Sliced model with 2 observers 29017 101235 5 seconds

6 Related Work

Some approaches, techniques and tools have been proposed in recent years to
support the verification of temporal consistency properties of hypermedia appli-
cations. The following presentation is not exhaustive, but provides a good idea
of the state of the art on the temporal validation of hypermedia applications.

Verifying Hypermedia Applications by Using an MDE Approach 187

In [18], the SMIL application is mapped to an RT-LOTOS specification.
Reachability analysis is adopted to verify that the end of all views is achieved.
It defines consistency of documents, where the end state is always achieved for
all media. This approach considers non-deterministic events, and the reacha-
bility analysis allows correction by eliminating inconsistent paths. A different
approach is adopted by Gaggi and Bossi [12] where the SMIL application must
by described through inference rules in accordance with Hoare’s semantics. In
this work, the analysis of consistency identifies conflict in parameters “begin”,
“end” and “duration”, where all values must be deterministically defined pre-
viously. In the work of Bouyakoub and Belkhir [6], the SMIL application is
described through the SMIL Builder tool, which uses a hierarchical SMIL Petri
Net model. In this approach, the designer describes the application in SMIL
and the tool automatically translates it to Petri Nets. SMIL Builder does not
adopt model-checking tools; the analysis of consistency is static, and it identi-
fies conflicts in parameters “begin”, “end” and “duration” without considering
non-deterministic values. Yu et al. [23] define a formalism called Software Ar-
chitecture Model (SAM). Synchronization elements of SMIL are systematically
modeled by Petri Nets. Useful QoS properties such as safety and liveness are
specified using LTL formulas. A reachability tree technique is used to compute
the reference timelines of object presentation. Deductive proof, structural induc-
tion, as well as model checking techniques are applied to verify synchronization
requirements of SMIL documents.

As for the verification of applications in NCL, Santos et al. [19] described
the translation of this hypermedia language to RT-LOTOS, where reachability
analysis is adopted to verify that the end of all views is achieved. This approach
considers non-deterministic events. In the work of Felix et al. [11], a NCL ap-
plication is converted to an Objects Representation Language model, which is
translated into a Broadcaster Timed Automaton. After the transformation, the
UPPAAL model-checker is used to check properties such as reachability. Finally,
Tovine et al. [22] propose an approach where the application is modeled in TPNs
and properties in Visual Timed Scenarios, a graphical language for describing
events, which also generates a TPN model. It uses model-checking and properties
to verify, including: freshness, bounded response and event correlation.

Almost all approaches, excepting those presented in [6,12], do not consider
non-deterministic events. The work of [6,12] does not adopt formal verification,
instead they make the comparison of static temporal attributes of objects and
structures. No approach has an environment for specifying properties developed
to be usable by designers, or allows the association of temporal and spatial
verification. Only the approach described in [6] allows incremental verification,
eliminating the need for a full scan of the application, but it does not take into
account non-deterministic events. Also, despite the identification of temporal
conflicts, not all proposals provide facilities to correct them. When using model
checking, the counterexamples are presented in the language of the formal model,
usually unknown by the application designer. Our approach aims to overcome
these limitations by checking temporal and spatial properties in an incremental

188 D.P. Júnior et al.

way, offering a graphical environment for specifying good behaviors, considering
non-deterministic events and aiding the designer to correct documents through
an understandable counterexample containing an indication of the times corre-
sponding to events leading to the undesired behavior.

7 Conclusion

This paper presented a method and a toolchain, based on formal verification,
to deal with temporal and spatial relationships among objects of applications
coded in the NCL and SMIL hypermedia authoring languages. Our approach
uses MDE as a software development methodology, a rigorous approach to define
transformations between models.

Although our focus is on NCL/SMIL hypermedia applications, our approach
can be extended to support other high-level languages. Moreover, it is not tied
to any authoring tool.

The experiment presented in this article, and other experiments, showed the
efficiency and effectiveness of the proposed approach, because it allowed to iden-
tify several undesired behaviors indicating the paths that lead to such behaviors,
with an acceptable computational cost. The results obtained by slicing indicate
that the proposed method is suitable for the use in on-the-fly verification.

The proposed method and toolchain covered the intended goals: the verifi-
cation of spatial and temporal behaviors; the reduction of the model, allowing
its use in live editing; the use of formal verification effectively by users with no
knowledge or expertise; and aid to the designer to correct undesirable behaviors
in the document.

Acknowledgements. We are thanful to the CAPES and CNPq Brazilian Fed-
eral Research Funding agencies.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26,
832–843 (1983)

2. Asnawi, R., Ahmad, W.F.W., Rambli, D.R.A.: Formalization and verification of a
live multimedia presentation model. International Journal of Computer Applica-
tions 20(2), Article 6 (2011)

3. ATLAS group: ATL user manual, version 0.7 (2006)
4. Berthomieu, B., Bodeveix, J.P., Farail, P., Filali, M., Garavel, H., Gaufillet, P.,

Lang, F., Vernadat, F.: FIACRE: an intermediate language for model verification
in the topcased environment. In: 4th European Congress on Embedded RT Software
- ERTS (2008)

5. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool TINA - construction of ab-
stract state spaces for Petri Nets and Time Petri Nets. Int. Journal of Production
Research 14(42), 2741–2756 (2004)

6. Bouyakoub, S., Belkhir, A.: SMIL builder: An incremental authoring tool for SMIL
documents. ACM Trans. Multimedia Comp. Comm. Appl. 7, 2:1–2:30 (2011)

Verifying Hypermedia Applications by Using an MDE Approach 189

7. Bulterman, D., Hardman, L.: Structured multimedia authoring. ACM Trans. Mul-
timedia Comput., Commun. and Appl. 1(1), 89–109 (2005)

8. Bulterman, D.C.A., Brailsford, D.F. (eds.): Proc. 2006 ACM Symposium on Doc-
ument Engineering, Amsterdam, The Netherlands. ACM (2006)

9. Costa, R.M.D.R., Moreno, M.F., Soares, L.F.G.: Ginga-NCL: supporting multiple
devices. In: Proc. of the XV Brazilian Symp. on MM and the Web, WebMedia
2009, pp. 6:1–6:8. ACM, USA (2009)

10. Courtiat, J.P., Santos, C.A.S., Lohr, C., Outtaj, B.: Experience with RT-LOTOS,
a temporal extension of the LOTOS formal description technique. Computer Com-
munications 23(12), 1104–1123 (2000)

11. Felix, M., Haeusler, E., Soares, L.: Validating hypermedia documents: a
timed automata approach. Monografias em Ciência da Computação, PUC-
RioInf.MCC21/02, PUC-Rio, Brazil (2002)

12. Gaggi, O., Bossi, A.: Analysis and verification of SMIL documents. Multimedia
Syst. 17(6), 487–506 (2011)

13. da Graça, C., Pimentel, M., Cattelan, R.G., Melo, E.L., do Prado, A.F., Teixeira,
C.A.C.: End-user live editing of itv programmes. IJAMC 4(1), 78–103 (2010)

14. Henzinger, T., Manna, Z., Pnueli, A.: Timed transition systems. In: Huizing, C., de
Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600,
pp. 226–251. Springer, Heidelberg (1992)

15. ITU-T Recommendation H.761: Nested Context Language (NCL) and Ginga-NCL
for IPTV Services (April 2009)

16. Laiola Guimarães, R., Monteiro de Resende Costa, R., Gomes Soares, L.F.: Com-
poser: Authoring tool for iTV programs. In: Tscheligi, M., Obrist, M., Lugmayr,
A. (eds.) EuroITV 2008. LNCS, vol. 5066, pp. 61–71. Springer, Heidelberg (2008)

17. Obeo: Acceleo user guide (2008), http://www.acceleo.org
18. Sampaio, P., Courtiat, J.P.: An approach for the automatic generation of RT-

LOTOS specifications from SMIL 2.0 documents. J. Braz. Comp. Soc. 9(3), 39–51
(2004)

19. Santos, C.A.S., Soares, L.F.G., Souza, G.L., Courtiat, J.-P.: Design methodology
and formal validation of hypermedia documents. In: Proc. of the 6th ACM Intl.
Conf. on MM, pp. 39–48. ACM, USA (1998)

20. Schmidt, D.C.: Model-driven engineering. IEEE Computer 39(2), 25–31 (2006)
21. Yang, C.-C.: Detection of the time conflicts for SMIL-based multimedia presenta-

tions. In: Workshop on Computer Networks, Internet, and Multimedia, pp. 57–63.
National Chung Cheng University, Taiwan (2000)

22. Yovine, S., Olivero, A., Monteverde, D., Cordoba, L., Reiter, G.: An approach for
the verification of the temporal consistency of NCL applications. In: II Workshop
de TV Digital Interativa (WTVDI) - Colocated with ACM WebMedia 2010 (2010)

23. Yu, H., He, X., Gao, S., Deng, Y.: Modeling and analyzing SMIL documents
in SAM. In: Proc. 4th IEEE Int. Symp. on Multimedia Software Engineering,
pp. 132–139. IEEE CS (2002)

http://www.acceleo.org

Revisiting Model-Driven Engineering

for Run-Time Verification of Business Processes

Wei Dou, Domenico Bianculli, and Lionel Briand

SnT Centre, University of Luxembourg, Luxembourg, Luxembourg
{wei.dou,domenico.bianculli,lionel.briand}@uni.lu

Abstract. Run-time verification has been widely advocated in the last
decade as a key technique to check whether the execution of a business
process and its interactions with partner services comply with the appli-
cation requirements. Despite the substantial research performed in this
area, there are very few approaches that leverage model-driven engineer-
ing (MDE) methodologies and integrate them in the development process
of applications based on business process descriptions. In this position
paper we describe our vision and present the research roadmap for adopt-
ing MDE techniques in the context of run-time verification of business
processes, based on our early experience with a public service partner
in the domain of eGovernment. We maintain that within this context,
the adoption of MDE would contribute in three ways: 1) expressing, at
a logical level, complex properties to be checked at run time using a
domain-specific language; 2) transforming such properties in a format
that can leverage state-of-the-art, industrial-strength tools in order to
check these properties; 3) integrating such property checker in run-time
verification engines, specific to a target run-time platform, without user’s
intervention.

1 Introduction

Enterprise information systems are usually realized leveraging the principles of
service-oriented architecture [18] and business process modeling. These paradigms
foster the design of systems that rely on composition mechanisms, like service
orchestrations defined in BPEL [23] or BPMN [24], where added-value applica-
tions are obtained by integrating different components, possibly from different
divisions within the same organization or even from third-party organizations.
This emerging scenario is highly dynamic, open, and decentralized. The global
system is not under control and coordination of a single authority. In princi-
ple, and according to an extreme viewpoint, multiple autonomous stakeholders
contribute to the wealth of available resources [5].

Run-time verification has been widely advocated as a key technique to check
whether the execution of a business process and its interactions with partner ser-
vices comply with the application requirements [1]. Run-time verification becomes
very important in the dynamic scenario described above, since it complements

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 190–197, 2014.
c© Springer International Publishing Switzerland 2014

Revisiting Model-Driven Engineering for Run-Time Verification 191

traditional design-time verification, which cannot deal with the unexpected
changes of the system and its environment, typical of open-world software [3].

In the last decade, substantial research has been performed in the areas of
design- and run-time verification (see, for example, the surveys in [2,9,25]) of
business-process-driven, service-based applications. However, we notice there are
very few approaches that leverage model-driven engineering (MDE) methodolo-
gies and integrate them in the development process of applications based on
business process descriptions. We contend that MDE techniques should be re-
visited in the context of run-time verification of business-process-driven, service-
based applications. More specifically, we argue that in this context the adoption
of MDE would contribute in three ways: 1) expressing, at a logical level, com-
plex properties to be checked at run time using a domain-specific language;
2) transforming such properties in a format that can leverage state-of-the-art,
industrial-strength tools in order to check these properties; 3) integrating such
property checker in run-time verification engines, specific to a target run-time
platform, without user’s intervention.

In this paper, we outline a research roadmap for performing run-time veri-
fication of business processes using MDE techniques. This research roadmap is
based on the early experience gained in the context of a project in collaboration
with a public service partner in the domain of eGovernment.

The rest of this paper is structured as follows. Section 2 introduces our vision
of model-driven run-time verification of business processes, and Sect. 3 describes
the challenges we face and our research roadmap to tackle them. Section 4 dis-
cusses related work, and Sect. 5 concludes the paper.

2 Our Vision

In this section, we describe our long-term vision of a model-driven developement
methodology for run-time verification of business processes. As depicted in Fig. 1,
the methodology encompasses both the design-time and run-time phases for
business processes. In addition, there is an additional layer, called meta, which
virtually sits in between the design-time and the run-time ones. These three
layers are described below.

Design-Time Layer

At this layer, the analyst designs the business process, based on requirements
specifications. The analyst defines different models, such as use cases, business
process models, and data models. Use cases and process models should be an-
notated with properties to be checked at run time. We envision these properties
to be expressed in Restricted Natural Language (RNL), using some predefined
templates based on property specification patterns (such as the systems defined
in [6,13,16,20]).

192 W. Dou, D. Bianculli, and L. Briand

Meta

Design-time

Analyst

Requirement
Specifications

Use Case

Data Model

Process Model
Properties

Run-time

Extended OCL

OCL templates

:Process model

Instantiator

RNL

:OCL constraints

Translate-into

Observer

OCL Checker

Comply

+

:Conceptual model

Conceptual model

Process Model
Data Model
Type of properties

Generated-by
Map-into

Annotated-with

Platforms

Data Collector

Fig. 1. Our vision of model-driven, run-time verification of business processes

Meta Layer

This layer captures the modeling information that is needed to develop a model-
driven approach for run-time verification. Internally to the run-time verification
“machinery”, we plan to represent the properties to verify at run time using
OCL (Object Constraint Language), since it is the standard language in the
MDE community and is supported by industrial-strength tools. We then need
to translate properties expressed in RNL and defined at the upper design-time
layer into plain OCL constraints. This translation can be defined by introducing
an intermediate language, in the form of an extended version of OCL, which
maps RNL templates into corresponding OCL templates.

This layer also defines a conceptual model that captures the information that
is needed for performing run-time checking: this includes the process model, the
data model, the kind of properties to check (e.g., temporal or quality-of-service
properties), and the information to be collected at run time at the infrastructure
level.

Run-Time Layer

This layer defines the actual environment in which run-time checks happen. We
assume there are different run-time platforms (e.g., business process execution
engines, JavaEE application servers) on which a process model is deployed (pos-
sibly, after several model transformations) and operated. Each platform contains
a platform-specific data collector that probes and gathers various kinds of run-
time information. The process model instance and the information available from

Revisiting Model-Driven Engineering for Run-Time Verification 193

the data collector are given as input to an Instantiator, which builds a run-time
instance of the conceptual model defined at the meta level. This instance is kept
alive (and updated) at run time, based on the information coming from the pro-
cess execution and the platform. The instance is fed into an Observer, which
receives from the meta level also the OCL constraints to check. The Observer
includes an OCL checker, which performs a check of the constraints against the
model instance, possibly in an incremental way, responding to changes in the
model instance. The output of the Observer, in case of violation of a property,
can then be used to perform activities such as root cause analysis, debugging,
and adaptation (in the form of corrective actions).

3 Research Roadmap

In this section, we present our research roadmap for the development of the
methodology presented above, and briefly discuss the challenges faced through
it and how MDE could contribute to tackle them.

3.1 Requirements Specification Language

Specifications play a significant role in the realm of business-process-driven appli-
cations implemented as service compositions. In practice, services are developed
by independent parties and are exposed as black boxes that can only be in-
voked by clients. Their specifications are the only information available to clients,
while their implementations are normally inaccessible. A well-designed specifi-
cation language is thus required to capture and constrain the requirements that
a composite business process and its partner services should guarantee. More
importantly in the context of run-time verification, these requirements specifi-
cations represent the properties to be checked at run time, to assess the correct
behavior and quality-of-service (QoS) provided both by the composite business
process and by its partner services.

Our initial experience with our public service partner shows that such a re-
quirements specification language should support the specification of functional
and non-functional requirements that include the characterization of quantita-
tive aspects of the system, possibly involving temporal constraints. Examples
of these requirements are QoS attributes like response time, throughput, which
can be expressed as bounds on the sequence and/or number of occurrences of
system events, conjuncted with constraints on the temporal distance of events.
More in general, the specification language should support the well-known prop-
erty specification patterns, including temporal [13], real-time [20], and service
provisioning [6] patterns.

One of the challenges in the design of such a specification language is to
find the right balance between expressiveness and usability, while guaranteeing
efficiency for the verification of the properties expressed in this language.

Following this direction, we have developed OCLR (OCL for Runtime Ver-
ification) [12], a novel temporal extension of OCL based on common property

194 W. Dou, D. Bianculli, and L. Briand

specification patterns, and extended with support for referring to a specific oc-
currence of an event in scope boundaries, and for specifying the distance between
events and/or from boundaries of the scope of a pattern. OCLR extends OCL
in a minimal fashion, complementing it to express temporal properties based on
Dwyer et al.’s property specification patterns [13]. Moreover, the syntax is very
close to English to foster its adoption among practitioners.

3.2 Property Checking

The second step related to run-time verification is how to efficiently verify the
properties that can be expressed in the language detailed in the previous sub-
section.

The efficiency of the verification depends on the expressiveness of the specifi-
cation language, on the formal model underlying the language, and on the tool
support for the verification of the corresponding formal models.

In our case, since OCLR is based on OCL, our formal model is actually OCL
itself and the tools that can be used for checking OCLR properties are repre-
sented by existing OCL checkers, such as Eclipse OCL.

Our idea is to recast the problem of the verification of OCLR properties at run
time in terms of the checking of OCL constraints on instances of a model (kept
alive at run time, as described in Sect. 2) corresponding to the actual execution
of a business process. This approach leverages existing MDE techniques and
technologies and we believe it is a safer and more efficient choice, with respect
to developing a dedicated checker for OCLR from scratch.

In this regards, we have started assessing the feasibility of checking OCLR
constraints over execution traces by proposing a mapping of OCLR constraints
into OCL, based on a conceptual model for traces. The trace checking problem
has been re-casted in terms of a check of OCL invariants [11]. The results of
our preliminary evaluation using a proof-of-concept tool are encouraging, since
the verification of traces with up to 10 million events takes only a few minutes,
depending on the complexity of the properties.

The trace checking approach reported in [11] focuses on offline checking. The
next research steps will focus on tuning up the checking procedure to provide ad-
equate performance when used for run-time trace checking of OCLR properties.
We will also consider the use of incremental checking techniques of OCL con-
straints (see, for example [7,8,14,21,26], possibly following a syntactic-semantic
approach [4]) as well as techniques for efficiently managing the history of moni-
tored events [10].

3.3 Integration with Run-Time Platforms

The last step of our research roadmap is the integration of the property checking
procedure outlined in the previous section within the actual run-time execution
platforms of business process applications. We plan to support at least two main
execution platforms, which correspond to the ones adopted by our public service

Revisiting Model-Driven Engineering for Run-Time Verification 195

partner: a) JavaEE for business processes delivered as Web applications; b) ex-
ecutable BPMN 2.0 process description executed on a process execution engine.
In both cases, the idea is to embed the property checker (based on an OCL
checker) within the run-time platforms. While the checker is the same across
the platforms, the data collection architecture used to feed the checker will be
different and platform-specific. Based on the expected inputs (and outputs) of
the checker, a data collector should be put in place, for example using message
interceptors in the business process engine or a dedicated middleware component
(for example, implemented with EJB) for the case of JavaEE applications.

4 Related Work

The research on design- and run-time verification of business-process driven,
service-based applications spans for more than a decade (see, for example, the
surveys in [2,9,25]). However, to the best of our knowledge, the solutions propos-
ing a complete model-driven approach to run-time verification for this applica-
tion domain are very few. In the rest of this section, we review them and comment
on their limitations.

The model-driven approach presented in [27] relies on a graph-based model
that includes Key Performance Indicators (KPIs) (e.g., process execution time,
server availability); correlation rules that specify event patterns to be matched;
and action policies defining the actions to be taken when a certain event occurs
and when the KPIs have certain values. Based on the correlation rules, this graph
is then decomposed and transformed into several BPEL processes, which are
extended with a logic to monitor KPIs and execute action policies. This approach
focuses on generating business processes with (KPIs) monitoring capabilities, but
it does not provide any mechanisms to link back to high-level requirements and
embeds the monitoring code directly within the process structure.

A fully integrated approach for design and implementation of monitored web
service compositions is presented in [22]. The approach proposes a set of meta-
models for defining performance indicators and their calculation rules, as well as
a set of model transformations that are used to generate an executable imple-
mentation on top of IBM WebSphere Business Monitor. Although the approach
promotes the adoption of reusable calculation templates for specifying custom
indicators, the ones that can be expressed are still limited by the basic proper-
ties of the process activities (e.g., start time) that can be referenced within the
templates.

Reference [19] proposes the ProGoalML language as an extension of BPMN
with additional modeling elements for metrics, KPIs, and goals. Based on these
elements, monitoring CEP (Complex Event Processing) rules are generated to
collect the proper information, which is then used to assess the fulfillment of
the goals. However, the approach allows for only simple metrics and does not
support a temporal dimension for goal fulfillment.

A model-driven approach for transformation from regulatory policies to event
correlation rules is presented in [15]. Policies are expressed using real-time tem-
poral logic and then transformed into IBM ACT rules using some parameterized

196 W. Dou, D. Bianculli, and L. Briand

temporal patterns. The definition of the policies is disconnected from the mod-
els of the business processes; moreover, the type of policies is limited by the
restricted set of temporal patterns supported during the transformation phase.

The model-aware monitoring approach presented in [17] is also related to
policy compliance checking. The approach correlates low-level monitoring events
with high-level business events by means of traceability information inserted into
business process models. This information is then used at run time by a business
intelligence component to perform the actual check on the process model instance
to which the events refer to. However, the paper does not indicate which kind
of policies can be checked using this approach.

5 Conclusion

In this paper we have presented our vision and the research roadmap to fol-
low for run-time verification of business processes. This vision is currently being
developed in collaboration with our public service partner CTIE (Centre des
technologies de l’information de l’Etat, the Luxembourg national center for infor-
mation technology), which has developed in-house a model-driven methodology
for designing eGovernment business processes. Our goal is to complement this
methodology with the model-driven run-time verification techniques discussed
in this paper. At the time of writing this paper, CTIE has already started using
OCLR [12] for specifying the requirements of business processes. Our next steps
will focus on the integration of our model-driven trace checking technique [11]
for OCLR within their business process execution platforms.

Acknowledgments. This work has been supported by the National Research
Fund, Luxembourg (FNR/P10/03).

References

1. Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., Spoletini, P.: Validation of web
service compositions. IET Softw. 1(6), 219–232 (2007)

2. Baresi, L., Di Nitto, E.: Test and Analysis of Web Services. Springer, Heidelberg
(2007)

3. Baresi, L., Di Nitto, E., Ghezzi, C.: Toward open-world software: Issue and chal-
lenges. IEEE Computer 39(10), 36–43 (2006)

4. Bianculli, D., Filieri, A., Ghezzi, C., Mandrioli, D.: Syntactic-semantic incremen-
tality for agile verification. Sci. Comput. Program (2013) (in press),
doi:10.1016/j.scico.2013.11.026

5. Bianculli, D., Ghezzi, C.: Towards a methodology for lifelong validation of service
compositions. In: SDSOA 2008, pp. 7–12. ACM (May 2008)

6. Bianculli, D., Ghezzi, C., Pautasso, C., Senti, P.: Specification patterns from re-
search to industry: a case study in service-based applications. In: ICSE 2012,
pp. 968–976. IEEE (2012)

7. Cabot, J., Teniente, E.: Incremental evaluation of OCL constraints. In: Martinez,
F.H., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 81–95. Springer, Heidelberg
(2006)

Revisiting Model-Driven Engineering for Run-Time Verification 197

8. Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual
schemas. J. Syst. Softw. 82(9), 1459–1478 (2009)

9. Canfora, G., Di Penta, M.: Service-oriented architectures testing: A survey. In:
De Lucia, A., Ferrucci, F. (eds.) ISSSE 2006-2008. LNCS, vol. 5413, pp. 78–105.
Springer, Heidelberg (2009)

10. Chomicki, J.: Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Trans. Database Syst. 20, 149–186 (1995)

11. Dou, W., Bianculli, D., Briand, L.: A model-based approach to trace checking of
temporal properties with OCL. Tech. Rep. TR-SnT-2014-5, SnT Centre - Univer-
sity of Luxembourg (March 2014)

12. Dou, W., Bianculli, D., Briand, L.: OCLR: a more expressive, pattern-based tem-
poral extension of OCL. In: Cabot, J., Rubin, J. (eds.) ECMFA 2014. LNCS,
vol. 8569, pp. 51–66. Springer, Heidelberg (2014)

13. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE 1999, pp. 411–420. IEEE (1999)

14. Garcia, M., Möller, R.: Incremental evaluation of OCL invariants in the essential
MOF object model. In: Modellierung 2008. LNI, vol. 127, pp. 11–26 (2008)

15. Giblin, C., Müller, S., Pfitzmann, B.: From regulatory policies to event monitoring
rules: Towards model-driven compliance automation. Tech. Rep. Research Report
RZ-3662, IBM Research GmbH (2006)

16. Gruhn, V., Laue, R.: Patterns for timed property specifications. Electron. Notes
Theor. Comput. Sci. 153(2), 117–133 (2006)

17. Holmes, T., Mulo, E., Zdun, U., Dustdar, S.: Model-aware monitoring of SOAs
for compliance service engineering. In: Service Engineering, pp. 117–136. Springer
Vienna (2011)

18. Josuttis, N.: SOA in Practice: The Art of Distributed System Design. O’Reilly
Media, Inc. (2007)

19. Koetter, F., Kochanowski, M.: Goal-oriented model-driven business process moni-
toring using proGoalML. In: Abramowicz, W., Kriksciuniene, D., Sakalauskas, V.
(eds.) BIS 2012. LNBIP, vol. 117, pp. 72–83. Springer, Heidelberg (2012)

20. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: ICSE 2005,
pp. 372–381. ACM (2005)

21. Menet, L., Lamolle, M., Le Dc, C.: Incremental validation of models in a MDE
approach applied to the modeling of complex data structures. In: Meersman, R.,
Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6428, pp. 120–129. Springer,
Heidelberg (2010)

22. Momm, C., Gebhart, M., Abeck, S.: A model-driven approach for monitoring busi-
ness performance in web service compositions. In: ICIW 2009, pp. 343–350. IEEE
(2009)

23. OASIS: Web Services Business Process Execution Language Version 2.0 (2007)
24. OMG: BPMN 2.0 specification (January 2011), http://www.bpmn.org
25. Salaün, G.: Analysis and verification of service interaction protocols - a brief survey.

In: TAV-WEB 2010. EPTCS, vol. 35, pp. 75–86 (2010)
26. Vajk, T., Mezei, G., Levendovszky, T.: An incremental OCL compiler for modeling

environments. ECEASST 15 (2008)
27. Yu,T., Jeng, J.J.: Model driven development of business process monitoring and con-

trol systems. In: Chen, C.-S., Filipe, J., Seruca, I., Cordeiro, J. (eds.) ICEIS 2005,
pp. 161–166 (2005)

http://www.bpmn.org

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 198–206, 2014.
© Springer International Publishing Switzerland 2014

Model-Based Testing:
An Approach with SDL/RTDS and DIVERSITY

Julien Deltour1, Alain Faivre2, Emmanuel Gaudin1, and Arnault Lapitre2

1 PragmaDev, 18 rue des Tournelles, 75004 Paris, France
{julien.deltour,emmanuel.gaudin}@pragmadev.com

2 CEA LIST, Point Courrier 174, 91191 Gif-sur-Yvette, France
{alain.faivre,arnault.lapitre}@cea.fr

Abstract. The objective of the PragmaList Lab, a joint laboratory between
PragmaDev and CEA LIST, is to integrate the test generation tool DIVERSITY
in the SDL modeling environment Real Time Developer Studio (RTDS). The
resulting environment aims to extend RTDS with a Model-Based Testing ap-
proach. After briefly describing the characteristics of RTDS and DIVERSITY,
this paper presents the work done to integrate these two environments. Then, it
highlights the main principles of DIVERSITY based on symbolic execution,
which enables the generation of test cases in TTCN-3 format. The paper then
presents the existing coverage criteria in the integrated generation of test cases.
It concludes with the open strategy of the PragmaList approach to work togeth-
er with industrial actors based on the definition and integration of new specific
coverage criteria consistent with their validation constraints.

Keywords: Model-based testing, Test generation, SDL, TTCN-3.

1 Introduction

PragmaList1 is a joint laboratory resulting from the collaboration between the Prag-
maDev company and the CEA LIST national research center. The objective of this
laboratory is to integrate CEA LIST’s automatic test generation tool, namely
DIVERSITY [2], with PragmaDev’s Real Time Developer Studio (RTDS2), a model-
ing environment for SDL [5]. The resulting environment allows extending the current
features of RTDS with a Model-Based Testing (MBT) approach in order to ensure
compliance of the developed systems with their corresponding higher-level models
written in SDL.

Indeed, MBT is an approach to system testing in which handwritten tests are re-
placed by tests automatically generated from a test model. This has several advantag-
es: a huge number of tests can be generated from a test model in a short time while
ensuring that the set of tests is the minimum set needed to cover all or a part of the

1 http://www.pragmalist.org/
2 http://www.pragmadev.com/

 Model-Based Testing: An Approach with SDL/RTDS and DIVERSITY 199

model. Moreover, in the case of requirements changes, the update of a test model is
much less time consuming than the update of a database of individual test cases.

After briefly describing the characteristics of the two separate environments, this
paper presents the main translation rules used for the transformation of SDL models
into the internal language of DIVERSITY called XLIA. Then, it gives the main prin-
ciples of the core of DIVERSITY based on symbolic execution, which leads to the
generation of test cases in the TTCN-3 format [6]. Afterwards, the paper presents the
predefined coverage criteria in the integrated environment for test case generation that
the user can parameterize. It concludes with the open strategy of the PragmaList ap-
proach to working together with industry actors. This approach should enable better
compliance with the specific requirements of the different domains, working on both
the development of SDL models and the integration of new specific coverage criteria
consistent with their validation constraints.

2 PragmaDev’s Modeling Technology

RTDS is a modeling and testing tool for the development of real time and embedded
communicating systems. It was initially based on SDL-RT3, a mix of SDL and C
languages, and evolved to finally also support the SDL international standard [5].
This raised the tool abstraction level from code to an abstract but executable model. In
order to offer the corresponding testing technologies, TTCN-3 was introduced in
RTDS. It is therefore possible to simulate an SDL model against a TTCN-3 test case,
or to generate code from an SDL model as well as from a TTCN-3 test case.

In the last few years, PragmaDev worked on verifying model properties and on
how to generate test cases from a model. A first, an export to the Verimag4 Interme-
diate Format (IF) was implemented and, more recently, an export to the FIACRE5
pivot language was added to be able to run academic model checkers on the SDL
model.

The basic principle of these technologies is to try to go through all possible cases.
Industrial experimentation on real systems showed their limitations. The number of
cases is so huge that the exploration is very time consuming and does not conclude.

For these reasons, PragmaDev was looking for another approach that could tackle
real industrial systems. After investigation, it turned out CEA owned a promising
technology that a few experiments proved to be very efficient. PragmaDev and CEA,
hence, started a shared laboratory to enable using CEA technology transparently from
and back to the PragmaDev modeling and testing environment.

3 CEA LIST’s V&V Technology

The DIVERSITY tool [2], developed by CEA LIST, is a validation and verification
platform based on model analysis. Models may be described with the help of

3 http://www.sdl-rt.org/
4 http://www-verimag.imag.fr
5 http://projects.laas.fr/fiacre/

200 J. Deltour et al.

stateflow-type languages, describing potentially concurrent and communicating au-
tomata. They can also be characterized using dataflow languages such as the one used
in MATLAB/Simulink.

DIVERSITY analyzes these models in order to generate test scenarios. In a first
step, these scenarios may be used by a simulator associated with the modeling envi-
ronment, like the one in RTDS, as simulation scenarios to validate the input model. In
a second step, these scenarios may be used to verify the compliance of the implemen-
tation with the model.

For both uses, the DIVERSITY process consists of three steps:

1. Firstly, the input model is analyzed and translated into DIVERSITY’s internal
representation, called XLIA.

2. Then, an exhaustive symbolic exploration of nominal behaviors is performed
(symbolic, in order to avoid numerical combinatorial explosion). This symbolic
execution can highlight application-independent unexpected behaviors such as
deadlocks or over-designing (parts of model never activated). Moreover, in order
to guarantee termination or to limit the number of generated test cases, several ba-
sic structural criteria may be used during the symbolic execution.

3. Finally, DIVERSITY associates each generated behavior with one (or more) nu-
merical test cases.

The deterministic approach of DIVERSITY differs from the random approaches
commonly used by other industrial tools. The deterministic approach has the advan-
tage of producing, in a systematic way, all test cases associated with the coverage
criteria but with a computation time that can vary widely. The probabilistic approach,
generally more efficient in terms of execution time, may not generate all test cases for
low probabilistic behaviors. Moreover, for a given objective, our deterministic ap-
proach allows to generate smaller sets of tests than those generated by random ap-
proaches.

4 SDL and DIVERSITY

DIVERSITY provides an internal language called XLIA, which aims to capture all
semantic elements of all languages for modeling complex, distributed and intercon-
nected systems.

This language offers the necessary elements to describe different types of simula-
tion semantics: interleaving or with the help of specific operators to define partial
order of execution. It also offers elements to describe semantics of synchronous
communication (e.g., with rendezvous) or asynchronous communication (e.g., with
FIFO message stacks). It also contains all the concepts that take into account the
structural elements used to describe the architecture of the modeled systems.

To specify the SDL to XLIA translator, we defined translation rules. These rules
describe, for each element of SDL, which counterparties in XLIA to use.

As examples of rules, the translation rules of elements that structure SDL models
like SYSTEM, BLOCK, and PROCESS are defined in Table 1.

 Model-Based Testing: An Approach with SDL/RTDS and DIVERSITY 201

Table 1. Examples of translation rules for SDL structural elements

SDL XLIA

SYSTEM system_name @xfsp<system , 1.0 >:
input_enabled system< and > system_name {
...
@machine:
 // definition of machines (block | process)
...
} // end system_name

BLOCK block_name machine< and > block_name {
...
@machine:
 // definition of machines (block | process)
...
} // end block_name

PROCESS process_name
(initial_nb, max_nb)

// with states and links
// between states

statemachine< or , instance: (init:<int>, max:<int>) > process_name {
...
@machine:
 state< initial > #init {
 transition {
 // statements
 ...
 } --> state1_name;
 }
 state state1_name {
 ...
 }
...
} // end process_name

The SDL concept of “process instance”, with its associated variables SELF and
PARENT, has direct semantics equivalence in XLIA. On the other hand, the prede-
fined variable OFFSPRING must be explicitly declared as a new variable in XLIA.
Similarly, SDL concepts of “continuous signal” and “priority consumption”, as well
as mechanisms for managing signals, have direct counterparts in XLIA.

However, a number of SDL elements did not have an equivalent in XLIA, which
was subsequently extended to take these elements into account. For example, the
concept of multi-state did not exist in XLIA and the language has been extended to
take into account this new element. This was also the case for the more complex con-
cept of timer, which has been introduced in XLIA. Its associated translation rules are
presented in Table 2.

In the same way, a number of operators were also added that did not exist in XLIA,
e.g., the operators that handle strings.

To conclude on this point, all SDL concepts seem translatable into XLIA except
object-oriented constructs and macros. For the last missing elements, they will be
treated as and when the need arises in future industrial models considered.

202 J. Deltour et al.

Table 2. Translation rules associated to timer

Global preliminary to the system

TIMER myclock;

SET(NOW+15,myclock)

var time NOW = 0 {

 @on_write(T) { guard(T >= NOW); }

}

const time TIMER#UNSET = -1;

var time myclock#endtime = TIMER#UNSET;

signal myclock;

myclock#endtime = (: NOW newfresh) + 15;

output myclock;

INPUT myclock

// In the source state, an internal action :

@irun{ (: NOW newfresh); }

guard(myclock#endtime =/= TIMER#UNSET);

input myclock;

tguard(NOW >= myclock#endtime);

RESET myclock myclock#endtime = TIMER#UNSET;

(: buff remove myclock);

5 Test Case Generation and TTCN-3

The kernel of DIVERSITY generates a symbolic execution graph that characterizes
all symbolic behaviors of the system. The two main formal techniques used for this
calculation are:

• Symbolic Execution: The major problem with numerical approaches is the combi-
natorial explosion due to the value fields associated with system parameters. These
value fields can be very large or even infinite. Symbolic computation can handle
such fields, because it characterizes all behaviors that are not equivalent, but with-
out making redundant calculations when different values of the variables corres-
pond to the same behavior. The input parameters are not evaluated numerically, but
appear as symbolic constants in guards of executed transitions. The guards of ex-
ecuted transitions in an execution path are integrated in a constraint that is the as-
sociated condition of the path. This path condition is simply the logical conjunction
of all transition guards of the path. Its satisfiability is checked using external con-
straint solvers, like CVC46, to ensure that the corresponding path is executable. In
that case, the resolution of this path condition by means of the constraint solvers
produces a sequence of numeric system inputs which corresponds to a concrete
test.

6 http://cvc4.cs.nyu.edu/web/

 Model-Based Testing: An Approach with SDL/RTDS and DIVERSITY 203

• Constraint Solver: When the execution tree is built, all calculated symbolic beha-
viors of the system can be accessed by consulting the tree. Then, constraint solvers
may be used to obtain numerical values for the system parameters by resolution of
path conditions. Each condition gives way to an input sequence of the system.

After the symbolic execution phase, each symbolic path generated corresponds to a
behavior of the system that must be tested. It consists of an input/output sequence
interacting with the system environment. The chosen format for the test cases is
TTCN-3 with the following four files:

• TTCN_Declarations.ttcn: This file contains declarations of types, numerical para-
meters associated with input/output messages, and the input/output ports corres-
ponding to SDL channels.

• TTCN_Templates.ttcn3: This file defines the numerical value of all input and out-
put messages and their associated parameters.

• TTCN_TestCases.ttcn3: This file specifies the sequence of inputs and outputs for
each test case.

• TTCN_ControlPart.ttcn3: This file defines the sequence of execution of predefined
test cases.

6 Stop Criteria and Coverage Criteria

In order to deal with the combinatorial explosion of behaviors and to select the most
efficient test cases, DIVERSITY offers several coverage criteria [3,4]. The first ones
are basic coverage criteria that enable the control of the number of generated test
cases with a large coverage of the entire system or selected sub-systems. The last ones
are more “intelligent” and comply with industrial V&V standards or are guided by
properties given by users to obtain more relevant test cases with regard to system
functionalities.

• Structural Stop Criteria: These criteria allow DIVERSITY to limit the symbolic
execution in depth and width, which corresponds to limiting the length and number
of test cases without further characterization. These criteria are generally used with
other coverage criteria and thus can limit the symbolic execution, if other criteria
appear not to be achievable within a reasonable time.

• State/Transition Coverage: This is the more conventional structural test coverage
criterion to be used on an input model. It can be adapted in order to cover other
types of basic elements of the model according to user needs such as inter-
nal/external signals coverage for example. It should be noted, this criterion can be
parameterized in order to only target a subset of states or transitions.

• Inclusion Criterion – Symbolic Behavior Coverage: This is the most sophisticated
coverage criterion proposed by DIVERSITY. In its basic form, the symbolic ex-
ecution stops only if it has previously encountered a symbolic state that takes into
account the current one. This means that this criterion, if reached, can characterize
all possible symbolic system behaviors and provide the associated tests. Its interest

204 J. Deltour et al.

is to provide a set of tests with a very high level of confidence. Its disadvantage is
that it requires an additional level of complex calculations during symbolic execu-
tion, which makes this approach inoperable from a certain size/complexity of the
input model.

• Test Case Generation Constrained by Properties: All previous coverage criteria
may be used to generate test cases in a particular context defined by properties ex-
pressed with the help of the model variables.

Adaptability of the Tool

It is important to note that the architecture of DIVERSITY allows one to easily inte-
grate new criteria for selecting tests. This is done by means of “filters” to be defined
jointly with the users. This highly scalable nature of the tool permits the design of
coverage criteria or combination of criteria adapted to different levels and types of
models. This also enables the generation of test sets conform to the expected level
of assurance and standards.

Whatever the coverage criteria selected, the tool interface dynamically shows the
evolution of the covered items using a “SpiderGraph” view, as shown in Fig. 1.

Fig. 1. SpiderGraph to view the analysis progress in the tool

 Model-Based Testing: An Approach with SDL/RTDS and DIVERSITY 205

Verification of Properties with Observers

DIVERSITY can also be used to try to determine if a property (a safety property, for
example) may be violated. The negation of the property defined by the user is auto-
matically encoded into an observer. Then, at each symbolic execution step,
DIVERSITY will verify whether this negation is verified or not. DIVERSITY is not a
real proof tool, but it will ensure that the security property is checked for symbolic
behavior of the system of a given depth/width.

Preliminary Results

The resulting integration has been tested with very simple systems. The very first
measures have been done on a system with two processes and a few messages with
integers as parameters. The measures have been compared with Verimag’s IFx tool-
box, which runs exhaustive simulations on the model. Even though they cannot be
directly compared, the coverage resolution time with DIVERSITY without any mod-
ification in the system is equivalent to the exploration time with Verimag if the input
parameters range is restricted to the minimum set of values. This suggests that the
symbolic DIVERSITY approach is optimal in that case. These results must be
confirmed in real use cases in the future.

7 Conclusion

In this paper, we have presented the work undertaken in the PragmaList shared labor-
atory to integrate CEA LIST’s automatic test generation technology with Pragma-
Dev’s RTDS platform. This work mainly focused on the translation of the SDL
language into XLIA, and on formatting generated tests in the TTCN-3 format. It also
focused on the specificities of the semantics of SDL, especially temporal aspects of
the language, in the symbolic execution on which DIVERSITY is based.

With this integrated platform, we proposed a number of strategies for generating
tests that allow users to run the tool on their SDL models to obtain a first set of tests at
lower cost. However, on one hand, these strategies do not necessarily meet the needs
of users according to their specific industrial field. On the other hand, the complexity
of systems and associated SDL models will not necessarily enable the tool to com-
plete with the proposed criteria coverage.

Therefore, our next step is to work closely with industrials to explore with them the
specificities of their models and their requirements for the validation of their systems.
This work should allow establishing a methodology for the elaboration of models that
serve as references for testing the developed systems. It must also offer to industrials
new criteria that will be integrated into DIVERSITY as new filters.

The results obtained from handling industrial models will then be compared to
those obtained by the existing industrial tools based on deterministic or random test
generation. More specifically, the proposed methodology could be compared to those
proposed as part of MBT, e.g., the approach described by Baranov et al. [1] and based
on three types of coverage criteria.

206 J. Deltour et al.

The proposed approach needs to involve both industrials, for writing models to be
“executed” by tools, and tool suppliers, who must be able to quickly adapt the pro-
posed strategies. This is, from our point of view, the best way to integrate this type of
formal tools in the development chain of complex systems.

References

1. Baranov, S., Kotlyarov, V., Weigert, T.: Verifiable Coverage Criteria for Automated Testing.
In: Ober, I., Ober, I. (eds.) SDL 2011. LNCS, vol. 7083, pp. 79–89. Springer, Heidelberg (2011)

2. Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic execution techniques for test pur-
pose definition. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS,
vol. 3964, pp. 1–18. Springer, Heidelberg (2006)

3. Faivre, A., Gaston, C.: Test generation methodology based on symbolic execution for the
Common Criteria higher levels. In: 2nd Workshop on Model Development and Validation
(MoDeVa), Montego Bay, Jamaica (2005)

4. Faivre, A., Gaston, C., Le Gall, P.: Symbolic Model Based Testing for Component Oriented
Systems. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W. (eds.) TestCom/FATES
2007. LNCS, vol. 4581, pp. 90–106. Springer, Heidelberg (2007)

5. International Telecommunication Union: Recommendation Z.100 (12/11), Specification and
Description Language - Overview of SDL-2010, http://www.itu.int/rec/
T-REC-Z.100/en

6. International Telecommunication Union: Recommendation Z.161 (07/13), Testing and Test
Control Notation version 3: TTCN-3 core language, http://www.itu.int/rec/
T-REC-Z.161/en

On Bringing Object-Oriented Software Metrics

into the Model-Based World – Verifying ISO
26262 Compliance in Simulink

Lukas Mäurer1, Tanja Hebecker1, Torben Stolte2, Michael Lipaczewski1,
Uwe Möhrstädt3, and Frank Ortmeier1

1 Chair of Software Engineering,
Otto-von-Guericke University of Magdeburg,

Germany
lukas.maeurer@st.ovgu.de,

{tanja.hebecker,michael.lipaczewski,frank.ortmeier}@ovgu.de
2 Institute of Control Engineering,

Technische Universität Braunschweig,
Germany

stolte@ifr.ing.tu-bs.de
3 Porsche Engineering,
Bietigheim-Bissingen,

Germany
uwe.moehrstaedt@porsche.de

Abstract. For ensuring functional safety of electrical/electronic sys-
tems, it is necessary to exclude malfunctions from hardware and software
as well as from the interaction of both. In today’s passenger
vehicles, more and more safety critical functionalities are implemented
in software. Thus, its importance for functional safety increases. The
dominating safety standard for the automotive domain (ISO 26262) con-
siders the software part and defines requirements for safety critical soft-
ware. However, applying and fulfilling the standard is a major problem
in industry. In this context, the paper presents a novel metric-based
approach to evaluate dataflow-oriented software architectures used in
many model-driven processes regarding the fulfillment of requirements
defined by ISO 26262 (in particular part 6). The core idea is to derive
metrics for model-based software from already existing, well-performing
metrics elaborated for other programming paradigms. To link metrics to
requirements fulfillment of ISO 26262, we briefly sketch the factor-criteria-
metrics paradigm for this problem. Technically, this paper presents a
generic meta-model for dataflow systems, which is used to define the met-
rics. We implemented this meta-model and the metrics as a prototype for
Matlab Simulink. As examples, two models of a 400 kW full Drive-by-
Wire experimental vehicle with all-wheel-steering, all-wheel-drive, and
electro-mechanical brakes are analyzed using this prototype.

Keywords: safety analysis, ISO 26262, formal verification, software met-
rics, Simulink.

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 207–222, 2014.
c© Springer International Publishing Switzerland 2014

208 L. Mäurer et al.

1 Introduction

In line with the increasing utilization of electronics, more and more software
intensive systems are introduced in today’s passenger vehicles. Many of these
functions either are directly safety functions or their failure is often safety critical.
This increases the need for well designed software.

In this context, the international standard ISO 26262 “Road vehicles - Func-
tional safety” [9], officially published in November 2011, describes a holistic pro-
cedure to ensure functional safety of electrical and/or electronic (E/E) systems.
Altogether, ISO 26262 provides requirements and processes regarding the whole
safety lifecycle of a system under development including development, produc-
tion, operation, service, decommissioning, as well as management. In this paper,
we only consider issues related to the software development phase.

In ISO 26262, the processes and requirements regarding the actual software
development are described in part 6 whereby solely systematic failures are consid-
ered on the software level. Thus, part 6 of ISO 26262 describes generic measures
for software design, implementation, and testing. One central aspect during soft-
ware development in ISO 26262 is the software architectural design. In order to
avoid systematic failures, ISO 26262 proposes necessary properties of a software
architecture [9, part 6 - 7.4.3]: modularity, encapsulation, and simplicity.

Apart from these abstract principles, no information is given how the fulfill-
ment of these requirements can be verified. One approach might be an archi-
tectural design review. However, the results of such a review heavily depends
on the experience of the reviewer. Thus, this paper proposes objective measures
which should not replace design reviews by experts but might be used as an
extra input for these. The core idea is to develop metrics for the evaluation of
software architectural designs.

Another constraint to be considered is that model-driven software develop-
ment is state-of-the-art in the automotive industry. As a consequence, the metrics
must be applicable to model level instead of code level. After discussing some
related approaches in Sect. 2, the paper briefly introduces requirements of ISO
26262 in Sect. 3. In Sect. 4, we sketch a meta-model for dataflow oriented systems
and, using this meta-model, we formally define the metrics. Finally, we present
the results of these metrics for the example of Simulink models stemming from
an experimental vehicle at Technische Universität Braunschweig.

2 Related Work

Determining the quality of software has a long history. One commonly used
method is to apply source code metrics. The core idea is to formalize knowledge
about “good” code and compute a quality value automatically by parsing and
analyzing the source code.

One of the first metrics suited for object oriented design was developed by
Abreau und Carapuça in 1994 [1]. They introduced seven criteria for metrics
in conjunction with a set of metrics. To assess the quality of object oriented

Verifying ISO 26262 Compliance in Simulink 209

designs, they focus on inheritance, encapsulation, and polymorphism that have
to be evaluated for quantifying external quality attributes such as functionality,
reliability, and maintainability.

In embedded software engineering, model-driven development is state-of-the-
art. The most common tools are Matlab Simulink, SCADE, and ASCET. These
three modeling languages are all based on some dataflow semantics. Thus, tra-
ditional object-oriented metrics cannot be applied directly. Assessing quality of
such software may be done at two layers. One can either analyze the generated
C/C++ code with traditional metrics or one can analyze the dataflow model it-
self. We only focus on the latter option. The reason is that metrics are most often
used to judge maintainability and understandability of a code. This means they
have to analyze the level of abstraction a programmer uses; not the generated
low level code.

Analyzing dataflow models automatically is a hot topic. In 2012, Scheible [16]
introduces a method for quality assessment of Simulink models for automatic
code generation for engine control units (ECUs) in the automotive domain. He
develops a quality model with respect to feasibility for code generation, efficiency,
correctness, robustness, testability, comprehensibility, and maintainability. For
each quality factor, he defines static model metrics on a graph representation
of the Simulink metric leading to 84 different metrics. Comparing the results of
his framework with the judgment of experts at Daimler-Chrysler, he concludes
that his framework outputs a reasonable assessment of the general quality of
a Simulink model. We take this work as a basis for a formalization. However,
he does not explicitly address the requirements of ISO 26262 – the dominating
standard in automotive industry.

Another approach is INProVE (“Indicator-based Non-functional Property-
oriented eValuation and Evolution of software design models”) [10], an Eclipse-
based application to support quality evaluation and monitoring of modeling
languages. It is based on a meta-model for dataflow modeling languages and
configurable for company specific languages or metrics. The concept of IN-
ProVE’s model assessment consists of indicators. Indicators can be combined
and thus range from simple count measurements to complex pattern searches.
The INProVE authors emphasize pattern searches heavily, arguing that expert
knowledge can intuitively be represented in patterns. The good thing about this
approach is its flexibility. On the downside, it lacks the definition of broadly
accepted, standardized metrics as well as a connection to safety standards like
ISO 26262.

Aiming at the support of Failure Mode and Effects Analysis (FMEA), the
Simulink Model Metrics Calculator by Menkhaus and Andrich [13] is another
tool to be mentioned here. Menkhaus and Andrich apply metrics to Simulink and
use the results to guide the FMEA expert through the analysis of the software.
Thereby, the application of metrics is only used as an aid for further methods,
as the metrics are not sufficient for stand alone model analysis. However, the
Calculator is a good technical starting point for building an implementation, as
it also parses and analyzes Matlab Simulink models.

210 L. Mäurer et al.

3 Metrics to Fulfill Requirements of ISO 26262

In this section, we present the core requirements of ISO 26262 part 6 for software
architectures and reason the choice of metrics that we apply for checking the
fulfillment of these requirements.

3.1 Architectural Design Requirements of ISO 26262

Part 6, chapter 7 of ISO 26262 describes the process for developing and verifying
the architectural design of the software in automotive applications. The main
three requirements – modularity, encapsulation, and simplicity – are stated in
paragraph 7.4.3 of the standard.

Modularity of a software system describes according to Meyer [14] that the
software system consists of autonomous software elements ordered in a coher-
ent, simple structure. Simplicity often relates to two concepts: the pure size of
one functionality as well as the complexity of a functionality. Encapsulation,
according to Mayer and Hall [12], is the combination of privacy and unity.

To fulfill these abstract requirements, ISO 26262 introduces seven principles
stated in Table 1.

Table 1. Principles for software architectural design according to ISO 26262 [9, part
6 - 7.4.4]

Methods
ASIL

A B C D

1a Hierarchical structure of software components ++ ++ ++ ++

1b Restricted size of software components ++ ++ ++ ++

1c Restricted size of interfaces + + + +

1d High cohesion within each software component + ++ ++ ++

1e Restricted coupling between software components + ++ ++ ++

1f Appropriate scheduling properties ++ ++ ++ ++

1g Limited use of interrupts + + + ++

The table indicates the necessity of the principles for the respective Automo-
tive Safety Integrity Level (ASIL). As seen, all methods are either recommended
(+) or highly recommended (++) for all ASIL. For the definition of the ASIL
levels, we refer to the standard [9].

In this work, we focus on model (and source code) quality only. The principles
1f and 1g are aimed at dynamic/execution behavior and are thus outside the
scope of this paper.

3.2 Applied Metrics

For the choice of metrics to evaluate the requirements of ISO 26262, we follow
the Factor-Criteria-Metrics approach of Cavano and McCall [5]. Cavano and

Verifying ISO 26262 Compliance in Simulink 211

Hierarchical structure
of software components

Restricted coupling
between software components

Restricted size
of software components

Restricted size
of interfaces

High cohesion within
each software component

Appropriate scheduling
properties

Restricted use
of interrupts

modularity

simplicity

encapsulation

Law of
Demeter

FanIn /
FanOut

Halstead
Volume

Number of
Elements

Element
Hiding Factor

Tight Class
Cohesion / Loose
Class Cohesion

Factor Criterion Metric

Fig. 1. Derivation of metrics

McCall introduce a principle to refine abstract requirements, called factors, to
specify demands, called criteria, and map those to metrics. This approach was
chosen because the structure of factors and criteria matches the structure of
the three main requirements (factors) with the seven principles (criteria) of
ISO 26262. Figure 1 shows the Factor-Criteria-Metrics approach applied to ISO
26262 software quality requirements.

Factors to Criteria: The factor modularity is assigned to the two criteria
“hierarchical structure of software components” (1a in Table 1) and “restricted
coupling between software components” (1e in Table 1). The criterion of hierar-
chical structure is related to the property of a coherent, simple structure, while
restricted coupling increases autonomy of software elements. If a software ele-
ment can fulfill its task autonomously, it does not rely on the functionality of
other software elements and thus is less coupled to them.

Simplicity without further information is a rather imprecise requirement. In the
context of this paper, we consider simplicity solely as a demand for low complexity.

212 L. Mäurer et al.

As structural complexity is already assessed by modularity, the criteria for sim-
plicity are limited to size, namely the “restricted size of software components”
(1b in Table 1) and the “restricted size of interfaces” (1c in Table 1).

The factor encapsulation can thus be supported by the criteria “restricted
size of interfaces” (1c in Table 1) for privacy and “high cohesion within each
software component” (1d in Table 1) for unity.

Criteria to Metrics: Note that in this section, we only motivate why a metric
fits for estimating a criterion. The formal definition of the metric are given in
the next section. In general, we tried to avoid simple count metrics, to get a
profounder result.

The Law of Demeter [11] was chosen as a metric for the “hierarchical structure
of software components”, because most of the existing hierarchy metrics from
object-oriented metric suits (MOOD) [1] consider the class hierarchy, and thus
are not usable for dataflow-based modeling languages. The Law of Demeter was
originally used as a coupling metric, but continuing the approach of Oesterre-
ich [15], it is additionally used as an hierarchy metric evaluating the number of
bypassed hierarchical levels within a model.

To assess the criterion of “restricted coupling between software components”
in more detail, we use an adaptation of the metrics FanIn and FanOut (derived
from [8]). For our dataflow-based modeling languages, coupling can be estimated
by measuring the number of incoming and outgoing connections. A block, which
is connected to many other blocks, has higher coupling than one connected to
fewer blocks.

For the criterion “restricted size of software components”, two metrics were
chosen. Of course, the Number of Elements metric was chosen to provide a first
look assessment of the software component size. For a more meaningful result,
the well-known and tested Halstead Volume was used as adapted and argued for
by Stürmer et al. [7,17].

The “restricted size of interfaces” criterion for the privacy part of encapsula-
tion is measured by the Element Hiding Factor. This metric was derived from
“Attribute Hiding Factor” and “Method Hiding Factor” (both part of the stan-
dard set of metrics in MOOD [1]). These two were already stated as privacy
metrics by Mayer and Hall when describing the nature of encapsulation [12] for
object-oriented software.

Finally, we associated “high cohesion” with the metrics Tight Block Cohesion
and Loose Block Cohesion as presented in [3]. Already Briand et al. named them
as sound cohesion measurements [4]. Again, the key challenge was to re-define
the object-oriented concept of finding direct and indirect connections between
elements to abstract, dataflow-oriented software.

4 Formal Model

This section describes the underlying semantic model for defining object-oriented
metrics on dataflow models. Note, that although we did all our experiments on

Verifying ISO 26262 Compliance in Simulink 213

Matlab Simulink models, the concept may easily be transferred to other similar
tools or languages like ASCET or SCADE.

4.1 Meta-Model of a Dataflow Model

For defining the metrics, a static model of the software is sufficient. A static
model only contains structural information (e.g., hierarchies) as well as depen-
dencies (e.g., input/output flows). Dynamic aspects like behavior of execution
are not necessary for defining most object-oriented (OO) metrics. We base the
definitions of our metrics on a meta-model, which is inspired by the meta-model
of Scheible [16], and use a set of directed multi-graphs as semantics. In contrast
to Scheible, we do not abstract from solely Simulink, to be able to evaluate ad-
ditional languages. In the following, the term “software architecture” is used for
denoting this static, graph-based model.

A software architecture a〈B,E,K〉 is defined by a 3-tuple consisting of a
set of blocks B, elements E, and edges K. A block b〈B,E,K〉 is defined by a
3-tuple consisting of a set of (sub-)blocks B, elements E, and edges K. From
a pure semantic point of view, blocks and architectures are the same. However,
we use the term “architecture” to always denote the topmost view of our system,
while “blocks” are used to refer to individual functionalities (i.e., sub-views). An
element e〈P 〉 represents a single functional piece of a block where a set of
ports p〈e〉 provides an interface for edges. An edge k〈pstart, pend〉 is a 2-tuple
of a starting and an ending port. The semantics of a block (and a software
architecture) is a directed multi-graph, where nodes are in B or E and edges are
in K. We further introduce the following functions:

– P (e): Set of all ports of element e
– e(p): Element e to which port p belongs
– IP (e): Set of all incoming ports of element e
– OP (e): Set of all outgoing ports of element e
– D(e): Set of all edges starting or ending at some port p ∈ P (e)
– D+(e): Set of all edges starting at some port p ∈ P (e)
– D−(e): Set of all edges ending at some port p ∈ P (e)
– EOP (e): Set of all elements on one path starting/ending from e
– EOP+(e): transitive closure of EOP(e)
– N(b): Set of all successors of block b such that ∃k(b, bn) : bn ∈ N(b)
– N+(b): transitive closure of N(b)

Furthermore, all (sub-)blocks in a given block are also considered as elements
(of this block); i.e., B ⊆ E. Intuitively, this means for example, that the (visual)
complexity of a a single Matlab Simulink model is defined by the number of visual
elements in this view. The only part visible of the (sub-)block are its (external)
ports. Note, that the defining sets of a (sub-)block (i.e., blocks, elements, and
edges) are typically not part of B, E and K of the super-block. We use B∗(b),
E∗(b) and K∗(b) to denote this transitive set of all sub-blocks, sub-elements and
edges.

214 L. Mäurer et al.

4.2 Redefining OO Metrics

We now use this meta-model to redefine the most wide-spread OO metrics on
dataflow models. In particular, we will consider the following six metrics: “Num-
ber of Elements”,“Element Hiding Factor”, “FanIn/FanOut”, “Law of Deme-
ter”, “Halstead Volume”, and “Block Cohesion”. For each metric, we will briefly
sketch the idea, then present the formalization and later discuss, how this metric
helps in estimating properties of good model-based architecture. Due to the lack
of space, we cannot give the full definition of these metrics in their traditional
form for object-oriented software. Hence, we only sketch differences and exten-
sions informally. For a definition of the underlying metrics for object-oriented
systems, we refer to the corresponding references. For each metric, we define it
for measuring a single block or the block including all its sub-blocks. In practice,
the latter is typically used for assessing a software architecture or estimating
the overall complexity of a larger functionality. However, the first helps in de-
ciding which individual parts in an dataflow model are most difficult or should
be re-engineered first.

Number of Elements (Ne): The “number of elements” metrics is the equiv-
alent to the Lines of Code metrics in text-based programming languages. Just
as a source code line represents the smallest functional entity, elements within
the meta-models of this work are the smallest representation of a functionality.

Ne(b) = |E(b)| (1)

Ne(a)
∗ = |E∗(a)| (2)

Thus, the count of all elements within one block resp. one architecture gives
an overview of the model’s complexity. To indicate the desired low complexity,
the value of this counting metric should be as small as possible.

Element Hiding Factor (EHF): The rational of this metrics (also in the
related object-oriented metrics) is to hide as many details of the implementation
of a block/class. The only visible (to the outside) parts of a block are its incoming
and outgoing ports. This has to be seen in relation to the internal complexity of
the block. The Element Hiding Factor (EHF) metrics determines this property
in a block and it is defined as a quotient of the number of invisible elements and
the total number of elements of a block.

EHF (b) =
|E(b)| − |P (b)|

|E(b)| (3)

For an architecture a the EHF is the average of all blocks in B.

EHF ∗(a) =

∑
bi∈B(a) EHF (bi)

|B(a)| (4)

Verifying ISO 26262 Compliance in Simulink 215

The EHF value should be as high as possible. The upper (but not achievable)
bound of this metrics is 1 (for a block without inputs/outputs). The lower bound
is 0 for a block, which only passes information without any internal processing.
Intuitively, blocks with an EHF under 0.5 should be checked manually, as more
inports and outports than other elements indicate a bad implementation.

FanIn/FanOut (FI/FO): These metrics measure how highly coupled a block
is. The key idea is to count the number of incoming and outgoing connections.
This may be seen as an indicator of how difficult it is to re-engineer the block,
as each connection implies having to have a look at the neighboring block.

FI(b) = |D−(b)| (5)

FI∗(a) =

∑
bi∈B(a) FI(bi)

|B(a)| (6)

FO(b) = |D+(b)| (7)

FO∗(a) =

∑
bi∈B(a) FO(bi)

|B(a)| (8)

An alternative definition could be to count connected blocks instead of con-
nections. Based on practical experiments, we decided against this. The reason is
that if there are multiple connections between two blocks they often refer to dif-
ferent functionalities or address different information. As a consequence, during
re-engineering the number of connection better estimates the complexity then
only the number of connected blocks.

Architecture values of FanIn and FanOut equal to 1 imply a very linear struc-
ture, while values higher than 3 are not observed in models considered well
structured and with low coupling, therefore the preliminary threshold was set to
3. Single block values might differ from these values, depending on the purpose
of the block.

Range of Demeter (RoD): Oesterreich describes an approach to apply the
Law of Demeter in model-based development [15]. Even if the UML class dia-
grams differ in the most aspects from the model in this work, it is possible to
transfer the underlying idea to our meta-model. The idea is illustrated in Fig. 2.

Let us say a block b1 is used by another block b2 if there is an edge e(b1, b2).
Now, assume there exists another block b3, which is used by block b2 and is
using block b1. It is then possible to decouple blocks b1 and b2 with a simple
re-engineering (i.e., passing the information from b1 to b2 not directly but rather
via block b3). This is depicted in Fig. 2 with the dashed arrows. Hence, b1 and
b2 can be changed independently from each other as long as the requirements of
the interface of b3 are fulfilled. In informal words, one could describe this metrics
as: “Do not skip your neighbors.”. Formally, RoD is defined as:

216 L. Mäurer et al.

b1

b3

b2
e

e e

Fig. 2. Example: Range of Demeter

RoD(b) =
∑

bm∈B(b)

∑
p∈P (bm,bn)

|p(bm, bn)| − 1, (bn ∈ N(bm)) ∧ (bn ∈ N+(N(bm)))

(9)
where P (bm, bn) are all paths starting in block bm and ending in block bn.

RoD∗(a) =
∑

bi∈B(a)

RoD(bi) (10)

Consequently, RoD measures the number of “skipped” blocks. Therefore, we
call it “Range of Demeter” instead of “Law of Demeter”. The optimal value of
RoD is 0, as it counts violations of a design rule.

Halstead Volume (HV): The Halstead Volume dates back to 1977. HV was
developed to assess the complexity of algorithmic functions (back then mainly
in Cobol and Algol). The core idea is to count the number of different operators
(n1) and different arguments (n2) as well as the number of all operators (n3)
and number of all arguments (n4).

In 2010, Stürmer et al. [17] gave a definition of the Halstead metric to Simulink,
which we re-use in our approach directly. To define this metrics, a set of element
types T has to be added to the meta-model and exactly one t ∈ T is referred to
each element e. Hence, we extend the definition of Sect. 4.1 with functions for
types of elements:

– T (a): Set of all different element types applied in the architecture a
– T (b): Set of all different element types in E(b)
– T+(b): Set of all different element types in E∗(b)

The Halstead Volume is then defined as:

HV (b) = (n1(b) + n2(b)) ∗ log2(n3(b) + n4(b)) (11)

where n1(b) = |E(b)|, n2(b) = |T (b)|, n3(b) = |⋃e∈E(b) IP (e)| and
n4(b) = |⋃e∈E(b) OP (e)|

Verifying ISO 26262 Compliance in Simulink 217

HV (b) does not consider the lower levels of a block, therefore the Halstead
Volume calculated with these values is used for an evaluation of the local com-
plexity. For local complexity, Stürmer et al. [17] give the boundary value 300
for low complexity and 750 for normal complexity. For global complexity, the
analogous definition is:

HV ∗(a) = (n∗
1(a) + n∗

2(a)) ∗ log2(n∗
3(a) + n∗

4(a)) (12)

where n∗
i is derived from ni by replacing E() with E∗() and T () with T ∗().

However, this value is often only of limited interest as it has to be considered
with caution. The main reason is, that the resulting value is very hard to inter-
pret. On the one hand, it combines logarithmic and linear scales, while on the
other hand, for example, the height of the hierarchy also plays a vital role (as at
least in Matlab Simulink, in-port and out-ports are individual elements as well
as types). As a consequence, it is not meaningful to give any generic advice for
HV ∗(a).

Tight Block Cohesion (TBC) / Loose Block Cohesion (LBC): Cohe-
sion is one of the most often mentioned aspects, when arguing about the quality
of an object-oriented software design. Classes should be as loosely coupled as
possible and as highly cohesive as possible. Cohesion is a property, which infor-
mally means: “Pieces of functionality highly depend on each other”. Following
this generic idea, we define cohesion of a block as a property, which measures
whether the block can be easily separated or not. Bieman and Kang used the
same idea 1995 [3] for object-oriented systems. Of course, we have to restrict our-
selves to method cohesion (as other cohesion metrics like inheritance cohesion
are not applicable to dataflow models). For defining this on dataflow models,
we first introduce the notion of “number-of-directly-connected-blocks (NDC)”,
“number- of-not-directly-connected-blocks (NIC)”, and the “total-number-of-
pairs-of-blocks (NP)”:

NDC(b) =
∑

ei∈E(b)

|EOP (ei)| (13)

NIC(b) =
∑

ei∈E(b)

|EOP+(ei)| (14)

NP (b) = |E(b)|2 (15)

One might wonder, why the computation path (and not only the direct neigh-
bor) is used in the definition of NDC. The argumentation is simple: a path in
a dataflow model describes how inputs are (successively) transformed into out-
puts. The whole computation fails, if any(!) of the intermediate operators is
removed from the chain. For NIC, we take the transitive closure. Meaning, that
if some block bi is on the current computation path and this block also gets
input/produces output from/to some other block bj then block bj is in NIC(b).
Tight and loose block cohesion can then be formalized as:

218 L. Mäurer et al.

TBC(b) =
NDC(b)

NP (b)
(16)

LBC(b) =
NIC(b)

NP (b)
(17)

TBC∗(a) =

∑
bi∈B(a) TBC(bi)

|B(a)| (18)

LBC∗(a) =

∑
bi∈B(a) LBC(bi)

|B(a)| (19)

The optimum value for TBC and LBC is 1. Values smaller than 1 indicate,
that some blocks could either be split into sequentially connected sub-blocks,
parallel sub-blocks, or a combination of both. Nevertheless, always aiming at
the optimum value leads to a very large depth in the hierarchy and might not
be useful. Following the threshold of Biemann and Kang [3] for their original
metric, we declare a value of at least 0.75 for TBC as cohesive. However, LBC
should have a value of 1 if there are no hard design constraints preventing it.

5 Evaluation

To evaluate the defined metrics, they were applied to model-based software uti-
lized in the project MOBILE of the Institute of Control Engineering at Tech-
nische Universität Braunschweig. The experimental vehicle MOBILE features
full Drive-by-Wire capability with all-wheel-steering, 400kW all-wheel-drive, and
electromechanical brakes. Another main characteristic is the completely acces-
sible software of all ECUs, which are programmed utilizing a Matlab Simulink
tool chain.

The meta-model and the metrics were implemented in Java to be able to
evaluate other languages than Simulink with a proper model-importer. To parse
the Simulink model examples, our implementation relies on the Simulink Library
provided by the TU Munich [6].

In the following, the application software of two ECUs of MOBILE is com-
pared with respect to the model-based metrics proposed in Sect. 3.2 resp. 4.2.
Thereby, both ECUs are considered as highly safety critical due to the strong
distributed characteristic of the implementation of the overall vehicle function-
alities on MOBILE. Neither of the models has been developed according to ISO
26262. However, an additional diagnostic and decision making system was de-
veloped for MOBILE to guarantee proper reconfiguration of the overall vehicle
in case of failures of individual control units [2].

As its name already implies, the Battery Management System (BMS) ECU is
responsible for all functionalities related to the battery package, such as charging,
balancing, and surveillance of the batteries. The Steering Controller ECU serves
as interface to control the vehicle. First of all, it evaluates the normal driver

Verifying ISO 26262 Compliance in Simulink 219

inputs coming from steering wheel, accelerator pedal, as well as brake pedal and
outputs the target values for the actuators to MOBILE’s network. Additionally,
commands stemming from an overall vehicle control system can be fed into the
vehicle network via the Steering Controller (SC). Moreover, both ECUs require
several information from different ECUs, e.g., the rotational speed of the wheel
or the actual steering angle, to validate the plausibility of state transitions.

From a programmers perspective, the selected models possess different qual-
ities concerning understandability and maintainability. The BMS has a compa-
rably clear structure by separating input signals, data processing, and output
signals in different high level blocks. Furthermore, the sub-blocks are also ar-
ranged in a hierarchically logical manner. On the contrary, the structure of the
Steering Controller is less well designed. It can be described as what one would
call “historically grown”. Thus, it is expected that the application of the metrics
suggested in Sect. 3.2 resp. 4.2 will yield better results for the model of the BMS
than the Steering Controller.

Table 2 shows the results of the metrics for the two example models. A com-
parison of the model values with the target values for the metric gives a first
indication of the fulfillment of the requirements of ISO 26262 regarding the soft-
ware architecture. Here, the model of the BMS shows acceptable values for all
metrics, whereas the Steering Controller model shows unacceptable values for
Tight Block Cohesion and the Range of Demeter. The bad value for Tight Block
Cohesion is supported by the rather poor value of Loose Block Cohesion, so the
model should be revised with the goal to improve cohesion. The bad value for
the Range of Demeter might also occur because of some special properties of
the model, that make a better value impossible, e.g., four edges leading from a
steering to a simulation block for the signals of each single wheel.

Table 2. Global metric results for example models

Metric Target Value SC BMS

Halstead Volume minimal 16554.93 53904.34

Number of elements minimal 2411 8099

Loose Block Cohesion 1 0.84 0.96

Tight Block Cohesion >0.75 0.57 0.77

Element Hiding Factor >0.5 0.51 0.55

Range of Demeter 0 14 0

FanIn (FI) 1<=FI<=3 2.18 1.83

FanOut (FO) 1<=FO<=3 1.94 1.57

Additionally, we want to state that the metrics are calculated in very accept-
able time. The BMS model was processed in under 20 seconds on a common
computer with a Core i5 processor (3210m, 8GB RAM, Samsung 840SSD). The
smaller model of the Steering Controller was evaluated within 10 seconds and
tests on other models revealed no unreasonable growth of computation time.

220 L. Mäurer et al.

Fig. 3. Part of the Steering Controller model

The global value of the metric alone does not necessarily support an improve-
ment of the software architecture. A bad global metric value at least indicates
that some rework is needed. However, in a huge model manually searching for
the weak spots is not desirable. Therefore, in addition to the global value of the
model, a metric value for each block is computed by the prototype. Subsequent
to the calculation, it highlights blocks with bad metric values such that they can
easily be detected and reworked.

To make our approach clear, the sub-block of the Steering Controller demon-
strated in Fig. 3 is evaluated as an example. It implements the generation of a
target torque for the front left motor of MOBILE supporting driving forward
and reversing as well as recuperative braking. For that reason, it obtains the
actual positions of brake and accelerator pedal together with the actual velocity
of the front left wheel. The speed flag is required as switching between forward
driving and reversing is only permitted in standstill.

The values for the applied metrics of the sub-block are given in Table 3. The
EHF value is minimally lower than 0.5, therefore it should be considered to
minimize the interface. The FanOut value is equal to 1, but should be higher,
and the FanIn value is higher than 3. Therefore, especially the FanIn value shows
the violation of the requirement for restricted coupling. The low TBC and LBC
values indicate bad cohesion in this model part. The Range of Demeter has the
value 1 meaning that one block is skipped. The Halstead volume is lower than
300, which implies low complexity.

Comparing the block result with the results for the whole model, it can be
noticed that the flaws detected by the global metrics match the flaws of the
single block. Especially cohesion should be improved, and removing the one
Range of Demeter violation in the presented block would directly improve the
global Range of Demeter value.

Together, the global metric value and the block metric value provide an ob-
jective evaluation of the model quality with respect to ISO 26262 requirements
and highlight model components which need to be improved. The short compu-
tation time of the metrics compared to a manual analysis of the model makes it

Verifying ISO 26262 Compliance in Simulink 221

Table 3. Metrics for drive-control-front-right block

Metric Target Value Drive Control Front Left Model

Halstead Volume minimal (<750) 88.23

Number of elements minimal 13

Loose Block Cohesion 1 0.86

Tight Block Cohesion >0.75 0.55

Element Hiding Factor >0.5 0.46

Range of Demeter 0 1

FanIn (FI) 1<=FI<=3 6

FanOut (FO) 1<=FO<=3 1

possible to monitor the model quality during the development and to compare
different maturity levels of the software model.

Again, we want to point out that the approach cannot improve the model
quality by itself. An expert is required to look at the weak spots of the model
and make suggestions for design improvements. Besides, specialized domains
with partly special requirements may require manual adaptions of the metrics
to match the characteristics of the model under evaluation.

6 Conclusions and Further Work

In this paper we presented an approach to evaluate dataflow-oriented software ar-
chitectures regarding the requirements of ISO 26262. For that reason, we adapted
existing metrics from other programming paradigms and used them as quality
indicators. The metric results on model level for two example models in Simulink
reveal general weaknesses of the software, e.g., a tendency for low cohesion soft-
ware elements. The metric results on block level provide information about where
to refine the software to improve the quality. The application to the example
models confirms that metrics are useful during the development process, as they
can be computed in a very short time and give a first evaluation of the fulfillment
of ISO 26262 requirements.

For applying the presented approach directly for verification of software ar-
chitectures according to ISO 26262, a definition of threshold values for the dif-
ferent metrics is necessary. These thresholds have to be determined in future
case studies. To receive more precise statements about weak spots in software
architectures, the metrics could be defined more precisely in future works, e.g.,
by introducing more metrics.

Acknowledgments. The authors wish to thank Porsche Engineering for its
cooperation and support by giving initial ideas and further helpful comments.

222 L. Mäurer et al.

References

1. Abreu, F.B., Carapuça, R.: Object-oriented software engineering: Measuring and
controlling the development process. In: 4th Int. Conf. on Software Quality (1994)

2. Bergmiller, P., Maurer, M., Lichte, B.: Probabilistic fault detection and handling
algorithm for testing stability control systems with a drive-by-wire vehicle. In: 2011
IEEE International Symposium on Intelligent Control (ISIC), pp. 601–606 (2011)

3. Bieman, J.M., Kang, B.K.: Cohesion and reuse in an object-oriented system. In: Pro-
ceedings of the 1995 Symposium on Software Reusability, SSR 1995, pp. 259–262.
ACM (1995)

4. Briand, L.C., Daly, J.W., Wüst, J.: A unified framework for cohesion measurement
in object-oriented systems. Empirical Software Engineering 3(1) (1998)

5. Cavano, J.P., McCall, J.A.: A framework for the measurement of software quality.
In: Proceedings of the Software Quality Assurance Workshop on Functional and
Performance Issues, pp. 133–139. ACM (1978)

6. Deißenböck, F.: Simulink Library for Java, https://www.cqse.eu/en/products/
simulink-library-for-java/overview/

7. Halstead, M.H.: Elements of Software Science (Operating and programming sys-
tems series). Elsevier Science Inc. (1977)

8. Henry, S., Kafura, D.: Software structure metrics based on information flow. IEEE
Transactions on Software Engineering SE-7(5), 510–518 (1981)

9. International Organisation for Standardization: ISO 26262 (11/11): Road vehicles -
functional safety, http://www.iso.org/iso/catalogue_detail?csnumber=43464

10. Kemmann, S., Kuhn, T., Trapp, M.: Extensible and Automated Model-Evaluations
with INProVE. In: Kraemer, F.A., Herrmann, P. (eds.) SAM 2010. LNCS,
vol. 6598, pp. 193–208. Springer, Heidelberg (2011)

11. Lieberherr, K., Holland, I., Riel, A.: Object-oriented programming: an objective
sense of style. In: Conference Proceedings on Object-oriented Programming Sys-
tems, Languages and Applications, OOPSLA 1988, pp. 323–334. ACM (1988)

12. Mayer, T., Hall, T.: Measuring OO systems: a critical analysis of the MOOD met-
rics. In: Proceedings of Technology of Object-Oriented Languages and Systems,
pp. 108–117 (1999)

13. Menkhaus, G., Andrich, B.: Metric suite for directing the failure mode analysis of
embedded software systems. In: ICEIS 2005 - Proceedings of the Seventh Interna-
tional Conference on Enterprise Information Systems, pp. 266–273 (2005)

14. Meyer, B.: Object-Oriented Software Construction. Prentice Hall (1998)
15. Oesterreich, B.: Analyse und Design mit der UML 2.5: Objektorientierte Softwa-

reentwicklung. Oldenbourg Verlag (2012)
16. Scheible, J.: Automatisierte Qualitätsbewertung am Beispiel von MATLAB

Simulink-Modellen in der Automobil-Domäne. Ph.D. thesis, Universität Tübingen
(2012)

17. Stürmer, I., Pohlheim, H., Rogier, T.: Berechnung und Visualisierung der Model-
lkomplexität bei der modellbasierten Entwicklung sicherheitsrelevanter Software.
Automotive–Safety & Security, 69–82 (2010)

https://www.cqse.eu/en/products/simulink-library-for-java/overview/
https://www.cqse.eu/en/products/simulink-library-for-java/overview/
http://www.iso.org/iso/catalogue_detail?csnumber=43464

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 223–238, 2014.
© Springer International Publishing Switzerland 2014

Insights on the Use of OCL
in Diverse Industrial Applications

Shaukat Ali1, Tao Yue1, Muhammad Zohaib Iqbal2,3,
and Rajwinder Kaur Panesar-Walawege1

1 Simula Research Laboratory, P.O. Box 134, Lysaker, Norway
2 National University of Computer & Emerging Sciences, Islamabad, Pakistan

3 SnT Luxembourg, Luxembourg
{shaukat,tao,rpanesar}@simula.no,

zohaib.iqbal@nu.edu.pk

Abstract. The Object Constraint Language (OCL) is a widely accepted lan-
guage, standardized by OMG, for specifying constraints at various meta levels
(e.g., meta-models and models). Despite its wide acceptance, there is a lack of
understanding about terminology and purposes for which OCL can be used. In
this paper, we aim to reduce this gap and provide guidance for applying OCL in
practical contexts and we report our experience of applying OCL for different
industrial projects in diverse domains: Communications and Control, Oil and
Gas production, Energy Equipment and Services, and Recycling. Based on our
experience, first, we unify the commonly used terminology in the literature for
applying OCL in different ways for addressing diverse industrial problems.
Second, we report the key results of the industrial application of OCL. Finally,
we provide guidance to researchers and practitioners for choosing an appropri-
ate meta level and purpose for their specific industrial problem at hand.

Keywords: Object Constraint Language, Industrial Applications, Constraint
Solving, Constraint Parsing.

1 Introduction

The Object Constraint Language (OCL – http://www.omg.org/spec/OCL/2.3.1/) is the
Object Management Group’s (OMG) standard language for specifying constraints on
models. Constraints can be specified at all the meta levels provided by the Meta-
Object Factory (MOF – http://www.omg.org/mof/)—the OMG’s framework for
meta-modeling. Thus, constraints can be specified on meta-meta models (e.g., an
implementation of MOF), meta-models (e.g., UML meta-model), customized profiles
on meta-models (e.g., MARTE profile for UML – http://www.omgmarte.org/), and
models (e.g., UML models).

The OCL has been used in industrial projects for various purposes, such as for con-
figuration management in energy and maritime and seismic acquisition [1] and test
case generation in communication and control [2, 3]. OCL is also being used as the

224 S. Ali et al.

language for writing constraints on models in many commercial Model-Based Testing
(MBT) tools such as CertifyIt1 and Fokus!MBT2.

For the past several years, we have used OCL in several industry-driven research
projects. The most significant projects include: model-based functional and robust-
ness testing of embedded systems and communication and control systems, configura-
tion of product lines of large-scale integrated control systems, and certification of
subsea production systems according to safety standards. In this paper, we present our
experience of applying the OCL in these domains. Our key findings are: 1) a small
subset of OCL can be sufficient for a given industrial application; 2) specification and
enforcement of constraints at the different MOF meta levels works in the same way;
3) evaluation of constraints was the most common purpose for the use of OCL. Based
on our findings, we present guidelines for practitioners to choose the right meta level
and purpose to apply OCL for their particular problem. Notice that all the definitions
and discussions presented in this paper are within the context of our industrial appli-
cations, and may need to be adapted to other contexts.

The contributions of this paper can be summarized as follows: 1) clear and precise
definitions of commonly used terminology related to the use of OCL; 2) a clear rela-
tionship among the different purposes (e.g., OCL solving and evaluation) that OCL
can be used for; 3) key results from our industrial applications of OCL; 4) a detailed
discussion that can guide practitioners in choosing when to apply OCL for a particular
purpose and at which meta level. These contributions are aimed at reducing the gap
between the academic understanding of OCL and its industrial application.

The rest of the paper is organized as follows: Section 2 presents various classifica-
tions of our OCL applications, Section 3 reports results from our industrial applica-
tions, Section 4 provides discussion, and Section 5 concludes the paper.

2 Classification of Various OCL Applications

This section provides an overview of our industrial applications (Section 2.1), defini-
tions and examples in Section 2.2 and Section 2.3, and the relationships between vari-
ous purposes for which OCL can be used in Section 2.3.

2.1 Overview

We use a conceptual model to discuss the overall picture of our experience of apply-
ing OCL in various projects (Fig. 1). We characterize our applications mainly from
two aspects: 1) Purpose of applying OCL: e.g., Constraint Solving and Constraint
Evaluation, and 2) Meta Level, at which OCL constraints are applied. Moreover, we
discuss each application (e.g., TestDataGeneration) based on the type(s) of models on
which OCL was used (e.g., Structural and Behavioral model) and the types of dia-
grams used for each type of model (e.g., UML class diagrams as structural models).

1 http://www.smartesting.com/en/product/certifyit
2 http://www.fokusmbt.com/index.html

 Insights on the Use of OCL in Diverse Industrial Applications 225

Fig. 1. Conceptual model of OCL applications

2.2 Definitions

This section presents definitions of the terms that we use in the rest of the paper.

Meta Levels. Meta-Object Facility (MOF) is a standard defined by Object Manage-
ment Group (OMG) for model-driven engineering. MOF is designed as a four-level
architecture, which allows modeling at four levels: meta-meta level (M3), meta level
(M2), model level (M1), and Object level (M0). In other words, we define the term
Meta Levels as a set of these four levels: Meta Levels = {M3, M2, M1, M0}.

Specification Levels. Specification levels are a subset of Meta Levels, on which OCL
constraints can be specified: Specification Levels = {M3, M2, M1}.

Enforcement Levels. Enforcement levels are a subset of Meta Levels, at which OCL
constraints are enforced (e.g., evaluated, solved). An enforcement level is one level
lower than the level at which constraints are specified. It is defined as Enforcement
Level = {M2, M1, M0}.

Purposes of Using OCL. In this section, we provide definitions and examples of the
various purposes for which we have used OCL.

Constraint Specification (CSpec). Given a model M at one of the Meta Levels,
CSpec means defining a constraint C on M. Based on the example given in the first
row of Table 2, we define a constraint ((2/self.a1 > 0) and self.a2 > 0) on class X (at
M1 level). We also show examples of OCL constraints at each meta level in Table 1.
For example, in the third column of Table 1, we define a constraint on the definition
of stereotype MyStereotype (self.name = ‘’) in a profile diagram at the M2 level.

Constraint Parsing (CP). Given a model M at one of the Meta Levels and a con-
straint C specified on M, CP means parsing C and obtaining an abstract syntax tree of
C for further manipulation (e.g., calculating branch distances to generate test data
from OCL constraints using a search algorithm [4]). An example of CP is shown in

226 S. Ali et al.

the second row of Table 2,
is shown.

Constraint Evaluation/Va
tion Levels, an instance oi o
than the level of M, and a c
tisfied, dissatisfied, or resu
constraint means, the cons
straint evaluates to false, or
An example of CE is shown
on a UML class X at the M
level. First instance (o1), s
second instance (o2) evalua
fined since (2/self.a1) resu
luates to undefined.

Constraint Solving (CSolv
instance O of M at one me
vels, and a constraint C defi
which evaluates C to be tr
Table 2, row 5. Given the
class X (at M1 level), a con
ing C. In this particular exa
the constraint solver may pr

Table 1. E

Level

M3

M2

M1

M0

 where an abstract tree of ((2/self.a1 > 0) and self.a2 >

alidation (CE). Given a model M at one of the Specifi
of M at one level lower (belonging to Enforcement Lev
constraint C in OCL, CE means checking whether C is
ults in an error situation by oi. In OCL, satisfaction o
traint is evaluated to true, dissatisfaction means the c
r undefined when a constraint results in an error situati
n in the third row of Table 2, where a constraint is defi

M1 level and is evaluated on its three instances at the
satisfies the constraint and hence it evaluates to true,
ates to false, and the third instance (o3) evaluates to un
lts in being divided by 0, and overall the constraint e

v). Given a model M at one of the Specification Levels
eta level lower than M, i.e., belonging to Enforcement
ined on M, CSolv means finding at least one instance of

rue, false, or undefined. An example of CSolv is shown
constraint C= (2/self.a1 > 0) and self.a2 > 0 defined

nstraint solver provides an instance oi (at M0 level) satis
ample, oi can be instance x4 shown in the table. Notice t
rovide multiple instances depending on the application.

Examples of OCL constraints at various levels

Example Constraint

Specification:
context EClass inv:
 self.name <> ‘’

Evaluation/Validation: true

Specification:
context Class inv:
 self.isActive
Specification:
context MyStereotype inv:
 self.name = ‘’

Evaluation/Validation: false

Specification:
context EClass inv:
 self.a1 > 0

Evaluation/Validation: true

> 0)

fica-
els)
 sa-
of a
con-
ion.
ned
M0
the

nde-
eva-

, an
Le-

f M,
n in
d on
sfy-
that

 Insigh

OCL Querying (OQ). Giv
instances O = {o1, o2, o3,
Levels), OCL querying OQ
constraint specified in OQ.
constraint C= (2/self.a1 > 0
constraint querying returns
ple, such an instance is o1 (x

2.3 Relationships betw

OCL Querying. Fig. 2 sho
specification. The first step
A query in OCL then return
using OCL evaluation.

OCL Solving. Fig. 3 show
purposes for which OCL c
constraint C on a model at
dom instance of a model at
(C is specified at M2) or M
luated using OCL evaluatio
erwise OCL solving is guid

Table

Example

A class X with two Integ-

ers a1 and a2, and with

three instances available:

x1, x2, and x3.

Specification

cont

 (2/s

self.a

Parsing

Evaluation/Validation

Solving

Querying

hts on the Use of OCL in Diverse Industrial Applications

ven a model M at one of the Specification Levels, a set of
..on} at one meta level lower (belonging to Enforcem

Q returns one or more instances of M, which satisfy
. An example is shown in Table 2, row 6, where give
0) and self.a2 > 0 and a set of instances O = {o1, o2 , o3

instances from O that satisfies C. In this particular exa
x1).

een Various Purposes of Using OCL

ows the relationship among OCL querying, evaluation,
p is specification of a constraint C at M3, M2, or M1 lev
ns a model at one meta level lower (M2, M1, or M0) le

ws the relationship of how OCL solving is related to
can be used. The first step in OCL solving is to specif

M3, M2, or M1 level. OCL solving then starts with a r
t one meta level lower, i.e., M2 (C is specified at M3),

M0 (C is specified at M1) level. This instance is then e
on. If the instance satisfies C the OCL solving stops. O
ded towards another instance (using OCL parsing and O

2. Examples of various purposes of OCL

Model (M) Instance (o1) Instance (o2) Instanc

(o3)

text X inv:

elf.a1 > 0) and

a2 > 0

N/A

true false
unde

fined

227

f its
ment

the
en a
3}, a
am-

and
vel.
evel

the
fy a
ran-
M1

eva-
Oth-
OCL

e

e-

228 S. Ali et al.

querying) using for example a search algorithm (see [4] for details) and a new in-
stance is generated, which is again evaluated by OCL evaluation. OCL solving con-
tinues until an instance is found that satisfies C.

Fig. 2. OCL querying

Fig. 3. OCL solving

3 Industrial Applications

In this section, we present our industrial applications of OCL based on the concepts
and definitions presented in Section 2.

3.1 Model-Based Testing of Video Conferencing Systems

In this section, we discuss six applications of OCL, which are related to testing a
commercial Video Conferencing System (VCS) developed by Cisco Systems.

Case Study Description. Our first case study is a VCS called Saturn developed by
Cisco Systems Inc, Norway. The core functionality of Saturn manages establishing
and disconnecting video conferences. In total, Saturn consists of 20 subsystems such
as audio/video subsystems [5]. Each subsystem can run in parallel to the subsystem
implementing the core functionality. Saturn’s implementation consists of more than
three million lines of C code. Our second case study is about a product line of VCSs

 Insights on the Use of OCL in Diverse Industrial Applications 229

called Saturn Product Line, developed in Cisco Systems Inc, Norway. The Saturn
family consists of various hardware codecs ranging from C20 to C90. C20 is the low-
est end product with minimum hardware and has lowest performance in the family.

Table 3. Mapping of applications to various aspects of OCL

Application Case

Study
Model Elements #Constraints

Constructs/

Operations
Types of Attributes

A1
Test Data
Generation

VCS Guards 144 - Enumeration, Integer,

Boolean, String

MSM (Guards,

Change Events)

(11, 3) select, forAll,

implies, oclInState

Integer, Boolean,

String, Enumeration,

NFP_Real
BRE (11,1)

A2
Test Oracle
Generation

VCS State Invariants 100 select, collect,

forAll, exists,

includes, excludes

Enumeration, Integer,

Boolean, String

MSM/

BRE

Guards 3 select, forAll,

oclInState

Integer, Boolean,

NFP_Real

A3

Fault
Emulation

VCS Change Events 57 select, collect Enumeration, Integer,

Boolean, NFP_Real,

NFP_Percentage

A4

Crosscutting
Behavior
Modeling

VCS Change Events 57 select, collect Enumeration, Integer,

Boolean, NFP_Real,

NFP_Percentage

State Invariants 10 - Enumeration, Integer,

Boolean, NFP_Real,

NFP_Percentage

A5

Specifying
Non-
Functional
Properties

VCS Pointcuts 12 - Enumeration, Integer,

Boolean, String

Advice 144 - Enumeration, Integer,

Boolean, String

A6

Variability
Modeling

VCS Configuring UML

State Machine

52 select, forAll,

exists, includes,

excludes

Enumeration, Integer,

Boolean, String

Configuring

Aspect State

Machines

44 select, forAll,

exists, includes,

excludes

Enumeration, Integer,

Boolean, String,

NFP_Real,

NFP_Percentage

A7

Safety
Certification

SPCS Stereotypes 218 select, collect,

forAll, exists,

includes

No variables used.

A8

Configuration SCM Package, Stereo-

type, Class, Tem-

plateSignature,

Dependency

6 select, forAll,

allInstances,

Integer, Boolean,

String

230 S. Ali et al.

Problem Description. The first problem in this project is about supporting auto-
mated, model-based robustness testing of Saturn. Saturn should be robust enough to
handle the possible abnormal situations that can occur in its operating environment
and invalid inputs. For example, Saturn should be robust against hostile environment
conditions (regarding the network and other communicating VCSs), such as high
percentage of packet loss and high percentage of corrupt packets. Such behavior is
very important for a commercial VCS and must be tested systematically and automat-
ically to be scalable. More details on the robustness behavior of Saturn and its model-
ing can be found in [5]. The second problem in this project emerged while working
with model-based robustness testing discussed in the last paragraph. We wanted to
significantly reduce the amount of modeling effort required for MBT by devising a
product line modeling and configuration methodology since Video Conferencing
Systems (VCSs) are product lines.

Objectives. 1) Test Data Generation (A1) aims to solve OCL constraints to generate
data required to generate executable test cases. 2) Test Oracle Generation (A2) has
the objective of evaluating OCL constraints to determine if the execution of a test
case passed or failed. 3) Fault Emulation in Environment (A3) is to solve OCL con-
straints defined on the environment of a real-time embedded system with the goal of
generating the data that violates the constraints so that various faults can be emulated
in the environment to test the robustness of a system. 4) Specifying Non-Functional
Properties (NFPs) with MARTE (A4) aims to specify constraints on NFPs defined in
the UML MARTE profile using OCL. 5) Crosscutting Behavior Modeling (A5) was
proposed to model crosscutting behavior using Aspect State Machine (ASM) [2, 5, 6].
OCL queries are used to model Pointcuts [7] (a feature in Aspect-Oriented Model-
ing)— modeling elements of a standard UML state machine, on which an ASM
should be weaved. 6) Behavioral Variability Modeling (A6): The objective of this
application is to model and resolve various types of variability that exist in UML state
machines with the ultimate aim of reducing the modeling effort required for MBT of
different products in a product line.

Solution. Saturn consists of 20 subsystems. To model the functional behavior, for
each subsystem, we modeled a class diagram to capture APIs and state variables. In
addition, we modeled one or more state machines to capture the behavior of each
subsystem. On average each subsystem has five states and 11 transitions, with the
biggest subsystem having 22 states and 63 transitions. Note that, though an individual
subsystem may not look complex in terms of number of states and transitions, all
subsystems run in parallel to each other and therefore the space of system states and
possible execution interleaving are very large.

Saturn’s robustness behavioral models consist of five aspect class diagrams and
five aspect state machines. An ASM is a UML state machine extended with a UML
profile for AOM called AspectSM [5]. The largest ASM specifying robustness beha-
vior has three states and ten transitions, which would translate into 1604 transitions in
standard UML state machines without having AspectSM applied. The modeling of
ASM is systematically derived from a fault taxonomy [5] categorizing different types
of faults (faults in the environment such as communication medium and media

 Insights on the Use of OCL in Diverse Industrial Applications 231

streams that lead to faulty situations in the environment). Each ASM has a corres-
ponding aspect class diagram modeling different properties of the environment using
the MARTE profile, whose violations lead to faulty situations in the environment.

Saturn Product Line family also consists of 20 subsystems and each subsystem has
at least one configurable state machine specifying its functionality and on average
such state machine has five states and 11 transitions. Saturn product line family mod-
els also consist of 124 hardware configuration parameters and 99 software configura-
tion parameters.

Results. Table 3 provides a summary of the key results of applying OCL for all the
applications of all the projects. For each application, we report on which model ele-
ments OCL was specified and how many constraints were there in our industrial case
studies. In addition, for each application we provide OCL constructs and operations
used and also types of attributes used in the constraints. For example, for A3, we
modeled 57 change events with OCL Select and Collect operations. In addition, we
used attributes of types: Enumeration, Integer, Boolean, and a couple of NFPs from
MARTE. In all the applications, we used relational and logical operations, and hence
we do not mention them explicitly in the table.

3.2 Safety Certification

Case Study Description. This case study concerns the certification of the software
used in a subsea production control system (SPCS) developed by a large energy com-
pany in Norway. SPCS is a complex safety-critical system consisting of a myriad of
equipment types. An oil field consists of subsea oil wells that have an assembly of
control valves, pressure gauges and chokes attached to them that control the flow
of oil. These are all housed on a structure called a template attached to which is a
system of steel tubes, electrical and fiber optic cables that transport power and com-
munication signals from the surface to the subsea equipment. Finally there is equip-
ment to carry the oil to the surface. SPCS controls this entire system by sending and
receiving data between the surface and the subsea equipment thus allowing the engi-
neers at the surface to control and monitor the sub-sea equipment.

Problem Description. SPCS are subject to various industry and governmental regula-
tions and undergo a process of certification by a third-party certification. In our case
the SPCS was subject to a certification process against the IEC61508 standard for
electrical, electronic, or programmable electronic systems that are used in safety-
critical environments. The supplier of the system provides evidence that the system is
compliant with the criteria set in the requisite standard. Hence, there should be a con-
sistent interpretation of the standard being used by all parties involved. Without this
explicit interpretation there can be problems between the certifier and the supplier due
to the variance that exists. A systematic procedure is also needed for creating the ne-
cessary evidence, such that the supplier can properly interpret the standard in the con-
text of its application domain and verify whether sufficient evidence exists to satisfy
all the requirements of the standard [8].

232 S. Ali et al.

Objective. Certification Standards Modeling (A7). The objective of using OCL is to
assist system suppliers in establishing a relationship between a domain model of a
safety-critical application and the evidence model of a certification standard.

Solution and Results. A conceptual model of the evidence requirements of a safety
standard is created. This conceptual model is used as the basis for a UML profile of
the standard. The UML profile is used for stereotyping the elements of a domain
model of the system to be certified. When a stereotype from the profile is applied to a
domain model element, it shows how that element fulfills the requirements from the
standard. OCL constraints are added to the stereotypes to ensure certain properties of
the stereotypes as well as to guide system developers in refining the domain model.
When the OCL constraints associated with a stereotype are validated, they will start
the guidance process for augmenting the domain model with other stereotypes. This
may require the domain model to be updated so that the stereotype constraints are
satisfied. Table 3 summarizes our results of applying OCL for certification in row A7.

3.3 Architecture Variability Modeling for Supporting Automated Product
Configuration

Case Study Description. This case study is a product line of subsea control modules
(SCMs) developed by FMC Technologies, Norway. SCMs control all the equipment
and services located in the subsea, but communicates (via Network) with the topic
control units. SCMs are deployed with software, which can be configured differently
according to customers’ requirements, some of which include environment factors
(e.g., depth of the seabed), to control the subsea wells. An SCM contains subsea elec-
tronic modules, software applications deployed on them, and mechanical and electric-
al devices that are controlled and monitored by the software. The software application
deployed to the control modules is configured mainly based on the number, type, and
details of devices (e.g., sensors) connected to and controlled by the subsea electronic
module on which the software application is deployed.

Problem Description. Integrated Control Systems (ICSs) are typically large-scale,
highly configurable systems of systems such as SCMs. Such systems consist of large
number of subsystems typically geographically distributed and connected through
network. A family of ICSs share the same software code base, which is configured
differently for each product to form a unique installation and, therefore, a large num-
ber of interdependent variability points are introduced by both hardware and software
components. Due to the complexity of such systems and inadequate automation sup-
port, product configuration is typically error-prone and costly, and therefore an auto-
mated product configuration support is needed.

Objective. This application is about specifying the guidelines as OCL constraints for
the purpose of automated product configuration in the context of ICSs (A8).

Solution and Results. We developed a UML-based product line modeling methodol-
ogy (named as SimPL) that provides a foundation for supporting semi-automated
product configuration in the specific context of ICSs [9]. The SimPL profile together

 Insights on the Use of OCL in Diverse Industrial Applications 233

with inherent features of UML (i.e., templates and packages) enables comprehensive
modeling of variability points, tracing variability points to software and hardware
model elements, and grouping and hierarchically organizing the variability points. As
part of the SimPL methodology, we defined guidelines for modeling each view (e.g.,
software view, hardware view). To guide users through the process of applying
SimPL, a modeling environment was constructed to automatically enforce six OCL
constraints that correspond to these guidelines. Table 3 summarizes our results of
applying OCL for specifying and evaluating constraints that correspond to modeling
guidelines proposed as part of SimPL (Row A8).

3.4 Environment Model-Based Testing

Case Study Description. We apply the environment model-based testing to two in-
dustrial case studies. The first case study from WesternGeco is of a very large and
complex control system for marine seismic acquisition. The system controls tens of
thousands of sensors and actuators in its environment. The timing deadlines on the
environment are in the order of tenths of seconds. The system was developed using
Java. The second case study is an automated bottle-recycling machine developed by
Tomra AS. The system under test (SUT) was an embedded device ‘Sorter’, which was
responsible to sort the bottles into their appropriate destinations. The system commu-
nicated with a number of components to guide recycled items through the recycling
machine to their appropriate destinations. It is possible to cascade multiple sorters
with one another, which results in a complex recycling machine. The SUT was devel-
oped using C. Both the systems are Real-Time and Embedded Systems (RTESs) and
were running in environments that enforce time deadlines in the order of tenths of
seconds with acceptable jitters of a few milliseconds in response time.

Problem Description. RTESs typically work in environments comprising large num-
bers of interacting components. The interactions with the environment can be bound
by time constraints. Violating such time constraints, or violating them too often for
soft real-time systems, can lead to serious failures leading to threats to human life or
the environment. For effective testing of industrial scale RTESs, systematic auto-
mated testing strategies that have high fault revealing power are essential. The system
testing of RTESs requires interactions with the actual environment. Since the cost of
testing in real conditions tends to be high, environment simulators are typically used
for this purpose. For the industrial systems of WesternGeco and Tomra, we applied
one such approach for black-box system level testing based on the environment mod-
els of the systems. These models were used to generate an environment simulator [10,
11], test cases, and obtain test oracles [3]. For test case generation, we applied various
testing strategies, including search-based testing [12], adaptive random testing [13],
and a hybrid approach combining these two strategies [12].

Objectives. 1) Test Data Generation (A1). The objective of this application is to gen-
erate test data by solving OCL constraints in order to reach states in the environment
that represent a failure of the SUT (the “error” states). 2) Test Oracle Generation

234 S. Ali et al.

(A2). The objective of this application is to evaluate OCL constraints to determine if
the execution of a test case reached the “error” states or not.

Solution and Results. For the purpose of environment model-based testing, the envi-
ronment of the SUT was modeled using our proposed UML & MARTE Real-time
Embedded systems Modeling Profile (REMP) [14]. REMP provided extension to the
standard UML class diagram and state machine notations, and used the MARTE pro-
file for modeling timing details and non-deterministic events. The models developed
were constrained by OCL for the purposes mentioned in the previous section. The
structural details of an RTES environment were modeled as an environment domain
model, which captures the information of various environment components, their
properties, and their relationships. The behavioral details of the environment were
modeled using the state machine notation annotated with REMP. Such state machines
contain information of the nominal behavior of the components, their robustness be-
havior (e.g., breakdown of a sensor), and “error states” that should never be reached
(e.g., hazardous situations). Table 3 summarizes the results of applying OCL in our
context (rows A1 & A2).

4 Overall Discussion

In this section, we provide an overall discussion together with guidelines for practi-
tioners based on our experience of applying OCL.

4.1 Selecting a Subset of OCL

From Table 4, we can see that in most of the applications, select, collect, and forAll
were the most frequently used operations. Based on this observation, we can conclude
that even though OCL provides a rich collection of constructs and operations, in prac-
tice the complete specification is not usually required. This means that for applying
OCL in industrial applications one can select a well-defined subset of OCL that is
sufficient to serve a required purpose. Note that this is similar to the use of a subset of
UML and MARTE in practice as suggested in [1]. This also means that less training is
required to teach the subset of OCL, which aids its adoption in industry.

4.2 Choosing a Meta Level

From the last column in Table 4, we can see that six out of eight applications are re-
lated to MBT, all of which required specifying constraints at M1 and enforcing these
at M0. This observation is perfectly explainable because when dealing with test case
generation we are very close to the system/software design and implementation (low
level of abstraction). Recall that constraints specified at M1 correspond to the actual
system variables of the design or implementation while at the M0 level these con-
straints are enforced based on the runtime values of the variables.

 Insights on the Use of OCL in Diverse Industrial Applications 235

For A7 and A8, as we were dealing with UML profiles, therefore we specified the

constraints at the M2 level and these were enforced at the M1 level. Notice that in
these two applications, our problems were at a higher meta level than implementation,
i.e., architecture and design modeling of product lines for supporting configuration
(A7) and standard modeling for supporting safety certification (A8). In these two
cases, the resulting models to which the profiles were applied were UML class dia-
grams, which are at the M1 level.

Based on the above observations, we can conclude that constraint specification and
enforcement at all applicable levels works in the same way (i.e., specified at one level
and enforced in one level lower) and with pretty much the same set of OCL con-
structs. The only challenge, as far as we can see, is to select a right meta level for
specifying constraints, which heavily depends on the problem to be solved. If the
problem is related to the implementation, the most appropriate meta level is the pair
(M1, M0) as is the case for (A1-A6). If we are dealing with UML profile, the obvious
choice is to specify constraints at the M2 level and they will be automatically en-
forced at the profiled M1 level models. Moreover, the specification at the highest
meta level (M3) is needed to enforce constraints at the M2 level, which is commonly
used to define meta-models. This is suggested when there is a need in a particular

Table 4. Mapping of OCL applications to various purposes and meta level*

App. Industry Case Study Domain Modeling Diagrams Purpose (Spec.,
Enf.)

A1 CCS,
EES,
REC

VCS, MSM,
BRE

RTES System Behavior,
System Structure

CDs & SMs CSolv (M1, M0)

A2 CCS,
EES,
REC

VCS, MSM,
BRE

RTES System Behavior,
System Structure

CDs & SMs CE (M1, M0)

A3 CCS VCS, MSM,
BRE

RTES Environment Behavior CDs, SMs, &
ASMs

CE,
CSolv

(M1, M0)

A4 CCS VCS RTES System Behavior,
System Structure,
Environment Behavior

CDs & SMs OQ (M1, M0)

A5 CCS VCS RTES System Behavior,
System Structure,
Environment Behavior,
Architecture

CDs CSolv,
CE

(M1, M0)

A6 CCS VCS RTES Class Diagram-based,
State Based Variability

CDs & SMs CSolv (M1, M0)

A7 OGP SPCS ICS,
RTES

Safety Standard Profile, CDs CE (M2,M1)

A8 OGP SCM ICS,
RTES

Architecture CDs CE (M2,M1)

* CCS: Communication and Control System, EES: Energy Equipment and Services, REC: Recycling,
OGP: Oil and Gas Production, VCS: Video Conferencing System, MSM: Marine Seismic Acquisition,
BRE: Bottle Recycling, SPCS: Subsea Production Control System, RTES: Real-Time Embedded
System, ICS: Integrated Control System, CD: Class Diagram, SM: State Machine, ASM: Aspect State
Machine, Profile: UML Profile, SCM: Subsea Control Module, MM: Metamodel

236 S. Ali et al.

industry to define a new MOF-based domain specific language to solve a particular
problem in hand.

4.3 Choosing Diagram

In all our applications, class diagrams were used as the basis for modeling attributes
that required specifying OCL constraints. In addition, for the applications where be-
havior was required to be modeled, we used state machines as our case studies exhibit
state-based behavior. Of course, other behavioral diagrams (e.g., sequence diagrams)
can also be used in other contexts. Based on this observation, we can then conclude
that though choosing an appropriate diagram depends on application contexts; how-
ever at a minimum a UML class diagram representing various concepts required at
various meta levels is needed to hold attributes required for specifying OCL con-
straints. Moreover, choosing a particular diagram does not impact what OCL con-
structs are applied and which meta level to use.

4.4 Selecting a Purpose of OCL

In our applications, the most common use of OCL was to perform evaluation (6 out of
8 applications) followed by solving (4 out of 8). In addition, recall that specification
of constraints is required in solving, evaluating, parsing, and query as we discussed in
Section 2. This observation can be explained from the fact that to support automation,
e.g., test data generation, the specified constraints are required to be evaluated and/or
solved. Of course, if an application is only for the purpose of bringing additional pre-
cision to models, specification of constraints is sufficient. Notice that as we discussed
in Section 2.3., the most important step is OCL evaluation as it is also required for
OCL solving and thus suggesting that OCL evaluation is at the core of any automated
constraints manipulation activity. This is the reason that a wide variety of OCL evalu-
ators exist, such as OCLE 2.0 [15], OSLO [16], IBM OCL parser [17], and EyeOCL
Software (EOS) evaluator [18]. In all our applications except A7 and A8, we chose
EOS as it is one of the most efficient evaluators for OCL. Notice that for A4 and A9,
where we used OCL for querying, we again used EOS. For A7 and A8, we used the
OCL evaluator built-in in IBM Rational Software Architect, because it has a good
support for enforcing the constraints specified on UML profiles on M1 level models.

Several OCL solvers exist in the literature that translate OCL into other formalisms
[19-24] such as Alloy and Satisfiability Problem (SAT) to solve them. In our industri-
al applications, we developed our own OCL Solver called EsOCL [4] based on search
algorithms since the existing solvers either did not handle important features of OCL
such as collections or their operations [19, 20], were not scalable, or lacked proper
tool support [21].

5 Conclusion

This paper presents our experiences of applying the Object Constraint Language
(OCL) on six industrial case studies. The case studies belong to diverse industrial

 Insights on the Use of OCL in Diverse Industrial Applications 237

domains including Communication and Control, Energy Equipment and Services,
Recycling, and Oil and Gas Production. In these case studies, OCL is applied solving
various industrial problems including model-based testing, safety certification, and
automated product configuration. The results of the industrial case studies showed
that a well-selected subset of OCL notations was sufficient for various problems for
various purposes including constraint evaluation, solving, and querying. We found
that OCL constraint specification and enforcement at various meta levels of MOF
works in the same way, i.e., specified at Mx level and enforced at Mx-1 where x={1, 2,
3}. OCL evaluation is a fundamental activity and is the core of all our industrial ap-
plications. Based on our findings, we presented guidelines for practitioners that can
help them choose an appropriate purpose of OCL and meta level.

Acknowledgments. Muhammad Zohaib Iqbal was partly supported by ICT R&D
Fund, Pakistan (ICTRDF/MBTToolset/2013) and by National Research Fund, Lux-
embourg (FNR/P10/03).

References

1. Iqbal, M.Z., Ali, S., Yue, T., Briand, L.: Experiences of Applying UML/MARTE on Three In-
dustrial Projects. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012.
LNCS, vol. 7590, pp. 642–658. Springer, Heidelberg (2012)

2. Ali, S., Briand, L., Arcuri, A., Walawege, S.: An Industrial Application of Robustness
Testing using Aspect-Oriented Modeling, UML/MARTE, and Search Algorithms. In:
Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 108–122.
Springer, Heidelberg (2011)

3. Arcuri, A., Iqbal, M., Briand, L.: Black-Box System Testing of Real-Time Embedded Sys-
tems Using Random and Search-Based Testing. In: Petrenko, A., Simão, A., Maldonado,
J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 95–110. Springer, Heidelberg (2010)

4. Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.: Generating Test Data from OCL Constraints
with Search Techniques. IEEE Trans. Softw. Eng. 39(10), 1376–1402 (2013)

5. Ali, S., Briand, L.C., Hemmati, H.: Modeling Robustness Behavior Using Aspect-Oriented
Modeling to Support Robustness Testing of Industrial Systems. Software and Systems
Modeling 11(4), 633–670 (2012)

6. Ali, S., Yue, T., Briand, L.C.: Does Aspect-Oriented Modeling Help Improve the Reada-
bility of UML State Machines? Software & Systems Modeling 13(3), 1189–1221 (2014)

7. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning Publica-
tions (2003)

8. Panesar-Walawege, R.K., Sabetzadeh, M., Briand, L.: Supporting the verification of com-
pliance to safety standards via model-driven engineering: Approach, tool-support and em-
pirical validation. Information and Software Technology 55(5), 836–864 (2013)

9. Behjati, R., Yue, T., Briand, L., Selic, B.: SimPL: A Product-Line Modeling Methodology
for Families of Integrated Control Systems. Information and Software Technology 55(3),
607–629 (2013)

10. Iqbal, M.Z., Arcuri, A., Briand, L.: Code Generation from UML/MARTE/OCL Environ-
ment Models to Support Automated System Testing of Real-Time Embedded Software.
Simula Research Laboratory, Technical Report (2011-04) (2011)

238 S. Ali et al.

11. Iqbal, M.Z., Arcuri, A., Briand, L.: Environment modeling and simulation for automated
testing of soft real-time embedded software. Softw Syst. Model. 1–42 (2013)

12. Iqbal, M.Z., Arcuri, A., Briand, L.: Combining search-based and adaptive random testing
strategies for environment model-based testing of real-time embedded systems. In: Fraser,
G., Teixeira de Souza, J. (eds.) SSBSE 2012. LNCS, vol. 7515, pp. 136–151. Springer,
Heidelberg (2012)

13. Iqbal, M.Z., Arcuri, A., Briand, L.: Automated System Testing of Real-Time Embedded
Systems Based on Environment Models. Simula Research Laboratory, Technical Report
(2011-19) (2011)

14. Iqbal, M.Z., Arcuri, A., Briand, L.: Environment Modeling with UML/MARTE to Support
Black-Box System Testing for Real-Time Embedded Systems: Methodology and Industrial
Case Studies. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I.
LNCS, vol. 6394, pp. 286–300. Springer, Heidelberg (2010)

15. Chiorean, D., Bortes, M., Corutiu, D., Botiza, C., Cârcu, A.: OCLE. (September 2009),
http://lci.cs.ubbcluj.ro/ocle/

16. Hein, C., Ritter, T., Wagner, M.: Open Source Library for OCL (2009)
17. Drusinsky, D.: Modeling and Verification using UML Statecharts: A Working Guide to

Reactive System Design, Runtime Monitoring and Execution-based Model Checking.
Newnes (2006)

18. Egea, M.: EyeOCL Software (September 2009), http://maude.sip.ucm.es/eos/
19. Aertryck, L.V., Jensen, T.: UML-Casting: Test synthesis from UML models using con-

straint resolution. Approches Formelles dans l’Assistance au Développement de Logiciels
(AFADL 2003) (2003)

20. Benattou, M., Bruel, J., Hameurlain, N.: Generating test data from OCL specification. In:
Proceedings of the Workshop:Workshop on Integration and Transformation of UML Mod-
els at ECOOP 2002 (WITUML) (2002)

21. Bao-Lin, L., Zhi-shu, L., Qing, L., Hong, C.Y.: Test case automate generation from UML-
sequence diagram and OCLexpression. In: International Conference on Computational In-
telligence and Security, pp. 1048–1052 (2007)

22. Clavel, M., Dios, M.A.G.D.: Checking unsatisfiability for OCL constraints. In: Proceed-
ings of the Workshop: The Pragmatics of OCL and Other Textual Specification Languages
at MoDELS 2009, Electronic Communications of the EASST, vol. 24 (2009)

23. Kyas, M., Fecher, H., Boer, F.S.D., Jacob, J., Hooman, J., Zwaag, M.V.D., Arons, T.,
Kugler, H.: Formalizing UML Models and OCL Constraints in PVS. Electron. Notes
Theor. Comput. Sci. 115, 39–47 (2005)

24. Brucker, A.D., Krieger, M.P., Longuet, D., Wolff, B.: A specification-based test case gen-
eration method for UML/OCL. In: Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS,
vol. 6627, pp. 334–348. Springer, Heidelberg (2011)

Model-Based Mining

of Source Code Repositories

Markus Scheidgen and Joachim Fischer

Humboldt-Universität zu Berlin,
Unter den Linden 6, 10099 Berlin, Germany

{scheidge,fischer}@informatik.hu-berlin.de

Abstract. The Mining Software Repositories (MSR) field analyzes the
rich data available in source code repositories (SCR) to uncover interest-
ing and actionable information about software system evolution. Major
obstacles in MSR are the heterogeneity of software projects and the
amount of data that is processed. Model-driven software engineering
(MDSE) can deal with heterogeneity by abstraction as its core strength,
but only recent efforts in adopting NoSQL-databases for persisting and
processing very large models made MDSE a feasible approach for MSR.
This paper is a work in progress report on srcrepo: a model-based MSR
system. Srcrepo uses the NoSQL-based EMF-model persistence layer
EMF-Fragments and Eclipse’s MoDisco reverse engineering framework
to create EMF-models of whole SCRs that comprise all code of all re-
visions at an abstract syntax tree (AST) level. An OCL-like language is
used as an accessible way to finally gather information such as software
metrics from these SCR models.

1 Introduction

Software repositories hold a wealth of information and provide a unique view of
the actual evolutionary path taken to realize a software system [17]. Software
engineering researchers have devised a wide spectrum of approaches to extract
this information; this research is commonly subsumed under the term Mining
Software Repositories (MSR). A specific branch of MSR uses statistical analysis
of code metrics gathered for each software revision to understand the evolu-
tion of software projects [16]. Recent advances in large-scale data processing
(i.e., NoSQL-databases and Map/Reduce-style processing) allowed to extend
this research to large or even ultra-large scale software repositories that com-
prise a large number of software projects [11]. Examples for large repositories
are the projects hosted under the umbrella of the Apache Software Foundation or
the Eclipse Foundation, and ultra-large repository examples are web-based soft-
ware project hosting services like GitHub (250.000+ projects) or SourceForge
(350.000+ projects) [11]. But analyzing many heterogeneous software projects
has limits. While existing approaches [11,13,2,15] manage to abstract from differ-
ent code versioning systems (e.g., CVS, SVN, Git), different programming lan-
guages with different syntax and semantics are still a major issue. The EU FP 7

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 239–254, 2014.
c© Springer International Publishing Switzerland 2014

240 M. Scheidgen and J. Fischer

project FLOSS [13], for example, produced data sets for over 3000 libre software
projects, but could only gather language independent text-based metrics, like
lines of code (LOC). But many software evolution approaches [16,5,26,28] depend
on object-oriented metrics (e.g., CK-metrics [8]) or more precise complexity-
based size metrics (e.g., Halstead or McCabe) that can only be gathered by ag-
gregating the occurrences of concrete language constructs and therefore require
the analysis of abstract syntax trees (AST). Furthermore, other MSR techniques,
like implicit dependencies [29] or mining for common API-usage patterns [21],
also require a language dependent syntax-based analysis.

We hypothesize that MDSE methods and tools, like reverse engineering frame-
works (e.g., MoDisco [7]) and the recent adoption of NoSQL-databases for per-
sisting and processing very large models (e.g., [12,6,24]), allow us to implement
an MSR-system that overcomes these issues and fulfills the following goals:

1. the potential to abstract from different programming languages and version
control systems

2. syntax-based source code analysis, i.e., analysis of models for corresponding
ASTs

3. high accessibility and low programming efforts through high-level languages
4. scalability through NoSQL-based model persistence that enables highly con-

current model processing

We started to implement a model-based MSR-system, coined srcrepo1, in order
to verify this hypothesis and research whether the stated goals are achievable.

Note that srcrepo only covers the analysis of source code repositories and
does not deal with other aspects of software repositories, such as issue tracking
systems, mailing-lists, Wiki-entries, etc., which are important additional data
sources for many MSR techniques.

This paper is organized as follows. First, we describe the process of analyzing
repositories with srcrepo and introduce all necessary components of our system.
After that, we take a detailed look at some of these components: the used meta-
model for versioned source code (Section 3), our model persistence layer EMF-
Fragments [24] (Section 4), and an OCL-like DSL that can be used to calculate
and aggregate software metrics (Section 5). The evaluation in Section 6 discusses
our preliminary findings. We finally present related work and conclusions.

2 srcrepo’s Analysis Process and Components

Figure 1 shows the basic process of a srcrepo-based analysis and all the entities
that are involved.

The process starts with existing software projects as they are typically found
in (ultra-)large scale software repositories like GitHub or SourceForge (top left).
They usually entail a source code repository that is maintained by a version
control system like CVS, Git, or SVN. The source code repository provides the

1 http://github.com/markus1978/srcrepo

http://github.com/markus1978/srcrepo

Model-Based Mining of Source Code Repositories 241

large scale software
repositories

(e.g., github, sourceforge)

statistics software
(e.g., R, Matlab)

srcrepo storage
(EMF-models via EMF-Fragments,

e.g., on mongodb)

srcrepo runtime
(headless eclipse RCP)

revisions
sources

m
etrics

O
C

L

E
M

F
-C

o
m

p
a

re
O

C
L

p
a

ree

LLL

E
M

E
M

E
M

E
M

FF
-

F
C

o
C

O
CCC

LLLLLLLLLLL

C3

source code

repository

(e.g., controlled

by Git, SVN, CVS)

source code

(e.g., java, C++,

eclipse*)is
su

e
tr

ac
ke

r,
m

ai
lin

g
lis

ts
, w

ik
i

1

2 3

A1 A3B2

revision tree

AST-models of new and

changed CUs

1

2 3

S1 S2 S2

revision tree

fu
lly

 re
so

lv
e

d
 sn

a
p

sh
o

t

m
o

d
e

ls

A1
B2

A1
C3B2

A3

software projects

import analysis

M1

M1-2

M1

M1-2

M2 M2

M2-3

store
D1-2

M2 M3

M2-3

D2-3

timelines of metrics

 export

Fig. 1. Schematic visualization of the srcrepo analysis process

actual source code organized in files. These files represent the smallest compilable
units of source code and are therefore referred to as compilation units (CUs).
Please note that CUs are only an organizational concept and not necessarily re-
late to a programming language construct, even though CUs sometimes contain
a single class or module of the same name. Source code is written in a program-
ming language, but the version control system only treats CUs as plain text
files. Software projects also come with other repositories such as issue trackers,
mailing lists, etc., which are not processed by srcrepo.

Now srcrepo provides the functionality to create an EMF-model from source
code repositories as a single import step. First, srcrepo creates a model of the
revision tree. The revision tree is a lattice of nodes each representing a single
commit of changes to the source code repository. Each revision has a unique
ID; for simplicity the figure shows revisions with numbers as IDs (1 . . . 3). Each

242 M. Scheidgen and J. Fischer

revision relates to the files that were added, modified, or deleted within the
corresponding commit. Currently srcrepo uses the JGit Java API to read the
revision tree from Git controlled source code repositories. Srcrepo’s meta-model
for revision trees is explained in the next section. For each file referenced by each
revision, srcrepo creates a model of the contained source code. Currently srcrepo
supports Java source code and uses the EMF-based reverse engineering frame-
work MoDisco [7] to create an EMF-model for each compilation unit (depicted
via capital letters A. . .C followed by superscripted revision numbers). MoDisco
models are AST-level models that contain instances for all language constructs
from classes to literals. Even though MoDisco collects named elements and ref-
erences within the Java code, the references are not yet resolved because in the
current step CUs are processed individually and references may refer to entities
in other CUs. But srcrepo stores all paths to named elements and references as
part of the source code repository model (see the meta-model in the next sec-
tion). Importing repositories is a rather slow process: checking out each revision
in a large repository takes a lot of time. Therefore, we persist the created mod-
els. This allows us to repeat the next steps without having to redo the import
each time. But, AST-level models are rather large compared to the source code
they are taken from. Our experience confirms [18]’s observation of factor 400.
For example, the 53MB Git repository of EMF (org.eclipse.emf) is turned into
a 20GB model (using a binary serialization, not XMI). To process such large
models, we use EMF-Fragments [24] that automatically fragments the model into
many small resources that are stored in a NoSQL-database. EMF-Fragments is
introduced in Section 4.

Based on the model created during import, we can now start the actual anal-
ysis. Srcrepo provides the necessary functionality to traverse the revision tree
and to create snapshots Sx for each revision. These snapshots contain a model
of all the CUs created in all revisions before, not just of the CUs changed in
the current revision. Therefore, each snapshot represents the whole codebase at
the current revision. Srcrepo uses the stored data on named elements and ref-
erences to resolve all references and create a fully linked model. Of course, we
do not create all snapshots at once, but only a couple at a time. This allows us
to perform this step within a single runtime (i.e., JVM) without running into
memory issues. But this also means that snapshots have to be processed indi-
vidually. Which is fine, since all software evolution and MSR methods are based
on analyzing snapshots sequentially or on analyzing the differences between two
successive snapshots.

Clients should have different very accessible options to analyze these snap-
shots. Currently, we are working on the option to use an OCL-like language
to count and aggregate occurrences of language constructs (refer to Section 5).
This is enough to calculate most existing code metrics (depicted by Mx). The
language allows clients to write OCL-like expressions that are executed for the
whole revision tree. Since snapshots can be analyzed individually, srcrepo can
run these queries concurrently on different revisions. As future work, we plan
to use EMF Compare to analyze the differences between snapshots. This is for

Model-Based Mining of Source Code Repositories 243

example valuable to find implicit dependencies similar to [29], or to analyze typ-
ical change patterns/refactorings [27]. The results of EMF Compare Dx−y can
also be processed via OCL. EMF-based model transformation languages are an-
other option for analyzing snapshot models that we need to evaluate. Of course,
there is always the possibility to use plain Java code, since all involved models
are plain EMF-models.

The artifacts created during analysis (e.g., code metrics, metrics on differ-
ences) are also models (e.g., there is an OMG standard/meta-model for orga-
nizing software metrics2). These result models are also stored within the same
storage that is used to persist the repository models. This allows us to maintain
cross references between results and the entities that these results were created
from (cross references not shown in Fig. 1). For example, we can use srcrepo to
calculate McCabe’s cyclomatic complexity for each method and link the result-
ing numbers to the corresponding methods. Thus, we calculate this metric once
and can use it repeatedly in later analysis runs (e.g., use them as weights to
calculate the CK-metric Weighted Methods per Class (WMC) [8].

As a final step, results are exported for the use in statistics software, such as
R or Matlab. The statistics software can then be used to process and analyze
the gathered ”raw”-data into human readable charts and other forms of usable
knowledge.

3 A Meta-Model for Source Code Repositories

Figure 2 shows the meta-model that we currently use for representing source
code repositories.

The top part contains the elements used to model revision trees. A Repo-
sitoryModel contains revisions (Rev) that are connected via RevRelations
(thus forming a lattice of revisions). Relations between revisions can be navigated
both ways. The relation between two revisions contains all Diffs between those
revisions. A Diff can reference a changed file. There can be a reference to a
model of the file (AbstractFileRef).

In the middle part of the diagram, we have source code related constructs.
A CompilationUnitRef is a concrete file reference targeting a model of a
compilation unit. PendingElements and Targets are used to store references
and named elements within code. We later use this data to resolve all references
in snapshots models.

The lower part of the diagram shows (only) some elements from the MoDisco
meta-model, which is used to represent the actual Java code. Each Compila-
tionUnitRef refers to its own Model, i.e., we store a Java model for each CU
separately. During analysis, srcrepo will merge the models of multiple CUs into
snapshots and resolve all references stored within the individual models of the
corresponding CUs.

2 http://www.omg.org/spec/SMM/1.0/

http://www.omg.org/spec/SMM/1.0/

244 M. Scheidgen and J. Fischer

re
vi

si
on

 tr
ee

so
ur

ce
 c

od
e

M
oD

is
co

«f
ra
gm

en
ts
»

«fragments»

Fig. 2. Meta-model for source code repositories

4 Model Persistence in NoSQL-Databases

We build a model persistence framework for EMF [25] called EMF-fragments [22].
EMF-Fragments is different from frameworks based on object-relational map-
pings (ORM) like Connected Data Objects (CDO). While ORM mappings map
single objects, attributes, and references to database entries, EMF-Fragments
maps larger chunks of a model (fragments) to URIs that reference these frag-
ments. Such fragmented models can then be saved to databases that allow us
to store maps between keys (URIs) and values (serialized fragments). There is a
wide range of such (distributed) data-stores including (distributed) file-systems
and document-databases like Hadoop’s HBase or mongodb.

Model-Based Mining of Source Code Repositories 245

EMF-Fragments uses and extends the regular EMF resource API [25]: each
fragment is an EMF resource, a fragmented model is an EMF resource set. Re-
sources have URIs (key) and can be serialized (value). EMF-Fragments uses
EMF’s URI converters to map URIs and serialized resources to database en-
tries. EMF already supports on-demand loading (and later unloading) of re-
sources, and EMF-Fragments simply triggers this functionality to automatically
and transparently create, delete, save, and unload fragments/resources. EMF-
Fragments only holds a few fragments in main memory at the same time and
therefore can process arbitrary large models with limited main memory. EMF-
Fragments automatically unloads fragments that are no longer used (referenced
in Java terms) by clients. Note that at least the largest fragment has to fit
into main memory, since fragments have to be loaded as a whole. To fragment
a model, clients have to annotate their meta-models and designate references
that shall fragment corresponding models. EMF-Fragments listens to changes
on these references and creates and deletes fragments accordingly. Figure 3 ex-
emplifies fragmentation on meta-model and model level.

Fig. 3. Fragmentation of models

The srcrepo meta-model in Fig. 2 further exemplifies the use of frag-
menting references, here annotated as UML stereotypes (i.e., with guillemets,
set in italic). In consequence, each revision with all its RevRelations
and Diff information is stored in an individual database entry. Each
CompilationUnitModel is consequently stored in another database entry.
The assumption is that single revisions and single compilation units will always
fit into main memory. On the other hand, we usually analyze whole revisions
and whole CUs, and therefore we would not benefit from further fragmentation.
Should we, for example, discover that we often only look at parts of a CU (e.g.,
are only interested in class, field, and method declarations), we could further
fragment the model (e.g., mark the reference between declaration and body as
fragmenting) and therefore prevent the loading of irrelevant model parts. For a
detailed discussion on how to design fragmentation refer to [24].

246 M. Scheidgen and J. Fischer

5 An OCL-Like Language for Ascertaining Software
Metrics

5.1 Why OCL?

Even though OCL is called the Object Constraint Language, it can be used
to write expressions with other return types than boolean. OCL was designed
to easily navigate between model elements via their associations. To navigate
multi-valued association ends comfortably, OCL provides a set of higher-order
collection operations that allow to quickly collect, select, and otherwise process
association ends. This makes OCL a good language to aggregate data about
a model, while navigating that model. The following example OCL expression
counts the classes contained in the top-level packages of a MoDisco model.

1 context Model:
2 self.ownedElements→collect(p | p.ownedElements)→size

Listing 1.1. OCL for collecting all types in all top-level packages of a MoDisco model

5.2 Why Not OCL?

Despite its merits, OCL was not designed to write complex ”programs”. OCL
can be used to implement functionality but not to declare it. Therefore, concepts
to structure OCL code are very limited: there is no way to write parameterized
functions for example with-in OCL: callable context for OCL expressions has to
be provided out-side of OCL, e.g., in an UML class diagram. Further, its side-
effect free design makes it impossible to store results by means of creating and
modifying new model elements, e.g., creating and filling a metrics-model.

Therefore, we wanted to extend OCL, or rather create a language that contains
what we like about OCL. Similar to [14], where the authors mimic the syntax
of model transformation languages in a very extensible internal Scala DSL, we
transfered OCL’s collection operations to Scala. Filip Krikava presents a way to
transfer OCL’s higher-order function syntax to Scala’s lambda inspired function
objects3. Besides its flexible syntax, Scala also provides type-inference. This
allows us to omit most type information while retaining full static type safety
and sensible code assist, which is essential when dealing with complex meta-
models such as MoDisco’s Java Model. The following shows the expression of
the previous example in OCL-like Scala syntax.

1 def firstPackageLevelTypes(self: Model):Int =
2 self.getOwnedElements().collect(p⇒ p.getOwnedElements()).size()

Listing 1.2. Collecting all types in all top-level packages with OCL-like collections in
Scala

3 http://www.slideshare.net/krikava/enriching-emf-models-with-
scala

http://www.slideshare.net/krikava/enriching-emf-models-with-scala
http://www.slideshare.net/krikava/enriching-emf-models-with-scala

Model-Based Mining of Source Code Repositories 247

Instead of defining the context of the expression (line 1), we define a func-
tion with corresponding parameter and return type. The resemblance between
the OCL expression body and the Scala body is apparent. We implemented
these OCL-like collection operations (as declared in Listing 1.3) on top of Java
Iterables; implicit conversions between Iterables and OclCollections
provide these operations immediately to all Java and Scala collections including
EMF’s collections. Besides OCL’s collect and select operations, we also added a
few operations tailored for calculating metrics:

1 trait OclCollection[E] extends java.lang.Iterable[E] {
2 ...
3 def collect[R](exp:(E)⇒ R):OclCollection[R]
4 def collectAll[R](exp:(E)⇒ OclCollection[R]):OclCollection[R]
5 def collectNotNull[R](exp:(E)⇒ R):OclCollection[R]
6 def collectClosure(exp:(E)⇒ OclCollection[E]):OclCollection[E]
7

8 def select(expr:(E)⇒ Bool):OclCollection[E]
9 def selectOfType[T]:OclCollection[T]

10

11 def aggregate[R,I](exp:(E)⇒ I,start:()⇒ R,aggr:(R, I)⇒ R):R
12 def sum(exp:(E)⇒ Double):Double
13 def product(exp:(E)⇒ Double):Double
14 def max(exp:(E)⇒ Double):Double
15 def min(exp:(E)⇒ Double):Double
16 def avg(exp:(E)⇒ Double):Stats[Double]
17

18 def run(runnable:(E)⇒ Unit):Unit
19 }

Listing 1.3. Additional OCL-like collection functions defined in Scala

collectAll collects and flattens the result; collectNotNull behaves like
collect, but omits Null values; collectClosure applies the expression re-
cursively to the result until no more new elements are found. selectOfType
selects elements of a certain type and returns a collection with casted values.
aggregate allows to easily implement aggregation. sum, for example, is imple-
mented as:

1 sum(exp:(E)⇒ Double):Double =
2 aggregate[Double,Double](exp, ()⇒ 0, (a,b)⇒ a+b)

5.3 Example Usage to Calculate CK-Metrics

The following demonstrates the OCL-like collections by implementing three of
the CK-metrics [8]: Weighted Methods per Class (WMC)4, Coupling Between
Object classes (CBO), Number Of Children (NOC). To average these metrics

4 Commonly weighted with unity or McCabe [16]. We use unity here.

248 M. Scheidgen and J. Fischer

1 def classes(model:Model):OclCollection[ClassDeclaration] = model
2 .getOwnedElements()
3 .collectClosure(pkg⇒ p.getOwnedPackages())
4 .collectAll(pkg⇒ pkg.getOwnedElements())
5 .collectClosure(typeDcl⇒ typeDcl
6 .getBodyDeclarations()
7 .selectOfType[ClassDeclaration]
8)
9

10 def WMC(clazz:ClassDeclaration):Int = clazz
11 .getBodyDeclarations()
12 .selectOfType[MethodDeclaration]()
13 .size()
14

15 def CBO(clazz:ClassDeclration):Int = {
16 val types=new HashSet[AbstractTypeDeclaration]()
17 clazz.eContents()
18 .closure(e⇒ e.eContents())
19 .selectOfType[AbstractMethodInvocation]()
20 .collectNotNull(inv⇒ inv.getMethod())
21 .collectNotNull(meth⇒ meth.getReturnType())
22 .collectNotNull(typeAccess⇒ typeAccess.getType())
23 .select(typeDcl⇒ types.add(typeDcl)
24 .size()
25 }
26

27 def NOC(clazz:ClassDeclaration):Int = clazz
28 .getUsagesInTypeAccess()
29 .select(e⇒ e.eContainer()
30 .isInstanceOf[AbstractTypeDeclaration])
31 .size()
32

33 def averageWMC(model:Model):Double =
34 classes(model).avg(clazz⇒ WMC(clazz)).value
35 ...

Listing 1.4. Some CK-Metrics expressed in Scala with OCL-like collection operations

over all classes, we also demonstrate an operation that collects all classes in a
model (line 1). Note that all required recursion (i.e., gathering all packages, in all
packages, etc. and all the inner classes in all other potential inner classes, etc.) is
covered through the use of collectClosure (lines 3 and 5). The meta-model
excerpt of MoDisco in Fig. 4 explains the navigated classes and associations.

Model-Based Mining of Source Code Repositories 249

Model

Class

Declaration

Abstract

Body

Declaration

Package

Abstract

Type

Declaration

Method

Declaration

Abstract

Method

Invocation

TypeAccess

ownedElements

ownedElements

ownedPackages

bodyDeclarations

superInterfaces

superClass

returnType

type

usagesInTypeAccess

method

*

* *

*

**

1

1

1

1

Fig. 4. Simplified excerpt of the MoDisco meta-model

5.4 Implementation

The straight forward method of implementing these OCL-like collection opera-
tions is to create a new collection for each operation call to hold the results. This
approach, however, requires to keep all used collections in memory, even though
one is just interested in an aggregation of these interim results. For instance,
consider counting all classes in all revisions of a source code repository:

1 def countAllClasses(repo:RepositoryModel):Int = repo
2 .getAllRevs().
3 .collectAll(rev⇒ rev.getParentRelations())
4 .collectAll(parent⇒ parent.getDiffs())
5 .collect(diff⇒ diff.getFileRef())
6 .selectOfType[CompilationUnitRef]
7 .collectAll(classes(cu.getModel()))
8 .size()

Listing 1.5. Example aggregation of a large model

This would mean to create and keep in memory a list of all ParentRela-
tions, all Diffs, . . . , and all ClassDeclarations. If we wanted to count
all calls of a certain method, for example, we would have to go even deeper and
eventually hold most of the repository model in memory.

To retain scalability, we implemented the collection operations differently.
Instead of creating collections that contain all the interim results, we create it-
erators that behave like collections containing the corresponding results. The
iterators only hold references to the current element and loose these references

250 M. Scheidgen and J. Fischer

when they move to the next element. Remember that EMF-Fragments can au-
tomatically unload resources that contain unreferenced model elements. This
allows us to navigate the whole model and aggregate data and only have small
parts of the model in memory at the same time. Figure 5 visualizes the differ-
ence. With the straightforward approach, all model elements have to be kept in
memory in order to count the elements on level 4 (the levels 1-4 represent the
results created in lines 1-4). With the iterator-based approach, only the red ele-
ments have to be loaded at the same time; they represent those elements that are
currently collected from the respective iterator positions (white on red ground).

:RepositoryModel

:Rev :Rev :Rev

:Par... :Par... :Par... :Par... :Par... :Par...

:Diff :Diff :Diff :Diff :Diff :Diff :Diff :Diff :Diff :Diff

1

2

3

4

Fig. 5. Object diagram depicting the model elements involved in executing Listing 1.5

6 Current State, Problems, Limitations, and Future
Work

Currently, the presented components of srcrepo work as described. With respect
to the defined four goals (Section 1), we encountered the following problems in
dealing with heterogeneous repositories (goal 1) and scalability (goal 4).

Our system srcrepo currently only supports Git-based source code repositories
that contain Java code with Eclipse project meta-data. Most notably this meta-
data contains information about which files are actual sources and how the
class-path looks like. We are convinced that our revision meta-model can work
as an abstraction for other version control systems as well, and we are working on
support for SVN as a proof of concept. Supporting other programming languages
is a different class of problem. While the use of models, in principle, proliferates
abstraction, it is not obvious that a reasonable abstraction (i.e., an abstraction
that works for MSR) exists. MoDisco for example claims to be an extensible
framework, but up to this moments it only supports Java and its meta-model is
just an EMF-version of Eclipse’s JDT datamodel. OMG’s Knowledge Discovery
Metamodel (KDM) (which, in addition to the given Java meta-model, is also
supported by MoDisco) might be such a reasonable abstraction, but this has
to be evaluated carefully. A different solution is to simply add meta-models for
other languages. But this means that all parts of an analysis that are language

Model-Based Mining of Source Code Repositories 251

specific, also have to be implemented for all other programming languages and
their respective meta-models. An abstraction of the results (e.g., most software
metrics can be defined for many languages) could still provide value: clients will
need to deal with different languages during source code analysis, but not for
studying the resulting metrics.

We also encountered performance issues that currently prevent a reasonable
application of srcrepo on a large number of real life software repositories. These
problems have three causes.

First, creating a snapshot model for each revision individually, involves a lot
of repeated computation, since only a small part of the underlying compila-
tion units (CU) actually changes from revision to revision. We are working on
an incremental snapshot creation that merges differences into the snapshots of
previous revisions and therefore reduces the workload drastically.

Secondly, CUs are atomic to srcrepo. When a CU changes, srcrepo will process
that changed CU as a whole, even if only a small part has changed. This is fine for
typically sized CUs, but in some seldom cases (especially when code generation is
involved) CUs become very big. For example, the code repository of EMF itself
contains a >3MB CU. This massive Java file with >600.000LOC has various
aspects of EMF generated into it. Not only is it very large, but it also has a
lot of dependencies to other parts of the source code. Thus, it also changes very
often and therefore makes the problem even bigger. Obviously, we have to use
a more granular unit as the smallest changeable part. Unfortunately, however,
CUs are the smallest common nominator between the syntax-based view and
the text-file-based view that version control systems offer. CUs and files can be
directly mapped onto each other: each CU corresponds to a file. Finer units like
class members on one side and distinct lines of text on the other side are much
harder to map to each other. Therefore, we will always have to parse the whole
CU, but we do not necessarily have to convert the whole AST into a model,
and we certainly do not have to store the whole CU model. We can either map
text-based difference information from the version control system onto the AST
to determine which elements have actually changed, or employ some form of
model comparison (e.g., EMF Compare) on ASTs/models.

Thirdly, at first glance, it should be easy to run most of an analysis in parallel,
since all revisions can be analyzed individually. However, things become more
complicated, if we introduce incremental snapshot creation as described as a
possible solution to the first problem. We still have to implement concurrency
that is sensitive to this issue.

As a general last limitation, srcrepo only analyzes source code repositories.
For a lot of research (e.g., [21,16,5]) in MSR, this has to be integrated with other
systems to analyze source code repositories in unity with other parts of software
repositories, e.g., issues-tracking systems, mailing lists, Wiki’s, etc.

7 Related Work

The field Mining Software Repositories is as old as software repositories; an
overview of recent research can be found here [17]. A recent facet of this research

252 M. Scheidgen and J. Fischer

is gathering large metrics-based data-sets from large and ultra-scale repositories.
Our framework also aims at doing so.

The Floss project (EU Framework Programme 7) [13] gathered per revision
data-sets of language independent text-based metrics from more than 3000 libre
software projects. Their tool Alitheia [15] not only gathers metrics from source
code (CVS, SNV, and Git), but also data from issue tracking and mailing lists.
Thereby, the project goal was not to analyze this data, but to create a compre-
hensive common database for other researchers. Sourcerer [2] is a example for
a language-dependent approach. In this project, over 4000 libre software Java
projects have been mined for metrics based on class, field, and method decla-
rations [9]. But, the project only gathered data from released revisions, not for
whole repositories. Similar projects and tools are BOA [11] and Harmony5.

Another source for related work is the recent adoption of NoSQL-databas-
es [19,20,10] for the persistence of large models [3]. The use of document or graph
databases promises better performance and scalability than traditional object
relational mapping (ORM)-based technologies like CDO6 or Teneo7. In [6,3],
the authors implement EMF-persistence for graph databases. Morsa [12] stores
individual objects as JSON-records in the document-database mongodb. Our
own EMF-Fragments8 stores individual EMF-resources in document-databases
like HBase or mongodb. These approaches use different strategies to map objects
and relations to their respective database-technology [23].

There are also attempts to create version control systems for models; [1]
provides an overview of recent research. The approach in [4] is (to our knowledge)
the first approach that uses a NoSQL-backend.

8 Conclusions

We presented srcrepo, a model-based system for the analysis of source code repos-
itories and a proof of concept for a model-based approach to Mining Source Code
Repositories. We presented 4 goals: (1) to abstract from heterogeneous reposito-
ries, (2) achieve syntax-based and not text-based analysis, (3) high accessibility,
and (4) scalability. In respect to goal (1), we started to implement support for a
single type of version control system and programming language. Consequently,
we could not yet prove a possible abstraction from different programming lan-
guages and version control systems. But the model-based approach still offers
this potential in principle. With respect to (2) and different from comparable
systems, we were able to realize a language dependent, AST-level deep analysis.
Furthermore, clients only have to write small OCL-like expressions to gather
language dependent metrics from a vast amount of available software projects
(goal 3). Although, all used technologies and components are prepared for con-
current execution, we encountered several issues for which we discussed possible
solutions, and we are confident to realize goal (4) in the near future.

5 http://code.google.com/p/harmony
6 http://www.eclipse.org/cdo/
7 http://www.eclipse.org/modeling/emft/?project=teneo
8 http://github.com/markus1978/emf-fragments

http://code.google.com/p/harmony
http://www.eclipse.org/cdo/
http://www.eclipse.org/modeling/emft/?project=teneo
http://github.com/markus1978/emf-fragments

Model-Based Mining of Source Code Repositories 253

References

1. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning ap-
proaches. Intl. Journal of Web Information Systems (IJWIS) 5(3), 271–304 (2009)

2. Bajracharya, S., Ossher, J., Lepos, C.: Sourcerer: An internet-scale software repos-
itory. In: Proceedings of Search-Driven Development-Users, Infrastructure, Tools
and Evaluation (SUITE 2009), an ICSE 2009 Workshop, pp. 1–4. IEEE Computer
Society, Vancouver (2009)

3. Barmpis, K., Kolovos, D.S.: Comparative analysis of data persistence technologies
for large-scale models. In: Proceedings of the 2012 Extreme Modeling Workshop,
XM 2012, pp. 33–38. ACM, New York (2012)

4. Barmpis, K., Kolovos, D.: Hawk: Towards a scalable model indexing architec-
ture. In: Proceedings of the Workshop on Scalability in Model Driven Engineering,
BigMDE 2013, pp. 6:1–6:9. ACM, New York (2013)

5. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design met-
rics as quality indicators. IEEE Trans. Softw. Eng. 22(10), 751–761 (1996)

6. Benelallam, A., Gómez, A., Sunyé, G., Tisi, M., Launay, D.: Neo4EMF, a scalable
persistence layer for EMF models. In: Cabot, J., Rubin, J. (eds.) ECMFA 2014.
LNCS, vol. 8569, pp. 230–241. Springer, Heidelberg (2014)

7. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: Modisco: A generic and ex-
tensible framework for model driven reverse engineering. In: Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering, ASE
2010, pp. 173–174. ACM (2010)

8. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

9. Cox, A., Clarke, C., Sim, S.: A model independent source code repository. In:
Proceedings of the 1999 Conference of the Centre for Advanced Studies on Collab-
orative Research, CASCON 1999, p. 1. IBM Press (1999)

10. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. In: Proceedings of 21st ACM SIGOPS Symposium on Oper-
ating Systems Principles, SOSP 2007, pp. 205–220. ACM, New York (2007)

11. Dyer, R., Nguyen, H.A., Rajan, H., Nguyen, T.N.: Boa: A language and infras-
tructure for analyzing ultra-large-scale software repositories. In: Proceedings of the
2013 International Conference on Software Engineering, ICSE 2013, pp. 422–431.
IEEE Press, Piscataway (2013)

12. Espinazo Pagán, J., Sánchez Cuadrado, J., Garćıa Molina, J.: Morsa: A scalable
approach for persisting and accessing large models. In: Whittle, J., Clark, T.,
Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 77–92. Springer, Heidelberg
(2011)

13. FLOSSMetrics consortium: Flossmetrics final report: Free/libre/open source met-
rics and benchmarking. Tech. Rep. FP6-033982, FLOSSMetrics consortium (March
2010), http://www.flossmetrics.org/docs/fm3-final-report_en.pdf

14. George, L., Wider, A., Scheidgen, M.: Type-safe model transformation languages
as internal dSLs in scala. In: Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307,
pp. 160–175. Springer, Heidelberg (2012)

15. Gousios, G., Spinellis, D.: A platform for software engineering research. In: Godfrey,
M.W., Whitehead, J. (eds.) 6th IEEE International Working Conference on Mining
Software Repositories, MSR 2009, pp. 31–40. IEEE (2009)

http://www.flossmetrics.org/docs/fm3-final-report_en.pdf

254 M. Scheidgen and J. Fischer

16. Gyimothy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented metrics
on open source software for fault prediction. IEEE Trans. Softw. Eng. 31(10),
897–910 (2005)

17. Kagdi, H., Collard, M.L., Maletic, J.I.: A survey and taxonomy of approaches
for mining software repositories in the context of software evolution. Journal of
Software Maintenance and Evolution: Research and Practice 19(2), 77–131 (2007)

18. Kagdi, H.H., Collard, M.L., Maletic, J.I.: Towards a taxonomy of approaches
for mining of source code repositories. ACM SIGSOFT Software Engineering
Notes 30(4), 1–5 (2005)

19. Khetrapal, A., Ganesh, V.: HBase and Hypertable for large scale distributed stor-
age systems a performance evaluation for open source Big-table implementations.
Tech. rep., Purdue University (2008)

20. Lakshman, A., Malik, P.: Cassandra: Structured storage system on a P2P net-
work. In: Proceedings of the 28th ACM Symposium on Principles of Distributed
Computing, PODC 2009, p. 5. ACM, New York (2009)

21. Livshits, B., Zimmermann, T.: Dynamine: Finding common error patterns by min-
ing software revision histories. In: Proceedings of the 10th European Software En-
gineering Conference Held Jointly with 13th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, ESEC/FSE-13, pp. 296–305. ACM,
New York (2005)

22. Scheidgen, M.: EMFFrag – Meta-Model-based Model Fragmentation and Persis-
tence Framework (2012), http://github.com/markus1978/emf-fragments

23. Scheidgen, M.: Reference representation techniques for large models. In: Proceed-
ings of the Workshop on Scalability in Model Driven Engineering, BigMDE 2013,
pp. 5:1–5:9. ACM (2013)

24. Scheidgen, M., Zubow, A., Fischer, J., Kolbe, T.H.: Automated and transpar-
ent model fragmentation for persisting large models. In: France, R.B., Kazmeier,
J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 102–118.
Springer, Heidelberg (2012)

25. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley, Boston (2009)

26. Subramanyam, R., Krishnan, M.S.: Empirical analysis of CK metrics for object-
oriented design complexity: Implications for software defects. IEEE Trans. Softw.
Eng. 29(4), 297–310 (2003)

27. Williams, C.C., Hollingsworth, J.K.: Automatic mining of source code repositories
to improve bug finding techniques. IEEE Trans. Software Eng. 31(6), 466–480
(2005)

28. Yu, P., Systä, T., Müller, H.A.: Predicting fault-proneness using OO metrics: An
industrial case study. In: Proceedings of the 6th European Conference on Software
Maintenance and Reengineering, CSMR 2002, pp. 99–107. IEEE Computer Society,
Washington, DC (2002)

29. Zimmermann, T., Weißgerber, P., Diehl, S., Zeller, A.: Mining version histories to
guide software changes. IEEE Trans. Software Eng. 31(6), 429–445 (2005)

http://github.com/markus1978/emf-fragments

Towards an Extensible Modeling
and Validation Framework for SDL-UML

Alexander Kraas

Poppenreuther Str. 45, D-90419 Nürnberg, Germany
alexander.kraas@gmx.de

Abstract. The Specification and Description Language (SDL) has been
a domain specific language that is well-established in the telecommunica-
tion sector for many years, but only a small set of SDL tools is available.
In contrast, a wide range of different kinds of tools can be used for var-
ious purposes, such as model transformation, for the Unified Modeling
Language (UML). The UML profile for SDL (SDL-UML) makes it pos-
sible to specify SDL compliant models in terms of a UML model. In this
paper, the extensible SDL-UML Modeling and Validation (SU-MoVal)
framework, which supports the specification and validation of models
that are compliant to Z.109, is presented. As an additional feature, the
SU-MoVal framework also provides an editor for the specification of a
textual notation that is mapped to corresponding SDL-UML elements.

Keywords: SDL-UML, Profile, Validation, Specification, Framework.

1 Introduction

Since many years a small set of tools for the Specification and Description Lan-
guage (SDL) has been available, but without support for the latest edition of the
UML profile for SDL as specified in Z.109 [6]. In general, every UML compliant
editor should be capable to support the SDL-UML profile, so that stereotypes
can be applied to elements of a model. But this is not sufficient enough to be
compliant to Z.109, because all defined constraints of the SDL-UML profile have
to be validated by the used modeling tool. In addition, the latest edition of
Z.109 defines a set of metaclasses for the representation of SDL expressions that
a compliant tool shall also implement. However, it is also desirable for the con-
venience of the user to support a textual notation, which makes the specification
of statements and expressions possible.

Different research activities have addressed the definition of UML profiles as
well as metamodels for SDL [1,11,17]. Even if the mentioned works cover different
aspects, a few important issues are still open. In particular, the representation
and mapping of expressions to the abstract syntax of SDL are not addressed.
Furthermore, a concrete syntax, the handling of its short-hand notations, and
its mapping to particular model elements are also not taken into account. Apart
from research activities, a few commercial tools [3,10,16] that claim to support
Z.109 exist. As far as information is publicly available, it can be concluded that

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 255–270, 2014.
c© Springer International Publishing Switzerland 2014

256 A. Kraas

the common approach is to translate UML diagrams to corresponding constructs
at the concrete syntax level of SDL. In contrast, the SDL-UML Modeling and
Validation (SU-MoVal) framework [13] translates the textual notation for state-
ments and expressions to corresponding elements of SDL-UML. The advantage
of such an approach is that an entire SDL-UML model can be validated at
model-level and a straightforward mapping to the abstract syntax of SDL is
feasible.

The SU-MoVal framework rests upon the Eclipse IDE [14] and supports the
graphical as well as textual specification of SDL-UML models. In addition, the
standard compliance of models can be validated with SU-MoVal by a set of
constraints defined in Z.109. Furthermore, the editor for the textual notation of
SU-MoVal can be used to specify statements and expressions. In order to realize
the framework, various QVT [9] model transformations are implemented. Even
though other technologies could be used for the purposes of model validation
and transformation, as far as possible, only open and standardized technologies
were taken into account for SU-MoVal. That is because the main objective of
SU-MoVal is to be extensible and maintainable by other parties, hence the usage
of proprietary technologies should be avoided.

The rest of this paper is structured as follows. In Section 2, a brief overview of
the UML profile for SDL is given, before the SU-MoVal framework is introduced
in detail in Section 3. After that, the merits and shortcomings of SU-MoVal and
the latest edition of Z.109 are discussed in Section 4 and in Section 5 a conclusion
and an outlook to future work is given.

2 Overview of the Most Recent Version of SDL-UML

Before the SU-MoVal framework is discussed in detail, a brief overview of the
UML profile for SDL (SDL-UML) as specified in the latest edition of Z.109 [6]
is given in this chapter.

2.1 Notational Conventions

Due to the fact that in the following chapters grammar and semantics related
issues of different standards are discussed, for the sake of clarity the subsequent
notational conventions apply.

– A name written within guillemets («...») refers to an instance of a stereotype
of the SDL-UML profile [6]. Otherwise, if a name written within guillemets
is followed by the word ’stereotype’, the name refers to the corresponding
stereotype of the SDL-UML profile.

– An underlined Name starting with a capital letter refers to a metaclass of
the UML Superstructure [8]. In addition, a property of such a metaclass is
represented by an underlined name starting with a lower-case character.

Towards an Extensible Modeling and Validation Framework for SDL-UML 257

2.2 The SDL-UML Profile and Its Stereotypes

Apart from a set of stereotypes, the most recent version of SDL-UML as defined
in Z.109 [6] defines a package of additional metaclasses for the specification of
expressions and another one with predefined data types. Subsequently, a brief
introduction to the different parts of the SDL-UML profile is given.

Specification of Structural Aspects. In general, a set of stereotypes of SDL-
UML is dedicated to the specification of structural aspects so that SDL agents
and associated data types can be defined.

Fig. 1. Composite structure of an SDL-UML system model

As illustrated in Fig. 1, the central element of an SDL-UML model is an «Ac-
tiveClass» that represents an SDL system agent. Usually, this «ActiveClass»
contains nested classifiers that define agent type definitions (represented by
«ActiveClass»), interfaces (represented by «Interface»), data type definitions

258 A. Kraas

(represented by «DataTypeDefinition») and signals. In the given example, the
nested classifiers of the SystemAgent «ActiveClass» are shown in terms of a
class diagram. A further aspect that has to be specified is the internal struc-
ture of an «ActiveClass», which can be realized with a collaboration diagram as
shown in Fig. 1. Usually, such a diagram only contains instances of the required
«ActiveClass»es, its «Port»s and «Connector»s that are attached to them.

Specification of Behavior. For the behavior specification of an SDL-UML
model, UML state machines and activities have to be used. Hence, appropriate
metaclasses of the UML packages StateMachine, Activities, and Actions are ex-
tended by stereotypes of the SDL-UML profile. A «StateMachine» is used in an
SDL-UML model to specify the behavior of an «ActiveClass» or an «Operation»
that represents an SDL procedure. In contrast, the behavior of an «Operation»
of a «DataTypeDefinition», which represents an SDL operator or a method, has
to be defined by an «Activity». In addition, an «Activity» is also used to specify
the effect of a «Transition» within a «StateMachine».

Metaclasses for Value Specifications and Context Parameters. In con-
trast to previous versions of Z.109, the most recent version defines particular
metaclasses, which extend the UML metaclass ValueSpecification, for the repre-
sentations of SDL expressions. These metaclasses are aligned with the abstract
syntax of SDL so that their mapping is straightforward. However, the meta-
classes are not intended to be instantiated by a user. Instead, a parser for the
textual notation shall only instantiate the metaclasses, and this is also the case
for the SU-MoVal framework.

Another difference is the support for SDL context parameters, which make
the specification of generic type definitions for a SDL-UML model possible. For
instance, some of the predefined data types, e.g., String, utilize context parame-
ters. As in the case of SDL expressions, the different kinds of context parameters
are represented in SDL-UML as a set of metaclasses.

3 The SDL-UML Modeling and Validation Framework

The main features provided by the SU-MoVal framework are the specification
and the validation of SDL-UML models. The framework is implemented as a
set of plug-ins for the ’Eclipse Modeling Tools’ edition of Eclipse Kepler [14],
because its standard plug-ins are required for realizing the framework.

Model Validation: One of the feature provided by SU-MoVal is the validation
of SDL-UML models, which rests upon the OCL component of Eclipse. In order
to validate models, constraints specified in the context of stereotypes and meta-
classes of SDL-UML are evaluated. After validation, the result is displayed to
the user in the ’Problems View’ of Eclipse. Further details concerning the model
validation are given in Section 3.1.

Towards an Extensible Modeling and Validation Framework for SDL-UML 259

Modeling and Textual Notation: For the specification of structural and be-
havioral aspects of an SDL-UML model, a user is free to use the default UML
tree editor of Eclipse or the Papyrus UML modeling tool. Thanks to the extensi-
bility mechanisms of EMF and UML, both tools can apply the SDL-UML profile
to a UML model without any customizations. However, only the UML tree editor
of Eclipse can directly display and instantiate the additional metaclasses defined
for SDL-UML. Also the validation component and the textual notation editor of
SU-MoVal can only be invoked from the UML tree editor at present. The textual
notation editor (see Section 3.2) of SU-MoVal can be accessed from the context
menu of the UML tree editor. The textual notation supports the specification
of SDL statements and expressions that are translated to corresponding SDL-
UML elements. At present, the textual notation editor only supports syntax
highlighting as well as type and syntax checks.

Fig. 2. The UML tree editor and the textual notation editor

Transformations: Before the textual notation editor can be invoked, required
type definitions of an SDL-UML model have to be extracted and transformed
into an internal format. For this purpose, a QVT transformation is executed
by the QVTo component of Eclipse. In addition, further QVT transformations
exist for mapping the textual notation to corresponding SDL-UML elements. All
implemented transformations of SU-MoVal are discussed in Section 3.3.

3.1 OCL-Based Model Validation

The model validation of SU-MoVal rests upon the build-in functionalities of
EMF. In order to define required constraints for the validation of an SDL-
UML model, the Object Constraint Language (OCL) [7] is utilized. The OCL
Constraints are specified in the context of stereotypes as well as metaclasses of
SDL-UML.

260 A. Kraas

Challenges and Utilized Approach. For almost all stereotypes and meta-
classes of SDL-UML as defined in Z.109 [6], constraints are specified in natural
language. For an automatic validation by SU-MoVal, the constraints had to be
manually translated to OCL Constraints, which are specified in terms of OCL
Expressions. A challenge was that some of the constraints define complex condi-
tions, which would entail large OCL Expressions. Furthermore, many constraints
require the verification of similar conditions, which would also cause redundan-
cies in corresponding OCL Expressions.

In order to cope with the challenge of too complex OCL Expressions and
redundancies between them, a set of helper Operations owned by stereotypes and
metaclasses of SDL-UML is specified. They implement common computations
required and invoked by the Constraints. In general, the behavior of such an
Operation is also implemented in terms of an OCL Expression.

A Small Example. To further aid the understanding of the discussed concept,
a small example is discussed based on the following constraint, which is defined
in the context of the «Operation» stereotype in Z.109:

’If the owner of an «Operation» Operation is a «DataTypeDefinition»
Class, the method associated with the «Operation» Operation shall be an
Activity.’

For the exemplary constraint introduced above, the corresponding manually
translated OCL Constraint is implemented as follows:

(self.isDataTypeMethod() or self.isDataTypeOperator())
implies base_Operation.method

->forAll(isStereotypedBy(’SDLUML::Activity’))

Only if the first or second condition specified in the first line of the constraint is
fulfilled, the third condition after the implies keyword will also be verified. In
all other cases, the constraint always evaluates to true. Both conditions specified
in the first line are implemented in terms of calls to operations that encapsu-
late additional complex or large OCL Expressions. For instance, the OCL-based
implementation of the first called Operation isDataTypeMethod() is defined as
follows:

base_Operation.owner.oclAsType(uml::Classifier)
.isImplicitlyStereotypedBy(’SDLUML::DataTypeDefinition’)

and self.isOperator = true

In the same way as for the discussed example, several common helper opera-
tions are also defined for other constraints, specified in Z.109 and requiring the
computation of complex conditions.

Towards an Extensible Modeling and Validation Framework for SDL-UML 261

Implemented Constraints and Operations. Even if most of the constraints
specified in Z.109 could be translated to corresponding OCL Expressions and
associated helper Operations, a small number of them could not be expressed in
terms of OCL. That is because most of the affected constraints are formulated
in a too general manner. Apart from OCL, Java was also used to implement
helper operations, because the required functionality could not be implemented
with OCL. A summary of the implemented constraints and operations is given
in Table 1.

Table 1. Total number of constraints and operations

Defined in Z.109 OCL implemented Java implemented
Constraints 339 315 0
Operations 0 30 4

3.2 Editor for the Textual Notation

The textual notation editor (shown in Fig. 3) of SU-MoVal supports a subset of
the concrete syntax of SDL so that the specification of statements and expres-
sions is possible. Even if Appendix I of Z.109 [6] specifies an exemplary textual
notation, this notation was not taken into account for the presented framework,
because during its development the work for Appendix I had not been finished.

Fig. 3. Editor for the textual notation

262 A. Kraas

The editor is generated by using the Spoofax Language Workbench [15], be-
cause its distinguished features fulfill most of the requirements already discussed
in [2]. Apart from well-known features also provided by other editor construction
kits, the Spoofax Language Workbench rests on a Scanner-less Generalized Left-
Right (SGLR) parser that supports an efficient handling of syntax ambiguities
by producing a parse forest instead of only a parse tree. If an ambiguity exists
in the textual notation, a sub-tree for each syntactic alternative is produced so
that the correct alternative can be selected after parsing.

Required Input and Output of the Editor. The textual notation editor has
no direct access to an SDL-UML model so that required input and the output
of the editor have to be transformed. The simplified workflow and the involved
artifacts are illustrated in Fig. 3.

Extraction of Type Definitions. Type definitions specified in an SDL-UML model
are utilized from the editor for disambiguating the syntax tree and for computing
specified constraints of the textual notation (see Fig. 3). For this purpose, a par-
ticular QVT transformation is invoked, before the editor is opened. Starting from
the element in an SDL-UML model for that a textual notation is specified, the
transformation extracts all visible type definitions (see Section 3.3) and trans-
forms them to an editor internal format. Later on, the extracted information can
be accessed by the different components of the editor.

Output of the Editor. When the editor content shall be saved, the parsed syntax
tree cannot be directly mapped to an SDL-UML model. Instead, it is mapped
to a syntax tree model CS that is passed as input to a QVT transformation
chain (see Section 3.3). After several transformation steps, the output of the
transformation chain consists of SDL-UML elements that are stored in the SDL-
UML model. The syntax tree model is not accessible by the user, because it is
only intended for the internal data exchange.

Apart from the created SDL-UML elements, the editor also saves the entered
textual notation in terms of an UML Comment owned by that model element
for which the notation is specified. When the editor is opened once again for the
same model element, the initial content will be loaded from the Comment.

Disambiguation of the Textual Notation. As discussed in [12] and [2], the
concrete syntax of SDL contains ambiguities, which are also relevant for the
textual notation editor of SU-MoVal. A disambiguation is only possible with
context-sensitive information that is extracted from elements in an SDL-UML
model before the editor is opened.

The relevant ambiguities of the textual notation are listed in Table 2. All am-
biguities between the listed syntax alternatives are caused by the identifier parts
(bold printed). When an ambiguity is identified, the disambiguation algorithm
of the editor resolves the identifier within the list of visible type definitions.

Towards an Extensible Modeling and Validation Framework for SDL-UML 263

Table 2. The different ambiguities

Alternative 1 Alternative 2
VariableAccess(id) Literal(id)

TimerActiveExpression ActiveAgentsExp(id)
CallStatement(ProcCallBody(id, ...) CallStatement(RPCallBody(id, ...)

Destination_agentId(id) Destination_pid(VariableAccess(id))

Constraints for the Textual Notation. Instead of utilizing an OCL-based
approach as proposed in [2], the validation of constraints for the textual notation
of SU-MoVal rests upon build-in capabilities of the Spoofax editor framework.
The disadvantage of an OCL-based solution is a poor performance, because each
time when the validation is invoked, the current parse tree has to be mapped
to a new syntax tree model. In contrast, the constraint validation of Spoofax
can directly operate on the internal parse tree. Hence, appropriate constraints
are specified in terms of the Spoofax syntax. Subsequently, an example of such
a constraint is given.

ResetClause(identifier, _)
-> (identifier, $[’[timerName]’ must denote a timer!])

where
timerName := <ID-to-fullQualifiedName> identifier;
not(<is-timer-definition> identifier)

The purpose of the example constraint is to assure that the identifier of a
reset clause refers to a visible timer definition. Therefore, a so-called matching
rule (e.g., ResetClause(identifier, _)), which matches against a particular
node in the syntax tree, has to be defined. If the matching condition is fulfilled,
an error message will be created and displayed to the user. In addition, the
corresponding location in the textual notation will be highlighted. As in the
case of disambiguation, the component for constraint validation accesses the list
of visible type definitions in order to determine correct type definitions.

3.3 QVT-Based Transformations

In order to implement required transformations at the level of SDL-UML and
for the mapping of the textual notation to corresponding model elements, the
Query/View/Transformation (QVT) [9] standard is utilized. In the following
sections, an overview of the different kinds of transformations and their purposes
within the SU-MoVal framework is given.

Challenges and Utilized Approach. Before going into details, general as-
pects of QVT, SDL-UML related challenges, and the utilized approach are dis-
cussed in this section.

264 A. Kraas

General Aspects Concerning QVT. The QVT standard specifies two different
kinds of transformation languages, namely the ’Relational Language’ and the
’Operational Mappings’. The Relational Language makes it possible to specify
bidirectional transformations between elements of different kinds of meta-models
at a high level of abstraction, whereas the Operational Mappings are only uni-
directional, but they are more powerful in their expressiveness. That is because
Operational Mappings allow the specification of imperative expressions that can
be utilized to define complex calculations. The following kinds of transformations
are supported by Operational Mappings:

– Model-to-Model Transformation: For this kind of transformation, the
source and target model are different. Typically, they are implemented as a
complete rewrite system so that a particular mapping rule for each kind of
element in the source and target model has to be present.

– In-Place Transformation: The same model is used as source and target
for an in-place transformation. If only a few elements of a model shall be
add or changed, the advantage of an in-place transformation is that there is
no need to define a complete rewrite system. Instead, such transformations
only consist of a small set of mapping rules.

SDL-UML Related Challenges. A case study concerning the general applicability
of QVT for the transformation of SDL short-hand notations is already presented
in [2]. However, this study covers only a small aspect concerning the applicability
of QVT for mappings and transformations required in the context of SDL-UML.
The main challenges that have to be taken into account for SU-MoVal are as
follows:

1. Transformation Models for Data Types: A data type concept similar to
that of the concrete syntax of SDL is defined for SDL-UML. Hence, relevant
transformation models specified for SDL also apply for SDL-UML.

2. Expansion of Short-Hand Notations: So-called short-hand notations at
the level of the textual notation have to be expanded to simpler constructs
before further transformations or a mapping to SDL-UML elements are pos-
sible.

3. Name Resolution: Identifiers in the textual notation have to be resolved
to fully qualified identifiers taking into account type definitions contained in
an SDL-UML model.

Utilized Approach. The consequence of the challenges discussed above is that
SDL-UML related transformations and mappings require complex computations.
Therefore, only the Operational Mappings part of QVT is utilized for the SU-
MoVal framework. That is because the Relational Language of QVT does not
provide required syntactic constructs.

The QVT transformations of SU-MoVal are partitioned into two different
transformation chains. One chain implements the transformation models associ-
ated with data types. The other chain realizes all transformations at the level of
the textual notation and the mapping to SDL-UML elements. In addition, the

Towards an Extensible Modeling and Validation Framework for SDL-UML 265

QVT transformations are implemented as in-place as well as model-to-model
transformations.

Data Type Transformations. Since the data type concept of SDL-UML is
similar to that of the concrete syntax of SDL, relevant transformation models
specified for SDL data types also have to be applied to SDL-UML models. For
the SU-MoVal framework, the required transformations are implemented as a
transformation chain invoked before an SDL-UML model can be mapped to
the abstract syntax of SDL or before the textual notation editor is used. The
transformations T1 − T3 are implemented as in-place transformations applied to
the same SDL-UML model, because only a few elements are added or changed
by the transformations.

1. Generic and implicit data type operations are added by transformation
T1 that implements the relevant transformation models specified in Z.101 [4].
Transformation T1 adds the two generic operations equal and copy to each
«DataTypeDefinition». Furthermore, depending on the kind of a data type,
also particular implicit operations have to be added. For instance, for fieldA
of Struct_A shown in Fig. 4, a set of «Operation»s is introduced.

2. Transformation ofmulti-valued properties is realized by transformation
T2, because for SDL such a concept is not defined. Hence, the transforma-
tion model specified in Z.109 [6] is applied to elements that are stereotyped
by «Property», «Parameter», or «Variable». For each multi-valued property,
transformation T2 creates a new «DataTypeDefinition» that subtypes an ap-
propriated parameterized data type. In the given example, a new data type
Integer_Powerset is created for fieldA of Struct_A. If the lowerValue is not
0 and/or the upperValue is not unbounded (specified by an *), an additional
«Syntype» is introduced that restricts the bounds of the created «DataType-
Definition» appropriately (e.g., Integer_Powerset_1_10 in Fig. 4).

3. Definition of inherited operations is realized by transformation T3 that
implements the transformation model for inheritance specified in Z.102 [5].
Its purpose is to identify the set of inheritable «Operation»s and adding it to
all subtypes of a «Classifier». In the given example, method_A of SuperType
is inherited by SubType.

Mapping of the Textual Notation to SDL-UML Elements. In addition to
the transformation chain for data types, a further chain (shown in Fig. 5) imple-
ments the mapping of the textual notation to corresponding elements of an SDL-
UML model. Even if this chain is composed of several transformations invoked in
sequential order, the chain can be divided into the following functional parts:

– Name resolution of identifiers (transformation T4)
– Transformation of short-hand notations (transformations T5 − T8)
– Mapping of the textual notation to corresponding SDL-UML elements (trans-

formation T9)

266 A. Kraas

Fig. 4. Input and output of the data type transformation chain

Except for transformations T4 and T9, all other transformations shown in
Fig. 5 are implemented as model-to-model (M2M) transformations. That is be-
cause for the transformation of short-hand notations at the level of the textual
notation (T5 − T8), it is not only required to add or remove some elements in a
concrete syntax model (CS). Instead, elements that correspond to a short-hand
notation have to be transformed to other kinds of elements.

Name Resolution. Before short-hand notations can be expanded or the textual
notation can be mapped to SDL-UML elements, all identifiers have to be resolved
to qualified names, which is realized by in-place transformation T5. Apart from

Towards an Extensible Modeling and Validation Framework for SDL-UML 267

Fig. 5. Transformation chain for mapping the textual notation to SDL-UML

model CS1, the SDL-UML model SU serves as further input required for the
resolution of type definitions.

Transformation T5 rests on the rules for name resolution specified in Z.101 [4].
However, for a proper adaption of the name resolution algorithm modifications
were required. In particular, this is caused by the fact that in SDL-UML most
of the type definitions are specified in terms of model elements, whereas in SDL
this is realized at the concrete syntax level. Hence, the different parts of trans-
formation T5 are executed in the following order:

1. Collection of Visible Type Definitions: Starting from that SDL-UML ele-
ment in model SU for which textual notation (represented by model CS1)
is specified, all visible model elements that represent type definitions (e.g.,
«DataTypeDefinition»s) are collected as a sequence of elements, taking into
account the visibility rules of Z.101 [4].

2. Resolution by Container: This part resolves identifiers that are not referring
to literals, operator or method signatures. At first, the ’container’ for the
resolution is identified. Usually, this is a particular element in the SDL-UML
model M. However, the ’container’ for local variable definitions can also be
specified at the level of the textual notation (model CS1). Hence, it is tried
to resolve variable identifiers in model CS1, before the algorithm proceeds in
the SDL-UML model SU. For the resolution of all other kinds of identifiers,
the sequence of visible type definitions (from step 1) is directly used.

268 A. Kraas

3. Resolution by Context : In a third step, transformation T5 resolves all identi-
fiers that refer to literals, method or operator signatures. The implemented
algorithm determines the element of model CS1 that is the ’context’ for
the resolution. After that, the possible types for an identifier are computed
according to the algorithm specified in Z. 101 [4].

Transformation of Short-Hand Notations. Many short-hand notations are speci-
fied for the concrete syntax of SDL. They have to be expanded to corresponding
simpler constructs before other transformations or mappings can be applied to
them. Hence, particular ’transformation models’ are specified in the different
SDL recommendations. Since the editor for the textual notation of SU-MoVal
implements a subset of the concrete syntax of SDL, associated short-hand no-
tations have to be transformed, too. This task is realized by transformations
T5 − T8 (see Fig. 5). A description of the purpose of the transformations and
corresponding examples are summarized in the following table.

Table 3. Required short-hand transformations

Transf. Purpose Input Output
T5 Infix operators (1 + 1) = 2 equal(add(1,1),2)
T6 Extended variables myVar[1] = 10 myVar = Extract(myVar, 10)
T7 Extended primary myVar[0] Extract(myVar, 0)
T8 Method applications myVar.method_A() method_A(myVar)

Mapping of the Textual Notation to SDL-UML Elements. Before the mapping
of model CS5 to corresponding elements of the SDL-UML model SU, trans-
formation T4 has to be applied once again. That is because as a result of the
transformation of short-hand notations, a lot of new operator application expres-
sions are introduced and their identifiers need to be resolved, too. Afterward,
each node of CS5 is mapped to a corresponding SDL-UML element in model
SU by in-place transformation T9. All elements are added below that element in
model SU for which the textual notation is specified. An example of the mapping
of the textual notation to corresponding SDL-UML elements is given in Fig. 5.

Performance Issues. The execution of QVT transformations with the stan-
dard distribution of Eclipse QVTo rests on a two staged process. First of all, a
transformation is compiled to an abstract syntax model of QVT and afterwards
this model is interpreted. During the implementation of the SU-MoVal frame-
work, it had been observed that the task of compilation takes approximately 75
percent of the entire execution time for a transformation. In order to increase the
performance of SU-MoVal significantly, a patched version of QVTo is utilized,
which makes it possible to directly execute a compiled transformation. In con-
sequence, the compilation step of QVTo is never invoked and they are directly
interpreted for all transformations discussed earlier.

Towards an Extensible Modeling and Validation Framework for SDL-UML 269

4 Merits and Shortcomings

In this section, a brief summary of the merits and shortcomings concerning the
SU-MoVal framework and Z.109 observed during the implementation is given.
The identified shortcomings concerning Z.109 could be addressed by a revision
of this recommendation in order to improve its applicability.

SU-MoVal Related Issues: The SU-MoVal framework has proved the gen-
eral implementability of the latest edition of Z.109 [6]. An advantage of the
framework is the possibility to validate an entire SDL-UML model based on the
constraints specified in Z.109. In addition, the textual notation for statements
and expressions decreases the time for specifying an SDL-UML model, because
corresponding SDL-UML model elements do not have to be modeled in a graph-
ical manner. Current drawbacks of SU-MoVal are the missing mapping to the
abstract syntax of SDL and a subsequent code generation. In addition, a better
integration into the Papyrus tool would be desirable in order to improve the
usability.

Z.109 Related Issues: A notable feature of the latest edition of Z.109 is the
representation of SDL expressions in terms of dedicated metaclasses so that an
entire SDL-UML model can be validated and mapped to the abstract syntax
of SDL in a straightforward manner. A drawback of the current edition of the
recommendation is that some stereotypes, e.g., «ActiveClass» or «Pseudostate»,
represents different SDL constructs. In consequence, a contextual distinction
within constraints and transformations is required for these stereotypes. A solu-
tion could be to introduce additional sub-stereotypes for each particular SDL
construct (similar to the «DataTypeDefinition» stereotype). Furthermore, it
could be considered to integrate the OCL constraint specifications of SU-MoVal
in a new edition of Z.109.

5 Conclusion and Future Work

The presented SU-MoVal framework supports a textual notation for the spec-
ification of SDL statements and expressions as well as a mapping of them to
corresponding SDL-UML elements. Apart from the textual specification of state-
ments and expressions, the framework also provides a possibility to directly edit
a model with the UML tree editor of Eclipse or the graphical UML modeling tool
Papyrus. In addition, the validation of an entire SDL-UML model is supported,
too.

For the future, it is planned to extend the presented framework with a map-
ping of SDL-UML elements to corresponding abstract syntax elements of SDL.
In addition, the provided features of the editor for the textual notation shall
be extended. Interested persons can obtain the latest version of the SU-MoVal
source code from [13].

270 A. Kraas

References

1. Grammes, R.: Formalisation of the UML Profile for SDL – A Case Study. Technical
Report 352/06, Department of Computer Science, University of Kaiserslautern
(2006)

2. Kraas, A.: A Model-Based Formalization of the Textual Notation for SDL-UML.
In: Ober, I., Ober, I. (eds.) SDL 2011. LNCS, vol. 7083, pp. 218–232. Springer,
Heidelberg (2011)

3. IBM: IBM Rational SDL and TTCN Suite 6.3, User Manual (April 2009)
4. International Telecommunication Union: Recommendation Z.101 (12/11), Specifi-

cation and Description Language – Basic SDL-2010,
http://www.itu.int/rec/T-REC-Z.101/en

5. International Telecommunication Union: Recommendation Z.102 (12/11), Specifi-
cation and Description Language – Comprehensive SDL-2010,
http://www.itu.int/rec/T-REC-Z.102/en

6. International Telecommunication Union: Recommendation Z.109 (10/13), Specifi-
cation and Description Language – Unified modeling language profile for SDL-2010,
http://www.itu.int/rec/T-REC-Z.109/en

7. Object Management Group: Object Constraint Language (OCL). Version 2.4.
OMG Document Number: formal/2014-02-03,
http://www.omg.org/spec/OCL/2.4/PDF

8. Object Management Group: OMG Unified Modeling Language (OMG UML), Su-
perstructure. Version 2.4.1. OMG Document Number: formal/2011-08-06,
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF

9. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/
Transformation Specification. Version 1.1. OMG Document Number: formal/2011-
01-01, http://www.omg.org/spec/QVT/1.1/PDF/

10. Pragmadev: Real Time Developer Studio User Manual, Real Time Developer Stu-
dio V4.3, www.pragmadev.com/downloads/UserManual.pdf

11. Prinz, A., Scheidgen, M., Tveit, M.: A Model-Based Standard for SDL. In: Gaudin,
E., Najm, E., Reed, R. (eds.) SDL 2007. LNCS, vol. 4745, pp. 1–18. Springer,
Heidelberg (2007)

12. Schmitt, M.: The Development of a Parser for SDL-2000. In: Proceedings of
the Tenth GI/ITG Technical Meeting on Formal Description Techniques for Dis-
tributed Systems, pp. 131–142. Shaker Verlag (2009)

13. SDL-UML Modeling and Validation (SU-MoVal) framework,
http://www.su-moval.org/

14. The Eclipse Foundation, Eclipse Kepler (4.3.2) – Eclipse Modeling Tools,
http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/
keplersr2

15. The Spoofax Language Workbench, Spoofax 1.1,
http://strategoxt.org/Spoofax/

16. UniqueSoft, UniqueSoft Modeling Tool Suite,
http://www.uniquesoft.com/modeling-tool-suite.html

17. Werner, C., Kraatz, S., Hogrefe, D.: A UML Profile for Communicating Systems.
In: Gotzhein, R., Reed, R. (eds.) SAM 2006. LNCS, vol. 4320, pp. 1–18. Springer,
Heidelberg (2006)

http://www.itu.int/rec/T-REC-Z.101/en
http://www.itu.int/rec/T-REC-Z.102/en
http://www.itu.int/rec/T-REC-Z.109/en
http://www.omg.org/spec/OCL/2.4/PDF
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://www.omg.org/spec/QVT/1.1/PDF/
www.pragmadev.com/downloads/UserManual.pdf
http://www.su-moval.org/
http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/keplersr2
http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/keplersr2
http://strategoxt.org/Spoofax/
http://www.uniquesoft.com/modeling-tool-suite.html

SDL Implementations for Wireless Sensor
Networks – Incorporation of PragmaDev’s RTDS

into the Deterministic Protocol Stack BiPS

Tobias Braun, Dennis Christmann, Reinhard Gotzhein, and Alexander Mater

Networked Systems Group
University of Kaiserslautern, Germany

{tbraun,christma,gotzhein,a_mater09}@cs.uni-kl.de

Abstract. Predictable behavior of wireless sensor networks calls for de-
terministic protocols for network-wide synchronization and collision-free
frame transmissions. Furthermore, the execution of these protocols re-
quires tight scheduling under real-time constraints. In previous work, we
have devised a framework called BiPS (Black-burst-Integrated Protocol
Stack), which provides these functionalities. To achieve the required real-
time behavior, BiPS has been implemented manually on bare hardware.

Higher-layer functionalities such as routing protocols or sensor ap-
plications are far less time-critical. Therefore, we strive for applying
model-driven development, using SDL as abstract modeling language,
and commercial tool environments to automatically generate implemen-
tations. In this paper, we present how we incorporate implementations
generated with PragmaDev’s Real-time Developer Studio (RTDS) into
BiPS. Therefore, we have modified and extended the RTDS transition
scheduler, and have placed it under the control of the BiPS scheduler.
Furthermore, based on RTDS concepts, we have implemented an SDL
environment that can access BiPS functionality, e.g., protocols of the
MAC layer or hardware devices. In experiments on a wireless sensor
node, we have demonstrated that our integration is fully operational and
has advantages regarding efficiency and predictability.

1 Introduction

Though some time has passed since Wireless Sensor Networks (WSNs) have
become a topic in research and industry, new application domains – e.g., in
industrial and health care environments – increase their demands on the real-
ization of such systems. In this regard, an ongoing trend is to develop WSNs
for scenarios, in which communication among nodes must fulfill a predictable
quality-of-service, which requires protocols and implementations to behave de-
terministically. Moreover, WSN nodes typically have strong hardware and energy
limitations. Consequently, protocols and their implementations must also be ef-
ficient, thereby impeding the already challenging task.

To realize and evaluate deterministic protocols for WSNs, we have developed
a protocol framework called Black burst-Integrated Protocol Stack (BiPS). BiPS

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 271–286, 2014.
c© Springer International Publishing Switzerland 2014

272 T. Braun et al.

provides several deterministic protocols, an application interface to access these
protocols, and basic functionalities of an operating system (OS) to support dis-
tributed applications. Because several protocols provided by BiPS require time-
critical execution, we have implemented BiPS manually and on bare hardware,
i.e., without underlying operating system, to retain full control over hardware
interrupts. For applications or higher-layer protocols, timing requirements are
usually less strict, so hand-coding is often not required. Therefore, we have de-
cided to adopt a model-driven approach, with SDL [16] as design language,
which improves abstraction, reusability, and productivity. More specifically, we
use PragmaDev’s Real-time Developer Studio (RTDS, [20]), and interface BiPS
with SDL implementations automatically generated with RTDS.

To incorporate SDL implementations into BiPS, we had, in the first instance,
to realize the scheduling of the SDL systems in a way that does not compromise
time-critical operations of BiPS. This was achieved by introducing a scheduling
hierarchy, in which SDL runs with lower priority than more critical parts of
BiPS. In a further step, an SDL environment implementation became necessary
to integrate SDL systems into the data flow of BiPS’s communication stack.
Different to our previous work on SDL implementations [10], where the objective
was conformance with SDL’s formal ASM semantics and evaluation of language
extensions, we now target timeliness, efficiency, and flexibility.

Our approach clearly states a trade-off between the pros and cons of hand-
written and model-driven implementations. For several reasons, realizing BiPS
in a fully model-driven way is no option: First, predictability and efficiency are
no objectives of SDL, and are hardly achievable with automatically generated
implementations. This is also a result of [2], where IEEE 802.15.4 [14] imple-
mentations are compared. Second, BiPS includes very platform-specific parts,
making reusability as a major advantage of model-driven development obsolete.

The remainder of this paper is structured as follows: Section 2 presents an
outline of BiPS and its interfaces. In Sect. 3, the integration of SDL implementa-
tions into BiPS is described in detail. Section 4 presents results of experimental
evaluations with a small distributed system. After providing a survey of related
work (Sect. 5), Sect. 6 concludes the paper and outlines future work.

2 Black Burst-Integrated Protocol Stack – Deterministic
Protocols for Wireless Sensor Networks

The Black burst-Integrated Protocol Stack (BiPS) is a protocol framework for
wireless sensor nodes [9]. By integrating Black Burst Synchronization (BBS) [12],
BiPS achieves network-wide synchronization with bounded offset and bounded
convergence delay, which paves the way for deterministic MAC protocols for
multi-hop WSNs. BiPS additionally provides basic OS functionalities and an
interface for applications in order to decouple time-critical protocol functionality
from higher-layer protocols and applications. Up to now, BiPS includes four
MAC protocols and has been implemented on the Imote 2 sensor platform [17],
which is equipped with an IEEE 802.15.4-compliant [14] transceiver.

SDL Implementations for Wireless Sensor Networks 273

sensor application, control algorithm, ...

HW timers, GPIO, DMA,...

transceiver UART,LED,...

clustering, routing, middleware...

MAC

BBS ACTP RB CB MB
black burst

1 - drivers

0 - system
 software

2 - protocols

4 - applications

3 - higher-layer
 protocols

sc
he

du
le

rs
ap

p
(B

AS
)

co
m

m
un

ic
at

io
n

(B
CS

)
multiplexer

BiPS

Fig. 1. BiPS architecture: interplay of applications, protocols, and schedulers

2.1 Overview

The architecture of BiPS is shown in Fig. 1. It is based on a layered structure and
enables higher layers to abstract from the realization of lower layers. Execution
is controlled by two schedulers (see Sect. 2.2). In layer 0, BiPS provides low level
functionality to interact with the hardware. Among other things, this includes
control of hardware timers and activation of DMA transfers. Layer 1 comprises
hardware drivers for peripheral devices. This, particularly, includes a driver for
the wireless transceiver, which is used by all MAC protocols of BiPS.

While layer 0 and 1 are hardware-specific by nature, layer 2, which incor-
porates all supported MAC protocols, abstracts from hardware details in most
instances. However, full abstraction is not possible, because hardware limita-
tions – e.g., the transceiver’s transfer rate and switching delays – must be con-
sidered to calculate transmission delays and guard times. Currently, the MAC
layer consists of a synchronization protocol (BBS), a contention-based protocol
(CB), which is similar to Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA), and three deterministic protocols: a reservation- and TDMA-based
protocol (RB), the Arbitrating and Cooperative Transfer Protocol (ACTP) [6],
and a protocol for mode-based communication (MB) [5]. Since both BBS and
ACTP rely on a communication primitive called black burst, this functionality
is encapsulated in a separate component.

Access to BiPS’s MAC protocols is via a multiplexer (see Sect. 2.3), which
realizes a homogeneous interface for higher-layer protocols (layer 3) and applica-
tions (layer 4). Time-criticality on these layers is usually less stringent, thereby
enabling model-driven development of these layer – e.g., with SDL – and to focus
on reusability and modularity.

2.2 Scheduling in BiPS

The execution of BiPS is controlled by two schedulers: The BiPS Communication
Scheduler (BCS), which is responsible for running time-critical components of

274 T. Braun et al.

the protocol stack, and the BiPS Application Scheduler (BAS) to execute higher-
layer functionality with less requirements w.r.t. execution delays. To prioritize
BCS over BAS, BCS and its managed components run in interrupt mode.

The main task of BCS is the activation of MAC protocols, which has to be
synchronized among all communicating nodes. For this purpose, time is sub-
divided into super slots, which are in turn divided into macro slots. Macro slots
define the synchronization interval and start with a (re-)synchronization phase
using BBS. Super slots define the interval in which so-called virtual slot regions
recur. A virtual slot region is a time period within a macro slot that is associated
with a particular MAC protocol. When a virtual slot region starts, BCS activates
the associated MAC protocol. At the end of the slot region, the MAC protocol is
stopped. The placement of virtual slot regions within macro slots is configurable
and is based on the need of an application. If high data rates must be guaranteed,
a possible super slot configuration would contain macro slots with many virtual
regions, which are associated with the RB protocol. In parts of macro slots
where no virtual slot region is placed, BCS switches the wireless transceiver off.
Thereby, BiPS supports duty cycling with high flexibility. A further task of BCS
is the deactivation of low-priority interrupts during time-critical sections. This
affects, e.g., UART (Universal Asynchronous Receiver Transmitter) interrupts,
which are suspended during synchronization phases.

BAS is an event-based non-preemptive scheduler for higher-layer functionali-
ties. It is small-scale, since it does not manage processes or threads but handles
function callbacks. To manage a component – i.e., an application or higher-layer
protocol – by BAS, the component has to register one or several callbacks, which
are identified in BAS by a unique id. To trigger the execution of this compo-
nent, BAS provides an event system with a function called EVENT_emit, which
must be called with the id of the corresponding callback. BAS, in turn, considers
this execution request at the next scheduling decision. Since EVENT_emit can be
invoked in interrupt mode, the function provides an interface to continue the
processing of an event, which is announced in interrupt mode, after leaving the
interrupt context. This is, for instance, used after the reception of a data frame,
which is indicated by a MAC protocol running in interrupt mode, but should
not entirely be handled in interrupt mode by higher-layer protocols due to its
possibly costly processing.

2.3 BiPS Multiplexer – The MAC Data Interface for Applications

To temporally decouple applications from MAC protocols and to enable a loose
coupling of MAC protocols in the framework, a multiplexer is introduced in BiPS.
The multiplexer provides a homogeneous interface to all MAC protocols, though
properties of a single transmission, which can be initiated by applications, may
differ depending on the used MAC protocol.

The multiplexer comprises a set of TX queues – called TX transmission op-
portunities (TX TOs) – to store outgoing transmissions until the corresponding
MAC protocol is activated. If an application or higher-layer protocol intends to
transmit a frame, it does not invoke the MAC protocol directly, but enqueues

SDL Implementations for Wireless Sensor Networks 275

super slot

BBS
synch phase

virt. slot
region

app 1 app 2

TX TO
id = 10
prio = 0

TX TO
id = 3

prio = 1

TX TO
id = 4

prio = 0

RX TO
id = 2

setData()

RX TO
id = 0

rxCallback() setData() /

rxCallback()

en
qu

eu
e()

callback()
enqueue()

ca
llb

ac
k() callback()

enqueue()

macro slot

RB

ACTP

CB

Fig. 2. Transmission opportunities in BiPS’s multiplexer as application interface

the frame in a TX TO, which is addressed by an identifier and associated with a
set of virtual slot regions. Several TX TOs can be assigned to the same virtual
slot region, where each TX TO has a priority assigned. When a new virtual slot
region begins, the first frame of the associated TX TO with highest priority is
transferred to the MAC protocol that is responsible for this slot region. This
protocol then tries to send the frame and informs the multiplexer about success
or failure afterwards, which in turn informs the initiator, i.e., the application or
higher-layer protocol, of the transmission. Similar to TX TOs, the multiplexer
provides RX TOs, where applications can register a callback, which is invoked
if data is received in an associated slot region.

The interplay of TX/RX TOs and applications, and the association of TOs
to virtual slot regions is illustrated in Fig. 2. In this example, two applications
access the multiplexer of BiPS, which comprises three TX TOs and two RX
TOs. The super slot consists of two macro slots and six virtual slot regions. The
example, particularly, highlights the following additional properties: First, one
application can use several TX and RX TOs. Furthermore, TX/RX TOs can be
associated with several slot regions. Thereby, BiPS enables a flexible mapping
of transmissions to virtual slot regions and allows applications and higher-layer
protocols to abstract from MAC protocol details like the placement of reserved
transmission slots.

3 Interfacing PragmaDev’s RTDS and BiPS

The integration of SDL systems into BiPS consists of two parts. First, code of
the SDL system, which is automatically generated with PragmaDev’s RTDS [20],
has to be scheduled and executed without disturbing time-critical operations of
underlying BiPS layers (Sect. 3.1). The second part covers the development of a
flexible data interface between BiPS and the SDL system by providing a tailored
but extensible SDL environment (Sect. 3.2).

276 T. Braun et al.

3.1 An Improved SDL Scheduler

According to SDL’s execution model [15], an SDL system consists of a set of
concurrent agents1. In practice, a fully parallel execution is neither possible due
to limited number of CPU cores nor desirable due to energy constraints. Instead,
in implementations, a scheduler serializes transition executions of agents. For the
incorporation of SDL into BiPS, the code generator of RTDS was adopted and
enhanced with an extended scheduler.

RTDS allows developers to influence the serialization during code generation.
Depending on the chosen OS, different options are available. If an RTOS (real-
time OS) is selected, every SDL process is by default mapped to a single RTOS
task. Hence, the scheduler of the RTOS is responsible for executing agents and
for determining a feasible serialization order [19]. By introducing deployment
diagrams, RTDS offers developers the freedom to group several SDL process
instances into a single RTOS task. Since there is no parallelism within a task,
an additional scheduler is required for intra-task scheduling. For executing SDL
systems on bare systems, the single task solution has to be chosen due to its
independence from external schedulers. Since this approach results in a mostly
self-contained system, it is – together with RTDS’s rtosless template – an ideal
starting point for our BiPS integration. To interface the scheduler with BiPS,
we have developed a new scheduler called BiPS SDL Scheduler (BSS), which is
a modified and extended variant of PragmaDev’s CPPScheduler .

Similar to CPPScheduler , BSS holds a global signal queue, which stores all
pending SDL signals in FIFO order. The signals are processed in a non-preemptive
way by executing corresponding target SDL processes. Since all processes are sit-
uated in the same address space, scheduling and execution of transitions does
not require context switches. Timers are also stored in a global timer queue and
ordered by their expiration. To prevent delay of time-critical operations of un-
derlying BiPS layers, a scheduling hierarchy has been established, in which BAS
executes BSS. Hence, BSS is, in terms of BiPS, just an interruptible application,
whose execution is triggered via the event system of BAS.

The time basis of the SDL system and BSS, respectively, is not based on
system ticks but derived from a hardware timer. Thereby, granularity of time
is very fine (currently 1μs) and coincides with time in other parts of BiPS. In
this regard, it has also to be noted that different to the interpretation of SDL’s
SET construct in RTDS, which only accepts relative durations, we interpret the
time value in SET as absolute time. Though our implementation supports the
reconstitution of the original behavior by configuration2, we feel confident that
absolute times are more appropriate, since they are not prone to execution delays.

Figure 3 shows the realization of BSS in detail. After BAS starts the execution
of BSS, the SDL time (represented by the keyword NOW in SDL) is updated with
1 While SDL’s semantics introduces several types of agents, most available SDL im-

plementations support only SDL agents derived from SDL processes.
2 Because in the implementation, RTDS uses the same data type for time and duration,

the decision is an “either-or” one. Thus, we can not support absolute and relative
times in SET.

SDL Implementations for Wireless Sensor Networks 277

wakeup

ExecuteSDLSystem
update

SDL time

create
timer signals for
expired timers

execute
scheduled

Environment

enqueue into SDL
signal queue

get signal from
signal queue

get timestamp of
next timer

timestamp

execute
signal transition

timers expired?

signal queue empty?

timer queue empty?

false true

false

falsetrue

true

true
false

BSSBAS

is signal
from can-
celled timer?

schedule wakeup
at timestamp

Fig. 3. UML activity diagram of the BSS

the hardware timer value. Then, for each expired timer, the respective SDL signal
is created and stored in the SDL signal queue. Afterwards, if the environment has
outstanding tasks, it is executed and its generated SDL signals are stored in the
signal queue. Then, the first signal of the signal queue is processed by executing
the respective SDL transition3. These steps are repeated until the signal queue
is empty. In this case, BSS uses BAS to set its wake up time to the next timer
expiration and returns the execution control back to BAS.

Besides timer events, other events – e.g., the reception of frames via the mul-
tiplexer – can wake up BSS to execute the SDL system (see also Sect. 3.2). If
these events are announced by hardware interrupts, the event system of BAS is
used to delay the events’ processing until leaving interrupt mode.

3.2 Interfacing the SDL Environment

The SDL environment represents the interface between SDL system and under-
lying platform and is, for instance, used to access hardware peripherals. Com-
munication between SDL system and SDL environment is asynchronous and via
SDL signals that are sent over channels connected to the border of the SDL
system. RTDS provides a basic template of the SDL environment, which is im-
plemented as an independent SDL process. We have extended this template
and have developed a modular and efficient SDL environment framework, which
integrates so-called Environment Control Components (ECC). These are either
hardware drivers or components to access further functionality of the underlying
OS. Currently, this framework supports BiPS and basics of Linux. W.r.t. BiPS,
ECCs are either hardware drivers, glue code to connect existing BiPS hardware

3 SDL signals, which are saved in the process’ current state, are also removed from
the signal queue, buffered in a separate queue, and moved back to the signal queue
after processing the last signal. Enabling conditions are not supported by RTDS.

278 T. Braun et al.

BiPS

SDL system

OS template

BiPS
SDL Scheduler

(BSS)

Process
A

Process
B

Environment
Core

Process
(ECP)

UART

multiplexer

UART-ECC
interface
de nition

UART-ECC
implementation

UART-ECC
TO-ECC

interface
de nition

TO-ECC
implementation

TO-ECC
SD

L Environm
ent Fram

ew
orksc

he
du

le
rs

ap
p

(B
AS

)
BC

S

1 - drivers

2 - protocols

0 - system software

3/4 - higher-layer protocols / applications

Fig. 4. Interface between SDL systems and BiPS

drivers, or interfaces to core functionalities of BiPS like access to TOs of the
communication stack.

ECCs are self-contained and interact with the SDL system through the ex-
change of SDL signals. Hence, each ECC consists of two parts: interface definition
and implementation. The interface definition is encapsulated in an SDL package
and defines signal types and data structures to access an ECC’s functionalities
from within the SDL system. The implementation, on the other hand, is realized
in C++. An ECC is executed by the SDL Environment Core Process (ECP) if an
associated signal arrives in the environment or if the ECC requests an execution.
This is, for instance, the case if a hardware interrupt has previously informed
about an event, which has to be processed further.

Figure 4 shows an SDL system’s structure with the new environment frame-
work, and the interconnection with BiPS. The example includes two ECCs: The
UART-ECC enables to access the hardware UART devices by utilizing the cor-
responding hardware driver of BiPS. The TO-ECC provides access to the mul-
tiplexer – and, thus, to the MAC protocols – of BiPS to send frames via the
wireless channel and to forward received frames to the SDL system.

Similar to all other SDL processes, ECP is controlled by BSS, yet it does
not consume SDL signals by itself but forwards them to the responsible ECC.
During build time, compiler macros provided by the RTDS code generator
are inspected to determine all required ECCs in order to compile and link
them. Since extensibility has been one of the key requirements during design
of the environment, we adopt a slightly modified variant of the well-known ob-
server pattern [11] for a loose coupling between ECP and ECCs. The resulting
class structure of the environment is shown by the UML diagram in Fig. 5. A
new instantiated ECC first registers all accepted signal types it can process at
the ECP by calling registerSignal. Hence, it acts as observer and the ECP

SDL Implementations for Wireless Sensor Networks 279

+notifySignal(signal)
EnvObserver

+registerSignal(signalID, observer)
EnvSubject

+forwardSignal(processID, signal)
+scheduleWakeup()
+registerForExecution(ecc)

ECP

RTDS_Env_proc

+execute()
ECC

0..*1

0..*0..*

0..*

observer
*

forwardSignal

register

notify

Fig. 5. UML class diagram of the environment framework

SDL Process P1 ECP BIPS

UART-ECC

notifySignal(UART_Init(...))
UART_Init(port1)

registerSignal(UART_Send,this)

registerSignal(UART_Init,this)

new UART-ECC(this)

registerCallback
(UART_REC, port1)

Fig. 6. Interplay of UART-ECC with BiPS, ECP, and an exemplary SDL process

forwards all signals received from the SDL system to the responsible ECC by
calling notifySignal or discards them if there is no responsible ECC. The
sequence diagram in Fig. 6 illustrates these steps for the UART-ECC.

To reduce overhead during runtime, RTDS determines target processes of
SDL signals during code generation by using information about channels and
signal paths in the SDL system. Therefore, generated code does not contain
any equivalents to signal paths or channels, but target processes of signals are
addressed by process identifiers. As consequence, such identifiers have also to
be used to send SDL signals from ECP and ECCs to responsible SDL processes
in the SDL system. To derive process identifiers from within the environment
implementation, the names of SDL processes can be used, since RTDS provides a
mapping between SDL process names and identifiers by C macros. This is often
suggested as state-of-the-practice solution but dictates the designer to follow a –
possibly undesired – naming convention. This also misleads to dummy processes
in SDL specifications, which are only introduced to fulfill the naming convention
and to forward signals to the actual target process.

In our opinion, a better and more generic solution is to use the observer pat-
tern again. By enabling SDL processes to register themselves for signal types
at ECCs during system startup, signals from the environment can be addressed
to arbitrarily named processes. Thereby, neither ECCs nor the SDL system has
to rely on naming conventions, and reusability of SDL system specifications is
improved. To register signals at ECCs, SDL initialization signals are introduced,
which are sent by SDL processes to the environment and contain the signal

280 T. Braun et al.

SDL Process
P1

BSS ECP UART-ECC BIPS

UART_Receive(port1, message)

wakeup

EVENT_emit

eventWakeup

scheduleWakeup

sendMessage(P1, UART_Receive)

forwardSignal(P1, UART_Receive) UART_REC(port1,message) UART
Interrupt

In
te

rr
up

t
Co

nt
ex

t

Fig. 7. Reception of incoming signals

type, for which the SDL process wants to subscribe. These signals are forwarded
by the ECP to the responsible ECC, which in turn associates the requested
signal type with the id of the sending process. Depending on the ECC, different
subscribe signals or additional signal parameters may be introduced to enable a
fine-granular distinction of an ECC’s functionalities. This option is, for instance,
used by the UART-ECC, which operates on all three UART ports of our Imote 2
platform but allows the subscription to single UART ports. Note that in this
case, SDL signals of the same signal type, which have been generated due to data
received on different UART ports, can be addressed to different SDL processes.

An example of the registration process is shown in Fig. 6. Here, SDL process
P1 subscribes for the reception of incoming messages on UART port 1. The
UART-ECC then registers its own callback at the UART driver provided by
BiPS, which is invoked by the driver when data arrives on this port.

In the programming model of BiPS, events – like expirations of hardware
timers or received frames – are indicated by a hardware interrupt, which suspends
regular execution immediately to execute the associated interrupt handler. If
the event is less time-critical, interrupt mode should, however, be left as fast
as possible to preserve time-critical operations of BiPS’s communication stack.
Thus, only necessary operations should be performed and the event system of
BAS should be used to continue event processing after leaving the interrupt
mode. This strategy is adopted by ECCs to interact with BiPS in a compliant
way. For this purpose, ECCs first register their own handler functions as callbacks
in BiPS (see, e.g., UART-ECC in Fig. 6), which will be invoked in interrupt mode
if a corresponding event occurs. If one of these handlers is executed, the ECC
only performs short operations like storing data. As last step in the callback, they
request the execution of BSS – and, thus, of the SDL system and of themselves
– by calling the scheduleWakeup method provided by the ECP, which finally
calls EVENT_emit of the event system of BAS. As soon as the interrupt mode is
left, BAS executes the SDL system by starting BSS.

Figure 7 continues the scenario of Fig. 6 by presenting the handling of an
incoming UART message. The message triggers a hardware interrupt and, there-
fore, causes the switching into interrupt mode. After the SDL signal has been

SDL Implementations for Wireless Sensor Networks 281

created and inserted into the signal queue of BSS, ECC/ECP requests to wakeup
BSS, which is then started by the BAS (depicted as part of BiPS in the figure)
after the interrupt handler terminates.

4 Evaluation of SDL’s Integration into BiPS

To evaluate SDL’s integration into BiPS, we have conducted experiments with
a distributed system providing TDMA-based medium access. The objectives of
these experiments are twofold: First, functionalities of BSS, the interface between
SDL time and hardware timer, and the SDL environment implementation are eval-
uated. Furthermore, we want to show that the presented hybrid integration ap-
proach with hand-written time-critical protocol functionalities and model-driven
higher-layer functionalities has advantages over purely model-driven approaches
regarding delays and predictability.

4.1 Evaluation Setup

Nodes in the experiments are Imote 2 sensor platforms [17]. They are based on
Marvel’s XScale processor PXA271 running with up to 416 MHz and are equipped
with 256 kB SRAM, 32 MB SDRAM, and 32 MB Flash memory. Communication
among nodes is performed with the integrated IEEE 802.15.4-compliant CC2420
transceiver. The evaluated scenario is illustrated in Fig. 8 and consists of three
Imote 2. One of the nodes is depicted as master and synchronizes the network.
Communication occurs in two pre-defined transmission slots and is originated by
one of the slaves. In each slot, one frame is sent. To compare our hybrid solution
to a purely model-driven approach with SDL, we have realized the scenario in two
ways:

1. In the realization called SDL-MAC, synchronization and medium slotting are
specified and implemented with SDL. This realization does not rely on
functionalities of the BiPS MAC layer but uses drivers, system software,
and the application scheduler of BiPS only. Synchronization is – similar to
IEEE 802.15.4 [14] – based on beacon frames. For this purpose, an ECC is
developed to interconnect BiPS’s CC2420 driver with the SDL system. Af-
ter detecting a frame’s SFD (Start of Frame Delimiter), the CC2420 driver
invokes a callback of this ECC, which in turn generates an SDL signal that

1s

synch phase

100ms50ms

transmission slot

master

slave 1

slave 2

...

Fig. 8. Topology and medium slotting of the scenario

282 T. Braun et al.

−
10

0
10

20
30

sy
nc

h
of

fs
et

 [μ
s]

SDL SDL/BiPS

w/o load
SDL SDL/BiPS

w/ load

(a) Synchronization offset between slaves.
0

50
10

0
15

0
20

0
25

0
de

vi
at

io
n

[μ
s]

SDL SDL/BiPS

w/o load
SDL SDL/BiPS

w/ load

(b) Deviation of data frames’ transmission
time from nominal transmission time.

Fig. 9. Evaluation results

is sent to the SDL system. Thereby, master, which sends beacon frames,
and slaves can synchronize to the SFD, which is according to the data sheet
signalized by the transceiver with an accuracy of about 3μs.

2. The realization called SDL/BiPS-MAC utilizes the entire protocol stack of
BiPS. Synchronization is performed by BBS. Data frames are still gener-
ated and consumed in an SDL system, which runs now on top of the BiPS
MAC layer. Thus, different to SDL-MAC, data transfer is via TO-ECC, BiPS
multiplexer, and the reservation-based MAC protocol.

SDL timers in the systems are set with absolute values (see Sect. 3.1). To
evaluate the impact of load, we execute both realizations also with load, which
is generated by additional SDL processes and very low (about 80 signals/sec).

4.2 Results

The systems are executed with and without load for a duration of 1000 seconds.
Regarding results, we concentrate on two aspects: First, we investigate synchro-
nization offset between slave 1 and slave 2 with SDL-MAC and SDL/BiPS-MAC.
For this purpose, both slaves signalize synchronization via GPIO pins, which
are monitored by a logic analyzer with a sampling rate of 50 MHz. Furthermore,
we analyze the deviation of data frames’ actual transmission time from their
nominal transmission time. These times are determined from slave 2’s point of
view and printed via the node’s UART port.

The results for both realizations are shown with and without load by box
plots in Fig. 9, where box borders mark the first and third quartile. The black
lines inside each box are medians. Whiskers mark min/max values.

SDL Implementations for Wireless Sensor Networks 283

The synchronization offset shown in Fig. 9(a) illustrates that even without
load, the offset achieved by SDL-MAC (between −3.4μs and 7.7μs) is higher than
with the hand-written BBS implementation of SDL/BiPS-MAC (between −1.3μs
and 1.7μs). The gap even increases when the systems are executed with load.
In this case, offset with SDL-MAC is between −15.2μs and 29.8μs, whereas offset
with SDL/BiPS-MAC remains almost unchanged.

Similar outcomes can be observed regarding compliance with transmission
slots, which are presented in Fig. 9(b). Here, the average deviation from the ac-
tual transmission time is with SDL-MAC more than 6 times higher than with the
hand-written implementation of the reservation-based protocol in SDL/BiPS-MAC.
In addition, variability is much higher with SDL-MAC: 46μs vs. 4μs without load
and 105μs vs. 7μs with load. Thus, it can be concluded that SDL/BiPS-MAC is
less prone to background load in the SDL system, whereas with SDL-MAC, the ex-
ecution of the SDL transition, which initiates the frame transmission, is delayed
due to load. Though the amount of load is very low in the presented scenario,
the increase of variability is already clearly perceptible with SDL-MAC. It can
furthermore be assumed that deviations will get worse if load is increased. The
reason why the deviation also increases slightly for SDL/BiPS-MAC can be found
in shared data structures of the SDL runtime and the BiPS multiplexer. In order
to access them in a consistent way, interrupts have to be disabled temporarily,
thereby deferring the processing of hardware interrupts and time-critical protocol
parts of BiPS. For this reason, it is crucial to keep the times, in which inter-
rupts are disabled, very small. However, since these times are almost constant,
deviations with SDL/BiPS-MAC will hardly deteriorate with increasing load.

In summary, synchronization and compliance with transmission slots are much
more accurate with the hybrid integration than with the pure SDL solution.
Furthermore, the hybrid solution is almost insusceptible for load in the SDL
system, thereby improving predictability of the overall system behavior.

5 Related Work

Before SDL systems can run on hardware, implementations must be derived
from the specification. But although SDL’s semantics has been described in an
operational way [15], implementing and incorporating SDL into a hardware and
software platform are challenging tasks due to many properties of SDL that do
not hold in reality [21]. There are several text books [3,18] discussing general
guidelines and alternatives regarding interfacing SDL systems with hardware
platforms and OSs. In this regard, an important step is the realization of the
SDL environment and the mapping of SDL processes to OS tasks.

Mitschele-Thiel [18] compares the three types of OS integrations introduced in
IBM’s SDL suite [13]: Tight, where each SDL process relates to an OS task, light,
in which the entire SDL system runs in one task, and bare. With respect to the
SDL environment, Mitschele-Thiel has no “master solution”, since its realization
depends on the system’s application domain and properties of the underlying
platform, but he compares alternatives like (a)synchronous inputs/outputs and

284 T. Braun et al.

interaction with hardware by interrupts and polling. A further role of the envi-
ronment is discussed by Bræk and Haugen [3] and is regarding load control.

Interfacing SDL with software platforms is also considered by commercial
SDL tools. RTDS of PragmaDev [20], for instance, maintains integrations for
Windows, Linux, and various RTOS like VxWorks, FreeRTOS, and Nucleus;
and also IBM’s SDL Suite [13] supports inter alia Linux, Windows, VxWorks,
and QNX. While these integrations cover scheduling and mapping of SDL’s
concurrent execution model to OS tasks, the realization of the environment –
i.e., the transformation of SDL signals to/from platform-specific implementations
– has to be provided manually, yet with driver support of the underlying OS.
However, a common drawback is that signals generated by the environment
and sent to the SDL system must be addressed by name, thereby dictating SDL
process names or impeding generic environment implementations. By registering
SDL processes at drivers during system startup, our integration does not suffer
from this limitation and only required hardware devices have to be initialized.

There are also proposals describing the incorporation of SDL into light-weight
(RT)OSs for embedded systems. Examples are Virtuoso [8], TinyOS [7], and Re-
flex [22]. For Virtuoso and Reflex, CAdvanced from IBM’s SDL Suite [13] is
used to generate code. The code generator for the TinyOS integration is not
mentioned. All integrations follow a tight approach by mapping each SDL pro-
cess to a task of the target OS, where the scheduler of TinyOS only supports a
non-preemptive FIFO strategy. Virtuoso and Reflex also support preemptive and
priority-based strategies. To interface the environment, the Virtuoso integration
includes an intermediate layer, which provides interrupt routines and hardware
drivers. Additionally, an environment task is introduced to map Virtuoso’s sig-
nals to SDL signals. A similar solution was chosen for Reflex, where the SDL
run-time environment is replaced by an OS integration layer. SDL processes and
environment are realized by so-called Reflex activities, which are sub-divided into
schedulable activities, which are SDL processes managed by the RTOS scheduler,
and non-schedulable activities handling interrupts. Timers are stored in a global
queue and checked for expiration at periodical system ticks. Thus, granularity
of SDL timers is – different to our integration – limited to system tick intervals.
A drawback of the Reflex integration is the addressing of signals, which is based
on SDL process’ names. For both other integrations, addressing of signals is not
mentioned but is probably similar. This limitation also includes signals gener-
ated in the environment. A drawback of all RTOS integrations is the reduced
coverage of SDL constructs like dynamic process instances.

Alvarez et al. in [1] present a different approach of accessing hardware by
specifying each hardware component with two SDL processes. A passive pro-
cess executing transitions as result of hardware interrupts, and an active driver
process, which uses the passive process to access hardware and provides the in-
terface to the SDL system. Together with their priority model, which is based on
fixed transition priorities, this approach enables a flexible processing of external
events, yet it generates an inefficient and less clear environment interface.

SDL Implementations for Wireless Sensor Networks 285

6 Conclusions

This paper proposes the incorporation of a commercial SDL tool into BiPS,
a deterministic protocol stack for WSNs, which has been devised in previous
works and implemented for Imote 2 nodes. The work, particularly, points out
how scheduling of the SDL system is achieved without violating tight timing
constraints of BiPS’s protocols, and how the data interface between SDL and
BiPS has been realized on the basis of the SDL environment. Referring to the
environment, our solution supports a flexible addressing of signals from the envi-
ronment to arbitrary named SDL processes, thereby not relying on dictated nam-
ing conventions. The incorporation follows a (very) light integration approach,
in which SDL systems and their environments run on top of BiPS, using its
services like event-based scheduling and hardware abstraction. By experiments
with a small distributed system, the paper demonstrates that integrating SDL
on top of a hand-written protocol stack is a good trade-off between manual and
model-driven developments and their pros and cons w.r.t. efficiency, reusability,
and maintainability.

This work shows our first steps with PragmaDev’s commercial SDL tool RTDS.
In future work, we are going to enhance scheduling within SDL systems, which is
currently based on signal-based FIFO. This scheduling strategy is, however, not
adequate in applications, which require prioritized transition executions to reduce
reaction delays and to meet deadlines. One possible solution is the adoption of
FreeRTOS4, which is also supported by RTDS and has already been integrated
into BiPS, where it is optionally used to complement the application scheduler.
An additional open task is to investigate how SDL concepts like real-time signaling
and real-time tasks, which have been proposed in previous works [4] and evaluated
in prototype implementations, can be transferred to RTDS.

References

1. Álvarez, J.M., Díaz, M., Llopis, L., Pimentel, E., Troya, J.M.: Integrating Schedu-
lability Analysis and Design Techniques in SDL. Real-Time Systems 24(3), 267–302
(2003)

2. Basmer, T., Schomann, H., Peter, S.: Implementation Analysis of the IEEE
802.15.4 MAC for Wireless Sensor Networks. In: 2011 International Conference
on Selected Topics in Mobile and Wireless Networking (iCOST), pp. 7–12 (2011)

3. Bræk, R., Haugen, Ø.: Engineering Real Time Systems. Prentice Hall (1993)
4. Braun, T., Christmann, D., Gotzhein, R., Igel, A.: Model-driven engineering of

networked ambient systems with SDL-MDD. Procedia Computer Science 10, 490
(2012), http://www.sciencedirect.com/science/article/pii/
S1877050912004206 ANT 2012 and MobiWIS 2012

5. Braun, T., Gotzhein, R., Kuhn, T.: Mode-based Scheduling with Fast Mode-
Signaling – A Method for Efficient Usage of Network Time Slots. Journal of Ad-
vances in Computer Networks (JACN) 2, 48–57 (2014)

4 http://www.freertos.org/

http://www.sciencedirect.com/science/article/pii/S1877050912004206
http://www.sciencedirect.com/science/article/pii/S1877050912004206
http://www.freertos.org/

286 T. Braun et al.

6. Christmann, D., Gotzhein, R., Rohr, S.: The Arbitrating Value Transfer Protocol
(AVTP) - Deterministic Binary Countdown in Wireless Multi-Hop Networks. In:
2012 21st International Conference on Computer Communications and Networks
(ICCCN), pp. 1–9 (August 2012)

7. Dietterle, D., Ryman, J., Dombrowski, K.F., Kraemer, R.: Mapping of High-Level
SDL Models to Efficient Implementations for TinyOS. In: Euromicro Symposium
on Digital System Design (DSD 2004), pp. 402–406. IEEE Computer Society (2004)

8. Drosos, C., Zayadine, M., Metafas, D.: Real-Time Communication Protocol De-
velopment - using SDL for an Embedded System On Chip Based on ARM Micro-
controller. In: 13th Euromicro Conference on Real-Time Systems (ECRTS 2001),
pp. 89–94. IEEE Computer Society (2001)

9. Engel, M.: Optimierung und Evaluation Black Burst-basierter Protkolle unter Ver-
wendung der Imote 2-Plattform. Master’s thesis, TU Kaiserslautern (2013)

10. Fliege, I., Grammes, R., Weber, C.: ConTraST - A Configurable SDL Transpiler
and Runtime Environment. In: Gotzhein, R., Reed, R. (eds.) SAM 2006. LNCS,
vol. 4320, pp. 216–228. Springer, Heidelberg (2006)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns – Elements of
Reusable Object-Oriented Software, 37. print. edn. Addison-Wesley, Boston (2009)

12. Gotzhein, R., Kuhn, T.: Black Burst Synchronization (BBS) – A Protocol for
Deterministic Tick and Time Synchronization in Wireless Networks. Computer
Networks 55(13), 3015–3031 (2011)

13. IBM Corp.: Rational SDL Suite (2014),
http://www-01.ibm.com/software/awdtools/sdlsuite/

14. Institute of Electrical and Electronics Engineers: IEEE Standard 802 Part 15.4:
Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE Computer Soci-
ety, New York, NY, USA (June 2011),
http://standards.ieee.org/getieee802/download/802.15.4-2011.pdf

15. International Telecommunication Union (ITU): ITU-T Recommendation Z.100
Annex F: Formal Semantics Definition (2000),
http://www.itu.int/rec/T-REC-Z.100-200011-I!AnnF1,
http://www.itu.int/rec/T-REC-Z.100-200011-I!AnnF2,
http://www.itu.int/rec/T-REC-Z.100-200011-I!AnnF3

16. International Telecommunication Union (ITU): ITU-T Recommendation Z.100
(12/11) - Specification and Description Language - Overview of SDL-2010 (2012),
http://www.itu.int/rec/T-REC-Z.100/en

17. MEMSIC Inc.: Imote2 datasheet (2014),
http://vs.cs.uni-kl.de/downloads/Imote2NET_ED_Datasheet.pdf

18. Mitschele-Thiel, A.: Engineering with SDL – Developing Performance-Critical
Communication Systems. John Wiley & Sons (2000)

19. PragmaDev SARL: Real Time Developer Studio: User Manual (2013),
http://www.pragmadev.com

20. PragmaDev SARL: Real Time Developer Studio (2014),
http://www.pragmadev.com

21. Sanders, R.: Implementing from SDL. In: Telektronikk 4.2000, Languages for
Telecommunication Applications. Telenor (2000)

22. Wagenknecht, G., Dietterle, D., Ebert, J.-P., Kraemer, R.: Transforming Protocol
Specifications for Wireless Sensor Networks into Efficient Embedded System Im-
plementations. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN 2006. LNCS,
vol. 3868, pp. 228–243. Springer, Heidelberg (2006)

http://www-01.ibm.com/software/awdtools/sdlsuite/
http://standards.ieee.org/getieee802/download/802.15.4-2011.pdf
http://www.itu.int/rec/T-REC-Z.100-200011-I!AnnF1
http://www.itu.int/rec/T-REC-Z.100-200011-I!AnnF2
http://www.itu.int/rec/T-REC-Z.100-200011-I!AnnF3
http://www.itu.int/rec/T-REC-Z.100/en
http://vs.cs.uni-kl.de/downloads/Imote2NET_ED_Datasheet.pdf
http://www.pragmadev.com
http://www.pragmadev.com

Formal Technical Process Specification

and Verification for Automated Production
Systems

Georg Hackenberg1, Alarico Campetelli1, Christoph Legat2, Jakob Mund1,
Sabine Teufl3, and Birgit Vogel-Heuser2

1 Chair IV: Software & Systems Engineering, Technische Universität München,
Boltzmannstr. 3, 85748 Garching

{hackenbe,campetel,mund}@in.tum.de
2 Institute of Automation and Information Systems, Technische Universität

München, Boltzmannstr. 5, 85748 Garching
{legat,vogel-heuser}@ais.mw.tum.de

3 fortiss GmbH, An-Institut Technische Universität München,
Guerickestr. 25, 80805 München

teufl@fortiss.org

Abstract. The complexity of automated production systems increases
constantly due to growing functional requirements and engineering disci-
pline integration. Early design steps include the cross-discipline specifi-
cation of the system’s technical process, while later steps have to ensure
compatibility with the specification. Current specification techniques are
able to describe and analyze certain properties on the specification level,
however verification of the implementation with respect to the specifi-
cation is a costly task. To overcome this situation we propose a formal
modeling technique, which enables automatic verification of the imple-
mentation. We demonstrate the approach on a lab-sized automated pro-
duction system and finally discuss its advantages and disadvantages.

Keywords: Automated production systems, technical process, formal
method.

1 Introduction

Automated production systems are complex mechatronic systems whose engi-
neering comprises various disciplines, e.g., mechanical, electrical, and software
engineering. In the concurrent engineering process, efficient and effective col-
laboration between interdisciplinary engineering teams is important towards the
projects’ success [18,19]. Ensuring the correctness of a production system’s design
manually, i.e., ensuring the compliance with the technical process, is cumbersome
and costly. For this reason, verification is performed only sparsely in practice in-
creasing project risks drastically. Automating the verification would enable more
frequent design examination for early detection and correction of design flaws.
Therefore, ensuring the correctness of the design by automatic verification is one
option to leverage a project’s success.

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 287–303, 2014.
c© Springer International Publishing Switzerland 2014

288 G. Hackenberg et al.

Various approaches for automatic verification exist, ranging from design-time
to runtime techniques. For design-time verification, modeling tools provide spe-
cific extensions for formal analyses, e.g., Simulink Design Verifier1 or SCADE De-
sign Verifier2, which allow to specify desired properties using temporal operators
and assertions. In contrast, Rhapsody in C++ [22] supports verification of UML
models, while properties can be formulated using temporal patterns or a graph-
ical notation called Life Sequence Charts [12]. Alternatively, Hugo/RT [2] offers
UML communication diagrams for property definition. In contrast to design-time
techniques, runtime techniques include runtime verification [4] and online/offline
monitoring [21]. Both runtime verification and monitoring allow to express prop-
erties using for example temporal logics. While existing approaches already sup-
port the examination of a system’s design with respect to desired properties
both at design-time and at runtime, provided formalisms are not designed to
be used within the automation domain (e.g., by process engineers). Rather,
dedicated technical process modeling techniques are required, providing more
suitable modeling vocabulary.

For technical process modeling various modeling notations exist. In particular,
the application of notations originally developed in computer science are recently
under investigation in the field of automated production systems. For example,
Zor et al. [27] explore the adaption of the Business Process Model and Notation
(BPMN) through domain-specific extensions such as parts flow connectors and
material gateways. However, while intended for documentation purposes their
approach lacks a formal foundation, making automatic verification infeasible.
In contrast, Dijkman et al. [13] propose formal semantics for standard BPMN,
but lack the necessary domain-specific extensions. Alternatively, the Formalized
Process Description [24] provides a standard for technical process specification
in the manufacturing domain. While in combination with a plant model the for-
malism is well suited for diagnosis [11], automatic design verification has not
been targeted yet. Moreover, in the field of service-oriented manufacturing vari-
ous process models exist for service orchestration [10,20,23]. While some of these
models define execution semantics, the models typically are used during tech-
nical process implementation rather than specification and verification. Then,
according to IEC 61131-3 [16] for developing field level control software, Sequen-
tial Function Charts provide a graphical programming language supporting the
modeling of software processes. Also, state charts have been developed for the
specification of control software [26]. Though providing formal semantics and
verification capabilities, these approaches are not applied for technical process
specification. In a nutshell, a variety of process specification languages have been
defined for different purposes. However, the approaches are either not suited for
technical process specification or do not provide necessary formal semantics.

Therefore, in Section 2 a dedicated formal approach to technical process spec-
ification and verification for automated production systems is presented. In par-
ticular, the approach allows developing both the process specification and the

1 http://www.mathworks.de/products/simulink/
2 http://www.esterel-technologies.com/products/scade-suite/

http://www.mathworks.de/products/simulink/
http://www.esterel-technologies.com/products/scade-suite/

Formal Technical Process Specification and Verification 289

Fig. 1. Overview of the concepts and relations including process specfication and sys-
tem representation connected through an observation interface

implementation independent of each other while achieving their semantic inte-
gration for automatic verification at design-time and runtime. The applicability
of this approach is demonstrated based on a lab sized manufacturing system
with an exemplified design process in Section 3. The demonstrator is reduced in
size and complexity. Nevertheless, it is suitable for indicating the applicability
for a basic class of manufacturing systems in a first step. It is shown that the
verification can lead to an early detection of exemplary design flaws. The sec-
tion concludes with a summary of experiences gained during executing the case
study. Finally, the paper summarizes the findings and indicates necessary future
work.

2 A Formal Approach

To explain our formal approach to technical process specification and verifica-
tion, we first introduce a number of basic concepts and relations (Section 2.1),
before going into details of their formalization (Section 2.2) and showing possi-
bilities for automatic verification (Section 2.3).

2.1 Terminology

Figure 1 provides an overview of the core concepts and relations: We distin-
guish between (1) process specification and (2) system representation, which are
connected and semantically integrated by an (3) observation interface.

Process Specification. As discussed in the previous section, the purpose of the
process specification is to describe the expected behavior of automated produc-
tion systems in a high-level and cross-discipline manner. To achieve this goal, we
propose to describe technical processes in terms of (a) activities, (b) observations,
(c) variables, (d) transitions, (e) actions, and (f) constraints. The terminology
and the graphical notation are inspired by UML activity diagrams [3].

290 G. Hackenberg et al.

Activities are the main concept for structuring the course of action of an
automated production system. Activities define time intervals during which pro-
duction operations can be performed. Examples are moving and manipulating
solid workpieces or mixing and stirring liquids. During activities observations
provide information about the system state such as the position and the shape
of a workpiece or the temperature and the chemical mixture of a liquid. Further-
more, variables and actions on variables can be used to track information such
as the activity duration or cumulative energy consumption. Then, constraints
can be used to limit both observations and variable assignments. Consequently,
constraints allow one to document necessary conditions that need to hold during
activity execution such as the activity duration, required temperature bands of
liquids, and workpiece positions. Finally, activities can be switched by means
of transitions describing possible activity sequences. Again, constraints over ob-
servations and variables are used to define the conditions that need to hold for
switching activities. Examples are intermediate locations of workpieces or inter-
mediate mixtures of liquids. At last, transition actions on variables can be used
to track information across activities or to reset the tracking state.

The modeling technique is similar to input/output (i.e., I/O) automata [1].
However, the key differences are that the process specification does not include
any outputs and the activities include the concept of constraints. Consequently,
our notation reflects the needs of technical process engineers more closely.

Observation Interface. The purpose of the observation interface is to link
process specification and system representation such that automatic process ver-
ification becomes feasible. Conceptually, the observation interface is modeled in
terms of observation ports and channels, which is inspired by the Focus engi-
neering method and underlying formalism [7]. The process specification defines
the observation input ports, while the system representation provides the re-
spective observation output ports. The port coupling is achieved by means of
observation channels.

The interface concept allows one to decouple the process specification and the
system representation, while achieving their semantic integration. Consequently,
the system representation can be exchanged without the need for revising the
process specification, e.g., when comparing automated production systems from
different providers implementing the same technical process.

System Representation. The system representation finally constitutes the
actual implementation of the process specification. Implementations typically
include a number of mechanical, electrical and software elements. At this point
we do not prescribe any particular representation format. Rather, we distin-
guish two general options both being suited for automated process verifica-
tion: (a) system specifications and (b) system installations. System specifications
describe the automated production system e.g., using MechatronicUML [5] or
SysML4Mechatronics [17], while system installations represent the commissioned
automated production systems themselves. However, note that for automated

Formal Technical Process Specification and Verification 291

process verification the system representation needs to define an execution se-
mantics and needs to implement the observation interface.

2.2 Formalization

To enable automatic verification, we first define the elements of a process spec-
ification in terms of mathematical sets and functions reflecting the concepts
introduced in the previous section.

Definition 1 (Process specification). A process specification P is an twelve-
tuple P = (A,M,N,O, V, T, a′, v′, f1, f2, g1, g2) with

– a finite set A = {a1, . . . , am} of activities with m ∈ N,
– a finite set M = {M1, . . . ,Mn} of observation domains with n ∈ N,
– a finite set N = {N1, . . . , Nl} of variable domains with l ∈ N,
– a finite set O = M1 × · · · ×Mn of observations from observation domains,
– a finite set V = N1×· · ·×Nl of variable assignments from variable domains,
– a finite set T ⊆ A×A of transitions,
– an element a′ ∈ A as initial activity,
– an element v′ ∈ V as initial variable assignments,
– an activity constraint function f1 : A → P(O × V),
– an activity action function f2 : A×O × V → V ,
– a transition constraint function g1 : T → P(O × V), and
– a transition action function g2 : T ×O × V → V

such that the transition set T does not include self-transitions for any activity
from the activity set A:

∀(ai, aj) ∈ T : ai �= aj with 1 ≤ i, j ≤ m and i, j ∈ N

and only one transition in the transition set T is enabled by the transition con-
straint function g1 at a time:

∀ai ∈ A :
⋂

(ai,aj)∈T

g1((ai, aj)) = ∅ with 1 ≤ i, j ≤ m and i, j ∈ N

Note that a process specification P resembles a directed graph with vertices A
and edges T . Furthermore, the constraint functions f1 and g1 specify possible
combinations of observations o ∈ O and variables v ∈ V , which are accepted
while performing activities a ∈ A or which are required in order to switch ac-
tivities using transitions (ai, aj) ∈ T with 1 ≤ i, j ≤ m and i, j ∈ N. Finally,
the action functions f2 and g2 define how to derive new variable assignments
v′ ∈ V from observations o ∈ O and previous variables assignment v ∈ V during
activities a ∈ A and transitions (ai, aj) ∈ T with 1 ≤ i, j ≤ m and i, j ∈ N.

Based on process specification P , we define the concept of observation traces
reflecting the input of the process specification and the output of the system
representation respectively.

292 G. Hackenberg et al.

Definition 2 (Observation traces). An observation trace τn for process spec-
ification P = (A,M,N,O, V, T, a′, v′, f1, f2, g1, g2) is a finite or infinite sequence:

τn = (ωi)
n
i=0

with ωi ∈ O representing observations and n ∈ N ∪ {∞} representing the length
of the sequence.

Consequently, observation traces provide a record of system execution. Note
that in theory observation traces can be of infinite length, which is important
for exhaustive model checking as discussed in the following section.

Based on process specification P and the observation trace τn with n ∈ N ∪
{∞}, we define the formal process execution semantics determining the order of
action execution, constraint evaluation, and activity switching.

Definition 3 (Process execution). A process execution πn of process spec-
ification P = (A,M,N,O, V, T, a′, v′, f1, f2, g1, g2) and observation trace τn =
(ωk)

n
k=0 with n ∈ N ∪ {∞} is a finite or infinite sequence:

πn = ((αk, ωk, φk, βk))
n
k=0

with αk ∈ A, ωk ∈ O, φk ∈ V and βk ∈ B such that the sequence starts with the
initial activity a′ and the initial variable assignments v′:

α0 = a′, φ0 = v′

and given the domains of sequence indices D1 and D2 separating between the
finite and the infinite case:

(n = ∞ ⇔ D1 = N) ∧ (n �= ∞ ⇔ D1 = {k ∈ N | k < n})
(n = ∞ ⇔ D2 = N) ∧ (n �= ∞ ⇔ D2 = {k ∈ N | k ≤ n})

the transitions between the activities are included in the transition set T and
supported by the transition constraint function g1:

∀k ∈ D1 : αk �= αk+1 ⇔ (αk, αk+1) ∈ T ∧ (ωk, φk) ∈ g1((αk, αk+1))

and the variables are updated according to the activity action function f2 and
transition action functions g2:

∀k ∈ D1 : φk+1 =

{
f2(αk+1, ωk+1, φk) if αk = αk+1

f2(αk+1, ωk+1, g2((αk, αk+1), ωk, φk)) if αk �= αk+1

and the boolean variables βk contain the results of the activity constraint function
f1 respectively:

∀k ∈ D2 : βk = true ⇔ (ωk, φk) ∈ f1(αk)

Formal Technical Process Specification and Verification 293

Essentially, a process execution πn with n ∈ N ∪ {∞} extends the observation
trace τn with activity, variable assignments, and activity constraint information.
Note that transitions (αk, αk+1) ∈ T with k ∈ D1 occur between elements of
the sequence πn based on the observations ωk ∈ O and variable assignments
φk ∈ V of the former time point. Also, the effects of the transition actions
φ′
k+1 = g2((αk, αk+1), ωk, φk) with k ∈ D1 on the variables φk+1 ∈ V are hidden

by the effects of the activity actions f2(αk+1, ωk+1, φ
′
k+1). This design decision

has been taken such that for every time point an activity as well as the activity
constraints can be determined.

Finally, based on the process specification P , the observation trace τn, and
the process execution πn, the process satisfaction condition can be defined, de-
termining whether an observation trace satisfies a process specification or not.

Definition 4 (Process satisfaction). Given some process specification P =
(A,M,N,O, V, T, a′, v′, f1, f2, g1, g2), an observation trace τn = (ωk)

n
k=0, and the

respective process execution πn = (αk, ωk, φk, βk)
n
k=0:

τn satisfies P ⇔ ∀k ∈ D : βk = true

with n ∈ N ∪ {∞} defining the sequence length and D representing the finite or
infinite set of sequence indices:

(n = ∞ ⇔ D = N) ∧ (n �= ∞ ⇔ D = {k ∈ N : k ≤ n})
Consequently, the process specification P remains unsatisfied in case activity
constraints (ωk, φk) ∈ f1(αk) with k ∈ D are violated, which are used to deter-
mine βk. Note that a system specification satisfies a process specification P in
case all possible observation traces τn with n ∈ N ∪ {∞} satisfy P .

2.3 Verification

Different verification techniques exist that allow one to check whether a process
specification is fulfilled by incoming observation traces. Figure 2 shows the veri-
fication options and how the models and the properties for the verification tools
can be derived.

In case an adequate system specification is given, model checking can be
used for exhaustive verification of the process specification (i.e., with respect to
all possible traces of the system). The formal model for the model checker is
built from the system specification, the observation interface, and the process
specification. Meanwhile, the formal property to be verified determines that the
variable bk remains always true. This way all finite and infinite observation
traces are verified or a counterexample πn is returned leading to an activity
constraint violation in the last step. However, the application of model checking
might not be feasible for some systems due to the complexity of the state space.
One possibility to overcome this limitation is to apply bounded model checking
instead. However, bounded model checking is limited to verification of finite
traces with predefined length only, while the verification still is exhaustive (i.e.,
with respect to all possible traces of the system with predefined length).

294 G. Hackenberg et al.

Fig. 2. Verification options including model checking of system specifications, offline
monitoring of system specifications and installations, and counterexamples

Besides model checking other verification options exist which are applicable
in case the formal system model cannot be built (i.e., no adequate system spec-
ification is available) or exhaustive verification is not feasible (i.e., the state
space is too complex even for bounded model checking). In such cases we rely
on observation traces only, e.g., obtained by simulation of the system specifica-
tion or execution of the system installation. Checking whether an observation
trace meets the process specification can be performed using online or offline
monitoring [21]. As illustrated in Fig. 2, in our case the recorded executions are
represented by the observation traces and the monitor is build from the process
specification. The monitor verifies the same property as for model checking, i.e.,
the variable bk must remain always true. Process monitoring in combination with
simulation of the system specification or execution of the system installation re-
quires less expertise, time, and memory as compared to model checking, but
verifies the process specification for selected finite observation traces only. While
this represents a drawback compared to model checking of system specifications,
monitors are suited particularly well for verification of system installations.

3 An Academic Case Study

In the following, we apply the proposed approach to the pick and place unit
(PPU) [15,25], a bench-scale lab demonstrator of a manufacturing system (cp.
Fig. 3). The system consists of a stack for storing cylindrical workpieces (WPs), a
stamp for stampingWPs, a sorter including a conveyor, two pneumatic cylinders,
and three ramps for transporting, sorting, and storing WPs, as well as a crane
for transporting WPs between the previous stations.

Formal Technical Process Specification and Verification 295

(a) Mechanic setup [25] (b) Plant layout

Fig. 3. The pick and place unit (PPU) bench-scale lab demonstrator

For the study, the following requirements have been specified: The PPU must
handle two types of WPs, plastic and metallic. During the process the latter
should be stamped, while the former should be left unstamped (which is a common
scenario for example in waste management). Moreover, both kinds of WPs should
be transported from stack to ramp 3 location within at most 25 seconds. Note
that ramp 1 and ramp 2 locations remain unused, because in this study the
PPU is not required to sort the WPs.

In the following, we describe the developed process specification before elabo-
rating on the system specification. Further, we show how in the given case model
checking helps to uncover a design flaw in the system specification and prove its
subsequent correction.

3.1 Process Specification

The process specification for the PPU is depicted in Fig. 4. During design, it
was decided to decompose the entire process into six activities and four observa-
tions. The activities are wait, pivot plastic WPs, pivot metal WPs, stamp metal
WPs, pivot metal WPs again, and transport both types of WPs. In contrast, the
observations describe WPs at stack, stamp, conveyor, and ramp 3 location.

As shown in the process specification, the system is required to start with the
wait activity. Then two transitions are defined, one for unstamped plastic and
the other for unstamped metallic WPs at the stack location. When observing
a plastic WP, the PPU switches to the pivot plastic activity for a maximum
duration of 5 seconds. The activity ends as soon as an unstamped plastic WP
is observed at the conveyor location. In contrast, for metallic WPs, a separate

296 G. Hackenberg et al.

Fig. 4. Process specification for the PPU including different handling of plastic and
metallic WPs

pivot metal activity is executed for a maximum duration of 10 seconds, and ends
as soon as unstamped metallic WPs are observed at the stamp location. Then,
the stamp metal activity is executed for a maximum duration of 5 seconds,
which ends when stamped metallic WPs are observed at the stamp location.
Subsequently, again a pivot metal activity is triggered for a maximum duration
of 5 seconds, which ends exactly when stamped metallic WPs are observed at the
conveyor location. Then, independent of the WP type and state, the transport
activity is started for a maximum duration of 5 seconds, until a WP is observed
at the ramp 3 location.

Overall the process ensures that both plastic and metallic WPs are processed
in at least 25 seconds of time. In case a plastic WP is observed, the sequence
of activities lasts at most 15 seconds. In case a metallic WP is observed, the
sequence lasts at most 25 seconds instead. Also, in accordance to the require-
ments, only unstamped plastic or stamped metallic WPs can be observed at
ramp 3 location.

3.2 System Specification

For this study, we decided to use AutoFOCUS3 to model the system specifica-
tion. AutoFOCUS is a reference implementation of the Focus formalism [7] and
comes with NuSMV4 integration [9] for model checking. Focus describes sys-
tems in terms of components, input/output ports, channels, and input/output

3 http://af3.fortiss.org/
4 http://nusmv.fbk.eu/

http://af3.fortiss.org/
http://nusmv.fbk.eu/

Formal Technical Process Specification and Verification 297

Fig. 5. Excerpt of a simplified system specification for the PPU including novel observer
components

automata. The advantage of the tool chain is that the system specification can
be verified with respect to the process specification. On the downside, the mod-
eling technique is tailored to pure message exchange between components, which
also has to be used to describe physical phenomena. However, it should be noted
that extensions of Focus exist adding dense time [6] and continuous time [8]
and spatial [14] phenomena. Though being more suitable for describing physi-
cal phenomena, these extensions are not used in the study as they are not yet
supported by the reference implementation.

The system specification for the pick and place unit is shown in Fig. 5. Due to
system complexity, we only focus on a part of the system specification including
the workpiece (i.e., plastic or metallic WP), the crane to perform the pivot ac-
tivities (see Section 3.1), a platform, a control, and several observer components.
Note that the system specification assumes that only one WP is being processed
by the PPU at a time, which is in accordance with the process specification.

Workpiece. The workpiece component is responsible for modeling the work-
piece type (plastic or metallic), state (unstamped or stamped), and position
(angular and lift). The component defines two input ports (crane position and
suction) as well as three output ports (type, state, and position). The inputs are
provided by the crane component, while the outputs are delivered to the observer
components. Figure 6a shows the automaton specification of the input/output
behavior of the workpiece component. The behavior is described in terms of two
states: (1) not gripped and (2) gripped. In case the workpiece is gripped by the
crane, the workpiece position (i.e., WPosition) is locked to the crane position
(i.e., CPosition). Otherwise the workpiece position remains constant. The work-
piece goes into the gripped state, if the workpiece position is equal to the crane

298 G. Hackenberg et al.

(a) Workpiece I/O behavior (b) Crane I/O behavior

Fig. 6. Automaton specification of the input/output behavior for the workpiece and
crane components

position and the gripped input is turned on. On the other hand, the workpiece
goes back into the not gripped state as soon as the gripped input is turned off.

Note that the automaton does not include the type and state outputs of
the workpiece, which are irrelevant for the interaction between workpiece and
crane. Obviously, the type (i.e., plastic or metallic) remains constant, while the
state depends on the interaction with the stamp, which is not the focus of this
presentation.

Crane. The crane component is responsible for modeling the crane position (an-
gular and lift) as well as the suction and position sensor outputs. The component
defines three input ports (angular velocity, lift velocity, and suction) as well as
seven output ports (crane position, suction, at stack, at conveyor, at stamp, at
top, and at bottom). The inputs are provided by the platform component, while
the first two outputs are forwarded to the workpiece component and the last
five outputs are delivered back to the platform component. Figure 6b shows the
automaton specification of the I/O behavior of the crane component. The be-
havior is described by means of a single state: Active. In this state angular and
lift velocity are added to the crane position, while the suction input is forwarded
to the workpiece unchanged and the position sensors fire selectively.

Platform. The platform component is responsible for modeling the physical
connection between crane and control component. Consequently, the velocity
and suction values are forwarded to the crane, while the position sensor values
are delivered back to the control. An automaton specification of the I/O behav-
ior is omitted here, however it should be noted that the platform introduces a
message delay between crane and control. Technically, the delay is caused by

Formal Technical Process Specification and Verification 299

Fig. 7. Counterexample returned by the model checker leading to an activity constraint
violation in the last step

analog-digital converters, communication buses, and programmable logic con-
troller execution semantics.

Control. The control component is responsible for adjusting crane velocity and
suction based on the position sensor inputs. Again, due to space limitation the
automaton specification of the I/O behavior is omitted. The automaton switches
between different pivot, lift, and wait states controlling angular and lift velocities
as well as suction, respectively. State switches occur based on the position sensor
inputs from the crane as well as further information about the workpiece state
(omitted in the presented system specification).

Observer. Finally, the observer components are responsible for defining the
observation streams necessary to connect the system specification to the process
specification (see Section 3.1). Based on the workpiece position, the observers
decide whether to forward the input message including workpiece type and state
to the respective observation output port.

3.3 Model Checking

Due to the selected tool chain (i.e., AutoFOCUS and NuSMV) we are able to
perform exhaustive verification of the system specification with respect to the
process specification using for example bounded model checking. Therefore, as
described in [9] and Section 2.3, both the system specification and the process
specification are translated into NuSMV modules.

For verification, the workpiece type is set to metallic, the workpiece state is
set to unstamped, and the workpiece and crane positions are set to the stack
location. Then, for bounded model checking, the analysis depth is set to 110

300 G. Hackenberg et al.

(a) Initial sensor positions (b) Revised sensor positions

Fig. 8. Geometric explanation of the design flaw and its correction through manipula-
tion of sensor positions

steps (covering the execution of the first pivot metal activity). Further, to indi-
cate verification performance an analysis timeout of 50 seconds is used. Given
these settings NuSMV fails to verify the absence of activity constraint viola-
tions within the timeout returning the counterexample shown in Fig. 7. In the
counterexample, the process model correctly switches to the pivot activity after
detecting unstamped metallic WPs at the stack location. Also, the WP trans-
port seems to work correctly after suction is turned on. However, the WP is
moved past the stamp location before the crane places the WP down and turns
suction off. Consequently, the activity post condition (i.e., unstamped metallic
WP at the stamp location) does not become true and the duration constraint
is violated. After further examination of the counterexample, the cause of the
problem is identified: as illustrated in Fig. 8a, the delay introduced by the plat-
form component leads to a deviation between crane position sensor angles and
final crane angles, which is why the WP moves past the stamp location.

To correct the design flaw, the angular position sensors are slightly displaced
as shown in Fig. 8b. Also, a sensor is added to the conveyor location as the
crane approaches the location from two sides. Finally, the control component
is adjusted to accommodate for the novel input. Subsequently, given the same
settings, NuSMV is able to verify the absence of activity constraint violations.
However, note that only the first pivot metal activity is considered currently,
while an exhaustive verification of the entire process has not been achieved yet.

4 Conclusion and Outlook

In this paper, we have introduced a dedicated formal approach to technical
process specification and verification for automated production systems. In Sec-
tion 2, we developed the underlying terminology (in compliance with existing
approaches [3,27]) and provided the necessary mathematical definitions before
describing verification options both at design-time and at runtime. Then, in Sec-
tion 3, we showed how to apply the proposed approach to a bench-scale man-
ufacturing system. The case study included the formal process specification as

Formal Technical Process Specification and Verification 301

well as an excerpt of the system specification in AutoFOCUS. Moreover, model
checking with NuSMV was used to uncover a design flaw caused by signal delays.
Finally, one possibility to resolve the design flaw was discussed.

The case study showed the effectiveness of using an observation interface to
decouple and semantically integrate process specification and system represen-
tation. In particular, high-level observations can be defined early during process
specification, while a translation to these observations can be achieved easily
later within the system’s design to enable automatic verification. Furthermore,
we have exploited the concept of variables and actions to model and constrain the
duration of activities. Similarly, other performance characteristics such as energy
consumption can be constrained. Finally, both model checking and simulation
monitoring provide powerful tools for design-time verification, while monitoring
also provides the link to system commissioning and operation. Overall, through
the small set of concepts and different verification options we are able to provide
a flexible basis for technical process specification and verification.

However, on the downside, both actions and constraints currently require
lengthy textual notation, to which process engineers are not accustomed. To this
end, we are working on graphical notations as well as the inclusion of language-
level patterns. Moreover, we are working on extensions for process composition
and synchronization to support parallel process execution. Also, we are inves-
tigating continuous-time rather than discrete-time process specifications. Then,
we are exploring possibilities for process quality monitoring as compared to con-
straint monitoring. Finally, we are studying exhaustive verification performance
as well as scenario-based testing as an alternative, scalable verification strategy.

References

1. Attie, P., Lynch, N.: Dynamic input/output automata: A formal model for dynamic
systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154,
pp. 137–151. Springer, Heidelberg (2001)

2. Balser, M., Bäumler, S., Knapp, A., Reif, W., Thums, A.: Interactive Verification of
UML State Machines. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004.
LNCS, vol. 3308, pp. 434–448. Springer, Heidelberg (2004)

3. Bastos, R., Ruiz, D.: Extending uml activity diagram for workflow modeling in
production systems. In: Proceedings of the 35th Annual Hawaii International Con-
ference on System Sciences, HICSS, pp. 3786–3795 (January 2002)

4. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for ltl and tltl. ACM
Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011)

5. Becker, S., Brenner, C., Dziwok, S., Gewering, T., Heinzemann, C., Pohlmann, U.,
Priesterjahn, C., Schäfer, W., Suck, J., Sudmann, O., Tichy, M.: The mechatron-
icuml method - process, syntax, and semantics. Tech. Rep. tr-ri-12-318, Software
Engineering Group, Heinz Nixdorf Institute University of Paderborn (2012)

6. Broy, M.: System behaviour models with discrete and dense time. In: Chakraborty,
S., Eberspächer, J. (eds.) Advances in Real-Time Systems, pp. 3–25. Springer,
Heidelberg (2012)

7. Broy, M., Stølen, K.: Specification and development of interactive systems: Focus
on streams, interfaces and refinement. Springer (2001)

302 G. Hackenberg et al.

8. Campetelli, A.: Dynamic Sampling for FOCUS Hybrid Components. In: Ölveczky,
P.C., Artho, C. (eds.) 3rd International Conference on Circuits, System and Simula-
tion (ICCSS 2013), vol. 3(5), pp. 402–406 (2013); International Journal of Modeling
and Optimization

9. Campetelli, A., Hölzl, F., Neubeck, P.: User-friendly Model Checking Integration
in Model-based Development. In: 24th International Conference on Computer Ap-
plications in Industry and Engineering (CAINE 2011). The International Society
for Computers and Their Applications (2011)

10. Cândido, G., Barata, J., Colombo, A.W., Jammes, F.: SOA in reconfigurable
supply chains: A research roadmap. Engineering Applications of Artificial Intel-
ligence 22(6), 939–949 (2009)

11. Christiansen, L., Fay, A., Opgenoorth, B., Neidig, J.: Improved diagnosis by com-
bining structural and process knowledge. In: 2011 IEEE 16th Conference on Emerg-
ing Technologies Factory Automation (ETFA), pp. 1–8 (September 2011)

12. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Formal
Methods in System Design 19(1), 45–80 (2001)

13. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in bpmn. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

14. Hummel, B.: Integrated Behavior Modeling of Space-Intensive Mechatronic Sys-
tems. Dissertation, Technische Universität München, München (2011)

15. Institute of Automation and Information Systems, Technische Universität
München: The Pick and Place Unit Demonstrator for Evolution in Industrial Plant
Automation (2014), http://www.ppu-demonstrator.org

16. International Electrotechnical Commission: IEC Standard 61131-3 (02/13): Pro-
grammable controllers – part 3: Programming languages (2013),
http://webstore.iec.ch/webstore/webstore.nsf/Artnum_PK/47556

17. Kernschmidt, K., Vogel-Heuser, B.: An interdisciplinary SysML based modeling
approach for analyzing change influences in production plants to support the engi-
neering. In: IEEE International Conference on Automation Science and Engineer-
ing (CASE), Madison, WI, USA, pp. 1113–1118 (2013)

18. Kohn, A., Reif, J., Wolfenstetter, T., Kernschmidt, K., Goswami, S., Krcmar, H.,
Brodbeck, F., Vogel-Heuser, B., Lindemann, U.: Improving common model under-
standing within collaborative engineering design research projects. In: Chakrabarti,
A., Prakash, R.V. (eds.) 4th International Conference on Research into Design.
LNME, pp. 643–654. Springer India (2013)

19. Li, F., Bayrak, G., Kernschmidt, K., Vogel-Heuser, B.: Specification of the require-
ments to support information technology-cycles in the machine and plant manu-
facturing industry. In: 14th IFAC Symposium on Information Control Problems in
Manufacturing, pp. 1077–1082 (2012)

20. Loskyll, M., Schlick, J., Hodek, S., Ollinger, L., Gerber, T., Pirvu, B.: Seman-
tic service discovery and orchestration for manufacturing processes. In: 2011
IEEE 16th Conference on Emerging Technologies & Factory Automation (ETFA),
pp. 1–8. IEEE (2011)

21. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals.
In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS,
vol. 3253, pp. 152–166. Springer, Heidelberg (2004)

22. Schinz, I., Toben, T., Mrugalla, C., Westphal, B.: The Rhapsody UML Verifica-
tion Environment. In: 2nd International Conference on Software Engineering and
Formal Methods, pp. 174–183. IEEE Computer Society (2004)

http://www.ppu-demonstrator.org
http://webstore.iec.ch/webstore/webstore.nsf/Artnum_PK/47556

Formal Technical Process Specification and Verification 303

23. Shen, W., Hao, Q., Wang, S., Li, Y., Ghenniwa, H.: An agent-based service-oriented
integration architecture for collaborative intelligent manufacturing. Robotics and
Computer-Integrated Manufacturing 23(3), 315–325 (2007)

24. Verein Deutscher Ingenieure: VDI/VDE 3682 (09/05): Formalised process descrip-
tion (2005), https://www.vdi.de/nc/en/richtlinie/vdivde
3682-formalisierte prozessbeschreibungen/

25. Vogel-Heuser, B., Legat, C., Folmer, J., Feldmann, S.: Researching evolution in
industrial plant automation: Scenarios and documentation of the pick and place
unit. Technical Report TUM-AIS-TR-01-14-02, Institute of Automation and Infor-
mation Systems, Technische Universität München (2014),
https://mediatum.ub.tum.de/node?id=1208973

26. Witsch, D., Vogel-Heuser, B.: PLC-statecharts: An approach to integrate UML-
statecharts in open-loop control engineering – aspects on behavioral semantics and
model-checking. In: 18th IFAC World Congress, pp. 7866–7872 (2011)

27. Zor, S., Leymann, F., Schumm, D.: A Proposal of BPMN Extensions for the Manu-
facturing Domain. In: Proceedings of the 44th CIRP Conference on Manufacturing
Systems (ICMS 2011), Madison, WI, USA, pp. 1–6 (January 2011)

https://www.vdi.de/nc/en/richtlinie/vdivde_3682-formalisierte_prozessbeschreibungen/
https://www.vdi.de/nc/en/richtlinie/vdivde_3682-formalisierte_prozessbeschreibungen/
https://mediatum.ub.tum.de/node?id=1208973

Prototyping SDL Extensions

Andreas Blunk and Joachim Fischer

Humboldt-Universität zu Berlin
Unter den Linden 6

D-10099 Berlin, Germany
{blunk,fischer}@informatik.hu-berlin.de

Abstract. Semaphores, process priorities, and real-time tasks are exam-
ples of SDL extensions which integrate concepts of real-time operating
systems into SDL. Providing tool support for such extensions, requires
time and effort to manually adapt existing modeling and analysis tools.
We present an approach based on language extension which reduces the
effort to obtain a text editor for modeling and a runtime efficient next-
event simulator for model analysis. The approach allows to prototype
extensions, i.e., evaluate their design and suitability by test and simula-
tion. We discuss an application of our approach to a subset of SDL. In
addition, we take the concept of semaphores from SDL-RT and bring it
to the SDL subset by defining it as an extension. The approach is imple-
mented only in parts yet, thus we present work in progress. We discuss
working prototypes for the text editor and the simulator.

1 Introduction

The development of large and complex systems is best supported by domain-
specific modeling languages (DSMLs) which allow to describe certain aspects of
a system in a more concise and understandable way and which provide DSML-
aware tool support for creating and analyzing system models.

The Specification and Description Language (SDL) [1] is a DSML which pro-
vides specific means for modeling structural and functional aspects of commu-
nicating reactive systems. The basic modeling concepts which SDL provides are
on the one hand specific to the domain of reactive systems, and on the other
hand general regarding the domain itself as they allow to model all kinds of
reactive systems. When the application domain of SDL is even more specific,
e.g., real-time systems, it may become necessary to extend the basic concepts
of SDL. Such extensions keep being proposed. Examples are semaphores [2],
process priorities [3], and real-time tasks [4].

These extensions can be seen as small DSMLs themselves. The problem with
such small extensions is that they need to be supported by tools as well. During
the development it may also become necessary to change an extension iteratively
a number of times. Our research is targeted towards executable DSMLs where
there is a need to analyze models by means of next-event simulation. A number of
problems exist developing such DSMLs. 1) Adapting development tools manually

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 304–311, 2014.
c© Springer International Publishing Switzerland 2014

Prototyping SDL Extensions 305

costs a lot of time and effort. 2) Analyzing large models requires a runtime effi-
cient simulator. When the base language is missing runtime efficient next-event
specification primitives, the result can be inefficient long-running simulations.
These problems hinder evaluating the suitability of an extension.

We propose an approach for defining an executable DSML by extending a
discrete-event system modeling language. The approach has the advantage of
providing DSML-aware tools for evaluating the design and suitability of a DSML
by test and simulation at a low cost and with high runtime efficiency. We think
that an editor, a debugger, and a simulator are important tools here. They allow
models to be created, debugged, and analyzed during the initial design phase
of a language. For model analysis, we use next-event simulation. Low language
development cost is achieved by an immediate provisioning of DSML-aware tools.
These tools are derived from a definition of a DSML specified as extension to the
syntax, semantics, and debugging of the base language. By reusing concepts of
a base language, the effort to define the DSML is reduced and runtime efficient
simulations are enabled.

1.1 Contribution

In this paper, we apply our approach to a subset of SDL, named SDL0. We
show that an SDL text editor1 as well as a runtime efficient simulator can be
automatically derived from an extension-based definition of the language. At the
moment, a full implementation of the approach does not exist. Therefore, this
paper presents work in progress. We discuss working prototypes for the editor
and the simulator.

In a first step, we define SDL0 according to the SDL/PR syntax as an ex-
tension of our process-oriented discrete-event base language DBL [5]. The base
language provides object-oriented description means, discrete-event specification
primitives, and means for specifying active and passive objects. Event specifica-
tion primitives are general. They can be used for modeling a wide variety of sys-
tems and they support implementing different higher level modeling approaches
as DSMLs. In a second step, we define the SDL-RT [2] extension semaphores as
a further extension of SDL0.

The paper is structured as follows. In Section 2, we describe the implemen-
tation state of the approach. In Section 3, we present working prototypes for
the application to SDL0 and SDL-RT semaphores. In Section 4, we discuss the
relevance of applying the approach to SDL. We conclude in Section 5.

2 Approach

The approach is partly implemented in a framework named DMX (Discrete-
Event Simulation Modelling Framework with Extensibility) [7]. In the next para-
graphs, the implemented and the not implemented parts of the framework are
described.
1 An SDL text editor allows SDL models to be created according to the SDL/PR
textual syntax.

306 A. Blunk and J. Fischer

2.1 Implemented Parts

In [5], we describe our approach for defining the concrete and the abstract syntax
of a DSML as extensions of the abstract syntax of DBL. The approach allows to
define the concepts of a DSML as new forms of DBL concepts and to reuse DBL
concepts inside DSML concepts. We also show how extensions are immediately
supported by the DBL editor. As an example, the syntax of a simple state
machine language is defined.

In [6], we describe an advancement of the approach for defining the execution
semantics of extensions by a mapping to DBL concepts. We apply the advance-
ment to the state machine language as well. We discuss a number of properties
which we believe are essential for the efficient development of domain-specific
simulation modeling languages and tools. We argue that runtime efficient exe-
cutions are preserved by an efficient implementation of DBL event specification
primitives.

In [8], we present a novel possibility for implementing context switches be-
tween concurrent processes in a highly runtime efficient way using C++. Context
switches are one important part of a simulation core for process-oriented models.
We name our core DBL Core. It will be the target of an executable mapping of
DBL event specification primitives to C++. We prove the high runtime efficiency
of DBL Core by a number of benchmarks in which we compare the core with
other simulation cores implementing common C++ context switch techniques.

2.2 Not Implemented Parts

What is not implemented is an executable mapping of DBL to DBL Core. Also,
other important parts of a simulation core are not implemented yet, most impor-
tantly a time-aware scheduler for events is still missing. There is also no support
for debugging models at the level of DBL as well as at the level of a DSML. In
addition, it is necessary to support a possibility of referring from one extension
to parts of another extension. We intend to implement these parts in the future.

3 Application to SDL

3.1 Editor

SDL0. The SDL0 subset consists of the following SDL concepts: system def-
inition, process definition, signal definition (without parameters), variable def-
inition, timer definition, start state, simple state, final state, transition (with
stimuli signal, timer, and none), task, output, set timer, and reset timer.

The syntax is defined according to SDL/PR in 76 lines written in a BNF-like
grammar language. DBL concepts reused are variable, statement, and expres-
sion. In principle, the derived editor allows to create SDL0 models. Problems
encountered are connected to identifier resolution and parse conflicts imposed
by the used LALR2 parser algorithm.

2 Look-Ahead, Left to right, Rightmost derivation parser.

Prototyping SDL Extensions 307

Identifiers of SDL entities, e.g., processes and states, have to be globally unique
as a resolution scheme cannot be defined. For DBL identifiers, e.g., variable
definitions, the resolution scheme of DBL is reused if the identifier is defined
in a regular DBL context. However, if the identifier is defined in the context of
an extension, e.g., a variable defined in an SDL0 process, then these identifiers
are resolved in a global scope by default. For a language like SDL which defines
namespaces, a description of identifier resolution is required. However, we are
not concerned with such description during the prototyping phase of a language.
There are approaches which allow to describe identifier resolution by using a
suited DSML, e.g., the Name Binding Language NBL [9].

Parse conflicts are solved by adding additional keywords, e.g., the keywords
signal and timer have to be used to distinguish them as stimuli which are part
of an input definition. In SDL/PR, these additional keywords are not used.

SDL-RT Semaphores. The concept of SDL-RT semaphores is used for con-
trolling access by multiple SDL processes to a shared resource. The concept
consists of a semaphore definition and actions to take and give the semaphore.

The syntax of SDL0 semaphores is defined according to SDL-RT semaphores
in 32 lines of a BNF-like grammar. In principle, the SDL-RT syntax can be
defined with our approach. However, we changed the syntax slightly to make
using semaphores more concise. In SDL-RT, a take action has a return value for
ERROR and OK. Here, one has to define a separate int variable and actions for
evaluating its value after a take action. In SDL0 instead, semaphores allow special
timeout and failure actions to be specified in an ERROR and OK section as part
of the same take action. Listing 1 shows the definition of an SDL0 semaphore
and Listing 2 shows taking and giving a semaphore.

semaphore SEM, kind=BINARY, policy=FIFO, initial=FULL;

Listing 1. Example of an SDL0 semaphore definition.

take SEM with timeout=10,
on ERROR {

task { print time + ", " + active + ": take SEM ERROR"; } },

on OK {

task { give SEM; } };

Listing 2. Example of using the SDL0 semaphore actions take and give.

3.2 Runtime Efficient Simulator

Execution Semantics Definition. The execution semantics of SDL0 are de-
fined as a mapping to DBL, similar to the semantics of the state machine lan-
guage (SML) presented in [6]. The SDL system definition is mapped to a DBL
class (as used in object-oriented programming) and a main function, which cre-
ates the system instance as an object of the DBL class. Each process definition

308 A. Blunk and J. Fischer

is mapped to an active DBL class and each signal definition is mapped to a pas-
sive one. A corresponding instance for each process definition is created as well.
Timer definitions map to an instance of a fixed3 Timer class. Variables map to
DBL variables and tasks map to DBL statements.

The semantics of process state machines are mapped as follows. An event pool
variable is added to the DBL class of a process definition for saving signals and
timers. The state graph is mapped to an event processing loop consisting of a
DBL wait-for-event primitive at which execution is suspended until new signals
are sent to the event pool. When another process sends a signal, it reactivates
the process at the wait primitive with a reactivate primitive. The reactivated
process resumes and processes the event, including the evaluation of conditions
and the execution of transition actions.

In addition to standard SDL, event specification primitives of DBL can be
reused. They allow to specify a time event as a duration for tasks and signals
in order to simulate the time for processing and sending data in a real system.
In addition, a process can be blocked and resumed by the event specification
primitives wait and reactivate.

These primitives are used in the semantics description of the take and give
actions. A semaphore definition is mapped to an instance of a fixed Semaphore
class. In this case, the semantics of take and give can be defined independent of
the concrete values provided for an instance of the semaphore extension. Take
and give are simply mapped to corresponding calls to functions of a Semaphore
object. The function take is implemented by using the wait primitive. At a wait,
the execution of the current process is suspended until another process invokes
a reactivate, which is used in the function give when a semaphore becomes avail-
able.

Wait and reactivate are DBL event specification primitives. Their execution
results in context switches between processes. These context switches are im-
plemented by a mapping to C++. Extensions can reuse this mapping as their
semantics are defined as a mapping to DBL.

Context Switch in DBL Core. The simulation of a system, specified by
an SDL0 model, is realized by a sequential execution of processes according to
a model time. This mechanism allows to simulate the concurrent execution of
processes in a real system. Such simulation requires a high number of context
switches between processes. A context switch consists of 1) a transfer of control
and 2) a swap of function call stacks. In DBL Core, an efficient realization of
these two parts is achieved by mapping 1) to an assigned goto and 2) to an
emulation of function calls in pure C++.

The concept of assigned goto was introduced by the GNU Compiler Collection
GCC under the name Labels as Values. In addition, it is also supported by a
number of common C++ compilers4. An assigned goto allows to save the address

3 A fixed class is independent of a concrete extension instance.
4 Supporting compilers are GCC G++ v4.8, IBM XL C/C++ for Linux v9.0, Clang
v5.02, and Intel C++ Compiler (ICC) v14.

Prototyping SDL Extensions 309

of a label in a variable and to read its value when execution is to be resumed.
Just as a regular goto, an assigned goto can only be used inside one and the
same function. Therefore, the complete behavior of all process state machines
has to be mapped to one large function.

A further difficulty when using an assigned goto is that regular function calls
cannot be used anymore. This is because DBL functions can contain event spec-
ification primitives which result in context switches in functions. As a solution,
function call stacks are emulated in pure C++. An area of memory is reserved
for the stack of each process. For local variables and parameters, parts of this
area are interpreted in the right way by pointer arithmetics and type casts. The
complexity is hidden by the DBL to DBL Core mapping. A language developer
works at the level of DBL and automatically gets a runtime efficient execution
by this mapping.

In [8], we give a detailed description of the DBL Core and we provide results
of a number of benchmarks. They show that runtime efficiency is very close to
an Assembler-based core. In addition, it allows to make use of up-to-date C++
compiler optimizations.

Context Switch in PragmaDev RTDS. The only tool supporting SDL-RT
is RTDS by PragmaDev [15]. RTDS allows to create SDL and SDL-RT models by
means of a graphical editor. Standard SDL models can be analyzed by a next-
event simulation according to timers specified in processes. In contrast, SDL-
RT models can only be analyzed by executing them with the RTDS debugger
according to a platform-dependent time. This means, time is provided by the
operating system to RTDS. Thus, models can only be executed in real time,
which is not appropriate for simulating a large system in a large time frame.

An SDL-RT model is executed by mapping it to a platform-specific C or
C++ program first. After that, the program is compiled and executed. SDL
concepts are mapped to real-time operating system concepts used by the RTDS
runtime library. This platform specific mapping does not allow to simulate a
model by using a time-aware next-event simulator. However, there is also a
platform-independent mapping. Nevertheless, in this mapping one has to provide
an implementation of time. There is no time-aware simulator provided by RTDS.
One could define an implementation of time by changing the mapping to generate
code which makes use of a C or C++-based discrete-event simulation library.

However, the mapping of semaphores in the platform-independent SDL-RT
mapping, is already not that runtime efficient. This is because semaphores are
mapped to SDL concepts. A take action in a process PI is mapped to an in-
vocation of a predefined semaphore take procedure. The procedure attempts to
take a unit of a semaphore by sending a take signal to the corresponding process
instance PS which is initially created for each semaphore defined in an SDL-RT
model. The take procedure blocks and waits for a success signal by PS . All other
signals, sent to PI are saved in the meantime.

This mapping results in a context switch for semaphores which is less runtime
efficient than the one implemented in DBL Core. If a language developer could

310 A. Blunk and J. Fischer

reuse DBL event specification primitives, a runtime efficient execution could be
achieved. Furthermore, runtime efficiency problems accumulate when take ac-
tions are used in SDL procedures. Here, a number of function calls are necessary
in order to forward each signal. Therefore, the deeper the procedure call stack
gets, the more inefficient this context switch approach will be.

4 Discussion of Relevance to SDL

We assume that models written in an extended language need to be analyzed by
means of next-event simulation. In case of SDL, this assumption is only partly
satisfied. For SDL models, two applications are important: (a) generating soft-
ware components which are executed on a real system with specific hardware
dependencies [10, 11] and (b) generating simulators which are used for perfor-
mance evaluation [12–14]. This includes combinations in which target system
programs and simulators are generated from the same SDL model. Therefore,
the semantics of a concept added to SDL have to be considered with respect to
target system execution as well as simulation.

In our approach, SDL models are solely used for simulation. Therefore, also
the semantics of SDL are solely defined for simulation. The semantics are defined
as a mapping to DBL event specification primitives. This poses a problem for
certain concepts, which have a different meaning when executed on a target
system. Such concepts require a direct mapping to target system primitives,
e.g., remote procedure calls. When the semantics of such concepts are defined in
terms of event specification primitives, then no separate target system mapping
can be defined anymore. In a simulation, remote and local procedure calls may
have the same meaning. But in a real system, they may not. They may map to
primitives which are specific to each of many possible target platforms.

So what is the practical relevance of our approach to SDL? The aim of the
approach is to prototype extensions and to evaluate their suitability by creating
models and by running simulations. When a concept has reached a mature state,
it can be added to SDL tools which support target system execution. Our ap-
proach supports the initial design phase of a concept by automatically providing
modeling tools at a low cost. In addition, a highly runtime efficient simulator
can be derived.

However, providing support for target system execution may still be possible
by defining a special DBL to target system mapping. In this mapping, event
specification primitives for time could be left out and primitives for wait and
reactivate could be mapped to operations on threads or other process equiv-
alent system primitives. However, the feasibility of such a mapping has to be
investigated.

5 Conclusions

The definition of SDL-RT semaphores as an extension of the general discrete-
event specification language DBL has the advantage of providing a next-event

Prototyping SDL Extensions 311

simulator for model analysis and a text editor for model creation at a low cost.
The approach allows to prototype language extensions, i.e., to create and sim-
ulate example models during the initial design phase of an extension. We have
shown several working prototypes which make us confident that the approach
can be fully implemented in the future.

References

1. International Telecommunication Union: Recommendation Z.100 series, Specifica-
tion and Description Language, http://www.itu.int/rec/T-REC-Z.100/en

2. SDL-RT Standard (2013),
http://www.sdl-rt.org/standard/V2.3/pdf/SDL-RT.pdf

3. Christmann, D., Becker, P., Gotzhein, R.: Priority Scheduling in SDL. In: Ober,
I., Ober, I. (eds.) SDL 2011. LNCS, vol. 7083, pp. 202–217. Springer, Heidelberg
(2011)

4. Christmann, D., Braun, T., Gotzhein, R.: SDL Real-Time Tasks – Concept, Im-
plementation, and Evaluation. In: Khendek, F., Toeroe, M., Gherbi, A., Reed, R.
(eds.) SDL 2013. LNCS, vol. 7916, pp. 239–257. Springer, Heidelberg (2013)

5. Blunk, A., Fischer, J.: Prototyping Domain Specific Languages as Extensions of a
General Purpose Language. In: Haugen, Ø., Reed, R., Gotzhein, R. (eds.) SAM2012.
LNCS, vol. 7744, pp. 72–87. Springer, Heidelberg (2013)

6. Blunk, A., Fischer, J.: Efficient Development of Domain-Specific Simulation Mod-
elling Languages and Tools. In: Khendek, F., Toeroe, M., Gherbi, A., Reed, R.
(eds.) SDL 2013. LNCS, vol. 7916, pp. 163–181. Springer, Heidelberg (2013)

7. Blunk, A.: Discrete-Event Simulation Modelling Framework with Extensibility
(DMX), http://ablunk.github.com/dmx

8. Blunk, A., Fischer, J.: A Highly Efficient Simulation Core in C++. In: Symposium
on Theory of Modeling and Simulation, Tampa, FL, USA (2014)

9. Konat, D.P.G., Vergu, V.A., Kats, L.C.L., Wachsmuth, G.H., Visser, E.: The
Spoofax Name Binding Language. In: Proceedings of the 3rd Annual Conference on
Systems, Programming, and Applications: Software for Humanity (SPLASH 2012),
pp. 79–80. ACM, New York (2012)

10. Ahrens, K., Eveslage, I., Fischer, J., Kühnlenz, F., Weber, D.: The Challenges
of Using SDL for the Development of Wireless Sensor Networks. In: Reed, R.,
Bilgic, A., Gotzhein, R. (eds.) SDL 2009. LNCS, vol. 5719, pp. 200–221. Springer,
Heidelberg (2009)

11. Kavadias,C.,Perrin,B.,Kollias,V., Loupis,M.:Enhanced SDLSubset for theDesign
and Implementation of Java-Enabled Embedded Signalling Systems. In: Reed, R.,
Reed, J. (eds.) SDL 2003. LNCS, vol. 2708, pp. 137–149. Springer, Heidelberg (2003)

12. Brumbulli, M., Fischer, J.: SDL Code Generation for Network Simulators. In: Krae-
mer, F.A., Herrmann, P. (eds.) SAM 2010. LNCS, vol. 6598, pp. 144–155. Springer,
Heidelberg (2011)

13. Kuhn, T., Geraldy, A., Gotzhein, R., Rothländer, F.: ns+SDL – The Network
Simulator for SDL Systems. In: Prinz, A., Reed, R., Reed, J. (eds.) SDL 2005.
LNCS, vol. 3530, pp. 103–116. Springer, Heidelberg (2005)

14. Fonseca i Casas, P.: Using Specification and Description Language to Define and
Implement Discrete Simulation Models. In: Proceedings of the 2010 Summer Com-
puter Simulation Conference (SCSC 2010), pp. 419–426. Society for Computer
Simulation International, San Diego (2010)

15. PragmaDev - Real Time Development Tools, http://www.pragmadev.com

http://www.itu.int/rec/T-REC-Z.100/en
http://www.sdl-rt.org/standard/V2.3/pdf/SDL-RT.pdf
http://ablunk.github.com/dmx
http://www.pragmadev.com

Author Index

Ali, Shaukat 142, 223

Bianculli, Domenico 190
Blunk, Andreas 304
Bochmann, Gregor v. 96
Boulet, Pierre 16
Braun, Tobias 271
Briand, Lionel 190

Campetelli, Alarico 287
Christmann, Dennis 271

Deltour, Julien 198
Denil, Joachim 80
Dou, Wei 190
Dumoulin, Cédric 16

El Kouhen, Amine 16

Faivre, Alain 198
Farines, Jean-Marie 174
Fischer, Joachim 239, 304

Gaudin, Emmanuel 198
Gérard, Sébastien 16
Gherbi, Abdelouahed 16
Gotzhein, Reinhard 271
Greenyer, Joel 126
Gülay Gürbüz, Havva 64

Hackenberg, Georg 287
Hamou-Lhadj, Abdelwahab 48
Hassine, Jameleddine 48
Haugen, Øystein 1
Hebecker, Tanja 207

Jukss, Maris 80

Khendek, Ferhat 158
Knapp, Alexander 110
Koliver, Cristian 174
Kraas, Alexander 255

Lapitre, Arnault 198
Legat, Christoph 287
Le Pallec, Xavier 32
Liabeuf, Daniel 32
Lipaczewski, Michael 207

Mater, Alexander 271
Mäurer, Lukas 207
Möhrstädt, Uwe 207
Mund, Jakob 287
Mussa, Mohamed 158

Øg̊ard, Ommund 1
Ortmeier, Frank 207

Pala Er, Nagehan 64
Panesar-Walawege, Rajwinder Kaur

223
Picinin Júnior, Delcino 174

Rouillard, José 32

Santos, Celso A.S. 174
Scheidgen, Markus 239
Stolte, Torben 207
Störrle, Harald 110

Tekinerdogan, Bedir 64
Teufl, Sabine 287
Tichy, Matthias 126

Vangheluwe, Hans 80
Verbrugge, Clark 80
Vogel-Heuser, Birgit 287

Winetzhammer, Sabine 126
Wu, Ji 142

Yue, Tao 142, 223

Zhang, Huihui 142
Zhang, Man 142
Zohaib Iqbal, Muhammad 223

	Preface
	Organization
	Keynotes
	Safely Reusing Model Transformations throughFamily Polymorphism
	Making Model-Driven Verification Practicaland Scalable: Experiences and Lessons Learned
	References

	Table of Contents
	Reuse
	BVR – Better Variability Results
	1 Introduction
	2 CVL – The Common Variability Language
	3 The Autronica Fire Detection Case
	4 The Example Case – The Car Configurator
	5 The BVR Enhancements
	5.1 Targets – The Power of the Variability Model Tree Structure
	5.2 Beyond One Tree
	5.3 From Proper Trees to Properties
	5.4 Reuse and Type – The First Needs for Abstraction
	5.5 Resolution Literals – Describing Subproducts
	5.6 Staged Variation Points – Realizing Occurrences

	6 Discussion and Relations to Existing Work
	6.1 The Target
	6.2 The Type and Its Consequences
	6.3 The Note
	6.4 The Reference

	7 Conclusions and Further Development
	References

	MID: A MetaCASE Toolfor a Better Reuse of Visual Notations
	1 Introduction
	2 Foundations
	3 Metamodels for User Interfaces and Diagrams (MID)
	3.1 Visual Grammar: Graphical Elements Composition
	3.2 Visual Vocabulary: Visual Variables
	3.3 CASE Tools (De)Composition
	3.4 Representation Formalism
	3.5 Inheritance Mechanism

	4 Validation
	4.1 Graphical Expressiveness
	4.2 Reuse of Specification

	5 Conclusion
	References

	An Empirical Study on the Anticipationof the Result of Copyingand Pasting among UML Editors
	1 Introduction
	2 Copy and Paste in Software Engineering and in Software Modeling
	2.1 A Valuable Tool in Software Development
	2.2 Copy and Paste in Editing Tools
	2.3 Copy and Paste in Software Modeling
	2.4 CnP in UML Editors: The Case of Class Diagrams

	3 Dimensions to Measure the Depth
	3.1 Abstract Syntax
	3.2 Concrete Syntax
	3.3 Semantics

	4 Methodology and Experience
	4.1 Participants
	4.2 Task
	4.3 Variables

	5 Experiment Results
	5.1 Influence of Visual Representation
	5.2 Influence of Semantic Transparency
	5.3 Influence of the Semantic Domain
	5.4 Overall View and Discussion

	6 Conclusions
	References

	Availability, Safety and Optimization
	Toward a UCM-Based Approachfor Recovering System AvailabilityRequirements from Execution Traces
	1 Introduction
	2 Describing Availability Requirements in Use Case Maps
	2.1 Exception Modeling
	2.2 Redundancy Modeling
	2.3 UCM Distributed Redundancy Modeling

	3 Recovery of Availability Requirements from Execution Traces
	4 Case Study: Hot Standby Router Protocol (HSRP)
	4.1 Hot Standby Router Protocol (HSRP)
	4.2 Experimental Setup
	4.3 Cisco IOS Logging System
	4.4 Log Collection and Segmentation

	5 Discussion and Threats to Validity
	6 Conclusions and Future Work
	References

	Architecture Framework for Software Safety
	1 Introduction
	2 Problem Statement
	3 Metamodel for Software Safety
	4 Viewpoint Definition for Software Safety
	5 Application of the Architecture Framework
	5.1 Hazard View
	5.2 Safety Tactics View
	5.3 Safety-Critical View

	6 Related Work
	7 Conclusion
	References

	Search-Based Model OptimizationUsing Model Transformations
	1 Introduction
	2 Motivation
	3 Running Example
	4 Transformation Languages and T-Core
	5 Including Search in Transformation Models
	5.1 Problem Representation
	5.2 Creation of Candidate Solutions
	5.3 Evaluation of Candidate Solutions
	5.4 Optimization Technique

	6 Experimental Evaluation
	6.1 Optimization Results
	6.2 Optimization Chains
	6.3 Adding Domain Knowledge

	7 Discussion
	8 Related Work
	9 Conclusions and Future Work
	References

	Sequences and Interactions
	Associativity between Weak and StrictSequencing
	1 Introduction
	2 System Design with Collaborations and Partial Orders
	2.1 Using Collaborations and Roles for Structuring Global Behaviors
	2.2 Defining Sequencing Operators Using Partial Orders

	3 Association Rules
	3.1 Associativity of Strict and Weak Sequencing
	3.2 Association between Strong and Weak Sequencing

	4 Related Work
	5 Summary and Conclusions
	References

	Efficient Representation of Timed UML 2 Interactions
	1 Introduction
	2 Related Work
	3 UML 2 Interactions
	4 Symbolic Representation of UML 2 Interactions
	4.1 Traces of an Interaction Structure
	4.2 Deriving an Interaction Structure

	5 Validation
	6 Conclusions and Future Work
	References

	Integrating Graph Transformationsand Modal Sequence Diagrams for SpecifyingStructurally Dynamic Reactive Systems
	1 Introduction
	2 Foundations
	2.1 Modal Sequence Diagrams
	2.2 Graph Transformation Rules

	3 Integration of MSDs and GTRs
	4 Integrating ScenarioTools and ModGraph
	5 Related Work
	6 Conclusion and Future Work
	References

	Testing
	A Systematic Approach to Automatically Derive Test Cases from Use Cases Specified in Restricted Natural Languages
	1 Introduction
	2 Background
	2.1 Restricted Use Case Modeling (RUCM)
	2.2 Restricted Test Case Modeling (RTCM)

	3 Transformation
	3.1 RUCMEditor and RTCMEditor
	3.2 TCS Generator (TCSG)
	3.3 Test Case Generator (TCG)

	4 Evaluation
	4.1 Description of Case Studies
	4.2 Results of TCS and Test Case Generation
	4.3 Discussion

	5 Related Work
	5.1 Requirements Based Testing
	5.2 Keyword Driven Testing
	5.3 Behavior Driven Development (BDD)

	6 Conclusion and Future Work
	References

	Acceptance Test Optimization
	1 Introduction
	2 Acceptance Test Case Optimization Approach
	2.1 Test Case Selection Algorithm
	2.2 Test Case Mapping Algorithm

	3 Illustration Example
	4 Related Work
	5 Conclusion
	References

	Verifying Hypermedia Applicationsby Using an MDE Approach
	1 Introduction
	2 Proposed Design Method
	2.1 Main Challenges
	2.2 Design Method

	3 Formal Verification
	3.1 Mapping Hypermedia Application to Fiacre
	3.2 Observers
	3.3 Properties to be Verified

	4 The Toolchain Associated with the Proposed Method
	4.1 A Case Study
	4.2 Translating Hypermedia Language to Intermediary Graph (IG)
	4.3 Property Editor
	4.4 Reducing IG Graph Sizes
	4.5 Translating the IG to Formal Representations
	4.6 Verification
	4.7 General Structure of Toolchain

	5 Design Method and Environment in Practice
	6 Related Work
	7 Conclusion
	References

	Revisiting Model-Driven Engineeringfor Run-Time Verification of Business Processes
	1 Introduction
	2 Our Vision
	3 Research Roadmap
	3.1 Requirements Specification Language
	3.2 Property Checking
	3.3 Integration with Run-Time Platforms

	4 Related Work
	5 Conclusion
	References

	Model-Based Testing: An Approach with SDL/RTDS and DIVERSITY
	1 Introduction
	2 PragmaDev’s Modeling Technology
	3 CEA LIST’s V&V Technology
	4 SDL and DIVERSITY
	5 Test Case Generation and TTCN-3
	6 Stop Criteria and Coverage Criteria
	7 Conclusion
	References

	Metrics, Constraints and Repositories
	On Bringing Object-Oriented Software Metricsinto the Model-Based World – Verifying ISO26262 Compliance in Simulink
	1 Introduction
	2 Related Work
	3 Metrics to Fulfill Requirements of ISO 26262
	3.1 Architectural Design Requirements of ISO 26262
	3.2 Applied Metrics

	4 Formal Model
	4.1 Meta-Model of a Dataflow Model
	4.2 Redefining OO Metrics

	5 Evaluation
	6 Conclusions and Further Work
	References

	Insights on the Use of OCL in Diverse Industrial Applications
	1 Introduction
	2 Classification of Various OCL Applications
	2.1 Overview
	2.2 Definitions
	2.3 Relationships between Various Purposes of Using OCL

	3 Industrial Applications
	3.1 Model-Based Testing of Video Conferencing Systems
	3.2 Safety Certification
	3.3 Architecture Variability Modeling for Supporting Automated Product Configuration
	3.4 Environment Model-Based Testing

	4 Overall Discussion
	4.1 Selecting a Subset of OCL
	4.2 Choosing a Meta Level
	4.3 Choosing Diagram
	4.4 Selecting a Purpose of OCL

	5 Conclusion
	References

	Model-Based Miningof Source Code Repositories
	1 Introduction
	2 srcrepo’s Analysis Process and Components
	3 A Meta-Model for Source Code Repositories
	4 Model Persistence in NoSQL-Databases
	5 An OCL-Like Language for Ascertaining Software Metrics
	5.1 Why OCL?
	5.2 Why Not OCL?
	5.3 Example Usage to Calculate CK-Metrics
	5.4 Implementation

	6 Current State, Problems, Limitations, and Future Work
	7 Related Work
	8 Conclusions
	References

	SDL and V&V
	Towards an Extensible Modeling and Validation Framework for SDL-UML
	1 Introduction
	2 Overview of the Most Recent Version of SDL-UML
	2.1 Notational Conventions
	2.2 The SDL-UML Profile and Its Stereotypes

	3 The SDL-UML Modeling and Validation Framework
	3.1 OCL-Based Model Validation
	3.2 Editor for the Textual Notation
	3.3 QVT-Based Transformations

	4 Merits and Shortcomings
	5 Conclusion and Future Work
	References

	SDL Implementations for Wireless Sensor Networks – Incorporation of PragmaDev’s RTDSinto the Deterministic Protocol Stack BiPS
	1 Introduction
	2 Black Burst-Integrated Protocol Stack – Deterministic Protocols for Wireless Sensor Networks
	2.1 Overview
	2.2 Scheduling in BiPS
	2.3 BiPS Multiplexer – The MAC Data Interface for Applications

	3 Interfacing PragmaDev’s RTDS and BiPS
	3.1 An Improved SDL Scheduler
	3.2 Interfacing the SDL Environment

	4 Evaluation of SDL’s Integration into BiPS
	4.1 Evaluation Setup
	4.2 Results

	5 Related Work
	6 Conclusions
	References

	Formal Technical Process Specificationand Verification for Automated ProductionSystems
	1 Introduction
	2 A Formal Approach
	2.1 Terminology
	2.2 Formalization
	2.3 Verification

	3 An Academic Case Study
	3.1 Process Specification
	3.2 System Specification
	3.3 Model Checking

	4 Conclusion and Outlook
	References

	Prototyping SDL Extensions
	1 Introduction
	1.1 Contribution

	2 Approach
	2.1 Implemented Parts
	2.2 Not Implemented Parts

	3 Application to SDL
	3.1 Editor
	3.2 Runtime Efficient Simulator

	4 Discussion of Relevance to SDL
	5 Conclusions
	References

	Author Index

