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Abstract. The minimal test cost attribute reduction is an important component
in data mining applications, and plays a key role in cost-sensitive learning. Re-
cently, several algorithms are proposed to address this problem, and can get ac-
ceptable results in most cases. However, the effectiveness of the algorithms for
large datasets are often unacceptable. In this paper, we propose a global best ar-
tificial bee colony algorithm with an improved solution search equation for min-
imizing the test cost of attribute reduction. The solution search equation intro-
duces a parameter associated with the current global optimal solution to enhance
the local search ability. We apply our algorithm to four UCI datasets. The re-
sult reveals that the improvement of our algorithm tends to be obvious on most
datasets tested. Specifically, the algorithm is effective on large dataset Mushroom.
In addition, compared to the information gain-based reduction algorithm and the
ant colony optimization algorithm, the results demonstrate that our algorithm has
more effectiveness, and is thus more practical.

Keywords: Cost-sensitive learning, Minimal test cost, Attribute reduction,
Granular computing, Biologically-inspired algorithm.

1 Introduction

Cost-sensitive learning is one of the most active and important research areas in ma-
chine learning and data mining. In conventional data mining, attribute reduct tries to
maximize the accuracy or minimize the error rate in general. In real-world applications,
one should pay cost for obtaining a data item of an attribute. It is important to take the
test cost account into attribute reduct [1,2]. The minimal test cost attribute reduction [9]
is an important problem in cost-sensitive learning. This problem is not a simple exten-
sion of existing attribute reduction problems, it is a mandatory stage in dealing with the
test cost issue. The problem is a task to select an attribute subset with minimal test cost.
The performance of the minimal test cost attribute reduction is the test cost, which is
independent of the performance of attribute reduction.

In the recent years, some algorithms are proposed to deal with the minimal test cost
attribute reduction problem, such as ant colony optimization algorithm (ACO) [3] and
information gain-based λ-weighted reduction (λ-weighted) algorithm [4]. However, the
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effectiveness of these algorithms for large datasets is often needed to improve. To deal
with this problem, artificial bee colony (ABC) algorithm be considered. The ABC al-
gorithm is a biologically-inspired optimization algorithm, it is able to produce high
quality solutions with fast convergence. Due to its simplicity and easy implementation,
the ABC algorithm has captured much attention and has been applied to solve many
practical optimization problems [14].

In this paper, we propose a global best artificial bee colony (GABC) algorithm for
the minimal test cost attribute reduction problem. The GABC algorithm is inspired
by the ABC algorithm. The ABC algorithm [5] is proposed to optimize continuous
functions. Although it has fewer control parameters, it shows competitive performance
compared with other population-based algorithms. However the algorithm cannot be
effective using the individual information to optimize search method, so the traditional
artificial bee colony algorithm is good at exploration but poor at exploitation. As we
know, the exploitation is determined by the solution search equation. In this paper,
the GABC algorithm improves the solution to balance the exploration and exploitation
ability of the ABC algorithm. The GABC algorithm induces a parameter Lb into the
improved solution search equation. The parameter Lb value is mainly composed of the
fitness of the global optimal solution.

We evaluate the performance of our algorithm on four UCI (University of California
Irvine) datasets [6,7], which serve the machine learning community. Since there is no
cost settings for attribute on the four datasets, we use Normal distribution to generate
test cost for datasets. The viability and effectiveness of the GABC algorithm are tested
on four datasets. The results demonstrate the good performance of the GABC algorithm
in solving the minimal test cost attribute reduction problem when compared with the λ-
weighted algorithm, ACO algorithm and ABC algorithms. Experiments are undertaken
by an open source software called Coser (cost-sensitive rough sets) [8].

The rest of the paper is organized as follows. Section 2 presents attribute reduction
in cost-sensitive learning and discusses the problem of the minimal test cost attribute
reduction. Section 3 analyzes the parameters of the GABC algorithm for getting op-
timal. Section 4 presents the experimental results and the comparison results. Finally,
conclusions and recommendations for future studies are drawn in Section 5.

2 Preliminaries

In this section, we present some basic notions for the minimal test cost attribute reduc-
tion problem. The one conveyed is the test cost independent decision system, the other
we proposed is the minimal test cost attribute reduction problem.

2.1 Test Cost Independent Decision System

In this paper, datasets are fundamental for the minimal test cost attribute reduction
problem. We consider the datasets with a test cost independent decision system [4].
A test-cost-sensitive decision system is defined as follows.

Definition 1. [4] A test cost independent decision system (TCI-DS) S is the 6-tuple:

S = (U,C, d, {Va|a ∈ C ∪ {d}}, {Ia|a ∈ C ∪ {d}}, tc), (1)
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where U is a finite set of objects called the universe, C is the set of attributes, d is
the decision class, Va is the set of values for each a ∈ C ∪ {d}, Ia : U → Va is an
information function for each a ∈ C ∪ {d}, and tc : C → R+ ∪ {0} is the test cost
function for each a ∈ C.

Here test costs are independent of one another. A test cost function can be represented
by a vector tc = [tc(a1), tc(a2), ..., tc(a|C|)]. It is easy to calculate the test cost for an
attribute subset B (any B ⊆ C), which is counted as follows: tc(B) =

∑

a∈B

tc(a).

Table 1. A clinical decision system

Patient Headache Temperature Lymphocyte Leukocyte Eosinophil Heartbeat Flu
x1 yes high high high high normal yes
x2 yes high normal high high abnormal yes
x3 yes high high high normal abnormal no
x4 no high normal normal high normal no

An exemplary decision system is given by Table 1. The attributes of this decision
system are symbolic. Here C = {Headache, Temperature, Lymphocyte, Leukocyte,
Eosinophil, Heartbeat }, {d} = {Flu}, U = {x1, x2, x3, x4}, and the corresponding
test cost of attributes is represented by a vector tc = [12, 5, 15, 20, 15, 10].

2.2 The Minimal Test Cost Attribute Reduction Problem

Attribute reduction plays an important role in rough sets [11]. We review the reduction
based on positive region [12].

Definition 2. [13] Any B ⊆ C is called a decision relative reduction (or a reduction
for brevity) of S if and only if:

1.POSB({d}) = POSC({d});
2.∀a ∈ B,POSB−{a}({d}) �= POSC({d}).
In applications, a number of reductions sometimes are needed. However, in most

applications, only one reduction is needed. Since there may exist many reductions, an
optimization metric is needed. In this paper, the test cost is taken into account in at-
tribute reduction problem. Naturally, the test cost of the attribute reduction is employed
as a metric in our work. In other words, we are interested in the attribute reduction with
minimal test cost. We define reductions of this type as follows.

Definition 3. [13] Let S be a TCI-DS and Red (S) be the set of all reductions of S.
Any R ∈ Red(S) where tc(R) = min{tc(R′

) | R ∈ Red(S)} is called a minimal test
cost attribute reduction.

As indicated in Definition 3, the set of all minimal test cost attribute reductions is
denoted by MTR(S). The optimal objective of our paper is MTR problem.



104 A. Fan, H. Zhao, and W. Zhu

3 Algorithm

This section introduces the global best artificial bee colony (GABC) algorithm in detail.
Similar to the artificial bee colony (ABC) [14] algorithm, our algorithm consists food
sources and three groups of bees: employed bees, onlookers and scouts. The ABC algo-
rithm [15] is composed of two main steps: recruit an optimal good source and abandon
a bad source. The process of artificial bees seeking good food sources equal the process
of finding the minimal test cost attribute reduction.

In GABC algorithm, let one employed bee is on one food source and the number
of employed bees or onlookers equal the number of food sources. The position of a
food source represents an attribute subset and it is exploited by one employed bee or
one onlookers. The number of food sources is set to 1.5 times number of attributes.
Employed bees search new foods and remember the food source in their memory, and
then pass the food information to onlookers. The onlookers tend to select good food
sources from those foods founded by the employed bees, then further search the foods
around the selected food source. The scouts are translated from a few employed bees,
which abandon their food sources and search new ones.

As well known that both exploration and exploitation are necessary for the ABC al-
gorithm. In the algorithm, the exploration refers to the ability to investigate the various
unknown regions in the solution space to discover the global optimum. While the ex-
ploitation refers to the ability to apply the knowledge of the previous good solutions
to find better solutions. In practice, to achieve good optimization performance, the two
abilities should be well balanced. As we know, a new candidate solution is given by the
following solution search equation in the artificial bee colony algorithm:

vij = xij + φij(xij − xkj). (2)

In Equation (2), we can know that the coefficient φij is an uniform random number
in [0, 1] and xkj is a random individual in the population, therefore, the solution search
dominated by Equation (2) is random enough for exploration. However, alternatively
the new candidate solution is generated by moving the old solution towards another
solution selected randomly from the population. That is to say, the probability that the
randomly selected solution is a good solution is the same as that the randomly selected
solution is a bad one, so the new candidate solution is not promising to be a solution
better than the previous one. To sum up, the solution search equation described by
Equation (2) is good at exploration but poor at exploitation.

By taking advantage of the information of the global best solution to guide the search
of candidate solutions, we rebuild the ABC algorithm to improve the exploitation. The
GABC algorithm as follows.

Step 1. Create an initial food source position, and calculate the fitness value of the food
source.

Food sources initialization is a crucial task in the ABC algorithm because it can
affect the convergence speed and the quality of finding optimal solution. We replace
the random select attribute subset with an attribute subset containing core attribute and
satisfying the position region constraint [16].
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The fitness value of the food source is defined as the reciprocal of the corresponding
test cost. The fitness equation as follows:

fitness =
1

1 + tc
, (3)

where tc is the test cost of an attribute subset selected.
After initialization, the GABC algorithm enters a loop of operations: updating fea-

sible solutions by employed bees, selecting feasible solutions by onlooker bees, and
avoiding suboptimal solutions by scout bees.

Step 2. Produce new solution vij for the employed bees by Equation (5) and evaluate
it by Equation (3).

The best solution in the current population is a very useful source which can be used
to improve the convergence speed. We introduce a parameter Lb that associates with
the current global optimal solution. The equation of Lb is conveyed as follows:

Lb = fitnessi/globalfitness, (4)

where fitness i is the i-th iteration fitness of food source, and global fitness stand for the
fitness of current global optimal food source. As can be seen from Equation (4), Lb is a
positive real number, typically less than 1.0.

Through the analysis, we propose a new solution search equation as follows:

vij = xij + φij(xij − xkj) + Lb(gi − xij), (5)

where k ∈ {1, 2, 3, ..., SN} and j ∈ {1, 2, 3, ..., D} are randomly chosen indexes. k is
different from i. SN is the number of the attribute, D is the number of the food source.
φij is a random value in [0, 1]. vij and xkj is a new feasible solution that is modified
from its previous solution xij , gi is the best solution that explored in the history used to
direct the movement of the current population.

When Lb takes 0, Equation (5) is identical to Equation (2). We can get a new solution
better than the old one, then turn the new solution to be an old one in the next iteration.
Apply the greedy selection process for the employed bees.

Step 3. Calculate the probability values Pi for the solution vij by Equation (6).
Produce the new solution uij for onlooker bee by Equation (5), and evaluate it by

Equation (3). Where uij is produced from the solutions vij depending on Pi. An on-
looker bee chooses a food source depending on the probability values Pi associated
with that food source.

The equation of calculating the probability values Pi is shown as follows:

Pi =
fitnessi

SN∑

n=1
fitnessn

, (6)

where fitnessi is the fitness value of the i-th solution, SN is the food number.
Apply the greedy selection process for the onlookers.
Step 4. When a food source can not improve further through limit cycles, the food

source is abandoned for a scout bee. The food source is replaced with a new randomly
solution produced by Equation (5).
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The limit is an important control parameter of the GABC algorithm for abandon-
ment. This step avoid the algorithm falling into suboptimal solutions. The Steps 2, 3
and 4 are repeated until the running generation reaches the maximal number of itera-
tion.

The GABC algorithm deletes redundant attributes of each food source in inverted
order with the positive region constraint. Through the above steps, an attribute reduction
with minimal test cost has been produced, it is the final solution.

4 Experiments

To test the performance of the GABC algorithm, an extensive experimental evaluation
and comparison with the ABC, the λ-weighted [4] and the ACO [3] algorithms are
provided based on four datasets as follows. The four datasets are shown in Table 2. The
finding optimal factor (FOF) [4] is used as comparison criteria in this paper.

4.1 Data Settings

In our experiments, there are four UCI datasets used to test. These are Zoo, Voting, Tic-
tac-toe and Mushroom. The information of the four datasets is summarized in Table 2.
On the four datasets, attributes are no test cost settings, so we apply Normal distribution
to generate random test cost in [1, 10].

Table 2. Database information

Name Domain |U | |C| D = {d}
Zoo Zoology 101 16 Type

Voting Society 435 16 Vote
Tic-tac-toe Game 958 9 Class
Mushroom Botany 8124 22 Class

4.2 Experiment Results

In experiment, each algorithm is undertaken with 100 different test cost settings on
four datasets. The experiments reveal the performance of the GABC algorithm through
analyzing parameters: limit, iteration and Lb. Nextly, we investigate the impact of the
three parameters on the GABC algorithm.

Figure 1 presents solutions along iterations and limits for the four datasets. It can
be observed that the evolution curves of the GABC algorithm reach higher FOF much
faster. Thus, it can be concluded that overall the GABC algorithm outperforms well.
It can be found from Figure 1, the FOF of a large limit(i.e., 60 or 80) is superior to
the FOF of a small limit (i.e., 20 or 30) on most datasets, this rule also applies to the
iteration.
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Fig. 1. Finding optimal factor on four datasets: (a) Limit, (b) Iteration

In Figure 1, we investigate the impact of parameter of limit and iterations on the
GABC algorithm.

1) When the maximal iteration is set to 300, we let the parameter Lb be 0.8. As can
be seen, we obtain better value of limit on the Mushroom dataset when limit is 60. For
the other three test datasets, better results are obtained when limit is 110.

2) When limit is set to 110 and the parameter Lb is kept in 0.8. We can obtain that
better value of iteration on the Mushroom dataset is 40. For the other three test datasets,
better results are obtained when iteration is 30. The performance on parameter iteration
is likely sensitive to the number of attributes.

3) As can be seen, when the value of limit is increased, the FOF is also improved.
This trend also applies to the parameter of iteration. Figure 1(b) shows the parameter of
iteration is needed to converge towards the optimal solution for the GABC algorithm,
which same to the parameter of limit. We observe that the values of limit and iteration
can greatly influence the experimental results.

In order to reveal the impact of control parameter Lb, we conduct experiments for
our algorithm, where Lb in [0, 1] with 0.2 stepsize and use the competition approach
[4] to improve the results. In Figure 2, when the value of Lb is set to 1, we can obtain
a good result on Mushroom dataset. For the other three test datasets, better results are
obtained when Lb is around 0.8. As can be seen, when the values of Lb are increased,
the values of FOF are also improved. Therefore, the selective Lb is set at 0.8 for all the
datasets tested. We can observe that the values of Lb also have effect on the results.

This can be explained by the basic principle of the ABC algorithm. The parameter
Lb in Equation (5) plays an important role in balancing the exploration and exploitation
of the candidate solution search. When Lb increases from zero to a certain value, the
exploitation of Equation (5) will also increase correspondingly.

4.3 Comparison Results

In the following, we illustrate the advantage of the GABC algorithm compared with
the λ-weighted algorithm, the ACO algorithm and the ABC algorithm. The limit of the
GABC and ABC algorithms is set to 100, and the iteration is 40.
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Fig. 2. Finding optimal factor for Lb value on four datasets
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Fig. 3. Finding optimal factor for iteration on four datasets: (a) Zoo, (b) Voting, (c) Tic-tac-toe,
(d) Mushroom
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Table 3. Finding optimal factor of three algorithms with the competition approach

Datasets λ-weighted ACO GABC
Zoo 0.833 0.987 1.000

Voting 1.000 1.000 1.000
Tic-tac-toe 0.408 1.000 1.000
Mushroom 0.176 0.958 0.970

Figure 3 presents the FOF for iteration on the four different datasets. Table 3 draws
the FOF for three algorithms on the four different datasets by competition approach.
The best results are marked in bold in table. The results in Table 3 and Figure 3 further
demonstrate that the GABC algorithm is a great algorithm since it generates signifi-
cantly better results than the λ-weighted algorithm, ACO algorithm and ABC algorithm
for datasets.

The results show that the FOF of the other two algorithms produced are acceptable
results on most datasets. However, the performances of the two algorithms are shortly
on Mushroom dataset. The results of the λ-weighted algorithm are especially obvious.
For example, the FOF is only 17.6% of the λ-weighted algorithm on the Mushroom
dataset. However, it is 97% of our algorithm on the Mushroom dataset.

In summary, the GABC algorithm can produce an optimal reduction in general. The
algorithm has the highest performance among the three algorithms for all four datasets.

5 Conclusions

In this paper, we have developed the global based artificial bee colony algorithm to
cope with the minimal test cost attribute reduction problem. The algorithm has been
improved by introducing the parameter Lb based on global optimal. We have demon-
strated the effectiveness of the GABC algorithm and provided comparisons with two
other algorithms. The results have shown that the GABC algorithm possesses superior
performance in finding optimal solution as compared to the other algorithms. In the
future, we will improve the stability and efficiency of the global based artificial bee
colony algorithm.
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