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Abstract. Convolutional Neural Network (CNN) is a biologically in-
spired trainable architecture that can learn invariant features for a num-
ber of applications. In general, CNNs consist of alternating convolutional
layers, non-linearity layers and feature pooling layers. In this work, a
novel feature pooling method, named as mixed pooling, is proposed to
regularize CNNs, which replaces the deterministic pooling operations
with a stochastic procedure by randomly using the conventional max
pooling and average pooling methods. The advantage of the proposed
mixed pooling method lies in its wonderful ability to address the over-
fitting problem encountered by CNN generation. Experimental results on
three benchmark image classification datasets demonstrate that the pro-
posed mixed pooling method is superior to max pooling, average pooling
and some other state-of-the-art works known in the literature.

Keywords: Convolutional neural network, pooling, regularization,
model average, over-fitting.

1 Introduction

Since its first introduction in the early 1980’s [1], the Convolutional Neural
Network (CNN) has demonstrated excellent performances for a number of appli-
cations such as hand-written digit recognition [2], face recognition [3], etc. With
the advances of artificial intelligence, recent years have witnessed the growing pop-
ularity of deep learning with CNNs on more complicated visual perception tasks.

In [4], Fan et al. treat human tracking as a learning problem of estimating
the location and the scale of objects and employ CNNs to reach this learning
purpose. Cireşan et al. [5] propose an architecture of multi-column CNNs which
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can be accelerated by Graphics Processing Unit (GPU) for image classification
and amazing performances are achieved on a number of benchmark datasets. In
[6], a 3D CNN model is designed for human action recognition, in which both
the spatial and temporal features are mined by performing 3D convolutions.
krizhevsky et al. [7] train a very large CNN for the ImageNet visual recognition
challenge [8] and achieve an astonishing record-breaking performance in 2012.

Despite the aforementioned encouraging progresses, there are still several
problems encountered by CNNs such as the over-fitting problem due to the high
capacity of CNNs. In order to address this issue, several regularization tech-
niques have been proposed, such as weight decay, weight tying and augmenta-
tion of training sets [9]. These regularization methods allow the training of larger
capacity models than would otherwise be possible, which are able to achieve su-
perior test performances as compared with smaller un-regularized models [10].

Another promising regularization approach is Dropout which is proposed by
Hinton et al. [11]. The idea of Dropout is to stochastically set half the activations
in a hidden layer to zeros for each training sample. By doing this, the hidden units
can not co-adapt to each other, and they must learn a better representation for
the input in order to generalize well. Dropout acts like a form of model averaging
over all possible instantiations of the model prototype, and it is shown to deliver
significant gains in performance in a number of applications.

However, the shortcoming of Dropout is that it can not be generally employed
for several kinds of CNN layers, such as the convolutional layer, non-linearity
layer and feature pooling layer. To overcome this defect, a generalization of
Dropout, called DropConnect, is proposed in [12]. Instead of randomly selecting
activations within the network, DropConnect sets a randomly selected subset
of weights to zeros. As compared to Dropout, better performances have been
achieved by DropConnect in certain cases. In [10], another type of regularization
for convolutional layers, named stochastic pooling, is proposed to enable the
training of larger models for weakening over-fitting. The key idea of stochastic
pooling is to make the pooling process in each convolutional layer a stochastic
process based on multinomial distribution.

In this work, similar to [10], a novel type of pooling method, termed as mixed
pooling, is proposed in order to boost the regularization performance for training
larger CNN models. Inspired by Dropout (that randomly sets half the activa-
tions to zeros), the proposed mixed pooling method replaces the conventional
deterministic pooling operations with a stochastic procedure, randomly employ-
ing the max pooling and average pooling methods during the training of CNNs.
Such a stochastic nature of the proposed mixed pooling method helps prevent
over-fitting to some extent. Experiments are performed to verify the superiority
of the proposed mixed pooling method over the traditional max pooling and
average pooling methods.

The rest of this paper is organized as follows. Section 2 provides a background
review of CNNs. The proposed mixed pooling method is introduced in Section 3.
In Section 4, the comparative experimental results are presented. Finally, Section
5 concludes this paper.
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2 Review of Convolutional Neural Networks

A brief review of CNNs is presented herein which is useful to elicit the proposed
mixed pooling method. In general, CNNs are representatives of the multi-stage
Hubel-Wiesel architecture [13], which extract local features at a high resolution
and successively combine these into more complex features at lower resolutions.
The loss of spatial information is compensated by an increasing number of feature
maps in higher layers.

A powerful CNN is composed of several feature extraction stages, and each
stage consists of a convolutional layer, a non-linear transformation layer and a
feature pooling layer. The convolutional layer takes inner product of the linear
filter and the underlying receptive field followed by a nonlinear activation func-
tion at every local portion of the input. Then, the non-linear transformation layer
performs normalization among nearby feature maps. Finally, the feature pooling
layer combines local neighborhoods using an average or maximum operation,
aiming to achieve invariance to small distortions. An example of a two-stage
CNN with the aforementioned three layers is shown in Fig. 1 for illustration.

Fig. 1. An example of a two-stage CNN. An input image is passed through a convo-
lutional layer, followed by non-linear transformation layer and pooling layer to extract
low-level features in the first stage. Then, these three layers are applied again in the
second stage to extract high-level features.

2.1 Convolutional Layer

The aim of the convolutional layer is to extract patterns found within local re-
gions of the input images that are quite common in natural images [10]. Generally
speaking, the convolutional layer generates feature maps by linear convolutional
filters followed by nonlinear activation functions, such as ReLU [14], sigmoid,
tanh, etc. In this layer, the kth output feature map yk can be calculated as
follows:

yk = f(wk ∗ x), (1)

where x denotes the input image, wk stands for the convolutional filter associated
with the kth feature map, ∗ indicates the 2D convolution operator which is used
to calculate the inner product of the filter template at every location in the input
image, and f(·) is the nonlinear activation function.
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2.2 Non-linear Transformation Layer

It has been shown in [15] that using a rectifying non-linear transformation layer is
an effective way to further improve the CNN performance for visual recognition
tasks. This layer usually performs local subtractive or divisive operations for
normalization, enforcing a kind of local competition between features at the
same spatial location in different feature maps. There are usually two kinds of
non-linear transformations. One is the local response normalization [11], which
yields the normalized output ykij at the position (i, j) in feature map k as

ykij =
xkij(

1 + α
N ·

k+N
2∑

l=k−N
2

(xlij)2

)β
, (2)

where the sum runs over N adjacent feature maps at the same spatial location,
and the parameters of α and β can be determined using a validation set.

Another is the local contrast normalization [15] with the normalized output
ykij produced with the following formula.

ykij =
xkij⎛
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where the local contrast is computed within a local M1 × M2 region with the
center at (i, j), and mkij is the mean of all x values within the above M1 ×M2

region in the kth feature map as computed as

mkij =
1

M1 ·M2
·

i+
M1
2∑

p=i−M1
2

j+
M2
2∑

q=j−M2
2

xkpq . (4)

2.3 Feature Pooling Layer

The purpose of pooling is to transform the joint feature representation into a
more usable one that preserves important information while discarding irrelevant
details. The employment of pooling layer in CNNs aims to achieve invariance to
changes in position or lighting conditions, robustness to clutter, and compact-
ness of representation. In general, the pooling layer summarizes the outputs of
neighboring groups of neurons in the same kernel map [7]. In the pooling layer,
the resolution of the feature maps is reduced by pooling over local neighborhood
on the feature maps of the previous layer, thereby enhancing the invariance to
distortions on the inputs.

In CNNs, there are two conventional pooling methods, including max pooling
and average pooling. The max pooling method selects the largest element in
each pooling region as

ykij = max
(p,q)∈Rij

xkpq , (5)
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where ykij is the output of the pooling operator related to the kth feature map,
xkpq is the element at (p, q) within the pooling region Rij which represents a
local neighborhood around the position (i, j). Regarding the average pooling
method, it takes the arithmetic mean of the elements in each pooling region as

ykij =
1

|Rij |
∑

(p,q)∈Rij

xkpq , (6)

where |Rij | stands for the size of the pooling region Rij .

3 Proposed Mixed Pooling

3.1 Motivation

As mentioned before, the max pooling and average pooling methods are two
popular choices employed by CNNs due to their computational efficiency. For
instance, the average pooling method is used in [15] which obtains an excellent
image classification accuracy on the Caltech101 dataset. In [7], the max pool-
ing method is successfully applied to train a deep ‘convnet’ for the ImageNet
competition. Although these two kinds of pooling operators can work very well
on some datasets, it is still unknown which will work better for addressing a
new problem. In another word, it is a kind of empiricism to choose the pooling
operator.

On the other hand, both the max pooling and average pooling operators have
their own drawbacks. About max pooling, it only considers the maximum element

Fig. 2. Toy example illustrating the drawbacks of max pooling and average pooling.
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and ignores the others in the pooling region. Sometimes, this will lead to an unac-
ceptable result. For example, if most of the elements in the pooling region are of
high magnitudes, the distinguishing feature vanishes after max pooling as shown
in Fig. 2(a). Regarding average pooling, it calculates the mean of all the elements
within the pooling region. This operator will take all the lowmagnitudes into con-
sideration and the contrast of the new feature map after pooling will be reduced.
Even worse, if there are many zero elements, the characteristic of the feature map
will be reduced largely, as illustrated in Fig. 2(b).

It is well known that images in the nature world are ever-changing, and it is
of high possibility that the defective aspects of max pooling and average pooling
(as shown in Fig. 2) will have negative effects in applying pooling layers to
CNNs. Therefore, as a solution, we consider to replace the deterministic pooling
operation with a stochastic procedure, which randomly employs the local max
pooling and average pooling methods when training CNNs. This is the proposed
mixed pooling method to be introduced next.

3.2 Pooling Scheme

The proposed mixed pooling is inspired by the random Dropout [11] and Drop-
Connect [12] methods. As mentioned before, when training with Dropout, a
randomly selected subset of activations are set to zeros within each layer. While
for DropConnect, it instead sets a randomly selected subset of weights within the
network to zeros. Both of these two techniques have been proved to be powerful
for regularizing neural networks.

In this work, the proposed mixed pooling method generates the pooled output
with the following formula.

ykij = λ · max
(p,q)∈Rij

xkpq + (1− λ) · 1

|Rij |
∑

(p,q)∈Rij

xkpq , (7)

where λ is a random value being either 0 or 1, indicating the choice of using the
max pooling or average pooling. In another word, the proposed method changes
the pooling regulation scheme in a stochastic manner which will address the
problems encountered by max pooling and average pooling to some extent.

3.3 Back Propagation

As usual, CNN layers are trained using the back propagation algorithm. For error
propagation and weight adaptation in fully connected layers and convolutional
layers, the standard back propagation procedure is employed. For the pooling
layer, the procedure is a little bit different. As noted in [2], the pooling layers do
not actually do any learning themselves. Instead, they just reduce the dimension
of the networks. During forward propagation, an N×N pooling block is reduced
to a single value. Then, this single value acquires an error computed from back
propagation. For max pooling, this error is just forwarded to where it comes
from because other units in the previous layer’s pooling blocks do not contribute
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to it. For average pooling, this error is forwarded to the whole pooling block by
dividing N ×N as all units in the block affect its value.

In mixed pooling, it is also needed to locate where the error comes from so
that it can modify the weights correctly. The proposed mixed pooling randomly
apply the max pooling and average pooling during forward propagation. For
this reason, the pooling history about the random value λ in Eq. (7) must be
recorded during forward propagation. Then, for back propagation, the operation
is performed depending on the records. Specifically, if λ = 1, then the error
signals are only propagated to the position of the maximum element in the
previous layer; otherwise, the error signals will be equally divided and propagated
to the whole pooling region in the previous layer.

3.4 Pooling at Test Time

When the proposed mixed pooling is applied for test, some noises will be in-
troduced into CNNs’ predictions, which is also found in [10]. In order to reduce
this kind of noise, a statistical pooling method is used. During the training of
CNNs, the frequencies of using the max pooling and average pooling methods
related to the kth feature map are counted as F k

max and F k
avg. If F

k
max ≥ F k

avg ,
then the max pooling method is applied in the kth feature map; otherwise, the
average pooling method is used. In this sense, the proposed statistical pooling
at the test time can be viewed as a form of model averaging.

4 Experimental Results

4.1 Overview

The proposed mixed pooling method is evaluated on three benchmark image clas-
sification datasets, including CIFAR-10 [16], CIFAR-100 [16] and the Street View
House Number (SVHN) dataset [17], with a selection of images from CIFAR-
10 and SVHN as shown in Fig. 3. The proposed method is compared with the
max pooling and average pooling methods for demonstrating the performance
improvement. In the experiments, the CNNs are generated from the raw RGB
values of the image pixels. As a regularizer, the data augmentation technique
[18] is applied for CNN training, which is performed by extracting 24×24 sized
images as well as their horizontal reflections from the original 32×32 image and
then training CNNs on these extracted images. Another regularizer applied in
this work is the weight decay technique as used in [7].

In this work, the publicly available cuda-convnet [19] package is used to per-
form experiments with a single NVIDIA GTX 560TI GPU. Currently, the CNNs
are trained using stochastic gradient descent approach with a batch size of 128
images and momentum of 0.9. Therefore, the update rule for weight w is

vi+1 = 0.9vi + ε

〈
∂L

∂w
|wi

〉
i

, (8)
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Fig. 3. A selection of images we evaluated. (a) CIFAR-10 [16]. (b) SVHN [17].

wi+1 = wi + vi+1, (9)

where i is the iteration index, v is the momentum variable, ε is the learning rate,
and

〈
∂L
∂w |wi

〉
i
is the average over the ith batch of the derivative of the objective

with respect to wi.

4.2 CIFAR-10

CIFAR-10 [16] is a collection of natural color images of 32×32 pixels. It contains
10 classes, each of them having 5,000 samples for training and 1,000 for testing.
The CIFAR-10 images are highly varied, and there is no standard viewpoint or
scale at which the objects appear. Except for subtracting the mean activity of
the training set, the CIFAR-10 images are not preprocessed.

A two-stage CNN model is trained in this work, with each stage consisting of
a convolutional layer, a local response normalization layer and a pooling layer.
All the convolutional layers have 64 filter banks and use a filter size of 5×5.
Local response normalization layers follow the convolutional layers, with N = 9,
α = 0.001 and β = 0.75 (as used in Eq.(2)), which normalize the output at each
location over a subset of neighboring feature maps. This typically helps training
by suppressing extremely large outputs allowed by the rectified linear units and
helps neighboring features communicate with each other. Additionally, all of the
pooling layers that follow local response normalization layers summarize a 3×3
neighborhood and use a stride of 2. Finally, two locally connected layers and a
softmax layer are used as classifier at the end of the entire network.

We follow the common experimental protocol for CIFAR-10, which is to choose
50,000 images for training and 10,000 images for testing. The network parameters
are selected by minimizing the error on a validation set consisting of the last
10,000 training examples.

The comparative results are shown in Table 1, where the test accuracy results
of several state-of-the-art approaches are cited for illustration besides the max
pooling, average pooling and mixed pooling methods. From the results, it can
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Table 1. Comparative classification performances with various pooling methods on
the CIFAR-10 dataset

Method Training error (%) Accuracy (%)

3-layer Convnet [11] - 83.4%
10-layer DNN [5] - 88.79%

Stochastic pooling [20] - 84.87%

Max pooling 3.01% 88.64%
Average pooling 4.52% 86.25%
Mixed pooling 6.25% 89.20%

be seen that the proposed mixed pooling method is superior to other methods
in terms of the test accuracy although it produces larger training errors than
that of max pooling and average pooling. This indicates that the proposed mixed
pooling outperforms max pooling and average pooling to address the over-fitting
problem. As observed from the results, a test accuracy of 89.20% is achieved by
the proposed mixed pooling method which is the best result which we are aware
of without using Dropout. In addition, the features which are learnt in the first
convolutional layer by using different pooling methods are shown in Fig. 4, where
it can observed that the features learnt with the proposed mixed pooling method
contains more information than that of max pooling and average pooling.

Fig. 4. Visualization of 64 features learnt in the first convolutional layer on the CIFAR-
10 dataset. The size of each feature is 5×5×3. (a) Features learnt with max pooling.
(b) Features learnt with average pooling. (c) Features learnt with mixed pooling.

4.3 CIFAR-100

The CIFAR-100 dataset [16] is the same in size and format as the CIFAR-10
dataset, but it contains 100 classes. That is to say, each class in CIFAR-100 has
500 images to train and 100 images to test. We preprocess the data just like
the way we have done for the CIFAR-10 dataset, and the same CNN structure
as used for CIFAR-10 is applied to CIFAR-100. The only difference is that the
last softmax layer outputs 100 feature maps. The comparative results are shown
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Table 2. Comparative classification performances with various pooling methods on
the CIFAR-100 dataset

Method Training error (%) Accuracy (%)

Learnable pooling regions [21] - 56.29%
Stochastic pooling [20] - 57.49%

Max pooling 5.42% 59.91%
Average pooling 14.61% 55.99%
Mixed pooling 25.71% 61.93%

in Table 2, where it can be observed that the proposed mixed pooling method
outperforms the other methods in terms of test accuracy.

4.4 SVHN

Finally, we also perform experiments on the SVHN dataset [17]. SVHN consists of
images of house numbers collected by Google Street View. There are 73,257 digits
in the training set, 26,032 digits in the test set and 531,131 additional examples
as an extra training set. We follow [22] to build a validation set which contains
400 samples per class from the training set and 200 samples per class from the
extra set. The remaining digits of the training and extra sets are used for training.
The local contrast normalization operator is applied in the same way as used in
[20]. The comparative results are presented in Table 3, which demonstrate the
superiority of the proposed mixed pooling method over the others.

Table 3. Comparative classification performances with various pooling methods on
the SVHN dataset

Method Training error (%) Accuracy (%)

Lp-pooling Convnet [22] - 95.10%
64-64-64 Stochastic pooling [20] - 96.87%

64-64-64 Max pooling 2.03% 96.61%
64-64-64 Average pooling 2.41% 96.14%
64-64-64 Mixed pooling 3.54% 96.90%

4.5 Time Performance

To further illustrate the advantage of the proposed mixed pooling method, the
time consumption performances are illustrated in Fig. 5 with two testing sce-
narios evaluated for max pooling, average pooling, stochastic pooling [10] and
mixed pooling, where nine epoches are tested. From Fig. 5, it can be seen that
the computational complexity of mixed pooling is almost the same as that of
average pooling and max pooling, and far lower than that of stochastic pooling.
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(a) (b)

Fig. 5. Time performance comparison among max, average, stochastic and mixed pool-
ing. (a) Time consumption when feature map size is 28× 28 and pooling size is 2× 2.
(b) Time consumption when feature map size is 14× 14 and pooling size is 2× 2.

5 Conclusion

In this paper, a novel pooling method called mixed pooling is proposed, which
can be combined with any other forms of regularization such as weight de-
cay, Dropout, data augmentation, and so on. Comparative experimental results
demonstrate that the proposed mixed pooling method is superior to the tra-
ditional max pooling and average pooling methods to address the over-fitting
problem and improve the classification accuracy. With the proposed method,
we achieve the start-of-the-art performances on the CIFAR-10, CIFAR-100 and
SVHN datasets as compared with other approaches that do not employ Dropout.
Furthermore, the proposed method requires negligible computational overheads
and no hyper-parameters to tune, thus can be widely applied to CNNs.
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