
 123

LN
AI

 8
81

8

9th International Conference, RSKT 2014
Shanghai, China, October 24–26, 2014
Proceedings

Rough Sets
and Knowledge Technology

Duoqian Miao   Witold Pedrycz
Dominik Slezak   Georg Peters
Qinghua Hu   Ruizhi Wang (Eds.)



Lecture Notes in Artificial Intelligence 8818

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/1244



Duoqian Miao · Witold Pedrycz
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Preface

This book contains the papers selected for presentation at the ninth International
Conference on Rough Sets and Knowledge Technology (RSKT 2014) held at
Tongji University, Shanghai, China from October 24 to 26, 2014.

The RSKT conference series was established in 2006 as a major international
forum that brings researchers and industry practitioners together to discuss and
deliberate on fundamental issues of knowledge processing and management, and
knowledge-intensive practical solutions in the knowledge age. The past eight
RSKT conferences were held in Chongqing, China (2006), Toronto, Canada
(2007), Chengdu, China (2008), Gold Coast, Australia (2009), Beijing, China
(2010), Banff, Canada (2011), Chengdu, China (2012), and Halifax, Canada
(2013). The conferences have attracted experts from around the world to present
their state-of-the-art scientific results, to nurture academic and industrial inter-
action, and to promote collaborative research in rough set theory and knowledge
technology. The RSKT conference series so far impressively shows the immense
progress that has been achieved and the wide acceptance and impact of rough
sets in academia and practice. The RSKT proceedings, all published in Springer’s
LNCS series, have become rich reference material for researchers, students, and
practitioners in rough sets and data and knowledge processing.

In total, RSKT 2014 received 162 submissions to the general conference, two
special sessions, and four workshops. The special sessions were focused on

– Domain-Oriented Data-Driven Data Mining (3DM) organized by Andrzej
Skowron, Guoyin Wang, and Yiyu Yao.

– Uncertainty Analysis in Granular Computing: An Information Entropy-Based
Perspective organized by Duoqian Miao, Lin Shang and Hongyun Zhang.

The workshops were organized in the areas of

– Advances in Granular Computing (AGC 2014) organized by Andrzej Bargiela,
Wei-Zhi Wu, William Zhu, Fan Min, Athanasios Vasilakos, and JingTao Yao.

– Big Data to Wise Decisions (First International Workshop, BD2WD 2014)
organized by Andrzej Skowron, Guoyin Wang, Jiye Liang, Vijay V. Ragha-
van, Jie Tang, and Yiyu Yao.

– Rough Set Theory (Fifth Workshop, RST 2014) organized by Davide Ciucci,
Yanyong Guan, and Marcin Wolski.

– Three-way Decisions, Uncertainty, and Granular Computing (Second Inter-
national Workshop) organized by Tianrui Li, Salvatore Greco, Jerzy W.
Grzymala-Busse, Ruizhi Wang, Dun Liu, and Pawan Lingras.

Following the tradition of rigorous reviewing in the RSKT conference series,
each submitted paper went through a thorough review by at least two Program
Committee (PC) members and domain experts; some papers even received up
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to five reviews. As a result, only top-quality papers were chosen for presentation
at the conference including 38 regular papers (acceptance rate of 23.5%) and 40
papers for special sessions or workshops. The authors were requested to address
the reviewer’s comments and make revisions. Eventually, the final camera-ready
submissions were carefully checked and approved by PC Chairs. Therefore, we
would like to thank all the authors for submitting their best papers; without
their contributions, this conference would not have been possible.

The RSKT 2014 program was further very much enriched by invited keynote
speeches and plenary talks. We are most grateful to the high-profile keynote
speakers, Zongben Xu, Hamido Fujita, and Thierry Denoeux, for their vision-
ary addresses. The conference was also fortunate in bringing a group of estab-
lished scholars to deliver invited talks. We thank the plenary speakers, Jerzy
Grzymala-Busse, Jiming Liu, Duoqian Miao, Mikhail Moshkov, Sheila Petty,
Andrzej Skowron, Shusaku Tsumoto, Guoyin Wang, Ruizhi Wang, JingTao Yao,
and Yiyu Yao, for sharing their latest research insights.

RSKT 2014 was supported by many people and organizations. We thank the
members of the Advisory Board and the Steering Committee for their invalu-
able suggestions and support throughout the organization process. We thank
the Conference Chairs, Changjun Jiang, Witold Pedrycz, and Jue Wang, for the
kind support, and the special session and workshop organizers for their great
dedication. We express our thanks to the excellent work of Publicity Chairs,
Ruizhi Wang, Lijun Sun, Hanli Wang, Pawan Lingras, and Xiaodong Yue, Lo-
cal Organization Chairs, Hongyun Zhang, Cairong Zhao, Zhihua Wei, and Feifei
Xu, and Webmaster, Zhifei Zhang. We thank the PC members and additional
external reviewers for their thorough and constructive reviews.

We greatly appreciate the cooperation, support, and sponsorship of many in-
stitutions, companies, and organizations, including Tongji University, National
Natural Science Foundation of China, International Rough Set Society, and
Rough Sets and Soft Computing Society of the Chinese Association for Arti-
ficial Intelligence.

We acknowledge the use of EasyChair conference system for paper submis-
sion, review, and editing of the proceedings. We are thankful to Alfred Hofmann
and the excellent LNCS team at Springer for their support and cooperation pub-
lishing the proceedings as a volume of the Lecture Notes in Computer Science.

October 2014 Duoqian Miao
Witold Pedrycz
Dominik Ślȩzak

Georg Peters
Qinghua Hu
Ruizhi Wang
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Highlights of Invited Presentations

Keynote Speeches

Research Directions in Subjective Decision Support System: Case
Study on Medical Diagnosis

In decision making most approaches take into account objective criteria, how-
ever, the subjective correlation among decision makers provided as preference
utility is necessary to be presented to provide confidence preference additive
among decision makers reducing ambiguity and producing better utility prefer-
ences measurement for subjective criteria among decision makers. Most models
in Decision support systems assume criteria as independent. Therefore, these
models are ranking alternatives based on objective data analysis. Also, different
types of data (time series, linguistic values, interval data, etc.) impose difficulties
to perform decision making using classical multi-criteria decision making models.

Subjectiveness is related to the contextual form of criteria. Subjectiveness
is contributing to provide knowledge and information on the criteria of mental
existence to integrate its appropriateness relationship with the objective cri-
teria for better understanding of incomplete decision makers’ criteria setting.
Uncertainty of some criteria in decision making is also considered as an other
important aspect to be taken care of, in decision making and decision support
system-based prediction. These drawbacks in decision making are major research
challenges that are attracting wide attention, like on big data analysis for risk
prediction, medical diagnosis, and other applications that are in practice more
subjective to user situation and its knowledge-related context. Subjectivity is an
important aspect in data analysis in considering a specific situation bounded by
user preferences. Subjectiveness is a set of criteria that are filtering or reordering
the objective criteria for better fitness and appropriateness in decision making
based on a situation prediction.

For example, Probabilistic rough set adopts statistics to estimate the prob-
ability of a subset of objects with respect to equivalence relations. Subjective
criteria are those criteria which are sensitive to the situation bounded by the
mental relation to expert like sentimental relations to the expert experience or
user-oriented mental interest in certain situations. In this talk I highlight sub-
jectivity projected on Three Way decisions and explain the boundary region
using reference point in Prospect Theory. This is to provide some highlight
on Evidential Rough Set as an alternative perspective situated in a subjec-
tive context in real practices, like medical diagnosis. These are projected on
rough set based on issues in entropy not necessarily based on Shannon’s entropy
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theory, which in major part provides statistical-based gain (i.e., entropy) that
would make quantified quality measurement not reflect on actual specific situa-
tion, as it does not reflect the communication context (subjective) and consider
uncertainty as white noise. Therefore, new measuring directions are needed to
qualify the gain of attribute context and its relationship.

I think quantifiable measurement of the boundary region in three-way deci-
sions could provide a measure that can handle these drawbacks and also provide
better understanding of the subjective uncertainty gain.

Subjectivity would be examined based on correlations between different con-
textual structures reflecting the framework of personal context, for example, in
nearest neighbor-based correlation analysis fashion. Some of the attributes of
incompleteness also may lead to affect the approximation accuracy. Attributes
with preference-ordered domain relation properties become one aspect in order-
ing properties in rough approximations.

This talk provides an overview of subjectiveness in decision making, exhibited
by a case study using medical diagnosis.

The Virtual Doctor System (VDS) developed by my group is a system assist-
ing the human doctor, who is practicing medical diagnosis in the real situation
and environment. The interoperability is represented by utilizing the medical
diagnosis cases of medical doctors, represented in machine executable fashion
based on human patient interaction with a virtual avatar resembling a real doc-
tor. VDS is practiced as a virtual avatar interacting with the human patient
based on physical views and mental view analysis. In this talk, I outline our
VDS system and then discuss related issues on subjective decision making in the
medical domain. Using fuzzy reasoning techniques in VDS, it has been shown
is possible to provide better precision in circumstances related to partial known
data and uncertainty on the acquisition of medical symptoms. We employed a
combination of Fuzzy geometric aggregation for attributes for representing Phys-
ical view of VDS (Subjective attributes). We propose harmonic fuzzy reasoning
in mental view in VDS projected on cognitive emotional models representation
using fuzzy reasoning model. These are aligned and aggregated on the medical
knowledge base using different distance functions and entropy functions. The
purpose is to derive the weight of related attributes from the medical knowledge
base and rank the preference order of the set of alternatives employing intu-
itionistic fuzzy similarity measures related to mental (Subjective) and physical
(Objective) symptoms for decision making. A set of ideal solutions is provided
based on simple case scenarios. The weight of mental decision making is derived
based on hamming distance fuzzy operators. The alignment is to provide intelli-
gent mapping between the mental view (Subjective) and physical view (Objec-
tive) based on fuzzy representation of each through different type of aggregation
function. If the weights of some attributes are not known or partially known,
then we need to predict using patient preferences by looking to the subjective
risks.

These case studies are resembled through three-way decisions, by looking
to an experiment related to simple case medical diagnosis. This is to classify
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objects into simple or not simple medical cases based on attribute reduction to
search minimal attribute subset preserving medical concept of simple case, and
their hierarchical structure by detecting irrelevant attributes from the knowl-
edge bases based. Attribute reduction and classification are represented through
regions, discernibility values in evidential rough set presentation. The subjective
projection would provide some support means for the setting regions specify-
ing discernible borders. These new directions are for present as well as future
research.

Hamido Fujita
Iwate Prefectural University, Japan

Hfujita-799@acm.org

Clustering in the Dempster-Shafer Framework: Comparison with
Fuzzy and Rough Set Approaches

The Dempster-Shafer theory of belief is a powerful and well-founded formalism
for reasoning under uncertainty. A belief function may be seen as a generalized
set or as a nonadditive measure, and the theory extends both set-membership
and Bayesian probability theory. In this talk, I review the basic principles of this
theory and focus on its applications to clustering. There are basically two ways
in which Dempster-Shafer theory can be applied to clustering. A first approach
is based on the notion of credal partition, which extends the notions of hard,
fuzzy, and possibilistic partitions. Several algorithms, including EVCLUS and
ECM (evidential c-means), have been proposed to generate credal partitions
from data by optimizing some objective criterion. The other approach is to search
for space in all partition for the most plausible one, where the plausibility of a
partition is computed from pairwise distances between objects. These approaches
will be reviewed and contrasted with some fuzzy- and rough sets-based clustering
algorithms.

Thierry Denoeux
Université de Technologie de Compiègne, France

Thierry.Denoeux@hds.utc.fr

Plenary Talks

Mining Incomplete Data: A Rough Set Approach

Incomplete data sets may be affected by three different kinds of missing attribute
vales: lost values, attribute-concept values, and do not care conditions. For
mining incomplete data sets three different generalizations of lower and upper
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approximations: singleton, subset, and concept are applicable. These approxima-
tions are further generalized to include a parameter interpreted as the probabil-
ity. Properties of singleton, subset, and concept approximations are presented.
Additionally, all these approximations are validated experimentally.

Jerzy Grzymala-Busse
University of Kansas, USA

jerzy@ku.edu

From Big Data Analytics to Healthcare Intelligence

E-technology is among the key trends in defining and shaping the future of
the healthcare sector, from personalized healthcare delivery to global health in-
novation. This transformation is mainly driven by the new opportunities and
challenges created by big data analytics—giving meaning to voluminous, dy-
namically evolving, and often unstructured individuals health data (e.g., EHRs,
genomic sequences, neuroimages, tracking device data, lifestyle choices, senti-
ment, and social networks), as well as those publically available open data (e.g.,
public health data, policies and clinical guidelines, claims, and cost data, R&D
findings, demographics, and socioeconomic data). To engage in such a trans-
formation, data analytics, data mining, and modeling technologies will play an
increasingly important role in offering novel solutions to complex healthcare
problems such as effective surveillance and prevention of diseases, efficient, and
optimal utilization of healthcare services, to name a few.

In this talk, I discuss the key promise and challenges of big data analyt-
ics in achieving healthcare intelligence. In particular, I present some examples
from our ongoing research supporting evidence-based policy-making for disease
surveillance and prevention. As shown in the examples, data analytics and mod-
eling helps characterize, in terms of tempo-spatial patterns, when, where, and
how certain infectious or chronic diseases will likely develop and can be effec-
tively prevented.

Jiming Liu
Hong Kong Baptist University, China

jiming@comp.hkbu.edu.hk

Extensions of Dynamic Programming for Design and Analysis of
Decision Trees

The aim of usual dynamic programming is to find an optimal object from a finite
set of objects. We consider extensions of dynamic programming which allow us
to (i) describe the set of optimal objects, (ii) count the number of these objects,
(iii) make sequential optimization relative to different criteria, (iv) find the set of
Pareto optimal points for two criteria, and (v) describe relationships between two
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criteria. The areas of application include discrete optimization, fault diagnosis,
complexity of algorithms, machine learning, and knowledge representation.

In the presentation, we consider applications of this new approach to the
study of decision trees as algorithms for problem solving, as a way for knowledge
extraction and representation, and as predictors which, for a new object given
by values of conditional attributes, define a value of the decision attribute.

The obtained results include the minimization of average depth for decision
trees sorting eight elements (this question was open since 1968), improvement
of upper bounds on the depth of decision trees for diagnosis of 0–1-faults in
read-once combinatorial circuits, existence of totally optimal (with minimum
depth and minimum number of nodes) decision trees for monotone Boolean
functions with at most five variables, study of time-memory tradeoff for de-
cision trees for corner point detection, study of relationships between number
and maximum length of decision rules derived from decision trees, and study of
accuracy-memory tradeoff for decision trees.

Mikhail Moshkov
King Abdullah University of Science and Technology, Saudi Arabia

mikhail.moshkov@kaust.edu.sa

Remediation and Screen-Based Interfaces

This talk examines how the process of remediation works in screen-based in-
terfaces. Remediation is a cornerstone of digital media studies and as Bolter
and Grusin (1996, 1999) argue, the desire for newness or immediacy with each
new visual aesthetic technology has resulted in a combinatory process that takes
older visual aesthetic forms and reconfigures them with new approaches to cre-
ate new forms. This is particularly true of digital media which routinely reshape
or ‘remediate’ one another and their analog predecessors such as film, television,
and photography in pursuit of new experiences of immediacy. Through a variety
of digital media examples, this talk also probes issues of authenticity and inter-
pretation in remediation of screen-based interfaces and attempts to determine
if it is possible to apply the principles of granular computing to create effective
knowledge processes.

Sheila Petty
University of Regina, Canada
sheila.petty@uregina.ca

Foundations for Cyber-Physical Systems Based on Interactive
Granular Computing

Cyber-Physical Systems (CPS) help us to interact with the physical world
just as the Internet helps us to interact with one another. It is predicted that ap-
plications based on CPS will have enormous societal impact and bring enormous
economic benefit.
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We discuss a computational model for CPS based on interactive complex
granules (c-granules, for short). C-granules are controlled by agents. Any c-
granule of a given agent specifies a perceived structure of its local environment
consisting of portions of matter (physical objects), called hunks. There are three
kinds of such hunks: (i) hunks in the agent external environment creating the
hard suit of c-granule, (ii) internal hunks of agent creating the soft link of
c-granule, some of which can be represented by agent as information granules
(infogranules, for short), and (iii) hunks creating the link suit of c-granule and
playing the role of links between hunks from the hard suit and soft suit. This
structure is used in recording by means of infogranules the results of interactions
of hunks from the local environment.

Our approach is based on the Wisdom Technology meta-equation

WISDOM = INTERACTIONS + ADAPTIV E JUDGMENT

+KNOWLEDGE BASES.

The understanding of interactions is the critical issue of CPS treated as com-
plex systems. Using c-granules one can model interactions of agents with the
physical world and represent perception of interactions in the physical world by
agents. Adaptive judgment allows agents to reason about c-granules and inter-
active computations performed on them. In adaptive judgment, different kinds
of reasoning are involved such as deduction, induction, abduction, reasoning by
analogy, or reasoning for efficiency management. In the approach, an important
role is also played by knowledge bases and interactions of agents with them.

Some illustrative applications of the proposed approach related to real-life
projects (e.g., respiratory failure, UAV control, algorithmic trading, sunspot
classification, semantic search engine, firefighter safety) are reported. We em-
phasize the pivotal role of the proposed approach for efficiency management in
CPS.

Andrzej Skowron
University of Warsaw, Poland

skowron@mimuw.edu.pl

Data Mining in Hospital Information System

Twenty years have passed since clinical data were stored electronically as a
hospital information system (HIS). Stored data give all the histories of clinical
activities in a hospital, including accounting information, laboratory data and
electronic patient records and their executed histories. Due to the traceability of
all the information, a hospital cannot function without the information system,
which is one of the most important infrastructures. The size of data in HIS is
monotonically increasing, which can be viewed as “big data”. However, reuse
of the stored data has not yet been discussed in detail, except for laboratory
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data and accounting information to which OLAP methodologies are applied.
Data mining approach just started ten years ago, but their usefulness in clinical
environments has not yet been fully reported.

This talk presents the research achievements of the speaker’s institution,
where a scheme for innovation of hospital services based on data mining has
been introduced. The goal for the hospital services is to realize the following
three layers of hospital services: services for hospital management, devices for
medical staff and services for patients in order to achieve the efficient hospital
services. Since all the results of services were stored as data, data mining in
hospital information system is very important. The first layer is called services
for patients, which supports the improvement of healthcare service delivery for
patients. This is a fundamental level of healthcare services in which medical
staff directly gives medical services to the patients. Patient records and other
results of clinical examinations support the quality of this service. The second
layer is called services for medical staff, which supports decision making of med-
ical practitioner. Patient histories and clinical data are applied to data mining
techniques which give useful patterns for medical practice. Especially, detection
of risk of patients, such as drug adverse effects or temporal status of chronic
diseases will improve the qualities of medical services. The top layer is called
services for hospital management. This level is achieved by capturing global be-
havior of a hospital: the bridging between microscopic behavior of medical staff
and macroscopic behavior of hospital is very important to deploy medical staff
in an optimal way for improving performance of the hospital. Thus, it is highly
expected that data mining in data extracted from hospital information systems
plays a central role in achieving the hierarchical scheme.

Research of the speaker’s group applied several data mining techniques for
this purpose for twenty years. The talk surveys the achievements, where the stud-
ies focus on the two aspects of hospital data, which consist of executed results
and histories of services. Mainly, mining results of executed services (contents
mining) is connected with medical decision making, whereas mining histories
of services (history mining) is connected with service innovation. In both cases,
rough set-based rule induction, decision tree induction, trajectories mining, clus-
tering and multidimensional scaling (MDS) were adopted for analysis.

The results show that the introduced methods are not only useful for improve-
ment of medical decision making, but also useful for capturing the characteristics
of clinical activities in hospital as follows. Concerning decision making, the most
important contributions are that these methods gave tools for data mining based
risk management, called “risk mining”. Rough set-based rule induction plays a
central role in extracting rules for medical diagnosis, prevention of medical ac-
cidents and intra-hospital infection. Although extraction of medical diagnosis
rule led to several important discoveries, rule induction in prevention of risky
events gave more impact: interpretation of rules enabled the medial staff to re-
duce the number of errors in clinical environments. Furthermore, comparison of
risk factors between different institutes was obtained in terms of intra-hospital
infection. Trajectories mining succeeded in detecting two or three dimensional
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temporal evolution of diseases and classification of temporal characteristics of
these diseases, which shed lights on risk factors of disease progression. Cluster-
ing and MDS successfully visualized characteristics of results obtained by rule
induction and trajectories mining.

Concerning history mining, the following five contributions were focused on:
first, the chronological overview of hospital activities, periodical behavior of the
number of orders were visualized, which can be viewed as a “life-cycle” of a
hospital. Secondly, a pattern of long-term follow up patients with respect to the
number of orders by using HIS data is extracted. Thirdly, trajectories mining
technique is applied to temporal analysis the number of orders. The results of
clustering analysis gave two groups of clinical actions. The one was a pattern
where orders are given both in wards and outpatient clinics. The other one was
a pattern where orders are provided mainly in the wards. Fourth, clustering of
temporal sequences of the number of orders captures the behavior of medical doc-
tors, whose interpretation leads to improvements in service of outpatient clinic.
Finally, similarity-based analysis was applied to temporal trends of the numbers
of nursing orders. The results showed that nursing orders are automatically clas-
sified into two major categories, “disease-specific” and “patient-specific” ones.
Furthermore, the former one was classified into three subcategories, according to
the temporal characteristics. The method is now used for construction of clinical
pathways, which improve the efficiency of hospital services.

Shusaku Tsumoto
Shimane University, Japan

tsumoto@med.shimane-u.ac.jp

Multi-granularity Bidirectional Computational Cognition for Big
Data Mining and Cognition

Big data processing is a challenging problem in intelligent uncertain informa-
tion processing. The big data-based cognition and mining useful knowledge
from big data are key issues of big data processing. Granular computing (GrC)
provides some useful models and methods for dealing with this problem. Multi-
granularity computational cognition might be a useful tool for intelligent cog-
nition of big data. In this talk, multi-granularity bidirectional computational
cognition between concepts’ extension and intension, one of the key issues of
multi-granularity computational cognition are introduced. It is also a basic prob-
lem of both cognitive computing and big data processing.

Many data mining and machine learning methods have been proposed for
extracting knowledge from data in the past decades. Unfortunately, they are
all unidirectional cognitive computing models for extracting knowledge from
concepts’ extension to intension only. In the view of granular computing, they
transfer knowledge from finer granule levels to coarser granule levels. However,
bidirectional computational cognition between concept’s extension and intension
provide bidirectional knowledge (information) transformations between inten-
sion and extension respectively. Some new research results on multi-granularity
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bidirectional computational cognition models based on cloud model for intel-
ligent uncertain information processing are introduced. The relation between
cloud model and gauss normal distribution model for expressing and processing
uncertain concepts are analyzed.

Some interesting cognition experiments based on bidirectional computational
cognition models, such as cognizing a concept over and over again, increasing
cognition of a concept, multi-granularity cognition of a concept, image cognition,
etc., are also introduced.

Guoyin Wang
Chongqing University of Posts and Telecommunications, China

wanggy@ieee.org

Three-Way Decisions with Game-Theoretic Rough Sets

There are two major problems in intelligent decision making, i.e., too many
options and contradictive criteria. Simplifying multi-option decision making to
binary decision making, e.g., acceptance and rejection, is a commonly used ap-
proach. However, making a decision with insufficient information may have a
low accuracy level and result in unexpected consequences. The recent proposed
ternary or three-way decision model with a non-commitment option may shed
light on such a problem. Probabilistic rough sets introduce a pair of thresholds
which leads to three-way decision making. The game-theoretic rough set (GTRS)
model determines a balanced, optimal threshold pair by setting up a game for
trading off between different criteria. This produces to a moderate, cost-effective,
or efficient level of acceptance, rejection or deferment decision. The GTRS model
also provides an alternative mechanism for solving the problems of decision mak-
ing with contradictive criteria.

JingTao Yao
University of Regina, Canada

jtyao@cs.uregina.ca

Uncertainty in Three-Way Decisions and Granular Computing

Three-Way Decisions (3WD) are formulated based on the options of acceptance,
rejection, and non-commitment, leading to three pair-wise disjoint classes of ob-
jects called the positive, negative, and neutral/middle/boundary regions. Three-
way decisions can be motivated, interpreted, and implemented based on the
notion of information granularity. When coarse-grained granules are used, it
may only be possible to make a definite decision of acceptance or rejection for
some objects. For other objects, it is impossible to make a definite decision due
to a lack of detailed information and hence the third non-commitment option is
used. Objects with a non-commitment decision may be further investigated by
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using fine-grained granules. In this way, multiple levels of granularity lead natu-
rally to sequential three-way decisions. The notion of uncertainty plays a crucial
role in both three-way decisions and granular computing. Compared with the
commonly used two-way/binary models, the existence of uncertain information
makes three-way decisions a superior model for practical decision making. Dif-
ferent levels of granularity are associated with different degrees of uncertainty,
resulting in three-way decisions with different quality. A study of uncertainty
in three-way decisions and granular computing may provide insights into the
inherent relationships between the two fields.

Duoqian Miao
Tongji University,

China
dqmiao@tongji.edu.cn

Ruizhi Wang
Tongji University,

China
ruizhiwang@tongji.edu.cn

Yiyu Yao
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Generalized Dominance-Based Rough

Set Model for the Dominance Intuitionistic
Fuzzy Information Systems

Xiaoxia Zhang� and Degang Chen��

School of Control and Computer Engineering,
North China Electric Power University, Beijing 102206, China

Abstract. A dominance-based rough set approach was proposed by re-
placing the indiscernibility relation with a dominance relation. The aim
of this paper is to present a new extension of the dominance-based
rough set by means of defining a new dominance relation, i.e., gen-
eralized dominance-based rough set model is proposed based on the
dominance intuitionistic fuzzy information systems. To get the optimal
decision rules from the existing dominance intuitionistic fuzzy informa-
tion systems, a lower and upper approximation reduction and rule ex-
traction algorithm are investigated. Furthermore, several properties of
the generalized dominance-based rough set model are given, and the re-
lationships between this model and the others dominance-based rough
set models are also examined.

Keywords: Dominance-based rough set, generalized dominance-based
rough set, attribute reduction, rule extraction.

1 Introduction

Rough set theory, as an extension of the set theory for the study of intelligent
systems characterized by insufficient and incomplete information, was proposed
by Pawlak in 1982 [1]. Rough sets have been successfully applied in pattern
recognition, data mining, machine learning, and so on. A key notion in Pawlak’s
rough set model is equivalence relation. The equivalence classes are the building
blocks for the construction of the lower and upper approximations. By replacing
the equivalence relation with fuzzy relations [2], ordinary binary relations [3],
tolerance relations [4], dominance relations [5], covering relations [6], and others
[7], various generalized rough set models are proposed, in which the dominance-
based rough set models and the fuzzy rough set theory are two types of the most
important extended rough set models.
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Presently, work on dominance-based rough set model progressing rapidly.
To consider the ranking properties of criteria, Greco et al. [8,9] proposed a
dominance-based rough set approach (DRSA) based on the substitution of the
indiscernibility relation with a dominance relation. In the DRSA, condition at-
tributes are the criteria used and classes are ranked by preferences. Therefore,
the knowledge approximated is a collection of dominance classes, which are sets
of objects defined by a dominance relation. In recent years, a number of stud-
ies on DRSA have been conducted [10,11,12]. By introducing the concept of
DRSA into the fuzzy environment, Greco et al. also proposed the dominance-
based rough fuzzy model [13]. In such model, the fuzzy target is approximated
by using a dominance relation instead of an indiscernibility relation. As a further
investigation, Hu et al. [14] presented an algorithm to compute the reductions of
the variable precision dominance-based rough set model. Wang and Chen et al.
[15] first examined the relationships between covering information systems and
ordered information systems. Huang et al. [16,17] discussed dominance-based
(interval-valued) intuitionistic fuzzy rough set models and their applications.

In aforementioned researches about DRSA, dominance class [x]
R�

C
is the set of

objects dominating x for each attribute of attribute set C. As we all known, if an
object dominating x for each attribute of C, then its comprehensive evaluation
value is also better than that of x. Conversely, if the comprehensive evaluation
value of one object is better than that of x, then it may not be better than x
for each attribute of condition attribute set C. However, in some real-life sit-
uations, we always consider the comprehensive evaluation value of alternatives
if they have no special requirements for individual attribute value. Therefore,
dominance class [x]

R�
C
of Huang and Wei et al. [16,17] is too restrictive to incon-

venient for various practical applications. Based on this point, we introduce the
notion of generalized dominance classes [x]�C and [x]�C in intuitionistic fuzzy infor-
mation systems. Generalized dominance classes only consider the comprehensive
evaluation value and regardless of single attribute value of alternatives, i.e, gen-
eralized dominance class [x]�C is the set of objects dominating x with respect
to comprehensive evaluation value. Thus, we propose a new dominance-based
rough set model, i.e., generalized dominance-based rough set model. Meanwhile,
several properties of the generalized dominance-based rough set model are given,
and the relationships between this model and the others dominance-based rough
set models are also examined. Furthermore, we also investigated the reductions
and rule extraction of this model.

The structure of this paper is organized as follows: Section 2 briefly intro-
duces the preliminary issues considered in the study, such as the notations of
intuitionistic fuzzy set, some basic operations of intuitionistic fuzzy sets, and how
to determine the dominance classes of an object with respect to its attribute val-
ues. In Section 3, we define a generalized dominance-based (intuitionistic fuzzy)
rough set model and investigate the corresponding properties and the relation-
ships between this model and the others dominance-based rough set models.
Meanwhile, the attribute reduction and rule extraction of the model are also
examined.
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2 Preliminaries

Let U be a nonempty and finite universe of discourse. Throughout this paper,
the universe U is considered to be finite. The class of all subsets of U will be
denoted by P (U).

Definition 2.1. [18,19,20] Let U be a nonempty and finite universe of discourse.
An intuitionistic fuzzy set(IF) A in U is an object having the form

A = {〈x, μA(x), νA(x)〉|x ∈ U},
where μA : U → [0, 1] and νA : U → [0, 1] satisfy 0 ≤ μA(x) + νA(x) ≤ 1 for
all x ∈ U, and μA(x) and νA(x) are called the degree of membership and the
degree of non-membership of the element x ∈ U to A, respectively. πA(x) =
1−μA(x)− νA(x) called the degree of hesitancy of the element x ∈ U to A. The
complement of an IF set A is defined by ∼ A = {〈x, νA(x), μA(x)〉|x ∈ U}.

We call A(x) = (μA(x), νA(x)) an intuitionistic fuzzy values. Especially, for
any A ∈ P (U), if x ∈ A, then A(x) = (1, 0); if x /∈ A, then A(x) = (0, 1).

Definition 2.2. [20,21,22,23] Let Ai(x) = (μAi(x), νAi(x)), i = 1, 2, · · · ,m. Then
⊕n

i=1Ai and ⊗n
i=1Ai are defined as follows:

⊕n
i=1Ai =

{
〈x, 1 −

n∏
i=1

(1 − μAi(x)),

n∏
i=1

νAi(x)〉|x ∈ U
}
,

⊗n
i=1Ai =

{
〈x,

n∏
i=1

μAi(x), 1 −
n∏

i=1

(1− νAi(x))〉|x ∈ U
}
.

Definition 2.3 [24] Let A(x) = (μA(x), νA(x)) and B(x) = (μB(x), νB(x)) be
two intuitionistic sets, s(A(x)) = μA(x) − νA(x) and s(B(x)) = μB(x) − νB(x)
be the scores of A(x) and B(x), respectively; and let h(A(x)) = μA(x) + νA(x)
and h(B(x)) = μB(x)+νB(x) be precisions of A(x) and B(x), respectively, then

(1) If s(A(x)) < s(B(x)), then A(x) ≺ B(x);
(2) If s(A(x)) = s(B(x)) and h(A(x)) = h(B(x)), then A(x) = B(x);
(3) If s(A(x)) = s(B(x)) and h(A(x)) < h(B(x)), then A(x) ≺ B(x);
(4) If s(A(x)) = s(B(x)) and h(A(x)) > h(B(x)), then A(x) � B(x).

Definition 2.4. An intuitionistic fuzzy information system (IFIS) is a quadruple
S = (U,AT = C∪D,V, f), where U is a non-empty and finite set of objects called
the universe, C is a non-empty and finite set of conditional attributes, D = {d}
is a singleton of decision attribute d, and C ∩ D = ∅. V = VC ∪ VD, where
VC and VD are domains of condition and decision attributes, respectively. The
information function f is a map from U×(C∪D) onto V, such that f(x, c) ∈ VC
for all c ∈ C and f(x, d) ∈ VD for D = {d}, where f(x, c) and f(x, d) are
intuitionistic fuzzy values, denoted by f(x, c) = c(x) = (μc(x), νc(x)), f(x, d) =
d(x) = (μd(x), νd(x)).
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Let S = (U,AT = C ∪ D,V, f) be an IFIS. For any a ∈ AT and x, y ∈ U,
denoted by

f(x, a) � f(y, a)⇔ (∀a ∈ AT )[f(x, a) ≺ f(y, a) ∨ f(x, a) = f(y, a)],

f(x, a) � f(y, a)⇔ (∀a ∈ AT )[f(x, a) � f(y, a) ∨ f(x, a) = f(y, a)].
By using � and �, we can obtain an increasing preference and a decreasing
preference. If the domain of an attribute is ordered according to a decreasing or
increasing preference, then the attribute is a criterion.

Definition 2.5. An IFIS S = (U,AT = C ∪ D,V, f) is called a dominance
intuitionistic fuzzy information system (DIFIS) if all condition attributes are

criterions, denoted by S̃.

Definition 2.6. Let S̃ = (U,AT = C∪D,V, f) be a dominance intuitionistic fuzzy

information system. Dominance relations R�
B and R�

B in DIFIS S̃ are defined as
follows:

R�
B = {(x, y) ∈ U × U |f(x, a) � f(y, a), ∀ a ∈ B ⊆ AT },

R�
B = {(x, y) ∈ U × U |f(x, a) � f(y, a), ∀ a ∈ B ⊆ AT }.

The dominance class [x]
R�

B
induced by R�

B is the set of objects dominating x,

i.e. [x]
R�

B
= {y ∈ U |f(x, a) � f(y, a), ∀ a ∈ B ⊆ AT }, where [x]

R�
B

describes

the set of objects that may dominate x, and [x]
R�

B
is called the dominating class

with respect to x ∈ U. Meanwhile, the dominated class with respect to x ∈ U
can be defined as [x]

R�
B
= {y ∈ U |f(x, a) � f(y, a), ∀ a ∈ B ⊆ AT }.

Equivalence relation R in S̃ is defined as follows:

R = {(x, y) ∈ U × U |f(x, a) = f(y, a), ∀ a ∈ AT }.

With respect to R, we can define an equivalence class of x ∈ U with respect to
B as follows:

[x]RB = {y ∈ U |f(x, a) = f(y, a), ∀ a ∈ B ⊆ AT }.

Definition 2.7. Let S̃ = (U,AT = C∪D,V, f) be a dominance intuitionistic fuzzy

information system, R�
B be dominance relation, B ∈ AT . For any X ⊆ P (U),

the lower and upper approximations of X with respect to R�
B are defined as

follows:

R�
B(X) = {x ∈ U |[x]

R�
B
⊆ X}, R�

B(X) = {x ∈ U |[x]
R�

B
∩X �= ∅}.

According to Definition 2.7, we obtain that the lower approximation R�
B(X) is

the greatest definable set contained in X, and the upper approximation R�
B(X)
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is the least definable set containing X. The pair (R�
B(X), R�

B(X)) is referred to
as a dominance-based rough set of X.

Similarly, the lower and upper approximations of X with respect to R�
B are

defined as follows:

R�
B(X) = {x ∈ U |[x]

R
�
B
⊆ X}, R�

B(X) = {x ∈ U |[x]
R

�
B
∩X �= ∅}.

3 Generalized Dominance-Based Rough Set Model

For dominance-based intuitionistic fuzzy rough set, according to the definition
of dominance class

[x]
R�

B
= {y ∈ U |f(x, a) � f(y, a), ∀ a ∈ B ⊆ AT },

we see that for any y ∈ [x]
R�

B
, they require f(x, a) � f(y, a) for each a ∈ B ⊆ AT.

In fact, this condition is too strict to use conveniently in practical applications,
and sometimes it would lead to the loss of useful information in some decision
making problems. From the perspective of information granularity, dominance
class [x]

R�
B
produces a finer granulation, which will increasing the computation

in large universes. This problem will be illustrated in detail in Example 3.1.

Table 1. A dominance intuitionistic fuzzy information system

x c1 c2 c3 c4 c5 d

x1 (0.4, 0.5) (0.3, 0.5) (0.8, 0.2) (0.4, 0.5) (0.7, 0.1) (0.3, 0.6)
x2 (0.3, 0.5) (0.4, 0.5) (0.6, 0.1) (0.4, 0.5) (0.7, 0.3) (0.4, 0.6)
x3 (0.3, 0.5) (0.1, 0.8) (0.8, 0.1) (0.4, 0.5) (0.7, 0.3) (0.2, 0.7)
x4 (0.1, 0.8) (0.1, 0.8) (0.4, 0.5) (0.1, 0.8) (0.8, 0.2) (0.2, 0.8)
x5 (0.7, 0.3) (0.4, 0.5) (0.9, 0.1) (0.4, 0.6) (0.8, 0.1) (0.4, 0.6)
x6 (0.3, 0.6) (0.4, 0.6) (0.7, 0.2) (0.5, 0.5) (0.8, 0.2) (0.4, 0.5)
x7 (0.4, 0.5) (0.4, 0.5) (0.8, 0.2) (0.4, 0.5) (0.8, 0.2) (0.6, 0.4)
x8 (0.4, 0.6) (0.4, 0.5) (0.9, 0.1) (0.7, 0.3) (0.8, 0.2) (0.6, 0.4)
x9 (0.4, 0.6) (0.7, 0.3) (0.9, 0.1) (0.4, 0.5) (0.9, 0.0) (0.8, 0.2)
x10 (0.7, 0.3) (0.7, 0.3) (0.8, 0.2) (0.9, 0.0) (0.4, 0.5) (0.8, 0.2)

Example 3.1 Table 1 is a computer audit risk assessment decision table with
intuitionistic fuzzy attributes. In Table 1, object set U = {x1, x2, · · · , x10} con-
cludes 10 audited objects, and condition attribute set is C = {c1, c2, · · · , c5},
where c1 =Better Systems Circumstance, c2 =Better Systems Control, c3 =Safer
Finance Data, c4 =Credible Auditing Software, c5 =Operation Standardization;
decision attribute set is D = {d}, where d =Acceptable Ultimate Computer
Auditing Risk.
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Table 2. Dominating classes [x]
R

�
C

and dominated classes [x]
R

�
C

x [x]
R

�
C

[x]
R

�
C

x [x]
R

�
C

[x]
R

�
C

x1 {x1, x7} {x1} x6 {x6, x8} {x6}
x2 {x2, x9, x8, x7} {x2} x7 {x7} {x7, x1, x2, x4}
x3 {x3, x9, x8} {x3} x8 {x8} {x8, x6, x3, x2, x4}
x4 {x4, x9, x5, x8, x7} {x4} x9 {x9} {x9, x3, x2, x4}
x5 {x5} {x5, x4} x10 {x10} {x10}

According to Definition 2.6, we get all the dominating classes [x]
R�

C
(x ∈ U)

and dominated classes [x]
R

�
C
(x ∈ U) with respect to condition attribute set C

as Table 2.
By Definition 2.2, for any xi ∈ U(i = 1, 2, · · · , 10), C(xi) = ⊕5

k=1f(xi, ck)
denotes the comprehensive evaluation value of xi with respect to all condition
attributes ck, k = 1, 2, 3, 4, 5, where f(xi, ck) = ck(xi) = (μck(xi), νck(xi)). Ac-
cording to Table 2, C(xi) = ⊕5

k=1f(xi, ck) are given as follows:

C(x1) = ⊕5
k=1f(x1, ck) =

(
1−

5∏
k=1

(1− μck(x1)),

5∏
k=1

νck(x1)
)
= (0.98488, 0.0025);

C(x2) = (0.96976, 0.00375);C(x3) = (0.97732, 0.006);C(x4) = (0.91252, 0.0512);

C(x5) = (0.99784, 0.0009);C(x6) = (0.9874, 0.0072);C(x7) = (0.99136, 0.005);

C(x8) = (0.99784, 0.0018);C(x9) = (0.99892, 0.000);C(x10) = (0.99892, 0.000).

By Definition 2.3, we obtain the scores s(C(xi)) of the alternatives xi:

s(C(x1)) = 0.98238, s(C(x2)) = 0.96601, s(C(x3)) = 0.97132,

s(C(x4)) = 0.86132, s(C(x5)) = 0.99694, s(C(x6)) = 0.98020,

s(C(x7)) = 0.98636, s(C(x8)) = 0.99604, s(C(x9)) = 0.99892, s(C(x10)) = 0.99892.

Then, we rank all the objects xi by using s(C(xi))(i = 1, 2, · · · , 10):

x9 = x10 � x5 � x8 � x7 � x1 � x6 � x3 � x2 � x4. (1)

Since h(C(x9)) = h(C(x10)) = 0.99892, then (1) is the final results.

For the following discussions, let [x]�C be the set of objects dominating x
with respect to the comprehensive evaluation value of condition attribute set C,
and [x]�C be the set of objects dominated x with respect to the comprehensive
evaluation value of condition attribute set C.

From Table 2, we get [x1]R�
C

= {x1, x7}, [x1]R�
C

= {x1}. However, equa-

tion (1) shows [x1]
�
C = {x1, x9, x10, x5, x8, x7}, [x1]�C = {x1, x2, x3, x4, x6}. For

x9, only c1(x1) � c1(x9), except attribute c1, ck(x1) ≺ ck(x9) hold for each
ck ∈ {c2, c3, c4, c5}. It shows even only one attribute value dissatisfy the dom-
inance relation will results in rejection of that classes [x]

R�
C

and [x]
R�

C
. These
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properties can be important especially in case of large universes, e.g. generated
from dynamic processes.

To address this deficiency, we try to propose a new way to produce the dom-
inance classes, then give a comparison between the presented dominance classes
with Definition 2.6.

Definition 3.1. Let S̃ = (U,AT = C ∪ D,V, f) be a dominance intuitionistic
fuzzy information system, U = {x1, x2, · · · , xn}, C = {c1, c2, · · · , cm}, D = {d}.
Generalized dominace relations �C and �C in DIFIS S̃ are defined as follows:

�C= {(xi, xj) ∈ U × U | ⊕m
k=1 f(xi, ck) � ⊕m

k=1f(xj , ck), ∀ ck ∈ C},

�C= {(xi, xj) ∈ U × U | ⊕m
k=1 f(xi, ck) � ⊕m

k=1f(xj , ck), ∀ ck ∈ C}.
The generalized dominance class [xi]

�
C induced by �C is the set of objects

dominating xi, i.e. [xi]
�
C = {xj ∈ U | ⊕m

k=1 f(xi, ck) � ⊕m
k=1f(xj , ck), ∀ ck ∈ C},

where [xi]
�
C is called the generalized dominating class with respect to xi ∈ U.

Meanwhile, the generalized dominated class with respect to xi ∈ U can be
defined as [xi]

�
C = {xj ∈ U | ⊕m

k=1 f(xi, ck) � ⊕m
k=1f(xj , ck), ∀ ck ∈ C}.

In [xi]
�
d = {xj ∈ U |f(xi, d) � f(xj , d)}, xi is the minimal element that

dominating itself.

All the generalized dominance classes form a covering of U, i.e. U =
n⋃

i=1

[xi]
�
C .

Example 3.2. (Following Example 3.1) By Definition 3.1, the dominating classes
[x]

R�
d
and dominated classes [x]

R�
d
with respect to decision attribute d are given

in Table 3.

Table 3. Dominating [x]
R

�
d

and dominated classes [x]
R

�
d

x [x]�d [x]�d
x1 {x1, x9, x10, x5, x6, x7, x8, x2} {x1, x3, x4}
x2 {x2, x9, x10, x5, x6, x7, x8} {x2, x5, x4, x1, x3}
x3 {x3, x1, x9, x10, x5, x6, x7, x8, x2} {x3, x4}
x4 {x4, x9, x10, x5, x8, x7, x1, x6, x3, x2} {x4}
x5 {x2, x9, x10, x5, x6, x7, x8} {x2, x5, x4, x1, x3}
x6 {x6, x9, x10, x8, x7} {x6, x3, x2, x4, x1, x5}
x7 {x7, x9, x10, x8} {x7, x1, x6, x3, x2, x4, x5}
x8 {x8, x9, x10, x7} {x8, x7, x1, x6, x3, x2, x4, x5}
x9 {x9, x10} {x9, x10, x5, x8, x7, x1, x6, x3, x2, x4}
x10 {x10, x9} {x10, x9, x5, x8, x7, x1, x6, x3, x2, x4}

By Definition 2.3, we obtain the scores s(d(xi)) of the alternatives xi:

s(d(x1)) = −0.3, s(d(x2)) = −0.2, s(d(x3)) = −0.5, s(d(x4)) = −0.6, s(d(x5)) = −0.2,
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s(d(x6)) = −0.1, s(d(x7)) = 0.2, s(d(x8)) = 0.2, s(d(x9)) = 0.6, s(d(x10)) = 0.6.

Then, we rank all the objects xi by using s(d(xi))(i = 1, 2, · · · , 10) as
x9 = x10 � x7 = x8 � x6 � x2 = x5 � x3 � x5 � x6.

Furthermore, by Definition 2.3, for those objects which according to the
score function can not be divided, we obtain the precisions h(d(xi)) of xi
(i = 2, 5, 7, 8, 9, 10) as follows:

h(d(x2)) = 0.9, h(d(x5)) = h(d(x7)) = h(d(x8)) = h(d(x9)) = h(d(x10)) = 1.0.

Then, we rank all the objects xi by using h(d(xi))(i = 1, 2, · · · , 10) as
x9 = x10 � x8 = x7 � x6 � x5 � x2 � x1 � x3 � x4. (2)

According to equation (2), by employing Definition 3.1, the generalized dom-

inating classes [x]�d and generalized dominated classes [x]�d with respect to de-
cision attribute d are obtained in Table 4‘.

Table 4. The generalized dominating classes [x]�d and dominated classes [x]�d

x [x]�d [x]�d
x1 {x1, x9, x10, x5, x6, x7, x8, x2} {x1, x3, x4}
x2 {x2, x9, x10, x5, x6, x7, x8} {x2, x5, x4, x1, x3}
x3 {x3, x1, x9, x10, x5, x6, x7, x8, x2} {x3, x4}
x4 {x4, x9, x10, x5, x8, x7, x1, x6, x3, x2} {x4}
x5 {x2, x9, x10, x5, x6, x7, x8} {x2, x5, x4, x1, x3}
x6 {x6, x9, x10, x8, x7} {x6, x3, x2, x4, x1, x5}
x7 {x7, x9, x10, x8} {x7, x1, x6, x3, x2, x4, x5}
x8 {x8, x9, x10, x7} {x8, x7, x1, x6, x3, x2, x4, x5}
x9 {x9, x10} {x9, x10, x5, x8, x7, x1, x6, x3, x2, x4}
x10 {x10, x9} {x10, x9, x5, x8, x7, x1, x6, x3, x2, x4}

For dominance intuitionistic fuzzy information system (Table 1), from the

equation (1) of Example 3.1, the generalized dominating classes [x]�C(x ∈ U) and
generalized dominated classes [x]�C(x ∈ U) with respect to condition attribute
set C are obtained in Table 5.

According to Table 5, it is easy to get [xj ]
�
C ⊆ [xi]

�
C , if xi � xj .

Consequently, by using the comprehensive evaluation value of each object
with respect to all attributes to produce generalized dominating and dominated
classes would avoid discarding many excellent objects. However, the dominance
relations of Definition 2.6 are so strict that many objects are discarded, and thus
lead to the dominance classes are more finer so that it would largely increasing
the computation.
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Table 5. The generalized dominating classes [x]�C and dominated classes [x]�C

x [x]�C [x]�C
x1 {x1, x9, x10, x5, x8, x7} {x1, x6, x3, x2, x4}
x2 {x2, x9, x10, x5, x8, x7, x1, x6, x3} {x2, x4}
x3 {x3, x9, x10, x5, x8, x7, x1, x6} {x3, x2, x4}
x4 {x4, x9, x10, x5, x8, x7, x1, x6, x3, x2} {x4}
x5 {x5, x9, x10} {x5, x8, x7, x1, x6, x3, x2, x4}
x6 {x6, x9, x10, x5, x8, x7, x1} {x6, x3, x2, x4}
x7 {x7, x9, x10, x5, x8} {x7, x1, x6, x3, x2, x4}
x8 {x8, x9, x10, x5} {x8, x7, x1, x6, x3, x2, x4}
x9 {x9, x10} {x9, x10, x5, x8, x7, x1, x6, x3, x2, x4}
x10 {x10, x9} {x10, x9, x5, x8, x7, x1, x6, x3, x2, x4}

From Table 2, we get [x1]R�
C

= {x1, x7}, but according to Table 5, [x1]
�
C =

{x1, x9, x10, x5, x8, x7}. Therefore, according to the comprehensive evaluation
values, x9, x10, x5, x8, x7 are all better than x1, only the individual attributes
value of x9, x10, x5, x8 do not satisfy f(x, a) � f(y, a), ∀ a ∈ C. For example,
for object x1 and x5, only f(x1, c4) � f(x5, c4), except c4 =Credible Auditing
Software, f(x1, ci) � f(x5, ci) hold for any ci ∈ C(i �= 4). In a word, for any
xi, xj ∈ U, [xi]R�

C
contains only those objects that fully dominating xi with

respect to each attribute of C, it is so inconvenient for decision making problems.
Hence, in many practical applications, if there is no particular requirements
for each attribute value of objects, we would only consider the comprehensive
evaluate value of each object.

Remark 3.1. If C is a singleton of attribute set, i.e., |C| = 1, then [xi]
�
C = [x]

R
�
C
.

Theorem 3.1. Let S̃ = (U,AT = C ∪D,V, f) be a DIFIS, U = {x1, x2, · · · , xn},
C = {c1, c2, · · · , cm}, D = {d}. Then

(1) �C and �C are reflexive and transitive;

(2) xj ∈ [xi]
�
C ⇔ [xj ]

�
C ⊆ [xi]

�
C ; xj ∈ [xi]

�
C ⇔ [xj ]

�
C ⊆ [xi]

�
C ;

(3) [xi]
�
C = ∪{[xj ]�C |xj ∈ [xi]

�
C};

(4) [xi]R�
C
⊆ [xi]

�
C , [xi]R�

C
⊆ [xi]

�
C ;

(5) [xi]
�
C ∩ [xi]

�
C = {xj ∈ U | ⊕m

k=1 f(xi, ck) = ⊕m
k=1f(xj , ck), ∀ ck ∈ C};

(6) U =
n⋃

i=1

[xi]
�
C =

n⋃
i=1

[xi]
�
C ;

(7) [xi]
�
C = [xj ]

�
C or [xi]

�
C = [xj ]

�
C ⇔ ⊕m

k=1f(xi, ck) = ⊕m
k=1f(xj , ck), ck ∈ C.

Proof. We only prove (2) and (4), the others can be obtained easily according
to Definition 3.1.

(2) ”⇒” According to Definition 3.1, if xj ∈ [xi]
�
C , then ⊕m

k=1f(xi, ck) �
⊕m

k=1f(xj , ck) for any ck ∈ C. Similarly, for any xl ∈ [xj ]
�
C , ⊕m

k=1f(xj , ck) �
⊕m

k=1f(xl, ck) holds. Thus, ⊕m
k=1f(xi, ck) � ⊕m

k=1f(xl, ck), ∀ ck ∈ C. Hence,

xl ∈ [xi]
�
C , then [xj ]

�
C ⊆ [xi]

�
C holds.
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”⇐”It is easy to get from Definition 3.1.
(4) For any ck ∈ C, if xj ∈ [xi]

�
C , then f(xi, ck) � f(xj , ck), thus

⊕m
k=1f(xi, ck) � ⊕m

k=1f(xj , ck). Hence, xj ∈ [xi]
�
C , i.e. [xi]R�

C
⊆ [xi]

�
C .

Now, we introduce the notion of generalized dominance-based rough set model
which is composed of the generalized dominance classes.

Definition 3.2. Let S̃ = (U,AT = C ∪ D,V, f) be a dominance intuitionistic
fuzzy information system, U = {x1, x2, · · · , xn}, C = {c1, c2, · · · , cm}, D = {d}.
[xi]

�
C is the generalized dominating class induced by �C . For any X ∈ P (U), the

lower and upper approximations of X are defined as follows:

X�
C = {xi ∈ U |[xi]�C ⊆ X}, X

�
C = {xi ∈ U |[xi]�C ∩X �= ∅}.

X�
C and X

�
C are called the generalized dominating lower approximation and

generalized dominating upper approximation ofX with respect to �C . (X
�
C , X

�
C)

is referred to as a generalized dominating-based rough set. Elements in X�
C can

be classified as members of X with complete certainty using attribute set C,

whereas elements in X
�
C can be classified as members of X with only partial

certainty using attribute set C. The class X
�
C −X�

C is referred to as boundary

of X with respect to C and denoted by BN�
C (X).

Similarly, (X�
C , X

�
C) is referred to as a generalized dominated-based rough set.

The generalized dominating-based rough set and generalized dominated-based
rough set are both referred to as generalized dominance-based rough set.

If X ∈ IF (U), then
X�

C(xi) = min
xj∈[xi]

�
C

X(xj), X
�
C(xi) = max

xj∈[xi]
�
C

X(xj).

The operators X�
C and X

�
C are, respectively, referred to as lower and upper gen-

eralized dominating-based intuitionistic fuzzy rough approximation operators of

xi. The pair (X�
C , X

�
C) is referred to as a generalized dominating-based intu-

itionistic fuzzy rough set. X�
C(xi) is just the degree to which x certainly belongs

to X , X
�
C(xi) is the degree to which x possibly belongs to X .

Let Dj = [xj ]
�
d (j = 1, 2, · · · ,m) be the generalized dominating classes of

xj with respect to decision attribute d, and (D1
�
C
, D2

�
C
, · · · , Dm

�
C
) be the low

generalized dominating rough approximations of Dj with respect to condition
attribute set C.

Example 3.3. By using Definition 3.1 to compute the Dj
�
C
(j = 1, 2, · · · , 10) of

Example 3.1, we obtain

D1
�
C
= {x1, x5, x6, x7, x8, x9, x10};D2

�
C
= {x5, x7, x8, x9, x10};D3

�
C
= U, x2} = U ;

D4
�
C
= U,D5

�
C
= {x5, x7, x8, x9, x10};D6

�
C
= D7

�
C
= D8

�
C
= D9

�
C
= D10

�
C
= {x9, x10}.
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Theorem 3.2. Let S̃ = (U,AT = C∪D,V, f) be a dominance intuitionistic fuzzy

information system, U = {x1, x2, · · · , xn}, C = {c1, c2, · · · , cm}, D = {d}. [xi]�C
is the generalized dominating class induced by �C . For any X,Y ∈ P (U), then

(1) X�
C ⊆ X,X ⊆ X�

C ;

(2) ∼ X�
C = ∼ X�

C ,∼ X�
C = ∼ X�

C ;

(3) ∅�C = ∅, ∅�C = ∅; U�
C = U,U

�
C = U ;

(4) X ∩ Y �
C = X�

C ∩ Y �
C , X ∪ Y

�
C = X

�
C ∪ Y

�
C ;

(5) X ∪ Y �
C ⊇ X�

C ∪ Y �
C , X ∩ Y

�
C ⊆ X

�
C ∩ Y

�
C ;

(6) X ⊆ Y ⇒ X�
C ⊆ Y �

C , X
�
C ⊆ Y

�
C .

Proof. The proofs of (1)-(6) can be obtained directly from Definition 3.2.

Definition 3.3. Let S̃ = (U,AT = C∪D,V, f) be a DIFIS and B ⊆ C. Then B is

referred to as a consistent set of S̃ if [x]�B = [x]�C for all x ∈ U. If B is a consitent

set and no proper subset of B is a consistent set of S̃, then B is referred to as a
reduct of S̃.

For any xi ∈ U, let C(xi) = ⊕ck∈Cf(xi, ck) represents the comprehensive
evaluation value of xi with respect to condition attribute set C. For any xi, xj ∈
U, if there exist a subset B ⊆ C, such that C(xi) � C(xj) ⇒ B(xi) � B(xj),
then B is referred to as a consistent set of S̃. In other words, a consistent set B
is a subset of C where the rank results of C(xi) and B(xi) remain unchanged.

By Definition 3.3, we see that a reduction of S̃ is a minimal set of condition
attributes preserving the same lower approximations and upper approximations.

The knowledge hidden in a DIFIS S̃ = (U,AT = C∪{d}, V, f) may be discov-
ered and expressed in the form of decision rules: t→ s, where t = ∧c(xi), c ∈ C
and s = d(xi), t and s are, respectively, called the condition and decision parts
of the rule.

Let S̃ = (U,AT = C ∪ {d}, V, f) be a DIFIS, B ⊆ C. For any generalized

condition attribute dominance classes [xi]
�
C and generalized decision attribute

dominance classes Dj = [xj ]
�
d , if xk ∈ Dj

�
B

= {xi ∈ U |[xi]�B ⊆ Dj}, then∧
c∈B

c(xk)⇒ d(xj) � d(xk).
Definition 3.2 extends the definition of dominance rough approximations of

X ⊆ P (U) with respect to DIFIS by using generalized dominance classes.
However, once there are special requirements for the individual attribute in

decision making problems, Definition 3.2 is no longer applicable. Hence, it is
necessary to construct a new dominance-based rough set model to solve these
problems both considering the comprehensive evaluation value and individual
attribute value of each attribute, which will be investigated in our next work.
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8. Greco, S., Matarazzo, B., S�lowiński, R.: A New Rough Set Approach to Multicrite-
ria and Multiattribute Classification. In: Polkowski, L., Skowron, A. (eds.) RSCTC
1998. LNCS (LNAI), vol. 1424, pp. 60–67. Springer, Heidelberg (1998)

9. Greco, S., Matarazzo, B., Slowinski, R.: Rough Sets Theory for Multicriteria De-
cision Analysis. European Journal of Operational Research 129, 1–47 (2001)

10. Kotlowski, W., Dembczynski, K., Greco, S., et al.: Stochastic Dominance-based
Rough Set Model for Ordinal Classification. Information Sciences 178, 4019–4037
(2008)

11. Hu, Q.H., Yu, D., Guo, M.Z.: Fuzzy Preference based Rough Sets. Information
Sciences 180, 2003–2022 (2010)

12. Liou, J.J.H., Tzeng, G.H.: A Dominance-based Rough Set Approach to Customer
Behavior in The Airline Market. Information Sciences 180, 2230–2238 (2010)

13. Greco, S., Inuiguchi, M., Slowinski, R.: Fuzzy Rough Sets and Multiple-Premise
Gradual Decision Rules. International Journal of Approximate Reasoning 41, 179–
211 (2006)

14. Hu, Q.H., Yu, D.R.: Variable Precision Dominance based Rough Set Model and
Reduction Algorithm for Preference-Ordered Data. In: Proceedings of 2004 Inter-
national Conference on Machine Learning and Cybernetics, vol. 4, pp. 2279–2284.
IEEE (2004)

15. Wang, C.Z., Chen, D.G., He, Q., et al.: A Comparative Study of Ordered and
Covering Information Systems. Fundamenta Informaticae 122, 1–13 (2012)

16. Huang, B., Li, H.X., Wei, D.K.: Dominance-based Rough Set Model in Intuitionistic
Fuzzy Information Systems. Knowledge-Based Systems 28, 115–123 (2012)

17. Huang, B., Wei, D.K., Li, H.X., et al.: Using a Rough Set Model to Extract Rules
in Dominance-based Interval-Valued Intuitionistic Fuzzy Information Systems. In-
formation Sciences 221, 215–229 (2013)

18. Mieszkowicz-Rolka, A., Rolka, L.: Fuzzy implication operators in variable preci-
sion fuzzy rough sets model. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R.,
Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 498–503. Springer,
Heidelberg (2004)

19. Mieszkowicz-Rolka, A., Rolka, L.: Fuzzy Rough Approximations of Process Data.
International Journal of Approximate Reasoning 49(2), 301–315 (2008)

20. Atanassov, K.: Intuitionistic Fuzzy Sets. Fuzzy sets and Systems 20, 87–96 (1986)
21. Atanassov, K.: More on Intuitionistic Fuzzy Set. Fuzzy sets Syst. 33, 37–45 (1989)
22. Atanassov, K.: Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 31, 343–349

(1986)
23. Atanassov, K.: Intuitionistic Fuzzy Sets: Theory and Applicatons. Physica, Heidel-

berg (1999)
24. Xu, Z.S.: Intuitionistic Preference Relations and Their Application in Group De-

cision Making. Information Sciences 177, 2363–2379 (2007)



On Definability and Approximations

in Partial Approximation Spaces
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Abstract. In this paper, we discuss the relationship occurring among
the basic blocks of rough set theory: approximations, definable sets and
exact sets. This is done in a very general framework, named Basic Ap-
proximation Space that generalizes and encompasses previous known def-
initions of Approximation Spaces. In this framework, the lower and upper
approximation as well as the boundary and exterior region are indepen-
dent from each other. Further, definable sets do not coincide with exact
sets, the former being defined “a priori” and the latter only “a posteriori”
on the basis of the approximations. The consequences of this approach
in the particular case of partial partitions are developed and a discussion
is started in the case of partial coverings.

1 Introduction

Since the beginning of rough set theory (RST) and with an increasing interest, a
great attention has been paid to approximations and to generalized approaches to
rough sets. This lead to the definition of several new models such as dominance-
based rough sets [10], covering rough sets (where nowadays more than 20 pairs of
approximations are known [18,20,17]), probabilistic rough sets [19], etc. . . On the
other hand, very few attention has been paid to some other basic notions such as
definability and roughness. In particular, the existing discussions on definability
regard mainly relation-based rough sets, and usually standard rough sets based
on a partition of the universe.

In [21], Yao presents a discussion on definability as primitive notion and ap-
proximations as derived ones, which are needed to describe undefinable objects.
His study is based on a logical approach where a set is definable if “its extension
can be precisely defined by a logic formula”. A topological approach is given in
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DOI: 10.1007/978-3-319-11740-9_2 c© Springer International Publishing Switzerland 2014
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[13]: in the case that approximations are based on a tolerance or a quasi ordered
relation, definable sets are defined in order to form an Alexadroff topology. A
discussion on vagueness and language in Pawlakian rough sets is given in [2],
where different definitions of rough sets are given and different forms of vague-
ness outlined. A study on rough sets based on generalized binary relations is
conduced in [11], where a set is considered definable if it is the union of the
elementary granules. We will discuss more about this choice in Section 4.

To the best of our knowledge, there has never been a discussion on definability
and roughness in a generic context. Indeed, some considerations can be found
in [3], where some problems in the definition of exact sets as primitive notion
(“a priori” attitude) are put forward and more recently in [8], where the au-
thors deal with the problem of defining different vagueness categories in partial
approximation spaces.

With this work we would like to start a discussion on definability and approx-
imations. We will develop our considerations in a basic environment, making few
assumptions on the properties that the definable sets and the approximations
have to satisfy.

In Section 2, the relationship among the basic elements of rough sets is debated
and the definition of Basic Approximation Spaces provided. This discussion is
then developed in the case of partial partitions in Section 3, where different
categories of exactness and vagueness are also introduced. Finally, a similar
approach is started in the more complex case of partial coverings.

2 Basic Approximation Spaces

In generalized approaches to rough sets we have some ingredients that mutually
interact: exact sets, rough sets, lower (l) and upper (u) approximations and the
exterior or negative (n) and boundary (b) region. Usually, these four regions
l, u, b, n are not independent, that is u(S) = l(S) ∪ b(S), n(S) = u(S)c and two
of them are sufficient to define the others. In other words, we have a tri-partition
of the universe in lower-boundary-exterior (or also an orthopair [4]).

However, in some situations, it makes sense that this dependence is relaxed.
In standard (i.e., equivalence based) RST the boundary can be defined in three
equivalent ways: if l(S) = ∪B1, u(S) = ∪B2 (where B1 and B2 are given
families of base sets), then

1. b(S) = u(S) \ l(S);
2. b(S) = ∪(B2 \B1);
3. b(S) is the union of those base sets, which are not subsets of S and their

intersections with S are not empty.

In generalized theories of rough sets these definitions give different notions of
boundaries, and so one has to make clear the informal notion of the boundary
in order to decide the applicable version.

In the first two cases boundaries can be defined by lower and upper approx-
imations, and so they are not independent of approximation functions. On the
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other hand, the third version is the closest form of the informal notion of bound-
aries. Moreover, in general cases, it is independent of (cannot be defined by)
lower and upper approximations. For example in membrane computing appli-
cations the third version has to be used in order to represent the vicinity of a
membrane (see partial approximation of multisets and its application in mem-
brane computing [15,16]). Another situation where the dependence is relaxed is
in partial settings. In this case, we can have that, for a set S, u(S)c �= n(S),
since some members in u(S)c can be outside the domain of definition.

According to the former facts, it is worth to consider all the four regions/
operators l, u, b, n as primitive ones and then study how they can interact. In
this way we give the same importance to all of them. We do not decide, at
this stage, which of them is primitive and which is derived. In particular, the
boundary is often neglected, but, as also pointed out in [5], thinking in terms of
lower-boundary instead of lower-upper or lower-negative (as usually done) can
give a new perspective and for instance, develop new operations on rough sets.

Similarly, in standard RST, it is clear what the exact sets are (the sets which
coincide with their approximations, that is, equivalence classes and their unions)
and what the rough sets are (all the other sets). In general situations this can
become more tricky, and we can make a further distinction between base sets,
which are the building blocks (equivalence classes in the standard case), definable
objects, that is the sets we can obtain by operations on base sets (union of
equivalence classes) and exact sets, that are defined using the approximations.

Given all these considerations, we define a basic structure for approximations,
that takes into account all these elements and some properties they should satisfy.

Definition 2.1. A Basic Approximation Space over a set U is defined as the
structure (U,B,DB,EB, l, b, u, n) such that

1. ∅ �= B ⊆ P(U) if B ∈ B then B �= ∅ (the base system)
We will denote the union of all the members of the base system as B =
∪B∈BB.

2. B ⊆ DB ⊆ P(U) and ∅ ∈ DB (the definable sets)
We will denote the union of all the definable sets as D = ∪D∈DB

D.
3. EB ⊆ P(U) and ∅ ∈ EB (the exact sets)
4. l, b, u, n : P(U) �→ DB are, respectively, the lower, boundary, upper and

negative mappings. They satisfy the following properties:
– u(∅) = ∅, b(∅) = ∅, n(∅) = B; (normality conditions)
– If S1 ⊆ S2 then l(S1) ⊆ l(S2), u(S1) ⊆ u(S2) and n(S2) ⊆ n(S1) (mono-

tonicity)
– l(S) ⊆ u(S), l(S) ∩ n(S) = ∅ (weak approximation properties)

Remark 2.1. The substructure (U,B,DB, l, u) with corresponding properties is a
Generalized Approximation Space as defined in [8]. The substructure (P(U), l, u)
is a Boolean Approximation Algebra as defined in [3].

As a trivial consequence of the above definition, we have that l(∅) = ∅.
Let us make some remarks on this definition.

– The set B does not necessary coincide with the universe U , that is, we only
have a partial covering. This does not mean that the objects in U \ B are
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unknown, but rather that they are undefined, in a similar way as Kleene used
these two terms [14]. Consequently, if a name refers to an object which does
not belong to B, all propositions on this object are undefined. For instance,
in Fig. 2(a) since P5 �∈ B, for any proposition Pr, Pr(P5) is undefined.

– According to the actual definition of exactness, we may have that exact sets
are not necessarily chosen among the definable ones (i.e., it is not required
that EB ⊆ DB). If exact elements are defined according to a request based
on approximation operators (such as, l(S) = u(S)), in the general case we
cannot say neither that base sets are exact nor that exact sets are definable
(or vice versa). We will see some examples in the following sections.

– The lower and upper approximations as well as the boundary and negative
mappings are definable. This is due to the interpretation of definable elements
as the all and only elements that given by our knowledge we can speak about.

3 Partial Partitions

Let us consider the simplest case, that is the sets of the base system are mutually
disjoint (but do not necessarily cover the universe). We can call this situation
partial partition or one-layered approximation space [9]. This case is of course a
generalization of the standard setting where the partition is total.

Remark 3.1. It is an important case also taking into account that any partial
covering can be reduced to a partial partition by considering the collection of
disjoint granules:

gr(x) := ∩{B | x ∈ B} \ ∪{B | x /∈ B}, (1)

A similar formula was suggested in [1] to obtain a (total) partition from a (total)
covering. Of course, by this operation we lose part of the semantic of the covering
approach but we gain in simplicity. That is, the definable sets will change and
also the approximations, that typically will become finer (that is closer to the
set under approximation).

So, let us suppose to have a base system which constitutes a partial partition,
we now define all the other elements of the approximation space according to
Definition 2.1.

– The definable elements are the base sets and their unions: ∅ ∈ DB, B ⊆ DB,
if D1, D2 ∈ DB then D1 ∪D2 ∈ DB. Clearly, we have that B = D.

– The lower and upper approximations are defined as usual as

l(S) := ∪{B ∈ B|B ⊆ S} (2)

u(S) := ∪{B ∈ B|B ∩ S �= ∅} (3)

– The boundary is u(S) \ l(S) and the exterior is n(S) = D \ u(S).
– The exact sets are those we can define without ambiguity using the

approximations. However, by means of the upper and lower approximations
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we can define at least two different notions of exactness. The first relies en-
tirely on the approximations: EB := {S : l(S) = u(S)} ⊇ DB. But the
sets in EB do not generally coincide with the sets under approximation:
l(E) = E = u(E), indeed E can contain some undefined objects. For in-
stance, in Fig. 2(b), l(S) = u(S) = B4 �= S = B4 ∪ {P5}. Thus, we can
also consider a further class of exact sets, that we can name absolutely exact:
AB = {S : l(S) = S = u(S)} ⊆ EB. The difference is that exact sets are
defined relatively to our knowledge that can be only expressed through the
approximations whereas absolutely exact sets are defined with respect to the
“real” world (that we are not always allowed to know). For a discussion on
the differences between these two levels (sets and approximations) and the
problems arising in putting them at the same level see also [2,6].

We notice that since we are in a partial setting, besides the exterior, we also
have the undefinable exterior U \(u(S)∪n(S)) that characterizes the undefinable
objects (which are different from the unknown ones belonging to the boundary).

Further, we used only the union operator to build the definable sets from the
base sets, but in this case we have that Bi ∩ Bj = ∅ for any choice of Bi �= Bj

and that D \B (i.e., the negation of B wrt definable sets) is also a definable set.
As we will see, this does not generalize to the covering situation.

Finally, in this simplified situation, we have that the condition l(S) = u(S)
can be equivalently expressed as (S \ l(S)) ∩ D = ∅.
Example 3.1. Let us suppose to study the diagnosis of thyroid dysfunctions via
clinical symptoms. It is an important but inexact classification problem. We deal
with only hypothyroidism thyroid disorder which occurs when the thyroid is “un-
deractive”, i.e., it does not produce enough thyroid hormones. For more details
about thyroid dysfunctions and their informatics considerations see [7] and the ref-
erences therein. Here, the study is considerably simplified for illustrative purposes.

At the beginning, let us suppose to have at our disposal an information table
containing clinical symptoms weight change, edema, bradycardia, affection which
together or separately may indicate hypothyroidism (see Fig. 1). Hypothyroidism
can be accurately diagnosed with laboratory tests, last column of the table is
based on these results.
U is the set of patients: {P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13}.
First, let us form the base system directly according to the clinical symptoms

which separately may indicate hypothyroidism:

– weight change = gain: {P2, P6, P10, P11};
– edema = yes: {P6, P7, P8, P9};
– bradycardia = yes: {P2, P3, P4, P6, P12, P13};
– affection = depression: {P2, P12, P13}.

These base sets form a partial covering (Fig. 2(a)), because their union does not
add up the whole set U , namely, patients No. 1 and No. 5 do not possess any
clinical symptom which may indicate hypothyroidism. In Fig. 2, ovals contain
the patients who suffer from hypothyroidism according to the laboratory tests.



20 D. Ciucci, T. Mihálydeák, and Z.E. Csajbók

Clinical symptoms which

may indicate hypothyroidism:

• Weight change = gain

• Edema = yes

• Bradycardia = yes

• Affection = depression

U is the set of all patients:

U = {P1, P2, P3, P4, P5, P6, P7,

P8, P9, P10, P11, P12, P13}

Fig. 1. Information table with clinical symptoms which may indicate hypothyroidism

In Fig. 2(a), the base sets are not pairwise disjoint. Let us reduce this partial
covering to a partial partition according to the formula (1) (see Fig. 2(b)):

– weight change = gain AND bradycardia = yes AND affection = depression:
B1 = {P2};

– bradycardia = yes OR (bradycardia = yes AND affection = depression):
B2 = {P3, P4, P12, P13};

– weight change = gain AND edema = yes AND bradycardia = yes:B3 = {P6};
– edema = yes: B4 = {P7, P8, P9};
– weight change = gain: B5 = {P10, P11}.

•

• •

•

•
•

•

•

•

•

•

•

•

•

• •

•

•
•

•

•

•

•

•

•

•

(a) Partial covering (b) Partial partition

Fig. 2. Partial covering and its reduction to partial partition

3.1 Categories of Vagueness

Up to now we have defined four different categories of elements with respect to
the possibility to describe them using the available knowledge. They are:

– The base sets B, our bricks to build the available knowledge;
– The definable sets D ⊇B, whatever we can define using the basic bricks;
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– The exact sets E, which are given according to the lower and upper approx-
imations, without any reference to real sets. We have that ∅,D ∈ E;

– The absolutely exact sets A ⊆ E, which are given according to the lower and
upper approximations and making reference also to real sets.

We remark that exact sets are not necessarily definable, since an exact set
S ∈ E can contain some undefined object. On the other hand, absolutely ex-
act sets coincide with definable sets: A = D. In order to understand what the
available knowledge (base and definable sets) and the approximations enable us
to describe, it is also interesting to differentiate the situations where the lower
and upper approximations are not trivial, that is the lower is not empty and the
upper is different from the universe (in this case the union of definable elements
D). Of course we obtain the standard four notions of definability/roughness plus
one, only definable in partial settings (see also [8]).

– The set S is roughly definable: there exist objects that surely belong to S
and objects that surely do not belong to S. That is, l(S) �= ∅ (therefore,
u(S) �= ∅), u(S) �= D (equiv., n(S) �= ∅).

– Internally definable or externally undefinable: there do exist objects surely
belonging to S and there are no objects that certainly do not belong to S.
That is, l(S) �= ∅, n(S) = ∅ (equiv., u(S) = D) and b(S) �= ∅. As a trivial
consequence we have that, u(S) �= ∅.

– Externally definable or internally undefinable: it is the opposite of the pre-
vious case, that is, there do exist objects surely not belonging to S but not
surely belonging to S. In other words, l(S) = ∅, n(S) �= ∅ and n(S) �= D.
Consequently, we have u(S) = b(S) and they are both not empty and differ-
ent from D.

– Totally undefinable: no objects are known with certainty, that is l(S) =
n(S) = ∅, u(S) = D = b(S).

– Negatively definable: all the definable objects do not belong to S, that is
l(S) = u(S) = b(S) = ∅ and n(S) = D. This can happen only in partial
cases, where S is made only of objects outside the definition domain B.

4 Partial Covering: The “Relative” Boolean Case

It is well known that moving from partitions to covering, the possibilities to de-
fine the approximations are much more wider. See for instance [18,20,17], where
almost 30 different pairs of approximations are classified and their properties
studied. If to a covering we also add the possibility to be partial, these possi-
bilities can only become wider. This holds also for the other elements, besides
lower and upper approximations, of a basic approximation algebra.

4.1 Definable Sets

Let us address as the first important problem the definition of definable sets. As
previously discussed, definable is what we are allowed to talk about, given some
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basic blocks, that is to say, how can we combine the elements of B. In case of
partitions we considered the union of elements ofB as definable elements and this
does not present particular problems since intersection of elements ofB are empty
and the complement (with respect to B) of definable elements are definable.

In case of covering this is no more true, and it makes a difference whether to
consider only the union or also other operations. We can distinguish at least two
interesting cases.

1. We consider only the union. In this case, the intersection of two base sets
is not generally definable, as well as the complement. An immediate conse-
quence is that the usual definition of boundary and negative mappings does
not give us a definable set in this setting. For instance, if b(S) = u(S)\l(S) =
u(S)∩ l(S)c, then it is not assured that l(S)c is definable, nor its intersection
with the upper approximation. The justification to consider this case, a part
from a purely theoretical one, is that it makes sense in some situations such
as the rough set approach to membrane computing [16,15]. A study about
definability and approximations in this basic situation can be found in [8].

2. On the other hand we have the most complete situation where all the set
operations are allowed: union, intersection and negation (with respect to
B). That is, definable sets are a complete field of sets [12]. From a point of
view of logic, this is the most natural approach. We have some facts (the
base sets) which constitute our knowledge and we combine them using all
the instruments available using a (partial) Boolean logic. For instance, if we
have a set B1 representing “the students that submitted a program written
in Java”, a set B2 representing “the students that submitted a program
written in group”, then it sounds natural to ask which are “the students that
submitted a paper written in Java and in group”, as well as “the student
that did not write a program in Java”. Even if we do not have this basic
information, we can build it up.

From now on, let us consider this second scenario that we can call Relative
Boolean System. Definable elements are thus formally defined as:

– ∅ ∈ DB, B ⊆ DB

– if D1, D2 ∈ D then D1 ∪D2 ∈ DB, D1 ∩D2 ∈ DB, B \D1 ∈ DB.

Also in this case, we have that B = D.

4.2 Exact Sets

In order to define the exact sets, we have to choose a lower and an upper ap-
proximation definition among the several ones known in literature (or also define
some new one). A complete analysis of this multitude of approximations is out
of scope of the present work, here we just limit the discussion to the natural
extension of the standard l, u definitions in equations (2). So, we are in a special
case with respect to [8], since we also admit intersection and negation to define
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the definable elements. The boundary can now be defined in (at least) two ways:

b(S) = u(S) \ l(S) (4)

bp(S) = ∪{B ∈ B|B ∩ S �= ∅, B �⊆ S} (5)

Example 4.1. Let us take again the information table from Fig. 1 and the partial
covering of U defined in Fig.3: B = {B1, B2, B3}, where ∪B � U .

•

• •

•

•

•

•

•

• •

•

•

•

Lower approximation of S:

l(S) = ∪{B ∈ B | B ⊆ S}
= ∪{B3} = B3

Upper approximation of U :

u(S) = ∪{B ∈ B | B ∩ S �= ∅}
= ∪{B1, B2, B3}

Boundaries:

b(S) = u(S) \ l(S)
= ∪{B1, B2, B3} \B3

= {P2, P3, P4, P10, P11, P12, P13}
bp(S) = ∪{B ∈ B|B ∩ S �= ∅, B �⊆ S}

= ∪{B1, B2}

Fig. 3. Boundaries, lower and upper approximations in partial covering

According to Fig. 3, the following formulas can easily be checked:

b(S) � bp(S) � u(S) (6)

bp(S) ∩ l(S) = {P6} �= ∅ (7)

bp(S) ∪ l(S) = u(S) (8)

As it can be seen in Example 4.1, in general the two definitions are not equal
and we have b(S) ⊆ bp(S), see formula (6). Moreover, we notice that bp is defined
independently from the lower and upper approximations. So, we no more have
that bp(S) ∩ l(S) = ∅, see formula (7). On the other hand, we easily get that
bp(S) ⊆ u(S) and bp(S)∪ l(S) = u(S), see formula (8). Both boundaries (as well
as the lower and upper approximations) are definable since they can be obtained
by standard set operations starting from elements in the base system.

Also in the case of the negative region we can have more than one definition:
two based on the approximations and one independent from approximations.

nl(S) = l(B \ u(S)) (9)

n(S) = B \ u(S) (10)

np(S) = ∪{B ∈ B|B ∩ S = ∅} (11)
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All are definable sets and they are not equal but we only have that nl(S) ⊆
n(S) ⊆ np(S). Moreover, while nl(S) ∩ u(S) = n(S) ∩ u(S) = ∅ we can have
a non-empy intersection between np(S) and u(S). In any case, the intersection
between the lower approximation and all the three negative regions is empty. So,
considering also that they are monotonic, we can take any of them as defining a
Basic Approximation Space, according to definition 2.1.

Example 4.2. Let us consider again the example 4.1 and suppose to have a fur-
ther base set B4 = {P13, P14, P15}. So, we have that nl(S) = ∅, n(S) = {P14, P15}
and np(S) = B4.

Moreover, we can define a new upper approximation as

un(S) = ∪{B ∈ B|B ∩ S �= ∅} \ np(S) (12)

and a new boundary:

bn(S) = un(S) \ l(S) (13)

and we have un(S) ⊆ u(S) and bn(S) ⊆ b(S) and both un, bn are monotonic.
Now, by means of the lower approximation and the two upper approximations

we can define four different notions of exact sets:

– E1 = {S : l(S) = u(S)}
– E2 = {S : l(S) = S = u(S)}
– E3 = {S : l(S) = un(S)}
– E4 = {S : l(S) = S = un(S)}

We have that both E1 and E2 conditions imply that bn(S) = b(S) = bp(S) = ∅.
On the other hand, E3 and E4 imply that bn(S) = ∅ but not that bp(S) nor b(S)
are empty. Finally, we have that E1 ⊆ E3 and E2 ⊆ E4.

4.3 Categories of Vagueness

The final step is to define the different categories of vagueness. Clearly, the situ-
ation is more complex with respect to the partition case, since for any category
we have more than one plausible definition. Here, it follows a list of categories
based on the approximations defined above.

– The roughly definable sets

• V1: l(S) �= ∅, u(S) �= D and l(S) �= u(S) (in order to differentiate it from
E1);

• V2: l(S) �= ∅, un(S) �= D and l(S) �= un(S) (in order to differentiate it
from E3);

– The internally definable sets

• V3: l(S) �= ∅, u(S) = D and l(S) �= u(S);
• V4: l(S) �= ∅, un(S) = D and l(S) �= un(S), and we have V4 ⊆ V3;
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– The externally definable sets
• V5: l(S) = ∅, u(S) �= D and u(S) �= ∅;
• V6: l(S) = ∅, un(S) �= D and un(S) �= ∅;

– The totally undefinable sets
• V7: l(S) = ∅, u(S) = D;
• V8: l(S) = ∅, un(S) = D, and we have V8 ⊆ V7;
• V9: l(S) = ∅, nl(S) = ∅;

– The negatively definable sets, V10: l(S) = u(S) = b(S) = ∅ and nl(S) = D,
that is, S is made only of elements outside D.

Clearly, this four categories as well as the exact sets outlined at the end of the
previous section are mutually disjoint.

5 Conclusion and Perspectives

In this paper, lower, boundary, upper and negative regions/operators have been
considered as primitive ones. It is assumed that they are independent of each
other and we have studied how they can interact both in the case of a partial
partition and in the case of the covering. In this last generalization we only
considered one pair of lower and upper approximation. Nevertheless, starting
from just a lower and an upper approximation, we arrived at defining two upper
approximations un(S) ⊆ u(S), three boundaries bn(S) ⊆ b(S) ⊆ bp(S) and three
exterior regions nl(S) ⊆ n(S) ⊆ np(S) and all of them can be combined to obtain
a Basic Approximation Space.

This approach can give a new perspective on the generalization of rough set
theory. As a further development, other approximations can be considered in the
covering case and their interactions studied. Moreover, a logical approach (in the
style of [21]) in the definition of definable and rough sets is worth considering.
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Abstract. We investigate a general many-valued rough set theory, based on tied
adjointness algebras, from both constructive and axiomatic approaches. The class
of tied adjointness algebras constitutes a particularly rich generalization of resid-
uated algebras and deals with implications (on two independently chosen posets
(L,≤L) and (P,≤P ), interpreting two, possibly different, types of uncertainty)
tied by an integral commutative ordered monoid operation on P . We show that
this model introduces a flexible extension of rough set theory and covers many
fuzzy rough sets models studied in literature. We expound motivations behind
the use of two lattices L and P in the definition of the approximation space, as
a generalization of the usual one-lattice approach. This new setting increase the
number of applications in which rough set theory can be applied.

Keywords: Many-valued rough sets, Approximation operators, Calculi of ap-
proximation Spaces, Tied implications, Tied adjointness algebras.

1 Introduction

The theory of rough sets [22] generalizes traditional set theory by allowing a concept
(represented by a subset of a (finite) universe V of interest) to be described approx-
imately by a lower and upper bound based on the information (knowledge) on hand.
This knowledge is represented by a binary relation R on V . Usefulness of rough sets
theory has been fully demonstrated by its applications (see, e.g. [26]).

When we deal with real-life problems, fuzzy structures often provide much more
adequate models of information than classical structures. This, in turn, leads to fuzzy
rough sets which encapsulate the related, but distinct, concepts of fuzziness and indis-
cernibility. These occur as a result of uncertainty in knowledge or data. Dubois and
Prade [5, 6] were among the first who investigated the problem of a fuzzyfication of a
rough set, and since then many papers [4, 7, 10, 15, 16, 19, 24, 23, 28–31] have focused
on the refinement of this model using both constructive approaches, which propose new
definitions of approximation operators (using fuzzy logical extensions of the Boolean
implication and conjunction), and axiomatic approaches, which set forth a set of axioms
or desirable properties, and characterize the operators that satisfy them.

In Pawlak’s rough set model [22], an equivalence relation is a key and primitive
notion. This equivalence relation, however, seems to be a very stringent condition that
may limit the application domain of the rough set model. So various types of binary
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relations have been considered to replace the indiscernibility equivalence relation. Like
classical rough set, several other authors considered fuzzy rough set models based on
general fuzzy relations (see, e.g. [15, 16, 23, 29–31]).

The fuzzy rough set theory, proposed by the others authors, has been made up the
deficiencies of the traditional rough set theory in several aspects. However many real
world systems and applications require information management components that pro-
vide support for managing imprecise and uncertain data. A single model cannot process
all type of uncertainties. There are various approaches for representing and processing
uncertainty in the context of different domains of applicability in the literature. For ex-
ample, classical set or crisp set, Lattice-valued fuzzy set (e.g. interval-valued fuzzy set,
Vague set) and rough sets model different type of uncertainty. Since these types are rel-
evant for many applications (e.g. database applications), combining them together is of
both theoretical and practical importance. The applications of this idea are manifold.

There are several trials in the literature for integrating the classical rough sets theory
with lattice-valued fuzzy sets. In [10], the authors combines the interval-valued fuzzy
sets and the rough sets, and studies the basic theory of the interval-valued rough fuzzy
sets. They were motivated by the idea mentioned in [25] where there are both of the
symbolic values, real values and possibly lattice values (e.g. interval values) of the at-
tributes in the real life database. Paper [27] concerns the processing of imprecision and
indiscernibility in relational databases using vague rough technique leading to vague
rough relational database model. They utilized the notion of indiscernibility and possi-
bility from rough set theory coupled with the idea of membership and non-membership
values from vague set theory to represent uncertain information in a manner that main-
tains the degree of uncertainty of information for each tuple of the original database
and also those resulting from queries. Dubois and Prade [5], by using an equivalence
relation, were among the first who introduce lower and upper approximations in fuzzy
set theory to obtain an extended notion called rough fuzzy set [5, 6]. Moreover, Dubois
and Prade also pointed out that the rough fuzzy set is a special case of the fuzzy rough
set in the universe in their literatures.

One important point in all of these approaches from the above paragraph is that
the semantic of the information relation (which is crisp) is different from the semantic
of the approximated sets (which are interval-valued fuzzy sets, vague sets and Zadah
fuzzy sets, respectively, or generally lattice-valued sets). This gives rise to conclude
that, from a practical point of view, using one semantic for both of information relation
and approximated sets is not always convenient. Hence, more general frameworks can
be obtained by involving the approximations of L-valued fuzzy sets based on P -valued
fuzzy relations, where L and P denote two independently chosen posets (L,≤) and
(P,≤), interpreting two, possibly different, types of uncertainty. Therefore, the tradi-
tional fuzzy rough set theory could not deal with such kinds of situations effectively. It
is then necessary to extend the traditional fuzzy rough set theory in a general sense.

In this paper, we propose a general many-valued rough set theory, based on a new al-
gebraic model for non-classical logics, i.e. the class of tied adjointness algebras [20, 21].
It deals with implications ⇒: P × L → L tied by an integral commutative ordered
monoid operation on P , in the sense given in [1], where L and P denote two inde-
pendently chosen posets, interpreting two, possibly different, types of uncertainty, and
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generalizes the usual one-lattice approach. The property of being tied extends to
multiple-valued logic the equivalence in classical logic known as the law of importation.
It holds for several types of implications used in fuzzy logic, among which the residu-
ated implications and S-implications are two types. There have been many papers, both
theoretical and showing usefulness of tied implications in approximate reasoning in the
recent past, e.g. [1–3, 11–14, 18, 20, 21]. Tied adjointness algebras constitute a particu-
larly rich generalization of residuated algebras and couple a strong set of theorems with
a wide variety of logical connectives frequently met in the literature.

The present paper investigates a general many-valued rough sets theory, called (L, P )-
valued rough sets, in which both the constructive and axiomatic approaches are used.
In the constructive approach, based on an arbitrary P -valued fuzzy relation and tied
adjointness algebras on (L, P ), a coupled pair of generalized many-valued rough ap-
proximation operators is defined. The proposed many-valued rough set theory combines
the L-valued fuzzy set theory with the traditional fuzzy rough set theory based on P -
valued fuzzy relations. Therefore, the traditional fuzzy rough set theory is extended
and its weaknesses are overcome. It extends to P -valued fuzzy relations and L-valued
fuzzy sets most of the basic notions of the rough sets of Pawlak. The connections be-
tween P -valued fuzzy binary relations and many-valued approximation operators are
examined. The resulting (L, P )-valued rough sets are proper generalizations of rough
fuzzy sets [5], fuzzy rough set [4–7, 10, 15, 16, 19, 23, 24, 28–31], the interval-valued
rough fuzzy set model [10] and Vague Rough Sets [27]. Hence, this model introduces a
flexible extension of rough set theory and covers many lattice-valued fuzzy rough sets
models studied in literature. This new setting increase the number of applications in
which rough set theory can be applied. In the axiomatic approach, various classes of
fuzzy rough sets are characterized by different sets of axioms, axioms of fuzzy approx-
imation operators guarantee the existence of certain types of fuzzy relations producing
the same operators.

2 Preliminaries

2.1 Implications and Their Adjoints

Definition 1. Let (P,≤P ) and (L,≤L) be posets and⇒: P×L→ L, & : P×L→ L,
⊃: L×L→ P are binary operations on (L, P ). An adjoint triple (⇒,&,⊃) on (L, P )
is an ordered triple in which the three operations⇒,& and ⊃ are mutually related by
the following adjointness condition, ∀a ∈ P, ∀y, z ∈ L :

Adjointness : y ≤L a⇒ z iff a&y ≤L z iff a ≤P y ⊃ z. (1)

Proposition 1. Let (⇒,&,⊃) be an adjoint triple on (L, P ). Then ∀a ∈ P , ∀y, z ∈ L:

a ≤P (a⇒ z) ⊃ z, a&(a⇒ z) ≤L z, (2)

y ≤L a⇒ (a&y) , (y ⊃ z)&y ≤L z, (3)

a ≤P y ⊃ (a&y) , y ≤L (y ⊃ z)⇒ z. (4)

Proposition 2. Let (⇒,&,⊃) be an adjoint triple on (L, P ). Then ∀a ∈ P , ∀y, z ∈ L:
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(i) The operation & is monotone in each argument, and the operations ⇒,⊃ are
antitone in the left argument and monotone in the right argument.

(ii) For all indexed families {aj} in P and {zm} , {ym} in L, such that the suprema
and infima in the left-hand sides exist:

sup
j
aj ⇒ inf

m
zm = inf

j,m
(aj ⇒ zm) , (5)

sup
j
aj&sup

m
ym = sup

j,m
(aj&ym) , (6)

sup
j
yj ⊃ inf

m
zm = inf

j,m
(yj ⊃ zm) . (7)

(iii) In the case when L = P ,⇒=⊃ if and only if & is commutative.

Proposition 3. [18] Let (⇒,&,⊃) be an adjoint triple on (L, P ) with a top element 1
for (P,≤P ). Then, 1 is a left identity element for ⇒ (i.e. ∀z ∈ L : 1⇒ z = z) iff 1
is a left identity element for & iff ⊃ satisfies the following comparator axiom:

Comparator axiom: ∀ (y, z) ∈ L2 : y ⊃ z = 1 iff y ≤L z.

Definition 2. (cf. [17, 18]) An adjointness algebra is an 8-tuple (L,≤L, P,≤P ,1,⇒
,&,⊃), in which (L,≤L), (P,≤P ) are two posets with a top element 1 for (P,≤P ), 1
is a left identity element for⇒ and (⇒,&,⊃) is an adjoint triple on (L, P ).
A complete adjointness lattice is an adjointness algebra whose two underlying posets
are complete lattices.

In adjointness algebras the operations ⇒,&,⊃ are called implication, conjunction
and comparator (⊃ is called a forcing-implication in [1, 17]), respectively. The ordered
triple (⇒,&,⊃) is called an implication triple on (L, P ) (cf. [1] and [18]).

Remark 1. The definition of adjointness algebras in [1] and [18] includes other axioms,
namely the mixed monotonicity properties of the operations ⇒,& and ⊃. In fact, we
do not need these axioms, since they follows form adjointness (see Proposition 2).

We can speak of right identity, associativity or commutativity of a conjunction &
only when (P,≤P ) equals (L,≤L), and hence, we say that⇒,⊃,& are connectives on
P . If, in this case, & is a monoid operation with unit element 1, it is called an object-
conjunction, see [20, Section 4] (it is also called a tying-conjunction in [21]). We usually
denote an object-conjunction by⊗, and its adjoint⇒ and⊃ by→ and�, respectively.

We can rephrase the well-known definition (cf. [8]) of (possibly noncommutative)
partially ordered residuated integral monoid, or a porim for short, to read

Definition 3. A partially ordered residuated integral monoid is a special case of ad-
jointness algebras over one posets, in which the conjunction is a monoid operation
with unit element 1.

Therefore, a partially ordered residuated integral monoid always takes the form
(P,≤P ,1,→,⊗,�). Hence, in a porim, both → and � become simultaneously an
implication and a comparator. If the poset (P,≤P ) is a lattice with the associated meet
and join operations ∧ and ∨, respectively, then the algebra (P,≤P ,∧,∨,1,→,⊗,�)
is called an integral residuated lattice. When ⊗ is also commutative,→ has to coincide
with �, and this adjointness algebra becomes (P,≤P ,∧,∨,1,⊗,→). These adjoint-
ness algebras are called commutative integral residuated lattices.
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2.2 Tied Adjointness Algebras

Let � : P ×L→ L be a binary operation on (L, P ). A binary operation � on P is said
to tie � (or � is tied by �) if the following identity holds (see [1]) ∀a, b ∈ P, ∀z ∈ L :
(a � b) � z = a � (b� z) . The property of being tied can be seen as a weakened
form of associativity, particularly when the operation � is a conjunction. � is said to
be faithful1 if for each distinct pair a and b in P there is z ∈ L such that a� z �= b� z.

Proposition 4. (cf. [1]) In a complete adjointness lattice (L,≤L, P,≤P ,1,⇒,&,⊃),
the following four conditions are equivalent:

(i) The implication⇒ is faithful. (ii) The conjunction & is faithful.
(iii) For all a ∈ P , inf

z∈L
((a⇒ z) ⊃ z) = a. (iv) For all a ∈ P , inf

y∈L
(y ⊃ (a&y)) = a.

Definition 4. (cf. [20, 21]) A tied adjointness algebra is an algebra

Λ = (P,≤P ,1, L,≤L,⇒,&,⊃,⊗,→)

in which, (L,≤L, P,≤P ,1,⇒,&,⊃) is an adjointness algebra, (P,≤P ,⊗,→,1) is a
commutative porim, and ⊗ ties⇒.

The class of all tied adjointness algebras is denoted by ADJT2.

Theorem 1. [20] Let Λ = (P,≤P ,1, L,≤L,⇒,&,⊃,⊗,→) be a tied adjointness
algebra. Then the following properties hold in Λ, ∀a, b, c ∈ P , ∀x, y, z, w ∈ L:

⊗ ties ⇒: ((a⊗ b)⇒ z) = (a⇒ (b⇒ z)) (8)

⊗ ties & : ((a⊗ b)&z) = (a&(b&z)) (9)

Strong adjointness : (y ⊃ (a⇒ z)) = (a→ (y ⊃ z)) = (a&y ⊃ z) (10)

Exchange axiom for ⇒: (a⇒ (b⇒ z)) = (b⇒ (a⇒ z)) (11)

Exchange axiom for & : (a&(b&z)) = (b&(a&z)) (12)

⊃ is ⊗−transitive : ((x ⊃ y)⊗ (y ⊃ w)) ≤P (x ⊃ w) (13)

Prefixing with ⇒: y ⊃ z ≤P ((a⇒ y) ⊃ (a⇒ z)) (14)

Prefixing with & : y ⊃ z ≤P ((a&y) ⊃ (a&z)) (15)

Prefixing with ⊃: y ⊃ z ≤P ((x ⊃ y)→ (x ⊃ z)) (16)

Suffixing with ⇒: a→ b ≤P ((b⇒ z) ⊃ (a⇒ z)) (17)

Suffixing with & : a→ b ≤P ((a&y) ⊃ (b&y)) (18)

Suffixing with ⊃: y ⊃ z ≤P ((z ⊃ w)→ (y ⊃ w)) (19)

As we have mentioned above, we are entitled to consider a commutative residuated
algebra (P,≤P ,⊗,→) as a particular case of tied adjointness algebra; that is, by setting

1 It is said to distinguish left arguments in [1, 20, 18].
2 Due to lack of space, we cannot include examples of tied adjointness algebras. Instead, the

reader is referred to [1, 20, 21] for examples and for more information.
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⇒=⊃=→ and & = ⊗. As such, the above properties of tied adjointness algebras
become algebraic properties of residuated algebras.

Let Λ = (P,≤P ,1, L,≤L,⇒,&,⊃,⊗,→) be a tied adjointness algebra, and let
Lop, the opposite poset ofL, be defined by reversing the order onL. Then a tied adjoint-
ness algebraΛdual =

(
P,≤P ,1, L

op,≤L,⇒d,&d,⊃d,⊗,→), said to be the dual ofΛ,
is obtained by taking⇒d= &, &d =⇒, ⊃d is the symmetric of ⊃ (x ⊃d y = y ⊃ x)),
and by keeping P , ⊗ and → unchanged. This bijection : Λ �−→ Λdual is self-inverse.
The dual of any universally valid inequality in ADJT is universally valid. This way,
duality works to establish some new inferences from their duals, without new proofs.
This duality principle has been made precise in [21] (see also [20]). We apply a duality
principle, in this paper; through which we manage to cut down the number of proofs.

2.3 Lattice-Valued Fuzzy Sets and Relations

Lattice-valued fuzzy sets were proposed by Goguen [9] as a generalization of the notion
of Zadehs fuzzy sets. Assume that V is a nonempty universe and L is a lattice, then a
mapping A : V �→ L is called an L-valued fuzzy set on V . The set of all L-valued
fuzzy sets on V is denoted by LV .

Given z ∈ L, v ∈ V and ∅ �= U ⊆ V , L-valued fuzzy sets zU and zv are defined by

zU (u) =

{
z, u ∈ U,
⊥, u /∈ U. zv(u) =

{
z, u = v,
�, u �= v. (20)

Where� and⊥ denote the top and the bottom elements of L, respectively. If U = {u},
then zU is denoted by zu.

A P -valued fuzzy set R on V 2 is called a P -valued fuzzy relation on V . R is said
to be serial if for each u ∈ V , supv∈V R(u, v) = 1, reflexive if R(v, v) = 1 for all
v ∈ V , symmetric if R(u, v) = R(v, u) for all u, v ∈ V and ⊗-transitive if R(u, v)⊗
R(v, w) ≤P R(u,w) for all u, v, w ∈ V . R is called an P -valued fuzzy preorder if
it is reflexive and transitive; R is called an P -valued fuzzy ⊗-similarity relation if it is
reflexive, symmetric and ⊗-transitive.

For all B ∈ LV and a ∈ P , L-valued fuzzy subsets a ⇒ B and a&B of V are
defined as (a ⇒ B)(v) = a ⇒ B(v) and (a&B)(v) = a&B(v), respectively. For
all A,B ∈ LV , A ⊆ B denotes A(v) ≤L B(v) for all v ∈ V . For any{Aj}j∈J ⊆
LV , we write

⋃
j∈J Aj and

⋂
j∈J Aj to denote the L-valued fuzzy sets on V given by

(
⋃

j∈J Aj)(u) = supj∈J Aj(u) and (
⋂

j∈J Aj)(u) = infj∈J Aj(u), respectively.

3 Generalized (L, P )-Valued Rough Sets

In this section, we propose generalized many-valued rough sets and investigate their
properties. Assume that V is a nonempty universe andR is an arbitraryP -fuzzy relation
on V , then the pair (V,R) is called a P -valued fuzzy approximation space. In the sequel,
we always take a complete tied adjointness algebra Λ = (P,≤P ,1, L,≤L,⇒,&,⊃
,⊗,→) in which⇒ (equivalently, &) is faithful as a basic structure, and denote the top
and bottom elements of L by � and ⊥, respectively.
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Definition 5. Let (V,R) be a P -valued fuzzy approximation space. The upper rough
approximation operators R and the lower rough approximation operators R, induced
by R, are the operators on LV defined by: for all L-valued fuzzy set A and u ∈ V ,

R(A)(u) = sup
v∈V

(R(u, v)&A(v)), (21)

R(A)(u) = inf
v∈V

(R(u, v)⇒ A(v)). (22)

The pair (R(A), R(A)) of L-valued fuzzy sets on V is called a generalized (L, P )-
valued rough set of A with respect to P -valued fuzzy approximation space (V,R).

These two operators generalize many of the corresponding ones studied in the litera-
ture (see, e.g. [4–7, 10, 15, 16, 19, 23, 24, 28–31] and the references therein), whereby
usually residuated lattices (either commutative or non-commutative) are employed, and
only one semantic for both of the information relation and the approximated sets is as-
sumed. Note the conjunction& in (21) needs not to be commutative nor associative (but
it is tied) and that (21) and (22) are dual to each other in the sense given before.

The following dual pairs of useful properties in Lemma 1 below can be easily derived
from Definition 5 and from the properties of complete tied adjointness algebras.

Lemma 1. Let (V,R) be a P -valued fuzzy approximation space. Then for all a ∈ P ,
z ∈ L, u, v ∈ V , A,B ∈ LV and {Aj}j∈J :

1. R(⊥V ) = ⊥V and R(�V ) = �V ,
2. A ⊆ B implies R(A) ⊆ R(B) and R(A) ⊆ R(B),
3. R(

⋃
j∈J Aj) =

⋃
j∈J R(Aj) and R(

⋂
j∈J Aj) =

⋂
j∈J R(Aj),

4. R(
⋂

j∈J Aj) ⊆
⋂

j∈J R(Aj) and
⋃

j∈J R(Aj) ⊆ R(
⋃

j∈J Aj),

5. R(a&A) = a&R(A) and R(a⇒ A) = a⇒ R(A),
6. zV ⊆ R(zV ) and R(zV ) ⊆ zV ,
7. R(zv)(u) = R(u, v)&z and R(zv)(u) = R(u, v)⇒ z,
8. R(�v)(u) = R(u, v)&� and R(�V−{v})(u) = R(u, v)⇒ ⊥,
9. If R is symmetric, then R(A) ⊆ B if, and only if, A ⊆ R(B).

Proposition 5. Let (V,R) be a P -valued fuzzy approximation space. Then, R is serial
iff R(zV ) = zV for all z ∈ L iff R(zV ) = zV for all z ∈ L.

Proof. It follows immediately from (5), (6) and Proposition 4.

Proposition 6. Let (V,R) be a P -valued fuzzy approximation space. Then (i) R is re-
flexive, iff (ii) R(A) ⊆ A for all A ∈ LV , iff (iii) A ⊆ R(A) for all A ∈ LV .

Proof. (i) implies (ii) and (iii) are Obvious. We only prove (ii) implies (i). Similarly we
can prove that (iii) implies (i). Assume (ii), by Lemma 1(7) and Proposition 4, we have
∀u ∈ V,R(u, u) = infz∈L((R(u, u)⇒ z) ⊃ z) = infz∈L(R(z

u(u)) ⊃ z) = 1.

Proposition 7. Let (V,R) be a P -valued fuzzy approximation space. Then the follow-
ing statements are equivalent:

(i) R is symmetric.
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(ii) A ⊆ R(R(A)) for all A ∈ LV .
(iii) R(zv)(u) = R(zu)(v) for all z ∈ L and u, v ∈ V .
(v) R(R(A)) ⊆ A for all A ∈ LV .
(vi) R(zv)(u) = R(zu)(v) for all z ∈ L and u, v ∈ V .

Proof. The equivalences between items (i), (iii) and (vi) are direct consequences from
Lemma 1 (7) by faithfulness of both⇒ and &.
(i) implies (ii): By (3), for all A ∈ LV and u ∈ V ,

A(u) ≤L inf
v∈V

(R(u, v)⇒ sup
w∈V

(R(v, w)&A(w)))

= inf
v∈V

(R(u, v)⇒ R(A)(v)) = R(R(A))(u).

(ii) implies (i): Assume that R is not symmetric, then there exist u, v ∈ V such that
R(u, v) �= R(v, u). Since ⇒ is faithful, then there exists z ∈ L such that R(u, v) ⇒
z �= R(v, u)⇒ z. Consider the following case: Assume R(v, u)⇒ z < R(u, v)⇒ z.
It follows from Comparator axiom that (R(u, v) ⇒ z) ⊃ (R(v, u) ⇒ z) < 1. Let
A(w) = R(u,w)⇒ z, for z ∈ L. Then, by (2), the following hold

A(v) ⊃R(R(A))(v) = A(v) ⊃ inf
w∈V

(R(v, w)⇒ R(A)(w))

≤L (R(u, v)⇒ z) ⊃ (R(v, u)⇒ sup
w′∈V

(R(u,w′)&(R(u,w′)⇒ z)))

≤L (R(u, v)⇒ z) ⊃ (R(v, u)⇒ z) < 1.

Hence, A(v) �L R(R(A))(v), which implies a contradiction.
The others two cases, i.e. R(u, v) ⇒ z < R(v, u) ⇒ z and, R(v, u) ⇒ z and
R(u, v)⇒ z are incomparable can be proved in a similar way as the above case.
The equivalence between items (i) and (v) now follows by Duality.

Proposition 8. Let (V,R) be a P -valued fuzzy approximation space. Then the follow-
ing statements are equivalent:

(i) R is ⊗-transitive.
(ii) R(R(A)) ⊆ R(A) for all A ∈ LV .
(iii) R(A) ⊆ R(R(A)) for all A ∈ LV .

Proof. (i) implies (ii): Let R be transitive. Then, by (6) and (9), we get

R(R(A))(u) = sup
v∈V

sup
w∈V

((R(u, v)⊗R(v, w))&A(w))

≤L sup
w∈V

(R(u,w)&A(w)) = R(A)(u).

(ii) implies (i): Assume (ii), then supv∈V (R(u, v)&R(A)(v)) ≤L R(A)(u). Let A =
zw for z ∈ L and w ∈ V . Then supv∈V ((R(u, v) ⊗ R(v, w))&z) ≤L R(u,w)&z (by
Lemma 1(7) and then (9)). From this (by adjointness) we get R(u, v) ⊗ R(v, w) ≤L

infz∈L(z ⊃ (R(u,w)&z)) = R(u,w) (by Proposition 4).
The equivalence between items (i) and (iii) now follows by Duality.
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Proposition 9. Let (V,R) be a P -valued fuzzy approximation space andR be reflexive.
Then, for all A ∈ LV , R(R(A)) = R(A) iff R(R(A)) = R(A) iff R is fuzzy preorder.

Proof. It follows immediately from Propositions 6 and 8.

The following useful properties follow from the results in this section and the prop-
erties of tied adjointness algebras. Their proofs trace much the same lines of the cor-
responding proofs given in [19] in the more special setting of commutative residuated
lattices on [0, 1].

Lemma 2. Let (V,R) be a P -valued fuzzy approximation space where R is the P -
valued fuzzy ⊗-similarity relation. Then, for all a ∈ P , z ∈ L and A,B ∈ LV ,

1. R(zV ) = R(zV ) = zV , A ⊆ R(A) and R(A) ⊆ A,
2. R(R(A)) = R(A), R(R(A)) = R(A), R(R(A)) = R(A) andR(R(A)) = R(A),
3. A = R(A) if and only if A = R(A),
4. R(a&R(A)) = a&R(A) and R(a⇒ R(A)) = a⇒ R(A).

Two coarse classifications of the L-valued fuzzy subsets of V are induced from
the P -valued fuzzy ⊗-similarity relation R when we replace each L-valued fuzzy set
A ∈ LV by either its upper rough approximation R(A) ∈ LV , or its lower rough ap-
proximation R(A) ∈ LV . These classifications reduce LV to the smaller collection
{A ∈ LV | A = R(A)} = {A ∈ LV | A = R(A)}.

4 Axiomatic Approach

In this section, we study the axiomatic characterizations of generalized rough approxi-
mation operators. We work with unary operators on LV and some axioms which guar-
antees the existence of certain types of P -valued fuzzy binary relations producing the
same generalized rough approximation operators. Such an approach is useful to get
insight in the logical structure of generalized (L, P )-valued rough sets.

Given A,B ∈ LV , we denote by |A ⊃ B| the P -valued fuzzy subset of V given
by, for all u ∈ V , |A ⊃ B|(u) = A(u) ⊃ B(u). Given z ∈ L, we denote by
|A ⊃ B| ⇒ zV , the L-valued fuzzy subset of V given by, for all u ∈ V , (|A ⊃
B| ⇒ zV )(u) = (A(u) ⊃ B(u)) ⇒ z. Similarly for & in place of ⇒. We write⋂

z∈L |Ψ(zv) ⊃ zV | and
⋂

z∈L |zV ⊃ Φ(zu)| to denote the P -valued fuzzy sets on
V given by (

⋂
z∈L |Ψ(zv) ⊃ zV |)(u) = infz∈L(Ψ(z

v)(u) ⊃ z) and (
⋂

z∈L |zV ⊃
Φ(zv)|)(u) = infz∈L(z ⊃ Φ(zv)(u)), respectively.

Definition 6. Let Ψ, Φ : LV → LV be two mappings. For all u ∈ V , z ∈ L and
{Aj}j∈J ⊆ LV , Φ is called upper rough approximation operator if it satisfies

(Φ1) Φ(zu) = (
⋂

x∈L |xV ⊃ Φ(xu)|)&zV
(Φ2) Φ(

⋃
j∈J Aj) =

⋃
j∈J Φ(Aj)

Ψ is called lower rough approximation operator if it satisfies

(Ψ1) Ψ(zu) = (
⋂

x∈L |Ψ(xu) ⊃ xV |)⇒ zV
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(Ψ2) Ψ(
⋂

j∈J Aj) =
⋂

j∈J Ψ(Aj)

Proposition 10. A mapping Φ : LV → LV is an upper rough approximation operator
if and only if there exists a unique P -valued fuzzy relation R on V such that Φ = R.

Proof. One direction follows easily by Lemma 5 (3), (7) and Proposition 4. For the
proof of the other direction, assume Φ is an upper rough approximation operator. Then
we define a P -valued fuzzy relation R as follows, for all u, v ∈ V :

R(u, v) = inf
z∈L

(z ⊃ Φ(zv)(u)). (23)

It is easy to proof that A =
⋃

v∈V (A(v))v holds for all A ∈ LV . By Definition 6, the
following hold for all A ∈ LV and u ∈ V ,

R(A)(u) = sup
v∈V

(R(u, v)&A(v)) = sup
v∈V

( inf
z∈L

(z ⊃ Φ(zv)(u))&A(v))

= sup
v∈V

(Φ((A(v))v)(u)) = Φ(
⋃
v∈V

(A(v))v)(u) = Φ(A)(u).

Hence, R(A) = Φ(A). By Proposition 4, it is obvious that R is unique.

Proposition 11. A mapping Ψ : LV → LV is an upper rough approximation operator
if and only if there exists a unique P -valued fuzzy relation R on V such that Ψ = R.

Proof. Just note that it is the dual of Proposition 10, so it follows by Duality principle
and by taking the dual of (23) to define a P -valued fuzzy relation R as follows, for all
u, v ∈ V :

R(u, v) = inf
z∈L

(Ψ(zv)(u) ⊃ z), (24)

and noting that, for all A ∈ LV , A =
⋂

v∈V (A(v))
v .

Adding more axioms to Definition 6, by Propositions 10, 11 and characterization of
several classes of generalized (L, P )-valued rough sets in Section 3, it is easy to obtain
the axiomatic characterizations of them. Here we do not list them.

The above propositions characterize lower and upper rough approximations sepa-
rately. To link them together, below we introduce and characterize the notion of coupled
pair of rough approximations (the analogous notion of the duality in classical rough set).

Definition 7. Let Ψ, Φ : LV → LV be two mappings. We call (Ψ, Φ) a coupled pair of
lower and upper rough approximation operators if the following conditions hold, for all
u ∈ V , x, z ∈ L and {Aj}j∈J ⊆ LV :

(C1) Φ is an upper rough approximation operator
(C2) Ψ(

⋂
j∈J Aj) =

⋂
j∈J Ψ(Aj)

(C3) |Φ(xu) ⊃ zV | = |xV ⊃ Ψ(zu)|
Proposition 12. Let Ψ, Φ : LV → LV be two mappings. The pair (Ψ, Φ) is a coupled
pair of lower and upper rough approximation operators if and only if there exists a
unique P -valued fuzzy relation R on V such that Ψ = R and Φ = R.
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Proof. Assume (Ψ, Φ) is a coupled pair of lower and upper rough approximation op-
erators. By (C1), Φ is an upper rough approximation operator, so by Proposition 10,
there exists a unique R such that Φ = R, where R(u, v) = infz∈L(z ⊃ Φ(zv)(u)), for
u, v ∈ V . By (C3), Lemma 1 (7) and strong adjointness (10), we get, for all y ∈ L,

y ⊃ Ψ(xv)(u) = Φ(yv)(u) ⊃ x = inf
z∈L

(z ⊃ Φ(zv)(u))&y ⊃ x
= y ⊃ ( inf

z∈L
(z ⊃ Φ(zv)(u))⇒ x)

Hence, for all x ∈ L and u, v ∈ V , we have

Ψ(xv)(u) = inf
z∈L

(z ⊃ Φ(zv)(u))⇒ x. (25)

On the other hand, for anyA ∈ LV , it can be verified that A =
⋂

v∈V (A(v))
v , so by

(C2) and (25), we have, for all u ∈ V

Ψ(A)(u) = Ψ(
⋂
v∈V

(A(v))v)(u) = inf
v∈V

Ψ((A(v))v)(u)

= inf
v∈V

(( inf
z∈L

(z ⊃ Φ(zv)(u))⇒ A(v)) = R(A)(u).

Conversely, it is clear that R and R are an upper and lower rough approximation satis-
fying (C1) and (C2), respectively. Also, by Lemma 1 (7) and strong adjointness (10), it
is easy to see that (C3) holds.
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2. Baczyński, M., Jayaram, B.: (S,N)- and R-implications: a state-of-the-art survey. Fuzzy Sets
and Systems 159, 1836–1859 (2008)
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Abstract. The concept of rough soft set is introduced to generalize soft
sets by using rough set theory, and then the soft topologies on soft sets
are introduced.

Keywords: Soft approximation space, Soft topology, Soft relation, Soft
closure operator.

1 Introduction

The soft set theory introduced by Molodtsov [18], which is assumed as a mathe-
matical tool for dealing with uncertainties, has been developed significantly with
a number of applications such as it can be applied in game theory, Riemann in-
tegration, probability theory, etc. (cf. [19]). It has also been seen that the math-
ematical objects such as topological spaces, fuzzy sets and rough sets can be
considered as a particular types of soft sets (cf., [16,18]). Recently, so many au-
thors have tried to develop the mathematical concepts based on soft set theory,
e.g., in [2,6,27,29], rough soft sets and fuzzy soft sets ; in [8], Soft rough fuzzy
sets and soft fuzzy rough sets; in [10], the algebraic structure of semi-rings by ap-
plying soft set theory; in [3], fuzzy soft group; in [13], soft BCK/BCI-algebras;
in [14], the applications of soft sets in ideal theory of BCK/BCI-algebras; in
[5,28,1], soft set relations and functions; in [4,7,12,25], soft topology, which itself
is showing the interest of researchers in this area.

Beside soft set theory, rough set theory, firstly proposed by Pawlak [20] has now
been developed significantly due to its importance for the study of intelligent
systems having insufficient and incomplete information. In rough set introduced
by Pawlak, the key role is played by equivalence relations. In literature (cf.,
[15,20,21,23], several generalizations of rough set have been made by replacing
the equivalence relation by an arbitrary relation. Simultaneously, the relation of
rough set with topology is also studied (cf., [15,24]).
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As both the theories approaches to vagueness, it will be interesting to see the
connection between both the theories. In this direction, an initiation has already
been made (cf., [11,26]), in which, soft set theory is utilized to generalize the
rough set model introduced by Pawlak (cf., [20]). Also, the resultant hybrid
model has been applied to multicriteria group decision making (cf., [9]). It is the
natural question that what will happen if rough set theory is used to generalize
soft sets. This paper is toward this study. Specifically, we try to introduce the
concept of rough soft set, and as topology is closely related to rough sets, we try
to introduce soft topologies on soft sets with the help of rough soft sets.

2 Preliminaries

In this section, we collect some concepts associated with soft sets, which we will
use in the next section. Throughout, U denotes an universal set and E, the set
of all possible parameters with respect to U . The family of all subsets of U is
denoted by P (U).

Definition 1. [18] A pair FA = (F,A) is called a soft set over U , where A ⊆ E
and F : A→ P (U) is a map.

In other words, a soft set FA over U is a parameterized family {F (a) : a ∈ A}
of subsets of the universe U . For ε ∈ A, F (ε) may be considered as the set of ε-
appximate elements of the soft set FA.

For the universe U , S(U) will denote the class of all soft sets over U .

Definition 2. [22] Let A,B ⊆ E and FA, GB ∈ S(U). Then FA is soft subset
of GB , denoted by FA ⊆ GB, if

(i) A ⊆ B, and
(ii) ∀a ∈ A, F (a) ⊆ G(a).
Definition 3. [16] FA and GB are said to be soft equal if FA ⊆ GB and

GB ⊆ FA. For a soft set FA ∈ S(U), P̃ (FA) denotes the set of all soft subsets
of FA.

Definition 4. [17] Let A ⊆ E and FA ∈ S(U). Then FA is called soft empty,
denoted by Fφ, if F (a) = φ, ∀a ∈ A.
F (a) = φ, ∀a ∈ A means that there is no element in U related to the parameter
a ∈ A. Therefore, there is no need to display such elements in the soft sets, as it
is meaningless to consider such parameters.

Definition 5. [17] Let A,B ⊆ E and FA, GB ∈ S(U). Then the soft union of
FA and GB is a soft set HC = (H,C), where C = A ∪ B and H : C → P (U)
such that ∀a ∈ C,

H(a) =

⎧⎨⎩
F (a) if a ∈ A−B
G(a) if a ∈ B −A
F (a) ∪G(a) if a ∈ A ∩B
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Definition 6. [17] Let A,B ⊆ E and FA, GB ∈ S(U). Then the soft inter-
section of FA and GB is a soft set HC = (H,C), where C = A ∩ B and
H : C → P (U) such that H(a) = F (a) ∩G(a), ∀a ∈ C.
Definition 7. [17] Let E = {e1, e2, e3, ...en} be a set of parameters. Then the
NOT set of E is �E is defined by �E = {�e1, �e2, �e3, ...�en}, where �e = not ei,
∀i = 1, 2, ..., n.

Definition 8. [1] Let A ⊆ E and FA ∈ S(U). Then the soft complement of
FA is (FA)

c and defined by (FA)
c = F c

A, where F
c : A → P (U) is a map such

that F c(a) = U − F (a), ∀a ∈ A.
We call F c, the soft complement function of F . It is easy to see that (F c)c = F
and (F c

A)
c = FA. Also, F

c
φ = FE and F c

E = Fφ.

Proposition 1. [17] Let FA ∈ S(U). Then
(i) FA ∪ FA = FA, FA ∩ FA = FA

(ii) FA ∪ Fφ = FA, FA ∩ Fφ = Fφ

(iii) FA ∪ FE = FE , FA ∩ FE = FA

(iv) FA ∪ F c
A = FE , FA ∩ F c

A = Fφ.

Definition 9. [5] Let A,B ⊆ E and FA, GB ∈ S(U). Then the cartesian prod-
uct of FA and GB is the soft set HA×B = (H,A×B), where HA×B = FA×GB

and H : A× B → P (U × U) such that H(a, b) = F (a) ×G(b), ∀(a, b) ∈ A ×B,
i.e., H(a, b) = {(hi, hj) : hi ∈ F (a) and hj ∈ G(b)}.
Definition 10. [5] Let A,B ⊆ E and FA, GB ∈ S(U). Then a soft relation
from FA to GB is a soft subset of FA ×GB .

In other words, a soft relation from FA to GB is of the formH ′
C , where C ⊆ A×B

and H ′(a, b) = H(a, b), ∀(a, b) ∈ C, and HA×B = FA ×GB as defined in Defini-
tion 9. Any subset of FA × FA is called a soft relation on FA.

In an equivalent way, the soft relation R on the soft set FA in the parame-
terized form is as follows:

If FA = {F (a1), F (a2), ...}, a1, a2, ... ∈ A, then F (ai)RF (aj) ⇔ F (ai)×F (aj) ∈ R.

Definition 11. [5] A soft relation R on a soft set FA ∈ S(U) is called

(i) soft reflexive if H ′(a, a) ∈ R, ∀a ∈ A,
(ii) soft symmetric if H ′(a, b) ∈ R⇒ H ′(b, a) ∈ R, ∀(a, b) ∈ A×A, and
(iii) soft transitive if H ′(a, b) ∈ R, H ′(b, c) ∈ R ⇒ H ′(a, c) ∈ R, ∀a, b, c ∈ A.
Above definition can be restated as follows:

Definition 12. [28] A soft relation R on a soft set FA ∈ S(U) is called

(i) soft reflexive if F (a)× F (a) ∈ R, ∀a ∈ A,
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(ii) soft symmetric if F (a)× F (b) ∈ R⇒ F (b)× F (a) ∈ R, ∀(a, b) ∈ A×A,
and

(iii) soft transitive if F (a)×F (b) ∈ R, F (b)× F (c) ∈ R⇒ F (a)× F (c) ∈ R,
∀a, b, c ∈ A.

Definition 13. [5] Let A ⊆ E and FA ∈ S(U). Then [F (a)] = {F (a′) :
F (a)× F (a′) ∈ R, ∀a, a′ ∈ A}.
Remark 1. For A ⊆ E and FA ∈ S(U), it can be seen that [F (a)] = (F,Aa), a ∈
A is a soft subset of FA, where Aa = {a′ ∈ A : F (a)× F (a′) ∈ R}.
Definition 14. [7] Let FA ∈ S(U) and τ ⊆ P̃ (FA). Then τ is called a soft
topology on FA if

(i) Fφ, FA ∈ τ ,
(ii) for FAi ∈ P̃ (FA), i ∈ I, if FAi ∈ τ , then ∪i∈IFAi ∈ τ , and
(iii) for FA1 , FA2 ∈ P̃ (FA), if FA1 , FA2 ∈ τ , then FA1 ∩ FA2 ∈ τ .
The pair (FA, τ) is called soft topological space and soft subsets of FA in
τ are called soft open set. The compliment of a soft open set is called a soft
closed set.

3 Rough Soft Set and Soft Topology

In this section, we introduce the concept of rough soft set and introduce soft
topologies on soft sets. Throughout this section, FA is a soft set over U .

Definition 15. A pair (FA, R) is called a soft approximation space, where
FA ∈ S(U) and R is a soft relation on FA.

Definition 16. Let (FA, R) be a soft approximation space. Then soft lower
approximation and soft upper approximation of GB ⊆ FA, are respectively,
defined as:

apr(GB) = ∪a∈A{F (a) ∈ FA : [F (a)] ⊆ GB}, and
apr(GB) = ∪a∈A{F (a) ∈ FA : [F (a)] ∩GB �= Fφ}.

The pair (apr(GB), apr(GB)) is called a rough soft set.

Remark 2. From above definition, it is clear that apr(GB) and apr(GB) are soft
subsets of FA.

Example 1. Let U = {u1, u2, u3}, E = {x1, x2, x3}, A = {x1, x2},
FA = {(x1, {u1, u2}), (x2, {u2, u3})} andGB ⊆ FA, whereGB = {(x2, {u2, u3})}.
Also, consider a soft relationR = {F (x1)×F (x1), F (x1)×F (x2), F (x2)×F (x2)}.
Then [F (x1)] = {F (x1), F (x2)} and [F (x2)] = {F (x2)}. It can be easily seen
that apr(GB) = GB and apr(GB) = FA.

Proposition 2. For a soft approximation space (FA, R) and ∀ GB, HC ⊆ FA,
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(i) apr(Fφ) = Fφ = apr(Fφ);
(ii) apr(FA) = FA = apr(FA);
(iii) If GB ⊆ HC , then apr(GB) ⊆ apr(HC) and apr(GB) ⊆ apr(HC);
(iv) apr(GB) = (apr(Gc

B))
c;

(v) apr(GB) = (apr(Gc
B))

c;
(vi) apr(GB ∩HC) = apr(GB) ∩ apr(HC);
(vii) apr(GB) ∪ apr(HC) ⊆ apr(GB ∪HC);
(viii) apr(GB ∪HC) = apr(GB) ∪ apr(HC);
(ix) apr(GB ∩HC) ⊆ apr(GB) ∩ apr(HC)

Proof (i) and (ii) are obvious.

(iii) Let GB ⊆ HC and F (a) ∈ apr(GB), a ∈ A. Then [F (a)] ⊆ GB, and so
[F (a)] ⊆ HC . Thus F (a) ∈ apr(HC), whereby apr(GB) ⊆ apr(HC). Similarly,
we can show that apr(GB) ⊆ apr(HC).

(iv) F (a) ∈ (apr(Gc
B))

c ⇔ F (a) /∈ (apr(Gc
B)) ⇔ [F (a)] ∩ Gc

B = Fφ ⇔ [F (a)] ⊆
G(B)⇔ F (a) ∈ G(B). Thus apr(GB) = (apr(Gc

B))
c.

(v) Similar to that of (iv).

(vi) F (a) ∈ apr(GB ∩HC) ⇔ [F (a)] ⊆ GB ∩HC ⇔ [F (a)] ⊆ GB and [F (a)] ⊆
HC ⇔ F (a) ∈ apr(GB) and F (a) ∈ apr(HC) ⇔ F (a) ∈ apr(GB) ∩ apr(HC).
Thus apr(GB ∩HC) = apr(GB) ∩ apr(HC).

(vii) Follows as above.

(viii) F (a) ∈ apr(GB ∪HC) ⇔ [F (a)] ∩ (GB ∪ HC) �= Fφ ⇔ [F (a)] ∩ GB �= Fφ

or [F (a)] ∩ HC �= Fφ ⇔ F (a) ∈ apr(GB) or F (a) ∈ apr(HC) ⇔ F (a) ∈
apr(GB) ∪ apr(HC). Thus apr(GB ∪HC) = apr(GB) ∪ apr(HC).

(ix) Follows as above.

Following example support each of proposition (i) to (ix).

Example 2. Let U = {u1, u2}, E = {x1, x2, x3}, A = {x1, x2}. Also, let FA =
{(x1, {u1, u2}), (x2, {u1, u2})} and F i

A, i ∈ I denotes soft subsets of FA. Then all
soft subsets of FA are
F 1
A = {(x1, {u1, u2}), (x2, {u1})},
F 2
A = {(x1, {u1, u2}), (x2, {u2})},
F 3
A = {(x1, {u1}), (x2, {u1, u2})},
F 4
A = {(x1, {u2}), (x2, {u1, u2})},
F 5
A = {(x1, {u1}), (x2, {u1})},
F 6
A = {(x1, {u2}), (x2, {u2})},
F 7
A = {(x1, {u1}), (x2, {u2})},
F 8
A = {(x1, {u2}), (x2, {u1})},
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F 9
A = {(x1, {u1, u2})},
F 10
A = {(x2, {u1, u2})},
F 11
A = {(x1, {u1})},
F 12
A = {(x1, {u2})},
F 13
A = {(x2, {u1})},
F 14
A = {(x2, {u2})},
F 15
A = F∅,
F 16
A = FA.

Let R = {F (x1)× F (x1), F (x2)× F (x2), F (x1)× F (x2)}.
By definition 13 and 16 it follows that
[F (x1)] = {F (x1), F (x2)}, [F (x2)] = {F (x2)} and
apr(F i

A : i = 3, 4, 10) = {F (x2)}, apr(FA) = FA,

apr(F i
A : i = 1, 2, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15) = F∅, also

apr(F i
A : i = 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 14, 16) = FA,

apr(F i
A : i = 9, 11, 12) = {F (x1)} and apr(F 15

A ) = F∅.

Proposition 3. Let (FA, R) be a soft approximation space and R be soft reflex-
ive. Then ∀GB ⊆ FA,

(i) GB ⊆ apr(GB), and
(ii) apr(GB) ⊆ GB.

Proof Follows easily from the fact that R is reflexive.

Example 3. In Example 2, let R = {F (x1) × F (x1), F (x2) × F (x2)}. Then
[F (x1)] = {F (x1)}, [F (x2)] = {F (x2)}. Thus apr(F i

A : i = 1, 2, 9) =

{F (x1)}, apr(F i
A : i = 3, 4, 10) = {F (x2)}, apr = FA, apr(F

i
A : i =

5, 6, 7, 8, 11, 12, 13, 14, 15) = F∅, apr(F i
A : i = 1, 2, 3, 4, 5, 6, 7, 8, 16) = FA,

apr(F i
A : i = 9, 11, 12) = {F (x1)}, apr(F i

A : i = 10, 13, 14) = {F (x2)},
apr(F 15

A ) = F∅. Clearly, F i
A ⊆ apr(F i

A)∀i = 1, ...16, and apr(F i
A) ⊆ F i

A, ∀i =
1, ...16.

Proposition 4. Let (FA, R) be a soft approximation space and R be soft sym-
metric. Then ∀ GB, HC ⊆ FA,

(i) apr(apr(GB)) ⊆ GB , and
(ii) GB ⊆ apr(apr(GB)).

Proof (i) Let F (a) ∈ apr(apr(GB)), a ∈ A. Then [F (a)] ∩ apr(GB) �= Fφ, or
that, there exists F (a′) ∈ [F (a)], a′ ∈ A such that F (a′) ∈ apr(GB). F (a

′) ∈
apr(GB), implying that [F (a′)] ⊆ GB . Since R is symmetric and F (a)×F (a′) ∈
R, so F (a′) × F (a) ∈ R. Thus F (a) ∈ [F (a′)], and so F (a) ∈ GB. Hence
apr(apr(GB)) ⊆ GB.

(ii) Follows as above.

Proposition 5. Let (FA, R) be a soft approximation space and R be soft tran-
sitive. Then ∀ GB ⊆ FA,
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(i) apr(apr(GB)) ⊆ apr(GB), and
(ii) apr(GB) ⊆ apr(apr(GB)).

Proof (i) Let F (a) ∈ apr(apr(GB)), a ∈ A. Then [F (a)] ∩ apr(GB) �= Fφ, i.e.,
there exists F (a′) ∈ [F (a)], a′ ∈ A such that F (a′) ∈ apr(GB). Now, F (a

′) ∈
apr(GB)⇒ [F (a′)]∩GB �= Fφ, i.e., there exists F (a

′′) ∈ [F (a′)], a′′ ∈ A such that
F (a′′) ∈ GB . But R being soft transitive, F (a′) ∈ [F (a)] and F (a′′) ∈ [F (a′)]
implying that F (a′′) ∈ [F (a)]. Thus [F (a)]∩GB �= Fφ, whereby F (a) ∈ apr(GB).
Hence apr(apr(GB)) ⊆ apr(GB).

(ii) Follows as above.

Proposition 6. If a soft relation R on FA is soft reflexive. Then τ = {GB ⊆
FA : apr(GB) = GB} is a soft topology on FA.

Proof In view of Proposition 2, we only need to show that if GBi ∈ τ , then
∪i∈IGBi ∈ τ , where GBi ∈ P̃ (FA), i ∈ I. For which, it is sufficient to show that
∪i∈IGBi ⊆ apr(∪i∈IGBi). Let F (a) ∈ ∪i∈IGBi , a ∈ A. Then their exists some
j ∈ J such that F (a) ∈ GBj = apr(GBj ), i.e., [F (a)] ⊆ GBj ⊆ ∪i∈IGBi , or
that F (a) ∈ apr(∪i∈IGBi). Thus ∪i∈IGBi ⊆ apr(∪i∈IGBi), whereby ∪i∈IGBi ⊆
apr(∪i∈IGBi). Hence τ is a soft topology on FA.

Proposition 7. Let R be soft reflexive and soft symmetric. Then
apr(GB) = GB if and only if Gc

B = apr(Gc
B).

Proof Let apr(GB) = GB . As, apr(G
c
B) ⊆ Gc

B , we only need to show that
Gc

B ⊆ apr(Gc
B). For this, let F (a) /∈ apr(Gc

B), a ∈ A. Then ∃F (b) ∈ FA such
that F (b) ∈ [F (a)] and F (b) /∈ ((GB)

c), or that, F (b) ∈ GB = apr(GB) and
F (b) ∈ [F (a)]. Now, R being soft symmetric and F (b) ∈ [F (a)] so F (a) ∈ [F (b)].
Also, F (b) ∈ apr(GB)⇒ [F (b)] ⊆ GB . Thus F (a) ∈ GB , or that F (a) /∈ ((GB)

c),
whereby Gc

B = apr(Gc
B). The converse part can be proved similarly.

Following is an easy consequence of the above proposition.

Proposition 8. Let R be soft reflexive and soft symmetric relation on FA. Then
(FA, τ) is the soft topological space having the property that GB is soft open if
and only if GB is soft closed.

Proof As R is soft reflexive, from Proposition 6, τ is a topology on a FA. Also,
GB is soft open if and only if GB ∈ τ if and only if apr(GB) = GB if and only if
apr(GB))

c = (GB)
c if and only if (GB)

c ∈ τ if and only if (GB)
c is open if and

only if GB is soft closed.

Now, we introduce the following concept of soft closure and soft interior op-
erator on a soft set.

Definition 17. A mapping c̃ : P̃ (FA)→ P̃ (FA) is called a soft closure oper-

ator if ∀GB, GB1 , GB2 ∈ P̃ (FA),

(i) c̃(Fφ) = Fφ,
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(ii) GB ⊆ c̃(GB),
(iii) c̃(GB1 ∪GB2) = c̃(GB1) ∪ c̃(GB2 ),
(iv) c̃(c̃(GB)) = c̃(GB).

Remark 3. Let τ = {GB ⊆ FA : c̃(Gc
B) = G

c
B}. Then it can be seen that τ is a

soft topology on FA.

Definition 18. A mapping ĩ : P̃ (FA) → P̃ (FA) is called a soft interior op-

erator if, ∀GB , GB1 , GB2 ∈ P̃ (FA) ,

(i) ĩ(FA) = FA,
(ii) ĩ(GB) ⊆ GB,
(iii) ĩ(GB1 ∩GB2) = ĩ(GB1) ∩ ĩ(GB2 ),
(iv) ĩ(̃i(GB)) = ĩ(GB).

Remark 4. Let τ = {GB ⊆ FA : ĩ(GB) = GB}. Then it can be seen that τ is a
soft topology on FA.

Proposition 9. If a soft relation R on FA is soft reflexive and soft transitive,
then apr and apr are saturated1soft interior and saturated soft closure operators
respectively.

Proof Follows from Propositions 2, 3 and 5.

Finally, we show that each saturated soft closure operator on a soft set also
induces a soft reflexive and soft transitive relation as:

Proposition 10. Let c̃ be a saturated soft closure operator on FA. Then there
exists an unique soft reflexive and soft transitive relation R on FA such that
c̃(GB) = apr(GB), ∀GB ⊆ FA.

Proof Let c̃ be a saturated soft closure operator and R be a soft relation on
FA given by F (a) × F (a′) ∈ R ⇔ F (a) ∈ c̃({F (a′)}), a, a′ ∈ A. As, {F (a)} ⊆
c̃({F (a)}), F (a) ∈ c̃({F (a)}), or that, F (a)×F (a) ∈ R. Thus R is a soft reflexive
relation on FA. Also, let F (a)×F (a′) ∈ R and F (a′)×F (a′′) ∈ R; a, a′, a′′ ∈ A.
Then F (a) ∈ c̃({F (a′)}) and F (a′) ∈ c̃({F (a′′)}). Thus F (a) ∈ c̃({F (a′)})
and c̃({F (a′)}) ⊆ c̃(c̃({F (a′′)})) = c̃({F (a′′)}), or that, F (a) ∈ c̃({F (a′′)}), i.e.,
F (a)×F (a′′) ∈ R. Therefore R is a soft transitive relation on FA. Now, let GB ⊆
FA and F (a) ∈ apr(GB), a ∈ A. Then [F (a)] ∩ GB �= Fφ, or that, ∃F (a′) ∈ FA

such that F (a′) ∈ [F (a)]∩GB , showing that F (a) ∈ c̃({F (a′)}) and F (a′) ∈ GB .
Thus F (a) ∈ c̃(GB), whereby apr(GB) ⊆ c̃(GB). Conversely, let F (a) ∈ c̃(GB).
Then F (a) ∈ c̃(∪{F (a′) : F (a′) ∈ GB}) = ∪{c̃({F (a′)}) : F (a′) ∈ GB} (as c̃ is a
saturated closure operator). Now, F (a) ∈ ∪{c({F (a′)}) : F (a′) ∈ GB} ⇒ F (a) ∈
c({F (a′)}), for some F (a′) ∈ GB , or that F (a

′) ∈ [F (a)], for some F (a′) ∈ GB ,
i.e., [F (a)] ∩ GB �= Fφ, showing that F (a) ∈ apr(GB). Thus c̃(GB) ⊆ apr(GB).
Therefore c̃(GB) = apr(GB). The uniqueness of soft relation R can be seen
easily.

1 A soft closure operator c̃ : P̃ (FA) → P̃ (FA) on FA is being called here saturated if the
(usual) requirement c̃(GB1 ∪GB2) = c̃(GB1) ∪ c̃(GB2) is replaced by c̃(∪i∈IGBi) =

∪i∈I c̃(GBi), where GBi ∈ P̃ (FA), i ∈ I .
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4 Conclusion

In this paper, we tried to introduce the concept of rough soft sets by combining
the theory of rough sets and that of soft sets, as well as introduce soft topologies
on a soft set induced by soft lower approximation operator. As rough soft sets
are generalization of soft sets with the help of rough set theory and the rough
set theory has already been established much more; so this paper opens some
new directions.
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Abstract. Rough set theory, proposed by Pawlak in the early 1980s, is an ex-
tension of the classical set theory for modeling uncertainty or imprecision in-
formation. In this paper, we investigate partial relations and propose the concept 
of knowledge granulation based on the maximal consistent block in interval-
valued information systems. The knowledge granulation can provide important 
approaches to measuring the discernibility of different knowledge in interval-
valued information systems. These results in this paper may be helpful for  
understanding the essence of rough approximation and attribute reduction in in-
terval-valued information systems. 

Keywords: rough set theory, knowledge granulation, uncertainty measure. 

1 Introduction 

Rough set theory, proposed by Pawlak [1], has become a well-established mechanism 
for uncertainty management and reasoning [2,3,4,5,6,7,8,9]. It has a wide variety of 
applications in pattern recognition and artificial intelligence. As one of the most im-
portant issues in rough set theory, the knowledge measure [7] has been widely inves-
tigated.  

To evaluate knowledge uncertainty, the concept of entropy was proposed by Shan-
non [10] in 1948. It is a very powerful mechanism for characterizing information 
contents in various modes and has been applied in many fields. Information measures 
of uncertainty of rough sets and rough relation databases were investigated by Beau-
bouef [11]. Miao et al. [12] proposed knowledge granularity and discernibility based 
on the equivalence relation in complete information systems. Liang et al. [13,14] in-
vestigated information granulation in incomplete information systems, which have 
been effectively applied in measuring for attribute significance, feature selection, 
decision-rule extracting, etc. Qian and Liang [15] proposed combination granulation 
with intuitionistic knowledge content nature to measure the size of information granu-
lation in information systems. Xu et al. [16] provide the knowledge granulation to 
measure the discernibility of different knowledge in ordered information systems. 
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From a measurement-theoretic perspective, Yao et al. [17] investigated a class of 
measures of granularity of partitions and also introduced new measures of granularity 
of partitions in the paper.  

The rest of this paper is organized as follows. Some preliminary concepts such as 
interval-valued information systems, the similarity coefficient and  a -tolerance 
relation are briefly recalled in Section 2. Sections 3 introduce the partial relations in 
an interval-valued information system. In Section 4, the knowledge granulation in an 
interval-valued information system based on maximal consistent block is proposed. 
The paper is summarized in Section 5.  

2 Preliminaries 

In this section, we will review some basic concepts related to interval-valued informa-
tion system. Detailed descriptions about interval-valued information systems (IvIS) 
can be found in the paper [18,19].  

An Interval-valued Information System is defined by ( , , , )U AT V fz = , where  

·  1 2
{ , ,..., }

n
U u u u=  is a non-empty finite set called the universe of discourse;  

· 1 2
{ , ,..., }

m
AT a a a=  is a non-empty finite set of m attributes, such that:  

     ( ) [ , ]k k
k i i i
a u l u= , k k

i i
l u£ , for all 1,2,...,i n=   and 1,2,...,k m= ;  

· 
k

k
aa AT

V V
Î

= È , 
ka
V  is a domain of attribute k

a ;  

· :f U AT V´   is called the information function such that ( , )
ki k a

f u a VÎ .  

    To avoid producing the large number of equivalence classes in Pawlak informa-
tion systems, we give the similarity coefficient to measure the closeness degree of 
different interval numbers under the same attribute, as follows:  

 

Definition 1. Let ( , , , )U AT V fz =  be an interval-valued information system. For 

,
i
u"  j
u UÎ , k

a AÎ ,A ATÍ , the similarity coefficient between ( )
k i
a u  and ( )

k j
a u  is 

defined as:  

{ }
{ } { }

0 , ,

min , , ,
otherwise

max , min ,

k k k k
i i j j

k k k k k k k kk
i j j i i i j jij

k k k k
i j i j

l u l u

u l u l u l u l

u u l l

a

ì é ù é ùï Ç = Æï ê ú ê úë û ë ûïïïï - - - -= íïïï -ïïïî .

 

 
   Based on the similarity coefficient, we can get the corresponding tolerance rela-

tion as: 
 

Definition 2. Let ( , , , )U AT V fz = be an interval-valued information system. For a 

given similarity rate [0.1]a Î , and A ATÍ . The a -tolerance relation A
T a  is ex-

pressed as follow: 
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{( , ) : , }k
A i j ij k
T u u U U a Aa a a= Î ´ ³ " Î , 

where k
ij

a  is similarity coefficient. 

It is clear that the relation A
T a  is reflexive and symmetric, but not transitive. For a 

i
u UÎ , the a -tolerance class corresponding to A

T a  is defined as: 

 

Definition 3. Let ( , , , )U AT V fz = be an IvIS. ( )
A i
S ua , called a -tolerance class for i

u
 

with respect to A
T a , is given as: 

( ) { : ( , ) }
A i j i j A
S u u U u u Ta a= Î Î . 

   

 For ( )
A i
S ua , i

u UÎ , we can get the set in which any object satisfies the a -

tolerance relation A
T a  with the object i

u . To obtain a maximal set in which the ob-

jects are tolerant with each other, we introduce the a -Maximal Consistent Block (a -
MCB) in interval-valued information systems as following:  

 In ( , , , )U AT V fz = , for ,
i j
u u M" Î , M UÍ  satisfying ( , )

i j A
u u T aÎ ，then M  

is the a -tolerance class in an interval-valued information system. Further, if 

m
u U M" Î - , there exists i

u MÎ  satisfying  ( , )
i m A
u u T aÏ . Here, M  is called the 

a - Maximal Consistent Block (a -MCB).  For a subset A ATÍ , ( )
A i
M ua  is the a

-MCB with respect to object i
u UÎ .   

3 Partial Relations in Interval-Valued Information Systems 

Let ( , , , )U AT V fz =  be an interval-valued information system, for any ,A B ATÍ , 

then 
  

1 2 | |
( ) ( ( ), ( ), , ( ))

A A A U
S A S u S u S ua a a a=  , 

  
1 2 | |

( ) ( ( ), ( ), , ( ))
B B B U

S B S u S u S ua a a a=  . 

Binary  relations “”, “» ”and “ ” can be defined as following： 

 

· ( )  ( )S A S Ba a  for any {1,2, ,| | }i UÎ  , we have ( )
A i
S ua Í ( )

B i
S ua , ( )

A i
S ua Î  

( )S Aa  and ( )
B i
S ua Î ( )S Ba , denoted by A B ;  

 · ( ) ( )S A S Ba a»  for any {1,2, ,| | }i UÎ  , we have ( ) ( )
A i B i
S u S ua a= , ( )

A i
S ua Î  

( )S Aa  and ( )
B i
S ua Î ( )S Ba , denoted by A B» ;  

· ( ) ( )S A S Ba a  ( )  ( )S A S Ba a , ( ) ( )S A S Ba a¹ , denoted by A B . 
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Theorem 1. Let ( , , , )U AT V fz =  be an interval-valued information, if { ( ) |S Aa=S  

}A AT" Í  and 1 2
( ) { ( ), ( ), , ( )}

A A A n
S A S u S u S ua a a a=  , then ( , )S   is a partial set. 

 
Proof.  

 For any , ,A B C ATÍ ,  

  
1 2 | |

( ) ( ( ), ( ), , ( ))
A A A U

S A S u S u S ua a a a=  , 

  
1 2 | |

( ) ( ( ), ( ), , ( ))
B B B U

S B S u S u S ua a a a=  , 

                                  1 2 | |
( ) ( ( ), ( ), , ( ))

C C C U
S C S u S u S ua a a a=  . 

(1)   For any i
u UÎ , we can get ( ) ( )

A i A i
S u S u= , thus A A .  

(2)   Suppose A B  and B A , from the definition of  A B , we have  

A B  for any {1,2, ,| | }i UÎ  , ( ) ( )
A i B i
S u S ua aÍ , where ( ) ( )

A i
S u S Aa aÎ

 
and 

( )
B i
S ua ( )S BaÎ ; 

B A  for any {1,2, ,| | }i UÎ  , ( ) ( )
B i A i
S u S ua aÍ , where ( ) ( )

A i
S u S Aa aÎ and 

( ) ( )
B i
S u S Ba aÎ . 

Therefore, ( ) ( ) ( )
A i B i A i
S u S u S ua a aÍ Í , i.e., ( ) ( )

A i B i
S u S ua a= . For any i

Um Î , we  

can have ( ) ( )
A i B i
S u S ua a= , i.e., A B» .  

(3)   Suppose A B  and B C , from the definition of A B , we get 

A B  for any {1,2, ,| | }i UÎ  ， ( ) ( )
A i B i
S u S ua aÍ ，where ( ) ( )

A i
S u S Aa aÎ  and 

( ) ( )
B i
S u S Ba aÎ ; 

B C  for any {1,2, ,| | }i UÎ  ， ( ) ( )
B i C i
S u S ua aÍ ，where ( ) ( )

B i
S u S Ba aÎ  and 

( ) ( )
C i
S u S Ca aÎ ; 

Therefore, for any {1,2, ,| | }i UÎ  , ( ) ( ) ( )
A i B i C i
S u S u S ua a aÍ Í , namely, ( )

A i
S ua Í  

( )
C i
S ua . For any i

Um Î , we have ( )
A i
S ua Í  ( )

C i
S ua , i.e., A C .  

Thus, ( , )S   is a partial set.  

4 Knowledge Granulation in Interval-Valued Information 
Systems 

In paper [17], Yao et al. proposed the generalized concept of knowledge granulation 
which should satisfy three conditions. 
 
Definition 4. Let ( , , , )IS U AT V f=  be an information system, A AT" Í  and GD  

be a mapping from the power set of A to the set of real numbers. We say that ( )GD A  
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is the knowledge granulation in an information system ( , , , )IS U AT V f= ,  if ( )GD A  

satisfies the following conditions: 

·  Non-negativity: for A AT" Í , ( )GD A  0³ ; 

·  Invariability: for ,A B AT" Í  and A B» , then ( ) ( )GD A GD B= ;  

·  Monotonicity: for ,AB AT" Í and A B , then ( ) ( )GD A GD B< .  

In 2002, Miao et al. [12] proposed the knowledge granularity to measure the uncer-
tainty in complete information systems as follows: 

 
Definition 5. Let ( , , , )IS U AT V f=  be a complete information system, / ( )U IND A =  

1 2
{ , , , }

m
X X X , knowledge granularity related to attribute sets A in IS  is defined 

by: 

2

| |
( )

| |

R
GD A

U
=

 

            = 2

2
1

1
| |

| |

m

i
i

X
U =

å , 

where, 2

1

| |
m

i
i

X
=
å  is the number of elements in the equivalence relation induced by 

1

( )
m

i i
i

X X
=

´ .  

 
Theorem 2. ( )GD A  is the knowledge granulation in ( , , , )IS U AT V f=  under the 

Definition 4 
 

Proof.  
（1） Obviously, ( ) 0GD A ³ 。 

（2） For ,AB ATÍ , 

    1 2
/ ( ) ( , , , )

m
U IND A X X X=  ， 

 ' ' '
1 2

/ ( ) ( , , , )
n

U IND B X X X=  . 

           If A B» , then m n= , and '
i i
X X= (1 )i n£ £ . Therefore,  

            2

2
1

1
( ) | |

| |

m

i
i

GD A X
U =

= å  

            ' 2

2
1

1
| |

| |

n

i
i

X
U =

= å  

            ( )GD B= . 

（3）For ,AB ATÍ , A B  and m n> . Therefore,  

                                   ' 2

2
1

1
( ) | |

| |

n

i
i

GD B X
U =

= å  
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                         2
1 22

1

1
(| | | | , , | |)

| |

n

i i it
i

X X X
U =

¢ ¢ ¢= + + +å   

2 2 2
1 22

1

1
(| | | | , , | | )

| |

n

i i it
i

X X X
U =

¢ ¢ ¢> + + +å   

2

2
1

1
| |

| |

m

i
i

X
U =

= å  

( )GD A= , 

where，1 | |
i

t X ¢£ £ . Thus, ( )GD A  is the knowledge granulation under Definition 4.      

 
To obtain the knowledge granulation based on the tolerance relation in interval-

valued information systems, we can give another definition of knowledge granularity 
in complete information systems as: 

2

2
1

1
( ) | |

| |

m

i
i

GD A X
U =

= å  

                  

| |

2
1

1
| ( ) |

| |

U

i
i

X u
U =

= å  

                  

| |

1

| ( ) |

| | | |

U
i

i

X u

U U=

=
´å ,  

where, | ( ) |
i

X u  is the number of elements which satisfy the equivalence relation with 

the object i
u  in IS , and 

| |
2

1 1

| ( ) | | |
U m

i i
i i

X u X
= =

=å å  is the number of elements in the 

equivalence relation induced by 
1

( )
m

i i
i

X X
=

´ . Thus, we can introduce the definition of 

knowledge granulation in interval-valued information systems as following: 
 

 Definition 6. Let ( , , , )U AT V fz =  be an interval-valued information system, for any 

A ATÍ , [0.1]a Î , knowledge granulation related to A in z  is given as following: 

                         
| |

2
1

1
( ) | ( ) |

| |

U

A i
i

GDI A M u
U

a a

=

= å                                               

                           
| |

1

| ( ) |

| | | |

U
A i

i

M u

U U

a

=

=
´å


 

                     

| |

1

| ( ) |

| | | |

U
A i

i

S u

U U

a

=

=
´å ,  

where ( ) ( )
A i A i
M u ua axÎ , 1 2

( ) { ( ), ( ),..., ( )}
A A A n

A M u M u M ua a a ax = .  

    Based on the definition of knowledge granulation, the smaller ( )GDI Aa is, the 

stronger knowledge discernibility is. 
Theorem 3. ( )GDI Aa  is the knowledge granulation in ( , , , )U AT V fz =  under the 

Definition 4.  
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Proof: 

(1)  Obviously, ( ) 0GDI Aa ³ . 

(2)  For ,AB AT" Í , we have  

 
1 2 | |

( ) ( ( ), ( ), , ( ))
A A A U

S A S u S u S ua a a a=  ， 

                       1 2 | |
( ) ( ( ), ( ), , ( ))

B B B U
S B S u S u S ua a a a=  . 

 If A B» ， {1,2, ,| |}i UÎ  ，then ( ) ( )
A i B i
S u S ua a= ，i.e., | ( ) | | ( ) |

A i B i
S u S ua a= , 

therefore, 

( )GDI Aa
| |

2
1

1
| ( ) |

| |

U

A i
i

S u
U

a

=

= å  

         
| |

2
1

1
| ( ) |

| |

U

B i
i

S u
U

a

=

= å  

                  ( )GDI Ba= . 

(3)  If ,AB AT" Í  and A B , for any i
u UÎ ，then ( ) ( )

A i B i
S u S ua aÍ , thus, 

| |

2
1

1
( ) | ( ) |

| |

U

A i
i

GDI A S u
U

a a

=

= å  

                              
| |

2
1

1
| ( ) |

| |

U

B i
i

S u
U

a

=

< å  

                      ( )GDI Ba= 。 

Therefore, ( )GDI Aa  is a knowledge granulation in interval-valued information 

systems under the Definition 4. 
 

Theorem 4 (Minimum). Let ( , , , )U AT V fz =  be an interval-valued information 

system, and A
T a  be an a -tolerance relation. The minimum of knowledge granulation 

in an interval-valued information system z  is 1/ | |U . This value is achieved if and 
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Theorem 5 (Maximum). Let ( , , , )U AT V fz =  be an interval-valued information 

system, and A
T a  be an a -tolerance relation. The maximum of knowledge granulation 

in an interval-valued information system z  is 1. This value can be obtained if and 

only if A A
T Ta a=


, where A

T a


 is an universe tolerance relation, i.e., 
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Theorem 6 (Boundedness). Let ( , , , )U AT V fz =  be an interval-valued information 

system, and A
T a  be an a -tolerance relation. The knowledge granulation in an inter-

val- valued information system z  exists the boundedness, namely,   

   
1

( ) 1
| |

GDI A
U

a£ £ , 

where ( ) 1/ | |GDI A Ua =  if and only if A A
T Ta a=


, and ( ) 1GDI Aa =  if and only if 

A A
T Ta a=


. 

 
Proposition 1. Let ( , , , )U AT V fz =  be an interval-valued information system, for 

0 1a b£ < £ , A B ATÌ Ì , we have  

(1)  ( ) ( )GDI A GDI Aa b> ; 

(2)  ( ) ( )GDI A GDI Ba a> ; 

(3)  ( ) ( )GDI A GDI Ba b> ;  

 
Proof: 
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   (1)  In a given ( , , , )U AT V fz = , if 0 1a b£ < £ , for any A ATÌ , then we can get 

| ( ) | | ( ) |
A i A i
S u S ua b> , thus,  

| | | |

2 2
1 1

1 1
| ( ) | | ( ) |

| | | |

U U

A i A i
i i

S u S u
U U

a b

= =

>å å , ( ) ( )GDI A GDI Aa b> ; 

    (2)  In a given ( , , , )U AT V fz = , if A B ATÌ Ì , for any 0 1a£ £ , then we can get 

| ( ) | | ( ) |
A i B i
S u S ua a> , thus,  

| | | |

2 2
1 1

1 1
| ( ) | | ( ) |

| | | |

U U

A i B i
i i

S u S u
U U

a a

= =

>å å , ( ) ( )GDI A GDI Ba a> ; 

  (3)  From (1) and (2), we can get ( ) ( )GDI A GDI Aa b>  and ( ) ( )GDI A GDI Bb b>  

respectively. Therefore, ( ) ( )GDI A GDI Ba b> .        

5 Conclusions 

In the paper, partial relations and knowledge granulation based on the maximal con-
sistent block are investigated in interval-valued information systems. The knowledge 
granulation can provide important approaches to measuring the discernibility of dif-
ferent knowledge in interval-valued information systems. These results in this paper 
may be helpful for understanding the essence of rough approximations and attribute 
reduction in interval-valued information systems.  
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Abstract. Exploring rough sets from the viewpoint of multi-granulation
has become one of the promising topics in rough set theory, in which
lower or upper approximations are approximated by multiple binary re-
lations. The purpose of this paper is to develop two new kinds of multi-
granulation rough set models by using concept of central sets in a given
approximation space. Firstly, the concepts of the two new models are
proposed. Then some important properties and the relationship of the
models are disclosed. Finally, several uncertainty measures of the models
are also proposed. These results will enrich the theory and application
of multi-granulation rough sets.

Keywords: Central sets, Measures, Multi-granulation, Rough sets.

1 Introduction

The concept of multi-granulation rough set was first introduced by Qian et
al. [1] in 2006. Unlike single-granulation rough sets, the approximations of a
target concept in multi-granulation rough sets are constructed by using multi-
distinct sets of information granules. Since then, a lot of researchers dedicated
to the development of it. Qian et al. [2] presented a multi-granulation rough
set model based on multiple tolerance relations in incomplete information sys-
tems. Yang et al. [3] constructed multi- granulation rough sets based on the
fuzzy approximation space. Yang et al. [4] discussed the hierarchical structures
of multi-granulation rough sets and She et al. [5] investigated the topological
and lattice-theoretic properties of multi- granulation rough sets. Liu et al. [6,7,8]
introduced multi-granulation covering rough sets and multi-granulation covering
fuzzy rough sets in a covering approximation space and some lattice-based prop-
erties are disclosed. Lin et al. [9] introduced two kinds of neighborhood-based
multi-granulation rough sets and discussed the covering reducts of the models.
Xu et al. [10,11] constructed two types of multi-granulation rough sets based
on the tolerance and ordered relations respectively. And Xu et al. [12] proposed
multi- granulation fuzzy rough set model and some measures in the model are
constructed. Taking the test cost into consideration, Yang et al. [13] proposed a
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test cost sensitive multigraulation rough set model. A pessimistic multigranula-
tion rough set model is developed by Qian et al. [14] based on ”Seeking common
ground while eliminating differences” strategy. Qian et al. [15] developed the
multigranulation decision- theoretic rough set and proved that many existing
multigranulation rough set models can be derived from the multigranulation
decision-theoretic rough set framework. This paper discusses two new types of
multi-granulation rough set models by employing the concept of central sets.

2 Preliminaries

This section reviews some basic notions such as binary relation, binary neigh-
borhood, central sets and multi-granulation rough sets.

Definition 1 [16]. Let U = {1, 2, . . . , n} be a universe of discourse and R a
binary relation on U . For any x ∈ U , the sets NR(x) ⊆ U is called the right
binary neighborhood of x, where NR(x) = {y ∈ U | y ∈ U ∧ (x, y) ∈ R}.
Definition 2 [17]. Let U be a universe of discourse and R a binary relation on U .
The pair < U,C > is called a covering approximation space. For any x, y ∈ U , an
equivalence relation ER is defined by (x, y) ∈ ER ⇔ NR(x) = NR(y). A central
set of x is defined as CR(x) = {y ∈ U |NR(x) = NR(y), x, y ∈ U}.

It is easy to prove that πER = {CR(x)|x ∈ U} is a partition of U .

Qian et al. first proposed the rough set model based on multi-granulation
called MGRS in the reference [1].

Definition 3 [1]. Let K = (U,R) is a knowledge base, R a family of equivalence
relations on U , for any X ⊆ U , P,Q ∈ R, the optimistic lower and upper
approximations of X can be defined by the following.
OP+Q(X) = {x ∈ U | [x]P ⊆ Xor[x]Q ⊆ X}
OP+Q(X) =∼ P +Q(∼ X)

Where ∼ X is the complement of X in U .

Definition 4 [1]. Let K = (U,R) is a knowledge base, R a family of equivalence
relations on U , for any X ⊆ U , P,Q ∈ R, the pessimistic lower and upper
approximations of X can be defined by the following.
PP+Q(X) = {x ∈ U | [x]P ⊆ Xand[x]Q ⊆ X}
PP+Q(X) =∼ P +Q(∼ X)

Where ∼ X is the complement of X in U .

3 The Concepts and Properties of Two Types of
Multi-granulation Rough Sets Based on Central Sets

First, this section proposes the concepts of multi-granulation rough sets on the
basis of central sets. Then some important properties of the models are disclosed.
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Some illustrative examples are employed to show the mechanisms of the models.
For the purpose of simplicity, throughout the paper, only the case of two relations
is considered in the process of defining a multi-granulation rough set model.

Definition 5. Let < U,R > be an approximation space, where U is a universe
of discourse and R a family of binary relations based on U . For any X ⊆ U
and R1, R2 ∈ R, the optimistic lower and upper approximations of X based on
central sets with respect to R1, R2 are defined as follows.
OR1+R2(X) = ∪{CR1(x) ∩ CR2(x)|x ∈ U((NR1(x) �= ∅, NR1(x) ⊆ X)or(NR2(x)

�= ∅, NR2(x) ⊆ X))}
OR1+R2(X) = ∪{CR1(x) ∩ CR2(x)|x ∈ U(NR1(x)∩X �= ∅andNR2(x)∩X �= ∅)}
If OR1+R2(X) = OR1+R2(X), then X is said to be definable. Otherwise is called
optimistic multi-granulation rough sets based on central sets with respect to
R1, R2. The pair (OR1+R2(X), OR1+R2(X)) is called a multi-granulation rough
set of X .

Definition 6. Let < U,R > be an approximation space, where U is a universe
of discourse and R a family of binary relations based on U . For any X ⊆ U
and R1, R2 ∈ R, the pessimistic lower and upper approximations of X based on
central sets with respect to R1, R2 are defined as follows.
PR1+R2(X) = ∪{CR1(x) ∩ CR2(x)|x ∈ U((NR1(x) �= ∅, NR1(x) ⊆ X)and(NR2(x)

�= ∅, NR2(x) ⊆ X))}
PR1+R2(X) = ∪{CR1(x) ∩ CR2(x)|x ∈ U(NR1(x) ∩X �= ∅orNR2(x) ∩X �= ∅)}
If PR1+R2(X) = PR1+R2(X), then X is said to be definable. Otherwise is called
pessimistic multi-granulation rough sets based on central sets with respect to
R1, R2. The pair (PR1+R2(X), PR1+R2(X)) is called a multi-granulation rough
set of X .

Example 1. Given an approximation space < U,R >, where U = {1, 2, 3, 4, 5},
R1, R2 ∈ R and R1 = {(1, 3), (1, 5), (2, 3), (2, 5), (3, 1), (3, 2), (4, 1), (4, 2), (5, 3),
(5, 5)}, R2 = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 3), (3, 4), (3, 5), (4, 3),
(4, 4), (4, 5), (5, 3), (5, 4), (5, 5)} . Given a subset X = {2, 3} of U , according to
Definition 5 and 6, the following results can be obtained.
For R1:

NR1(1) = NR1(2) = NR1(5) = {3, 5},
NR1(3) = NR1(4) = {1, 2},
πER1

= {{1, 2, 5}, {3, 4}}.
For R2:

NR2(1) = NR2(2) = {1, 2, 3},
NR2(3) = NR2(4) = NR2(5) = {3, 4, 5},
πER2

= {{1, 2}, {3, 4, 5}}.
Then

OR1+R2(X) = ∅,
OR1+R2(X) = ({1, 2, 5}∩{1, 2})∪({1, 2, 5}∩{1, 2})∪({3, 4}∩{3, 4, 5})∪

({3, 4} ∩ {3, 4, 5})∪ ({1, 2, 5} ∩ {3, 4, 5})
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= {1, 2, 3, 4, 5};
PR1+R2(X) = ∅,
PR1+R2(X) = ({1, 2, 5}∩{1, 2})∪({1, 2, 5}∩{1, 2})∪({3, 4}∩{3, 4, 5})∪

({3, 4} ∩ {3, 4, 5})∪ ({1, 2, 5} ∩ {3, 4, 5})
= {1, 2, 3, 4, 5}.

Example 1 shows how to calculate the approximations for a given concept in
the given approximation space. Although the example shows that the outputs of
optimistic and pessimistic lower and upper approximations are the same, they
are different to each other. We will show this later in the paper.

Proposition 1. Suppose that < U,R > is an approximation space, R1, R2 ∈ R.
For any X ⊆ U , the optimistic multi-granulation rough approximations may not
satisfy the following two properties.
(1) OR1+R2(X) ⊆ X
(2) X ⊆ OR1+R2(X)

But, here we must make it clear that OR1+R2(X) ⊆ OR1+R2(X).

Example 2. (Continued from Example 1) Let X = {3, 5}, according to the
definition, we have that
OR1+R2(X) = ({1, 2, 5} ∩ {1, 2}) ∪ ({1, 2, 5} ∩ {1, 2}) ∪ ({1, 2, 5} ∩ {3, 4, 5})

= {1, 2, 5}
OR1+R2(X) = ({1, 2, 5} ∩ {1, 2}) ∪ ({1, 2, 5} ∩ {1, 2}) ∪ ({1, 2, 5} ∩ {3, 4, 5})

= {1, 2, 5}
Therefore,

OR1+R2(X) = {1, 2, 5} �⊂ X = {3, 5},
X = {3, 5} �⊂ OR1+R2(X) = {1, 2, 5},

But we have that
OR1+R2(X) = {1, 2, 5} ⊆ OR1+R2(X) = {1, 2, 5}.

Example 2 verifies the results in the Proposition 1.

Proposition 2. Suppose that < U,R > is an approximation space, R1, R2 ∈ R.
For any X ⊆ U , the pessimistic multi-granulation rough approximations satisfy
PR1+R2(X) ⊆ X ⊆ PR1+R2(X).
Proof. It can be easily proved according to Definition 6.

Proposition 3. Suppose that < U,R > is an approximation space, R1, R2 ∈ R.
For any X ⊆ U , its lower and upper approximations based on central sets with
respect to R1, R2 satisfy the following properties.
(1)OR1+R2(U) = U , OR1+R2(U) = U , PR1+R2(U) = U , PR1+R2(U) = U

(2)OR1+R2(∅) = ∅, OR1+R2(∅) = ∅, PR1+R2(∅) = ∅, PR1+R2(∅) = ∅
(3)PR1+R2(PR1+R2(X)) = PR1+R2(X)

(4)PR1+R2(X) = PR1+R2(PR1+R2(X))
Proof. Properties(1) and (2) is straightforward according Definition 5 and 6,
here we only give the proofs of (3) and (4).
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(3): On the one hand, according to Proposition 2, we have that PR1+R2(X) ⊆
X , therefore, PR1+R2(PR1+R2(X)) ⊆ PR1+R2(X);

On the other hand, by the Proposition 1 in [1], we have that
PR1+R2(PR1+R2(X)) = PR1(PR1+R2(X)) ∪ PR2(PR1+R2X)

= PR1(PR1(X) ∪ PR2(X)) ∪ PR2(PR1 (X) ∪ PR1(X))
⊇ PR1PR1(X) ∪ PR2PR2(X)
= PR1(X) ∪ PR2(X)
= PR1+R2(X)

Thus, PR1+R2(PR1+R2(X)) = PR1+R2(X) holds.
(4): It can be proved similarly as (3).

Proposition 4. Suppose that < U,R > is an approximation space, R1, R2 ∈ R.
For any X ⊆ U , the optimistic multi-granulation rough approximations may not
satisfy the following two properties.
(1) OR1+R2(OR1+R2(X)) = OR1+R2(X)

(2) OR1+R2(X) = OR1+R2(OR1+R2(X))

Example 3. (Continued from Example 2) From Example 2, we know that
OR1+R2(X) = OR1+R2(X) = {1, 2, 5}, but according to Definition 5, we can
calculate the following results.
OR1+R2(OR1+R2(X)) = ∅,
OR1+R2(OR1+R2(X)) = {1, 2, 3, 4, 5}

Therefore,
OR1+R2(OR1+R2(X)) = ∅ �= OR1+R2(X) = {1, 2, 5},
OR1+R2(OR1+R2(X)) = {1, 2, 3, 4, 5} �= OR1+R2(X) = {1, 2, 5}.

Proposition 5. Suppose that < U,R > is an approximation space, R1, R2 ∈ R.
For any X ⊆ U , we have that OR1+R2(∼ X) =∼ OR1+R2(X), but OR1+R2(∼
X) =∼ OR1+R2(X) may not be satisfied.

Example 4. (Continued from Example 2) One can calculate ∼ X = {1, 2, 4},
then the following outputs could be obtained.
OR1+R2(∼ X) = ∅,
OR1+R2(∼ X) = ({3, 4} ∩ {3, 4, 5})∪ ({3, 4} ∩ {3, 4, 5})

= {3, 4}.
Therefore,
OR1+R2(∼ X) = ∅ �= {3, 4} =∼ OR1+R2(X),

OR1+R2(∼ X) = {3, 4} =∼ OR1+R2(X).

Example 4 is a proof example for Proposition 5.

Proposition 6. Suppose that < U,R > is an approximation space, R1, R2 ∈ R.
For any X ⊆ U , we have PR1+R2(∼ X) =∼ PR1+R2(X) and PR1+R2(∼ X) =∼
PR1+R2(X).
Proof. According to Definition 6, we have that
PR1+R2(∼ X) = ∪{CR1(x) ∩CR2(x)|x ∈ U((NR1(x) �= ∅, NR1(x) ⊆ (∼ X))
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and(NR2(x) �= ∅, NR2(x) ⊆ (∼ X)))}
=∼ ∪{CR1(x) ∩ CR2(x)|x ∈ U(NR1(x) ∩X = ∅orNR2(x) ∩X = ∅)}
=∼ PR1+R2(X)

PR1+R2(∼ X) = ∪{CR1(x) ∩ CR2(x)|x ∈ U(NR1(x) ∩ (∼ X) �= ∅orNR2(x) ∩ (∼
X) �= ∅)}

=∼ ∪{CR1(x) ∩ CR2(x)|x ∈ U((NR1(x) �= ∅, NR1(x) ⊆ Xand(NR2(x) �= ∅,
NR2(x) ⊆ X))}
=∼ PR1+R2(X)

Example 5. (Continued from Example 2) We have ∼ X = {1, 2, 4}, then we
can get the following results.
PR1+R2(∼ X) = ∅,
PR1+R2(∼ X) = ({1, 2, 5} ∩ {1, 2})∪ ({1, 2, 5} ∩ {1, 2}) ∪ ({3, 4} ∩ {3, 4, 5})∪

({3, 4} ∩ {3, 4, 5})∪ ({1, 2, 5} ∩ {3, 4, 5})
= {1, 2, 3, 4, 5}

Therefore,
PR1+R2(∼ X) = ∅ =∼ PR1+R2(X),

PR1+R2(∼ X) = {1, 2, 3, 4, 5} =∼ PR1+R2(X).

Proposition 7. Suppose that < U,R > is an approximation space, R1, R2 ∈ R.
Then, for arbitrary X ⊆ U , the following properties hold.
(1) If X ⊆ Y , then OR1+R2(X) ⊆ OR1+R2(Y )

If X ⊆ Y , then PR1+R2(X) ⊆ PR1+R2(Y )

(2) If X ⊆ Y , then OR1+R2(X) ⊆ OR1+R2(Y )
If X ⊆ Y , then PR1+R2(X) ⊆ PR1+R2(Y )

(3) OR1+R2(X ∩ Y ) ⊆ OR1+R2(X) ∩OR1+R2(Y )
PR1+R2(X ∩ Y ) ⊆ PR1+R2(X) ∩ PR1+R2(Y )

(4) OR1+R2(X ∪ Y ) ⊇ OR1+R2(X) ∪OR1+R2(Y )
PR1+R2(X ∪ Y ) ⊇ PR1+R2(X) ∪ PR1+R2(Y )

(5) OR1+R2(X ∪ Y ) ⊇ OR1+R2(X) ∪OR1+R2(Y )
PR1+R2(X ∪ Y ) ⊇ PR1+R2(X) ∪ PR1+R2(Y )

(6) OR1+R2(X ∩ Y ) ⊆ OR1+R2(X) ∩OR1+R2(Y )
PR1+R2(X ∩ Y ) ⊆ PR1+R2(X) ∩ PR1+R2(Y )

Proof. First, we give the proofs of (1) and (2). According to Definition 5 and 6,
if X ⊆ Y , then
OR1+R2(X) = ∪{CR1(x) ∩ CR2(x)|x ∈ U((NR1(x) �= ∅, NR1(x) ⊆ Xor(NR2(x)

�= ∅, NR2(x) ⊆ X))}
⊆ ∪{CR1(x) ∩ CR2(x)|x ∈ U((NR1(x) �= ∅, NR1(x) ⊆ Y or(NR2(x)
�= ∅, NR2(x) ⊆ Y ))}
= OR1+R2(Y )

PR1+R2(X) = ∪{CR1(x) ∩ CR2(x)|x ∈ U((NR1(x) �= ∅, NR1(x) ⊆ Xand(NR2(x)
�= ∅, NR2(x) ⊆ X))}
⊆ ∪{CR1(x) ∩ CR2(x)|x ∈ U((NR1(x) �= ∅, NR1(x) ⊆ Y and(NR2(x)
�= ∅, NR2(x) ⊆ Y ))}
= PR1+R2(Y )
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OR1+R2(X) = ∪{CR1(x) ∩ CR2(x)|x ∈ U(NR1(x)∩X �= ∅andNR2(x)∩X �= ∅)}
⊆ ∪{CR1(x) ∩ CR2(x)|x ∈ U(NR1(x) ∩ Y �= ∅andNR2(x) ∩ Y �= ∅)}
= OR1+R2(Y )

PR1+R2(X) = ∪{CR1(x) ∩ CR2(x)|x ∈ U(NR1(x) ∩X �= ∅orNR2(x) ∩X �= ∅)}
⊆ ∪{CR1(x) ∩ CR2(x)|x ∈ U(NR1(x) ∩ Y �= ∅orNR2(x) ∩ Y �= ∅)}
= PR1+R2(Y )

(3) As we know, X ∩ Y ⊆ X and X ∩ Y ⊆ Y . Then, according to (1), we have
OR1+R2(X ∩ Y ) ⊆ OR1+R2(X) and OR1+R2(X ∩ Y ) ⊆ OR1+R2(Y )

Therefore,
OR1+R2(X ∩ Y ) ∩OR1+R2(X ∩ Y ) ⊆ OR1+R2(X) ∩OR1+R2(Y )

That is, OR1+R2(X ∩ Y ) ⊆ OR1+R2(X) ∩OR1+R2(Y ).

PR1+R2(X ∩ Y ) ⊆ PR1+R2(X) ∩ PR1+R2(Y ) can be proved similarly.

(4)As we know, X ⊆ X ∪ Y and Y ⊆ X ∪ Y . Then, according to (2), we have
OR1+R2(X ∪ Y ) ⊇ OR1+R2(X) and OR1+R2(X ∩ Y ) ⊇ OR1+R2(Y )

Therefore,
OR1+R2(X ∪ Y ) ∪OR1+R2(X ∪ Y ) ⊇ OR1+R2(X) ∪OR1+R2(Y )

That is, OR1+R2(X ∪ Y ) ⊇ OR1+R2(X) ∪OR1+R2(Y ).

One can prove PR1+R2(X ∪ Y ) ⊇ PR1+R2(X) ∪ PR1+R2(Y ) in a similar way.

(5) Obviously, we have X ⊆ X ∪ Y and Y ⊆ X ∪ Y . Then, according to (1), the
following are satisfied.
OR1+R2(X ∪ Y ) ⊇ OR1+R2(X) and OR1+R2(X ∩ Y ) ⊇ OR1+R2(Y )

Therefore,
OR1+R2(X ∪ Y ) ∪OR1+R2(X ∪ Y ) ⊇ OR1+R2(X) ∪OR1+R2(Y )

That is, OR1+R2(X ∪ Y ) ⊇ OR1+R2(X) ∪OR1+R2(Y ).

PR1+R2(X ∪ Y ) ⊇ PR1+R2(X) ∪ PR1+R2(Y ) can be proved in a similar way.

(6) Noting that X ∩ Y ⊆ X and X ∩ Y ⊆ Y , by employing (2), we have
OR1+R2(X ∩ Y ) ⊆ OR1+R2(X) and OR1+R2(X ∩ Y ) ⊆ OR1+R2(Y )

Therefore,
OR1+R2(X ∩ Y ) ∩OR1+R2(X ∩ Y ) ⊆ OR1+R2(X) ∩OR1+R2(Y )

That is, OR1+R2(X ∩ Y ) ⊆ OR1+R2(X) ∩OR1+R2(Y ).
We can prove PR1+R2(X∩Y ) ⊆ PR1+R2(X)∩PR1+R2(Y ) by using the similar

method.

Proposition 8. Suppose that < U,R > is an approximation space, R1, R2 ∈ R.
Then, for arbitrary X ⊆ U , the following property holds.
PR1+R2(X) ⊆ OR1+R2(X) ⊆ OR1+R2(Y ) ⊆ PR1+R2(Y )

Proof. It is straightforward according to Definition 5 and 6.
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4 Uncertainty Measures

Rough set theory is an efficient tool for handling vagueness and uncertainty. In
this section, some measures to characterize the vagueness and uncertainty of the
new model are introduced.

Definition 7[18]. Let S = (U,AT ) be an information system. For A ⊆ AT ,

X ⊆ U , the rough membership of x in X is defined as uAX(x) =
|[x]A∩X|
|[x]A| .

The rough membership defined in Definition 7 can only evaluate the uncer-
tainty in classical rough set model. Next, a new rough membership is proposed,
which can be used to handle the uncertainty of neighborhood rough sets.

Definition 8. Suppose that < U,R > is an approximation space, R ∈ R
and X ⊆ U . The neighborhood rough membership of x is defined as uRX(x) =
|NR(x)∩X|
|NR(x)| .

Based on Definition 8, a rough membership for multi-granulation rough sets
based on central sets is defined as follows.

Definition 9. Suppose that < U,R > is an approximation space, R1, R2 ∈ R.
Then for any X ⊆ U , the rough membership of x can be defined as uRX(x) =
u
R1
X (x)+u

R2
X (x)

2

Example 6.(Continued from Example 1) According to Definition 9, the follow-
ing results can be obtained.

uR1

X (1) = uR1

X (2) = uR1

X (5) = |{3,5}∩{2,3}|
|{3,5}| = 1

2

uR1

X (3) = uR1

X (4) = |{1,2}∩{2,3}|
|{1,2}| = 1

2

uR2

X (1) = uR2

X (2) = |{1,2,3}∩{2,3}|
|{1,2,3}| = 2

3

uR2

X (3) = uR2

X (4) = uR2

X (5) = |{3,4,5}∩{2,3}|
|{3,4,5}| = 1

3

Then

uRX(1) =
u
R1
X (1)+u

R2
X (1)

2 =
1
2+

2
3

2 = 7
12

uRX(2) =
u
R1
X (2)+u

R2
X (2)

2 =
1
2+

2
3

2 = 7
12

uRX(3) =
u
R1
X (3)+u

R2
X (3)

2 =
1
2+

1
3

2 = 5
12

uRX(4) =
u
R1
X (4)+u

R2
X (4)

2 =
1
2+

1
3

2 = 5
12

uRX(5) =
u
R1
X (5)+u

R2
X (5)

2 =
1
2+

1
3

2 = 5
12

Proposition 9. Suppose that < U,R > is an approximation space, R1, R2 ∈ R.
Then, for arbitrary X ⊆ U , 0 < uRX(x) ≤ 1 holds.
Proof. It can be easily proved according to definitions 8 and 9.
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5 Conclusion

In this paper, two new kinds of multi-granulation rough set models have been
proposed by using the central set of elements. Some meaningful properties of
the models have been discussed in details and several examples were given to
explain the concepts and properties in the paper. Finally, some uncertainty mea-
sures are discussed. The further research may include how to establish decision
method based on the theory of multi-granulation rough set and how to employ
the proposed models for decision-making in the context of uncertainty.
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Abstract. We consider that Rough Sets that arise in an Information
System from the point of view of Topology. The main purpose of this
paper is to show how well known topological concepts are closely related
to Rough Sets and generalize the Rough sets in the frame work of Topo-
logical Spaces. We presented the properties of Quasi-Discrete topology
and Π0-Roughsets.

Keywords: Upper and Lower Approximations, Reducts, Discernibility
Matrix, Rough Topology, Π0-Roughsets.

1 Introduction

A Rough Set first described by Polish Computer Scientist Zdzislaw Pawlak is a
formal approximation of Crisp Set in terms of a pair of a sets which give the Lower
and Upper approximation of the original set.(en.wikipedia.org/wiki/Rough-Set).
Rough set Theory based on the assumption that every object in the universe we
associate some information. The basics of Roughset theory is based on similarity
relation in which objects are having same information.

Rough Set Theory is the extension of conventional set theory that supports
approximations is decision making. A Rough Set itself is a approximation of
vague concepts by a pair of Crisp Sets called Lower and Upper approximation.
The Lower approximation is the set of objects with certainty for belong to the
subset of interest where as upper approximation is the set of all objects that are
possibly belongs to the subset.

2 Terminologies of Rough Set Theory

An Information System can be represented as table of data, consisting of Objects
in Rows and Attributes in Columns. For example in a Medical Data Set Patients
might be represented as Objects (Rows), their Medical History such as Blood
Pressure, Height, Weight etc. as Attributes (Columns). Attributes are also called
as Variables or Features.

An Information System is a pair IS = (U,A) where U is a non-empty finite
set of objects called Universe and A is a non-empty finite set of attributes such
that a: U −→ Va for every a ∈ A . The set Va is called the value set of ‘a’.

D. Miao et al. (Eds.): RSKT 2014, LNAI 8818, pp. 69–74, 2014.
DOI: 10.1007/978-3-319-11740-9_7 c© Springer International Publishing Switzerland 2014
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3 Decision System

From the above Information System we can give the classification of Patients
for finding the Patient is ill or healthy. Such Classification is known as Decision
System and the corresponding attribute is called Decision Attribute.

4 Indiscernibility

Rough Set is a pair (U,R) Where U is Universe of Objects and is an Equiva-
lence Relation on R. For each object x ∈ U we can construct the set [x]R =
{y ∈ U : (x, y) ∈ R} and they are called Equivalence Class. The Set of all Equiva-
lence Classes is calledQuotient set and which is defined byU/R = {[x]R : x ∈ U} .
For each x ∈ U we can find a unique value aR (x) = [x]R and construct a function
aR : U → U/R and this function aR is called Feature or Variable or Attribute of
objects in the universe U with respect to R. Two objects x, y ∈ U are said to be
Indiscernible if and only if aR (x) = aR (y) , and the relation is called Indiscerni-
bility relation denoted by INDa.

For any P ⊆ A there is an equivalence relation IND(P ) which is defined as

IND(P ) =
{
(x, y) ∈ U2

/∀a ∈ P, a(x) = a(y)} (1)

which represents two objects are equivalent if and only if their attribute values
are same in P .

5 Upper Approximation and Lower Approximation

Let Y be a Rough Set and Y ⊂ U can be approximated using only the informa-
tion contained within R by constructing the Lower and Upper approximation
of R. Equivalence classes contained within Y belong to the Lower Approxima-
tion (RY ). Equivalence classes within X and along its border form the Upper
Approximation (RY ). They are expressed as

RY = {x ∈ U : [x]R ⊆ Y } → Lower Approximation.

RY = {x : [x]R ∩ Y �= ∅ } → Upper Approximation

Remark 1.

i. RY ⊆ Y ⊆ R̄Y

ii. If RY = RY then Y is Exact

iii. R(X ∩ Y ) = RX ∩ RY

iv. RX ⊆ X
v. R (RX) = RX

vi. R (∅) = ∅
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vii. R (X ∪ Y ) = RX ∪ RY

viii. X ⊆ RX
ix. R

(
RX

)
= RX

x. R (U) = U.

6 Decision System

A Decision system is a triple Ad = (U,A, d) where (U,A) is an Information
System, d is a Distinguished attribute called the Decision Attribute which is
defined by the function d : U → Vd on the universe U into the value set Vd
and the d induces the partition of the universe U into equivalence classes of the
INDd. From this Decision System Ad, and a set B ⊆ A of Attributes we can
define the Positive Region as [7]

POSB (d) = { x ∈ U : ∃i ∈ {1, 2, . . . .k (d)} . [x]B ⊆ Xi } (2)

where {1, 2, . . . .k (d)} .[x]B ⊆ Xi are Decision Classes.

7 Reduct

Reduct is the process of finding the Minimal Subset for the original Data Set
without information loss. Hence Reduct is a subset which is defined as a minimal
subset R of the initial attribute set c such that for a given set of attributes D,

γR(D) = γc(D)

That is R is a minimal subset if

γR−{a}(D) �= γc(D), ∀a ∈ R
which means that no attributes can be removed from the subset without affect-
ing dependency degree. A given data set may have many reduct sets, and the
collection of all reducts is denoted by

RALL =
{
X
/
X ⊆ C, γR (D) = γc (D) , γR−{a} (D) �= γc (D) , ∀a ∈ X} .

The intersection of all the sets in RALL is called “CORE”. The condition for
locate a single element of the reduct set is RMIN ⊆ RALL.

8 Finding Reduct Through Discernibility Matrix

Let A be an information system with n objects and k attributes. The Discerni-
bility Matrix of A is a Symmetric Square matrix MA of order n which is defined
by [2]

Cij = {a ∈ A : a (xi) �= a (xj)} where i, j = 1, 2, 3, . . . n (3)

and fA (a∗1, a∗2, . . . a∗k) : ∧{∧ C∗
ij : 1 ≤ j, Cij �= ∅} Where fA is the discerni-

bility function.
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Theorem 1. A Conjunction
∧m

j=1 a
∗
ij
is a Prime Implicants of the Discernibility

function fA if and only if the set { ai1 , ai2 , . . . .. aim } is a RED(A) where
RED(A) is Reducts of the Information System A.

Proof. Let us consider a set B ⊆ A of attributes and define the value vB as

vB =

{
vB (a∗) = 1 if a ∈ B
vB (a∗) = 1 if a /∈ B

Let us assume that fA takes the value 1 under vB
=⇒ Normal Disjunctive form and Dual of fA takes the value 1.
=⇒ { ai1 , ai2 , . . . .. aik } ⊆ B
=⇒ Minimal Set B with the property INDA = INDB is of the form

{ai1 , ai2 , . . . .. aik} for some k, which is RED (A) .

Proposition 1. The Set IND(P ) =
{
(x, y) ∈ U2

/
/∀a ∈ P, a(x) = a(y)} forms

Partition of U.

The Partition of U , determined by IND(P ) is denoted by U/IND(P ) , which is
the set of equivalence classes generated by IND(P ).The Partition characterizes
a topological space which is called Approximation Space AS = (U,P) where U
is the Universal Set and P is an Equivalence Relation and Equivalence classes of
P are called Granules, Blocks or Elementary Sets. Px ⊆ U denote equivalence
class containing x ∈ U.
Using the above notations we can express Rough Membership Function which
is defined as

ηPX(x) =
|PX

⋂
X|

|PX | , x ∈ U.

9 Toplogical Properties of Rough Set Theory

TheRoughSetTopology is generatedby its equivalence classes inwhich everyOpen
set is Closed and is known as Clopen Topology or Quasi-Discrete Topology. [5]

Definition 1. A Topology for U is a collection τ of subsets of U satisfying the
following conditions:
i. ∅ ∈ τ and U ∈ τ.
ii. The arbitrary union of members of each sub-collection of τ is a member of τ .
iii. The finite intersection of members of τ is a member of τ.

10 Rough Topology

Definition 2. Let (U, τ) be a Topological Space and and let R(τ) be the equiv-
alance relation on P (U) defined as (A,B) ∈ R (τ)⇔ {

AI = BI and AC = BC
}
.

A Topology τ is Quasi-Discrete if the sets in τ are Clopen.
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Remark 2. i. The members of τ are called Open Sets.
ii. The complement of Open Sets are Called Closed Sets.
iii. The Interior ofX ∈ U is the largest Open Subset ofX and it is denoted asXI

iv. The Closure of X ∈ U is the smallest closed subset that includes X and it is
denoted as XC

v. ATopologicalRoughSet in (U, τ) is the Element of theQuotient setP (U)/R(τ).

Remark 3. Let XC , XI and XB be Closure, Interior and Boundary Points
respectively. Then the following axioms are hold
i. If XB = ∅, then X is Exact otherwise it is said to be Rough.
ii. If XC = X = XI , then X is Totally Definable.
iii. If XC �= X,XI �= X then X Undefinable.
iv. If XB �= X,XC = X then X is Externally Definable.
v. If XB = XC �= X then X is Internally Definable.

Proposition 2. If A is Exact in (U , τ) and τ ⊂ τ , then A is Exact with respect
to τ ,

Proof. If A is Exact means then XB = ∅ in (U, τ). Since τ ⊂ τ ′, XB = ∅ in
(U, τ ′) and hence A is Exact with respect to τ ′

Proposition 3. If (U, τ) is a Quasi-Discrete Topology and τ ⊂ τ ′ then each
Exact Set in τ is Exact in τ ′ iff XC in (U, τ) = XC in (U, τ ′), ∀X ∈ τ ′

11 Π0 - Rough Sets

Let U be the Universe and P =
{
[x]Rn

: x ∈ X, n = 1, 2, 3, . . .
}

be the fam-
ily of all equivalence classes of all relations Rn as open base from U . Given
Rn we can construct Πn the topology obtained by taking the family Pn ={
[x]Rn

: x ∈ X, n = 1, 2, 3, . . .
}
as a open base, where P ⊆ Pn, from this con-

cept we construct T = Cl (Π0)X, T = U/(IntΠ0)X

Definition 3. Π0 – Rough Sets are defined as a pair (Q, T ) ,
where Q = Cl ( Π0 )X, T = U/(Int Π0 )X.

Remark 4. A pair (Q, T ) of Π0 Closed Sub Sets in U satisfies the conditions
Q = Cl ( Π0 )X,T = U/(Int Π0 )X with a rough subset X ⊆ U if and only
if Q, T satisfy the following conditions

i.Q
⋃
T = U

ii. Q
⋂
T �= ∅

iii. Q
⋂
T does not contain any point x such that the singleton {x} is Π0-Open.

12 Rough Set Metric

The Metric Topology on RΠ0 is defined by

dn (x, y) =

{
1 when
0

[x]n �= [y]n
otherwise

where dn : UXU → R+ and R+ is the set of Non-Negative Real Numbers.
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Proposition 4. The Metric Topology Induced by d coincides with the topologyΠ0

Proof. Let B = xtn for y ∈ B and r < 10−n, the Open Ball B (y, r) . From
the definition of metric we have for any z ∈ B (y, r) , [z]n = [y]n otherwise
(y, z) ≥ 1

9 .10−n+1 hence [z]n = xtn ⇒ B (y, r) ⊆ xtn ⇒ xtn is open. Conversly,
for an open ball B (x, s), let r = s − d(x, y) and select n, such that 10−n < r.
For z ∈ [y]n we have (y, z) ≤ 1

9 .10−n+1. Then By Triangle Inequality d (z, x) <
s⇒ [y]n ⊆ B (x, s) . Hence B (x, s) is open in Π0.

13 Conclusion

In this paper we have discussed Quasi-Discrete topology, Metric Topology, Π0. –
Rough Sets with their significant properties and relation between Metric Topol-
ogy on Π0. – Rough Sets. Finally we conclude such significant Topological
properties of Rough Set Theory will be useful in Datamining, Information
Analysis and Knowledge Processing.
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Abstract. Rough set theory is an effective supervised learning model for  
labeled data. However, it is often the case that practical problems involve both 
labeled and unlabeled data. In this paper, the problem of attribute reduction for 
partially labeled data is studied. A novel semi-supervised attribute reduction  
algorithm is proposed, based on co-training which capitalizes on the unlabeled 
data to improve the quality of attribute reducts from few labeled data. It gets 
two diverse reducts of the labeled data, employs them to train its base classifi-
ers, then co-trains the two base classifiers iteratively. In every round, the base 
classifiers learn from each other on the unlabeled data and enlarge the labeled 
data, so better quality reducts could be computed from the enlarged labeled data 
and employed to construct base classifiers of higher performance. The experi-
mental results with UCI data sets show that the proposed algorithm can im-
proves the quality of reduct. 

Keywords: Rough Sets, Co-training, Incremental Attribute Reduction, Partially 
Labeled Data, Semi-supervised learning.  

1 Introduction  

Since the initial work of Pawlak [1,2], rough set theory, as an effective approach to 
dealing with imprecise, uncertain and incomplete information, has been applied to 
many domains, such as pattern recognition, artificial intelligence, machine learning, 
economic forecast, knowledge acquisition and data mining [3-7]. 
 Attribute reduction is one of the most fundamental and important notions in rough 
set theory, which provides a minimum subset of attributes that preserves the same 
descriptive ability as the entire set of attributes [1].So there is a variety of research 
and application on the issue [8,9]. These researches mainly concentrate on the 
attribute reduction of labeled data.                                                                               

While in many practical applications (e.g. web-page classification, speech recogni-
tion, natural language parsing, spam filtering, video surveillance, protein 3D structure 
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prediction, etc.), labeled data may be difficult to obtain because they require human 
annotators, special devices, or expensive and slow experiments. Moreover, the unla-
beled data are available in large quantity and easy to collect [10]. A partially labeled 
data consists of a few labeled data and large numbers of unlabeled data. So the prob-
lem arises of how to get the attribute reduct of partially labeled data.  It is outside the 
realm of traditional rough set theory. If only labeled data are considered, it is difficult 
to select high quality reduct due to the scarcity of the labeled data. Or the partially 
labeled data are transformed into labeled data, such as reference [11]. It attaches a 
special pseudo-class symbol which differs from that of all labeled data to every unla-
beled data and unlabeled data will have a class symbol. This method exploits the un-
labeled data but would introduce some irrelevant attributes. 

The aim of the paper is to capitalize on the unlabeled data to improve the quality of 
attribute reducts from few labeled data, which could make rough sets more practicably.  

The main idea is to get higher quality attribute reducts during the process of two 
classifiers co-training iteratively. So firstly section 2 presents the preliminary know-
ledge on co-training and incremental updating algorithm for attribute reduction based 
on discernibility matrix. Section 3 proposes the attribute reduction algorithm for par-
tially labeled data. The theoretical analysis and the experimental results are given in 
section 4 and section 5, respectively. Finally, Section 6 concludes the paper and indi-
cates the future work.  

2 Preliminaries  

In rough set theory, an information system( ) is denoted ,where

is a finite nonempty set of objects , A is a finite nonempty set of 

attributes to characterize the objects ,To be more specific, is also 

called a decision table if , where is the set of condition attributes and

is one of class attributes, the V is the union of attribute domains such that  

for  denoting the value domain of attribute a, and is an information 

function which associates a unique value of each attribute with every object belonging 
to U, such that for any  and .Also, can be writ-

ten more simply as .  

2.1 Incremental Updating Algorithm for Attribute Reduction 

Definition 1. For any , and  are consistent if implies 

;otherwise, and are inconsistent. Condition attributes , and

are R-consistent if implies ;otherwise, and are R-

inconsistent. 

IS ( , , , )IS U A V f=
U 1 2{ , ,..., }nx x x

1 2{ , ,..., }ma a a IS

A C D=  C D

a AVaV ∈= 

aV :f U A V× →

a A∈ , ( , ) au U f u a V∈ ∈ ( , , , )U A V f

( , )U A

, ( )i j i jx x U x x∈ ≠ ix jx i jC C=

i jD D= ix jx R C⊆ ix

jx i jR R= i jD D= ix jx
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Definition 2. If is a family of non-empty sets(classification), 

then . The quality of approximation of by is defined 

as . 

 
Definition 3. The indiscernibility relation , is defined as

. 

 
Definition 4. The set of ( ) which is equivalent with employing

is denoted by . 

Many existing algorithms mainly aim at the case of stationary information system 
or decision table，very little work has been done in updating of an attribute reduc-
tion. Reference [12] introduces an incremental updating algorithm(named algorithm-
IUAARI )for attribute reduction based on discernibility matrix in the case of updating, 
which only inserts a new row and column, or deletes one row and updates correspond-
ing column when updating the discernibility matrix. Attribute reduction can be effec-
tively updated by utilizing the old attribute reduction. Main idea is stated as follows. 
Details are referenced to reference [12].  

Two objects are discernible if their values are different in at least one attribute. 
Skowron and Rauszer suggested a matrix representation for storing the sets of 
attributes that discern pairs of objects, called a discernibility matrix [13]. For decision 
table, reference[12] considers consistent and inconsistent cases, redefines the matrix

as follows:   
 

      

 

function is defined as follows: 

begin 
   

  for  do 

if not  makes and  then 

  

return  

end 
According to analysis of matrix updating on the new added data, algorithm 

IUAARI considers three cases to get new reduct efficiently, described as follows: 
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Algorithm IUAARI (Incremental Updating Algorithm of Attribute Reduction for Inserting) 

Input: (1) , discernibility matrix  

(2)  //  is a set of all reducts for  

(3)An added data  

Output:  

(1) Compute updated and   

(2)  

① if is not consistent with  then , go to 

(3); 
② if is not consistent with  then  

  

          if  then 

              select attributes in to construct for 

; 

else 
              select attributes in to construct for 

; 

go to (3); 
③ if is consistent with  then , go to 

(3); 
         else{    
               

               select attributes in to construct for 

; 

              go to (3); 
         }  

 (3)   return  

2.2 Co-training 

Co-training [14] proposed by Blum and Mitchell is an important semi-supervised 
learning model. It is a classical semi-supervised style and has been used in many ap-
plications successfully, such as web-page categorization, image retrieval and intrusion 
detection [15]. The standard co-training assumes that there exist two sufficient and 
redundant sets of attributes or views that describe the data. Two base classifiers are 
first trained on the initial labeled data using two attribute sets respectively. Then, 
alternately, one classifier labels some confident unlabeled data and adds those data 

1 2 1 2 2
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with predicted labels to the training set of the other one. The classifiers are iteratively 
retrained until the predefined stopping criterion is met. But in many practical applica-
tions, there is only a single natural set of attributes, and the assumption for two suffi-
cient and redundant attribute sets is difficultly satisfied.   

Then two kinds of ideas are proposed as follows. One is to meet the conditions as 
far as possible, such as two view based on random splitting, mutual independence 
measures and genetic algorithm optimization, etc. [16-21]. In this way, it might be not 
stable of view splitting or not sufficient. The other is to relax the conditions, such as 
different classifiers based on resampling of a single attribute set [22-25]. In fact, it 
only employs a single view.  

Usually, there are a number of reducts for a given partially labeled data. Each re-
duct preserves the discriminating power of the original data. Therefore, it is sufficient 
to train a good classifier. Moreover, different reducts describe the data in different 
views. So after transformation of partially labeled data to decision table by attaching a 
special pseudo-class symbol which differs from that of all other data to every unla-
beled data, reference [11,26] employ two diverse attribute reducts on the transformed 
decision table as two views to train the base classifiers of co-training. In this way, 
however, the reducts might include irrelevant attributes as mentioned above. 

3 Co-training Based Attribute Reduction Algorithm 

Formally, a partially labeled data is denoted as 

,where —is a nonempty and finite set of labeled data. —is a nonempty and finite 
set of unlabeled data. 

The number of initial labeled data is very limited. It is difficult to get high quali-
ty reduct from it. But lots of unlabeled data could be considered to capitalize on  
to improve the quality of attribute reducts. According to the condition of co-training, 
the original attributes are split into two sufficient and diverse attribute sets as two 
views. And two base classifiers are trained on them. The two base classifiers co-train 
iteratively. In every round, the base classifiers learn from each other on the unlabeled 
data and enlarge the labeled data, so better quality reducts could be computed on the 
enlarged labeled data and employed to construct base classifiers of higher perfor-
mance. It goes by iteration in this way until the classifiers don’t change any more. The 
structure of co-training based attribute reduction for partially labeled data is shown in 
Fig. 1. 

So firstly, how to split the original attributes into the two sufficient and diverse 
views? Usually, there are a number of reducts for a given labeled data. Each reduct 
preserves the discriminating power of the original data. Therefore, it is sufficient to 
train a good classifier. Moreover, different reducts describe the data in different 
views, which means the classifying rules induced by the different reducts would be 
different, so the classifiers are different. Therefore, we firstly compute two diverse 
reduct to train the base classifiers of co-training. The detailed procedure is shown in 
Algorithm TDRCA. 

 

( , , , )PS U L N A C D V f= = = 
L N

L
N
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Fig. 1. Framework of the incremental attribute reduction for partially labeled data 

Algorithm TDRCA (Two Diverse Reducts Construction Algorithm)

Input：  . 

Output：Two diverse reducts: ． 

(1) , Compute the discernibility matrix  of ; 

(2) perform matrix absorption on ; 
(3) Add the attributes in the singleton set of  to and remove the 

attributes that do not appear in  from ; 
(4) , ; sort the attributes in  by frequency ascending-

ly and add them to Clist ; 
while contains non-singleton subsets do  

Select the left-most frequent attribute  in , 

, 

Perform matrix deletion on  to remove matrix elements which includes ; 
end while 

(5) , ;   

while contains non-singleton subsets do 
  Select the left-most frequent attribute  in , 

  , 

  Perform matrix deletion on  to remove matrix elements which includes ; 
  if( ) put the attributes of  in ; 

end while 
(6) return  
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Algorithm TDRCA firstly gets an optimal reduct based on discernibility ma-
trix. And to get the second reduct , the following strategy is employed. The 
core attributes are added into . In order to get as different as possible reduct with 
the , we prioritize the attributes that don’t be included in . If these 
attributes are not enough to construct a reduct, the attriubutes in  are be 
taken into account. In this way, we could get two as different reducts as possible. 

We treat the two reducts as the views for co-training to get base classifiers. As ana-
lyzed above, the two reducts not only keep the discriminating power of the original 
data but also describe the initial labeled data from different points of view. Then dur-
ing the process of co-training, unlabeled data are exploited to enlarge labeled data set, 
two classifiers are retrained and better reducts are gotten iteratively as depicted in 
Fig1.It can be formulated by Algorithm CTARAPLD. 

 
Algorithm CTARAPLD ( Co-training Based Attribute Reduction Algorithm for Partially 
Labeled Data)

Input： . 

Output：Reduct  ． 
(1) On ,decompose condition attribute set C into two diverse reducts and 

by Algorithm TDRCA; 
(2) ,Train two base classifiers f1 and f2 on  in 

reducts and respectively; 
(3) while( or ) do 

① Add ( ) with the class symbols predicted by

to the training set and . Compute  on updated 

by Algorithm IUAARI. 

② Add ( ) with the class symbols predicted by

to the training set and . Compute  on updated 

by Algorithm IUAARI . 

③ Check the updating of reducts on enlarged . 

If (no updating in reducts)   
Retrain classifiers f1 and f2 on updated ; 

else  
Retrain classifiers f1 and f2 on updated in updated and

respectively;  
end while 

(4) return ． 

 
By algorithm TDRCA, two diverse reducts are gotten as views, in which two base 

classifiers are trained on the initial labeled data respectively. For any unlabeled data,  
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two classifiers predict it and result will be one of the following cases─only one clas-
sifier is predictable, both of classifiers are predictable or unpredictable. The classifiers 
could learn from each other in the first case. Unlabeled data with predicted class sym-
bol are exploited to enlarge labeled data. In this way, reduct could be updated to more 
close with true reduct of all training data labeled. After the classifiers are retrained on 
the enlarged labeled data, their classification performance are boosted and unpredict-
able data before would be predictable. The classifiers will learn from each other once 
again. In an ideal situation, every unlabeled data would be labeled a class symbol and 
the reduct may be very close to the true one of all training data labeled.   

4 Empirical Analysis 

4.1 Benchmark Data Sets and Experiment Parameters 

Five UCI data sets [27] are used in the experiments. The detailed information of these 
data sets is shown in Table 1. Data set “Iono”, “Wine” and “WPBC” are described by 
continuous attributes. We use the principle of equal frequency [28] to discretize conti-
nuous data. For each data set, 10-fold cross validation is employed for evaluation. In 
each fold, the training set is randomly partitioned into labeled set and unlabeled set

under a given label rate ( ), which can be computed by the size of over the size 
of .  

Table 1. UCI data sets 

Data Set #Attributes #Instances #Classes 
Ionosphere (Iono) 34 351 2 

Wine  13 178 3 
Wisconsin Diagnostic Breast Cancer (WDBC) 30 569 2 
Wisconsin Prognostic Breast Cancer (WPBC) 32 198 2 

tic-tac-toe(TTT) 9 958 2 
 
In the every round of iteration , class symbols ratio of selected unlabeled data will 

match the one of data in the underlying data distribution of initial labeled data.  

4.2 Validation of the Classifiers’ Generalization in Reducts 

For the evaluation of reduct quality, we collect the cardinality of redcuts and accuracy 
of classifiers trained in reducts by the following ways: 

(a)  Compute the reduct on the labeled data under the labeled rate =100%, 
which is showed in table 2. 

(b) Without exploiting the unlabeled data, compute the reduct only on the labeled 
data under the labeled rate =10%, which is showed in table 3. 

L
N α L

L N

α

α
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(c) Transform the partially labeled data into labeled data in the way attaching a 
pseudo-class symbol which is discernible from all other data. Compute the re-
duct on the transformed data, which is showed in table 4. 

(d) By the algorithm CTARAPLD proposed in the paper, compute the reduct on the 
partially labeled data under the labeled rate =10%, which is showed in table 5. 
The cardinality of reduct with best classification accuracy is recorded in table 6.  

We apply CART and Bayes , two popular classification learning algorithm to eva-
luate the quality of the reducts. For each data set under a specific label rate, 10-fold 
cross validation is applied, and the results are averaged. Table 2-5 show the average 
cardinality of reducts and the average accuracy of the learned classifiers in the differ-
ent cases as described above. In table 2-5, N1, N2 denote the average cardinality of 
original attribute set and computed reduct, respectively. Accuracy1 and Accuracy2 
means the average accuracy of classifiers in original attribute set and computed  
reduct, respectively. 

 

Table 2. Cardinality of reducts and accuracy of classifiers on data under =100% 

Data Set 
#Attributes   CART  Bayes 

N1 N2 Accuracy1 Accuracy2 Accuracy1 Accuracy2 

Wine 13 5 0.8786  0.9092  0.9424  0.9315  

Iono 34 8 0.8221  0.8386  0.8097  0.6983  

WDBC 30 8 0.9342  0.9350  0.9250  0.9388  

WPBC 32 7 0.6667  0.6869  0.5814  0.7169  

 TTT 9 8 0.8213  0.7612  0.6258  0.6521  

Avg. 23.6  7.2  0.8246  0.8262   0.7768  0.7875  

 
 

Table 3. Cardinality of reducts and accuracy of classifiers on labeled data under =10% 

Data Set 
#Attributes   CART  Bayes 

N1 N2 Accuracy1 Accuracy2 Accuracy1 Accuracy2 

Wine 13  3 0.8786  0.6980  0.9424  0.7237  

Iono 34  6 0.8221  0.7281  0.8097  0.7215  

WDBC 30  3 0.9342  0.8757  0.9250  0.8753  

WPBC 32  5 0.6667  0.7113  0.5814  0.6907  

 TTT 9  6 0.8213  0.7269  0.6258  0.6472  

Avg. 23.6  4.6   0.8246  0.7480   0.7768  0.7317  

 

α

α

α
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Table 4. Cardinality of reducts and accuracy of classifiers on transformed labeled data under 
=10%. 

Data Set 
#Attributes   CART  Bayes 

N1 N2 Accuracy1 Accuracy2 Accuracy1 Accuracy2 

Wine 13 9 0.8786  0.8047  0.9424  0.8832  

Iono 34 13 0.8221  0.7978  0.8097  0.8117  

WDBC 30 11 0.9342  0.9063  0.9250  0.8918  

WPBC 32 7 0.6667  0.6874  0.5814  0.7291  

 TTT 9 8 0.8213  0.7612  0.6258  0.6521  

Avg. 23.6  9.6  0.8246  0.7915   0.7768  0.7936  

Table 5. Cardinality of reducts and accuracy of classifiers on partially labeled data under  
=10%. 

Data Set 
#Attributes   CART  Bayes 

N1 N2 Accuracy1 Accuracy2 Accuracy1 Accuracy2 

Wine 13 5 0.8786  0.8376  0.9424  0.8605  

Iono 34 7 0.8221  0.7954  0.8097  0.7303  

WDBC 30 6 0.9342  0.9253  0.9250  0.9282  

WPBC 32 6 0.6667  0.6975  0.5814  0.7204  

 TTT 9 8 0.8213  0.7761  0.6258  0.6502  

Avg. 23.6  6.4  0.8246  0.8064   0.7768  0.7779  
    

Table 6. Cardinality of reduct with the best classification accuracy in Table 5 

Data Set 
#Attributes   CART  Bayes 

N1 N2 Best Accuracy2 N2 Best Accuracy2 

Wine 13 4 0.9000  5 0.8977  

Iono 34 7 0.8332  7 0.7827  

WDBC 30 5 0.9360  5 0.9419  

WPBC 32 6 0.7056  6 0.7381  

TTT 9 8 0.7950  8 0.6553  

Avg. 24   6.0 0.8340   6.2 0.8031  

 
It is clear from these data in table 2 that reduction could reduce the cardinality of 

attribute set and retain or improve the classification accuracy if we have lots of la-
beled data. However, if number of labeled data is very limited, such as labeled rate 
10% in table 3, accuracy of classifiers trained in the reduct from the initial labeled 
data would decrease much.  

α

α



 Co-training Based Attribute Reduction for Partially Labeled Data 87 

 

Compare table 3 to table 4 and table 5, we can see the performance of each algo-
rithm is boosted with exploiting unlabeled data. In table 3, the classifier is trained 
only on the initial labeled data. The cardinality of reduct is fewer and the classifica-
tion accuracy on almost all data is lower than that in table 4 and table 5 which capital-
ize on unlabeled data to enlarge labeled data. 

Classification accuracy of algorithm in table 5 ( proposed algorithm in this paper) 
is comparable to that in table 4. Moreover, the former retain fewer attributes than 
later. As analyzed above, every unlabeled data is labeled pseudo-class symbol dis-
cernible from all other data, which may bring irrelevant attributes and decrease the 
classification accuracy. Like data “WDBC” in table 5, the classification accuracy 
92.53, 92.82 by CART, Bayes respectively are very close to that in original attribute 
set and have 6 attributes, while in table 4, the classification accuracy is lower and 
have 11 attributes. It shows proposed algorithm improves the quality of reduct. 

5 Conclusions 

Traditional rough set theory is not applicable for partially labeled data. Based on co-
training for capitalizing on unlabeled data to enlarge labeled data, this paper proposes 
a co-training based attribute reduction algorithm to deal with partially labeled data. 
The experiments on UCI data sets prove the effectiveness. Accuracy of classifiers 
trained in the reduct computed on the partially labeled data is much higher than that 
on the initial labeled data. The quality of reduct is much improved.  

In order to further investigate the effectiveness of proposed algorithm, we will per-
form the experiments under other different label rates. In addition, unlabeled data 
misclassified by the classifiers will decrease the quality of the reduct, how to deal 
with it is also our work in the future. 
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Abstract. Many specific applications for electric power data, such as
load forecasting and fault diagnosis, need to consider data changes dur-
ing a period of time, rather than one record, to determine their decision
classes, because the class label of only one record is meaningless. Based
on the above discussion, interval-valued rough set is introduced. From
the algebra view, we define the related concepts and prove the properties
for the interval-valued reduction based on dependency, and present the
corresponding heuristic reduction algorithm. In order to make the al-
gorithm to achieve better results in practical applications, approximate
reduction is introduced. To evaluate the proposed algorithm, we experi-
ment on six months’ operating data of one 600MW unit in some power
plant. Experimental results show that the algorithm proposed in this
article can maintain a high classification accuracy with the proper pa-
rameters, and the numbers of objects and attributes can both be greatly
reduced.

Keywords: Interval-value; approximate reduction; dependency; the de-
cision table.

1 Introduction

Rough set theory[1] is a powerful mathematical tool to deal with the uncertainty,
as well as probability theory, fuzzy sets and evidence theory. It has been success-
fully applied in many fields of science and engineering. As a relatively new soft
computing method, rough set theory has already attracted more and more atten-
tion in recent years. Its effectiveness has been demonstrated in various applica-
tion areas, and it has become one of the hot areas in current artificial intelligence
theories and application researches[2–16]. There are many similar characteristics
among rough sets, probability theory, fuzzy sets and evidence theory. Compared
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to the latter three, rough sets do not need any priori knowledge of the data. The
knowledge can be obtained by the theory itself, while probability theory, fuzzy
sets and evidence theory need the information of probability, membership and
assignment of probability respectively.

Most of the data on electric power are composed of continuous-valued at-
tributes. Different from the traditional classification methods, the classification
problems in many applications in the data on electric power are no longer con-
sidering a single record of data, but using the form of data blocks as research
objects. This is because it is meaningless to determine the class label by relying
solely on one record of data. We should consider the characteristics of the data
for a period of time in order to determine which category of the data segment
belongs to. Take load forecasting for example, we can not say that the load is low
or high for only one record of data. We need to find the similar data segment with
the data segment to be predicted, and determine its load value. Therefore, the
classification analysis should be based on the blocks of data. In order to build the
classification model for the data on electric power efficiently, the data blocks are
approximately represented by interval values, namely, the data block can be ap-
proximately described by using its maximum and minimum value(non-numerical
condition attributes can convert to numeric attributes). Then attribute reduction
strategy of the interval-valued decision table can be designed, and the classifica-
tion model can be established. There has been some research on interval-valued
attribute reduction[17–20], however, the computing complexity is too high.

For the data on electric power are mainly continuous, and many classification
problems for the power data should consider the data blocks as object units, the
data block is described as the interval-valued form, on which the heuristic reduc-
tion is discussed. The related concepts and properties proof of dependency based
interval-valued attribute reduction are given, and the corresponding algorithm
is presented. To enhance the practicability of the proposed algorithm, approxi-
mate reduction is introduced. We use the real power data to test the proposed
algorithm. The results are analyzed and discussed. Experimental results show
that the proposed algorithm can maintain a high classification accuracy when
choosing proper interval length.

The rest of the paper is organized as follows: Section 2 describes the basic
concepts in interval-valued information systems. In section 3, the related con-
cepts of interval-valued reduction based on positive region are given, and some
of the properties are proved. Then, a heuristic algorithm of the interval-valued
decision table based on dependency is proposed. The experiments are conducted
in section 4. Conclusion and future work are raised in section 5.

2 Preliminaries

This section describes the related concepts and properties in interval-valued
information systems. Current research on interval-valued information systems
are mostly based on the information systems without classification labels[18–20].
In this paper, considering the characteristics of the power data, we discuss the
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situation of conditional attributes with interval values and the decision attribute
as the class labels.

Definition 1. Suppose an interval-valued decision tableDT =< U,C∪D,V, f >.
The attribute set C ∪ D is nonempty and finite, including conditional attributes
C = {a1, a2, ..., ah} and decision attributeD = {d}. V = VC∪VD, where VC is the
set of all values of conditional attributes and VD represents the set of values of the
decision attribute. f : U×C → VC is a mapping of interval values. f : U×D→ VD
is a mapping of single value.

Table 1 is an interval-valued decision table[17], where the universe is U =
{u1, u2, ..., u10}, the conditional attributes C = {a1, a2, a3, a4, a5}, and the deci-
sion attribute D = {d}. The conditional attribute value f(ak, ui) = [lki , u

k
i ] is an

interval value, eg. f(a2, u3) = [7.03, 8.94]. The decision attribute value d(ui) is
a single value, eg. d(u3 = 2).

Table 1. An Interval-valued Decision Table

U a1 a2 a3 a4 a5 d

u1 [2.17,2.96] [5.32,7.23] [3.35,5.59] [3.21,4.37] [2.46, 3.59] 1
u2 [3.38,4.50] [3.38,5.29] [1.48,3.58] [2.36,3.52] [1.29,2.42] 2
u3 [2.09,2.89] [7.03,8.94] [3.47,5.69] [3.31,4.46] [3.48,4.61] 2
u4 [3.39,4.51] [3.21,5.12] [0.68,1.77] [1.10,2.26] [0.51,1.67] 3
u5 [3.70,4.82] [2.98,4.89] [1.12,3.21] [2.07,3.23] [0.97,2.10] 2
u6 [4.53,5.63] [5.51,7.42] [3.50,5.47] [3.27,4.43] [2.49,3.62] 2
u7 [2.03,2.84] [5.72,7.65] [3.68,5.91] [3.47,4.61] [2.53,3.71] 1
u8 [3.06,4.18] [3.11,5.02] [1.26,3.36] [2.25,3.41] [1.13,2.25] 3
u9 [3.38,4.50] [3.27,5.18] [1.30,3.40] [4.21,5.36] [1.11,2.23] 1
u10 [1.11,2.26] [2.51,3.61] [0.76,1.85] [1.30,2.46] [0.42,1.57] 4

In crisp rough sets, equivalence relation is used to partition the universe.
However, in interval-valued decision tables, it is hard to partition the universe
reasonably by using the equivalence classes formed by the objects with same
interval values.

Definition 2. Suppose an interval-valued decision tableDT =< U,C∪D,V, f >.
ak ∈ C. f(ak, ui) = [lki , u

k
i ], where l

k
i ≤ uki . lki = uki means object ui is a constant

in attribute ai. For any ui and any conditional attribute ak, l
k
i = uki , then the

decision table is a traditional decision table. The similarity between ui and uj on
attribute ak is defined:

rkij =

{
0 [lki , u

k
i ] ∩ [lkj , u

k
j ] = �⊂

card([lki ,u
k
i ]∩[lkj ,u

k
j ])

card(max{uk
i ,u

k
j }−min{lki ,lkj })

[lki , u
k
i ] ∩ [lkj , u

k
j ] �= �⊂

card() means the length of the interval. Obviously, 0 ≤ rkij ≤ 1. If rkij = 0, the

conditional attribute values of f(ak, ui) and f(ak, uj) are separate. If 0 < r
k
ij < 1,
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the conditional attribute values of f(ak, ui) and f(ak, uj) are properly including.
If rkij = 1, it is indisernable between the conditional attribute value f(ak, ui) and
f(ak, uj).

The similarities of conditional attributes describe the degrees of equivalence
between the objects in interval-valued decision tables.

Definition 3. Suppose an interval-valued decision tableDT =< U,C∪D,V, f >.
Given a threshold λ ∈ [0, 1] and any attribute subsetA ⊆ C. We can define a binary
relation Rλ

A on U : Rλ
A = {(xi, xj) ∈ U × U : rkij > λ, ∀ak ∈ A} as the λ-tolerance

relation on A.

Property 1. Suppose an interval-valued decision table DT =< U,C∪D,V, f >.
Given a threshold λ ∈ [0, 1] and any attribute subset A ⊆ C. Rλ

A is reflexive and
symmetric, but not transitive.
Property 2. Suppose an interval-valued decision table DT =< U,C∪D,V, f >.
Given a threshold λ ∈ [0, 1] and any attribute subset A ⊆ C. Rλ

A =
⋂

ak∈A

Rλ
ak

.

Denote Rλ
A(ui) as the λ-tolerance class of interval object ui on attribute set

A. Take table 1 for an example, when λ = 0.7 and A = a1, according to the def-
initions 2 and 3, R0.7

{a1}(u1) = {u1, u3, u7},R0.7
{a1}(u2) = {u2, u4, u9},R0.7

{a1}(u3) =
{u1, u3, u7},R0.7

{a1}(u4) = {u2, u4, u9},R0.7
{a1}(u5) = {u5}, R0.7

{a1}(u6) = {u6},
R0.7

{a1}(u7)={u1, u3, u7},R0.7
{a1}(u8)= {u8},R0.7

{a1}(u9) = {u2, u4, u9},R0.7
{a1}(u10) =

{u10}. On account of property 2, if A is composed of multiple attributes, we
can firstly calculate the λ-tolerance classes of interval-valued objects on each
attribute, then compute the λ-tolerance classes of multiple attributes by inter-
section operation.

Definition 4. Suppose an interval-valued decision tableDT =< U,C∪D,V, f >.
Given a threshold λ ∈ [0, 1] and any attribute subset A ⊆ C, X ⊆ U . The upper
and lower approximate operators of X on A can be defined as:

R
λ

A(X) = {ui ∈ U,Rλ
A(ui) ∩X �= �⊂}, Rλ

A(X) = {ui ∈ U,Rλ
A(ui) ⊆ X}

The above definitions and properties are not referred to the decision attribute.

3 Interval-Valued Heuristic Reduction Method Based on
Dependency

[17] presented a reduction algorithm in interval-valued decision table based on
discernibility function. However, the computational complexity of the algorithm
is too high. In this section, from the algebra view, the concepts and properties
of the heuristic reduction are given, and the corresponding algorithm is put
forward.

3.1 Concepts and Properties

In the light of definition 4, we can define the lower and upper approximate op-
erators of decision attribute on interval-valued conditional attributes as follows.
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Definition 5. Suppose an interval-valued decision tableDT =< U,C∪D,V, f >.
Given a threshold λ ∈ [0, 1]. A partition {ψ1, ψ2, ..., ψl} of U is derived by the deci-
sion classes ofD. For any conditional attribute subset A ⊆ C, the upper and lower
approximate operators of D on A can be defined as:

R
λ

A(D) =

l⋃
i=1

R
λ

A(ψi), R
λ
A(D) =

l⋃
i=1

Rλ
A(ψi),

where R
λ

A(X) = {ui ∈ U,Rλ
A(ui) ∩X �= �⊂},Rλ

A(X) = {ui ∈ U,Rλ
A(ui) ⊆ X}.

Rλ
A(ui) represents the λ-tolerance class of interval object ui on attribute set A.
The lower approximation of decision attribute D, named positive region, can

be denoted as POSλ
A(D). The size of positive region reflects the degree of separa-

tion of classification problem in a given attribute space. The bigger the positive
region is, the less overlapping region of tolerance class becomes. To measure the
significance of attributes, we define λ-dependency of decision attribute D on
interval-valued conditional attributes A as

γλA(D) =
|Rλ

A(D)|
|U | ,

where |•|means the set base. 0 ≤ γλA(D) ≤ 1 represents the ratio of the number of
the objects whose tolerance classes completely contained in the decision classes to
the number of universe, in accordance with A. Obviously, the bigger the positive
region is, the stronger the dependency of decision attribute D to conditional
attributes A will be.

Property 3. Given an interval-valued decision table DT =< U,C ∪D,V, f >
and a threshold λ, if B ⊆ A ⊆ C and ui ∈ POSλ

B(D), ui ∈ POSλ
A(D).

Proof. Suppose ui ∈ Rλ
B(Dj), where Dj represents the objects with decision at-

tribute value equivalent to j, namely, Rλ
B(ui) ⊆ Dj . Since B ⊆ A ⊆ C,Rλ

A(ui) ⊆
Rλ

B(ui). Therefore, R
λ
A(ui) ⊆ Rλ

B(ui) ⊆ Dj . Then ui ∈ POSλ
A(D).

Property 4. γλA(D) is monotonous. If A1 ⊆ A2 ⊆ ... ⊆ C, γλA1
(D) ≤ γλA2

(D) ≤
... ≤ γλC(D).

Proof. From property 3, we know ∀ui ∈ POSλ
A1

(D). Then we have ui ∈
POSλ

A2
(D), ..., ui ∈ POSλ

C(D). There may exist uj /∈ POSλ
A1

(D), but uj ∈
POSλ

A2
(D), ..., uj ∈ POSλ

C(D). Then we have |POSλ
A1

(D)| ≤ |POSλ
A2

(D)| ≤
... ≤ |POSλ

C(D)|. According to the definition γλA(D) =
|POSλ

A(D)|
|U| , then we have

γλA1
(D) ≤ γλA2

(D) ≤ ... ≤ γλC(D).

Definition 6. Suppose an interval-valued decision tableDT =< U,C∪D,V, f >,
λ ∈ [0, 1], A ⊆ C. For ∀ak ∈ A, if γλA−{ak}(D) < γλA(D), we say attribute ak is

necessary to A. Otherwise, if γλA−{ak}(D) = γλA(D), we say attribute ak is redun-
dant to A. If ∀ak ∈ A is necessary, the attribute set is independent.

If γλA−{ak}(D) = γλA(D), it indicates that the positive regions of decision tables
will not be changed when ak is reduced. That is the discernabilities of each classes
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keeping unchanged, namely, ak does not bring any contribution to classification.
So ak is redundant. Conversely, if ak is reduced, the positive region gets smaller.
It shows the discernabilities of each classes worse. At this point, ak can not be
reduced.

Definition 7. Suppose an interval-valued decision table DT =< U,C∪D,V, f >,
λ ∈ [0, 1], A ⊆ C. We say A is a λ-reduct of C, if A satisfies:
(1)γλA(D) = γλC(D);
(2)∀ak ∈ A, γλA−{ak}(D) < γλA(D).

In this definition, condition (1) states that λ-reduct can not lower the discernabil-
ities of decision tables. That is λ-reduct has the same discernability with all condi-
tional attributes. Condition (2) accounts for no redundant attribute existed in the
reduct. Each attribute should be necessary. The definition is consistent with crisp
rough sets in formal. However, the model defines λ-reduct in the interval-valued
space, while crisp rough set theory is defined in the discrete space.

Definition 8. Suppose an interval-valued decision table DT =<U,C ∪ D,V, f>,
λ ∈ [0, 1].A1, A2, ..., As denoteall theλ-reducts in thedecision table.DefineCore =
s⋂

i=1

Ai as the core of the decision table.

Definition 9. Given an interval-valued decision table DT =< U,C ∪D,V, f >
and ε(ε ≥ 0). If |γλC(D) − γλA(D)| ≤ ε(A ⊆ C), and |γλC(D) − γλB(D)| > ε(∀B ⊂
A), we call A an ε-approximate reduction of DT .

3.2 λ-reduction in the Interval-Valued Decision Table Based on
Dependency

If we want to find all the λ-reducts of an interval-valued decision table, we
need to compute 2h− 1 attribute subsets and determine whether they meet the
conditions of λ-reduct, where h is the number of conditional attributes. The
calculation is not tolerable. In this paper, based on the notion of dependency, a
heuristic reduction algorithm is proposed. The algorithm complexity is greatly
reduced. Dependency describes the contribution to classification of conditional
attributes, therefore, it can be used as the evaluation of attribute importance.

Definition 10. Supposean interval-valueddecision tableDT =<U,C∪D,V, f >,
λ ∈ [0, 1], A ⊆ C. ∀ak ∈ C −A, the significance of ak to C is defined:

SIG(ak, A,D) = γλA∪{ak}(D)− γλA(D)

With the definition of significance, we can construct the greedy algorithm for
interval-valued reduction. The algorithm sets the empty set as the starting point.
Then calculate the attribute importance of all the remaining attributes and select
the attribute with highest importance, and add to the set of λ-reduct, until all the
remaining attribute importance equals to 0, namely, adding any new attribute,
the dependence degree is no longer changing. Forward search algorithm can
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guarantee the important attribute added to the λ-reduct, so there is no loss
of important features. Backward search algorithm is difficult to guarantee the
result, because for a large number of redundant attributes in the interval-valued
decision table, even if the important attribute is removed, it will not lower the the
ability to discernablility of the decision table. Therefore, it may ultimately retain
a large number of attributes with weak distinguished ability, but as a whole is
still able to maintain the ability to discernablility of the original data, rather
than a few features with strong distinguishing ability. The reduction algorithm
for an interval-valued decision table based on the dependency is described in
algorithm 1.

Algorithm 1. λ-Reduction for the Interval-valued Decision Table Based on
Dependency (RIvD)

Input: DT =< U,C ∪D,V, f >,λ
Output: λ-reduct red
Step1. Let red = ∅;
Step2. For all a ∈ C, compute the λ-tolerance classes Rλ

{a} on attribute a;

Step3. For any ak ∈ C − red, compute SIG(ak, red,D) = γλred∪{ak}(D) −
γλred(D);//Define γλ∅ (D) = 0

Step4. Select ai, which satisfies SIG(ai, red,D) = max
k

(SIG(ak, red,D));

Step5. If SIG(ai, red,D) > 0, red = red∪{ai}, goto Step3; Otherwise, return
red, end.

Suppose the number of conditional attributes C is h, and the number of
interval objects is n, the time complexity of the algorithm is O(n2 + hn).

In order to solve the problems in real life, we cannot use too strict reduction
conditions, so the reduction condition SIG(ai, red,D) > 0 can be improved by
0 < SIG(ai, red,D) < ε. ε needs to be set in advance on the basis of the specific
data. The improvement will be more close to reality and more practical to a
certain extent. The value of ε will directly affect the classification results, as well
as the application of the algorithm. If the value of ε is too small, the conditional
attributes will be selected too many, so as to influence the practicability of the
algorithm; If the value of ε is too large, it will lead to the selected conditional
attributes too few and influence the algorithm accuracy.

4 Experiments

In power plants, production data have strong regularity by time. Decision making
can be provided for the operations, maintenances and accident treatments of
power plants by analyzing historical data through power stations, and finding
the operation rules for power stations. Existing data mining techniques made lots
of attempts in power production data, and obtained some results. However, the
existing data mining methods did not pay much attention to the characteristics
of operating data. Without a judgement of a steady state, the data was directly
mined. Due to lack of the clear working condition, the result of data mining
is not so good as the actual operation data. In this section, according to the
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production characteristics of power plants, we classify the production data to
steady state or unsteady state and build the classification model. The accuracies
of the classification results and running time for building a classification model
are used to evaluate the effectiveness of the proposed algorithm.

4.1 Experimental Data

In this section, a 600MW unit in some power plant is used for the experiments.
The data acquisition frequency of the plant is each 1 minute, namely, each minute
produces one record of data. The data of first half 2012 year are used as the
experimental object. Removing the maintenance downtime of the unit, a total
of 107184 records are produced. The data have 427 attributes. Removing the
keyword ID and data retention time by the system automatically generating, a
total of 425 attributes (all numeric) are produced. We use the formula of steady
state judgement to classify the operating data, forming a decision attribute.
Then we get a large decision table.

To evaluate the performance of the algorithm, we design a variety of data
interval division, eg. each 10 minutes, 20 minutes,..., 90 minutes for an interval.
In the process of interval division, if an interval corresponds to different decision
classes, the data with the same decision class constitute to a small interval, and
the next interval starts from another different decision class.

4.2 Experimental Environment

All experiments are run on the workstation of Intel Xeon(R) Processor (Four
Cores, 2.5GHz, 16GRAM), JAVA programming. In order to guarantee the fair-
ness of the experimental comparison, we use ten fold cross validation to estimate
the accuracy of classification.

4.3 Evaluation Criteria

Since the value of ε affects only the length of the selected subset of attributes
(i.e. the number of the selected attributes), it does not affect the sequence of
selecting the attribute according to the importance, so this paper does not discuss
the value of ε. To construct the classification models on power data, in addition
to considering the running time of the algorithm, we also should consider the
average classification accuracy. This paper mainly studies the interval-valued
heuristic reduction, when evaluating the accuracy of the algorithm, the test data
and training data are divided into blocks in accordance with the same time. Then
for each attribute, record the maximum and minimum values, and get the data
blocks by using interval values. Selecting the data block with highest similarity in
training data, let it be the decision class label of the test data block. Compared
with the real decision class of the test data, calculate the percentage of correctly
classifying. The whole process is still using ten fold cross validation to calculate
the average accuracy rate of classification.
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4.4 The Selection and Set of Parameters

The algorithm 1 is performed on the data set. Record the running time of differ-
ent interval length and different number of selected attributes. Figure 1 indicates
the relation between the running time and the number of selected attributes
when λ = 0.7 and the interval length by 10 minutes, 20 minutes,...,90 minutes.
Figure 2(a) shows the running time when λ = 0.5, 0.7, 0.9 and the number of
selected attributes equals to 3. Figure 2(b) expresses the running time changing
along with the interval length when assigning different λ and the number of
selected attributes=6.

Fig. 1. The running time with different number of selected attributes when λ = 0.7

From figure 1, with the increase of the interval length, data objects reduce
greatly, so is the running time. But with the increase of the interval length, the
coincidence degree of intervals is also increasing. It’s easy to result the number of
attributes in λ-tolerance classes increasing. Adding an attribute, the intersection
operation for tolerance classes is increased, so the running time of the algorithm
is not linearly changing. At some point, especially when the interval length is
longer, with the increase of interval length, the running time does not decrease as
the objects decrease. This may be because although the interval length increases,
the number of attributes in λ-tolerance classes is increasing, the running time is
then increased.

Figure 3 reveals the average classification accuracy of different attribute sub-
sets selected when ε = 0.01.

From figure 3, When the interval length is more than 1 hours, while the
running time is reduced, the average classification accuracies drop significantly.
This is mainly because if the data interval length is too large, the data interval
values cannot express the characteristics of data blocks; Similarly, if the data
interval length is too small, not only makes the running time longer, but also
the information of data blocks is insufficient. It can also lead to low classification
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(a) Number of selected attributes is 3 (b) Number of selected attributes is 6

Fig. 2. Running time with different λs

Fig. 3. The average classfication accuracy with different λs when ε = 0.01

accuracy. Therefore, for the interval-valued reduction algorithm, selection of the
interval length has a great effect on the algorithm results. We should set the
length of intervals based on different applications.

Therefore, the proposed interval-valued reduction algorithm is suitable to deal
with continuous distribution data, and cannot handle greatly changed data type.

5 Conclusions and Future work

Based on the characteristics of classification problems in power data, an interval-
valued reduction algorithm was proposed by using dependency. We experimented
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it on the power data with the application in the judging stable state, and achieved
good results. Since the applications of power data mostly need to consider a data
segment changing rather than a record of data, by dividing the data set into
intervals can not only significantly reduce the data objects, reduce the difficulty
of data analysis, but also meet the specific application of power data. Meanwhile,
the attribute reduction reduces the dimension of the data set, but does not affect
the classification ability of the entire data set. The data can be greatly reduced,
thereby, the difficulty in data analysis is reduced. From the experimental results,
the proposed algorithm is effective, and provides a new way to interval-valued
reduction method.

In future, we will focus on the following several aspects: the parameters will be
discussed in detail. We will give more reasonable and effective selection method
through more experiments; We will further apply the method into load predic-
tion and fault diagnosis in the power data, and validate the effectiveness of the
algorithm in the round.
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Abstract. The minimal test cost attribute reduction is an important component
in data mining applications, and plays a key role in cost-sensitive learning. Re-
cently, several algorithms are proposed to address this problem, and can get ac-
ceptable results in most cases. However, the effectiveness of the algorithms for
large datasets are often unacceptable. In this paper, we propose a global best ar-
tificial bee colony algorithm with an improved solution search equation for min-
imizing the test cost of attribute reduction. The solution search equation intro-
duces a parameter associated with the current global optimal solution to enhance
the local search ability. We apply our algorithm to four UCI datasets. The re-
sult reveals that the improvement of our algorithm tends to be obvious on most
datasets tested. Specifically, the algorithm is effective on large dataset Mushroom.
In addition, compared to the information gain-based reduction algorithm and the
ant colony optimization algorithm, the results demonstrate that our algorithm has
more effectiveness, and is thus more practical.

Keywords: Cost-sensitive learning, Minimal test cost, Attribute reduction,
Granular computing, Biologically-inspired algorithm.

1 Introduction

Cost-sensitive learning is one of the most active and important research areas in ma-
chine learning and data mining. In conventional data mining, attribute reduct tries to
maximize the accuracy or minimize the error rate in general. In real-world applications,
one should pay cost for obtaining a data item of an attribute. It is important to take the
test cost account into attribute reduct [1,2]. The minimal test cost attribute reduction [9]
is an important problem in cost-sensitive learning. This problem is not a simple exten-
sion of existing attribute reduction problems, it is a mandatory stage in dealing with the
test cost issue. The problem is a task to select an attribute subset with minimal test cost.
The performance of the minimal test cost attribute reduction is the test cost, which is
independent of the performance of attribute reduction.

In the recent years, some algorithms are proposed to deal with the minimal test cost
attribute reduction problem, such as ant colony optimization algorithm (ACO) [3] and
information gain-based λ-weighted reduction (λ-weighted) algorithm [4]. However, the
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effectiveness of these algorithms for large datasets is often needed to improve. To deal
with this problem, artificial bee colony (ABC) algorithm be considered. The ABC al-
gorithm is a biologically-inspired optimization algorithm, it is able to produce high
quality solutions with fast convergence. Due to its simplicity and easy implementation,
the ABC algorithm has captured much attention and has been applied to solve many
practical optimization problems [14].

In this paper, we propose a global best artificial bee colony (GABC) algorithm for
the minimal test cost attribute reduction problem. The GABC algorithm is inspired
by the ABC algorithm. The ABC algorithm [5] is proposed to optimize continuous
functions. Although it has fewer control parameters, it shows competitive performance
compared with other population-based algorithms. However the algorithm cannot be
effective using the individual information to optimize search method, so the traditional
artificial bee colony algorithm is good at exploration but poor at exploitation. As we
know, the exploitation is determined by the solution search equation. In this paper,
the GABC algorithm improves the solution to balance the exploration and exploitation
ability of the ABC algorithm. The GABC algorithm induces a parameter Lb into the
improved solution search equation. The parameter Lb value is mainly composed of the
fitness of the global optimal solution.

We evaluate the performance of our algorithm on four UCI (University of California
Irvine) datasets [6,7], which serve the machine learning community. Since there is no
cost settings for attribute on the four datasets, we use Normal distribution to generate
test cost for datasets. The viability and effectiveness of the GABC algorithm are tested
on four datasets. The results demonstrate the good performance of the GABC algorithm
in solving the minimal test cost attribute reduction problem when compared with the λ-
weighted algorithm, ACO algorithm and ABC algorithms. Experiments are undertaken
by an open source software called Coser (cost-sensitive rough sets) [8].

The rest of the paper is organized as follows. Section 2 presents attribute reduction
in cost-sensitive learning and discusses the problem of the minimal test cost attribute
reduction. Section 3 analyzes the parameters of the GABC algorithm for getting op-
timal. Section 4 presents the experimental results and the comparison results. Finally,
conclusions and recommendations for future studies are drawn in Section 5.

2 Preliminaries

In this section, we present some basic notions for the minimal test cost attribute reduc-
tion problem. The one conveyed is the test cost independent decision system, the other
we proposed is the minimal test cost attribute reduction problem.

2.1 Test Cost Independent Decision System

In this paper, datasets are fundamental for the minimal test cost attribute reduction
problem. We consider the datasets with a test cost independent decision system [4].
A test-cost-sensitive decision system is defined as follows.

Definition 1. [4] A test cost independent decision system (TCI-DS) S is the 6-tuple:

S = (U,C, d, {Va|a ∈ C ∪ {d}}, {Ia|a ∈ C ∪ {d}}, tc), (1)
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where U is a finite set of objects called the universe, C is the set of attributes, d is
the decision class, Va is the set of values for each a ∈ C ∪ {d}, Ia : U → Va is an
information function for each a ∈ C ∪ {d}, and tc : C → R+ ∪ {0} is the test cost
function for each a ∈ C.

Here test costs are independent of one another. A test cost function can be represented
by a vector tc = [tc(a1), tc(a2), ..., tc(a|C|)]. It is easy to calculate the test cost for an
attribute subset B (any B ⊆ C), which is counted as follows: tc(B) =

∑
a∈B

tc(a).

Table 1. A clinical decision system

Patient Headache Temperature Lymphocyte Leukocyte Eosinophil Heartbeat Flu
x1 yes high high high high normal yes
x2 yes high normal high high abnormal yes
x3 yes high high high normal abnormal no
x4 no high normal normal high normal no

An exemplary decision system is given by Table 1. The attributes of this decision
system are symbolic. Here C = {Headache, Temperature, Lymphocyte, Leukocyte,
Eosinophil, Heartbeat }, {d} = {Flu}, U = {x1, x2, x3, x4}, and the corresponding
test cost of attributes is represented by a vector tc = [12, 5, 15, 20, 15, 10].

2.2 The Minimal Test Cost Attribute Reduction Problem

Attribute reduction plays an important role in rough sets [11]. We review the reduction
based on positive region [12].

Definition 2. [13] Any B ⊆ C is called a decision relative reduction (or a reduction
for brevity) of S if and only if:

1.POSB({d}) = POSC({d});
2.∀a ∈ B,POSB−{a}({d}) �= POSC({d}).
In applications, a number of reductions sometimes are needed. However, in most

applications, only one reduction is needed. Since there may exist many reductions, an
optimization metric is needed. In this paper, the test cost is taken into account in at-
tribute reduction problem. Naturally, the test cost of the attribute reduction is employed
as a metric in our work. In other words, we are interested in the attribute reduction with
minimal test cost. We define reductions of this type as follows.

Definition 3. [13] Let S be a TCI-DS and Red (S) be the set of all reductions of S.
Any R ∈ Red(S) where tc(R) = min{tc(R′

) | R ∈ Red(S)} is called a minimal test
cost attribute reduction.

As indicated in Definition 3, the set of all minimal test cost attribute reductions is
denoted byMTR(S). The optimal objective of our paper isMTR problem.
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3 Algorithm

This section introduces the global best artificial bee colony (GABC) algorithm in detail.
Similar to the artificial bee colony (ABC) [14] algorithm, our algorithm consists food
sources and three groups of bees: employed bees, onlookers and scouts. The ABC algo-
rithm [15] is composed of two main steps: recruit an optimal good source and abandon
a bad source. The process of artificial bees seeking good food sources equal the process
of finding the minimal test cost attribute reduction.

In GABC algorithm, let one employed bee is on one food source and the number
of employed bees or onlookers equal the number of food sources. The position of a
food source represents an attribute subset and it is exploited by one employed bee or
one onlookers. The number of food sources is set to 1.5 times number of attributes.
Employed bees search new foods and remember the food source in their memory, and
then pass the food information to onlookers. The onlookers tend to select good food
sources from those foods founded by the employed bees, then further search the foods
around the selected food source. The scouts are translated from a few employed bees,
which abandon their food sources and search new ones.

As well known that both exploration and exploitation are necessary for the ABC al-
gorithm. In the algorithm, the exploration refers to the ability to investigate the various
unknown regions in the solution space to discover the global optimum. While the ex-
ploitation refers to the ability to apply the knowledge of the previous good solutions
to find better solutions. In practice, to achieve good optimization performance, the two
abilities should be well balanced. As we know, a new candidate solution is given by the
following solution search equation in the artificial bee colony algorithm:

vij = xij + φij(xij − xkj). (2)

In Equation (2), we can know that the coefficient φij is an uniform random number
in [0, 1] and xkj is a random individual in the population, therefore, the solution search
dominated by Equation (2) is random enough for exploration. However, alternatively
the new candidate solution is generated by moving the old solution towards another
solution selected randomly from the population. That is to say, the probability that the
randomly selected solution is a good solution is the same as that the randomly selected
solution is a bad one, so the new candidate solution is not promising to be a solution
better than the previous one. To sum up, the solution search equation described by
Equation (2) is good at exploration but poor at exploitation.

By taking advantage of the information of the global best solution to guide the search
of candidate solutions, we rebuild the ABC algorithm to improve the exploitation. The
GABC algorithm as follows.

Step 1. Create an initial food source position, and calculate the fitness value of the food
source.

Food sources initialization is a crucial task in the ABC algorithm because it can
affect the convergence speed and the quality of finding optimal solution. We replace
the random select attribute subset with an attribute subset containing core attribute and
satisfying the position region constraint [16].
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The fitness value of the food source is defined as the reciprocal of the corresponding
test cost. The fitness equation as follows:

fitness =
1

1 + tc
, (3)

where tc is the test cost of an attribute subset selected.
After initialization, the GABC algorithm enters a loop of operations: updating fea-

sible solutions by employed bees, selecting feasible solutions by onlooker bees, and
avoiding suboptimal solutions by scout bees.

Step 2. Produce new solution vij for the employed bees by Equation (5) and evaluate
it by Equation (3).

The best solution in the current population is a very useful source which can be used
to improve the convergence speed. We introduce a parameter Lb that associates with
the current global optimal solution. The equation of Lb is conveyed as follows:

Lb = fitnessi/globalfitness, (4)

where fitness i is the i-th iteration fitness of food source, and global fitness stand for the
fitness of current global optimal food source. As can be seen from Equation (4), Lb is a
positive real number, typically less than 1.0.

Through the analysis, we propose a new solution search equation as follows:

vij = xij + φij(xij − xkj) + Lb(gi − xij), (5)

where k ∈ {1, 2, 3, ..., SN} and j ∈ {1, 2, 3, ..., D} are randomly chosen indexes. k is
different from i. SN is the number of the attribute,D is the number of the food source.
φij is a random value in [0, 1]. vij and xkj is a new feasible solution that is modified
from its previous solution xij , gi is the best solution that explored in the history used to
direct the movement of the current population.

When Lb takes 0, Equation (5) is identical to Equation (2). We can get a new solution
better than the old one, then turn the new solution to be an old one in the next iteration.
Apply the greedy selection process for the employed bees.

Step 3. Calculate the probability values Pi for the solution vij by Equation (6).
Produce the new solution uij for onlooker bee by Equation (5), and evaluate it by

Equation (3). Where uij is produced from the solutions vij depending on Pi. An on-
looker bee chooses a food source depending on the probability values Pi associated
with that food source.

The equation of calculating the probability values Pi is shown as follows:

Pi =
fitnessi

SN∑
n=1

fitnessn

, (6)

where fitnessi is the fitness value of the i-th solution, SN is the food number.
Apply the greedy selection process for the onlookers.
Step 4. When a food source can not improve further through limit cycles, the food

source is abandoned for a scout bee. The food source is replaced with a new randomly
solution produced by Equation (5).
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The limit is an important control parameter of the GABC algorithm for abandon-
ment. This step avoid the algorithm falling into suboptimal solutions. The Steps 2, 3
and 4 are repeated until the running generation reaches the maximal number of itera-
tion.

The GABC algorithm deletes redundant attributes of each food source in inverted
order with the positive region constraint. Through the above steps, an attribute reduction
with minimal test cost has been produced, it is the final solution.

4 Experiments

To test the performance of the GABC algorithm, an extensive experimental evaluation
and comparison with the ABC, the λ-weighted [4] and the ACO [3] algorithms are
provided based on four datasets as follows. The four datasets are shown in Table 2. The
finding optimal factor (FOF) [4] is used as comparison criteria in this paper.

4.1 Data Settings

In our experiments, there are four UCI datasets used to test. These are Zoo, Voting, Tic-
tac-toe and Mushroom. The information of the four datasets is summarized in Table 2.
On the four datasets, attributes are no test cost settings, so we apply Normal distribution
to generate random test cost in [1, 10].

Table 2. Database information

Name Domain |U | |C| D = {d}
Zoo Zoology 101 16 Type

Voting Society 435 16 Vote
Tic-tac-toe Game 958 9 Class
Mushroom Botany 8124 22 Class

4.2 Experiment Results

In experiment, each algorithm is undertaken with 100 different test cost settings on
four datasets. The experiments reveal the performance of the GABC algorithm through
analyzing parameters: limit, iteration and Lb. Nextly, we investigate the impact of the
three parameters on the GABC algorithm.

Figure 1 presents solutions along iterations and limits for the four datasets. It can
be observed that the evolution curves of the GABC algorithm reach higher FOF much
faster. Thus, it can be concluded that overall the GABC algorithm outperforms well.
It can be found from Figure 1, the FOF of a large limit(i.e., 60 or 80) is superior to
the FOF of a small limit (i.e., 20 or 30) on most datasets, this rule also applies to the
iteration.
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Fig. 1. Finding optimal factor on four datasets: (a) Limit, (b) Iteration

In Figure 1, we investigate the impact of parameter of limit and iterations on the
GABC algorithm.

1) When the maximal iteration is set to 300, we let the parameter Lb be 0.8. As can
be seen, we obtain better value of limit on the Mushroom dataset when limit is 60. For
the other three test datasets, better results are obtained when limit is 110.

2) When limit is set to 110 and the parameter Lb is kept in 0.8. We can obtain that
better value of iteration on the Mushroom dataset is 40. For the other three test datasets,
better results are obtained when iteration is 30. The performance on parameter iteration
is likely sensitive to the number of attributes.

3) As can be seen, when the value of limit is increased, the FOF is also improved.
This trend also applies to the parameter of iteration. Figure 1(b) shows the parameter of
iteration is needed to converge towards the optimal solution for the GABC algorithm,
which same to the parameter of limit. We observe that the values of limit and iteration
can greatly influence the experimental results.

In order to reveal the impact of control parameter Lb, we conduct experiments for
our algorithm, where Lb in [0, 1] with 0.2 stepsize and use the competition approach
[4] to improve the results. In Figure 2, when the value of Lb is set to 1, we can obtain
a good result on Mushroom dataset. For the other three test datasets, better results are
obtained when Lb is around 0.8. As can be seen, when the values of Lb are increased,
the values of FOF are also improved. Therefore, the selective Lb is set at 0.8 for all the
datasets tested. We can observe that the values of Lb also have effect on the results.

This can be explained by the basic principle of the ABC algorithm. The parameter
Lb in Equation (5) plays an important role in balancing the exploration and exploitation
of the candidate solution search. When Lb increases from zero to a certain value, the
exploitation of Equation (5) will also increase correspondingly.

4.3 Comparison Results

In the following, we illustrate the advantage of the GABC algorithm compared with
the λ-weighted algorithm, the ACO algorithm and the ABC algorithm. The limit of the
GABC and ABC algorithms is set to 100, and the iteration is 40.
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Fig. 2. Finding optimal factor for Lb value on four datasets
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Fig. 3. Finding optimal factor for iteration on four datasets: (a) Zoo, (b) Voting, (c) Tic-tac-toe,
(d) Mushroom
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Table 3. Finding optimal factor of three algorithms with the competition approach

Datasets λ-weighted ACO GABC
Zoo 0.833 0.987 1.000

Voting 1.000 1.000 1.000
Tic-tac-toe 0.408 1.000 1.000
Mushroom 0.176 0.958 0.970

Figure 3 presents the FOF for iteration on the four different datasets. Table 3 draws
the FOF for three algorithms on the four different datasets by competition approach.
The best results are marked in bold in table. The results in Table 3 and Figure 3 further
demonstrate that the GABC algorithm is a great algorithm since it generates signifi-
cantly better results than the λ-weighted algorithm, ACO algorithm and ABC algorithm
for datasets.

The results show that the FOF of the other two algorithms produced are acceptable
results on most datasets. However, the performances of the two algorithms are shortly
on Mushroom dataset. The results of the λ-weighted algorithm are especially obvious.
For example, the FOF is only 17.6% of the λ-weighted algorithm on the Mushroom
dataset. However, it is 97% of our algorithm on the Mushroom dataset.

In summary, the GABC algorithm can produce an optimal reduction in general. The
algorithm has the highest performance among the three algorithms for all four datasets.

5 Conclusions

In this paper, we have developed the global based artificial bee colony algorithm to
cope with the minimal test cost attribute reduction problem. The algorithm has been
improved by introducing the parameter Lb based on global optimal. We have demon-
strated the effectiveness of the GABC algorithm and provided comparisons with two
other algorithms. The results have shown that the GABC algorithm possesses superior
performance in finding optimal solution as compared to the other algorithms. In the
future, we will improve the stability and efficiency of the global based artificial bee
colony algorithm.
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Abstract. In stead of intuitionistic fuzzy covering, a new intuitionistic
fuzzy binary relation is proposed using a set in an intuitionistic fuzzy cov-
ering, and correspondingly the intuitionistic fuzzy approximation space
is obtained. Then a novel discernibility matrix is defined which is based
on the intuitionistic fuzzy binary relation we defined. And then reduc-
tions of intuitionistic fuzzy covering information systems are studied by
remaining the intuitionistic fuzzy binary relation unchanged.

Keywords: Intuitionistic fuzzy covering, reduction, discernibility ma-
trix, similarity degree.

1 Introduction

The theory of rough sets [21] is an extension of set theory for the study of in-
telligent systems characterized by insufficient and incomplete information. Now,
rough set theory has generated classification results and decision rules from
datasets [12,17,22,31]. A key definition in Pawlak’s rough set model is the indis-
cernibility relation, called equivalence relation. By the indiscernibility relation,
the universe of discourse can be divided into many indiscernibility classes. And
indiscernibility classes are basic information granules for constructions of lower
and upper approximations[36,37]. The attribute reduction plays an important
role in pattern recognition and machine learning. And there are several methods
of reductions based on different springboards[30], among which the discernibility
matrix is a very useful and feasible method. For example, in order to find three
types of reducts (the assignment reduct, the distribution reduct and the maxi-
mum distribution reduct), Zhang et al. utilized discernibility matrices with re-
spect to those reducts and obtained the corresponding Boolean functions, called
discernibility functions [23,30]. Meanwhile, many scholars discussed reductions
of various information systems[16]. And some of them research the attribute re-
ductions using covering rough sets, for example, Zhu proposed the concept of
reductions of coverings, and studied the axiomatic characterization of the lower
approximation operator in a covering approximation space [40,41]. Since fuzzy

� Corresponding author.

D. Miao et al. (Eds.): RSKT 2014, LNAI 8818, pp. 111–120, 2014.
DOI: 10.1007/978-3-319-11740-9_11 c© Springer International Publishing Switzerland 2014



112 T. Feng and J. Mi

sets can also be approximated by coverings [7,40,41], Wang etc studied a novel
method of attribute reductions of covering decision systems[28]. Fuzzy covering
approximations were also studied in [6].

On the other hand, as a more general case of fuzzy sets [39], the concept of in-
tuitionistic fuzzy (IF, for short) sets [1], originally proposed by Atanassov, is an
important tool dealing with imperfect and imprecise information. An intuition-
istic fuzzy set (IFS, for short) gives membership degree and non-membership
degree to describe the level of an element belonging to a set. Hence, handling
imperfect and imprecise information is more flexible and effective by intuition-
istic fuzzy sets. In IF decision systems, operations of intuitionistic fuzzy set’s
membership functions and non-membership functions usually use dual trian-
gle norms to fit different situations. More recently, rough set approximations
were introduced into IF situations by many authors. They respectively proposed
the concept of IF rough sets in which the lower and upper approximations are
both IF sets [19,24,25,29]. Then definitions and properties of approximations
of IF sets were investigated with respect to an arbitrary IF binary relation in
which the universe of discourse may be infinite [29]. Recently, due to its greater
flexibility in handling vagueness or uncertainty, IF set theory had been widely
used in many areas, such as medical diagnosis [5], pattern recognition[15], clus-
tering analysis[33], and decision making[13,34,38]. As far as reliability field is
concerned, a lot of work had been done by many researchers to develop and en-
rich IF set theory [4,11,10,14,18]. And notice that an IF covering approximation
space, which enlarges application fields of the intuitionistic fuzzy rough set the-
ory, is also a generalization of IF approximation spaces[8]. Because the structure
of IF covering approximation spaces is relatively complex, we pay more attention
to reductions of IF covering (decision) approximation spaces using discernibility
matrices.

Along this line of research, we study the reductions of IF covering information
systems by discernibility matrices. In Section 2, we introduce definitions of in-
duced IF covering lower and upper approximation operators. Then in section 3
an IF binary relation is constructed based on an IF covering information system.
And the reductions are studied by using discernibility matrices remaining the
IF binary relation unchanged. In section 4, we define similarity degree between
IF covering systems and IF decision attributes, which is used to construct a dis-
cernibility matrix for reducing IF covering decision systems. We then conclude
the paper with a summary and an outlook for further researches in Section 5.

2 Basic Definitions and Properties of IF Covering
Approximation Operators

Definition 1. [7] Let U be a nonempty fixed set. An intuitionistic fuzzy (IF,
for short) set A is an object having the form

A = {〈x, μA(x), γA(x)〉 : x ∈ U},
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where μA : U → [0, 1] and γA : U → [0, 1] denote the degree of membership
(namely μA(x)) and the degree of nonmembership (namely γA(x)) of each ele-
ment x ∈ U belonging to set A, respectively, and 0 ≤ μA(x)+γA(x) ≤ 1 for each
x ∈ U . The family of all IF subsets of U is denoted by IF (U).

Definition 2. [7] Let U be a nonempty set, and IF sets A and B be in the forms
A = {〈x, μA(x), γA(x)〉 : x ∈ U}, B = {〈x, μB(x), γB(x)〉 : x ∈ U}. Then
1. A ⊆ B iff μA(x) ≤ μB(x) and γA(x) ≥ γB(x), ∀x ∈ U ;
2. A = B iff A ⊆ B and B ⊆ A;
3. ∼ A = {〈x, γA(x), μA(x)〉 : x ∈ U};
4. A ∩B = {〈x, μA(x) ∧ μB(x), γA(x) ∨ γB(x)〉 : x ∈ U};
5. A ∪B = {〈x, μA(x) ∨ μB(x), γA(x) ∧ γB(x)〉 : x ∈ U}.
Where ∼ A is the complement IF set of A. 〈̂α, β〉 = {〈x, α, β : x ∈ U〉} is a
constant IF set.

Let U be a non-empty and finite set, called the universe of discourse. In the
following, we review the properties of IF approximation spaces.

An IF binary relation R(IFR, for short) on U is an IF subset of U × U [27],
namely, R is given by

R = {〈(x, y), μR(x, y), γR(x, y)〉 : (x, y) ∈ U × U},
where μR : U × U → [0, 1] and γR : U × U → [0, 1] satisfy the condition
0 ≤ μR(x, y) + γR(x, y) ≤ 1 for all (x, y) ∈ U × U . We denote the set of all IF
binary relations on U by IFR(U × U).

Meanwhile, we introduce a special IF set (IF singleton set) 1{y}={〈x, μ1{y}(x),
γ1{y}(x)〉 : x ∈ U} for y ∈ U as follows

μ1{y}(x) =

{
1, if x = y;
0, if x �= y. γ1{y}(x) =

{
0, if x = y;
1, if x �= y.

If a family of IFSs C = {{〈x, μAi(x), γAi(x)〉 : x ∈ U} : i ∈ J} of U satisfies

the conditions
⋃{{〈x, μAi(x), γAi (x)〉 : x ∈ U} : i ∈ J} = 〈̂1, 0〉, and ∀i ∈ J ,

{〈x, μAi(x), γAi (x)〉} �= 〈̂0, 1〉, then C is called an IF covering of U . A finite
subfamily of an IF covering C of U is called a finite subcovering of C, if it is also
an IF covering of U . If x ∈ U and C is an IFS, μC(x) = 1 and γC(x) = 0, then
we say that C covers x [8].

Definition 3. [8] Let B = {Bi : i = 1, . . . ,m} and C = {Cj : j = 1, . . . , n} be
two IF coverings of U . Then B is called finer than C (or C is coarser than B),
denoted by B ≺ C, if the following conditions hold:

(1) m ≥ n
(2) ∀Bi ∈ B, there exists an IF set Ci ∈ C such that Bi ⊆ Cj .

Let U be a non-empty and finite set, C = {Ai : i ∈ J} an IF covering of
U . In the following, we study the IF covering approximation space. In Section
3, we mainly discuss the uncertainty degree of an IF set in a new IF covering
approximation space. In Section 4, we study the reductions of an IF covering.
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Definition 4. [8] Suppose U is a finite and nonempty universe of discourse,
and C = {C1, . . . , Cn} is an IF covering of U . For every x ∈ U , Cx = ∩{Ci :
Ci ∈ C, μCi(x) = 1, γCi(x) = 0} , then Cov(C) = {Cx : x ∈ U} is also an IF
covering of U , which is called the induced IF covering of U based on C.

Obviously, every element in Cov(C) cannot be written by the union of other
elements in Cov(C).
Definition 5. [8] Let U be a finite and nonempty universe of discourse, C an
IF covering of U . For any A ∈ IF (U), the induced IF covering upper and lower
approximations of A w.r.t. Cov(C), denoted by C(A) and C(A), are two IF sets
and are defined, respectively, as follows:

C(A) = {〈x, μC(A)(x), γC(A)(x)〉 : x ∈ U}; (1)

C(A) = {〈x, μC(A)(x), γC(A)(x)〉 : x ∈ U}. (2)

Where
μC(A)(x) =

∨
y∈U [μCx(y) ∧ μA(y)], γC(A)(x) =

∧
y∈U [γCx(y) ∨ γA(y)];

μC(A)(x) =
∧

y∈U [γCx(y) ∨ μA(y)], γC(A)(x) =
∨

y∈U [μCx(y) ∧ γA(y)].
C, C : IF (U)→ IF (U) are referred to as induced IF covering upper and lower

rough approximation operators w.r.t. Cov(C), respectively. The pair (U,Cov(C))
is called an induced IF covering approximation space. ∀A ∈ IF (U), if A = C(A),
then A is inner definable; if A = C(A), then A is outer definable. A is definable
iff C(A) = C(A).

3 Reductions of IF Covering Information Systems

In an IF covering system, first we try to construct an IF approximation space.
If U is a nonempty and finite universe of discourse, C is an IF covering of U ,
(U, C) is an IF covering information system. ∀C ∈ C, we define an IFR ∀x, y ∈ U ,
RC(x, y) = (μRC (x, y), γRC (x, y)) as

μRC (x, y) =

{
1− 2K(x, y), K(x, y) ≤ 1

2 ;
0, otherwise;

γRC (x, y) =

{
2((μC(x) − μC(y))2 + (γC(x)− γC(y))2), K(x, y) ≤ 1

2 ;
1, otherwise.

Where K(x, y) = (|μC(x)− μC(y)|+ |γC(x)− γC(y)|)2, ∀x, y ∈ U .
Proposition 1. Let U be a nonempty and finite universe of discourse, (U, C)
an IF covering information system. C ∈ C, x, y ∈ U , then RC is an IFR which
has the following properties:

1. RC(x, x) = (1, 0).
2. RC(x, y) = RC(y, x).
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3. When K(x, y) ≤ 1
2 , if μC(x) = μC(y) or γC(x) = γC(y), then γRC (x, y) =

1− μRC (x, y).

4. When K(x, y) > 1
2 , RC(x, y) = (0, 1).

Proof. Obvious.

By Proposition 1, RC is a reflexive and symmetric IFR. If the difference
between x and y with respect to C is big, then RC(x, y) = (0, 1).

Thus, IF binary relation RC generated by IF covering information system
(U, C) is defined by RC =

⋂
C∈C

RC . And RC is also a reflexive and symmetric IFR.

Then (U,RC) is an IF approximation space. And if B ⊆ C, then RB =
⋂

C∈B
RC

satisfying:

1. RC ⊆ RB ⇔ RC(x, y) ≤ RB(x, y), ∀x, y ∈ U
2. RC = RB ⇔ RC(x, y) = RB(x, y), ∀x, y ∈ U
Example U = {x1, x2, x3, . . . , x6} is the set of 6 houses for sale. And there are
many customers to evaluate the prices of the 6 houses from 4 characteristics,
where C1 is the quality of habitation, C2 is the price comparing favorably with
those of others, C3 is the exterior looking, and C4 is the intimate structure. And
for every characteristic, customers give different evaluations, thus we integrate
all evaluations giving the membership degree of every house and nonmembership
degree of every house. Let C = {C1, C2, C3, C4}, then (U, C) is an IF covering
information system, where

U x1 x2 x3 x4 x5 x6
C1(xi) (1, 0) (0.7, 0.1) (0.9, 0) (1, 0) (0.8, 0.1) (0.3, 0.6)
C2(xi) (0, 1) (1, 0) (0.6, 0.4) (0, 0.6) (1, 0) (1, 0)
C3(xi) (0, 0.5) (1, 0) (1, 0) (0.1, 0.6) (1, 0) (0.8, 0.1)
C4(xi) (0.1, 0.6) (1, 0) (0.8, 0) (0.5, 0.3) (1, 0) (1, 0)

Then

RC1 =

⎛⎜⎜⎜⎜⎜⎜⎝
(1, 0) (0.68, 0.2) (0.98, 0.02) (1, 0) (0.82, 0.1) (0, 1)

(0.68, 0.2) (1, 0) (0.82, 0.1) (0.68, 0.2) (0.98, 0.02) (0, 1)
(0.98, 0.02) (0.82, 0.1) (1, 0) (0.98, 0.02) (0.92, 0.04) (0, 1)

(1, 0) (0.68, 0.2) (0.98, 0.02) (1, 0) (0.82, 0.1) (0, 1)
(0.82, 0.1) (0.98, 0.02) (0.92, 0.04) (0.82, 0.1) (1, 0) (0, 1)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (1, 0)

⎞⎟⎟⎟⎟⎟⎟⎠

RC2 =

⎛⎜⎜⎜⎜⎜⎜⎝
(1, 0) (0, 1) (0, 1) (0.68, 0.32) (0, 1) (0, 1)
(0, 1) (1, 0) (0, 1) (0, 1) (1, 0) (1, 0)
(0, 1) (0, 1) (1, 0) (0, 1) (0, 1) (0, 1)

(0.68, 0.32) (0, 1) (0, 1) (1, 0) (0, 1) (0, 1)
(0, 1) (1, 0) (0, 1) (0, 1) (1, 0) (1, 0)
(0, 1) (1, 0) (0, 1) (0, 1) (1, 0) (1, 0)

⎞⎟⎟⎟⎟⎟⎟⎠
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RC3 =

⎛⎜⎜⎜⎜⎜⎜⎝
(1, 0) (0, 1) (0, 1) (0.92, 0.04) (0, 1) (0, 1)
(0, 1) (1, 0) (1, 0) (0, 1) (1, 0) (0.82, 0.1)
(0, 1) (1, 0) (1, 0) (0, 1) (1, 0) (0.82, 0.1)

(0.92, 0.04) (0, 1) (0, 1) (1, 0) (0, 1) (0, 1)
(0, 1) (1, 0) (1, 0) (0, 1) (1, 0) (0.82, 0.1)
(0, 1) (0.82, 0.1) (0.82, 0.1) (0, 1) (0.82, 0.1) (1, 0)

⎞⎟⎟⎟⎟⎟⎟⎠

RC4 =

⎛⎜⎜⎜⎜⎜⎜⎝
(1, 0) (0, 1) (0, 1) (0.02, 0.5) (0, 1) (0, 1)
(0, 1) (1, 0) (0.92, 0.08) (0.28, 0.5) (1, 0) (1, 0)
(0, 1) (0.92, 0.08) (1, 0) (0.68, 0.2) (0.92, 0.08) (0.92, 0.08)

(0.02, 0.5) (0.28, 0.5) (0.68, 0.2) (1, 0) (0.28, 0.5) (0.28, 0.5)
(0, 1) (1, 0) (0.92, 0.08) (0.28, 0.5) (1, 0) (1, 0)
(0, 1) (1, 0) (0.92, 0.08) (0.28, 0.5) (1, 0) (1, 0)

⎞⎟⎟⎟⎟⎟⎟⎠
Thus

RC =

⎛⎜⎜⎜⎜⎜⎜⎝
(1, 0) (0, 1) (0, 1) (0.02, 0.5) (0, 1) (0, 1)
(0, 1) (1, 0) (0, 1) (0, 1) (0.98, 0.02) (0, 1)
(0, 1) (0, 1) (1, 0) (0, 1) (0, 1) (0, 1)

(0.02, 0.5) (0, 1) (0, 1) (1, 0) (0, 1) (0, 1)
(0, 1) (0.98, 0.02) (0, 1) (0, 1) (1, 0) (0, 1)
(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (1, 0)

⎞⎟⎟⎟⎟⎟⎟⎠
Obviously, RC(x1, x3) �= Cx1(x3) and RC(x1, x3) �= Cx3(x1). Thus, the new IF
binary relation is different to the set induced by the IF covering defined in
Definition 4. Using the IF binary relation RC , we can construct IF approximation
operators as follows: A ∈ IF (U),

RC(A) = {〈x, μRC(A)(x), γRC(A)(x)〉 : x ∈ U};

RC(A) = {〈x, μRC(A)(x), γRC(A)(x)〉 : x ∈ U}.
Where μRC(A)(x), γRC(A)(x), μRC(A)(x), γRC(A)(x) are similar to the Defini-

tion in [27].

Proposition 2. Let U be a nonempty and finite universe of discourse. C is an
IF covering of U . RC is the IF binary relation on U × U , then
1. RC(1{x})(y) = RC(1{y})(x)
2. RC(1U−{x})(y) = RC(1U−{y})(x)

Proof. (1) By the definition of RC , we have

μRC(1{x})(y) =
∨

z∈U [μRC(y, z) ∧ μ1{x}(z)]

=
∨

z �=x[μRC (y, z) ∧ μ1{x}(z)] ∨ [μRC (y, x) ∧ μ1{x}(x)]

=
∨

z �=x[μRC (y, z) ∧ (0, 1)] ∨ [μRC (y, x) ∧ μ1{x}(x)]

= μRC (y, x).
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γRC(1{x})(y) =
∧

z∈U [γR(y, z) ∨ γ1{x}(z)]

=
∧

z �=x[γRC(y, z) ∨ γ1{x}(z)] ∧ [γRC(y, x) ∨ γ1{x}(x)]

=
∧

z �=x[γRC(y, z) ∨ (1, 0)] ∧ [γRC(y, x) ∨ γ1{x}(x)]

= γRC(y, x).

Similarly, we have RC(1{y})(x) = RC(x, y). Thus, RC(1{x})(y) = RC(1{y})(x).
(2) By the definition of RC , we have

μRC(1{x})(y) =
∧

z∈U [γRC (y, z) ∨ μ1U−{x}(z)]

=
∧

z �=x[γRC(y, z) ∨ μ1U−{x}(z)] ∧ [γRC (y, x) ∨ μ1U−{x}(x)]

=
∧

z �=xU [γRC (y, z) ∨ (1, 0)] ∧ [γRC (y, x) ∧ μ1U−{x}(x)]

= γRC(y, x).

γRC(1U−{x})(y) =
∨

z∈U [μRC (y, z) ∧ γ1U−{x}(z)]

=
∨

z �=xU [μRC (y, z) ∧ γ1U−{x}(z)] ∨ [μRC(y, x) ∧ γ1U−{x}(x)]

=
∧

z �=xU [μRC (y, z) ∨ (0, 1)] ∧ [μRC (y, x) ∨ γ1U−{x}(x)]

= μRC(y, x).

Similarly, we have RC(1U−{y})(x) = RC(x, y). Thus, RC(1U−{x})(y) = RC
(1U−{y})(x).

In the following, we discuss reductions of IF covering information systems
remaining the IF binary relation unchanged.

Definition 6. If (U, C) is an IF covering information system, RC is an IF binary
relation generated by (U, C). B ⊆ C, if RB = RC, then B is called a consistent
set of C in (U,RC). Moreover, if ∀B′ ⊂ B, RB′ �= RC, then B is a reduct of C.

Let Red(C) = {B,B is a reduct of (U, C)}. The intersection of all the reducts
is called the core set of Cov(U, C). It should be pointed out that the core set can
be an empty set in some cases.

Let U be a nonempty and finite universe of discourse, C an IF covering of U .
∀xi, xj ∈ U , we define

σij = {Cβ
α : C ∈ C, α = μRC (xi, xj), β = γRC (xi, xj)}.

Note that σij = σji and σii = {Cβ
α : C ∈ C, α = 1, β = 0}.

Definition 7. Given an IF covering information system (U, C), where U is a
nonempty and finite set, C is a finite IF covering of U . The discernibility matrix
is defined as follows:

Mn×n = (Mij)n×n =

⎛⎜⎜⎜⎝
M11 M12 . . . M1n

M21 M22 . . . M2n

...
... . . .

...
Mn1 Mn2 . . . Mnn

⎞⎟⎟⎟⎠
where Mij is defined as:
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1. If ∃C ∈ C such that RC(xi, xj) =
⋂

C∈C
{RC(xi, xj)}, then

Mij = {C ∈ C : (RC(xi, xj) =
⋂
C∈C

{RC(xi, xj)}) ∧ (RC(xi, xj) �= (0, 1))}.

2. Otherwise,

Mij={Ci∧Cj : (μRCi
(xi, xj)=

∧
C∈C

μRC (xi, xj))∧(γRCj
(xi, xj)=

∨
C∈C

γRC (xi, xj))}.

Note that if ∀xi, xj ∈ U , σij = {C0
1 : ∀C ∈ C}, then Mij = ∅.

It is easy to find that Mij is the set of subsets of an IF covering which has
the maximum IF discernibility of xi and xj and satisfies:

1. Mij =Mji,
2. Mii = ∅.
Proposition 3. Let (U, C) be a finite IF covering information system, B ⊆ C,
then RB = RC if and only if B ∩Mij �= ∅, ∀Mij �= ∅.
Theorem 1. Given a finite IF covering information system (U, C), if C ∈ C is
an element in the core of C, then there exists a Mij such that Mij = {C} or
Mij = {C ∧ Ci : Ci ∈ C}.
Proof. It is obvious.

Definition 8. Let (U, C) be a finite IF covering information system. A discernibil-
ity function f of (U, C) is a Boolean function ofmBoolean variablesC∗

1 , C
∗
2 , . . . , C

∗
m

corresponding to the elements of the IF covering {C1, C2, . . . , Cm} respectively, and
defined as:

f(C∗
1 , C

∗
2 , . . . , C

∗
m) =

∧
{
∨
Mij :Mij ∈Mn×n}

where
∨
Mij is the disjunction of the element a ∈Mij, and

∧
denotes conjunction.

4 Concluding Remarks

In this paper, we defined a novel pair of IF upper and lower approximations
based on an IF covering and discussed their properties and the similarity de-
gree between an intuitionistic fuzzy covering system and an intuitionistic fuzzy
decision covering system. Then, we defined the reductions of an IF covering ap-
proximation space. Finally we discussed the reductions of IF covering systems
using discernibility matrices. In the future, we will pay more attention to the
study of uncertainty and reductions of IF decision systems.
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Abstract. Feature selection for multi-label classification tasks has attracted at-
tention from the machine learning domain. The current algorithms transform
a multi-label learning task to several binary single-label tasks, and then com-
pute the average score of the features across all single-label tasks. Few research
discusses the effect in averaging the scores. To this end, we discuss multi-label
feature selection in the framework of fuzzy rough sets. We define a novel depen-
dency functions with three fusion methods if the fuzzy lower approximation of
each label has been calculated. A forward greedy algorithm is constructed to re-
duce the redundancy of the selected features. Numerical experiments validate the
performance of the proposed method.

1 Introduction

Multi-label learning is a common issue in many practical applications, where a sample
is associated with more than one class label simultaneously. For example, a patient
may be diagnosed with many several kinds of diseases; there are multiple objects in an
images, and a gene is related with various functions.

To deal with multi-label learning, two kinds of strategies, called problem transfor-
mation and algorithm adaption, are developed. Binary relevance (BP), label power set
(LP) and pruned problem transformation (PPT) are well-known problem transformation
methods. BP [1] transforms the multi-label learning problem into several binary single-
label tasks, so this method cut up the relationship between labels and easily generate
unbalanced data. LP [2] considers the correlations by taking each distinct label set as
a new class. However, this method easily lead to lower prediction rate and computa-
tion cost since the number of new classes is increased exponentially with the increase
of label. Furthermore, many new labels may be associated with a few samples which
lead to class unbalance problem. PPT [3] abandons new class with too small number of
samples or assign these samples with new labels, while this irreversible process could
result in class information loss. Algorithm adaption methods [4] solve the label over-
lapping and improve prediction results by adapting or extending existing single-label
algorithms, rather than transforming the data. In this paper, we focus on the problem
transformation method.

Just as the curse of dimensionality occurs in single-label classification problems,
there are also redundant or irrelevant attributes in multi-label tasks [5-7]. Feature selec-
tion, by removing the superfluous features, can improve prediction performance. Zhang
and Zhou [8] proposed a dimensionality reduction method, multi-label Dimensional-
ity Reduction via Dependence Maxiization (MDDM), with two kinds of projection
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strategies. Zhang and Jose [9] proposed feature selection mechanisms, which are in-
corporated into the multi-label naive Bayes classifiers (MLNB) to improve the classifi-
cation performances. In addition, there are many feature evaluation methods based on
the strategies of data transformation in recent years. Newton Spolaor and Everton Al-
vares Cherman [10] proposed four multi-label feature selection methods by using Reli-
efF (RF) and Information Gain (IG) as feature evaluation measures for each label and
combining with approaches BR and LP. Gauthier Doquir and Michel Verleysen [11]
proposed the multi-label feature selection approach by using the multivariate mutual
information criterion and combining with PPT.

Fuzzy rough sets, which are mathematical tool for describing incomplete and fuzzy
data, have been widely discussed in attribute reduction and feature selection [12-14],
and good performance was reported in literature [15-17]. However, there is not report
on fuzzy rough sets based multi-label feature selection. In this paper, we define novel
dependency functions with three different fusion methods if the fuzzy lower approxi-
mation of each label has been calculated for multi-label classification. Some extended
properties are discussed. And then we developed a feature selection algorithm, which
uses the fuzzy dependency to evaluate the quality of features, and takes the forward
greedy search strategy. We analyze the semantics of different fusion methods and show
some experiments to test the proposed algorithm.

2 Related Work

In this section, we introduce some basic concepts and notations about binary relevance
and fuzzy rough sets.

Binary relevance decomposes a multi-label problem into L independent binary clas-
sification problems. A sample is labeled as positive when it is associated with this label;
otherwise, it is negative.

Table 1. Multi-label data set

U c1 c2 · · · cM d1 d2 · · · dL

x1 xc1
1 xc2

1 · · · xcM
1 xd1

1 xd2
1 · · · xdL

1

x2 xc1
2 xc2

2 · · · xcM
2 xd1

1 xd2
1 · · · xdL

2

...
...

...
. . .

...
...

... · · ·
...

xN xc1
N xc2

N · · · xcM
N xd1

N xd2
N · · · xdL

N

Let 〈U,C,D〉 be a multi-label classification problem, where U={x1, x2, . . ., xN} is
a nonempty set composed of N samples, C = {c1, c2, . . . , cM} is a feature set withM
features, and D = {d1, d2, . . . , dL} is a label set with L labels. Table 1 give a multi-
label data set. Furthermore,〈U,C,D〉 degenerate to single-label classification if L = 1.
Each sample x can be described by aM -dimensional vector, and xc is the feature value
of x on c. The label set of each sample x can be represented as a L-dimensional vector,
and xd is the label value of x on d. where xd ∈ {1,-1}. If sample x is associated with
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Table 2. L Binary single-label data sets

U C d1
x1 · · · xd1

1

x2 · · · xd1
1

... · · ·
...

xN · · · xd1
N

U C d2
x1 · · · xd2

1

x2 · · · xd2
1

... · · ·
...

xN · · · xd2
N

U C dL

x1 · · · xdL
1

x2 · · · xdL
1

... · · ·
...

xN · · · xdL
N

label d, then xd = 1; otherwise, xd = −1. The L single-label binary data sets after BR
transformation are given in Table 2.

Given a single-label binary classification problem 〈U,C, d〉, andRB is a fuzzy equiv-
alence relation on U induced by feature subset B. For ∀x ∈ U , we associate a fuzzy
equivalence class [x]RB with x in terms of feature subset B. The membership function
of ∀y ∈ U(y �= x) to [x]RB is defined as [x]RB (y) = RB(x, y). U is divided into two
subset A+,A− by label d. If xd = 1, then A+(x) = 1 ; If xd = −1, A+(x) = 0. The
membership of sample x to the lower approximation of d in term of B is defined as
follows [13]:

RBd(x) = RBA+(x) ∪RBA−(x) = inf
xd=1,yd=−1

(1 −R(x, y)), (1)

It is easy to get that the membership of x to the lower approximation of d is deter-
mined by the closest sample out of d if x belongs to d, while the membership of x to
the lower approximation of d is zero if x is not associated with d.

3 Multi-label Feature Evaluation

Now we give new definitions of feature dependency for multi-label feature selection.

3.1 Multi-label Feature Evaluation

Definition 1. Given a multi-label problem 〈U,C,D〉, RB is a fuzzy equivalence rela-
tion on U induced by feature subset B ⊆ C. The membership of sample x to the lower
approximation ofD in term of B is defined as three forms:

RBD(x)1 = max{d|xd=1}(RBd(x)), (2)

RBD(x)2 = min{d|xd=1}(RBd(x)), (3)

RBD(x)3 = mean{d|xd=1}(RBd(x)), (4)

where RBd(x) is the membership of sample x to the lower approximation of all label
d associated with x in term of B.

Definition 2. LetF be a fuzzy subset, the cardinality ofF is defined as |F |=∑x∈U F (x),
where F (x) is the membership of x to F .
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Definition 3. Given a multi-label problem 〈U,C,D〉, RB is a fuzzy equivalence rela-
tion on U induced by feature subset B ⊆ C. The dependency function of D in term of
B is defined as:

γB(D) =
|RBD|
|U | =

∑
x∈U RBD(x)

|U | . (5)

The dependency between the label and feature reflect the approximation ability of
fuzzy equivalence class induced by feature to the label. In multi-label classification
problem, the approximation ability of feature is related to multiple label. The result
in each label should be combined to obtain the final result.The first fusion method is
the loosest requirement, which selects the best feature from the best situation by max
function. The second fusion method is the most strict requirement, which selects the
best feature from the worst situation by min function. The third fusion method selects
the best feature from the average situation bymean function.

3.2 Multi-label Feature Selection

Feature evaluation and search strategy are two keys in constructing an algorithm for
feature selection. We take the forward greedy algorithm as the search strategy and use
feature dependency as heuristic knowledge.

Multi-label Feature Selection Algorithm Based on Fuzzy Rough set

Input: Multi-label classification table <U,C,D>,
where |U|=N, |C|=M, |D|=L

Output: Feature_select
Forward greedy search strategy based on feature dependency

Dependency function:
for feature c=1:C

RD=zeros(N,L)
for label d=1:L
X+=find(U(:,d)==1)
X-=find(U(:,d)˜=1)
Generate fuzzy relation matrix Rd(X-,X+)
RD(X+,d)=min(1-Rd)

end
switch
case ’min’
dependency(c)=sum(min(RD’))

case ’max’
dependency(c)=sum(max(RD’))

case ’mean’
dependency(c)=sum(mean(RD’))

end
end

end
Feature_select

end
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We only consider the similarity between samples from different class on each label.
The time complexity in evaluatingM features isO(LNlogNM) if there areN samples
and L labels. Therefore, the complexity of selecting features with a forward greedy
search strategy is O(LM2NlogN).

4 Experimental Study

In order to test the effectiveness of our methods, we design a set of comparative exper-
iments, and the effects of the methods on determination are analyzed and evaluated in
this section.

The details of two multi-label data sets used in the experiments are given in Table 3,
whereN ,M , L stand for the numbers of samples, features, and labels, respectively. We
download the data sets from the Mulan’s repository (http://mulan.sourceforge.net).

Table 3. Details of two multi-label data sets

name sample feature label cardinality density distinct
birds 645 260 19 1.014 0.053 133
emotion 593 72 6 1.869 0.311 27

For each dataset, we compare our proposed method, i.e.,FRS1, FRS2 and FRS3 with
existing method MLNB. To validate the effectiveness of our approah, we calculate the
following evaluation metrics: Average Precision (AP), Coverage (CV), Hamming Loss
(HL), and One Error (OE) [4]. We utilize ML-kNN as the classifier where parameter
k and μ of ML-kNN is set to be 10 and 1, respectively. The results of original feature
space are taken as an evaluation benchmark.

Note that, MLNB is the wrapper approach which is directly addressed in multi-label
data set. Furthermore,for each dataset, we compare the second approach (FRS2) our
proposed with ReliefF-BR and MDDM, which are a classical filter feature selection
and dimension reduction respectively. The ReliefF-BR approach combined ReliefF and
BR method. The former is implemented by Weka, and the latter is the one available in
Mulan. The threshold value for ReliefF is set to be 0.01. The kernel for MDDMproj and
MDDMspc is linear kernel. For comparative reasons, the number of feature subset of
these methods is set to be equal to the number of feature subset after the FR2 method.
Because of the limited passage, only the result of AP is presented. The result of AP in
original feature space is used as a baseline to evaluate the feature selection methods.

Table 4 compares that the classification results on birds dataset in different feature
spaces. We observe that FRS2 are the best than all other methods in AP and better than
most methods in other performance criteria. FRS3 has the fewest feature than other
methods, while its performances is slightly worse than other methods. It is different
from our imagine that FRS1 has more feature than FRS3 and the performances is bet-
ter. The reason for FRS1’s slow convergence speed is that FRS1 selects a inadequate
feature for the first iteration, which can not be discard. Similar results are obtained
on emotion dataset as shown in Table 5, in Which our methods are learly better than
benchmark except FRS3. We can see that MLNB has the fewest feature with the lowest
performance.



126 L. Zhang et al.

Table 4. Four performance criteria on birds dataset when ML-kNN is used

methods feature AP (↓) CV (↑) HL (↑) OE (↑)
Original 260 0.6949 3.3994 0.0536 0.3901
MLNB 131 0.6969 3.4583 0.0520 0.3653
FRS3 35 0.6894 3.5294 0.0523 0.3808
FRS1 103 0.6965 3.5666 0.0525 0.3684
FRS2 107 0.7136 3.4025 0.0554 0.3529

Table 5. Four performance criteria on emotion dataset, where ML-kNN is used

methods feature AP (↓) CV (↑) HL (↑) OE (↑)
Original 72 0.7808 1.9158 0.2137 0.3317
MLNB 25 0.7529 2.0743 0.2450 0.3762
FRS3 35 0.7803 1.9802 0.2120 0.3119
FRS1 46 0.7881 1.9257 0.2269 0.3119
FRS2 50 0.7932 1.9208 0.2186 0.2921
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Fig. 1. AP on birds dataset if different numbers of features are selected(ML-kNN)

Fig. 1 shows AP on birds dataset when ML-kNN is used as a classifier. It can be
seen that the performance of FR2 is better than MLNB and original feature space by
getting the highest result with fewest feature. MDDMproj and MDDMsps seem not
to be suitable for the birds dataset. RfBR gets the highest precision in the first two
feature, then relatively bad results are obtained until the feature number increase to 76.
In contrast, the result of FRS2 at the first is lower than RFBR. However, the highest
result of FRS2 is better than that of RFBR.

In Fig. 2, we can found that the performance of FR2 is worse than other methods at
the first, while the highest result is larger than two MDDM methods and original feature
space. RF-BR is best in emotion dataset.

The experimental results demonstrate that our methods have their comparative ad-
vantages in some aspects. Comparing with other approaches, the major contributions
of this research lies in its suggestions for different method to combine single-label
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Fig. 2. AP on emotion dataset if different numbers of features are selected(ML-kNN)

problems to multi-label problem for feature selection. Moreover, our methods produce
higher precision performance with fewer features than other methods in birds dataset.
Therefore, this indicates that the dependency function is able to find the useful subsets
of features for multi-label classification.

5 Conclusion

In this work, we proposed the dependency function combined with BR problem trans-
formation methods as feature evaluation based on fuzzy rough sets used for multi-label
feature selection. we got some important conclusions through discussing the different
meaning of three fusion methods, which are used for collecting feature score on each
label, and the results of experiment illustrated the effectiveness of the method. However,
the exploration of the article is just a preliminary tries to solve multi-label problem by
using fuzzy rough sets, further research is needed in the future on following aspects:
Firstly, BR method do not consider the correlations of labels, how to take the corre-
lations into account for feature selection. Secondly, how to solve the label overlapping
directly and improve prediction results by adapting or extending our algorithms. Finally,
how to combine multi-label problem with other problems exist in real applications, for
example, multi-modal problem.
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Abstract. Minimal test cost attribute reduction is an important problem in cost-
sensitive learning since it reduces the dimensionality of the attributes space. To
address this issue, many heuristic algorithms have been used by researchers, how-
ever, the effectiveness of these algorithms are often unsatisfactory on large-scale
datasets. In this paper, we develop a logarithmic weighted algorithm to tackle the
minimal test cost attribute reduction problem. More specifically, two major issues
are addressed with regard to the logarithmic weighted algorithm. One relates to a
logarithmic strategy that can suggest a way of obtaining the attribute reduction to
achieve the best results at the lowest cost. The other relates to the test costs which
are normalized to speed up the convergence of the algorithm. Experimental re-
sults show that our algorithm attains better cost-minimization performance than
the existing a weighted information gain algorithm. Moreover, when the test cost
distribution is Normal, the effectiveness of the proposed algorithm is more effec-
tive for dealing with relatively medium-sized datasets and large-scale datasets.

Keywords: Cost-sensitive learning, Granular computing, Attribute reduction,
Test cost, Logarithmic weighted algorithm.

1 Introduction

Cost-sensitive learning is one of the most challenging problems in both data mining
and machine learning. The research work on cost-sensitive learning has attracted con-
siderable attention in different data mining domains, such as rough sets [2,3,4], decision
trees [5], artificial neural networks [6] and bayes networks [7]. Cost-sensitive learning
deals with the problem of learning from decision systems relative to a variety of costs.
Test costs is one of the most important types of cost in cost-sensitive learning. It is the
measurement cost of determining the value of an attribute exhibited by an object. The
test costs can be money, time, or other types of resources.

Test-cost-sensitive attribute reduction is one of the most fundamental problems in
cost-sensitive learning. It aims at finding an attribute reduction with the lowest test
cost, meanwhile maintaining enough information of original decision system. This is-
sue is called the minimal test cost attribute reduction (MTR) [9] problem. In many
applications, such as the medical examination, where patients need to do a lot of tests.
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In general, we tend to undertake only a part of tests to save resources. The MTR method
provides a good solution in the case. Specifically, a λ-weighted information gain (WIG)
algorithm [2] has been designed to deal with MTR problem. This approach produces
good results in small-sized datasets. Unfortunately, it often does not find the optimal
solution on large-scale datasets. For example, on Mushroom dataset, when the test cost
distribution is Normal, the finding optimal factor (FOF) [2] is only 18%.

In this paper, we propose a logarithmic weighted (LW) algorithm for the MTR prob-
lem. The major contributions of proposed algorithm are fourfold. First, a heuristic func-
tion is constructed by a logarithmic strategy, which is based on information gain of at-
tributes, test costs and a user-specified logarithmic δ. Particularly, δ is used to increase
the influence of the test costs. The larger the test cost is, the smaller the heuristic func-
tion is. In this case, the smaller test cost take more advantage in the choice. Second,
from the heuristic function and different δ settings, a number of candidate reductions
with the maximal fitness level in each δ setting environment are produced. Third, a
competition method is used to select a best reduction among these candidate reduc-
tions. Fourth, test costs are normalized to speed up the convergence of the algorithm.
Experimental results show that our algorithm can generate a minimal test cost attribute
reduction in most cases.

Experiments are undertaken with open source software cost-sensitive rough sets
(COSER) [21]. Four open datasets from the University of California-Irvine (UCI) li-
brary are employed to study the effectiveness of our algorithm. Two representative
distributions, namely Uniform and Normal, are employed to generate test costs. We
adopt three measures to evaluate the performance of the reduction algorithms from a
statistical viewpoint. Experimental results indicate that the LW algorithm outperforms
the WIG algorithm in terms of finding optimal factor (FOF), maximal exceeding factor
(MEF) and average exceeding factor (AEF), proposed in [2]. For example, on large-
scale dataset such as Mushroom, when the test cost distribution is Normal, the FOF of
the LW algorithm is 42%, compared with only 18% of the WIG algorithm. With the
same distribution, on medium-sized dataset such as Tic-tac-toe dataset, the FOF of the
LW algorithm is 95%, compared with only 40% of the WIG algorithm.

The rest of the paper is organized as follows. Section 2 introduces the basic knowledge
of test-cost-independent decision systems and the MTR problem. Section 3 presents a
logarithmic weighted algorithm and the competition approach. Section 4 states the ex-
perimental process and shows the comparison results. Finally, Section 5 concludes in
this paper and outlines further research.

2 Preliminaries

This section reviews basic knowledge involving test-cost-independent decision systems
and the minimal test cost attribute reduction.

2.1 Test-cost-independent Decision Systems

Most supervised learning approaches are based on decision systems (DS). A DS is often
represented by a decision table. A decision table is often denoted as S = (U,At = C ∪
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D, {Va|a ∈ At}, {Ia|a ∈ At}), where U is a finite nonempty set of objects called the
universe, At is a finite nonempty set of attributes, C is the set of conditional attributes
describing the objects, and D is the set of decision attributes that indicates the classes
of objects, Va is the set of values for each a ∈ At, and Ia: U → Va is an information
function for each a ∈ At. We often denote {Va|a ∈ At} and {Ia|a ∈ At} by V and
I , respectively. Cost-sensitive decision systems are more general than DS. We consider
the simplest through most widely used model [4] as follows.

Definition 1. [4] A test-cost-independent decision system (TCI-DS) is the 5-tuple:

S = (U,At, V, I, c), (1)

where U ,At, V , and I have the same meanings as in a DS, and c:C → R+∪{0} is the
test cost function. Here the attribute test cost function can be represented by a vector
c = [c(a1), c(a2), . . . , c(a|C|)].

For example, a TCI-DS is represented by Table 1 and a test cost vector, where U =
{x1, x2, x3, x4, x5, x6},C={ Muscle pain, Temperature, Snivel, Heartbeat},D={ Flu},
and let the cost vector be c=[25, 40, 20, 50]. In other words, if the doctor select test
Temperature and Heartbeat, each with cost is $40 and $50, the total test cost would be
$40 + $50 = $90, which indicates that test costs are independent of one another. If any
element in c is 0, a TCI-DS coincides with a DS. Therefore, this type of decision system
is called a test-cost-independent decision system.

Table 1. A decision table for medical treatment

Patient Muscle pain Temperature Snivel Heartbeat Flu
x1 Yes Normal No Abnormal No
x2 No High Yes Normal Yes
x3 No High Yes Abnormal Yes
x4 Yes Normal Yes Normal Yes
x5 Yes High No Abnormal No
x6 Yes High Yes Normal Yes

2.2 The Minimal Test Cost Attribute Reduction

Attribute reduction is an important problem of rough set theory. There are many rough
set models to address the attribute reduction problem from different perspectives, such
as covering-based [10,11], decision-theoretical [3], variable-precision [12], dominance-
based [13], and neighborhood [14,15]. Many definitions of relative reductions exist
[14,16] for rough set models. This paper employs the definition based on the positive
region.

Definition 2. An attribute set R ⊆ C is a region reduction of C with respect to D if it
satisfies the following two conditions:

1. POSR(D) = POSC(D), and
2. ∀a ∈ R, POSR−{a}(D) ⊂ POSC(D).
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Most existing reduction problems aim at finding the minimal reduction. For ex-
ample, let the set of all relative reductions of S be Red(S), and let B ∈ Red(S)
be a minimal reduction if and only if |B| is minimal. Because the test cost is the
key point of this article, we are interested in reductions with the minimal test cost.
For simplicity, the minimal test cost attribute reduction (MTR) can be expressed as
c(B) = min{c(B′

)|B′ ∈ Red(S)}. In fact, the MTR problem is more general than
the minimal reduction problem. When all tests have the same cost, the MTR problem
coincides with the minimal reduction problem.

3 The Logarithmic Weighted Algorithm

Attribute reduction is an important concept in rough set theory. However, for large
dataset, finding a minimal test cost attribute reduction (MTR) is NP-hard. Consequently,
we design a logarithmic weighted (LW) heuristic algorithm to tackle the MTR problem.

The relative concepts of the information gain [20] and the information entropy are
important feasible heuristic information for our algorithm, we first introduce the follow-
ing concepts. The attribute set P is an equivalent relation of domain U on the cluster,
which is composed of k class objects, namely {X1, X2, . . . , Xk}, Xi ∈ U/IND(P ).
Corresponding to the probability are p(X1), p(X2), . . . , p(Xk), then information en-

tropy of P is often denoted as H(P ) = −
k∑

i=1

p(Xi)logp(Xi). For simplicity, the con-

ditional entropy of the attribute set Q respect to attribute set P is often represented

H(Q|P ) = −
n∑

i=1

p(Xi)
m∑
j=1

p(Yj |Xi)logp(Yj |Xi), whereU/IND(P ) = {X1, X2, . . . ,

Xn}, U/IND(Q) = {Y1, Y2, . . . , Ym}, p(Yj |Xi) =
Xi∩Yj

|Xi| .

Definition 3. [2] Let R ⊆ C, ai ∈ C −R. The information gain of ai respect to R is

fe(R, ai) = H(D|R)−H(D|R ∪ {ai}). (2)

To speed up the convergence of algorithm, we employ the logarithmic normalization
method. In fact, there are a number of normalization approaches. For simplicity, we use
the method which is based on the 10 logs base normalization method. In our algorithm,
since datasets do not provide the test cost, we apply Uniform and Normal distributions
to generate random test costs in [1, 100]. Since lg1 = 0, lg100 = 2, therefore, the value
of test cost are normalized from their value into a range from 0 to 2. LetR ⊆ C, ai ∈ R,
c∗(ai) = lgc(ai), where c∗(ai) is the normalized cost of attribute ai, c(ai) is the test
cost of attribute ai. Finally, we propose a LW heuristic information function:

f(R, ai, c
∗(ai)) = fe(R, ai)(1 + c∗(ai)× lgδ), (3)

where c∗(ai) is the normalized cost of attribute ai, and 0 < δ ≤ 1 is a user-specified
parameter. If δ = 1, the test costs are not considered in the evaluation. If δ > 0, tests
with lower cost have bigger significance. Different δ settings can adjust the significance
of test cost.

The algorithm framework is listed in Algorithm 1 containing three main steps. First,
lines 1 and 2 initialize the basic variables saving the minimal cost reduction. The key
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Algorithm 1. An addition-deletion logarithmic weighted algorithm
Input: S = (U,At = C ∪D, V, I, c)
Output: A reduction with minimal test cost
Method: lw-reduction

1. R = ∅;
2. MC = +∞;

//Addition
3. CA = C;
4. while (POSR(D) �= POSC(D)) do
5. for (each a ∈ CA) do
6. Compute f(R, a, c∗(a));
7. end for
8. Select a′ with the maximal f(R, a′, c∗(a

′
));

9. R = R ∪ {a′}; CA = CA− {a′};
10. end while

//Deletion
11. CD = R; //sort attributes in CD from respective test cost in a descending order;
12. while (CD �= ∅) do
13. CD = CD − {a′}, where a

′
is the first element of CD;

14. if (POSR−{a′}(D) = POSR(D)) then

15. R = R− {a′};
16. end if
17. end while

//Select the reduction with minimal test cost
18. for (k=0; k < |R|; k++) do
19. if (c(Rk) < MC) then
20. MC = c(Rk)
21. end if
22. end for
23. Return(Rk,MC)

code of this framework is listed in lines 3 and 10, and the attribute significance function
is defined to select best attributes. In this process, the algorithm adds the current best
attribute a to R from the heuristic function f(R, ai, c∗(ai)) until R becomes a super
reduction. Then, Lines 11 and 18 are the process of deleting attribute, where the al-
gorithm deletes the attribute a from R guaranteeing R with the current minimal total
cost. Finally, lines 18 and 23 indicate that the attribute subset with minimal test cost is
selected as the result.

To obtain better results, the competition approach has been discussed in [2]. In the
new applications, it is still valid because there is no universally optimal δ. In the ap-
proach, reductions compete against each other with only one winner with different δ
values. For simplicity, a reduction with minimal test cost, which can be obtained by
δ ∈ Λ. Let Rδ be the reduction by Algorithm 1 using the heuristic information, and
let |Λ| be the set of user-specified logarithm δ values. The competition approach is
represented as cΛ = min

δ∈Λ
c(Rδ).
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4 Experiments

In this section, we try to answer the following questions by experimentation.
1. Is the LW algorithm efficient?
2. Is there an optimal setting of δ for any dataset?
3. Does the LW algorithm outperform the previous approach?

4.1 Data Generation

Experiments are carried out on four standard datasets obtained from the UCI [22] repos-
itory: Mushroom, Tic-tac-toe, Voting and Zoo. Each dataset should contain exactly one
decision attribute and have no missing value. On the four datasets, attributes are no
test cost settings. For statistical purposes, different test cost distributions correspond to
different applications. The Uniform distribution and Normal distribution are common
and meet the most of the cases, hence this paper use these two kinds of distribution to
generate random test cost in [1, 100].

4.2 Experiment Settings

To test the quality of the proposed algorithm, we set δ = 0.03, 0.15, . . . , 0.99. The al-
gorithm runs 100 times with different test cost distributions and different δ settings on
four datasets. From different test cost distributions, the performance of the algorithm is
different. The finding optimal factor (FOF), maximal exceeding factor (MEF) and aver-
age exceeding factor (AEF) [2] are used as comparison criteria. The detail of definition
can be seen in [2]. Fig. 1 shows FOF of the LW algorithm on different datasets with
different test cost distributions.
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Fig. 1. The FOF of the LW algorithm on different datasets with different test cost distributions:
(a) Uniform distribution; (b) Normal distribution
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From the results we observe the following.
1) When δ = 1, it is observed that there is a good performance only on the
Voting dataset. However, the performance of the algorithm is very poor based on
other three datasets. This is because when δ = 1, from Equation (3), we have
f(R, ai, c

∗(ai)) = fe(R, ai)(1 + c∗(ai)× lgδ) = fe(R, ai). In other words, the
algorithm degrades to an entropy-based reduction algorithm without taking into
account test costs, and the result obtained is a minimal reduction rather than a
minimal test cost reduction.

2) Obviously there is a tendency that with increasing δ, the performance of the LW
algorithm increases until it reaches a maximum, after which it decreases slowly.

3) It can be seen that there is no universally optimal parameter setting of δ that
is valid for any dataset, however, there is a tradeoff for δ = δ∗=0.27 might be a
rational setting if no further information is available for all datasets we tested.

4.3 Comparison of Three Approaches

For the LW algorithm, δ is a key parameter. Three approaches can be obtained with
different setting of δ. We compare the performance for the three methods based on the
LW algorithm. The first approach, which is implemented by setting δ = 1, called the
non-weighted approach. The second approach, called the best δ approach by consid-
ering δ = δ∗, which chooses the best parameter δ value as depicted in Fig. 1. The
third approach is the competition approach based Λ as discussed in Section 3. Three
approaches are based on the same datasets.

Table 2. Results for δ = 1, δ = δ∗ with the optimal setting, and δ = Λ with a number of choices

Dataset Distribution
FOF MEF AEF

δ = 1 δ = δ∗ δ ∈ Λ δ = 1 δ = δ∗ δ ∈ Λ δ = 1 δ = δ∗ δ ∈ Λ

Mushroom
Uniform 0.020 0.620 0.810 5.171 0.641 0.265 0.796 0.0780 0.0173
Normal 0.110 0.220 0.420 0.062 0.515 0.056 0.021 0.1860 0.0121

Tic-tac-toe
Uniform 0.100 0.960 1.000 0.444 0.026 0.000 0.121 0.0004 0.0000
Normal 0.160 0.810 0.950 0.025 0.007 0.007 0.007 0.0005 0.0001

Voting
Uniform 0.910 0.910 1.000 0.088 0.088 0.000 0.003 0.0032 0.0000
Normal 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.0000 0.0000

Zoo
Uniform 0.090 0.710 0.930 1.202 0.534 0.155 0.260 0.0354 0.0036
Normal 0.140 0.670 0.850 0.044 0.202 0.016 0.013 0.0489 0.0011

General three approaches results are depicted in Table 2, from which we observe the
following.

1) When δ = 1, the non-weighted approach only performs well on the Voting
dataset. However, the results are very poor on the other three datasets. In other
words, the non-weighted approach is not suitable for the minimal test cost at-
tribute reduction problem.
2) By considering δ = δ∗, the best δ approach obtains optimal results in most
cases. However, from the real point of view, it is different to guess the best value
of δ.
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3) In general, the competition approach is a simple and effective method to im-
prove the performance of the algorithm, specifically on datasets where the opti-
mal reduction is hard to find. For example, on Mushroom dataset, the FOF for
the competition approach is 0.81, but the FOF for the best δ is only 0.62.

4.4 Comparison with Previous Heuristic Algorithm

The LW heuristic algorithm is developed to deal with the minimal test cost reduc-
tion problem. We illustrate the advantage of the LW algorithm compared with the λ-
weighted information gain (WIG) algorithm from effectiveness. Since two different
algorithms have different parameters, we compare the results of the competition ap-
proach on four datasets with different test costs distributions. Fig. 2(a) shows competi-
tion approach results of two algorithms with Normal distribution. Fig. 2(b) indicates the
improving efficiency ratio of two algorithms with different distributions. To show the
performance of the new approach more intuitive, we adopt Table 3 to express it. From
the results we observe the following.
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Fig. 2. Competition approach results: (a) Finding optimal factor; (b) Improving efficiency ratios

1) From Fig. 2(a) we can see that on the Voting dataset, two algorithms have
the same performance. However, our algorithm has the highest performance on
the other three datasets, meanwhile it can produce better results. For example,
on Tic-tac-toe dataset, the FOF is only 40% for the WIG algorithm. In corre-
spondence, it is 95% for the LW algorithm. In addition, on the large datasets, the
improvement tends to be more obvious. Such as on Mushroom dataset, the FOF
for our algorithm is 42%. However, it is only 18% for the WIG algorithm.

2) The improving efficiency ratios of two algorithms on four datasets as show in
Fig. 2(b). In larger datasets, the improvement of LW algorithm tends to be quite
significant. For example, on Mushroom dataset, when the test cost distribution
are Normal and Uniform, the improving efficiency ratio reaches 57% and 2%,
respectively. On Tic-tac-toe dataset, it reaches 58% and 10%, respectively.
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3) The MEF and AEF are showed in Table 3. It is clear that the LW algorithm sig-
nificantly outperforms the WIG algorithm. For example, on Mushroom dataset,
the MEF on the Normal distribution is 2.7% for the WIG algorithm. But it is
only 1.1% for our algorithm. In short, the performance of our algorithm is better
than the WIG algorithm in finding success rate, the average performance and the
worst performance.

Table 3. Results of two algorithms with the competition approach

Dataset Distribution
WIG algorithm LW algorithm

FOF MEF AEF FOF MEF AEF

Mushroom
Uniform 0.790 0.3354 0.0228 0.810 0.2659 0.0173
Normal 0.180 0.2777 0.1109 0.420 0.1109 0.0121

Tic-tac-toe
Uniform 0.900 0.2412 0.0010 1.000 0.0000 0.0000
Normal 0.400 0.0127 0.0034 0.950 0.0057 0.0001

Voting
Uniform 1.000 0.0000 0.0000 1.000 0.0000 0.0000
Normal 1.000 0.0000 0.0000 1.000 0.0000 0.0000

Zoo
Uniform 0.870 0.1556 0.0046 0.930 0.1556 0.0036
Normal 0.790 0.0120 0.0012 0.850 0.0120 0.0011

5 Conclusions

In this paper, a logarithmic weighted algorithm for minimal test cost attribute re-
duction has been proposed. It adopts a logarithmic strategy in the addition and dele-
tion stages of algorithm. Experimental results show that our algorithm can produce
better results than the λ-weighted information gain algorithm, and our algorithm is
also more obvious for dealing with relatively medium-sized datasets and large-scale
datasets. With regard to future research, on the one hand, we will design more sophis-
ticated approaches to produce better results. On the other hand, we will also apply it to
similar problems such as an error range based attribute reduction or other models such
as an interval-valued decision system.
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Abstract. This paper studies a new definition and an approach to at-
tribute reduction in an object oriented concept lattice based on congru-
ence relations. Firstly, dependence space based on the object oriented
concept lattice is researched to obtain the relationship among object ori-
ented concept lattices and the corresponding congruence relations. Then
the notion of attribute reduct in this paper, resembling that in rough set
theory, is defined to find minimal attribute subsets which can preserve all
congruence classes determined by the attribute set. Finally, an approach
of discernibility matrix is presented to calculate all attribute reducts. It
is shown that attribute reducts can also keep all object oriented extents
and their original hierarchy in the object oriented concept lattice.

Keywords: Object oriented concept lattice, rough set, attribute reduc-
tion, congruence relation, formal context.

1 Introduction

Formal concept analysis [1, 26] and rough set theory [13, 14] are two effective
and complementary mathematical tools to analyze data. The relationship and
combination of formal concept analysis and rough set theory are studies to pro-
vide new approaches to data analysis. In [3, 15, 16, 28] rough set approximation
operators are introduced into formal concept analysis by considering different
types of definability. On the other hand, the notion of formal concept and for-
mal concept lattice can also be introduced into rough set, such as the object and
property oriented formal concept lattices introduced by Yao [29, 30] respectively
based on approximation operators.

One of the key problems of formal concept analysis and rough set theory is
knowledge reduction which can make knowledge representation of database more
succinct, knowledge hiding in database clearer, and adaptability of rule sets for
decision tables better. Many types of approaches to knowledge reduction in rough
set theory[4, 9, 10, 14, 17–20, 31, 32] have been proposed, as well as in the area
of formal concept analysis [1, 5–8, 11, 21–25, 27, 33, 34]. Moreover, almost all of
the approaches to knowledge reduction in rough set theory are based on binary
relations such as equivalence relations, partial ordering relations and so on which
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define on the object (attribute) sets or the object (attribute) power sets. For for-
mal concept analysis, most of the approaches consider knowledge reduction from
the viewpoint of the extents of formal concepts and their hierarchy. In [1], the
reducible attribute and reducible object were proposed from the viewpoint of
shortening lines or rows. In [33, 34], an attribute reduction approach was pre-
sented to find minimal attribute sets which can determine all extents and their
original hierarchy in the concept lattice. And attribute reduction in a consistent
formal decision context was also investigated in [25]. Then, in [8] the approach
was generalized to attribute reduction in the attribute oriented concept lattices
and the object oriented concept lattices. Wang et al. [21, 22] provided another
approach to attribute reduction, which only required to preserve all extents of
∧−irreducible elements. Subsequently the approach was extended to attribute
reduction in object oriented concept lattices and property oriented concept lat-
tices. Wu et al. [27] studied attribute reduction in formal contexts from the
viewpoint of keeping granular structure of concept lattices. In [7] an efficient
post-processing method was shown to prune redundant rules by virtue of the
property of Galois connection, which inherently constrains rules with respect to
objects. In [11] a Boolean approach was formulated to calculate all reducts of a
formal context via the use of discernibility function. Wang et al. [23] developed
an approach to attribute reduction in a formal context and a consistent formal
decision context based on congruence relations. The approach in a formal con-
text is to find minimal attribute sets which can preserve all original congruence
classes. Four types of approaches to attribute reduction in inconsistent formal
decision contexts were defined in [24]. In [5], methods for attribute reduction
were studied by an order-preserving mapping between the set of all the extents
of the condition concept lattice and that of the decision concept lattice. In [6],
methods of approximate concept construction were presented for an incomplete
formal context.

The purpose of this paper is mainly to study the notion and approaches to
attribute reduction in object oriented concept lattices. Basic definitions and
properties of formal concept analysis are recalled in Section 2. In Section 3,
dependence space is introduced into the object oriented concept lattice, and
relationships among object oriented concept lattices and the corresponding con-
gruence relations are also discussed. In Section 4, an approach to attribute reduc-
tion in object oriented concept lattices are proposed using discernibility matrices
to obtain all attribute reducts in Section 4. Finally, we conclude the paper in
Section 5.

2 Preliminaries

In this section, we recall some basic notions and properties about formal concept
analysis which will be used in this paper.

Definition 1. [1] A formal context (U,A, I) consists of object set U and attribute
set A, and a relation I ⊆ U × A. The elements of U are called objects and the
elements of A are called attributes of the formal context.
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For any X ⊆ U and B ⊆ A, Y.Y. Yao defined two pairs of dual operators:

X� = {a ∈ A |∀ x ∈ U, xIa⇒ x ∈ X}, (1)

X♦ = {a ∈ A |∃ x ∈ U, xIa ∧ x ∈ X}, (2)

B� = {x ∈ U |∀ a ∈ A, xIa⇒ a ∈ B}, (3)

B♦ = {x ∈ U |∃ a ∈ A, xIa ∧ a ∈ B}. (4)

Definition 2. [30] Let (U,A, I) be a formal context and B ⊆ A. The formal
context (U,B, IB) is called a subcontext of (U,A, I), where IB = I ∩ (U ×B).

For any B ⊆ A, let �B,♦B stand for the operator in the subcontext (U,B, IB).
Clearly, for any X ⊆ U,X�A = X�, X�B = X�A ∩ B, X♦A = X♦ and
X♦B = X♦A ∩B.
Definition 3. [30] An object oriented concept of a formal context (U,A, I) is a
pair (X,B) with X ⊆ U,B ⊆ A,X� = B and B♦ = X . We call X the extent
and B the intent of the object oriented concept (X,B).

For any two object oriented concepts (X1, B1) and (X2, B2), Y.Y. Yao defined
two operators meet and join as follows:

(X1, B1) ∧ (X2, B2) = ((B1 ∩B2)
♦, (B1 ∩B2)), (5)

(X1, B1) ∨ (X2, B2) = ((X1 ∪X2), (X1 ∪X2)
�). (6)

The set of all object oriented concepts of (U,A, I) is denoted by LO(U,A, I)
and is called the object oriented concept lattice of the formal context (U,A, I).

Property 1. [30] Let (U,A, I) be a formal context, X,X1, X2 be object sets,
and B,B1, B2 be attribute sets, then

(1) If X1 ⊆ X2, then X
�
1 ⊆ X�

2 , and X
♦
1 ⊆ X♦

2 .

If B1 ⊆ B2, then B
�
1 ⊆ B�

2 , and B
♦
1 ⊆ B♦

2 ;

(2) X�♦ ⊆ X ⊆ X♦�, and B�♦ ⊆ B ⊆ B♦�;

(3) X� = X�♦�, and B� = B�♦�;

X♦ = X♦�♦, and B♦ = B♦�♦;
(4) (X1 ∩X2)

� = X�
1 ∩X�

2 , and (B1 ∩B2)
� = B�

1 ∪B�
2 ;

(5) (X1 ∪X2)
♦ = X♦

1 ∪X♦
2 , and (B1 ∪B2)

♦ = B♦
1 ∪B♦

2 .

3 Dependence Space Based on an Object Oriented
Concept Lattice

An information system is a triple (U,A, F ), where U is the finite set of objects
and A is the finite set of attributes, F is a set of functions between U and A.
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In [12], Novotnỳ defined a congruence relation on the attribute power set P(A)
and a dependence space in information systems.

Definition 4. [12] Let (U,A, F ) be an information system. K is an equivalence
relation on P(A). Then, K is called a congruence relation on (P(A),⋃), when-
ever it satisfies the following condition: if (B1, C1) ∈ K, (B2, C2) ∈ K, then
(B1 ∪B2, C1 ∪ C2) ∈ K.

Definition 5. [12] Let A be a finite nonempty set, K a congruence relation on
(P(A),⋃). Then the ordered pair (A,K) is said to be a dependence space.

Definition 6. [2] An interior operator is a mapping int : 2U → 2U such
that for all X,Y ⊆ U , X ⊆ Y ⊆ U ⇒ int(X) ⊆ int(Y ); int(X) ⊆ X and
int(X) = int(int(X)).

Let (U,A, I) be a formal context and B ⊆ A. Developed by Novotnỳ’s idea,
we define a binary relation on the object power set P(U) as follows:

R�B = {(X,Y ) ∈ P(U)× P(U)|X�B = Y �B}. (7)

It is easy to prove that R�B is a congruence relation on (P(U),⋃). That
is, (U,R�B) is a dependence space. We define [X ]R�B = {Y ∈ P(U)|(X,Y ) ∈
R�B}, the congruence class determined by X with respect to the congruence
relation R�B. Then we define intR�B (X) =

⋂{Y |Y ∈ [X ]R�B}.
By Property 1 and the definition of intR�B (X), we have the following Lemma 1

immediately.

Lemma 1. Let (U,A, I) be a formal context. For any X,Y, Z ∈ P(U) and
B ⊆ A, the following statements hold: (1) (intR�B (X), X) ∈ R�B; (2) intR�B

is an interior operator; (3) intR�B (X) = X�B♦B.

By Lemma 1 (4) and Property 1 (3), (intR�B (X), X�) ∈ LO(U,B, IB) for
any X ⊆ U and B ⊆ A. On the other hand, if X ∈ LOU (U,B, IB), then
X = intR�B (X), where LOU (U,A, I) = {X |(X,B) ∈ LO(U,A, I)}. That is
LOU (U,B, IB) = {intR�B(X)|X ⊆ U}.
Lemma 2. Let (U,A, I) be a formal context. For anyX,Y, Z ∈ P(U) and B ⊆ A,
if X ⊆ Y ⊆ Z and (X,Z) ∈ R�B, then (X,Y ) ∈ R�B and (Y, Z) ∈ R�B.

Since R�B is a congruence relation, Lemma 2 can be easily proved by the
definition of congruence relation.

Lemma 3. Let (U,A1, I1) and (U,A2, I2) be two formal contexts with the same
object set. For any X ⊆ U , if LOU (U,A2, I2) ⊆ LOU (U,A1, I1), then we have
(1) intR�A1 (intR�A2 (X)) = intR�A2 (X), and (2) intR�A2 (X) ⊆ intR�A1 (X).

Proof.(1) Since intR�A2 (X) ∈ LOU (U,A2, I2) for anyX ⊆ U , if LOU (U,A2, I2) ⊆
LOU (U,A1, I1), then we obtain that intR�A2 (X) ∈ LOU (U,A1, I1) which implies
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that (intR�A2 (X))�A1♦A1 = intR�A2 (X). Therefore, (i) is concluded considering
that intR�A1 (intR�A2 (X)) = (intR�A2 (X))�A1♦A1 .

(2) Since intR�A1 is an interior operator, we have intR�A1 (intR�A2 (X)) ⊆
intR�A1 (X). Thus, intR�A2 (X) ⊆ intR�A1 (X) follows directly from (i). †

The following Theorem 1 shows us the relationships among object oriented
concept lattices and the corresponding congruence relations.

Theorem 1. Let (U,A1, I1) and (U,A2, I2) be two formal contexts with the
same object set. Then we have LOU (U,A2, I2) ⊆ LOU (U,A1, I1) if and only if
R�A1 ⊆ R�A2 .

Proof. Sufficiency. Assume LOU (U,A2, I2) � LOU (U,A1, I1), then there exists
X ∈ LOU (U,A2, I2) such that X /∈ LOU (U,A1, I1). Thus, intR�A1 (X) � X =
intR�A2 (X) is concluded. Since R�A1 ⊆ R�A2 if and only if [X ]R�A1 ⊆ [X ]R�A2

for any X ⊆ U , we have intR�A2 (X) ⊆ intR�A1 (X), which is a contradiction to
intR�A1 (X) � intR�A2 (X). Consequently, LOU (U,A2, I2) ⊆ LOU (U,A1, I1).

Necessity. AssumeR�A1 � R�A2 , then there exitsX ⊆ U such that [X ]R�A1 �
[X ]R�A2 . Thus, there exists Y ∈ [X ]R�A1 such that Y /∈ [X ]R�A2 . We prove it
from two cases: X ∈ LOU (U,A1, I1) and X /∈ LOU (U,A1, I1).

Firstly, we supposeX ∈ LOU (U,A1, I1). Since Y ∈ [X ]R�A1 and Y /∈ [X ]R�A2 ,
we obtain X = intR�A1 (Y ) � Y . Combining with intR�A2 (Y ) ⊆ intR�A1 (Y ) by
Lemma 3 (2), we have intR�A2 (Y ) ⊆ X � Y . Due to Lemma 2, (Y,X) ∈ R�A2 ,
which is a contradiction to Y /∈ [X ]R�A2 . Therefore, [X ]R�A1 ⊆ [X ]R�A2 holds.
That is R�A1 ⊆ R�A2 .

Secondly, we supposeX /∈ LOU (U,A1, I1). According to the above discussions,
we have [intR�A1 (X)]R�A1 ⊆ [intR�A1 (X)]R�A2 due to intR�A1 (X) ∈ LOU

(U,A1, I1). Since Y ∈ [X ]R�A1 , it is evident that intR�A1 (X) ⊆ Y and Y ∈
[intR�A1 (X)]R�A2 . Combining with intR�A2 (X) ⊆ intR�A1 (X), we have intRA2

(X) ⊆ Y . Since intR�A2 is an interior operator and Y ∈ [intR�A1 (X)]R�A2 , we
obtain intR�A2 (Y ) = intR�A2 (intR�A1 (X)) ⊆ intR�A2 (X). Thus, intR�A2 (Y ) ⊆
intR�A2 (X) ⊆ Y. By Lemma 2, (Y, intR�A2 (X)) ∈ R�A2 holds. That is, (Y,X) ∈
R�A2 , which is a contradiction to Y /∈ [X ]R�A2 . Therefore, [X ]R�A1 ⊆ [X ]R�A2

is concluded. That is R�A1 ⊆ R�A2 . †

4 The Notion and Approaches to Attribute Reduction in
Object Oriented Concept Lattices

In this section, we develop the notion of attribute reduction in an object oriented
concept lattice based on the congruence relations and then define an approach
to attribute reduction.

Definition 7. Let (U,A, I) be a formal context. For any B ⊆ A, if R�A = R�B,
then B is called a consistent set of the object oriented concept lattice LO(U,A, I).
Further, for any b ∈ B if R�A �= R�B−{b}, then B is called an attribute reduct
of LO(U,A, I).
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Definition 6 shows that consistent sets preserve all original congruence classes
determined by the attribute set. By Theorem 1 and Definition 6, we can obtain
the following result directly.

Theorem 2. Let (U,A, I) be a formal context. For any B ⊆ A and b ∈ B, we
have the following two statements:

(1) B is a consistent set if and only if LOU (U,A, I) = LOU (U,B, IB).
(2) B is an attribute reduct if and only if LOU (U,A, I) = LOU (U,B, IB),

LOU (U,A, I) �= LOU (U,B − {b}, IB−{b}).

For convenience, we use R�a instead of R�{a}(a ∈ A).
Definition 8. Let (U,A, I) be a formal context. For any Xi, Xj ⊆ U , we define

D([Xi]R�A , [Xj]RA) = {a ∈ A|(Xi, Xj) /∈ R�a}. (8)

Then D([Xi]R�A , [Xj ]R�A) is called the discernibility attribute set between
[Xi]R�A and [Xj ]R�A , and D = (D([Xi]R�A , [Xj ]R�A)|Xi, Xj ∈ P(U)) is called
the discernibility matrix.

Theorem 3. Let (U,A, I) be a formal context. For any Xi, Xj ⊆ U , we have
D([Xi]R�A , [Xj ]R�A) = Bi ∪Bj −Bi ∩Bj , where (intRA(Xi), Bi) ∈ LO(U,A, I)
and (intR�A(Xj), Bj) ∈ LO(U,A, I).

Proof. Since for any Xi, Xj ⊆ U , (intR�A(Xi), Bi) ∈ LO(U,A, I) and (intR�A

(Xj), Bj) ∈ LO(U,A, I), we obtain

a ∈ D([Xi]R�A , [Xj ]R�A)⇔ (Xi, Xj) /∈ R�a

⇔ X�a
i �= X�a

j

⇔ (intR�A(Xi))
�a �= (intR�A(Xj))

�a

⇔ a ∈ Bi ∪Bj −Bi ∩Bj ,

The proof is completed. †

Property 2. Let (U,A, I) be a formal context. For any Xi, Xj, Xk ⊆ U and
B ⊆ A, the following properties hold:

(1) D([Xi]R�A , [Xi]R�A) = ∅.
(2) D([Xi]R�A , [Xj]R�A) = D([Xj ]R�A , [Xi]R�A).
(3) D([Xi]R�A , [Xj]R�A) ⊆ D([Xi]R�A , [Xk]R�A) ∪D([Xk]R�A , [Xj ]R�A).
(4) D([Xi]R�B , [Xj]R�B ) = D([Xi]R�A , [Xj ]R�A) ∩B.

Theorem 4. Let (U,A, I) be a formal context. For any nonempty attribute set
B, we have that B is a consistent set if and only if for any D([Xi]R�A , [Xj ]R�A)
�= ∅, B ∩D([Xi]R�A , [Xj ]R�A) �= ∅.
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Proof. Sufficiency. Since for any D([Xi]R�A , [Xj]R�A) �= ∅, B∩ D([Xi]R�A ,
[Xj ]R�A) �= ∅, we have if D([Xi]R�A , [Xj ]R�A) �= ∅, then D([Xi]R�B , [Xj ]R�B ) �=
∅. On the other hand, we have that ifD([Xi]R�B , [Xj ]R�B ) �= ∅, then D([Xi]R�A ,
[Xj ]R�A) �= ∅ by Property 2 (4).

Necessity. If B is a consistent set, then R�A = R�B which implies [Xi]R�A =
[Xj ]R�B for any Xi, Xj ⊆ U . Thus we have if [Xi]R�A ∩ [Xj ]R�A = ∅, then
[Xi]R�B ∩ [Xj ]R�B = ∅. Hence if D([Xi]R�A , [Xj ]R�A) �= ∅, then D([Xi]R�B ,
[Xj ]R�B ) �= ∅. Since D([Xi]R�B , [Xj ]R�B ) = D([Xi]R�A , [Xj ]R�A) ∩B, we have
B ∩D([Xi]R�A , [Xj]R�A) �= ∅. †

Example 1. Table 1 gives a formal context (U,A, I) with U = {1, 2, 3, 4, 5} and
A = {a, b, c, d, e}. Table 2 shows the corresponding discernibility matrix D of
(U,A, I) and Fig. 1 gives the object oriented concept lattice L(U,A, I).

Table 1. A formal context (U,A, I)

U a b c d e

1 0 1 0 1 0
2 1 0 1 0 1
3 1 1 0 0 1
4 0 1 1 1 0
5 1 0 0 0 1

(U, A)

(2345, ace) (1234, bcd)

(124,cd) (134, bd)

(235,ae) (24,c) (14,d)

( , )

Fig. 1. The object oriented concept lattices LO(U,A, I)

According to Theorem 4 and Table 2, B1 = {a, b, c, d} and B2 = {b, c, d, e} are
the attribute reducts of (U,A, I). Fig. 2 shows the object oriented concept lattices
LO(U,B1, IB1) and LO(U,B2, IB2) respectively. It is easy to see that the three
object oriented concept lattices LO(U,A, I), LO(U,B1, IB1) and LO(U,B2, IB2)
are isomorphic to each other.
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Table 2. The discernibility matrix D of (U,A, I)

U{2345} {1234} {235} {124} {134} {24} {14} ∅
U ∅ {b, d} {a, e} {b, c, d} {a, b, e} {a, c, e} {a, b, d, e}{a, b, c, e} A

{2345} ∅ {a, b, d, e} {c} {a, d, e} A {a, e} {a, c, d, e}{a, c, e}
{1234} ∅ A {b} {c} {b, d} {c, d} {b, c, d}
{235} ∅ {a, c, d, e}{a, b, d, e} {a, c, e} {a, d, e} {a, e}
{124} ∅ {b, c} {d} {c} {c, d}
{134} ∅ {b, c, d} {b} {b, d}
{24} ∅ {c, d} {c}
{14} ∅ {d}
∅ ∅

(U, B1)

(2345, ac) (1234, bcd)

(124,cd) (134, bd)

(235,a) (24,c) (14,d)

( , )

(U, B2)

(2345, ce) (1234, bcd)

(124,cd) (134, bd)

(235, ae) (24,c) (14,d)

( , )

Fig. 2. The left is the object oriented concept lattice LO(U,B1, IB1), and the right is
LO(U,B2, IB2).

5 Conclusion

This paper has developed notions and approaches to attribute reduction in object
oriented concept lattices based on congruence relations. Discernibility matrices
have been subsequently defined to calculate all attribute reducts. Basing on the
reduction method proposed in this paper, we can study knowledge reduction in
inconsistent formal decision contexts based on object oriented concept lattices
in further research.
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Abstract. A disadvantage of most nonlinear dimensionality reduction methods 
is that there are no explicit mappings to project high-dimensional features into 
low-dimensional representation space. Previously, some methods have been 
proposed to provide explicit mappings for nonlinear dimensionality reduction 
methods. Nevertheless, a disadvantage of these methods is that the learned 
mapping functions are combinations of all the original features, thus it is often 
difficult to interpret the results. In addition, the dense projection matrices of 
these approaches will cause a high cost of storage and computation. In this pa-
per, a framework based on L1-norm regularization is presented to learn explicit 
sparse polynomial mappings for nonlinear dimensionality reduction. By using 
this framework and the method of locally linear embedding, we derive an expli-
cit sparse nonlinear dimensionality reduction algorithm, which is named sparse 
neighborhood preserving polynomial embedding. Experimental results on real 
world classification and clustering problems demonstrate the effectiveness of 
our approach. 

Keywords: Nonlinear dimensionality reduction, sparse representation. 

1 Introduction 

Great quantities of high-dimensional data are confronted in data processing. The high 
dimensionality of data will lead to the curse of dimensionality, thus effective dimen-
sionality reduction techniques are demanded. Nonlinear dimensionality reduction has 
become a kind of important dimensionality reduction technique due to its capacity of 
obtaining a low intrinsic dimensionality of high-dimensional data [1, 2]. In recent 
years, nonlinear dimensionality reduction methods, such as locally linear embedding 
[1], isometric mapping [2], Laplacian eigenmap [3], maximum variance unfolding [4] 
achieved effective performance in comprehensive experiments. However, these me-
thods have a disadvantage that there are no explicit mappings from the high-
dimensional feature space to the low-dimensional representation space. Thus the di-
mensionality of new-come high-dimensional data could not be reduced quickly. This 
restricts the application of these nonlinear dimensionality reduction methods in many 
practical tasks such as pattern recognition and classification. 
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In recent years, some linear or nonlinear approaches such as locality preserving 
projections [5] and neighborhood preserving polynomial embedding [6], have been 
proposed to get approximate explicit mappings for nonlinear dimensionality reduction 
methods. These approaches retain some intrinsic structures of high-dimensional data 
set in the dimensionality reduction and achieve effective performance in experiments. 
A disadvantage of these approaches is, however, that the learned projective functions 
are combinations of all the original features, thus it is often difficult to interpret the 
results. Besides, these methods cannot get sparse translation matrices for explicit 
mappings, thus this will affect the performance of computation and storage. For in-
stance, if we use a linear mapping method like locality preserving projections, it will 
need 100 million expensive floating-point multiplications to project a feature from 
100 thousand dimensionalities to 1000 dimensionalities. Moreover, storage of the 
projection matrix in floating-point format is 400 million. The high cost is unafforda-
ble in many real scenarios such as mobile applications or on embedded devices. 

Several methods have been introduced to learn sparse mappings. The sparse prin-
cipal component analysis method is proposed to produce modified principal compo-
nents with sparse loadings in [7]. A spectral regression method is proposed for sparse 
subspace learning in [8]. This method casts the problem of learning the projective 
functions into a linear regression framework. It can obtain sparse mappings for sub-
space learning by using a 1-based linear regression. These methods get sparse map-
pings with the assumption that there exists a linear mapping between the high-
dimensional data and their low-dimensional representations. Nevertheless, this li-
nearity assumption may be too restrictive for nonlinear dimensionality reduction. 

In order to solve the problem above, a two-step framework to obtain sparse poly-
nomial mappings for nonlinear dimensionality reduction is proposed in this paper. 
Firstly, a nonlinear dimensionality reduction method could be applied to get low-
dimensional representations of high-dimensional input data. Secondly, polynomial 
regression based on L1-norm regularization is applied to get a sparse polynomial 
mapping from high-dimensional input data to their low-dimensional representations. 
We can acquire sparse polynomial mappings for nonlinear dimensionality reduction 
by using this approach. In this paper, we use the method of locally linear embedding 
at the first step of the framework to derive a sparse nonlinear dimensionality reduction 
algorithm, which is named sparse neighborhood preserving polynomial embedding. 
Experiments have been conducted to demonstrate the effectiveness of the proposed 
approach. 

2 Sparse Polynomial Mapping Framework 

In this section, we present a framework to learn a sparse polynomial mapping from 
high-dimensional data samples to their low-dimensional representations. 

This framework can be divided into two steps. In the first step, a nonlinear dimen-
sionality method is used to get the low-dimensional representations of high-
dimensional input data. In the second step, a sparse polynomial mapping which di-
rectly maps high-dimensional data to their low-dimensional representations is learned 
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by using the 1-based simplified polynomial regression presented below. In the training 
phase, a sparse polynomial mapping is learned by this two-step framework. In the  
testing phase, we get the low-dimensional representations by directly projecting  
high-dimensional data using the sparse polynomial mapping which is learned in the 
training phase. 

High-dimensional input data are denoted by m
1 2[ , ,..., ],n iX x x x x= Î where n is the 

number of the input data. Their low-dimensional representations are denoted by a ma-
trix 1 2[ , ,..., ]dY y y y=  where the low-dimensional representation ( ) ( )i dy d mÎ    

is the transpose of the ith row of Y. 
It has been presented in [9] that many nonlinear dimensionality reduction methods, 

including locally linear embedding [1], isometric mapping [2] and Laplacian eigen-
map [3], can be cast into the framework of graph embedding. By this framework, 
learning the low-dimensional representations of the high-dimensional data is reduced 
to solving the following optimization problem: 
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where ( , 1, 2,..., )ijW i j n= are weights which are defined by the input data samples, 

and 1
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i ijjD W==å , and I is an identity matrix. With some simple algebraic calculation, 

(1) is equivalent to 
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where D is a diagonal matrix whose diagonal entity is iD , and W is a symmetrical 

matrix whose entity is ijW . The optimal solutions ( 1, 2,..., )n
ky k dÎ =  are the 

eigenvectors of the following generalized eigenvalue problem corresponding to the d 
smallest eigenvalues: 

 ( )D W y Dyl- =  (3) 

Once ( 1, 2,..., )ky k d= are calculated, the low-dimensional representation 
( )

1( ( ),..., ( ))i T
dy y i y i= . 

It is worth noting, however, that the computational complexity exponentially in-
creases as the polynomial degree increases in the computing stage. Thus we use a 
simplified polynomial in the following by removing the crosswise items of the poly-
nomial. We assume that the thk component k

iy of ( )iy is a polynomial of degree p in 

ix
 

in the following manner: 
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whereÄstands for the Kronecker product defined on matrices. For two matrices 
( )ijA a=  and B, A BÄ is a block matrix whose (i,j)th block is ija B . 

An explicit sparse polynomial mapping can be learned by the sparse polynomial 
mapping framework. This framework uses the following simplified polynomial re-
gression with the L1 penalty. Due to the nature of the L1 penalty, some coefficients 
will be shrunk to exact zero if the penalty parameter is large enough [10]. Thus it 
produces a sparse model, which is exactly what we want. 

Low-dimensional representations ( ) ( 1, 2,..., )iy i n= of the high-dimensional data 

samples ( 1, 2,..., )ix i n=  are computed by solving the generalized eigenvalue problem 

(3). With a L1 penalty on kv which is the vector of polynomial coefficients, we have 

 ( ) 2
1

1 1

min (( ) || || )
k

d n
k T i
i k p k

v k i

y v X vl
= =

- +åå  (4) 

which is named the 1-based simplified polynomial regression, where l is a penalty 
parameter, and 1|| ||× is the L1 norm. 

The optimization problem (4) can be solved by an efficient coordinate descent al-
gorithm [11] initialized by the value obtained in a previous iteration. Since the L1 
penalty is applied, the sparse coefficient vector of the polynomial mapping can be 
acquired. The sparsity of the vector of polynomial coefficients can be also controlled 
by tuning the parameter l . The larger the value of parameter l is, the higher the 
sparsity of the coefficients. The sparse coefficients shall bring great convenience to 
subsequent computation and storage. 

3 Sparse Neighborhood Preserving Polynomial Embedding 

It has been presented in [9] that most nonlinear dimensionality reduction methods, 
including locally linear embedding [1], isometric mapping [2] and Laplacian eigen-
map [3], can be cast into the framework of graph embedding with different weights. 
Thus different sparse polynomial mapping algorithms could be derived by the frame-
work of sparse polynomial mapping proposed in Section 2 with different weights. In 
this section, we derive an explicit sparse nonlinear dimensionality reduction algorithm, 
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named sparse neighborhood preserving polynomial embedding (SNPPE). It is obtained 
by the above framework with weights defined in a way same to the locally linear em-
bedding method [1]. 

Given n input data points 1,..., nx x  in m , we construct a weighted graph with n 

nodes, one for each sample, and a set of edges connecting neighboring samples. The 
sparse polynomial mapping is derived by solving the generalized eigenvalue problem 
(3) and the optimization problem (4). The algorithmic procedure of SNPPE is formal-
ly stated below. 
 

Step 1. Constructing the adjacency graph: Put an edge between data points ix  

and jx if ix among k nearest neighbors of jx or jx is among k nearest neighbors 

of ix .
 

 
Step 2. Choosing the weights: Compute the weights ijW that best reconstruct 

each data point ix from its neighbors, minimizing the cost in equation 
2( ) || ||i ij jj

i

E W x W x= -å å  by constrained linear fits.  

     
Step 3. Computing the low-dimensional representations: The low-dimensional 
representations ( ) ( 1, 2,..., )iy i n=  of the high-dimensional data points can be 
computed by solving the generalized eigenvalue problem (3). 

 
Step 4. Solving the optimization problem: The optimal solutions 

( 1, 2,..., )kv k d=  of the optimization problem (4) can be computed by the path-

wise coordinate descent algorithm in [11]. 
 

In the step 2, the weight matrix ( )ijW W= has a solution given by 
1 1/ ( )T

iR M I I M I- -= where iR is a column vector formed by the k nonzero entries in the 

ith row of W , and I is a column vector of all ones. The (j,l)th entry of the k k´ matrix 

M is ( ) ( )T
j i l ix x x x- - , where jx and lx are among the k nearest neighbors of ix . 

4 Experiments 

In this section, we describe an experimental evaluation of the proposed sparse neigh-
borhood preserving polynomial embedding algorithm for nonlinear dimensionality 
reduction. The face recognition and face clustering are carried out using the proposed 
algorithm and compared algorithms in the experiments. 

4.1 Datasets 

Two face databases were used in this experiment. They are the AR database [12] and 
the PIE database [13], respectively. The AR database contains over 4000 color images 
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corresponding to 126 people’s faces. These images include front view of faces with 
different expressions, illumination conditions, and occlusions (sun glasses and scarf). 
In the implementation, we use a subset of the AR database, which contains 1400 face 
images corresponding to 100 people, where each individual has 14 different images. 
The PIE database contains more than 40,000 facial images of 68 individuals. These 
images were obtained across different poses, with different expressions, and under 
variable illumination conditions. In this experiment, we select face images of near 
frontal poses and use all the images under different illumination conditions and facial 
expressions.  A subset including 2040 images with 30 images per individual is ac-
quired finally. All the face images in this experiment are manually aligned and 
cropped. These face images are resized to a size of 32 32´ pixels, and the gray level 
values are rescaled to the range from 0 to 1. 

4.2 Experimental Settings 

The polynomial degree of the proposed algorithm is set as 2 in the experiments. For 
these two databases, we randomly choose half of the images per class for training, and 
the remaining for test. The training images are used to learn explicit mappings. The 
testing images are mapped into lower dimensional subspace by these explicit map-
pings. For simplicity, recognitions are implemented by using nearest neighbor clas-
sifier in the reduced feature space. 5-fold cross validation has been used in the expe-
riment to choose the best penalty parameter. As a baseline, we also give the recogni-
tion rates of the classifier using the raw data without dimensionality reduction. In 
practice, 10 training/test splits are randomly chosen. The average recognition accura-
cies over these splits are illustrated below. 

4.3 Recognition Result 

The proposed sparse neighborhood preserving polynomial embedding algorithm 
(SNPPE) is an unsupervised dimensionality reduction method. We compare it with 
principal component analysis (PCA) [14], Sparse PCA [7], and neighborhood preserv-
ing polynomial embedding (NPPE) [6]. The recognition rates on AR and PIE are 
illustrated in Fig. 1(a) and Fig. 1(b), respectively. As can be seen, the performance of 
the PCA, Sparse PCA, NPPE and SNPPE algorithms varies with the number of di-
mensionalities. We demonstrate the best results with the standard deviations obtained 
by these algorithms in Table 1. The sparsity of the projection matrix of each mapping 
is also shown, and it is calculated as the ratio of the number of zero entries and the 
total number of entries. As can be seen, the sparsity for PCA and NPPE are both zero, 
while the sparsity for Sparse PCA and the proposed SNPPE are very high. Comparing 
with second best method, SNPPE achieves 7.6% and 13.4% relative improvements on 
AR and PIE, respectively. The performances of the proposed algorithm overtake the 
compared algorithms.  
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  (a) AR                               (b) PIE 

Fig. 1. Recognition Rates vs. dimensionality on AR and PIE 

Table 1. Recognition Results on AR and PIE 

Method 
AR PIE 

accuracy (%) dim sparsity (%) accuracy (%) dim sparsity (%) 
Baseline 78.32± 0.3 1024 -- 80.98± 0.7 1024 -- 

PCA 79.36± 0.4 246 0 80.88± 0.7 230 0 

Sparse PCA 84.36± 0.5 215 88.65± 0.4 85.00± 0.6 208 92.16± 0.5 

NPPE 82.62± 0.6 185 0 83.53± 0.6 115 0 

SNPPE 90.80± 0.2 135 92.68± 0.3 96.36± 0.7 93 94.21± 0.6 

4.4 Clustering Result 

The use of our proposed algorithm for face clustering is investigated on PIE database. 
Face clustering is an unsupervised task, and we compare our algorithm SNPPE with 
locality preserving projections (LPP) [5], Sparse LPP [8], and neighborhood preserv-
ing polynomial embedding (NPPE) [6]. K-means is chosen as our clustering algo-
rithm. It is performed in the reduced spaces which are reduced by using the above 
algorithms. For the baseline method, K-means is performed in the original feature 
space. The clustering result is evaluated by comparing the obtained label of each face 
image with that provided by the ground truth. The normalized mutual information 

( MI ) is used to measure the clustering performance [8]. Let C denote the set of clus-

ters acquired from the ground truth, and 'C obtained from an algorithm. Their norma-

lized mutual information metric '( , )MI C C is defined as follows: 
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where ( )ip c and '( )jp c are the probabilities that a sample arbitrarily chosen from the 

data set belongs to the clusters ic and '
jc , respectively, and '( , )i jp c c is the joint 

probability that the arbitrarily selected sample belongs to the clusters ic and '
jc at the 

same time. ( )H C and '( )H C are the entropies of C and 'C , respectively. It is easy 

to check that '( , )MI C C ranges from 0 to 1. '( , ) 1MI C C = if the two sets of clusters 

are identical, and '( , ) 0MI C C = if the two sets are independent. 

The plot of normalized mutual information versus dimensionality for LPP, Sparse 
LPP, NPPE, SNPPE and baseline methods is shown in Fig. 2. As can be seen, the 
performance of the LPP, Sparse LPP, NPPE and SNPPE algorithms varies with the 
number of dimensionalities. Our SNPPE algorithm outperforms the other algorithms. 

 

 

Fig. 2. Normalized mutual information vs. dimensionality on PIE dataset 

5 Conclusion 

In this paper, an explicit sparse polynomial mapping framework for nonlinear dimen-
sionality reduction is proposed. It is developed from the graph embedding and the 
simplified polynomial regression with L1-norm regularization. An explicit sparse 
polynomial mapping from high-dimensional input data to their low-dimensional re-
presentations can be obtained by this framework. Thus the dimension of a new-come 
data sample can be quickly reduced by the learned explicit mapping, and the cost of 
computation and storage can be decreased considerably. 

Through the proposed framework, we can derive new sparse nonlinear dimensio-
nality reduction algorithms. In practice, we develop a new algorithm named sparse 
neighborhood preserving polynomial embedding using this framework. Experimental 
results on face recognition and face clustering show effectiveness of the proposed 
approach. 
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Abstract. Web-based learning is gaining popularity due to its conve-
nience, ubiquity, personalization, and adaptation features compared with
traditional learning environments. The learning subjects of Web-based
learning systems are mostly for popular sciences. Little attention has
been paid for learning cutting edge subjects and no such systems have
been developed for rough sets. This paper presents the design princi-
ple, system architectures, and prototype implementation of a Web-based
learning support system named Online Rough Sets (ORS). The system is
specifically designed for learning rough sets in a student-centered learn-
ing environment. Some special features, such as adaptation, are empha-
sized in the system. The ORS has the ability of adaptation to student
preference and performance by modifying the size and order of learning
materials delivered to each individual. Additionally, it predicts estimated
learning time of each topic, which is helpful for students to schedule their
learning paces. A demonstrative example shows ORS can support stu-
dents to learn rough sets rationally and efficiently.

1 Introduction

Web-based learning is obtaining popularity and provides many benefits com-
pared with traditional learning environments [6]. It is learning via electronic
media on the Web [2]. Some Web-based learning systems have been built to
facilitate teaching and learning of various subjects.

In post-secondary education, there are some Web-based learning systems for
computer science subjects, such as, artificial intelligence, network security, and
information retrieval [3,7,8,10,12,13,15]. Rough set theory has gained significant
attention as an intelligent tool dealing with uncertainty [18]. However, there are
no Web-based learning systems for rough sets in the literature. The purpose of
this paper is to design and prototype an effective Web-based learning system for
rough sets.

Web-based learning support systems (WLSS) provide a reasonable framework
to realize Web-based learning. The WLSS sustain teaching as well as learning
by using the Web as an interface, repository and resource center [17]. They offer
learning environments which can be accessed by learners regardless of their time
and places [17]. Well-designed WLSS can supply student-centered education [11].

D. Miao et al. (Eds.): RSKT 2014, LNAI 8818, pp. 161–172, 2014.
DOI: 10.1007/978-3-319-11740-9_16 c© Springer International Publishing Switzerland 2014
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A student-centered learning approach for adults, andragogy, may be suitable
for rough sets learners, as most of them are adults. Andragogy aims to help adult
learners according to nature and characteristics of adults [14]. This approach is
driven more by needs, preference, and performance of students rather than those
of teachers.

In this paper, we present a Web-based learning support system named Online
Rough Sets (ORS). We combine WLSS with andragogy to support education,
identify a set of rough sets concepts including their dependency information as
structured learning materials, and collect a set of concept-specific quizzes. The
design of ORS mainly depends on a learning model which is the realization of the
learning process of andragogy. The learning model has the mechanism to generate
adapted learning materials for each student. With this model, learning materials
are tailored and sorted according to each student’s preference. Learning materials
delivered to a student will be automatically adjusted for review purpose when
the student achieves poor performance on any quiz towards a learning material.
Moreover, the ORS helps students schedule learning paces and improve learning
efficiency by providing estimated learning time for each concept.

2 Web-Based Learning Support Systems and Rough Sets

This section provides some background and related works on which this paper
is based.

2.1 Web-Based Learning Systems for Computer Science Subjects

E-learning refers to the use of electronic media with information and communi-
cation technology in education [16]. It is defined as learning through electronic
means. Web-based learning is an alternative name of e-learning when the delivery
method (i.e., the Web) is emphasized [16].

There are some Web-based learning systems for computer science subjects
reported in the literature. For theory of computation, a weak ontology is used to
organize learning materials [13], while a robot is utilized to simulate details of fi-
nite state automata [7]. For artificial intelligence, an interface is developed to ma-
nipulate input and output of prolog-programmed scripts through the Web [12].
For robotic, a simulator connecting with a real robot is built to perform experi-
ments [10]. For cryptography in network security, the system generates adapted
learning materials after a student querying on a particular concept [15]. For
system analysis, a 3D role-play game supports students to learn the waterfall
development model by themselves [3]. For fuzzy information retrieval system, a
simulator is developed to visualize steps of weighted queries [8].

Although these learning systems have various advantages, there are still some
limitations. We list a few common ones in the following: (1) no adaptation to
performance is made; (2) no systems offer queries on multiple concepts; (3)
learning materials of systems are organized in a fixed manner except the system
for cryptography in network security; and (4) some systems are only simulators
or interfaces for the purpose of displaying steps clearly.
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2.2 Web-Based Learning Support Systems

The WLSS are computerized systems that support teaching and learning by
making use of the Web [11]. Fan suggests WLSS should consider four major
functions, namely, the complexity of learning support, the adaptability support,
the interaction support, and the assessment support [5]. Well-designed WLSS
are able to offer education with a student-centered learning style [11]. In this
type of education, students choose and study learning materials based on their
background knowledge, while instructors act as supporting roles [6].

Andragogy aims to help adults learn better. Its learning process involves eight
steps: (1) preparing learners; (2) establishing a climate; (3) involving learners in
mutual planning; (4) diagnosing learning needs; (5) forming learning objectives;
(6) designing plans with learners; (7) carrying out plans; and (8) evaluating
outcomes [9]. The andragogy approach can be integrated in WLSS which have
the flexibility to provide a student-centered type of education.

2.3 Rough Sets

Rough set theory was proposed by Pawlak in 1980s [18]. The fundamental idea of
rough sets is the lower and upper approximations of a set. Recent development of
rough sets includes somemodels based on the probabilistic rough sets [19], such as
the decision-theoretic rough set model and the game-theoretic rough set model.

Complex knowledge can be separated into a network of prerequisites [4].
Learners should master relevant prerequisites before moving to another higher
level knowledge [4]. As the knowledge of rough sets can be represented by a
series of formulas, it is possible to decompose them into a set of concepts with
dependency. With notes, assignments, and exams of the “Rough Sets & Appli-
cations” course offered in the University of Regina, it is possible to identify the
knowledge as a set of concepts, dependency, and concept-specific quizzes.

Table 1 shows the 68 concepts that we have identified in five groups. Depen-
dency exists among related concepts, and Fig. 5 (a) partly shows some dependent
relationships. Every concept accompanies its own quizzes. For example, the ques-
tion for Granule-based rough sets may be “Please choose the right formula which
represents the granule-based rough sets, given E is an equivalence relation on U
and C ⊆ U .” The candidate answers for student to select are Equation (1) and
Equation (2).

apr(C) = {x|x ∈ U, ∀y∈U [xEy ⇒ y ∈ C]},
apr(C) = {x|x ∈ U, ∃y∈U [xEy ∧ y ∈ C]}. (1)

apr(C) =
⋃
{[x]|[x] ∈ U/E, [x] ⊆ C},

apr(C) =
⋃
{[x]|[x] ∈ U/E, [x] ∩ C �= ∅}. (2)
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Table 1. Concepts of rough sets

Group Concept Group Concept

Basic

Information table

General

Deletion-based reduct
Equivalence relation (ER) Advantage of relative reduct
Concept in an information table Matrix absorption
Definable set Addition-deletion-based reduct
Family of definable set Addition-based reduct
Partition induced by ER Powerset-based reduct
Family of undefinable set

Advanced

PRS
Property of definable set DTRS
Family of concept GTRS
Partition of universe Development of PRS
Property of ER Equivalence relation rule
Approximation on definable set Element-based rough sets
Property of definable set 2 Granule-based rough sets
Decision table Subsystem-based rough sets
Discernibility matrix (DM) Relative attribute reduct
Non-equivalence relation Reduct
Semantic Meaning of ER Duality
Equivalence class (EC) Reduct using DM
Description of EC

Application
Bayesian theorem on PRS

Element of DM Bayesian decision procedure on PRS
Property of approximation

Others

Concept
Three regions of rough sets Logic connective

General

Simplification Means of formula
Minimum DM Logic language
Boolean algebra Power set
Degree of overlap Set operator
ER based on BR De Morgan’s laws
Description 2 of EC Lattice
Interpretation of (α, β) Binary relation (BR)
Attribute reduct One-to-one correspondence
Non-reduct-attribute Bayesian theorem
Core-attribute Probabilistic independence assumption
Reduct-attribute Bayesian decision procedure
Monotonicity property Nash equilibrium

3 Online Rough Sets Development

This section details the development processes of ORS including requirement
analysis, system design, and implementation.

3.1 Requirement Analysis

The aim of ORS is to support students to learn rough sets through the Web in
a student-centered learning environment. The learning materials of ORS are a
set of concepts with dependency as presented in Section 2.3, and each concept
is accompanied with a set of concept-specific quizzes.

The learning model of ORS is the realization of the eight-step learning pro-
cess as described in Section 2.2. The learning model supports learners to study



A Web-Based Learning Support System for Rough Sets 165

those dependent concepts from bottom to top with some personalization. It also
ensures that prerequisites of a concept must be studied again when learners fail
to pass the concept’s quizzes. This is done by adding a loop between Forming
learning objectives and Evaluating outcomes. Fig. 1 shows the learning model
and its emphasis (i.e., preference, performance, and estimated time).

There are three categories of users, namely, expert, tutor, and student. Experts
are responsible for defining learning materials, dependency, and their characters.
Tutors help students customize these learning materials. Students define their
preference and study the personalized learning materials.

A concept is a unit of learning materials defined by experts in ORS. A range
defined by tutors points to several concepts, and is used to help students choose
their learning objectives. A goal indicates several concepts selected by a student
from either concepts or ranges. An item of experience is a group of concepts which
appear in a goal and have been mastered by the student. An item of preference
contains prioritized constraints based on concept characters (e.g., the difficulty,
the media type), and is used to customize learning sequences for everyone.

Learning materials delivered to each individual are organized in a study plan.
The study plan contains a learning sequence and estimated time for learning each
concept. The learning sequence guides a student to learn concepts one by one
sequentially. The estimated time helps a student allocate proper time to learn a
concept, and thus helps the student reduce interruption caused by time shortage
in learning this concept. The estimated time can improve learning efficiency,
since learners require more time to complete a task if it has been interrupted [1].

Fig. 1. The learning model of ORS
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Adaptation to preference means that ORS forms a learning sequence based
on dependency and student preference. Adaptation to performance means that
ORS modifies a learning sequence by adding prerequisites of a concept into this
sequence when the student achieves poor performance on this concept.

3.2 System Design

Model-view-controller has been widely used in designing web applications and
conforms to the multi-layer architecture of WLSS. The technical architecture
of ORS is extended from model-view-controller as shown in Fig. 2. The Model
component is divided into three layers, namely, the Service, the Dao and the
POJO. Each class of the POJO, or Plain Old Java Object, represents a table in
the Database. The Dao, or Data Access Object, contains classes which operate
data on a single class of the POJO. The Service encapsulates business logic
among multiple classes of the Dao and serves the Controller.

Fig. 3 shows the functional architecture of ORS, which includes four main
functional components, namely, the Expert area, the Tutor area, the Student
area, and the Public management area.

The Expert area is designed to input concepts, dependency, and quizzes by
experts. In particular, the Concept is used to create, read, update, and delete
(CRUD) a concept, which contains the name, description, links of research pa-
pers, quizzes, and values on characters (e.g., the low on the difficulty charac-
ter). The Dependency CRUD dependent relationships among concepts. The Quiz
CRUD a question and candidate answers for each concept. The Character CRUD
a character (e.g., the difficulty) and its details (e.g., low, normal, high).

The Tutor area allows tutors to help learners set up their personal goals,
predict and record learning time. In particular, the Range helps tutors CRUD
some predefined objectives, and a learner can select one of them as the leaner’s
goal. The Estimated time predicts how long a learner may spend to master a
particular concept. The Record time logs actual learning time spent on each
concept. The Archive stores the study history of each learner.

Fig. 2. Technical architecture Fig. 3. Functional architecture
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The Student area provides learners the interaction interfaces with ORS. In
particular, the Personality is used to maintain student personal information
(e.g., age, education level). The Goal CRUD a goal from ranges or concepts.
The Experience allows a student to mark those concepts which he has mastered
in his goal initially. The Preference allows students to have some preference (e.g.,
from low to high on the difficulty character) on the learning sequence without
breaking dependency among concepts. The Study plan generates a linear study
plan based on a goal, experience, and preference. The My progress displays how
many concepts students have learned and how many remaining concepts. The
Working place displays content of a concept and quizzes associated with it.

3.3 Implementation

One major function of ORS is the Study plan, which is the core of the adapta-
tion. The Study plan uses Algorithm 1 to find a learning sequence for a particular
leaner initially. A Gap contains concepts which are in a learner’s goal and not in
the experience. The algorithm assigns all elements of aGap to a learning sequence
{x1, x2, ...xn} regarding dependency and preference. Initially, the algorithm finds
a concept with the highest priority among those concepts which belong to theGap
and whose prerequisites do not belong to theGap. Priorities of concepts are deter-
mined by the function h(c) based on preference. Subsequently, that concept is as-
signed to the sequence and is removed from the Gap. The dependent relationships
which treat that concept as a prerequisite are also removed from the dependency.

Algorithm 1. A best-first search for finding a learning sequence

Data: NAC is a priority queue with h(c) as the comparator ;
LOR is useful dependency among concepts ;

Result: a learning sequence
PO = {x1, x2, ...xn}; // initialization

i← 0;
NAC.add({c3|c3 ∈ Gap ∧ ¬∃(c1,c2)∈LOR(c3 = c2)}) ;
while NAC �= Nil do
i← i+ 1;
c1← NAC.popup();
xi ← c1;
while existAsParent(LOR, c1) do // when c1 is a parent

c2← findChildByParent(LOR, c1); // return first child

LOR.remove((c1,c2));
if !existAsChild(LOR, c2) then // if c2 has no parent

NAC.popin(c2); // add into NAC

end

end

end
return PO
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Moreover, the algorithm repeats the finding, assigning, and removing steps based
on the updatedGap and dependency until theGap is empty. Finally, each element
of the learning sequence has been assigned a unique concept.

If a student achieves poor performance in learning a concept by taking its
quizzes, for example, the Gap will be updated to prerequisites of this concept.
A new learning sequence will be generated by invoking the algorithm again. The
study plan will be updated based on the new learning sequence.

Another major function of ORS is the Estimated time. It estimates the learn-
ing time for each student to improve learning efficiency. The estimated time of
a study plan is calculated on concept by concept basis as shown in Fig. 4.

For the previous learners who have finished learning tasks, their time spent on
each concept is recorded as well as their personality (e.g., age, education level,
gender). For the learner A who starts learning, the Cluster analysis identifies the
actual learning time of those previous learners having similar personality with
this learner. In the actual time, each concept has a series of data distributed
on different dates. For each concept, the Moving average calculates the average
time from the top N most recent pieces of the concept’s actual time (the N
is configurable). Finally, the estimated time of the learner A is the result of
matching between the learning sequence and those averages.

Java and Javascript are the two programming languages implementing ORS.
In particular, two Java-based open source systems, appfuse and weka, are used.
Appfuse offers the project skeleton and weka provides the APIs of its clustering
algorithms to support the Cluster analysis. Other related technologies include
Struts, Hibernate, DWR, and Dojo. The system is deployed in Tomcat and the
database used is MySQL.

Fig. 4. Predict the estimated time for a new learner A

4 A Demonstrative Example

This section demonstrates how a student gets an adapted study plan based on
the student’s preference and performance.
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4.1 Planning with Preference and Estimated Time

Suppose a student wants to learn a specific concept, called Concept in an in-
formation table. When the student chooses Concept in an information table in
ORS, the related 7 concepts are automatically selected based on the dependency.
Those concepts, the dependency, and their difficulty levels on the difficulty char-
acter are shown in Fig. 5 (a). We assume that the student has known Logic
connective and marks it as the experience. What the student needs to learn are
the 6 concepts presented in Fig. 5 (b).

Adaptation to preference is highlighted in Fig. 5 (c). Before applying the
preference, there are multiple available learning sequences. After the student
selecting and configuring the character of difficulty as preference (e.g., from low
to high), there is only one learning sequence left.

A study plan is generated by ORS for the student as shown in Table 2. The
learning sequence and the estimated time are presented in different columns.
The learning sequence helps the student learn rationally. The estimated time is
helpful to schedule the student’s learning paces and improve learning efficiency,
since it can help the student decrease interruption caused by time shortage in
learning a concept.

4.2 Learning Sequences Adapted to Performance

Basedon theabove studyplan,weassume that the studenthas learned the concepts
ofSet operator and Information table successfully. The student progress is shown in
Fig. 6. Subsequently, he starts to learn Logic language but fails to pass its quizzes.

(a) The original goal (b) After experience (c) Adaptation to preference

Fig. 5. Effect of experience and preference on a goal
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Table 2. Study plan including a learning sequence and estimated time

Learning Sequence Concept
Estimated Time

(minutes)
001 Set operator 12
002 Information table 18
003 Logic language 27
004 Means of formula 12
005 Concept 16
006 Concept in an information table 9

Total: 94

In this case, adaptation to performance is made due to the failure. The ORS
will notify and direct the student to learn the prerequisite concepts of Logic lan-
guage again, namely, Information table and Logic connective. These two concepts
are added into the study plan as shown in Fig. 7.

Fig. 6. Learning progress reflecting how many concepts are mastered and left

Fig. 7. Adaptation to performance
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From this example, the student can learn rough sets rationally and efficiently
with the adapted study plan, which is updated according to the preference and
performance in the whole learning process.

5 Conclusion

Web-based learning support systems offer Web-based learning environments for
teachers and students in education. A student-centered learning style is suitable
to learners of rough sets in terms of their age. Online Rough Sets is the WLSS
for rough sets with the student-centered learning approach.

We identified a set of rough sets concepts with dependency and collected a
set of concept-specific quizzes. The concepts can be used as structured learning
materials for the subject, while a quiz is used to assess whether or not its related
concept has been mastered by students.

We developed a learning model from andragogy to make adaptation to each
student, and integrated it into the WLSS. The system generates an adapted
study plan for each student consisting of a learning sequence and estimated
time. The learning sequence can guide students learn concepts from bottom to
top according to dependency, preference, and performance. The estimated time
helps students schedule learning paces and improve learning efficiency.

Online Rough Sets supports students to learn the subject in a student-centered
learning environment through the Web anytime and anywhere. In addition, it
addresses some limitations found in existing systems to provide personalized
study plans to help students learn rationally and efficiently.
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Abstract. Dominance-based Rough Sets Approach (DRSA) is a useful
tool for multi-criteria classification problems solving. Parallel computing
is an efficient way to accelerate problems solving. Computation of approx-
imations is a vital step to find the solutions with rough sets methodolo-
gies. In this paper, we propose a matrix-based approach for computing
approximations in DRSAand design the corresponding parallel algorithms
on Graphics Processing Unit (GPU). A numerical example is employed to
illustrate the feasibility of the matrix-based approach. Experimental eval-
uations show the performance of the parallel algorithm.

Keywords: Rough sets, Dominance relation, Approximations, Parallel
computing, GPU.

1 Introduction

Dominance-based Rough Set Approach (DRSA) [6] proposed by Greco et al. is
an excellent mathematic tool to aid multi-criteria classification problems solving,
which has been successfully applied in many fields [13].

Since computation of approximations is a vital step to problems solving with
rough sets methodologies, accelerating this computation has attracted many
scholars in rough sets society recently. There are many significant incremental
approaches for updating approximations in rough sets methodologies under dy-
namic data environment, which can reduce the computational time spent on
updating approximations by trying to avoid the unnecessary computation with
the previous results [2–5, 7–11, 14, 15, 17, 19]. Parallelization of algorithms is
a popular technique to speed up the computational process. To accelerate com-
putation of approximations, some studies on parallel algorithms for computing
rough sets’ approximations have done, e.g., Zhang et al. proposed a parallel
algorithm for computing approximations of rough sets under the indiscernible
relation [16]. Followed that, they compared the parallel algorithms of computing
approximations in rough sets on different MapReduce runtime systems [18].
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The Graphics Processing Unit (GPU) has been an important platform for
science computing because of its low cost and massive parallel processing power.
GPU computing is able to achieve the highest performance for data-parallel
problems. At present, parallel computing with GPU has been applied widely in
many fields [12]. Parallelization of the algorithm for computing approximations
in DRSA may be helpful to reduce the computational time. This paper aims to
investigate a matrix-based approach for computing approximations in DRSA in
order to design the corresponding parallel algorithm on GPU.

The remainder of this paper is organized as follows. We present some basic
notions of DRSA and modify the definition of P -generalized decision in Section 2.
We introduce a matrix-based approach for computing approximations in DRSA
and give a numerical example to illustrate this method in Section 3. In Section
4, the CPU-based algorithm and the GPU-based parallel algorithm are designed
and experimental evaluations show GPU-based parallel algorithm dominates the
CPU-based algorithm. This paper ends with conclusions and further research
topics in Section 5.

2 Preliminaries

At first, we briefly review some basic notions of DRSA [6].
A decision system is denoted by S = (U,A, V, f), where U is a finite set of

objects, called the universe; A = C ∪ {d}, C is a set of condition attributes
and d is a decision attribute. V is regarded as the domain of all attributes.
f : U × A → V is an information function such that f(x, a) ∈ Va, ∀a ∈ A and
x ∈ U , where Va is the domain of attribute a.

In DRSA, the attributes with preference-ordered domains in the decision sys-
tems are called as the criteria. There is a preference relation on the universe
with respect to each of criteria, e.g., ∀x, y ∈ U , if f(x, a) ≥ f(y, a), then
x �a y means “ x is at least as good as y with respect to the criterion a ”.
�a= {(x, y) ∈ U × U | f(x, a) ≥ f(y, a)} is the preference relation with respect
to a.

Given P �= ∅ and P ⊆ C, if x �a y for all a ∈ P , then x dominates y with
respect to P , which is denoted by xDP y.

DP = {(x, y) ∈ U × U | f(x, a) ≥ f(y, a), ∀a ∈ P}

is the dominance relation with respect to P .
The basic knowledge granules in DRSA are two types of sets as follows:

– A set of objects dominating x, called P -dominating set of the object x,
D+

P (x) = {y ∈ U | yDPx};
– A set of objects dominated by x, called P -dominated set of the object x,
D−

P (x) = {y ∈ U | xDP y}.
U is divided by d into a family of equivalence classes with preference-ordered,

called decision classes. Let Cl = {Cln, n ∈ T } be a set of decision classes,
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T = {1, · · · , t}. ∀r, s ∈ T such that r > s, the objects from Clr are preferred to
the objects from Cls. In DRSA, the concepts to be approximated are an upward
union and a downward union of classes such that

Cl≥n =
⋃

n′≥n

Cln′ , Cl≤n =
⋃

n′≤n

Cln′ , ∀n, n′ ∈ T.

x ∈ Cl≥n means “x belongs to at least class Cln”, and x ∈ Cl≤n means “x belongs
to at most class Cln”.

The lower and upper approximations of Cl≥n and Cl≤n are defined respectively
as follows:

P (Cl≥n ) = {x ∈ U | D+
P (x) ⊆ Cl≥n } (1)

P (Cl≥n ) = {x ∈ U | D−
P (x) ∩ Cl≥n �= ∅} (2)

P (Cl≤n ) = {x ∈ U | D−
P (x) ⊆ Cl≤n } (3)

P (Cl≤n ) = {x ∈ U | D+
P (x) ∩ Cl≤n �= ∅} (4)

The lower and upper approximations partition the universe into three regions:
positive region, negative region and boundary region as follows:⎧⎨⎩

POSP (Cl
≥
n ) = P (Cl

≥
n )

NEGP (Cl
≥
n ) = U − P (Cl≥n )

BNP (Cl
≥
n ) = P (Cl

≥
n )− P (Cl≥n )

,

⎧⎨⎩
POSP (Cl

≤
n ) = P (Cl

≤
n )

NEGP (Cl
≤
n ) = U − P (Cl≤n )

BNP (Cl
≤
n ) = P (Cl

≤
n )− P (Cl≤n )

Next, we modify the P -generalized decision in our previous work [8] for this
study as follows:

δP (xi) = 〈li, ui〉
where li = n if dn = min{f(y, d) ∈ Vd | y ∈ D+

P (xi)} and ui = n if dn =
max{f(y, d) ∈ Vd | y ∈ D−

P (xi)}. min(•) and max(•) are the minimum and
maximum of a set, respectively.

With the modified P -generalized decision, we can rewrite the definition of
approximations in DRSA as follows:

P (Cl≥n ) = {xi ∈ U | li ≥ n} (5)

P (Cl≥n ) = {xi ∈ U | ui ≥ n} (6)

P (Cl≤n ) = {xi ∈ U | ui ≤ n} (7)

P (Cl≤n ) = {xi ∈ U | li ≤ n} (8)

3 A Matrix-Based Approach for Computing
Approximations in DRSA

As we known, there is a preference relation �a for each criterion a ∈ P in DRSA.
In our previous work [8], we defined a matrix

Ra =

⎛⎜⎝ ra1,1 · · · ra1,|U|
...

. . .
...

ra|U|,1 · · · ra|U|,|U|

⎞⎟⎠
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to present �a, where

rai,j =

{
1, f(xi, a) ≥ f(xj , a)
0, f(xi, a) < f(xj , a)

, 1 ≤ i, j ≤ |U |.

| • | is the cardinality of a set. To present the dominance relation with respect
to the set of criteria P , we defined a dominance matrix

RP =

⎛⎜⎝ φP1,1 · · · φP1,|U|
...

. . .
...

φP|U|,1 · · · φP|U|,|U|

⎞⎟⎠
where φPi,j =

∑
a∈P

rai,j . If φ
P
i,j = 0, then xi is dominated by xj strictly with respect

to P . If 0 < φPi,j < |P |, then there is not a dominance relation between xi and xj
with respect to P . If φPi,j = |P |, then xi dominates xj with respect to P . Hence
we redefined the definitions of the P -dominating and P -dominated sets of xi as
follows:

D+
P (xi) = {xj ∈ U | φPj,i = |P |} (9)

D−
P (xi) = {xj ∈ U | φPi,j = |P |} (10)

Here we do not care the cases about 0 ≤ φPi,j < |P | and transform the matrix

RP into a boolean matrix

B =

⎛⎜⎝ b1,1 · · · b1,|U|
...

. . .
...

b|U|,1 · · · b|U|,|U|

⎞⎟⎠
where

bi,j =

{
1, φPi,j = |P |;
0, Otherwise.

Let Md = (c1, c2, · · · , c|U|) be a vector to store the values of objects corre-
sponding to the decision attribute d, where ci = f(xi, d), 1 ≤ i ≤ |U |. Next, we
define two sparse matrices to prepare for computing the P -generalized decisions
of all objects on the universe as follows:

Mu =

⎛⎜⎝ mu
1,1 · · · mu

1,|U|
...

. . .
...

mu
|U|,1 · · · mu

|U|,|U|

⎞⎟⎠ , Ml =

⎛⎜⎝ ml
1,1 · · · ml

1,|U|
...

. . .
...

ml
|U|,1 · · · ml

|U|,|U|

⎞⎟⎠
where

mu
i,j =

{
bi,j × cj, bi,j = 1
∗, bi,j = 0

, ml
i,j =

{
bj,i × ci, bj,i = 1
∗, bj,i = 0

∗ indicates an empty value in the sparse matrices. In fact, bi,j = 1 reflects that
xi dominates xj , then the i-th row in the matrix Mu gives the decision attribute
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values of objects in P -dominated set of xi. Analogously, the i-th row in the matrix
Ml gives the decision attribute values of objects in P -dominating set of xi.

Now we define two 1 × |U | matrices, namely, Mmax = {u1, u2, · · · , u|U|} and
Mmin = {l1, l2, · · · , l|U|}, to present the P -generalized decisions, where ui = n
if dn = max(Mu(i, :)) and li = n if dn = min(Ml(i, :)). Mu(i, :) and Ml(i, :) are
the i-th row in the matrices Mu and Ml, respectively.

With Mmax andMmin, we can obtain approximations in DRSA by equations
(5-8). Following is an example to validate the usefulness of the matrix-based
approach discussed above.

Example 1. Given a decision table S = (U,C ∪ d, V, f) as shown in Table 1,
where U = {x1, x2, · · · , x8}, C = {a1, a2}, Va1 = {50, 65, 70, 80, 90}, Va2 =
{50, 60, 75, 80, 90}, Vd = {d1, d2, d3} = {1, 2, 3}.

Table 1. A decision table

U a1 a2 d U a1 a2 d

x1 50 75 2 x5 80 90 2
x2 65 50 1 x6 90 80 3
x3 70 75 1 x7 80 80 3
x4 50 60 1 x8 90 90 3

At first, we compute the preference matrices of Table 1 as follows:

Ra1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 0 0
1 1 0 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 1 0 0 0 0
1 1 1 1 1 0 1 0
1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 0
1 1 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Ra2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0
0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 1 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 0
1 1 1 1 0 1 1 0
1 1 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Let P = {a1, a2}, then we have a dominance matrix

RP =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 2 0 0 0 0
1 2 0 1 0 0 0 0
2 2 2 2 0 0 0 0
1 1 0 2 0 0 0 0
2 2 2 2 2 1 2 1
2 2 2 2 1 2 2 1
2 2 2 2 1 1 2 0
2 2 2 2 2 2 2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Next, we transform RP into a boolean matrix

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 1 0 0 0 0
1 1 1 1 1 0 1 0
1 1 1 1 0 1 1 0
1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Since Md = {2, 1, 1, 1, 2, 3, 3, 3}, we compute two sparse matrices Mu and Ml

as follows:

Mu =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 ∗ ∗ 1 ∗ ∗ ∗ ∗
∗ 1 ∗ ∗ ∗ ∗ ∗ ∗
2 1 1 1 ∗ ∗ ∗ ∗
∗ ∗ ∗ 1 ∗ ∗ ∗ ∗
2 1 1 1 2 ∗ 3 ∗
2 1 1 1 ∗ 3 3 ∗
2 1 1 1 ∗ ∗ 3 ∗
2 1 1 1 2 3 3 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Ml =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 ∗ 1 ∗ 2 3 3 3
∗ 1 1 ∗ 2 3 3 3
∗ ∗ 1 ∗ 2 3 3 3
2 ∗ 1 1 2 3 3 3
∗ ∗ ∗ ∗ 2 ∗ ∗ 3
∗ ∗ ∗ ∗ ∗ 3 ∗ 3
∗ ∗ ∗ ∗ 2 3 3 3
∗ ∗ ∗ ∗ ∗ ∗ ∗ 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Then we have Mmax = {2, 1, 2, 1, 3, 3, 3, 3} and Mmin = {1, 1, 1, 1, 2, 3, 2, 3}.

By equations (5-8), we can obtain approximations in DRSA of Table 1 as follows:

P (Cl≥2 ) = {x5, x6, x7, x8}, P (Cl≥2 ) = {x1, x3, x5, x6, x7, x8};
P (Cl≥3 ) = {x6, x8}, P (Cl≥3 ) = {x5, x6, x7, x8};
P (Cl≤1 ) = {x2, x4}, P (Cl≤1 ) = {x1, x2, x3, x4};
P (Cl≤2 ) = {x1, x2, x3, x4}, P (Cl≤2 ) = {x1, x2, x3, x4, x5, x7};

Obviously, P (Cl≥1 ) = P (Cl
≥
1 ) = P (Cl

≤
3 ) = P (Cl

≤
3 ) = U .

4 Algorithms and Experimental Evaluations

In this section, we design two algorithms based on the matrix-based approach
discussed in the previous section, CPU-based algorithm and GPU-based paral-
lel algorithm. Then we compare the computational time taken by each of two
algorithms and analyze the performance of GPU-based parallel algorithm.

4.1 CPU-Based Algorithm and GPU-Based Parallel Algorithm
of Computing Approximations in DRSA

We design a CPU-based algorithm for computing approximations in DRSA with
reference to the proposed matrix-based approach at first.

Then, we design a GPU-based parallel algorithm for computing approxima-
tions in DRSA according to the proposed matrix-based approach.
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Algorithm 1. A CPU-based algorithm for computing approximations in
DRSA
Input:
The information table S = (U,A, V, f) Output:
Approximations in DRSA.

1 begin
2 table ← S; // Evaluate table with S.
3 Mc ← table.condition attri value;
4 Mc

′ ← transpose(Mc); // Evaluate Mc
′ with the transposition of Mc.

5 Md ← table.decision attri value;
6 for n = 1 → m do // Compute all preference matrices.
7 Ran ← ge(Mc(n, :),Mc

′(:, n));
8 end

9 RP ← sum(Ran , 1, m); // Compute the dominance matrix RP .

10 B ← eq(|P |,RP ); // Transform RP into a boolean matrix B.
11 Mu ← B ·Md; // Multiplies arrays B and Md element by element and

returns the result in Mu.

12 Ml ← transpose(B) ·Md;
13 Ml ← nonzero(Ml); // Replace all "0" in Ml with "NaN".

14 Mmax ← max(Mu);
15 Mmin ← min(Ml);
16 for n = 2 → m do ; // Compute approximations.
17

18 P (Cl≥n ) ← {xi | i ∈ ge(n,Mmin)};
19 P (Cl≥n ) ← {xi | i ∈ ge(n,Mmax)};
20 P (Cl≤n−1) ← {xi | i ∈ le(n,Mmax)};
21 P (Cl≤n−1) ← {xi | i ∈ le(n,Mmin)};
22 end
23 Output the results.
24 end

4.2 Analysis of the Performance of the Two Algorithms

In this subsection, we introduce some experiments to test the performance
of the proposed two algorithms. In our experiments, the host machine is In-
tel(R)Xeon(R)CPU E5620 2.40GHz; the GPU device is Tesla C2050. The pro-
grams is coded in Matlab (R2013b) and a data set, EEG Eye State, is downloaded
from UCI [1].

The aim of our experiments is to investigate that the GPU-based parallel
algorithm (Algorithm 2) dominates the CPU-based one (Algorithm 1), and study
whether two factors we care about, the number of objects and the number of
criteria, can influence the performance of GPU-based parallel algorithm. Hence,
we make the following two experiments.

In the first experiment, we select 14 condition criteria and 1000, 2000, · · ·,
6000 objects randomly to be experimental data sets, respectively. On these data
sets, we execute Algorithms 1 and 2, respectively. The time taken by each of two
algorithms is listed in Table 2. With the increasing number of objects, the trends
of the computational time taken by each of two algorithms and the speedup
between Algorithms 1 and 2 are shown in Fig. 1(a) and Fig. 1(b), respectively.
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Algorithm 2. A GPU-based parallel algorithm for computing approxima-
tions in DRSA
Input:
The information table S = (U,A, V, f) Output:
Approximations in DRSA.

1 begin
2 table ← S;
3 Mc ← gpuArray(table.condition attri value); // Convert an array to a

gpuArray with data stored on the GPU device.

4 Mc
′ ← gpuArray(transpose(Mc));

5 Md ← gpuArray(table.decision attri value);

6 RP ← parfun(@sum, parfun(@ge,Mc,Mc
′), 3); // parfun is the function

executed on GPU in parallel and @sum is the handle of the function
sum.

7 B ← parfun(@eq, |P |,RP );
8 Mu ← B ·Md;
9 Ml ← transpose(B) ·Md;

10 Ml ← parfun(@nonzero,Ml);
11 Mmax ← max(Mu);
12 Mmin ← min(Ml);
13 for n = 2 → m do ; // gather can transfer gpuArray to local workspace.
14

15 P (Cl≥n ) ← {xi | i ∈ gather(ge(n,Mmin))};
16 P (Cl≥n ) ← {xi | i ∈ gather(ge(n,Mmax))};
17 P (Cl≤n−1) ← {xi | i ∈ gather(le(n,Mmax))};
18 P (Cl≤n−1) ← {xi | i ∈ gather(le(n,Mmin))};
19 end
20 Output the results.
21 end

Table 2. A comparison of the time taken by Algorithms 1 and 2 vs. the number of
objects

Objects Criteria t1 t2 Sp

1000 14 0.0549 0.0159 3.5273
2000 14 0.2452 0.0425 5.7694
3000 14 0.5298 0.0872 6.0757
4000 14 0.9846 0.1451 6.7857
5000 14 1.4527 0.2295 6.3298
6000 14 2.0871 0.3284 6.3553

In Table 2, t1 and t2 present the computational time taken by Algorithms 1
and 2, respectively. Sp = t1/t2 presents the speedup. The x-coordinates in Fig.
1(a) and (b) pertain to the size of the object set. The y-coordinates in Fig. 1(a)
and (b) concern the computational time and the speedup, respectively. From Ta-
ble 2 and Fig. 1(a), we can see that the computational time taken by Algorithms
1 and 2 raises with the increasing size of the object set. The computational time
taken by Algorithm 2 is always less than that of its counterpart. From Fig. 1(b)
and the fifth column in Table 2, we can see that the trend of the speedup grows
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Fig. 1. The trends of the computational time taken by each of two algorithms and the
speedup vs. the number of objects

with the enlarging size of the object set. Hence, the results of the first exper-
iment prove that Algorithm 2 dominates Algorithm 1 and the performance of
Algorithm 2 is positively related to the size of the object set.

In the second experiment, we select 7000 objects and 2, 4, · · ·, 12 condition
criteria randomly to be experimental data sets, respectively. We also execute
Algorithms 1 and 2 on these data sets respectively. The time taken by each of
two algorithms is shown in Table 3. With the increasing number of criteria, Fig.
2(a) and Fig. 2(b) illustrate the trends of the computational time taken by each
of two algorithms and the speedup between Algorithms 1 and 2, respectively.

Table 3. A comparison of the time taken by Algorithms 1 and 2 vs. the number of
criteria

Objects Criteria t1 t2 Sp

7000 2 1.9079 0.1351 14.1221
7000 4 2.0791 0.1864 11.1540
7000 6 2.2901 0.2379 9.6263
7000 8 2.4246 0.2902 8.3550
7000 10 2.9063 0.3412 8.5179
7000 12 3.4698 0.3932 8.8245

From Table 3 and Fig. 2(a), we can see that the computational time taken
by Algorithms 1 and 2 raises with the increasing size of the criterion set. The
computational time taken by Algorithm 1 is always more than that of Algorithm
2. From Fig. 2(b) and the fifth column in Table 3, we can see that the trend of the
speedup decreases with the enlarging size of the attribute set. Hence, the results
of the first experiment testify that Algorithm 2 dominates Algorithm 1 and the
performance of Algorithm 2 is negatively related to the size of the criterion set.
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5 Conclusions and Future Work

In this paper, we proposed a matrix-based approach for computing approxima-
tions in DRSA and designed two corresponding algorithms: CPU-based algo-
rithm and GPU-based parallel algorithm. This work is helpful to accelerate ap-
proximations computation in DRSA so that it improves the efficiency of applying
DRSA to solve multi-criteria classification problems. By the numerical example
and experimental evaluations, we can obtain the following conclusions: (1) The
proposed matrix-based approach can be used in computing approximations in
DRSA. (2) The GPU-based parallel algorithm dominates the CPU-based algo-
rithm. (3) The performance of the GPU-based parallel algorithm is positively
related to the size of the object set while negatively related to the number of
criteria. In the future, we will improve the proposed GPU-based algorithm to
weaken the influence from the size of the criterion set.
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Propositional Compilation for All Normal

Parameter Reductions of a Soft Set
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Abstract. This paper proposes a method for compiling all the normal
parameter reductions of a soft set into a conjunction of disjunctive normal
form, which is generated by parameter boolean atomic formulas. A subset
of parameter set is a normal parameter reduction if and only if the char-
acteristic function of its complementary set is a model of this proposition.
Three rules for simplifying this job are developed and combined.

Keywords: Soft set, normalparameter reduction,disjunctivenormal form.

1 Introduction

In this paper we deal with the normal parameter reduction (a kind of feature
selection) in soft set which is a special 0-1 valued information system. Soft set was
initiated as a new mathematical tool for dealing with uncertainties and vagueness
by Molodtsov [1] in 1999. The theory of soft sets has potential applications in
various fields like game theory, operations research, decision making and so on.
Although soft set can be represented as an information system and parameters
behave as primitive attributes having values 0 or 1 [2], the parameter reduction
in soft sets and attribute reduction in traditional information systems are not
the same [3]. In soft set the classification scheme is based on additive model. Two
objects are in the same class if and only if they have the same sum of parameter
values. For example, the parameters in soft set may represent different voters.
One of two candidates holds an advantage if and only if he has bigger number of
affirmative votes. While in information systems, two objects are different if and
only if they have at least one different attribute value. This means that objects
can be distinguished by a single attribute. For example two clothes are different
if they have different colors.

Many researchers have made contributions to parameter reduction theory of
soft sets. [4] proposed the concept of reduct-soft-set. Actually the definition of
the reduct there is the same with traditional information systems or rough sets.
Chen et al. [3] pointed out that problems tackled by attributes reduction in
rough set theory and parameters reduction in soft set theory are different. Then
[3] presented a new notion of parameterization reduction in soft sets. This notion
was compared with the concepts of attribute reduction in rough set theory. After

D. Miao et al. (Eds.): RSKT 2014, LNAI 8818, pp. 184–193, 2014.
DOI: 10.1007/978-3-319-11740-9_18 c© Springer International Publishing Switzerland 2014
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this kind of parameter reduction, only the set of optimal choices remains the
same. So this concept has the problem of suboptimal choice. In order to overcome
this problem the concept of normal parameter reduction was introduced in [5].
An algorithm for normal parameter reduction was also developed in [5]. But the
algorithm involves a great amount of computation. Ma et al. [6] pointed out
an important property of normal parameter reduction of soft sets. Then this
property was used for reducing the workload for finding candidate parameter
sets. Another method of reduction of parameters was proposed by Ali [7]. This
method is very much similar to reduction of attributes in case of rough sets.
Instead Ali proposed to delete parameters only one at each time in order to
avoid the heavy searching work. Gong et al [8] developed parameters reduction
concepts in bijective soft set decision system under fuzzy environments.

[9] proposed some useful simplification methods which transforms the dis-
cernibility matrix into a simper form. Although the parameter reduction of soft
sets is different from the attribute reduction of information tables, we can use
these good ideas in the discernibility function theory of rough sets or information
systems. In this paper we want to compile all the normal parameter reductions of
soft set into a proposition of parameter boolean variables. As far as the authors
know, propositional representation work of normal parameter reductions of soft
sets has not been well studied yet. This proposition is expected to provide an
implicit representation of normal parameter reductions. Once we need one or
some or all of them we can use pruning techniques to get them.

2 Preliminaries

In this paper, suppose U = {u1, u2, · · · , un} is a finite set of objects, E is a set of
parameters. ℘(U) means the powerset of U , |A| means the cardinality of set A.

Definition 1 (Soft set). A soft set over U is a pair S = (F,A), where
(i) A is a subset of E;
(ii) F : A → ℘(U), ∀e ∈ A,F (e) means the subset of U corresponding with

parameter e. We also use F (e)(u) = 1 (F (e)(u) = 0) to mean than u is (not) an
element of F (e).

Definition 2 (Choice value function). Let S = (F,A) be a soft set over U .
The function σS : U → N defined by σS(u) = |{e ∈ A|u ∈ F (e)}| is called the
choice value function of S.

When the underlying soft set S = (F,A) is explicit, A1 ⊆ A, we also write
σA1(u) to mean |{e ∈ A1|u ∈ F (e)}|.
Example 1. Table 1 represents a soft set S = (F,A) over U = {u1, u2, · · · , u6},
where A = {e1, e2, · · · , e7}. The function F is decided by the columns indexed
by ej , j = 1, 2, · · · , 7, F (ej)(ui) = 1 if and only if the value in the ui row and ej
column is equal to 1.

Definition 3 (Normal parameter reduction). For soft set S = (F,A) over
U , B ⊆ A, B �= ∅, if the constraint∑e∈A−B F (e)(u1) = · · · =

∑
e∈A−B F (e)(un)

is satisfied, then B is called a normal parameter reduction of S.
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Table 1. Tabular representation for a soft set S = (F,A) and σS

e1 e2 e3 e4 e5 e6 e7 σS

u1 0 0 1 1 1 1 1 5
u2 1 0 1 1 1 0 0 4
u3 0 1 1 1 0 1 0 4
u4 0 0 0 0 0 1 1 2
u5 1 0 1 0 0 0 0 2
u6 1 0 1 0 0 0 0 2

Our definition of normal parameter reduction here is different from that of
[5], we do not require minimal property.

For soft set S = (F,A) over U , denote the set of all normal parameter reduc-
tions of S by NPR(S).

Example 2. Consider the soft set S = (F,A) in Table 1. Let B1 = A−{e4}, then
for soft set (F,B1), we have

∑
e∈A−B1

F (e)(u2) = 1,
∑

e∈A−B1
F (e)(u4) = 0.

Thus B1 �∈ NPR(S). Let B2 = A−{e1, e2, e7}, then for soft set (F,B2), we have∑
e∈A−B2

F (e)(ui) = 1, i = 1, 2, · · · , |U |. Thus B2 ∈ NPR(S).
In this paper E is also considered as boolean atomic propositions when we

are concerned with parameter reductions of soft set S = (F,A). F (E) means
the set of propositions generated by E with logical connectives ¬ (negation), ∨
(disjunction), ∧ (conjunction). It is assumed that readers are familiar with basic
concepts in propositional logic such as literal, model and tautology. Suppose
Q1 ⊆ F (E), Q2 ⊆ F (E), denote

∧
Q1 = ∧q1∈Q1q1,

∨
Q1 = ∨q1∈Q1q1, Q1

∧
Q2 =

{q1 ∧ q2|q1 ∈ Q1, q2 ∈ Q2}, Q1

∨
Q2 = {q1 ∨ q2|q1 ∈ Q1, q2 ∈ Q2}.

3 Compilation of All Normal Parameter Reductions
of Soft Set into a Proposition of Parameter Boolean
Variables

In this section we will show how to compile all the normal parameter reductions
of a soft set into a proposition of parameter boolean variables.

Suppose S = (F,A) is a soft set over U . In this paper without specific expla-
nation we always assume σ(un) = min{σ(ui)|i = 1, 2, · · · , n}. Define a 2×(n−1)
matrix [Mi,j ]S as follows: ∀j = 1, 2, ..., n− 1,

Mi,j =

{
Dj←n, i = 1;
Dn←j , i = 2,

(1)

where Dj←n={e ∈ A|F (e)(uj) = 1, F (e)(un) = 0}, Dn←j = {e ∈ A|F (e)(un) =
1, F (e)(uj) = 0}.
Example 3. Consider the soft set S given in Table 1. |U | = 6. By computing
Dj←6, D6←j , j = 1, 2, · · · , 5, we have [Mi,j ]S as follows:
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[Mi,j ]S =

({e4, e5, e6, e7} {e4, e5} {e2, e4, e6} {e6, e7} ∅
{e1} ∅ {e1} {e1, e3} ∅

)
. (2)

First of all, assume |U | = 2. D1←2 = {e ∈ A|F (e)(u1) = 1, F (e)(u2) = 0},
D2←1 = {e ∈ A|F (e)(u2) = 1, F (e)(u1) = 0}. Then we have M1,1 = D1←2,
M2,1 = D2←1 and

[Mi,j ]S =

(
D1←2

D2←1

)
. (3)

Theorem 1. Suppose S = (F,A) is a soft set over U . U = |2|. B ⊆ A, then
B is a normal parameter reduction of S if and only if |(A − B) ∩ D1←2| =
|(A−B) ∩D2←1|.
Definition 4. Suppose S = (F,A) is a soft set over U . U = |2|. By our as-
sumption |D1←2| ≥ |D2←1|. Define a set of propositions Q(1,2) and a proposition
P(1,2) as follows:
• If |D2←1| = 0, then define Q(1,2) = {∧e∈D1←2

¬e}, proposition P(1,2) =∧
e∈D1←2

¬e. Particularly, when |D1←2| is also equal to 0, Q(1,2) = {�}, P(1,2) =
�.
• If |D2←1| > 0, ∀j ∈ {0, 1, · · · , |D2←1|}, There are Cj

|D1←2| (C
j
|D2←1|) methods

for choosing an arbitrary subset of D1←2 (D2←1) with j elements. Each method
corresponds with a subset of D1←2 (D2←1). Denote the set of all these corre-

sponding subsets of D1←2 (D2←1) by D
(j)
1←2 (D

(j)
2←1). ∀H1 ∈ D(j)

1←2, ∀H2 ∈ D(j)
2←1,

|H1| = |H2|, define proposition ∧
e∈D1←2∪D2←1

eλ(e), (4)

where λ(e) ∈ {0, 1}, λ(e) = 1 if and only if e ∈ H1 ∪ H2, if λ(e) = 1,
eλ(e) = e; otherwise eλ(e) = ¬e. Denote the set of all propositions generated

by this way as Q
(j)
(1,2). Denote Q(1,2) =

⋃
j=0,1,···,|D2←1|Q

(j)
(1,2). Define proposition

P(1,2) =
∨
Q(1,2).

Lemma 1. Suppose S = (F,A) is a soft set over U . |U | = 2. π is a valuation from

D1←2∪D2←1 to {0, 1}, ∀H1 ∈ D(j)
1←2, ∀H2 ∈ D(j)

2←1, π is model of the proposition∧
e∈D1←2∪D2←1

eλ(e) defined in expression (4) if and only if π is equal to λ.

Definition 5. Given B ⊆ A, define a variable assignment πB : A → {0, 1} by
πB(e) = 1 if and only if e ∈ A−B.
Lemma 2. Suppose S = (F,A) is a soft set over U . |U | = 2. B ⊆ A, then the
number of parameter variables in D1←2 (D2←1) taking value 1 with respect to
the valuation πB is equal to |(A−B) ∩D1←2| (|(A−B) ∩D2←1|).
Lemma 3. Suppose S = (F,A) is a soft set over U . |U | = 2. B ⊆ A, then

D1←2∪D2←1 = ((A−B)∩ (D1←2))∪ ((A−B)∩ (D2←1))∪ (B∩ (D1←2∪D2←1))
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Theorem 2. Suppose S = (F,A) is a soft set over U . |U | = 2. B ⊆ A, then B
is a normal parameter reduction of S if and only if πB is a model of P(1,2).

Proof. (Sufficiency) If πB is a model of P(1,2). Since P(1,2) =
∨
Q(1,2), Q(1,2) =⋃

j=0,1,···,|D1←2|Q
(j)
(1,2), then πB is a model of one conjunction of literals L ∈

Q
(j)
(1,2), j ∈ {0, 1, · · · , |D1←2|}. It is easy to verify that the number of parameter

variables in D1←2 taking value 1 (i.e., |(A−B)∩D1←2|) is equal to that of D2←1

(i.e., |(A−B) ∩D2←1|). By Theorem 1, B is a normal parameter reduction.
(Necessity) If B is a normal parameter reduction, by Theorem 1 we have

|(A−B)∩D1←2 | = |(A−B)∩D2←1 |. Let j = |(A−B)∩D1←2 |, H1 = (A−B)∩
D1←2, H2 = (A−B)∩D2←1. Construct one conjunction of literals L ∈ Q(j)

(1,2) in

the way like expression (4). Since (H1 ∪H2) ⊆ A− B, by Definition 5 we have
∀e ∈ H1 ∪H2, πB(e) = 1. By Lemma 3, we have (D1←2 ∪D2←1)− (H1 ∪H2) =
(B ∩ (D1←2 ∪D2←1)), therefore ∀e ∈ (D1←2 ∪D2←1)− (H1 ∪H2), by Definition
5 πB(e) = 0. Thus we have πB = λ. By Lemma 1 πB is a model of L. Since

P(1,2) =
∨
Q(1,2), Q(1,2) =

⋃
j=0,1,···,|D1←2|Q

(j)
(1,2), πB is a model of P(1,2).

Now we come to the situation when |U | > 2. For each pair i ∈ {1, 2, · · · , |U |−
1}, we can construct proposition P(i,|U|). According to the transitivity property
of the relation “=”, it is easy to verify the following theorem.

Theorem 3. Suppose S = (F,A) is a soft set over U . |U | > 2. B ⊆ A, then B is
a normal parameter reduction if and only if πB is a model of P =

∧
i<|U| P(i,|U|).

Example 4. Consider the soft set S given in Table 1. |U | = 6.
(i) D6←1 = {e1}, D1←6 = {e4, e5, e6, e7}. |D1←6| = 4, |D6←1| = 1, thus

Q
(0)
(1,6) = {¬e4 ∧ ¬e5 ∧ ¬e6 ∧ ¬e7 ∧ ¬e1}, Q(1)

(1,6) = {e4 ∧ ¬e5 ∧ ¬e6 ∧ ¬e7 ∧
e1,¬e4 ∧ e5 ∧¬e6 ∧¬e7 ∧ e1,¬e4 ∧¬e5 ∧ e6 ∨¬e7 ∧ e1,¬e4 ∧¬e5 ∧¬e6 ∧ e7 ∧ e1},
Q(1,6) =

⋃
j=0,1Q

(j)
(1,6) = {¬e4 ∧ ¬e5 ∧ ¬e6 ∧ ¬e7 ∧ ¬e1, e4 ∧ ¬e5 ∧ ¬e6 ∧ ¬e7 ∧

e1,¬e4 ∧ e5 ∧¬e6 ∧¬e7 ∧ e1,¬e4 ∧¬e5 ∧ e6 ∧¬e7 ∧ e1,¬e4 ∧¬e5 ∧¬e6 ∧ e7 ∧ e1}.
So P(1,6) = (¬e4 ∧ ¬e5 ∧ ¬e6 ∧ ¬e7 ∧ ¬e1) ∨ (e4 ∧ ¬e5 ∧ ¬e6 ∧ ¬e7 ∧ e1) ∨ (¬e4 ∧
e5 ∧ ¬e6 ∧ ¬e7 ∧ e1) ∨ (¬e4 ∧ ¬e5 ∧ e6 ∧ ¬e7 ∧ e1) ∨ (¬e4 ∧ ¬e5 ∧ ¬e6 ∧ e7 ∧ e1).

(ii) D6←2 = ∅, D2←6 = {e4, e5}, |D6←2| = 0, Q(2,6) = {¬e4 ∧ ¬e5}. So
P(2,6) = ¬e4 ∧ ¬e5.

(iii) D3←6 = {e2, e4, e6}, D6←3 = {e1}. |D6←3| = 1, |D3←6| = 3, thus Q
(0)
(3,6) =

{¬e2 ∧¬e4 ∧¬e6 ∧¬e1}, Q(1)
(3,6) = {e2 ∧¬e4 ∧¬e6 ∧ e1,¬e2 ∧ e4 ∧¬e6 ∧ e1,¬e2 ∧

¬e4 ∧ e6 ∧ e1}, Q(3,6) =
⋃

j=0,1Q
(j)
(3,6) = {¬e2 ∧¬e4 ∧¬e6 ∧¬e1, e2 ∧¬e4 ∧¬e6 ∧

e1,¬e2 ∧ e4 ∧¬e6 ∧ e1,¬e2 ∧¬e4 ∧ e6 ∧ e1}. So P(3,6) = (¬e2 ∧¬e4 ∧¬e6 ∧¬e1)∨
(e2 ∧ ¬e4 ∧ ¬e6 ∧ e1) ∨ (¬e2 ∧ e4 ∧ ¬e6 ∧ e1) ∨ (¬e2 ∧ ¬e4 ∧ e6 ∧ e1).

(iv) D4←6 = {e6, e7}, D6←4 = {e1, e3}. |D6←4| = 2, |D4←6| = 2, thus Q
(0)
(4,6) =

{¬e6∧¬e7∧¬e1∧¬e3}, Q(1)
(4,6) = {e6∧¬e7∧e1∧¬e3, e6∧¬e7∧¬e1∧e3,¬e6∧e7∧

e1∧¬e3,¬e6∧e7∧¬e1∧e3}, Q(2)
(4,6) = {e6∧e7∧e1∧e3}, Q(4,6) =

⋃
j=0,1,2Q

(j)
(4,6) =

{¬e6∧¬e7∧¬e1∧¬e3, e6∧¬e7∧e1∧¬e3, e6∧¬e7∧¬e1∧e3,¬e6∧e7∧e1∧¬e3,¬e6∧
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e7∧¬e1∧e3, e6∧e7∧e1∧e3}. So P(4,6) = (¬e6∧¬e7∧¬e1∧¬e3)∨(e6∧¬e7∧e1∧
¬e3)∨(e6∧¬e7∧¬e1∧e3)∨(¬e6∧e7∧e1∧¬e3)∨(¬e6∧e7∧¬e1∧e3)∨(e6∧e7∧e1∧e3).

(v) D5←6 = ∅, D6←5 = ∅, so P(5,6) = �.
(vi) Finally we have P = P(1,6) ∧ P(2,6) ∧ P(3,6) ∧ P(4,6) ∧ P(5,6).
We see that elements in Q(i,|U|) are conjunctions of literals of parameter

boolean variables. ∀1 ≤ i < |U |, take one conjunction of literals Li from Q(i,|U|),
do conjunction operation and then get a new conjunction of literals L1∧L2∧· · ·∧
L|U|−1. B is a normal parameter reduction if and only if π(B) is a model of one
of these new conjunction of literals. The total number of these new conjunction
of literals is equal to

∏
i<|U| |Q(i,|U|)|. We write

∏
i<|U| |Q(i,|U|)| as NCL(number

of conjunction of literals). Then it is easy to verify that the number of parameter
reductions of soft set S is no bigger than NCL. Note that the conjunction of
literals L1 ∧L2 ∧ · · · ∧L|U|−1 corresponds with a normal parameter reduction if
and only if L1 ∧ L2 ∧ · · · ∧ L|U|−1 contains no complementary literals.

Example 5. Continue with Example 4 and consider the soft set S given in Table
1, where |U | = 6.

(i) NCL = 5× 1× 4× 6× 1 = 120.
(ii) Let L1 = ¬e4 ∧ ¬e5 ∧ ¬e6 ∧ ¬e7 ∧ ¬e1 ∈ Q(1,6), L2 = ¬e4 ∧ ¬e5 ∈ Q(2,6),

L3 = ¬e2 ∧ ¬e4 ∧ ¬e6 ∧ ¬e1 ∈ Q(3,6), L4 = ¬e6 ∧ ¬e7 ∧ ¬e1 ∧ ¬e3 ∈ Q(4,6),
L5 = � ∈ Q(5,6), then we get a trivial normal parameter reduction B = A of S.

(iii) Let L1 = ¬e4 ∧ ¬e5 ∧ e6 ∧ ¬e7 ∧ e1 ∈ Q(1,6), L2 = ¬e4 ∧ ¬e5 ∈ Q(2,6),
L3 = ¬e2∧¬e4∧e6∧e1 ∈ Q(3,6), L4 = e6∧¬e7∧e1∧¬e3 ∈ Q(4,6), L5 = � ∈ Q(5,6),
then we get a normal parameter reduction B = {e1, e6} of S.

(iv) Let L1 = ¬e4 ∧ ¬e5 ∧ ¬e6 ∧ e7 ∧ e1 ∈ Q(1,6), L2 = ¬e4 ∧ ¬e5 ∈ Q(2,6),
L3 = e2∧¬e4∧¬e6∧e1 ∈ Q(3,6), L4 = ¬e6∧e7∧e1∧¬e3 ∈ Q(4,6), L5 = � ∈ Q(5,6),
then we get a normal parameter reduction B = {e1, e2, e7} of S.

(v) Let L1 = ¬e4 ∧ ¬e5 ∧ ¬e6 ∧ e7 ∧ e1 ∈ Q(1,6), L2 = ¬e4 ∧ ¬e5 ∈ Q(2,6),
L3 = e2 ∧ ¬e4 ∧ ¬e6 ∧ e1 ∈ Q(3,6), L4 = e6 ∧ ¬e7 ∧ e1 ∧ ¬e3 ∈ Q(4,6), L5 = � ∈
Q(5,6), then we generate no normal parameter reduction of S since there exist
complementary literals ¬e7 and e7.

If we want to output all the normal parameter reductions of S, we can use
pruning techniques. Note that there may exist complementary literals in L1 ∧
L2 ∧ · · · ∧ Li after we choose L1, L2, · · ·, Li, i < |U | − 1. Then it is unnecessary
to choose Li+1, · · · , L|U|−1.

4 Simplification Rules for Compilation of Normal
Parameter Reductions of Soft Sets

In this section we will introduce some simplification rules for compiling normal
parameter reductions of soft sets into proposition of parameter boolean variables.
This is very important because after simplification we can solve our compilation
work or output all the normal parameter reductions more efficiently.

Suppose S = (F,A) is a soft set over U = {u1, u2, · · · , un}. [Mi,j]S is the
matrix defined by expression (1). Since the work in Section 3 is actually based
on [Mi,j ]S , it suffices to give simplification rules for [Mi,j ]S .
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4.1 Core-Based Rule

Definition 6 (Core of normal parameter reduction of soft sets). For
soft set S = (F,A) over U , we call

⋂
B∈NPR(S)B the core of normal parameter

reductions of S. Denote Core =
⋂

B∈NPR(S)B.

Lemma 4. Suppose S = (F,A) is a soft set over U . ∀i �= n, if M2,i = ∅ and
M1,i �= ∅, then

M1,i ⊆ Core. (5)

Definition 7 (Simplification Algorithm 1 by Core-based Rule). Suppose
S = (F,A) is a soft set over U . Core∗ = ∅. ∀i �= n, if M2,i = ∅ and M1,i �= ∅,
then refresh Core∗ = Core∗ ∪M1,i, and simplify [Mi,j]S by eliminating all the
elements of M1,i from [Mi,j ]S .

Example 6. Consider the [Mi,j ]S in Example 3, note that M2,2 = ∅, M1,2 �= ∅.
By applying the Algorithm 1, Core∗ is refreshed as {e4, e5}, and [Mi,j ]S becomes

[Mi,j ]S =

({e6, e7} ∅ {e2, e6} {e6, e7} ∅
{e1} ∅ {e1} {e1, e3} ∅

)
. (6)

Theorem 4. Suppose S = (F,A) is a soft set over U . Suppose proposition P1

and P2 are the compilation results with respect to [Mi,j ]S before and after using
Algorithm 1, P1 is logically equivalent to (

∧
e∈Core∗ ¬e) ∧ P2.

Proof. Assume M1,1 �= ∅, M2,1 = ∅. ∀π : A→ {0, 1}:
(1) If π(P1) = 1, then there exist Li ∈ Q(i,|U|) (i = 1, 2, · · · , |U | − 1) such

that π is a model of L1 ∧L2 ∧ · · · ∧L|U|−1. By Section 3, we know that L1 must
be
∧

e∈M2,1
¬e. Thus ∀e ∈ W1,1, π(e) = 0. ∀j ∈ {2, 3, · · · , |U | − 1}, Lj can’t

have literals e (e ∈ M1,2) appearing in them. Construct L∗
i ∈ Q∗

(i,n) (here, we
use Q∗

(i,n) to mean the set of propositions corresponding with Q(i,n) after using

Algorithm 1) as follows: L∗
1 = �. When i ≥ 2, we get L∗

i by removing all literals
¬e (e ∈ M1,1) appearing in Li. Since π is a model of L1 ∧ L2 ∧ · · · ∧ L|U|−1,
π is a model of (

∧
e∈M1,1

¬e) ∧ L∗
1 ∧ L∗

2 ∧ · · · ∧ L∗
|U|−1. Hence π is a model of

(
∧

e∈Core∗ ¬e) ∧ P2.
(2) If π((

∧
e∈Core∗ ¬e) ∧ P2) = 1, then there exist L∗

i ∈ Q∗
(i,|U|) (i = 1, 2, · · · ,

|U | − 1) such that π is a model of both L∗
1 ∧ L∗

2 ∧ · · · ∧ L∗
|U|−1 and

∧
e∈M1,1

¬e.
Construct Li ∈ Q(i,n) as follows: L1 =

∧
e∈M1,1

¬e. When i ≥ 2, we get Li by

adding all literals ¬e (e ∈ M1,1 ∩ (M1,i ∪ M2,i)) to Li in a conjunctive way.
Since π is a model of L∗

1 ∧ L∗
2 ∧ · · · ∧ L∗

|U|−1 and
∧

e∈M1,1
¬e, π is a model of

L1 ∧ L2 ∧ · · · ∧ L|U|−1. Hence π is a model of P1.

Corollary 1. Suppose S = (F,A) is a soft set over U = {u1, u2, · · · , un}. After
running Algorithm 1, we have Core∗ ⊆ Core.
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4.2 Inclusion-Based Rule

Definition 8 (Simplification Algorithm 2 by Inclusion-based Rule).
Given [Mi,j ]S , ∀i �= j, i, j ∈ {1, 2, · · · , |U | − 1}

(1) if M1,i ∪M2,i �= ∅, M1,i ⊆M1,j and M2,i ⊆M2,j , then
• when |M1,j −M1,i| ≥ |M2,j −M2,i|, refresh M1,j as M1,j −M1,i and M2,j

as M2,j −M2,i;
• when |M1,j −M1,i| < |M2,j −M2,i|, refresh M2,j as M1,j −M1,i and M1,j

as M2,j −M2,i;
(2) if M1,i ∪M2,i �= ∅, M2,i ⊆M1,j and M1,i ⊆M2,j , then
• when |M2,j −M1,i| ≥ |M1,j −M2,i|, refresh M1,j as M2,j −M1,i and M2,j

as M1,j −M2,i.
• when |M2,j −M1,i| < |M1,j −M2,i|, refresh M2,j as M2,j −M1,i and M1,j

as M1,j −M2,i.

Example 7. Consider the [Mi,j ]S in expression (6), note that M1,1 ⊆ M1,4,
M2,1 ⊆M2,4. By applying the inclusion-based rule, [Mi,j]S is refreshed as:

[Mi,j]S =

({e6, e7} ∅ {e2, e6} {e3} ∅
{e1} ∅ {e1} ∅ ∅

)
. (7)

Theorem 5. Suppose S = (F,A) is a soft set over U . Suppose proposition P1

and P2 are the compilation results with respect to [Mi,j ]S before and after using
Algorithm 2, P1 is logically equivalent to P2.

4.3 Diagonal-Based Rule

Definition 9 (Simplification Algorithm 3 by Diagonal-based Rule).
Given [Mi,j ]S , ∀i �= j, i, j ∈ {1, 2, · · · , |U | − 1}. When M(1,i) ∩ M2,j = ∅,
M2,j �= ∅, M2,i ∩M1,j = ∅, M2,i �= ∅, compute a =

∑|M(,i|
k=0 (Ck

|M1,i| × Ck
|M2,i|),

b =
∑|M2,j |

k=0 (Ck
|M1,j |×Ck

|M2,j |), d1 = |(M1,i∪M2,j)−(M1,i∪M2,j)∩(M1,j∪M2,i)|,
d2 = |(M1,j ∪ M2,i) − (M1,i ∪ M2,j) ∩ (M1,j ∪ M2,i)|. d = min(d1, d2), c =∑d

k=0 C
k
d1
× Ck

d2
. If b− c ≥ a− c, b− c > 0

• when d1 ≥ d2, refresh M1,j as (M1,i ∪M2,j)− (M1,i ∪M2,j)∩ (M1,j ∪M2,i)
and M2,j as (M1,j ∪M2,i)− (M1,i ∪M2,j) ∩ (M1,j ∪M2,i).
• when d1 < d2, refresh M2,j as (M1,i ∪M2,j)− (M1,i ∪M2,j)∩ (M1,j ∪M2,i)

and M1,j as (M1,j ∪M2,i)− (M1,i ∪M2,j) ∩ (M1,j ∪M2,i).

Example 8. Consider the [Mi,j ]S in expression (7), by using Algorithm 1, we
get Core∗ = {e3, e4, e5} and

[Mi,j ]S =

({e6, e7} ∅ {e2, e6} ∅ ∅
{e1} ∅ {e1} ∅ ∅

)
. (8)

Note that in expression (8), M1,1 ∩M2,3 = ∅, M2,3 �= ∅, M2,1 ∩M1,3 = ∅,
M2,1 �= ∅, compute a =

∑|M2,1|
k=0 Ck

|M(1,1)| × Ck
|M2,1| = 3, b =

∑|M2,3|
k=0 Ck

|M1,3| ×
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Ck
|M2,3| = 3, d1 = |(M1,1 ∪M2,3) − (M1,1 ∪M2,3) ∩ (M1,3 ∪M2,1)| = 1, d2 =

|(M1,3 ∪ M2,1) − (M1,1 ∪ M2,3) ∩ (M1,3 ∪ M2,1)| = 1. d = min(d1, d2) = 1,

c =
∑d

k=0 C
k
d1
× Ck

d2
= 2. Thus b− c ≥ a− c, b− c = 1 > 0. d1 ≥ d2. Therefore

M1,3 := (M1,1 ∪M2,3)− (M1,1 ∪M2,3) ∩ (M1,3 ∪M2,1) = {e7},
M2,3 := (M1,3 ∪M2,1)− (M1,1 ∪M2,3) ∩ (M1,3 ∪M2,1) = {e2}.

We have the refreshed [Mi,j ]S as follows:

[Mi,j ]S =

({e6, e7} ∅ {e7} ∅ ∅
{e1} ∅ {e2} ∅ ∅

)
. (9)

With expression (9), we can construct propositions in the way introduced in
Section 3: Q(1,6) = {¬e6 ∧ ¬e7 ∧ ¬e1, e6 ∧ ¬e7 ∧ e1,¬e6 ∧ e7 ∧ e1} , Q(2,6) =
�, Q(4,6) = �, Q(5,6) = �, Q(3,6) = {¬e7 ∧ ¬e2, e7 ∧ e2}. Note that we have
{e3, e4, e5} ⊆ Core, thus the normal parameter reductions of the soft set S in
Table 1 can be compiled into proposition P = ¬e3 ∧ ¬e4 ∧ ¬e5 ∧ (

∨
Q(1,6)) ∧

(
∨
Q(3,6))).

Theorem 6. Suppose S = (F,A) is a soft set over U = {u1, u2, · · · , un}. Assume
σ(un) = min{σ(ui)|i = 1, 2, · · · , n}. Suppose proposition P1 and P2 are the
compilation results with respect to [Mi,j ]S before and after using Algorithm 3,
P1 is logically equivalent to P2.

4.4 Simplification Algorithm 4 of [Mi,j]S by Combining the Three
Rules

Now we give our Algorithm 4 by combining the three rules in Table 2. We
announce that we set core∗ empty initially only at the first time we use Sim-
plification Algorithm 1. Since [Mi,j]S has finite elements, Algorithm 4 can be
terminated in finite steps.

Table 2. Simplification Algorithm 4 of [Mi,j ]S by combining the three rules

Step 1: input [Mi,j ]S
Step 2: use Algorithm 1, refresh [Mi,j ]S
Step 3: use Algorithm 2, if [Mi,j ]S can be changed, turn to Step 2; otherwise turn to

Step 4.
Step 4: use Algorithm 3, if [Mi,j ]S can be changed, turn to Step 2; otherwise turn to

Step 5.
Step 5: output [Mi,j ]S

By Theorems 4-6 we have the following corollary.

Corollary 2. Suppose S = (F,A) is a soft set over U . Compute the [Mi,j ]S
defined by expression (1). Suppose propositions P1 and P2 are the compilation
results with respect to [Mi,j]S before and after using Algorithm 4, then P1 is
logically equivalent to (

∧
e∈Core∗ ¬e) ∧ P2.
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5 Conclusion and Future Work

In this paper we have succeeded in compiling all the normal parameter reductions
of soft set into a proposition of parameter boolean variables. This proposition
actually provides an implicit representation of normal parameter reductions,
once we need one or some or all of them we can use pruning techniques to get
them. This propositional structure of parameter reductions allows us to make
reasoning about the soft set very conveniently. There exists some potential work
for the near future. How can we output one or some of the normal parameter
reductions of soft set by P as quickly as possible? For instance, we may be
interested in the minimal parameter reductions of soft sets [5].
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Abstract. Recommender systems are popular in e-commerce as they provide
users with items of interest. Existing top-K approaches mine the K strongest
granular association rules for each user, and then recommend respective K types
of items to her. Unfortunately, in practice, many users need only a list of N items
that they would like. In this paper, we propose confidence-based and significance-
based approaches exploiting granular association rules to improve the quality of
top-N recommendation, especially for new users on new items. We employ the
confidence measure and the significance measure respectively to select strong
rules. The first approach tends to recommend popular items, while the second
tends to recommend special ones to different users. We also consider granule
selection, which is a core issue in granular computing. Experimental results
on the well-known MovieLens dataset show that: 1) the confidence-based ap-
proach is more accurate to recommend items than the significance-based one;
2) the significance-based approach is more special to recommend items than the
confidence-based one; 3) the appropriate setting of granules can help obtaining
high recommending accuracy and significance.

Keywords: Granular computing, recommender system, granule association
rules, confidence, significance.

1 Introduction

As the rapidly growing amount of information available on the Internet and the improv-
ing of e-commerce, recommender systems have become more and more popular [1].
Recommender systems help relieve users of massive information overload, and provide
users the items in which they are interested. To date, many methods, which are popu-
lar in KDD area, have been proposed for recommender systems, such as content-based
filtering method [2], collaborative filtering method [3] and model-based algorithm [4].
Recently, researchers have studied the cold-start recommendations [5], including new
user,new item as well as new user and new item [6].

Granular association rules mining [7,8] is a new approach to deal with the cold-
start problems for recommender systems [5,9]. This approach generates rules with three
measures to reveal connections between granules in two universes. A complete example
of granular association rules might be “male students rate action movies released in
2013 with a probability of 25%; 50% users are male students and 40% movies are
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action ones released in 2013.” Here 50%, 40%, and 25% are the source coverage, the
target coverage and the confidence, respectively.

Granule selection is a core issue in granular computing [10,11,12,13,14,15]. A gran-
ule is also a concept. For example, “action movies released in 2013” is a granule,
“movies released in 2013” is a coarser granule, and “comedy action movies released
in 2013” is a finer granule. Existing top-K approaches [16] mine theK strongest gran-
ular association rules for each user, and then recommend respectiveK types of items to
her. However, fine recommended granules or coarse recommended granules can gener-
ate different number of recommended items. Unfortunately, in a real world, many users
need only a list of N items that they would like. Therefore, it is necessary to study how
to form the N items for the users with the appropriate setting of granules.

In this paper, we propose confidence-based and significance-based approaches ex-
ploiting granular association rules to improve the quality of top-N recommendation,
especially for new users on new items. First, the new users are matched by granu-
lar association rules, which satisfy source coverage, target coverage and confidence of
rule thresholds. Second, we sort the rules based on the confidence measure and the
significance measure. The confidence-based approach ranks the rules according to the
confidence measure. The significance-based approach ranks them according to the sig-
nificance measure. The confidence-based approach tends to recommend popular items,
while the significance-based approach tends to recommend special ones to different
users. So items matched by rules that have a higher confidence (significance) are ranked
first. Third, granule selection is considered in the item recommending process. Rec-
ommend items are generated for users using the appropriate recommended granules.
Fourth, we choose the first N highest ranked items as the recommendation list.

Experiments are undertaken on the MovieLens dataset [17] using our open source
software Grale [18]. First, with some appropriate settings, the top-N cold-start recom-
mendation made by the confidence-based approach on average is more accurate than
those made by the significance-based one. Second, the loss in significance is more pro-
nounced for the confidence-based approach than for the significance-based one. Third,
there is a tradeoff between the granule number and the accuracy, and the appropriate
setting of granules can help obtaining high recommending accuracy and significance.

2 Preliminaries

In this section, we review some preliminary definitions such as information granule,
many-to-many entity-relationship system (MMER) [7,8] and granular association rules
with three measures [16].

2.1 The Data Model

Now we first revisit the definitions of information systems. [8].

Definition 1. S = (U,A) is an information system, where U = {x1, x2, . . . , xn} is the
set of all objects, A = {a1, a2, . . . , am} is the set of all attributes, and aj(xi) is the
value of xi on attribute aj for i ∈ [1..n] and j ∈ [1..m].
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Two information systems are listed in Tables 1(a) and 1(b), respectively. In Table
1(b), 1 indicates true, and 0 indicates false.

Information granule is defined by Yao and Deng [19] as follows:

Definition 2. A granule is a triple

G = (g, i(g), e(g)), (1)

where g is the name assigned to the granule, i(g) is a representation of the granule, and
e(g) is a set of objects that are instances of the granule.

Example 1. In Tables 1(a) and 1(b), users and movies can be described by informa-
tion granules. “male student” and “action movie” is two granules g1 and g2. i(g1) =
{Gender,Occupation}, and e(g1) = {u1, u4}. i(g2) = {Action}, and e(g2) =
{m1,m2,m5}.

In an information system, anyA′ ⊆ A induces an equivalence relation [20,21,22,23]

EA′ = {(x, y) ∈ U × U |∀a ∈ A′, a(x) = a(y)}, (2)

and partitionsU into a number of disjoint subsets called blocks or granules. The granule
containing x ∈ U is

EA′(x) = {y ∈ U |∀a ∈ A′, a(y) = a(x)}. (3)

According to Equation (3), (A′, x) determines a granule in an information system.
Hence g = g(A′, x) is a natural name to the granule. i(g) can be formalized as the
conjunction of respective attribute-value pairs, i.e.,

i(g(A′, x)) =
∧

a∈A′
〈a : a(x)〉. (4)

e(g) is given by
e(g(A′, x)) = EA′(x). (5)

Let x ∈ U and A′′ ⊂ A′ ⊆ A, we have

e(g(A′, x)) ⊆ e(g(A′′, x)). (6)

Consequently, we say that g(A′, x) is finer than g(A′′, x), and g(A′′, x) is coarser than
g(A′, x).

Example 2. “male student” is a granule, “student” is a coarser granule, and “Chinese
male student” is a finer granule.

Now we review the definitions of binary relations and many-to-many entity relation-
ship systems [8].

Definition 3. Let U = {x1, x2, . . . , xn} and V = {y1, y2, . . . , yk} be two sets of ob-
jects. Any R ⊆ U × V is a binary relation from U to V .
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An example of binary relation is given by Table 1(c), where U is the set of users as
indicated by Table 1(a), and V is the set of movies as indicated by Table 1(b). A binary
relation can be viewed as an information system. However, in order to save space, it is
more often stored in the database as a table with two foreign keys.

Definition 4. A many-to-many entity-relationship system (MMER) is a 5-tuple ES =
(U,A, V,B,R), where (U,A) and (V,B) are two information systems, andR ⊆ U×V
is a binary relation from U to V .

An example of MMER is given by Table 1.

Table 1. A many-to-many entity-relationship system

(a) User

User-id Age Gender Occupation Country
u1 21 M student China
u2 43 F writer Canada
u3 23 M writer Canada
u4 22 M student China

(b) Movie

Movie-id Release-decade Action Adventure Animation Western
m1 2013 1 0 0 1
m2 2013 1 1 0 0
m3 2014 0 1 1 1
m4 2014 0 1 0 1
m5 2014 1 0 1 1

(c) Rates

User-id� Movie-id m1 m2 m3 m4 m5

u1 0 1 0 1 0
u2 1 0 0 1 1
u3 0 1 0 0 1
u4 0 0 1 1 1

2.2 Granular Association Rules with Three Measures

Now we discuss the means for connecting users and items. A granular association rule
[8] is an implication of the form

(GR) :
∧

a∈A′
〈a : a(x)〉 ⇒

∧
b∈B′

〈b : b(y)〉, (7)

where A′ ⊆ A and B′ ⊆ B.
According to Equations (4) and (5), the set of objects meeting the left-hand side of

the granular association rule is

LH(GR) = EA′(x); (8)
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while the set of objects meeting the right-hand side of the granular association rule is

RH(GR) = EB′(y). (9)

Let us look at an example granular association rule “male students rate action movies
released in 2013 with a probability of 25%; 50% users are male students and 40%
movies are action ones released in 2013.” Here 50%, 40%, and 25% are the source
coverage, the target coverage, and the confidence, respectively. Formally, the source
coverage of GR is

scov(GR) = |LH(GR)|/|U |; (10)

while the target coverage of GR is

tcov(GR) = |RH(GR)|/|V |. (11)

The confidence of GR is the probability that a user chooses an item, namely

conf(GR) =
|(LH(GR)×RH(GR)) ∩R|
|LH(GR)| × |RH(GR)| . (12)

3 Top-N Recommendation Based on Granular Association Rules

Personalized recommendation and diverse recommendation are two key issues of rec-
ommendation systems. In the real world, top-N recommendation more in line with the
actual needs. At the same time, we also consider the cold-start problem [5,9] in rec-
ommender systems. In this section, we discuss the evaluation metrics and two different
approaches based on granular association rules to improve the quality of top-N recom-
mendation, especially both of new user and item.

3.1 Evaluation Metrics

First, we learn the two evaluation metrics, namely accuracy and significance.

Accuracy Metric. The performance of the recommender is evaluated mainly by the
recommendation accuracy. We first look the following definition.

Definition 5. Let ES = (U,A, V,B,R) be an MMER, ∅ ⊂ X ⊆ U and ∅ ⊂ Y ⊆ V .
The accuracy of recommending Y toX is

acc(X,Y ) =

{
0 X = ∅ or Y = ∅;
|(X×Y )∩R|
|X|×|Y | otherwise.

(13)

The consideration of empty sets is for the situation where some users receive no
recommendation. Such situation is common for new user and/or new item cases.

A recommender can be viewed a functionRC : U → 2V . RC(x) is the set of items
recommended to user x ∈ U . According to Definition 5, the accuracy of RC on x is

acc(x,RC) = acc({x}, RC(x)) = |({x} ×RC(x)) ∩R|
|RC(x)| . (14)
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The recommender may recommend different number of items to different user, we
would like to compute the number of total recommendations divided by the number of
successful ones. Therefore we propose the following definition.

Definition 6. The accuracy of RC onX ⊆ U is

acc(X,RC) =

∑
x∈X |({x} ×RC(x)) ∩R|∑

x∈X |RC(x)|
. (15)

Significance Metric. In many applications, many popular items with highly accurate
results are recommended. For example, suggesting movies that won an Oscar award to
people. Though being highly accurate, it will not astonish people due to common sense.
For this reason, we would like to recommend special items to people. We propose the
following definitions.

Definition 7. Let ES = (U,A, V,B,R) be an MMER, ∅ ⊂ X ⊆ U and ∅ ⊂ Y ⊆ V .
The significance of recommending Y to X is

sig(X,Y ) = acc(X,Y )/acc(U, Y ). (16)

Here acc(U, Y ) indicate the popularity of item set Y . In other words, there is a penalty
on popular items such that they are not recommended to everyone.

The same term can be employed to evaluate the quality of a rule.

Definition 8. The significance of a granular association rule GR is

sig(GR) = sig(LH(GR), RH(GR)). (17)

The quality of the recommenderRC can be evaluated as follows.

Definition 9. The significance of recommenderRC on x ∈ U is

sig(x,RC) = sig({x}, RC(x)) = acc({x}, RC(x))/acc(U,RC(x)); (18)

while the significance of RC over X ⊆ U is

sig(X,RC) =
∑
x∈X

sig(x,RC)/|X |. (19)

We will employ sig(GR) to build the rule set, and sig(X,RC) to evaluate the per-
formance of the recommender. For example, men like to see the adventure film with
a probability of 30%, Chinese men like to see the adventure film with a probability
of 60%. So that the significance of recommending the adventure film for Chinese men
over the set of men can be expressed as sig(X,RC) = 0.6/0.3 = 2.0.

3.2 Mining Top-N Recommendation Items

We propose confidence-based and significance-based approaches exploiting granular
association rules to improve the quality of top-N recommendation, especially for new
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Algorithm 1. Rule set construction
Input: The training set ES = (U,A,V,B,R), a minimal source coverage threshold ms, a
minimal target coverage threshold mt.
Output: Source granules, target granules, and the rule set, all stored in the memory.
Method: training

1. SG(ms) = {(A′, x) ∈ 2A × U | |EA′ (x)|
|U| ≥ ms};

2. TG(mt) = {(B′, y) ∈ 2B × V | |EB′ (y)|
|V | ≥ mt};

3. for each g ∈ SG(ms) do
4. for each g′ ∈ TG(mt) do
5. GR = (i(g) ⇒ i(g′));
6. compute conf(GR);
7. end for
8. end for

users on new items. The whole process is divided into two aspects: the rule set con-
structing stage and the recommending stage.

In the first stage, a rule set is constructed as shown by Algorithm 1. To store the rule
set, we need an array to store SG(ms), an array to store TG(mt), and a matrix with
size |SG(ms)|×|TG(mt)| to store confidence of all rules. Here SG(ms) (GT (ms)) is
the set of all source (target) granules satisfying the source (target) coverage threshold.

In the second stage, top-N items are respectively recommended new item for new
user. The process is divided into four steps as follows.

Step 1: A new user is matched by granular association rules, which satisfy source
coverage, target coverage and confidence of rule thresholds.

Step 2: Comparing different rules matching the user, top-K recommended granules
are obtained according to two different approaches. We sort the rules based on the con-
fidence measure and the significance measure. The confidence-based approach ranks
the rules according to the confidence measure. The significance approach ranks them
according to the significance measure. The confidence-based approach tends to recom-
mend popular items, while the significance-based approach tends to recommend special
ones to different users. So the new items matched by rules that have a higher confidence
(significance) are ranked first.

Step 3: Granule selection is considered in the item recommending process. Different
granules have different coverage of items, which in turn have different number of rec-
ommended items. The finer granule we choose, the less recommended items we obtain.
On the contrary, the coarser granule we choose, the more recommended items we ob-
tain. Note that if a new user is matched by multiple source granules, we select the rule
that has the highest confidence (significance).

Step 4: Recommend items are generated for each user using the appropriate rec-
ommended granules, and then we choose the first N highest ranked items from as the
recommendation list.
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4 Experiments

In this section, we try to answer the following questions through experimentation.

1. How does the performance change for different threshold settings?
2. How does the performance change for the different number of recommendations?
3. How does the performance change for the different recommended granules values?
4. Does the significance-based approach outperform the confidence-based one in terms

of accuracy and significance?

4.1 Dataset

The MovieLens dataset [17] is widely used in recommender systems (see, e.g., [5,6]).
It is assembled by the GroupLens project (http://www.grouplens.org). We downloaded
the data set from the Internet Movie Database [17]. The database schema is listed as
follows.

• User (userID, age, gender, occupation)
• Movie (movieID, release-year, genre)
• Rates (userID, movieID)

We use the version with 943 users and 1,682 movies. The data are preprocessed
to cope with Definition 4 as follows. The original Rate relation contains the rating of
movies with 5 scales, while we only consider whether or not a user has rated a movie.
The user age is discretized to 9 intervals as indicated by the data set [24]. Since there
are few movies before 1970s and too many movies after 1990, the release year is dis-
cretized to 3 intervals: before 1970s, 1970s-1980s, and 1990s. The genre is a multi-
valued attribute. Therefore we scale it to 18 boolean attributes and deal with it using the
scaling-based approach proposed in [25].

4.2 Results

The following experiments are undertaken to answer the questions raised at the begin-
ning of the section one by one. Here we randomly select 60% data (565 users and 1009
movies) as the training set, and the remaining data (378 users and 673 movies) as the
testing set, where the users and movies are all regard as cold start ones. We deal with the
cold-start recommendations through granular association rule mining. Each experiment
is repeated 100 times with different sampling, and the average value is computed. We
introduce two parameters N and K , where N is the number of recommended items,
andK is the number of recommended granules.

Performance of top-N Recommendation for Thresholds. Here we set N = 10 and
K = 15. Fig. 1(a) compares the accuracy of the confidence-based and significance-
based approaches as ms(mt) increases. The chart reveals that coverage has detrimen-
tal effects on confidence-based approach. However, the accuracy of recommendation
keeps stable through significance-based approach. The confidence-based approach is
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Fig. 1. Accuracy and significance comparison: (a) accuracy; (b) significance
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Fig. 2. K = 10: Performance of the recommender for different N values

better than the significance-based one at first. At last, we observe that they have almost
identical shape.

Fig. 1(b) compares the significance of the confidence-based and significance-based
approaches asms(mt) increases. We observe that the significance decreases in general
through the significance-based approach, while keeps stable through the confidence-
based approach. However, the significance-based approach is always better than the
confidence-based one. Moreover, the significance of the confidence-based approach
keep stable and is always close to 1. From this viewpoint, high accuracy is mainly
due to the fact that popular items are often recommended.

Performance of Recommendation for Different N Values. Set ms = mt = 0.01
and K = 10. Let N increases from 5 to 25, and the accuracy and significance of these
two approaches are compared, as shown in Figs. 2(a) and 2(b).

We can observe that the top-N cold-start recommendation made by the confidence-
based approach on average is more accurate than those made by the significance-based
approach, as depicted in Fig. 2(a). However, the loss in significance is more pronounced
for the confidence-based approach than for the significance-based one, as depicted in
Fig. 2(b).
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Fig. 3. N = 10: Performance of the recommender for different K values

Performance of Recommendation for Different K Values. Set ms = mt = 0.01
and N = 10. LetK increases from 1 to 25, and the accuracy and significance of these
two approaches are compared, as shown in Figs. 3(a) and 3(b).

Fig. 3(a) shows the accuracy of recommendation through confidence-based approach
outperforms than significance-based one. We also observe that there is a tradeoff be-
tween the granule number and the accuracy. When the recommended granule is too
finer, we only obtain less recommended items, which is not enough for users. When the
recommended granule is too coarser, we obtain too much recommended items, which
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is not good for users. When K = 6, the accuracy of recommendation is the highest by
confidence-based approach.

On the contrary, as depicted in Fig. 3(b), the significance of recommendation through
the significance-based approach is much better than the confidence-based one.
Furthermore, we observe that the significance decreases remarkably through the
significance-based approach as K increases. This phenomenon indicates that special
recommendations have been achieved well on the finer granules.

Performance of Recommendation for DifferentN andK Values. Now we setms =
mt = 0.01, and let N and K increase from 5 to 25, respectively. The accuracy and
significance of these two approaches are compared, as shown in Figs. 4(a) and 4(b).

Fig. 4(a) shows that confidence-based approach outperforms the significance-based
one at the beginning. In the end, we observe that they have almost similar shape. WhenN
changes from 9 to 14 andK changes from 5 to 8, we can obtain higher accuracy through
the confidence-based approach. Fig. 4(b) shows that the significance-based approach al-
ways outperforms confidence-based one. WhenN changes from 15 to 25 andK changes
from 5 to 8, we can obtain higher significance through the significance-based approach.

5 Conclusions

In this paper, we proposed confidence-based and significance-based approaches exploit-
ing granular association rules to improve the quality of top-N recommendation. Experi-
mental results indicate that the confidence-based approach helped to recommend higher
accuracy items and the significance-based approach helped to recommend higher signif-
icance items. The appropriate selection of the granules is important to the performance
of the recommendation. In the future, we will analyze the computational complexity
of our recommendation algorithm, and design a more effective algorithm for granule
selection. Furthermore, we will compare our approaches with other related ones.
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Abstract. Classification is an important issue in data mining and
knowledge discovery, and the attribute reduction has been proven to be
effective in improving the classification accuracy in many applications. In
this paper, we first apply rough set theory to reduce irrelative attribute
and retain the important attributes, and the input neuron based on the
important attributes can simplify the structure of BP-neuron network
and improve classification accuracy. Then an efficient BP-neural network
classification model based on attribute reduction is developed for high-
dimensional data analysis. Finally, the experimental results demonstrate
the efficiency and effectiveness of the proposed model.

Keywords: Classification model, Attribute reduction, Neural Network,
Rough sets.

1 Introduction

At present, there are a lot of knowledge discovery tool to use in classification
applications. Knowledge discovery is not a single technique, some commonly
used techniques are: Case-Based Reasoning, Neural Networks, Decision Trees,
Genetic Algorithms, Fuzzy Sets and Rough Sets [1-4]. Data mining relates to
other areas, including machine learning, cluster analysis, regression analysis,
and neural networks. This model normally uses a predetermined set of features.
A machine learning algorithm of data mining generates a number of models
capturing relationships between the input features and the decisions produced by
cluster analysis. Neural networks are generally preferred for their generalization
ability, and the neural network training time is to long, it denotes the drastic
increase in computational complexity and classification error with data having a
great number of dimensions. Decision trees obviously outperform neural networks
in terms of interpretability.

The so-called curse of attributes pertinent to many knowledge discovery and
data mining algorithms, denotes the drastic increase in computational timing and
classification error with data having a large of attributes in massive data. Beside
this motivation, the concept of a rough set, introduced in [5,6], proved to be
efficient mathematical tool that can be used for both attribute reduction. It helps
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us to find out the relevant optimal attribute subset to classify objects without
reducing the classification performance. Rough set theory applies the unclear
relation and data pattern comparison based on the notion of an information
system, where the data is uncertain, fuzzy, incomplete or inconsistent. Rough
set-based attribute reduction is crucial in data pre-processing, many redundant
or irrelevant attribute may lead to poor performance of the learning algorithms.
Selecting relevant attributes are essential to improve the classification accuracy.
In past decade years, many researchers proposed a lot of attribute reduction
approach based on the different model in varies application. The key object of
rough set extract relative attributes from original attributes. Each attribute is
independent of the other attributes. We can extract necessary attributes from
the original attribute set used in the real-world information system.

Neural Networks is the most widely used model among the artificial intel-
ligence techniques, the mechanism of neural network is come to human brain
action when a pattern that had no output neuron associated with it was given
as an input neuron. The efficient neural network framework is design by Sec-
tion [7], it is applied to many manipulate real world classification problem. On
the real world classification problems, neural network had been used widely in
many kinds of application fields. For example, in the commerce field, the neural
network is applied in the prediction of Stock market [8]; the neural network also
is applied to discover the damage kind and location in the cable-stayed Bridge
from the massive noisy data. And in e-commerce fields, the neural network is
used to estimate the population of specific e-commerce [9]. The neural network is
a classic type of neural network framework using a kernel-based approximation
to form an estimate of the probability density function of categories in a large
classification data.

In this paper, we will present an efficient BP-neural network classification
model based on attribute reduction for high-dimensional data analysis. Rough
set theory provides an efficient mathematical tool that can be used for both
attribute reduction. It helps us to find out the relevant optimal attribute sets to
classify objects without reducing the classification performance. Neural networks
is competitive technique which are considered to be the most efficient tools in
many pattern classification applications, so we first apply rough set theory to
reduce irrelative attribute and retain the important attributes from data, and
the input neuron based on the important attributes simplify the structure of
neuron networks and improve classification accuracy in classification problem.
Finally, results of experimental analysis are included to quantify the efficiency
and effectiveness of the proposed model.

The paper is organized as follows. In Section 2, some preliminary knowledge
about rough set theory and neural network are briefly reviewed. In Section 3,
an efficient BP-neural network classification model based on attribute reduction
is proposed. Section 4 shows experimental results are included to quantify the
efficiency and effectiveness of the proposed model. We then conclude the paper
with Section 5.
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2 Preliminaries

2.1 Rough Sets

Rough set theory provides an efficient mathematical tool that can be used for
both attribute reduction and rule extraction. It helps us to find out the relative
optimal attribute sets without deterioration of classification accuracy [10,11].
The idea of attribute reduction has encouraged some researchers in improving
the computation effectiveness of rough set theory in massive real world dataset,
including medicine, control analysis, fault-diagnosis, web categorization, and eco-
nomic prediction, and so on. Rough set theory has been used successfully in a
number of applications such as data mining and knowledge discovery.

In rough sets theory, an information system is defined as a family of sets
S = (U,A), where U is a non-empty, finite set of instances and is also called
the universe, and A is a non-empty, finite set of attributes. For each attribute
a ∈ A, a mapping a : U → Va is determined by a given decision table, where
Va is the value domain of attribute a. If A = C ∪ D and C ∩ D == ∅, such
that C is non-empty, finite condition attributes and D is referred to as decision
attributes, then it be a complete decision system.

Definition 1. (Indiscernibility relation) Let S = (U,C ∪D) be a complete de-
cision system. Given a non-empty subset B ⊆ A determines an indiscernibility
relation: RB = {(x, y) ∈ U × U |a(x) = a(y), ∀a ∈ B}.

The indiscernibility relation RB partitions U into some equivalence classes
given by U/RB = {[x]B|x ∈ U}, where [x]B denotes the equivalence class deter-
mined by x with respect to B.

Definition 2. (Lower and upper approximation) Let S = (U,C ∪D) be a com-
plete decision system. Given an equivalence relation R on the universe U and
a subset X ⊆ U , one can define a B- lower approximation of X is defined as
R(X) = {x ∈ U |[x]R ⊆ X}. And an B-upper approximation of X is defined as
R(X) = {x ∈ U |[x]R ∩X �= }.
Definition 3. (Positive region) Let S = (U,C ∪ D) be a complete decision
system,∀P ⊆ C, if a partition of the universe U with respect to the decision at-
tribute D is U/IND(D)={D1, D2, · · · , Dm} and another partition U/IND(P )=
{P1, P2, · · · , Pt} defined by condition attribute P , then a positive region is defined
as POSP (D) = ∪

Dj∈U/IND(D)
P (Dj).

Reduct is the minimal subset of attributes that enables the same classification
of elements of the universe as the whole set of attributes.

Definition 4. (Attribute reduction) Let S = (U,C ∪D) be a complete decision
system, for a non-empty subset P ⊆ C, an attribute reduct P based on positive
region of C with respect to D is defined as

1) POSP (D) = POSC(D), 2) for ∀a ∈ P , there is POSP−{a}(D) �=POSC(D).
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Definition 5. (Core attributes) Let S = (U,C ∪ D) be a complete decision
system, if Red are called an all attribute reduction set based on positive region
of C with respect to D, then core based on positive region is defined as Core =
∩Red.

the core is the most important subset of attributes, for none of its elements
can be removed without affecting the classification power of attributes.

Definition 6. (Binary discernibility matrix) Let S = (U,C ∪D) be a complete
and consistent decision system. Let M be the binary discernibility matrix of
complete decision system, each element M((i, j), k) indicates the discernibility
between two objects ui and uj with different decision class by a single condition
attribute ck, which is defined as:

M((i, j), k) =

{
1 f(xi, ck) �= f(xi, ck) and f(xi, D) �= f(xi, D)

0 else.

2.2 Neural Network

Neural network is available to build model a nonlinear mapping between the
matrix R = (rij)m×n and the vector C = (c1, c2, · · · , cm). Adjusting a set pa-
rameter of the model modifies this mapping. In order to construct the neural
network process model. In this paper, here the neural network model consists of
three layers; three layers include input layer, hidden layer and output layer. The
number of nodes in the input and output layers can be created at m and one in
the neural network respectively. we assume the number of nodes in hidden layer
is l. The connecting strength between the nodes in the former layer and the later
layer is represented by an adjustable weight w.

The training processing procedure is applied to a feed forward network with
a single hidden layer. We assume that there are n decision variables in the
optimization-simulation problem and that the neural hasm hidden neurons with
a bias term in each hidden neuron and an output neuron. Note that the weights
in the neural network are numbered sequentially starting with the first input
to the first hidden neuron. Therefore, the weights for all the inputs to the first
hidden neuron are wi1 to win. The bias term for hidden neuron is wi(n+1). We
test the activation functions for hidden neuron:

ai = tanh((2(wi(n+1) +
n∑

j=1

w(i−1)(n+1)+jcj)).

The activation function for the output layer is defined as follows:

upj = wm(n+2)+1 +
n∑

i=1

wm(n+1)+iai.

Given the above network architecture and activation functions, we also test
two schemes for optimizing w. The first scheme is the application of the training
procedure. The second scheme consists of applying the training method to the set
of weights associated with hidden nodes and then using linear regression to find
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the weight associated with the output nodes. In other words, using the training
method to find the best set of values for wm1 to wm(n+1), and then apply linear
regression to minimize the sum of squares associated with upj. The advantage
of the second scheme is that the number of weights that the training procedure
needs to adjust is reduced by m + 1. On the other hand, the disadvantage is
that the regression model needs to be solved each time any of the first m(n+1)
weights is change in order to calculate the mean squared error.

In the neural network learning scheme, the calculated output nodes in the
output layer,uij are compared with the expected output nodes aj to find the
error, before the error signals are propagated backward through the network.
The error function E is defined as:

E = 1
2n

m∑
i=1

n∑
j=1

(uij − aj)2.

3 The Classification Model

The main advantage of rough sets is that it is good at attribute reduction and
the strategy dealing of compressed data, and the problem is it is sensitive to
noise data. Neural networks is the most popular neural networks, whose main
advantage is high accuracy and non-sensitive with noise, but its disadvantage is
that the redundant and irrelevant data can easily cause over-training of neural
network, besides, networks scale and the amount of training samples influence
on the speed of network training and training time are main problem. As to
the advantages and the disadvantages of rough set theory and neural networks.
The BP-neural network classification model based on attribute reduction (called
AR-BPNN) can be showed in Figure 1.

Attribute  Reduction

c1 c2 c3 cn-2 cn-1 cn

c'1 c'2 c'm-1 c'm

BPNN

Fig. 1. The BP-Neural Network Classification Model Based on Attribute Reduction
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In this section, an efficient classification model is proposed based the neural
network and attribute reduction, The proposed model overcame rough sets sen-
sitive to noise data; on the other hand, it reduced the training computation time
of neural network, and improved efficiency much of computation.

3.1 A Quick Rough Set-Based Attribute Reduction Algorithm

Given an attribute set size n in decision system, the task of attribute reduction
(AR) can be seen as a search for an optimal attribute subset through the compet-
ing 2n candidate subsets. The definition of what an optimal subset is may vary
depending on the problem to be solved. Although an exhaustive method may be
used for this purpose, this is quite impractical for most large data sets. Usually
attribute reduction algorithms involve heuristic or random search strategies in
an attempt to avoid this prohibitive complexity. In this section, based on binary
discernibility matrix, a quick rough set-based attribute reduction algorithm is
proposed to solve the attribute reduction problem.

Algorithm 1. A Quick Attribute Reduction Algorithm

Input: A complete decision system S = (U,C ∪D);
Output: An attribute reduction Red.
Begin

1. Initialize Core ← ∅; Red ← ∅;
2. Compute the discernibility matrix M of the decision system S = (U,C ∪D);
3. if ck ∈ M((i, j), k) and |M((i, j), k)| = 1, then Core = Core ∪ {ck};
4. delete the matrix element including core attribute Core in M ;
5. Let Red ← Core;
6. Compute the frequency of each attribute in M ;
7. If the frequency of attribute a is the most in M , then let Red = Red ∪ {a}; and

delete the matrix element including a ;
8. If the M is not empty, then turn to step 6; else turn to Step 9;
9. //For some attributes are redundant attributes in Red,

10. if POSRed−{b} = POSRed(D), then delete the attribute b from the Red; else,
reserve the attribute b;

11. Output the attribute reduct Red.

End

Time Complexity Analysis. Steps 2-4 are to compute core attributes in com-
plete decision system, the time complexity of Steps 2-4 is O(|U |2|C|). Steps 6-8
are to add some improtant conditional attributes to reduct, the time complexity
of Steps 6-8 is O(U |2|C − Core|2). Step 10 are to delete some redundant fea-
tures in reduct Red, its time complexity is O(|U |2|Red|). Therefore, the time
complexity of Algorithm 1 is max{O(U |2|C − Core|2), O(|U |2|Red|)}.
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3.2 Classification Algorithm Based on AR-BPNN

The most important advantage of neural network is that the models make no
assumptions about the properties of the data.In this section, based on the above
attribute reduction algorithm, we employ a three layers network to construct
the AR-BPNN classification model.

Algorithm 2. Classification Algorithm Based on AR-BPNN

Input: A complete decision system S = (U,C ∪D);
Output: Classification model;
Begin

1. According to the Algorithm 1, Compute the attribute reduct Red
2. If |Red|=L, let the number neurons of neural network in input layer is L
3. According to the type of prediction, determine the number of output neurons V ;
4. Determine the number of hidden layer neurons, N =

√
L+ V + z, where z is a

random number between 1 to 5;
5. To train the reduced sample data obtained by Step 1 embedded to neural network

model shown in Fig 1, and compute and output the error E;
6. Adjust the weight and threshold of each neuron in accordance with the error reverse

propagation algorithm according to the error of the output layer;
7. If errors meet the target value,terminate the training, else turn to Step6;

End

4 Experimental Results

In this section, we will illustrate the efficiency and effectiveness of the proposed
model. We have downloaded six real data sets from UCI Repository of Machine
Learning databases[12], which are described in Table 1. All the experiments are
carried out on a PC with Windows XP, Core2 CPU2.93 GHz and memory 2GB.
Algorithms are coded in C++ and the software being used is Microsoft C++ 6.0.

There are two main objectives to carry out the experiments. One is to validate
the feasibility of rough set-based attribute reduction, and the other is to validate
the efficiency of the proposed classification algorithm. The proposed algorithm is
validated from two aspects: feature subset size, and classification accuracy. With
six UCI data sets shown in Table 1, a series of experiments are conducted for
evaluating the proposed classification algorithm. For the data sets with numerical
attributes, we use the data tool Rosetta to discrete them.
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Table 1. A description of six data sets

ID Data sets Objects Attributes Classes
1 Dermatology 366 34 6

2 Breast Cancer 699 10 2

3 Vehicle 846 18 4

4 Mfeat-factors 2000 216 10

5 Satimage 6435 36 6

6 Mushroom 8124 22 2

The experimental results in terms of subset size of attribute reduction by the
proposed attribute reduction algorithm are shown in Table 2.

Table 2. Subset Sizes of Attribute Reduction

ID Data sets Attributes Reduct
1 Dermatology 34 11

2 Breast Cancer 10 6

3 Vehicle 18 10

4 Mfeat-factors 216 21

5 Satimage 36 19

6 Mushroom 22 5

It is easy to see that from Table 2 that the size of attribute subsets reduced
by the proposed attribute reduction algorithm is much small than original at-
tributes in most data sets, The experimental results demonstrate that the va-
lidity of the proposed attribute reduction Algorithm, which can reduce data
dimensions effectively. In what follows, the classification performance of the pro-
posed classification model (called AR-BPNN), along with a comparison with
classification based on original attributes (called BPNN) [7,9], is demonstrated
on the six UCI data sets using the classification accuracy. In the experiments, for
the purpose of illustrating the quality of subsets discovered, we follow a 10-fold
cross-validation strategy to evaluate the algorithms. Each data set is divided into
two disjoint parts by random sampling: one for training and the other for test. In
each fold, for the proposed classification model, we use the attribute reduction
algorithms to reduce the training set. In this experiment, let the learning rate
η = 0.15, inertial correction coefficient α = 0.85, error function E ≤ 0.05, the
maximum number of training is 400 times. We train the training samples, when
the network training is completed, we test the corresponding new datasets as
test samples, the comparison of the average classification accuracy of the two
classifiers is shown in Tables 3.
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Table 3. Comparison of Classification Accuracy of BPNN and AR-BPNN

ID Data sets BPNN AR-BPNN
1 Dermatology 92.25% 90.89%

2 Breast Cancer 83.01% 85.72%

3 Vehicle 80.58% 81.94%

4 Mfeat-factors 77.42% 83.65%

5 Satimage 87.11% 89.40%

6 Mushroom 96.39% 100.0%

From the results reported in Tables 3, it can be seen that the rough set-based
attribute reduction techniques are shown to improve the classification accuracy
when compared to the results from unreduced data set in most cases. This indi-
cates that classification accuracy may be increased as a result of feature selection
through the removal of irrelevant and redundant attributes. In additional, in the
experimental process of training and prediction, the computational time of BPNN
classifier based on original attribute is longer than that of AR-BPNN classifier.
The following conclusion can be drawn from the experimental results that it is
feasible and effective to classification by using AR-BPNN classifier with a reason-
ably compact attribute subset, which is appropriate for high-dimensional data.

5 Conclusions

In this paper, we present the efficient classification model based on neural net-
work pre-processing with rough sets. At first, based on binary discernibility
matrix, a quick rough set-based attribute reduction algorithm is proposed to
obtain the attribute reduct in high-dimensional data. Then reduced data can
reduce the number of the input neuron effectively and simplify the structure
of neuron networks. The experimental results shows that, compared with the
general neural network model, the classification accuracy of the proposed hybrid
model is efficient and feasible.
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Abstract. This paper presents a design of hardware accelerator for algorithms of 
rough set theory. A hardware implementation of incremental reduct generation 
and rule induction is proposed in this paper. Incremental reduct generation algo-
rithm is based on simplified discernibility matrix. The design has been simulated 
and implemented with Xilinx Artix 7 Field Programmable Gate Array (FPGA) 
and verified using post synthesis simulation in Xilinx .The hardware accelerator 
designed is generic and easily reconfigurable due to use of FPGA.The maximum 
design frequency achieved is 152 MHz. The proposed hardware accelerator is 
used for the smart grid application. The hardware accelerator extracts important 
features from the database of the smart grid and generates rules using them. It 
automates the systems, making it more reliable and less prone to human decision 
making. It is worth noting that the performance of the hardware accelerator be-
comes more visible when dealing with larger data sets. 

Keywords: Hardware accelerator, Discernibility matrix, FPGA, Reduct, Rough 
set theory, Xilinx, Smart grid. 

1 Introduction 

Rough set theory (RST), developed by Z.Pawlak, is a powerful mathematical tool for 
dealing with vagueness and uncertainty emphasized in decision-making. Data mining 
is a discipline that has an important contribution to data analysis, discovery of new 
meaningful knowledge, and autonomous decision-making. The rough set theory offers 
a viable approach for decisions and rule extraction from data, which traditional     
optimization methods and machine learning find difficult. Since more than quarter 
century, researchers are working on finding efficient reduct, rule generation algo-
rithms, and have developed standard software for RST such as RSES, ROSE, 
ROSETTA, etc. for benchmarking their results. Interested readers can refer [1] for a 
detailed review. Recently, there is also focus on hardware mapping of RST algorithms 
on FPGA [2-6]. The main advantage of mapping a rough set algorithm on FPGA is  
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inherent speed advantage of FPGA over software-based methods. Handling ever-
increasing amount of data generates increasing demand for computing power in terms 
of both speed and memory. General Purpose Processors do not give optimum perfor-
mance for all types of applications, even if multicore technology is used. Dedicated 
hardware, accelerators, is specialized in computing one type of processing task and 
they complement conventional architectures. By using traditional microprocessors, it 
is also very difficult to exploit the inherent parallelism in rough set algorithms fully. 
Currently the complexity of programmable hardware has been evolving to the phase 
where large high-speed digital systems can be implemented on a single programmable 
logic chip.  

The aim of proposed research work is to use FPGA for accelerating computational-
ly intensive applications. In current scenario, the proposed work is more suitable for 
various real time applications. Literature survey shows that there is a huge gap be-
tween hardware and software implementation of rough set algorithms, as the theory 
itself is relatively young with respect to its counterpart. The motivation for imple-
menting rough set algorithms in hardware stems from the fact that they are very CPU 
intensive while they are also intrinsically parallel algorithms and the basic operations 
of rough set algorithms can execute in a pipelining fashion. Our architecture incorpo-
rates built-in hardcore resources like dual port BRAMs, Multipliers etc. in order to 
create an efficient hardware-based rough set algorithm.  

Rough set algorithm processes data by removing redundant attributes, and ex-
tracting meaningful rules from it. These rules are used for classification or decision 
making purpose. Currently, there is tremendous research in the data analytics par-
ticularly in the area of dynamic knowledge i.e. where the knowledge or data (either 
attributes or objects) is added to database during run time (using software). It pro-
vides the most valuable data (usually about past events) for good decision-making, 
but there is lack of hardware acceleration. This paper presents design of generic 
hardware accelerator, which effectively handles larger databases. It selects impor-
tant features using incremental algorithm and generates rules using them in if-then 
form. Its use is in decision-making support system. The incremental algorithm is an 
important technique for added-in data without re-computing the original informa-
tion in the dynamic decision table. Literature survey on hardware design of RST 
algorithms shows instances of handling of static databases; however, no related 
work for dynamic database is found. 

This work bridges the gap between software and hardware implementation of RST. 
RST is a powerful soft computing theory, and can be very well mapped on FPGA. All 
time critical tasks can be effectively managed by such dedicated hardware in less 
amount of time. 

This paper is divided into following section: in section 2, blocks of hardware acce-
lerator are discussed. Section 3 elaborates the application of proposed hardware acce-
lerator for smart grids. Section 4 presents simulation results and synthesis report of 
the design while in section 5 research work is concluded. For rough set preliminaries, 
readers can refer [7-8]. 
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2 Proposed VLSI Implementation 

In this section, we describe the VLSI implementation of hardware accelerator for 
dynamic database. The details of algorithms used can be found in [9]. The block dia-
gram for computing reduct for dynamic system is shown in fig.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Block diagram of proposed system 

 
Component X1: This block loads the data into RAM (RAM1, RAM2).RAM1 and 
RAM2 present positive and negative region elements respectively. In the event of 
either adding new data to RAM, appropriate control signals along with address of the 
RAM location are given. The control signals are load, load4, load3- which when as-
serted adds the data in the appropriate RAM i.e. either positive and negative region. 
The data is transferred on rising edge of clock. Two assert signals are used for inform-
ing processor that the operation is complete (Adding of data to RAM). 

Component X2: This block takes input data from RAM, computes the discernibili-
ty matrix elements (mij), and puts the calculated values (mij) on the address bus 
CLISTRAM1, CLISTRAM2. The control signal is start1. The data is read from RAM 
on rising edge and the computed discernibility matrix elements (mij)  put on the ad-
dress bus at the falling edge of the clock. An auto increment mode is utilized in the 
block which updates the next address to be read during falling edge of clock. 
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Component X3:  This block performs the reduct update, when the new object has 
same attributes as positive region elements but different decision levels. It computes 
discernible matrix element mij and performs the require action of incrementing or 
decrementing count by providing appropriate mij. The control signals are p3enble,clck 
etc.         

Component X4: This block takes in the new object, which is neither positive nor 
negative region element from RAM1. It forms the discernible matrix element using 
the definition of mij, which is given in [9]. The computed mij are used as addresses for 
storing new count value i.e. incrementing. The control signals are p4enble, clck etc.     

Component X5: This component routes the data from components X1, X2, X3, 
X4 to RAM for reading from RAM as well as writing the data to RAM. If we try to 
access the RAM for data without this datamux (X5), then it leads to multiple drivers’ 
issue. Control Signals used are start1, start3, start4, load3, load4, load, add3, delete3, 
add4. 

Component X6: This component is RAM BANK. In this block, three RAM’s 
blocks are used, two of which are DUAL PORT RAM (RAM1 for positive region, 
CLISTRAM for recording the frequency of each discernible matrix element mij) and 
other one is SINGLE PORT RAM (RAM2 for negative region elements). Control 
signals used are readenable, writeenable. The width of data bus is RAM1, RAM2 are 
19 bits wide while CLISTRAM has width of 16 bits. RAMs are implemented using IP 
Cores for low power and efficient use of FPGA resources. Timing diagram of dual 
port RAM is shown in Fig. 2. 

 

Fig. 2. Timing diagram of Dual port RAM (Taken from [10]) 

Component X7: This block reads the value of count obtained from CLISTRAM. 
The count values are examined for following. When the process is creation of discer-
nibility matrix elements for static database, then count is incremented by one. If the 
process is updating block, corresponding control signals are enabled and the value of 
count is either incremented (if new mij is being added to discernibility matrix) or de-
cremented (mij is removed from discernibility matrix). For instance, if the new ele-
ment being added is neither positive region nor negative element, then it implies that, 
it is new element and it might lead to new discernibility matrix element. The control 
signals used are start1, add3, add4, delete3. 

Component X8: This block forms the basis of reduct update algorithm when new 
discernibility elements are added. Control signals are add3, add4. When add3 or add4 
is asserted, discernibility matrix element that has count value as 0 are ANDed with 
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reduct, if the resulting value is null or ∅, then reduct should be updated else reduct 
remains same. Xilinx primitives are used to implement this block. 

Component X9: This block is part of reduct update algorithm when discernibility 
elements are deleted. Control signals used are delete3. When del3 is asserted, new 
discernibility elements are checked with reduct, to check for superfluous elements. If 
any superfluous attribute is found, it is removed from the previous reduct and up-
dated. Xilinx primitives are used to implement this block. 

Component X10: This component is responsible for separating the incoming data 
stream of 19 bits wide into positive and negative elements and feeding it to the sys-
tem. In this block, we denote the status of an element in a flag register. There are two 
flag registers, POSFLAG, NEGFLAG (table 1) which denotes whether the element is 
positive or negative or neither of them. Since the system has 16 bit conditional 
attributes and 3 bit decision attributes, therefore number of possible 16 bit conditional 
attribute pattern can be 65536(216). 

Table 1. Flag registers 

POSFLAG NEGFLAG STATUS 
1 1 Error. 
1 0 Positive element 
0 1 Negative element 
0 0 Neither positive nor negative 

 
The status is checked by taking the 16 bit conditional attribute as address to this 
FLAG register and accessing the FLAG value. 

3 Application 

A smart grid is an electricity network based on digital technology that is used to 
supply electricity to consumers via two-way digital communication. Smart grid has 
been defined as the intelligent and automated power grid, which tries to adapt itself 
from time to time, and in different situations. It monitors and controls power flow 
between power plant and consumers and all the points in between. Smart grids allows 
us to integrate all sources of energy on a common platform i.e. integration of natural 
resources based power supplies like wind, geo-thermal, ocean currents with thermal 
energy based plants and nuclear based energy source. It can be used for routing power 
e.g. if consumer is not using the power supply supplied by plant, then consumer can 
acts as power plant and route the supply to power deficient areas thus equalizing the 
loads. Many government institutions around the world have been encouraging the use 
of smart grids for their potential to control and deal with global warming, emergency 
resilience and energy independence scenarios. 

3.1 Rough Set Theory in Smart Grids 

This basic motivation behind using hardware accelerator can be attributed to the case 
study of demand forecasting of power grid as mentioned in [11]. In this case, the results 
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generated from software simulation were infeasible as it was found to have taken lots of 
time for processing the data (32 days). In our case study, few real time parameters are 
considered for decision-making process. A bottom to top approach-hierarchy is used in 
managing these controllers. An incremental approach for find important attributes is 
more effective in smart grid as database needs to be updated at regular intervals. Deci-
sion attributes will give decisions in the form of priorities like shifting of feeders, rever-
sal of role (i.e. consumer becomes producer and route power to other part where there is 
scarcity of power) etc.  
 Attributes considered are [12 -14]: 

1. Temperature of surrounding. 
2. Season. (Since during summer the need for power is more). 
3. Feeder failure rate. 
4. Past history of replacement, repairs, test and power quality factor events. 
5. Past history of failures. 
6. Heat generated at feeders. 
7. Power consumption. 

Power companies are beginning to switch from reactive maintenance plans (fix when 
something goes wrong) to proactive maintenance plans (fix potential problems before 
they happen). To accommodate this condition, attributes pertaining to feeder failure 
rates and temperature should be taken into account. Even it might happen that new 
replaced components might be replaced at a faster rate than old components, so as to 
take this situation into account, attribute relating to past replacement of part, repairs 
must be added. The decision attributes are again split in two parts: 

• Global attributes. (Whose values are constantly monitored and action is taken 
if any discrepancy is found) 

• Local attributes. (Required at local level so that they can be taken care lower 
level of hierarchy).Local attributes consist of variables like repairs, replace-
ments. If these are verified in specific amount of time, then the decision per-
taining to global attributes are set, which shows a high level of problem. 

Let the region (City or part of the state) be divided in J regions where J is an integ-
er. Each of the J regions is divided in K sub regions. Each part has RST controller 
installed in its region. The RST controller samples data at regular instants to reflect 
or update any important changes and give decision in the form of priorities. The 
RST controller in each part has the attributes as defined above. In case of any feeder 
breakdown, the priority of RS T controller changes and decision is given such that 
the power, the failed feeder was carrying is now transferred routed to other feeder 
using decision bit “shifting of feeders”. If the amount of power of any sub regions is 
less than threshold or more than threshold, a consumer from same sub regions or 
different region will act as producer and routes the power to the sub regions which 
is in need. Fault in wire generally carries more current, thus generating more heat at 
feeder; it leads to failure of that feeder. To take pre-emptive action, the RST con-
troller informs the global controller about the difference in feeder temperature by 
sending its decision bit as ‘1’. This decision bit is now conditional attribute for RST 
controller at global level. 
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Fig. 3. Hierarchy of RST controllers using bottom to top approach 

 Control center are set of resources, which monitor the status of a state or city or 
region or part. The hierarchy shown in fig.4 shows the division of work among the 
control center. The aggregate of data from sub regions are collected at region level 
data from region are collected at city level and so on. If we take instance of sub region 
level of a region, then global variables of sub region level are local variables at re-
gional level. In this way, efficiency of the power distribution as well as power trans-
mission and maintenance increases. 

4 Results 

In table 2, device utilization summary used by hardware accelerator is mentioned. It is 
evident from these tables that the device resources are not fully utilized so more logic 
can be accommodated.  

Table 2. Device Utilization summary 

Number of BUFFERS used 5 out of 32   - 15% 
Number of External IOBs                146 out of 172 -   84% 
Number of LOCed IOBs                 0 out of 146   -  0% 
Number of OLOGICs                    17 out of 180  -   9% 
Number of RAMB18                    1 out of 26    -  3% 
Number of RAMB36  17 out of 26   -  65% 
Number of Slices                        375 out of 3120  - 12% 
Number of Slice Registers               492 out of 12480  - 3% 
Number used as Flip Flops             398 
Number used as Latches                94 
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Discernibility matrix unit (fig.5) computes the discernibility matrix elements mij. 
This unit reads the data from RAM BANK (on the data bus namely-datap21, datap23, 
datap22- positive and negative region elements respectively) during rising edge of 
clock and during falling edge of clock, it computes the discernibility matrix elements 
mij. These mij are used as addresses, which hold the frequency of each discernibility 
matrix element. The signals clistp21 and clistp22 represent discernibility matrix ele-
ments mij. The signals maxpos, maxneg represent maximum number of positive and 
negative region elements respectively. The signals Addr1, Addr2 are used as ad-
dresses for reading the positive and negative element from RAM1,RAM2.   

 

 

Fig. 6. Reduct update block waveform 

Reduct update block updates reduct based on the algorithm given in [9]. In fig.6, the 
reduct is being observed for the case, when the discernibility matrix element mij is being 
removed from discernibility matrix. The rdctout represents the final updated reduct. 

5 Conclusion  

The hardware implementation of the rough set algorithms is in development phase 
and its usage in real life will gain more importance in due course of time. Such hard-
ware can be effectively used for any application involving decision making. The pro-
posed hardware accelerator is scalable and is generic. The algorithms used for hard-
ware implementation shows parallelism making them more suitable for mapping on 
FPGA. For dynamic databases, an incremental approach is used for computing re-
ducts, which reduces space and time complexity. It mainly considers dynamic updat-
ing of attribute reduction set when the objects of decision tables increase dynamically. 
Smart grid databases can be inconsistent as well as incomplete. Future scope of this 
work is to deal with such type of databases. 
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Abstract. Camera calibration based on circle images has unparalleled
advantages in many fields. However, due to the large distortion, cata-
dioptric camera calibration from circles remains a challenging and open
problem. Under central catadioptric camera, circles in a scene are pro-
jected to quartic curves on the image plane. Except for the sufficient
and necessary conditions that must be satisfied by paracatadioptric cir-
cle image, the properties of the antipodal image points and the absolute
conic are both very important for catadioptric camera calibration. In
this paper, we study the properties of the antipodal image points on
paracatadioptric circle image, that is the criterion conditions for the an-
tipodal image points on circle image. What’s more, we show the image
of the absolute conic, and derive the constraint equations about the in-
trinsic parameters of central catadioptric camera. Finally, we discuss on
the central catadioptric camera calibration using circle images.

Keywords: Central catadioptric camera, image processing, the absolute
conic, antipodal images, machine learning.

1 Introduction

Many applications in computer vision, such as robot navigation and virtual real-
ity, a camera with a quite large field of view is required. A conventional camera
has a very limited field of view. One effective way to enhance the field of view
of a camera is to combine the camera with mirrors, which is referred to as cata-
dioptric image formation. Catadioptric system can be classified into two groups,
central and noncentral, based on the uniqueness of an effective viewpoint [1], [2].
Uniqueness of an effective viewpoint is desirable because it allows the mapping
of any part of the scene to a perspective plane without parallax. as if it was
taken with a perspective camera whose focus is the effective viewpoint. Baker
and Nayar [1] introduced that a central catadioptric system can be built by
setting a parabolic mirror in front of an orthographic camera, or a hyperbolic,
elliptical, planar mirror in front of a perspective camera, where the single view-
point constraint can be fulfilled via a careful alignment of the mirror and the
camera.
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In central catadioptric systems, camera calibration is also an important task
in order to extract metric information from 2D images. In the literature, the
calibration methods can be classified into the following five categories. The first
category [3,4,5] requires a 3D/2D calibration pattern with control points. The
second category [2,6,7,8,9] only makes use of the properties of line images. The
third category [10,11] is based on the sufficient and necessary conditions of para-
catadioptric circle images. The fourth category [12,13,14] is based on the prop-
erties of sphere images. The fifth category [15] only uses point correspondence in
multiple views, without needing to know either the 3D location of space points
or camera locations.

Camera calibration from circles has great advantages. However, due to large
distortion, catadioptric camera calibration from circle images has many diffi-
culties and lacks of studies. Based on the projection of a line complex, Sturm
and Barreto[16] proved that the central catadioptric projection of a quadric is
a quartic curve. According to the imaging process under central catadioptric
model, Duan and Wu [17] derived the algebraic expression of a circle image and
provided a unified imaging theory of different geometric elements. What’s more,
Duan et.al [11] gave the conditions that must be satisfied by paracatadioptric
circle image, and proposed camera calibration method based on one circle im-
age. In this paper, we study the properties of the antipodal image points on
paracatadioptric circle image. And we show the projection of the absolute conic,
and derive the constraint equations about the intrinsic parameters of central
catadioptric camera. Finally, we discuss on the central catadioptric camera cal-
ibration using circle images.

This paper is organized as follows: Section 2 is some preliminaries. Section 3
study properties of the antipodal image points on paracatadioptric circle image
and the projection of the absolute conic under central catadioptric camera. Sec-
tion 4 discusses catadioptric camera calibration based on circle images. Finally,
Section 5 presents some concluding remarks.

2 Preliminaries

A bold letter denotes a vector or a matrix.Without special explanation, a vector is
homogenous coordinates. In the following, we briefly review the image formation
for central catadioptric camera introduced in [18], the antipodal image points and
their properties proposed in [8] and the absolute conic introduced in [19].

2.1 Paracatadioptric Circle Image

Let the intrinsic parameter matrix of the pinhole camera be

Kc =

⎛⎝ rcfc s u00 fc v0
0 0 1

⎞⎠
where rc is the aspect ratio, fc is the focal length, (u0, v0, 1)

T denoted as p is
the principal point, and s is the skew factor.
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Fig. 1. The image formation of a point under central catadioptric camera

As shown in Fig.1, under the central catadioptric camera model, a space point
point X is projected to its catadioptric image by

m = λK(
RM+ t

‖RM+ t‖ + ξe). (1)

Where λ is a scalar, (R, t) are a 3 × 3 rotation matrix and a 3-vector of
translation, K is the intrinsic matrix, ‖‖ denotes the norm of vector in it, e =

(0, 0, 1)T , and ξ is the mirror parameter that is the distance from O to Oc. The
mirror is a paraboloid if ξ = 1, an ellipsoid or hyperboloid if 0 < ξ < 1, and a
plane if ξ = 0.

2.2 The Antipodal Image Points

Under paracatadioptric camera, Wu et al. [8] gave the definition of antipodal
image points and studied their properties as follows:

Definition 1. {m,m′} is called a pair of antipodal image points if they could
be images of two end points of a diameter of the viewing sphere(See Fig.2).

 

Fig. 2. {m,m
′} is a pair of antipodal image points.

Proposition 3. If {m,m′} is a pair of antipodal image points under paracata-
dioptric camera, we have:

1

mT�m
m+

1

m′T�m′ m
′
= p. (2)

where �= K−T
c K−1

c , and p is the principal point.
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2.3 The Absolute Conic

The absolute conic consists of points X = (x, y, z, 0)T at infinity such that:

x2 + y2 + z2 = 0.

3 Properties of Paracatadioptric Circle Images

In this section, we study the properties of antipodal image points on paracata-
dioptric circle image, that is the criterion conditions for the antipodal image
points on circle images. What’s more, we derive the algebraic equations of the
absolute conic under central catadioptric camera and obtain the constraint equa-
tions for intrinsic parameters.

3.1 Properties of Antipodal Image Points on Paracatadioptric
Circle Image

Generally, under paracatadioptric camera, the projection of a circle is a quartic
curve (See Fig.3). Duan and Wu[17] derived the algebraic expression of circle
image and pointed out that the image of a circle under paracatadioptric camera
is a quartic curve consisting of two closed curves, one of which is visible in the
image plane and the other is invisible. Now, we shall show the properties of the
antipodal image points on paracatadioptric circle image. It follows from Section
2.2 that, the image point, antipodal image point and the principal point p are
collinear. Thus, we can calculate the antipodal image point.

o

WZ
WX

WY

sZ

sX
sY

l

x

 

Fig. 3. The image formation of a circle

Suppose that m1 is extracted from the visible part of the circle image. Then
m1 and the principal point p determinate a line L. If L intersects the circle at
two points, we know that they are a pair of antipodal points. In general case, L
intersects the visible part of the circle image at m1,m2 and the invisible part of
the circle image at m3,m4.
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It follows from the definition of the antipodal image point that if m2 and m1

lie on the same side of the principal point p, then m3,m4 lie on the other side
of p. Moreover, the two points m3,m4 are the antipodal points of m1 and m2

respectively. How can we determinate which of m3,m4 is the antipodal point of
m1 and which is that of m2?

By the image formation of paracatadioptric camera (see Fig.1), we know that,
all the space point lie on the front of the virtual optical center Oc, that is, the
formation of paracatadioptric camera has quasi-affine invariance [20], and hence
the lines from Oc have invariant adjacent relations. Based on this property,
Theorem1 gives the determination conditions for the antipodal image points on
circle images.

Theorem 1. Let m1 be the image point extracted from the circle image. Suppose
that the line L determined by m1 and the principal point p intersects circle image
(a quartic curve) at four different points m1m2m3m4. Suppose m2 and m1 lie
on the same side of p, and the point m2 is adjacent to the principal point p and
the point m1 is nonadjacent to p. Then {m1,m3}{m2,m4} are two pairs of
antipodal image points if and only if, for each pair of {m1,m3} and {m2,m4},
one point of the pair is adjacent to the principal point p and the other is not.
For instance, if m1(m2) is adjacent to p, then m3(m4) is nonadjacent to p.

 
 

 

 

 

 

 

 

  

    

 

Fig. 4. The antipodal image points on paracatadioptric camera image

Proof. Virtual optical center Oc and the line L determine a plane Π which
intersects the viewsphere at a unit circle c. By the image formation of paracata-
dioptric camera based on circle, we can connect the center of the viewsphere and
each point on the circle in the space to obtain a oblique cone, which intersects
the plane Π at two lines. The lines intersect the unit circle c at four points
denoted by Mi, i = 1, 2, 3, 4. Then the ray passing through Oc and mi intersects
the unit circle c at Mi = (Xsi, Ysi)

T , i = 1, 2, 3, 4.
Suppose the ray passing through Oc and the principal point p of the camera

intersects the unit circle c at P.
We set the Euclidean coordinate as Fig.4.: the center of the viewsphere O is

taken as the origin, the line passing through the points O and p is the X axis
and the line perpendicular to X axis is the Y axis. Here we assume the circle
passes through the visible part of projection on circle image of the virtual optical
center Oc if Y coordinate of the projective point on viewsphere of the circle.
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Since m2 and m1 lie on the same side of p, that is, the points m1,m2 lie on
the visible part of the circle image, then we have Ys1 > 0, Ys2 > 0.
⇒ Since the point m2 and p are adjacent and m1 and p are nonadjacent, we

have m2 lies between m1 and p, and therefore, the ray Ocm2 lies between the
ray Ocm1 and OcP. Thus we have ∠m2O

cp < ∠m1O
cp. Since {m1,m3} and

{m2,m4} are two pairs of antipodal image points, it follows from the definition of
antipodal image point that the line segment connectingM1 andM3 is a diameter
of c, and the line segment connecting M2 and M4 is a diameter of c. Then
we have ∠m1O

cm3 = ∠m1O
cp + ∠pOcm3 = 90o, ∠m2O

cm4 = ∠m2O
cp +

∠pOcm4 = 90o. Since ∠m2O
cp < ∠m1O

cp, we have ∠m3O
cp < ∠m4O

cp.
Therefore the ray Ocm3 lie between Ocm4 and Ocp, that is, the point m3 is
adjacent to the principal point p, and the pointm4 is nonadjacent to p.
⇐ Assume the antipodal image points of m1 and m2 are m

′
1 and m

′
2,

respectively. Since the point m1 is nonadjacent to the principal point p and m2

is adjacent to p, then the proof above implies that m
′
1 is adjacent to p and m

′
2

is nonadjacent to p. Since for each pair of {m1,m3} and {m2,m4}, one point
of the pair is adjacent to the principal point p and the other is not, that m1 is
adjacent to p and m2 is nonadjacent to p implies that m3 is adjacent to p and
m4 is nonadjacent to p. Thus we know m3 (m4 ) the antipodal image point of
m1 (m2, respectively).

Furthermore, the adjacent relation of the points mi, i = 1, 2, 3, 4 doesn’t de-
pend on the coordinate system, therefore the conclusion proved above is inde-
pendent with the choice of coordinate system. Thus the theorem follows.

3.2 Imaging of the Absolute Conic Under Central Catadioptric
Camera

First, we study the image of infinity point under central catadioptric camera. A
line intersects the infinite plane at a infinity point. Since parallel lines intersect
the infinite plane at the same infinity point, we can calculate the image of in-
finity point by the intersections of the image of the parallel lines under central
catadioptric camera.

The intrinsic parameter matrix is

Kc =

⎛⎝ rcfc s u00 fc v0
0 0 1

⎞⎠ .
As in Fig.5., let L be a space line. The lines L1 and L are parallel. Suppose the
direction of L and L1 is l = (l1, l2, l3)

T . Then they intersect the infinite plane
at the same infinity point D = (l1, l2, l3, 0)

T . Thus we can determine the image
of the infinity point through the image of L and L1 under central catadioptric
camera.

By the image formation of lines under central catadioptric camera, the center
O of the viewsphere together with L and L1 determine two planes π and π1

respectively. We denote the normal vectors by nn1, respectively. Then the two
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Fig. 5. The image formation of parallel lines under central catadioptric camera

planes π and π1 intersect at a line with direction n × n1. Since n ⊥ ln1 ⊥ l,
we have n×n1 is parallel to l. Thus the parametric equation of the intersection
line is

(x, y, z) = λl. (3)

It follows from the image formation formula Eq(1) of point under central cata-
dioptric camera that, the images two lines L and L1 under central catadioptric
camera have two intersections:

p± = (
λ±(rcfcl1 + sl2)

λ±l3 + ξ
,
λ±(fcl2)
λ±l3 + ξ

)T . (4)

where λ± = ± 1√
l21+l22+l23

. Then p± is the image of infinity point D under central

catadioptric camera. Thus, the image of infinity point D can be contained in the
image formation of point under central catadioptric camera. Following from this,
We study the image of the absolute conic under central catadioptric camera.

The absolute conic Ω∞ is a curve on the infinite plane in the projective space,
and its image under perspective camera doesn’t vary as the location position
varies. Therefore, the conic has an important role in camera calibration. Now,
we shall show the image of absolute conic under central catadioptric camera.

Theorem 2. Set K−T
c K−1

c = �. Let m be a point(complex point) on the image
of the absolute conic. Denote by m the conjugate complex point of m. Then

(i) if 0 < ξ < 1, the image of the absolute conic under catadioptric camera
is:

ξ4(mT�m−mT�m)2+2ξ2(mT�m−mT�m)(mT�m−2)+(mT�m)2 = 0.
(5)

(ii) if ξ = 1, the image of the absolute conic under catadioptric camera is :

4(m−m)T�m+ (mT�m)2 = 0. (6)

(iii) if ξ = 0, the image of the absolute conic under catadioptric camera is:

mT�m = 0. (7)
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Proof. (i) Let X = (X,Y, Z, 0)T be a point on the absolute conic with

‖ (R, t)X‖ = d. Let X′
=
(
X

′
, Y

′
, Z

′
, 0
)T

=
(
X
d ,

Y
d ,

Z
d , 0

)T
. Then by Eq(1), we

have
(R, t)X

′
= αK−1

c m− ξe.
‖ (R, t)X′‖ = 1 implies ‖αK−1

c m− ξe‖ = 1, that is,

(αK−1
c m− ξe)T (αK−1

c m− ξe) = 1.

By mTK−T
c e = 1, we have

α2mT�m− 2αξ + ξ2 − 1 = 0. (8)

According to the definition of absolute conic, we know X2 + Y 2 + Z2 = 0 ⇔
X

′2 + Y
′2 + Z

′2 = 0. Then

(αK−1m− ξe)T (αK−1m− ξe) = 0⇒ α2mT�m− 2αξ + ξ2 = 0. (9)

Subtract Eq(8) from Eq(9) and obtain

α2 =
1

mTωm−mT�m

Substitute α2 in Eq(9) or Eq(8), we obtain the image of the absolute conic under
central catadioptric camera.

(ii) Substitute ξ = 1 in Eq(5), we have

(mT�m−mT�m)2 + 2(mT�m−mT�m)(mT�m− 2) + (mT�m)2 = 0.

Expand the above formula, and then we obtain the image of the absolute conic
under catadioptric camera.

(iii) Substitute ξ = 0 in Eq(5), then we have (mT�m)2 = 0. Thus we obtain
the image of the absolute conic under catadioptric camera, which is equivalent
to our conclusions.

The points on the absolute conic are complex, and then the points on its image
are also complex. Let m = (a+ bi, c+ di, 1)

T
= r + iI, where r = (a, c, 1)

T
is

the real part of m, I = (b, d, 0)T is the imaginary part of m and i =
√−1. Then

we have the following corollary.

Corollary 1. (i) If 0 < ξ < 1, the formula Eq(5) holds if and only if its real
and imaginary parts are 0. Then

ξ2((rT�r+ IT�I) + (ξ2 − 1)(rT�r − IT�I))2 − 8ξ2IT�I = 0.

rT�I((ξ2 − 1)(1− 2ξ2)IT�I+ (1− ξ2)rT�r+ 2ξ2) = 0. (10)

(ii) If ξ = 1, the formula Eq(6) holds if and only if its real and imaginary
parts are 0. Then

(rT�r+ IT�I)2 − 8IT�I = 0.

rT�I = 0. (11)

This corollary gives the constraint equations of the intrinsic parameters of
camera and we can use them to determine the intrinsic parameters of the cata-
dioptric camera.
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4 Discussion on Catadioptric Camera Calibration from
Circle Images

In this section, we mainly discuss the catadioptric camera calibration using circle
images. The intrinsic parameters of the catadioptric camera contains the mirror
parameter ξ, the aspect ratio rcthe focal length fcthe skew factor s and the
principal point p.

In the previous sections, we study the properties of paracatadioptric circle
image and the image of the absolute conic under catadioptric camera. In the
following, we discuss the catadioptric camera calibration from circle images in
theory:

(1) Theorem1 gives the criterion conditions of the antipodal image points on
paracatadioptric circle image. Firstly, we estimate the paracatadioptric circle
image using the method proposed in [11]. Then, the antipodal image points
on the circle image can be calculated by Theorem1. Finally, we can obtain the
intrinsic parameters of paracatadioptric camera by the calibration method based
on antipodal image points in [21].

(2) From Theorem2 and Corollary1, we derive the image of the absolute conic
under catadioptric camera and the constraint equations of the intrinsic param-
eters of camera. Thus, if we know the image of the absolute conic under cata-
dioptric camera, � can be obtained by Corollary1, and the intrinsic parameters
of camera can be estimated by the Cholesky decomposition.

(3) Since circular points lie on the viewsphere, the image m of one circu-
lar point under catadioptric camera is equivalent with the image under virtual
perspective camera. Then, m still satisfies:

mT�m = 0. (12)

That is, if we have the images of circular points under catadioptric camera, we
can straightly estimate � by Eq(12), and then obtain intrinsic parameters of
camera by Cholesky decomposition.

It follows from the above conclusions that the circle images can be used to
theoretically estimate the intrinsic parameters of catadioptric camera. However,
in practice, the catadioptric camera calibration based on circles has the following
problems:

(1) The projection of a circle is a quartic curve under catadioptric camera,
and is very sensitive to noise. That is, the estimation accuracy of catadioptric
circle image is easy to be influenced by noise.

(2) Under catadioptric camera, two circle images have 16 intersections. It is
still an open problem how to find out the image of circular points among these
intersections.

5 Conclusion

In this paper, we study properties of the antipodal images on paracatadioptric
circle image, that is the criterion conditions of the antipodal image points on
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circle image. In addition, we derive the image of the absolute conic under the
central catadioptric camera, and obtain the constraint equations about the in-
trinsic parameters. Finally, we analyse catadioptric camera calibration based on
circle images and the problems existed in the practice. In the future work, we
will try to solve the problems existed in the practice, and present the calibration
method of catadioptric camera based on circle images.

References

1. Baker, S., Nayer, S.: A Theory of Single-viewpoint Catadioptric Image Formation.
International Journal Computer Vision 35(2), 175–196 (1999)

2. Geyer, C., Daniilidis, K.: Catadioptric Camera Calibration. In: International Con-
ference on Computer Vision, vol. 1, pp. 398–404. IEEE Press, Corfu (1999)

3. Scaramuzza, D., Martinelli, A., Siegwart, R.: A flexible technique for accurate
omnidirectional camera calibration and structure from motion. In: International
Conference on Computer Vision Systems, pp. 45–52. IEEE Press, New York (2006)

4. Deng, X., Wu, F., Wu, Y.: An easy calibration method for central catadioptric
cameras. Acta Automatica Sinica 33, 801–808 (2007)

5. Bastanlar, Y., Puig, L., Sturm, P., Barreto, J.: Dlt-like calibration of central cata-
dioptric cameras. In: Workshop on Omnidirectional Vision, Camera Networks and
Non-Classical Cameras. Marseille (2008)

6. Geyer, C., Daniilidis, K.: Paracatadioptric camera calibration. Transactions on
Pattern Analysis and Machine Intelligence 24, 687–695 (2002)

7. Barreto, J., Araujo, H.: Geometry properties of central catadioptric line images
and application in calibration. Transactions on Pattern Analysis and Machine In-
telligence 27, 1327–1333 (2005)

8. Wu, F., Duan, F., Hu, Z., Wu, Y.: A new linear algorithm for calibrating central
catadioptric cameras. Pattern Recognition 41, 3166–3172 (2008)

9. Duan, F., Wu, F., Zhou, M., Deng, X., Tian, Y.: Calibrating effective focal length
for central catadioptric cameras using one space line. Pattern Recognition Let-
ters 33, 646–653 (2012)

10. Duan, H., Li, G., Li, C., Tan, Y.: A fitting method of paracatadioptric circle image.
Chinese Journal of Computers 35, 2063–2071 (2012)

11. Duan, H., Mei, L., Shang, Y., Hu, C.: Calibrating focal length for paracatadioptric
camera from one circle iamge. In: International Conference on Computer Vision
Theory and Application, pp. 56–63. INSTICC Press, Lisbon (2014)

12. Ying, X., Hu, Z.: Catadioptric camera calibration using geometric invariants.
Transactions on Pattern Analysis and Machine Intelligence 26, 1260–1271 (2004)

13. Duan, H., Wu, Y.: Paracatadioptric camera calibration using sphere images. In:
International Conference on Image Processing, pp. 649–652. IEEE Press, Brussels
(2011)

14. Duan, H., Wu, Y.: A calibration method for paracatadioptric camera from sphere
images. Pattern Recognition Letters 33, 677–684 (2012)

15. Kang, S.: Catadioptric self-calibration. In: Conference on Computer Vision and
Pattern Recognition, vol. 1, pp. 201–207 (2000)

16. Sturm, P., Barreto, J.P.: General imaging geometry for central catadioptric cam-
eras. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS,
vol. 5305, pp. 609–622. Springer, Heidelberg (2008)



Properties of Central Catadioptric Circle Images and Camera Calibration 239

17. Duan, H., Wu, Y.: Unified imaging of geometric entities under catadioptric camera
and camera calibration. Journal of Computer-Aided Design and Computer Graph-
ics 23, 891–898 (2011)

18. Geyer, C., Daniilidis, K.: Catadioptric projective geometry. International Journal
Computer Vision 45, 223–243 (2001)

19. Hartley, R., Zisserman, A.:Multiple ViewGeometry inComputer Vision. Cambridge
University Press, Cambridge (2000)

20. Semple, J.G., Kneebone, G.T.: Algebraic Projective Geometry. Claredon Press,
Oxford (1998)

21. Wu, F., Duan, F., Hu, Z., Wu, Y.: A new linear algorithm for calibration central
catadioptric cameras. Pattern Recognition 41(10), 3166–3172 (2008)



Communication Network Anomaly Detection
Based on Log File Analysis

Xin Cheng and Ruizhi Wang

Department of Computer Science and Technology, Tongji University, Shanghai, China
cx1227@gmail.com, ruizhiwang@tongji.edu.cn

Abstract. Communication network today are becoming larger and increasingly
complex. Failure in communication systems will cause loss of critical data and
even economic losses. Therefore, detecting failures and diagnosing their root-
cause in a timely manner is essential. Fast and accurate detection of these failures
can accelerate problem determination, and thereby improve system reliability.
Today log files have been paid attention on system and network failure detection,
but it is still a challenging task to build an efficient model to detect anomaly
from log files. To this effect, we propose a novel approach, which aims to detect
frequent patterns from log files to build the normal profile, and then to identify
the anomalous behaviour in log files. The experimental results demonstrate that
our approach is an efficient way for anomaly detection with high accuracy and
few false positives.

1 Introduction

Communication network today plays an important role in daily life, and it consists of
thousand of network elements. At these scales, communication network failures are
common and may even indicate serious impending failures. When a communication
network has some failures, the operators would like to solve the problem quickly, but
actually that is not simple, because it needs all kinds of tools to troubleshoot and diag-
nose problems. However, a most useful tool building in almost every software has been
ignored, the log file, which can used to record the behavior of system, including normal
behavior and abnormal behavior.

Log files now are playing more and more important role in System and network
management [6][12]. Because log files reflect the developers original ideas about what
events are valuable to report, including errors, execution tracing, or statistics about the
programs internal state. Hence the analysis of log files will be an efficient way for
anomaly detection.

Log file analysis techniques can be categorized into fault detection and anomaly de-
tection [7][9]. In the case of fault detection, the domain expert creates a database of fault
message patterns in which a human expert enumerates a set of rules, consisting of reg-
ular expressions and responses to take when matching messages are encountered. The
difficulty of writing and maintaining regular expressions for monitoring is proportional
to the number of types of messages present, and the rate at which this set of message
types change (for example, additions of new devices or software, or changes in user
behavior). In the case of anomaly detection, a system profile is created which reflects
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normal system activity. If messages are logged that do not fit the profile, an alarm is
raised. With this approach, previously unknown fault conditions are detected, but on
the other hand, creating the system profile by hand is time-consuming and error-prone.

As logs are too large to examine manually, various methods have been employed.
The most popular way is mining frequent pattern from log files [8][11]. But mining
patterns from raw logs is often difficult, that is because there is no event type in log file
lines, fortunately, it is possible to drive event types from log file lines, since very often
the events of the same type correspond to a certain line pattern. For example,

[.AddPermArp.] add arp entry ip: 80.168.5.48, mac:0:e0:fc:fc:5:30
[.AddPermArp.] add arp entry ip: 80.168.5.49, mac: 0:e0:fc: fc:5:31
[.AddPermArp.] add arp entry ip: 80.168.5.50,mac:0:e0:fc:fc:5:32
[.AddPermArp.] add arp entry ip: 80.168.5.51,mac:0:e0:fc:fc:5:33

We can get the event type “[.AddPermArp.] add arp entry ip: *, mac *” from these
lines. Thus, we can apply frequent pattern mining on building event log models.

The rest of the paper proceeds as follows. In Section 2. we review the background and
related work on frequent pattern mining, and we will describe our approach in Section
3. The experiment result will be presented in Section 4, then concluding in Section 5.

2 Frequent Pattern Mining

Frequent patterns are itemsets, subsequences, or substructures that appear in a data set
with frequency no less than a user-specified threshold [3]. For example, a set of items,
such as milk and bread that appear frequently together in a transaction data set is a fre-
quent itemset. A subsequence, such as buying first a PC, then a digital camera, and then
a memory card, if it occurs frequently in a shopping history database, is a (frequent)
sequential pattern. A substructure can refer to different structural forms, such as sub-
graphs, subtrees, or sublattices, which may be combined with itemsets or subsequences.
If a substructure occurs frequently in a graph database, it is called a (frequent) structural
pattern.

Finding frequent patterns plays an essential role in mining associations, correlations,
and many other interesting relationships among data. Moreover, it helps in data index-
ing, classification, clustering, and other data mining tasks as well. Thus, frequent pattern
mining has become an important data mining task and a focused theme in data mining
research. Frequent pattern mining was first proposed by Agrawal [1] for market basket
analysis in the form of association rule mining. It analyses customer buying habits by
finding associations between the different items that customers place in their shopping
baskets. For instance, if customers are buying milk, how likely are they going to also
buy cereal (and what kind of cereal) on the same trip to the supermarket. Such informa-
tion can lead to increased sales by helping retailers do selective marketing and arrange
their shelf space.

The first algorithm for patterns mining was proposed by Agrawal and Srikant, called
Apriori [1]. The essence of the Apriori algorithm is among frequent k itemsets: A k-
itemset is frequent only if all of its sub-itemsets are frequent. This implies that frequent
itemsets can be mined by first scanning the database to find the frequent 1-itemsets,
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then using the frequent 1-itemsets to generate candidate frequent 2-itemsets, and check
against the database to obtain the frequent 2-itemsets. This process iterates until no more
frequent k-itemsets can be generated for some k. In many cases, the Apriori algorithm
significantly reduces the size of candidate sets using the Apriori principle. However, it
can suffer from two-nontrivial costs: generating a huge number of candidate sets; and
repeatedly scanning the database and checking the candidates by pattern matching.

Han et al. [4] devised an FP-growth method that mines the complete set of frequent
itemsets without candidate generation. FP-growth works in a divide-and-conquer way.
The first scan of the database derives a list of frequent items in which items are or-
dered by frequency descending order. According to the frequency-descending list, the
database is compressed into a frequent-pattern tree, or FP-tree, which retains the itemset
association information. The FP-tree is mined by starting from each frequent length-1
pattern (as an initial suffix pattern), constructing its conditional pattern base (a sub
database, which consists of the set of prefix paths in the FP-tree co-occurring with the
suffix pattern), then constructing its conditional FP-tree, and performing mining re-
cursively on such a tree. The pattern growth is achieved by the concatenation of the
suffix pattern with the frequent patterns generated from a conditional FP-tree. The FP-
growth algorithm transforms the problem of finding long frequent patterns to searching
for shorter ones recursively and then concatenating the suffix. It uses the least frequent
items as a suffix, offering good selectivity. Performance studies demonstrate that the
method substantially reduces search time.

Since the first proposal of this new data mining task and its associated efficient min-
ing algorithms, there have been hundreds of follow-up research publications, on various
kinds of extensions and applications, ranging from scalable data mining methodologies,
to handling a wide diversity of data types, various extended mining tasks, and a variety
of new applications.

3 Methodology

In this work, we aim to enable the automation of operators’ task of analyzing the log file
to detect and present the network anomaly. In fact, important information is buried in
the millions of lines of free-text logs, which can be used to automatically detect network
problems. To analyze logs automatically, we need to create high quality features which
can be better understandable by a machine learning algorithm, and it depends on the
nature of log files.

3.1 The Nature of Log File

The nature of the log file data plays an important role when designing an efficient min-
ing algorithm. By inspecting some log files from communication network, some prop-
erties are discovered from raw logs.

First, we discovered that there are strong correlations between words occurred fre-
quently. Thats because the log file is generated from a standard format, e.g.,

printf ([.AddPermArp.] add arp entry ip:, ipaddress,mac:,macaddress);
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When this message was logged many times, the constant strings become frequent
words which occur frequently together.

Secondly, the frequent items of log files also have strong correlation. If items are
event types, strong correlation between event types often exist, e.g, when a node A
would like to setup connection with a nodeB,A need send a message to check whether
B is ready now, and B should reply a message to A. In log files, it displays as follows:

Node *: connection to Node * is prepared
Node *: Node * is ready

When a standard process is logged, the events of the process should record together
and frequently.

3.2 Line Pattern Detecting

We would like to design a fast and efficient algorithm to detect line patterns from raw
log files. The algorithm relied on the nature of log files.

Our choice is the employment of data clustering algorithm. Clustering algorithms
aim at dividing the set of objects into groups (clusters), where objects in each cluster
are similar to each other (and as dissimilar as possible to objects from other clusters).
Objects that do not fit well to any of the clusters detected by the algorithm are con-
sidered to form a special cluster of outliers. When log file lines are viewed as objects,
clustering algorithms are a natural choice, because line patterns form natural clusters
lines that match a certain pattern are all similar to each other, and generally dissimilar
to lines that match other patterns. After the clusters (event types) have been identified,
association rule algorithms can be applied for detecting temporal associations between
event types. However, note that log file data clustering is not merely a preprocessing
step. A clustering algorithm could identify many line patterns that reflect normal sys-
tem activity and that can be immediately included in the system profile, which can be
further used to analyze by using the association rule algorithms.

We take the whole log file as data space, and the data in the data space is each line
of log files. The properties of data are each word from the relative line. Our algorithm
consists of three steps. The first step is mining frequent words, then we will build cluster
candidate by the frequent words collected at the first step. Finally, clusters are selected
from the candidates.

The first step likes the word count; we take a pass over the whole log, and record
every word, position and its occurrence times. If the occurrence of a word is more than
a specified threshold defined by user, well take the word as frequent. This step is very
close to Apriori, since frequent words can be viewed as frequent 1-itemsets.

Secondly, we need build the cluster candidates table based on the frequent words that
we get at the first step. When a line is found to have more than one frequent word, its a
cluster candidate. If this line does not existed in candidate table, it will be inserted with
the count value as 1. If this line has existed in candidate table, just its count value will
be incremented. The cluster candidate will be inserted as a region with the set of fixed
attributes (i1, v1), (i2, v2), ..., (im, vm), i1, ..., im is the word position and v1, ..., vm is
the word. For example, if a line in log is “Node 6 is prepared”, and there exist the
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attribute (1, “Node”), (3,“is”) and (4,“prepared”), then the three attributes will be a
cluster candidate.

The last step of the algorithm is generate clusters from candidate table, all candidates
with count value are greater than the threshold value are taken as the cluster. Actually,
each cluster corresponds to a certain line pattern,e.g., the cluster with attributes ((1,
“Node”), (3,“is”) , (4,“prepared”)) correspond to the line pattern “Node * is prepared”.
Thus, we have got all the line patterns through cluster algorithm.

3.3 Frequent Pattern Mining

At Section 3.2, we have mined the line patterns by using clustering algorithm. Each
pattern represents an event in log files, and strong correlation exists among events. In
this session, we will discuss how to discover the correlation by using pattern mining.

We call some events as normal behavior, that need guarantees (1) these events should
cover common cases and (2) these events should occur in a short time. So we define a
frequent pattern is the events always occur together in a certain time frequently. In our
approach, the time, segment flag and event sequence information are combined together
to capture the normal behavior from log files. Moreover,

Firstly, if the event has time-stamp, we should consider the duration is less than
Tmax, which is defined by users. However, in some cases, log files may not contain
time-stamps, but developers may record some segment flags, for example, “Process *
is starting” as signal of process start, “Process * is finished” as signal of process end,
so our first step is observing these flags and get the relevant events, and represent the
relevant events by the line patterns.

Secondly, we scan through each event until we find an event followed by a time gap
more than 10 times the duration since the start of the sequence. Also, represent the
relevant events by the line patterns.

Finally, we prefer a pattern that can represent all events for a standard process. We
called the pattern as domain pattern. We use two criteria to select the dominant pattern.
(1) we start with the medoid of all sessions considered. By definition, the medoid has the
minimal aggregated distance from all other data points, which indicates that it is a good
representation of all data points. Intuitively, a medoid is similar to the centroid (or mean)
in the space, except that the medoid must be an actual data point. Criterion 1 guarantees
that the selected dominant session is a good representation of the sequences examined.
(2) we require the sequence to have a minimal support of 0.2M from allM event traces.
If the medoid does not meet this minimal support, we choose the next closest session
(data point) that does. Criterion 2 guarantees that the selected session is dominant and
representative. The selection criteria are robust over a wide range of minimal support
values because the normal traces are indeed in the majority in the log files.

3.4 Anomaly Detection

We use anomaly detection methods to find unusual patterns in logs. In this way, we
can automatically find log segments that are most likely to indicate problems. We have
investigated a variety of such methods and have found that Principal Component Anal-
ysis (PCA) [2][5] combined with term-weighting techniques from information retrieval
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yields excellent anomaly detection results on both feature matrices, while requiring lit-
tle parameter tuning.

PCA is a statistical method that captures patterns in high-dimensional data by auto-
matically choosing a set of coordinatesłthe principal componentsłthat reflect covaria-
tion among the original coordinates. We use PCA to separate out repeating patterns in
feature vectors, thereby making abnormal message patterns easier to detect. PCA has
runtime linear in the number of feature vectors, so the anomaly detection can scale to
large log files.

As with frequent pattern mining, the goal of PCA is to discover the statistically dom-
inant patterns and thereby identify anomalies inside data. PCA can capture patterns
in high-dimensional data by automatically choosing a (small) set of coordinates (the
principal components) that reflect covariation among the original coordinates. Once we
estimate these patterns from the archived and periodically updated data, we use them
to transform the incoming data to make abnormal patterns easier to detect. PCA detec-
tion has a model estimation phase. In the modeling phase, PCA captures the dominant
pattern in a transformation matrix PPT , where P is formed by the top principal compo-
nents chosen by PCA algorithm. Then the abnormal component of each message count
vector y is computed as:

ya = (I − PPT )y, (1)

Here, ya is the projection of y onto the abnormal subspace. The squared predic-
tion error SPE = ||ya||2 (squared length of vector ya) is used for detecting abnormal
events: we mark vector as abnormal if

SPE = ||ya||2 > Qα (2)

where Q denotes the threshold statistic for the SPE residual function at the (1 − α)
confidence level [6]. Due to limitations of space, we refer readers unfamiliar with these
techniques to the work [10] for details. The choice of the confidence parameter for
anomaly detection has been studied in previous work, and we follow standard recom-
mendations in choosing = 0.001 in our experiments.

4 Experiment and Evaluation

To validate the performance trends observed through experimentation, we proceed with
experimentation over the network server logs from the real world. The system experts
recommended using log files belonging to four specific periods, during which anoma-
lous operations took place within the system. A minimum efficacy of 65% and a 1%
maximum for false positives are established after consultation with the aforementioned
experts, two system administrators who work on the network system. Our experimental
data set is the network server log as depicted in Table 1.

4.1 Experimental Results

Table 2 shows the results of applying our process compared against those from the
manual analysis performed by the system administrators. The accuracy of our approach
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Table 1. Characteristics of Data Sets

Data sets Size Lines Total number of
different words

Network server log 1 325.3 MB 1,657,148 lines 401, 843
Network server log 2 278.9 MB 1,179,027 lines 392, 217
Network server log 3 362.7 MB 1,985,361 lines 439, 328
Network server log 4 413.5 MB 2,375,359 lines 481, 329

Table 2. Results for the analysis of the network system log files

Data sets Total Anomaly Detected Anomaly Efficiency False Positive
Network server log 1 94 77 81.9% 0.13%
Network server log 2 65 43 66.2% 0.32%
Network server log 3 78 72 92.3% 0.25%
Network server log 4 81 65 80.2% 0.49%

Table 3. Classification of the Detected Anomaly

Type of Anomaly Detection Percentage
Single board loading failed 22.81%
Single process call failed 30.65%

Unspecified protocol error 38.17%
PDTCH synchronization failed 8.37%

for anomaly detection is always over 66%, with a mean value of 80.2%. The number of
false positives in all the cases is smaller than 0.49%, with a minimum value of 0.13%.
Table 3 shows the classification of the types of anomaly detected by using our procedure
applied to the academic management database. The false positive cases are not included
in this table. The most common abnormalities are the following: single board loading
failed (about 23%), single process call failed when making a phone call (about 31%),
unspecified protocol error, which is used to report a protocol error event only when no
other cause in the protocol error class applies (about 38%), and PDTCH synchronization
failed (about 8%).

To better understand the experimental result, the sample frequent patterns that have
been discovered with our approach from the original log files are illustrated in Fig. 1,
and Fig. 2 depicts sample anomalous log file lines that we discovered when the anomaly
detection approach was applied to one of our experimental datasets (the network server
log file 4 from Table 1).

4.2 Discussion

From the experiment results on the four databases of real systems, we can observe that
our approach achieves higher values than the minimum values suggested by the experts
in all cases. The average of accuracy in the detection of anomaly is near 80%, with a
minimum of 66% and a maximum of 92.3%. In term of the percentage of false positives,
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Fig. 1. Sample frequent patterns

Fig. 2. Sample anomalous log file lines

there is no cases whose value is greater than 1%, which illustrates that our approach can
also meet this requirement.

In summary, our approach can help operators notice the abnormal behaviors in log
files, which can greatly improve the efficiency of finding the root cause of network
system anomaly.

5 Conclusion and Future work

Log files contain a lot of information and it is often necessary to use an automated
analysis technique to mine this information. But the log files have an inherent variability
due to the entangling of constant message types and variable parameter types. In this
paper, we propose a approach to anomaly detection by the analysis of the log files. We
get the normal patterns from log files and then perform PCA-based anomaly detection.
Based on these experimental results, we can conclude that our proposed approach can
be considered to be a significant success, allowing us to develop a process and to apply
it on the real log file analysis and thus to facilitate the system auditor’s job.

As future work, we plan to do some research on the mining of rare patterns from log
files, since this might be more efficient on revealing anomalous events that represent
unexpected behavior.
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Abstract. Identifying protein-protein interactions (PPIs) can help us to know 
the protein function and is critical for understanding the mechanisms of prote-
ome. Recently, lots of computational methods such as the domain-based  
approach have been developed for predicting the protein-protein interactions. 
The conventional domain-based methods usually need to infer the interacting 
domain pairs from already known interacting sets of proteins, and then to pre-
dict the PPIs. However, it is difficult to provide the detailed information that 
which of the domain pairs will actually interact for the PPIs prediction. There-
fore, it is of great importance to develop a new computational model which can 
ignore the information whether a domain pair is interacting or not. In this paper, 
we propose a novel method using multi-instance learning (MIL) for predicting 
protein-protein interactions based on the domain information. Firstly, the  
domain pairs of two proteins were composed. Then, we use the amino acid 
composition feature encoding method to encode the domain pairs. Finally, two 
multi-instance learning methods were used for training the data. The experiment 
results demonstrate that the proposed method is effective. 

Keywords: Protein-protein interactions (PPIs); domain; multi-instance learning 
(MIL). 

1 Introduction 

Proteins perform a vast array of functions within living organisms, including catalyz-
ing metabolic reactions, replicating DNA, responding to stimuli and transporting mole-
cules from one location to another. According to research, proteins usually cooperate 
with other proteins to achieve a particular function and associate to form stable protein 
complexes. Protein-protein interactions (PPIs) are vital to many biochemical processes 
and play a major role in cellular events [1-2]. So, identifying protein-protein interac-
tions (PPIs) helps us to know the protein function and is critical for understanding the 
mechanisms of proteome. The prediction of protein-protein interactions has become 
one of the important topics in the field of molecular biology and bioinformatics.  

The most reliable methods for studying protein-protein interactions are experimen-
tal methods. Previously the detection of protein-protein interactions was limited to 
labor-intensive experimental techniques such as co-immunoprecipitation or affinity 
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chromatography. Then the high-throughput experimental methods such as the yeast 
two-hybrid and methods based on mass spectrometry are also available. However, 
these methods are not often applicable because of time-consuming and needing lots of 
money which make it hard to investigate all the possible interactions [3-4]. For this 
reason, it is of great practical significance to develop the reliable computational me-
thods for detecting the protein-protein interactions. 

In the past decade, a wide range of computational methods had been developed. 
All these methods can be usually divided into four parts: structure-based approach, 
sequence-based method, annotation-based and domain-based method. Corresponding-
ly, Zhang et al. used a structure-based approach to infer protein-protein interactions 
[5].You et al. presented a novel hierarchical PCA-EELM model to predict protein-
protein interactions [6]. Zahiri et al. introduced a novel evolutionary based on feature 
extraction algorithm for PPIs prediction [7]. The domain-based approach is one of the 
effective methods for prediction of protein-protein interactions. Multiple studies have 
shown that domain-domain interactions from different experiments are more consis-
tent than their corresponding protein-protein interactions [8]. So, it is quite reliable to 
use the domains and their interactions for prediction of the protein-protein interactions 
[9].In the past few years, lots of researchers focused on the protein-protein interac-
tions prediction by using the domain information. Roslan et al. utilized shared inte-
racting domain patterns and Gene Ontology information [10], Binny et al. used the 
domain–domain associations and Jang et al. predicted protein-protein interactions 
based on the multi-domain collaboration [11-12]. 

Despite the recent advances, the existing domain-based methods usually need to in-
fer the interacting domain pairs from already known interacting sets of proteins, and 
then to predict the PPIs. However, it is difficult to provide the detailed information 
that which of domain pairs will really interact for the PPIs prediction. Therefore, it is 
of great importance to develop a new computational model which can ignore the in-
formation whether a domain pair is interacting or not.  

Multi-instance learning (MIL) method [13-15] is an extension of the standard su-
pervised learning setting. Since multi-instance problems extensively exist but are 
unique to those addressed by previous learning frameworks, multi-instance learning 
was regarded as a new learning framework [14]. Mei et al. had introduced the multi-
instance learning method to predict the protein sub-cellular localization [16].The re-
searchers treat the protein sequence as several structural domains, and then use the 
MIL method to capture protein sequence local information and structural domain 
boundary partition information. Motivated by this, we propose a novel method using 
multi-instance learning (MIL) for predicting protein-protein interactions based on the 
domain information. The results of the experiment demonstrate that the proposed 
method is effective. 

2 Multi-instance Learning 

2.1 Multiple-Instance Learning Scheme 

Multiple-instance learning (MIL) is a scheme of semi-supervised learning for problems 
with incomplete knowledge concerning the labels of the training data. Multi-instance 



 Using the Multi-instance Learning Method to Predict Protein-Protein Interactions 251 

 

Learning studies the ambiguity in input space or instance space, where an object has 
many alternative input descriptions, i.e. instances. The term multi-instance learning 
was coined by Dietterich et al. when they were investigating the problem of drug activ-
ity prediction [13-15]. 

In multi-instance learning, the training set is composed of many bags each of 
which contains many instances. A bag is positively labeled if it contains at least one 
positive instance; otherwise it is labeled as a negative bag. The task is to learn some 
concept from the training set for correctly labeling unseen bags [14].  

Let   be the input space and             be the label space. The MIL task can be 
seen as a function:              .  The dataset                            is consist-
ing of a set of bags and its labels, each       is a set of   instances 
                             . For every    , if        , it has            for atleast 
one  and if        , it  has             for all  , where        is the label of the in-
stance. The framework of MIL is given in Fig. 1. 

 

Fig. 1. The framework of Multi-Instance learning (MIL) 

Since its introduction, a wide variety of new algorithms have been developed and 
well-known supervised learning algorithms extended to learn MI concepts, such as 
the Diverse Density, Citation-kNN and Bayesian-kNN, Relic, EM-DD, BP-MIP, MI 
SVMs and multi-instance ensembles [14]. In this paper, two different MIL algorithms 
were used to test our method. 

2.2  Bagging_C_kNN Algorithm 

In this research, we solve the problem using a modified version of the Citation-
kNN[17] algorithm, which is one of the well-known MIL solutions. The Citation-kNN 
algorithm is a nearest neighbor style algorithm, which borrows the notion of citation of 
scientific references in the way that a bag is labeled through analyzing not only its 
neighboring bags but also the bags that regard the concerned bag as a neighbor [18]. 

In standard k-nearest neighbor algorithm, each object, or instance, is regarded as a 
feature vector in the feature space. For two different feature vectors, i.e. a and b, the 
distance between them can be written as: 

 ist( , ) || ||D a b a b= −  (1) 

X { 1, 1}Y = + −
: 2X

MILf Y→

1 1 2 2{( , ),( , ),...,( , )}n nX y X y X y
iX X⊆

1 2{ , , ..., }
ii i i inX X X X=

iX 1iy = ( ) 1ijc X =
j

in

0iy = ( ) 0ijc X = j ( )ijc X
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But if the goal is to discriminate the bags, the formula must be extended. Suppose  
two different bags, i.e.                 and                   . The problem of 
measuring the distance between different bags is in fact the problem of measuring the 
distance between different feature vector sets. Formally, such a distance metric can be 
written as: 

 
1
1

ist( , ) ( ( , )) || ||i j
i m a A b B
j n

D A B MIN Dist a b MIN MIN a b
≤ ≤ ∈ ∈
≤ ≤

= = −  (2) 

Bagging employs bootstrap sampling to generate several training sets from the 
original training set and then trains component learners, i.e. multiple versions of the 
base learner, from each generated training set. The predictions of the component 
learners are combined via majority voting. A method called Bagging_C_kNN [18] 
which build multi-instance ensembles for Citation-kNN learner to solve multi-
instance problems. 

2.3 MilCa Algorithm 

Multiple-instance learning with instance selection via constructive covering algorithm 
(MilCa) [19] is a novel multi-instance learning method which was proposed by Zhang 
et al. MilCa aims to exclude the false positive instances and select the high repre-
sentative degree instances from both positive and negative bags.  

In the MilCa, firstly use maximal Hausdorff to select some initial positive in-
stances from positive bags, and then use a Constructive Covering Algorithm (CCA) 
[20] to restructure the structure of the original instances of negative bags. Then an 
inverse testing process is employed to exclude the false positive instances from posi-
tive bags and to select the high representative degree instances ordered by the number 
of covered instances from training bags. The outline of these steps can be found as 
follows: 

Input: Training bags  
Output: the set of high degree representative instances 
RSI  
Begin 
Step 1: Label all instances of positive（negative）
training bags with +1(-1) 

Step 2: Selectm+ initial instances（RSI+）from positive 
bags via Eq.(3) 

arg ( , )j j insx d X X+ + −=                         (3) 

Step 3: Obtain a negative cover set C −  via CCA, the in-

stances in RSI +and in sX − . 

Step 4: Use C −  to do an inverse testing process and se-
lect the instances from positive bags that are not cov-
ered by C− via Eq. (4). 

+ +
1 1={ ,..., , , ..., }

m m
X X X X X+ −

− −

1 2B={ , ,..., }nb b b 　1 2A={ , ,..., }ma a a 　
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 { | , }i i ins i insRSI x x x x x+ + + + + −= ∈ ∉                  (4) 

Step 5: Construct a cover set via CCA, the instances in 

RSI +and m+. Then obtain the new RSI + with m+instances and 

RSI −with m−instances according to Eq. (4) and Eq. (5). 

{ | }i i insRSI x x C− − − −= ∈
                       

(5) 

Step 6: Form the high degree representative set of in-
stance: RSI RSI RSI+ −=   

End. 

Finally, a similarity measure function is used to convert the training bag into a sin-
gle sample. For 

1 2 1 2{ , , ..., } { , , ..., }
m m

RSI x x x x x x+ −
+ + + − − −=   and the numbers of 

instances in the corresponding covers are ino+  and 
jno− . The similarity between 

( )k kx x RSI∈ and the i -th bag 
iX  is: 
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 (6) 

Then, employ the exponential function and the parameter of σ  to adjust the similari-

ty measure function. If kx RSI +∈ , then a positive bag should be similar to the in-

stance kx  highly. Otherwise the positive bag has a low similarity with the instance. 

An embedding function Φ  is defined, which converts a bag 
iX  to a ( )m m+ −+ di-

mensional sample: 

 1 1( ) [ ( , ),..., ( , ), ( , ),..., ( , )]T
i i i i im m

X s x X s x X s x X s x X+ −
+ + − −Φ =  (7) 

The converted single sample is also labeled as the label of 
iX . And CCA is again 

used to classification for the converted samples. 

3 Method 

Multi-instance learning method had been widely used for scene or image classifica-
tion, and the research had shown that multi-instance learning specializes in dealing 
with the problem which has natural structural partition. In the paper [16], this method 
also had been used to predict the protein subcellular localization. Motived by this, we 
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introduced the multi-instance learning method into our research on PPIs. As for a 
protein, it is formed by domains. So, we can use the theory of multi-instance learning 
method based on the domain pair information to predict the PPIs. 

3.1 Instance Extraction 

Protein sequence is a long string consisting of 20 amino acids. A protein can range 
from ten to thousands of amino acids in length. With the evolution of the protein, the 
conservative of amino acid residues are highly different. Usually, only a few con-
served areas of protein sequence determine the protein structure and function. These 
conserved sequence regions are called domains. As shown in Fig. 2, the protein 
P39722 has four domains.  

 

Fig. 2. The domains of protein P39722 (Miro domain [7,119], EF_assoc_2 domain [235,332], 
EF_assoc_1 domain [368,438], Miro domain [450,563]) 

The researchers who focus on the domain-based prediction of protein-protein interac-
tions have delineated that a domain is a fundamental unit of biological functions, and 
the domain-domain interaction is indispensable for the PPIs [21]. It has proved that 
the real interaction between the proteins is the interaction between the domain pairs. 
When a domain on one protein and a domain on the other, we can think that a domain 
pair (DP) is made up of these two domains. It is difficult for previous domain based 
method to know which domain pairs in two proteins induce the PPIs. Here we utilize 
the theory of multi-instance learning which is especially useful to solve this problem. 

 

Fig. 3. A MIL bag model (the domain pair between two proteins was treated as a instance, and 
all the domain pairs were composed as a bag. If the bag was labeled as interaction, there were at 
least one interact DPs. Otherwise the bag was labeled as no interaction.)  
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Firstly, we should compose the distances of the datasets using the domain pair in-
formation. Suppose that there are two proteins{ , }P Q , the domains of protein P are 

1 2={ , ,..., }m
p p pP d d d  , and the domains of protein Q are 1 2={ , ,..., }n

q q qQ d d d . The num-

ber of domains is m and n . A domain pair is composed by a domain randomly se-
lected from P and a domain selected from Q . Therefore, m n× domain pairs are 

composed. For example, there are{ , }a b P∈ and{ , , }c d e Q∈ .In this case, there are 

2×3=6 domain pairs, they are{ , , , , , }ac ad ae bc bd be . As shown in Fig. 3.In the 

method, we regard the domain pair (DP) between two proteins as an instance, and 
treat the interaction between these two proteins as a bag.  

3.2 Feature Encoding 

Amino Acid Composition (AAC) is one of the most widely-used feature encoding 
methods. Protein sequence is composed by 20 amino acids and the length of the se-
quence is noted as L. Then the number of each amino acid in the sequence which note 
as 1 2 20={ , ,..., }A A A A is calculated. The composition of amino acid is 

1 2 20 1 2 20={ , ,..., }= / { / , / ,..., / }X X X X A L A L A L A L= .  

Here we also use the Amino Acid Composition method to encode the sequence of the 
domain pair. A domain pair has two domains, so, an instance has 40 features. And the 
feature of the bag is made up of the features of the instances, has 40×m×n dimension.  

3.3 MIL model for PPIs 

When two proteins interact, there is at least one domain pair which is real interacting. 
When there is no protein-protein interaction, we can know that all the domain pairs do 
not interact. Although we do not know which DPs induce the PPIs, multi-instance 
learning is especially useful to deal with this problem. Through lots of trainings, 
commonness (interactive domain pairs) was found. When a new bag (test interaction 
data) was input, the instances were scanned. If at least one instance was in the com-
monness, the method labeled the bag interaction, otherwise it do not interact. 

The steps of the proposed method can be summarized as follow: 
 

Step1: For every protein pair in the datasets, compose the DPs as instances. 
Step2: Use the AAC to encode the instances and label the protein pair as a bag. 
Step3: Apply a multi-instance learning algorithm to training the data. 

4 Experiments 

We evaluated our method on the datasets which we composed. Two MIL algorithms 
are applied for training. Here several criteria are used to evaluate the performance. 
We compare our results with some baselines to show how much improvement we 
could achieve. 
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4.1 Data Collection 

For training, we got the protein-protein interaction pairs from one of the most popular 
databases DIP (http://dip.doe-mbi.ucla.edu/dip/Main.cgi). In our experiment, we 
chose the S.cerevisiae protein pairs that are derived from the DIP core dataset as posi-
tive examples. The reliability of this core subset has been tested by two methods, 
expression profile reliability and paralogous verification method. And the domain 
information for the proteins was extracted from Pfam (http://pfam.sanger.ac.uk/ ). 

In our experiment, the interacting protein pairs were got from the dataset 
Scere20131031, and the pfam information was extracted from the latest dataset 
Pfam27.0.Firstly, the protein IDs were obtained to got the sequence from Swiss-prot. 
Then the proteins whose length of sequence is less than 50 were removed. The re-
maining proteins were scanned by Pfam27.0 and the domain information was noted 
for them. The proteins that have no pfam-A domains were manually removed.  

The negative datasets play an important role in the model. Since the non-interacting 
pairs were not readily available, a strategy for constructing the negative dataset called 
Prcp has been described by Shen and colleagues [22] in detail. Protein pairs were gen-
erated by randomly pair of the remained proteins as above. If a protein pair appeared in 
the Scere20131031, it is a positive bag. The remaining interacting protein pairs were 
non-interacting pairs. All the positive bags in the protein pairs form the positive data-
set. And five negative datasets were generated by randomly selecting equal number of 
positive dataset from the non-interacting pairs. Thus, five subsets were prepared. 

4.2 Evaluation of Performance 

To measure the performance of the proposed method, several evaluation criteria 
which are described below are used. Firstly, we should count the number of true posi-
tives (TP), false positives (FP), true negatives (TN) and false negatives (FN).TP is the 
number of true PPIs that are predicted correctly, FP is the number of true non-
interacting pairs that are predicted to be PPIs, TN is the number of true non-
interacting pairs that are predicted correctly and FN is the number of true PPIs that are 
predicted to be non-interacting pairs. Then we use these to compute the criteria: 
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TP TN FP FN
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Sensitivity measures how accurately the classifier can classify out of all positive 
data. Precision measures how precise the data classified as positive by this classifier. 
Accuracy of a classifier measures the estimated probability of correct predictions. F-
score takes into account both sensitivity and precision are a useful measure of overall 
performance. The result of cc is a number between -1 and +1 showing complete 
agreement, -1 complete disagreement and 0 showing that the prediction was uncorre-
lated with the results. 

4.3 Experimental Results and Discussion 

We evaluated the performance of the proposed approach using two MIL algorithms 
on some criteria which are described above. Bagging_C_kNN and MilCa respectively 
correspond to the traditional famous and current novel algorithm. So, they were cho-
sen to train the dates. Five datasets were composed by using five different negative 
subsets. Then five results were generated from the five sets of data, and the perfor-
mance of the model was evaluated by the average value of these results. In order to 
compare, we also implemented several experiments which used some other machine 
learning methods including NaiveBayes, AdaBoostM1, RandomTree, and SVM. To 
reduce the bias of training and testing data, in the experiment, a 10-fold cross valida-
tion technique is adopted. Table 1 gives the average prediction results achieved by all 
these comparative methods and the proposed approach.  

It can be observed from Table 1 that the proposed approach shows a good predic-
tion accuracy of 67% and 66% which is better than all other comparative methods. To 
better investigate the prediction ability of our method, we also calculated the values of 
Sensitive, Precision, F-Score and cc. All these criteria are widely used to evaluate the 
performance in protein-protein interactions prediction. From Table 1, we can see that 
our model gives the best prediction performance with an average precision value of 
68%, F-score value of 66% and 65%. Further, it also can be seen in Table 1 that the 
value of sensitive by MilCa is worse than NaiveBayes and SVM method, and the 
value of sensitive by Bagging_C_kNN is better than other methods except Naive-
Bayes. Specially, the cc value of 34% and 32% is much better than other methods. 
From the results, we can conclude that our method is an effective method. 

Table 1. The prediction result generated by several methods 

Methods   Sensitive   Precision  F-score  Accuracy    cc 
   NaiveBayes        0.67     0.57        0.62   0.59       0.18 

      AdaBoostM1       0.63     0.57        0.60   0.58       0.16 

      RandomTree        0.61     0.58        0.60   0.59         0.18 

      SVM               0.65     0.65       0.65   0.64       0.29 

      Bagging_C_kNN   0.65     0.68       0.66   0.67       0.34 

      MilCa          0.63     0.68        0.65   0.66       0.32 
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In addition, as we know, sensitivity measures the fraction of interactions that are 
identified, and the precision measures the fraction of the predicted interactions that 
are actually interactions. So the worse value of sensitive perhaps due to the negative 
datasets. Because our negative dataset were composed by randomly pair. Correlation 
coefficient measures that how well the predicted class labels correlate with the actual 
class labels and it is good for measuring the performance. In the table, we can find 
that our value is much better than comparative methods. All the analysis shows that 
the proposed method outperforms other comparative methods for predicting protein-
protein interactions. 

5 Conclusion 

In this paper, we developed a new method to predict the protein-protein interactions. 
The domain pairs of two proteins composed for feature encoding which were re-
garded as instances, and the interaction between these two proteins is treated as a bag. 
Finally, two multi-instance learning algorithms were used for training. Unlike con-
ventional domain-based methods, the new model can ignore the information whether 
a domain pair is interacting or not. In our research, we just use the most basic method 
to compose the domain pairs, and the domain pairs are endowed equal status. More 
MIL algorithms could be used to train the dates. Further studies are required to ad-
dress these issues. 
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Abstract. This paper proposes an improved decimation of triangle meshes 
based on curvature. Mesh simplification based on vertex decimation is simple 
and easy for implementation. But in previous mesh simplification researches 
based on vertex decimation, algorithms generally focused on the distance error 
between the simplified mesh and the original mesh. However, a high quality 
simplified mesh must have low approximation error and preserve geometric 
features of the original model. According to this consideration, the proposed al-
gorithm improves classical vertex decimation by calculating the mean curvature 
of each vertex and considering the change of curvature in local ring. Mean-
while, this algorithm wraps the local triangulation by a global triangulation. Ex-
perimental results demonstrate that our approach can preserve the major topol-
ogy characteristics and geometric features of the initial models after simplifying 
most vertices, without complicated calculation. It also can reduce the influence 
from noises and staircase effects in the process of reconstruction, and result in a 
smooth surface. 

Keywords: Mesh simplification; vertex decimation; geometric feature; curvature. 

1 Introduction 

Nowadays, the polygonal meshes have become a popular graphics primitive for com-
puter graphics application because of their mathematical simplicity. Any three points 
in a three dimensional space can determine a plane, and triangles have the advantages 
of flexibility and efficiency. Therefore, the triangle has become a basic element of 
mesh models in many applications. With the development of science and technology, 
the data set used for multiple application areas, such as medical imaging, virtual reali-
ty, Computer Graphics, visualization, is becoming more and more complex. A mesh 
could have millions of elements when we deal with these data sets. More complex 
polygonal models obtained from 3D acquisition techniques such as laser scanning 
could be reproduced more accurately, but the drawbacks of the complexity are too 
long time on reconstruction and redundant data for subsequent processing. Especially 
in applications of medical imaging, the time means the patient's life. For these rea-
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sons, mesh simplification has become an extremely important topic on computer 
graphics research in the last years. 

The goal of mesh simplification is to reduce the complexity but keeping as possible 
as high fidelity of the original model [1]. Having this goal, a multitude of mesh simplifi-
cation algorithms were developed during the time. For multiple classification methods 
of those algorithms, we can refer the reader to [2]. According to the way of structuring 
the reduced model, simplification algorithms can be categorized into two classes: re-
finement and decimation [3]. The former begin with a simple initial model, and then 
gradually add details until it reached the requirement of the approximation error. Be-
cause of the difficulty of structuring the initial approximation meshes for complex 3D 
mesh models, this method is infrequent in the mesh simplification. The method based 
on decimation begins with the original model, and then gradually delete some geome-
trical elements. These methods simplify the original model by removing some geome-
tric elements such vertices, edges, triangles. Accordingly, the decimation method can be 
classified into three different approaches according to the difference of the selected 
objects [4]: removal of vertex [5], removal of edge [6] and removal of triangle [7]. 

In 1992, Schroeder [5] described an algorithm based on vertex decimation. His me-
thod iteratively selects a vertex removal, removes all adjacent faces, and retriangulates 
the resulting hole [8]. It measures the distance from the vertex to average plane by its 
adjacent triangles, then uses the distance to decide the order in which vertices are re-
moved [9]. This method has a simple implementation, saves calculation time, takes up 
less memory and preserves the topology of the original mesh. However, the local error 
metric will produce accumulated error after much iteration. So it generates low-quality 
approximated models [2], [4], [9]. Rossignac and Borrel [10] proposed a vertex cluster-
ing method to remove vertices in meshes. This method assigns a weight to each vertex 
on the input mesh by its perceptual importance, then subdivides the mesh into a three-
dimensional grid, and finally, all the vertices in a given grid cell are clustered to the 
position of the vertex with maximum weight. This method tends to be very fast but the 
visual appearance of the final mesh is relatively inaccurate to define [9]. 

Edge collapse is based on the iterative contraction of vertex pairs. The fundamental 
operation is to iteratively merge two neighboring vertices to the same position [11]. 
Progress mesh (PM) [6] representation is a kind of iterative edge collapse based mesh 
simplification method developed by Hoppe in 1996, in which an energy function to 
describe the complexity and fidelity of mesh is used to track simplification quality. 
PM use the edge collapse operator to construct a progressive mesh, and measures the 
distance from the proposed new triangles to a set of sample points from the original 
mesh to decide which edge to collapse. This method obtains high quality results. 
However, it is not easy to implement and use because of the complexity of calculating 
energy function [4], [12]. Garland and Heckbert [13] proposed a Quadric Error Metric 
(QEM) based the vertex pair-collapse operator, which can be considered the topology 
modifying variant of the edge-collapse operator. The key of QEM algorithm is to find 
an error metric as the cost function at each vertex, and the vertex pair which has the 
minimum cost is contracted at each iteration step. However, because this error mea-
surement is solely based on the Euclidian distance between geometric positions, sim-
plification may preserve geometric features only to a certain extent [14]. 
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Triangle collapse simplifies meshes by removing selected triangles, which is a con-
tinuation of edge collapse. Hamann [7] weighted triangles by the product of equi-
angularity and curvature, then sorted triangles by their weights and collapsed them 
successively. Tran S.Gieng et al. [15] proposed a similar simplification algorithm, 
which weighted triangles by the product of area, curvature and et al. These algorithms 
preserve shape better, but have a higher complexity. 

Considering the calculation time and complexity, obviously, the algorithm based 
on vertex decimation, which is simple and easy for implementation, is more suitable 
for applications of medical imaging. However, the traditional vertex decimation se-
lects a candidate for removal based on the Euclidian distance between local geometric 
positions. This will lead to two drawbacks: one is accumulated error, the other one is 
the difficulty of preserving geometric features. In this paper, we present a modified 
mesh simplification based on vertex decimation, for efficiently simplifying triangle 
meshes with a threshold defined of curvature. This method improves classical vertex 
decimation by calculating the mean curvature of each vertex and considering the 
change of curvature in local ring. Different from the local triangulation in traditional 
algorithms, our method suggests a global triangulation. Experimental results demon-
strated that our approach can preserve the major topology characteristics and geome-
tric features of the initial models after simplifying most vertices, without complicated 
calculation. It also can reduce the influence from noises and staircase effects in the 
process of reconstruction, and result in a smooth surface. With the proper preferences, 
this algorithm will strongly improve quality of the approximated model. 

The structure of the paper is organized as follows: Section 2 reviews the related 
work on mesh generation and vertex decimation. After that, Section 3 presents our 
algorithm followed by the experimental results in Section 4. Finally, Section 5 draws 
the conclusion and discusses the future work. 

2 Related Work 

2.1 Mesh Generation 

The triangular mesh is one of the popular representations for free-form surfaces. 
Compared with splines, triangular meshes are convenient for visualization and de-
scription of complicated shapes of arbitrary topology [16]. With the development of 
laser scanners or other 3D data acquisition equipments, triangular mesh models are 
easily obtained. 3D data models are directly obtained by laser scanners, computer 
vision systems or medical imaging devices to model visually actual objects. Then we 
can obtain triangular meshes by an algorithm that extracts isosurfaces from 3D vo-
lume data. One of these methods is Marching Cubes [17], which is an effective sur-
face construction algorithm that generates many triangles. Marching Cubes provide a 
method that defines voxel and generating isosurfaces accurately. The voxel is defined 
as a data unit that consists of eight vertices between adjacent layers. The algorithm 
determines a threshold of the surface, and then calculates gradients of each vertex. 
Cubes which contain the surface will be found out by comparing the gradient with  
the threshold. Finally, these surfaces are obtained through the interpolation. Now, 
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If hi is greater than a specified value of high curvature ch, we calculate the average of 
mean curvatures (denoted by ci) of neighbor vertices. If ci is high or low sufficiently, 
this vertex will be considered as a candidate for removal too. Afterwards, we obtain a 
simplified vertex set D’ by removing candidates from D. Finally, triangulating D’ re-
sult in the output. The process can be expressed as Table 1. 

Table 1. Procedure of our algorithm 

Vertex Decimation Based on Curvature 

Input: triangular mesh M 

FOR di in D 
        Calculating hi 

        IF hi > cl 

                IF hi < ch 

                        Add di into D’ 
                ELSE 
                        Calculating ci 

                        IF ci is not high or low suffi-
ciently 
                                Add di into D’ 
                        END 
                END 
        END 
END 
Triangulating D’ 

Output: simplified model M’ 

 

Fig. 3. The flowchart of our algorithm 

3.2 Describing Meshes 

We can only directly obtain coordinates of all vertices in a 3D data model. The triangle 
mesh is obtained by an algorithm that extracts isosurfaces from 3D volume data. An 
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noisy point, and a vertex with higher hi and a lower ci could be considered as a stair-
case point. The noisy points and staircase points would be removed in our algorithm. 
In this way, we can obtain smoother surface. 

3.4 Triangulation 

Removing a vertex from the triangular mesh generate a hole (see Fig. 1(b)). In tradi-
tional algorithms, the hole will be filled up by a local triangulation. However, the 
local triangulation may produce long and narrow triangles, which are bad for the qual-
ity of simplified model, and cause an incoordination between new triangles and initial 
triangles. Furthermore, the closure problem needs further discussion [5], [24]. Our 
method suggests a global triangulation based on Delaunay Triangulation [11], [25] to 
instead of the local triangulation. In this way, we can obtain coordinating triangle 
meshes. Meanwhile, the closure of surface could be ensured. 

4 Results and Discussions 

This section presents our experimental results to demonstrate the proposed algorithm. 
The computer system implemented for conducting the experiment has a PC with Intel 
Core i5-2450M, 2.5 GHz, 4G memory, a graphic processing unit NVIDIA GeForce 
610M, and Windows 7 operating system. The tools and platforms used in this project 
are Matlab, Vtk(visualization toolkit) and MS Visual Studio. The experimental graph-
ic models in this work are liver (512×512×34) and vessel (125×68×322). After isosur-
face extraction, the details about the model mesh information are listed in Table 2. 
The original graphic model is illustrated in Fig. 6. 

Table 2. Data information of the original models 

Model Vertices Triangles 

liver 103476 206948 

vessel 87903 174352 

 

Fig. 7 shows the simplification results on the models using our algorithm with dif-
ferent decimation ratio. The details about the corresponding reduced mesh informa-
tion are listed in Table 3. The data size of models can be reduced by our algorithm, 
without complicated calculation. Even after simplifying most vertices, the major to-
pology characteristics and geometric features of the initial models are still preserved. 
Moreover, noises and staircase effects in the process of reconstruction are avoided to 
a large extent. 

Mesh simplification can save much time on model reconstruction. In our experi-
ments, reconstructing the original mesh of liver model spend 5.71 seconds. After de-
cimating 96% of the vertices, reconstructing reduced mesh model only spend 0.34 
seconds, which achieves real-time demand. 
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Fig. 6. Original graphic model 

Fig. 7. Simplification results 

Data information of the simplification results 

odel Vertices Triangles 

6% decimated 4005 8404 

8% decimated 2246 4894 

8% decimated 19795 38864 

0% decimated 9642 19150 
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5 Conclusions 

This paper proposed a modified mesh simplification algorithm based on vertex deci-
mation aiming at improving surface simplification for complex medical graphic mod-
el rendering. The algorithm deploys geometric feature metric with mean curvature of 
each vertex, and decrease noises and staircase effects by the average of mean curva-
ture of neighbor points. Furthermore, we suggest a global triangulation of the whole 
reserved vertices instead of the local triangulation. These measures employed in our 
algorithm can retain geometric features of input mesh models and result a relatively 
smooth surface after simplification. The associated experiment demonstrates that our 
algorithm is an efficient approach with high performance. 

Even if we obtain better results than classical vertex decimation in terms of quality 
of approximations, our algorithm is several times slower than it. The better tradeoff 
between efficiency and accuracy may become a future research topic. 
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Abstract. Detecting the community structure of social network is really a very 
challenging and promising research in the world today.Granular Computing 
,which can simplify the solution of problem by generating granules and imple-
mentation in different granularity spaces, is a kind of intelligent information 
processing model to simulate the human thinking. In this paper, a model of 
mining community structure based on granular computing is proposed through 
improving the similarity between nodes, that is, to design a corresponding min-
ing algorithm by decomposing the problem in different granularity spaces so as 
to realize the structure detecting. The experimental results on three classic data 
sets show that the mining algorithm presented in this paper is reasonable. 

Keywords: Social network, Community Detecting, Similarity, Granular  
Computing, Rough Set. 

1 Introduction 

Tribalization in the internet is the main trend in the future [1]. The sociality reflected in 
social networks is a community structure, in which nodes are joined together in 
tightly-knit groups between which there are only looser connections. It is a long history 
to research the community structure. A more useful approach taken by social network 
analysis with the set of techniques is known as hierarchical clustering, which can fall 
into two broad classes: Divisive method and Agglomerative method. The process of  it 
can be represented using a tree of the type called “dendrograms”. Agglomerative al-
gorithm,in essence, is to find the most similar nodes in the network every time and add 
an edge between the two nodes. It is also known as the bordered method. While in 
contrast, divisive method is trying to find the least similar nodes and remove the edge 
between them. GN Algorithm is the most representative one of divisive methods [2]. It 
is a kind of mining method based on edge splitting through a significant concept called 
Edge Betweenness. In 2004, Clauset, Newman and Moore et al. proposed a new greedy 
algorithm, CNM Algorithm [3]. CNM Algorithm is considered as a kind of improved 
Newman algorithm. By calculating the max information gains, the groups are separated 
from one another and so reveal the underlying community structures. Soon afterwards, 
Newman studied many efficient approaches to finding community structure [4-7]. 
There are still some optimization algorithms, such as EO Algorithm [8] and  
other traditional spatial clustering methods, such as K-Means used for community 



 A Community Detecting Algorithm Based on Granular Computing 273 

 

detecting [9]. In addition,considering the overlapping of community structures,  
Palla et al. introduced the concept of faction and presented a clique percolation algo-
rithm in the literature[10]. 
 Granular computing(GrC) [11-13], the basic idea of which is to reduce the problem 
complexity, is a tool to simulate human thinking problems in the field of intelligent 
information processing. For the feature of a community that nodes close connected can 
be divided into a same community, it is of great use to combine GrC with community 
detecting.In recent years, combinations with granularity and clustering gain wide at-
tentions of universal scholars. However, it is still in the beginning stage to exploit GrC 
in social network. Ronald R.Yager introduced the granular computing theory into the 
social network analysis and provided a soft definition of community, in which, se-
mantic concept is represented by fuzzy set theory and the relationship among indi-
viduals in social network is described by the set relation so that problems in social 
network can be solved by granularity in the way of human cognition [12-13]. However, 
the question is that it is just a simple paradigm to analysis social network with GrC. 
There is still lack of application in the real data sets. On the basic of Yager’s research, a 
formal description of community is given in literature [14].  

In this paper we present a class of new algorithms for network clustering,i.e.,the 
discovery of community structure in networks,taking advantage of the granular com-
puting based on rough set model. Our discussion focuses primarily on how to define the 
information granule and how to generate the granular space in the network, both of 
which are basic problems in granular computing. By this mean, the community mining 
algorithm is transformed into problem solving under different granular spaces. 

2 Closeness Between Nodes and Its Improvement 

Studies of community detecting are based on the assumption that the individuals in the 
same community are joined together in tightly-knit groups between which there are 
only looser connections. Therefore, how to measure of the similarity between nodes 
became one of the main factors that decided to corporate results. It is inclined for so-
ciologist to define the similarity between nodes based on the structural equivalence 
[15]. Nodes which have exactly the same neighbor are considered to be a structural 
equivalence. However, equivalent structure is rare in the real social network for dis-
tance between two nodes in complex network is not the space length, but the number of 
the edge in shortest path. Literature [14] puts forward a close degree formula based on 
the “small world ”features, namely “six degrees of separation”: 

( )
( ) 2-,102

,
),(

ji vvpathLen

ji
ji

vvpathLen
vvClose

×
= (2.1) 

In the above equation, ),( ji vvpathLen  is the shortest path length between iv  
and jv . 

But, formula(2.1) performs poor in the network with small average shortest path. As 
shown in Figure 1, there are two distinct community structures which are respectively 
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formed by nodes 1,2,3,4 and 5,6,7,8 and its average shortest path(shortest path between 
two nodes divided by the sum of all possible number of edges in the network) is 1.8. 
When the formula(2.1) is used to calculate the closeness, node 5 is erroneously divided 
into the right association for the closeness between them is 1. 

 

 
Fig. 1. A Simple network with two community structures 

t is for this reason that the following modifications are given on the basis of  
formula(2.1) 
 
Definition 2-1 Close between nodes. The close between nodes can be defined as follows: 
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In which, ( )ji vvpathLen ,  denotes the shortest path between node iv  and node 

jv , [ ]10),( ，∈ji vvClose . ),( ji vvClose  is proportional to the closeness. The 

greater the value of ),( ji vvClose  is, the closer the relationship is. For a given 

( )EVG , , if Eeij ∈∃  ,then 1),( =ji vvClose . ),( ji vvClose  has reflexivity 

and symmetry in the unweighted and undirected graph. 
The improved ),( ji vvClose  can describe the structure better. As in the previous 

example, node 5 is closer to nodes 6,7,8 
( 1)8,5()7,5()6,5( === CloseCloseClose ) than to nodes 1,2,3 
( 8.0)3,5()2,5()1,5( === CloseCloseClose ). After such improvement, node 5 
can be separated easily from the community as shown in the right part of the network 
in Figure 1 containing node 1,2,3,4. Further more, the community structure generated 
with it satisfies the condition of the internal nodes are more compact than that of  
intercommunal. 

3 Model of Community Detecting Based on Granular Computing 

3.1 Model Design of Mining Community Based on Granular Computing 

Definition 3-1 Indistinguishability between nodes For a given Graph ),( EVG , the 
indistinguishability VVR ×⊂  on V  can be defined as: for any iv and jv , 
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jiVvVv ji ≠∈∈ ,, , if ( ) 1, =ji vvClose  exists, then there is jiRvv , or 
Rvv ji ∈),( . 

Due to the specification that ( )ji vvClose ,  meets reflexivity and symmetry, so 

does the indistinguishable relationship R . 

Definition 3-2 Basic Structure Granule and Basic Cover Granule of Graph. For a 

given Graph ( )EVG , , suppose ( )SubGSubG EVSubG ,  be a subgraph of G , if the 

two conditions are satisfied: 

① nodes in set SubGV  are indistinguishable; 

② there is no other subgraph ( )SGSG EVSG ,  in G  which meets the condi-

tions that for   SubGVv∈∀ ， SubGEe∈∀ , SGVv∈ ， SGEe∈  exists; 

Then ( )SubGSubG EVSubG ,  is called as a basic structure granular of G ， SG  

for short. SubGV  is denoted as a basic cover granule. 

Definition 3-3 Basic Granular Space of Graph.  For a given graph ( )EVG , , a 

basic granular space is defined as the set of all basic structure granules of G , de-

noted as ( )k21 ,...,SG,SGSGBGS = , which meets that for any 

( )
ii SGSGi EVSG ,= ， ( )

jj SGSGj EVSG ,= , ji ≠  there is 

ijji SGSGSGSG VVVV ⊄∧⊄  and VV
iSG

k
i ==1 . 

Definition 3-4 Basic Cover of Graph.  For a given Graph ( )EVG , , 

}{ k21 ,...,SG,SGSGBGS =  is the basic granular space ,among which, 

( ) kiEBGSG
iSGii ,1,, == ,then },...,,{ 21 kBGBGBGBC =  is the basic 

cover of G . 

Definition 3-5 Cover of Graph. For a given Graph ( )EVG , , if the set 

},...,,{ 21 mCCCCover =  meets miVCi ,...,2,1, =⊆  and VCi
m
i ==1

 φ≠∩∃∧ hjhj CCCC ,, ，then Cover  can be referred as a cover of G , among 

which, miCi ,...,2,1, =  is called a cover granule of G . 
Obviously, the basic cover granule iBG  surely is the cover granule of G , but not 

vice verse. 
Definition 3-6 β _Similar Granular Set of Cover Granule  For a given Graph 
( )EVG , , },...,,{ 21 mCCCCover =  is supposed to be the cover of G  and 

5.00 <≤ β , then for any cover granule CCi ∈ , the β _similar granular set of the 
cover granule iC  can be defined as : 
 







 ∈⊇∈= }..1{,|)( jj mjiCCCCCG ii ，

β

β （3.1） 
or, 
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{ }ββ ≤∈= ),(|)( jiji CCcCCCG
         

（3.2） 

It can be seen from the above definition that the cover granule is coarsen by getting the 
β _similar granular set and therefore transformations under different granularities are 
achieved . 
Definition 3-7 Minimal Cover of Graph. For a given Graph ( )EVG , , suppose 

5.00 <≤ β  and },...,,{ 21 mCCCCover =  be a cover of G , for CCi ∈∀ , if 

}{)( ii CCG =β , then },...,,{ 21 mCCCCover =  is called a minimal cover of 

( )EVG , . 

Definition 3-8 Graph Granular Space. A graph granular space can be defined 

as: ( ){ }MCEVGGS ,,= , among which, ( )EVG ,  is the original structure and 

MC  is the minimal cover of G . 
Definition 3-9 Node Granular Belongingnes.s  For a given Graph ( )EVG ,  and a 
cover of G , },...,,{ 21 mCCCCover = , the belongingness of node u ( Vu∈ ) 
with a cover granule C ( CoverC∈ ) can be defined as following: 
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（3.3） 

There is also [ ]10),(_ ，∈CuessBelongingnG . 
Since a cover granule can be seen as the community structure under a certain level, so 

the belongingness between nodes and cover granules reflects the closeness between them. 
It is also a criterion to estimate whether a node can be divided into a certain community. 
The greater ),(_ CuessBelongingnG  is, the more possible u  is belong to C . 
Definition 3-10 Granular Compactness.  For a given Graph ( )EVG ,  and a cover 

},...,,{ 21 mCCCCover =  on G , the closeness between any two cover granules 
CoverCC j ∈,i  can be expressed as: 

( )
( )

i

iC

C

jk

n

k
j n

CuessBelongingnG
CCGC

,_
, 1

i


== （3.4） 

In (3.5), iCuk ∈  and 
iCn  is the number of iC . The properties of ( )ji CCGC ,  

are as following: 

① Symmetry： ( ) ( )ijji CCGCCCGC ,, = ； 

② Commutativity ： if ( ) β≥ki CCGC , ,then ( ) β≥∪ kji CCCGC , ，  

( ) β≥∪ jki CCCGC ,  and ( ) β≥∪ ijk CCCGC ,  exists. 
The proof process in detail is omitted in order to save space. 
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On the grounds of the above introduction,the corresponding algorithm is proposed in 
the following. 

3.2 Community Mining Algorithm Based on Granular Computing(CGCC 
Algorithm) 

A appropriate initial clustering granularity not only can reduce the computational 
complexity but also can improve the accuracy of clustering. In our community mining 
algorithm, the basic coverage of the graph is chosen as the initial community structure. 
Algorithm 1 introduced in the following realizes the granulation for the first time, that 
is to construct the basic cover of network. 
 

Algorithm 1. Graph granulating --Generating a basic cover of Graph 

Input: Graph ( )EVG ,  

Output: A basic cover of G  },...,,{ 21 kBGBGBGBC =  

Step1:Initialization ∅=BC ； 

Step2:Compute ( )ic vC  of nodes in G , and put them in order from large to 

small; 

Step3:For a node iv ( Vvi ∈ ),if ( )kjBCv ji ,2,1=∪∉ , get all the basic 

cover granule        iBG  which contains iv  according to the defini-

tion of Indiscernibility,go to Step4;else go  

      to Step 6; 

Step4:If 3>iBG ,then go to Step5;else, go to Step6; 

Step5:Put iBG  into BC . if there are many granules which satisfies the condi-

tion, then put all 

     of them into BC ; 

Step6:Let { }ii vBG = , and put iBG  into BC ; 

Step7:Choose the next node 1+iv ,repeat Step3-Step6 until all nodes have been 

visited; 

Step8:The end. 
 
After algorithm 1, a basic cover of  graph G  is obtained, namely getting a basic 

structure of granular space. Each basic cover granule can be regarded as the kernel of 
initial community. In the second step, the closeness centrality is used to measure the 
centralization which can reflect the global topological structure. 

There are, however, also many high overlapping basic cover granules, namely one 
node may belong to different basic cover granules at the same time. In order to solve 
this problem, algorithm 2 will obtain a minimal coverage of the graph by getting the 
β _similar granule set. 
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Algorithm 2. Granular coarsening--Obtaining the minimal coverage of graph 

Input: A basic coverage of ( )EVG , , },...,,{ 21 kBGBGBGBC =  and a given 

       Threshold β  

Output: A minimal Coverage of G , { }nMCMCMCC ,...,,M 21=  

Step1:Initialization ∅=MC ， BCOC = ; put iC  in order with the value iBG   

     from small to large, denoted as ),...,,( 21 kCCCOC = ; 

Step2:If φ≠OC , go to Step3, else go to Step8; 

Step3: 1=i ; 

Step4: Get the  i th cover granule OCCi ∈ , calculate )( iCGβ ; 

Step5:If }{)( ii CCG =β , put iC  into MC  and { }iCOCOC −= , then go 

to Step 7; else  

go to Step6; 

Step6: ji EC = , { }jEOCOC −= ,among which ( )ij CGE β∈ ; 

Step7: If there are still cover granules that are not traversed, then process 1+= ii  

and go to 

 Step4; else put OC  in order according to the value of iC  from 

small to large and 

 go to Step2; 

Step8: The end. 
 

Thus, the initialization phrase is over. In the next stage, closeness is calculated 
between cover granules and integration will happen between cover granules with 
highest similarity, if the closeness is over the threshold given. 

It follows that the community mining algorithm based on granular computing pro-
posed can be divided into two parts:the first one is the original granulation which can 
get a basic structure granular space by generating the basic cover granule of a graph and 
granule coarsening according to the β_similar granule;the second part is granular in-
tegration, in which, cover granules with certain similarities will be integrated.  

The algorithm proposed for identifying communities is stated in detail as follows: 

 

Algorithm 3. CGCC-Algorithm 

 

Input: The original Data Set 

Output: A set of communities { }kCClique ,...,C,C 21=  
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Step1:Read the original data set and Get the graph structure of network 

Step2:Gain a basic cover of original data set },...,,{ 21 kBGBGBGBC = ac-

cording to   

      Algorithm 1; 

Step3:Obtain a minimal coverage { }nMCMCMCC ,...,,M 21=  according to 

algorithm 2; 

Step4:Choose an appropriate threshold α  by experiment; 

Step5:Put iMC  in order according to the value of iMC  from small to large, 

denoted as 

     { }nMCMCMCC ,...,,M 21= ; 

Step6:Calculate the closeness between cover granules according to formula(4.5), if 

     ( )( ) α≥ji MCMCGCMax , , jii MCMCMC ∪=  exists; 

Step7: { }jMCMCC =M ; 

Step8:Repeat Step6-Step7 until there is no qualified communities to be associated 

with; 

Step9:The end . 

Apparently, communities under different granules can be got when α  takes various 

values. 

4 Test and Comparison 

4.1 Experiment Environment 

Experiments are performed on a loaded Intel(R)Core(TM)i5-3210MCPU T5250@2.50 

GHz,4G of RAM,Windows 8(64 bit System) and implemented by Python2.7.  

4.1.1  NetworkX Introduction 
NetworkX [17] is a Python language software package for the creation, manipulation, 
and study of the structure, dynamics, and functions of complex networks. It is easy to 
load and store networks in standard and nonstandard data formats, generate many types 
of random and classic networks, analyze network structure, build network models, 
design new network algorithms, draw networks and much more. NetworkX has various 
features,for instance,it contains some date structures for graphs as well as standard 
graph algorithms.Also it is open source and well tested . 

4.1.2  Graph Model Language(GML) 
GML(Graph Model Language) [18], is portable file format for graphs based on ASCII 
representation, also as Graph Meta Language. It is a universal file format to represent 
graphs. Data sets used in this paper are all GML files. 
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4.1.3  Data Sets 
Three different sizes of real-world data sets for which the community structures are 
already known, including Zachary Karate Club [19], Dolphin Social Network [20] and 
College Football Network [21], are used to carried out simulation experiments. The 
number of nodes accurate classified is taken to evaluate the test result. Features of three 
data sets are shown as follows. 

Table 1. Features of Data Set 

Data Set Number of nodes Number of edges 
Number of real 

communitie 

Zachary Karate Club 34 78 2 

Dolphin Social 

Network 
62 159 2 

College Football 

Network 
115 613 12 

4.2 Evaluation Index 

Modularity and Normalized Mutual Information(NMI) are usually used to evaluate the 
community divided results. Module, used to analyze the community of the unknown 
network data, shows the differences between the edge inside and expectations. How-
ever, in many cases, community gained when the modularity takes the maximum value 
is often inconsistent with the reality, which is in fact the combination of several real 
communities [22]. NMI is applied in information theory. It is to measure the algorithm 
through entropy. In this paper, the number of nodes correctly classified is adopted as 
the evaluation index because the real community structures of data set employed in our 
experiments are already known. We make some analysis on the three data sets between 
CGCC and GN,CNM. 

4.3 Analysis on The Three Data Sets With CGCC 

We tested CGCC algorithm on the three classical data sets whose community structure 
were known beforehand. Figure 2-Figure4 show the optimal community structures 
obtained by CGCC. 

Figure 2 illustrates the application results of our algorithm to the Zachary Karate 
Club. Vertices are drawn as different color according to the primary division detected. 
We find that the CGCC algorithm splits the network into two strong communities, 
which consists of 16 nodes and 18 nodes respectively. 

As it is shown in Figure 3, Dolphin network is divided into two communities. The 
blue nodes (a total of 42 nodes ) make up the first community and the other community 
is formed by the remaining nodes colored in green. It turns out that the results are in 
excellent agreement with expectations. 
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Fig. 2. Community Structure on Zachary Karate Club with CGCC 

 

Fig. 3. Community Structure on Dolphin Social Network with  CGCC 

 
Fig. 4. Community Structure on College Football Network by CGCC 

(10 of 115 nodes are divided incorrectly marked by ellipse ) 
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Applying CGCC algorithm to the College Football Network, we find 12 well-defined 
communities drawn in different color,seen in Figure 4. It is indicated that CGCC algo-
rithm identifies nearly all the conference structure in the network and the accuracy is 
about 91%. Only 10 nodes marked by ellipse in the network are classified incorrectly. 

Various communities under different granularities can be obtained by adjusting the 
threshold between granularities. As shown in Figure 5, Zachary is divided into 4 
communities when the threshold takes 0.8. Seen from the modularity, the optimal 
community split of the resulting graph has a strong modularity of 419.0=Q .  

 
Fig. 5. Zachary data with four communities 

 

Fig. 6.  (a) Time Comparison between CGCC and GN,CNM 

(b)Accuracy Comparison (Linear)and Modularity Comparison(Histogram) 

(Results of algorithm GN and CNM referred to paper [22-25]) 
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4.4 Analysis on The Three Sets Between CGCC and GN,CNM 

Figure 6(a) shows the run time of CGCC, GN and CNM when the thresholds take the 
best value respectively,which are selected after repeated experiments. In spite of this 
the accuracy and modularity are also depicted in Figure 6(b). 

It is indicated in Figure 6 that CGCC preforms more perfectly than GN and CNM on 
the three sets, and at the same time, CGCC has higher time efficiency compared with 
GN. However, though it is not good enough to feed College Football Network into 
CGCC than CNM, both algorithms give reasonably high time performance on the other 
two data sets. 

5 Conclusion 

In this paper, a model of community mining and corresponding algorithm are designed 
based on granular computing by improving the similarity between nodes, which is 
extended to be similarity between nodes and cover granules, also between cover gra-
nules. We have tested our method on three real-world networks with well-documented 
structured and find the results to be in excellent agreement with expectations. A com-
pare analysis with GN and CNM is also given. Test results indicated that CGCC algo-
rithm is effective and feasible. It is not only able to detect the known community 
structure with a high degree of success but also can obtain higher time efficiency. 

A number of extensions or improvements of our method may be possible. The first 
one is to analysis the relationship between the average depth and the threshold value in 
order to choose the optimal or quasi optimal value; Secondly, it is hopeful to apply this 
algorithm in dynamic network. At present, it is still impractical for huge graphs, as a 
result, it is necessary to improve the speed of the algorithm. 
Acknowledgements.  This work was supported by National Natural Science Fund 
Project (No. 61070139), the Science and technology Project of Jiangxi Provincial 
Department of Education (No. GJJ14134, GJJ14143) . 
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Abstract. Focusing on the vehicle tracking task in a video, we pro-
pose an Online Tracking-Detection Co-Training schema that integrates
detecting and tracking results in a co-training style. The tracker follows
the object from frame to frame and its trajectory is used in one of feature
view in co-training process. The detector recognizes the patches including
given object in current frame and corrects the tracker in broken frame.
Our proposed model is verified through experiments on reality videos
including some challenging situations.

Keywords: Co-training, detection, tracking, on-line, vehicle recognition.

1 Introduction

Object detection and tracking attract many researchers as its widely applica-
tions. However, its performance is affected by many factors such as light, weather,
occlusion and so on. These limit application of the state-of-the-art methods in
industry. Therefore, object detecting and tracking in reality conditions is still a
challenging task. Recently, detection based on semi-supervised learning attracts
much attention which learns from both labeled and unlabeled objects.The un-
labeled data can improve the performance of classifier[1]. The vehicle which lo-
cates in consecutive frames defines as a trajectory which represents relationship
between patches in adjacent frames. The information extracted from tracking
trajectory is useful for the detection task.
The paper proposes a novel co-training detection-tracking scheme learning from
both labeled and unlabeled objects. Relationship between objects is used in two
feature views of classification algorithm to mutually rectify errors by constraint.
Online learning is integrated to improve the global performance. Experiments
on real traffic videos are performed to testify the robustness of the algorithm.
The rest of the paper is organized as follows. In section 2, basic problem is
defined and various semi-supervised detection algorithms are investigated. In
section 3, online tracking-detection co-training scheme is proposed.Experiments
on real world traffic videos affecting by various external factors are conducted
to analyzes the effectiveness of proposed algorithm.
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2 Related Works

Many tracking algorithms have been proposed based on motion analysis. For
example, CAMSHIFT is widely used for this task by conducting continuous
Mean Shift[11] in videos. Henriques[15] takes sub-windows induces circulant-
structure and use the Fast Fourier Transform to incorporate information from
all sub-windows without iterating over them.A common technique is blurring
the image for smoothing the objective function. The disadvantage of blurring
is losing the original information from the image. L. Sevilla-Lara[14] proposes a
new tracking method which is build an image descriptor using distribution fields,
which is a representation that allows smoothing the objective function without
destroying information about pixel values.

Recently, detection formulated as a binary classification problem has received
a lot of concerns due to its promising results. Semi-supervised learning is popular
for this task because it include unlabeled data into training set to enhance the
performance. Frequently used semi-supervised learning methods include Self-
Learning[2] and Co-training[3][4] etc. Self-training and co-training adapt to the
independent assumption of different feature views[1]. For the problem of small
labeled set, online learning is often integrated to co-training process which online
updates the model initially trained from original trained set [3][4][5].

In semi-supervised learning, more feasible strategy for labeling unlabeled ex-
amples is guided by some prior knowledge or supervision information[1]. The
basic idea is combining detection and tracking[6] where the detector serves as
initial model for semi-supervised learning.Tracking could learn some information
underlying examples, i.e. estimating object location in frame-by-frame fashion.
The target can be viewed as a single labeled instance and the video as unla-
beled datasets. Some authors perform self-training and co-training for tracking
object[7][8][9]. The approach predicts the position of the objects with a tracker
and updates the model with positive examples that are close to the selected patch
and negative examples that are far from it. The strategy is able to adapt the
tracker to new appearances and background, but breaks down when the tracker
makes a mistake. In order to avoiding above problem, Kalal proposed Tracking-
Learning-Detection by using P-N learning[10]. This approach integrates tracker
and detection and made them correcting the cost function.

3 Online Tracking-Detection Co-training Scheme

The goal of the Online Tracking-Detection Co-Training scheme is improving the
original tracking by using co-training. During the transmission from monitor to
the server, some bits may lost and it will lead to some frame broken. Because
broken frames cannot be tracked by the tracker, a heuristic search algorithm is
designed to solve this problem. In this section, the framework of our model is
introduced first. The detection with online co-training method is then described.
Finally, the scheme to identify and correct the error is designed for improving
the algorithm reliability.
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3.1 Framework

The Online Tracking-Detection Co-Training framework is shown in Fig.3.1. The
process should mark the target in the first frame since each frame which would
be processed by our model requires the given initial target object BI , which is
an input rectangle and given by human. Then, the model would work in two
ways simultaneously: the tracking component and the detection component.

Fig. 1. Online Tracking-Detection Co-Training scheme

The task of the basic tracking component is obtaining the trajectory of target
object BT in the consecutive frames. CAMSHIFT[11] is chosen in our framework
due to its high efficiency. The detection is identifying whether the images in test
set is similar to ones in training set.Some convincing examples learned by co-
training process will be added into training set. In co-training, one feature view
adopts the SIFT[12] and the other view considers tracking trajectory.We measure
their difference by a predefined threshold. If the result is less than given threshold
, we will consider these models offer the fit results. Otherwise, the algorithm will
be re-initialized by applying heuristic search to relabel the target. The detector
can measure which sub-rectangle is fittest and take it as final output BO.

3.2 Online Tracking-Detection Co-training

This section investigates how the tracking and object detection components of
the Online Tracking-Detection Co-Training algorithm work.

Tracking
The task of the tracking component determines the centroid of the target object
in the present frame. CAMSHIFT is a fast tracking algorithm and we decide to
use it in tracking component. The process of CAMSHIFT is chosen to initialize
the target from the last frame, transforms the frame from the RGB space to the
HSV space, and calculates the colorful histogram to select the slide window X .
Then it calculates the centroid (xc, yc) by the formulas (1) and (2):

xc =
ΣxΣyxI(x,y)
ΣxΣyI(x,y)

(1)

yc =
ΣxΣyyI(x,y)
ΣxΣyI(x,y)

(2)
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(xc, yc) is the coordinate of the search slide window X , and I (x, y) is the pixel
of the window X . The CAMSHIFT algorithm will adjust the size of the slide
window and move the center of the window to the centroid (xc, yc).

Detection
Co-training is designed for detection which check each patches in frames and
determine which one is matched. The co-training process trains two classifiers in
two independent feature views. As the SIFT is invariant to scale and rotation[12],
we select the SIFT features to construct the detector f1(x). The distance between
the centers and the tracking result construct the other detector f2(x). The co-
training is training two weak learning classifiers stronger by labeling the credible
samples each other. Here, random forest[13] classifier model, which has good
performance in image classification, is trained as the weak detectors by the initial
target as positive example and some background patches as negative ones. This
part has three steps. First we choose the best examples for two detector in the
K + 1th turn. This process is shown in formula (3) and (4).

Y +
P = {xsi‖xsiεXk+1, 1 ≤ i ≤ mP ,maxargsiΠ

(mP )
i=1 max

(
fk1 (xsi ), f

k
2 (xsi )

)}(3)
Y +
N = {xsi‖xsiεXk+1, 1 ≤ i ≤ mN ,maxargsiΠ

(mN )
(i=1)max

(
fk1 (xsi ), f

k
2 (xsi )

)}(4)
The Xk means the unlabeled set in the kth turn, xi is one sample in the dataset,
si and ti is the sample index, mP and mN are the new samples adding to the
labeled sample set, maxarg(si) means choosing the best value for the target

function to get the maximum, Y +
P and Y +

N means the positive and negative
examples in the k + 1th turns which will be added into the labeled dataset. In
order to keep the dataset size for making the co-training model speed up and
reduce the effects on bad cases, we choose some examples to remove from the
model. This process is shown in formula (5) and (6).

Y −
P = {xti‖xtiεXP

k , 1 ≤ i ≤ nP ,minargti
nP∏
i=1

max
(
fk1 (xti), f

k
2 (xti )

)} (5)

Y −
N = {xti‖xtiεXN

k , 1 ≤ i ≤ nN ,minargti
nN∏
i=1

max
(
fk1 (xti), f

k
2 (xti )

)} (6)

Where, nP and nN are the samples removing from the labeled sample.minargti
means choosing the best value for the target function to get the minimum. Y −

P

and Y −
N means the positive and negative examples in the k + 1th turns which

will be removed from the labeled dataset. Finally we update the labeled dateset
as the formula (7) and (8) shown.

XP
k+1 = XP

k + Y +
P − Y −

P (7)

XN
k+1 = XN

k + Y +
N − Y −

N (8)

The Xk means the unlabeled set in the kth turn. Y +
P and Y +

N means the positive
and negative examples in the k+1th turns which will be added into the labeled
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dataset. Y −
P and Y −

N means the positive and negative examples in the k + 1th
turns which will be removed from the labeled dataset. The pseudo code of the
Tracking-Detection Co-Training model is described in Fig.3.2:

//The tracking and object detection code

Input : the input rebound box;
Output : the predicted object;
Procedure :
1. Init Camshift();

2. Init Detection();

3. For(i = 1; i < frame num; i++)

4. Result = Camshift(Input);

5. X = RandomGetPat(Result,m, n)

6. L1 = Classifierf1(X);

7. L2 = Classifierf2(X);

8. PushMostSamples(L1, X, P,N, g1(x));

9. PushMostSamples(L2, X, P,N, g2(x));

10. Update(f1(x), L1)

11. Update(f2(x), L2);

12. EndFor

Fig. 2. The pseudo code of the Tracking-Detection Co-Training model

3.3 Correction Scheme

After tracking and detection, we get the target BT and BO by two models. In
normal conditions, the tracking and detecting have the good performance and
their results will be similar. It is assumed that the distance between the input
and the model results satisfying the formula (9).

‖BT −BO‖ < δ and ‖BI −BO‖ < δ and ‖BT −BI‖ < δ (9)

The predicted object close to the input, we consider the constant δ as the bound
among the inputBI , the tracking result BT and the detected object BO. When
the formula (9) is satisfied, we consider the tracking result as the final result.
However, if some frames are broken, the formula (9) will not be satisfied. The
heuristic search is searching each nodes, calculating the possibility for image
patches by the co-training model. In our model, we determine the Breadth-
First search as the searching strategy because it can expand the neighbors. The
Gaussian Mixture Model is chosen to generate the initial nodes. For each loop,
a node from the candidate list is expanded by scanning the image patches which
centroid is near this one. We retain the K most likely nodes which is calculating
the possibility by the co-training model to the candidate list. After running M
loops, the searching process is finished and the corrected object is obtained.
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4 Experiments and Discussion

4.1 Experiment Setting

Our algorithm is applied to track vehicles in videos captured by monitor and
the camera in-car. The information is listed in Table 1. As assuming the result
should be sent back to the monitor, the videos are transformed into 2 frames per
second. Our model is compared with three algorithms: CAMSHIFT[11],TLD[10]
and the Circulant Structure model[15].Performance is evaluated by three metrics:
average precision, average recall and runtime. Average Precision is the percent
of the bounding box overlapped the ground truth one larger than 50%. Average
Recall is the percent of the ground truth bounding box that the area overlapped
is larger than 50%. Runtime is interval from the first frame to the last frame.

Table 1. Experiment videos information

Test Video Frame number Character Capture method

Monitor videos 780 Complicated background station monitor
Clips1 158 Object size change Moving camera in-car
Clips2 288 Vibration and rotation Moving camera in-car

4.2 Experiment Results on Monitor-Captured Videos

The monitor-captured video is recorded by the monitor. Some packages lose
and some frames are broken due to various reason. The test video has 780
frames, and the frames between 79th and 94th frame are broken. The results
by CAMSHIFT, TLD and the Circulant Structure model are presented in the
Fig.4.1(a), Fig.4.1(b), Fig.4.1(c).Our model result as shown in Fig.4.1(d).

As the Fig.4.1 shown, CAMSHIFT cannot work on the video which has some
broken frames.We could find that the TLD result is much larger than the target.
Fig 4.1(c) shows that the algorithm cannot update the classifier perfectly. In
our scheme, final recognition results are focusing on object with more suitable
bounding even if some broken frames existing as shown.

4.3 Performance Testing with External Influence

The videos captured by the camera in moving cars are tested to observe the
algorithm performance in different interference factors.

Performance Test in Size Changing Condition. For Clips1, there are 158
frames.The result of CAMSHIFT, TLD, the Circulant Structure and our model
are represented in Fig. 4.2(a), Fig. 4.2(b), Fig. 4.2(c) and Fig. 4.2(d).

The labeled targets in CAMSHIFT are larger than reality. TLD detects tar-
gets a little bigger bounding box. Circulant Structure algorithm tracks one part
patches of the target. Our model could improve the result by co-training scheme.
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(a) CAMSHIFT

(b) TLD

(c) Circulant Structure

(d) Online Co-training Scheme

Fig 4.1. Experiment on the dataset of Monitor-Captured videos

Performance Test in Rotation Condition. In Clips2, there are 288 frames.
The result of CAMSHIFT, TLD, the Circulant Structure and the Online Co-
Training Scheme are represented in Fig.4.3(a), Fig.4.3(b), Fig.4.3(c) and
Fig.4.3(d).

As the Fig.4.3 show, the CAMSHIFT cannot track the target when the cam-
era was rotated. TLD and our model can mark the object correctly. However,
the object detected by TLD is wider than the target. Our algorithm could suc-
cessfully detect the rotated objects and its size is similar to original one. Since
the size of target keeps as the first frame, the Circulant Structure algorithm can
detect the target correctly and track it during the frame sequence.



292 C. Jiyuan and W. Zhihua

(a) CAMSHIFT

(b) TLD

(c) Circulant Structure

(d) Online Co-training Scheme

Fig 4.2. Experiment in the dataset of Clips2

4.4 Overall Experimental Analysis

The overall experiment results are shown in Table.2. For our model, the average
precision or the average recall shows the best performance and the runtime is
shown as the following table. For external effect brought from size change (clips1)
or rotation (clips2), TLD also shows good performance in precision and recall,
but it will take more time when it runs. Our model is obviously better than TLD
when some frames are lost or broken, but it need more time for running program
as the table shown. Additionaly, the result on clips2 indicates that the proposed
algorithm is not affected by rotated videos. TLD, on the contrary, is slightly
below its average level. The performance of the Circulant Structure algorithm
are better than CAMSHIFT, but not good as our algorithm in each dataset
because they cannot change the rebound box size when object is changed.
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(a) CAMSHIFT

(b) TLD

(c) Circulant Structure

(d) Online Co-training Scheme

Fig 4.3. Experiment in the dataset of Clips3

Table 2. Overall Experiment results

Precision/Recall/Runtime

Test Video CAMSHIFT TLD Circulant Structure Online TD
Co-Training

Monitor-Cap- 0.54/0.47/147.3s 0.62/0.93/319.0s 0.63/0.78/457.8s 0.91/0.93/699.3s
tured videos

Clips1 0.83/0.79/39.3s 0.93/0.88/70.1s 0.84/0.77/112.5s 0.95/0.98/127.3s
Clips2 0.74/0.58/51.2s 0.86/0.82/101.3s 0.94/0.94/179.6s 1.00/0.97/213.4s

5 Conclusion

In this paper, we proposed co-training scheme to integrate the traditional track-
ing algorithm with the detection to improve the object recognition performance.
Correcting algorithm for broken frames is also designed to advance the relia-
bility of proposed algorithm. However, the runtime of our model can be slower
than other algorithm in complex environment. Comparing with the other track-
ing algorithms, our model has better performance.Future work mainly focus on
optimizing the algorithm efficiency and choosing better model to make the al-
gorithm fast.
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Abstract. Domain-Specific Modeling Language (DSML) defined by informal 
way cannot precisely represent its structural semantics, so properties of models 
such as consistency cannot be systematically analyzed and verified. In re-
sponse, the paper proposes an approach for automatically reasoning consistency 
of DSML. Firstly, we establish a formal framework for DSML based on first-
order logic; and then, an automatic mapping mechanism for formalizing 
DSML is defined; based on this, we present our method for verifying consis-
tency of DSML and its models based on first-order logical inference; finally, 
the automatic mapping engine for formalizing DSML and its models is de-
signed to show the feasibility of our formal method.  

Keywords: Domain-Specific Modeling Language (DSML), structural seman-
tics, consistency verification, automatic mapping. 

1 Introduction 

As a Model-Driven Development methodology for the specific domain, DSM [1] 
focuses on simplicity, practicability and flexibility. As a modeling language for DSM, 
DSMLs play an important role in system design and modeling of specific areas. Meta-
language for building DSMLs is called Domain-specific Metamodeling Language 
(DSMML). 

Semantics of DSML can be divided into structural semantics [2] and behavioral 
semantics. The former describes static semantic constraints between modeling ele-
ments, focusing on the static structural properties; the latter concerns analysis of ex-
ecution semantics of domain models, focusing on the dynamic behavior. Although 
structural semantics is very important, research in structural semantics is not as exten-
sive and deep as behavioral semantics’. 

There are several problems that have not been solved well for DSML, which  
include mathematical description for metamodeling and model transformations,  
tool-independence formal specification, analysis techniques of properties of models 
based on formalization and automatic mapping mechanism and so on. Here are some 
examples that illustrate this. The precise structural semantics of the mature metapro-
grammable Generic Modeling Environment (GME) [3] depend on the implementation 
of complex tools. Standards such as the UML superstructure [4] and Meta-Object 
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Facility (MOF) [5] do not provide sufficiently precise formal definitions of the DSML 
process. 

The paper proposes an approach for automatically reasoning consistency of DSML 
based on first-order logical inference, based on this, design of corresponding formali-
zation automatic mapping engine for DSML are introduced to show the application of 
formalization. 

2 Related Works 

Within the domain-specific language community, graph-theoretic formalisms have 
received the most research attention. The majority of work focuses on model trans-
formations based on graph, but analysis and verification of properties of models has 
not received the same attention. In DSM domain, most of the DSMLs are defined and 
verified using informal way, for example, GME developed by Vanderbilt [3] universi-
ty uses expanded OCL to check model, and MetaEdit+ of MetaCase Company [6] 
uses fixed declarative rules to verify model properties. 

There are much typical work on formalization of modeling language, such as An-
dre’s formalization and verification of UML class diagram based on ADT [7], Mal-
colm Shroff’s formalization and verification of UML class diagram based on Z [8], 
and Jackson.E.K’s formalization of DSML based on Horn logic [9] and so on. In 
these appoaches, formalization of metamodeling language has not been considered, 
and automatic translation mechanism from metamodels to the corresponding formal 
semantic domain has not been established too, so they have lower level of automated 
analysis. But using our method, we can implement automatically reasoning on consis-
tency of DSML and its models by automatically mapping XML format DSML and its 
models to the corresponding first-order logic system based on our automatic mapping 
mechanism for formalizing DSML. This is very important for formalizing DSML and 
verifying models. 

3 Formalization of XMML 

We design a DSMML named extensible markup language based meta-modeling lan-
guage (XMML) [10]. XMML is divided into four layers: metamodeling language 
layer used to define different DSMLs where XMML is located, DSML layer used to 
build concrete domain application models, domain application model layer used to 
make corresponding source codes of target system by code generator, and target ap-
plication system layer [10].  

We require that element of XMML is called metamodeling element and element of 
DSML built based on XMML is called domain modeling element and domain object 
built based on DSML is called domain model element. Among them, metamodeling 
element is also called metatype and type of model element is modeling element and 
type of modeling element is metatype [10]. 

Metamodeling elements of XMML are divided into two types: entity type and as-
sociation type, the former is used to describe modeling entities in metamodel and the 
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latter concerns relationships between modeling entities. Metamodeling element of 
entity type consists of four types such as model type, entity type, reference entity type 
and relationship type. Metamodeling element of association type includes the follow-
ing five types: role assignment association, model containment relationship, attach-
ment relationship, reference relationship, and refinement relationship. We finish for-
malization of structural semantics of XMML based on the above nine metatypes. 
Details of definition and formalization can be seen in [11].  

Once set of predicate symbols denoting metamodeling elements and constraint 
axioms set denoting constraints over all metamodels are derived, we finish formaliza-
tion XMML based on first-order logic. Based on this, we can create formalized sys-
tem of XMML called TX. Because we can prove logical consistency of TX, XMML 
must have metamodels that can be satisfied, thus it is meaningful to discuss properties 
of metamodels built based on XMML. 

4 A Formal Framework for Automatically Reasoning 
Consistency of DSML 

4.1 A Framework for Formalizing DSML Based on First-order Logic 

In our framework, structural semantics of DSML are characterized by a metamodel built 
based on XMML, so once a metamodel is formalized, we finish formalization of DSML. 

A metamodel M can be regarded as composition of the following five parts: a set S 
of predicate symbols denoting modeling elements, an extended set SC of predicate 
symbols used to derive properties, constraint formulas set F denoting constraints over 
all models, a set O of constants denoting public properties, a set Ω of terms symbols 
denoting model elements used to build model. Among them, SC and O may be empty, 
union of S, SC and O form symbols set, and F is defined by first-order predicate for-
mulas based on symbols set. So a metamodel M is defined as follows. 
 

Definition 1. (M) a metamodel M is a 5-tuple of the form < S, SC, Ω, O, F > consisting 
of S, SC, Ω, O and F. 

Formalization of XMML differs from formalization of a metamodel. To the former, 
due to uniqueness of XMML, we can formalize XMML by artificial derivation and 
proving; to the latter, since both metamodels built based XMML and models built 
based on DSML are many and varied, an automatic mapping mechanism for formaliz-
ing any metamodel and its models has to be created. Reference to institution method 
for specification language in the literature [12], and combined with first-order logic 
theory [13], we establish a description framework for formalizing any metamodel and 
its models. 

To build a metamodel formalized system based on first-order logic, the key is  
to establish a first-order language symbol set and a group of constraint axioms based 
on symbol set. We can derive a first-order language symbol set ∑ from abstract syn-
tax of a metamodel, which consists of a set of constants and a set of predicate sym-
bols, so the mapping from metamodels to ∑ called signature mapping L has to be  
firstly established. Set of constraint axioms can be derived from structural semantics 
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of a metamodel, which consists of type constraints of model elements and relationship 
between them and so on, thus we then establish the axiom mapping AΣ based on ∑. 
Upon completion of formalizing any metamodel, we can analyze logical consistency 
of itself. In addition, to verify consistency of models built based on any metamodel, 
the mapping from a model to a group of first-order logic statements based on ∑ called 
model mapping SΣ has to be established to determine whether a model as an interpre-
tation of a metamodel formalized system satisfies a metamodel. So a framework for 
formalizing any metamodel consists of signature mapping L, axiom mapping AΣ, 
model mapping SΣ, metamodel consistency verification and determination of satisfac-
tion of a model to a metamodel and so on. The architecture of the framework is shown 
in Fig 1. 

 

 

Fig. 1. A formal framework for metamodel based on first-order logic 

Various semantic constraint relationships between modeling elements of entity type 
have to be analyzed to regard them as the basis for establishing mapping rules for 
formalizing any metamodel.   

4.2 Automatic Mapping Mechanism for Formalizing Metamodels 

We illustrate our formal mapping mechanism of metamodels based on first-order 
logic by software architecture metamodel WSA shown in Fig 2 as an example.  

The metamodel WSA consists of modeling elements of entity type such as Softwa-
reArchitecture, Component, Connection, Interface and modeling elements of associa-
tion type such as AttchInfToCom and AttchInfToCon denoting attachment relationship, 
ComRefSA denoting refinement relationship and InfAssociation denoting association 
relationship, denoting that software architecture consists of component and connec-
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tion, and it also builds constraints over domain models that interfaces have to be at-
tached to a component or a connection and components or connections can only be 
interconnected through interfaces and any component can be refined into a new soft-
ware architecture model. 

 

Fig. 2. Software architecture metamodel WSA 

 Two modeling elements of attachment type and one modeling element of refine-
ment type will be mapped directly by their name, so they are marked metamodel 
instance types called AttchInfToCom, AttchInfToCon and ComRefSA separately. But 
names of metamodel instance types of role assignment association and model con-
tainment relationship have not been marked because they need to be dynamically 
generated when they are mapped. 

4.3 Signature Mapping 

Via signature mapping, a group of predicates denoting element type and relationship 
between elements in the model can be derived as the basis of other mappings. 
1. Signature mapping rule NTR1(mapping of entity type): for every modeling ele-

ment of entity type named ME and belonging to meta-type of model, entity, or ref-
erence entity in the metamodel, the corresponding unary predicate ME(x) is de-
fined to represent that type of model element x is ME; the number of elements in 
unary predicate set PNTR1(M) generated by applying NTR1 on a metamodel M is 
the number of all modeling elements of entity type belonging to meta-type of 
model, entity, or reference entity in M, denoted |NTR1(M)| = |EEM|; 

2. Signature mapping rule NTR2(mapping of association type): for each association 
of attachment, reference or refinement from entity type MEx to entity type MEy 
with ML as the association edge name,  a binary predicate ML(x, y) is defined to 
represent the relation between instance x of MEx and instance y of MEy is ML; for 
each role assignment association built by modeling element ML of relationship 
type, a binary predicate ML(x, y) is defined to represent that there exist explicit as-
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sociation between entity type  element x at source side and entity type  element y 
at target side; for each modeling element MC of model type,  a binary predicate 
MCContainment (x, y) is defined to represent that entity type  element x is in-
cluded in model type  element y; the number of elements in binary predicate set 
PNTR2(M) generated by applying NTR2 on a metamodel M is equal to the number 
of all modeling elements of association type belonging to meta-type of attachment, 
reference, refinement or role assignment association in M plus 1, denoted 
|NTR3(M)| = |REM|+1. 

Set of first-order predicate generated by applying Signature mapping rule NTR1 
and NTR2 on a metamodel M is: PNTR(M) = PNTR1(M)∪PNTR2(M), so first-order 
language symbol set ∑(M) corresponding to M is: ∑(M)= PNTR(M). 

Subset of unary predicate generated by applying NTR1 on WSA shown in Fig 3 is: 
PNTR1(WSA)= {SoftwareArchitecture(x),Component(x),Connection(x),Interface(x)}, 
with a total of 4 elements; Subset of binary predicate generated by applying NTR2 on 
WSA is: PNTR2(WSA)={AttachInfToCom(x,y), AttachInfToCon(x,y), InfAssociation(x,y), 
ComRefSA(x,y),SoftwareArchitectureContainment(x,y)}, with a total of 5 elements. 
So first-order language symbol set ∑(WSA) corresponding to WSA is: ∑(WSA) = 
PNTR1(WSA)∪PNTR2(WSA). 

4.4 Axiom Mapping 

Due to uniqueness of XMML, first-order language symbol set generated via TX is 

fixed, thus the corresponding constraint axioms set is unique too. In contrast, meta-
models built based on XMML have many and they vary, and different metamodels 
contain different instance types and their structures differ from each other, thus their 
first-order language symbol sets ∑(M) and constraint axioms generated via  mapping 
vary, so constraint formulas in the axiom mapping rules is actually a group of axiom 
schema generated by extracting common constraint relationships to represent their 
structure forms, and constraint formulas corresponding to a metamodel have to be 
generated by replacing related symbols of axiom schema with its own and evolving 
related axiom schema according to structural differences. 

Here we build axiom mapping rules from classification of entity type elements, 
constraint relation of association type elements and multiple constraint of association 
relation based on text concrete syntax of XMML [10].  
1. classification of entity type elements 

XMML is one of typed metamodeling languages, and the metamodels built based 
XMML are well-typed. Correspondingly, DSML based XMML on is also one of 
typed modeling languages, so the models built based DSML are well-typed too. On 
the basis of the relevant literatures [12], we characterize typed constraints of DSML 
from completeness and uniqueness of classification of entity type elements. 
(1) Axiom mapping rule ATR1(Completeness of Classification): Assume that ME1, 

ME2, …, MEn are all all modeling elements of entity type belonging to metatype of 
model, entity or reference entity defined in one metamodel, a formula of classifica-
tion completeness in the form of ∀x.ME1(x)∨ME2(x) ∨…∨MEn(x) is defined; 
the number of elements in constraint axiom set AATR1(M) generated by applying 
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ATR1 on a metamodel M is 1, denoted |ATR1(M)| = 1. 
Completeness constraint axiom set containing only one element generated by ap-

plying ATR1 on WSA is: AATR1(WSA)={ 
∀x. SoftwareArchitecture(x)∨Component(x) ∨Connection (x) ∨Interface (x)} 

(2) Axiom mapping rule ATR2(Uniqueness of Classification): Assume that ME1, 
ME2, …, MEn are all all modeling elements of entity type belonging to metatype 
of model, entity or reference entity defined in one metamodel, a formula of clas-
sification uniqueness in the form of ∀x. MEi→﹁MEj is defined on any two dif-

ferent elements MEi and MEj; the number of elements in constraint axiom set 
AATR2(M) generated by applying ATR2 on a metamodel M is equal to combina-
tion number produced by taking any two elements from the EEM, denoted 

|ATR2(M)| = ( 1)

2
M M|EE | |EE |-× , among them, EEM denotes a set constituted by 

all all modeling elements of entity type belonging to metatype of model, entity 
or reference entity defined in M. 

Uniqueness constraint axiom set containing six elements generated by applying 
ATR2 on WSA is: AATR2(WSA)= { 
∀x.SoftwareArchitecture(x)→﹁Component(x), 

∀x.SoftwareArchitecture(x)→﹁Connection(x),··· 
∀x. Connection(x)→﹁Interface(x)}, with a total of 6 elements. 
   ATR1 and ATR2 make it explicit that a model as an instance of any metamodel 
must have its all model elements of entity type completely and uniquely classified by 
the metamodel instance type.  
2. constraint relation of association type elements 
(1) Axiom mapping rule ATR3(constraint of implicit association type): for every 

modeling element named MC and belonging to meta-type of attachment rela-
tionship in the metamodel, the corresponding binary predicate MC(x, y) is de-
rived, among them, x represents an instance of included modeling element and y 
or  z represents an instance of host modeling element; if modeling elements of 
entity type that are included in modeling element ME by attachment relationship 
MC are NE1, NE2, …, NEn, a formula of type constraint in the form of 
∀x,y.MC(x,y) →(NE1(x)∨NE2(x) ∨…∨NEn(x))∧ME(y) and another formula of 
semantic constraint in the form of ∀x,y,z.MC(x,y)∧MC(x,z)→(y=z) are defined. 
For every modeling element named MR and belonging to meta-type of reference 
or refinement relationship from modeling element of entity ME1 to ME2 in the 
metamodel, the corresponding binary predicate MR(x, y) is derived, among 
them, x represents an instance of ME1 and y represents an instance of ME2, a 
formula of type constraint in the form of ∀x,y.MR(x,y)→ME1(x)∧ME2(y) and 
another formula of semantic constraint in the form of ∀x,y,z.MR(x,y) ∧MR(x,z)→(y=z) are defined. For all modeling element belonging to meta-type 
of model containment relationship, constraint formulas generated is similar to 
the fomer; the number of elements in constraint axiom set of implicit association 
AATR3(M) generated by applying ATR3 on a metamodel M is equal to the number 
CEM of all modeling elements belonging to meta-type of implicit association  
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except for model containment in M multiplied by 2 plus 2, denoted |ATR5(M)| = 
|CEM|×2+2. 

Implicit association constraint axiom set generated by applying ATR3 on WSA is: 
AATR3(WSA)={ ∀x,y. AttachInfToCom(x,y)→Interface(x)∧Component(y),..., ∀x,y,z. 
SoftwareArchitectureContain-
ment(x,y)∧SoftwareArchitectureContainment(x,z)→(y=z) }, with a total of 8 elements. 
(2) Axiom mapping rule ATR4(constraint of explicit association type): For every 

role assignment association between modeling elements of entity type estab-
lished by modeling element of relationship type ML in the metamodel, the cor-
responding binary predicate ML(x, y) is derived to represent an association from 
entity type element x at source side to entity type  element y at target side; if 
modeling elements of entity type at source side that are connected to ML are SE1, 
SE2, …, SEn and modeling elements of entity type at target side that are con-
nected to ML are TE1, TE2, …, TEm, a formula of type constraint of role assign-
ment association in the form of ∀x,y. ML(x,y)→(SE1(x)∨SE2(x) ∨…∨SEn(x)) ∧(TE1(y)∨TE2(y) ∨…∨TEn(y)) is defined; the number of elements in con-
straint axiom set of role assignment association AATR4(M) generated by applying 
ATR4 on a metamodel M is equal to the number LEM of all modeling elements 
belonging to meta-type of relationship type in M used to establish explicit asso-
ciation, denoted  |ATR4(M)| = |LEM|. 

Role assignment association constraint axiom set generated by applying ATR4 on 
WSA is: AATR4(WSA)={ ∀x,y.InfAssociation(x,y)→Interface(x)∧Interface(y)} 
3. multiple constraint of association relation 

It is pointed out in UML documents that multiplicity at the endpoints of association 
constrains the number of instances at the other end. Multiple concept of association 
relation in XMML is similar to UML’s.  
(1) Axiom mapping rule ATR5(multiple constraint of instances at the source end): 

For every role assignment association from entity type element at source side to 
entity type  element at target side established by modeling element of relation-
ship type ML in the metamodel, the corresponding binary predicate ML(x, y) is 
derived to represent an association from entity type element x at source side to 
entity type  element y at target side; assume that Smul is multiplicity value at 
the source end set in ML, different forms of axiom set is derived according to 
various value. 

(a) If SMul = 0..1: ∀x,y,z.ML(y,x)∧ML(z,x)→(y=z) 
(b) If SMul = 1: ∃x,y. ML(x,y) , ∀x,y,z.ML(y,x)∧ML(z,x)→(y=z) 
(c) If SMul = 1..*: ∃x,y. ML(x,y) 
(d) If SMul = 2..*: ∃ x,y,z. ML(y,x)∧ML(z,x) ∧(y≠z) 
(e) If SMul = 0..2: ∀x,y,z,u.ML(y,x)∧ML(z,x) ∧ML(u,x)→(y=z)∨(y=u)∨(u=z) 
(f) If SMul = 2: ∃ x,y,z. ML(y,x)∧ML(z,x) ∧(y≠z) 

∀x,y,z,u.ML(y,x)∧ML(z,x) ∧ML(u,x)→(y=z)∨(y=u)∨(u=z) 
Axiom set of multiple constraint of instances at the source end generated by apply-

ing ATR5 on WSA is: AATR5(WSA)={ 
∀x,y,z. InfAssociation(y,x)∧InfAssociation(z,x) →(y=z)} 
(2) Axiom mapping rule ATR6(multiple constraint of instances at the target end): 
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Similar to the former rule ATR5, it is omitted here. 
The number of elements in axiom set of multiple constraint of association relation 

AATR5-6(M) generated by applying ATR5 and ATR6 on a metamodel M is: |ATR5-6 (M)| 
= |MVM|+|SingleVM|×2, among them, MVM denotes a set constituted by all multiplicity 
at source end and multiplicity at target end which are not single values and are estab-
lished by modeling element of relationship type in M, SingleVM denotes a set consti-
tuted by all multiplicity at source end and multiplicity at target end which are single 
values in M. 

Constraint axioms set AΣ(M) based on first-order language symbol set ∑(M) corres-
ponding to M is union of the above six constraint axioms subsets, denoted AΣ(M) 

=
6

1

( )
iATR

i

A M
=
 . 

4.5 Consistency Reasoning of Metamodel and Its Models 

First-order predicate set PNTR(M) generated by applying signature mapping rule 
NTR1 and NTR2 on a metamodel M as a group of predicate symbols and constraint 
axioms set AΣ(M) based on PNTR(M) generated by applying axiom mapping rule 
ATR1-ATR6 on a metamodel M as a group of constraint axioms are all added to first-
order logic formalized system called Q predicate calculus [13] to form formalized 
system of metamodel M based on Q – metamodel formalized system called TQ(M). 
Reference to the definition of TX in the literature [14], TQ(M) is defined as follows. 
 
Definition 2. (TQ(M)) TQ(M) consists of formal language L(M) and deduction structure 
defined based on L(M). Except some modification of symbols set SQ(M) and adding of 
a set of constraints  axioms, TQ(M) is entirely based on predicate calculus Q. Its sym-
bols set SQ(M) is union of logical link symbol set LQ(M) and collection of individual 
variables VQ(M) and Individual constant symbol set CQ(M) and predicate symbols set 
PQ(M), i.e. SQ(M)= LQ(M)∪VQ(M)∪CQ(M)∪PQ(M), among them, LQ(M) and VQ(M) 
are same as Q’s, CQ(M)=Φ, PQ(M) = PNTR(M). Union of CQ(M) and PQ(M) is called set 
of non-logical symbols NL(M), i.e. NL(M)= CQ(M)∪PQ(M). Axioms set A(M) of TQ(M) 
is composed of logical axioms set AL(M) of Q and constraint axioms set AΣ(M), i.e. 
A(M)= AL(M)∪AΣ(M). 

The semantic interpretation of TQ(M) is a model built based on metamodel M, un-
iverse of discourse of interpretation is the set of all entity model elements and con-
stants contained in the model. 

Once metamodel and model are formalized based on first-order logic, we can im-
ple-ment analysis and verification of properties such as logical consistency of meta-
model and model based on first-order logical inference. 

It is impossible to find a true interpretation for constraint axiom set AΣ(M) of every 
TQ(M) in order to prove semantic consistency of TQ(M), so we can only prove logical 
consistency of different constraint axiom AΣ(M) based on automatic theorem prover. 
Reference to the literature [13], the following definition is available. 
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Definition 3. (logical consistency of metamodel). A metamodel is logically consis-
tent in the domain iff the constraint axiom set AΣ(M) of metamodel formalized system 
called TQ(M) is proved to be logically consistent in the automatic theorem prover; a 
metamodel is logically inconsistent in the domain iff the constraint axiom set AΣ(M) 
of metamodel formalized system called TQ(M) is proved to be contradictory in the au-
tomatic theorem prover, denoted AΣ(M)├ False. 

Taking predicate symbol set PNTR(WSA) generated via signature mapping on WSA as 
predicate definition part of  automatic theorem prover SPASS [23], and taking con-
straint axiom set AΣ(WSA) generated via axiom mapping on WSA as axiom part of 
SPASS, we find that there is no contradiction in AΣ(WSA) by proving based on 
SPASS, so WSA is  logically consistent. 

If metamodel formalized system called TQ(M) is proved to logically consistent, then 
metamodel M must have a interpretation that can be satisfied, so the domain based on 
metamodel M is not empty, thus it is meaningful to discuss other properties based on 
metamodel M in the domain. From the point of view of formalization, a legal model is 
an interpretation that satisfies all constraint formulas of AΣ(M), so the relationship 
that model satisfies metamodel is equivalent to the relationship that the interpretation 
of TQ(M) satisfies TQ(M). By equivalence of satisfaction relationship and logical 
consistency, reference to the literature [12], we can get determination method of model 
consistency. 
Inference 1 (Logical consistency of model). If union of constraint axiom set AΣ(M) 
of TQ(M) and set of first-order predicate statements TL(S) generated via model S is 
logically consistent, then the model S is consistent; instead, if union of constraint 
axiom set AΣ(M) of TQ(M) and set of first-order predicate statements TL(S) generated 
via model S is logically inconsistent, denoted AΣ(M)∪TL(S)├False, then the model S 
is inconsistent. 

5 Design of LMapMSS 

Based on signature mapping, axiom mapping and model mapping, reference to the 
literature [12], formalization automatic mapping engine for model and metamodel 
called LMapMSS (Logic Mapping of Metamodels and models Based on structural 
semantics) is designed and implemented to finish automatic translation from XML 
format model and metamodel built based on XMML concrete syntax scheme to the 
corresponding first-order logic system in SPASS [15] format, thus we can realize 
automatic process of verification of consistency of metamodel and its model. 

LMapMSS consists of formalization automatic mapping module for metamodel 
called MapMBD (Mapping of Metamodel Based on Domain) and formalization auto-
matic mapping module for model called MapSBD (Mapping of inStances Based on 
Domain). MapMBD implements formalization of any metamodel via signature map-
ping and axiom mapping to finish verification of logical consistency of TQ(M). 
MapSBD implements formalization of any model via model mapping based on forma-
lization of metamodel to finish verification of logical consistency of model.  
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Based on .net 2.0 platform, by using C#.net as development language, we imple-
ment the corresponding prototype system for MapMBD and MapSBD and integrate 
them in the modeling environment of Archware, thus it becomes possible for Arch-
ware to validate metamodel and model built based on it. Running interface of 
MapMBD is shown in Fig 3, its left window shows XML format document of meta-
model produced by Archware and the corresponding first-order logic system in 
SPASS format generated by translation of MapMBD is showed in right window. 

 

 

Fig. 3. Running interface of LMapMSS 

6 Conclusions 

DSML defined in the informal way cannot precisely describe its structural semantics, 
which makes it difficult to systematically reason on properties of its models such as 
consistency. In response, the paper proposes an approach for automatically reasoning 
consistency of DSML, and then we illustrate our approach by a classic case, based on 
this, design and implementation of corresponding automatic mapping engine for for-
malizing DSML and its models are introduced to show the feasibility of our method. 
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Online Object Tracking via Collaborative Model

within the Cascaded Feedback Framework

Sheng Tian and Zhihua Wei
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Abstract. Generative and discriminative models are commonly used
in object tracking algorithms. However, the limitation of using these
models lies in the fact proved by a large number of experiments that a
single model is easily influenced by external factors, such as occlusion
and illumination variation. To address this issue, in this paper based
on a collaborative model within the cascaded feedback framework, we
propose an online object tracking algorithm where an adaptive generative
model has been developed which can adapt to the dynamic background.
Experimentally, we show that our algorithm is able to outperform the
state-of-the-art trackers on the various benchmark videos.

Keywords: Collaborative model, tracking, cascaded feedback.

1 Introduction

Object tracking plays a critical role in many vision applications such as video
surveillance, human-machine interaction and robot perception [1]. In recent years
much progress has been made and some assumptions about the target (e.g.,
restricted fast movement between two frames) can be allowed, however, tracking
arbitrary object in a dynamic background is still a challenging problem. It is
hard to develop a robust and efficient algorithm to deal with all factors, such as
large appearance change caused by illumination variation, occlusion, perspective
transformation and fast movement.

Given the initial state of a target object in a frame, the tracker can derive the
parameters of the model via the prior knowledge about the target. In the next
frame, generative and discriminative models can be used to predict the position
of the target object. To be more specific, generative models can be used in appear-
ance modeling for the object and make predictions using reconstruction error. An
object can be represented by various features such as Haar-like features [2,9,10],
holistic or local histograms [6,12], intensity [5], texture [17] or optical flow [18].
Some methods (e.g., PCA [5], integration or selection [2,4]) can be applied to
improve the robustness against occlusion or illumination variation. In this paper,
considering simplicity and efficiency, we adopt intensity values for representation.
Experiments show that the simple feature can also have a good effect.

Compared with appearance models which can be used to find the most similar
region of the target object, discriminative methods treat tracking as binary
classification problem which aims at distinguishing the target object from the
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background [2,8,9,10,11,17]. Furthermore, generative and discriminative models
have been integrated in several frameworks (e.g., co-training [16], cascade [14],
TLD [21]).

In this paper, we propose a simple but effective framework in which we
can firstly exploit a discriminative model to detect the most possible region,
then use a generative model to make local correction. The generative model
built in this framework can adaptively modify its appearance weight to adapt
to the surrounding background using the confidence value generated by the
discriminative model. For the discriminative model established in the framework,
we can train it online to adapt to appearance variations of the target object and
the background. Experimental studies on various challenging videos show that
the proposed algorithm can outperform the state-of-the-art trackers.

The rest of the paper is organized as follows. In Section 2, we review the
relevant models and explain the origin of our idea; in Section 3, we introduce our
tracking framework and two models we used; in Section 4, we present qualitative
and quantitative results on a number of challenging videos. We conclude in
Section 5.

2 Related Work

Sparse representation has aroused widespread concern in the field of vision
problems [3,13,15,19]. Despite this success, there is a major limitation of real-
time tracking - high computational cost. The appearance models based on sparse
representation usually have to generate a lot of sparse vectors from trivial patches
in target object region, which limits the search scope. In [19], particle filter is
adopted to search potential position. Unfortunately, it is hard to balance the
number of the particles, which means redundant particles increase computational
time, but on the other hand, small particles cause drift. In [3], the target object
is located by mean-shift. However, one potential disadvantage of this approach
is the phenomenon that object location is easy to drift. In addition, occlusion is
also one of the most challenging problems. Commonly, the tracker can update
its model in a small rate to deal with occlusion. Zhong et al. [19] propose a
weighted histogram which ignores the elements with large reconstruction error.
In this way the approach may ignore some important elements, which can lead to
a poor and unstable appearance representation. In light of the above analysis, we
propose an effective method with the ability to dynamically update appearance
structure.

Although discriminative methods can distinguish the target from the back-
ground, the positive samples still have a certain ambiguity which can result
in imprecise location. Babenko et al. [2] try to treat the positive samples as a
bag. However, the proposed algorithm weakens positive samples, so that similar
positive samples cannot be properly classified. Therefore, an intuitive idea occurs
to combine a discriminative model with an appearance model. Recently, Wu et
al. [20] evaluate some established online tracking algorithms. They show in this
evaluation that, a discriminative model, named CSK [8], is proved to have a very
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high speed of detecting and a continuous output structure. Due to these factors,
we try to integrate it with an appearance model. Moreover, several experiments
are designed to show that the integration can improve tracking accuracy.

3 Proposed Algorithm

In this section, we present the new algorithm in details. First, our framework
will be introduced so that under this new framework the generative model and
discriminative model can influence each other to generate a better output. Next,
two models adopted in the subsequent articles will be described.

3.1 Framework

Using CSK and Kernel Sparsity-based Appearance Model(KSAM, which will be
established in the third part of this section) we propose a collaborative model
within the cascaded feedback framework (See Fig. 1). The process should start
with marking the target in the first frame. To each new frame, the CSK tracker
firstly generates a hot region, the region with high probability of the target
object, by cropping out an image patch centered in the position which has been
estimated in the previous frame. Given the feedback from CSK, KSAM will
be activated to find the most similar candidate within the hot region. If the
maximum likelihood generated by KSAM is less than the threshold , estimated
position is the same one derived from CSK. At last, CSK and KSAM are updated
in this new estimated position.

Fig. 1. The collaborative model within the cascaded feedback framework
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3.2 Discriminative Model (CSK)

The CSK tracker exploits circulant matrix to train the classifier with all samples
collected around the estimated position of the target. The key for its outstanding
speed is that it uses Fast Fourier Transform (FFT) which converts convolutional
operations to element-wise operations, and it can compute all the responses
simultaneously to generate a confidence map. Here we provide a brief overview
of this approach [8].

A classifier can be trained by estimating the parameters that minimize the
cost function. CSK makes use of Regularized Least Squares (RLS) in Eq. 1

min
w

m∑
i=1

‖y− < φ(xi), w >‖2 + λ < w,w > (1)

which has a simple closed-form solution in Eq. 2,

α = (K + λI)
−1
y (2)

where φ is the mapping to the Hilbert space induced by the kernel K in Eq.2, λ
controls the amount of regularization, K is the kernel matrix, and the solution
w is implicitly represented by the vector α.

In consideration of all cyclic shifts in a gray-scale image patch centered on
the target, the kernel matrix can be represented as a circulant structure if it is
a unitarily invariant kernel. Then we can obtain a new solution by using Fourier
Transform:

α = F−1

(
F (y)

F (K) + λ

)
(3)

where the division is performed in an element-wise way.
The detection step is performed by cropping out a patch in a new frame, and

the confidence value can be calculated as Eq. 4.

y = F−1 (F (K)& F (α)) (4)

The target position is then estimated by finding the translation that maximized
the score y. Since the output structure is continuous, we can exploit the generated
confidence map to obtain a hot region with high probability of the target object,
as the input of our appearance model. For more details of the algorithm, see the
reference [8]. Moreover, the tracker can be trained online using the function (5)
in [7]

Ap = F (α) =

∑p
i=1 βiF (K

i)F (yi)∑p
i=1 βiF (K

i) (F (Ki) + λ)
(5)

where all extracted appearances of the target from the first frame till the current
frame p are taken into consideration, the weights βi are set using a learning rate
parameter γ. The total model and the object appearance are updated using (6)
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Ap = Ap
N/A

p
D

Ap
N = (1− γ)Ap−1

N + γF (yp)F (Kp
N ) (6a)

Ap
D = (1− γ)Ap−1

D + γF (Kp) (F (Kp) + λ) (6b)

xp = (1− γ)xp−1 + γxp. (6c)

Here the numerator Ap
N and denominator Ap

D are updated separately.

3.3 Generative Model (KSAM)

Motivated by the success of sparse coding for image classification [13,15] and
object tracking [3,19], we propose a generative model based on sparse coding and
exploit a dynamic Gaussian kernel to modify the weight of coefficient vectors for
the adaptation to the surrounding background. We call it Kernel Sparsity-based
Appearance Model (KSAM).

One image patch can be split into several trivial patches by sliding windows in
the normalized image. By Eq. 7, we can get a set of sparse coefficient vector α

min
ai

‖xi −Dαi‖22 + λ ‖αi‖1 (7)

where the dictionary D is generated from k-means cluster centers which consist
of the most representative pattern of the target object [19]. Considering the
spatial information of the image patch, we can write the sparse coefficient vector
in matrix form:

A =

⎛⎜⎝α11 · · · α1n

...
. . .

...
αm1 · · · αmn

⎞⎟⎠ (8)

where m and n are determined by the size of sliding window and image patch.
Matrix A can be changed into its linear form by a learning rate λ:

Ap = (1− λ)Ap−1 + λAp (9)

The reconstruction error can be calculated in Eq. 10.

rerrp =
∑
r,c

∥∥xpr,c −Dαp−1
r,c

∥∥2 (10)

were (r, c) ∈ {1...m} × {1...n}.
Typically, the rectangle representation of the target object can lead to the am-

biguity between the object and the background (See Fig. 2). Fortunately, it is not
a big question to discriminative models because they can distinguish the object
and the background by positive and negative samples. However, the ambiguity
has a negative effect on appearance model, especially when occlusion occurs.

In order to solve the problem of the ambiguity, we try to apply a Gaussian
kernel. Further, to avoid losing the information of the initial object, we extend
(10) by a similar function (See Eq. 11)
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Fig. 2. The ambiguity between the object and the background

rerrpnew =
∑
r,c

K(r, c)
∥∥xpr,c −Dαp−1

r,c

∥∥2 (1− sim (αp
r,c, α

1
r,c

))
. (11)

K(r, c) = exp

(
− 1

2h2
(
(r − cen)2 + (c− cen)2)) (12)

sim(α, β) =

∑
imin(ai, bi)∑

i bi
(13)

Here cen in (12) is the center of the image patch, h is the bandwidth of the
Gaussian kernel. ai and bi in (13) are the coefficient elements of the vector α
and β.

Moreover, according to the max confidence value generated by CSK, the
information whether the target object can be easy to be distinguished with
the background will be obtained. For doing this, we modify the bandwidth h in
Eq. 12 to change the weight of the object appearance (See Eq.14)

h = σ ×max response+ base. (14)

Here base is the benchmark value determined by the initial state of the target
object, and σ is the weighing coefficient which controls the change rate of h.
Max response is derived by CSK.

Given the reconstruction error of the candidate, the likelihood can be calcu-
lated by:

likelihoodcandidate = exp

(
−rerr

2
candidate

2σ2

)
(15)

4 Experiments and Discussion

4.1 Experiment Setting

In order to evaluate the performance of our algorithm, we make experiments
on some challenging image sequences listed in Table 1. These sequences cover
most challenging problems in object tracking: abrupt motion, deformation,
illumination variation,background cluster etc. For comparison, we select seven
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Table 1. List of the test sequences (IV: Illumination Variation, SV: Scale Variation,
OCC: Occlusion, DEF: Deformation, MB: Motion Blur, FM: Fast Motion, IPR: In-
Plane Rotation, OPR: Out-of-Plane Rotation, BC: Background Clutters)

Sequence Frame Number Attribute

bolt 350 OCC, DEF, IPR, OPR
deer 71 MB, FM, IPR, BC
david 350 OCC, DEF,OPR,BC
faceocc 892 OCC
tiger 354 IV, OCC, DEF, MB, FM, IPR, OPR
soccer 392 IV, SV, OCC, MB, FM, IPR, OPR, BC
skating 400 IV, SV, OCC, DEF, OPR, BC
coke 291 IV, OCC, FM, IPR, OPR, BC

Table 2. Precision plot based on [20] (threshold = 20 pixels)

Sequence MIL SCM CSK IVT LSK Struck TLD Our

bolt 0.014 0.031 0.034 0.014 0.977 0.02 0.306 0.597
deer 0.127 0.028 1 0.028 0.338 1 0.732 1
david 0.738 0.496 0.659 0.754 0.476 0.337 0.111 1
faceocc 0.221 0.933 0.947 0.645 0.122 0.575 0.203 0.872
tiger 0.095 0.126 0.255 0.080 0.418 0.175 0.446 0.338
soccer 0.191 0.268 0.135 0.174 0.120 0.253 0.115 0.370
skating 0.130 0.768 0.988 0.108 0.698 0.465 0.318 0.873
coke 0.151 0.430 0.873 0.131 0.258 0.949 0.684 0.787

state-of-the-art algorithms with the same initial position of the target. These
algorithms include the MIL [2], SCM [19], CSK [8], IVT [5], LSK [3], Struck [11]
and TLD [21]. We present some representative results in the next part of this
section, together with the analysis of the experimental results respectively from
the perspectives of qualitative and quantitative.

Values of the parameters involved are presented as follows. The variable λ in
Eq. 5 is fixed to be 0.01 and the learning rate γ in Eq. 6 is fixed to be 0.075. The
size of sliding window for KSAM is 6 × 6, and the target and candidate object
are resized and normalized to 32× 32. The row number and column number of
dictionary D in Eq. 11 are 36 and 50. The variable λ in Eq. 9 and σ in Eq. 11 are
fixed to be 0.025 and 0.8. The variable σ in Eq. 14 is fixed to 2, but the variable
base in Eq. 13 ranges from 2 to 4.

4.2 Experiment Results

We evaluate the above-mentioned algorithms using the precision plot as well as
the success plot described in [20]. The results are shown in Table 2 (using the
score for the threshold = 20 pixels) and Table 3 (using the success rate value for
the threshold = 0.2). Figure 3 shows the precision plot in various situations.
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Table 3. Precision plot based on [20] (threshold = 20 pixels)

Sequence MIL SCM CSK IVT LSK Struck TLD Our

bolt 0.014 0.027 0.034 0.014 1 0.020 0.306 0.603
deer 0.225 0.155 1 0.042 0.352 1 0.761 1
david 0.738 0.500 0.675 0.746 0.528 0.353 0.115 1
faceocc 1 1 1 1 1 1 0.952 1
tiger 0.232 0.261 0.456 0.132 0.948 0.244 0.593 0.607
soccer 0.250 0.398 0.214 0.237 0.122 0.281 0.176 0.582
skating 0.238 1 0.888 0.113 0.710 0.550 0.248 0.873
coke 0.385 0.574 0.969 0.155 0.371 0.959 0.804 0.873

Fig. 3. The precision plot in various situations. A comparative study of the proposed
algorithm with other seven state-of-the-art methods on challenging sequences.

4.3 Experiment Analysis

In terms of the experimental results, our algorithm exhibits an excellent per-
formance. For our tracker based on CSK, the results of our algorithm for bolt,
david, tiger and soccer are better than the result of CSK. It is noted, however,
that for coke, skat-ing and faceocc, our tracker is not as good as CSK because
the appearance model fails to update the appearance correctly for big occlusion.
Figure 3 shows some tracking results on sequences.
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(a) Tracking results on sequence bolt.

(b) Tracking results on sequence coke.

(c) Tracking results on sequence david.

(d) Tracking results on sequence deer.

(e) Tracking results on sequence faceocc.

(f) Tracking results on sequence skating.

(g) Tracking results on sequence soccer.

(h) Tracking results on sequence tiger.

Fig. 4. Sample tracking results of evaluated algorithms
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For the sequence coke, it is obvious that our tracker lost the target object
from frame 260. Owing to complete occlusion for a period of time, our tracker
learned the wrong appearance leading to wrong estimate. In the sequence david
and deer, our tracker achieved perfect performance which can track the object
completely. In the sequence bolt, most of evaluated trackers lost the target with
similar color of the object and the background between frame 10 and frame 20.
For appearance model, our tracker succeeded in tracking the target object, but
lost target from frame 200 due to the sprinting of the object in front of the
finish line which leaded to fast motion and large scale change in the appearance.
In the frame 350 for sequence skating, there was illumination variation and a
low contrast between the foreground and the background . Our tracker failed at
that frame but CSK and SCM can track the object to the end. For the sequence
soccer, in spite of partial occlusion and low contrast between the foreground
and the background, our tracker performed better than other trackers. For the
sequence tiger, when the target was covered by the leaf in the frame 230, all
the trackers failed. In average, Figure 3 shows that our algorithm has a better
performance than other algorithms in various situations.

5 Conclusion

In this paper, we have presented a cascaded feedback scheme for the combination
of the discriminative model and generative model so as to improve the object
tracking performance. Through the experiments, our algorithm has a good
performance, but it cannot fully adapted to the types of problems. In particular,
if an object is completely occluded for a long time or experiences with a large
appearance change in a short time, our tracker will lose the target object.
Furthermore, the variable base in Eq. 14 can be adjusted according to the initial
state of the object and can be sensitive to the scale variation. Further work will
be done to deal with these problems to get a more robust tracking algorithm.
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Abstract. Sparse representation based classifier (SRC) has been suc-
cessfully applied in different pattern recognition tasks. Based on the anal-
yses on SRC, we find that SRC is a kind of nearest subspace classifier.
In this paper, a new feature extraction algorithm called discriminative
principal subspaces alignment (DPSA) is developed according to the geo-
metrical interpretations of SRC. Namely, DPSA aims to find a subspace
wherein samples lie close to the hyperplanes spanned by the their ho-
mogenous samples and appear far away to the hyperplanes spanned by
the their heterogenous samples. Different from the existing SRC-based
feature algorithms, DPSA does not need the reconstruction coefficient
vectors computed by SRC. Hence, DPSA is much more efficient than
the SRC-based feature extraction algorithms. The face recognition ex-
periments conducted on three benchmark face images databases (AR
database, the extended Yale B database and CMU PIE) demonstrate
the superiority of our DPSA algorithm.

Keywords: Feature extraction, nearest subspace classifier, sparse rep-
resentation based classifier, linear regression based classification.

1 Introduction

Feature extraction is often required as a preliminary stage in many data pro-
cessing applications. In the past few decades, many feature extraction methods
have been proposed[1,2,3]. Particularly, the subspace learning[2,3] based feature
extraction methods have become some of the most popular ones.

Two most well-known subspace learning methods are principal component
analysis (PCA)[4] and linear discriminant analysis (LDA)[5]. Because of their
high efficiencies, PCA and LDA have been widely applied for different practical
feature extraction applications. Moreover, a family of manifold learning-related
methods have aroused a lot of interest. For example, He et al. proposed two well-
known algorithms, locality preserving projections (LPP)[6] and neighborhood
preserving projection (NPE)[7]. Yan et al. presented a marginal Fisher analysis
(MFA)[8] algorithm and formulated many existing subspace learning algorithms
into a unified graph-embedding framework.

D. Miao et al. (Eds.): RSKT 2014, LNAI 8818, pp. 320–331, 2014.
DOI: 10.1007/978-3-319-11740-9_30 c© Springer International Publishing Switzerland 2014
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The goals of these mentioned methods are to find subspaces wherein spe-
cific statistical properties of data sets can be well preserved. However, in pat-
tern recognition fields, after the extracted features are obtained, a proper clas-
sifier needs to be chosen. If the chosen classifier is appropriate for the ex-
tracted features, good recognition performances can be achieved. Hence, feature
extraction algorithms designed according to the given classifiers are required.
Yang et al. proposed a local mean based nearest neighbor discriminant analysis
(LMNN-DA)[9] on the basis of the local mean based nearest neighbor (LM-NN)
classifier[10]. Based on the recently proposed linear regression-based classifica-
tion method (LRC)[11], Chen et al proposed a reconstructive discriminant anal-
ysis (RDA) method[12]. As reported in [9,12], LMNN-DA, HOLDA and RDA
have achieved promising results in biometrics recognition and handwriting digits
recognition.

Recently, sparse representation based classifier (SRC)[13] and its variation
(collaborative representation based classifier (CRC)[14]) have achieved excellent
results in face recognition. Hence, SRC-related feature extraction algorithms
have attracted many attentions. Qiao et al. constructed a kind of l1-norm affin-
ity graph based on SRC and presented a sparsity preserving projections (SPP)
method[15]. However, SPP is an unsupervised algorithm and it aims to find a
subspace in which the sparse reconstructive relationship of original data points
will be preserved by the low dimensional embeddings. Based on the classifica-
tion rules of SRC, Cui et al. introduced the class information of data sets into
SPP and devised a sparse maximummargin discriminant analysis (SMMDA)[17].
Lu et al. presented a discriminant sparsity neighborhood preserving embedding
(DSNPE)[16] whose objective function is much similar to RDA. We can find that
there exist two drawbacks in the two algorithms: firstly, they use the reconstruc-
tion coefficient vectors computed in the original space. Because the reconstruc-
tion relationship of the samples in the original space may not be in accord with
that in the obtained low-dimensional subspace, SRC can not be guaranteed to
achieve better results in the projected subspaces. Secondly, because SRC is used
to compute the reconstruction coefficient vectors, the computation cost of the
two algorithms is very expensive.

In this paper, based on the analysis on SRC and LRC, we find that SRC can
be regarded as an extension of nearest subspace classifier. Hence, we propose
a new supervised feature extraction algorithm, termed discriminative principal
subspaces alignment (DPSA), to find a subspace wherein samples lie close to the
hyperplanes spanned by the their homogenous samples and appear far away to
the hyperplanes spanned by the their heterogenous samples.

2 Sparse Representation Based Classifier (SRC) and
Linear Regression Classification (LRC)

Although SRC and LRC have different reconstruction strategies, they share the
similar classification rules: a query image is identified to the class with the min-
imum reconstruction error. Let us introduce SRC firstly.
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2.1 Sparse Representation Based Classifier (SRC)

SRC has a compact mathematical expression. Suppose we have C classes of sub-
jects. DenoteXi ∈ RD×ni as the dataset of the ith class, and each column ofXi is
a sample of class i. The entire training set is defined as X = [X1,X2, · · · ,XC ] ∈
RD×n, where n =

∑
i ni. Once a query image y comes, we represent y by us-

ing the training samples, namely y = Xa, where a = [a1, a2, · · · , aC ] and ai

is the reconstruction representation vector associated with class i. If y is from
the ith class, usually y = Xiai holds well. This implies that most coefficients in
aj(j �= i) are nearly zeros and only ai has significant nonzero entries. Then the
sparest solution a∗ can be sought by solving the following optimization problem:

a∗ = argmin ‖a‖0 s.t. y = Xa (1)

where ‖ · ‖o is the l0-norm, which counts the number of nonzero entries in a
vector.

Solving l0 optimization problem (1), however, is NP hard. Fortunately, recent
research efforts reveal that for certain dictionaries, if the solution a is sparse
enough, finding the solution of the l0 optimization problem is equivalent to a l1
optimization problem[18]:

a∗ = argmin ‖a‖1 s.t. y = Xa (2)

In practice, Eq. (2) is usually transferred to a regularization problem, which is
also called Lasso[19]:

min
a
‖y−Xa‖22 + λ‖a‖1 (3)

Once a∗ is obtained, SRC computes the residuals ri(y) = ‖y − Xi(a∗)i‖2 for
each class i. If rl = min{ri(y)|i = 1, 2, · · · , C}, y is assigned to class l.

Recently, Zhang et al. pointed out that the use of collaborative representation
was more crucial than the l1-sparsity of a[13]. And the l2-norm regularization on
a can do a similar job to l1-norm regularization but with much less computational
cost. So they proposed the collaborative representation based classifier(CRC)
method which tried to solve the following problem:

min
a
‖y−Xa‖22 + λ‖a‖22 (4)

The optimal solution of Eq. (4) can be computed efficiently, namely a∗ =
(XTX + λI)−1XTy. The classification rules of CRC is much similar to that
of SRC, but the residuals in CRC is defined as ri(y) = ‖y−Xiai‖2/‖ai‖2.

2.2 Linear Regression Classification (LRC)

LRC is devised based on the assumption that samples from a specific class lie
in a linear subspace. Then for a query sample, LRC uses training samples from
different classes to linearly represent it, namely y = Xiai, where ai is the re-
construction coefficient vector obtained by using the training samples belong-
ing to class i. Then by using Least-squares estimation, we can obtain ai =
((Xi)TXi)−1(Xi)Ty. Finally, LRC computes the residuals ri(y) = ‖y−Xiai‖2
for each class i and assigns y to the class with corresponding minimal residual.
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Fig. 1. The geometric interpretations of SRC, CRC and LRC. (a) SRC (CRC); (b)
LRC

2.3 Analysis on SRC and LRC

We use Fig. 1 to illustrate the geometric interpretations of SRC and LRC. Fig.1
(a) is used to explain the classification rules of SRC and Fig. 1(b) shows the
classification method of LRC. Here we suppose the training set X = [X1,X2]
and y is a query sample. C1 and C2 are the subspaces spanned by the samples
belonging to X1 and X2 respectively. In Fig. 1(a), a is computed by SRC and
ai = δi(a)(i = 1, 2)1. The residuals r1SRC(y) and r

2
SRC(y) obtained by SRC are

defined as the magnitude of the cyan line and blue line respectively.
In LRC, riLRC is defined as the distance between y and the subspace spanned

by Xi. Hence, in Fig. 1(b), the angles α1 and α2 are shown to be π/2. Thus
LRC is a kind of nearest subspace classification method[11]. By comparing Fig.
1(a) and Fig. 1(b), we can find that SRC can be regarded as an extension of the
nearest subspace classifier.

3 Discriminative Principal Subspaces Alignment (DPSA)

In this section, we propose a new supervised feature extraction algorithm termed
discriminative principal subspaces alignment (DPSA)which can fit SRC and
LRC well.

3.1 Motivation

From the descriptions in Section 2.3, we know that SRC is an extension of nearest
subspace classifier. Hence, if SRC can achieve better recognition accuracies in
a projected space, query samples should lie close to the subspaces spanned by
the their homogenous samples and appear far away to the subspaces spanned
by the their heterogenous samples. Suppose a training set X, a training sample
xj
i ∈ X(i = 1, 2, · · · , n, j = 1, 2, · · · , C) and its low dimensional projection

zji = PTxj
i , where P ∈ RD×d is the required transformation matrix. d is the

1 δi is the characteristic function that selects the coefficients associated with the ith
class.
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dimension of the projected subspace. Then for xj
i , we can find its homogenous

subclassXj ⊂ X and C−1 heterogenous subclassesXk ⊂ X(k = 1, 2, · · · , C and
k �= j). Xj consists of all the samples in the same class of xj

i and Xk contains

the samples in the kth different classes of xj
i .

For Xj , we can project xj
i into the d-dimension principal subspace of Xj . We

denote the projection of xj
i as z̃ji , then we have

z̃ji = Qj(xj
i − x̄j) (5)

where Qj is composed of d left singular vectors of matrix XjHj corresponding
to its d largest singular values. x̄j is the mean of Xj and Hj = Ij − ej(ej)T /nj ,
Ij ∈ Rnj×nj is an identity matrix and ej is a nj-dimension column vector with

all entities equal to 1. Define Z̃j = [z̃j1, z̃
j
2, · · · , z̃jni

], then Z̃j = QjXjHj .

Meanwhile, we can obtain another d-dimension embedding of xj
i (denoted as

zji ) by using DPSA, namely zji = PTxj
i . Then the following equation holds

zji − z̄j = f(z̃ji ) + ε
j
wi (6)

where εjwi = ε
jt
wi+ε

jr
wi is the within-class residual error. ε

jt
wi represents the within-

class translation error and εjrwi indicates the within-class reconstruction error. z̄j

is the mean of Zj = [zj1, z
j
2, · · · , zjnj

]. Suppose Ej
w = [εjw1, ε

j
w2, · · · , εjwnj

] =

Ejt
w +Ejr

w , then
ZjHj = f(Z̃j) +Ej

w (7)

Because zji and z̃ji are all the d-dimensional embeddings of xj
i , they can be

regarded as lying in a same d-dimension space. Hence, we have f(Z̃j
i ) = LjZ̃j

i .

Lj is an affine matrix which is used to translate z̃ji in the d-dimension space.
In order to minimize the translation error vector Ejt

w , the optimal Lj can be
obtained by solving the following problem

min
Lj
‖ZjHj − LjZ̃j‖22 (8)

then Lj = ZjHj(Z̃j)+. (Z̃j)+ is the Moore-Penrose generalized inverse of Z̃j .
Substitute Lj into Eq. (8), then the within-class translation error Etj

w can be
minimized. Hence Ej

w ≈ Erj
w . Then we have

Erj
w = ZjHj − ZjHj(Z̃j)+Z̃j (9)

Actually, ‖Erj
w ‖2 can be regarded as the sum of all the distances from zj(j =

1, 2, · · · , nj) to the d-dimension principal subspace of Xj . DPSA aims to mini-
mize Erj

w for arbitrary j, this goal can be achieved by the following optimization
problem:

min ‖Er
w‖22 = min

C∑
j=1

‖Erj
w ‖22

= min
C∑

j=1

‖ZjHj
(
I− (Z̃j)+Z̃j

)‖22 (10)
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where Er
w is the total within-class reconstruction error. let Wj

w = Hj
(
I −

(Z̃j)+Z̃j
)
, Z = [Z1,Z2, · · · ,ZC ] and S = [S1,S2, · · · ,SC ]. Sj is the 0 − 1 selec-

tion matrix such that ZSj = Zj . Because Z = PTX, Eq. (10) can be expressed
as follows:

min ‖Er
w‖22 = min

C∑
j=1

Tr
(
ZSjWj

w(W
j
w)

T (Sj)T (Zj)T
)

= minTr
(
PTX

( C∑
j=1

SjWj
w(W

j
w)

T (Sj)T
)
XTP

)
= minTr

(
PTXSwX

TP
)

(11)

where Sw =
∑C

j=1 S
jWj

w(W
j
w)

T (Sj)T and Tr(·) is the trace of a matrix.

On the other hand, for one of the heterogenous subclasses Xk of xj
i , we also

find the d-dimension projection of xj
i (denoted as z̃jki ) in the principal subspace of

Xk by usingQk, whereQk is composed of d left singular vectors of matrixXkHk

corresponding to its d largest singular values. Then by following the methodology
described above, we can obtain an affine matrix Ljk = ZjHj(Z̃jk

i )+ and the kth
between-class reconstruction error

‖Erjk
b ‖22 = ‖ZjHj

(
I− (Z̃jk)+Z̃jk

)‖22 (12)

‖Erjk
b ‖2 is the sum of all the distances from zj(j = 1, 2, · · · , nj) to the d-

dimension principal subspace of Xk. We hope that Erjk
b can be maximized in

the projected space for every pairs of j and k, hence

max ‖Er
b‖22 = max

C∑
j=1

C∑
k=1,k �=j

‖Erjk‖22

= maxTr

(
PTX

( C∑
j=1

Sj
( C∑
k=1,k �=j

Wjk
b (Wjk

b )T
)
(Sj)T

)
XTP

)
= maxTr

(
PTXSbX

TP
)

(13)

where Sb =
∑C

j=1 S
j
(∑C

k=1,k �=j W
jk
b (Wjk

b )T
)
(Sj)T , Wjk

b = Hj
(
I−(Z̃jk)+Z̃jk

)
.

Finally, the objective function of DPSA is defined as follows:

JDPSA = max
‖Er

b‖22
‖Er

w‖22
= max

Tr
(
PTXSbX

TP
)

Tr
(
PTXSwXTP

) (14)

Generally, we add the constraint PTXSwX
TP = I, such that the extracted

features are uncorrelated. Then the column vectors of the optimal projection
matrix P can be chosen as the d largest generalized eigenvectors of XSbX

Tp =
λXSwX

Tp.
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4 Experiments

In this section, we will use three face image databases (AR database[20], the
extend Yale B face database[21], CMU PIE face database[22]) to verify the ef-
fectiveness of our proposed DPSA. We choose five representative algorithms in-
cluding PCA, LDA, MFA (manifold learning-related algorithm), SMMDA(SRC-
based algorithm), RDA (LRC-based algorithm) for comparisons. We use these
feature extraction algorithms to find the low-dimensional subspaces, then SRC
and LRC are used for classification in the projected spaces. The classification
accuracy is used as the criterion to compare the performances of corresponding
feature extraction algorithms.

Moreover, several problems need to be pointed out. Firstly, we use Eq. (3) to
solve l1-minimization problems in SRC. The regularization parameter λ is set
to 0.001. And MATLAB function: LeastR in the SLEP package[23] to solve the
l1-minimization problems. Secondly, in MFA, the two neighborhood parameters
are both set to 6. Thirdly, in RDA, the number of between-class nearest sub-
spaces K should be chosen. In our experiments, we set K = C − 1. Fourthly,
all the experiments are carried out using MATLAB on a 1.5 GHz machine with
4GB RAM.

4.1 Information of Three Face Databases

We briefly introduce the three face image databases as follows.
AR database consists of over 4000 face images of 126 individuals. For each

individual, 26 pictures were taken in two sessions (separated by two weeks) and
each section contains 13 images. We use a non-occluded subset (14 images per
subject) of AR, which consists of 50 male and 50 female subjects. Some sample
images of one person are shown in Fig. 2(a).

The extended Yale B face database contains 38 human subjects and around
64 near frontal images under different illuminations per individual. In our ex-
periments, each image is resized to 32 × 32 pixels. Some sample images of one
person are shown in Fig. 2(b).

The CMU PIE face database contains 68 subjects with over 40000 faces. Here
we use a subset containing images of pose C27 (a frontal pose) of 68 persons,
each with 49 images. All images are resized to be 64 × 64 pixels. Some sample
images of one person are shown in Fig. 2(c).

To avoid overfitting, we first perform PCA and reduce the dimension of images
data to be 200 before implementing the evaluating algorithms.

4.2 Experiments on AR Database

For AR face database, the recognition rate curves of each algorithm versus the
variation of dimensions are shown in Fig. 3. From Fig. 3, we firstly can find
that SRC outperforms LRC on the corresponding subspaces obtained by the
feature extraction algorithms. DPSA is superior to PCA, LDA, MFA and RDA.
We illustrate the average training time of each algorithm in Table 1. It can be
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(a) Sample images of AR database

(b) Sample images of the extended Yale B database

(c) Sample images of CMU PIE database

Fig. 2. Sample images of three face databases (a) AR database; (b) Yale B database;
(c) CMU PIE database
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Fig. 3. Recognition accuracy curves of each method versus variation of dimensions on
AR database. (a) The results obtained by SRC; (b) The results obtained by LRC.

found that the training time of SMMDA is about ten times more than that of
DPSA. The maximal recognition rates obtained by each algorithm and their
corresponding dimensions are also reported in Table 1.

Table 1. Maximal recognition rates (%), corresponding dimensions and CPU time for
training on AR face database

Classifier
Algorithms

DPSA PCA LDA MFA SMMDA RDA
SRC 93.13(190) 91.56(190) 89.99(99) 90.98(186) 92.99(180) 91.85(190)
LRC 92.99(160) 72.10(190) 86.98(99) 87.43(176) 92.13(180) 73.24(105)

Time(s) 46.27 0.03 0.18 0.21 463.18 14.42
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4.3 Experiments on the Extended Yale B Face Database and CMU
PIE Database

For the extended Yale B face database and CMU PIE face database, the image
set is partitioned into a training set and a testing set with different numbers.
For ease of representation, the experiments are named as q-train, which means
that q images per individual are selected for training and the remaining images
for testing. q is selected as 10 and 20 when the extended Yale B face database
is used, and q is selected as 10 and 15 when CMU PIE face database is used.
Moreover, in order to robustly evaluate the performances of different algorithms
in different training and testing conditions, we select images randomly and repeat
the experiments 10 times in each condition. The average recognition rates of each
method across ten tests on the two databases are shown in Fig. 4 and Fig. 5
respectively. The details of the experimental results on the two databases are
summarized in Table 2 and Table 3.

From Fig. 4 and Fig. 5, we can get several conclusions:
1) DPSA outperforms PCA, LDA, MFA and RDA. Namely, SRC and LRC

can achieve better performances in the subspaces obtained by DPSA.
2) Compared to DPSA, SMMDA achieves competitive results. In the exper-

iments conducted on the extended Yale B database, we can see that DPSA
outperforms SMMDA in relative low-dimensional subspaces (e.g. d ≤ 90) when
SRC is used. This may imply that the subspaces obtained by DPSA are more
suitable for SRC than that obtained by SMMDA. However, when LRC is applied,
DPSA is only slightly better than SMMDA. In the experiments conducted on
CMU PIE database, DPSA constantly outperforms SMMDA when SRC is used.
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Fig. 4. Recognition accuracy curves of each method versus variation of dimensions on
the extended Yale B face database.(a) and (b) show the results obtained by SRC and
LRC on 10-train respectively, (c) and (d) show the results obtained by SRC and LRC
on 20-train respectively.
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Fig. 5. Recognition accuracy curves of each method versus variation of dimensions
on CMU PIE face database. (a) and (b) show the results obtained by SRC and LRC
on 10-train respectively, (c) and (d) show the results obtained by SRC and LRC on
15-train respectively.

Table 2. Maximal recognition rates (%), corresponding dimensions and CPU time for
training on the extended Yale B face database

Classifier
Algorithms

DPSA PCA LDA MFA SMMDA RDA

10-train
SRC 88.78(170) 87.57(190) 83.06(37) 87.62(190) 88.61(170) 87.34(180)
LRC 89.75(190) 81.05(180) 79.08(37) 86.85(190) 89.18(190) 81.18(190)

Time(s) 2.68 0.08 0.09 0.17 167.45 14.42

20-train
SRC 94.95(190) 92.90(180) 90.87(37) 93.32(190) 94.50(190) 93.71(190)
LRC 93.89(170) 90.84(180) 85.13(37) 91.99(190) 93.56(170) 90.84(190)

Time(s) 13.19 0.12 0.60 0.93 383.24 27.184

Table 3. Maximal recognition rates (%), corresponding dimensions and CPU time for
training on CMU PIE face database

Classifier
Algorithms

DPSA PCA LDA MFA SMMDA RDA

10-train
SRC 97.13(190) 94.79(190) 95.28(67) 94.94(190) 95.85(190) 95.21(180)
LRC 96.30(190) 92.94(190) 95.09(67) 93.77(190) 95.96(150) 93.36(190)

Time(s) 19.54 0.02 0.14 0.17 334.63 18.43

20-train
SRC 97.33(170) 96.75(110) 96.80(67) 96.28(190) 96.97(140) 97.23(130)
LRC 97.62(190) 96.62(190) 96.62(67) 95.67(190) 97.18(130) 96.71(190)

Time(s) 44.11 0.02 0.18 0.26 492.71 65.79

And When LRC is used, DPSA is obviously better than SMMDA in relatively
high-dimensional subspaces (e.g. d > 120).

In addition, from Table 2 and Table 3, we can find that the CPU time of
SMMDA for training on the two databases are much larger than that of DPSA.
Therefore, based on all the experiments, we can conclude that DPSA is an effi-
cient feature extraction algorithm for SRC and LRC.
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5 Conclusion

In this paper, we propose a novel feature extraction algorithm, termed discrimi-
native principal subspaces alignment (DPSA), based on the geometrical view of
SRC and LRC. Although DPSA and the existing SRC-based (LRC-based) fea-
ture extraction algorithms have similar goals, the structure of DPSA is totally
different. Compared to the existing SRC-based (or LRC-based) feature extrac-
tion algorithms, DPSA is not faithfully designed based on the classification rules
of SRC or LRC. Namely, DPSA does not need the reconstruction coefficient
vectors computed by SRC or LRC. Hence, DPSA is much efficient and robust.
Finally, the experiments on three benchmark face images databases prove the
effectiveness of DPSA.

Acknowledgments. This work is supported by the National Science Founda-
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Abstract. Document clustering is a widely research topic in the area of machine
learning. A number of approaches have been proposed to represent and cluster
documents. One of the recent trends in document clustering research is to in-
corporate the semantic information into document representation. In this paper,
we introduce a novel technique for capturing the robust and reliable semantic
information from term-term co-occurrence statistics. Firstly, we propose a novel
method to evaluate the explicit semantic relation between terms from their co-
occurrence information. Then the underlying semantic relation between terms is
also captured by their interaction with other terms. Lastly, these two complemen-
tary semantic relations are integrated together to capture the complete semantic
information from the original documents. Experimental results show that clus-
tering performance improves significantly by enriching document representation
with the semantic information.

1 Introduction

Document clustering aims to organize the documents into groups according to their
similarity. The traditional approaches are mostly based on Bags of words (BOW) model,
which represents the documents with the terms and their frequency in the document.
However, this model has the limitation that it assumes the terms in the document are
independent thus regardless of the semantic relationship between them. It considers the
documents are dissimilar if no overlapped terms exist, even though they describe the
same topic.

To overcome the disadvantage of BOW model, a lot of approaches have been pro-
posed to capture the semantic relation between terms to enhance document cluster-
ing. Generally, there are two directions to explore the semantic relation between terms:
knowledge-based approach and statistics-based approach [3][6][7][13]. The knowledge-
based approach measures the semantic relation between terms using the background
knowledge which is constructed from ontology, such as WordNet [12] and Wikipedia
[6]. Although the incorporation of the background information into BOW model has
shown an improvement in document clustering, this approach has the limitation that the
coverage of the ontology is limited, even for WordNet or Wikipedia. Besides, the con-
text information has been overlooked to compute the semantic relation between terms.
The statistics-based approach captures the semantic relation between terms based on
term co-occurrence information, which evaluates the semantic relation between terms
from the significance of their co-occurrence pattern. The most previous statistics-based
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DOI: 10.1007/978-3-319-11740-9_31 c© Springer International Publishing Switzerland 2014
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approaches only capture the explicit semantic relation between terms from their co-
occurrence information, but the underlying relation has been overlooked, which is also
essential for capturing the complete semantic relation between terms. Besides, the syn-
onymous and ambiguous terms could not be accurately handled in the previous ap-
proaches, and that would affect the accuracy of semantic relation evaluation in a
certain degree.

In this paper, we propose a novel approach to capture the semantic relation between
terms based on both the explicit and implicit relations between terms. It firstly captures
the explicit relation between terms from their co-occurrence information, and then the
implicit semantic relation is revealed by their interaction with other terms. Meanwhile,
Wikipedia is exploited to handle the synonymous and ambiguous terms. Lastly, the
explicit and implicit semantic relations are integrated to capture the complete semantic
information from the original documents, and then we extends the original BOW model
with the semantic information for document clustering.

The rest of the paper is organized as follows. Section 2 presents the background
of document clustering problem and reviews some related work. Section 3 proposes
a novel approach for mining the semantic relation between terms and analyzing the
semantic information of the original documents. The experimental results are discussed
in Section 4, and the conclusion and future work will be describe in Section 5.

2 Related Work

Document clustering is an unsupervised approach to group the similar document to-
gether, and most document clustering approaches are based on the BOW (Bag of Words)
model, which assumes that the terms in the document are independent. However, the
terms are always related to each other, and the related information between them could
be hierarchical relationship, compound word relation and synonym relation etc.

The semantic relation between terms was first introduced by Wong for document
representation [14], and then many approaches are proposed to measure the relation
between terms. Some approaches have been proposed to explore the semantic relation
between terms with background knowledge, like WordNet and Wikipedia. In [2], they
proposed to measure the relatedness between terms not by the exact term matching,
but by their semantic relation, which is measured based on the semantic information in
WordNet. However, WordNet has the limited coverage because it is manually built. In
[7], Wikipedia, the largest electronic encyclopaedia, was exploited for document clus-
tering. They construct a proper semantic matrix based on the semantic relation between
terms from the underlying structural information in Wikipedia, and then they incorpo-
rated the semantic matrix into traditional document similarity measure.

Another direction of term relation measure is based on the statistical information.
Examples of such work like the generalized vector space model (GVSM), which was
proposed by Wong et al. [14], captures the semantic relation between terms in an ex-
plicit way by using their co-occurrence information. It simply utilizes the document-
term matrix WT as the semantic matrix S, and then each document vector is projected
as d

′
= d ∗WT . The corresponding kernel between two document vectors is expressed

as k
′
(di, dj) = diW

TWdj . The entry in matrixWTW reflects the similarity between
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terms which is measured by their frequency of co-occurrence across the document col-
lection, which means two terms are similar if they frequently co-occur in the same doc-
ument. Holger et al. [1] uses term co-occurrence patterns to estimate term dependency.
It integrates the semantic information into document representation for calculation of
the document similarity. The empirical results confirm that it improves the performance
of document retrieval for particular document collections. Argyris et al. [8] take the lo-
cal distance of the co-occurrence terms into consideration while computing the relation
between terms. They exploit the relation between terms in the local context, and then
combined all the local relation together to constitute the global relation matrix.

3 Methodology

The BOW model exploits each term in document as document features, so it cannot
model efficiently the rich semantic information of documents. To capture the accurate
similarity between documents, its essential to build a high quality document represen-
tation which could reserve the semantic information from the original documents. A
lot of work have proposed that if two terms co-occur in the same document, they are
relational in a certain degree [5][8][11]. However, they just consider the explicit rela-
tion of terms in the same document, but the underlying relation between them has been
overlooked, which is also essential to capture the robust and reliable relation between
terms. In our approach, a novel approach is proposed to capture the relation between
terms, which identifies the relation between terms by not only themselves, but also their
interaction with other terms.

In our work, we propose a novel semantic analysis model. This model capitalizes
on both the explicit relation and implicit relation to compute the semantic relation be-
tween terms. The key points of the proposed model are: (a) it computes the semantic
relation between each pair of terms using their co-occurrence information as the ex-
plicit relation; (b) it further constructs semantic links between terms by considering
their interaction with other terms as the implicit relation; and (c) it combines the ex-
plicit and implicit relations together to compute the semantic relation for each pair of
terms. Using this model, the semantic relation between terms can be captured more pre-
cisely, which can be integrated into document representation to enhance the quality of
document representation.

3.1 The Semantic Relation Analysis between Terms

The first step of our approach for measuring the semantic relation between terms is
to explore the explicit semantic relation. In most of the previous approaches, the rela-
tion between terms is simply estimated by considering the co-occurrence frequency but
overlooking the discriminative power of terms, which will lead to the incorrect estima-
tion of the relation between terms. In this work, the tfidf scheme is used to measure
the relation between terms which is based not only on the frequency of terms but also
on their discriminative ability. Firstly, we introduce the definition of the explicit relation
between terms:
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Definition 1. Let D be a document collection, two terms ti, tj are considered to be
explicitly related only if they co-occur in the same document. To evaluate the explicit
relation between two terms, we propose an efficient measure which is defined as:

Relationexp(ti, tj) =
1

|H |
∑
dx∈H

wxiwxj/(wxi + wxj − wxiwxj) (1)

Where wxi and wxj are the tfidf values of term ti, tj in the document dx, and H
denotes the documents where ti and tj co-occur.

With the explicit relation between terms, the quality of document representation can
be enhanced by integrating the explicit relation into document representation. However,
the underlying relation between terms cannot be discovered from term co-occurrence
information. In the following, we will introduce a novel approach to capture the implicit
relation between terms:

Definition 2. Let D be a document collection, two terms ti, tj are from different doc-
uments (ti ∈ dm, tj ∈ dn), if there is a term ts co-occur with them in the respec-
tive documents, they are considered as being linked by term ts, and they are implicitly
related.

Fig. 1 shows an example of term implicit relation analysis, two terms ti and tj are
from different document, and ts1,ts2 are the co-occurrence terms with them in the re-
spective documents. Terms ti and tj are not related based on the explicit relation analy-
sis, but they are considered to be relational using the implicit relation analysis because
they co-occur with the same terms in the respective documents. Therefore, we define
the calculation of the implicit relation between terms as follows:

Fig. 1. An example of the implicit relation analysis

Definition 3. Let D be a document set, a pair of terms (ti, tj) are from different docu-
ments, the relation between ti and tj can be linked by ts which is the same co-occurrence
terms with ti and tj in the respective documents. The implicit relation between ti and
tj , by their interaction with their co-occurrence term ts ∈ S, is defined as:

Relationimp(ti, tj) =
1

|S|
∑
ts∈S

min((Relationexp(ti, ts), Relationexp(tj , ts))∑
tx∈T (Relationexp(tx, ts)

, (2)
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Where Relationexp(ti, ts), Relationexp(tj , ts) represent the explicit relation of the
term ti and tj with term ts in the respective documents, and S is the term collection
which ti and tj co-occur with, T is the term collection of this corpus.

Term Sense Disambiguation. It is essential to measure whether an ambiguous term
takes the same sense in different documents. That is because if two terms co-occur with
an ambiguous term and it takes different sense in each document, then they could not
be considered that they co-occur with the same term, which means the co-occurrence
term could not be taken as the link term.

Fig. 2. An example of the relation with equivalent terms

As Fig. 2 demonstrates, term ti and tj co-occurrence with the same term ts, but ts
takes different sense ts1 and ts2 in the respective documents, so ti and tj could not be
linked by the term ts.

To alleviate this problem, we explore the intersection of their surrounding text to
disambiguate the sense of terms, because the context information is an indication of
the sense of each term, and the terms with the same sense should appear in the similar
contexts. The sense similarity can be evaluated by two main steps: context information
extraction and similarity evaluation. We first identify the context information from the
co-occurrence matrix, as all the co-occurrence terms with each term is considered to be
the context information. Then the similarity of the sense is defined as:

sim(s1, s2) = (|N(s1) ∩N(s2))|)/(|N(s1)|+ |N(s2)|) (3)

WhereN(si) represents all the co-occurrence terms with term si, andN(s1)∩N(s2) is
the common co-occurrence terms between s1 and s2. In our approach, if sim(s1, s2) <
0.5, term ts is considered as an ambiguous term, which means terms ti and tj can not
be linked by ts.

Mapping of Equivalent Terms. In some cases, two terms are similar even same in
sense but differs in spelling. For example, “disk” and “disc”, “motor” and “engine”,
“BBC” and “British Broadcasting Corporation”, and they should be taken as the same
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term because they are just the alternative names, alternative spellings or abbreviations
of the same thing.

Like in Fig. 3, ti co-occurs with ts1 while tj co-occurs with the term ts2, ts1 and
ts2 are not same in appearance, like “Car” and “Automobile”, but they have the same
meaning of term ts, then it is intuitive that ti and tj should be considered as being
related as they co-occur with the same term ts.

Fig. 3. An example of the relation with polysemous words

To solve this problem, its essential to map the equivalent terms to the identical ex-
pression. In our paper, we take Wikipedia, which has been proved to be an efficient
thesaurus, as background knowledge to solve this problem. In Wikipedia, the redirect
hyperlinks group the terms that have the same sense together and link to the identical
concept, and they are very useful as an additional source of synonyms. Hence, if two
terms link to the indexical concept, they are considered as being the link term between
ti and tj .

The explicit relation discovers the relation between terms by using their co-occurrence
statistics and the implicit relation discovers the relation between terms by using their
interaction with other terms. To capture the complete semantic relation between terms,
we integrate the explicit and implicit relations together to measure the semantic relation
between terms in this section.

Definition 4. Let D be a document collection, terms ti and tj appear in this document
collection, then the semantic relation between ti and tj is defined as:

Relation(ti, tj) = Relationexp(ti, tj) · Relationimp(ti, tj)), (4)

whereRelationexp(ti, tj) is explicit relation between ti and tj , andRelationimp(ti, tj)
is the implicit relation between ti and tj .

In our approach, the co-occurrence statistics are modeled with the integration of ex-
plicit and implicit relations. In this sense, our approach has the advantage of capturing
the complete semantic relation between terms from term co-occurrence statistics. Fur-
thermore, the semantic relation matrix can be constructed which reflects the semantic
relation between each pair of terms, and then it can be used to project the original doc-
ument representation into a new feature space with better discriminative ability.



338 X. Cheng, D. Miao, and L. Wang

3.2 The Document Semantic Analysis

Based on the proposed semantic relation analysis, the semantic matrix S can be further
constructed whose elements reflect the semantic relation between each pair of terms.

With the semantic matrix S, the original documents can be mapped into a new feature
space, which reserves the semantic information from the original documents.

d : d �→ d
′
= d ∗ S, (5)

By integrating the semantic information into document representation, the original
documents can be mapped into a new feature space. In the new feature space, the docu-
ments are well distinguished and it can further improve the performance of the related
document analysis task.

4 Experiment and Evaluation

In this section, we empirically evaluate our approach with document clustering, and the
BOW is used as the baseline for comparison. To focus our investigation on the repre-
sentation rather than the clustering method, we used the standard k-means algorithm in
the experiments.

4.1 Data Sets

To validate our strategy, we conduct experiments on four document collections. D1 is
the subset of 20 Newsgroups while D2 is the mini-newsgroup version, D3 is the subsets
of Reuters 21578, and D4 is the WebKB document collection. The detailed information
of these document collections is described as follows:

Table 1. Characteristics of Data Sets

Data sets Name Classes m n navg

D1 20 newsgroup 5 1864 16516 76
D2 20 newsgroup 20 1989 24809 55
D3 Reuters21578 8 2091 8674 33
D4 WebKB 4 4087 7769 32

1. The first data set (D1) is a subset of 20 Newsgroups(20NG), which is a widely used
data set for document clustering [9]. It consists 1864 newsgroup documents across
5 classes.

2. The second data set (D2) is the mini-newsgroups version, which has 1, 989 docu-
ments across all 20 classes in 20-newsgroups.

3. The third data set (D3) is a subset derived from the popular Reuters-21578 docu-
ment collection [10] which has 2, 091 documents belonging to 8 classes (acq, crude,
earn, grain, interest, money-fx, ship, trade).

4. The last data set (D4) is WebKB [4]. It consists of 4087 web pages and manually
classified into 4 categories.
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4.2 Evaluation Criteria

Cluster quality is evaluated by four criterions: purity, rand index, F1-measure and nor-
malized mutual information.

Purity is a simple and transparent way to measure the quality of clustering. The
purity of a cluster is computed by the ratio between the size of the dominant class in the
cluster and the size of cluster. purity(ci) = 1

|ci| maxj |cj |.Then the overall purity can
be expressed as the weighted sum of all individual cluster purity:

purity =
|ci|
N

n∑
i=1

purity(ci), (6)

Rand Index (RI) measures the clustering quality by the percentage of the true positive
and true negative decisions in all decisions during clustering:

RI = ((TP + TR))/((TP + TR+ FP + FR)) (7)

where TP (true positive) denotes that two similar documents are assigned to the same
cluster; TN (true negative) denotes that two dissimilar documents are assigned to dif-
ferent clusters; FP (false positive) denotes that two dissimilar documents are assigned
to the same cluster, and FN (false negative) denotes that two similar documents are
assigned to different clusters.

F1-measure considers both the precision and recall for clustering evaluation:

F1 = ((precision ∗ recall))/((precision+ recall)) (8)

where precision = TP/(TP + FP ), recall = TP/(TP + FN).
Normalized mutual information (NMI) is a popular information theoretic criterion

for evaluating clustering quality. It is computed by dividing the Mutual Information
between the entropy of the clusters and the label of dataset:

NMI(C,L) = (I(C;L))/(H(C) +H(L))/2) (9)

where C is a random variable for cluster assignments, L is a random variable for the
pre-existing classes on the same data. I(C;L) is the mutual information between the
clusters and the label of the dataset, andH(C) andH(L) is the entropy of C and L.

4.3 Performance Evaluation

Table 2 shows the performance of our proposed approach on each dataset compared
with two other approaches: the classic BOW model and the GVSM model, and the
classic BOW model is taken as the baseline for comparison. For these quality mea-
sures, higher value in [0, 1] indicates better clustering solution. We can observe that
our approach achieves significant improvement in all quality measures. Compared with
the base line, our proposed approach has achieved 10.4%, 22.7%, 11.1% and 19.4%
average improvement. Compared to GVSM model, our approach also achieves 7.4%,
16.9%, 8.8% and 15.5% average improvement. The experimental results demonstrate
the benefit of integrating both the explicit and implicit probabilistic relation between
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Table 2. Document Clustering Results by Using K-means

Data Purity RI F1-measure NMI
Sets BOW GVSM CRM BOW GVSM CRM BOW GVSM CRM BOW GVSM CRM
D1 0.293 0.325 0.413 0.340 0.461 0.541 0.356 0.351 0.417 0.139 0.158 0.403
D2 0.125 0.114 0.189 0.447 0.447 0.760 0.123 0.122 0.197 0.207 0.198 0.325
D3 0.740 0.775 0.821 0.669 0.691 0.817 0.594 0.567 0.749 0.421 0.447 0.597
D4 0.431 0.495 0.581 0.357 0.448 0.604 0.455 0.478 0.505 0.094 0.216 0.312

terms into document representation. Although the GVSM model is assisted by the pro-
posed semantic smoothing, which takes into account the local contextual information
associated with term occurrence, it overlooks the underlying semantic relation between
terms. Compared to the GVSM model, our proposed approach considers both the ex-
plicit and implicit relations between terms, which can capture more reliable semantic
relation between terms.

An interesting point to stress according to Table 2 is that larger gains are obtained
in the document collections which are harder to classify, where the baseline does not
perform well. For example, for the D1 and D2 collections, which are more difficult to
obtain good clustering results using only bag-of-words representation. By integrating
the semantic information captured with our approach into document representation, the
clustering results have been significantly improved.

2000 6000 10000 14000
0

0.2

0.4

0.6

0.8

1

The number of documents

Scalability: RI

R
I

 

 

2000 6000 10000 14000
0

0.1

0.2

0.3

The number of documents

Scalability: F1−measure

F
1

 

 

2000 6000 10000 14000
0

0.2

0.4

0.6

The number of documents

Scalability: NMI

 

 

N
M

I

2000 6000 10000 14000
0

0.1

0.2

0.3

0.4

The number of documents

Scalability: Purity

P
u

ri
ty

 

 

CTRM BOWCTRM BOW

CTRM BOWCTRM BOW

Fig. 4. The impact of corpus size



A Statistics-Based Semantic Relation Analysis Approach 341

Besides, even in the cases where the performance of baseline is good and improve-
ments consequently tend to be more limited, we also achieve statistically significant
gains. Likewise, for D3, we still achieves 8.1%, 14.8%, 15.5% and 17.6% gains.

4.4 The Impact of Corpus Size

In this subsection, we analyze the effect of corpus size on the semantic relation analysis
of our approach. To show the effect of corpus size, we conduct a set of experiments on
the document collection 20-newsgroups by increasing the number of documents from
2, 000 to 14, 000 at increments of 4, 000.

The experimental results are shown in Fig. 4. It is interesting to note that our ap-
proach achieves significant gains compared to the baseline on the small collection with
2, 000 documents. Meanwhile, with the increase in the document collection size, the
performance of our approach shows a slightly higher improvement over the baseline.
In summary, the experimental results show that our strategy augments performance on
different sizes of document collection, even on the small document collection, and the
improved performance is stable with the increasing size of document collection.

5 Conclusion and Future Work

This paper presents a novel approach for the semantic relation analysis. In this approach,
the semantic relation between terms is measure based on both the explicit and implicit
relations. The experiment results indicate that our approach can significantly improve
the performance of document clustering.

In the future, we will work on three aspects to improve our approach: (1) the inde-
pendence test is essential to determine whether two terms co-occur together more often
than by chance; (2) the optimal integration of the explicit and implicit relations can be
further improved; (3) the reduction of time complexity is worthy further analysis.
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Abstract. A new learning algorithm is introduced that can deal with
incomplete data. The algorithm uses a multi-granulation ensemble of
classifiers approach. Firstly, the missing attributes tree (MAT) was con-
structed according to the missing values of samples. Secondly, the in-
complete dataset was projected into a group of data subsets based on
MAT, those data subsets were used as the training sets for the neural
network. Based on bagging algorithm, each data subset was used to gen-
erate a group of classifiers and then using classifier ensemble to get the
final prediction on each data subset. Finally, we adopt the conditional
entropy as the weighting parameter to overcome the precision insuffi-
ciency of dimension based algorithm. Numerical experiments show that
our learning algorithm can reduce the influence of missing attributes
for classification results, and it is superior in performance to algorithm
compared.

Keywords: Incomplete data, multi-granulation, missing attribute tree,
neural network, classifier ensemble.

1 Introduction

Common classification algorithm requires that the number of attributes of test-
ing samples is equal to the number of attributes of samples during the learning
process. In many real word applications, missing values are often inevitable.
There are various reasons for their existence, such as equipment errors, data loss
and manual data input, etc. Therefore, classification should be capable to deal
with incomplete data. The missing value problem has long been recognized as an
important practical issue and has been intensively investigated [1-3]. The sim-
plest way of dealing with incomplete data is to ignore the samples with missing
values [4]. However, this method will not be able to use all of the information,
and it could also discard some important information. It is not practical when
the dataset contains a relatively large number of samples with missing values.
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Another common method is the imputation method[5-8]. This method often
cannot satisfy the Missing at Random assumption and lead to data bias [9].

Ensemble method was applied to deal with incomplete data by Krause and
Polikar [10], sub classifier was trained on random feature subset and then the
ensemble learning can be conducted. However, this method can not ensure that
all samples can be trained because of the random select with feature subset. Chen
and Jiang [11-12] propose a noninvasive procedure ensemble learning method.
This method uses neural network as the base classifier, and does not need any
assumption about distribution or other strong assumptions. But this method
believes that the generalization ability of sub classifier is related to the number
of missing attributes. It does not consider the existence of redundant attributes
and the difference influence degree of attributes.

This paper provides a classification algorithm of incomplete dataset by con-
sidering the influence degree of attributes. The missing attributes tree (MAT)
is constructed according to the missing values of samples. Then the incomplete
dataset is divided into a group of data subsets based on MAT. After that, the
neural network is trained on these data subsets based on bagging algorithm
[13], and ensemble learning can be implemented by using conditional entropy
as the weighting parameter. With the point view of granular computing[14-18],
the algorithm in this paper is called multi-granulation ensemble classification
algorithm for incomplete data (for short, MGEI).

The study is organized as follows. Some basic concepts of information en-
tropy are briefly reviewed in Section 2. In section 3, we establish the missing
attributes tree (MAT) of incomplete dataset and then project the incomplete
dataset into a group of data subsets based on MAT. After that, we propose the
multi-granulation ensemble classification algorithm for incomplete data (MGEI
algorithm). Experiments on datasets from UCI Machine Learning Repository in
section 4 show that MGEI outperform the dimension based algorithm in terms
of prediction accuracy. Finally, Section 5 concludes this paper by bring some
remarks and discussion.

2 Information Entropy

Information entropy was first considered by C.E Shannon in the field of data
communication [19]. It was used to evaluate the degree of information from a
given random event. We introduce the concept about information entropy for
discrete variables as follows.

Definition 2.1. Let X be a random variables, p(x) represents the probability
of variable X values x. The entropy of X is defined as

H(X) = −
∑
x∈X

p(x) logb P (x) (1)

Where b is the base number, different value of b represent different unit.
Entropy is typically measured in bits (b = 2) or nats (b = e). Entropy is related to
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the event’s probability directly, uniform probability distribution leads to greater
entropy. Suppose X have n different values, H(X) = logn if and only if the
probability of each value are equal.

Definition 2.2. Given two random variables X and Y , (X,Y ) is the joint ran-
dom variable and p(x, y) is the corresponding probability distribution. The joint
entropy of X and Y defined as follows

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (2)

Joint entropy is a measure of the uncertainty associated with a set of variables.

Definition 2.3. For two variablesX and Y , suppose Y is known, the conditional
entropy X to Y is defined as

H(X |Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x|y) (3)

H(X |Y ) describes the degree of correlation between X and Y . The greater
the correlation degree between X and Y , the smaller the conditional entropy is.
On the contrary, the smaller the correlation degree, the greater the conditional
entropy is.

3 New Algorithm for Incomplete Dataset (MGEI)

Ensemble learning algorithm is generally getting a group of sample sets through
sampling. Then these sample sets are used to training the classifiers. However, be-
cause of the existence of the missing values, this kind of method for incomplete
datasets cannot be applicable. In this section, we will propose a multi-granulation
ensemble algorithmtodealwith incompletedatasets basedon information entropy.

3.1 Construction of MAT

Missing values are various in dataset. We first construct the MAT according to
the missing values as follows:

First, traversing the dataset, and dividing the samples with the same missing
attributes into the same sample set. Then, according to the number of missing
attributes, the sample sets were sorted in ascending order. Hence, we got some
sample set Xmset, where mset denote the missing attributes set. Finally, estab-
lishing MAT (illustrated in Fig.1) based on the inclusion relationship of missing
attributes set.

For any node in MAT, the missing attributes set corresponding to the node is
included in its child node’s missing attributes set. Note that in order to avoid a
loop here, we sorted the node in ascending order from left to right. For example,
attributes set (1), (2) and (1, 2) satisfies (1) ⊂ (1, 2) ∧ (2) ⊂ (1, 2). We make
the following rules: Let X(1,2) be the child node of X(1), the child node of X(1)

satisfy X(1,i), i > 1.Similarly, let X(2,j), j > 2 be the child nodes of X(2) and
X(1,...,km,l), l > km + 1 be the child nodes of X(1,...,km).
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Fig. 1. Diagram of MAT. L0 denotes the level corresponding to the sample with no
missing attributes. Similarly, Li represents the level corresponding to the sample with
i missing attributes.

3.2 Maximizing Data Subset

In order to make full use of the original dataset information and to improve the
classification performance, the size of data subset is maximized as follows:

For arbitrary sets Xmset1 ⊂ Xmset and Xmset2 ⊂ Xmset, if mset1 ⊂ mset2,
then we update Xmset2(Xmset2 = Xmset2

⋃
Xmset1). Join the samples in Xmset1

into Xmset2 , and set these samples’ missing attributes set as mset2. A new MAT
is obtained after the maximize operation from top to bottom in the MAT. Note
that, for any node of MAT,the set inclusion relationship is only judged between
the node of the upper level and the current node. Fig.2 gives the maximize
operation of MAT from section 3.1.

Fig. 2. Illustrate of maximization operation

X∅ is the root of MAT, the maximization operation is initialized from the
second level (L2). Because ∅ is the subset of any nonempty set, for each X(i) in
L2, update X

(i) (X(i) = X(i)
⋃
X∅). Similarly, the above operation is repeated

for each node in level Lj . e.g., (1) ⊂ (1, 2) ∧ (2) ⊂ (1, 2), so update X(1,2),
X(1,2) = X(1,2) ∪X(1) ∪X(2). Similarly, a new MAT is obtained by updating all
the nodes in MAT.
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3.3 Constructing Sub Classifier

We use the maximized data subset as the training set for the neural network.
In order to improve the prediction performance, each data subset is used to
train several sub classifiers based on bagging algorithm. Then we adopt classifier
ensemble to improve the prediction accuracy, this process is called sub-ensemble
in this study. Formula (4) gives the majority voting method of each sub-ensemble
that the weight of each sub classifier is equal.

yjm = argmax
Ck

N∑
i=1

∑
tci=ck

ωk (4)

Where yjm denotes the prediction category of sample j by using classifiers
ensemble on the classifiers that trained on data subsets m, Ck represents the
category value, N is the number of bootstrap replicates of data subsets, tci
denotes the prediction result on sub classifier i, ωk represents the total weight of
the prediction results Ck. Here the weight of each sub classifier is equal to 1/N .

After sub-ensemble process, we got a classifier set and the size of this classifier
set is equal to the number of data subsets from section 3.2. These classifiers
are used to predict the testing sample at different granularity according to its
missing attributes set. In order to obtain the final prediction of test sample,
we need to determine the final category from the results of the sub-ensemble
process. The conditional entropy of each missing attributes set is calculated on
data subset X∅. Smaller conditional entropy indicates that the influence of the
missing attributes set is greater, so the generalization ability of the corresponding
classifier is more likely to be poor. From this point of view, we can directly use the
conditional entropy as the weighting parameter to the corresponding classifier.

Note that the number of samples is different in different data subsets, and
generally, more learning sample could lead to better performance of the sub
classifier. In addition, the accuracy of sub classifier could also be different, higher
prediction accuracy means better performance. Moreover, the influence degree
of different missing attributes is also different. Considering the various factors,
we use formula (5) to calculate the weight of the corresponding classifiers.

ωi =
Acci|Xmseti |Hi∑
Acci|Xmseti |Hi

(5)

Where Acci denotes the prediction accuracy of classifier hi,|Xmseti | denotes
the size of Xmseti , Hi denotes the conditional entropy category attribute set to
mseti.

3.4 Multi-granulation Prediction

The maximization process in section 3.2 also shows the prediction process. Sup-
pose a testing sample x satisfies that the missing value of x(xmvset) is included
in X(1). And x should be tested on the sub classifier corresponds to X(1).
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Then x should be tested on the sub classifier corresponds to X(1,2), because
of the set inclusion relationship xmvset ⊂ (1, 2).

For a testing sample, if the sample’s missing attributes set contained in the
missing attributes set of some data subsets, then, choose the corresponding clas-
sifier as the testing classifier of the sample. There may have several sub classifiers
satisfy the above set inclusion condition. It could lead to some different predict
results of one sample. For this case, the final prediction result yj of sample j is
determined by the weighted voting as (6)

yj = argmax
Ck

∑
tcji=Ck

ωj (6)

4 Experiments

We use a three-layered BP neural network as the base classifier. The number of
input nodes (id) of the neural network is determined by the number of missing
attributes, and the number of output nodes (od) is determined by the number of
category in the dataset. According to the geometric pyramid rule, the number
of hidden nodes is

√
id ∗ od. We evaluate the accuracy using ten-fold cross vali-

dation approach where a given dataset is randomly partitioned into ten folds of
equal size. The algorithm was tested on a variety of datasets from UCI machine
learning repository [20]. In order to reduce variation of the estimate, 20 exper-
iments for each algorithm were performed. Table 1 gives the details about the
eight testing datasets. Note that CVR is the abbreviations of Congressional Vot-
ing Records. And |subsets| denotes the number of data subsets of each dataset,
|X∅| denotes the size of X∅.

Table 1. Summary of Datasets

Dataset Size dimension |classes| |subsets| |X∅|

adult 32561 14 2 5 27175

arrhythmia 452 279 13 7 65

bands 540 39 2 64 240

bridges 108 13 8 14 63

credit approval 690 15 2 8 588

dermatology 366 34 6 2 325

CVR 435 16 2 73 207

lung cancer 32 56 2 3 25
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In order to determine the number of bootstrap replicates in the sub-ensemble
stage, we ran four datasets using 1, 5, 10, 15, 20 and 30 replicates to study
the relationship between bootstrap replicates and classification accuracy. The
results appear in Table 2. The experiments show that 10 bootstrap replicates
are reasonable, the improvement of classification accuracy on all four datasets
are nearly unchanged.

Table 2. Bagged Classification Accuracy(%)

No.Replicates 1 5 10 20 30

arrhythmia 0.596061 0.65197 0.687424 0.687556 0.687584

bridges 0.563651 0.576984 0.597751 0.597824 0.597846

credit approval 0.833333 0.83913 0.84058 0.84058 0.84058

dermatology 0.938889 0.966667 0.970244 0.970273 0.970276

The proposed algorithm (MGEI) is compared with the algorithm (based on
the dimension) in [11]. The classification performance of these two algorithms is
compared in table 5. The results can be divided into two parts

Table 3. Test Performance Comparison (%)

Dataset Name MGEI dimension

adult 0.8469745 0.8469009

arrhythmia 0.6874242 0.5984648

bands 0.5726813 0.5767564

bridges 0.5977248 0.5652856

credit approval 0.8398553 0.8368116

dermatology 0.97037 0.9294444

CVR 0.9547621 0.9415227

lung cancer 0.8166668 0.6700002

(a) The performance is slightly worse on dataset ’bands’. The result could
be caused by the following reasons: First, the size of data subset X∅ is small
or the number of classes in X∅ is smaller than the real number of classes in
’adult’. Then the conditional entropy cannot reflect the real influence of the
missing attributes very well. Second, using the number of available attributes as
the weighting parameter may be just closer to the real influence of the missing
attributes than the conditional entropy. The performance of these two methods
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is nearly equal on two datasets (adult and credit approval). The reason could
be that the prediction results of the sub classifiers are stable and the accuracy
is higher in the method with no sub-ensemble. This lead to the final prediction
accuracy of the two methods is similar.

(b) Five datasets (arrhythmia, bridges, dermatology, CVR and lung cancer)
have better performance than the comparison algorithm. Two reasons could
lead to the superior of performance on prediction accuracy. First, the sub-
ensemble process improves the prediction accuracy on each granulation, and
it also makes the prediction results more stable on each granulation. Second, the
conditional entropy on X∅ are more effective than the dimension of the available
attributes to measure the influence of missing attributes set. Generally speaking,
our method MGEI is superior to the method in [11].

5 Conclusion and Discussion

We presented the MGEI algorithm, employing the ensemble of classifiers to re-
alize the classification of incomplete dataset. The algorithm first construct the
MAT of the incomplete dataset, then dividing the dataset into a group of data
subsets based on MAT. After that, the algorithm generates multiple classifiers
, each trained on a data subset based on bagging algorithm. When a sample of
unknown label that has missing values is presented to the algorithm, the algo-
rithm picks all the classifiers that did not use the missing values in its training.
Then use the conditional entropy as the weighting parameter to determine the
importance of each classifier. After that, these classifiers are combined through
weighted majority voting.

Some datasets drawn from UCI machine learning repository were used to
evaluate the proposed algorithm. Comparative experiments show that the per-
formance of the proposed algorithm has better performance than the algorithm
based on dimension. Moreover, for some datasets, the improvement on prediction
accuracy is surprising (arrhythmia, dermatology and lung-cancer).

Because the conditional entropy was computed on the data subset X∅, so
the performance of MGEI is closely related to the size of sub dataset X∅. More
complete samples will make the conditional entropy more close to the real impact
of missing attributes, and it is more likely to lead to better performance. When
the dataset is lack of complete samples, the performance of the algorithm remains
need to be improved. In addition, this paper focus on neural network ensemble,
considering other classification methods to deal with incomplete dataset is also
our future work.
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Abstract. With the rapid growth of data collection techniques, it is
very common that instances in different domains/views share the same
set of categories, or one instance is represented in different domains which
is called co-occurrence data. For example, the multilingual learning sce-
nario contains documents in different languages, the images in the social
media website simultaneously have text descriptions, and etc. In this pa-
per, we address the problem of automatically clustering the instances by
making use of the multi-domain information. Especially, the information
comes from heterogeneous domains, i.e., the feature spaces in different
domains are different. A heterogeneous co-transfer spectral clustering
framework is proposed with three main steps. One is to build the rela-
tionships across different domains with the aid of co-occurrence data. The
next is to construct a joint graph which contains the inter-relationship
across different domains and intra-relationship within each domain. The
last is to simultaneously group the instances in all domains by apply-
ing spectral clustering on the joint graph. A series of experiments on
real-world data sets have shown the good performance of the proposed
method by comparing with the state-of-the-art methods.

Keywords: Heterogeneous feature spaces, co-transfer learning, spectral
clustering, canonical correlation analysis.

1 Introduction

Clustering algorithms are generally used in an unsupervised fashion. They are
presented with a set of instances that can be grouped according to some similarity
or distance strategies, and perform well when they are provided with a large
amount of data. However, in practice, it is hard or expensive to collect ample
data in some views, for example, the annotation information of the social media.
In this case, most existing methods will lead to poor performance. In order to
solve this problem, various learning strategies have been proposed such as semi-
supervised learning [22], transfer learning [17,12,20], and etc, to make use of the
information from different domains. These methods can be roughly divided into
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     I1                I2              I3               I4               I5                I6 

(a) Image data

T1 food tasty dish fruits cakes cherry sweet dessert 

T2 food dish green tasty fruit cakes strawberry desserts 

T3 food tasty dish fruit vegetables green table cup

T4 nature birds southafrica aves waterbirds seagulls 

T5 sunset sea sky sun nature birds clouds scenery view 

T6 seagulls scene windsurf sky birds seabirds sea

(b) Text data

Fig. 1. Instance examples in heterogenous domains (a) image domain and (b) text
domain from the NUS-WIDE dataset. The first three images and documents belong to
“food”, and the last three images and documents belong to “bird”.

two categories. One deals with the multi-domain data within same feature space,
such as semi-supervised learning. The other concerns multi-domain data across
heterogenous feature spaces as shown in Fig.1. In this paper, we focus on the
analysis with heterogenous data.

As demonstrated in Fig.1, six images in Fig.1(a) and six documents in Fig.1(b)
are all related with two categories “birds” and “food”. When clustering the
images in Fig.1(a), it is a little difficult to decide their correct categories. Because
the essential structure between images is not very clear as shown in Fig.2(a)
(each line indicates that two nodes has relatively high similarity). Especially,
the image I3 (marked by the dotted line) may be misclassified into the other
category. On the other hand, the document collection has a clear structure as
shown in Fig.2(b). Based on this observation, some researchers tried to combine
the image processing and text mining tasks to enhance performance of the singe
task, and proposed multi-view learning [2,11,3], heterogenous transfer learning
[21,23] and co-transfer learning [15,16]. Among them, multi-view learning prefers
to the situation where each instance appears in all views, i.e., each instance is
represented in all feature spaces. Heterogenous transfer learning aims to improve
the performance of the learning task in one target domain. Co-transfer learning
framework makes use of the co-transferring knowledge across different domains
to simultaneously handle multi-learning tasks, however, the existing methods
are only designed for supervised learning rather than unsupervised learning.

In real applications, the following situations are ubiquitous: a) the instances
in different domains are different but they share the same set of categories, b)
there is no labeled data in each domain, c) the data from different domains are
expected to be simultaneously handled. In this case, multi-view learning cannot
work for a), co-transfer learning cannot be applied in b) and heterogenous trans-
fer learning cannot perform on c). Thus, in this paper, we propose a Heteroge-
neous Co-Transfer Spectral Clustering framework (HCTSC) to simultaneously
handle these situations with the aid of co-occurrence data. Like heterogenous
transfer learning [21] and co-transfer learning [15], we assume that it is possible
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Fig. 2. Demonstration of graph constructed on different data, a) on image data, b) on
text data, and c) on both image and text data via the proposed method HCTSC. The
instances having same category label are marked with same shape (circle for “food”
and square for “birds”). The solid line indicates linkage based on the single domain
data, the dotted line is the new linage after merging two tasks via HCTSC.

to obtain co-occurrence information between different domains so that we can
build a bridge to transfer knowledge across domains. For instance, the images
co-occur with texts on the same web page [6], and the linkage between texts and
images in social networks [18,23], can be used for co-occurrence information.
HCTSC makes use of the co-occurrence data to form a bridge to connect two
separate clustering tasks and improve the final performance of all tasks.

HCTSC framework contains three main steps: the first step is to build the
relationship across heterogenous domains. We utilize canonical correlation anal-
ysis technique [10] to obtain two mapping functions from two feature spaces
to one common space, then, re-represent the two-domain data via the map-
ping functions. The second step is to construct a joint graph which contains the
inter-relationship across heterogenous domains and intra-relationship in each
domain (as shown in Fig.2(c)). Note that we ignore the edges indicating weak
relationships between instances in this figure. Finally, the clustering results of
all instances in different domains can be simultaneously obtained by applying
the spectral clustering method [13] on the joint graph. The joint graph (such as
Fig.2(c)) contains more information than the two separate graphs (Fig.2(a) and
Fig.2(b)). For example, image I3 links more edges to the circle part in Fig.2(c),
then it leads to a higher probability to correctly cluster I3 into the circle part.

The main contribution of this paper is to propose a Heterogeneous Co-Transfer
Spectral Clustering (HCTSC) framework. It has the following merits: (i) HCTSC
has ability to co-transfer knowledge across different heterogeneous domains. (ii)
It can simultaneously perform more than one unsupervised learning (clustering)
tasks. (iii) It outperforms the state-of-the-art algorithms in the real-world bench-
mark data sets. The rest of this paper is organized as follows. In Section 2, the
related work is described. In Section 3, a new heterogeneous co-transfer spectral
clustering framework is presented. In Section 4, a series of experimental results



Heterogeneous Co-transfer Spectral Clustering 355

are listed to illustrate the performance of HCTSC. Finally, some concluding
remarks are given in Section 5.

2 Related Work

Traditional clustering algorithms assume that there are a large amount of in-
stances for better performance. However, it is hard or expensive to collect enough
instances in some real applications. In this case, traditional clustering algorithms
will lead to poor performance as shown in Fig.2(a). Many transfer learning
strategies have been proposed to solve this problem by using the information
from other heterogenous domains/views, such as multi-view learning [2,11,3],
heterogenous transfer learning [21,23] and co-transfer learning [15,16].

Multi-view clustering methods [2,11,3] have been proposed to improve the
performance over traditional single-view clustering by utilizing more information
from other views. The multi-view clustering requires that each instance should
be represented in all views, but in our clustering tasks, there is only one view in
one clustering task.

Various heterogenous transfer learning strategies [21,23,1,19] have been pro-
posed and developed to perform learning tasks across different domains. In [21],
Yang et. al proposed to combine the source domain and the target domain in
one annotation-based Probabilistic Latent Semantic Analysis (aPLSA) model for
image clustering. In [23], Zhu et al. considered the Heterogenous Transfer Learn-
ing problem by using unlabeled text data for helping Image Classification via
the HTLIC model. Correlational Spectral Clustering (CSC) [1] made use of the
kernel canonical correlation analysis based on the co-occurrence data to project
the original data in the kernel space. Singh et al. [19] identified the latent bases
with the co-occurrence data by the Collective Non-negative Matrix Factorization
(CNMF) model, and mapped all instances to the latent bases space. These het-
erogenous transfer learning methods only consider to migrate the knowledge from
the source domains to one target domain. While our heterogenous co-transfer
spectral clustering framework can transfer knowledge across different domains
simultaneously.

Co-transfer learning [15,16] makes use of transferring knowledge cross different
domains and performs supervised learning simultaneously via the knowledge
learned from co-occurrence data. It focuses on how to use labeled data in multiple
different domains to enhance the performances of all tasks simultaneously. The
difference of the co-transfer learning and our model is that it bases on the labeled
data for classification while our model is unsupervised for clustering tasks.

3 Heterogenous Co-transfer Spectral Clustering

The Heterogenous Co-Transfer Spectral Clustering (HCTSC) algorithm is a tech-
nique which combines all instances in heterogenous domains to one joint graph.
In this section, we show how to learn the inter-relationships of instances from
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different domains, and construct the joint graph with all instances. Spectral clus-
tering is used on the joint graph to obtain the clustering results. The last part
is the extended HCTSC model for more than two domains.

3.1 Data Representation

Given n1 and n2 instances {xi}n1

i=1 and {yj}n2

j=1 in two heterogenous domains
respectively (where xi ∈ Rm1 and yj ∈ Rm2), we have two data matrices
X = [x1, · · · ,xn1 ] ∈ Rm1×n1 and Y = [y1, · · · ,yn2

] ∈ Rm2×n2 . The goal is
to partition {xi}n1

i=1 and {yj}n2

j=1 into c clusters respectively. Traditional clus-
tering methods, such as k-means and spectral clustering, handle these two tasks
separately. If there are not enough data in each clustering task, the performance
may be not satisfied. For example, if we use the spectral clustering on the graphs
(Fig.2(a) and 2(b)) respectively, the image I3 in Fig.2(a) is misclassified.

We assume that although xi and yj are in different domains, they share the
same categories. Under this situation, the two separate tasks can be combined
and accomplished to enhance performance of each single task. Because xi and yj

come from heterogenous domains, there should be some information to link the
instances in all domains. The co-occurrence data (such as the images co-occur
with texts on the same web page, and the linkage between texts and images) can
be easily obtained in real application [6,21,23], they can be used to be a bridge
to link two separated tasks. We assume that there is a co-occurrence data set
O = {A,B} which contains no instances described in two domains (A ∈ Rm1×no

and B ∈ Rm2×no), where A andX , B and Y are in the same domain respectively.
We expect to combine two clustering tasks together by using the co-occurrence
data to improve the single clustering performance.

3.2 Inter-Relationships across Heterogenous Domains

The instance interactions from heterogenous domains are studied in this subsec-
tion. The instances xi and yj are in different feature spaces with different di-
mensional feature vectors, the relationship cannot be computed directly by using
traditional similarity or distance methods. xi and yj should be firstly mapped
to the common space, and then the similarity matrix can be computed in the
new space. Canonical correlation analysis (CCA) is general technique which can
learn the projections by utilizing the co-occurrence data to simultaneously map
the data from all feature spaces to one common space [10]. So we use CCA to
learn the mapping matrices Wa and Wb based on the set O = {A,B}.

max
Wa,Wb

WT
a AB

TWb

subject to WT
a AA

TWa = I,WT
b BB

TWb = I (1)

where Wa ∈ Rm1×r, Wb ∈ Rm2×r, and r is the dimension of the common space.
Then xi and yj can be mapped to the new r-dimensional space by pi = xi×Wa

and qj = yj ×Wb respectively.
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3.3 Joint Graph Construction

Given {xi}n1

i=1 in the m1-dimensional feature space, the similarity of xi and xk

can be calculated. In this paper, we use Gaussian kernel function [7] to yield the
non-linear version of similarity in the intrinsic manifold structure of data.

Then, we construct the n1-by-n1 nearest neighbor graph G(1,1) whose points
indicate all instances and edges denote the similarities with the neighbor in-

stances following [9]. The (i, k)-th entry of G
(1,1)
i,k is given as follows,

G
(1,1)
i,k =

{
exp(−||xi − xk||2/σ2), k ∈ Ni or i ∈ Nk

0, otherwise
(2)

where Ni and Nk are the index sets of α nearest-neighbors of point xi and xk

respectively. The neighborhood size (α) for the graph construction is self-tuned
as in [4]. σ is a positive parameter to control the linkage in the manifold, and
like [4], the average of α distance values is used for the parameter σ.

Similarly, given {yj}n2

j=1 in the m2-dimensional feature space, we can also

compute the nearest neighbor graph G(2,2) ∈ Rn2×n2 via (2) by replacing x with
y. The graphs G(1,1) and G(2,2) represent the intra-relationships within the same
space.

Meanwhile, we can construct an n1-by-n2 matrix G(1,2) with its (i, j)-th entry
given by the similarity of xi and yj by replacing xi with pi and xk with qj in (2).

The graph G(1,2) describes the inter-relationship across different spaces. G(1,2)

is not necessarily to be symmetric, but it has [G(1,2)]i,j = [G(2,1)]j,i, i.e., G
(1,2)

is the transpose of G(2,1).

G =

[
G(1,1) G(1,2)

(G(1,2))T G(2,2)

]
. (3)

Finally, by using the graphs G(1,1), G(2,2) and G(1,2), we construct the joint
nearest neighbor graphG via (3). The joint graphG contains the inter-relationship
across different domains and the intra-relationship within the same domain.

3.4 Spectral Clustering on the Joint Graph

After constructing the joint graph G, we can exploit the properties of the
Laplacian of the graph by L = D − G, where D is a diagonal matrix with
Di,i =

∑
j Gi,j . The first smallest c eigenvectors of the graph Laplacian can be

obtained, and then k-means method can be used on them to assign each instance
in the graph to one of the clusters [14].

Here we briefly outline the Heterogenous Co-Transfer Spectral Clustering
framework in Algorithm 1. Step 1 is to learn the inter-relationship across het-
erogenous domains, Steps 2-3 are to construct the joint graph and Steps 4-7 are
the procedures of spectral clustering on the joint graph. More details of them
are in Section 3.2, 3.3 and 3.4 respectively.
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Algorithm 1. The Heterogenous Co-Transfer Spectral Clustering algorithm

Input:
Two data matrices X and Y , co-occurrence data set O = {A,B}.

Output:
Clustering results of X and Y .

1. Learn the inter-relationships across heterogenous domains by using CCA via (1)
on O = {A,B}.

2. Construct the nearest neighbor graphs G(1,1), G(2,2), G(1,2) via (2).
3. Combine G(1,1), G(2,2), G(1,2) to form the (n1 +n2) ∗ (n1 +n2) joint graph via (3).
4. Compute the Laplacian matrix by L = D −G, where Di,i =

∑
j Gi,j .

5. Decompose L to obtain the eigenvector matrix denoted by U .
6. Select the first c columns of U , and then divide them into the first n1 and the other

n2 rows to form an n1 × c matrix U (1) and an n2 × c matrix U (2) respectively.
7. Run the k-means algorithm on U (1) and U (2) respectively and assign each instance

to the corresponding cluster.

3.5 Generation with Multiple Clustering Tasks

We remark that the above HCTSC model can be generalized for the co-transfer
spectral clustering with data in K domains. The extended HCTSC model can
simultaneously implement K clustering tasks, one task for one domain. The joint
graph is constructed as shown in (4).

G =

⎡⎢⎢⎣
G(1,1) G(1,2) · · · G(1,K)

G(2,1) G(2,2) · · · G(2,K)

· · · · · · · · · · · ·
G(K,1) G(K,2) · · · G(K,K)

⎤⎥⎥⎦ , (4)

where {{G(i,j)}Ki=1}Kj=1 is the nearest neighbor graph set based on the i-th and
j-th domains and the similarities with the neighbor instances in the graph can
be computed via (2).

The clustering on joint graph G can be implemented with Steps 4-7 in Algo-
rithm 1. Note that in Step 6, the first c columns of U should be divided into K
parts {U (i)}Ki=1, where each part U (i) is an ni × c matrix. The final clustering
results can be obtained by applying k-means on each matrix U (i).

4 Experimental Results

In this section, a series of experiments are conducted to demonstrate the effec-
tiveness of the proposed HCTSC algorithm.

4.1 Methodology

The proposed HCTSC algorithm is tested on two real-world data sets. The first
data set is NUS-WIDE [5] which comes from Flickr and contains 81 categories.
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We follow [15] to construct 45 binary tasks by selecting 10 categories (bird, boat,
flower, food, rock, sun, tower, toy, tree, car). For each task, 600 images, 1,200
texts and 1,600 co-occurred image and text pairs are sampled. 500 visual words
and 1,000 text terms are extracted to build the image and document features.
The second dataset is Cross-language Data which is crawled from Google and
Wikipedia [16], it contains two categories of text documents about birds and
animals. Among them, there are 3,415 English documents in the first domain,
2,511 French documents in the second domain, 3,113 Spanish documents in the
third domain, and 2,000 co-occurred English-French-Spanish documents. 5,000
important terms extracted from each domain are used to form a feature vector.

The proposed HCTSC is compared with six methods. Among them, k-means
[8] and spectral clustering (SC) only use the instances in single domain, the other
four methods (aPLSA [21], CNMF [19], HTLIC [23] and CSC [1]) are based on
transfer learning by making use of the co-occurrence data. In aPLSA, CNMF and
HTLIC, there is a parameter which controls the transferred weight from source
domain to target domain within the range [0-1]. To obtain the best performance
for them, different values from 0 to 1 with the step 0.1 have been tried, and the
best results are recorded in the following experiments.

The clustering result is evaluated by comparing the obtained label of each
instance with the label provided by the data set. The performance is measured
by the accuracy with averaging 10 trials. The larger the accuracy, the better the
clustering performance.

4.2 Experiment 1: NUS-WIDE Data

Since aPLSA, CNMF, HTLIC and CSC only consider to migrate the knowledge
from one source domain to one target domain, the first experiment records the
results of all methods on one clustering task.
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Fig. 3. Effect of (a) number of canonical variables or bases r and (b) co-occurred data
size on image clustering task

In order to demonstrate how to select proper value of r, which is the number
of canonical variables in HCTSC and CSC or the number of bases in aPLSA,
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CNMF and HTLIC, we randomly select one binary image clustering task (with
600 images, 300 for birds and 300 for sun, and 1,600 image-text pairs) as an
example. Fig.3(a) gives the image clustering performance in terms of varying
the number of r. We can see that HCTSC can get the best performance with 20
bases which is much smaller than the number of original image features (500).
Then, the computational complexity of clustering can be efficiently reduced with
the new image representation. In the experiments, we set r = 20.

Usually, the performance is affected by the co-occurrence data size (i.e.,no) on
transfer learning. We run one image clustering task (birds vs sun) with different
sizes (400-1,600) as an example, and the accuracies are recorded in Fig. 3(b). As
we can see, when the number of co-occurrence instances increases, the accura-
cies of HCTSC, aPLSA, CNMF, HTLIC and CSC increase as well. It indicates
that more co-occurrence instances make the representation more precise and
helpful for the clustering data in transfer learning. The performances of transfer
learning methods are better than k-means and spectral clustering which do not
transfer knowledge from other domains. As expected, the proposed HCTSC out-
performs other transfer learning methods ( aPLSA, CNMF, HTLIC and CSC).
The reason is that in our model the text information is used in both the image
representing and clustering processes, while other methods only use it for the
image re-representation.
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Fig. 4. Image clustering accuracies of 45 image clustering tasks with 1,600 co-
occurrence instances

Furthermore, we show the accuracy results of all 45 binary image cluster-
ing tasks in Fig.4. For each task, the related 1,600 image-text pairs are used
as the co-occurrence data. It is easy to see that HCTSC is better than other
methods. On the average, HCTSC achieves accuracy improvement of 0.0362,
0.0747, 0.0952, 0.0987, 0.1083 and 0.1188 (0.6502 versus 0.6200, 0.5815, 0.5610,
0.5575, 0.5479 and 0.5374) against aPLSA, CNMF, HTLIC, CSC, SC and k-
means on all image clustering tasks respectively. The corresponding win-tie-loss
values with pairwise t-tests at 0.03 significance level for HCTSC against aPLSA,
CNMF, HTLIC, CSC, SC and k-means are 33-9-3, 39-5-1, 43-2-0, 42-3-0, 45-0-0
and 45-0-0 respectively. This indicates that the image clustering benefits from
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the knowledge transferred from text domain. Because HCTSC can utilize the
text information more effective and reasonable, it gains better performance than
other methods.

4.3 Experiment 2: Cross-Language Data

In this experiment, we evaluate the proposed HCTSC for cross-language cluster-
ing. Because aPLSA, CNMF, HTLIC and CSC only consider one source domain
and one target domain, we show the results of clustering English documents as
an example. We cluster all 3,415 English documents with the aid of 2,511 French
and 2,000 co-occurred English-French documents. The clustering results of all
methods with r=30 are shown in Fig.5. It is clear that HCTSC gains the best
performance by using the joint graph which combines the information of two do-
mains. The knowledge from French domain is applied for the re-representation
of documents and the clustering procedure. HCTSC benefits from taking full
advantage of the French information.

As described in Section 3.5, HCTSC can simultaneously handel multiple clus-
tering tasks, we conduct the experiments on three languages data and the clus-
tering results are shown in Table 1. Because other transfer learning methods
cannot deal with all three clustering tasks, we do not give their results in this
table. We list the results of k-means in the last row of Table 1 for comparison.
The first row is the results of instances in single domain (i.e. spectral cluster-
ing), the second and third rows are the results in two domains, and the fourth
row is the results in all three domains. Obviously, the best performance happens
when using all instances in three domains, and the performance is the worst with

Fig. 5. Clustering results of English documents by using French knowledge

Table 1. Three cross language clustering results

English French Spanish

English only 0.5816 French only 0.5881 Spanish only 0.5789
English + French 0.6481 French + English 0.6457 Spanish + English 0.6432
English + Spanish 0.6458 French + Spanish 0.6505 Spanish + French 0.6492
All three 0.6711 All three 0.6725 All three 0.6708

k-means 0.5690 k-means 0.5798 k-means 0.5654
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the data only in one domain. The results indicate that documents in different
domains help each other for single language clustering task.

5 Conclusions

In this paper, a heterogeneous co-transfer spectral clustering framework has been
proposed to simultaneously complete more than one clustering task in different
domains with the aid of co-occurrence data. The inter-relationship across differ-
ent domains is learned by canonical correlation analysis via the co-occurrence
data, the next is to construct a joint graph which contains the inter-relationship
across different domains and intra-relationship within the same domain, and at
last, the spectral clustering has been used to simultaneously group all instances
in the joint graph. The proposed algorithm can be used to perform effectively in
heterogenous co-transfer learning across different feature spaces like image-text
and cross-language clustering problems. As for the future work, we consider how
to automatically identify the transferred weights across different domains.
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Abstract. Convolutional Neural Network (CNN) is a biologically in-
spired trainable architecture that can learn invariant features for a num-
ber of applications. In general, CNNs consist of alternating convolutional
layers, non-linearity layers and feature pooling layers. In this work, a
novel feature pooling method, named as mixed pooling, is proposed to
regularize CNNs, which replaces the deterministic pooling operations
with a stochastic procedure by randomly using the conventional max
pooling and average pooling methods. The advantage of the proposed
mixed pooling method lies in its wonderful ability to address the over-
fitting problem encountered by CNN generation. Experimental results on
three benchmark image classification datasets demonstrate that the pro-
posed mixed pooling method is superior to max pooling, average pooling
and some other state-of-the-art works known in the literature.

Keywords: Convolutional neural network, pooling, regularization,
model average, over-fitting.

1 Introduction

Since its first introduction in the early 1980’s [1], the Convolutional Neural
Network (CNN) has demonstrated excellent performances for a number of appli-
cations such as hand-written digit recognition [2], face recognition [3], etc. With
the advances of artificial intelligence, recent years have witnessed the growing pop-
ularity of deep learning with CNNs on more complicated visual perception tasks.

In [4], Fan et al. treat human tracking as a learning problem of estimating
the location and the scale of objects and employ CNNs to reach this learning
purpose. Cireşan et al. [5] propose an architecture of multi-column CNNs which
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can be accelerated by Graphics Processing Unit (GPU) for image classification
and amazing performances are achieved on a number of benchmark datasets. In
[6], a 3D CNN model is designed for human action recognition, in which both
the spatial and temporal features are mined by performing 3D convolutions.
krizhevsky et al. [7] train a very large CNN for the ImageNet visual recognition
challenge [8] and achieve an astonishing record-breaking performance in 2012.

Despite the aforementioned encouraging progresses, there are still several
problems encountered by CNNs such as the over-fitting problem due to the high
capacity of CNNs. In order to address this issue, several regularization tech-
niques have been proposed, such as weight decay, weight tying and augmenta-
tion of training sets [9]. These regularization methods allow the training of larger
capacity models than would otherwise be possible, which are able to achieve su-
perior test performances as compared with smaller un-regularized models [10].

Another promising regularization approach is Dropout which is proposed by
Hinton et al. [11]. The idea of Dropout is to stochastically set half the activations
in a hidden layer to zeros for each training sample. By doing this, the hidden units
can not co-adapt to each other, and they must learn a better representation for
the input in order to generalize well. Dropout acts like a form of model averaging
over all possible instantiations of the model prototype, and it is shown to deliver
significant gains in performance in a number of applications.

However, the shortcoming of Dropout is that it can not be generally employed
for several kinds of CNN layers, such as the convolutional layer, non-linearity
layer and feature pooling layer. To overcome this defect, a generalization of
Dropout, called DropConnect, is proposed in [12]. Instead of randomly selecting
activations within the network, DropConnect sets a randomly selected subset
of weights to zeros. As compared to Dropout, better performances have been
achieved by DropConnect in certain cases. In [10], another type of regularization
for convolutional layers, named stochastic pooling, is proposed to enable the
training of larger models for weakening over-fitting. The key idea of stochastic
pooling is to make the pooling process in each convolutional layer a stochastic
process based on multinomial distribution.

In this work, similar to [10], a novel type of pooling method, termed as mixed
pooling, is proposed in order to boost the regularization performance for training
larger CNN models. Inspired by Dropout (that randomly sets half the activa-
tions to zeros), the proposed mixed pooling method replaces the conventional
deterministic pooling operations with a stochastic procedure, randomly employ-
ing the max pooling and average pooling methods during the training of CNNs.
Such a stochastic nature of the proposed mixed pooling method helps prevent
over-fitting to some extent. Experiments are performed to verify the superiority
of the proposed mixed pooling method over the traditional max pooling and
average pooling methods.

The rest of this paper is organized as follows. Section 2 provides a background
review of CNNs. The proposed mixed pooling method is introduced in Section 3.
In Section 4, the comparative experimental results are presented. Finally, Section
5 concludes this paper.
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2 Review of Convolutional Neural Networks

A brief review of CNNs is presented herein which is useful to elicit the proposed
mixed pooling method. In general, CNNs are representatives of the multi-stage
Hubel-Wiesel architecture [13], which extract local features at a high resolution
and successively combine these into more complex features at lower resolutions.
The loss of spatial information is compensated by an increasing number of feature
maps in higher layers.

A powerful CNN is composed of several feature extraction stages, and each
stage consists of a convolutional layer, a non-linear transformation layer and a
feature pooling layer. The convolutional layer takes inner product of the linear
filter and the underlying receptive field followed by a nonlinear activation func-
tion at every local portion of the input. Then, the non-linear transformation layer
performs normalization among nearby feature maps. Finally, the feature pooling
layer combines local neighborhoods using an average or maximum operation,
aiming to achieve invariance to small distortions. An example of a two-stage
CNN with the aforementioned three layers is shown in Fig. 1 for illustration.

Fig. 1. An example of a two-stage CNN. An input image is passed through a convo-
lutional layer, followed by non-linear transformation layer and pooling layer to extract
low-level features in the first stage. Then, these three layers are applied again in the
second stage to extract high-level features.

2.1 Convolutional Layer

The aim of the convolutional layer is to extract patterns found within local re-
gions of the input images that are quite common in natural images [10]. Generally
speaking, the convolutional layer generates feature maps by linear convolutional
filters followed by nonlinear activation functions, such as ReLU [14], sigmoid,
tanh, etc. In this layer, the kth output feature map yk can be calculated as
follows:

yk = f(wk ∗ x), (1)

where x denotes the input image, wk stands for the convolutional filter associated
with the kth feature map, ∗ indicates the 2D convolution operator which is used
to calculate the inner product of the filter template at every location in the input
image, and f(·) is the nonlinear activation function.
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2.2 Non-linear Transformation Layer

It has been shown in [15] that using a rectifying non-linear transformation layer is
an effective way to further improve the CNN performance for visual recognition
tasks. This layer usually performs local subtractive or divisive operations for
normalization, enforcing a kind of local competition between features at the
same spatial location in different feature maps. There are usually two kinds of
non-linear transformations. One is the local response normalization [11], which
yields the normalized output ykij at the position (i, j) in feature map k as

ykij =
xkij(

1 + α
N ·

k+N
2∑

l=k−N
2

(xlij)2

)β
, (2)

where the sum runs over N adjacent feature maps at the same spatial location,
and the parameters of α and β can be determined using a validation set.

Another is the local contrast normalization [15] with the normalized output
ykij produced with the following formula.

ykij =
xkij⎛⎝1 + α

M1·M2

i+
M1
2∑

p=i−M1
2

j+
M2
2∑

q=j−M2
2

(xkpq −mkij)
2

⎞⎠β
, (3)

where the local contrast is computed within a local M1 ×M2 region with the
center at (i, j), and mkij is the mean of all x values within the above M1 ×M2

region in the kth feature map as computed as

mkij =
1

M1 ·M2
·

i+
M1
2∑

p=i−M1
2

j+
M2
2∑

q=j−M2
2

xkpq . (4)

2.3 Feature Pooling Layer

The purpose of pooling is to transform the joint feature representation into a
more usable one that preserves important information while discarding irrelevant
details. The employment of pooling layer in CNNs aims to achieve invariance to
changes in position or lighting conditions, robustness to clutter, and compact-
ness of representation. In general, the pooling layer summarizes the outputs of
neighboring groups of neurons in the same kernel map [7]. In the pooling layer,
the resolution of the feature maps is reduced by pooling over local neighborhood
on the feature maps of the previous layer, thereby enhancing the invariance to
distortions on the inputs.

In CNNs, there are two conventional pooling methods, including max pooling
and average pooling. The max pooling method selects the largest element in
each pooling region as

ykij = max
(p,q)∈Rij

xkpq , (5)
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where ykij is the output of the pooling operator related to the kth feature map,
xkpq is the element at (p, q) within the pooling region Rij which represents a
local neighborhood around the position (i, j). Regarding the average pooling
method, it takes the arithmetic mean of the elements in each pooling region as

ykij =
1

|Rij |
∑

(p,q)∈Rij

xkpq , (6)

where |Rij | stands for the size of the pooling region Rij .

3 Proposed Mixed Pooling

3.1 Motivation

As mentioned before, the max pooling and average pooling methods are two
popular choices employed by CNNs due to their computational efficiency. For
instance, the average pooling method is used in [15] which obtains an excellent
image classification accuracy on the Caltech101 dataset. In [7], the max pool-
ing method is successfully applied to train a deep ‘convnet’ for the ImageNet
competition. Although these two kinds of pooling operators can work very well
on some datasets, it is still unknown which will work better for addressing a
new problem. In another word, it is a kind of empiricism to choose the pooling
operator.

On the other hand, both the max pooling and average pooling operators have
their own drawbacks. About max pooling, it only considers the maximum element

Fig. 2. Toy example illustrating the drawbacks of max pooling and average pooling.
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and ignores the others in the pooling region. Sometimes, this will lead to an unac-
ceptable result. For example, if most of the elements in the pooling region are of
high magnitudes, the distinguishing feature vanishes after max pooling as shown
in Fig. 2(a). Regarding average pooling, it calculates the mean of all the elements
within the pooling region. This operator will take all the lowmagnitudes into con-
sideration and the contrast of the new feature map after pooling will be reduced.
Even worse, if there are many zero elements, the characteristic of the feature map
will be reduced largely, as illustrated in Fig. 2(b).

It is well known that images in the nature world are ever-changing, and it is
of high possibility that the defective aspects of max pooling and average pooling
(as shown in Fig. 2) will have negative effects in applying pooling layers to
CNNs. Therefore, as a solution, we consider to replace the deterministic pooling
operation with a stochastic procedure, which randomly employs the local max
pooling and average pooling methods when training CNNs. This is the proposed
mixed pooling method to be introduced next.

3.2 Pooling Scheme

The proposed mixed pooling is inspired by the random Dropout [11] and Drop-
Connect [12] methods. As mentioned before, when training with Dropout, a
randomly selected subset of activations are set to zeros within each layer. While
for DropConnect, it instead sets a randomly selected subset of weights within the
network to zeros. Both of these two techniques have been proved to be powerful
for regularizing neural networks.

In this work, the proposed mixed pooling method generates the pooled output
with the following formula.

ykij = λ · max
(p,q)∈Rij

xkpq + (1− λ) · 1

|Rij |
∑

(p,q)∈Rij

xkpq , (7)

where λ is a random value being either 0 or 1, indicating the choice of using the
max pooling or average pooling. In another word, the proposed method changes
the pooling regulation scheme in a stochastic manner which will address the
problems encountered by max pooling and average pooling to some extent.

3.3 Back Propagation

As usual, CNN layers are trained using the back propagation algorithm. For error
propagation and weight adaptation in fully connected layers and convolutional
layers, the standard back propagation procedure is employed. For the pooling
layer, the procedure is a little bit different. As noted in [2], the pooling layers do
not actually do any learning themselves. Instead, they just reduce the dimension
of the networks. During forward propagation, an N×N pooling block is reduced
to a single value. Then, this single value acquires an error computed from back
propagation. For max pooling, this error is just forwarded to where it comes
from because other units in the previous layer’s pooling blocks do not contribute
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to it. For average pooling, this error is forwarded to the whole pooling block by
dividing N ×N as all units in the block affect its value.

In mixed pooling, it is also needed to locate where the error comes from so
that it can modify the weights correctly. The proposed mixed pooling randomly
apply the max pooling and average pooling during forward propagation. For
this reason, the pooling history about the random value λ in Eq. (7) must be
recorded during forward propagation. Then, for back propagation, the operation
is performed depending on the records. Specifically, if λ = 1, then the error
signals are only propagated to the position of the maximum element in the
previous layer; otherwise, the error signals will be equally divided and propagated
to the whole pooling region in the previous layer.

3.4 Pooling at Test Time

When the proposed mixed pooling is applied for test, some noises will be in-
troduced into CNNs’ predictions, which is also found in [10]. In order to reduce
this kind of noise, a statistical pooling method is used. During the training of
CNNs, the frequencies of using the max pooling and average pooling methods
related to the kth feature map are counted as F k

max and F k
avg. If F

k
max ≥ F k

avg ,
then the max pooling method is applied in the kth feature map; otherwise, the
average pooling method is used. In this sense, the proposed statistical pooling
at the test time can be viewed as a form of model averaging.

4 Experimental Results

4.1 Overview

The proposed mixed pooling method is evaluated on three benchmark image clas-
sification datasets, including CIFAR-10 [16], CIFAR-100 [16] and the Street View
House Number (SVHN) dataset [17], with a selection of images from CIFAR-
10 and SVHN as shown in Fig. 3. The proposed method is compared with the
max pooling and average pooling methods for demonstrating the performance
improvement. In the experiments, the CNNs are generated from the raw RGB
values of the image pixels. As a regularizer, the data augmentation technique
[18] is applied for CNN training, which is performed by extracting 24×24 sized
images as well as their horizontal reflections from the original 32×32 image and
then training CNNs on these extracted images. Another regularizer applied in
this work is the weight decay technique as used in [7].

In this work, the publicly available cuda-convnet [19] package is used to per-
form experiments with a single NVIDIA GTX 560TI GPU. Currently, the CNNs
are trained using stochastic gradient descent approach with a batch size of 128
images and momentum of 0.9. Therefore, the update rule for weight w is

vi+1 = 0.9vi + ε

〈
∂L

∂w
|wi

〉
i

, (8)
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Fig. 3. A selection of images we evaluated. (a) CIFAR-10 [16]. (b) SVHN [17].

wi+1 = wi + vi+1, (9)

where i is the iteration index, v is the momentum variable, ε is the learning rate,
and

〈
∂L
∂w |wi

〉
i
is the average over the ith batch of the derivative of the objective

with respect to wi.

4.2 CIFAR-10

CIFAR-10 [16] is a collection of natural color images of 32×32 pixels. It contains
10 classes, each of them having 5,000 samples for training and 1,000 for testing.
The CIFAR-10 images are highly varied, and there is no standard viewpoint or
scale at which the objects appear. Except for subtracting the mean activity of
the training set, the CIFAR-10 images are not preprocessed.

A two-stage CNN model is trained in this work, with each stage consisting of
a convolutional layer, a local response normalization layer and a pooling layer.
All the convolutional layers have 64 filter banks and use a filter size of 5×5.
Local response normalization layers follow the convolutional layers, with N = 9,
α = 0.001 and β = 0.75 (as used in Eq.(2)), which normalize the output at each
location over a subset of neighboring feature maps. This typically helps training
by suppressing extremely large outputs allowed by the rectified linear units and
helps neighboring features communicate with each other. Additionally, all of the
pooling layers that follow local response normalization layers summarize a 3×3
neighborhood and use a stride of 2. Finally, two locally connected layers and a
softmax layer are used as classifier at the end of the entire network.

We follow the common experimental protocol for CIFAR-10, which is to choose
50,000 images for training and 10,000 images for testing. The network parameters
are selected by minimizing the error on a validation set consisting of the last
10,000 training examples.

The comparative results are shown in Table 1, where the test accuracy results
of several state-of-the-art approaches are cited for illustration besides the max
pooling, average pooling and mixed pooling methods. From the results, it can
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Table 1. Comparative classification performances with various pooling methods on
the CIFAR-10 dataset

Method Training error (%) Accuracy (%)

3-layer Convnet [11] - 83.4%
10-layer DNN [5] - 88.79%

Stochastic pooling [20] - 84.87%

Max pooling 3.01% 88.64%
Average pooling 4.52% 86.25%
Mixed pooling 6.25% 89.20%

be seen that the proposed mixed pooling method is superior to other methods
in terms of the test accuracy although it produces larger training errors than
that of max pooling and average pooling. This indicates that the proposed mixed
pooling outperforms max pooling and average pooling to address the over-fitting
problem. As observed from the results, a test accuracy of 89.20% is achieved by
the proposed mixed pooling method which is the best result which we are aware
of without using Dropout. In addition, the features which are learnt in the first
convolutional layer by using different pooling methods are shown in Fig. 4, where
it can observed that the features learnt with the proposed mixed pooling method
contains more information than that of max pooling and average pooling.

Fig. 4. Visualization of 64 features learnt in the first convolutional layer on the CIFAR-
10 dataset. The size of each feature is 5×5×3. (a) Features learnt with max pooling.
(b) Features learnt with average pooling. (c) Features learnt with mixed pooling.

4.3 CIFAR-100

The CIFAR-100 dataset [16] is the same in size and format as the CIFAR-10
dataset, but it contains 100 classes. That is to say, each class in CIFAR-100 has
500 images to train and 100 images to test. We preprocess the data just like
the way we have done for the CIFAR-10 dataset, and the same CNN structure
as used for CIFAR-10 is applied to CIFAR-100. The only difference is that the
last softmax layer outputs 100 feature maps. The comparative results are shown
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Table 2. Comparative classification performances with various pooling methods on
the CIFAR-100 dataset

Method Training error (%) Accuracy (%)

Learnable pooling regions [21] - 56.29%
Stochastic pooling [20] - 57.49%

Max pooling 5.42% 59.91%
Average pooling 14.61% 55.99%
Mixed pooling 25.71% 61.93%

in Table 2, where it can be observed that the proposed mixed pooling method
outperforms the other methods in terms of test accuracy.

4.4 SVHN

Finally, we also perform experiments on the SVHN dataset [17]. SVHN consists of
images of house numbers collected by Google Street View. There are 73,257 digits
in the training set, 26,032 digits in the test set and 531,131 additional examples
as an extra training set. We follow [22] to build a validation set which contains
400 samples per class from the training set and 200 samples per class from the
extra set. The remaining digits of the training and extra sets are used for training.
The local contrast normalization operator is applied in the same way as used in
[20]. The comparative results are presented in Table 3, which demonstrate the
superiority of the proposed mixed pooling method over the others.

Table 3. Comparative classification performances with various pooling methods on
the SVHN dataset

Method Training error (%) Accuracy (%)

Lp-pooling Convnet [22] - 95.10%
64-64-64 Stochastic pooling [20] - 96.87%

64-64-64 Max pooling 2.03% 96.61%
64-64-64 Average pooling 2.41% 96.14%
64-64-64 Mixed pooling 3.54% 96.90%

4.5 Time Performance

To further illustrate the advantage of the proposed mixed pooling method, the
time consumption performances are illustrated in Fig. 5 with two testing sce-
narios evaluated for max pooling, average pooling, stochastic pooling [10] and
mixed pooling, where nine epoches are tested. From Fig. 5, it can be seen that
the computational complexity of mixed pooling is almost the same as that of
average pooling and max pooling, and far lower than that of stochastic pooling.
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(a) (b)

Fig. 5. Time performance comparison among max, average, stochastic and mixed pool-
ing. (a) Time consumption when feature map size is 28× 28 and pooling size is 2× 2.
(b) Time consumption when feature map size is 14× 14 and pooling size is 2× 2.

5 Conclusion

In this paper, a novel pooling method called mixed pooling is proposed, which
can be combined with any other forms of regularization such as weight de-
cay, Dropout, data augmentation, and so on. Comparative experimental results
demonstrate that the proposed mixed pooling method is superior to the tra-
ditional max pooling and average pooling methods to address the over-fitting
problem and improve the classification accuracy. With the proposed method,
we achieve the start-of-the-art performances on the CIFAR-10, CIFAR-100 and
SVHN datasets as compared with other approaches that do not employ Dropout.
Furthermore, the proposed method requires negligible computational overheads
and no hyper-parameters to tune, thus can be widely applied to CNNs.
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Abstract. Business Analytics is comprehensively used in many enterprises 
with large scale of data from databases and analytics tools like R. However,  
isolation between database and data analysis tool increases the complexity of 
business analytics, for it will cause redundant steps such as data migration and 
engender latent security problem. In this paper, we propose an in-database  
scoring mechanism, enabling application developers to consume business  
analytics technology. We also validate the feasibility of the mechanism using  
R engine and IBM DB2 for z/OS. The result evinces that in-database scoring 
technique can be applicable to relational databases, largely simplify the process 
of business analytics, and more importantly, keep data governance privacy,  
performance and ownership. 

Keywords: Business Analytics, In-Database Scoring, DB2 for z/OS, R. 

1 Introduction 

Business Analytics technology (BA) prevails in various industries for developing new 
insights and planning business performance through historical data, statistical models 
or quantitative methods [5]. Data manipulation and modeling management are two 
major sections during the whole process of BA. However, in traditional BA proce-
dure, the limitation is evitable that analytics models are usually created in one envi-
ronment while transactional data is stored in other different places. This may engend-
er latent problems comprising heavy dependency of manual work, inconsistency of 
data migration, complexity of model scoring process and security problem as well.  

One alternate solution is to integrate data and model into single environment. This 
implies two possible methods: 1) make database accessible to modeling tool; 2) ena-
ble database to score models. The first method is already implemented by Oracle R 
Enterprise that makes it much easier for data scientists to train and score models on R, 
the data analysis engine, which provides an interface to manipulate data in remote 
Oracle databases. However, although it does simplify procedures for data scientists, 
                                                           
* Corresponding author. 
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the problem remains unsolved that it is costly to leverage scoring results and integrate 
trained models into the existing system. Thus, the second method will be better  
because it can not only provide convenience for developers to consume models, but 
also largely avoid a series of problems brought by data migration. 

In this paper, we propose a general in-database scoring mechanism that aims 1) to 
make BA technology ‘consumable’ by simplifying the process of BA and 2) to control  
the security risk by minimizing data migration. To validate feasibility of the mechanism, 
we choose R and IBM DB2 for z/OS as our experimental platform. The reason is R has 
been the most popular data mining tool since 2010 [6], and IBM mainframe has been 
widely used in many banks or large enterprises for a long period. In the experiment, we 
implement an interface for in-database scoring on DB2 with the help of some main-
frame features. The interface is exposed as a DB2 stored procedure, which allows users 
to do both model scoring and data manipulation directly through SQL statements. Ar-
chitecture of the whole process, mechanism of R model storage, and design of commu-
nication between R and stored procedure are explicitly described later in this paper. 

2 Related Work 

Architecture and implementation of in-database scoring technology is associated with 
database features and analytics tools. To some extent, several databases have already 
been enhanced with analytics function, but focus on different points.  

Oracle R Enterprise (ORE) allow R users to do model scoring and operate Oracle 
data in R [8, 9, and 10]. It extends the database with the R library of statistical func-
tionality and pushes down computations to the database. It provides a database-centric 
environment for end-to-end analytical processes in R. The public interface of ORE is 
the R APIs through which R users work solely within R for data analysis and trigger 
in-database scoring in Oracle database. However, as mentioned before, application 
developers who manipulate databases are still isolated from business analytics or it 
still costs too much for them to consume models. 

Sybase IQ is a column-based relational database system used for business analytics 
and data warehouse [12]. It mainly focuses on analyzing large amount of data in a 
low-cost and high-availability environment. The in-database scoring here happens in 
two kinds of ways: in-process and out-process. In-process means all shared libraries 
and user’s functions are loaded into Sybase IQ process in the memory and execute 
altogether. This can definitely keep high performance, but will also incur security 
risks and robustness risks. On the opposite, out-process causes lower security and 
robustness risks, but lead to lower performance. 

SAS in-database processing integrates SAS solutions, SAS analytic processes, and 
third-party database management systems [11]. With SAS in-database processing, 
users can run scoring models, SAS procedures and formatted SQL queries inside the 
database. However, the solution mainly aims at offering an integrated analytics envi-
ronment and is quite different from what we propose to solve. 

Other work includes using PMML as the bridge between the data science lab and 
the warehouse [2]. Predictive models can be embedded into the database and automat-
ically be turned into SQL functions. However, models supported by PMML are not 
rich enough, unlike original data analysis engine such as R. 
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3 In-Database Scoring Mechanism 

3.1 General Model Definition 

Let’s denote the general form of model  as a four-element tuple: 

 , , , Θ  (1) 

where , , … , , , denoted as the set of model input variables, , , … , , , denoted as the set of model output variables,  is the 
formula or algorithm of the model and Θ , , … , , , denoted as the set 
of model parameters. The model can also be written as function style: 

 , Θ  (2) 

With observation data of input variables  and observation data of output variables 
, parameters Θ of model  can be trained into estimated parameters Θ: 

 Θ G | ,  (3) 

where G  is the function or algorithm for training model . Therefore, a trained 
model  can denoted as: 

 , , |Θ  (4) 

It is obvious that  along with estimated parameters Θ here is the scoring function. 
Let’s define it as  such that: 

 Θ  (5) 

So given new input observation data , predicted values of output variables equals to: 

  (6) 

3.2 Analysis of Scoring Function 

For the training process in equation (3), it is usually done beforehand by data scien-
tists with their own data analysis engines. Thus application developers who can now 
easily consume these trained model only care about three things according to equation 
(5), namely input variables , output variables , and scoring function . 

In most cases, the output  represents values of prediction or labels of classifica-
tion, which is determined by scoring function  and new data . From equation (6) 
we know that as long as we save information of scoring function , information of 
every input variable …  and every output variable … , and new input ob-
servation data , the scoring job can be done easily. 

3.3 Process of In-Database Scoring 

According to features of common relational database along with general models de-
fined in section 3.1, we first define some useful data structures as following: 
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Definition 1 (Data Analysis Engine): Data Analysis Engine (DAE) is a real software 
or tool for model training and model scoring. Let’s define DAE  as: 

 , ,  (7) 

where each pair of ,  represents attributes of DAE in real scenario, such 
as ‘location’, ‘access_token’, etc., and  is the universal set of all DAE. 

Definition 2 (Model Structure): Model Structure (MS) is the general description 
framework of a model. Let’s define MS  as: 

 , , , , ,  (8) 

where  is the DAE that matches features of the model (support for scoring at least), 
, Model Result Object of Model i, represents the result of trained model (  

and Θ), , Model Scoring Function of Model i, represents the program to run 
scoring function ( ), and  is the universal set of all models. 

Definition 3 (Model Parameter Structure): Model Parameter Structure (MPS) is the 
general description framework of a model variable. Let’s define MPS  as: 

 , , , , , ,  (9) 

where  is the MS that this variable belongs to,  is the identifier that flags wheth-
er the variable is input or output,   is the order of variable in the connected 
model, and  is the universal set of all model variables. 

Definition 4 (Model Data Structure): Model Data Structure (MDS) is the general 
description framework of observation data of a variable. Let’s define MDS  as: 

 , … , , , … ,  (10) 

Notice that , … ,  and , … ,  are observation values of model variables strictly 
in the same order as those defined in . 

Algorithm 1 (Process of Model Scoring): According to equation (6), input of model-
ing scoring is a set of model  and model data  where , … ,  are real  
observation data while , … ,  are empty because those are the result this scoring. 
Pseudo code is shown as following: 

INITIALIZE database 
INPUT < ,  ARRAY 
FOREACH < ,  IN ARRAY 
  VALIDATE  

Find DAE  SUCH THAT  and  IN  
Find all , …  SUCH THAT , …  and , …  IN  
VALIDATE   FOR , … , , , … ,  
SCORE < , , , … , , … ,  
CALCUALTE AND SAVE < , … ,  

END FOREACH 
OUTPUT < , … ,  ARRAY 
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4 In-Database Scoring with DB2/z and R 

4.1 Architecture 

The architecture of in-database scoring module for DB2 for z/OS is based on IBM 
mainframe, which is divided into several logical partitions (LPARs), each supporting 
different operating systems like z/OS and z/Linux. In most cases, DB2 is mostly dep-
loyed on z/OS by enterprise customers due to its high availability, scalability and 
adaptability while z/Linux is a good choice to run analytics engine like R. Along with 
factors and features, as Figure 1 shown, the whole module mainly consists of three 
parts: the DB2 stored procedure as public interface for database user, the internal 
model-related tables on DB2 for z/OS, R server and model files on z/Linux.  

On z/OS side, DB2 stored procedure, as the only public interface for in-database 
scoring, is responsible for execution of whole scoring process, including interaction 
with DB2 user, reading and updating table data and communication with R server. So 
with this interface, DB2 users can easily access to the R engine to score models and 
need not care about how the procedure works. Detailed implementation of stored 
procedure will be discussed later.  

Corresponding to data structures defined in equation 7, 8, 9, and 10, four tables are 
required in this architecture, MODEL table for R model related information, 
MODELPRMT table for R model input and output parameters information and 
SERVER table for R server information. These three tables should be setup as DB2 
system tables, and the only permission for regular users is reading to prevent arbitrary 
modification. SCORE DATA table is a temporary table for saving input and output 
data and is created by DB2 regular users who can import scoring input data from oth-
er tables and get scoring result accordingly. 

On z/Linux side, R server acts as analytics engine and listens to a particular port, 
waiting for model scoring requests. There can be several z/Linux systems, each with 
one R server, so multiple scoring process may happen at the same time, but executed 
by different R servers for workload balancing. For each individual scoring, R server 
should load two files from local file system, Model Result Object (MRO) and Model 
Scoring Function (MSF). The previous one is a serialized R object file, which comes 
from a trained R model of built-in model classes or lists. The second one is R script 
that consists of a function to call MRO, score test data and return result string. The 
two files should be provided by R users by publishing R models into database. 

4.2 Workflow 

The first step is to deploy R models into mainframe by R users through an R interface. 
As Figure 2 shows, it will complete three things: upload MRO and MSF files and 
save in R server, fill in model related information in three system tables, and create a 
temporary data table structure that can be duplicated by DB2 users to store scoring 
data. Notice that MRO and MSF files are prepared by R users beforehand, and related 
model information should also be necessarily provided. 
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Fig. 1. Architecture of In-Database Scoring 

 

Fig. 2. Workflow of Deploy Model 

When the stored procedure is called by the DB2 user (as Figure 1 shows), R model 
and server related information will be looked for in three system tables. Meanwhile, 
scoring input data will be read from SCORE DATA table and prepared in a particular 
format. Depending on these clues, the program can then locate R server and model 
files, passing the data to R server for the following in-database scoring. The analytics 
process is executed in R just like normal circumstances, but the result will be passed to 
the stored procedure internal program and saved to SCORE DATA table. So this data 
table plays a role of medium that temporarily loads scoring input data, and allows da-
tabase users to access prediction result after the stored procedure execution succeeds. 

4.3 Stored Procedure Interface and Implementation 

Different from other regular stored procedure, the scoring stored procedure here should 
complete not only table data manipulation but also network communication with R 
server. CRUD (Create/Read/Update/Delete) for database table can be performed in SQL 
statements, but for network communication or even complex text process, these stored 
procedures can be hardly capable (Oracle PL/SQL is one choice). One significant  
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key  can uniquely identify a single record, and table attributes are always fixed, so static 
embedded SQL that begins with ‘EXEC SQL’ and followed by a query statement is 
adopted. However, for SCORETABLE, the number of attributes is always changeable, as 
there can be different input variables and output variables according to different models. 
This causes the ‘SELECT’ statement cannot be fixed in source C/C++ code. A feasible 
solution is to adopt dynamic embedded SQL assisted by SQLCA (SQL Communication 
Area) and SQLDA (SQL Descriptor Area). The structure of SQLDA consists of 16 bytes 
SQLDA header and several 44 bytes SQLVARs, which represents the same number of 
attributes to be fetched from table. Table data is stored as void* array in the member 
‘sqldata’ of SQLVAR.  

4.5 Communication between Database and R 

Since R is an analytics engine for statistical computing and graphics, an extra module 
is required to make R as a server that can listen to request for scoring. ‘Rserve’ is 
such an enhanced R package. It is a TCP/IP server integrated with R which allows 
other programs to use facilities of R. Thus, the main task turns to using C socket API 
to communicate with ‘Rserve’.Three things will be executed during scoring process: 
pass scoring data to R, load MRO and MSF file into R engine and run scoring func-
tion coded in MSF. The scoring data will be constructed as an R command string 
which defines an array of numbers or strings. 

4.6 Scenario and Experimental Result 

We have tested three basic models in the experiment: linear regression for prediction, 
k-means for clustering and neural network for classification. The experimental plat-
form is on DB2 for z/OS v9. 

Before using R scoring function in DB2 for z/OS, following steps are needed to be 
done beforehand. 

1. MRO (model result object) and MSF (model scoring function) are needed to be up-
loaded to z/Linux server. 

2. The R model information has to be inserted into relative DB2z tables. 
3. Model input and output temporary table has to be created. 

Take a real scenario of k-means as example. Suppose an insurance company wants 
to cluster customers into several groups with three factors: age, income, historical 
insurance. We need to prepare two MRO and MSF files. Suppose data analyst in the 
company has trained a K-Means Clustering model with R using function ‘kmeans()’, 
which accepts three Xs (age, income, historic insurance) as independent variables and 
returns one Y as dependent variable. The returned object of function ‘kmeans()’ 
should be assigned to a variable that will then be saved to a serialized MRO file with 
function ‘save()’. For MSF script, the first argument of function should be MRO  
and rests are all input variables (X). The order of these input variables should be care-
fully ordered. All these Xs can each be a single value or an array (vector) of values, 
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but each X should be in the same size. The return value of function is simply a  
make-up string. The string is composed of all output data (Y) calculated from trained 
models and separated by some delimiters. Each set (row) of Ys are separated by semi-
colons while each cell (column) of Ys are separated by commas. Furthermore, related 
information of the model should be inserted into the three system tables: MODEL, 
MODELPRMT and SERVER. Temporary table is supposed to be created with accor-
dance to Xs and Y and filled with several records of test data Xs, but Y left empty.  

For three models in the experiment, detailed parameters are shown in table 1. 

Table 1. Parameter of Tested Models 

Model Name Linear Regression K-Means Nerual Network 
Number of X 4 3 2 
Data Type of X Float String Float 
Number of Y 1 1 1 
Data Type of Y Float String Float 
Row of Data 1000 1000 1000 
Data Table lrdata kmdata nndata 

 
Then, we can call the stored procedure named ‘R.SCORE()’ to do scoring. For 

each model, the stored procedure program will sequentially read model information 
from MODEL table, MODELPRMT table, SERVER table and input data of X from 
TEMP DATA tables (here are ‘lrdata’, ‘kmdata’ and ‘nndata’). 1000 row of input data 
will be formatted as a whole string and passed to R server after the z/Linux is posi-
tioned by respective model information. Once the scoring (prediction, clustering and 
classification) is executed by R, stored procedure program will fetch output data of Y 
from R server and insert into TEMP DATA tables.  

Finally, we simply use SELECT SQL statement to read scored data from three 
tables (‘lrdata’, ‘kmdata’ and ‘nndata’) successfully. We can find that all manual oper-
ations are completed with SQL statements inside DB2 without help of any other tools.  

5 Conclusion and Future Work 

We have proposed a feasible in-database scoring mechanism validated by an experi-
ment that it’s successfully implemented on DB2 for z/OS. With this technology, users 
like application developers can directly consume business analytics like prediction and 
classification with SQL statements inside database where transactional data is stored. 
The architecture and approach is quite general and can also be applied to other data-
bases. Meanwhile, to improve performance of fetching data from table in C program, 
we leverage static embedded SQL together with dynamic embedded SQL assisted with 
SQLCA, SQLDA and some other DB2 features rather than traditional ODBC. 

The future work includes the grand vision of evolving this work eventually into a 
full-equipped cloud infrastructure where BA service (hardware, middleware, soft-
ware, etc.) will be offered as a service to accelerate the adoption of the technology by 
unlimited population of application developers and end users. 
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Abstract. In this paper, we define the FMα integrals of fuzzy-number-
valued functions and discuss its properties. Especially, we give two exam-
ples which show that the FMα integrable function is not fuzzy McShane
integrable, and the fuzzy Henstock integrable function is not FMα inte-
grable function. As the main outcomes, we prove that a fuzzy-number-
valued function f : I0 → En is FMα integrable on I0 if and only if there
exists an ACGα function F such that F ′ = f almost everywhere on I0.

Keywords: Fuzzynumber, fuzzy-number-valued functions,FMα integrals.

1 Introduction

In real analysis, the Henstock integral is designed to integrate highly oscillatory
functions which the Lebesgue integral fails to do. It is well-known that the Hen-
stock integral includes the Riemann, improper Riemann, Lebesgue and Newton
integrals [1,2]. Though such an integral was defined by Denjoy in 1912 and also
by Perron in 1914, it was difficult to handle using their definitions. But with the
Riemann-type definition introduced more recently by Henstock[1] in 1963 and
also independently by Kurzweil[3], the definition is now simple and furthermore
the proof involving the integral also turns out to be easy. For more detailed
results about the Henstock integral, we refer to [2]. Wu and Gong [4,5] have
combined the above theories and fuzzy sets theory [6] and discussed the fuzzy
Henstock integrals of fuzzy-number-valued functions which extended Kaleva in-
tegration [7]. In order to complete the theory of fuzzy calculus and to meet the
solving need of transferring a fuzzy differential equation into a fuzzy integral
equation, we [8] have defined the strong fuzzy Henstock integrals and discussed
some of their properties and the controlled convergence theorem.

It is well-known [9] that a real function f : [a, b] → R is C−integrable on
[a, b] if and only if there exists an ACGc function F such that F ′ = f almost
everywhere on [a, b]. In this paper, we shall continuously extend fuzzy integra-
tion theory. Using the definition of Mα partition [10], we will define the fuzzy
Mα integrals of fuzzy-number-valued functions and discuss the properties of the
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fuzzyMα− integral. Especially, we give two examples which show that the FMα

integrable function is not fuzzy McShane integrable, and the fuzzy Henstock in-
tegrable function is not FMα integrable function. As the main outcomes, we
prove that a fuzzy-number-valued function f : [a, b]→ En is FMα integrable on
[a, b] if and only if there exists an ACGα function F such that F ′ = f almost
everywhere on [a, b].

The rest of the paper is organized as follows: in Section 2, we will recall some
basic results of fuzzy numbers space. In section 3, we discuss the properties of
the fuzzy Mα-integral of fuzzy-number-valued functions. And in Section 4, we
present some concluding remarks and future research.

2 Preliminaries

Let us denote by En the class of fuzzy subsets of the real axis u : R → [0, 1],
satisfying the following properties:

(1) u is normal, i.e. there exists x0 ∈ R with u(x0) = 1;
(2) u is a convex fuzzy set (i.e u(tx + (1 − t)y) ≥ min{u(x), u(y)}, ∀t ∈

[0, 1], x, y ∈ R);
(3) u is semicontinuous on R;
(4) {x ∈ R : u(x) > 0} is compact, where A denotes the closure of A.
Then En is called the space of fuzzy numbers. For 0 < λ ≤ 1, denote [ũ]λ =

{x ∈ R : u(x) ≥ λ} and [u]0 = {x ∈ R : u(x) > 0}. Then it is well-known
that for any λ ∈ [0, 1], [ũ]λ is a bounded closed interval. For ũ, ṽ ∈ RF and
k ∈ R, the sum ũ+ ṽ and the product k · ũ are defined by [ũ+ ṽ]λ = [ũ]λ + [ṽ]λ,
[k · ũ]λ = k · [ũ]λ, ∀λ ∈ [0, 1], where [ũ]λ + [ṽ]λ = {x + y : x ∈ [ũ]λ, y ∈ [ũ]λ}
means the usual addition of two intervals and k · [ũ]λ = {λx, x ∈ [ũ]λ} means
the usual product between a scalar and a subset of R.

Lemma 1 ([11]). Let ũ ∈ RF and [ũ]λ = [u−λ , u
+
λ ]. Then the following condi-

tions are satisfied:
(1) u−λ is a bounded left continuous non-decreasing function on (0, 1];
(2) u+λ is a bounded left continuous non-increasing function on (0, 1];
(3)u−λ and u+λ are right continuous at λ = 0;
(4)u−1 ≤ u+1 .
Conversely, if a pair of function a(λ) and b(λ) satisfy condition (1)−(4), then

there exists a unique ũ ∈ RF such [ũ]λ = [a(λ), b(λ)] for each λ ∈ [0, 1].

Let A and B be two nonempty bounded subset of Rn. The distance between
A and B is defined by the Hausdorff metric[12]:

dH(A,B) = max{sup
a∈A

inf
b∈B

‖ a− b ‖, sup
b∈B

inf
a∈A

‖ b− a ‖}.

Define D : En × En → [0,∞)

D(u, v) = sup{dH([u]α, [v]α) : α ∈ [0, 1]},
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where d is the Hausdorff metric defined in Pk(R
n). Then it is easy see that D is

a metric in En. Using the results [13], we know that
(1) (En, D) is a complete metric space,
(2) D(u+ w, v + w) = D(u, v) for all u, v, w ∈ En,
(3)D(λu, λv) = |λ|D(u, v) for all u, v, w ∈ En and λ ∈ R.

3 Properties of the Fuzzy Mα-integral

Throughout this paper, I0 = [a, b] is a compact interval in R. Let P be a finite
collection of interval-point pairs {(Ii, ξi)}ni=1, where {Ii}ni=1are non-overlapping
subintervals of I0 and let δ be a positive function on I0, i.e. δ : I0 → R+. We
say that P = {(Ii, ξi)}ni=1 is

(1) a partial tagged partition of I0 if ∪n
i=1 ⊂ I0);

(2) a tagged partition of I0 if ∪n
i=1 = I0.

Definition 1 ([1,2]). Let δ(x) be a positive function defined on the interval
[a, b]. A MacShane division P = {[xi−1, xi], ξi} is said to be δ−fine if the follow-
ing conditions are satisfied:

(1) a− x0 < x1 < · · · < xn = b;
(2) [xi−1, xi] ⊂ (ξi − δ(ξi), ξi + δ(ξi)).

Definition 2 ([1,2]). Let δ(x) be a positive real function on a closed set [a, b].
A Henstock division P = {[xi−1, xi], ξi} is said to be δ-fine, if the following
conditions are satisfied:

(1) a = x1 < x2 < · · · < xn = b;
(2) ξi ∈ [xi−1, xi] ⊂ (ξi − δ(ξi), ξi + δ(ξi).

Definition 3 ([10]). Let δ(x) be a positive real function on a closed set [a, b].
A Mα division P = {[xi−1, xi], ξi} is said to be δ-fine, if the following conditions
are satisfied:

(1) for a constant α > 0 if it is a δ−fine McShane partition of I0;
(2) the

∑n
i=1 dist(ξi, Ii) < α, where dist(ξi, Ii) = inf{|t− ξi| : t ∈ Ii}.

Given a δ−fine partition P = {[xi−1, xi], ξi} we write

S(f, P ) =
n∑

i=1

f(ξi)|Ii|

for integral sums over P , whenever f : I0 → En.

Definition 4. Let α > 0 be a constant. A function f : I0 → En is FMα-
integrable if there exists a fuzzy number A such that for each ε > 0 there is a
positive function δ : I0 → R+ such that

D(S(f, P ), A) < ε

for each δ-fineMα-partition P = {(Ii, ξi)}ni=1 of I0. A is called the FMα-integral
of f on I0, and we write A = (FMα)

∫
I0
f.
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In the following, we shall give some properties of the FMα-integral.

Theorem 1. A function f : I0 → En is FMα-integrable if and only if for each
ε > 0 there is a positive function δ : I0 → R+ such that

D(S(f, P1), S(f, P2)) < ε

for any δ-fine Mα-partitions P1 and P2 of I0.

Proof. Assume that f : I0 → En is FMα-integrable on I0. For each ε > 0 there
is a positive function δ : I0 → R+ such that

D(S(f, P ),

∫
I0

f) <
ε

2
.

for each δ-fine Mα-partition D of I0. If P1 and P2 are δ-fine Mα-partitions, then

D(S(f, P1), S(f, P2)) ≤ D(S(f, P1),

∫
I0

f) +D(

∫
I0

f, S(f, P2))

<
ε

2
+
ε

2
= ε.

Conversely, assume that for each ε > 0, there is a positive function δ : I0 → R+

such that D(S(f, Pm), S(f, Pk)) < ε for any δ-fine Mα-partitions Pm, Pk of I0.
For each n ∈ N, choose δn : I0 → R+ such that D(S(f, P1), S(f, P2)) <

1
n for

any δn-fine Mα-partitions P1 and P2 of I0. Assume that {δn} is decreasing. For
each n ∈ N, let Pn be a δn-fine Mα-partition of I0. Then {S(f, Pn)} is a Cauchy
sequence. Let L = lim

n→∞S(f, Pn) and let ε > 0. Choose N such that 1
N < ε

2 and

D(S(f, Pn), L) <
ε
2 for all n ≥ N. Let D be a δN -fine Mα-partition of I0. Then

D(S(f, P ), L) ≤ D(S(f, P ), S(f, PN )) +D(S(f, PN ), L)

<
1

N
+
ε

2
<
ε

2
+
ε

2
= ε.

Hence f is FMα-integrable on I0, and
∫
I0
f = L.

We can easily get the following theorems.

Theorem 2. A fuzzy-number-valued function f : I0 → En. Then
(1) If f is FMα-integrable on I0, then f is FMα-integrable on every subin-

terval of I0.
(2) If f is FMα-integrable on each of the intervals I1 and I2, where I1 and

I2 are non-overlapping and I1
⋃
I2 = I0, then f is FMα-integrable on I0 and∫

I1
f +

∫
I2
f =

∫
I0
f.

Theorem 3. Let f and g be FMα-integrable functions on I0. Then
(1) kf is FMα-integrable on I0 and

∫
I0
kf = k

∫
I0
f for each k ∈ R,

(2) f + g is FMα-integrable on I0 and
∫
I0
(f + g) =

∫
I0
f +

∫
I0
g.
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Theorem 4. Let f : I0 → En be FMα-integrable on I0. Let ε > 0. Suppose that
δ is a positive function on I0 such that

D(S(f,D),

∫
I0

f) <
ε

2
.

for each δ-fine Mα-partition P = {(I, ξ)} of I0. If P
′
= {(Ii, ξi)}mi=1 is a δ-fine

partial Mα-partition of I0, then

D(S(f, P
′
),

m∑
i=1

∫
Ii

f(ξi)) < ε.

Proof. Assume that P
′
= {(Ii, ξi)}mi=1 is an arbitrary δ-fine partialMα-partition

of I0. Let I0 − ∪m
i=1Ii = ∪k

j=1I
′
j .

Let η > 0. Since f is FMα-integrable on I
′
j , there exists a positive function

δj : I
′
j → R+ such that

D(S(f, Pj),

∫
I
′
j

f) <
n

k
.

for each δj-fine Mα-partition of I
′
j .

Assume that δj(ξ) ≤ δ(ξ) for all ξ ∈ P0. Let P0 = P
′
+ P1 + P2 + · · · + Pk.

Then P0 is a δ-fine Mα-partition of I0 and we have

D(S(f, P0),

∫
I0

f) = D(S(f, P
′
) +

k∑
j=1

S(f, Pj),

∫
I0

f) < ε.

Consequently, we obtain

D(S(f, P
′
),

m∑
i=1

∫
Ii

f)

= D(S(f, P0),

k∑
j=1

S(f, Pj))−D(

∫
I0

f,

k∑
j=1

∫
Ij

f)

≤ D(S(f, P0),

∫
I0

f) +

k∑
j=1

D(S(f, Pj),

∫
Ij

f)

< ε+
kη

k
= ε+ η.

Since δ > 0 was arbitrary, we have D(S(f, P
′
),
∑m

i=1

∫
Ii
f) ≤ ε.

Nowwe recall the definition of the derivative of a fuzzy-number-valued function.

Definition 5 ([15]). Let f : (a, b) → En and x0 ∈ (a, b). We say that f is
differentiable at x0, if there exists an element f ′(t0) ∈ En, such that
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(1) for all h > 0 sufficiently small, there exists f(x0 + h)−H f(x0), f(x0)−H

f(x0 − h) and the limits (in the metric D)

lim
h→0

f(x0 + h)−H f(x0)

h
= lim

h→0

f(x0)−H f(x0 − h)
h

= f ′(x0)

or
(2) for all h > 0 sufficiently small, there exists f(x0) −H f(x0 + h), f(x0 −

h)−H f(x0) and the limits

lim
h→0

f(x0)−H f(x0 + h)

−h = lim
h→0

f(x0 − h)−H f(x0)

−h = f ′(x0)

or
(3) for all h > 0 sufficiently small, there exists f(x0 + h) −H f(x0), f(x0 −

h)−H f(x0) and the limits

lim
h→0

f(x0 + h)−H f(x0)

h
= lim

h→0

f(x0 − h)−H f(x0)

−h = f ′(x0)

or
(4) for all h > 0 sufficiently small, there exists f(x0)−H f(x0 + h), f(x0)−H

f(x0 − h) and the limits

lim
h→0

f(x0)−H f(x0 + h)

−h = lim
h→0

f(x0)−H f(x0 − h)
h

= f ′(x0)

(h and −h at denominators mean 1
h · and − 1

h ·, respectively).
Theorem 5. If the function F : I0 → En is differentiable on I0 with f(ξ) =
F

′
(ξ) for each ξ ∈ I0, then the fuzzy-number-valued function f : I0 → En is

FMα-integrable.

Proof. By the definition of derivative, for each ξ ∈ I0 there is a positive function
δ : I0 → R+ such that

D(S(f, Pj),

∫
I
′
j

f) <
n

k
.

for each δj-fine Mα-partition of I
′
j .

Assume that δj(ξ) ≤ δ(ξ) for all ξ ∈ P0. Let P0 = P
′
+ P1 + P2 + · · · + Pk.

Then P0 is a δ-fine Mα-partition of I0 and we have

D(
F (ζ)− F (ξ)

ζ − ξ , f(ξ)) <
α

2(ε+ |I0|)
for all ζ ∈ I0 with |ζ − ξ| < δ(ξ). Assume that P = {(Ii, ξi)}ni=1 is a δ-fine
Mα-partition of I0. Then we have

D(
n∑

i=1

[f(ξ)|Ii| − F (Ii)], 0̃) ≤
n∑

i=1

D(f(ξ)|Ii|, F (Ii))

<
α

ε+ |I0|
n∑

i=1

(dist(Ii, ξi) + |Ii|)

<
α

ε+ |I0| (α+ |I0|) = ε.
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Hence f : I0 → En is FMα-integrable on I0.

Definition 6. Let α > 0 be a constant. Let F : I0 → En and let E be a subset
of I0.

(a) F is said to be ACGα on E if for each ε > 0 there is a constant η > 0
and a positive function δ : I0 → R+ such that D(

∑
i

F (Ii), 0̃) < ε for each δ-fine

partial Mα-partition P = {(Ii, ξi)} of I0 satisfying ξi ∈ E and
∑
i

|Ii| < η.
(b) F is said to be ACGα on E if E can be expressed as a countable union of

sets on each of which F is ACGα.

Theorem 6. If a fuzzy-number-valued function f : I0 → En is FMα-integrable
on I0 with the primitive F, then F is ACGα on I0.

Proof. By the definition of FMα-integral and the Theorem 4, for each ε > 0
there is a positive function δ : I0 → R+ such that

D(

n∑
i=1

f(ξ)|Ii|,
n∑

i=1

F (Ii)) ≤ ε.

for each δ-fine partial Mα-partition P = {(Ii, ξi)}ni=1 of I0.
Assume that En = {ξ ∈ I0 : n − 1 ≤ D(f(ξ), 0̃) < n} for each n ∈ N. Then

we have I0 = ∪En. To show that F is ACGα on each En, fix n and take a δ-fine
partial Mα-partition P0 = {(Ii, ξi)} of I0 with ξi ∈ En for all i. If

∑
i

|Ii| < η
n ,

then

D(
∑
i

F (Ii), 0̃) ≤ D(
∑
i

F (Ii),
∑
i

F (Ii)f(ξ)) · |Ii|+D(
∑
i

f(ξ)|Ii|, 0̃)

< D(
∑
i

F (Ii),
∑
i

f(ξ))|Ii|+
∑
i

D(f(ξ), 0̃) · |Ii|

< ε+ n
∑
i

|Ii| < 2ε.

Now we recall the definitions of the McShane and Henstock integrals of fuzzy-
number-valued functions [5,14].

Definition 7 ([5]). A function f : I0 → En is fuzzy Henstock integrable if
there exists a real number A such that for each ε > 0 there is a positive function
δ : I0 → R+ such that

D(S(f, P ), A) < ε

for each δ-fine Henstock partition P = {(Ii, ξi)}ni=1 of I0.

Definition 8 ([14]). A function f : I0 → En is fuzzy McShane integrable if
there exists a real number A such that for each ε > 0 there is a positive function
δ : I0 → R+ such that

D(S(f, P ), A) < ε

for each δ-fine McShane partition P = {(Ii, ξi)}ni=1 of I0.
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Since every Henstock partition is an Mα-partition and every Mα- partition is
a McShane partition, we get the following theorem.

Theorem 7. Let f : I0 → En be a fuzzy valued function.
(a) If f is fuzzy McShane integrable on I0, then f is FMα-integrable on I0.
(b) If f is FMα-integrable on I0, then f is fuzzy Henstock integrable on I0.

A function f : I0 → En is FMα-integrable on I0 if and only if there exists on
ACGα function F on I0 such that F

′
= f almost everywhere on I0. To prove

this , we need the following two lemmas.

Lemma 2. Suppose that f : I0 → En and let E ⊆ [a, b]. If μ(E) = 0, then for
each ε > 0 there exists a positive function δ on E such that S(|f |, P ) < ε for
every δ-fine partial Mα-partition P = {(Ii, ξi)}ni=1 of [a, b] with ξi ∈ E.

Proof. For each n, let En = {x ∈ E : n − 1 ≤ |f(x)| < n} and let ε > 0. Then
E = ∪En. Since μ(En) = 0 for each n, we can choose an open set On ⊇ En with
μ(On) <

ε
n·2n .

Define δ(x) = ρ(x,Oc
n) for x ∈ En. Suppose that P is a δ-fine partial Mα-

partition of [a, b]. Let Pn be a subset of P that has tags in En and let π = {n ∈
Z+ : Pn �= ∅}. Then

S(|f |, P ) =
∑
n∈π

S(|f |, Pn) ≤
∑
n∈π

n · |Ii|

≤ n · μ(On) < n · ε

n · 2n = ε.

Lemma 3. Suppose that F : I0 → R is ACGα on I0 and let E ⊆ I0. If
μ(E) = 0, then for each ε > 0 there exists a positive function δ on E such
that D(

∑n
i=1 F (Ii), 0̃) < ε for every δ-fine partial Mα-partition P = {(Ii, ξi)}ni=1

of I0 with ξi ∈ E for all i = 1, 2, · · · , n.

Proof. Let E = ∪∞
n=1En where F is ACGα on each En. Let ε > 0. For each n,

there exists a positive function δn : En → R+ and a positive number ηn > 0 such
that |∑n

i=1 |F (Ii)| < ε
2n for each δn-fine partialMα-partition of I0 with ξn ∈ En

and |∑n
i=1 |Ii| < ηn. For each n, choose an open set On ⊇ En and μ(On) < ηn.

Define δ(x) = min{δn(x), ρ(x,Oc
n)} for x ∈ En. Suppose that P = {(Ii, ξi)} is

a δ-fine partial Mα-partition of I0 with ξi ∈ E. Let Pn be subset of P that has
tags in En and note that (Pn)

∑n
i=1 |Ii| < μ(On) < ηn. Hence,

n∑
i=1

D(F (Ii), 0̃) ≤
∑
n

(Pn)

n∑
i=1

D(F (Ii), 0̃) <
∑
n

ε

2n
.

Theorem 8. If a fuzzy-number-valued function f : I0 → En is FMα-integrable
on I0 if and only if there is an ACGα function F on I0 such that F

′
= f almost

everywhere on I0.
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Proof. Suppose that f is FMα-integrable on I0 and let F (x) =
∫ x

a
f for each

x ∈ I0. Then by Theorem 7, F is ACGα on I0. Since f is fuzzy Henstock
integrable on I0, F

′
= f almost everywhere on I0.

Conversely, suppose that there is an ACGα function F such that F = f
′

almost everywhere on I0. Let E = {x ∈ I0 : F
′
(x) �= f(x)} and let ε > 0. Then

μ(E) = 0. For each x ∈ I0 − E, choose δ(x) > 0 such that

D(F (y)− F (x), f(x)(y − x)) < ε

6(α+ |I0|) |y − x|

whenever |y − x| < δ(x) and y ∈ I0 By Lemma 2 and Lemma 3, we can find
δ(x) > 0 on E such that D(

∑
f(ξ)|Ii|, 0̃) < ε

3 and D(
∑
F (Ii), 0̃) <

ε
3 , whenever

P = {(Ii, ξi)} is a δ-fine Mα-partial partition of I0 with ξi ∈ E.
Suppose that P = {(Ii, ξi)} is a δ-fine Mα-partial partition of I0. Let P1 be

the subset of D that has tags in E and let P2 = P − P1 then

D((P )
∑

f(ξ)|Ii|, (P )
∑

F (Ii)) = D((P2)
∑

f(ξ)|Ii|, (P2)
∑

F (Ii))

+ D((P1)
∑

f(ξ)|Ii|, 0̃)
+ D((P1)

∑
F (Ii), 0̃)

≤ (P2)
∑

D(f(ξ)|Ii|, F (Ii)) + ε

3
+
ε

3

≤ ε

3(α+ |I0|)
∑

(dist(Ii, ξi) + |Ii|) + 2ε

3

≤ ε

3(α+ |I0|) (α+ |Ii|) + 2ε

3

=
ε

3
+

2ε

3
= ε.

Hence f is FMα-integrable on I0.

The following examples show that the converse of Theorem 7 is not true.

Example 1. Let f be a fuzzy-number-valued function defined by

f(x) =

{
Ã(2x sin 1

x2 − 2
x cos 1

x2 ), 0 < x �= 1,
0, x = 0.

where fuzzy number Ã defined as following:

Ã(s) =

⎧⎨⎩ s, 0 ≤ s ≤ 1,
2− s, 1 < s ≤ 2,
0, others.

Then it is easy to show that the primitive of f is

F (x) =

{
Ã · x2 sin 1

x2 , 0 < x �= 1,
0, x = 0.
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Since F (x) is differentiable and F
′
(x) = f(x) everywhere on [0, 1], f(x) is Mα-

integrable from Theorem 5. But F (x) is not absolutely continuous on [0, 1] and
therefore f(x) is not fuzzy McShane integrable on [0, 1].

Example 2. The fuzzy-number-valued function F defined by

F (x) =

{
Ã · x sin 1

x2 , 0 < x �= 1,
0, x = 0.

is differentiable nearly everywhere on [0, 1]. Obviously, the function F
′
is fuzzy

Henstock integrable on [0, 1]. But we can show that F is not ACGα on [0, 1]. To
show this, suppose that F is ACGα. Then there exists a set E ⊆ [0, 1] such that
0 ∈ E and F is ACGα on E.

For ε = α
2 , there exist a positive function δ : [0, 1] → R+ and a positive

number η > 0 such that D(
∑
F (Ii), 0̃) <

α
2 , whenever P = {(Ii, xi)}ni=1 is a

δ-fine partial Mα-partition of [0, 1] with xi ∈ E and
∑n

i=1 |Ii| < η.
Let an = 1√

(2n+ 1
2 )π

and bn = 1√
2nπ

for each positive integer n. Then an <

bn < 1 and
∑∞

n=1 an = ∞. Choose a δ-fine partial partition P = {([ai, bi], 0) :
N ≤ i ≤ M} such that α

2 <
∑M

i=N ai < α and bN < min{δ(0), η}. Then 0 ∈ E,∑M
i=N (bi − ai) < η, and

∑M
i=N dist(0, [ai, bi]) =

∑M
i=N ai < α.

Hence, P is a δ-fine Mα-partial partition of [0, 1]. But we have

D(

M∑
i=N

F (bi),

M∑
i=N

F (ai)) =

M∑
i=N

D(F (bi), F (ai)) =

M∑
i=N

ai >
α

2
.

This contradiction shows that F is not ACGα on [0, 1]. Hence, F
′
is not FMα-

integrable on [0, 1].

4 Conclusion

The aim of this paper is attempt to extend the theory of the nonabsolute fuzzy
integration theory. We provide a minimal constructive integration process of Rie-
mann type which includes the Keleva integral and also integrates the derivatives
of differentiable functions follows by Theorem 8. In the future research, we shall
discuss the convergence theorems of such integration.
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Abstract. In this article we propose a two-step classification method.
At the first step it constructs a tolerance relation from the data, and
at second step it uses correlation clustering to construct the base sets,
which are used at the classification of the objects. Besides the exposition
of the theoretical background we also show this method in action: we
present the details of the classification of the well-known iris data set.
Moreover we frame some open question due this kind of classification.

1 Introduction

As more and more parts of our lives are recorded and documented by comput-
ers, it became possible to generate easily a numerous different kinds of statis-
tics. Some of these statistics was possible to be done before the computer era
with huge human resources. Using computers made these calculations cheap and
further enabled us to make even more complicated analyses. The process of
analysing data from different perspectives and summarising it into useful infor-
mation is called data mining. This term is new, but the methods of analyses are
usually not as we have known and applied them for decades. The most important
is to find the correlations and patterns in the possibly huge data.

The term data mining involves six type of task, but in this article we show
only two of them:

– Clustering: discovering groups and structures in the data that are similar
in some sense, without using any special structure of data.

– Classification: generalizing the structure to the new data.

The clustering and classification originates from the first half of the twentieth
century [5], so we cannot wonder why so many different approaches exists, and
why different methods developed according to the different demands. We cite
here only some of them related to the rough set theory: [6,7,9,11,14,17]. In this
article we will show a clustering and classification which based on rough sets
and correlation clustering. We remark that although the aim is similar, but the
approach differs from [12]. There Pawlak uses categorical-value attributes, while
in our example (the iris data set) the attributes are real-valued. Later Pawlak
and Skowron used discretization of real valued attributes to get an information
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table with categorical data [13]. They constructed a set of basic cuts on each
attribute. In this paper we construct a partial similarity relation on real valued
attributes, and use all of them together, hence we have no cuts. Moreover we do
not generate rules for classification as [15,16] proposed.

Correlation clustering was invented in 2004 [2], and diverged from the tra-
ditional clustering methods: it uses a tolerance relation and not the concept of
distance. Moreover this clustering has a cost function which assigns an integer
to each partition. This number marks the disagreements between the original
relation and its partition. The solution of the correlation clustering is a parti-
tion with minimal disagreements. This kind of clustering uses only the relation
as its input, thus it is not necessary to give the number of clusters, which is
common at other methods. Correlation clustering have many social, economic,
physical, biological and computer science applications [3,10,18]. Though, this
method also has a drawback: it is NP-complete, so it is very hard to find the
partition with minimal disagreements, however its approximations usually give
acceptable results in practice.

In typical cases we have no tolerance relation describing the similarity of
objects, that is another drawback of our approach. Section 3 suggest a solution
to this problem. Before that — in Section 2 — we show how a classification
can be constructed from a tolerance relation. In Section 4 we shall discuss our
approach and compare it with other well-known methods. Next, we demonstrate
this method step-by-step, using the iris data set, which is a standard data at
classification. Finally we conclude our work and suggest further research areas.

2 Second Step: Classification Based on a Relation

Bansal at al. defined correlation clustering for complete signed graphs [2]. Here
G = (V,E) is a graph and function s : E → {+,−} is the sign of edges. Sign +
and − denotes the similarity/dissimilarity of the nodes of the edges. We al-
ways treat a node similar to itself. This signed graph defines a relation: uRv iff
s
(
(u, v)

)
= + or u = v. It is obvious, that this relation R is tolerance relation:

it is reflexive and symmetric.
In real life we cannot decide in all cases, whether the similarity of two objects

holds or not. In the next section, we will go into details concerning this problem.
Here, we simply use a partial tolerance relation. The definition above remains
the same, but the graph is not necessarily complete.

As mentioned before, correlation clustering assigns a number to each partition,
denoting the disagreement of the partition and the relation. This counts the
number of cases when two (by the relation) similar objects are in different clusters
(of the partition) and when two dissimilar objects are in the same cluster. The
correlation clustering selects a partition, where this disagreement is minimal.

It is possible to check that in many cases there does not exist a unique solu-
tion for correlation clustering. There are more partition with the same minimal
disagreement. We have two options: to choose one of them or to combine them.
We have used the latter option: we have taken the intersections of the clusters of
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the optimal (minimal) partitions. (This so called rough clustering is presented in
detail in [1].) These intersections are the system of base sets B of the rough set
theory. Using this base sets we can build the lower and upper approximations
of objects: the lower approximation of an object is the intersection of clusters
containing it. Similarly the upper approximation of an object is the union of the
clusters containing it. It is easy to check that the lower and upper approxima-
tions of an object are the unions of the base sets, and the upper approximation
of an object is the upper approximation of all the objects that are in its lower
approximation.

This base set generated from the tolerance relation is the key for classification.
The tolerance relation was given on the training set. This means that the objects
in this set are identified. Hence we can identify the base sets by its dominant
(most frequent) types. In some seldom cases there is no dominant type in some
set: there are same number from two or more kind of objects. Then we can select
from the following possibilities:

– not to classify objects that will belong to this set,
– to choose randomly from the most frequent types,
– to use multi-type — describing the most frequent types — as the result.

There is one doubt: how can we classify the new objects? One assumption is
that the tolerance relation can be extended to these new objects automatically.
In this case we can calculate the level of attraction-repulsion of the new object
x and the base set b:

A(x, b) = #{y | y ∈ b, s((x, y)) = +} −#{y | y ∈ b, s((x, y)) = −}
Next we need to search the base set b′ for which A(x, b′) = maxb∈B A(x, b), and
if A(x, b′) > 0, then type of x will be the type of b′. Without formulae: the new
element belongs to that base set, where its elements are mostly similar to it, and
the type of the new object is the type of this set.

Of course if we use the last option and the resulting type is a multi-type, or
for the new object x there are exists base sets b′ and b′′, that 0 < A(x, b′) =
A(x, b′′) = maxb∈B A(x, b) then the new object can multi-type, and hence not
just the classifying process is rough, but its result, too. We think that this rough
outcome would be profitable at medical applications, but in this article we use
only the crisp outcome.

3 First Step: Construct a Near Optimal Relation

From the previous section we know how we can classify objects if we have a tol-
erance relation. Unfortunately, we usually have no such kind of relation, so we
need to construct it somehow. The data describing the objects can be different:
they could be continuous (heigh, weight), discrete (number of children, phone-
numbers) and categorical (gender, marital status, occupation). In some cases the
continuous data are discretized, and the categorial data are numerizated (encoded).
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These transformations are common approaches, but in these cases we cannot
treat these codes as numbers, namely we cannot take into account the difference
in the codes of divorced, widowed and single status.

In our database we have four continuous data to describe the different kinds
of sizes of flowers, and a categorical to give their types. At classifying a new
object we can only use its continuous data. Hence to express the similarity, we
need an acceptance and a rejection region. If we have no other region, then this
becomes unusable in the practice. For example, based on difference on number
of hairbreadth we cannot decide the baldness of a man. We cannot say for any
n, that if the difference is n, they are similar, and if the difference is n+1, then
they are dissimilar.

We need a border region, which softens the similarity measure. This can be
done with two parameters, as follows. If the difference of numbers of hairbreadth
is hundred, we can say that the two men are similar, according to baldness.
Meanwhile if this difference is more than 1.5 million, we treat them dissimilar.
Of course these parameters (100 and 1,500,000) can vary. What else we need is to
near these parameters to each other to fit our idea about baldness. Unfortunately
we cannot agree about the exact values of this parameters, because a teenager
girl and elderly man have different ideas about baldness.

If we have a learning/training set, we are in a better position. Namely each
object has a type, and these types can be used to rate the parameters. The
process is the following: for a pair of parameters — d1 and d2, where d1 < d2
— we generate a tolerance relation. If the distance of the two objects is smaller
than d1, then the relation holds between the two objects. If the distance of the
two objects is larger than d2, then the relation does not hold between the two
objects. Otherwise (the distance is between d1 and d2) the relation is not defined
for these objects. Applying the correlation clustering with this tolerance relation
for the learning set gives a partition.

Our task is to rate this partition (and its parameters). Our aim is for the clus-
ters of the partition that they are homogeneous, and non of them is a singleton.
Singletons are rejected as the objects of the learning sets are not outliers. In
an extreme case — when both parameters are very small — each cluster of the
partition is a singleton, each object is similar to only itself. We wish to exclude
this case.

To calculate the dissimilarity of a cluster we need to count the objects in
minority. For example if a cluster contains 5 objects of type A, 9 objects of
type B and 3 objects of type C, then type B objects are in majority, objects of
type A and C are in minority, so the dissimilarity of this cluster is 5 + 3 = 8.
To get the dissimilarity of the partition we need to sum of dissimilarity of its
clusters. So we are able to compare two pair of parameters by dissimilarity of
partitions they generate.

Remember, that our aim is to find the optimal values of the parameters.
This is nothing else that a global optimization problem. It is very close to the
non-linear programming (NLP) problems. The main difference is that the cost
function in this case is f : R2 → N and not f : Rn → R. Of course the standard



Rough Classification Based on Correlation Clustering 403

Fig. 1. Voronoi diagram of three object

mathematical methods used to solve NLP problems are useless here. Hence,
we cannot solve such problems, only get a good approximation of the optimal
solution. In such case we can use (meta)heuristic and stochastic methods. We
tested the particle swarm optimization and the simulated annealing. They gave
similar results, but the latter was a bit faster, so we used it for the iris data set.

The optimization produces a pair of parameters, which are near optimal,
and based on them it is possible to generate a tolerance relation. This relation
produces a system of base sets, and based on similarity of the new objects and
the base sets the new object can be classified, as we have seen in the previous
section.

4 Discussion

The classification on similarity to base sets could remind the reader to the nearest
neighbour classification (1-NN), or to its graphical representation: to the Voronoi
diagram (Fig 1). This method is the special case of the k-nearest neighbour
classification (k-NN), which is a well-known and frequently used classification
method.

There are similarities, e.g. both methods assign the new object to the nearest
object/base set, but the distance used to determine the nearest object is com-
pletely different. Moreover at the k-NN method the outliers are classified (to the
closest class), but in our case they are not. Each base set has several levels of
attraction denoted with different shade of the grey at the first three pictures on
Fig. 2. Here the dark grey parts denote the regions of attraction, while the light
gray and white denote repulsion. At these pictures we applied the traditional
euclidean distance for d1 and d2 to simplify the pictures, but they still remained
complicated. The same picture with our distances is untraceable.

The fourth picture shows the border of attraction. The most important here is
that these regions are finite, hence the outliers will not be classified. Fig. 1 shows
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Fig. 2. Stucture of the attraction-repulsion effect of base sets and the attractive regions

that some regions of the Voronoi diagram are infinite, and this is the reason for
classifying outliers.

5 Classification of the Iris Data Set

5.1 Flowers and Their Similarity

For testing our ideas we used the famous database [4] from 1936 (see Table 1).
This data set contains 3 classes, 50 instances each, where each class refers to a
type of iris plant. The data of the flowers are the length and width of sepal and
petal, plus the class/type of it. As we have real data from the nature, we can
assume that they follow normal distribution. As we work with distances, it is
reasonable to normalize these data to get standard normal distribution in each
dimension.

We have many options for distance of two normalized flowers. For similarity
we have chosen the Chebyshev-distance: d(x, y) = maxi(|xi−yi|). If d(x, y) < d1,
then x and y are similar, where x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4).

For dissimilarity we used an othermetric: d′(x, y) = mini(|xi−yi|). If d′(x, y) >
d2, then x and y are dissimilar. The minimum function warrants that in this
case the points are really far away from each other. Unfortunately d′ is not a
real metric, it does not satisfy the triangle-inequality, not even the identity of
indiscernibles.
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Table 1. Portion of the iris data set

No. Sepal Petal Type
length width length width

#1 5.1 3.5 1.4 0.2 I. setosa
#2 4.9 3.0 1.4 0.2 I. setosa
#3 4.7 3.2 1.3 0.2 I. setosa
...

...
...

...
...

...
#51 7.0 3.2 4.7 1.4 I. versicolor
#52 6.4 3.2 4.5 1.5 I. versicolor
#53 6.9 3.1 4.9 1.5 I. versicolor
...

...
...

...
...

...
#101 6.3 3.3 6.0 2.5 I. virginica
#102 5.8 2.7 5.1 1.9 I. virginica
#103 7.1 3.0 5.9 2.1 I. virginica
...

...
...

...
...

...

5.2 Upper Level Optimization: Simulated Annealing

Fig 3. shows the process of rough classification. At the prototype software in
the first step the upper level approximation had done with simulated annealing.
Here the acceptance probability function was the standard: the cooling rate
α = 0.95 and the initial temperature T = 2.0. The number of trials at the
initial temperature was 20, and each cooling increased by 5 until it reached the
200. At picking the neighbours we used random variables with standard normal
distribution, and the values were divided with the actual number of trials, so we
narrowed the neighbourhoods. This approach is also not common. As we have
an integer-value step function on a continuous two-dimensional domain, at the
beginning we need big steps (big neighbourhood), to discover the search place,
and later we need little steps (small neighbourhood) to prevent it from becoming
a maverick. As the process frequently ends at non-optimal regions, we recorded
the best parameters during the search.

5.3 Lower Level Optimization: Greedy and Max-min Conflicts
Methods

At clustering, our method starts with a greedy algorithm: it puts the next object
to the most attractive set/cluster. It is a linear complexity method, but does
not give an optimal partition. Hence the outcome of this greedy algorithm was
treated as input of the max-min conflict method. At the min-conflict method
[8] the randomly chosen object gets the state where it generates the minimal
number of conflicts. This is a very effective algorithm in artificial intelligence.
We use its variant. Here the object to be put somewhere else is not selected
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several
optimal
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Fig. 3. The scheme of the main process

randomly, but by its conflicts: the most conflicting object is selected. Next, it is
checked whether it can be put some state where it generates less, more precisely,
minimal number of conflicts. If yes, then the object is moved, and the process
starts from the beginning. Otherwise we forget this object, and the next most
conflicting object is selected. By memorizing the number of conflicts we can
reduce the calculations, and could get a fast, and a good optimization method.
This method is parameter-free.

5.4 Base Sets and Results

The ordering of the objects at greedy method is not negligible, different ordering
could produce different initial partitions. We utilize this property at searching the
optimal partitions. We have shuffled the learning set 500 times, and applied the
greedy–max-min conflicts algorithm for it, and filtered out the best partitions.
The shuffling and the greedy algorithm together gives different starting points
for the max-min conflicts algorithm, so it is possible to hope of getting near
optimal partitions. The construction of the base set and the classification is
parameterless, so based on the best partitions we unambiguously get the base
set.
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Fig. 4. Results of the rough classification

The attraction is a discrete function. It can occur that two (or more) nearby
base sets attract with the same force a new object. Our software uses a conven-
tional maximum function: it classifies to the fists base set, although it can be
assigned it to any of them.

Fig. 4 shows the result of several tests. We have selected n objects (denoted
on x-axes) randomly from each class. After the construction of the system of the
base sets, we have checked all the objects from the data set which do not belong
to the learning set. The y-axes denotes the rate of correct classification. There is
a big variance between the results, because an unsuccessful optimization of the
parameters gives unfavourable classification result. Hence we draw on the figure
the average, too. This shows a solid improvement in the results, but there are
better classification methods; almost all published methods are above 95 percent.
Fig. 4 shows that this kind of perfection is reachable for our method, too. For
this, we need more attention on optimization of the parameters. By us, this is
the key of the success.

One class of the iris data set is linearly separable, and the other two just touch
each other. The latter could be a problem for our method, because the nearby
objects may be added to a cluster if it is in the learning set, or it will classify
them to the foreign base sets.
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5.5 Optimal Parameters

n = 15 n = 20

n = 25 n = 30

Fig. 5. Contour maps of the cost function used at optimization of parameters

Different learning sets mean different optimal parameters. Based on 15, 20,
25 and 30 instances from each class we generated the pictures on Fig. 5, re-
spectively. According the value of f(d1, d2) the pixel at (d2, d1) was coloured.
Here the different shades of grey mean different values. From left to right the
pictures become brighter, it means if we have more objects in the learning set,
the dissimilarity of the best partition becomes higher. We cannot prove, however
we assume, that the regions Ri = {(x, y) | f(x, y) = i} are (topologically) open
set, i.e. there exist an ε > 0, such that if d

(
(x, y), (u, v)

)
< ε and (x, y) ∈ Ri,

then (u, v) ∈ Ri, too.
In the picture, neighbouring regions are where the difference between values

is bigger than 1. It is not clear whether this is the result of the poor resolution,
and taking a fine enough grid would mean no such jumps in the function values;
or the clustering gave not optimal values (the clustering is NP-complete task,
so we have only approximations of the optimum); or there really exists such a
jump in the function value.
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6 Conclusion and Further Work

In this article we have presented a two-step classification method. At first step
it constructs a near optimal tolerance relation by applying a global optimization
method, where the cost function is calculated with the help of correlation clus-
tering. At second step, by using the optimal tolerance relation it constructs a
system of base sets by intersecting the optimal clusters. Finally the classification
of new objects is obtained by the nearest base sets.

During this process there are many options. We choose the most obvious,
natural ones. It would be worth to analyse the others, too. For example, the
classification is crisp in the sense that it assigns only a type to an object. In
our case, if in the nearest base set there is no majority type, we reject the
classification of the object. It could define a soft classification, by allowing several
types in such cases.

We have chosen fast clustering and optimizing methods. The learning set was
small, so the complexity of this methods was not so interesting. We would like to
test our approach on a big data sets, too. A detailed comparison of the presented
clustering method with other clustering-based classifications can give such results
which should make the suggested algorithm stronger.

The distances based on maximum and minimum function enable us to classify
objects with missing values. This can be the base of a different research direction.

Acknowledgments. The publication was supported by the TÁMOP-4.2.2.C-
11/1/KONV-2012-0001 project. The project has been supported by the Euro-
pean Union, co-financed by the European Social Fund.

Source Code. The formal algorithm can be found in the prototype, written in
Python 3 which contains around 600 LoC and is under continuous development.
It is available from the authors. The software of rough clustering — we used
at classification — can be found at http://morse.inf.unideb.hu/~aszalos/
roughclusters/
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Abstract. Traditionally, the hybrid ARIMA and support vector machine model 
has been often used in time series forecasting. Due to the unique variability of 
water quality monitoring data, the hybrid model cannot easily give perfect fore-
casting. Therefore, this paper proposed an improved hybrid methodology that 
exploits the unique strength in predicting water quality time series problems. 
Real data sets of water quality provided by the Ministry of Environmental Pro-
tection of People’s Republic of China during 2008-2014 were used to examine 
the forecasting accuracy of proposed model. The results of computational tests 
are very promising. 

Keywords: ARIMA, Support vector machine, Time series forecasting, Water 
quality prediction. 

1 Introduction  

The water quality problem is a subject ongoing concern. Deterioration of water quali-
ty has initiated serious management efforts in many countries [1]. Most acceptable 
ecological and water related decisions are difficult to make without careful modeling, 
prediction and analysis of river water quality for typical development scenarios [2]. 
Accurate predictions of future phenomena are the lifeblood of optimal water resources 
management in a watershed.  So far, two kind of approach have been proposed for 
water quality prediction [3]. One kind is the based on the mechanism of movement, 
physical, chemical and other factors in the water and has been widely employed in 
different basins [4]. But the mechanistic models usually need complete observed data 
and mechanism knowledge, of which are difficult to get [5]. Another kind is the mod-
els based on statistics and artificial intelligence. The rapid development of artificial 
intelligence provides us with more approaches for regression and better accuracy 
under varies situations [6-7].  For example, the support vector machine (SVM)  
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[8-10] has been widely used for prediction and forecasting in water resources and 
environmental engineer. 

Computer science and statistics have improved modeling approaches for discover-
ing patterns found in water resources time series data [1]. Much effort has been de-
voted over the past several decades to the development and improvement of time 
series prediction models. One of the most important and widely used time series mod-
el is the autoregressive integrated moving average (ARIMA) model [11]. 

Before 2005, most of the studies reported above were simple applications of using 
traditional time series approaches and support vector machine [12-13]. Recently, there 
have been several studies suggesting hybrid models, combining the ARIMA model 
and support vector machine [14-17]. However, many of the real-life time series are 
extremely complex to be modeled using simple approaches especially when high 
accuracy is required. This study presents an improved hybrid model of ARIMA and 
SVMs to solve the water quality prediction problem.   

2 Hybrid Model in Forecasting  

2.1 ARIMA Model  

In an autoregressive integrated moving average model (ARIMA), the future value of a 
variable is assumed to be a linear function of several past observations and random 
errors [18]. In an ARIMA model, the future value of a variable is supposed to be a 
linear combination of past values and past errors, expressed as follows  

            0 1 1 1 1 2 2... ...t t p t p t t t q t qy y yθ φ φ ε θ ε θ ε θ ε− − − − −= + + + + − − − − , (1) 

Where ty is the value of observations and tε  is the random error at time t , iφ and 

jθ are the coefficients, p and q are integers that are often referred to as autoregres-
sive and moving average polynomials, respectively. Basically, this method has three 
phases: model identification, parameter estimation and diagnostic checking.  
For example, the ARIMA (1, 0, 1) can be represented as follows  

                                 0 1 1 1 1t t t ty yθ φ ε θ ε− −= + + − .   (2) 

The residuals are modeled by the ARIMA can be represented as follows 

1 1t t ty yε = − .    (3) 

Where 1tε is the error of ARIMA model at time t; ty is the value of observations at 

time t; 1ty is the value of prediction of ARIMA at time t. 

 The ARIMA model is basically a data-oriented approach that is adapted from the 
structure of the data themselves.  
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2.2 Support Vector Machine  

The support vector machine (SVM) was proposed by Vapnik [19]. Based on the struc-
tured risk minimization (SRM) principle, SVM seeks to minimize an upper bound of 
the generalization error instead of the empirical error as in other neural networks. 
Additionally, the SVMs models generate the regress function by applying a set of 
high dimensional linear functions. The SVM regression function is formulated as 
follows 

( )y w x bϕ= + ,                        (4) 

Where ( )xϕ  is called the feature, which is nonlinear mapped from the input space x. 
The coefficients w   and b   are estimated by minimizing 

( ) 2

1

1 1
( , ) || ||

2

N

i i
i

R C C L d y w
N ε

=

= +                  (5) 

( ),
0

d y d y
L d y

others

ε ε
ε

− − − ≥
= 


,           (6) 

 
Where both C  and ε  are prescribed parameters. The first term ( , )L d yε  is called 

the ε -intensive loss function. The di  is the actual water quality data in the thi  
period. This function indicates that errors below ε are not penalized.  

The term 
1

(1/ ) ( , )
N

i i
i

C N L d yε
=
 is the empirical error. The second term, 21

2
w   

measures the flatness of the function. C  evaluates the trade-off between the empirical 
risk and the flatness of the model. Introducing the positive slack variables ζ andζ ∗ , 

which represent the distance from the actual values to the corresponding boundary 
values of ε-tube. Equation 5 is transformed to the following constrained formation: 
Minimize: 

1

1
( , , ) ( ( ))

2

N
T

i
i

iR w ww Cζ ζ ζ ζ
=

∗ = + ∗ + ∗               (7) 

Subjected to: 
( )i i i iw x b dϕ ε ζ ∗+ − ≤ +                      (8)  

( )i i i id w x bϕ ε ζ− − ≤ +                     (9)  

 
*, 0i iζ ζ ≥ ,                          (10) 

                         i=1, 2… N.                    
Finally, introducing Lagrangian multipliers and maximizing the dual function of Equ-
ation 7 changes Equation 7 to the following form: 

1 1 1 1

1
( ) ( ) ( ) ( )

2

( ) ( , )

N N N N

i i i i i i i i i
i i i j

j j i j

R d

h K x x

α α α α ε α α α α

α α

∗ ∗ ∗ ∗

= = = =

− = − − − − −

× −

  
 

 (11)
 

With the constraints 
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1

( ) 0
N

i i
i

α α∗

=

− = ,                     (12) 

0 ,i Cα≤ ≤                         (13) 
*0 i Cα≤ ≤ ,                        (14) 

                            i=1, 2… N. 
In Equation 11, iα and iα∗  are called Lagrangian multipliers. They satisfy the equali-

ties, 

                           0*i iα α∗ = ,  

1

( , , ) ( ) ( , )
l

i i i
i

f x K x x bα α α α∗ ∗

=

= − +
   

   (15) 

Here, 
 

( , )i jK x x  is called the kernel function. The value of the kernel is equal to the 
inner product of two vectors ix  and jx  in the feature space ( )ixϕ  and ( )jxϕ  , such 
that ( , ) ( ) ( )*i j i jK x x x xϕ ϕ= . Any function that satisfying Mercer's condition can be 
used as the Kernel function.  
The Gaussian kernel function 

2 2( , ) exp( / (2 ))i j i jK x x x x σ= − −  

is specified in this study. The SVM was employed to estimate the nonlinear behavior 
of the forecasting data set because Gaussian kernels tend to give good performance 
under general smoothness assumptions. 

PSO for Parameter Optimization   
In this paper, we use the PSO (Particle Swarm Optimization) algorithm to optimize 
the parameters of the SVM. The necessary optimization parameters of SVM are best-
g, best-mse and best-c.  

PSO is a population-based search method that exploits the concept of social shar-
ing of information. In the following, we will describe briefly the main concepts of the 
basic PSO algorithm. 

Each particle in the solution space to two points close to at the same time, the first 
point is in the whole particle swarm all particles in the search process to achieve the 
optimal solution, is called a global optimal solution g-best. Another point is each par-
ticle in the process of all previous dynasties search own to achieve the optimal solu-
tion; this solution is called an individual optimal solution p-best. 

Each particle represents a point in n-dimensional space, using a particle i 
represents individual optimal (i-th particle fitness value corresponding to the mini-
mum solution) the i-th particle is represented as 1 2[ , ,..., ]i i i inx x x x= ; globally optimal 

solution (the swarm in the history of the search process to adapt the minimum value 
corresponding solution) is expressed as 1 2[ , ,..., ]i i i inpbest p p p= , and the k-th itera-

tion ix correction amount (velocity of particles moving particles) is expressed as: 

1 2[ , ,..., ]k k k k
i i i imv v v v= . 

Each particle are updated according to their speed and position: 
1 1 1 1 1

1 1 2 2( ) ( )k k k k k k
id i id id id d idv w v c rand p x c rand g x− − − − −= + − + −       (16) 
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1k k k
id id idx x v−= +                      (17) 

Where: k denotes the k-th iteration; 1,  2,...,  i m= ; 1,  2,...,  d n= ; m is the number of 
particles in particle swarm; n is the dimension of the solution vector; n for the dimen-
sions of the solution vector; c1 and c2 are acceleration factor, respectively, are two 
normal number; rand1 and rand2 are two independent random number between [0, 
1]; iw  as the momentum coefficient, adjust its size can change the search ability 

strong and the weak. 

2.3 The Hybrid Methodology  

Both the ARIMA and the SVM models have different capabilities to capture data 
characteristics in linear or nonlinear domains, so the hybrid model proposed in this 
study is composed of the ARIMA component and the SVMs component [1]. Thus, the 
hybrid model can model linear and nonlinear patterns with improved overall forecast-
ing performance. The hybrid model tZ  can then be represented as follows 

t t tZ Y N= + ,
  

                       (18) 

Where tY  is the linear part and tN  is the nonlinear part of the hybrid model. 
Both tY  and tN are estimated from the data set.  tY  is the forecast value of the 
ARIMA model at time t  . Let tε  represent the residual at time  t  as obtained from 
the ARIMA model; then 


tt tZ Yε = −

  
                       (19) 

The residuals are modeled by the SVM can be represented as follows 

1 2( , , , )t t t t nf tε ε ε ε− − −= … + Δ
  

          (20) 

Where f is a nonlinear function modeled by the SVM;  tε  obtained by Equation 
3; tΔ  is the random error. Therefore, the combined forecast is 

  
t t tZ Y N= +  

  
                        (21) 

Notably,  tN   is the forecast value of Equation 17. 

2.4 The Improved Hybrid Methodology  

The behavior of water quality can’t easily be captured; even the hybrid methodology 
cannot give perfect perfection to every river. In our experiment, there is a strong cor-
relation between tε sequence and tY sequence. Realization of an experiment, we fed  
row set and error set simultaneously input support vector machine, try to get a more 
accurate prediction results and the result is what we want. Therefore, we present an 
improve hybrid strategy which has a greater capacity in the use of non-linear portion 
of the information data for forecasting water quality. 
The 1f  and 2f  are modeled by the SVM can be represented as follows: 

1 1 2 2 1 2( , , , ) ( , , , ) *t t t t n t t t nZ f y y y f ε ε ε ε− − − − − −= … + … +Δ         (22) 
Where  1f  and 2f  are nonlinear function modeled by the SVM; tε  obtained by 
Equation 3; ty is the value of observations at time t; *εΔ  is the random error. In the 
formula 1f , enter the sequence of previous observations and using PSO-SVM to get 
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the next point in time predictions; in the formula 2f , arima error sequence to enter the 
formula 3, and the use of PSO-SVM to get arima prediction error next time algo-
rithms to predict. The parameter optimization of 1f  and the parameter optimization 
of 2f  do not interfere with each other.  

Therefore, the combined forecast can be list as: 
  

1 2tZ F F= +                       (23) 
Where 1F is the forecast value of prediction of observation and  2F is the forecast 

value of prediction of error. 

3 Forecasting of Water Quality  

Six sets of water quality monitoring data in this study to examine the performance of 
the proposed model. The monthly data of the water quality were provided by Ministry 
of Environmental Protection of People’s Republic of China during 2008-2014. 
Monthly data of water quality (from Oct. 21, 2011 to Jun. 2014) were used as a test-
ing data set. The remaining data of water quality in the same set were used as a testing 
data set. In this study, only one-step-ahead forecasting is considered. One-step-ahead 
forecasting can prevent problems associated with cumulative errors from the previous 
period for out-of-estimation sample forecasting [20-21].  

Table 1 lists the corresponding periods.  

Table 1. Data sets of water quality monitoring data 

River section Parameter Training 
data set 

Testing 
data set 

Zhutuo 
Jinzi 
Yuxi 
Zhutuo 
Fengshouba 
Jinzi  

PH 
PH 
PH 
DO 
DO 
DO 

46 
43 
45 
46 
47 
43 

20 
20 
20 
20 
20 
20 

 
Four indices, MAE (mean absolute error), MSE (mean square error), MAPE (mean 
absolute percent error), and RMSE (root mean square error), were used as measures 
of forecasting accuracy. The indices are shown as follows 

1

1
| |

N

t

MAE di zt
N =

= −
   

               (24) 

1

100
||

N
i t

t t

d z
MAPE

N d=

−=                 (25) 

2

1

1
( )

N

t t
t

MSE d z
N =

= −                  (26) 
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0.5

2

1

1
( )

N

t t
t

RMSE d z
N =

 = − 
 
    (27) 

Where N is the number of forecasting periods, id is the actual water quality monitor-
ing data at period t , and  tz is the forecasting water quality data at period t .  

In this study, the ARIMA model has three phases: model identification, parameter 
estimation, and diagnostic checking. Table 2 shows the most appropriate model for 
water quality prediction of different river section. For the ARIMA models, three pa-
rameters: p, d and q, were adjusted based on the test sets. For the SVM models, three 
parameters: g, mse and c, were adjusted based on the test sets. The parameter sets 
with the lowest values of MSE were selected for use in the best fitted model. For the 
hybrid models, ARIMA served as a preprocessor to filter the linear pattern of data 
sets. Then, the error terms from ARIMA were fed into the SVM in the hybrid models. 
The SVM was conducted to reduce the error function from the ARIMA. For the im-
proved hybrid models, the raw data of water quality and error term entry support vec-
tor machine to obtain more accurate predictions. 

The three parameters (g, mse and c) of SVMs were adjusted. Table 2 lists suitable 
parameters for different models.  

Table 2. Parameter of different models  

River 
section / 
Models  

Parameter 
 

ARIMA 
Models 

SVM 
Models 

Hybrid 
Models 

Improved 
hybrid 
Models 

Zhutuo 
 
 

PH 
 
 

(3,0,12) 
 

 

c=2.8 
g=0 
mse=13.1 

c=0.5 
g=2 
mse=15.8 

c=8 
g=0 
mse=12.9 

Jinzi 
 
 

PH 
 
 

(12,1,10) 
 

 

c=11.3 
g=0 
mse=8.5 

c=181 
g=0 
mse=13.3 

c=16 
g=0 
mse=8 

Yuxi 
 
 

PH 
 
 

(10,0,12) 
 

 

c=14.8 
g=0.1 
mse=14.8 

c=1.1 
g=0 
mse=14.2 

c=2 
g=0 
mse=15 

Zhutuo 
 
 

DO 
 
 

(12,0,10)  
 

 

c=11.3 
g=0 
mse=13.1 

c=5.6 
g=0 
mse=11.5 

c=32 
g=0 
mse=6.9 

Fengshouba 
 
 

DO 
 
 

(8,0,11) 
 

 

c=181 
g=0 
mse=9.1 

c=2.8 
g=0 
mse=10.5 

c=724 
g=0 
mse=6.5 

Jinzi  
 

DO 
 

(3,0,9) 
 

c=8 
g=0 
mse=9.8 

c=8 
g=0 
mse=14.2 

c=16 
g=0 
mse=7 

 
Table 3 compares the forecasting results of different models.  
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Our experimental results as follows. The predictions from improved hybrid model 
were compared with those obtained from the ARIMA, SVM and hybrid models tradi-
tional time series approaches. The ARIMA, SVM and hybrid models produced ac-
ceptable results for hydrogen ion concentration, but the models poorly represented the 
pattern of water quality data for dissolved oxygen. The results from the hybrid model 
indicated that the modeling approach gave more reliable predictions of water hydro-
gen ion concentration and dissolved oxygen time series data. The accuracy measures 
MAE, MAPE, MSE and RMSE demonstrated that the improved hybrid model pro-
vided much better accuracy over the ARIMA, SVM and hybrid models for water 
quality predictions. 

Table 3. comparison of forecasting indices   

  Parameter MAE  MAPE MSE RMSE 

ARIMA model  
(1)Zhutuo 
(2)Jinzi 
(3)Yuxi 
(4)Zhutuo 
(5)Fengshouba 
(6)Jinzi  
 

SVM model  
(1)Zhutuo 
(2)Jinzi 
(3)Yuxi 
(4)Zhutuo 
(5)Fengshouba 
(6)Jinzi  
 

Hybrid  model  
(1)Zhutuo 
(2)Jinzi 
(3)Yuxi 
(4)Zhutuo 
(5)Fengshouba 
(6)Jinzi  
 

Improved hybrid  model  
(1)Zhutuo 
(2)Jinzi 
(3)Yuxi 
(4)Zhutuo 
(5)Fengshouba 
(6)Jinzi  

 
PH 
PH 
PH 
DO 
DO 
DO 
 
 
PH 
PH 
PH 
DO 
DO 
DO 
 
 
PH 
PH 
PH 
DO 
DO 
DO 
 
 
PH 
PH 
PH 
DO 
DO 
DO 

 
0.2443 
0.1395 
0.1567 
0.6483 
0.4935 
1.2344 
 
 
0.2341 
0.0973 
0.1399 
0.4667 
0.55 
0.847 
 
 
0.222 
0.1288 
0.1478 
0.556 
0.4467 
1.0132 
 
 
0.2075 
0.0942 
0.1364 
0.4077 
0.3321 
0.6716 

 
3.2292 
1.7771 
1.9956 
7.6599 
5.6264 
14.103 
 
 
3.0909 
1.2403 
1.7763 
5.5781 
6.3018 
9.8101 
 
 
2.9511 
1.6373 
1.8927 
6.4149 
5.0885 
11.863 
 
 
2.7483 
1.1939 
1.7329 
4.8291 
3.9279 
7.8146 

 
0.1126 
0.0368 
0.0425 
0.7036 
0.4547 
2.0909 
 
 
0.0925 
0.0222 
0.329 
0.4434 
0.4463 
1.0583 
 
 
0.1037 
0.0302 
0.0433 
0.5847 
0.3189 
1.7036 
 
 
0.797 
0.016 
0.0286 
0.09675 
0.2649 
0.8075 

 
0.3356 
0.1918 
0.2062 
0.8388 
0.6743 
1.4459 
 
 
0.3041 
0.1491 
0.1816 
0.6659 
0.668 
1.0287 
 
 
0.3221 
0.1738 
0.2081 
0.7646 
0.5647 
1.3052 
 
 
0.2824 
0.1266 
0.1691 
0.598 
0.5147 
0.8986 
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 Fig.1, Fig.2, Fig.3, Fig.4, Fig.5 and Fig.6 make point-to-point comparisons of obser-
vation values and predicted values. As the result show, the prediction value of im-
prove hybrid method is more closed to the observation value than other methods. 
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Fig. 1. PH value of Zhutuo section  
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Fig. 2. PH value of Jinzi section 
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Fig. 3. PH value of Yuxi section 



420 Y. Guo et al. 

 

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

DO
 va

lue
(m

g/
l)

Sample 

Observed value 

ARIMA

SVM

Hybird 

Improved hybird

 

Fig. 4. DO value of Zhutuo section 
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Fig. 5. DO value of Fengshouba section 
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Fig. 6. DO value of Jinzi section 
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4 Conclusion  

The proposed improved hybrid algorithm can be used for the Yangtze, Jialing and 
Fujiang and other similar rivers for predicting water quality data of monthly time step 
to detect water quality severity with respect to hydrogen ion concentration and dis-
solved oxygen time series data in future. The improved hybrid model developed for 
the Yangtze, Jialing and Fujiang can be employed for the development of a water 
quality emergency management plan so as to ensure sustainable water resources man-
agement in the basin. 

But, we found that the improved hybrid model is not good at predicting the trip 
point. So if we want to have a more accurate prediction of water quality, we can think 
about how to get the more accurate prediction of trip point. 
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Abstract. Current manifold ranking is mainly used in single-instance image 
retrieval without considering the prevailing semantic ambiguity problem. This 
paper introduces multi-instance technique and supervised information to image 
retrieval based on manifold ranking, and proposes a Multi-label Supervised 
Manifold Ranking algorithm (MSMR) for multi-instance image retrieval. The 
divergence between images is modified by using the multi-label information of 
training samples. Our method can solve partly the 'input ambiguity problem' in 
the feature extraction stage and the 'output ambiguity problem' in the output 
stage. Compared with the traditional Expectation Maximization Diverse Density 
(EMDD) and Citation-kNN algorithm on Corel Image Set, the multi-instance 
image retrieval experimental results show that the average precision rate of our 
algorithm has be enhanced . 

Keywords: Manifold ranking, Multi-label learning, Multi-instance learning, 
Image retrieval. 

1 Introduction 

Manifold Ranking (MR) is the semi-supervised learning method which is used to find 
the sorted structure of the data by using manifold learning. This is an image retrieval 
ranking method based on topology sorting with the feedback of users [1],[2]. Currently, 
the manifold ranking algorithms for image retrieval are mainly applied to processing 
the single-instance problem.  However, the image retrieval exits the “input ambiguity 
problem” in the feature extraction stage and the “output ambiguity problem” in the 
output stage of image retrieval [3]. 

In order to solve the semantic ambiguity problem of images, Zhou et al. proposed the 
multi-label and multi-instance learning framework on the basis of multi-sample 
learning, and investigated the ambiguity of the retrieval objects from the input space 
and output space [3],[4].  Manifold ranking technique has extensively used in image 
retrieval applications, and can used naturally to solve those multi-instance image 
retrieval problems. So we consider multi-label information into defining the supervised 
and weighted similarity between images, and propose a multi-label supervised 
manifold ranking (MSMR) algorithm for multi-instance image retrieval. Expectation 
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Maximization Diverse Density (EMDD) [5] is a classical multi-instance learning 
method. In addition, Citation-kNN[6], [7]can be used as the multi-label learning 
algorithm. Some comparison experiments on Corel Image Database show the 
performance of our algorithm. 

2 Manifold Ranking-Based Image Retrieval 

The main idea of Manifold Ranking-Based Image Retrieval (MRBIR) [8] is as follows: 
First of all, computing a neighborhood matrix in the Euclidean space. Then the sorting 
values of queried samples can be passed to other nodes of the neighborhood graph 
combined with users’ feedback, and takes the new sorting values as relevance ranking 
scores of the searched images. Finally, these retrieved images can be sorted based on 
the relevance ranking values of them.  
    MRBIR is the earliest manifold ranking algorithm for image retrieval. However, 
MRBIR is only effective to the training set. For the queried images which outside of the 
database, MRBIR needs to reconstruct the neighbor matrix, which needs to take a lot of 
computing time. At the same time, each query of online retrieval iterate more times. So 
Generalized Manifold Ranking-Based Image Retrieval (G-MRBIR) [9] is also 
proposed. 

But, these manifold ranking algorithms are still mainly used in single-instance image 
retrieval without considering the prevailing semantic ambiguity problem. So, in next 
section, we will introduce the multi-label supervised information under multi-instance 
learning framework into manifold ranking. 

3 Multi-label Supervised Manifold Ranking for Multi-instance 
Image Retrieval 

3.1 Construction of Multi-instance Image Package and Similarity Measure 

For multi-instance image retrieval, we firstly need to take an image to describe  
into multi-instance image package, before image retrieved in. In this paper, we use the 
same method as literature [10]. A given image is divided into sub-blocks, and compute 
statistical features of each block. Then, taking these features as the vectors for 
representing the given image. In following experiments, each image is described by 9 
attribute vectors with 15 dimensions,  including 3 dimensions from (R, G, B) values of 
the mean of the central region block, 12 dimensions from (R,G,B) values of difference 
between central region block and four adjacent blocks. 

In traditional manifold ranking-based image retrieval, an image is thought as a single 
instance and the Euclidean distance is used as computing the similarity between 
images. Under the multi-instance learning framework, image features are no longer a 
single combination feature set. However, the features of each image  consist of 
multiple attribute vectors and each vector is an instance of multi-instance image 
packages. So, we need a different method to describe the similarity between 
multi-instance image packages. Hausdorff distance metric is a suitable way to describe 
the distance between packages in multi-instance learning [11]. Hausdorff distance is 
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also known as the maximum-minimum distance, which can represent the distance 
between the two subsets, that is, 

Define 1. The k-th Hausdorff distance between the two subsets 1 2{ , , , }mA a a a= 
 

and 1 2{ , , , }nB b b b=   can be defined as: 

   ( ), max min || ||
kk

k k k
b Ba A

h A B a b
ÎÎ

= -                     (1) 

Obviously, the first Hausdorff distance is the maximum distance from element
s of sub-set A to subset B.The rest of Hausdorff distances can be gained by other
elements in each subset. 

3.2 Multi-label Supervised Manifold Ranking for Multi-instance Image 
Retrieval 

In actual image retrieval, an image may have multiple labels. For example, an image 
may be related with ‘mountain’ and ‘oceans’, with corresponding to two labels.  
 

 
 

Fig. 1. The flow chart of MSMR in multi-instance image retrieval 
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The problem of multiple attribute characteristics of data is called as multi-label 
problem. During image retrieval, images’ multi-label information can be used as 
supervision information to optimize the distances between images with multi-label 
features. In particular, for the images which are labeled by the same classes, we could 
add the supervision information into constructing nearest neighbor graph， that is, 
multiplying the distances between images by a value which is less than 1 to make 
distances smaller. On the other hand, for images from different classes, we multiply the 
distances between images by a value which is larger than 1 to increase the distances. In 
all, these operations to make the distances between related images are decreased, while 
the distances between irrelevant images are increased. This trick is more suitable with 
users’ expectations. So we propose Multi-label Supervised Manifold Ranking 
algorithm (MSMR) for multi-instance Image Retrieval, as shown the basic processing 
in Fig.1. 

Let X={x1, x2,…,xq, xq+1,…,xn} denote the image database,  x1,…,xq denote q sample 
images, and xq+1,…,xn denote n-q images to be searched. The detail steps of MSMR 
algorithm is described as follows: 
Step 1)  Construct the multi-label similarity matrix W by Hausdorff metric. Compute 

firstly the distances between images by Hausdorff metric. Then construct the 
neighborhood matrix by using the Heat kernel function: 

2 2
kW(i,j)=exp[-h (i,j)/2δ ]                            (2) 

h ( , )k i j  denotes Hausdorff distance between images, δ denotes the Heat 

kernel constant which is an empirical value .  
Step 2)  Compute the supervised weight matrix W*. Let weighted matrix λW (i,j)=λ . If 

image i has the same label with image j, then λ is greater than 1. If image i has  
different label with image j, then λ is less than 1. The neighborhood supervised  
weight matrix can be computed: 

         *
λW =W*W                            (3) 

And the similar matrix 2/12/1 −−= WDDS , where the diagonal matrix 

=
j

jiWiiD ),(),( . 

Step 3)  Generate the initial ranking vector f0. To find the queried image x0 in images  
X={x1,…,xn} by Hausdorff distance. The relevant weight value  

]2/),(exp[)( 2
10

2 δxxdie −= . The rest e (i) is equal to 0, and normalizes e  

to generate the initial ranking vector. 

    ( ) eaSIaf 1
0

−−=                          (4) 

Where a denotes the ranked score, S denotes the metric relation between 
queried image and database image. Even queried images are excluded the 
database, we could still find the metric relationship by the same method. 

Step 4)  Compute the final ranking vector f by Eq. (9). According to the correlation  
feedback y from users, updates the ranking vector f. If related with queried 
image, then yi =1, else yi = 0. The update of the ranking vector f is 
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( 1)= ( ) (1 )f t aSf t a y+ + -                      (5) 

Where aSf(t) denotes the ranked values which are from near points. And 
(1-a)y denotes the ranked values which are  from  the feedback labels of 
users. The generation formula of f(t) 


−

=

−+=
1

0

)()1()()(
t

i

tt yaSayaStf
                   

(6) 

Where 2/12/1 −−= SDDS , and diagonal matrix 
=

=
n

j
ijii WD

1

, 

2/12/11 −−− == SDDWDP . Obviously, [ 1,1]P∈ − and [ 1,1]S∈ − , and 

( ) 0lim =
∞→

t

t
aS , so we get the following conclusion: 

           
( ) ( )( ) yaSIatff

t

11lim −

∞→
−−==

                   
(7) 

And because (1-a) does not affect the convergence and sorting relation of the 
result, so 

                  ( ) yaSIf 1−−=                         (8) 

If the feedback image from users is relevant with queried image, then the ith 

feedback 1iy* = . If the feedback is not relevant with queried image, then 

-1iy∗ =  . And the other un-label image can be set to 0iy∗ = . So, the positive 

correlation vector y+ and the negative correlation vector y- are defined 
respectively as follows: 

*
i+

i *
i

1 y =1
y =

0 y =0,-1





，

，

*
i-

i *
i

-1 y = -1
y =

0 y = 0 ,1





，

，

   

 

According to Eq.(8), the positive ranking vector ( ) +−+ −= yaSIf 1 and 

negative ranking vector ( ) −−− −= yaSIf 1 . So the final manifold ranking 

vector f is computed as follows: 

    ( )( ) ( ) ( )101 11
0 <<−+−−+= −−+− ηηη yaSIyaSIff          (9) 

Where γη=exp(-η ) , γη  
is the number of 1 in

 
y + ， and 

( ) −−−= yaSIaf 1
0

 is the initial manifold ranking vector.  

Step 5)  Output the corresponding images with high ranking values in vector f. 
According to the final manifold ranking vector f and the images with 
corresponding to higher values are fed to users. 

Step 6)  If users do not satisfy with the result, then return to Step 3. Else stop. 

4 Experiments 

In the following experiments, we use 2000 ambiguous natural scene images [12]. These 
images are divided into 5 categories, which are labeled as ‘desert’, ‘mountain’, ‘sea’, 
‘sunset’, ‘forest’, respectively. 1000 images of them come from Corel image data set and 
the rest from Internet. Meanwhile, their multi-label information is shown in Table 1: 
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Table 1. Multi-labels information of 2000 images 

Label Images Label Images Label Images Label Images 
d 340 d +m 19 m+su 19 d+m+su 1 
m 268 d+s 5 m+t 108 d+su+t 3 
s 341 d+su 21 s+su 172 m+s+t 6 

su 216 d+t 20 s+t 14 m+su+t 1 
t 378 m+s 38 su+t 28 s+su+t 4 

In table 1, d denotes (desert), m denotes (mountains), s denotes (sea), su denotes 
(sunset), t denotes (trees), and 22% of these images have multi-labels. 

We use 10 fold cross-validations to test 2000 sample images set, and select 40 
images of each class every time . The other 1800 images are used as a training set. In 
this experiment some important parameters are set as follows: Heat-kernel Constant 
σ=100, k=20 , the equilibrium constant a=0.8, supervision weights λ=2, cited several r 
=4. We label the first 20 images of each feedback, and calculate the average precision 
of 2000 images by iterative methods. 

Without multi-label supervision information, we compared proposed method 
with the classical multi-instance learning method of Citation-kNN. 

 

 

Fig. 2. the average precision plot of Citation-kNN and Manifold ranking for multi-instance 
image retrieval  

In Fig.2, the average precision based on manifold ranking and multi-instance 
learning for image retrieval are higher than Citation-kNN when the number 
of feedback is smaller than 7.  But the average precision decreases lightly when the 
number of feedback is larger than 7. As previously mentioned, we are more concerned 
about the situation of the first several feedbacks in the process of the actual retrieval, 
especially in the first three feedbacks. In Fig.2, the average precision is enhanced about 
10% by using manifold ranking in the first three feedbacks. 

We also conduct experiments to compare the average retrieval rate after the second 
feedback with different number of feedback labels (10, 20, 30), as shown in Table 2: 
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Table 2. The average precision after different number of feedback labels 

Different number of feedback labels Citation-kNN Manifold Ranking 

10 0.83225 0.89585 

20 0.821 0.8988 

30 0.809167 0.901117 

 
From Table 2, in the case of different number of feedback labels, the average rate 

which based on Manifold Ranking for multi-instance image retrieval is higher than 
Citation-kNN. Meanwhile, comparing with EMDD multi-instance image retrieval, the 
results have demonstrated once again the performance of manifold ranking under the 
multi-instance framework for image retrieval in Table 3. 

Table 3. The average precision of three algorithms in the first several feedbacks 

Different Algorithm         EMDD Citation-kNN   Manifold Ranking 

Without feedback        0.47925      0.47925          0.47925 

The first feedback        0.52125      0.653825          0.763975 

The second feedback        0.56925      0.753825          0.86845 

 

 

Fig. 3. The average precision plot of manifold ranking 

The following comparative experiments are completed under the situation of 
combining with multi-labels as supervision information after adding supervision 
information, as experimental results shown in Fig.3, the average precision of our 
method is better than Citation-kNN in the first several feedbacks. However, it is worth 
noting that Citation-kNN raise less than 1%, while the proposed  MSMR algorithm for 
multi-instance image retrieval increase about 10%. This reason is to that manifold 
ranking consider global manifold structure, while the referenced set of Citation-kNN 
always considered local. So, global supervision information is more suitable for 
manifold ranking. 
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Meanwhile, the comparison experiment results based on manifold ranking and 
multi-instance image retrieval in case of presence or absence of supervision 
information are shown in Table 4: 

Table 4. The average precision of manifold ranking after using supervision information 

Feedback numbers Unsupervised Semi-supervised Supervised 

Without feedback  0.47925     0.47925  0.47925 
First feedback  0.763975     0.7922  0.8852 
Second feedback  0.86845     0.894775  0.959875 
Third feedback  0.8988     0.9246  0.97565 

 
As can be shown in Table 4, in the case of semi-supervised or supervised condition, 

the average precision is all enhanced. It demonstrates that the combination of 
multi-labels to supervised manifold ranking can perform well in multi-instance image 
retrieval once more. 

5 Conclusion 

Under the multi-instance learning framework, a novel image retrieval algorithm 
combining manifold ranking is proposed in this paper. For multi-label problems in 
reality, the multi-instance image retrieval algorithm based on multi-label supervised 
manifold ranking is proposed. The multi-label information can be used as constructing 
the weighted supervised similarity matrix and applied to multi-instance image retrieval. 
Compared with the classic multi-instance learning algorithms (EMDD and 
Citation-kNN algorithm), experimental results show that the proposed algorithm has a 
better performance. But the proposed algorithm merely considers the multi-label 
information as supervision information. We do not use the kind of multi-labels learning 
to predict multi-label sets of image. It is a difficult problem and we will further 
investigate it in the future. 
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Abstract. This work introduces a novel algorithm, called Condensation rule 
based on Fuzzy Rough Sets (FRSC), based on the FCNN rule together with 
fuzzy rough sets theory, to compute training-set-consistent subset for the near-
est neighbor decision rule. In combination with fuzzy rough set theory, the 
FRSC rule improves the performance of FCNN rule. Two variants, named as 
FRSC1 and FRSC2, of the FRSC rule, are presented. The FRSC1 rule is suita-
ble for small data set and the FRSC2 adapts to larger data sets. Compared with 
the FCNN rule, the FRSC1 rule requires much less time cost and gets smaller 
subset for small data set. For medium-size data set, less than 5000 samples, the 
FRSC2 rule has better time performance than FCNN rule. 

Keywords: nearest neighbor rule, training-set-consistent subset, fuzzy rough 
set, lower approximation, classification. 

1 Introduction 

The nearest neighbor (NN) decision rule assigns to an unclassified sample point the 
classification of the nearest of a set of previously classified points [2]. The k-NN de-
cision rule selects k nearest samples and  assigns to a sample the class label with the 
maximum number ki of samples, where sum(ki) is equal to k, i=1,2,3,…l, l is the num-
ber of classes. When k is equal to 1, the k-NN rule becomes the NN rule。In this 
work, we denote the NN rule and k-NN rule with NN rule.  

The naïve implementation of the NN rule needs to store all the previously classi-
fied data and compare each sample point to be classified with each stored point. A 
serious drawback, for this decision rule, is the complexity in search of the nearest 
neighbors among the N available training samples. Brute-force searching amounts to 
operations proportional to kN(O(kN))2. The problem becomes particularly severe in 
high-dimensional feature spaces and large data set. A training-set-consistent subset 
may retain better classification accuracy than the entire training set. Unfortunately, 
computing a minimum-cardinality training-set-consistent subset for the NN rule turns 
out to be intractable [23]. To reduce the computational burden, a number of efficient 
searching schemes have been suggested, aiming to select the training-set-consistent 
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subset, such as condensed nearest neighbor(CNN), modified condensed nearest 
neighbor (MCNN), structural risk minimization using the NN rule (NNSRM), re-
duced nearest neighbor rule (RNN), fast condensed nearest neighbor rule (FCNN), 
and so on. Among these techniques, the FCNN rule is a novel order-independent algo-
rithm aiming to select a training-set-consistent subset, which classifies the remaining 
data correctly through the NN rule. In particular, the FCNN rule is scalable on large 
multidimensional training sets. 

The concept of rough sets was originally proposed by Pawlak [1] as a mathemati-
cal approach to handle imprecision, vagueness, and uncertainty in data analysis [4]. 
The traditional rough sets (TRS) theory will have difficulty in handling real-valued 
attributes. One way to solve this problem is the use of fuzzy rough sets. In fuzzy 
rough sets a fuzzy similarity relation is employed to characterize the degree of simi-
larity between two objects instead of the equivalence relation used in the crisp rough 
sets. The degree of similarity for two objects takes values on the unit interval. If the 
degree of similarity is 1, then they are indiscernible. They are discernible if the degree 
of similarity degree is 0. If the degree of similarity takes a value between 0 and 1, 
then these two objects are similar to a certain degree.  

The nearest neighbor condensation aims to select samples close to the decision 
boundary. In rough set theory, a sample with less lower approximation is more close 
to the decision boundary. Combination these two theories is an effective way for 
nearest neighbor condensation. In this work, we purpose a method based on the 
FCNN rule together with fuzzy rough sets theory, to reduce samples number.  

The rest of this paper is organized as follows. In Section 2, some theoretical back-
ground, including fast condensed nearest neighbor (FCNN) rule and fuzzy rough set 
theory is described. In Section 3, the nearest neighbor condensation rule based on 
fuzzy rough set (FRSC) is illustrated, and two variants and its main properties are 
stated. And the Section 4 analyses the experimental results and compares the FRSC 
rule with the FCNN rule. Finally, in Section 5, the advantage sand disadvantages are 
drawn in the conclusion of this work. 

2 Theoretical Background 

2.1 Nearest Neighbor Rule 

The nearest neighbor decision rule assigns to an unclassified sample point the classi-
fication of the nearest of a set of previously classified points. The algorithm for the 
nearest neighbor rule is summarized as follows. Given an unknown sample x and a 
distance measure, then: 

First, out of the N training samples, identify the k nearest neighbors, regardless of 
the class label, where k is chosen to be odd for a two class problem, and in general not 
to be a multiple of the number of classes M. 

Second, out of these k samples, identify the number of samples, ki, that belong to 
class wi, i = 1,2,3,…,M. Obviously, sum(ki) = k. 

Finally, assign sample x to the class wi with the maximum number ki of samples. 
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Algorithm: FRSC 
Input: Training set T; 
Output: Training set consistent subset S of T 
Method: 

[l,c] = size(T); 
LA = lower_app(T); 
T = sortbyLA(T, LA); 
S = []; 
m = rand * c; 
dS = getSamples(T, m); 
while ~isempty(dS)  { 

S = S U dS; 
dS = []; 
dS = getvoren(S, T); 
T = T – dS; } 

return(S);

The simplest version of the algorithm is for k = 1, known as the nearest neigh-
bor(NN) rule. In other words, an unclassified sample is assigned to the class of the 
nearest neighbor. For this decision rule, no explicit knowledge of the underlying dis-
tributions the data is needed.  

2.2 Fast Condensed Nearest Neighbor Rule 

The fast condensed nearest neighbor rule(FCNN) is introduced by Fabrizio Angiulli 
[2]. Fabrizio Angiulli showed that FCNN is a novel algorithm for the computation of 
a training-set-consistent subset for the NN rule. We denote by T a labeled training set 
from a metric space, and denote by S the training-set-consistent subset of T. The algo-
rithm works in an incremental manner, it works as follows. 

First, the consistent subset S is initialed to some seed elements from each class la-
bel of the training set T. In general, the seeds employed are the centroids of the 
classes in training set T, denoted as Centroids(T). 

During each iteration, for each point p in S, a representative element q in T the 
nearest neighbor of which is p in S but having a different class label is added to S.  

If during an iteration, no new element can be added to S, that is, when T is correct-
ly classified using S, then S is a training-set-consistent subset of T, and the algorithm 
terminates, returning the set S. 

The representative element q, in the algorithm, is denoted as rep(p, Voren(p,S,T)), 
where Voren(p,S,T) is the set of voronoi enemies of p in T with respect to S.  

According to different selection of representative element, FCNN rule has 4 va-
riants, called as FCNN1, FCNN2, FCNN3, and FCNN4, respectively. In particular, 
the FCNN1 and FCNN2 rules augment the subset with all such representatives, whe-
reas the FCNN3 and FCNN4 rules select only a representative per iteration. The 
FCNN1 (respectively, FCNN2) and the FCNN3 (respectively, FCNN4) rules are 
based on the same definition of a representative.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. FCNN rule                                  b.    FRSC rule 

Fig. 1. The FCNN rule and  FRSC rule 

Algorithm FCNN rule 
Input: A training set T 
Output: A training set consistent subset S of T 
Method:     S=Φ;    ΔS=Centroids(T);     While (ΔS≠Φ){      S=S∪ΔS;          ΔS=Φ;      for each (p∈S)         ΔS=ΔS∪{rep(p,Voren(p,S,T))};      }   return(S); 
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FCNN3 and FCNN4 are more careful in selecting the points for insertion and, hence, 
FCNN3 (respectively, FCNN4) returns a subset smaller than FCNN1 (respectively, 
FCNN2). On the contrary, FCNN1 and FCNN2 execute few iterations and are notice-
ably faster, with FCNN2 being the fastest. FCNN1 is slightly slower than FCNN2, 
and it requires more iterations. However, together with the FCNN3, it is likely to 
select points very close to the decision boundary and hence may return a subset 
smaller than that of FCNN2. 

2.3 Rough Sets and Fuzzy Rough Sets 

Let U denote a finite and nonempty set called the universe. Suppose R∈U×U is an 
equivalence relation on U, i.e., R is reflexive, symmetric, and transitive. Elements in 
the same equivalence class is said to be indistinguishable. (U, R) is called an approx-
imation space. Given an arbitrary setＸ Ｕ, the lower approximation is the greatest 
definable set contained in X, and the upper approximation is the least definable set 
containing X. They can be computed by the following equivalent formulas. 

}][:{ XxxXarp RR
⊆=  

}][:{ XxxXapr RR ⊆=  

In the same way that crisp equivalence relation is central to rough set, fuzzy equiva-
lence relation is central to fuzzy rough sets. The concept of crisp equivalence classes 
can be extended by the inclusion of a fuzzy similarity relation R on the universe. Let 
U be a nonempty universe. A fuzzy binary relation R on U is called a fuzzy similarity 
relation if R is reflexivity(R(x,x)=1), symmetric (R(x,y)=μR(y,x)), and transitivi-
ty(R(x,z) ≥(R(x,y)∧μR(y,z))). 

( )( ) inf max{1 ( , ), ( )}
y U

R X x R x y X y
∈

= −  

( )( ) sup min{ ( , ), ( )}
y U

R X x R x y X y
∈

=  

 The smaller the lower approximation is, the lower the certainty of the sample be-
longing to the class is. In rough set theory, a sample with less lower approximation is 
more close to the decision boundary. 

3 Nearest Neighbor Condensation Based on Fuzzy Rough Sets 

We start by giving some preliminary definitions. 
Definition 1: Given a labeled training set T from a metric space, Let S be a subset of 
T, we denote by l(p) the label associated with p, the rule NN(p,S) assigns the sample p 
the label of its nearest neighbor in S.  We say S is training-set-consistent subset of T 
if for each p in T-S, l(p) = NN(p,S). 
Definition 2[2]: Let S be a subset of T and let p be an element of S. We denote by 
Vor(p,S,T) the set{q∈T|p=NN(q,S)}. At the same time, we denote by Voren(p,S,T) 
the set of Voronoi enemies of p in T with respect to S, defined as {q∈Vor(p,S,T)|l(q) 
≠ l(p)}. 
Theorem 1[2]: S is a training-set-consistent subset of T for the NN rule if and only if 
for each element p of S, Voren(p,S,T) is empty. 
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3.1 FRSC Algorithm 

Different from the FCNN rule, FRSC rule initializes the consistent subset S with m 
seed elements from T with minimal lower approximation, where m is a random integ-
er, larger a little than the class number c of T. 

At first, the algorithm computes the lower approximation of every training sample 
in T to the class which the sample itself is included in, and sorts them by lower ap-
proximation ascending. And then, the algorithm works in an incremental manner. It 
initializes the consistent subset S with the m samples with the minimal lower approx-
imate value. During iterations, the set S is augmented until the stop condition,  that T 
is empty, is reached. During every iteration, a subset dS of T, is selected according to 
parameter m. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. The frsc2 rule                      b.     The compact algorithm 

Fig. 2. The frsc2 rule and the compact algorithm 

In the algorithm, we compute the lower approximation of every samples in T using 
the function lower_app(T) , sort those samples in T with function sortbyLA(T, LA), 
and get the set of Voronoi enemies in T with respect to S with the function getvoren(S, 
T).  If during an iteration, no new elements can be added to S, that is,the function 
getvoren(S, T) return null, the algorithm terminates, and return the set S. 

The FRSC rule has the following properties. The FRSC rule terminates in a finite  
times, computes a training-set-consistent subset, and is order independent.. 
Theorem 2: The FRSC rule requires at most |T|2+|T|.|S|  distance computations us-
ing O(|T|) space. 

Algorithm: FRSC2 
Input: Training set T 
Output: Training set consistent subset S of T 
Method: 

[l,c] = size(T); 
T1 = T; 
T =compact(T); 
Tag = 1; 
S = []; 
while (tag>0){ 

D = getclasses(T); 
T = lower_app(T, D); 
T = sortbyLA(T); 
S = []; 
m = rand * c; 
dS = getSamples(T, m); 
while ~isempty(dS)    
{ 

S = S U dS; 
dS = getvoren(S, T); 
T = T – dS; 
} 

z = k_nn_classifier(S,T1); 
tag = length(find(T1(:,end)~=z’)); 
T = T1(find(T1(:,end)~=z’); 
} 

return(S); 

Algorithm: COMPACT 
Input: Training set T 
Output: Compacted samples set Y 
Method: 

D = Classes(T);. 
[r,c]= size(T); 
for each d in D 
    Td = samples(T,d); 
    C(d) = centroids(Td); 
end 
Cd = zeros(length(D),length(D)); 
for m = 1 : D-1 
  for n = 2 : D 
     if m<n 
       Cd(m,n)= distance(C(m,:), C(n,:)); 
       Cd(n,m) = Cd(m,n); 
     end 
   end 
end 
Y = [];   
for each d in D 
    Td = T(find(T(:,end)==d),1:end); 
    maxd = max(Cd(d,:));   
    Ci = find(Cd(d,:)==max(Cd(d,:)));       
    dist = distance(Td(:,1:end-1), C(Ci,:));   
    Y = [Y; Td((dist<maxd), :)];  
end 
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Proof. The algorithm of FRSC rule employs two arrays T and S, having size |T| and 
|S|, with |S|≤|T|, so it has space complexity O(|T|). 

The time complexity of the algorithm is composed of two parts, computing the 
lower approximation and computing a training-set-consistent subset. It takes less than 
|T|2 distance computations to compute the lower approximations of T. While using the 
FCNN1 rule, computing the training-set-consistent subset requires at most |T|.|S| dis-
tance computations [2]. Hence, |T|2+|T|.|S| is an upper bound to the number of distance 
computations required of the FRSC rule. 

During computing the lower approximations, the distances between each pair of 
samples are calculated. For small data sets, we may store the distances. Hence, we do 
not need compute the distances between samples in S and T-S and can use them di-
rectly. In this case, the distance computation becomes |T|2. We name this variant of 
FRSC as FRSC1.  

The FRSC1 rule requires |T|2 space storing the distances. For larger data sets, it is 
unable to store all the distances of every pair of samples. In most cases, the size of S 
is far less than that of T, so the time complexity of FRSC rule is mainly from compu-
ting the lower approximations. Specially, with the rising |T|, the time cost of FRSC 
increases exponentially. 

3.2 Extension to Larger Data 

As discussed above, the time complexity of the lower approximation increases expo-
nentially. As far as a big data set is concerned, it will take a very long time to com-
pute the lower approximations, usually insufferable. Just as the time complexity of the 
FRSC rule is mainly from computing the lower approximation, decreasing the size of 
samples to compute lower approximations is an effective approach to decrease the 
time complexity. Here, we put forward another variant of FRSC, named as FRSC2, 
which can decrease the number of distance computations. Instead of computing the 
lower approximations of all samples in T, the FRSC2 rule filters those samples far 
from the bounder with the algorithm compact.  

The compact algorithm starts by getting those classifications and the centroids of 
each class in training set T. We denote by classes(T) the classifications in training set 
T, and denote by centroids(Td) the centroids of samples set Td. For the sake of sim-
plicity, usually, we use the average of all samples belonging to the same class as the 
centroids. For every class, the distances from its centroid to other class centroids are 
computed, and the maximum distance maxd and the corresponding classification Ci 
are kept. Only those samples are remained whose distance to the centroid of Ci are 
smaller than maxd and the other samples are filtered. If the samples take on normal 
distribution, about two third of all samples are filtered. Hence, the work computing 
the lower approximations decreases to only one ninth. 

3.3 Extension to k-NN 

The nearest neighbor decision rule assigns to an unclassified sample point the classi-
fication of the nearest of a set of previously classified points. It is the simplest version 
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of the k-NN rule for k = 1. In k-NN case, a new object is assigned the class wi with the 
maximum number ki of samples. More importantly, the k-NN rule provides a good 
estimate of the Bayes error and its error probability asymptotically approaches the 
Bayes error. Just as the FCNN, the FRSC rule is very easy to extend to k-NN situation 
by using the following notion of consistency: A subset S of T is said to be a k-
training-set-consistent subset of T if for each p∈(T-S), l(p)=NNk(p,S) [2], where l(p) 
is the class label of sample p, NNk(p,S) is the class label of k-NN of p in S. 

4 Experimentation Results 

In this section, we present experimental results using four data sets, three library data 
sets and one real-life data set, the Forest Cover Type. The Forest Cover Type data set, 
that contains forest cover type data from US Forest Service (USFS) Region 2 Re-
source Information System (RIS) data, is composed of 581,012 tuples associated with 
30×30 meter cells. The data is partitioned into 7 classes. The data contains binary (0 or 
1) columns of data for qualitative independent variables, which make the computation 
of distance and lower approximation complex. For the sake of simplicity, we filter 
those binary columns and remain only the first 10 conditional attributes and the deci-
sion attribute, the last column. In different experiments, we select some parts of the 
data set according to the purpose of experiment. 

Table 1. Data sets used for experiments 

Data set Number of samples Number of attributes Number of classifications 
Data set 1 100 2 2 
Data set 2 500 3 3 
Data set 3 1000 2 2 

Forest Cover 581012 10 7 

Table 2. Experiments for different k 

k Data set Data size Subset size Accuracy 

1 

Data set 1 100 6 95.1% 
Data set 2 500 10 99.6% 
Data set 3 1000 11 99.9% 

Forest Cover 
12240 22 100% 
4080 23 99.9% 
1020 20 99.9% 

5 

Data set 1 100 9 94.9% 
Data set 2 500 9 99.8% 
Data set 3 1000 16 99.8% 

Forest Cover 
12240 71 100% 
4080 61 99.9% 
1020 57 99.9% 

9 

Data set 1 100 14 98.0% 
Data set 2 500 11 96.5% 
Data set 3 1000 20 99.7% 

Forest Cover 
12240 121 100% 
4080 122 99.9% 
1020 86 99.8% 
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4.1 Experimental Results for k-NN  

Table 2 summaries the experiments results with k=1, 5 and 9, respectively. We per-
form experiments on data set 1, data set 2, data set 3 and Forest Cover Type data set. 
For the sake of simplicity, we extract 12240 records, with class label 4 or 5, from the 
real-life data set, Forest Cover Type data set. And then, we pick up 6120 records and 
3060 records randomly from the subset. For the three library data sets, we execute the 
FRSC1 rule, and we perform the FRSC2 rule on Forest Cover Type data set. In order 
to get the accuracy of classification, we classify those samples in the total data set 
using the k-NN classifier. 

It is shown in table 2 that the subset size increases with k increasing. For data set 1, 
the subset size increase from 6 to 14, while k increases from 1 to 9. For the other data 
set, we can obtain similar conclusion from table 2. 

We can see from experiments results that the more records in the training set, the 
greater the subset. When the data size is 100, the subset size is 6. When the number of 
data is 500 and 1000, the subset size is 10 and 11, respectively, for k=1. For k=5 and 
9, there exist similar results. 

At the same time, however, we must notice that the size of subset does not change 
monotonously with increasing k. While the size of training set becomes larger, the 
record number in the subset increases all the time. The subset size is 10 while k=1 for 
data set 2, but the subset size is 9 while k=5. The subset size of data set 1, with 100 
records, is 14, but the subset size of data 2, with 500 records, is 11, for k=9. 

We can find that the accuracy is very high. The accuracy fluctuates slightly with 
the data size and the value of k. The accuracy is higher a little while k becomes larger 
or there are more samples in the training set. When we extract 12240 records from 
data set Forest Cover Type, the accuracy is 100%, but when the number of extracted 
data decreases to 4080 and 1020, the accuracy is high up to 99.9%. Even the lowest 
accuracy is 95.1% when we perform an experiment on data set 1 with k=1.  

4.2 Comparison with FCNN 

As stated in above section, among FCNN,  CNN, MCNN, NNSRM, RNN and other 
methods computing the training set consistent subset, the FCNN rule is better. Hence, 
we only compare the FRSC rule with FCNN rule. 

Table 3 summarizes FRSC1 rule with FCNN rule in data set 1, data set 2 and data 
set3. Fig 3 shows the distribution of data set 1. From Table 3, we can see that FRSC1 
rule has better performance than FCNN rule. The subset size by FCRS1 rule is a bit 
smaller than that by the FCNN rule. It takes less time to perform the FRSC1 algo-
rithm than to perform the FCNN1 rule. For data set 1 with 100 samples, the execution 
time by FRSC1 is 0.0159 seconds, while the FCNN1 costs 0.3038 seconds. For data 
set 2 with 500 samples, the execution time by FRSC1 is 0.1740 seconds, while the 
FCNN1 costs 1.6199 seconds. For data set 3 with 1000 samples, the execution time 
by FRSC1 is 0.6811 seconds, while the FCNN1 costs 1.6032 seconds. Meanwhile, we 
find also that the difference of execution time becomes smaller and smaller with the 
ascending data size. The execution time of FRSC1 rule becomes about 2.5 times of 
FCNN for data set 3 with 1000 samples, while the difference is about 20 times for 
data set 1 with 100 samples. Fig 3 shows the distribution of samples in subset. We can 
find that those samples in the subset by FRSC1 are more close to the boundary than 
FCNN. It results in smaller subset size. 
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a. FCNN1                          b.     FRSC 

Fig. 3. Example of training set consistent subsets computed by the FCNN1 and FRSC 

Table 3. Small data set:Compare FRSC with FCNN1 Data set Data size Method Subset size Time 
data set 1 100 

FCNN 8 0.3038 
FRSC1 6 0.0159 

data set 2 500 
FCNN 13 1.6199 
FRSC1 10 0.1740 

data set 3 1000 
FCNN 13 1.6032 
FRSC1 11 0.6811 

Table 4. Small data set:Compare FRSC1 with FCNN1 Data set Data size Method Subset size Time 
data set 1 100 

FCNN1 9 0.0551 
FRSC1 6 0.0152 

data set 2 500 
FCNN1 15 0.4319 
FRSC1 9 0.1740 

data set 3 1000 
FCNN1 16 0.9286 
FRSC1 11 0.6561 

Table 5. Large data set:Compare FRSC1 with FRSC2 

Data set Data set size Subset size Time 

FRSC 1 

1000 11 3.8930 
3060 26 51.00 
6120 27 314.8 
12240 22 3924 

FRSC 2 

1000 11 0.6887 
3060 34 5.15 
6120 35 23.03 
12240 26 105 

Table 6. Large data set:Compare FRSC2 with FCNN1 

Data set Data set size Subset size Time 

FRSC 2 

1000 12 0.6887 
3060 34 5.15 
6120 35 23.03 
12240 22 105 

FCNN 1 

1000 11 0.8435 
3060 34 6.09 
6120 41 14.7 
12240 44 32 
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For FCNN1 rule, the difference from FRSC1 is much smaller from Table Ⅳ. For 
data set 1, the execution time of FCNN1 is only about 3 times of FRSC1, much less 
than 20 times of FCNN. While the data size becomes 1000 for data set 3, the execu-
tion time of FCNN1 is only about 1.5 times of that of FRSC1. Furthermore, with the 
increasing data size, the execution time of FRSC1 will be more than that of FCNN1 
inevitably.  

The FRSC2 rule needs less execution time than FRSC1 rule, which is shown in 
Table 5. The disparity increases quickly with the ascending data size. But the subset 
size of FRSC2 is larger a bit than FRSC1. For large data set, we use FRSC2 rule in-
stead of FRSC1 rule.  

Table 6 represents the comparison between FRSC2 and FCNN1 on Forest Cover 
Type data set. While the data set size is less than 3000, the FRSC2 rule needs less 
execution time. While there are more than 5000 samples in the data set, the execution 
time of FRSC2 becomes more than FCNN1, which is the same to FCNN1. We can 
find out the reason from the FCNN rule. The time complexity of the FCNN rule is 
composed of two parts, computing the lower approximation and computing a training-
set-consistent subset. It takes less than |T|2 distance computations to compute the 
lower approximations of T. The time of computing the other part is at most |T|.|S|, 
much less than the first part. For large data set, the execution time is mainly caused by 
computing the lower approximation. So, reducing the complexity of lower approxi-
mation becomes the key factor, which is our next work also. 

5 Conclusions 

This work introduces a novel algorithm, called the FRSC rule, for computing a train-
ing-set-consistent subset for the NN rule. 

The algorithm starts by computing the lower approximation of every sample in 
training set T, and sorts them by lower approximation ascending. And then, the algo-
rithm works in an incremental manner. It initializes the consistent subset S with the m 
samples with the minimal lower approximate value. During each iteration, the set S is 
augmented until the stop condition, that T is empty, is reached. During each iteration, 
a subset dS of T is selected and added to set S until the consistence is achieved. In 
most cases, the size of S is far less than that of T, the time complexity of FRSC rule is 
mainly from computing the lower approximations.  

Two variants of the basic method are presented, called FRSC1 and FRSC2. The 
FRSC1 rule requires less distance computations and the FRSC2 can deal with larger 
data set. Instead of computing the lower approximations of all samples in T, the 
FRSC2 rule compacts the data set by filtering those samples far from the boundary.  

About the FRSC rule, some strengths and weaknesses can be summarized as  
follows: 

The FRSC rule has better performance than FCNN rule on small data set. It re-
quires less execution time and returns a smaller subset. Ordered by the lower approx-
imation, those samples close to the boundary are selected into subset S, that can 
achieve the consistence more quickly. 
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For larger data set, the FRSC2 rule does better than FRSC1. The FRSC2 rule needs 
less execution time. 

In dealing with big data set, more than 5000 samples, the FRSC rule has no supe-
riority to FCNN rule, which is presented by the comparison of FCNN and FRSC. The 
reason is that the time complexity of the lower approximation increases exponentially. 
Reducing the complexity of lower approximation becomes the key factor, which is 
our next work also. 

To conclude, this work presents a novel condensation algorithm for the NN rule, 
which has better performance than FCNN rule on small and medium-sized data sets. 
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Abstract. In the era of Web 2.0, consumers share their ratings or comments 
easily with other people after watching a movie. User rating simplified the pro-
cedure which consumers express their opinions about a product, and is a great 
indicator to predict the box office [1-4]. This study develops user rating predic-
tion models which used classification technique (linear combination, multiple 
linear regression, neural networks) to develop. Total research dataset included 
32968 movies, 31506 movies were training data, and others were testing data. 
Three of research findings are worth summarizing: first, the prediction absolute 
error of three models is below 0.82, it represents the user ratings are 
well-predicted by the models; second, the forecast of neural networks prediction 
model is more accurate than others; third, some predictors profoundly affect user 
rating, such as writers, actors and directors. Therefore, investors and movie 
production companies could invest an optimal portfolio to increase ROI. 

Keywords: User rating, prediction model, classification, linear combination, 
convex combination, neural networks, multiple linear regression, stepwise re-
gression, IMDb. 

1 Introduction 

Since the 20th century, movies have been an essential and important recreation to 
human beings. According to a survey by Motion Picture Association of America 
(MPAA), global box office for all films released in each country around the world 
reached $35.9 billion in 2013, up 4% over 2012’s total [5]. More than 4000 movies 
were produced within one year in the whole world, and only the top 5 movies box 
office exceeded US$100 million and these movies gained 14% of the gross box of-
fice[6]. It is a winner-take-most industry. In early 21st century, the production cost of 
one movie already reaches US$65 million while the advertisement and marketing 
budget also reaches US$35 million [6]. An investigation with 281 movies produced in 
the period from 2001 to 2004 pointed out, the return on investment (ROI) of movies 
ranges from −96.7% up to over 677%, an average ROI at −27.2% [7]. The rigorous 
circumstances exposed movie investors and production companies to higher financial 
risks. However, to the industry practitioners, forecasting the box office of a specific 
movie is a difficult mission because of some uncertain characteristics. Therefore, the 
industry practitioners relied heavily on traditional wisdom and simple empirical rules 
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to make their decision in the past [8]. Most movie investments seem like a gambling. 
Therefore, the engagement of a forecast in box office is an imperative and challenging 
study issue to scholars and the industry practitioners.  

User rating is a kind of Word of Mouth (WOM), it simplified the procedure which 
consumers express their opinions about a product. User rating is highly important to a 
certain product or service, because it reflects the wisdom of crowds. Undoubtedly 
user rating is a great indicator to predict the future sales performance of a product. 
Movie industry specialists agree that it is a key success factor of movie and help 
movie production company and investor gain a financial success [1-4].  

The purpose of this study was to develop an accurate user rating prediction mod-
els which based on the early information. We used classification technique of data 
mining to develop prediction model. First, developed one learning algorithm to iden-
tify a linear combination (convex combination) model that best fits the relationship 
between the attribute set and class label of the input data. Second, testing data was 
used to estimate the accuracy of the model. In the meantime, we employed other 
techniques (multiple linear regression and neural networks) to develop comparison 
model. The results of comparison model were used to illustrate how effective these 
attributes are.  

2 Related Works 

2.1 Internet Movie Database (IMDb) Voting (User Rating) 

IMDb (www.imdb.com) is the largest movie database in the world. The service was 
launched in 1990. The website had 2.8 million titles (includes episodes) and 5.9 mil-
lion personalities in its database on May 2014. 

IMDb registered users can rate every movie in the website (rating scale from 1 to 
10). User can rate one movie as many times as they want but each rating overwrite the 
previous rating for the same movie. The rating shown in IMDb is not an average rat-
ing of the original data by every voting user but a kind of weighted average of an 
undisclosed calculation method. IMDb applies various filters to screen the original 
data, the objective is to present a more representative rating which is immune from 
abuse by subsets of individuals who have combined together with the aim of influen-
cing (either up or down) the ratings of specific movies; IMDb keeps the mystery of 
rating calculation method, without disclosing whether/when/how to perform a weight 
for certain ratings, to provide a more objective rating.  

2.2 Movie Box Office and User Rating Prediction 

During the past 20 years, marketing scholars have developed some prediction models 
and decision support tools to increase the accuracy of forecast. One mainstream in 
which is to use multiple linear regression, by making the box office of movie as the 
dependent variable while the independent variable as the predictors with an impact on 
box office forecast, to establish a forecast model [1, 9-15]. [16] points out some  
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production and marketing characteristic factors influence the financial performance of 
a movie. [17] used neural networks in predicting the financial performance of a mov-
ie. They compared their prediction model with models that used other statistical tech-
niques; it is found the model built by neural networks do a better job of predicting box 
office.  

2.3 Linear Combination (Convex Combination) and Prediction 

Linear combination model is a decision rule for deriving a linear combination that 
predicts some criterion of interest. This method is intuitive and easy to understand to 
decision makers[18]. A linear combination is constructed from a set of terms by mul-
tiplying each term by a constant and adding the results. The constants were considered 
as weights when the linear combination model was used for decision-making or pre-
dictive purposes. Given a finite number of predictor variables x , x ,…, x , a linear 
combination of these predictor variables (independent variables) is a criterion variables 
(dependent variables) of the form. w x w x w ; where the constant w 0 and ∑ w 1; i 1,2, … , n 

A proper linear combination model is a linear equation which predictor variables are 
given optimal weights to optimize the relationship between the prediction and the 
criterion [19]. However, some authors pointed that it is a misunderstanding to interpret 
the weights as measures of the importance [18, 20]. The value of weight is dependent 
on the range of predictor variable values; in other words, a weight of a predictor vari-
able can be different by increasing or decreasing the range of observed value of pre-
dictor variable. In this study, all the observed values (score) of predictor variable were 
average user rating which comes from IMDb user voting. Furthermore, the average 
user rating is interval scale and ranges from 1 to 10. 

3 Data Preprocessing 

3.1 Data Collection 

Data for this study were collected from IMDb. We collected the user rating and 
attributes of all movies released from 2002 to 2012. We obtained a data set of 32968 
movies. The data set consists of attributes: actors, as known, country, directors, epi-
sodes, film locations, genres, IMDb id, IMDb URL, language, plot, plot simple, post-
er, rated, rating, rating count, release date, runtime, title, type, writers, year, opening 
weekend, gross, filming dates, budget, weekend gross, copyright holder. In this study, 
the structure of data set is listed below. Attributes are factors that related to movies 
(e.g., user rating, genre, actor). Element is a subgroup of attribute (e.g., action is one 
kind of genre). In other words, at the high level are the attributes which can be de-
fined in terms of more elements.  
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3.2 Data Cleaning, Transformation and Reduction 

For the purpose of our analysis, we need to remove or reduce the noise and missing 
values from test data. This step reduce confusion to derive more useful classification 
rules[21]. We remove the irrelevant, weakly relevant or redundant attributes according 
to previous research conclusion and IT scholars’ opinions. Besides, runtime is conti-
nuous type data. For research purpose, we convert runtime to categorical nominal type 
data and divide runtime data into four groups. Table 1 presents the attributes (inde-
pendent variables) which we used in this study.  

Table 1. Description of selected attributes 

 Attributes Attribute Types Number of  

element 

Literature 

1 genres Categorical nominal 24 [11, 12, 16, 17] 

2 directors Categorical nominal 8,880 [1, 11, 15] 

3 actors Categorical nominal 98,116 [1, 11, 13, 15-17] 

4 writers Categorical nominal 13,447 [7] 

5 country Categorical nominal 117 [22] 

6 film_locations Categorical nominal 1,220 - 

7 runtime Categorical nominal 4 [16] 

3.3 Calculate the Score of Elements and Attributes  

In this study, element is a quantifiable indicator of the extent to user rating. We col-
lected movies that related to a certain element, and then we averaged user rating of the 
movies. The average user rating is the score of element. For example, Ang Lee is a 
director of Brokeback Mountain (2005), Hulk (2003), Talking Woodstock (2009). The 
user ratings of these movies are 7.6, 5.7, and 6.6. The score of Ang Lee is (7.6 + 5.7 + 
6.6) / 3 = 6.63.  

As noted in the previous section, element is a subgroup of attribute. We calculated 
the score of attribute after we had calculated the element score. We averaged the score 
of elements that belong to a certain attribute, and then the result was the attribute score. 
For example, there are five elements (animation, action, adventure, family, and mys-
tery) which belong to the genre of The Adventures of Tintin (2011). The elements 
scores are 5.89, 5.97, 5.88, 6.87, 6.29, the genre score of The Adventures of Tintin is 
(5.89 + 5.97 + 5.88 + 6.87 + 6.29) / 5 = 6.18. The other attributes (actors, writers, 
country, film locations, runtime) use the same method to calculate the score. 



448 P.-Y. Hsu, Y.-H. Shen, and X.-A. Xie 

 

4 Develop Prediction Models 

We collected the user rating and attributes of all movies released from 2002 to 2012. 
Total dataset is including 32968 movies, 31,506 movies were used to be training data, 
and others were testing data. In section 3.3, we calculated all attribute scores and ele-
ment scores, and then used training data to generate prediction rules. The rules can be 
used to predict future data. Methods used to develop the prediction models are 
represented below: 

4.1 Linear Combination (Convex Combination) Model with Enumerating 
Value 

The predicted user rating is derived by a linear combination of the scores of the 
attributes. The attributes may have different weights in deriving the predicted user 
rating. The computation method is as follows: Predicted user ratingw Score w Score w Score w Scorew Score w Score _ w Score   (1) Weights: w , w , … , w   0, 1 ; w w w w w w w 1 

To find the optimal line combination, we tested all combinations of w , w , … , w  
by enumerating the values systematically in increments of 0.01 range from 0 to 1. 
When the accumulated difference between predicted user rating and actual user rating 
is the smallest, it can be considered as an optimal line combination. We use algorithm 1 
and algorithm 2 to find the optimal weight combination. The algorithm and prediction 
model is as follows: 

ALGORITHM 1: List all linear combinations 
OUTPUT: 
weight  
PROGRAM: 
For w1 = 0 To 1 Step 0.01 
For w2 = 0 To 1 Step 0.01 
    For (…) 
      If w1 + w2 + w3 + w4 + w5 + w6 + w7 = 1 Then  
        weight(weightcount, 1) = w1  
        weight(weightcount, 2) = w2  
        (…) 
        weightcount ++ 
      End If 
    End For 
  End For 
End For 
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ALGORITHM 2: Calculate the forecast error to yield the optimal 
linear combination 
INPUT: 
movie  
GenresScore, DirectorsScore, ActorsScore, WritersScore, 
CountryScore, 
LocationsScore, RuntimeScore  
Genres, Directors, Actors, Writers, Country, Locations, 
Runtime 
weight  
OUTPUT: 
BestWeight  
BestError  
PROGRAM: 
BestError = infinite  
For i = 0 To weight.count-1  
 For Each m In movie  
     Error = Abs(m.Score – (GenresScore*weight(i,1) + Di-
rectorsScore*weight(i,2) +  
     ActorsScore*weight(i,3) + WritersScore*weight(i,4) + 
CountryScore*weight(i,5) + 
     LocationsScore*weight(i,6)) +  
RuntimeScore*weight(i,7)))  
     If  Error < BestError Then  
        BestError = Error  
  BestWeight = i  
     End If 
   End For 
End For 

Predicted user rating=0.05 Score 0.05 Score 0.15 Score0.75 Score                                                                    
4.2 Multiple Linear Regression Model 

In this section, we use multiple linear regression analysis to yield another user rating 
prediction model. User rating is dependent variable and other attribute (predictor va-
riables) are independent variables. We applied stepwise regression technique to select 
predictor variables. In each step, we included a significant variable (at the 5% level) 
that brought the highest increase in adjusted R2. After each variable inclusion step, we 
removed any previously included variable if the variable is no longer significant (at the 
10% level). We stopped adding variables when the adjusted R2 did not increase when 
additional variables were no longer significant. In this study, all variables were in-
cluded in the regression model. We listed the result of the 7th step in stepwise regres-
sion procedure in table 2. 
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Table 2. Results of stepwise regression 

Step 

Coefficient Standard  

Coefficient t-value p-value 

Beta Standard Error Beta 

7 

constant -0.632 0.054 -11.804 .000 

writers 0.409 0.008 0.384 49.113 .000 

actors 0.556 0.009 0.432 61.934 .000 

directors 0.192 0.008 0.181 25.060 .000 

runtime 0.028 0.005 0.014 5.894 .000 

country -0.031 0.006 -0.012 -4.944 .000 

genres -0.028 0.006 -0.012 -4.768 .000 

film_ 

location 
-0.012 0.003 -0.009 -3.929 .000 

 
The prediction model is as follows: 

Predicted user rating=-0.632+0.409 Score 0.556 Score 0.192Score 0.028 Score 0.031 Score0.028 Score 0.012 Scoref _ ε    
4.3 Neural Networks Model 

Neural networks is a massive parallel distributed processor made up of simple 
processing units[23]. Neural networks is composed of several interconnected nodes and 
links. It modifies its interconnection weights by apply a set of training data. The 
attribute scores is the input vector and the corresponding output is actual user rating. 
The prediction model was developed using a commercial software product called SQL 
Server Business Intelligence Development Studio. 

It is difficult to interpret the meaning behind the interconnection weights and hidden 
layer in the networks [21]. Due to the poor interpretability, the result of neural networks 
was used to illustrate how effective these attributes are. 

5 Conclusion and Future Works 

5.1 Forecast Accuracy 

In order to test the forecast accuracy of the prediction models, we use 1,462 movies to 
be testing data which we obtained from IMDb. For testing the forecast accuracy, we 
used the testing data to calculate the predicted user rating from three prediction mod-
els which we developed in chapter 4. Then, we calculate the difference (Prediction 
absolute error; PAE) between the forecast value and actual user rating. The smaller 
value of PAE is, the better forecast accuracy is. We calculate the percentage of the 
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appearance frequency in the different PAE area accounting for all testing data, to be 
used to compare the forecast accuracy of the three kinds of method.  PAE |Predicted user rating Actual user rating|                                          Average PAE ∑ PAEn                                                                                                 
Percent of PAE between a and b

   PAE      0 a < 10       
Table 3. Comparison predicted absolute error between the linear combination method, multiple 
linear regression and neural networks prediction models 

Prediction model Average PAE 
PAE 0 PAE < 1 1 PAE < 2 2 PAE < 3 3 PAE < 4 

Linear combination 0.7347 72.73% 24.45% 2.19% 0.31% 

Multiple linear regression 0.8186 67.08% 28.21% 4.08% 0.31% 

Neural networks 0.6973 76.8% 18.5% 4.39% 0.31% 

 
As shown in Table 3, the average PAE of the linear combination is 0.7347, lower 

than the average PAE 0.8186 of multiple linear regression, while the average PAE of 
neural networks is only 0.6973, as the method with the lowest average PAE. The PAE 
percentage of the linear combination lower than 1 is 72.73%, higher than the 67.08% 
of multiple linear regression by 5.65%, while the PAE of neural networks lower than 
1 is 76.8%, higher than 72.73% of the linear combination by 4.07%. The results of 
paired t-test were also indicated that there is a significant difference between the PAE 
of neural networks and the PAE of multiple linear regression. However, there is no 
significant difference between the PAE of neural networks and the PAE of linear 
combination. As mentioned above, it can be seen that the forecast performance of 
using neural networks prediction model to be greater than or equal to the linear com-
bination prediction model, while the forecast performance of the neutral networks 
prediction model is better than that of multiple linear regression model.  

5.2 Conclusion and Future Work 

A proper weight combination forecast equation is obtained in this study to solve the 
linear combination (convex combination) by enumerating value systematically; 
meanwhile, multiple linear regression and neural networks applied to the development 
of forecast models. The result indicated that using neural networks is superior to the 
optimal weight combination provided in this study, while the forecast performance of 
the linear combination is better than multiple linear regression. These findings are in 
line with previous studies [17]. It is noteworthy that if we only focus on the PAE 
lower than 2, the linear combination model is the great ratio 97.18% (72.73%+ 
24.45%), that is, 97.18% testing data predicted user rating error lower than 2 when we 
used linear combination prediction model. The PAE of neutral networks model is 
95.3% in the same condition. 
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In Table 4, we listed the weights of linear combination and standard coefficient of 
multiple linear regression. Writers, actors and directors profoundly affect user rating. 
A writer is in charge of such core elements as the scheme, characters, scene, and 
structure of the whole movie; a good screen scripts can find an echo in everyone’s 
heart. On the contrary, a poor screen script hardly gains the favor even under suffi-
cient resources of various aspects. The next important factor is actors. The actor  
selection of a movie production company is extremely important. Most studies consi-
dered star as one of the covariates with box office performance. However, directors 
and genres also account for considerable influence on user rating. Therefore, before 
investors and a movie production company prepare to shoot a movie, they may well 
consider the favorable portfolios of the audience from such aspects of writers, actors, 
directors and genres to acquire a higher anticipated user rating. Once the anticipated 
user rating is reached, the increase of movie revenue will take place.  

Table 4. Comparison between weights of the linear combination and standard coefficient of 
multiple linear regression  

  

Weight/ Standard Coefficient 

Genres Directors Actors Writers Country 
Film_ 

locations 
Runtime 

Linear combination 0.05 0.05 0.15 0.75 0 0 0 

Multiple linear regression 
-0.012 0.181 0.432 0.384 -0.012 -0.09 0.014 

 
While our results are encouraging, there are still many improvements to be made. 

We consider that there are many factors with impact on user rating which are not 
explored. Some potential endogenous relationships exist among the factors [4], it is 
recommended that more studies of these questions could be performed.  

This study uses enumerating value systematically to find out the proper weight 
combination; such kind of method highly consumes time and computer resources.  
The time performance of linear combination method is about 450 minutes, on the 
contrary, multiple linear regression is about 4 seconds and neural networks is about 8 
seconds. Further research might adopt the other algorithms of solving a convex com-
bination to reduce the calculation time and resources.  
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Abstract. As in the traditional single-label classification, the feature
selection plays an important role in the multi-label classification. This
paper presents a multi-label feature selection algorithm MLFS which
consists of two steps. The first step employs the mutual information to
complete the local feature selection. Based on the result of local selection,
GA algorithm is adopted to select the global optimal feature subset and
the correlations among the labels are considered. Compared with other
multi-label feature selection algorithms, MLFS exploits the label corre-
lation to improve the performance. The experiments on two multi-label
datasets demonstrate that the proposed method has been proved to be
a promising multi-label feature selection method.

Keywords: multi-label, feature selection, GA, mutual information.

1 Introduction

In the traditional single-label learning, each instance is only associated with
one semantic label. However, in many real-world problems, one instance usually
have multiple semantic labels simultaneously. Nowadays, multi-label learning
has been applied to many domains, such as the image and video annotation[1],
sentiment analysis[2] and text categorization[3]. Several application domains of
multi-label learning (e.g. text categorization, gene expression) involve data with
large numbers of features. Similar to the single-label learning, the multi-label
learning also suffers from the curse of dimensionality[4].

Contrary to the single-label classification which assumes the classes are mu-
tually exclusive, the multi-label classification allows different classes to overlap.
Therefore, a key challenge of multi-label dimensionality reduction is how to
exploit the label correlations. In this paper, we propose a supervised feature
selection algorithm called Multi-Label Feature Selection(MLFS) for multi-label
data set based on mutual information and genetic algorithm. MLFS consists of
two steps which respectively selects the features from local and global perspec-
tive in turn and exploits the label correlation to improve the performance. We
use this method as a preprocessing step and achieve encouraging results on the
multi-label data sets.
� This paper is supported by the 2009 Natural Science Fund of Jiangxi Agricultural
University and the Jiangxi Provincial natural science fund (No.20132BAB201045).
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The rest of this paper is organized as follows. Section 2 briefly reviews the re-
lated studies about multi-label dimensionality reduction. In Section 3, th feature
selection algorithmMLFS is proposed, which is based on mutual information and
genetic algorithm. Section 4 illustrates the effectiveness of MLFS through some
experiments. Finally, Section 5 concludes the studies.

2 Related Works

Numerous studies have been devoted to the dimensionality reduction, most of
them focus on the single-label learning. Recently, several dimensionality reduc-
tion algorithms also have been proposed for multi-label learning. These ap-
proaches could be organized into two categories:

1) feature selection
Most papers propose a previous transformation of multi-label data set to one

or more single-label data sets and then use the existing feature selection methods.
One of the most popular approaches, especially in text categorization, uses the
BR transformation in order to evaluate the discriminative power of each feature
with respect to each label. Subsequently the obtained scores are aggregated
in order to obtain an overall ranking. Common aggregation strategies include
taking the maximum or a weighted average of the obtained scores[5]. The LP
transformation was used in reference [2], while the copy, copy-weight, select-max,
select-min and ignore transformations are used in reference [6]. After problem
transformation, the filter approach is usually applied to the single-label data for
which many methods have been proposed. To this end, importance measures,
such as Information Gain[6] and Chi-square[2], have been the most frequently
used.

2) feature extraction
Feature extraction methods construct new features out of the original ones

either using class information (supervised) or not (unsupervised).Unsupervised
methods, such as principal component analysis and latent semantic indexing
(LSI) are obviously directly applicable to multi-label data. In reference [7], the
authors directly apply LSI based on singular value decomposition in order to
reduce the dimensionality of the text categorization problem. In reference [8],
the PCA is used to extract the feature space. Supervised feature extraction
methods for single-label data, such as linear discriminant analysis (LDA), require
modification prior to their application to multi-label data. In reference [9], an
feature extraction approach called class balanced linear discriminant analysis is
proposed. The key idea of this method is to define a within-class scatter matrix
and a between-class scatter matrix for multi-label learning. An algorithm called
Multi-label informed Latent Semantic Indexing (MLSI) [10] is a modified version
of the LSI method, which preserves the information of data and meanwhile
captures the correlations among multiple labels. In addtion, an supervised multi-
label feature extraction algorithm called Multi-label Dimensionality reduction
via Dependence Maximization (MDDM) was proposed in reference [11], which
adopts the Hilbert-Schmidt independence criterion to measure the dependence
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between the features and the corresponding labels due to its simplicity and
elegant theoretical peoperties.

3 The MLFS Method

First of all, we present the formal notation that we use throught. Let X = Rd de-
note the input space and L = {l1, l2, ..., lm} denote the finite set of possible labels.
An instance is represented as a vector of features values x = [x1, x2, ..., xd](x ∈
X ). F is the set of d features.

When assigning the labels to the instances, most of the existing multi-label
classification algorithms make decisions for different labels not according to dif-
ferent feature sets but according to the same feature set. By analysising the
multi-label data sets, we find that the essential features for each label, namely
those features that have the greatest discriminative power for the specified label,
are not necessarily identical, or even completely different. For a specified label,
several features maybe relevant, while others may be irrelevant, redundant or
useless. Taking the text categorization for example, in order to judge whether
the text belongs to the political class, those features related with the govern-
ment, the president and the war should be paid more attention to. In order to
judge whether the text belongs to the entertainment class, those features which
associated with the star, the film should be considered. Those irrelevant and
redundant features not only increase the dimensions of the feature space but
also reduce the learning efficiency. Furthermore, the irrelevant and redundant
features would produce noise and interfere with learning, which would affect the
construction of classification model.

The negative factors mentioned above have been confirmed by some works.
As for the nearest neighbor algorithm, reference [12] indicates that the compu-
tational complexity of the algorithm and the number of the needed instances
exponentially increase with the growth of the number of the irrelevant features.
When the number of the irrelevant features increases, the number of the in-
stances needed by the decision tree algorithm also shows an exponential growth
in the XOR conditions. In addition, the performance of the Bayesian classifier is
also affected by the redundant features. Therefore, in order to decrease the effect
of the adverse factors, the dimension of feature space should be reduced. MLFS
consists of two steps. The first step is to select the local optimal feature subset
for each label using dependence maximization and eliminate the irrelevant and
redundant features. The second step is to summarize the result of the first step
and then the optimizaition method GA is used to find the global optimal feature
subset which meets the criterion.

In the first step, the forward search strategy is adopted to obtain an ordered
feature sequence for each label using the dependence maximization as a metric.
Then the first q features are selected as the optimal feature subsets S. Formula
1 gives the dependence maximization between feature subset S and label l.

maxI(S; l), S ⊆ F (1)
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In the begining, S is an empty set. Then feature is selected in turn into S based
on the principle of maximizing dependency . When the number of the feature in
S is equal to q, the process terminates. It can be seen from the Formula 1 that
the high-dimensional joint probability density is difficult to compute when the
number of the selected features is large. So we use the Max-Relevance and Min-
Redundancy [13] to replace the Max-Dependency which is an equivalent form of
maximization dependency.

maxfi∈F−Sq−1 [I(fi; l)−
1

q − 1

∑
fj∈Sq−1

I(fi; fj)] (2)

In Formula 2, I(fi; l) means max-relevance, namely the dependency between
the new selected feature and the label is largest, while the second part means the
min-redundancy, namely the reduncancy between the new selected feature and
the features in S is smallest. When selecting features for each label, the number
of features should not be too much but be controlled within a reasonable range.
Because in the multi-label system, there exists correaltions among labels. So
an essential feature subset for a label may also has discriminating power for
other labels. The feature subset obtained from the first setp is removed many
redundant and irrelevant information. However, it is an local result and it still
has redundant information for the whole.

Genetic Algorithm (GA)[14] is an famous evolutionary algorithm in the arti-
ficial intelligence, which employs the heuristic search strategy. GA is a feature
selection method of wrapper style, embedded with the learning algorithm to
evaluate the selected features. We use GA to select the globally optimal feature
subset. Let the learning algorithm run on the selected subset using ten cross-
validation. The subset whose evaluations(average precison) are best is regarded
as the final output Ŝ. The fitness function of GA is defined as Formula 3. avgprec
is the average precision. the greater the average presion, the better the feature
subset. Ŝ is a result of joint action by all labels. So the second step considers
the correlation among labels. The pseudo code of MLFS is shown in Fig 1.

Fitness(Ŝ) =
1

10

10∑
i=1

avgprec (3)

The computational complexity of the algorithm is decided by the Step 1 and
Step 4. In Step 1, the complexity of calculating the dependency is O(m×d) and
the time complexity of the sorting of the dependency is O(m× d2). So the total
computational complexity of Step 1 is O(m×d2). The computational complexity
of GA in Step 4 could divided into three parts: the calculation of fitness value, the
crossover and the mutation. The complexity of the calculation of fitness depends
on the fitness function and here it is depends on the complexity of classification
algorithm. The complexity of the crossover and the mutation depends on the
number of the iterations and the size of the feature subset obtained from the
Step 1.
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Fig. 1. pseudo code of MLFS

4 Experiments

To test the effectiveness of MLFS presented in this paper, we apply it to two
multi-label datasets which come from the the open source Mulan library[15] and
Table 1 shows their associated properties.

Table 1. Multi-label datasets used for experiments

name instances attribute labels cardinality density

medical 978 1449 45 1.245 0.028

Corel5k 5000 499 374 3.522 0.009

We use MLFS-1 (the first step of MLFS) and MLFS to select features and
obtain two feature subsets. Then MLkNN [16] runs on three datasets which
respectively have three different feature sets, namely the two selected feature
subsets and the original feature set. The number of the nearest neighbors is
set as 10. The experimental results of ten-fold cross-validation in terms of five
metrics [16], namely Hamming loss, average precision, coverage, one-error and
ranking loss, are shown in Fig 3 to Fig 12. Fig 2 shows the number of the features
selected by MLFS-1 and MLFS.

It can be seen from Fig 2 to Fig 12 that the performance of MLFS-1 is better
than other two algorithms on medical. when compared with MLkNN, MLFS-1
not only has higher precision but also involves fewer features and MLFS has
poorest performance on medical. Perhaps the second step removes too much
useful information. While the performances of three algorithms on Corel5k are
exactly opposite. MLFS is best among three algorithms and the number of the
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selected features is small. It is obviously that the feature selection removes many
irrelevant and redundant features.

5 Conclusion

This paper presents a multi-label feature selection algorithm which consists of
two steps. The first step employs the mutual information to evaluate the im-
protance of the features for each labels and completes the local feature selection.
Based on the result of the first step, GA algorithm is adopted to select the
global optimal feature subset. Experiments on two multi-label datasets show
that MLFS could remove irrelevant features. However, it is not clear whether
they are also helpful for other kinds of multi-label learning methods and whether
there are better choices than dependency maximization and GA for this purpose.
These are interesting issues worth further investigation.

Fig. 2. the comparison of the number of the features

Fig. 3. average precision on medical
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Fig. 4. coverage precision on medical

Fig. 5. Hamming-loss on medical

Fig. 6. one-error on medical
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Fig. 7. ranking-loss on medical

Fig. 8. average precision on Corel5k

Fig. 9. coverage on Corel5k
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Fig. 10. Hamming-loss on Corel5k

Fig. 11. one-error on Corel5k

Fig. 12. ranking-loss on Corel5k
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Abstract. Hierarchy plays a fundamental role in the development of the
Granular Computing(GrC). In many practical applications, the granules
are formed in a family of the coverings, which can construct a Covering-
based Multigranulation Space(CBMS). It should be noticed that the
hierarchies on Covering-based Multigranulation Spaces has become a
necessity. To solve such problem, the concepts of the union knowledge
distance and the intersection knowledge distance are introduced into the
CBMS, which can be used to construct the knowledge distance lattices.
According to the union knowledge distance and the intersection knowl-
edge distance, two partial orderings can be derived, respectively. The
example shows that the derived partial orderings can compare the finer
or coarser relationships between two different Covering-based Multigran-
ulation Spaces effectively. The theoretical results provide us a new way
to the covering based granular computing.

Keywords: covering-based multigranulation space, granular comput-
ing, granular structure, hierarchical structure.

1 Introduction

Granular computing(GrC) [22] was firstly proposed by Zadeh, which can be con-
sidered as a structured way of thinking, structured problem solving and paradigm
of information processing [20]. It can also be considered as a label of a new field
of multi-disciplinary study, dealing with theories, methodologies, techniques, and
tools that make use of granules in the process of complex problem solving [18].
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In recent years, many researchers paid attentions to the development of GrC.
For example, Yao [20] proposed a triarchic theory of GrC, which includes multi-
level, multi-view [1] and granular computing triangle; Saberi et al. [11] applied
the granular computing to credit scoring modeling, which is a pioneer in exam-
ining the concept of granularity for selecting the optimum size of testing and
training group in machine learning area; Yao et al. [19] reviewed foundations
and schools of research and elaborated current developments in GrC research;
Zhang et al. [23] discussed the double-quantitative approximation space of preci-
sion and grade and then tackled the fusion problem, which can further conduct
double-quantification studies on granular computing; Hu et al. [2] proposed a
novel learning approach which combines fuzzy logical designing with machine
learning to construct a granular computing system. Presently, GrC provides an
effective tool for problem solving in many different fields [4, 6, 15], GrC research
is moving into the mainstream of computer science [19].

Information granulation will adopt various strategies according to people’s re-
quirements [10]. It is necessary to research the hierarchies on information gran-
ulations. Different levels of abstraction may represent different granulated views
of our understanding of a real world problem [3], i.e., the hierarchy will help us to
solve problems in different views. Generally speaking, hierarchy reflects the finer
or coarser relationships among information granulations. For example, Liang et
al. [5] researched the difference among the information granulations from the
view of knowledge distance [9]; Qian et al. [7] characterized the hierarchies on
granular structures with the cardinality when the set-inclusion does not exists
among information granules; Yang et al. [17] constructed the algebraic lattices
based on the set distance and knowledge distance to characterize the hierarchies
on information granules.

It should be noticed that the hierarchies of granular computing mentioned
are based on the equivalence relations. However, in many practical problems, the
equivalence relation is hard to be acquired, it is often the covering [12–14, 24, 25]
or even a family of coverings [17]. We often need to describe concurrently a tar-
get concept from some independent environments [8]. From this point of view,
it is practical to research the hierarchies on a family of coverings. As a family
of coverings can construct a multigranulation space, in the context of the paper,
we call it Covering-based Multigranulation Space(CBMS). To further push the
development of GrC, the study of hierarchies on Covering-based Multigranual-
tion Spaces has become a necessity. This is what will be discussed in this paper.
The objective of this study is to characterize the hierarchies on Covering-based
Multigranulation Spaces use a knowledge distance approach.

2 Preliminaries

2.1 Information Granulations

Definition 1. [21] Let U be the universe of discourse, a subset g ∈ 2U is called a
granule, where 2U is the power set of U .
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Definition 2. [21] Let U be the universe of discourse, suppose that G ⊆ 2U is a
nonempty family of subsets of U , the pair (G,⊆) is called a granular structure,
where ⊆ is the set-inclusion relation.

Remark 1. Though the granular structure is defined by set-inclusion relation ⊆,
which is a special example of partial ordering. That is to say, a granular structure
can be defined on a partial ordering.

Let U �= ∅ be the universe, R is a family of the equivalence relations (reflexive,
symmetric, transitive) on U , then the pair KB = (U,R) is called the Pawlak
knowledge base[20]. If P �= ∅ and P ⊆ R, then IND(P ) = ∩P (intersection of all
equivalence relations in P ) is also an equivalence relation. U/IND(P ) is a family
of the equivalence classes, which are generated from the equivalence relation
IND(P ). In the viewpoint of granular computing, according to Definition 1,
the set of Pawlak information granules G(P ) = {[x]P : ∀x ∈ U} is regarded
as a Pawlak information granulation over U where [x]P = {y ∈ U : (x, y) ∈
IND(P )}. In the context of the paper, the set of all the Pawlak information
granulations over U is denoted by PG(U).

In Pawlk’s knowledge base, an equivalence relation U/IND(P ) can induce a
partition. The definition of the partition is as Definition 3 shows.

Definition 3. Let U be the universe of discourse, P = {p1, p2, ..., pm} is a parti-
tion on U , if and only if

⋃m
i=1 pi = U and ∀i �= j, pi ∩ pj = ∅.

In the context of the paper, the pair (U, P ) is regarded as a Pawlak approxi-
mation space.

As we all know, in reality, the granules are formed in equivalence relation are
hard to be obtained, it is often formed in covering, in which two granules may
not be disjoint to each other. The covering can be defined as Definition 4 shows.

Definition 4. Let U be the universe of discourse, C is a covering on U , if and
only if

⋃m
i=1 = U where ∀ci = C.

By Definition 3 and 4, it is obvious that the partition is a special case of the
covering. Similar to the Pawlak approximation space, the pair (U,C) is regarded
as a covering approximation space.

Let U be the universe of discourse, F = {C1, C2, ..., Cm} is a family of the
coverings on U . Similar to the Pawlak knowledge base, the pair KF = (U, F ) is
called the covering knowledge base. Similar to the Pawlak information granula-
tion, let U be the universe, C is a covering on U , the set of covering information
granules G(C) = {N(x) : ∀x ∈ U} is regarded as a covering information granu-
lation over U where N(x) = ∩{ci : ci ∈ C∧x ∈ ci} is the neighborhood of x. The
set of all the covering information granulations over U is denoted by CG(U).

2.2 Knowledge Distance on Pawlak Information Granulation

It should be noticed that in PG(U), there are two special information granula-
tions: one is the coarsest information granulation, it is denoted by σ = {U : ∀x ∈
U}. In this situation, the knowledge we obtained is the least, each object in the
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universe can not be distinguished; the other one is the finest information granu-
lation, it is denoted by ω = {{x} : ∀x ∈ U}. In this situation, the knowledge we
obtained is the most, each object in the universe can be distinguished.

Definition 5. [9] Let KB = (U,R) be the knowledge base, ∀G(P ), G(Q) ∈
PG(U), three operators can be defined as

G(P ) ∩G(Q) = {[x]P∩Q : ∀x ∈ U, [x]P∩Q = [x]P ∩ [x]Q}; (1)

G(P ) ∪G(Q) = {[x]P∪Q : ∀x ∈ U, [x]P∪Q = [x]P ∪ [x]Q}; (2)

)G(P ) = { [x]P : ∀x ∈ U, )[x]P = {x} ∪ (U − [x]P )}. (3)

By Definition 5, we know that the three operators can be seen as intersection
operation, union operation and complement operation in-between two Pawlak
information granulation G(P ) and G(Q), respectively.

Theorem 1. [9] Let KB = (U,R) be the knowledge base,

1. (K(U),∩,∪) is a lattice;
2. (K(U),∩,∪) is a distributive lattice;
3. (K(U),∩,∪, )) is a complement lattice.

To characterize the relationship among information granulations, we introduce
the knowledge distance for measuring the difference between two information
granulations on the same knowledge base in the following[9].

Definnition 6. [5, 9] Let U be the universe of discourse, ∀G(P ), G(Q) ∈ PG(U),
the knowledge distance between Pawlak information granulations G(P ) and
G(Q) is denoted by D(G(P ), G(Q)) such that

D(G(P ), G(Q)) =
1

|U |
∑
x∈U

|[x]P ⊕ [x]Q|
|U | , (4)

where |X | is the cardinal number of the set X , [x]P ⊕ [x]Q is the symmetric
difference of [x]P and [x]Q, i.e., [x]P ⊕ [x]Q = ([x]P − [x]Q) ∪ ([x]Q − [x]P ).
Obviously, 0 ≤ D(G(P ), G(Q)) ≤ 1− 1

|U| holds. D(G(P ), G(Q)) = 0 if and only

if G(P ) = G(Q), while D(G(P ), G(Q)) = 1− 1
|U| if and only if G(P ) = )G(Q).

Theorem 2. [9] Let U be the universe of discourse, ∀G(P ), G(Q), G(R) ∈ PG(U),
the following properties about knowledge distance hold:

1. Positive: D(G(P ), G(Q)) ≥ 0;
2. Symmetric: D(G(P ), G(Q)) = D(G(Q), G(P ));
3. Triangle inequalities:

(1) D(G(P ), G(Q)) +D(G(P ), G(R)) ≥ D(G(Q), G(R));
(2) D(G(P ), G(Q)) +D(G(Q), G(R)) ≥ D(G(P ), G(R));
(3) D(G(P ), G(R)) +D(G(Q), G(R)) ≥ D(G(P ), G(Q)).

By Theorem 2, we can see that (PG(U), D) is a distance space.
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3 Hierarchies on Covering-Based Multigranulation Space

Multigranulation space is a core concept in granular computing theory. In this
section, we may discuss the hierarchies on Covering-based Multigranulation
Spaces. Similar to the covering information granulation, in CBMS, the multi-
covering information granules of the object x in the CBMS is denoted by F (x) =
{ci ∈ C : x ∈ ci ∧ C ∈ F}. By Section 2.1, we can see that F (x) = {N(x) :
C ∈ F}. The multi-covering information granulation over U is denoted by
MS(F ) = {F (x) : ∀x ∈ U}, which constitutes a CBMS. The collection of all the
Covering-based mulatigranulation spaces over U is denoted by MG(U).

3.1 Knowledge Distance on Covering-Based Multigranulation
Spaces

To research the knowledge distances between two Covering-based Multigranu-
lation Spaces, it is a necessity to discuss the knowledge distances between two
Covering-based Multigranulation Spaces in terms of one certain object. The
knowledge distances between two Covering-based Multigranulation Spaces in
terms of the object can be defined as Definition 7 shows.

Definnition 7. Let U be the universe of discourse, ∀F1, F2 ∈ MG(U), ∀x ∈ U ,
the knowledge distances between Covering-based Multigranulation Spaces F1

and F2 in terms of the object x will be defined as follow:

D∪
x (F1, F2) =

|⋃N1i∈F1(x)

⋃
N2j∈F2(x)

(N1i ⊕N2j)|
|U | , (5)

D∩
x (F1, F2) =

|⋂N1i∈F1(x)

⋂
N2j∈F2(x)

(N1i ⊕N2j)|
|U | , (6)

where
⋃

N1i∈F1(x)
denotes the union of the multi-covering information granules

of the object x in the CBMS F1,
⋂

N1i∈F1(x)
denotes the intersection of the multi-

covering information granules of the object x in the CBMS F1. Therefore, the
two formulas can be seen as two knowledge distances with different combinations
of the symmetric difference in terms of Covering-based Multigranulation Spaces
F1 and F2.

To facilitate our discussions, ∀F1, F2 ∈MG(U), D∪
x (F1, F2) is called the union

knowledge distance in terms of the object x and D∩
x (F1, F2) is called the inter-

section knowledge distance in terms of the object x.

Theorem 3. Let U be the universe of discourse, ∀F1, F2, F3 ∈ MG(U), ∀x ∈ U ,
the following properties about knowledge distance hold:

1. Positive: D∪
x (F1, F2) ≥ 0, D∪

x (F1, F2) ≥ 0;

2. Symmetric: D∪
x (F1, F2) = D

∪
x (F2, F1), D

∩
x (F1, F2) = D

∩
x (F2, F1);
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3. Triangle inequalities:
(1) D∪

x (F1, F2) +D
∪
x (F1, F3) ≥ D∪

x (F2, F3),
D∩

x (F1, F2) +D
∩
x (F1, F3) ≥ D∩

x (F2, F3);
(2) D∪

x (F1, F3) +D
∪
x (F2, F3) ≥ D∪

x (F1, F2),
D∩

x (F1, F3) +D
∩
x (F2, F3) ≥ D∩

x (F1, F2);
(3) D∪

x (F1, F2) +D
∪
x (F2, F3) ≥ D∪

x (F1, F3),
D∩

x (F1, F2) +D
∩
x (F2, F3) ≥ D∩

x (F1, F3).

Proof. We only prove the situation of union knowledge distance D∪
x (F1, F2), the

proof of intersection knowledge distance D∩
x (F1, F2) is similar to the situation of

D∪
x (F1, F2). The properties of positive and symmetric can be obtained directly

by Definition 7. In the following, we only prove the triangle inequalities.
1). If there exists equivalent Covering-basedMultigranulation Spaces in F1, F2

and F3. Suppose that F1 = F2, by Definition 7, it is obvious that the triangle
inequalities hold.

2). If the Covering-based Multigranulation Spaces in F1, F2 and F3 are differ-
ent from each other. According to the basic set theory, we know that ∀X,Y, Z
are three finite set, (Y ⊕ Z) ⊆ (X ⊕ Y ) ∪ (X ⊕ Z) holds. By Definition 7, we
have

D∪
x (F1, F2) +D

∪
x (F1, F3) =

|⋃N1i∈F1(x)

⋃
N2j∈F2(x)

(N1i ⊕N2j)|
|U | +

|⋃N1i∈F1(x)

⋃
N3k∈F3(x)

(N1i ⊕N3k)|
|U | ≥

|(⋃N1i∈F1(x)

⋃
N2j∈F2(x)

(N1i ⊕N2j))
⋃
(
⋃

N1i∈F1(x)

⋃
N3k∈F3(x)

(N1i ⊕N3k))|
|U | ≥

|⋃N1i∈F1(x)

⋃
N2j∈F2(x)

⋃
N3k∈F3(x)

((N1i ⊕N2j)
⋃
((N1i ⊕N3k)))|

|U | ≥
|⋃N2j∈F2(x)

⋃
N3k∈F3(x)

(N2j ⊕N3k)|
|U | = D∪

x (F2, F3).

Similarity, it is not difficult to prove the other two triangle inequalities.
By Theorem 3, we can see that (MG(U), D∪

x ) and (MG(U), D∩
x ) are distance

spaces. By Definition 7, the knowledge distances between two Covering-based
Multigranulation Spaces can be defined as Definition 8 shows.

Definition 8. Let U be the universe of discourse, ∀F1, F2 ∈MG(U), ∀x ∈ U , the
knowledge distances between Covering-based Multigranulation Spaces F1 and
F2 will be defined as following:

D∪(F1, F2) =
1

|U |
∑
x∈U

D∪
x (F1, F2), (7)

D∩(F1, F2) =
1

|U |
∑
x∈U

D∩
x (F1, F2). (8)
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It not difficult to find that D∪(F1, F2) is the mean value of the union knowl-
edge distances D∪

x (F1, F2) of all the objects in the universe U . D∩(F1, F2) is the
mean value of the union knowledge distances D∩

x (F1, F2) of all the objects in the
universe U .

To facilitate our discussions,D∪(F1, F2) denotes the union knowledge distance
on Covering-based Multigranulation Spaces F1 and F2, D

∩(F1, F2) denotes the
intersection knowledge distance on covering-based multigranulation spaces F1

and F2. On the basis of Theorem 3, Theorem 4 is easy to be obtained.

Theorem 4. Let U be the universe of discourse, ∀F1, F2, F3 ∈ MG(U), ∀x ∈ U ,
the following properties about knowledge distances hold:

1. Positive: D∪(F1, F2) ≥ 0, D∪(F1, F2) ≥ 0;
2. Symmetric: D∪(F1, F2) = D

∪(F2, F1), D
∩(F1, F2) = D

∩(F2, F1);
3. Triangle inequalities:

(1) D∪(F1, F2) +D
∪(F1, F3) ≥ D∪(F2, F3),

D∩(F1, F2) +D
∩(F1, F3) ≥ D∩(F2, F3);

(2) D∪(F1, F3) +D
∪(F2, F3) ≥ D∪(F1, F2),

D∩(F1, F3) +D
∩(F2, F3) ≥ D∩(F1, F2);

(3) D∪(F1, F2) +D
∪(F2, F3) ≥ D∪(F1, F3),

D∩(F1, F2) +D
∩(F2, F3) ≥ D∩(F1, F3);

Proof. It is easy to prove by the results on Theorem 3 and Definition 8.

3.2 The Algebraic Structures of Knowledge Distance on CBMS

Similar to the situation of PG(U), there are also two special information granu-
lations in CG(U): one is the coarsest information granulation σ = {U : ∀x ∈ U},
the other one is the finest information granulation ω = {{x} : ∀x ∈ U}. To dis-
cuss the algebraic structures of knowledge distances on Covering-based Multi-
granulation Spaces, a frame of reference should be used, in the context of the
paper, the finest information granulation ω is selected.

Definnition 9. Let U be the universe of discourse, ∀F1, F2 ∈MG(U), ∀x ∈ U , two
operators on the union knowledge distance on Covering-based Multigranulation
Spaces F1 and F2 can be defined as following:

D∪
x (F1, ω) ∧D∪

x (F2, ω) = min{D∪
x (F1, ω), D

∪
x (F2}; (9)

D∪
x (F1, ω) ∨D∪

x (F2, ω) = max{D∪
x (F1, ω), D

∪
x (F2}. (10)

Definnition 10. Let U be the universe of discourse, ∀F1, F2 ∈ MG(U), ∀x ∈ U ,
two operators on the intersection knowledge distance on Covering-based Multi-
granulation Spaces F1 and F2 can be defined as following:

D∩
x (F1, ω) ∧D∩

x (F2, ω) = min{D∩
x (F1, ω), D

∩
x (F2}; (11)

D∩
x (F1, ω) ∨D∩

x (F2, ω) = max{D∩
x (F1, ω), D

∩
x (F2}. (12)



474 J. Song et al.

In Section 2.1, we know thatMG(U) denotes the collection of all the Covering-
based Multigranulation Spaces over U , ∀x ∈ U,DF∪

ω (x) = {D∪
x (F, ω) : ∀F ∈

MG(U)} denotes the set of the union knowledge distances on the multi-covering
information granulations and the finest information granulation in terms of the
object x, DF∪

ω (U) = {DF∪
ω (x) : ∀x ∈ U} denotes the set of the union knowledge

distances on the multi-covering information granulations and the finest informa-
tion granulation of all the objects on the universe.

It is not difficult to know that ∀x ∈ U,DF∩
ω (x) = {D∩

x (F, ω) : ∀F ∈MG(U)}
denotes the set of the intersection knowledge distances on the multi-covering in-
formation granulations and the finest information granulation in terms of the
object x, DF∩

ω (U) = {DF∩
ω (x) : ∀x ∈ U} denotes the set of the intersec-

tion knowledge distances on the multi-covering information granulations and
the finest information granulation of all the objects on the universe.

Theorem 5. Let U be the universe of discourse, ∀x ∈ U , (DF∪
ω (x),∧,∨) is

a distributive lattice, which can be regarded as the union knowledge distance
lattice.

Proof. By Definition 9, it is a trivial to prove this theorem.

Theorem 6. Let U be the universe of discourse, ∀x ∈ U ,(DF∩
ω (x),∧,∨) is a

distributive lattice, which can be regarded as the intersection knowledge distance
lattice.

Proof. By Definition 10, it is a trivial to prove this theorem.

3.3 Hierarchies on Covering-Based Mulatigranulation Spaces

In general, a partial ordering can be induced by “ ∧ “ and “ ∨ “ operators in
a lattice, which can be used to judge the finer or coarser relationships between
two Covering-based Mulatigranulation Spaces.

Definnition 11. Let U be the universe of discourse, ∀F1, F2 ∈MG(U),
1) the partial ordering induced by the union knowledge distance lattice
(DF∪

ω (x),∧,∨) is
D∪

x (F1, ω) �1 D
∪
x (F2, ω)⇔ D∪

x (F1, ω) ∧D∪
x (F2, ω) = D

∪
x (F1, ω)

or D∪
x (F1, ω) ∨D∪

x (F2, ω) = D
∪
x (F2, ω), (13)

2) the partial ordering induced by the intersection knowledge distance lattice
(DF∩

ω (x),∧,∨) is
D∩

x (F1, ω) �1 D
∩
x (F2, ω)⇔ D∩

x (F1, ω) ∧D∩
x (F2, ω) = D

∩
x (F1, ω)

or D∩
x (F1, ω) ∨D∩

x (F2, ω) = D
∩
x (F2, ω). (14)

It should be noticed that if D∪
x (F1, ω) �1 D

∪
x (F2, ω) and D∪

x (F2, ω) �1

D∩
x (F1, ω) hold at the same time, then D∪

x (F1, ω) = D∪
x (F2, ω). However, it
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does not mean that F1 and F2 are equivalent, it means that they have the
same union distance with the finest information granulation ω. if D∩

x (F1, ω) �2

D∩
x (F2, ω) andD

∩
x (F2, ω) �2 D

∩
x (F1, ω) hold at the same time, thenD∩

x (F1, ω) =
D∩

x (F2, ω). However, it does not mean that F1 and F2 are equivalent, it means
that they have the same intersection distance with the finest information gran-
ulation ω.

The partial orderings defined on the Definition 11 can be used to character-
ize the hierarchies on Covering-based Multigranulation Spaces, i.e., ∀F1, F2 ∈
MG(U),

1) F1 �1 F2 ⇔ ∀x ∈ U,D∪
x (F1, ω) �1 D

∪
x (F2, ω); (15)

2) F1 �2 F2 ⇔ ∀x ∈ U,D∩
x (F1, ω) �2 D

∩
x (F2, ω). (16)

Theorem 7. Let U be the universe of discourse, ∀F1, F2 ∈MG(U),

1) F1 �1 F2 ⇒
∑
x∈U

| ∪ F1(x)| ≤
∑
x∈U

| ∪ F2(x)|; (17)

2) F1 �2 F2 ⇒
∑
x∈U

| ∩ F1(x)| ≤
∑
x∈U

| ∩ F2(x)|. (18)

Proof. We only prove the Eq.(17), the proof of Eq.(18) is similar to the proof of
Eq.(17).

F1 �1 F2 ⇔
∀x ∈ U,D∪

x (F1, ω) �1 D
∪
x (F2, ω)⇔

∀x ∈ U,D∪
x (F1, ω) ∧D∪

x (F2, ω) = D
∪
x (F1, ω) or

D∪
x (F1, ω) ∨D∪

x (F2, ω) = D
∪
x (F2, ω)⇔

∀x ∈ U,D∪
x (F1, ω) ≤ D∪

x (F2, ω)⇔

∀x ∈ U, |
⋃

N1i∈F1(x)
(N1i ⊕ {x})|
|U | ≤

|⋃N2j∈F2(x)
(N2j ⊕ {x})|
|U | ⇔

∀x ∈ U, | ∪ F1(x)| ≤ | ∪ F2(x)| ⇒∑
x∈U

| ∪ F1(x)| ≤
∑
x∈U

| ∪ F2(x)|.

Example 1. Suppose that U = {x1, x2, x3, x4, x5, x6, x7, x8} is the universe,
two Covering-based Multigranulation Spaces are given by F1 = {C1, C2} and
F2 = {C3, C4} such that C1 = {{x1, x2, x3, x4, x8}, {x4, x7, x8}, {x5, x6}}, C2 =
{{x1, x2, x3}, {x2}, {x5, x6}, {x7}, {x4, x7, x8}}, C3 = {{x1, x2, x3, x4, x5, x7, x8},
{x1, x2, x3, x4, x5, x6, x7, x8}}, C4 = {{x1, x2, x3, x4, x6}, {x4, x6}, {x7}, {x4, x5,
x6, x8}}.
∀x ∈ U , we first compute the neighborhood of x.

N1(x1) = {x1, x2, x3, x4, x8}, N1(x2) = {x1, x2, x3, x4, x8},
N1(x3) = {x1, x2, x3, x4, x8}, N1(x4) = {x4, x8}, N1(x5) = {x5, x6},
N1(x6) = {x5, x6}, N1(x7) = {x4, x7, x8}, N1(x8) = {x4, x8};
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N2(x1) = {x1, x2, x3}, N2(x2) = {x2}, N2(x3) = {x1, x2, x3},
N2(x4) = {x4, x7, x8}, N2(x5) = {x5, x6}, N2(x6) = {x5, x6},
N2(x7) = {x7}, N2(x8) = {x4, x7, x8};
N3(x1) = {x1, x2, x3, x4, x5, x7, x8}, N3(x2) = {x1, x2, x3, x4, x5, x7, x8},
N3(x3) = {x1, x2, x3, x4, x5, x7, x8}, N3(x4) = {x1, x2, x3, x4, x5, x6, x7, x8},
N3(x5) = {x1, x2, x3, x4, x5, x7, x8}, N3(x6) = {x1, x2, x3, x4, x5, x6, x7, x8},
N3(x7) = {x1, x2, x3, x4, x5, x7, x8}, N3(x8) = {x1, x2, x3, x4, x5, x7, x8};
N4(x1) = {x1, x2, x3, x4, x6}, N4(x2) = {x1, x2, x3, x4, x6},
N4(x3) = {x1, x2, x3, x4, x6}, N4(x4) = {x4, x6}, N4(x5) = {x4, x5, x6, x8},
N4(x6) = {x4, x6}, N4(x7) = {x7}, N4(x8) = {x4, x5, x6, x8}.

By Eq.(5) in Definition 7, ∀x ∈ U ,
D∪

x1
(F1, ω) =

1
2 , D

∪
x2
(F1, ω) =

1
2 , D

∪
x3
(F1, ω) =

1
2 , D

∪
x4
(F1, ω) =

1
4 , D

∪
x5
(F1, ω) =

1
8 , D

∪
x6
(F1, ω) =

1
8 , D

∪
x7
(F1, ω) =

1
4 , D

∪
x8
(F1, ω) =

1
4 ;

D∪
x1
(F2, ω) =

7
8 , D

∪
x2
(F2, ω) =

7
8 , D

∪
x3
(F2, ω) =

7
8 , D

∪
x4
(F2, ω) =

7
8 , D

∪
x5
(F2, ω) =

7
8 , D

∪
x6
(F2, ω) =

7
8 , D

∪
x7
(F2, ω) =

3
4 , D

∪
x8
(F2, ω) =

7
8 ;

By Eq.(7) in Definition 8, D∪(F2, ω) =
5
16 , D

∪(F2, ω) =
27
32 .

From the computation, we can see that ∀x ∈ U,D∪
x (F1, ω) ∧ D∪

x (F2, ω) =
D∪

x (F1, ω), by Eq.(13) in Definition 11, D∪
x (F1, ω) �1 D

∪
x (F2, ω) holds obviously,

and then F1 �1 F2, we can say that CBMS F1 is finer than F2.
By further computation,∑

x∈U

| ∪ F1(x)| = 28,
∑
x∈U

| ∪ F2(x)| = 62,

which verifies the Eq.(17) in Theorem 7.
Similarly, by Eq.(6) in Definition 7, ∀x ∈ U ,

D∩
x1
(F1, ω) =

1
4 , D

∩
x2
(F1, ω) = 0, D∩

x3
(F1, ω) =

1
4 , D

∩
x4
(F1, ω) =

1
8 , D

∩
x5
(F1, ω) =

1
8 , D

∩
x6
(F1, ω) =

1
8 , D

∩
x7
(F1, ω) = 0, D∩

x8
(F1, ω) =

1
4 ;

D∩
x1
(F2, ω) =

3
8 , D

∩
x2
(F2, ω) =

3
8 , D

∩
x3
(F2, ω) =

3
8 , D

∩
x4
(F2, ω) =

1
8 , D

∩
x5
(F2, ω) =

1
4 , D

∩
x6
(F2, ω) =

1
8 , D

∩
x7
(F2, ω) = 0, D∩

x8
(F2, ω) =

1
8 ;

By Eq.(8) in Definition 8, D∩(F2, ω) =
9
64 , D

∩(F2, ω) =
15
64 .

From the computation, we can see that ∀x ∈ U,D∩
x (F1, ω) ∧ D∩

x (F2, ω) =
D∩

x (F1, ω), by Eq.(14) in Definition 11, D∩
x (F1, ω) �2 D

∩
x (F2, ω) holds obviously,

and then F1 �2 F2, we can say that CBMS F1 is finer than F2.
By further computation,∑

x∈U

| ∩ F1(x)| = 17,
∑
x∈U

| ∩ F2(x)| = 23,

which verifies the Eq.(18) in Theorem 7.

4 Conclusions

Hierarchy is one of the key issues in granular computing. In many practical appli-
cations, one often needs to select the corresponding hierarchy to solve problems.
In this paper, to research the hierarchies on Covering-based Multigranulation
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Spaces, the concept of the union knowledge distance and the intersection knowl-
edge distance are introduced into the Covering-based Multigranulation Spaces,
which can be used to construct the knowledge distance lattices, respectively.
Based on the proposed knowledge distances, two partial orderings can be derived
to characterize the hierarchies on Covering-based Multigranulation Spaces. The
example shows the method is feasible and effective. This method provides us a
new perspective to the study of covering based granular computing.

In the following works, the reducts of CBMS based on the knowledge distance
will be discussed and some more applications on knowledge distance will be
explored.
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Abstract. Rough set theory is a new mathematical tool to deal with vagueness 
and uncertainty in artificial intelligence. Approximation accuracy, knowledge 
granularity and entropy theory are three main approaches to uncertainty re-
search in classical Pawlak information system, which have been widely applied 
in many practical issues. Based on uncertainty measures in Pawlak information 
systems, we propose rough degree, knowledge discernibility and rough entropy 
in interval-valued information systems, and investigate some important proper-
ties of them. Finally, the relationships between knowledge granulation, know-
ledge discerniblity and rough degree have been also discussed. 

Keywords: Upper and lower approximations, rough sets, uncertainty measures. 

1 Introduction 

Rough set theory, proposed by Pawlak in 1982 [1], can describe knowledge through 
set-theoretic approach based on equivalence relations for the universe of discourse. It 
provides a theoretical foundation for inference reasoning about data analysis and has 
extensive applications in areas of intelligent computing, pattern recognition and artifi-
cial intelligence [2-13].  

In many applications, classical equivalence relation in rough set theory is restric-
tive for many issues. To address these problems, some extended binary relations in 
information systems have been researched in recent years. By taking the incomplete 
information systems as set-valued information systems, Kryszkiewicz [14] introduced 
knowledge reduction and rule acquisition in incomplete information systems. Leung 
et al. [15] introduced method of knowledge reduction based on the a -tolerance rela-
tion in interval-valued information systems. Aiming at the problems in knowledge 
reduction in interval-valued information systems, Zhang et al. [16,17] investigated the 
knowledge reduction based on maximal consistent blocks in both interval-valued 
information and decision systems. 

In the fields of uncertainty measures in generalized rough set theory, Huang et al. 
[12] proposed rough entropy based on the generalized binary relation. Liang et al. 
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[18] investigated the knowledge granulation, information entropy and rough entropy 
by the tolerance relation in incomplete information systems. Considering uncertainty 
measures in incomplete information systems, Xu et al. [19] introduced the knowledge 
granulation, knowledge entropy and knowledge uncertainty measure based on the 
dominance relation in ordered information systems. Dai et al. [20] proposed an ex-
tended conditional entropy in interval-valued decision systems. In ref. [21], θ-
accuracy and θ-roughness are given in interval-valued information systems, which are 
generalizations of the concepts accuracy and roughness for the equivalence relation 
based rough set model. The uncertainty measure, called the θ-rough degree, is also 
proposed in the paper. 

The rest of this paper is organized as follows. Some preliminary concepts such as 
interval-valued information systems, rough approximations and relative properties are 
briefly recalled in Section 2. Sections 3 introduce rough degree in an interval-valued 
information system. In Section 4, the knowledge discernibility based on knowledge 
granulation is presented in an interval-valued information system. Knowledge rough 
entropy is proposed in Section 5. The relationships among proposed measures are 
discussed in Section 6. Finally, the paper is summarized in Section 7. 

2 Rough Approximation in Interval-Valued Information 
Systems 

In this section, we will briefly recall some basic conceptions [16,17] about interval-
valued information systems and rough approximations.  

An interval-valued  information system is defined by ( , , , )U AT V fz = , where  

·   
1 2

{ , ,..., }
n

U u u u=  is a non-empty finite set called the universe of discourse;  

· 
1 2

{ , ,..., }
m

AT a a a=  is a non-empty finite set of m attributes, such that:  

      ( ) [ , ]k k
k i i i
a u l u= , k k

i i
l u£ , for all 1,2,...,i n=  and 1,2,...,k m= ;  

·  
k

k
aa AT

V V
Î

= È , 
ka

V
 

is a domain of attribute 
k
a ;  

·  :f U AT V´   is called the information function such that ( , )
ki k a

f u a VÎ .  

Let ( , , , )U AT V fz = be an interval-valued information system. For a given simi-

larity rate [0.1]a Î , and A ATÍ . The a -tolerance relation 
A
T a  is expressed as  

                    {( , ) : , }k
A i j ij k
T u u U U a Aa a a= Î ´ ³ " Î , 

where, k
ij

a  is the similarity degree of different interval numbers under the same 

attribute 
k
a ATÎ .  

By taking of 
A
T a , we can defined a - tolerance class as following: 

( ) { : ( , ) }
A i j i j A
S u u U u u Ta a= Î Î . 

    To get a maximal set in which the objects can satisfy with each other,  a - max-
imal consistent block is proposed in interval-valued information systems. By taking 
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the a -maximal consistent block ( )
A i
M ua  as the basic "granule" in universe, we can 

obtain the finer upper and lower approximations in interval-valued information sys-
tems as following: 

                 ( ) { : ( ) }A i A i
apr X u U M u X

a
a= Î Ç ¹ Æ  

                        { ( ) : ( ) }
A i A i
M u M u Xa a= È Ç ¹Æ ， 

                 ( ) { : ( ) }
i A iA

apr X u U M u X
a a= Î Í    

                        { ( ) : ( ) }
A i A i
M u M u Xa a= È Í . 

The following properties related to rough approximations in ( , , , )U AT V fz =  are 

presented as:   

 (1)  ( ) ( )AA
apr X X apr X

aa
Í Í ; 

(2)   ( ) ( )AA
apr U apr U U

aa
= = ; 

(3)   ( ) ( )AA
apr apr

aa
Æ = Æ = Æ ;  

(4)   ( ( )) ( ( ))A A AA
apr apr X apr apr X

a a aa
= , 

       
( ( )) ( ( ))AA A A

apr apr X apr apr X
aa a a

= ; 

 (5)  ( ) ( )A A
apr X apr X

a a
=  , ( ) ( )AA

apr X apr X
aa

=  ; 

 (6)  ( ) ( )
A A

apr X apr Y
a a

Í ,  ( ) ( )A Aapr X apr Y
a a

Í ; 

 (7)   ( ) ( ) ( )
A A A

apr X Y apr X apr Y
a a a

Ç = Ç ,  

        ( ) ( ) ( )
A A A

apr X Y apr X apr Y
a a a

È Ê È ; 

 (8)   ( ) ( ) ( )A A Aapr X Y apr X apr Y
a a a

È = È ,  

        ( ) ( ) ( )A A Aapr X Y apr X apr Y
a a a

Ç Í Ç . 

3 Rough Degree in Interval-Valued Information Systems 

Let ( , , , )U AT V fz =  be an interval-valued information system, for any X UÍ ，

A ATÍ ， [0,1]a Î ，approximation accuracy is defined as: 

                                 

| ( ) |
( )

| ( ) |

A
A

A

apr X
X

apr X

a

a
a

m =  

                 
| ( ) |

| | | ( ) |

A

A

apr X

U apr X

a

a
=

- 
. 
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( ) { : ( ) }A i A i
apr X u U M u X

a
a= Î Ç ¹ Æ  is the upper approximation operator of set X, 

( ) { : ( ) }
i A iA

apr X u U M u X
a a= Î Í  is the lower approximation operator of set X, and 

| |S  stands for the number of elements in subset S UÍ . 

Based on the approximation accuracy in interval-valued information systems, we 
give the concept of rough degree.  

Rough degree in interval-valued information systems is defined as following: 
( ) 1 ( )
A A
X Xa ar m= -  

          
| ( ) |

1
| ( ) |

A

A

apr X

apr X

a

a
= -  

        
| ( ) |

| ( ) |

A

A

bnr X

apr X

a

a
= ,     

where ( ) ( ) ( )AA A
bnr X apr X apr X

a aa = - . Thus, we can get the following properties: 

(1)   The bigger ( )
A
Xar  is, the more uncertainty is; 

(2)  If ( ) 0
A
Xar = , i.e., ( )Aapr X

a
= ( )

A
apr X

a
, the set X  is an accurate set, and the 

rough degree is 0; if 0 ( ) 1
A
Xar< < , i.e., ( ) ( )A A

apr X apr X
a a

¹ , the rough degree (0,Î  

1) ; if ( ) 1
A
Xar = , i.e., ( ) 0

A
apr X

a
= , the set X  is completely a rough set, and the 

rough degree is 1. 
 
Property 1. Let ( , , , )U AT V fz =  be an interval-valued information system, for 

0 1a b£ < £ , A B ATÌ Í , we have  

(1)  ( ) ( )
A A
X Xa bm m< , ( ) ( )

A A
X Xa br r> ; 

(2)  ( ) ( )
A B
X Xa am m< , ( ) ( )

A B
X Xa ar r> ; 

(3)  ( ) ( )
A B
X Xa bm m< , ( ) ( )

A B
X Xa br r> . 

 
Proof: 

   (1)  In a given ( , , , )U AT V fz = , if 0 1a b£ < £ , for any A ATÌ , then we can 

get the finer description for set  X ATÍ ,  | ( ) | | ( ) |
A A

apr X apr X
a b

<
 

and 

( ) ( )A Aapr X apr X
a b

> , thus,  
| ( ) | | ( ) |

| ( ) | | ( ) |

A A

A A

apr X apr X

apr X apr X

a b

a b
< , namely, ( ) ( )

A A
X Xa bm m< . For 

( ) 1 ( )
A A
X Xa ar m= - , we have ( ) ( )

A A
X Xa br r> .   

  (2)  In a given ( , , , )U AT V fz = , if 0 1a£ £ , for any A B ATÌ Ì , then we can 

get the finer description for set  X ATÍ , | ( ) | | ( ) |
A B

apr X apr X
a a

<
 

and 
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( ) ( )A Bapr X apr X
a a

> , thus,  
| ( ) | | ( ) |

| ( ) | | ( ) |

A B

A B

apr X apr X

apr X apr X

a a

a a
< , namely, ( ) ( )

A B
X Xa am m< . For 

( ) 1 ( )
A A
X Xa ar m= - , we have ( ) ( )

A B
X Xa ar r> .   

      (3)  From (1) and (2), we can get ( ) ( )
B B
X Xa bm m<  and ( ) ( )

A B
X Xa am m<  respec-

tively. Therefore, ( ) ( )
A B
X Xa bm m< . For ( ) 1 ( )

A A
X Xa ar m= - , we have ( ) ( )

A B
X Xa br r> .   

4 Knowledge Discernibility in Interval-Valued Information 
Systems 

 
Definition 1. Let ( , , , )U AT V fz =  be an interval-valued information system, for any 

A ATÍ , knowledge discernibility related to A  in z  is given as following: 
| |

1

| ( ) |1
( ) (1 )

| | | |

U
A i

i

S u
DSI A

U U
a

=

= -å ,  

where | ( ) | | |
A i
S u Ma =  , ( )

A i
M uaxÎ  and 

1 2
( ) { ( ), ( ),..., ( )}

A A A n
A M u M u M ua a a ax = .  

 
 

Theorem 1 (Minimum). Let ( , , , )U AT V fz =  be an interval-valued information 

system, and 
A
T a  be an a -tolerance relation. The minimum of knowledge discernibil-

ity in an interval-valued information system z  is 0. This value is achieved if and only 

if 
A A
T Ta a=


, where 

A
T a  is an universe tolerance relation, i.e., 

/ { ( ) : }
A A i i

U T M u U u Ua a= = Î


 

                  { , ,..., }U U U= .  

Proof.   

    If 
A A
T Ta a=


, then  

| |

1

| ( ) |1
( ) (1 )

| | | |

U
A i

i

S u
DSI A

U U
a

=

= -å  

                  
| |

1

1 | |
(1 )

| | | |

U

i

U
U U=

= -å  

                  0= .  

Theorem 2 (Maximum). Let ( , , , )U AT V fz =  be an interval-valued information 

system, and 
A
T a  be an a -tolerance relation. The maximum of knowledge discernibil-

ity in an interval-valued information system z  is 1 1/ | |U- . This value can be ob-

tained if and only if 
A A
T Ta a=


, where 

A
T a  is an unit tolerance relation, i.e.,  
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/ { ( ) { } : }
A A i i i

U T M u u u Ua a= = Î


 

     
1 2

{{ },{ },...,{ }}
n

u u u= . 

Proof.   

    If 
A A
T Ta a=


, then  

 
| |

1

| ( ) |1
( ) (1 )

| | | |

U
A i

i

S u
DSI A

U U
a

=

= -å                 

     
| |

1

1 1
(1 )

| | | |

U

i U U=

= -å  

                                   

1
1

| |U
= - .  

 
Property 2 (Boundedness). Let ( , , , )U AT V fz =  be an interval-valued information 

system, and 
A
T a  be an a -tolerance relation. The knowledge discernibility in an 

interval- valued information system z  exists the boundedness, namely,   

1
0 ( ) 1

| |
DSI A

U
a£ £ - , 

where ( ) 1 1/ | |DSI A Ua = -  if and only if 
A A
T Ta a=


, and ( ) 0DSI Aa =  if and only if 

A A
T Ta a=


. 

 
The concept of knowledge discernibility can describe discernible ability of know-

ledge in interval-valued information systems intuitively. The smaller ( )DSI Aa  is, the 

fewer knowledge discernibility is.   
 

Property 3. Let ( , , , )U AT V fz =  be an interval-valued information system, for 

0 1a b£ < £ , A B ATÌ Ì , we have  

(1)  ( ) ( )DSI A DSI Aa b< ; 

(2)  ( ) (B)DSI A DSIa a< ; 

(3)  ( ) (B)DSI A DSIa b< ;  

 
Proof: 

  (1)  In a given IvIS ( , , , )U AT V fz = , if 0 1a b£ < £ , for any A ATÌ , we can get 

| ( ) | | ( ) |
A i A i
S u S ua b> , then 

| | | |

1 1

| ( ) | | ( ) |
U U

A i A i
i i

S u S ua b

= =

>å å , therefore 

| |

2
1

| | 1
| ( ) |

| | | |

U

A i
i

U
S u

U U
a

=

- <å
| |

2
1

| | 1
| ( ) |

| | | |

U

A i
i

U
S u

U U
b

=

- å ,  namely, ( ) ( )DSI A DSI Aa b< ; 
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  (2)  In a given IvIS ( , , , )U AT V fz = , if 0 1a£ £ , for any A B ATÌ Ì , we can get 

| ( ) | | ( ) |
A i B i
S u S ua a> , then 

| | | |

1 1

| ( ) | | ( ) |
U U

A i B i
i i

S u S ua a

= =

>å å , therefore 

| |

2
1

| | 1
| ( ) |

| | | |

U

A i
i

U
S u

U U
a

=

- <å
| |

2
1

| | 1
| ( ) |

| | | |

U

A i
i

U
S u

U U
b

=

- å ,  namely, ( ) (B)DSI A DSIa a< ; 

      (3)  From (1) and (2), we can get ( ) ( )DSI B DSI Ba b<  and 

( ) (B)DSI A DSIa a<  respectively. Therefore, ( ) (B)DSI A DSIa b< .        

5 Knowledge Rough Entropy in Interval-valued Information 
Systems 

 
Definition 2. Let ( , , , )U AT V fz =  be an interval-valued information system, 

A
T a  be 

an a -tolerance relation, / { ( ) : }
A A i i

U T S u u Ua a= Î . Knowledge rough entropy in 

interval-valued information systems, which is denoted by ( )E Aa , is defined by: 
| |

2
1

1
( ) log | ( ) |

| |

U

A i
i

E A S u
U

a a

=

= ⋅å . 

 
Theorem 3 (Minimum). Let ( , , , )U AT V fz =  be an interval-valued information sys-

tem, and 
A
T a  be an a -tolerance relation. The minimum of knowledge rough entropy 

in an interval-valued information system z  is 0. This value is achieved if and only if 

A A
T Ta a=


, where 

A
T a  is an unit tolerance relation i.e., 

/ { ( ) { } : }
A A i i i

U T M u u u Ua a= = Î


                   

   
1 2

{{ },{ },...,{ }}
n

u u u= . 

Proof.   

    If 
A A
T Ta a=


, then  

| |

2
1

1
( ) log | ( ) |

| |

U

A i
i

E A S u
U

a a

=

= ⋅å  

                  

| |

2
1

1
log 1

| |

U

i U=

= ⋅å  

                 0= .  
 

Theorem 4 (Maximum). Let ( , , , )U AT V fz =  be an interval-valued information 

system, and 
A
T a  be an a -tolerance relation. The maximum of knowledge rough 
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entropy in an interval-valued information system z  is 
2

log | |U . This value can be 

obtained if and only if 
A A
T Ta a=


, where 

A
T a  is an universe tolerance relation, , i.e.,  

    / { ( ) : }
A A i i

U T M u U u Ua a= = Î


 
{ , ,..., }U U U= .  

Proof.   

    If 
A A
T Ta a=


, then  

| |

2
1

1
( ) log | ( ) |

| |

U

A i
i

E A S u
U

a a

=

= ⋅å  

                 

| |

2
1

1
log | |

| |

U

i

U
U=

= ⋅å  

                 2
log | |U= .  

 
Property 4 (Boundedness). Let ( , , , )U AT V fz =  be an interval-valued information 

system, and 
A
T a  be an a -tolerance relation. The knowledge rough entropy in an 

interval -valued information system z  exists the boundedness, namely,   

2
0 ( ) log | |E A Ua£ £ , 

where ( ) 0E Aa =  if and only if 
A A
T Ta a=


, and 

2
( ) log | |E A Ua =  if and only if 

A
T a =  

A
T a . 

 
Property 5. Let ( , , , )U AT V fz =  be an interval-valued information system, for 

0 1a b£ < £ , A B ATÌ Ì , we have  

(1)  ( ) ( )E A E Aa b> ; 

(2)  ( ) ( )E A E Ba a> ; 

(3)  ( ) ( )E A E Ba b> ;  

 
Proof: 

     (1)  In a given IvIS ( , , , )U AT V fz = , if 0 1a b£ < £ , for any A ATÌ , then 

we can get | ( ) | | ( ) |
A i A i
S u S ua b> , thus,  

| | | |

2 2
1 1

1 1
log | ( ) | log | ( ) |

| | | |

U U

A i A i
i i

S u S u
U U

a b

= =

⋅ > ⋅å å , 

namely, ( )E Aa ( )E Ab> . 

      (2)  In a given IvIS ( , , , )U AT V fz = , if 0 1a£ £ , for any A B ATÌ Ì , then 

we can get | ( ) | | ( ) |
A i B i
S u S ua a> , thus,  

| | | |

2 2
1 1

1 1
log | ( ) | log | ( ) |

| | | |

U U

A i B i
i i

S u S u
U U

a a

= =

⋅ > ⋅å å , 

namely, ( )E Aa ( )E Ba> . 
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   (3)  From (1) and (2), we can get ( ) ( )E A E Aa b>  and ( ) ( )E A E Bb b>  respective-

ly. Therefore, ( ) ( )E A E Ba b> .        

6 Relationships among the Three Uncertainty Measures 

We have proposed three concepts (rough degree, knowledge discernibility and rough 
entropy) for uncertainty measures in interval-valued information systems. We give the 
relations among them as following: 

 
Theorem 5. Let ( , , , )U AT V fz =  be an interval-valued information system, and 

A
T a  

be an a -tolerance relation. Then,  
                            ( )+ ( )=1

A A
X Xa ar m .  

 

 Considering knowledge granulation 
| |

1

| ( ) |
( )

| | | |

U
A i

i

S u
GDI A

U U

a
a

=

=
´å  in interval-valued 

information systems, we can have: 
     
Theorem 6. Let ( , , , )U AT V fz =  be an interval-valued information system, and 

A
T a  

be an a -tolerance relation. Then,  
                            ( ) ( )=1DSI A GDI Aa a+ . 

7 Conclusions 

Based on uncertainty measures in Pawlak information systems, we proposed the 
rough degree, knowledge discernibility and rough entropy in interval-valued informa-
tion systems, and also investigate some important properties of them. Finally, the 
relationships between knowledge granulation, knowledge discerniblity, approxima-
tion accuracy and rough degree have been also discussed in the paper.   

Acknowledgements. This work was partially supported by the National Natural 
Science Foundation of China (No. 61170224, 61305052), the Natural Science Foun-
dation of Shandong Province (No. ZR2013FQ020), the Science and Technology De-
velopment Plan of Shandong Province (No. 2012GGB01017), the Doctor Research 
Foundation of Yantai University (No. JS12B28). 

References  

1. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 
341–356 (1982) 

2. Pawlak, Z.: Rough Sets-Theoretical Aspects of Reasoning About Data. Kluwer Academic 
Publishers, Boston (1991) 



488 N. Zhang and Z. Zhang 

 

3. Miao, D.Q., Zhao, Y., Yao, Y.Y., et al.: Relative reducts in consistent and inconsistent de-
cision tables of the Pawlak rough set model. Information Sciences 24, 4140–4150 (2009) 

4. Yao, Y.Y., Zhang, N., Miao, D.Q., Xu, F.F.: Set-theoretic approaches to granular compu-
ting. Fundamenta Informaticae 115, 247–264 (2012) 

5. Liu, C.H., Miao, D.Q., Zhang, N.: Graded rough set model based on two universes and its 
properties. Knowledge-Based Systems 33, 65–72 (2012) 

6. Qian, J., Miao, D.Q., Zhang, Z.H.: Knowledge reduction algorithms in cloud computing. 
Chinese Journal of Computers 12, 2332–2343 (2011) 

7. Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximating concepts. 
International Journal of Man-Machine Studies 6, 793–809 (1992) 

8. Yao, Y.Y., Zhao, Y.: Attribute reduction in decision-theoretic rough set models. Informa-
tion Sciences 17, 3356–3373 (2008) 

9. Wang, G.Y.: Rough reduction in algebra view and information view. International Journal 
of Intelligent Systems 6, 679–688 (2003) 

10. Qian, Y.H., Liang, J.Y., Dang, C.Y.: Interval ordered information systems. Computer and 
Mathematics with Applications 8, 1994–2009 (2008) 

11. Qian, Y.H., Liang, J.Y., Wang, F.: A new method for measuring the uncertainty in incom-
plete information systems. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 6, 855–880 (2009) 

12. Huang, B., Zhou, X.Z., Shi, Y.C.: Entropy of knowledge and rough set based on general 
binary relation. Journal of Systems Engineering: theory and Practice 24, 93–96 (2004) 

13. Liang, J.Y., Shi, Z.Z.: The information entropy, rough entropy and knowledge granulation 
in rough set theory. International Journal of General Systems 1, 37–46 (2004) 

14. Kryszkiewicz, M.: Comparative study of alternative types of knowledge reduction in in-
consistent systems. International Journal of Intelligent Systems 1, 105–120 (2001) 

15. Leung, Y., Fischer, M., Wu, W.Z., Mi, J.S.: A rough set approach for the discovery of 
classification rules in interval-valued information systems. International Journal of Ap-
proximate Reasoning 2, 233–246 (2008) 

16. Zhang, N., Miao, D.Q., Yue, X.D.: Knowledge reduction in interval-valued information 
systems. Chinese Journal of Computer Research and Development 47, 1362–1371 (2010) 

17. Zhang, N.: Research on Interval-valued Information Systems and Knowledge Spaces: A 
Granular Approach. PhD Thesis, Tongji University, Shanghai, China (2012) 

18. Liang, J.Y., Shi, Z.Z., Li, D.Y., Wireman, M.J.: The information entropy, rough entropy 
and knowledge granulation in incomplete information systems. International Journal of 
General Systems 1, 641–654 (2006) 

19. Xu, W.H., Zhang, X.Y., Zhang, W.X.: Knowledge granulation, knowledge entropy and 
knowledge uncertainty measure in ordered information systems. Applied Soft Compu-
ting 9, 1244–1251 (2009) 

20. Dai, J.H., Wang, W.T., Xu, Q., Tian, H.W.: Uncertainty measurement for interval-valued 
decision systems based on extended conditional entropy. Knowledge Based Systems 27, 
443–450 (2012) 

21. Dai, J.H., Wang, W.T., Mi, J.S.: Uncertainty measurement for interval-valued information 
systems. Information Sciences 251, 63–78 (2013) 

 



A New Type of Covering-Based Rough Sets

Bin Yang and William Zhu

Lab of Granular Computing,
Minnan Normal University, Zhangzhou 363000, China

williamfengzhu@gmail.com

Abstract. As a technique for granular computing, rough sets deal with the
vagueness and granularity in information systems. Covering-based rough sets
are natural extensions of the classical rough sets by relaxing the partitions to
coverings and have been applied for many fields. In this paper, a new type of
covering-based rough sets are proposed and the properties of this new type of
covering-based rough sets are studied. First, we introduce a concept of inclusion
degree into covering-based rough set theory to explore some properties of the
new type of covering approximation space. Second, a new type of covering-based
rough sets is established based on inclusion degree. Moreover, some properties
of the new type of covering-based rough sets are studied. Finally, a simple appli-
cation of the new type of covering-based rough sets to network security is given.

Keywords: Granular computing, covering, rough set, neighborhood, inclusion
degree, network security.

1 Introduction

Rough set theory, proposed by Pawlak [11,12] in 1982, is a useful tool to deal with
the vagueness and granularity in information systems. Pawlak rough set theory is built
on equivalence relations. However, an equivalence relation imposes restrictions and
limitations on many applications [2,5,6,9,18,22]. Thus, one of the main directions of
research in rough set theory is naturally the generalization of rough set approxima-
tions. Meanwhile, many extensions have been made by replacing equivalence relations
with notions such as arbitrary binary relations [26,25], fuzzy relations [4,8,10], and
coverings [27,28,29] of the universal sets. For instance, Zakowski [24] established
covering-based rough set theory by exploiting coverings of universal sets. The study
on covering-based rough sets is very necessary and important. Particularly, in recent
years, with the fast development of science and technology, how to use the effective
mathematical tools to address practical problems has become more and more essential.

In this paper, we define a new concept, namely, inclusion degree and then propose a
new type of covering-based rough sets based on inclusion degree. First, the definition of
inclusion degree is proposed and its some properties are explored. Moreover, through
inclusion degree, some problems of covering-based rough sets can be addressed. Sec-
ond, we propose a new type of covering-based rough sets, and then study some proper-
ties of this type of covering-based rough sets. Finally, the applications of this new type
of covering-based rough sets are given.

D. Miao et al. (Eds.): RSKT 2014, LNAI 8818, pp. 489–499, 2014.
DOI: 10.1007/978-3-319-11740-9_45 c© Springer International Publishing Switzerland 2014
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The remainder of this paper is organized as follows: In Section 2, some basic con-
cepts and properties of covering-based rough sets are introduced. In Section 3, A new
type of covering-based rough sets are proposed by means of inclusion degree. More-
over, some properties of the new type of covering-based rough sets are explored. In
Section 4, some applications of this new type of covering-based rough sets are given.
Section 5 concludes this paper.

2 Basic Definitions

The concepts of partition and covering are the basis of classical rough sets and covering-
based rough sets, respectively. And covering is the basis of the concept of neighborhood
as well. So we introduce the two concepts at first.

Definition 1. (Partition [14]) Let U be a universe of discourse and P be a family of
subsets of U . P is called a partition of U if the following conditions hold: (1) ∅ /∈ P;
(2) ∪P = U ; (3) for any K,L ∈ P, K ∩ L = ∅. Every element of P is called a
partition block.

In the following discussion, unless stated to the contrary, the universe of discourse U
is considered to be finite and nonempty.

Definition 2. (Covering [14]) Let U be a universe of discourse and C be a family of
subsets of U . If ∅ /∈ C and ∪C = U , C is called a covering of U . Every element of C
is called a covering block.

It is clear that a partition of U is certainly a covering ofU . So the concept of covering
is an extension of the concept of partition. Neighborhood [1,13,23] is a concept used
widely in covering based rough sets. It is defined as follows.

Definition 3. (Neighborhood [1]) Let C be a covering of U . For any x ∈ U , ∩{K ∈
C : x ∈ K} is denoted as NC(x) and called the neighborhood of x.

It is clear that x ∈ NC(x). The following proposition gives an important property of
neighborhoods.

Theorem 1. ([15]) Let C be a covering of U . For any x, y ∈ U , if y ∈ NC(x), then
NC(y) ⊆ NC(x).

If y ∈ NC(x) and x ∈ NC(y), by the above proposition, we haveNC(x) = NC(y).
All the neighborhoods induced by a covering of a universe form a set family. This set
family is still a covering of the universe. This type of set families have been studied
by many scholars [13,15]. However, both the term and the mark of it are not identi-
cal. In this paper, we call it covering of neighborhoods and cite the mark proposed by
Wang et al. [15].

After the concept of neighborhood has been given, we can introduce the concept of
neighborhoods.

Definition 4. (Covering of neighborhoods [15]) Let C be a covering of U . {NC(x) :
x ∈ U} is denoted as Cov(C) and called the covering of neighborhoods induced by C.
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There is an important property of neighborhoods presented by the following
proposition.

Theorem 2. ([15]) For any NC(x) ∈ Cov(C), NC(x) is not a union of other blocks
in Cov(C).

By the definition of Cov(C), we see that Cov(C) is also a covering of universe U .
In particular, if C is a partition, we have that Cov(C) = C.

3 A New Type of Covering-Based Rough Sets

In this section, we introduce an inclusion degree into covering-based rough sets. Based
on this, a new type of covering-based rough sets are proposed and the properties are
studied. Firstly, we propose a new concept, namely, inclusion degree and then study its
properties.

Definition 5. Let C be a covering of U . For any x ∈ U andX ⊆ U , we call

σXC (x) = |X ⋂
NC(x)|

|NC(x)|

is the inclusion degree of x to X with respect to C.

Example 1. Let C = {{a, b}, {a, c}, {b, d}} be a covering of U = {a, b, c, d}. Then
NC(a) = {a}, NC(b) = {b}, NC(c) = {a, c}, NC(d) = {b, d}. SupposeX = {b, c}
and Y = {a, b, d}. Then σXC (a) = 0, σXC (b) = 1, σXC (c) = 0.5, σXC (d) = 0.5; σYC(a) =
1, σYC(b) = 1, σYC(c) = 0.5, σYC(d) = 1; σUC(a) = σUC(b) = σUC(c) = σUC(d) = 1;
σ∅C(a) = σ

∅
C(b) = σ

∅
C(c) = σ

∅
C(d) = 0.

Based on the definition of inclusion degree, some properties of inclusion degree are
proposed as follows:

Proposition 1. Let C be a covering of U . Then

(1) 0 ≤ σXC (x) ≤ 1;
(2) if X ⊆ Y , then σXC (x) ≤ σYC(x);
(3) if x ∈ NC(y) and y ∈ NC(x), then σXC (x) = σXC (y);
(4) NC(x) ⊆ X ⇔ σXC (x) = 1;
(5) NC(x)

⋂
X �= ∅ ⇔ σXC (x) �= 0;

(6)
⋃

z∈X

NC(z) = X ⇔ σXC (z) = 1 for all z ∈ X;

(7) σXC (x) + σYC(x) = σ
(X

⋃
Y )

C (x) + σ
(X

⋂
Y )

C (x);

(8) σXC (x) = 1− σ(∼X)
C (x);

are hold, where X,Y ⊆ U and x, y ∈ U .

Proof. It is easy to prove this proposition by the above definition of inclusion degree.

Example 2. (Continued from Example 1) Suppose X1 = {b}, X2 = {b, c, d}, X3 =
{a, b, d}. Then σX1

C (a) = 0, σX1

C (b) = 1, σX1

C (c) = 0, σX1

C (d) = 0.5; σX2

C (a) =
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0, σX2

C (b) = 1, σX2

C (c) = 0.5, σX2

C (d) = 1; σX3

C (a) = 1, σX3

C (b) = 1, σX3

C (c) =

0.5, σX3

C (d) = 1. It is easy to find that σX1

C (a) = σX2

C (a), σX1

C (a) < σX3

C (a); σX1

C (b) =

σX2

C (b), σX1

C (b) = σX3

C (b); σX1

C (c) < σX2

C (c), σX1

C (c) < σX3

C (c); σX1

C (d) < σX2

C (d),

σX1

C (d) < σX3

C (d). In addition,X1 =
⋃

x∈X1

NC(x) andX3 =
⋃

x∈X3

NC(x).

According to the definition of inclusion degree, it is easy to see the inclusion degree
of x toX with respect to C is determined by C. In fact, some properties of C can also
be explored by inclusion degree.

Proposition 2. Let C = {K1,K2, . . . ,Ks} be a covering of U . C is a partition of U
if and only if, for any x ∈ U , there exists an 1 ≤ i ≤ s such that σKi

C (x) = 1 and

σ
Kj

C (x) = 0, j = 1, 2, . . . , i− 1, i+ 1, . . . s.

Proof. (⇒): If C is a partition of U , then there exists Ki(i ∈ {1, 2, . . . , s}) such that
NC(x) = Ki, and NC(x)

⋂
Kj = ∅(j = 1, 2, . . . , i − 1, i + 1, . . . s). Therefore

σKi

C (x) = 1, σ
Kj

C (x) = 0.
(⇐): If there exist Ki,Kj ∈ C such that Ki

⋂
Kj �= ∅, then there exists x1 ∈

Ki

⋂
Kj such that σKi

C (x1) �= 0 and σKj

C (x1) �= 0. (i �= j, i, j ∈ {1, 2, . . . , s}). It is a
contradiction.

The above proposition shows a necessary and sufficient condition for covering to be
a partition from the viewpoint of inclusion degree.

Example 3. (Continued from Example 1) We have
σ
{a,b}
C (a)= 1, σ

{a,b}
C (b)= 1, σ

{a,b}
C (c)= 1

2 , σ
{a,b}
C (d) = 0; σ{a,c}C (a) = 1, σ

{a,c}
C (b) =

0, σ
{a,c}
C (c) = 1, σ

{a,c}
C (d) = 0. Since σ{a,b}C (c) = 1

2 and σ{a,c}C (c) = 1, then C is not
a partition of U .

Neighborhood is an important concept in covering-based rough sets. That under what
condition neighborhoods form a partition is a meaningful issue induced by this concept.
Many scholars have paid attention to this issue and presented some necessary and suffi-
cient conditions. In the following proposition, a new necessary and sufficient condition
for neighborhoods to form a partition is presented from the viewpoint of inclusion degree.

Proposition 3. Let C be a covering of U . Cov(C) is a partition of U if and only if, for

any x, y ∈ U , σNC(x)
C (y) = σ

NC(y)
C (x) = 1 or σNC(x)

C (y) = σ
NC(y)
C (x) = 0.

Proof. (⇒): For all x, y ∈ U , if Cov(C) is a partition of U , then NC(x) = NC(y)

or NC(x)
⋂
NC(y) = ∅. If NC(x) = NC(y) for any x, y ∈ U , then σNC(x)

C (y) =
|NC(x)

⋂
NC(y)|

|NC(y)| = |NC(x)
⋂

NC(y)|
|NC(x)| = σ

NC(y)
C (x) = 1. If NC(x)

⋂
NC(y) = ∅, then

σ
NC(x)
C (y) = σ

NC(y)
C (x) = 0.

(⇐): For any x, y ∈ U , if σNC(x)
C (y) = σ

NC(y)
C (x) = 1, then NC(x) = NC(y); if

σ
NC(x)
C (y) = σ

NC(y)
C (x) = 0, thenNC(x)

⋂
NC(y) = ∅. Hence,Cov(C) is a partition

of U .
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The above propositions and examples show some properties and applications of in-
clusion degree. In the following subsection, a new type of covering-based rough sets
will be proposed from the perspective of inclusion degree.

Definition 6. Let CAS = (U,C) be a covering approximation space. For any 0 ≤
β < α ≤ 1, X ∈ P(U). Then the covering lower and upper approximations of X
about CAS with parameter α and β as follows, respectively.

Cα(X) = {x ∈ U : σXC (x) ≥ α}, Cβ
(X) = {x ∈ U : σXC (x) > β}.

Example 4. Let C = {{a, c}, {a, b, c}, {b, c, e}, {b, d, e, f}} be a covering of U =
{a, b, c, d, e, f}. Then NC(a) = {a, c}, NC(b) = {b}, NC(c) = {c}, NC(d) =
{b, d, e, f}, NC(e) = {b, e}, NC(f) = {b, d, e, f}. Suppose X = {a, b, e, f} and
Y = {b, c, d}. Then

σXC (a) = 0.5, σXC (b) = 1, σXC (c) = 0, σXC (d) = 0.75,
σXC (e) = 1, σXC (f) = 0.75; σYC(a) = 0.5, σYC(b) = 1,
σYC(c) = 1, σYC(d) = 0.5, σYC(e) = 0.5, σYC(f) = 0.5.

Suppose β = 0, α = 0.5. Then

C0.5(X) = {a, b, d, e, f}, C0
(X) = {a, b, d, e, f};

C0.5(Y ) = {a, b, c, d, e, f}, C0
(Y ) = {a, b, c, d, e, f}.

Suppose β = 0.4, α = 0.75. Then

C0.75(X) = {b, d, e, f}, C0.4
(X) = {a, b, d, e, f};

C0.75(Y ) = {b, c}, C0.4
(Y ) = {a, b, c, d, e, f}.

For any 0 ≤ β < α ≤ 1,

Cα(∅) = ∅, Cβ
(∅) = ∅; Cα(U) = U , C

β
(U) = U .

The above definition shows a new type covering-based rough sets with parameter α
and β. Then we study some properties of this covering-based rough sets. Firstly, the
positive region, boundary region and negative region of X ∈ P(U) in CAS = (U,C)
with parameter α and β could be given as follows, respectively.

pos(X,α) = {x ∈ U : σXC (x) ≥ α}, bn(X,α, β) = {x ∈ U : β < σXC (x) < α},
neg(X, β) = {x ∈ U : σXC (x) ≤ β} = U −C

β
(X).

If Cα(X) = C
β
(X), then X is called a definable set in covering approximation

space CAS = (U,C). Otherwise,X is called a covering-based rough set. Meanwhile,
the relationships among covering lower and upper approximations, positive region,
boundary region and negative region ofX in CAS = (U,C) are obtained.

Proposition 4. Let CAS = (U,C) be a covering approximation space. For any 0 ≤
β < α ≤ 1, X ∈ P(U), the following relationships hold.

C
β
(X) = pos(X,α)

⋃
bn(X,α, β), or bn(X,α, β) = C

β
(X)− pos(X,α).
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Example 5. (Continued from Example 4) We have

pos(X, 0.5) = {a, b, d, e, f}, bn(X, 0.5, 0) = ∅, neg(X, 0) = {c};
pos(Y, 0.5) = {a, b, c, d, e, f}, bn(Y, 0.5, 0) = ∅, neg(Y, 0) = ∅;

pos(X, 0.75) = {b, d, e, f}, bn(Y, 0.75, 0.4) = {a}, neg(Y, 0.4) = {c};
pos(Y, 0.75) = {b, c}, bn(Y, 0.75, 0.4) = {a, d, e, f}, neg(Y, 0.4) = ∅.

Like many other types of covering-based rough sets on CAS = (U,C), we can also
present the basic properties of covering approximation operators by the constructed
method.

Proposition 5. Let CAS = (U,C) be a covering approximation space. For any 0 ≤
β < α ≤ 1, X, Y ∈ P(U), the covering lower approximation operator and upper
approximation operator satisfies the following properties.

(1) Cα(∅) = C
β
(∅) = ∅, Cα(U) = C

β
(U) = U ,

(2) Cα(X) =∼ C
(1−α)

(∼ X), C
β
(X) =∼ C(1−β)(∼ X),

(3) Cα(X
⋂
Y ) ⊆ Cα(X)

⋂
Cα(Y ), C

β
(X
⋂
Y ) ⊆ C

β
(X)

⋂
C

β
(Y ),

(4) Cα(X
⋃
Y ) ⊇ Cα(X)

⋃
Cα(Y ), C

β
(X
⋃
Y ) ⊇ C

β
(X)

⋃
C

β
(Y ),

(5) IfX ⊆ Y , then Cα(X) ⊆ Cα(Y ), C
β
(X) ⊆ C

β
(Y ),

(6) If α1 ≤ α2, β1 ≤ β2, then Cα2(X) ⊆ Cα1(X), C
β2
(X) ⊆ C

β1
(X),

(7) If α ≤ min{ 1
|NC(x)| : x ∈ U}, thenX ⊆ Cα(X),X ⊆ C

β
(X),

(8) bn(X,α, β) = ∅ ⇔ Cα(X) = C
β
(X).

Proof. It is easy to prove the results by the above definition of the covering lower and
upper approximation operators.

The above proposition shows some important properties of the new type of covering-
based rough sets. In fact, it is clear that positive region will increase with parameter α
decrease, negative region will increase with parameter α increase and boundary region
will dwindle for this new type of covering-based rough sets. In the following examples
we study another properties of this new type covering-based rough sets.

Example 6. (Continued from Example 4) We have C0.5(X
⋂
Y ) = C0.5({b, e}) =

{b} ⊂ {a, b, d, e, f} = C0.5(X)
⋂
C0.5(Y ), C

0
(X
⋂
Y ) = C

0
({b}) = {b, d, e, f} ⊂

{a, b, d, e, f} = C
0
(X)

⋂
C

0
(Y ). It is easy to see Cα(X

⋂
Y ) = Cα(X)

⋂
Cα(Y )

and C
β
(X
⋂
Y ) = C

β
(X)

⋂
C

β
(Y ) are not hold for any 0 ≤ β < α ≤ 1, X, Y ∈

P(U).
Example 7. (Continued from Example 4) Suppose X = {b} and Y = {e}. Then

C0.5(X) = {b, e}, C0.25
(X) = {b, e}; C0.5(Y ) = {e}, C0.25

(Y ) = {e}; C0.5(X⋃
Y ) = {b, d, e, f}, C0.25

(X
⋃
Y ) = {b, d, e, f}. It is easy to see

C0.5(X)
⋃
C0.5(Y ) ⊂ C0.5(X

⋃
Y ), C

0.25
(X)

⋃
C

0.25
(Y ) ⊂ C

0.25
(X
⋃
Y ).

Therefore Cα(X
⋃
Y ) = Cα(X)

⋃
Cα(Y ) and C

β
(X
⋃
Y ) = C

β
(X)

⋃
C

β
(Y )

are not hold for any 0 ≤ β < α ≤ 1, X, Y ∈ P(U).
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In following, we give the roughness and precision of the new type of covering-based
rough sets.

Definition 7. LetCAS = (U,C) be a covering approximation space. For any 0 ≤ β <
α ≤ 1, X ∈ P(U), we define the roughness ρC(X,α, β) and precision ηC(X,α, β) of
X according to the parameter α, β about the covering approximation space CAS as
follows:

ηC(X,α, β) =
|Cα(X)|
|Cβ

(X)| , ρC(X,α, β) = 1− |Cα(X)|
|Cβ

(X)| .

Example 8. (Continued from Example 4) We have ηC(X, 0.5, 0) = 1, ρC(X, 0.5, 0) =
0; ηC(X, 0.75, 0.4) = 0.8, ρC(X, 0.75, 0.4) = 0.2; ηC(Y, 0.5, 0)=1, ρC(X, 0.5, 0) =
0; ηC(Y, 0.75, 0.4) = 1

3 , ρC(X, 0.75, 0.4) =
2
3 .

According to the roughness and precision ofX , we can easy to know that bn(X,α, β)=
∅ if and only if ηC(X,α, β) = 1, ρC(X,α, β) = 0. Meanwhile, the following proposi-
tion is obviously from the above definition.

Proposition 6. Let CAS = (U,C) be a covering approximation space. For any 0 ≤
β < α ≤ 1, X ∈ P(U), the roughness ρC(X,α, β) and precision ηC(X,α, β) are
satisfied the following properties:

(1) 0 ≤ ηC(X,α, β) ≤ 1, 0 ≤ ρC(X,α, β) ≤ 1,
(2) ρC(X,α, β) is not decreased about α, and not increased about β,
(3) ηC(X,α, β) is not increased about α, and not decreased about β.

Proof. It is easy to prove this proposition by Definition 7.

According to the above definitions and propositions, a new type of covering-based
rough sets have been established from the viewpoint of inclusion degree. Meanwhile,
some properties of this covering-based rough sets are explored.

4 Applications of the New Type of Covering-Based Rough Sets

In [3], Ge has investigated separations in covering approximation spaces and gave some
characterizations of these separations and some relations among these separations. As
an application of these results, investigations on network security were converted into
investigations on separations in covering approximation spaces by taking covering ap-
proximation spaces as mathematical models of networks. In this section, we introduce
the application of the new type of covering-based rough sets into network security based
on [3]. First, some definitions and lemmas should be introduced.

Definition 8. (Network [3]) A network is a pair (V,B), where B is a family of servers
and V is a set of their users, such that each server in B provides its service to some
users in V and each user in V accepts some services from some servers in B.

Definition 9. (S1−security [3]) Let (V,B) be a network.
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S1−security: For each pair of distinct users x and y in V , there are servers E1 and
E2 in B providing their services to x and y but not providing their services to y and x,
respectively.

Lemma 1. ([3]) Let (V,B) be a network. For each server E in B, let VE be a set of
some users in V such that x is a user in VE if and only if E provides its service to x.
Put U is the abstract set of V and KE is the abstract set of VE for each E ∈ B. Then
C = {KE : E ∈ B} is a covering of U , and so (U,C) is a covering approximation
space.

Remark 1. Let (V,B) and (U,C) be stated as Lemma 1. Then (U,C) is called a cover-
ing approximation space induced by (V,B).
Definition 10. (S1−space [3]) Let (U,C) be a covering approximation space. Then
(U,C) is an S1 − space if and only if NC(x) = {x} for all x ∈ U .

Lemma 2. ([3]) Let (V,B) be a network and (U,C) be a covering approximation
space induced by (V,B). Then (V,B) has S1−security if and only if (U,C) is an
S1−space.

Now, we give a simple application of the new type of covering-based rough sets into
network security.

Proposition 7. Let (V,B) be a network and (U,C) be a covering approximation space
induced by (V,B). Then the following are equivalent.

(1) (V,B) has S1−security.

(2) σ
{x}
C (x) ≡ 1 for any x ∈ U .

(3) C1(X) = X for anyX ∈ P(U).
Proof. According to Definition 10 and Lemma 2, we only need to prove (2), (3) and

(4) NC(x) = {x} for any x ∈ U
are equivalent.

(2)⇒ (4): If σ{x}C (x) ≡ 1 for any x ∈ U , then NC(x) ⊆ {x}. Hence NC(x) = {x}
for any x ∈ U . (4)⇒ (2): It is straightforward. Therefore, (2) and (4) are equivalent.

(3)⇔ (4): It is easy to prove by Definitions 5, 6 and Proposition 1.
This completes the proof of this proposition.

The above proposition shows some sufficient and necessary conditions for a network
has S1−security from the viewpoint of the new type of covering-based rough sets. A
successfully application of this new type of covering-based rough sets into network is
to a course examination network in Soochow University [3].

Example 9. A Course Examination Network (V,B).
1. Conditions of Network (V,B).

(a) (V,B) can be applied to a course examination for a group consisting of 30
students in Soochow University.
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(b) In order to prevent cheats in a course examination, it is necessary to guarantee
that every student can only acquire his/her own exam questions in the network
(V,B). Therefore, the designer of (V,B) designs that every student x must
accept services from all servers in Bx, where Bx = {E ∈ B : E provides its
service to x}. Obviously, it is sufficient if (V,B) has S1−security.

2. Establishment of Network (V,B).
(a) Put V is the set of 30 users: V = {x1, x2, . . . , x30}.
(b) Put B is the set 10 servers: B = {E1, E2, . . . , E10}.
(c) For each Ek ∈ B(k = 1, 2, . . . , 10), the designer of (V,B) designs VEk

=
{x ∈ V : Ek provides its service to x} as follows.
VE1 = {x1, x2, x3, x4, x5, x6}, VE2 = {x6, x7, x8, x9, x10, x11},
VE3 = {x11, x12, x13, x14, x15, x16}, VE4 = {x16, x17, x18, x19, x20, x21},
VE5 = {x21, x22, x23, x24, x25, x26}, VE6 = {x26, x27, x28, x29, x30, x1},
VE7 = {x2, x7, x12, x17, x22, x27}, VE8 = {x3, x8, x13, x18, x23, x28},
VE9 = {x4, x9, x14, x19, x24, x29}, VE10 = {x5, x10, x15, x20, x25, x30}.
Thus, a network (V,B) is established.

3. Conversion of Network (V,B).
By Lemma 1, we convert the network (V,B) to a covering approximation space
(U,C) as follows, where (U,C) is induced by (V,B).
(a) U is the abstract set of V : U = {x1, x2, . . . , x30}.
(b) C is a covering of U : C = {K1,K2, . . . ,K10}.

K1 = {x1, x2, x3, x4, x5, x6},K2 = {x6, x7, x8, x9, x10, x11},
K3 = {x11, x12, x13, x14, x15, x16},K4 = {x16, x17, x18, x19, x20, x21},
K5 = {x21, x22, x23, x24, x25, x26},K6 = {x26, x27, x28, x29, x30, x1},
K7 = {x2, x7, x12, x17, x22, x27},K8 = {x3, x8, x13, x18, x23, x28},
K9 = {x4, x9, x14, x19, x24, x29},K10 = {x5, x10, x15, x20, x25, x30}.
Thus, a covering approximation space (U,C) is obtained, which is induced by
(V,B).

4. Security of Network (V,B).
(a) It is not difficult to check that σ{xi}

C (xi) = 1 for each i = 1, 2, . . . , 30. By
Proposition 7, (U,C) has S1−security.

(b) It is not difficult to compute that C1(X) = X for eachX ∈ P(U). By Propo-
sition 7, (U,C) has S1−security.

According to the analysis of the above example, it is easy to know that the conclu-
sions are more scientific, reasonable and suitable to the reality when applying the new
type of covering-based rough sets to the reality. Therefore, the decision of the reality
will be more exactly in the practice.

5 Conclusions

In this paper, a new type of covering-based rough sets have been proposed from the
viewpoint of inclusion degree. Meanwhile, some applications of this covering-based
rough sets were introduced. First, a new concept, namely, inclusion degree was defined
and some properties of it were studied. Moreover, some properties of the coverings
were represented based on the inclusion degree. Second, based on the other types of



498 B. Yang and W. Zhu

covering-based rough sets, a new type of covering-based rough sets have been defined
from the viewpoint of inclusion degree. Moreover, some properties of the new type
of covering-based rough sets have been studied. Finally, a simple application of the
new type of covering-based rough sets into network security was given. Though much
research has been conducted in this paper, there are still many interesting issues worth
studying.

1. Relationships between this new type of covering-based rough sets and other types
of covering-based rough sets.

2. Dependency of lower and upper approximation operations of this new type of
covering-based rough sets.

3. Axiomatic system for approximation operations of this new type of covering-based
rough sets.

4. Topological and matroidal properties of this new type of covering-based rough sets.

In further work, we will conduct more specific research alone the lines of the above
four issues, especially axiomatic systems and matroidal properties [7,16,17,19,20,21]
for this new type of covering-based rough sets.
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Abstract. Feature selection is an important notions in rough sets. This
paper presents a method combining tolerance relation together with
rough sets. There is noise data in practical data sets. This paper investi-
gates the feature selection method based on variable precision tolerance
rough sets. The parameter was discussed and the parameter interval was
described. With the change of the parameter value, the feature selection
was different. The efficiency of the proposed method can be illustrated
by an experiment with standard dataset from UCI database.

Keywords: Rough set theory, tolerance relation, variable precision,
parameter interval, dependency degree of feature.

1 Introduction

Rough sets, proposed by Pawlak [1], is a valid mathematical tool to deal with
imprecise, uncertain, and vague information. Researchers have proposed various
methods for feature selection [2-8].These methods can be generally divided into
three categories which are methods based on discernibility matrix [2], methods
based on positive region [2] and methods based on information entropy [3].

Feature selection methods based equivalence relation are restricted to the
requirement that all data must be discrete. Existing methods [4] are to discretize
the data sets and replace original data values with crisp values. Discretization
ignores their discrimination. This may cause information loss. A better choice
to solve the problem may be the use of tolerance rough set theory [5]. Tolerance
rough set theory can avoid the information loss caused by the discretization
process and maximize the ability of classification data set.

Ziarko proposed a variable precision rough set model, the processing strategy
is put forward when the error rate is lower than the threshold [6].Katzberg and
Ziarko described the asymmetric boundary variable precision rough set model,
which is more general and widens the scope of application of variable precision
rough set.

The main motivation of this study is to design a method that is from a prac-
tical point of view rather than the perspective of theory. We present the feature
selection method based on variable precision tolerance rough sets. The charac-
teristics of parameter were analyzed. The relationship between the classification
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quality and parameter interval was described, and the parameter value was ex-
tended to interval range. Experiments can be done using standard dataset from
UCI database. Experimental results show that the proposed method and the
related theory in this paper are effective.

The remainder of this paper is organized as follows. The next section deals
with some preliminary concepts and properties regarding rough sets. The notion
of variable precision tolerance rough sets is introduced in Section 3. Section 4
introduces feature selection method based on variable precision tolerance rough
sets. A simple example is presented in Section 5. Section 6 presents experimental
results on one benchmark data set. Finally, the work is concluded in Section 7.

2 Preliminaries

2.1 Basic Definitions

In this section, we review some basic concepts about traditional rough sets.

Definition 1. A decision table is defined as DT = 〈U,C ∪D,V, f〉, where U is
a non-empty finite set of objects; C is a set of all conditional features and D is a
set of decision features; V =

⋃
a∈C∪D Va, Va is a set of feature values of feature

a; and f : U × (C ∪D) → V is an information function. Let B ⊆ C ∪ D, B
induces an equivalence (indiscernibility) relation on U as shown:

IND (B) = {(x, y) ∈ U × U |∀a ∈ B, f (x, a) = f (y, a)} . (1)

The family of all equivalence classes of IND (B), i.e., the partition induced
by B, is denoted as:

U/IND (B) = {[x]B : x ∈ U} , (2)

where [x]B is the equivalence class containing x. All the elements in [x]B are
equivalent (indiscernible) with respect to B.

Definition 2. Let X ⊆ U and B ⊆ C, the lower and upper approximations of
X with respect to B, denoted by BX and BX , respectively, are defined as:

BX = ∪{[x]B ∈ U/IND (B)| [x]B ⊆ X} , (3)

BX = ∪{[x]B ∈ U/IND (B)| [x]B ∩X �= ∅} . (4)

Definition 3. Let X ⊆ U , the positive, negative and boundary regions of D
with respect to B ⊆ C, respectively, are denoted as:

POSB (D) = ∪X∈U/IND(D)BX, (5)

NEGB (D) = U − ∪X∈U/IND(D)BX, (6)
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BNDB (D) = ∪X∈U/IND(D)BX − ∪X∈U/IND(D)BX. (7)

Definition 4. The degree of dependency of D on B ⊆ C can be defined as:

γB (D) = |POSB (D)| / |U | . (8)

3 Tolerance Rough Set Theory

Feature selection methods based equivalence relation are restricted to the re-
quirement that all data must be discrete. Discretization ignores their discrimi-
nation. This may cause information loss. Tolerance rough set theory can avoid
the information loss caused by the discretization process and maximize the abil-
ity of classification data set. In order to deal with real-valued data, we employ
a similarity relation. This allows a relaxation in the way equivalence classes are
considered.

3.1 Similarity Measures

In this approach, suitable similarity measure, given in [5], is described in Defi-
nition 5.

Definition 5. Given a decision table DT = 〈U,C ∪D,V, f〉, let a ∈ C ∪D and
x, y ∈ U , the similarity measure, given in [5], is defined as:

Fa (x, y) =
|a (x)− a (y)|
|amax − amin| , (9)

where amax and amin denote the maximum and minimum values respectively
for feature a. The smaller the similarity measure between two objects, the greater
the change that they belong to the same class.

Definition 6. Let B ⊆ C ∪D and τ ∈ (0, 0.5], the overall similarity measure of
x and y with respect to B is defined as:

FB,τ (x, y) =

⎧⎨⎩(x, y) |

∑
a∈B

Fa (x, y)

|B| ≤ τ
⎫⎬⎭ , (10)

where τ ∈ (0, 0.5] is a global similarity threshold.

Definition 7. Let B ⊆ C ∪D and τ ∈ (0, 0.5], the similarity relation of τ of U
on B can be defined as:

FB,τ = {(x, y) ∈ U × U |∀a ∈ B, (x, y) ∈ FB,τ (x, y)} . (11)

The partition induced by FB,τ , is denoted as:

U/FB,τ = {FB,τ (x) : x ∈ U} , (12)

where FB,τ (x) denotes the similarity class containing x.
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Definition 8. Let X ⊆ U and τ ∈ (0, 0.5], the lower and upper approximations
of τ of X with respect to B ⊆ C, denoted by BτX and BτX , respectively, are
defined as:

BτX = {x|FB,τ (x) ⊆ X} , (13)

BτX = {x|FB,τ (x) ∩X �= ∅} . (14)

The tuple
〈
BτX,BτX

〉
is called a tolerance-based rough set.

Definition 9. Let X ⊆ U and τ ∈ (0, 0.5], the positive, negative and boundary
regions of τ of D with respect to B ⊆ C, respectively, are denoted as:

POSB,τ (D) = ∪X∈U/FD,τ
BτX, (15)

NEGB,τ (D) = U − ∪X∈U/FD,τ
BτX, (16)

BNDB,τ (D) = ∪X∈U/FD,τ
BτX − ∪X∈U/FD,τ

BτX. (17)

Definition 10. Let τ ∈ (0, 0.5], the dependency degree of τ of D on B ⊆ C can
be defined as:

γB,τ (D) = |POSB,τ (D)| / |U | . (18)

The tolerance-based degree of dependency γB,τ (D), can be used to gauge the
significance of feature subsets.

4 Feature Selection Method Based on Variable Precision
Tolerance Rough Sets

Noise data is very difficult to avoid in many practical applications. In order to
solve this contradiction, allowing the noise data or error, we introduce feature
selection method based on variable precision tolerance rough sets.

4.1 Variable Precision Tolerance Rough Set Model

Definition 11. Let Xi ∈ U/FC,τ (i = 1, 2, · · · |U/FC,τ |) , Yj ∈ U/FD,τ

(j = 1, 2, · · · |U/FD,τ |) and τ ∈ (0, 0.5], β - lower and β - upper approxima-

tions of Yj with respect to Xi, denoted by Xβ
i,τYj and Xβ

i,τYj , respectively, are

defined as:

Xβ
i,τYj =

{
Xi| |Xi ∩ Yj |

|Xi| ≥ β
}
, (19)

Xβ
i,τYj =

{
Xi| |Xi ∩ Yj |

|Xi| > 1− β
}
. (20)
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β - lower and β - upper approximations of Yj with respect to B ⊆ C, are
defined as:

Bβ
τ Yj = ∪

{
Xi| |Xi ∩ Yj |

|Xi| ≥ β,Xi ∈ U/FB,τ

}
, (21)

Bβ
τ Yj = ∪

{
Xi| |Xi ∩ Yj |

|Xi| > 1− β,Xi ∈ U/FB,τ

}
, (22)

where 0.5 < β ≤ 1.

Definition 12. Let Xi ∈ U/FC,τ (i = 1, 2, · · · |U/FC,τ |) , Yj ∈ U/FD,τ

(j = 1, 2, · · · |U/FD,τ |), τ ∈ (0, 0.5] and β ∈ (0.5, 1], β - positive, β - negative
and β - boundary regions of τ of D with respect to B ⊆ C, respectively, are
denoted as:

POSβ
B,τ (D) = ∪Yj∈U/FD,τ

Bβ
τ Yj , (23)

NEGβ
B,τ (D) = U − ∪Yj∈U/FD,τ

Bβ
τ Yj , (24)

BNβ
B,τ (D) = ∪Yj∈U/FD,τ

Bβ
τ Yj − ∪Yj∈U/FD,τ

Bβ
τ Yj . (25)

Definition 13. Let τ ∈ (0, 0.5] and β ∈ (0.5, 1], β - dependency degree of τ of
D on B ⊆ C is defined as:

γβ
B,τ

(D) =
∣∣∣POSβ

B,τ
(D)

∣∣∣ / |U | . (26)

4.2 Feature Selection Method Based on Variable Precision
Tolerance Rough Sets

The detailed procedure of feature selection method based on variable precision
tolerance rough sets is described as follows.

Algorithm 1. Feature Selection Method based on Variable Precision Tolerance
Rough Sets (DDTRS)

Step 1. Set τ , calculate the similarity measure, the overall similarity measure
and the similarity relation according to definition 5, 6, 7.

Step 2. Set β, calculate β - lower , β - upper approximations, β -positive, β
-negative and β -boundary regions of τ of D with respect to C.

Step 3. Set Red = C.
Step 4. For a∈C, If γβ

P−{a},τ (D)==γβ
C,τ

(D), go to step 5. Else go to step 6.

Step 5. Red = Red− {a} , go to step 4.
Step 6. Return Red.
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4.3 Parameter Analysis of Feature Selection Method Based on
Variable Precision Tolerance Rough Sets

The inclusion degree, the parameter cut-off point and the property are intro-
duced in the subsection.

Definition 14. Given a decision table DT = 〈U,C ∪D,V, f〉, let Xi ∈ U/FC,τ

(i = 1, 2, · · · |U/FC,τ |) , Yj ∈ U/FD,τ (j = 1, 2, · · · |U/FD,τ |), the inclusion degree
of Xi with respect to Yj is defined as:

ID (Xi, Yj) =

⎧⎨⎩ |Xi∩Yj |
|Xi| if |Xi| > 0

0 if |Xi| = 0

Definition 15. Let Xi ∈ U/FC,τ (i = 1, 2, · · · |U/FC,τ |) , Yj ∈ U/FD,τ

(j = 1, 2, · · · |U/FD,τ |), the parameter cut-off point ofXi with respect to U/FD,τ

is defined as:

αi =Max (ID (Xi, Yj)) (j = 1, 2, · · · |U/FD,τ |) (27)

Property 1. Suppose αi is the parameter cut-off point of Xi with respect to
U/FD,τ , i = 1, 2, · · · |U/FC,τ | and α1 < α2... < αm... < α|U/FC,τ |. If given αm,

then POSβ
B,τ (D) for every β (0.5 < αm < β ≤ αm+1) is the same.

Proof. Suppose 0.5 < αm < β ≤ αm+1, with respect to ∀β and ∀i ≤ m, if the
parameter cut-off point of Xi with respect to U/FD,τ is αi < β, then there is

not Yp ∈ U/FD,τ which satisfies
|Xi∩Yp|

|Xi| ≥ β, therefore Bβ
τ Yj = ∅.

With respect to ∀i ≥ m+1, if the parameter cut-off point ofXi with respect to

U/FD,τ is 0.5 ≤ β ≤ αi, then there is Yp ∈ U/FD,τ which satisfies
|Xi∩Yp|

|Xi| ≥ β,
therefore Bβ

τ Yj = Xi.

5 A Simple Example

To illustrate the operation of feature selection method based on variable precision
tolerance rough sets, it is applied to a simple example dataset in Table 1, which
contains three real-valued conditional attributes, one real-valued decision feature
and ten objects. Set τ =0.2. C = {M,N,P}. D = {K}.

The following tolerance classes are generated:
U/FD,τ = {{o1, o2, o4, o5, o6} , {o3, o7, o8, o9, o10}},
U/FC,τ = {{o1} , {o2, o4} , {o3, o5} , {o6, o8, o9} , {o7, o10}},
U
/
FC−{M},τ =U

/
F{N,P},τ ={{o1} , {o2, o4} , {o3, o5} , {o6, o8, o9} , {o7, o10}},

U
/
FC−{N},τ = U

/
F{M,P},τ = {{o1} , {o2, o4} , {o3, o5} , {o6, o7, o8, o9, o10}},

U
/
FC−{P},τ = U

/
F{M,N},τ = {{o1, o2, o4} , {o3, o5} , {o6, o8, o9} , {o7, o10}},

U
/
FC−{M,N},τ = U

/
F{P},τ = {{o1} , {o2, o4} , {o3, o5} , {o6, o7, o8, o9, o10}},

U
/
FC−{M,P},τ = U

/
F{N},τ = {{o1, o2, o4, o6, o8, o9} , {o3, o5} , {o7, o10}},

U
/
FC−{N,P},τ = U

/
F{M},τ = {{o1, o2, o3, o4, o5} , {o6, o7, o8, o9, o10}}.

The reduct for DDTRS:
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Table 1. Example dataset

Objects M N P K

o1 9 0.12 1 0.4
o2 9 0.09 4 0.41
o3 10 0.3 9 1.3
o4 11 0.1 5 0.38
o5 12 0.28 9 0.39
o6 27 0.13 13 0.42
o7 28 0.2 14 1.4
o8 28 0.12 13 1.36
o9 29 0.11 14 1.32
o10 29 0.21 13 1.37

Set β =0.8, β - lower approximation of the decision classes are calculated as
follows:
Cβ

τ
{o1, o2, o4, o5, o6} = {M,N,P}β

τ
{o1, o2, o4, o5, o6} = {o1, o2, o4},

Cβ
τ
{o3, o7, o8, o9, o10} = {M,N,P}β

τ
{o3, o7, o8, o9, o10} = {o7, o10}.

Hence, the positive region can be constructed:
POSβ

C,τ
(D)=∪β

Yj∈U/FD,τ
Cβ

τ
Yj=C

β
τ
{o1, o2, o4, o5, o6}∪Cβ

τ
{o3, o7, o8, o9, o10}=

{o1, o2, o4, o7, o10}
The resulting degree of dependency is:

γβ
C,τ

(D) =

∣∣∣POSβ

C,τ
(D)

∣∣∣
|U| = |{o1,o2,o4,o7,o10}|

|{o1,o2,o3,o4,o5,o6,o7,o8,o9,o10}| =
5
10 .

For feature set C − {M}, the corresponding dependency degree is:

γβ
C−{M},τ (D) =

∣∣∣∣POSβ

C−{M},τ (D)

∣∣∣∣
|U| = |{o1,o2,o4,o7,o10}|

|{o1,o2,o3,o4,o5,o6,o7,o8,o9,o10}| =
5
10 ,

γβ
C−{M},τ (D) = γβ{N,P},τ (D) = γβ

C,τ
(D) = 5

10 .

Feature M is deleted from feature set C. Similarly, the dependency degree of
feature set {N,P} − {N} is:

γβ{N,P}−{N},τ (D) =

∣∣∣∣POSβ

{N,P}−{N},τ (D)

∣∣∣∣
|U| = |{o1,o2,o4,o6,o7,o8,o9,o10}|

|{o1,o2,o3,o4,o5,o6,o7,o8,o9,o10}| =
8
10 ,

γβ{N,P}−{N},τ (D) = 8
10 �= γβC,τ

(D) = 5
10 .

The reduct for the DDTRS algorithm is {N,P}.
Parameter analysis of DDTRS:
X1 = {o1}, X2 = {o2, o4}, X3 = {o3, o5}, X4 = {o6, o8, o9}, X5 = {o7, o10}.

Y1 = {o1, o2, o4, o5, o6}, Y2 = {o3, o7, o8, o9, o10}.
U/FD,τ = {Y1, Y2} = {{o1, o2, o4, o5, o6} , {o3, o7, o8, o9, o10}}. ID (X1, Y1) =

|X1∩Y1|
|X1| = 1, ID (X1, Y2) = |X1∩Y2|

|X1| = 0, so, the parameter cut-off point of

X1 with respect to U/FD,τ is α1 = Max (ID (X1, Yj)) (j = 1, 2)=1, for β ∈
(0.5, 1], β - lower approximation of Yj (j = 1, 2) with respect to X1 is X1 = {o1}.
Similarly, the parameter cut-off point of X2 with respect to U/FD,τ is α2 =1,
for β ∈ (0.5, 1], β - lower approximation of Yj with respect to X2 is {o2, o4} .
The parameter cut-off point of X3 with respect to U/FD,τ is α3 =0.5, for β,
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β - lower approximation of Yj with respect to X3 is {o3, o5}. The parameter
cut-off point of X4 with respect to U/FD,τ is α4 =0.667, for β ∈ (0.5, 0.667], β
- lower approximation of Yj with respect to X4 is {o6, o8, o9} . The parameter
cut-off point of X5 with respect to U/FD,τ is α5 =1, for β ∈ (0.5, 1], β - lower
approximation of Yj with respect to X5 is {o7, o10}.

For β ∈ (0.5, 0.667], POSβ
C,τ (D) = ∪Yj∈U/FD,τ

Cβ
τ Yj = {o1} ∪ {o2, o4} ∪

{o6, o8, o9} ∪ {o7, o10} = {o1, o2, o4, o6, o7, o8, o9, o10}, γβC,τ
(D) =

∣∣∣POSβ

C,τ
(D)

∣∣∣
|U| =

8
10 ; For β ∈ (0.667, 1], POSβ

C,τ (D) = {o1, o2, o4, o7, o10}, γβC,τ
(D) = 5

10 .
According to feature selection method based on variable precision tolerance

rough sets, for different β, the results are shown in Table 2. A1 denotes condi-
tional feature set. A2 is the parameter cut-off point ofXi with respect to U/FD,τ .
β - lower approximation of Yj (j = 1, 2) with respect to Xi is denoted by A3.
A4 is parameter interval. A5 and A6 are dependency degree and positive region
respectively.

Table 2. Results based on different β

Parameter interval Dependency degree Reduct

β ∈ (0.5, 0.667] 8
10

{P} or {N}
β ∈ (0.667, 0.8] 5

10
{N, P}

β ∈ (0.8, 1] 5
10

{P}

Different selection results can be got according to different interval of param-
eter β, as shown in Table 3. As listed in Table 3, selection results and depen-
dency degree are different when β is changed. For β ∈ (0.5, 0.667], the reduct
is {P} or {N}. For β ∈ (0.8, 1], the reduct is {P}. The dependency degree of
β ∈ (0.5, 0.667] are differ from that of β ∈ (0.8, 1]. The dependency degrees of
β ∈ (0.667, 0.8] and β ∈ (0.8, 1] are 5

10 , while selection results are different.

6 Experiments

To evaluate the performance of the proposed algorithm, we applied it to one
dataset from UCI database. There are eight conditional attributes and one deci-
sion feature, which are L-Surf, L-O2, L-Bp, Surf-Stbl, Bp-Stbl, Core-Stbl, Com-
fort and Adm-Decs. Surf-Stbl, Bp-Stbl, Core-Stbl and Adm-Decs are crisp-valued
attributes. Others are real-valued features.

When there are missing values in dataset, these values are filled with mean
values for continuous features and majority values for nominal features [8]. Ac-
cording to DDTRS, set τ =0.2, there are 70 tolerance classes of condition at-
tributes and 3 tolerance classes of decision feature. Different selection results can
be got according to different interval of parameter β. The results are shown in
Table 4. m1, m2, m3, m4, m5, m6, m7 and m8 denote L-Core, L-Surf, L-O2,
L-Bp, Surf-Stbl, Bp-Stbl, Core-Stbl and Comfort.
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Table 3. Selection results based on different β

A1 A2 A3 A4 A5 A6

{M,N, P}

a1 = 1
a2 = 1
a3 = 0.5

a4 = 0.667
a5 = 1

{o1}
{o2, o4}
{o3, o5}

{o6, o8, o9}
{o7, o10}

β ∈ (0.5, 0.667]
β ∈ (0.667, 1]

8
10
5
10

{o1, o2, o4, o6,
o7, o8, o9, o10}

{o1, o2, o4, o7, o10}

{N, P}

a1 = 1
a2 = 1
a3 = 0.5

a4 = 0.667
a5 = 1

{o1}
{o2, o4}
{o3, o5}

{o6, o8, o9}
{o7, o10}

β ∈ (0.5, 0.667]
β ∈ (0.667, 1]

8
10
5
10

{o1, o2, o4, o6,
o7, o8, o9, o10}

{o1, o2, o4, o7, o10}

{M,P}
a1 = 1
a2 = 1
a3 = 0.5
a4 = 0.8

{o1}
{o2, o4}
{o3, o5}

{o6, o7, o8,
o9, o10}

β ∈ (0.5, 0.8]
β ∈ (0.8, 1]

8
10
3
10

{o1, o2, o4, o6,
o7, o8, o9, o10}
{o1, o2, o4}

{M,N}
a1 = 0.667
a2 = 0.5

a3 = 0.667
a4 = 1

{o1, o2, o4}
{o3, o5}

{o6, o8, o9}
{o7, o10}

β ∈ (0.5, 0.667]
β ∈ (0.667, 1]

8
10
2
10

{o1, o2, o4, o6,
o7, o8, o9, o10}

{o7, o10}

{P}

a1 = 1
a2 = 1
a3 = 0.5
a4 = 0.8
a5 = 1

{o1}
{o2, o4}
{o3, o5}
{o6, o7, o8
, o9, o10}
{o7, o10}

β ∈ (0.5, 0.8]
β ∈ (0.8, 1]

8
10
5
10

{o1, o2, o4, o6,
o7, o8, o9, o10}

{o1, o2, o4, o7, o10}

{M} a1 = 0.8
a2 = 0.8

{o1, o2, o3,
o4, o5}

{o6, o7, o8,
o9, o10}

β ∈ (0.5, 0.8]
β ∈ (0.8, 1]

10
10
0
10

{o1, o2, o3, o4, o5,
o6, o7, o8, o9, o10}

φ

{N}
a1 = 0.667
a2 = 0.5
a3 = 1

{o1, o2, o4,
o6, o8, o9}
{o3, o5}
{o7, o10}

β ∈ (0.5, 0.667]
β ∈ (0.667, 1]

8
10
2
10

{o1, o2, o4, o6,
o7, o8, o9, o10}

{o7, o10}

The parameter cut-off points are 0.571, 0.583, 0.6, 0.625, 0.667 and 0.714.With
the change of parameter β, the dependency degree and reduct are changed.
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Table 4. Selection results based on different β

Parameter
interval

Dependency
degree

Reduct

β ∈ (0.5, 0.571] 78
90

{m2, m4,m7} or {m1,m5,m6,m8} or {m4,m5,m6, m7}
β ∈ (0.571, 0.583] 78

90
{m2,m3, m5,m6}

β ∈ (0.583, 0.6] 78
90

{m1,m3,m4,m7} or {m3,m5,m6, m7,m8} or
{m1,m2,m3, m5,m7,m8}

β ∈ (0.6, 0.625] 78
90

{m4,m8} or {m3,m6,m8} or {m1,m3,m4,m5}
β ∈ (0.625, 0.667] 78

90
{m1, m3,m8} or {m4,m6,m7}

β ∈ (0.667, 0.714] 72
90

{m1,m3,m8}
β ∈ (0.714, 1] 72

90
{m1, m2,m3,m4,m5,m7,m8}

7 Conclusions

In this paper, we address feature selection method based on variable precision
tolerance rough sets. This paper extends the research of traditional rough sets.
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Social Science Foundation of china (no. 13CFX049) and Shanghai University
Young Teacher Training Program (no. hdzf10008).
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Abstract. In practical situations, it is of interest to investigate computing approx-
imations of sets as an important step of attribute reduction in dynamic covering
information systems. In this paper, we present incremental approaches to comput-
ing the type-1 and type-2 characteristic matrices of coverings with the variation
of elements. Then we construct the second and sixth lower and upper approxima-
tions of sets by using incremental approaches from the view of matrices. We also
employ examples to show how to compute approximations of sets by using the
incremental and non-incremental approaches in dynamic covering approximation
spaces.

Keywords: Rough sets, Covering information system, Boolean matrice, Charac-
teristic matrice.

1 Introduction

Covering-based rough set theory [7], as a powerful mathematical tool for studying cov-
ering approximation spaces, has attracted a lot of attention of researchers in various
fields of sciences. Especially, various kinds of approximation operators have been pro-
posed for covering approximation spaces. Recently, Wang et al. [6] transformed the
computation of approximations of a set into products of the characteristic matrices and
the characteristic function of the set. However, it paid little attention to approaches to
calculating the characteristic matrices. In practice, the covering approximation space
varies with time due to the characteristics of data collection, and the non-incremental
approach to constructing the characteristic matrices is often very costly or even in-
tractable in dynamic covering approximation spaces. It is necessary to present effective
approaches to computing characteristic matrices of dynamic coverings.

To the best of our knowledge, researchers [1–5, 8, 9] have focused on computing
approximations of sets. For instance, Chen et al. [1, 2] constructed approximations
of sets when coarsening or refining attribute values. Li et al. [3] computed approxi-
mations in dominance-based rough sets approach under the variation of attribute set.
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D. Miao et al. (Eds.): RSKT 2014, LNAI 8818, pp. 510–521, 2014.
DOI: 10.1007/978-3-319-11740-9_47 c© Springer International Publishing Switzerland 2014
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Luo et al. [4, 5] studied dynamic maintenance of approximations in set-valued ordered
decision systems under the attribute generalization and the variation of object set. Zhang
et al. [8,9] updated rough set approximations based on relation matrices and investigated
neighborhood rough sets for dynamic data mining. These works demonstrate that incre-
mental approaches are effective and efficient for computing approximations of sets. It
motivates us to apply an incremental updating scheme to conduct approximations of
sets by using characteristic matrices in dynamic covering approximation spaces, which
will provide an effective approach to computing approximations of sets from the view
of matrices.

The purpose of this paper is to compute approximations of sets by using incremental
approaches in dynamic covering approximation spaces. First, we present incremental
approaches to computing the type-1 and type-2 characteristic matrices in dynamic cov-
ering approximation spaces. We mainly focus on the situation: the variation of elements
in coverings when adding and deleting objects. Furthermore, we provide incremental
algorithms for constructing the second and sixth lower and upper approximations of
sets based on the type-1 and type-2 characteristic matrices, respectively. We compare
computation complexities of the incremental algorithms with those of non-incremental
algorithms. Several examples are employed to illustrate that calculating approximations
of sets is simplified greatly by utilizing the proposed approach.

The rest of this paper is organized as follows: Section 2 briefly reviews the basic
concepts of covering-based rough set theory. In Section 3, we introduce incremental
approaches to computing the type-1 and type-2 characteristic matrices with respect
to immigration of elements of coverings when adding and deleting objects. We also
present incremental algorithms of calculating the second and sixth lower and upper ap-
proximations of sets by using the type-1 and type-2 characteristic matrices, respectively.
We also employ examples to show that how to compute approximations of sets by us-
ing incremental and non-incremental approaches in dynamic covering approximation
spaces. We conclude the paper in Section 4.

2 Preliminaries

In this section, we review some concepts of covering-based rough sets.

Definition 1. [7] Let U be a finite universe of discourse, and C a family of subsets of
U. C is called a covering of U if none of elements of C is empty and

⋃{C|C ∈ C } = U.

Definition 2. [6] Let U = {x1, x2, ..., xn} be a finite universe, and C = {C1,C2, ...,Cm}
a covering of U. For any X ⊆ U, the second and sixth upper and lower approximations
of X with respect to C are defined as follows:

(1) S HC (X) =
⋃{C ∈ C |C ∩ X � ∅}, S LC (X) = [S HC (Xc)]c;

(2) XHC (X) = {x ∈ U |N(x) ∩ X � ∅}, XLC (X) = {x ∈ U |N(x) ⊆ X},
where N(x) =

⋂{Ci|x ∈ Ci ∈ C }.
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Definition 3. [6] Let U = {x1, x2, ..., xn} be a finite universe, C = {C1,C2, ...,Cm} a

family of subsets of U, and MC = (ai j)n×m, where ai j =

{
1, xi ∈ C j;
0, xi � C j.

Then

(1) Γ(C ) = MC · MT
C = (bi j)n×n is called the type-1 characteristic matrice of C ,

where bi j =
∨m

k=1(aik · a jk);
(2)
∏

(C ) = MC � MT
C
= (ci j)n×n is called the type-2 characteristic matrice of C ,

where ci j =
∧m

k=1(ak j − aik + 1).

Especially, we have the characteristic function XX =
[
a1 a2 . . . an

]T
of X ⊆ U,

where ai =

{
1, xi ∈ X;
0, xi � X.

In what follows, we have another descriptions of the second

and sixth lower and upper approximation operators.

Definition 4. [6] Let U = {x1, x2, ..., xn} be a finite universe, C = {C1,C2, ...,Cm} a
covering of U, and XX the characteristic function of X in U. Then

(1) XS H(X) = Γ(C ) · XX, XS L(X) = Γ(C ) � XX; (2) XXH(X) =
∏

(C ) · XX, XXL(X) =∏
(C ) � XX.

3 Computing Approximations of Sets with Variations of Elements
in Coverings

In this section, we introduce incremental approaches to computing the second and sixth
lower and upper approximation of sets with the variation of coverings when adding and
deleting objects.

Definition 5. Let (U,C ) and (U+,C +) be covering approximation spaces, where U =
{x1, x2, ..., xn}, U+ = U ∪ {xn+1}, C = {C1,C2, ...,Cm}, C + = {C+1 ,C+2 , ...,C+m,C+m+1},
where C+i = Ci ∪ {xn+1} or Ci (1 ≤ i ≤ m), and xn+1 ∈ C+m+1. Then (U+,C +) is called a
AE-covering approximation space.

By Definition 5, C + is referred to as a AE-covering. In practice, there are sev-
eral types of coverings when adding objects. For simplicity, we only discuss the AE-
coverings.

In what follows, we discuss how to construct Γ(C +) based on Γ(C ). For conve-
nience, we denote MC = (ai j)n×m, MC + = (ai j)(n+1)×(m+1), Γ(C ) = (bi j)n×n and Γ(C +) =
(ci j)(n+1)×(n+1).

Theorem 1. Let (U+,C +) be a AE-covering approximation space of (U,C ), Γ(C ) and
Γ(C +) the type-1 characteristic matrices of C and C +, respectively. Then

Γ(C +) =

[
Γ(C ) 0

0 0

]∨[
1Γ(C ) (
2Γ(C ))T


2Γ(C ) c(n+1)(n+1)

]

,
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where

1Γ(C ) =

[
a1(m+1) a2(m+1) . . . an(m+1)

]T ·
[
a1(m+1) a2(m+1) . . . an(m+1)

]
;


2Γ(C ) =
[
a(n+1)1 a(n+1)2 . . . a(n+1)(m+1)

]
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1(m+1)

a21 a22 . . . a2(m+1)

. . . . . .

. . . . . .

. . . . . .
an1 an2 . . . an(m+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

;

c(n+1)(n+1) =
[
a(n+1)1 a(n+1)2 . . . a(n+1)(m+1)

]
·
[
a(n+1)1 a(n+1)2 . . . a(n+1)(m+1)

]T
.

Proof. By Definition 3, we get Γ(C ) and Γ(C +) as follows:

Γ(C ) = MC · MT
C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1m

a21 a22 . . . a2m

. . . . . .

. . . . . .

. . . . . .

an1 an2 . . . anm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1m

a21 a22 . . . a2m

. . . . . .

. . . . . .

. . . . . .

an1 an2 . . . anm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 b12 . . . b1n

b21 b22 . . . b2n

. . . . . .

. . . . . .

. . . . . .

bn1 bn2 . . . bnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

Γ(C +)=MC+ ·MT
C+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1m a1(m+1)

a21 a22 . . . a2m a2(m+1)

. . . . . . .

. . . . . . .

. . . . . . .
an1 an2 . . . anm an(m+1)

a(n+1)1 a(n+1)2 . . . a(n+1)m a(n+1)(m+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1m a1(m+1)

a21 a22 . . . a2m a2(m+1)

. . . . . . .

. . . . . . .

. . . . . . .
an1 an2 . . . anm an(m+1)

a(n+1)1 a(n+1)2 . . . a(n+1)m a(n+1)(m+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 . . . c1n c1(n+1)

c21 c22 . . . c2n c2(n+1)

. . . . . . .

. . . . . . .

. . . . . . .

cn1 cn2 . . . cnn cn(n+1)

c(n+1)1 c(n+1)2 . . . c(n+1)n c(n+1)(n+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the sense of the type-1 characteristic matrice, we see that bi j∨(ai(m+1) ·a j(m+1)) = ci j

for 1 ≤ i, j ≤ n. To compute Γ(C +) on the basis of Γ(C ), we only need to compute

1Γ(C ), 
2Γ(C ) and c(n+1)(n+1). Concretely, 
1Γ(C ), 
2Γ(C ) and c(n+1)(n+1) are com-
puted as follows:


1Γ(C ) = (ai(m+1) · aj(m+1))(1≤i, j≤n) =
[
a1(m+1) a2(m+1) . . . an(m+1)

]T ·
[
a1(m+1) a2(m+1) . . . an(m+1)

]
;


2Γ(C ) =
[
c(n+1)1 c(n+1)2 . . . c(n+1)n

]
=
[
a1(m+1) a2(m+1) . . . an(m+1)

]
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1(m+1)

a21 a22 . . . a2(m+1)

. . . . . .

. . . . . .

. . . . . .
an1 an2 . . . an(m+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

;

c(n+1)(n+1) =
[
a(n+1)1 a(n+1)2 . . . a(n+1)(m+1)

]
·
[

a(n+1)1 a(n+1)2 . . . a(n+1)(m+1)

]T
.
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Therefore, we have Γ(C +) =

[
Γ(C ) 0

0 0

]
∨
[
1Γ(C ) (
2Γ(C ))T


2Γ(C ) c(n+1)(n+1)

]

.

We show an incremental algorithm of computing the second lower and upper ap-
proximations of sets as follows.

Input: (U,C ), (U+,C +) and X ⊆ U+. Output: XS H(X) and XS L(X).
Step 1: Calculating Γ(C ) = MC · MT

C , where MC = (ai j)n×m;
Step 2: Computing 
1Γ(C ) and 
2Γ(C ), where

MC+ = (ai j)(n+1)×(m+1);α1 =
[

a1(m+1) a2(m+1) . . . an(m+1)

]
;α2 =

[
a(n+1)1 a(n+1)2 . . . a(n+1)m

]
;


1Γ(C ) = αT
1 · α1;
2Γ(C ) =

[
α2 a(n+1)(m+1)

]
·
[

MC α
T
1

]T
; c(n+1)(n+1) =

[
α2 a(n+1)(m+1)

]
·
[
α2 a(n+1)(m+1)

]T
.

Step 3: Constructing Γ(C +), where

Γ(C +) = (ci j)(n+1)(n+1) =

[
Γ(C ) 0

0 0

]∨[
1Γ(C ) (
2Γ(C ))T


2Γ(C ) c(n+1)(n+1)

]

.

Step 4: ObtainingXS H(X) andXS L(X), whereXS H(X) = Γ(C +) ·XX ;XS L(X) = Γ(C +)�
XX .

The time complexity of computing the second lower and upper approximations of
sets is less than O(3n2 + 2nm + 8n + m + 4) by using the incremental algorithm. Fur-
thermore, O((n+ 1)2 · (m+ 1)) is the time complexity of the non-incremental algorithm.
Therefore, the time complexity of the incremental algorithm is lower than that of the
non-incremental algorithm.

The following example is employed to show the process of constructing approxima-
tions of sets by using the incremental algorithm.

Example 1. Let U = {x1, x2, x3, x4}, U+ = U ∪ {x5}, C = {C1,C2,C3}, C + = {C+1 ,C+2 ,
C+3 ,C

+
4 }, where C1 = {x1, x4}, C2 = {x1, x2, x4}, C3 = {x3, x4}, C+1 = {x1, x4, x5}, C+2 ={x1, x2, x4, x5}, C+3 = {x3, x4}, C+4 = {x3, x5}, and X = {x3, x4, x5}. By Definition 3, we

first have that

Γ(C ) = MC · MT
C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
0 1 0
0 0 1
1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
0 1 0
0 0 1
1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1
1 1 0 1
0 0 1 1
1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Second, by Theorem 1, we get that


1Γ(C ) =
[
0 0 1 0

]T ·
[
0 0 1 0

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;
2Γ(C ) =
[
1 1 0 1

]
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 1 1
1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

=
[
1 1 1 1

]
;

c55 =
[
1 1 0 1

]
·
[
1 1 0 1

]T
= 1.
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Thus, we obtain that

Γ(C +)= (ci j)55=

[
Γ(C ) 0

0 0

]∨[
1Γ(C ) (
2Γ(C ))T


2Γ(C ) c55

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0
1 1 0 1 0
0 0 1 1 0
1 1 1 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∨

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1
0 0 0 0 1
0 0 1 0 1
0 0 0 0 1
1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 1
1 1 0 1 1
0 0 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

On the other hand, by Definition 3, we have Γ(C +) = MC + · MT
C + =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 1
1 1 0 1 1
0 0 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is obvious that the time complexity is more than the incremental approach. By
Definition 4, we have that

XS H(X) = Γ(C +) · XX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 1
1 1 0 1 1
0 0 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
1 1 1 1 1

]T
;

XS L(X) = Γ(C +) � XX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 1
1 1 0 1 1
0 0 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
0 0 1 0 0

]T
.

Therefore, S H(X) = {x1, x2, x3, x4, x5} and S L(X) = {x3}.
In Example 1, there is a need to compute all elements in Γ(C +) on the basis of

the type-1 characteristic matrice. But we only need to calculate elements in 
1Γ(C ),

2Γ(C ) and c55 by Theorem 1. Thereby, the incremental algorithm is effective to com-
pute the second lower and upper approximations of sets.

In practice, there is also a need to construct the type-2 characteristic matrices of
AE-coverings for computing the sixth lower and upper approximations of sets. Subse-
quently, we construct

∏
(C +) based on

∏
(C ). For convenience, we denote

∏
(C ) =

(di j)n×n and
∏

(C +) = (ei j)(n+1)×(n+1).

Theorem 2. Let (U+,C +) be a AE-covering approximation space of (U,C ),
∏

(C ) and
∏

(C +) the type-2 characteristic matrices of C and C +, respectively. Then

∏
(C +) =

[∏
(C ) 0
0 0

]∧[
1
∏

(C ) 
3
∏

(C )

2
∏

(C ) e(n+1)(n+1)

]

,
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where


1

∏
(C ) =

[
a1(m+1) a2(m+1) . . . an(m+1)

]T �
[
a1(m+1) a2(m+1) . . . an(m+1)

]
;


2

∏
(C ) =

[
a(n+1)1 a(n+1)2 . . . a(n+1)(m+1)

]
�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1m a1(m+1)

a21 a22 . . . a2m a2(m+1)

. . . . . . .

. . . . . . .

. . . . . . .
an1 an2 . . . anm an(m+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

;


3

∏
(C ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1m a1(m+1)

a21 a22 . . . a2m a2(m+1)

. . . . . . .

. . . . . . .

. . . . . . .
an1 an2 . . . anm an(m+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
[
a(n+1)1 a(n+1)2 . . . a(n+1)(m+1)

]T
;

e(n+1)(n+1) =
[
a(n+1)1 a(n+1)2 . . . a(n+1)(m+1)

]
�
[
a(n+1)1 a(n+1)2 . . . a(n+1)(m+1)

]T
.

Proof. By Definition 3, we have
∏

(C ) and
∏

(C +) as follows:

∏
(C ) = MC � MT

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1m
a21 a22 . . . a2m
. . . . . .
. . . . . .
. . . . . .

an1 an2 . . . anm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1m
a21 a22 . . . a2m
. . . . . .
. . . . . .
. . . . . .

an1 an2 . . . anm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d11 d12 . . . d1n
d21 d22 . . . d2n
. . . . . .
. . . . . .
. . . . . .

dn1 dn2 . . . dnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

∏
(C +) = MC+ � MT

C+
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1m a1(m+1)

a21 a22 . . . a2m a2(m+1)
. . . . . . .
. . . . . . .
. . . . . . .

an1 an2 . . . anm an(m+1)
a(n+1)1 a(n+1)2 . . . a(n+1)m a(n+1)(m+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1m a1(m+1)

a21 a22 . . . a2m a2(m+1)
. . . . . . .
. . . . . . .
. . . . . . .

an1 an2 . . . anm an(m+1)
a(n+1)1 a(n+1)2 . . . a(n+1)m a(n+1)(m+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e11 e12 . . . e1n e1(n+1)
e21 e22 . . . e2n e2(n+1)
. . . . . . .
. . . . . . .
. . . . . . .

en1 en2 . . . enn en(n+1)
e(n+1)1 e(n+1)2 . . . e(n+1)n e(n+1)(n+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By Definition 3, we see that di j ∨ (a j(m+1) − ai(m+1) + 1) = ei j for 1 ≤ i, j ≤ n. To
compute

∏
(C +) on the basis of

∏
(C ), we only need to compute 
1

∏
(C ), 
2

∏
(C ),


3
∏

(C ) and e(n+1)(n+1). Concretely, 
1
∏

(C ), 
2
∏

(C ), 
3
∏

(C ) and e(n+1)(n+1) are
constructed as follows.


1

∏
(C )= (aj(m+1) − ai(m+1) + 1)n×n=

[
a1(m+1) a2(m+1) . . .an(m+1)

]T �
[
a1(m+1) a2(m+1) . . . an(m+1)

]
;
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2

∏
(C ) =

[
e(n+1)1 e(n+1)2 . . . e(n+1)n

]
=
[

a(n+1)1 a(n+1)2 . . . a(n+1)m a(n+1)(m+1)

]
�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1m a1(m+1)

a21 a22 . . . a2m a2(m+1)
. . . . . . .
. . . . . . .
. . . . . . .

an1 an2 . . . anm an(m+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

;


3

∏
(C ) =

[
e1(n+1) e2(n+1) . . . en(n+1)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1m a1(m+1)

a21 a22 . . . a2m a2(m+1)
. . . . . . .
. . . . . . .
. . . . . . .

an1 an2 . . . anm an(m+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
[

a(n+1)1 a(n+1)2 . . . a(n+1)m a(n+1)(m+1)

]T
;

e(n+1)(n+1) =
[

a(n+1)1 a(n+1)2 . . . a(n+1)(m+1)

]
�
[

a(n+1)1 a(n+1)2 . . . a(n+1)(m+1)

]T
.

Therefore, we have
∏

(C +) =

[∏
(C ) 0
0 0

]
∧
[
1
∏

(C ) 
3
∏

(C )

2
∏

(C ) e(n+1)(n+1)

]

.

By Theorem 2, we present an incremental algorithm of computing the sixth lower
and upper approximations of sets as follows.

Input: (U,C ), (U+,C +) and X ⊆ U+. Output: XXH(X) and XXL(X).
Step 1: Constructing

∏
(C ), where

∏
(C ) = MC � MT

C .
Step 2: Computing 
1

∏
(C ) and 
2

∏
(C ), where

MC+ =

[
MC αT

1
α2 a(n+1)(m+1)

]

;α1=
[
a1(m+1) a2(m+1) . . . an(m+1)

]
;α2=

[
a(n+1)1 a(n+1)2 . . . a(n+1)m

]
;


1

∏
(C ) = αT

1 �α1;
2

∏
(C )=

[
α2 a(n+1)(m+1)

]
� MT

C+ ;
3

∏
(C ) = MC+ �

[
α1 a(n+1)(m+1)

]T
;

e(n+1)(n+1) =
[
α2 a(n+1)(m+1)

]
�
[
α2 a(n+1)(m+1)

]T
.

Step 3: Calculating
∏

(C +), where
∏

(C +) =

[∏
(C ) 0
0 0

]
∧
[
1
∏

(C ) 
3
∏

(C )

2
∏

(C ) e(n+1)(n+1)

]

.

Step 4: Getting XXH(X) and XXL(X), where XXH(X) =
∏

(C +) · XX ;XXL(X) =
∏

(C +) �
XX .

By using the incremental algorithm, the time complexity of calculating the sixth
lower and upper approximations of sets is O(3n2 + 2nm + 8n + m + 4). Additionally,
O((n+1)2 · (m+1)) is the time complexity of the non-incremental algorithm. Therefore,
the incremental algorithm is more effective than the non-incremental algorithm.

The following example illustrates that how to compute the sixth lower and upper
approximations of set by using the incremental algorithm.

Example 2. (Continuation of Example 1) We obtain that

∏
(C ) = MC � MT

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
0 1 0
0 0 1
1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
0 1 0
0 0 1
1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1
1 1 0 1
0 0 1 1
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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By Theorem 2, we have that


1

∏
(C )=

[
0 0 1 0

]T �
[
0 0 1 0

]T
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 2 1
1 1 2 1
0 0 1 0
1 1 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;
2

∏
(C )=

[
1 1 0 1

]
�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 1 1
1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
0 0 0 0

]
;


3

∏
(C )=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
1 1 1 0
1 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
[
1 1 0 1

]T
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; e55=
[
1 1 0 1 1

]
�
[
1 1 0 1 1

]T
=1.

Thus, we have

∏
(C +) =

[∏
(C ) 0
0 0

]∧[
1
∏

(C ) 
3
∏

(C )

2
∏

(C ) e55

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1
1 1 0 1 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

On the other hand, by Definition 3, we have
∏

(C +) = MC + � MT
C + =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1
1 1 0 1 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is obvious that the time complexity is more than the incremental approach. By
Definition 4, we obtain

XXH(X) =
∏

(C +) · XX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1
1 1 0 1 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
1 1 1 1 1

]T
;

XXL(X) =
∏

(C +) � XX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1
1 1 0 1 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
0 0 1 1 1

]T
.

Therefore, XH(X) = {x1, x2, x3, x4, x5} and XL(X) = {x3, x4, x5}.
In Example 2, we need to compute all elements in

∏
(C +) for constructing approx-

imations of sets by Definition 3. By Theorem 2, we only need to calculate elements
in 
1

∏
(C ), 
2

∏
(C ), 
3

∏
(C ) and e55. Thereby, the incremental algorithm is more

effective to compute approximations of sets.
Below, we propose incremental approaches for computing the second and sixth lower

and upper approximations of sets with emigration of elements of coverings when delet-
ing objects.

Definition 6. Let (U,C ) and (U−,C −) be covering approximation spaces, where U =
{x1, x2, ..., xn}, U− = U−{xn}, C = {C1,C2, ...,Cm}, Cm = {xn}, C − = {C−1 ,C−2 , ...,C−m−1},
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where C−i = Ci − {xn} or Ci (1 ≤ i ≤ m − 1). Then (U−,C −) is called a DE-covering
approximation space.

By Definition 6, C − is referred to as a DE-covering of C . On the basis of Γ(C ), we
show how to construct Γ(C −) for computing the second lower and upper approxima-
tions of sets. First, we discuss the relationship between Γ(C ) and Γ(C −). For con-
venience, we denote MC = (ai j)n×m, MC − = (ai j)(n−1)×(m−1), Γ(C ) = (bi j)n×n and
Γ(C −) = (ci j)(n−1)×(n−1).

Theorem 3. Let (U−,C −) be a AE-covering approximation space of (U,C ), Γ(C ) and
Γ(C −) the type-1 characteristic matrices of C and C −, respectively. Then

Γ(C −) = (bi j)(n−1)(n−1).

Proof. The proof is similar to that of Theorem 1. �
By Theorem 3, the time complexity of calculating the second lower and upper ap-

proximations of sets is O(n2 + 2mn − n + m). Additionally, the time complexity is
O((n−1)2 · (m−1)) by Definition 3. Therefore, the proposed approach is more effective
for computing the second lower and upper approximations of sets.

The following example is employed to show the process of constructing the second
lower and upper approximations of sets when deleting an object.

Example 3. Let U = {x1, x2, x3, x4}, U− = {x1, x2, x3}, C = {C1,C2,C3,C4}, C − =
{C−1 ,C−2 ,C−3 }, where C1 = {x1, x4}, C2 = {x1, x2, x4}, C3 = {x3, x4}, C4 = {x4}, C−1 = {x1},
C−2 = {x1, x2}, C−3 = {x3}, and X = {x2, x3}. According to Example 1 and Theorem 3, we
have that

Γ(C −) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
1 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus, we have that

XS H(X) = Γ(C −) · XX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
1 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
·
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[
1 1 1

]T
;

XS L(X) = Γ(C −) � XX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
1 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
�
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[
0 0 1

]T
.

Therefore, S H(X) = {x1, x2, x3} and S L(X) = {x3}.
In Example 3, there is a need to compute all elements in Γ(C −) by Definition 3. But

we do not need to calculate elements in Γ(C −) by Theorem 3.
Subsequently, we construct

∏
(C −) based on

∏
(C ) for computing the sixth lower

and upper approximations of sets. For convenience, we denote
∏

(C ) = (di j)n×n and
∏

(C −) = (ei j)(n−1)×(n−1).
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Theorem 4. Let (U−,C −) be a DE-covering approximation space of (U,C ),
∏

(C ) and
∏

(C −) the type-2 characteristic matrices of C and C −, respectively. Then
∏

(C −) = (di j)(n−1)(n−1).

Proof. The proof is similar to that of Theorem 2. �
By Theorem 4, the time complexity of calculating the sixth lower and upper ap-

proximations of sets is O(n2 + 2mn − n + m). Additionally, the time complexity is
O((n−1)2 · (m−1)) by Definition 3. Therefore, the proposed approach is more effective
for computing the second lower and upper approximations of sets.

The following example illustrates that how to compute the sixth lower and upper
approximations of set by Theorem 4.

Example 4. (Continuation of Example 3) According to Example 2 and Theorem 4, we
obtain

∏
(C −) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
�
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus, we have

XXH(X) =
∏

(C −) · XX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
·
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[
0 1 1

]T
;

XXL(X) =
∏

(C −) � XX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
�
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[
0 0 1

]T
.

Therefore, XH(X) = {x2, x3} and XL(X) = {x3}.
In Example 4, all elements in

∏
(C −) need to be computed based on

∏
(C −) =

MC − �MT
C − . By Theorem 4, there is no need to construct elements in

∏
(C −). Thereby,

the proposed approach is more effective to compute the sixth lower and upper approxi-
mations of sets.

4 Conclusions

In this paper, we have provided effective approaches to constructing approximations of
concepts in dynamic covering approximation spaces. Concretely, we have constructed
type-1 and type-2 characteristic matrices of coverings with the incremental approaches.
Incremental algorithms have been presented for computing the second and sixth lower
and upper approximations of sets. Several examples have been employed to illustrate
that computing approximations of sets could be reduced greatly by using the incremen-
tal approaches.

In the future, we will propose more effective approaches to constructing the type-
1 and type-2 characteristic matrices of coverings. Additionally, we will focus on the
development of effective approaches for knowledge discovery in dynamic covering ap-
proximation spaces.
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Abstract. The key to granular computing is to make use of granules in
problem solving. However, there are different granules at different levels
of scale in data sets having hierarchical scale structures. And in real-world
applications, there may exist multiple types of data in ordered informa-
tion systems. Therefore, the concept of multi-scale ordered information
systems is first introduced in this paper. The lower and upper approxi-
mations in multi-scale ordered information systems are then defined, and
their properties are examined.

Keywords: Granular computing, Granules, Multi-scale information
systems, Ordered information systems, Rough sets.

1 Introduction

The purpose of Granular computing (GrC) is to seek for an approximation
scheme which can effectively solve a complex problem at a certain level of gran-
ulation [23]. The root of GrC comes from the concept of information granulation
which was first introduced by Zadeh in 1979 [31, 32]. Ever since the introduc-
tion of the concept of “GrC”, we have witnessed a rapid development and a fast
growing interest in the topic [1, 2, 13–15, 18, 19, 22, 27–30].

With the view of GrC, a granule is a primitive notion which is a clump of
objects drawn together by the criteria of indistinguishability, similarity or func-
tionality [32]. The set of granules provides a representation of the unit with
respect to a particular level of granularity [24]. An important and common used
model for GrC is partition model proposed by Yao [29]. An equivalence relation
allows us to model the passage from one level of detail to another, but does
not, on its own, model more than two levels of details needed in practice. By
employing the notion of labelled partition, Bittner and Smith [3] developed an
ontologically motivated formal theory of granular partitions which is relatively
comprehensive and useful for granular levels, but it does not address the types of
aggregation commonly used with data mining. In order to represent hierarchical
structure of data measured at different levels of granularities, Keet [12] explored
a formal theory of granularity to build structure of the contents for different types
of granularities. More recently, Wu and Leung [23] developed a new knowledge
representation system, called multi-scale granular labelled partition structure,

D. Miao et al. (Eds.): RSKT 2014, LNAI 8818, pp. 525–534, 2014.
DOI: 10.1007/978-3-319-11740-9_48 c© Springer International Publishing Switzerland 2014
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in which data are represented by different scales at different levels of granu-
lations having a granular information transformation from a finer to a coarser
labelled partition. Hence, the multi-scale information system is a new and inter-
esting topic in the theory of GrC. Recently, Wu and Leung [24] explored optimal
scale selection in multi-scale decision tables from the perspective of granular com-
putation. Gu et al. [6–8] proposed some methods for knowledge acquisition in
consistent or inconsistent multi-scale decision systems. In [9], multi-granulation
rough sets were discussed in multi-scale information systems.

Various methods of GrC concentrating on concrete models in specific contexts
have been proposed over the years. Rough set theory is perhaps one of the most
advanced areas that popularize GrC [10, 11, 14, 18, 19, 27–30]. It was originally
proposed by Pawlak [17] as a formal tool for modelling and processing incomplete
information. However, classical rough set theory is not effective for taking into
account scaling criteria, that is, attributes with preference-ordered domains. To
solve this problem, Greco et al. [5] developed an extension of Pawlak’s rough set
approach, which is called the Dominance-based Rough Set Approach (DRSA).
Presently, work on dominance-based rough set model were developed rapidly. For
example, Greco et al. [4] explored the dominance-based rough fuzzy model by
introducing the concept of DRSA into the fuzzy environment. Shao and Zhang
[21] further proposed an extension of the dominance relation in incomplete or-
dered information systems. Sai et al. [20] discussed data analysis and mining in
ordered information tables. Xu et al. [25] introduced an approach to attribute
reductions in inconsistent ordered information systems. Yang et al. [26] inves-
tigated dominance-based rough set in incomplete interval-valued information
systems, which contain both incomplete and imprecise evaluations of objects.

This paper mainly focuses on the study of knowledge approximations in multi-
scale ordered information systems. The organization of this paper is as follows.
In the next section, we first introduce some basic notions related to ordered infor-
mation systems. The concept of multi-scale ordered information systems and the
corresponding knowledge approximations are explored in Section 3. In Section
4, we investigate some properties of granules in multi-scale ordered information
systems. We then conclude the paper with a summary and outlook for further
research in Section 5.

2 Ordered Information Systems

2.1 Information Systems

The notion of information systems provides a convenient tool for the represen-
tation of objects in terms of their attributes [16].

An information system is a pair (U,A), where U = {x1, x2, . . . , xn} is a non-
empty, finite set of objects called the universe of discourse andA= {a1, a2, . . . , am}
is a non-empty, finite set of attributes, such that a : U → Va for any a ∈ A, i.e.,
a(x) ∈ Va, x ∈ U , where Va = {a(x) : x ∈ U} is called the domain of a [9].
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Any non-empty attribute set B ⊆ A, it determines an indiscernibility relation
on U as follows:

RB = {(x, y) ∈ U × U : a(x) = a(y), ∀a ∈ B}. (1)

Since RB is an equivalence relation on U , it partitions U into a family of disjoint
subsets U/RB of U :

U/RB = {[x]B : x ∈ U}, (2)

where [x]B denotes the equivalence class determined by x w.r.t. B, i.e., [x]B =
{y ∈ U : (x, y) ∈ RB}.

Any X ⊆ U and B ⊆ A, the lower and upper approximations of X w.r.t. the
equivalence relation RB are defined as follows:

RB(X) = {x ∈ U : [x]B ⊆ X}, (3)

RB(X) = {x ∈ U : [x]B ∩X �= ∅}. (4)

2.2 Ordered Information Systems

For an information system (U,A), a ∈ A, if the domain of attribute a is ordered
according to a decreasing or increasing preference, then a is a criterion. It is
assumed that the domain of a criterion a ∈ A is completely pre-ordered by an
outranking relation �a; x �a y means that x is at least as good as y w.r.t.
criterion a [4].

For a subset of attributes B ⊆ A, if ∀a ∈ B, x �a y, then x �B y, that is, x
is at least as good as y w.r.t. all attributes in B.

If all the attributes are criterions, then we say (U,A) is an ordered information
system [21].

For an ordered information system (U,A) and B ⊆ A, a dominance relation
can be defined as:

R≥
B = {(y, x) ∈ U × U : y �B x}. (5)

If (y, x) ∈ R≥
B , then y dominates x w.r.t. B. R≥

B is reflexive, transitive, and
antisymmetric, so it is not an equivalence relation.

The inverse relation of R≥
B will be denoted by R≤

B.

R≤
B = {(y, x) ∈ U × U : x �B y}. (6)

Given B ⊆ A and B = B1 ∪ B2, where attributes set B1 is according to
increasing preference, and B2 is according to decreasing preference, the gran-
ules of knowledge induced by the dominance relation R≥

B are the set of objects
dominating x,

[x]≥B = {y ∈ U : (y, x) ∈ R≥
B}

= {y ∈ U : f(y, a1) ≥ f(x, a1)(∀a1 ∈ B1)

and f(y, a2) ≤ f(x, a2)(∀a2 ∈ B2)}
= {y ∈ U : (x, y) ∈ R≤

B}.
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And the granules of knowledge induced by the dominance relation R≤
B are the

set of objects dominated by x,

[x]≤B = {y ∈ U : (y, x) ∈ R≤
B}

= {y ∈ U : f(y, a1) ≤ f(x, a1)(∀a1 ∈ B1)

and f(y, a2) ≥ f(x, a2)(∀a2 ∈ B2)}
= {y ∈ U : (x, y) ∈ R≥

B}.

[x]≥B and [x]≤B are called the B-dominating set and the B-dominated set w.r.t.
x ∈ U , respectively.

For any X ⊆ U and B ⊆ A, the lower and upper approximations of X w.r.t.
the dominance relation R≥

B are defined as follows:

R≥
B(X) = {x ∈ U : [x]≥B ⊆ X}, (7)

R≥
B(X) = {x ∈ U : [x]≥B ∩X �= ∅}. (8)

The lower approximation R≥
B(X) is the set of objects which dominating set is

a subset of X . And the upper approximation R≥
B(X) is the set of objects which

dominating set has a nonempty intersection with X .
Similarly, for X ⊆ U and B ⊆ A, one can define the lower and upper approx-

imations of X w.r.t. the dominance relation R≤
B as follows:

R≤
B(X) = {x ∈ U : [x]≤B ⊆ X}, (9)

R≤
B(X) = {x ∈ U : [x]≤B ∩X �= ∅}. (10)

The lower approximation R≤
B(X) is the set of objects which dominated set is

subset of X . And the upper approximation R≤
B(X) is the set of objects which

dominated set has a nonempty intersection with X .

3 Multi-scale Ordered Information Systems

3.1 Multi-scale Information Systems

A multi-scale information system [23] is a tuple S = (U,A), where U = {x1, x2,
. . . , xn} is a non-empty, finite set of objects called the universe of discourse,
A = {a1, a2, . . . , am} is a non-empty, finite set of attributes, and each aj ∈ A
is a multi-scale attribute, i.e., for the same object in U , attribute aj can take
on different values at different scales. We assume that all the attributes have
the same number I of levels of granulations. Hence a multi-scale information
system can be represented as a system (U, {akj : k = 1, 2, . . . , I, j = 1, 2, . . . ,m}),
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where akj : U → V k
j is a surjective function and V k

j is the domain of the k-

th scale attribute akj . For 1 ≤ k ≤ I − 1, there exists a surjective function

gk,k+1
j : V k

j → V k+1
j , such that ak+1

j = gk,k+1
j ◦ akj , i.e.

ak+1
j (x) = gk,k+1

j (akj (x)), (11)

where gk,k+1
j is called a granular information transformation function [23].

For k ∈ {1, 2, . . . , I}, we denote Ak = {akj : j = 1, 2, . . . ,m}. Then a multi-
scale information system S = (U,A) can be decomposed into I information
systems Sk = (U,Ak), k = 1, 2, . . . , I.

3.2 Multi-scale Ordered Information Systems

For a multi-scale information system S = (U,A), if S1 = (U,A1) is an or-
dered information system, and the granular information transformation func-
tions g1,2j , j = 1, 2, . . . ,m, are order preserving, then S2 = (U,A2) is an ordered

information system. Furthermore, if gk,k+1
j , j = 1, 2, . . . ,m, k = 1, 2, . . . , I − 1,

are order preserving, then Sk = (U,Ak), k = 2, 3, . . . , I, are ordered informa-
tion systems. If Sk = (U,Ak), k = 1, 2, . . . , I, are ordered information systems,
S = (U,A) is called a multi-scale ordered information system.

Example 1. Table 1 depicts a multi-scale ordered information system, where
U = {x1, x2, . . . , x8}, A = {a1, a2}. From the table we have Sk = (U,Ak), k =
1, 2, 3, this information system has three levels of granulations.

Table 1. A multi-scale ordered information system

U a11 a12 a21 a22 a31 a32
x1 95 93 5 5 1 1
x2 88 91 4 5 1 1
x3 92 86 5 4 1 1
x4 83 82 4 4 1 1
x5 76 84 3 4 1 1
x6 54 65 1 2 0 1
x7 67 76 2 3 1 1
x8 52 56 1 1 0 0

Given a multi-scale ordered information system (U, {Ak : k = 1, 2, . . . , I}),
1 ≤ k ≤ I, Sk = (U,Ak) is an ordered information system. For Bk ⊆ Ak and
X ⊆ U , the lower and upper approximations of X w.r.t. the dominance relation
R≥

Bk are defined as follows:

R≥
Bk(X) = {x ∈ U : [x]≥

Bk ⊆ X}, (12)

R≥
Bk(X) = {x ∈ U : [x]≥

Bk ∩X �= ∅}. (13)



530 S.-M. Gu et al.

And the lower and upper approximations of X w.r.t. the dominance relation
R≤

Bk are defined as follows:

R≤
Bk(X) = {x ∈ U : [x]≤

Bk ⊆ X}, (14)

R≤
Bk(X) = {x ∈ U : [x]≤

Bk ∩X �= ∅}. (15)

4 Properties of Approximations

Proposition 1. Given amulti-scale ordered information system (U,A)=(U, {Ak :
k = 1, 2, . . . , I}), for Bk ⊆ Ak andX,Y ⊆ U , the lower and upper approximations

ofX w.r.t. the dominance relation R≥
Bk satisfy the following additional properties:

(GLD) R≥
Bk(X) =∼ R≥

Bk(∼ X),

(GUD) R≥
Bk(X) =∼ R≥

Bk(∼ X),

(GL1) R≥
Bk(∅) = ∅,

(GU1) R≥
Bk(∅) = ∅,

(GL2) R≥
Bk(U) = U ,

(GU2) R≥
Bk(U) = U ,

(GL3) R≥
Bk(X ∩ Y ) = R≥

Bk(X) ∩R≥
Bk(Y ),

(GU3) R≥
Bk(X ∪ Y ) = R≥

Bk(X) ∪R≥
Bk(Y ),

(GL4) X ⊆ Y ⇒ R≥
Bk(X) ⊆ R≥

Bk(Y ),

(GU4) X ⊆ Y ⇒ R≥
Bk(X) ⊆ R≥

Bk(Y ),

(GL5) R≥
Bk(X ∪ Y ) ⊇ R≥

Bk(X) ∪R≥
Bk(Y ),

(GU5) R≥
Bk(X ∩ Y ) ⊆ R≥

Bk(X) ∩R≥
Bk(Y ),

(GL6) R≥
Bk(X) ⊆ X,

(GU6) X ⊆ R≥
Bk(X).

Proposition 2. Given a multi-scale ordered information system (U,A)=(U, {Ak:
k = 1, 2, . . . , I}), for Bk ⊆ Ak and X,Y ⊆ U , then the lower and upper approxi-

mations of X w.r.t. the dominance relation R≤
Bk satisfy the following properties:

(LLD) R≤
Bk(X) =∼ R≤

Bk(∼ X),

(LUD) R≤
Bk(X) =∼ R≤

Bk(∼ X),

(LL1) R≤
Bk(∅) = ∅,

(LU1) R≤
Bk(∅) = ∅,

(LL2) R≤
Bk(U) = U ,

(LU2) R≤
Bk(U) = U ,

(LL3) R≤
Bk(X ∩ Y ) = R≤

Bk(X) ∩R≤
Bk(Y ),



Knowledge Approximations in Multi-scale Ordered Information Systems 531

(LU3) R≤
Bk(X ∪ Y ) = R≤

Bk(X) ∪R≤
Bk(Y ),

(LL4) X ⊆ Y ⇒ R≤
Bk(X) ⊆ R≤

Bk(Y ),

(LU4) X ⊆ Y ⇒ R≤
Bk(X) ⊆ R≤

Bk(Y ),

(LL5) R≤
Bk(X ∪ Y ) ⊇ R≤

Bk(X) ∪R≤
Bk(Y ),

(LU5) R≤
Bk(X ∩ Y ) ⊆ R≤

Bk(X) ∩R≤
Bk(Y ),

(LL6) R≤
Bk(X) ⊆ X,

(LU6) X ⊆ R≤
Bk(X).

The lower and upper approximations of X w.r.t. the dominance relation R≥
Bk

satisfy all the properties of usual lower and upper approximations. Obviously, the
same holds for the approximations induced by the reverse relation. Moreover, the
multi-scale ordered approximations satisfy the following additional properties.

Proposition 3. For a multi-scale ordered information system (U, {Ak : k =
1, 2, . . . , I}),1 ≤ k ≤ I − 1, x ∈ U and Bk ⊆ Ak,

(1) [x]≥
Bk ⊆ [x]≥

Bk+1 ,

(2) [x]≤
Bk ⊆ [x]≤

Bk+1 .

Proof. (1) ∀x ∈ U , let Bk = Bk
1 ∪Bk

2 , where attributes set B
k
1 is according to

an increasing preference, and Bk
2 is according to a decreasing preference.

[x]≥
Bk = {y ∈ U : ∀akj ∈ Bk

1 , a
k
j (y) ≥ akj (x) and ∀akj ∈ Bk

2 , a
k
j (y) ≤ akj (x)}

⊆ {y ∈ U : ∀akj ∈ Bk
1 , g

k,k+1
j (akj (y)) ≥ gk,k+1

j (akj (x))

and ∀akj ∈ Bk
2 , g

k,k+1
j (akj (y)) ≤ gk,k+1

j (akj (x))}
= {y ∈ U : ∀ak+1

j ∈ Bk+1
1 , ak+1

j (y) ≥ ak+1
j (x)

and ∀ak+1
j ∈ Bk+1

2 , ak+1
j (y) ≤ ak+1

j (x)}
= [x]≥

Bk+1 .

Therefore [x]≥
Bk ⊆ [x]≥

Bk+1 .
(2) It is similar to the Proof of (1).

Proposition 4. Given a multi-scale ordered information system (U, {Ak : k =
1, 2, . . . , I}), 1 ≤ k ≤ I − 1, for Bk ⊆ Ak and X ⊆ U , the lower and upper

approximations of X w.r.t. the dominance relation R≥
Bk satisfy the following

properties:
(1) R≥

Bk+1(X) ⊆ R≥
Bk(X),

(2) R≥
Bk+1(X) ⊇ R≥

Bk(X).

Proof. (1) ∀x ∈ U,
x ∈ R≥

Bk+1(X)⇐⇒ [x]≥
Bk+1 ⊆ X

=⇒ [x]≥
Bk ⊆ X

⇐⇒ x ∈ R≥
Bk(X).



532 S.-M. Gu et al.

Therefore R≥
Bk+1(X) ⊆ R≥

Bk(X).

(2) ∀x ∈ U,

x ∈ R≥
Bk(X)⇐⇒ [x]≥

Bk ∩X �= ∅
=⇒ [x]≥

Bk+1 ∩X �= ∅
⇐⇒ x ∈ R≥

Bk+1(X).

Therefore R≥
Bk+1(X) ⊇ R≥

Bk(X).

Proposition 5. Given a multi-scale ordered information system (U, {Ak : k =
1, 2, . . . , I}), 1 ≤ k ≤ I − 1, for Bk ⊆ Ak and X ⊆ U , the lower and upper

approximations of X w.r.t. the dominance relation R≤
Bk satisfy the following

properties:
(1) R≤

Bk+1(X) ⊆ R≤
Bk(X),

(2) R≤
Bk+1(X) ⊇ R≤

Bk(X).

5 Conclusion

In this paper, we have developed a new knowledge representation system called
a multi-scale ordered information system. A multi-scale ordered information sys-
tem can be used to represent data sets having hierarchical scale structures mea-
sured at different levels of granulations in which every attributes is criteria.
By using dominance relations to construct the dominating classes, we also intro-
duced knowledge approximations in multi-scale ordered information systems and
examined some basic properties. Our future work will focus on new approaches
to knowledge acquisition in multi-scale ordered information systems.
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Abstract. This paper examines an addition strategy for constructing
an attribute reduct based on three-way classification of attributes. Prop-
erties of three-way classification of attributes are used to design an algo-
rithm for constructing a reduct by using useful attributes. The algorithm
makes sure that every attribute to be added, together with already added
attributes, will form a partial reduct (i.e., a subset of a reduct). Based on
the results of this paper, it is possible to study a wide class of addition
based reduct construction algorithms. Finally, variations of the proposed
algorithm are discussed.

Keywords: Three-way classification, reduct construction, addition
strategy.

1 Introduction

Reduct construction is one of the most important tasks in rough set theory.
It is typically assumed that a finite set of objects is described by a finite set
of attributes. The values of objects on these attributes can be expressed by
an information table, with rows representing objects and columns representing
attributes. An attribute reduct is a minimal subset of attributes that provides
the same descriptive ability as the entire set of attributes.

There may be more than one reduct in an information table. Many methods for
finding the set of all reducts or a single reduct have been proposed [3, 4, 6–8, 15,
17]. Wong and Ziarko [11] pointed out that finding the set of all reducts or finding
a reduct with a minimum number of attributes is an NP problem. Yao et al. [16]
formulated reduct construction as a search problem and classified all reduct
construction algorithms into three types according to the search strategies used:
(1) deletion strategy, (2) addition-deletion strategy and, (3) addition strategy.
Deletion strategy based algorithms try to construct a reduct from all attributes
by deleting redundant attributes, addition-deletion based algorithms construct
a reduct from the empty set or core set of attribute by first adding attributes
and then deleting redundant attributes, and the third type, known as addition
based algorithms, only has the addition phase without the deletion step.

The main objective of this paper is to revisit the addition strategy and to
present a reduct construction algorithm from the view point of three-way clas-
sification of attributes. Three-way classification of attributes may be considered
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DOI: 10.1007/978-3-319-11740-9_49 c© Springer International Publishing Switzerland 2014



536 C. Gao and Y. Yao

as an example of three-way decisions [12, 13]. An attribute is called a core at-
tribute if it is in all reducts, called a useful attribute if it is in at least one
reduct, and called a useless attribute if it is in none of the reducts [14]. The
sets of core attributes, useless attributes, and difference of useful attributes and
core attributes form a three-way classification of attributes. Similar notions have
been used by many authors. For example, Wei et al. [10] referred to the three
classes of attributes as the sets of absolutely necessary attributes, relatively nec-
essary attributes, and absolutely unnecessary attributes, respectively. Nguyen
and Nguyen [2] named the sets of useful attributes and useless attributes as
the set of reductive attributes and redundant attributes, respectively. Intuitively
speaking, addition strategy for reduct construction explores the set of useful at-
tributes. Based on the basic results of this paper, it is possible to study a wide
class of addition based reduct construction algorithms.

2 Reducts in an Information Table

In many data analysis applications, information and knowledge is stored and
represented in an information table [4].

Definition 1. (Information table) An information table (also called an infor-
mation system) is the following tuple:

S = (U,AT, {Va | a ∈ AT }, {Ia | a ∈ AT }),

whereU is a finite nonempty set of objects,AT is a finite nonempty set of attributes,
Va is a nonempty set of values for every attribute a in AT , and Ia : U → Va is an
information mapping. For every x ∈ U , an attribute a ∈ AT , and a value v ∈ Va,
Ia(x) = v means that the object x has the value v on attribute a.

Two objects are discernible if their values are different on at least one at-
tribute. Skowron and Rauszer [7] suggested a matrix representation of discerni-
bility, called a discernibility matrix, in which each cell is the set of attributes
that discern a pair of objects.

Definition 2. (Discernibility matrix) Given an information table S, its dis-
cernibility matrix M = (m(x, y)) is an |U | × |U | matrix, in which the element
m(x, y) for an object pair (x, y) ∈ U × U is defined by:

m(x, y) = {a ∈ AT | Ia(x) �= Ia(y)}.

Objects x and y can be distinguished by any attribute in m(x, y). The dis-
cernibility matrix M is a symmetric and square matrix, i.e., m(x, y) = m(y, x),
and all elements on principal diagonal are empty set, i.e., m(x, x) = ∅, x ∈ U .
Therefore, it is sufficient to consider only the lower triangle or the upper triangle
of M . As another formulation,M also can be expressed as a set consisting of all
distinct and nonempty elements, i.e., M = {m(x, y) �= ∅ | x, y ∈ U}.
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Given a subset of attributes A ⊆ AT , an indiscernibility relation IND(A) ⊆
U × U is defined by:

IND(A) = {(x, y) ∈ U × U | ∀a ∈ A, Ia(x) = Ia(y)}.
For any two objects x, y ∈ U , if (x, y) ∈ IND(A), then x and y are indiscernible
based on the attribute set A.

Definition 3. (Reduct) An attribute set R ⊆ AT of an information table S is
called an attribute reduct if R satisfies the following two conditions:

(i). IND(R) = IND(AT );

(ii). For any a ∈ R, IND(R− {a}) �= IND(AT ).

Condition (i) is called the jointly sufficient condition and condition (ii) the in-
dividually necessary condition. On the one hand, condition (i) indicates the joint
sufficiency of the attribute set R. The object pairs that cannot be distinguished
by R also cannot be distinguished by AT , and vice versa. On the other hand, the
condition (ii) indicates that each attribute in R is individually necessary. In other
words, there exists at least one object pair that cannot be distinguished when any
attribute a ∈ R is deleted from R, although the pair can be distinguished by AT .
The set of all reducts of an information table S is denoted by RED(S).

Skowron and Rauszer [7] suggested an alternative characterization of a reduct
in terms of the discernibility matrix as shown by the following theorem.

Theorem 1. Given the discernibility matrix M of an information table S. An
attribute set R is an attribute reduct if and only if

(i). ∀(x, y) ∈ U × U [m(x, y) �= ∅ ⇒ R ∩m(x, y) �= ∅];
(ii). ∀a ∈ R, ∃(x, y) ∈ U × U [m(x, y) �= ∅ ∧ ((R − {a}) ∩m(x, y) = ∅)].
Condition (i) shows that R is jointly sufficient for distinguishing all discernible

object pairs. In fact, the set of attributes formed by the union of all elements
of the discernibility matrix satisfies condition (i). Condition (ii) shows that each
attribute in R is individually necessary. Although the result of Theorem 1 pro-
vides a criterion to test if a subset of attributes is a reduct, it does not directly
offer a method to compute a reduct. Many authors proposed and studied various
algorithms to construct a reduct based on the discernibility matrix [4, 7, 9, 17].

In the rest of the paper, we use m for m(x, y) and use the set form M =
{m(x, y) | ∀x, y ∈ U × U ∧ m(x, y) �= ∅} for representing the discernibility
matrix, if there is no confusion. The set of all reducts of an information table S
is also denoted by RED(M).

Example 1. An information table, taken from [16], is given in Table 1. The table
has five attributes and seven objects, that is, U = {o1, o2, o3, o4, o5, o6, o7}, AT =
{a, b, c, d, e}, Va = {0, 1}, Vb = {0, 1, 2, 3}, Vc = {0, 1, 2}, Vd = {0, 1}, Ve =
{0, 1, 2}, Ib(o6) = 3 and so on. The discernibility matrix of Table 1 is given in
Table 2. The set representation of the discernibility matrix is:
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M ={{b, c}, {b, d}, {b, e}, {c, d}, {d, e}, {a, b, d},
{b, c, e}, {b, d, e}, {a, b, c, d}, {a, b, c, e},
{a, b, d, e}, {b, c, d, e}, AT }.

The advantage of the set representation is that we only consider distinct elements
of the matrix.

Table 1. An information table

a b c d e

o1 0 0 0 1 1
o2 0 1 2 0 0
o3 0 1 1 1 0
o4 1 2 0 0 1
o5 0 2 2 1 0
o6 0 3 1 0 2
o7 0 3 1 1 1

Table 2. Discernibility Matrix of Table 1

o1 o2 o3 o4 o5 o6 o7
o1 - - - - - - -
o2 {b, c, d, e} - - - - - -
o3 {b, c, e} {c, d} - - - - -
o4 {a, b, d} {a, b, c, e} AT - - - -
o5 {b, c, e} {b, d} {b, c} {a, c, d, e} - - -
o6 {b, c, d, e} {b, c, e} {b, d, e} {a, b, c, e} {b, c, d, e} - -
o7 {b, c} {b, c, d, e} {b, e} {a, b, c, d} {b, c, e} {d, e} -

3 Three-Way Classification of Attributes

Given an information table S with the discernibility matrixM , according to the
set of all reducts RED(M), attributes in AT can be divided into three classes.

Definition 4. (Three-way Classification of Attributes) Given an information
table S, attributes in AT can be divided into three pair-wise disjoint classes:

CORE =
⋂

RED(M),

USEFUL-NC =
⋃

RED(M)−
⋂

RED(M),

USELESS = AT −
⋃

RED(M).

Attributes in CORE,USEFUL-NC,USELESS are called core, useful non-core and
useless attributes, respectively. The set of attributes USEFUL =

⋃
RED(M) =

CORE ∪ USEFUL-NC is the set of all useful attributes.
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The following properties hold:

(A1) CORE ∪ USEFUL-NC ∪ USELESS = AT and they are pair-wise disjoint;

(A2) Every attribute in USEFUL-NC appears in at least one reduct, but not in
all reducts;

(A3) All attributes in USELESS does not appear in any reduct;

(A4) Each attribute in CORE appears in every reduct;

(A5) RED(M ′) = RED(M), where M ′ = {m−USELESS | m ∈M}.

Proof. Properties (A1) to (A4) are easy to prove, we only prove (A5). By defini-
tion of M ′, every element m′ ∈M ′ is calculated by m′ = m−USELESS. Thus,
m′ ⊆ m.

RED(M ′) ⊆ RED(M): Assume R ∈ RED(M ′). By condition (i) of Theorem 1,
R∩m′ �= ∅. Since m′ ⊆ m, we get R∩m �= ∅. Thus, R satisfies the condition (i)
of Theorem 1 for M . Consider an attribute a ∈ R. By the condition (ii) of
Theorem 1 for M ′, we conclude that exists at least one m′ ∈ M ′ such that
(R − {a}) ∩m′ = ∅. According to (A3), we know a /∈ USELESS. Thus, (R −
{a})∩m = ∅. That is, R satisfies condition (ii) of Theorem 1 for M . Therefore,
R ∈ RED(M).

RED(M) ⊆ RED(M ′): Assume R ∈ RED(M). By condition (i) of Theorem 1,
we have R∩m �= ∅ for all m ∈M . By (A3), R∩USELESS = ∅. We can conclude
that R ∩m′ = R ∩ (m − USELESS) �= ∅ for all m′ ∈ M ′. Thus, condition (i)
of Theorem 1 holds for R with respect to M ′. Since R satisfies condition (ii) of
Theorem 1 for M , by m′ ⊆ m, thus, R satisfies condition (ii) for Theorem 1 for
M ′. This means that R ∈ RED(M ′) �

Many authors discussed the classification of attributes [4, 9, 10, 16, 17] in an
explicit or implicit way. A widely used classification is the division of attributes
into core attributes and non-core attributes. Wei et al. [10] classified attributes
into three classes and proposed a method for attribute reduction in information
tables.

4 Operations for Discernibility Matrix

Skowron and Rauszer [7] introduced absorption operations for a discernibility
matrix. Yao and Zhao [15] applied the operations for simplifying the discernibil-
ity matrix.

Definition 5. (Element absorption, Discernibility matrix absorption, Absorbed
discernibility matrix) Given a discernibility matrix M , an element m1 ∈M can
absorb another element m2 ∈M , if m1 ⊆ m2. The discernibility matrix absorp-
tion is a sequence of all possible element absorptions. The result of discernibility
matrix absorption on M is a new matrix M ′, which is obtained by replacing all
the absorbed elements by the absorbing elements in M and is called absorbed
discernibility matrix of M .
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By definition, ∅ �=M ′ ⊆M . In the set representation of discernibility matrix,
elements can be removed fromM if they can be absorbed by any other elements
in M . This removel will not affect the set of all reducts RED(M) [7]. In other
words, if M ′ is the absorbed discernibility matrix of the original matrixM , then
RED(M ′) = RED(M). Yao and Zhao [15] suggested another operation called
attributes deletion, which will affect the set of all reduct, but make sure the
existance of at least one reduct as shown by the following lemma.

Lemma 1. Given a discernibility matrix M , W =
⋃

m∈M m and A ⊆ W , if the
set of attributesW−A is jointly sufficient (i.e., ∀m ∈M,m �= ∅ ⇒ (W−A)∩m �=
∅), thenRED(M ′) �= ∅ andRED(M ′) ⊆ RED(M), whereM ′ = {m−A |m ∈M}.

According to the lemma, there exists at least one reduct of M in the new
matrix M ′ after the deleting the set of attributes.

Definition 6. (An attribute-induced group of sets of attributes) Given a dis-
cernibility matrix M , for an attribute a in M (i.e., a ∈ ⋃m∈M m), the family of
sets of attributes defined by:

Group(a) = {m ∈M | a ∈ m}.
is called the a-induced group of sets of attributes

By inducing absorption and attribute-induced group, we give the next lemma.

Lemma 2. Given a discernibility matrix M , if M ′ is the absorbed discernibil-
ity matrix of M , then

⋃
m∈M ′ m = USEFUL, i.e., every attribute in absorbed

discernibility matrix is useful.

Proof.
⋃

m∈M ′ m ⊇ USEFUL: ByDefinition 4, we know ∀a ∈ USEFUL, and then
a ∈ ⋃

RED(M). Since RED(M ′) = RED(M), we can get a ∈ ⋃
RED(M ′) ⊆⋃

m∈M ′ m.⋃
m∈M ′ m ⊆ USEFUL: Assume a ∈ ⋃

m∈M ′ m. Since M ′ is the absorbed
discernibility matrix, ∀m ∈ (M ′ − Group(a)), ∀g ∈ Group(a), m � g, i.e.,
m− g �= ∅. By expressing g = {a} ∪A, we get m−A �= ∅. By Lemma 1, we get
RED(M1) ⊆ RED(M ′), whereM1 = {m−A | m ∈M ′}. After removing A from
M , we obtain M1 and, the original element g = {a} ∪ A becomes a singleton
subset {a}. By using {a} to absorb elements of Group(a) in M1, all elements of
Group(a) can be absorbed by {a}. After this absorption, we denote the result
discernibility matrix as M2. Since this absorption will not change any reduct,
we have RED(M2) = RED(M1).

Now, we prove M2 = M ′ ∪ {{a}}. Consider M2, it can be expressed as the
union of two part:M2 = P1∪P2. Each element in P1 includes attribute a and each
element in P2 does not include a. In P1, there is only one element {a}. In P2, all
elements have been deleted by A, i.e., P2 = {m′ − A | m′ ∈ (M ′ −Group(a))}.
Since ∀m′ ∈ (M ′ − Group(a)) does not include a and g = {a} ∪ A, it fol-
lows m′ − A = m′ − g. Therefore, P2 = {m′ − A | m′ ∈ (M ′ − Group(a))} =
{m′ − g | m′ ∈ (M ′ − Group(a))}. Thus, M2 = P1 ∪ P2 = {{a}} ∪ P2. It can
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be concluded that RED({{a}} ∪ P2) = RED(M2) = RED(M1) ⊆ RED(M ′) =
RED(M). Every attribute in singleton subset in discernibility matrix is a core
attribute [7]. Therefore, a is a core attribute in ({{a}} ∪ P2), this means there
exists R ∈ RED({{a}} ∪ P2), such that a ∈ R and R ∈ RED(M ′). Thus, a is
useful, i.e., a ∈ USEFUL. �

Lemma 2 states an important property of the set of useful attribute USEFUL.
Since CORE is easy to compute by collecting all attributes in singleton subsets
in M . Thus, Lemma 2 essentially tells us the property of USEFUL-NC. Based
on its proof, the next lemma can be stated, which gives the condition for testing
whether an attribute is useful.

Lemma 3. Given a discernibility matrix M , an attribute a ∈ USEFUL if and
only if there exists a g ∈ Group(a), such that g cannot be absorbed by any other
elements in M .

Proof. Suppose M ′ is the absorbed discernibility matrix of M .
⇐: If there exists a g ∈ Group(a), such that g cannot be absorbed by any

other elements in M , then g will be in M ′. By Lemma 2, a ∈ USEFUL.
⇒: Assume a ∈ USEFUL. By Lemma 2, a ∈ ⋃g∈M ′ g. This means there exists

a g ∈ M ′ that a ∈ g. Since M ′ is already absorbed, g cannot be absorbed by
any other elements in M . �

Example 2. Consider the discernibility matrix M given in Table 2. We have:

{b, c} absorbs {b, c, e}, {a, b, c, d}, {a, b, c, e}, {b, c, d, e} and AT.
{b, d} absorbs {a, b, d}, {b, d, e}, {a, b, c, d}, {a, b, d, e}, {b, c, d, e} and AT.
{b, e} absorbs {b, c, e}, {b, d, e}, {a, b, c, e}, {a, b, d, e}, {b, c, d, e} and AT.
{c, d} absorbs {a, b, c, d}, {b, c, d, e} and AT.
{d, e} absorbs {b, d, e}, {a, b, d, e}, {b, c, d, e} and AT.

Therefore, the absorbed discernibility matrix is

M ′ = {{b, c}, {b, d}, {b, e}, {c, d}, {d, e}}.

The classifications of attributes are given by:

CORE = ∅,USEFUL = {b, c, d, e},USELESS = {a}.

The results illustrate the basic ideas introduced in this section.

5 Addition Strategy for Reduct Construction

Given an information table or a discernibility matrix, the addition strategy for
constructing a reduct starts from the empty set or the CORE and adds one
attribute at a time sequentially.
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5.1 Construction of a Partial Reduct by Addition of Attributes

To design an algorithm based on the addition strategy, simply knowing whether
an attribute is useful or not is insufficient. Attributes may have some depen-
dencies among each other. For instance, given a discernibility matrix M , if
RED(M) = {{b, d}, {a, c, e}}, both attribute b and c are useful, but there does
not exist a reduct containing b and c. This means that we cannot simply add all
useful attributes to construct a reduct, since some attributes added earlier may
become unnecessary. Thus, an extra step of deletion must be performed [16].

Definition 7. (Partial reduct, Super reduct) A set of attribute R′ is called a
partial reduct, if there exists a reduct R, such that R′ ⊆ R. A subset of attribute
R′ is called a super reduct, if there exists a reduct R, such that R′ ⊇ R.

An important property of a partial reduct is that each attribute in it is nec-
essary. To avoid attribute deletion, one must make sure that each addition of
an attribute will form a partial reduct. Consequently, the deletion step is not
needed.

Once an attribute a ∈ ⋃m∈M ′ m is chosen to be added into a partial reduct,
those elements including a can be removed from M ′, because those object pairs
associated with elements including a can be discerned by a. A pivotal step given
by Theorem 2 is needed to ensure each added attribute will be in a partial reduct.

Theorem 2. Given a discernibility matrix M , if an attribute a ∈ AT is useful,
then there exists g ∈ Group(a) satisfying the following properties:

(i). ∀m ∈ (M −Group(a)) [m �= ∅ ⇒ (m− g) �= ∅];
(ii). RED(Ms ∪ {{a}}) ⊆ RED(M), Ms = {m− g | m ∈ (M −Group(a))}.

Proof. (i): Assume property (i) does not hold, i.e., ∀g ∈ Group(a), ∃m ∈ (M −
Group(a)) [m �= ∅ ∧ (m − g) = ∅]. We now prove this leads to a contradiction.
By assumption that (m− g) = ∅, we can obtain m ⊆ g. Thus g can be absorbed
by m. By the assumption, for every g ∈ Group(a), there exists an m ∈ (M −
Group(a)) absorbing it. Therefore, there is no element containing attribute a in
the absorbed discernibility matrix M ′. Since RED(M ′) = RED(M), there does
not exist a reduct that contains attribute a. By the definition of USELESS, it
can be concluded that a is useless, which conflicts with the given condition that
a is useful. Hence, property (i) must hold.

(ii): According to the proof of Lemma 2, it is easy to prove that property (ii)
holds. �

Theorem 2 tells us that once a useful attribute a ∈ AT has been chosen
to construct a reduct, this attribute will be a singleton subset in the modified
discernibility matrixMs∪{{a}}, in which a is a core attribute that can be added
into a partial reduct.

Since the two actions, removingGroup(a) fromM and deleting A fromM , will
be taken after adding an useful attribute a into a partial reduct, such actions
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imply that for all R ∈ RED(Ms), (R ∪ {a}) ∈ RED(M). The procedure of
convertingM into Ms makes every added attribute be in a partial reduct. Thus,
by continually performing this routine, one reduct in RED(M) will be computed.

Furthermore, Theorem 2 is not limited to the absorbed discernibility ma-
trix. An unabsorbed discernibility matrix also can be used to find a reduct by
property (ii). Therefore, Theorem 2 provides a crucial criterion to design reduct
construction algorithms based on addition strategy. Thereom 2 can also deal
with a relative discernibility matrix. Algorithms designed by Thereom 2, when
applied to a relative discernibility matrix, can produce a relative reduct. Miao
et al. [1] discussed three kinds of criteria to produce respective relative discerni-
bility matrices, which can be used to compute relative reducts by the proposed
algorithms.

5.2 An Addition Strategy Based Algorithm

By the analysis so far, Theorem 2 suggests an algorithm for reduct construction
based on an addition strategy. The detailed steps are given in Algorithm 1.

Algorithm 1. An Addition Strategy based Algorithm for Constructing a
Reduct
input : A discernibility matrix M .
output: A reduct R.

(1) R = ∅ or CORE, CA = AT or AT − USELESS;
(2) while CA �= ∅ and M �= ∅ do

(2.1) Compute fitness values of all attributes in CA by using a fitness
function σ;
(2.2) Select an attribute a ∈ CA according to its fitness;
(2.3) M = M −Group(a);
(2.4) CA = CA− {a};
(2.5) if a is useful then

(2.5.1) R = R ∪ {a};
(2.5.2) Compute fitness values of all elements in Group(a) by using a
fitness function ξ;
(2.5.3) Sort Group(a) according to fitness;
(2.5.4) for i = 1 : |Group(a)|, gi ∈ Group(a) do

(2.5.4.1) if gi can not be absorbed in M then
(2.5.4.1.1) CA = CA− gi;
(2.5.4.1.2) M = {m− gi | m ∈ M};
(2.5.4.1.3) break;

(3) Output R.

There are two fitness functions used in Algorithm 1, that is, σ : AT → ,
and ξ(a) : Group(a) → ,, respectively. For fitness function, frequency-besed
or entropy-based ones are widely used. For σ, a simple frequency-besed and an
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entropy-based fitness function can be defined as σ(a) = |{m ∈M | a ∈ m}| and
σ(a) = H(a) = −∑v∈Va

p(v) log p(v), respectively. For ξ, it is different from
σ. Fitness function ξ is used to calculate fitness value of elements in attribute-
induced group, rather than attribute itself. However, the frequency-based strat-
egy and entropy-based strategy still can be used to design ξ. For example, a
frequency-based has been given by Yao et al. [16]: ξ(gi) = |{m ∈M |m∩gi �= ∅}|.

5.3 Variations of the Proposed Algorithm

Lemma 3 provides an approach to test whether an attribute is useless or not.
It works on both the original discernibility matrix and absorbed discernibility
matrix.

On the one hand, the procedure of Algorithm 1 can be simplified when we use
absorbed discernibility matrix. If we absorb the discernibility matrix every time
before adding an attribute into a partial reduct, according to Lemma 2, every
attribute in absorbed discernibility matrix is a useful attribute, then step (2.5),
(2.5.4), (2.5.4.1), and (2.5.4.1.3) can be removed from Algorithm 1. Actually, the
simplified algorithm is essentially equal to an algorithm proposed by Zhao and
Wang [17].

On the other hand, the given algorithm can be generalized by replacing the
set representation of discernibility matrix to a table representation. The table
representation of discernibility matrix is the one which is expressed by a table
like Table 2. Compared with the table representation one, the set representation
discernibility matrix loses the position information in table which stands for the
object pair. Thus, by using table representation discernibility matrix, the reduct
construction procedure is the simplification to discernibility matrix [15].

5.4 Time Complexity Analysis

The complexity of the proposed method depends on two parts, i.e., the con-
struction of the discernibility matrix and construction of a reduct. The time
complexity to calculate the discernibility matrix is O(|AT ||U |2). For the pro-
posed reduct construction algorithm, within the while loop of step (2), ac-
cording to Lemma 3, to test whether an attribute a is useless or not needs
|Group(a)| ∗ |M − Group(a)| ∗ |AT | comparisons. Thus the time complexity of
step (2.5) is O(|AT ||U |4). Similarly, the time complexity from step (2.5.4) to
step (2.5.4.1.3) is O(|AT ||U |4). Third, the while loop of step (2) will be exe-
cuted for Min(|AT |, |M |) number of times. Finally, the overall time complexity
of Algorithm 1 is O(Min(|AT |, |U |2) ∗ |AT ||U |4).

By using certain fitness functions of σ and ξ, this algorithm may be improved.
For example, when the fitness function ξ always chooses the first gi ∈ Group(a)
which satisfies step (2.5), and because during the calculation of step (2.5) we get
such gi, then the loop of step (2.5.4) can be removed. This modification reduces
|Group(a)| ∗ |M − Group(a)| ∗ |AT | comparisons. However, it does not change
the time complexity of algorithm.
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In comparison with the algorithm proposed in [17], Algorithm 1 has a lower
time complexity and needs not to do absorption operation before adding an
attribute. During the construction procedure, the discernibility matrix will be
shrinked. Consequently, less number of elements needs to be compared. In com-
parison with the algorithm proposed in [15], Algorithm 1 needs less storage space,
because it is unnecessary to store the entire discernibility matrix.

6 Conclusion

Reduct construction algorithms play an important role in data mining and data
analysis. When the number of attributes is large and the number of attribute
in a reduct is small, an addition strategy for reduction construction will be an
ideal choice.

An important criterion in designing an algorithm based on an addition strat-
egy is to make every added attribute necessary, that is, a partial reduct is con-
structed. The discernibility matrix absorption and element absorption ensure
that every added attribute is necessary.

Based on three-way classification of attributes, we explore some properties of
the set of useful attributes USEFUL. The results enable us to design an addition
strategy based reduct construction algorithm. The proposed algorithm can be
conveniently generalized. A wide range of algorithms based on addition strategy
can be further studied.
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Abstract. Since its introduction by Lingras and West a decade ago,
rough k-means has gained increasing attention in academia as well as in
practice. A recently introduced extension, π rough k-means, eliminates
need for the weight parameter in rough k-means applying probabilities
derived from Laplace’s Principle of Indifference. However, the proposal
in its more general form makes it possible to optionally integrate user-
defined weights for parameter tuning using techniques such as evolution-
ary computing. In this paper, we study the properties of this general
user-weighted π k-means through extensive experiments.

Keywords: Rough k-Means, User-Defined Weights, Soft Clustering.

1 Introduction

Clustering is one of the most popular methods in data mining. The k-means
clustering algorithm [3,10] is among the most frequently used approaches. In
the meantime, derivatives of the k-means based on soft computing concepts
have been proposed to address uncertainty. They include famous algorithms like
fuzzy c-means [2] and Krishnapuram and Keller’s possibilistic c-means [4].

In 1982, Pawlak [17] introduced rough set theory. Lingras and West [9] pro-
posed rough k-means that is derived from the interval interpretation of rough
sets [23]. Since its introduction it has gained increasing attention and has become
an integral and important part of soft clustering [20].

Recently, Peters [19] proposed π rough k-means that utilizes Laplace’s Prin-
ciple of Indifference [5] to determine the weights in the mean function. So, in
contrast to original rough k-means, π rough k-means in its standard case does
not have any user-defined weights. However, in the general form of π rough k-
means additional weights for the lower approximation and boundary region are
integrated in the algorithm (we refer to it as weighted π rough k-means). These
weights make it possible to optimize the clustering results by parameter tuning
using techniques such as evolutionary computing (see, e.g., Mitra [14], Peters et
al. [22] and Lingras [6] for evolutionary rough clustering approaches). Peters [19]
already outlined the weighted π rough k-means algorithm. However, it was not
studied in depth.
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Therefore, the objective of the paper is to compare weighted and non-weighted
π rough k-means in more detail. Since the initial parameters of weighted π rough
k-means (weights and the threshold) are user-defined, it is crucial to have a good
understanding of their impacts. Thus, we analyze their effects in experiments on
real-life data and present the obtained results as performance maps.1

The remainder of the paper is organized as follows. In Section 2, we describe
the fundamentals of rough clustering and briefly summarize some of its exten-
sions. Then, in Section 3, we review π rough k-means and discuss properties of
weighted π rough k-means. In the next section, we analyse results of experiments
based on weighted π rough k-means. The paper concludes with a summary in
Section 5.

2 Fundamentals of Rough Clustering

In the rough clustering domain, Lingras and West [9] rough k-means and its
derivatives are probably among the most popular algorithms. Their algorithmic
structure is similar to Lloyd’s k-means [10]. The main difference is that rough
k-means has to deal with two approximations, the lower approximation and the
boundary of a cluster. Lingras and West’s rough k-means proceeds as follows:2

Initialization

– Setting of the number of clusters K, the weight for the lower approximations
w (and the boundary weight ŵ = 1− w) and the threshold ζ ≥ 1.

– Selection of the initial cluster centers (means) and assignment of the objects
to the cluster as shown in Equations 2 to 4.

Iteration

– Means
Compute the new means:

mk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

w
∑

xn∈Ck

xn

|Ck| + ŵ
∑

xn∈Ĉk

xn

|Ĉk|
for Ck �= ∅ ∧ Ĉk �= ∅∑

xn∈Ck

xn

|Ck| for Ck �= ∅ ∧ Ĉk = ∅∑
xn∈Ĉk

xn

|Ĉk|
for Ck = ∅ ∧ Ĉk �= ∅

(1)

– Approximations
Assign the objects to the approximations:
(i) Determine the nearest mean of object xn:

dmin
h = d(xn,mh) = min

k=1,...,K
d(xn,mk) (2)

and assign xn to the upper approximation of cluster h:

xn ∈ Ch. (3)
1 For the sake of simplicity, we assume the number of clusters as given.
2 We present it with the well established relative threshold parameter ζ.
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(ii) Determine:

T =

{
t :
d(xn,mt)

dmin
h

≤ ζ ∧ h �= t
}
. (4)

IF [T �= ∅] THEN [xn ∈ Ct, ∀t ∈ T ] ELSE [xn ∈ Ch].

– Stopping Criterion

IF [current upper approximations unchanged to previous .or. maximum it-
erations reached] THEN [stop] ELSE [repeat iteration].

Since its introduction, several extensions and derivatives of Lingras and West’s
original rough k-means have been proposed. They include, Peters’ refined rough
k-means [18], rough medoids [21] and evolutionary rough clustering [6,14,22]
where the initial parameters are optimized with respect to cluster validity in-
dexes. Furthermore, hybrid clustering, merging rough with fuzzy or possibilistic
approaches have been proposed by, e.g., Mitra et al. [15], Maji and Pal [11,12]
and Maji and Paul [13].

For recent surveys on rough clustering please see Lingras and Peters [7,8]
and for the relationship of rough clustering to further soft clustering approaches
Peters et al. [20].

3 Foundations of π Rough k-Means

3.1 Fundamental Idea of π Rough k-Means

Recently introduced π rough k-means [19] addresses some challenges observed
in the established rough k-means algorithms, in particular:

1. Some established algorithms are rather sensitive with respect to outliers. π
rough k-means is quite robust.

2. In established approaches a boundary object (unclear membership) has a
higher impact on the means than an object in a lower approximation (sure
membership). In π rough k-means sure memberships have greater influence
on the means than objects with unclear memberships.

3. In established algorithms the overall impact of a boundary object increases
when its lack of clarity (the number of boundaries it belongs to) increases.
In π rough k-means the overall impact of boundary objects is independent
of the number of boundaries it belongs to.

4. Established rough k-means algorithms require user-defined weights. π rough
k-means is free of user-defined weights; the weights are derived from proba-
bilities.

5. The setting of user-defined weights is often subjective or even arbitrary.
The weights in π rough k-means are based on a well established Laplace’s
Principle of Indifference. Thus, they are unbiased and free from subjective
elements.
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To achieve these goals the mean function in π rough k-means is modified as
follows:

– In the mean function, an object xn is weighted by the reciprocal of the
number |Bxn |, where Bxn a set of clusters xn belongs to. This applies to
all objects independent of their membership in either lower approximations
or boundaries. For example, if object x17 belongs to the boundaries of the
clusters C2, C3 and C5 we obtain: Bx17 = {C2, C3, C5} and |Bx17 | = 3;
if x26 belongs to the lower approximation of C4 we get Bx26 = {C4} and
|Bx26 | = 1. This weighting is derived from Laplace’s Principle of Indifference
[5]: Since we have no reasons for using any other probabilities, the probability
of membership to a cluster is uniformly distributed and equals the reciprocal
of the number of clusters an object belongs to. For the above examples we

obtain: p(x17) =
1

|Bx17 |
=

1

3
and p(x17) =

1

|Bx16 |
=

1

1
.

– In original rough k-means the mean function consists of the weighted sum
of the sub-means, i.e., the mean of the lower approximation and the mean
of the boundary of a cluster. Normally, the number of objects in a bound-
ary is much smaller than the number of objects in a lower approximation.
Hence, we observe an anomalous situation that the influence of a boundary
object on means is much higher than that of an object in a lower approxima-
tion. In contrast to this indirect impact via sub-means, in π rough k-means
each object has a direct impact on the mean function – independent of its
assignment to a lower approximation or a boundary.

3.2 Algorithmic Structure of π Rough k-Means

In detail π rough k-means in its standard case, i.e., without user-defined weights,
proceeds as follows:

Initialization

– Setting of the number of clusters 1 < K < N (k = 1, ...,K) and the threshold
parameter ζ ≥ 1.

– Selection of the initial means and assignment of the objects to the upper
approximations of their nearest clusters.

Iteration

– Means
Compute the new means:

mk =

∑
xn∈Ck

xn

|Bxn |∑
xn∈Ck

1
|Bxn |

(5)
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– Approximations
Assign the objects to the approximations:
(i) For each cluster k, determine the object that is nearest to its mean

dmin
g = d(mk, xg) = min

n=1,...,N
d(mk, xn) (6)

and assign it to the corresponding upper approximation of cluster k:

xg ∈ Ck (7)
Bxg = {k} and |Bxg | = 1 (8)

(ii) For the remaining objects xm with m = 1, ..., N −K:
• Determine the nearest mean of object xm:

dmin
h = d(xm,mh) = min

k=1,...,K
d(xm,mk) (9)

• Determine similarlynearmeans. Including thenearestmeanweobtain:

Bxm = T =

{
t :
d(xm,mt)

dmin
h

≤ ζ
}

(10)

• Assign object xn to the upper approximations of the respective
clusters:

xm ∈ Ct, ∀t ∈ T (11)

– Stopping Criterion

IF [current upper approximations unchanged to previous .or. maximum it-
erations reached] THEN [stop] ELSE [repeat iteration].

Note, step Approximations (i) is optional. It prevents the rather unlikely case
of empty clusters and consequently a division by 0 in Equation 5.

3.3 User-Weighted π Rough k-Means

Let us replace Equation 5 by a more general mean function, i.e., with user-defined
weights [19]:

mk =

w
∑

xn∈Ck

xn+ŵ
∑

xn∈Ĉk

xn
|Bxn |

w|Ck|+ŵ
∑

xn∈Ĉk

1
|Bxn |

with
∑

xn∈Ĉk

. . . = 0 for Ĉk = ∅
(12)

For w = ŵ = 0.5 Equation 12 melts down to Equation 5. Since the weights
w and ŵ = 1 − w are user-defined they can be used for parameter tuning. In
the next section, we perform experiments to analyse their impacts as well as the
impact of the threshold parameter ζ on the clustering results.
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4 Experiments and Discussion

4.1 Preliminaries

We use the Iris and the Wine data from the UCI database [1] and the Vowel
data [16]. The data are normalized to the unity interval [0, 1] before clustering.
In the experiments, we vary the threshold parameter in a range from 1.1 to 2.0
in 0.1 steps (ζ ∈ {1.1, 1.2, . . . , 2.0}) and the weight for the lower approximation
from 0.1 to 0.9 (w ∈ {0.1, 0.2, . . . , 0.9}).

Note, that our objective is not to obtain the best possible clustering results.
Some of the previous approaches perform better than the results presented here.
Our focus is on the relative performance of the algorithm with respect to the
threshold parameter ζ and the weights w, ŵ = 1− w.

4.2 Experiments

Wine Data Experiments. The Wine data set consists of 178 samples with 13
features representing three different types of wine. The results are shown in
Table 1. The representation of the results in Table 1 is to a certain degree

Table 1. Wine Data: Results
ζ w

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Correctly Clustered Incorrectly Clustered

1.1 151 159 161 161 161 161 162 162 162 14 6 4 4 4 4 4 4 4
1.2 53 143 152 152 154 154 154 154 154 48 6 4 4 2 2 2 2 2
1.3 60 60 139 141 142 145 146 146 146 50 32 2 2 1 1 1 1 1
1.4 2 2 59 59 135 134 134 137 136 1 1 13 8 1 1 1 1 1
1.5 2 2 2 2 2 55 55 129 130 1 1 1 1 1 1 1 1 1
1.6 2 2 2 2 2 2 2 2 124 1 1 1 1 1 1 1 1 1
1.7 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1
1.8 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1
1.9 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1
2.0 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1

Number in Lower Approximations Number in Boundaries
1.1 165 165 165 165 165 165 166 166 166 13 13 13 13 13 13 12 12 12
1.2 101 149 156 156 156 156 156 156 156 77 29 22 22 22 22 22 22 22
1.3 110 92 141 143 143 146 147 147 147 68 86 37 35 35 32 31 31 31
1.4 3 3 72 67 136 135 135 138 137 175 175 106 111 42 43 43 40 41
1.5 3 3 3 3 3 56 56 130 131 175 175 175 175 175 122 122 48 47
1.6 3 3 3 3 3 3 3 3 125 175 175 175 175 175 175 175 175 53
1.7 3 3 3 3 3 3 3 3 3 175 175 175 175 175 175 175 175 175
1.8 3 3 3 3 3 3 3 3 3 175 175 175 175 175 175 175 175 175
1.9 3 3 3 3 3 3 3 3 3 175 175 175 175 175 175 175 175 175
2.0 3 3 3 3 3 3 3 3 3 175 175 175 175 175 175 175 175 175
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Fig. 1. Wine Vowel and Iris Data: Performance Maps

redundant: the sum of correctly and incorrectly clustered objects equals the
number of objects in lower approximations and the number of boundary objects
is the difference between the overall number of objects (178) and the objects
in lower approximations. However, for clarity, Table 1 displays them separately.
In Figure 1 (left), the number of correctly clustered objects (indicated by L.A.
OK ) is also depicted as a mesh.

As we can see good results are obtained for small thresholds. The results
are balanced with respect to correctly and incorrectly clustered objects with a
reasonably high number of objects in lower approximations. In particular, we
observe that π rough k-means in its standard case (w = 0.5) performs well. Its
results with respect to correctly clustered objects for all thresholds are either
the best or at least the second best. Figure 1 (left) also discloses a rather high
and stable “platform” with a fairly small slope for small thresholds and/or high
weights. The platform collapses for high thresholds and small weights. As we
can see in Table 1, the number of objects in lower approximations goes down
to the one object per cluster that is forced into a lower approximation by step
Approximations (i) in π rough k-means.

Vowel Data Experiments. The Vowel data set consists of 871 objects with three
features each. There are six different vowel types (classes). The classes have
significant overlap. The clustering results for the Vowel data are shown in Table
2 and Figure 1 (right). Values with a leading apostrophe (’) in Table 2 indicate
that the algorithm terminated after the maximum number of iterations (set
to 500) was reached. That is, in these cases the algorithm did not converge.
Therefore, these results should be interpreted with even more caution than the
remaining results.

In principle, the results are similar to the results for the Wine data. A main
difference results from the different data qualities. The clusters of the Wine data
are rather well separated while the clusters of the Vowel data have significant
overlap. So, the percentage of correctly clustered objects is much lower and the
percentage of the incorrectly clustered objects higher than for the Wine data.
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Table 2. Vowel Data: Results

ζ w
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Correctly Clustered Incorrectly Clustered
1.1 ’446 435 460 462 462 462 462 462 464 ’379 379 373 374 374 373 373 373 374
1.2 433 425 429 433 436 436 437 440 439 291 334 345 342 346 347 348 348 350
1.3 ’249 307 408 405 406 405 407 407 406 ’63 100 284 307 308 310 308 307 310
1.4 ’4 247 280 407 394 390 390 392 393 ’2 50 112 241 260 262 268 269 271
1.5 3 3 287 362 381 381 382 380 382 3 3 92 128 226 236 247 251 254
1.6 ’3 ’3 169 181 360 376 374 374 374 ’3 ’3 57 55 135 161 225 226 232
1.7 4 4 4 161 170 284 351 367 367 2 2 2 50 49 59 145 198 199
1.8 2 2 2 2 154 282 327 329 363 4 4 4 4 44 55 90 97 136
1.9 3 3 3 3 3 128 263 301 332 3 3 3 3 3 42 47 89 84
2.0 1 1 1 1 1 1 229 282 292 5 5 5 5 5 5 45 69 79

Number in Lower Approximations Number in Boundaries
1.1 ’825 814 833 836 836 835 835 835 838 ’46 57 38 35 35 36 36 36 33
1.2 724 759 774 775 782 783 785 788 789 147 112 97 96 89 88 86 83 82
1.3 ’312 407 692 712 714 715 715 714 716 ’559 464 179 159 157 156 156 157 155
1.4 ’6 297 392 648 654 652 658 661 664 ’865 574 479 223 217 219 213 210 207
1.5 6 6 379 490 607 617 629 631 636 865 865 492 381 264 254 242 240 235
1.6 ’6 ’6 226 236 495 537 599 600 606 ’865 ’865 645 635 376 334 272 271 265
1.7 6 6 6 211 219 343 496 565 566 865 865 865 660 652 528 375 306 305
1.8 6 6 6 6 198 337 417 426 499 865 865 865 865 673 534 454 445 372
1.9 6 6 6 6 6 170 310 390 416 865 865 865 865 865 701 561 481 455
2.0 6 6 6 6 6 6 274 351 371 865 865 865 865 865 865 597 520 500

For thresholds approximately between 1.5 and 1.6 and weights around 0.5 the
ratio of correctly over incorrectly clustered objects is maximal at about 3.

Iris Data Experiments. The Iris data consist of three classes with 50 objects
each. The characteristics of the Iris data are somehow in-between the Wine and
Vowel data: two of the classes are overlapping while the third class is separated.

Since the results are in line with the results of the Wine and Vowel data we
only show Figure 2 representing the correctly clustered objects. The performance
map looks similar to the performance maps of the Wine and Vowel Data and,
therefore, confirms these previous results.

4.3 Discussion

The experiments show that π rough k-means performs well for small thresholds
and high weights, independent of the characteristics of the data: rather separated
(Wine), partly overlapping (Iris) or significantly overlapping (Vowel). Within a
certain range of the initial parameters, the number of correctly clustered objects
form a rather stable platform with a small angle of decline for increasing thresh-
olds and decreasing weights. However, when a certain threshold, a certain weight
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Fig. 2. Iris Data: Performance Map

is reached the platform ends in a cliff where the number of correctly clustered
objects plunges and the number of boundary objects surges.

5 Conclusion

In the paper, we presented the π rough clustering algorithm with user-defined
weights in detail and discussed its properties. The weights give more freedom
when the algorithm needs to be tuned with such techniques as evolutionary op-
timization. However, our experiments show that π rough k-means without user-
defined weights already performs well. So, in most conventional applications we
would recommend to use π rough k-means without user-defined weights. When
evolutionary optimization needs to be implemented, other rough clustering algo-
rithms that are more sensitive to the setting of the weights should be considered.
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Abstract. The positioning methods based received signal strength indicator 
(RSSI) is using the RSSI values to estimate the positions of the mobile. The 
RSSI positioning method based on propagation models, the system’s accuracy 
depends on the adjustment of the propagation models parameters. In actual in-
door environment, the propagation conditions are hardly predictable due to the 
dynamic nature of the RSSI, and consequently the parameters of the propaga-
tion model may change. In this paper, we propose and demonstrate an automat-
ic virtual calibration technology of the propagation model that does not require 
human intervention; therefore, can be periodically performed, following the 
wireless channel conditions. We also propose the low-complexity Gaussian  
Filter (GF), Virtual Calibration Technology (VCT), Probabilistic Positioning 
Algorithm (PPA) , and Granular Analysis(GA) make the proposed algorithm 
robust and suitable for indoor positioning from uncertainty, self-adjective to  
varying indoor environment. Using MATLAB simulation, we study the calibra-
tion performance and system performance, especially the dependence on  
a number of system parameters, and their statistical properties. The simulation 
results prove that our proposed system is an accurate and cost-effective  
candidate for indoor positioning. 

Keywords: Indoor positioning, Gaussian filter, Virtual calibration, Probabilistic 
localization algorithm, Granular analysis. 

1 Introduction  

The growing of wireless communications, mobile internet, smart sensors and smart-
phone has generated much commercial and research interests in statistical methods to 
track people and things, locations of devices and people have been considered to be 
quite valuable data. Inside stores, hospitals, high-rise buildings, warehouses, factories 
and underground parking lot, where Global Positioning System (GPS) [1] devices 
generally do not work. And Indoor Positioning System (IPS) [2] aims to provide loca-
tion estimation for wireless devices, such as handheld devices and electronic badges. 
In this paper, we study the propagation model, characteristics of channel and people 
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pace model, propose a new method for indoor localization, which is a cost-effective 
for tracking objects.  
 The position estimation of a mobile can be achieved by using two different ap-
proaches [2], either rang-based or range–free. The former is defined by protocols that 
use absolute point to point distance estimates for calculating the location (see Tab.1). 
The later makes no assumption about the availability or validity of such information. 
As we know, the range-free solutions have a rough accuracy [3], so these techniques 
are unsuitable in applications where the location precision is one of the main require-
ments. Radio signal measurements are typical the RSSI, the angle of arrival (AOA), 
the time of arrival (TOA), the time difference arrival (TDOA) and the differential 
time differences of arrival (DTDoA). Although AOA, TDOA or DTDoA can achieve 
a high accuracy, they require a complex hardware, and the promotion of this approach 
is limited. 

Due to advantages such as small size, low power consumption, low cost and easy 
deployment, the RFID [4] sensors are widely used to implement ubiquitous compu-
ting and smart city. We have successfully applied this technique to the 2010 Shanghai 
World Expo [5]. With the capability of providing RSSI, current advanced RFID sys-
tems are one of the potential candidates for indoor localization. In this work, we con-
sider localization based on RSSI, since it does not require any special hardware and it 
is available in most of standard wireless devices. Several RFID based systems have 
been proposed for tracking objects in indoor environments. SpotON [2], [6] using an 
aggregation algorithm for three-dimensional localization. The tags use RSSI to obtain 
inter-tag distances based on empirical mapping between the two. SpotON assumes 
deterministic mapping between RSSI and distance and does not account for the range 
measurement uncertainty caused by the varying environment. LANDMARC [7] uti-
lizes RSS measurement information to locate objects using k nearest reference tags. 
To diminish the uncertainty of the detected range caused by the varying environ-
ments, a large number of reference tags must be distributed in the environment. As we 
know, such positioning systems perform a preliminary calibration of the propagation  
 

Table 1. Wireless technologies for indoor localization versus ranging techniques 

Ranging technique→ 
Wireless technology↓ 

RSSI TOA TDOA DTDOA AOA 

Ultrasonic × √ √ × √ 

Infrared × × × × × 

Bluetooth (IEEE 802.15.1) √ × × √ × 

RFID √ √ √ × √ 

WiFi (IEEE 802.11) √ √ √ √ √ 

IEEE 802.15.4a DSSS √ √ × × √ 

IEEE 802.15.4a UWB √ √ √ × √ 

IEEE 802.15.4a CSS × √ × × × 

60 GHz × × × √ × 
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model parameters. The above two systems require the use of additional equipment [8] 
(such as reference tags, tags of this kind are mainly used to provide calibration sig-
nals), time-consuming human-based operations in order to carry out the calibration 
procedure. This limits its applications for most indoor scenarios, such as people track-
ing, fire disaster site, and so on.  

In this paper, we propose an automatic calibration procedure (called virtual calibra-
tion) of the signal propagation model that is only based the RSSIs measured among 
readers and that can be executed periodically and automatically (i.e., without human 
intervention), this method is based on off-the-shelf active RFID technology. Based on 
the virtual calibration procedure, we use low-complexity GF to process the RSSIs 
before calibration procedure, and propose a PPA that uses RSSIs to estimate the loca-
tions of objects. The RSSIs have been processed by calibration procedure. This RF-
based indoor positioning system is easy to deploy and cost-effective. Considering the 
uncertainties caused by the varying environment, we incorporate a probabilistic 
scheme based on Gaussian filter pretreatment, automatic virtual calibration and Baye-
sian inference to improve the localization accuracy. Bayesian inference was also used 
for traditional cellular and WLAN-based positioning system. But with a VCT, our 
proposed system can periodically and automatically calibrate the propagation model 
parameters without human intervention and additional equipment. 

2 System Architecture 

In our positioning system the off-the-shelf long distance active RFID system is used. 
The system works at the range of 2.4GHz frequency [9], with a minimal range of 0.5 
meter and maximum range of 80 meters. The reader can not only receive RSSI from 
every tag within its range, but also broadcast RSSI. We exploit the later function in 
order to estimate the propagation model parameters using the RSSI exchanged among 
readers. Each reader can detect up to 200 tags simultaneously, each tag is pre-
programmed with a unique 9-character ID (Identity) for identification by readers. In 
the next section, we will discuss the network layout of the system and details of each 
layer, such as composition and function of each layer. 

2.1 Network Layout 

The system consists of three network layers: sensing network layer, data collection 
layer and processing layer. The sensing network layer is used to measure the RSSI 
information from the readers to objects (each object wear an active tags) and to 
transmit the information to next layer. The data collection layer is used to collect 
RSSI information and to transmit the data to next layer. The processing layer receives 
RSSI information and processes the location information. In practice, the whole de-
tection area may be covered by several servers. For simplicity, in Fig.1, we show the 
hierarchical architecture within the coverage of one server. Fig.4 shows the reader and 
tags used in our experiments.  
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Fig. 1. System structure 

 

   

                    Fig. 2. Reader      Fig. 3. Tags    Fig. 4. Reader and tags     

2.2 Hardware Components  

In our indoor positioning system, we mainly use three kinds of devices: RFID tags, 
RFID readers and servers. The followings are detailed descriptions of hardware features. 

RFID tags: We use the active tags in our system. They are deployed in the sensing 
network layer. Each tracked object will be attached with a unique active RFID tag, 
called "object tag", used for identifying and tracking objects. Each tag has a unique 
ID, hence, we can distinguish objects by the corresponding ID number. Tags will 
periodically emit signals with their IDs, and the working hours of each tag is designed 
for 5 years. 

RFID readers: The data collection layer consists of readers. Each reader also has a 
unique ID number. As mentioned above, our readers can not only receive RSSI, but 
also broadcast RSSI. The later function is an upgrade for the reader, this make it poss-
ible for virtual calibration. And every small detection area contains three readers. The 
whole detection area is covered by the data collection layer. Every object tag should 
be within the readable range of readers. The principle of readers’ deployment should 
be satisfied that the distribution of the readers is not in one line in the space, and all 
readers’ locations are known. A reader is responsible for: 1) Collecting and decoding 
the signals emitted by the active tag in its coverage; 2) Measuring the RSSI for each 
tag within its range; 3) Reporting tag ID, corresponding RSSI, and its own ID number 
to the server; 4) Broadcasting RSSI around, and receiving RSSI from other readers. 
To realize these functions, each reader is equipped with two interfaces: a RF interface 
that detects tags within its range, and a communication interface that transmits data  
to servers.  
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Table 2. Manufacturer and parameters of reader and tag 

 Reader Tag 

Working frequency 2.4GHz 

modulation mode MSK 

communication distance 0.5meter~80meter 

communication rate 250kbps 

Working voltage 12V 1.5V 

Communication interface RJ45、RS232、RS485 - 

working temperature -40℃~+80℃ 

Manufacturer: Shanghai Zhen Zhuo Electrical Technology Ltd. Co 

 
Servers: Each reader should be within the reach of at least one server. We can see 

this from Fig. 1. Readers communicate the measured RSSIs of the tags and readers 
with the server. A server is responsible for: 1) Collection RSSIs and IDs coming from 
readers; 2) Selecting the readers with high signal strength, which play the role of a 
coarse positioning; 3) Calculating the location of the object tags according to the posi-
tioning algorithm. 

3 Virtual Calibration Procedure 

The purpose of the calibration procedure is to adapt the propagation model to the 
actual environment. Due to the dynamic of the channel and the variation of wireless 
fading events, an automatic calibration procedure that can be periodically performed 
without human intervention may increase the accuracy of the localization system. The 
proposed calibration procedure achieves this goal, by exploiting the information ex-
changed from the readers. The parameters of the propagation model are: α0 (the RSSI 
at distance of 1 m), η (the path loss exponent), li (the attenuation of the wall of type i). 
α0 should be estimated in the free space, and it is not affected by the power of battery 
(see Fig.5 and Fig.6).  
 

 

 

 

 

 

 

 

    Fig. 5. Data collected in August 2013       Fig. 6. Data collected in February 2014 
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Therefore, in our method it is estimated a priori, it is not the object of our virtual 
calibration procedure. In this paper, we assume that α0 is estimated a priori, only cali-
brate the other two parameters (η, li).  

The rest of this section is organized as follows: First of all, we proposed two kind 
of virtual calibration procedures. Secondly, we evaluate the calibration results through 
comparing these two approaches with [8].  

3.1 Global Virtual Calibration Procedure 

During the virtual calibration procedure, we estimated all the required parameters (α0, 
η, li). The Global Virtual Calibration Procedure (G-VCP) considers that li of all types 
of walls are the same (lw). Therefore, replacing d(i, j) with the actual distance between 
readeri and readerj, k(i, j) with the number of walls crossed by the direct path between 
readeri and readerj, we get a estimation RSSI′(i, j): 

                   (1) 

 

where, we define C = {readeri, readerj}, readeri and readerj represent any two commu-
nicated readers. The estimated RSSI′(i, j) differs from the actual measured RSSI(i, j) 
by an error item ε(i, j), we assume that all ε(i, j) are independent and identically dis-
tributed. Keep in mind that α0 is a priori, according to [13], the approximation of the 
remaining two parameters (η, lw) can be achieved by a direct method that minimized 
the minimum mean square error (MMSE): 

                     (2) 

the computational overhead for direct method processing a linear MMS estimator 
problem is polynomial [13]. 

3.2 Per-wall Virtual Calibration Procedure 

We estimate an individual attenuation factor for each wall between any pair of readers 
belonging to C. Let us assume that there are q types of walls in the positioning envi-
ronment, define L = {l1, l2, l3,…, lq}, L is the set of attenuation factor for each wall. So: 

                (3) 

 

where kd(i, j) is the number of wall of type ld crossed by the direct path between readeri 
and readerj. The η (path loss exponent) used in this procedure is previously estimated 
by the G-VCP. Therefore, in our Per-wall Virtual Calibration Procedure (P-VCP), we 

only estimated the parameters li∊L, the approximation of the remaining q parameters 
(l1, l2, l3,…, lq). 
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3.3 Calibration Performance Analysis 

In order to evaluate the performance of the calibration methods, in this section, we 
discuss the estimated distance error after VCT (G-VCP and P-VCP). To facilitate the 
analysis, we introduce the estimated distance of ideal propagation model for compari-
son, which is called realistic physical calibration procedure (R-PCP), details refer to 
[8]. Followings are the estimated distances of these three procedures. Each procedure 
has two equations, the first equation is the RSSI formula, and the second equation is 
the estimated distance. 

Ⅰ. R-PCP 

            (4) 

                 (5) 

where d is the distance between reader and tag, N(0, σ2) is the interference term of 
path loss model in [8], α0 is the RSSI at distance of 1 meter, η is the path loss expo-
nent. dR-procedure is the estimated distance between readeri and tagj. 

Ⅱ. G-VCP 

               (6) 

                  (7) 

where d is the distance between reader and tag, k(i, j)lw is the interference term of path 
loss model in Section 3.1, α0 is the RSSI at distance of 1 meter, η is the path loss ex-
ponent. Keep in mind that k(i, j) is the number of walls crossed by the direct path be-
tween readeri and tagj. dG-procedure is the estimated distance between readeri and tagj. 

Ⅲ. P-VCP 

            (8) 

                  (9) 

where d is the distance between reader and tag, and  is the interference 

term of path loss model, α0 is the RSSI at distance of 1 meter, η is the path loss expo-
nent. Keep in mind that k(i, j) is the number of walls crossed by the direct path between 
readeri and tagj. dP-procedure is the estimated distance between readeri and tagj. 

After above analysis, next, we analyse the estimated distance error of the three  
methods. The main purpose of our error analysis is to obtain a distribution of difference 
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value, and select a method with a smallest error. We define following formulas to de-
scribe the distance errors: 

                 (10) 

                 (11) 

                  (12) 

where derror-R, derror-G, derror-P are estimated distance errors, dpractical is the actual distance 
between reader and tag. 

Since each RSSI value corresponds to an estimate of the distance, also corresponds to 
an estimation error. We assume that each set of RSSI values is a uniformly distribu-
tion, and each set of estimation errors also is a uniformly distribution. In this part, we 
just analyse from the point of view of a single value, so as to distinguish it. Fig.7 is 
the flow chart of error analysis. 

 

Fig. 7. Flow chart of error analysis 

Based on the set of all the RSSIs measured between reader and tag, this set of RSSIs 
is R2m. We evaluated the CPD of the estimated distance errors.  

Fig.8 shows that there are three cumulative probability function curves, each curve 
representing a calibration method. This figure highlights that the P-VCP performs 
better than the G-VCP and R-PCP. Not surprisingly, the P-VCP outperforms the G-
VCP, due to the better accuracy in the wall modeling. We also can know that virtual 
calibration procedure results in small estimated distance errors as the more expensive 
and complicated R-PCP. Tab.3 shows intuitive results of calibration performance. 

 

Fig. 8. CPD of estimated distance errors 

error R practical R procedured d d− −= −

error G practical G procedured d d− −= −

error P practical P procedured d d− −= −
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Table 3. CPD of estimated distance errors 

CPD P-VCP G-VCP R-PCP 
0.2 0 2cm 12cm 
0.4 5cm 15cm 27cm 
0.9 20cm 30cm 39cm 

 

 

Fig. 9. Fit Model of three tracked tags 

We tracked three objects in this room (see Fig.9), and the plane coordinates of 
these three objects have been marked out in the figure. From Fig.11, the result of 
positioning procedure is still very clear, even there are multiple targets in the same 
room. 

At the end of algorithm, we evaluate the credibility of output by defining a confi-
dence function Bel’(xk)Bel’ x . Bel’ x B B ,                         (13) 

We set a threshold T (0≤T≤1) and only choose those grids with Bel’(xk)>TBel’ x
. After one recursion, an estimated area is obtained.  

 

 
Fig. 10. Sectional drawing of space (corresponding to Fig.11) 
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Fig.10 shows sectional drawing of space corresponding to Fig.9. There are three ob-
jects in environment. The white areas are estimated areas of tracked objects. There are 
four pieces of sectional drawings with different thresholds, and from above figure, we 
can observe that estimated areas of three tracked objects are smaller as T increasing. 

Therefore, we can achieve one more precise estimated area, if increasing the recur-
sion time R and threshold T. 

4 System Performance Analysis  

This section is divided into three parts. First we discuss the average positioning dis-
tance error. Then we will discuss the performance of the system with changing para-
meters. At last, we evaluate the system performance. As we known, the performance 
will be affected by several undetermined parameters, for example, recursion time R, 
window size w and threshold T.  

4.1  Impact of Window Size 

Experiment 1: The following system is configured as: grid size L=40cm, threshold 
T=0.5, path loss exponent η=3, standard deviation σσ=1.45, α0α= -59.7581. Fig.33 
plots APDE as a function of the window size w. In this part, we plan to evaluate the 
impact of window size on the localization accuracy. We perform the simulation for 
object 1, object 2 and object 3 as depicted in Fig.9.  

From Fig.11, we observe that APDE decrease as the window size w increase. In 
another words, the greater the window size w, the higher the localization accuracy. 
We also find that the APDE decrease rate depends on the window size. The APDE 
decrease rate will very high when the window size is relatively large.  

From Fig.11, we can also observe a unique phenomenon, when the window size w 
is very small, for example w = 2 or 4, the APDE decrease in early stage, but it slightly 
increase in later stage. The main reasons for this phenomenon are sample quantity and 
fault-tolerant rate. The fault-tolerant rate will increase with a less sample quantity. So, 
APDE will decrease with a bigger sample quantity (or called window size w). 

 
 
 
 
 
 
 
 
 
 

 

Fig. 11. Impact of window size w               Fig. 12. Impact of threshold T 
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4.2  Impact of Threshold, Path Loss Exponent 

Experiment 2: The system configured as: grid size L=40cm, path loss exponent η=3, 
standard deviation σσ=1.45, α0α= -59.7581. In this experiment, we aim to evaluate the 
impact of threshold on the localization accuracy. We perform the simulation for ob-
ject 1, object 2 and object 3. Fig.12 plots APDE as a function of the threshold T.  

From Fig.12, we can get the conclusion that in most situation, the large the thre-
shold T, the better the localization accuracy. We also can know that the relationship 
between threshold T and localization accuracy is linearly decreasing. In other words, 
the localization accuracy can be fully decided by the threshold T, and the system will 
not appear the phenomenon of a steady state of APDE. 

5 Conclusion 

In this thesis, we presented a new method, an easy-setup and cost-effective indoor 
positioning method based on off-the-shelf active RFID technology combined with 
GF, VCT, PPA and PPM. Our indoor positioning system relies on a hierarchical ar-
chitecture to cover an indoor environment. The proposed approach can automatic 
calibrate the propagation parameters according to the environment without additional 
overhead, reduce the uncertainty of localization, and at the same time obtain high 
positioning accuracy under conditions of indoor positioning. After we collected a 
large number of experimental data, using MATLAB simulations we have evaluated 
the performance of our proposal. In the destined system settings, the simulation re-
sults show that in 90% percent of the localization estimation, the system provides 
objects location with the APDE less than 57cm, in 80% percent of the localization 
estimation, the system provides objects location with the APDE less than 45cm, and 
in 70% percent of the localization estimation, the system provides objects location 
with the APDE less than 20cm. The simulation also shows that the system perfor-
mance improves with the higher values of recursion time, window size, and path loss 
exponent. The simulation results can prove that the proposed system is an accuracy 
and cost-effective candidate for future indoor localization. 
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Abstract. This paper is devoted to the discussion of algebraic struc-
tures of fuzzy soft sets. The fuzzy notion of soft equality relation on
fuzzy soft sets is proposed and several related properties are investi-
gated. Furthermore, MTL structures of fuzzy soft algebra and complex
sample for affiliations and the mapping to the fuzzy soft quotient algebra
are established.

Keywords: Fuzzy set, soft set, fuzzy soft equality, fuzzy soft algebra.

1 Introduction

To solve complicated problems in economics, engineering, environmental science
and social science, methods in classical mathematics are not always successful
because of various types of uncertainties presented in these problems. While
probability theory, fuzzy set theory [1], rough set theory [2], and other mathe-
matical tools are well-known and often useful approaches to describing uncer-
tainty, each of these theories has its inherent difficulties as pointed out in [3,4].
Consequently, Molodtsov [3] proposed a completely new approach for modeling
vagueness and uncertainty in 1999. This approach called soft set theory is free
from the difficulties affecting existing methods.

Accordingly, works on soft set theory are progressing rapidly. Maji et al. [5]
defined several algebraic operations on soft sets and conducted a theoretical
study on the theory of soft sets. Based on [5], Ali et al. [6] introduced some
new operations on soft sets and improved the notion of complement of soft set.
They proved that certain De Morgan’s laws with respect to these new operations
hold in soft set theory. Qin et al. [7] introduced the notion of soft equality and
established lattice structures and soft quotient algebras of soft sets. Maji et al.
[8] initiated the study on hybrid structures involving soft sets and fuzzy sets.
They proposed the notion of fuzzy soft set as a fuzzy generalization of classical
soft sets and some basic properties were discussed. Afterwards, many researchers
have worked on this concept. Various kinds of extended fuzzy soft sets have been
proposed.

Algebraic structures play a fundamental role in many fields of mathemat-
ics. The lattice structure of some fuzzy algebraic systems such as fuzzy groups,
G-fuzzy groups, some fuzzy ordered algebras and fuzzy hyperstructures were dis-
cussed in [9]. It is proved that under suitable conditions, these structures form a
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distributive or modular lattice. The lattice structures of soft sets and fuzzy soft
sets have been established [7,10]. This paper is devoted to a further study of the
algebraic structure of fuzzy soft sets. The fuzzy soft equality relation between
fuzzy soft sets is presented and the connections between fuzzy soft quotient al-
gebras and nonclassical logic algebras are established.The paper is organized as
follows:In Section 2, we recall some notions and properties of fuzzy sets, soft sets
and fuzzy soft sets. In Section 3,we introduce the concept of fuzzy soft equality
between fuzzy soft sets and established fuzzy soft quotient algebra of fuzzy soft
sets. In Section 3,based on t-norm and its residuated implication, we establish
the connections between soft algebras and nonclassical logic algebras. Finally,
some conclusions are pointed out.

2 Preliminaries

This section presents a review of some fundamental notions of fuzzy sets, soft
sets and fuzzy soft sets. We refer to [1,3,8] for details.

Fuzzy set theory initiated by Zadeh [1] provides an appropriate framework for
representing and processing vague concepts by allowing partial memberships. Let
U be a nonempty set, called universe. A fuzzy set μ on U is defined by a member-
ship function μ : U → [0, 1]. For x ∈ U , the membership value μ(x) essentially
specifies the degree to which x belongs to the fuzzy set μ. The operations on
fuzzy sets can be defined componentwise [1]. In what follows, the family of all
subsets of U and the family of all fuzzy sets on U are denoted by P (U) and
F (U) respectively.

In 1999, Molodtsov [3] introduced the concept of soft sets. Let U be the
universe set and E the set of all possible parameters under consideration with
respect to U . Usually, parameters are attributes, characteristics, or properties of
objects in U . (U,E) is called a soft space. Molodtsov defined the notion of a soft
set in the following way:

Definition 1. [3] A pair (F,A) is called a soft set over U , where A ⊆ E and F
is a mapping given by F : A→ P (U).

In other words, a soft set over U is a parameterized family of subsets of U .
For e ∈ A, F (e) may be considered as the set of e−approximate elements of the
soft set (F,A).

Maji et al. [8] initiated the study on hybrid structures involving both fuzzy
sets and soft sets. The notion of fuzzy soft sets was introduced as a fuzzy gener-
alization of soft sets.

Definition 2. [8] Let (U,E) be a soft space. A pair (F,A) is called a fuzzy soft
set over U , where A ⊆ E and F is a mapping given by F : A→ F (U).

In the definition of fuzzy soft set, fuzzy sets in the universe U are used as
substitutes for the crisp subsets of U . Hence, every soft set may be considered
as a fuzzy soft set. Based on operations on soft sets presented by Maji et al. [5]
and Ali et al. [6], Qin et al. [10] defined several operations on fuzzy soft sets and
established the lattice structure of fuzzy soft sets.
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Definition 3. Let (F,A) and (G,B) be two fuzzy soft sets over a common uni-
verse U .

(1) The extended union of (F,A) and (G,B), denoted by (F,A) ∪e (G,B), is
the fuzzy soft set (H,C), where C = A ∪B, and H is given by:

H(a) =

⎧⎨⎩
F (a), if a ∈ A−B,
G(a), if a ∈ B −A,
F (a) ∪G(a), if a ∈ A ∩B.

(1)

(2) The extended intersection of (F,A) and (G,B), denoted by (F,A) ∩e

(G,B), is the fuzzy soft set (H,C), where C = A ∪B, and H is given by:

H(a) =

⎧⎨⎩F (a), if a ∈ A−B,
G(a), if a ∈ B −A,
F (a) ∩G(a), if a ∈ A ∩B.

(2)

(3) The restricted union of (F,A) and (G,B), denoted by (F,A)∪r (G,B), is
the fuzzy soft set (H,C), where C = A ∩ B, and H(a) = F (a) ∪ G(a) for every
a ∈ C.

(4) The restricted intersection of (F,A) and (G,B), denoted by (F,A) ∩r

(G,B), is the fuzzy soft set (H,C), where C = A ∩B, and H(a) = F (a) ∩G(a)
for every a ∈ C.
Definition 4. (1) (F,A) is called a relative null fuzzy soft set(with respect to
the parameter set A), denoted by ∅A, if F (e) = ∅ for all e ∈ A.

(2) (G,A) is called a relative whole fuzzy soft set(with respect to the parameter
set A), denoted by UA, if F (e) = U for all e ∈ A.
Definition 5. The relative complement of a fuzzy soft set (F,A) is denoted by
(F,A)r and is defined by (F,A)r = (F r, A), where F r : A→ F (U) is a mapping
given by F r(e) = ¬F (e) for all e ∈ A.

Clearly, ((F,A)r)r = (F,A) holds.
We denote by FS(U,E) the set of all fuzzy soft sets over the universe U and

the parameter set E, that is
FS(U,E) = {(F,A);A ⊆ E,F : A→ F (U)}.

Theorem 1. [10]
(1) (FS(U,E),∪e,∩r) is a bounded distributive lattice, UE and ∅∅ are the

upper bound and lower bound respectively.
(2) Let ≤ be the ordering relation in lattice (FS(U,E),∪e,∩r) and (F,A),

(G,B) ∈ S(U,E). (F,A) ≤ (G,B) if and only if A ⊆ B and F (e) ⊆ G(e) for
each e ∈ A.

Let A ⊆ E, and FSA = {(F,A);F : A → F (U)} be the set of all fuzzy soft
sets over the universe U and the parameter set A. It is trivial to verify that
(F,A) ∪e (G,A), (F,A) ∩r (G,A) ∈ FSA for any (F,A), (G,A) ∈ FSA. That is
to say, (FSA,∪e,∩r) is a sublattice of (FS(U,E),∪e,∩r), UA and ∅A are the
upper bound and lower bound of FSA respectively.
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3 Fuzzy Soft Equality Relation

Qin et al. [7] introduced the concept of soft equality between soft sets and es-
tablished soft quotient algebra of soft sets. In this section, we extend the related
concepts to fuzzy soft sets and discuss their basic properties.

Definition 6. Let (F,A) and (G,B) be two fuzzy soft sets over a common uni-
verse U . (F,A) is said to be fuzzy soft equal to (G,B), denoted by (F,A) ≈FS

(G,B), if F (e) = G(e) for each e ∈ A ∩ B, F (e) = ∅ for each e ∈ A − B and
G(e) = ∅ for each e ∈ B −A.
Theorem 2. Let (F,A), (G,B) ∈ FS(U,E) be two fuzzy soft sets. (F,A) ≈FS

(G,B) if and only if (F,A) ∪e (G,B) ≈FS (F,A) ∩r (G,B).

Proof. Let (F,A) ∪e (G,B) = (H,A ∪B), (F,A) ∩r (G,B) = (L,A ∩B).
Suppose that (F,A) ≈FS (G,B). For any e ∈ A∩B, we have F (e) = G(e) and

hence H(e) = F (e) ∪G(e) = F (e) ∩G(e) = L(e). For any e ∈ A ∪B −A ∩B =
(A − B) ∪ (B − A), if e ∈ A − B, then F (e) = ∅ and hence H(e) = F (e) = ∅;
if e ∈ B − A, then G(e) = ∅ and hence H(e) = G(e) = ∅. Consequently,
(F,A) ∪e (G,B) ≈FS (F,A) ∩r (G,B).

Conversely, assume that (F,A) ∪e (G,B) ≈FS (F,A) ∩r (G,B). For any e ∈
A ∩ B, we have F (e) ∪ G(e) = H(e) = L(e) = F (e) ∩ G(e) and consequently
F (e) = G(e). For any e ∈ A− B, we have e ∈ A ∪ B and e /∈ A ∩ B. It follows
that F (e) = H(e) = ∅. For any e ∈ B −A, we have e ∈ A∪B and e /∈ A∩B. It
follows that G(e) = H(e) = ∅. Thus (F,A) ≈FS (G,B).

Similarly, we have

Theorem 3. Let (F,A), (G,B) ∈ FS(U,E) be two fuzzy soft sets and (F,A) ≈FS

(G,B). Then
(1) (F,A) ∪e (G,B) ≈FS (F,A) ∩e (G,B).
(2) (F,A) ∪r (G,B) ≈FS (F,A) ∩r (G,B).

Theorem 4. (1) ≈FS is an equivalence relation on FS(U,E).
(2) (F,A) ≈FS (G,B) if and only if (F,A) ∪r (G,B) ≈FS (F,A) ∩e (G,B).

The following theorem shows that ≈FS is a congruence relation on FS(U,E)
with respect to ∪e and ∩r.

Theorem 5. Let (F,A), (G,B), (H,C), (L,D) ∈ FS(U,E) and (F,A)
≈FS (G,B), (H,C) ≈FS (L,D). Then

(1) (F,A) ∩r (H,C) ≈FS (G,B) ∩r (L,D).
(2) (F,A) ∪e (H,C) ≈FS (G,B) ∪e (L,D).

Proof. (1) Let (F,A) ∩r (H,C) = (M1, A ∩C), (G,B) ∩r (L,D) = (M2, B ∩D).
If e ∈ (A∩C)∩(B∩D), then e ∈ A∩B, e ∈ C∩D. It follows that F (e) = G(e)

and H(e) = L(e). Consequently, M1(e) = F (e) ∩H(e) = G(e) ∩ L(e) =M2(e).
Let e ∈ (A ∩C)− (B ∩D). It follows that e ∈ A, e ∈ C, e /∈ B ∩D. If e /∈ B,

then e ∈ A − B and hence F (e) = ∅. Hence we have M1(e) = F (e) ∩H(e) = ∅.
If e /∈ D, then e ∈ C −D and hence H(e) = ∅. Thus M1(e) = F (e) ∩H(e) = ∅
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Let e ∈ (B ∩D)− (A ∩C). M2(e) = ∅ can be proved similarly.
(2) Let (F,A) ∪e (H,C) = (T1, A ∪ C), (G,B) ∪E (L,D) = (T2, B ∪D).
For any e ∈ (A ∪ C) ∩ (B ∪ D), we have e ∈ A ∪ C, e ∈ B ∪ D. Without

losing generality, we assume that e ∈ A, e ∈ D. If e ∈ B, e ∈ C, then e ∈ A∩B,
e ∈ C ∩D. It follows that F (e) = G(e) and H(e) = L(e). Consequently, T1(e) =
F (e)∪H(e) = G(e)∪L(e) = T2(e). If e /∈ B, e ∈ C, then F (e) = ∅, H(e) = L(e)
and hence T1(e) = F (e) ∪ H(e) = H(e) = L(e) = T2(e). If e ∈ B, e /∈ C, then
F (e) = G(e), L(e) = ∅ and hence T1(e) = F (e) = G(e) = G(e) ∪ L(e) = T2(e).
If e /∈ B, e /∈ C, then F (e) = ∅, L(e) = ∅ and hence T1(e) = ∅ = T2(e).

For any e ∈ (A ∪ C) − (B ∪ D), we have e ∈ A ∪ C, e /∈ B ∪ D. If e ∈ A,
e ∈ C, then e ∈ A − B, e ∈ C − D. It follows that F (e) = ∅, H(e) = ∅ and
hence T1(e) = F (e) ∪H(e) = ∅. If e ∈ A, e /∈ C, then e ∈ A− B, F (e) = ∅ and
hence T1(e) = F (e) = ∅. If e /∈ A, e ∈ C, then e ∈ C −D, H(e) = ∅ and hence
T1(e) = H(e) = ∅.
T2(e) = ∅ for any e ∈ (B ∪D)− (A ∪ C) can be proved similarly.

Let (F,A)≈FS = {(G,B); (F,A) ≈FS (G,B)} be the congruence class con-
taining (F,A) and FS(U,E)/ ≈FS= {(F,A)≈FS ; (F,A) ∈ FS(U,E)}. We define
operations ∪es and ∩rs on FS(U,E)/ ≈FS as follows:

(F,A)≈FS ∪es (G,B)≈FS = ((F,A) ∪e (G,B))≈FS ,
(F,A)≈FS ∩rs (G,B)≈FS = ((F,A) ∩r (G,B))≈FS .
These two operations are reasonable. (FS(U,E)/ ≈FS,∪es,∩rs) is called

fuzzy soft quotient algebra on soft space (U,E).

Theorem 6. (FS(U,E)/ ≈FS,∪es,∩rs) is a distributive lattice.

4 MTL Structure of Fuzzy Soft Algebra

In this section, based on t-norm and its residuated implication, we establish the
connections between soft algebras and nonclassical logic algebras.

The fuzzy implication operator plays an important role in fuzzy logic and
Zadeh’s theory of approximate reasoning. A fuzzy implication operator is a bi-
nary operation →: [0, 1]2 → [0, 1] satisfying the following conditions [11]:

(I1) 0→ a = 1.
(2) a→ 1 = 1.
(3) 1→ 0 = 0.
(4) a→ b is increasing with respect to b and decreasing with respect to a.
In addition to these a number of other desirable properties associated with

fuzzy implication operator have also been suggested [12].
Triangular norms (t-norms) are closely related to fuzzy implication operators.

In what follows, the least upper bound (greatest lower bound) of a subset G of
[0, 1] will be denoted by ∨G (∧G), alternatively. A function ⊗ : [0, 1]2 → [0, 1] is
said to be a t-norm if ⊗ is associative, commutative and satisfy the conditions
a ⊗ 1 = a and that a ≤ b implies a ⊗ c ≤ b ⊗ c for all a, b, c ∈ [0, 1]. A t-
norm ⊗ is left-continuous if a ⊗ ∨{bi; i ∈ I} = ∨{a ⊗ bi; i ∈ I} holds where
a, bi ∈ [0, 1](i ∈ I), and I is a nonempty index set.
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Theorem 7. [13] Suppose that ⊗ is a left-continuous t-norm, define→⊗: [0, 1]2

→ [0, 1] as a →⊗ b = ∨{x ∈ [0, 1]; a⊗ x ≤ b} for all a, b ∈ [0, 1]. Then →⊗ is a
fuzzy implication operator and

(1) a→⊗ b = 1 iff a ≤ b.
(2) a ≤ b→⊗ c iff b ≤ a→⊗ c.
(3) a→⊗ (b→⊗ c) = b→⊗ (a→⊗ c).
(4) 1→⊗ a = a.
(5) a→⊗ ∧{bi; i ∈ I} = ∧{a→⊗ bi; i ∈ I}.
(6) ∨{bi; i ∈ I} →⊗ a = ∧{bi →⊗ a; i ∈ I}.
(7) a⊗ b ≤ c iff a ≤ b→⊗ c.

In this theorem, →⊗ is called the residuated implication of ⊗.
Example 1. [13] The following are four left-continuous t-norms:

a⊗L b = (a+ b− 1) ∨ 0 (3)

a⊗G b = a ∧ b (4)

a⊗π b = ab (5)

a⊗0 b =

{
a ∧ b, if a+ b > 1,
0, if a+ b ≤ 1.

(6)

The implication operators corresponding to the t-norms ⊗L, ⊗G, ⊗π and ⊗0

are as follows (they are called Lukasiewicz operator, Godel operator, product
operator, and R0 operator, respectively):

a→⊗L b = (1 − a+ b) ∧ 1 (7)

a→⊗G b =

{
1, if a ≤ b,
b, if a > b.

(8)

a→⊗π b =

{
1, if a = 0,
b
a ∧ 1, if a > 0.

(9)

a→⊗0 b =

{
1, if a ≤ b,
(1 − a) ∨ b, if a > b.

(10)

Based on t-norm and its residuated implication, we introduce ⊗−product and
⊗−implication operations on fuzzy soft sets.

Definition 7. Let ⊗ be a left-continuous t-norm, (F,E), (G,E) ∈ FSE. The
⊗−product of (F,E), (G,E) is a fuzzy soft set (H,E), denoted by (F,E) ⊗
(G,E) = (H,E), and is defined by H(e)(x) = F (e)(x) ⊗G(e)(x) for any e ∈ E
and x ∈ U .
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Definition 8. Let ⊗ be a left-continuous t-norm, (F,E), (G,E) ∈ FSE. The
⊗−implication of (F,E), (G,E) is a fuzzy soft set (H,E), denoted by (F,E)→⊗
(G,E) = (H,E), and is defined by H(e)(x) = F (e)(x) →⊗ G(e)(x) for any
e ∈ E and x ∈ U .

Theorem 8. Let (U,E) be a soft space and ⊗ a left-continuous t-norm, (F,E),
(G,E), (H,E) ∈ FSE. Then

(1) (F,E) ⊗ (G,E) = (G,E) ⊗ (F,E).
(2) ((F,E) ⊗ (G,E)) ⊗ (H,E) = (F,E) ⊗ ((G,E)⊗ (H,E)).
(3) UE ⊗ (F,E) = (F,E).
(4) If (F,E) ⊆ (G,E), then (F,E)⊗ (H,E) ⊆ (G,E)⊗ (H,E).

Theorem 9. Let (U,E) be a soft space and ⊗ a left-continuous t-norm, (F,E),
(G,E), (H,E) ∈ FSE. Then (F,E) ⊗ (G,E) ⊆ (H,E) if and only if (F,E) ⊆
(G,E)→⊗ (H,E).

Proof. Suppose that (F,E) ⊗ (G,E) ⊆ (H,E). For any e ∈ E and x ∈ U , we
have F (e)(x) ⊗G(e)(x) ≤ H(e)(x) and hence F (e)(x) ≤ G(e)(x) →⊗ H(e)(x).
It follows that F (e) ⊆ G(e) →⊗ H(e) and consequently (F,E) ⊆ (G,E) →⊗
(H,E).

Conversely, suppose that (F,E) ⊆ (G,E)→⊗ (H,E). For any e ∈ E and x ∈
U , we have F (e)(x) ≤ G(e)(x)→⊗ H(e)(x). It follows that F (e)(x)⊗G(e)(x) ≤
H(e)(x) and hence F (e)⊗G(e) ⊆ H(e). Thus we have (F,E)⊗ (G,E) ⊆ (H,E).

Theorem 10. Let (U,E) be a soft space and ⊗ a left-continuous t-norm, (F,E),
(G,E) ∈ FSE. Then ((F,E)→⊗ (G,E)) ∪e ((G,E)→⊗ (F,E)) = UE.

Proof. Let ((F,E) →⊗ (G,E)) ∪e ((G,E) →⊗ (F,E)) = (H,E). For any e ∈ E
and x ∈ U , if F (e)(x) ≤ G(e)(x), then F (e)(x) →⊗ G(e)(x) = 1; if F (e)(x) >
G(e)(x), then G(e)(x)→⊗ F (e)(x) = 1. It follows that
H(e)(x) = (F (e)(x)→⊗ G(e)(x)) ∨ (G(e)(x)→⊗ F (e)(x)) = 1.
Hence H(e) = U and consequently (H,E) = UE.

A MTL algebra is a bounded residuated lattice which satisfies the pre-linearity
equation [12]. By Theorem 8, Theorem 9 and Theorem 10, we have the following
theorem.

Theorem 11. (FSE ,∪e,∩s,⊗,→⊗) is a MTL algebra.

We consider fuzzy soft quotient algebra (FS(U,E)/ ≈FS ,∪es,∩rs). For any
fuzzy soft set (F,A), there exists a unique fuzzy soft set (F ′, E) ∈ FSE such
that (F ′, E) ≈FS (F,A). Namely, F ′(e) = F (e) for any e ∈ A and F ′(e) = ∅
for any e ∈ E − A. Thus there exists a one-to-one correspondence between
(FS(U,E)/ ≈FS and FSE . Consequently, we have

Theorem 12. (FS(U,E)/ ≈FS ,∪es,∩rs,⊗,→⊗) is a MTL algebra.
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5 Concluding Remarks

Soft sets and fuzzy soft sets are mathematical tools for dealing with uncertainties.
This paper is devoted to the discussion of algebraic structures of fuzzy soft sets.
The fuzzy notion of soft equality relation on fuzzy soft sets is proposed and
several related properties are investigated. Furthermore, based on t-norm and
its residuated implication operator, the product and implication operations on
fuzzy soft sets are introduced. MTL structures of fuzzy soft algebra and fuzzy
soft quotient algebra are established.

In further research, the connections between fuzzy soft algebras and nonclas-
sical logic algebras, such as IMTL algebra, MV algebra and R0 algebra is an
important and interesting issue to be addressed.
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Abstract. A rapid granular method for minimization of Boolean functions  
is proposed in this paper. Firstly, the Boolean function is changed into the sum of 
products. Secondly, truth table was got and statistic information under different 
knowledge space was computed as heuristic information for function minimiza-
tion. Thirdly, information granules with different granularity were found  
according to the heuristic information. Finally, if all the terms in information 
granules have covered the universe, they will be the desired result. The algorithm 
was realized by MATLAB and experiments have shown its high efficiency. 

Keywords: Granular computing, Boolean function, Boolean minimization. 

1 Introduction 

Boolean function is applied to describe the causal relationship between input and 
output logic variables. Minimization of Boolean function is greatly dependent on 
Boolean algebra operations, however, the complexity of minimization is dramatically 
increased as the number of input variables increased. Each Boolean function corres-
ponds to a specific circuit structure, so the minimization of Boolean function is of great 
importance for simplification of digital logic circuits, so as to reduce the power cost and 
improve the security of the circuits [1]. 
 The traditional methods for multivariable logic function reduction including alge-
braic reduction method, Karnaugh map(K-map) reduction method and Q-M algorithm. 
However, the algebraic method need flexible application of the Boolean algebra laws, 
and there are no rules to follow; K-map method is not suitable for more than five input 
variables; the Q-M algorithm and its improvements seems too complex with large loop 
iteration [1,2,3,4,5] and  some basic rough set method appeared [6,7,8]. Literature [9] 
proposed a granular matrix-based method for truth table reduction.   

Granular computing(GrC) is an computable method for complex problems [10,11]. 
In this paper, a GrC-based Boolean function minimization algorithm was proposed 
from view of the statistic perspective and implemented by Matlab. The thought of 

                                                           
* Corresponding author. 
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granulation, operations under different granularity space and the way of solving the 
problem are consistent with the basic thought of GrC.  

The paper was organized as follows: part 1, introduction, the background of the re-
search; part 2, preliminaries, the basic concepts included in this paper; part 3, the de-
scription of the rapid granular algorithms for minimization of Boolean functions; and 
part 4, Discussion and Conclusions. 

2 Preliminaries 

In this part some basic definitions [1] will be given first for understanding the essence 
of the problem. 

Definition 1: Boolean Function 

A Boolean function can be described by a Boolean equation consisting of a binary 
variable identifying the function followed by an equal sign and a Boolean expression. 

A single-output Boolean function is a mapping from each of possible combinations 
of value 0 and 1 on the function variables to value 0 or 1.  

We only discuss the single-output Boolean function minimization in this paper. 
Any arbitrary Boolean function can be expressed in the Sum-of-Product (SOP) 

forms. 

Definition 2: Minterms 

Product terms that have this property of all variables appearing exactly once (and, 
consequently, having the value of 1 for only one combination of values of the function 
variables) are called minterms. Let the complemented variables be represented with 
‘0’and the uncomplemented ones be represented with ‘1’. We call such minterms the 
digital minterms. 

Example1: Suppose there are 4 input variables, let minterms be , ,ABCD ABCD ABC D  
and ABCD . Then the corresponding digital minterms are respectively 1011,1001,1000, 
1010.  

Minterms have some important properties as follows [1]: 

1. There are 2n  minterms for n Boolean variables. These minterms can be generated 
from the binary numbers from 0 to 2 1n − . 

2. Any Boolean function can be expressed as SOP forms. 
3. A function that includes all the 2n  minterms is equal to logic 1. 

The property 2 shows that we can reduct SOP instead of minimizing Boolean function.  

Definition 3: Reductive Minterm Group 

If sum of minterms can be simplified to a term, we call group these minterms as re-
ductive minterm group, represented with RMG . 
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The group of minterms ABCD ABCD ABCD ABCD、 、 、  in example 1 can be 
grouped into a reductive minterm group that equals to the term AB . 

Let U be all the minterms in SOP, There are p RMG s, i.e. 

1

p

i
i

U MG
=

=  and (1 , )i jMG MG i j p≠ ∅ ≤ ≤ . It shows that all RMG s form a coving. 

Definition 4: Granule and Granularity 

The common terms in RMG  are called granules. The variable number of granule is 
called granularity, represented by symbolω . The bigger the ω , the finer the granlularity. 

In example 1, the granule is AB , 2ω = . 

Definition 5: Granule Set 

A collection of granules is called granule set, represented by IGS 
and 1 2{ , ,..., ,...}iIGS Gr Gr Gr= , iGr IGS∈ .  i , the ith granule. 

Different IGS will be got in the process of Boolean function minimization. Ac-
cording to the different granularity, the minimal IGS should be found to cover all the 
minterms, and that will be the result of Boolean function minimization. 

Theorem 1. For m minterms with n input variables, the sum of m minterms will be 1 iff 
2nm = . 

This is obviously correct according to the property 3. 
Theorem 2 The sum of RMG with m minterms can be simplified as a term withω va-
riables iff 2nm ω−= .  

Proof: Extract the common factors from minterms and the rest are the variables from 
other n ω− inputs. According to theorem 1, if the rest can finally be reducted to 1 iff 

2nm ω−= , i.e. if the m minterms with n inputs can be reducted as a common term, the 
necessary and sufficient condition is 2nm ω−= . 

In example1, 4n = , 2ω = , 4 22 4m −= = . So the RMG can eventually be reducted 
as AB . 

Thus the Boolean function minimization based on Boolean logic relations is trans-
formed into the reduction based on statistical information by thermo 2.  

Theorem 3. The information granules that got in coarser granularity are regarded as 
heuristic information granules. We do not calculate the information granules that 
contain the heuristic information granules. 

Theorem 3. corresponds to the absorption law of Boolean algebraic: A AB A+ = . 

For example, if IGS contains heuristic information granule A when 1ω = , we don’t 
consider the granules that contain A in the after calculation, like 

, , ,AB AC ABC ABCD and so on. 

Definition 7: Don’t-Care Conditions [11] 

The ‘don’t care terms’ contains the following two cases: 
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1. The input combinations never occur. 
2. The input combinations are expected to occur, but the correspondent output are 

neglected. 

The main work of this paper is Boolean function minimization (contains ‘don’t-care 
conditions’). 

3 The Rapid Granular Algorithm for Minimization of Boolean 
Function 

To illustrate the algorithm, some symbol definition should be given first. 

3.1 The Symbol Definition 

X : The input of Boolean function. 

Y : The output of Boolean function. 

G : All the combinations of inputs, ( )G P X=  G ≠∅ . 

mU : All the minterms generated by Boolean function. 

dU : All the minterms generated by ‘don’t-care conditions’. 

RMGω : All RMG when the granularity isω , RMG RMGω ⊂ .  

Gω
: All combinations of inputs when the granularity isω , G Gω ⊂ ,

iG Gω ω⊂ . 

Vω : All combinations of values of granules when the granularity isω , 
iV Vω ω⊂ . 

/i iG VN
ω ω

: The number of the minterms when the combination of inputs is iGω and 
the combination of values of inputs is iVω . 

N : When the granularity isω , 2nN ω−= . 

The theorem 2 can be expressed as: m minterms with n inputs can be finally reducted 
as an information granule of iff /i iG CN N

ω ω
= .  This can be illustrated by example 2. 

Example2, Let 3n = , { , , }X A B C= , then we have: 

( ) {{ },{ },{ },{ , },{ , },{ , },{ , , }}G X A B C A B A C B C A B C= . 

When 1ω = , the granularity is coarsest. 

1 {{ },{ },{ }}G A B C= ,
1 {{1},{0}}V = , (3 1)2 4N −= = . 

When 2ω = , the granularity becomes finer.
2 {{ , },{ , },{ , }}G A B A C B C= , 

2 {{0,1},{0,0},{1,0},{1,1}}V = , 3 22 2N −= = . 
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3.2 The Description of the Algorithm 

The specific steps of the rapid granular algorithm for minimization of Boolean func-
tions are described as follow: 

Step1: Transform Boolean function into digital minterms in form of truth table. 

Step2: Generate IGS. The following is how to generate IGS 

Procedure 

ω =1;% initialize granularity 

 for ω =1:n-1  

  find RMGω and the corresponding rG  

if mRMG U=  

break； 

end 

check the minterms that are not included in RMGs and regard them as independent 
granules  

delete the granules that are composed by dU  

output the final result, i.e. IGS 

 

Step3: Output the IGS as the final result. 

3.3 Example 

To describe the algorithm more clearly, a concrete example is followed to explain the 
details of the proposed algorithm. The Boolean function can be easily transformed into 
SOP, so example 3 start from SOP. 

Example 3: ( , , , ) (0,5,6,7,9,13,15) (10,14)X A B C D m d=Σ +  

According to the algorithm in our paper, the specific procedure is followed. 

Step 1: Transform the multivariable logic function (contains the ‘don’t care terms’) 
into the digital minterms as shown in table1. In the second column, ‘*’ distinguish the 
‘don’t care terms’ and ‘1’indicate the minterms. 

As shown in table 1, the minterms are , , , , , , }5 70 6 9 13 15{m m m m m m m  and the 
‘don’t care terms’ are 10 14{ , }m m .Obviously, the number of input variables is 4n = . 
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Table 1. The Digital Minterms 

Minterms Judge A B C D 

m0 1 0 0 0 0 

m5 1 0 1 0 1 

m6 1 0 1 1 0 

m7 1 0 1 1 1 

m9 1 1 0 0 1 

m10 * 1 0 1 0 

m13 1 1 1 0 1 

m14 * 1 1 1 0 

m15 1 1 1 1 1 

 

Step 2: Generate IGS . 

When 1ω = , 
1 {{ },{ },{ },{ }}.G A B C D= 1 {{0},{1}}V = (4 1)2 8N −= =  

/0 4AN = ,
/1 5AN = ;

/0 3BN = ,
/1 6BN = ;

/0 4CN = ,
/1 5CN = ; /0 4DN = , /1 5DN = ; 

Because there is no number equals to 4 12 2 8n wN − −= = = , there is no information 
granule when 1ω = .  

When 2ω = , Knowledge granularity space of the system becomes finer. 

2 {{ , },{ , },{ , },{ , },{ , },{ , }}G A B A C A D B C B D C D=  . 

1 {{00},{01},{10},{11}}V = , (4 2)2 4N −= = .  

/00 1ABN = , /01 3ABN = , /11 3ABN = , /10 2ABN = ; /00 2ACN = , /01 2ACN = ,

/11 3ACN = , /10 2ACN = ; /00 2ADN = , /01 2ADN = , /11 3ADN = , /10 2ADN = ;

/00 2BCN = , /01 1BCN = , /11 4BCN = , /10 2BCN = ; /00 2BDN = , /01 1BDN = ,

/11 4BDN = , /10 2BDN = ; /00 1CDN = ; /01 3CDN = , /11 2CDN = , /10 3CDN = . 

/11 /11BC BDN N N= = . 1Gr BC= , 2Gr BD= . The corresponding RMGs are :  



 A Rapid Granular Method for Minimization of Boolean Functions 583 

 

1 6 7 14 15{ , , , }R m m m m= , 1 5 7 13 15{ , , , }R m m m m= .  

The minterms included in RMGs do not cover the mU .Continue to compute it. 

When 3ω = ,
3 {{ , , },{ , , },{ , , },{ , , }}G A B C A B D A C D B C D=  

1 {{000},{001},{010},{011},{100},{101},{110},{111}}V = , (4 3)2 2N −= = . 

Because we get information granule BC and BDwhen 2ω = , in the finer granu-
larity, we do not need to compute the combinations that contain these granules. 
Like /011ABCN , /111ABCN , /011ABDN , /111ABDN , /101BCDN , /110BCDN , /111BCDN .  The 
search space is dramatically reduced. 

/000 1ABCN = , /001 0ABCN = , /010 1ABCN = , /100 1ABCN = , /101 1ABCN = ,

/110 1ABCN = ; /000 1ABDN = , /001 0ABDN = , /010 1ABDN = , /100 1ABDN = ,

/101 1ABDN = ; /110 1ACDN = , /000 1ACDN = , /001 1ACDN = , /010 1ACDN = ,

/011 1ACDN = , /100 0ACDN = ; /101 2ACDN = , /110 2ACDN = , /111 1ACDN = ,

/000 1BCDN = , /001 1BCDN = , /010 1BCDN = , /011 0BCDN = , /100 0BCDN = . 

/101 /110ACD ACDN N N= = , 3rG ACD= ,
4rG ACD= . The corresponding RMGs 

are 3 9 13{ , }R m m= , 4 10 14{ , }R m m= . Now it has cover the universe, so stop com-
puting.  

So far, RMGs contains all minterms in mU except 0m . We consider 0m as an inde-
pendent granule, i.e. 5 0Gr m ABCD= = . As 4Gr is contained of the ‘don’t care terms’, 

4Gr is invalid.  

Step 3:
1 2 3 5{ , , , } { , , , }IGS Gr Gr Gr Gr BC BD ACD ABCD= = .The final result is 

Y BC BD ACD ABCD= + + + . 

3.4 Algorithm Complexity Analysis 

The rapid granular algorithm for minimization of Boolean functions was programed by 
MATLAB and many examples are testified to prove its accuracy and efficiency.  

The time complexity of this algorithm is d ( (2 ))nO . Because of the heuristic in-

formation, the time complexity will be greatly reduced and it is better than the 
3( ( ))3

n
O of the Q-M algorithm. 
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4 Conclusions 

Boolean function minimization is important not only in digital logic circuit design. SOP 
is the standard form of Boolean function. A rapid granular algorithm for minimization of 
Boolean functions is proposed in this paper. At first, the Boolean function is expressed 
in form of SOP, then, the basic theorem for minterms reduction is illustrated and proved. 
Secondly, we introduce the concepts of information granule and granularity. The static 
information was computed under different knowledge granularity space. And the stop 
condition was set to improve the algorithm efficiency. During this process, ‘don’t care 
terms’ can also be considered and at last, output the final result. Experimental results 
show the accuracy and efficiency of the proposed algorithm. 

The originality of this paper mainly lies that: 1.Introduce the concept of granularity 
and information granular to simplify the algorithm, the solution was searched under 
different knowledge granularity space.2.Find the statistical properties of minterms and 
use it to find the information granules.  

The research finds a new way that totally different with the traditional ones to realize 
the Boolean function minimization with high efficiency, and on the other hand, 
enriches the application of granular computing. The follow-up work is still continuing. 
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Abstract. With the growing number of alternative services being deployed by 
cloud service providers, and users usually can only provide uncertain QoS 
(Quality of Service) preferences to providers, it becomes difficult to select the 
most suitable service to satisfy users need. In this paper, we propose a novel 
model of cloud service selection which considers the uncertainty of user subjec-
tive and objective weight preferences. Based on this model, we first analyses the 
incompleteness and fuzziness of user preference, obtains the user subjective 
weight preference by intuitionistic fuzzy set and objective weight by attribute 
significance of rough set. Then we transform the uncertain user QoS prefe-
rence-aware cloud service selection to a multiple attribute decision-making 
problem, further we use the technique of order the preference by similarity to an 
ideal solution to select best service for user. Lastly, we conduct a case study 
about cloud storage service selection to show the effectiveness and advantages of 
our approach.  

Keywords: Cloud service selection, uncertain user preference, QoS, weight.  

1 Introduction 

Cloud computing [1] is a kind of scalable cheap distributed computing ability which 
can provide through internet. With the rapid development of cloud computing, more 
and more web services were deployed on the cloud platform to build SOA application 
and distributed cloud application [2]. Cloud services are so abundant and there are 
massive services with similar function but different non-functional attributions in the 
cloud, so it is deserve to think that how to select a suitable cloud service to fulfill user 
specific preference .User is the end beneficiary of service executing, so it is important 
to take a full consideration on the customized QoS preferences for service 
non-functional attribution so that we can improve user experience. It has become a hot 
point for research. 

Nowadays, most of the service selection approaches based on user preference only 
considered complete and fuzzy QoS preference information; the following two things 
are not included in. 

First is about the uncertainty of user weight preference. Usually when user are in-
teracting with cloud service provider, it will often run into such situations that some 
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information was missed for itself or ignored by user's wrong recognition for its affec-
tion on QoS information. Moreover some preferences cannot be expressed clearly 
because of non-expert cloud user's limited specific technology. So all these situations 
will lead to uncertain QoS weight preference. In paper [3], the authors apply cloud 
model to compute the uncertainty of QoS and use mixed integer programming to 
identify the most suitable services, they only consider the uncertainty of QoS values but 
take no look into users’ real preferences. Hongbing et el. [4] propose an approach 
which only consider the certainty QoS value preference to compute the similarity 
between descriptions candidates web service and user requirement. In paper [5] the 
MLOMSS local service selection model based on multi-dimensions service quality was 
presented, it applies the attribution importance of Fuzzy analytic hierarchy method to 
define the impact of QoS weight. But these models only focus on certain and complete 
QoS-aware service selection. 

The second one is the ignorance of the importance of object QoS weight preference. 
Usually most of the existed papers do not consider the objective weight preference and 
other common evaluation with the same service requirement. In [6], authors apply the 
linear weighting method to assess the alternative services, they think that user subjec-
tive weights can reflect the relative importance of the objective function, however the 
results are somewhat not inconsistent with the actual situation and the weight standar-
dization is too simple to reflect the complex scenarios of cloud service in the real world. 
Another discussion of integrated preferences for cloud service selection problem is 
using Analytic Hierarchy Process (AHP) [7] to solve this multi-attribution decision 
making problem. In [8], Godse et el. focus on the selection of software-as-a-service 
cloud based on AHP. It should be noted that all these considered factors except cost can 
hardly be quantified by an objective measure, thus their approach is still mainly based 
on subjective assessment.                                                       

Other approaches like paper [9] is too complicated to compute. As they first obtain 
the subjective weight preference by using the triangular fuzzy numbers method to 
convert language values and OWA operator to quantify; then adopt the information 
entropy method to determine the objective weights; lastly a synthetic parameters as the 
equilibrium factor is used to get the weight impact of the combining weight. 

In this paper, different from all the existing models of cloud service selection, we 
present a novel model based on the aggregation of user uncertain weight preferences 
for QoS criteria. The main contributions of our paper can be summarized as follows. 
• We address the problem of cloud service selection and demonstrate the influence of 

uncertainty of user preference on selection process. 
• We propose a novel combination calculation method of subjective and objective 

user weight preference. We first utilize the intuitionistic fuzzy sets to handle the 
vague user subjective preference. Then according to the user history preference in-
formation for the same service request, we get the objective weight preference by the 
attribute significance of rough set. And last a compromise factor used to optimize 
the integrated weight preference.      

• Based on the proposed model, we evaluate our approach by a real world case study 
and a comparison experiment with other method on this situation.  
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The rest of this paper is organized as follow. Section 2 is the model of our proposed 
cloud service selection.  Section 3 introduces the QoS-aware service selection ap-
proach under the uncertain user weight preference. After that, a case study and expe-
riment are presented in Section 4 to illustrate the effectiveness and advantages of our 
approach. We conclude this paper and discuss future work in Section 5. 

2 Our Cloud Service Selection Decision Model 

In this section, we describe the process of cloud service selection with uncertain user 
preferences as follows: given a set of candidate services C which can meet the users’ 
functional requirements firstly, C= {C1, C2,..., Cm}; according to the uncertain QoS 
weight preference information from cloud users, we can evaluate all the performance of 
QoS attributes for each service to choose the most suitable service for users. Therefore, 
this process can be defined as a multi-attributes decision model [10]. 

Definition 1. Cloud Service Selection Decision Model (CSSDM): Let CSSDM = (C, 
Q, V, f), where C is the set of candidate services and C= {C1, C2,..., Cm}; Q is the 
non-empty finite set of QoS attributes and Q = {q1, q2,..., qn}; V is the QoS attributes 
value set of candidate services; The information function or approximation function is 
defined as f, where f : SXQ—>V; W is the user preferred QoS attribute weight set and 
W={w1, w2,...,wn},∑ 1 >0;DM express the decision matrix and DM

 , represents the comprehensive evaluation value of the j QoS attribute for 
the i candidate service. 

3 Cloud Service Selection Based on Uncertain User Preference 

As a growing number of alternative value-added services have been deployed in the 
cloud to satisfy diversify requirements of organizations and individuals, the cloud 
service environment becomes more complicated for the various service fields and 
massive service amounts as well as the uncertainty of user preference. In this section, 
we propose a QoS-aware cloud service selection approach based on the uncertain user 
subjective and objective weight preferences.  

The user subjective weight preference refers to the priority of one or a few QoS 
attributes must have special requirements and restraints according to user actual situa-
tion. However, usually user would often put forward uncertain and vague preferences 
due to the limitations of professional knowledge and thinking mindset. Also in real 
world situations, subjective assessment for cloud services and the importance weight 
for each QoS attribute are usually represented in the form of linguistic variables (e.g., 
“good” and “bad”). In order to deal with the inherent uncertainty of human languages, 
we apply a fuzzy simple additive weighting method in our model. Through this me-
thod, linguistic variables can be represented by fuzzy numbers for their fuzziness. 
And quantitative terms can also be represented in fuzzy number form. Then our mod-
el can effectively normalize and aggregate all different types of subjective preferences 
in real world situations. Before presenting the details of our model, some basic know-
ledge of intuitionistic fuzzy set will be introduced. 
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3.1 Subjective Weight Preference Based on Intuitionistic Fuzzy Set 

Intuitionistic fuzzy set is a good description and illustration method for subjective 
uncertain information, it is originally proposed as the promotion of fuzzy set theory by 
Atanassov [11]. The fuzzy information is described via three parameters: Membership 
degree μ, Non-membership degree ν and Uncertainty degree π.The ordered 
pair-intuition fuzzy number [μ, ν] which composed by Membership degree and 
Non-membership degree usually used to represent a fuzzy concept.  

Our paper will apply the mapping table between user linguistic described weight 
preference and intuitionistic fuzzy numbers which proposed in literature [12] to ex-
press and quantify subjective weight of a candidate for service. As shown in Table 1, 
the user linguistic weight preference for a certain QoS attribute is represented as an 
uncertainty degree parameter L . 

Table 1. Mapping table  

Linguistic Value Intuitionistic Fuzzy Numbers 
very important [0.9,0.1-π] 
important [0.7,0.3-π] 
medium [0.5,0.5-π] 
unimportant [0.3,0.7-π] 
very unimportant [0.1,0.9-π] 
unknown [0,0] 

 

In order to apply to the multi-attribute decision making method, a conversion func-
tion is needed to transform the importance of a certain QoS attribute represented 
by L  to weight coefficients. It is namely that the quantitative value is the remains 
of certain Membership degree subtract the uncertain portion of Non-membership de-
gree, so the conversion function is:  1         (1) 

 In addition, it is important to make sure that the total weight value equals 1 when 
specifying the importance degree of these  QoS attributes. Therefore, a normaliza-
tion function (2) is used to normalize the quantitative subjective weight preference to 
[0, 1]. / ∑ 1                            (2) 

For example, a potential cloud user marked a QoS attribute as important and the un-
certainty degree is 0.1.So it can be expressed as 0.1, quantitative weight is:  w 0.7 0.3 0.1 0.1 0.68. 

3.2 Objective Weight Preference Based on Rough Set  

The user objective weight preference indicates a default preference when a user first 
time to use a service or he has no idea about the preference. Here we collect the user 
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incomplete history preference information of same service request to get the objective 
weight preference by the QoS attribute significance of rough set. 

Rough set theory [13] is convinced as an effective method that can be employed to 
analyze uncertain (including vague and incomplete) systems. Although it is less 
common than more traditional methods of probability, statistics and entropy, the key 
difference and unique strength of using classical rough set theory is that it provides an 
objective form of analysis. The rough set analysis requires no additional information, 
functions, grades, external parameters or subjective interpretations to determine set 
membership; it only uses the information presented within the given data. In this sec-
tion, we will employ the attribute importance in rough set theory to process the in-
complete user QoS preference. 

Definition 2. Attribute Importance: Let  be a subset of attributes,  is an 
attribute, considering the importance of  to , namely that the definition enhance-
ment after adding an attribute  in set , so the greater the enhancement, the more 
important that  to . 1   | || |                      (3) 

Consider  and  are the equivalence relation for set , let  be the  positive 
domain of , /  , the  positive domain is a collection of all ob-
jects in set  that can be exactly classified into  equivalence class relation according 
to the  information. So the user objective QoS weight preference as follows:  ∑                            (4) 

Obviously, it meets the basic requirements of weight as 0 1 and  ∑1 , therefore the objective and subjective weight preference of each user is: 1            0 1, 1,2, …            (5) 

The  parameter indicates that importance of user subjective weight preference. 
The larger  is and the more obvious impact of the subjective weight on the integrated 
weight, usually the value of  is 0.8. According to the user preference and standar-
dized QoS data, next we will introduce our approach to solve the service selection 
problem via the multi-attributes decision making method. 

3.3 Our Proposed Approach 

In this section, we present the details of our cloud service selection approach. Assume 
that a potential cloud user submits its request to the cloud service repository for finding 
the most suitable cloud service. After the preliminary selection according to the func-
tional requirements and specific QoS value constraints, suppose that there are  clouds 
left as the alternative clouds denoted by , where 1, … , .The final score  
of each alternative cloud is ranked by the close degree to the ideal positive solution 
according to the integrated user weight preferences. That namely multi-attributes  
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decision making method-TOPSIS, it selects alternatives having the shortest distance 
from the positive ideal solution and the farthest distance from the negative ideal solu-
tion [14]. Here the positive ideal solution is a combination which composed by the best 
solution of properties in the candidate clouds; the negative ideal solution is inverse. 

The detailed procedure of our approach is shown below: 

Step1：Preprocessing QoS attributes of candidate services.  
Firstly, choose the candidate cloud services which can meet all the functional and 
quantitative QoS value requirements to determine the initial QoS matrix . Assume that 
there are  clouds left as the alternative clouds and each service has  attributes.  
Then do preliminarily processing for the native QoS data based on its uncertainty  
and incompleteness. At last we get the normalization QoS matrix P, for details to see 
paper [15]. , ,

, ,  

Step2：Constructing user preference weighted decision matrix.  

After we have got the normalization decision matrix P, then we should aggregate 
both user uncertain subjective and objective weight preferences to construct the 
weighted decision matrix. 

• Subjective QoS weight preference processing.  
As we have introduced before in our model, all the subjective attributes are 

represented in the form of linguistic variables. Here, we use the mapping illustrated in 
Table 1, which is frequently employed in research of service discovery and selection 
[16]. Each fuzzy number in Table 1 represents the fuzzy rating corresponding to the 
linguistic variable, suppose that the weight preference vector of cloud user for  QoS 
attributes is L . , , ,                      (6) 

And  is the importance and uncertain degree of attribute  for user, then we 
convert it to weight coefficient by the conversion function  1, … , . Next we continue normalize the weighting coefficient to [0, 1] to get the final 
subjective weight preference: 

∑ , ∑ , … , ∑                      (7) 

• Objective QoS weight preference processing.  
As we have introduced in 3.2, the history values often in the form of missing or in-

complete but can be well processed by rough set. Equation (4) is for this situation 
when user can only provide limited subjective preferences, so the objective weight 
preference is .Therefore, the integrated weight preference based on Equation (5) is: , , … ,                      (8) 
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The user preference weighted decision matrix Y is: 

                                 (9) 

Step3：Choosing the positive and negative ideal cloud service.    

The purpose of service selection is to best meet the requirements of users. Thus the 
positive ideal solution is an ideal service that composed by the maximum value of 
properties  in the weighted decision matrix Y, on the contrary, the negative ideal 
solution is a service with the minimum value for properties  in weighted decision 
matrix Y. Assume they are respectively denoted by  and  as follows: max , min   1, ,   1, … ,  , , ,         , , ,  

Step4：Computing the distance and nearness degree between candidate services 

and ideal services.  
For each decision-maker   of a candidate cloud service  ,  the N-Dimensional 
Euclidean distance is employed to be the distance scale. Thus the distances of service 
between positive ideal solution are denoted by and the distances of service between 
negative ideal solution are denoted by .  ∑              ∑           (10) 

Then to calculate the relative nearness degree of candidate services to ideal solutions 
which is denoted by . , 1, … ,                             (11) 

In the above equation (11), the closer of the value of nearness degree  to 1, the 
more indicating that the candidate service is closer to the positive ideal solution, 
namely that it is more matching the preferences of user. Meanwhile, if the closer of 
the value of nearness degree  to 0, the more indicating that the candidate service is 
closer to the negative ideal solution, namely that it is more off the preferences of user. 
If the value of nearness degree  is 1, the candidate service actually is the ideal posi-
tive service. Finally, according to the final nearness degree values, all the alternative 
cloud services are ranked for the weight preference-aware selection for the potential 
cloud user. 

4 Experimental Analysis 

To evaluate the effectiveness of our modeling approach for handling uncertain user 
preferences and subsequent selection process, we apply it to a use case that aims select 
among cloud storage services, then we conduct a comparison with the MIP method 
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used in [17] on the success ratio. All the experiments are conducted on the same 
computer with Intel(R) 2.66GHz processor, 2.0GB of RAM, Windows8.1.Both ap-
proaches are run independently for 100 times and all results are reported on average. 

4.1 Case Study 

Cloud storage services allow to easily upload data to Cloud datacenters, for instance for 
backup purposes or to share and access data on diverse devices. This use case is rele-
vant for technical decision-makers in search for decision support to select Cloud sto-
rage services. Assume that after preliminary selection, a small business company which 
has a subscription plan among these seven cloud storage services: Dropbox, OneDrive, 
Box.com, iCloud, GoogleDrive, UbuntuOne and Wuala, which is denoted by Ci. The 
plan should consider the following six QoS attributes, including cost, reliability, rep-
utation, safety, has free trial and response time. All these parameters of the QoS 
attributes are collected from the data which published online by service provider. The 
Table 2 shows the native QoS values of the cloud service candidates. 

Table 2.  QoS Values of Service Candidates 

Ci Cost Reliability 
(%) 

Reputation Safety Has 
free trial 

Response Time(ms) 

C1 87 89 5 Good True [220,260] 
C2 84 98 5 Good True [180,230] 

C3 46 58 3 Medium True [420,460] 
C4 85 85 4 Good True [200,280] 
C5 65 75 4 Good True [230,280] 
C6 44 55 - Medium True [320,400] 
C7 18 20 2 Medium False [530,600] 

As the step 1 says, we firstly preprocess the QoS attributes data to obtain quantified 
and normalized QoS value matrix P. Next, in the subscription plan for the cloud storage 
service, the related QoS subjective weight preferences are illustrated in Table 3. 

Table 3.  QoS Subjective Weight Preferences 

QoS Criteria Weight Preferences  Ws 

Cost M(0.2) 0.44 0.1410 

Reliability VI(0.0) 0.9 0.2885 
Reputation U(0.2) 0.2 0.0641 
Safety VI(0.0) 0.9 0.2885 
Has free trial - - - 
Response Time I(0.1) 0.68 0.2179 

In the Table 3, the company has marked the importance of “Cost” QoS attribute as 
“Medium” and the uncertain degree is 0.2,so this weight preference is expressed as 
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M(0.2); the same with the “Reliability” QoS attribute. The expression VI (0.0) means 
“very important” and the uncertainty is 0.According to the Equation (1) & (2), finally 
each QoS of subjective weight preference is listed in Ws column. 

As for this case study, we have launched a survey about what’s preferred when dif-
ference background users consider using cloud storage service. We have collected 
abundant user historical preferences to generate the objective weight value Wo. By 
Equation (3) & (4), the objective weight preference of user is {0.0834, 0.3333, 0.0833, 
0.3333, 0.0417, 0.125}. 

Next we design an experiments to validate the effectiveness of our approach. If the 
potential cloud user totally has no ideal about the service requirements for limited 
technical knowledge, so the objective weight preference is recommended. On the other 
hand, if the company has a full understanding of his preferences, so he may adopt his 
subjective weight only. In other words, both scenarios are about uncertain user prefe-
rences which can be solved by assign corresponding values to the coordination para-
meter .Thus we consider three situations where  is 0, 1 and 0.8 to do evaluation.  

 

 

Fig. 1. Ws indicate the subjective weight preference; Ws+o indicate an integrated weight prefe-
rence and Wo express the objective weight preference only.  is the nearness value of each 
alternative cloud.  

From Fig 1, after sorting by closeness degree value we can see that the cloud service 
C2 which ranked first in Ws and Ws+o scenarios, so it is the most suitable choice for 
this company’s plan. This figure also shows that our approach can make a difference 
when dealing with the uncertainty of human languages user preferences. Also by con-
sidering objective preference assessments from historical cloud consumers, our ap-
proach takes into account some vital qualitative performance preferences which are 
usually ignored by users or providers or other approach in the selection process of a 
cloud service. Based on the analysis and experiment results in the above case study, our 
proposed approach is more effective to hit the right cloud service. 
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By using rough set and fuzzy set to process QoS preferences transactions, our ap-
proach effectively defense from services with large variances on its QoS, and reduce 
the difference between selected services and actual execution results. Hence, the re-
liability of service selection can be greatly improved. 

5 Conclusion  

In order to tackle cloud service selection challenges, we present a novel approach to 
describe and compute the uncertainty of cloud user QoS preference. Our approach 
applies the intuitionistic fuzzy sets to quantify the vague user subjective preference and 
the attribute significance of rough set to get the objective weight preference. Then it 
uses the multi-attribute decision theory to identify the most suitable cloud services. 
Finally, a case study demonstrates the advantages of our proposed model in cloud ser-
vice selection. Furthermore, experimental results show that our model can help to im-
prove reliability of service selection. Definitely this lets cloud users express their needs 
in linguistics terms which also brings a great comfort to them compared to systems that 
force users to assign exact weight for all preferences.  

In our future work, we will continue to improve our model by considering the user 
hybrid QoS value and weight preferences in service selection. In addition, we plan to 
study the effect of different system factors to our model (e.g., de-fuzzification me-
thods, sensitivity of member functions and mappings from linguistic variables to 
fuzzy numbers). Our goal is to help real-world service users find appropriate services 
according to their QoS requirements in the near future. 
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Abstract. Attribute reduction is one of the most important research
issues in decision-theoretic rough set model. This paper studies a new
attribute measure preserving boundary region partition for a reduct. The
relationships among the positive region, the probabilistic positive region
and the indiscernibility object pairs for an equivalence class are analyzed.
A heuristic attribute reduction algorithm framework using MapReduce
in decision-theoretic rough set model is proposed. This study gives some
insights into how to conduct attribute reduction in decision-theoretic
rough set for big data.

1 Introduction

Rough set theory [8], proposed by Pawlak, is a useful mathematical framework to
deal with uncertainty problems. It has been applied in many fields such as data
analysis, data mining and machine learning. Using the lower approximations in
Pawlak rough set model(PRS), one can derive the decision rules with certainty
from the positive region. In practice, if considering little tolerance of errors, we
may mine some latent useful knowledges from the boundary region. In recent
years, some researchers begin to consider this issue and have extended PRS
model into probabilistic approaches [13–15, 18]. All these proposals expand the
positive and negative regions by introducing certain acceptable level of errors
into the standard model, which promote the development and applications of
rough set theory.

Attribute reduction is an important problem of rough set theory [8, 10, 12].
Prof. Yao proposed decision-theoretic rough set model(DTRS) and gave the cor-
responding attribute reduction algorithm in [15–17]. As the probabilistic negative
region may not be the empty set, we cannot obtain the monotonicity of the prob-
abilistic regions with respect to set inclusion of attributes [1, 5–7, 16, 17]. These
monotonic attribute measures for positive region preservation in PRS model
are inappropriate for DTRS model. Moreover, most existing algorithms can not
deal with the massive data. Thus, a heuristic attribute reduction algorithm for
DTRS model has not been considerably investigated so far for big data. In such
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case, developing an efficient and effective approach to attribute reduction is very
desirable.

In this paper, we investigate a monotonic attribute measure for the boundary
region partition preservation in PRS model. We discuss the relationships among
the positive region, the probabilistic positive region and the indiscernibility ob-
ject pairs. Based on those results, we further propose an attribute reduction
algorithm framework in DTRS model using MapReduce for big data.

2 Preliminaries

In this section, we will review attribute reduction in Pawlak rough set model
and decision-theoretic rough set model. For a detailed description, please refer
to papers [8, 10, 17].

2.1 Attribute Reduction in Pawlak Rough Set Model

In Pawlak rough set model, for a subset of attributes A, Pawlak defines that two
objects in U are A-indiscernible if and only if they have the same values on all
attributes in A. That is, IND(A) = {(x, y) ∈ U × U |∀a ∈ A, a(x) = a(y)}. The
indiscernibility relation IND(A) determines a partition of U, denoted by U/A or
πA. The equivalence class of U/A containing x is given by [x]A = {y ∈ U |(x, y) ∈
IND(A)}. Let πD = {D1, D2, . . ., Dk} be a partition of the universe U induced
from the decision attribute D.

A reduct A ⊆ C is called a positive region preserving reduct or P-reduct for
short if and only if it requires that the positive region with respect to the decision
attribute D is unchanged.

Definition 1. For a decision table S, an attribute set A ⊆ C is a Pawlak reduct
of C with respect to D if it satisfies the following conditions:
(1) POS(πD|πA) = POS(πD|πC);
(2) for any attribute a ∈ A, POS(πD|πA−{a}) �= POS(πD|πA).

Based on this definition, one can derive the fact that the Pawlak positive region
is monotonic, and the size of the positive region induced from the attribute set C
is largest. A reduct A produces the same size of a positive region as what C does,
and any subset of A cannot produce a larger positive region than A does [17].
Thus, we only check all the proper subsets A - {a} for a ∈ A.

A P-reduct also can be seen as a reduct preserving the quality of classification.
The quality γ(πD|πA) is defined as follows:

γ(πD|πA) = |POS(πD|πA)|
|U | . (1)

Since the size of the positive region is monotonic with respect to set inclu-
sion of attributes, one can derive the monotonicity of the γ measure. Many
researchers [9, 10, 12] use the γ measure to construct some attribute reduction
algorithms.
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In general, any monotonic measure f can be used to define a P-reduct if it
satisfies the following condition

(f(πD|πA) = f(πD|πC))⇐⇒ (POS(πD|πA) = POS(πD|πC). (2)

We consider a reduct preserving the boundary region. A subset of attributes
A ⊆ C is called a boundary region preserving reduct or a B-reduct for short
if and only if it satisfies (1) BND(πD|πA) = BND(πD|πC) and (2) for any
attribute a ∈ A, BND(πD|πA) �= BND(πD|πA−{a}). For a P-reduct A ⊆ C,
since NEG(D|A) is empty, we can have POS(πD|πA) ∩ BND(πD|πA) = φ
and POS(πD|πA) ∪ BND(πD|πA) = U. Thus, the condition POS(πD|πA) =
POS(πD|πC) means that BND(πD|πA) = BND(πD|πC) holds. The require-
ment of the same boundary region is implied in Definition 1. We have the fol-
lowing relationship between P-reduct and B-reduct: there exists a B-reduct B
for a P-reduct A such that A ⊆ B and there exists a P-reduct A for a B-reduct
B such that A ⊆ B. Therefore, only considering the positive region for Pawlak
rough set model is sufficient in the attribute reduction process.

2.2 Attribute Reduction in Decision-Theoretic Rough Set Model

Decision-theoretic rough set model introduces two tolerance threshold param-
eters α and β(0 ≤ β < α ≤ 1) to overcome the weakness in Pawlak rough
set model, which can generate the probabilistic positive, boundary and nega-
tive regions based on the notion of expected lost from Bayesian decision theory.
Each equivalence class Di ∈ πD is called a decision class. The precision of an
equivalence class [x]A ∈ πA for predicting a decision class Di ∈ πD is defined as:

p(Di|[x]A) = |[x]A ∩Di|
|[x]A| . (3)

where |.| denotes the cardinality of a set.

Definition 2. [17] For a decision table S, the three probabilistic regions can be
defined as follows:

POS(α,β)(πD|πA) = {x ∈ U |p(Dmax([x]A)|[x]A) ≥ α}
BND(α,β)(πD|πA) = {x ∈ U |β < p(Dmax([x]A)|[x]A) < α}

NEG(α,β)(πD|πA) = {x ∈ U |p(Dmax([x]A)|[x]A) ≤ β}
(4)

where Dmax([x]A) ∈ πD is a major decision class of the objects in [x]A, i.e.,

Dmax([x]A) = argmaxDi∈πD (
|[x]A∩Di|

|[x]A| ) .

Parallel to Pawlak’s definition, a natural extension of attribute reduction for
probabilistic positive region preserving reduct, or P{α,β}-reduct for short, can be
defined as follows.
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Definition 3. For a decision table S, an attribute set A ⊆ C is a probabilistic
positive region-preserved reduct of C with respect to D if it satisfies the following
conditions:
(1) POS(α,β)(πD|πA) = POS(α,β)(πD|πC);
(2) for any A

′ ⊂ A, POS(α,β)(πD|πA′ ) �= POS(α,β)(πD|πA).
In decision-theoretic rough set model, for a reductA ⊆ C, asNEG(α,β)(πD|πA)

may be not empty set, we cannot have POS(α,β)(πD|πA) ∪BND(α,β)(πD|πA) =
U. A reduct only for any probabilistic region preservation may change the other
two probabilistic regions. In addition, we cannot obtain the monotonicity of the
probabilistic positive region with respect to set inclusion of attributes. Therefore,
we must check all the subset of a candidate reduct in condition 2 of Definition 3.

In decision-theoretic rough set model, the quality of a probabilistic classifica-
tion γ(α,β) is denoted as follows.

γ(α,β)(πD|πA) =
|POS(α,β)(πD|πA)|

|U | . (5)

As indicated in [16,17], since the probabilistic positive region is non-monotonic,
γ(α,β) is also non-monotonic. In other words, for B ⊂ A, we cannot obtain
γ(α,β)(πD|πB) < γ(α,β)(πD|πA). Note that the γ(α,β) measure only reflects the size
and cannot reveal the objects of the probabilistic positive region. If γ(α,β)(πD|πA)
= γ(α,β)(πD|πC), we can have |POS(α,β)(πD|πA)| = |POS(α,β)(πD|πC)|, but not
guarantee that POS(α,β)(πD|πA) = POS(α,β)(πD|πC) holds. On the other hand,
γ(α,β) also ignores the boundary region and negative region.

Example 1:Consider a simple decision table S shown in Table 1. Supposeα=0.75,
β=0.60, we can obtain the following probabilistic positive regions from some at-
tribute sets.
POS(α,β)(πD|π{c1}) = φ
POS(α,β)(πD|π{c2}) = φ
POS(α,β)(πD|π{c5}) = {o3, o4, o5, o9}
POS(α,β)(πD|π{c1,c2}) = {o3}
POS(α,β)(πD|π{c1,c5}) = {o4, o7}
POS(α,β)(πD|π{c2,c5}) = {o1, o2, o3, o4, o6, o7, o8}
POS(α,β)(πD|π{c1,c2,c5}) = {o1, o3, o4, o7}
POS(α,β)(πD|πC) = {o1, o3, o4, o7}
Thus, we can obtain the probabilistic positive regions are non-monotonic with re-
spect to set inclusion of attributes. Fig. 1 illustrates the relationship among the
probabilistic positive regions and the set inclusion of attributes.

3 Attribute Reduction for the Boundary Region Partition
Preservation

In decision-theoretic rough set model, the probabilistic positive regions contain all
the consistent objects from the positive region and some objects from the bound-
ary region in Pawlak rough set model. From Example 1, we can check that the
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Table 1. An information table

U c1 c2 c3 c4 c5 c6 D

o1 1 1 1 1 1 1 1
o2 1 0 1 0 1 1 1
o3 0 1 1 1 0 0 2
o4 1 1 1 0 0 1 2
o5 0 0 1 1 0 1 2
o6 1 0 1 0 1 1 3
o7 0 0 0 1 1 0 3
o8 1 0 1 0 1 1 3
o9 0 0 1 1 0 1 3

4

1
0

( , )| ( | ) |D APOS

1{ }c 1 2{ , }c c 1 2 5{ , , }c c c A

7

4

5{ }c 5 2{ , }c c 5 2 1{ , , }c c c
A

4

2

5{ }c 5 1{ , }c c 5 1 2{ , , }c c c
A

4

1 2 5{ , , }c c c 1 2 5 3{ , , , }c c c c
A

(a) gradually increasing (b) first increasing then decreasing

(c) first decreasing then increasing (d) unchanged

( , )| ( | ) |D APOS

( , )| ( | ) |D APOS ( , )| ( | ) |D APOS

1 2 5 3 4{ , , , , }c c c c c

Fig. 1. The relationship between the size of probabilistic positive regions and the set
inclusion of attributes

probabilistic positive region of {c2, c5},{o2, o6, o7, o8}, is comprised of the posi-
tive region {o7} and the boundary region {o2, o6, o8} in PRSmodel. Moreover, the
boundary region partitions of {c1, c2, c5} is the same as that of the whole attribute
set C. Thus the boundary region partition plays a key role in the attribute reduc-
tion process for decision-theoretic rough set model. In what follows, we mainly
consider how to construct the boundary region partition preservation.

3.1 Attribute Reduction for Boundary Region Partition Preservation
in PRS

In PRS model, we can evaluate the size of indiscernibility object pairs from the
boundary regions to construct a monotonic attribute measure.

Definition 4. [10] Given a decision table S, letA ⊆ C and πA={A1,A2, . . .,Ar},
we get the number of indiscernibility pairs of objects that conditional attributes A
can not discern.
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D̃ISD
A =

∑
1≤p≤r

∑
1≤i<j≤k

nipn
j
p (6)

where nip(n
j
p) denotes the number of objects whose combinational value of condi-

tional attributes is p and decision attribute value on d is i(j).

By Definition 4, one can check that the indiscernibility object pairs may be
generated from the boundary regions with respect to the conditional attributes A.
Thus, we can have the following property for the equivalence class in the positive
region.

Theorem 1. [10] For any equivalence class Ap in a decision table S, Ap ⊆ POS
(πD|πA) iif

∑
1≤i<j≤k

nipn
j
p = 0.

When A is φ, it means that all objects in the universe are regarded as a spe-

cial equivalence class, thus D̃ISD
∅ =

∑
1≤i<j≤k

ninj . When D̃ISD
A does not equal

D̃ISD
C , we must add some other attribute to discern those indiscernibility object

pairs. Assume that the chosen attribute is an attribute c, then those object pairs
remained are composed of some pairs which attribute c can discern and the rest
which attribute c can not discern.

Theorem 2. Given a decision table S, for c ∈ C −A, then D̃ISD
A∪c ≤ D̃ISD

A .

Proof: Suppose U/A = {A1, A2, . . ., Ar}, the equivalence classes from U/{A∪c}
are finer than those of U/A. Any equivalence class Ap (p = 1, 2, . . ., r) can be
sub-divided as A1

p, A
2
p, . . ., A

k
p in terms of decision attribute D.

For an equivalence classAp, the number of the indiscernibility object pair D̃ISD
A

equals
∑

1≤i<j≤k

nipn
j
p. After adding attribute c into A, the number of the indis-

cernibility object pair D̃ISD
A∪c is the sum of

∑
1≤i<j≤k

nip,1n
j
p,1,

∑
1≤i<j≤k

nip,2n
j
p,2, . . .,∑

1≤i<j≤k

nip,mn
j
p,m, namely

∑
1≤i<j≤k

∑
1≤l≤m

nip,ln
j
p,l.

For any equivalence class Ap, suppose any two decision values i and j, we can
have
nip,1n

j
p,1 + nip,2n

j
p,2 + . . . + nip,mn

j
p,m

≤ (nip,1 + nip,2 + . . . + nip,m)(njp,1 + njp,2 + . . . + njp,m)

= nipn
j
p.

Therefore, D̃ISD
A∪c ≤ D̃ISD

A holds. �

Theorem 3. Given a decision table S, A ⊆ C, if D̃ISD
A = D̃ISD

C , then BND
(πD|πA) = BND(πD|πC).
Proof:According to Theorem 2, if D̃ISD

A = D̃ISD
C , we can have the equation πA

= πC , thereby BND(πD|πA) = BND(πD|πC) holds. �
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Theorem2 and 3 indicates that this measure for evaluating the size of indiscerni-
bility object pairs is monotonic and keeps the boundary region partition preserva-
tion unchanged.

3.2 Attribute Reduction for Boundary Region Partition Preservation
in DTRS

Since the indiscernibility relation can keep the boundary region partition preser-
vation in PRS, we employ the boundary region to discuss the probabilistic positive
regions in DTRS.

Theorem 4. Given a decision table S,A ⊆ C, ifBND(πD|πA)=BND(πD|πC),
then POS(α,β)(πD|πA) = POS(α,β)(πD|πC).
Proof: Since BND(πD|πA) = BND(πD|πC), POS(πD|πA) = POS(πD|πC),
thus we can conclude POS(α,β)(πD|πA) = POS(α,β)(πD|πC).�

As discussed above, the probabilistic positive regions may contain some objects
from the boundary region, thus the number of the indiscernibility object pairs in
a probabilistic positive region does not equal 0.

Theorem 5. For any equivalence class Ap in a decision table S, Ap ⊆ POS(α,β)
(πD|πA) iif

∑
1≤i<j≤k

nipn
j
p ≤ 1

2 (1− α)(1 + α− 1
|Ap| )|Ap|2.

Proof: Suppose any equivalence class Ap (p = 1, 2, . . ., r) can be sub-divided as
A1

p,A
2
p, . . ., A

k
p in terms of decision attribute D. The numbers of these equivalence

classes are denoted as n1p, n
2
p, . . ., n

k
p, respectively. If Ap ⊆ POS(α,β)(πD|πA) ,

there exists Ah
p that |Ah

p | ≥ α|Ap| holds. Therefore,

∑
1≤i<j≤k

nipn
j
p

=
|Ap|2−

∑
1≤i≤k

|Ai
p|2

2

=
|Ap|2−|Ah

p |2−
∑

1≤i≤k,i	=h

|Ai
p|2

2

≤ |Ap|2−(α|Ap|)2−(1−α)|Ap|
2

= 1
2 (1− α)(1 + α− 1

|Ap| )|Ap|2.�

Fig. 2 shows the main differences of three partitions. In Fig. 2(a) and (b), the
boundary region partitions are the same. InFig. 2(c), some objects from the bound-
ary region and the objects from the positive region may be combined and form a
new probabilistic positive region. Thus, during the attribute reduction process, we
firstly acquire a reduct for boundary region partition preservation by indiscerni-
bility relation, then further generate a reduct by deleting the redundant attribute
in DTRS model.
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POS Region

BND Region

 Region( , )POS

 Region
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( , )BND
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POS Region

BND Region

(a) original partitions
(b) partitions under

indiscernbility relation
(c)  partitions under a

reduct in DTRS

Fig. 2. The main differences of three partitions

4 Attribute Reduction in Decision-Theoretic Rough Set
Model UsingMapReduce

4.1 Map Function for Computing the Equivalence Classes

Among classical attribute reduction algorithms, the most intensive calculation is
to compute the equivalence classes. As we all know, it is obvious that the computa-
tion of one equivalence class is irrelevant to that of another equivalence class. Thus,
different computations of the equivalence classes from a subset of attributes can be
executed in parallel [11]. The pseudocode of map function is shown in Algorithm 1.

Algorithm 1. Map(key, value)
//Map phase of computing equivalence classes
//Parameters:Selected attributes A, a candidate attribute c
Input: Candidate Attributes A ∪ {c}, a data split
Output:(EquivalenceClass, [< d(x), 1 >])
Begin

Step 1. For an object x in a data split do {
Step 2. EquivalenceClass=“”;
Step 3. For any attribute a ∈ A do
Step 4. {EquivalenceClass=EquivalenceClass + a(x) +“ ”;}
Step 5. EquivalenceClass=c(x)+“ ”+ EquivalenceClass;
Step 6. Output < EquivalenceClass,< d(x), 1 >>.}
End.

By Algorithm 1, we can compute the equivalence classes from candidate con-
ditional attributes. In the next subsections, we mainly focus on how to compute
the number of indiscernibility object pairs using MapReduce.

4.2 Reduce Function for Computing the Indiscernibility Object Pairs

In this subsection, we design a reduce function for computing the number of indis-
cernibility object pairs in cloud computing. The pseudocode for the reduce func-
tion is illustrated as algorithm 2.
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Algorithm 2. Reduce(string EquivalenceClass, pairs[< d1, n1 >, < d2, n2 >,
. . .])
Input: (EquivalenceClass, pairs[< d1, n1 >, < d2, n2 >, . . .])
Output:< EquivalenceClass,NDis Num >
Begin

Step 1. For any pair < d, n > ∈ pairs [< d1, n1 >, < d2, n2 >, . . .] do {
Step 2. Compute the frequencies (n1,n2, . . .,nk) of decision value;}
Step 3. n=

k∑
1
ni;

Step 4. NDis Num=
∑

1≤i<j≤k

ninj ;

Step 5. if NDis Num > 1
2 (1− α)(1 + α− 1

|n|)|n|2, then
Step 6. Output < EquivalenceClass,NDis Num >

End.

By algorithm 2, we can acquire the number of the indiscernibility object pairs
generated froma candidate subset of attributesA∪{c}with respect toD, and store
these different< EquivalenceClass,NDis Num > pairs into the output files.

4.3 Attribute Reduction Algorithm in Decision-Theoretic Rough Set
Model Using MapReduce

Parallel attribute reduction algorithm needs a MapReduce job to perform map
and reduce functions. It reads the total number of indiscernibility object pairs
from the output files in reduce phase, sums up them, and determines an attribute
that will be added into a reduct. Thus, we can acquire the newly candidate sub-
set of attributes for the next iteration. This iterative procedure must be executed
serially as well. Here, we give a new definition of attribute significance as follows.

Definition 5. For a decision table S, let A ⊆ C and a ∈ C −A, then the signifi-
cance of attribute a is defined by:

sig(a,A,D) =

˜DISD
A∪{a}∑

1≤i<j≤k

ninj
(7)

As D̃ISD
∅ ≥ ˜DISD

A∪{a} ≥ 0, we have 0 ≤ sig(a,A,D) ≤ 1. Therefore, we can

employ this attribute measure to construct attribute reduction algorithm using
MapReduce. In DTRS model, we denote the number of the indiscernibility object

pairs as ˜DISD
A∪{a}(α). If α = 1, we use ˜DISD

A∪{a} instead of ˜DISD
A∪{a}(1).

Algorithm 3. Attribute reduction algorithm in DTRS using MapReduce
Input: a decision table, S; a threshold parameter, User α
Output: a reduct Red
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Begin

Step 1. Let Red = ∅, α = 1;

Step 2. Compute D̃ISD
C by Algorithm 1 and 2;

Step 3. If D̃ISD
Red = D̃ISD

C , then turn to Step 8;

Step 4. For each attribute c ∈ C −Red do
Step 5. {Compute ˜DISD

Red∪c by Algorithm 1 and 2;}
Step 6. Let ˜DISD

Red∪c′
= min( ˜DISD

Red∪c);

Step 7. Red = Red ∪c′ , turn to step 3;

Step 8. α = User α;

Step 9. Compute ˜DISD
Red(α) by Algorithm 1 and 2;

Step 10. For each subset A ⊂ Red do
Step 11. {Compute ˜DISD

A (α) by Algorithm 1 and 2;}
Step 12. if ˜DISD

A (α) < ˜DISD
Red(α)) then

Step 13. Red = A, turn to Step 10;

Step 14. Output Red.

End.
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< c2 c5 0 1 ,< 1 , 1>>

< c1 c2 1 0 ,< 3 , 1>>
< c1 c5 1 1 ,< 3 , 1>>
< c2 c5 0 1 ,< 3 , 1>>
< c1  c2 0 0 ,< 3 , 1>>
< c1 c5 0 1 ,< 3 , 1>>
< c2 c5 0 1 ,< 3 , 1>>

< c1 c2 1 1 ,[< 1 , 1>,
< 2 , 1>]>

< c1 c2 1 0 ,[< 1 , 1>,
< 3 , 2>]>

< c1 c2  0 1 ,< 1 , 1>>
< c1 c2 0 0 ,[ < 2 , 1>,

< 3 , 2>]>
< c1 c5 1 1 ,[< 1 , 2>,

< 3 , 2>]>
< c1 c5 0 0 ,[< 2 , 2>,

< 3 , 1>]>
< c1 c5  1 0 ,< 2 , 1>>
< c1 c5 0 1 ,< 3 , 1>>

=5
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=1
1 0 1 3
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1 2{ , } (0.75)D
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2 5Re { , }d c c1 5{ , } (0.75)D
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2 5{ , } (0.75)D
c cDIS

(b) Delete redundant attribute in the first round

Fig. 3. Attribute reduction process in DTRS model
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By Algorithm 3, we first get a reduct that keeps the boundary region partition
preservation by Step 1–7. Then we can acquire a reduct in DTRS through deleting
the redundant attribute.

Example 2: (Continued from Example 1) Suppose α = 1, the reduct is com-
puted by Algorithm 3 as shown in Fig. 3. Suppose the whole dataset is divided
into two data splits using MapReduce, we illustrate the attribute reduction pro-
cess in DTRS model.

(1) Calculate D̃ISD
C = 3. In the first round as shown in Fig. 3(a), we can select

attribute c5. Repeating the process, we can acquire a reduct {c5, c2, c1}.
(2) Suppose α= 0.75 and β = 0.60, ˜DISD

{c5,c2,c1}(0.75) = 3. We must check and

compute the number of the indiscernibility object pairs of the subset of a reduct
{c5, c2, c1} in DTRS model. In the first round as shown in Fig. 3(b), we can get a

candidate reduct {c5, c2}. Since ˜DISD
c2(0.75) = 11 and ˜DISD

c5(0.75) = 6, we finally
acquire the reduct {c5, c2}.

5 Conclusion

Many researchers focus on attribute reduction in the decision-theoretic rough set
models in terms of decision preservation and region preservation. However, it is
difficult to evaluate and interpret such a kind of subjective reductions. A new
attribute measure for boundary region partition preservation is introduced. More-
over, an attribute reduction algorithm for decision-theoretic rough set models us-
ing MapReduce is designed in this paper. Heuristics and algorithms need to be
further studied in our future work.
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Abstract. The development of information technologies raises the prob-
lem of information overload. Recommender systems aim to choose the
best application or content from numerous applications or contents. And
contextual information has been taken into account to improve the rec-
ommendation accuracy. Inspired by a cognitive architecture named
ACT-R, this paper combines frequency and recency into contextual in-
formation to provide context-based recommendations for mobile appli-
cations. The experimental results show the ACT-R inspired method is
effective in context-based recommendations.

1 Introduction

The purpose of recommender systems is to recommend items (information, prod-
ucts, services, etc.) which interest users to help them find useful items. It’s one
of the main methods to solve the problem of information overload. The classic
methods of recommender systems can be divided into three kinds: collabora-
tive filtering recommendation, content-based recommendation and hybrid rec-
ommendation which combines the two above methods. These methods mainly
use relations between users and items to achieve recommendation. Adomavicius
et al. pointed out that the use of contexts which describe the states of users or
items, such as time, location, people around, device, etc. would increase the effect
of recommendation [1], thus the context-aware recommender system [2] was pre-
sented. One of the important researches of context-aware recommender systems
is to measure relations between contextual information and users’ preferences.
Jembere et al. presented a method to extract users’ preferences for mobile appli-
cations using a strict partial order preference model [3]. Baltrunas et al. adopted
collaborative filtering recommendation which pre-filters items’ ratings to gen-
erate recommendations [4]. Su et al. recommended appropriate music for users
based on their locations, moods, and health states [5]. Wang et al. proposed a
recommender system which takes use of cognitive processing levels based on the
cognitive psychology [6].

According to the ACT-R model proposed by Anderson, information used
frequently and recently is easily extracted [7,8]. So what is used recently and
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frequently becomes the major information. How to use these information to
generate effective recommendation becomes a problem. The probabilistic model
based on ACT-R’s declarative memory retrieval mechanisms has been used in
recommender systems. Fu et al. presented the SNIF-ACT model which achieves
search purposes faster by evaluating ratings each link to the goal in the process
of searching the Internet [9]. Stanley et al. used ACT-R’s declarative memory
retrieval mechanisms to generate predictions based on tags [10]. However, the
above work did not consider the contextual information. In this paper, we use
the activation equation combining measures of frequency and recency in ACT-R
to discuss a context-based recommender system.

2 A Model

2.1 Model Review

ACT-R’s spreading activation model pointed out that the likelihood and speed
that memory information is extracted are determined by the strength of activa-
tion. The strength of activation mainly consists of two parts: the baseline level
and the strength of association. The baseline level is mainly influenced by re-
cency. Therefore, the more recently information is used, the more easily memory
information is extracted. The activation of the baseline level determines the ini-
tial activation. The strength of association is the sum of association strength
between each cue associated with the current context and the target. It reflects
the current situation and adjusts the final activation level. The strength of asso-
ciation is mainly influenced by frequency. According to the spreading activation
model, memory is characterized as a interconnected knowledge network. When
items associated with the target arise in the context, the attention of the rele-
vant items spread to the target items through cognitive structures to promote
the extraction of target [7,8]. ACT-R calls these cognitive structures chunks.

In a context-aware recommender system, chunks can represent items and con-
textual information (such as time, location, people around, device, etc.). The
strength of association between contextual information and items can be calcu-
lated based on users’ historical data in the case of the previous contextual infor-
mation. The more frequently that items are used in the contexts, the stronger is
the strength of association. And users have more possibilities to use these items
in the contexs.

We assume context j (j ∈ L) in which item i is used and Ai which is the
activation of item i. On the basis of Bayesian probability model in ACT-R [7,8],
the possibility that item i is used in the current contexts can be expressed as
the following equation.

Ai = Bi +
∑
j∈L

WjSji (1)

whereBi is the baseline level activation of item i, Sji is the strength of association
between context j and item i, and Wj reflects the attentional weight the model
puts on context j. Equation (1) shows that Ai is based on users’ previous history
and the current contexts.



A Context-Aware Recommender System with a Cognition Inspired Model 615

Figure 1 shows how to use equation (1) to generate a recommended list. It
consists of two parts: the offline computing and online recommendation. The of-
fline computing consists of two sections: Bi and Sji. The online recommendation
makes use of Ai to rank items in a descending order and then recommends top-k
items to users.

Fig. 1. The framework of model

Then how can we apply above activation equation in our mobile applications
recommender system? From above, we can see activation Ai is mainly influenced
by recency and frequency, so we describe our model from the two aspects.

2.2 Recency

The baseline level activation Bi is determined by recency that item is used. If an
item is used recently, Bi is higher. Human can clearly remember an event which
is recent from numerous events. The recency can be modeled by a forgetting
curve equation. There are two ways to express Bi based on recency.

The Basic Way. We can use the expression of Bi in the ACT-R model. Bi can
be obtained from the history that item i was used [7,8].

B
(1)
i = ln

n∑
k=1

t−d
k (2)

where tk represents the subtraction between the k-th time that item i was used
and the current time and d is a forgotten parameter whose value is a constant.
Bi is determined by recency that item i is used. Taking the recency that item
i is used into account, we introduce tk and forgotten parameter d. The more
recently item is used, the higher is the preference for the item and Bi.

The calculation for Bi can be indicated through the following example. Sup-
posing the history that item i was used is listed as follows: (12.30, 2011), (1.14,
2013), (1.20, 2013), (1.20, 2013), (1.21, 2013), then Bi in January 22, 2013 can be
calculated as follows: Bi = ln

(
23−0.5 + 8−0.5 + 2−0.5 + 2−0.5 + 1−0.5

)
= 1.157.
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The Second Way. The baseline level activation Bi can also uses the following
equation based on the forgetting curve [11].

We assume time t, forgetting rate k, then memory retention pa (t, k) can be
indicated as follows [12]:

pa (t, k) = e
−kt, t ∈ (0,∞) (3)

However, the process of learning is not done once. Through repeating learning,
memory retention leaps to full memory and forgetting goes into a new process in
which the forgetting rate is smaller. This is called reinforcement of memory. We
assume that tn−1 and tn are the adjacent time when reinforcement of memory
takes place and kn−1 is the forgetting rate from tn−1 to tn, then the memory
retention during this period from tn−1 to tn can be expressed as follows [12]:

pa (t, kn−1) = e
−kn−1(t−tn−1), t ∈ (tn−1, tn) (4)

Let δ represent a positive integer, then the relation between kn−1 and kn is
indicated as follows [12]:

kn =
ln
[
1 + (δ − 1) e−kn−1(tn−tn−1)

]− lnδ
tn−1 − tn (5)

From the above equation, we can get forgetting rate kn−1 and equation of
forgetting curve after learning for n times. The final function of forgetting curve
after learning for n times-pa (t, kn−1) can replace Bi in ACT-R model:

B
(2)
i = pa (t, kn−1) = e

−kn−1(t−tn−1), t ∈ (tn−1,∞) (6)

2.3 Frequency

Bi is the baseline level activation for item i. Sji is used to express the strength
of the association between item i and context j and it’s mainly determined by
frequency that item is used in the context. In the condition of context j, the
more frequently that item i is used, the greater is the strength of the association
between item i and context j. Sji can be indicated as follows:

Sji = ln

[
prob (i|j)
prob (i)

]
(7)

where prob (i|j) is the conditional probability that item i is used under the
condition of context j and prob (i) is the probability that item i is used.

The calculation for Sji can be indicated through the following example. Sup-
posing the history that item 1, 2, 3 was used in the condition of context 1, 2, 3
is shown in figure 2, then Sji can be calculated as follows: S11 = ln

[
1
1 ÷ 1

3

]
=

ln3 = 1.099, S21 = ln
[
1
2 ÷ 1

3

]
= ln1.5 = 0.405, S31 = 0.
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Fig. 2. The history that three items was used under three kind of condition

3 Experiments and Analysis

In recent years, with the upgrade of hardware, mobile phone, tablet and other
portable mobile devices are playing an increasingly important role in people’s life
with convenience, widespread mobile network and easy operation. Mobile users
have different preference in different contexts. How to effectively solve the prob-
lem to meet users’ requirement for mobile network services is particularly urgent.
Therefore, we’ll verify the efficiency of our model in the mobile environment.

3.1 Data Set

Currently, under the mobile network environment, there still lacks public, au-
thoritative and available mobile users’ historical behavior data set that contains
contextual information which tells us where and when one user used one mo-
bile application for context-aware recommender systems. Borrowing the work in
paper [3,4,6], we develop context generation rules and users’ historical behavior
generation rules. Then we construct a data set of users’ historical behavior con-
taining contextual information in mobile network environment to extract users’
preference for mobile applications.

Firstly, we select a hundred kinds of Android applications which are down-
loaded frequently from Snap Pea applications center as mobile network appli-
cation set and label them from 1 to 100. Then we select five hundred users as
user set and label them from 1 to 500. Secondly, we generate context data set
according to context generation rules which are shown in figure 3. Then, on the
basis of mobile network application set and user set, we generate users’ context
behavior data set under the constraint of context data set. Users’ context behav-
ior data set tells us on which condition (such as time, location, people around,
device, etc.) one user in user set used a mobile application in mobile network ap-
plication set. Finally, we build users’ historical behavior data set of five hundred
users during a certain period (thirty days in this paper) according to generation
process of users’ context behavior data set.
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Fig. 3. An Example for spanning tree of context rule

The data set is generated gradually in accordance with constraint and depen-
dency of tree structure. The spanning tree of context generation rules contains
time, location, activity and accompanist from top to down. Each superior prop-
erty should correspond to lower properties in line with the actual situation. For
example, when “time” is morning, “location” can be office, transportation place
and “activity” can be working, meeting, waiting, on-vehicle. When “time” is
evening, “location” can be home, supermarket or entertainment place and “ac-
tivity” can be dining, entertaining, sleeping, shopping. Part of spanning tree is
shown in figure 3. From the figure, we can learn that users’ behavior of using
mobile applications is restricted by the state of context.

The final structure of the data set is shown as follows.
(1) The user set which contains five hundred users.
(2) The mobile network application set which contains one hundred applications.
(3) The context data set which contains time, location, activity and accompanist.
Time is divided into morning, noon, afternoon and evening; location is divided
into office, transportation place, home, restaurant, entertainment place and su-
permarket; activity includes working, meeting, waiting, dinning, entertaining,
sleeping and shopping; accompanist includes colleagues, strangers, family, alone
and friends.
(4) The users’ historical behavior data set which contains context behavior of
five hundred users during thirty days and records which mobile application was
used on the condition of specific time, location, activity and accompanist.

The data set is divided into two parts: a training set and a test set. Eighty
percent of the data is used as the training set to extract users’ preference for
mobile applications and twenty percent of the data is used as the test set for
evaluating accuracy of the model.
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3.2 Evaluation Criteria of Experiment Results

We adopt accuracy standard in this paper to evaluate the efficiency of our model.
Firstly, we rank mobile applications in a descending order based on activation
Ai. Then we choose top N kinds of mobile applications as recommended list and
compare the recommended list with actual data in the test set. The number of
mobile applications in recommended list which equal to actual data in the test
set divided by the number of actual data in the test set can get the accuracy of
model. The higher accuracy of model is, the more effective is the model.

3.3 Procedure of Experiment and Analysis of Results

The hardware environment of experiment is CPU with Intel Pentium D 3.40 GHz
and memory with DDR2 1.25 GB. The software environment of experiment is
the operating system with Windows XP Professional SP3 and the development
environment with JDK 1.7.0, Eclipse 3.6.

We have done two experiments. Experiment 1 is to verify the efficiency of our
recommendation model and experiment 2 is to verify the efficiency of our model
on data set which is affected strongly by one context-time. And the procedures
of two experiments are shown as follows.

The first step: in the experiment 1, without considering the context, we gen-
erate data set randomly which means when users’ historical behavior data is
generated, we don’t consider the fact that the use of mobile applications or
services is constrained by context. In the experiment 2, we generate data set
considering one kind of context-time. For example, when “time” is morning,
we only generate the prior thirty kinds of mobile applications or services; when
“time” is noon, we only generate the twenty-first mobile service to the fiftieth
mobile service; when “time” is afternoon, we only generate the forty-first mobile
service to the seventieth mobile service and when “time” is evening, we only
generate the sixty-first mobile service to the hundredth mobile service.

The second step: the training set is input and we use our recommendation
model to extract N (N=3, 4, 5, 6) kinds of mobile applications whose preference
values are higher as recommendation results. Meanwhile, we select N kinds of
mobile applications or services randomly as recommendation results.

The third step: we compare the recommendation results with the actual re-
sults of the test set and calculate recommendation accuracy of three methods

(model combining B
(1)
i and Sji, model combining B

(2)
i and Sji, random method)

separately.
The results of experiment 1 are shown in figure 4. The horizontal axis rep-

resents the number of recommended mobile applications and the vertical axis
represents the accuracy of the each method. It’s obvious that accuracy of recom-

mendation model combining B
(1)
i and Sji and recommendation model combining

B
(2)
i and Sji are much higher than the random method. The former two meth-

ods have the similar performance and model combining B
(2)
i and Sji is a bit

better than recommendation model combining B
(1)
i and Sji. As N increases,
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the gap between the accuracy of our model and random method increases, so
the advantages of our recommendation model are reflected.

Fig. 4. Results of experiment 1

Fig. 5. Results of experiment 2
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The results of experiment 2 are shown in figure 5. The horizontal axis rep-
resents the number of recommended mobile applications and the vertical axis
represents the accuracy of three methods. We can learn from figure 5 that the
accuracy of random method in experiment 2 has the similar performance with
that in experiment 1, while the accuracy of recommendation model combining

B
(1)
i and Sji and recommendation model combining B

(2)
i and Sji in experiment

2 improve greatly in comparison with that in experiment 1. This indicates that
the performance of our recommendation model based on ACT-R is especially
good when the use of mobile applications is influenced by the context.

4 Conclusions

In this paper, we combine the ACT-R cognitive architecture into users’ pref-
erence for mobile applications or services from two elements namely frequency
and recency. Then we develop an ACT-R inspired model and indicate that our
model is efficient for mobile data set in the experiments, especially for the situa-
tion that users’ behaviors of using applications or services are influenced strongly
by contexts. In the future work, we’ll add more contexts in and explore users’
preference in the real social network instead of artificially generated data sets.
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Abstract. First, it obtains the university education e-government performance 
evaluation index framework by making use of Delphi method. Then, it con-
structs the comprehensive quality evaluation hierarchy model by applying the 
analytic hierarchy process, to obtain the weight for each index, based on which 
to establish fuzzy comprehensive evaluation model, thus acquiring new method 
for university education e-government performance evaluation. Examples have 
proven the feasibility and effectiveness of this method. 

Keywords: Education E-government, performance, fuzzy comprehensive eval-
uation, model. 

1 Introduction  

Education e-government construction is an important part of the national electronic 
government affairs and education information, is an important means of promoting 
the modernization of education. For the transformation of the mode of work and atti-
tude, further improve the work quality and efficiency of the important task of the cur-
rent colleges and universities to promote the building of e-government, and achieved 
some results, but overall, there is still a big investment, the problem such as high in-
vestment and low efficiency, small output of e-government construction of colleges 
and universities is far from meeting the requirement of the education reform and de-
velopment of our country. International practices and studies have shown that the 
e-government project there is a high degree of risk, the probability of failure is ex-
tremely high, therefore, the western countries a large number of research institutions, 
consulting companies and scholars have carried out the study of e-government per-
formance evaluation. To guide the healthy and orderly e-government's construction in 
colleges and universities, sustainable development, in-depth discussion and research 
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to perfect, scientific education e-government performance evaluation index system of 
colleges and universities are imperative. [1-3] 

2 Hierarchical Model of Education E-government Performance 
in Colleges and Universities 

According to the principles of guidance, science, completeness, feasibility and devel-
opment, it conducts several rounds of questionnaire and expert consultation by mak-
ing use of Delphi method. Meanwhile, through several stages such as decomposition, 
convergence, test, revise, verification and perfection, it further analyzes and selects 
factors to be investigated, and then sequences these factors through expert judgment, 
to determine key factors to be investigated, thus obtaining the index framework. By 
making use of analytic hierarchy process, it obtains the weight for each index, thus 
obtaining the hierarchical model of comprehensive quality evaluation[4-11]. which is 
showed as Fig 1. 
 

Fig. 1.    Hierarchical Model of Higher Learning Education E-government Performance 

 
According to the analytic hierarchy process (AHP), we can get the primary and 

secondary index weights, it are as follows:  
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Primary index weight: 25.0,25.0,25.0,25.0 4321 ==== ωωωω . 

Secondary index weight: ， 

250.0,250.0,250.0,250.0 14131211 ==== ωωωω  

120.0,220.0,220.0,220.0,220.0 2524232221 ===== ωωωωω ，

202.0,202.0,197.0,202.0,197.0 3534333231 ===== ωωωωω ，

250.0,250.0,250.0,250.0 44434241 ==== ωωωω   

3 Fuzzy Comprehensive Evaluation Model 

3.1 Single Layer Fuzzy Comprehensive Evaluation Model 

Education e-government performance evaluation system of evaluation index sets 
},,,{ 21 kaaaA =  ,according to the needs of evaluation decision, could be 

divided into such as evaluation criterion of qvvv ,, 21 q a level , the evaluation 
sets }.,,{ 21 qvvvV =   

If the ith indicators for single factor evaluation results 
),,,( 21 iqiii mmmM = , The evaluation index evaluation decision matrix k is:  
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Set the weight of each index distribution as follows: ),,( 21 kωωω =Ω , The 
the comprehensive evaluation result is: ),,,( 21 qbbbMB  =Ω= . 

3.2 Multi-layer Fuzzy Comprehensive Evaluation Model  

When the evaluation index in the system is no less than two layers, a multi-layer 
evaluation model is required, which should be built on the basis of single-layer evalu-
ation model. The basic thought is as follows: first, it conducts single-layer compre-
hensive evaluation to the index at the bottom layer (or the most fundamental layer); 
then, by taking the evaluation results of this layer as the primary index of the upper 
layer, it evaluates the upper layer again, and so forth to the highest layer.   

3.2.1   Index Classification 
If the index set },,,{ 21 kaaaA = is divided into p classes in accordance with the 
index attributes, i.e.: 

piaaaA
iikiii ,,2,1},,,,{ 21  ==  
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They will meet the following conditions: 

(1) kkkk p =+++ 21 ; 

(2) ).( jiAA ji ≠∅=∩  

(3) ;21 AAAA p =∪∪∪   

3.2.2   Establish Weight Vector 
(1) Index Weight Vector  

Let the weight for the index Ai in the i class be ),,2,1( pii =ω , the index 
weight vector is: 

}.,,,{ 21 pωωω =Ω  
(2) Index Weight Vector 
Let the weight of the index aij in the i class be jiω , the index weight vector is: 

pi
iikiii ,,2,1},,,,{ 21  ==Ω ωωω  

3.2.3  Establish Multi-level Fuzzy Comprehensive Evaluation Model 
Providing the fussy single-factor evaluation matrix of the subordinate index for cer-
tain index is: 
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Then, the corresponding fussy comprehensive evaluation of each object is: 
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Providing the secondary index comprehensive evaluation results are the elements, 
the fussy comprehensive evaluation matrix of the primary index is: 
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Therefore, the fussy comprehensive evaluation of each object is 
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Therefore, we can evaluate the objects in line with the value of nbbb ,,, 21  . 
We can also divide the secondary indexes, to obtain the tertiary fussy comprehen-

sive evaluation model or even the model with more layers. The multi-layer fussy 
comprehensive evaluation model can not only reflect the different layers of the evalu-
ation index, but also avoid the difficulty in distributing weights because of too many 
indexes.   

4 Evaluation Examples 

According to the actual needs of evaluation decisions, the evaluation ranking standard 
can be divided into five classes, namely "excellent", "good", "medium", "qualified", 
and "disqualified".  

v= {v1,v2,v3,v4,v5}={excellent, good, medium, qualified, disqualified} 
100 people, including personnel of teaching, administrative personnel, teaching 

supervisors, and students are invited to evaluate and mark each index of university A's 
education e-government performance in line with the defined evaluation ranking 
standards. The statistics results are shown as the Table 1. 

Table 1. Score Table for university A's education e-government performance 

Primary Index Secondary Index  
Average score 

Index Item Weight Index Item Weight 

II  0.25 

CPPC 0.250 91.53 
CNS 0.250 97.10 
NPL 0.250 89.71 
ISI 0.250 83.36 
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Table 2. (Continued) 

AS  0.25 

OBASC 0.220 85.19 
CEGIRD 0.220 81.33 

CGIIP 0.220 79.15 
PWC 0.220 77.93 
SOC 0.120 71.56 

CB  0.25 

HSPTO 0.197 76.91 
OQE 0.202 77.53 

AFLR 0.197 73.11 
SDLA 0.202 62.31 
TSSS 0.202 81.79 

SS  0.25 

ITE 0.250 85.11 
ITPIL 0.250 81.33 

SU 0.250 75.10 
TSS 0.250 81.55 

                                                                             
Construct the fuzzy membership functions 
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According to Table 1 and formula (1)- (5), we can get the single-factor evaluation 

matrix of the secondary index as follows: 
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Let ),( +⋅= ,using common matrix multiplication, Therefore, 
 

)0,0,149.0,69.0,5.0(1 =B ,                   

)0,0,485.0,835.0,004.0(2 =B  

)0,155338.0,7197912.0,5515.0,0(3 =B ， )0,0,179.0,878.0,003.0(4 =B  

)0,039.0,383.0,739.0,127.0(=B  
 
According to the maximum subordination principle, this university's education 

e-government performance is good. 
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Through the above mentioned analysis, we know that we can effectively evaluate 
nursing clinical teachers' comprehensive quality by utilizing analytic hierarchy me-
thod and fussy comprehensive evaluation method. Meanwhile, examples have proven 
that the evaluation is feasible, effective, and easily to be accepted and promoted. This 
model and algorithm have rigorous logical reasoning and theoretical basis, thus pro-
viding brand new methods and means to teachers' comprehensive quality evaluation. 
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Abstract. With the explosive increment of data, varieties of the parallel attribute 
reduction algorithm have been studied. To promote its efficiency, this paper pro-
poses a new parallel attribute reduction algorithm based on MapReduce. It con-
tains three parts, parallel computation of a simplified decision table, parallel 
computation of attribute significance and parallel computation of decision table. 
Data with different sizes are experimented. The experimental result shows that 
our algorithm has the ability of processing massive data with efficiency. 

Keywords: Rough set, attribute reduction, MapReduce, parallel computing. 

1 Introduction 

With the fast-growing data in scientific and industrial areas, machine learning and 
data mining algorithms are facing the challenges from both the perspectives of data 
and computational complexity. Google come up with distributed file system (GFS) 
[1], parallel programming pattern (MapReduce) [2,3] and distributed and structured 
storage system (Bigtable) [4]. They become the basis of massive data processing. 
After that, many people begin to study data mining algorithm of massive data. 

Rough set [5] is a classical tool it can process fuzzy and indeterminate problem. It 
has been widely used for the field of machine learning and data mining. Attribute 
reduction is one of very important study field of Rough Set. It is also the committed 
step of knowledge acquisition. Attribute reduction, on the condition that classification 
ability of knowledge base is unchanged, can delete data redundancy so that it can 
greatly improve knowledge definition of information system. 

With the cloud computing coming, rough set theory models of massive data have 
become the popular in the field of machine learning and data mining. Zhang et al. 
[6,7] propose a parallel method for computing lower and upper approximations and a 
comparison of parallel large-scale knowledge acquisition using rough set theory. 
Zhang has proved the viability that classical rough set models can be paralleled.  
However, they just parallel the basis of rough set models. Qian et al. [8,12] come up 
with a parallel attribute reduction model, but it needs a special consistent decision 
table. There is another paper of Qian et al. [15], this paper propose a general parallel 
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algorithm for attribute reduction using MapReduce. It is a low efficiency of algo-
rithm. Yang et al. [13] has a more efficient than Qian, but these reductions are not 
guaranteed to be the same as those discovered from the whole dataset since these sub-
decision tables do not exchange the information for each other [15]. Yang el al. [14] 
shows us another algorithm. It can make sure correct of result, but it has less efficien-
cy than Qian[15]. In this paper, a new parallel attribute reduction will propose. It has 
more efficiency and can make sure correctly. 

The remaining of this paper is organized as fallows. Section 2 includes the elemen-
tary background introduction to rough sets and MapReduce. The algorithms of  
computing attribute reduction based on MapReduce are presented in Section 3. Expe-
rimental analysis is given in Section 4. The paper ends with conclusions and future 
work in Section 5. 

2 Preliminaries 

In this section, we will review the basic notions of rough set model in [9], and Ma-
pReduce programming model in cloud computing. 

2.1 Rough sets 

Definition 1. A decision table is an information system , , , , where U  , ,   is a non-empty finite set of objects, ∪  is a non-empty 
finite set of attributes.   is a domain of the attribute a.  is 
an information function such that ,  for every x U, a R. An equiva-
lence relation with respect to  called the indiscernibility relation, denoted by 

, is defined as , | , , b b } 
The equivalence relation  partitions U into some equivalence classes given 

by / |  
where denotes the equivalence class determined by  with respect to B, | , . 

Definition 2. Let  be a subset of U, and undefined relation B. The lower and 
upper approximations of  X are defined as ∪ | / ∧  B ∪ | / ∧  
Definition 3. For a decision table S, / , ,  is a partition of 
U, , , ,  is a subsets of object,  ∪ ∪∪ , where  and \D 1 s 1, 2, , t . Let ,, , ，   ，  ∪ ,  , C ∪ D, V, f  is a 
simplified decision table. 
Definition 4[11]. For a decision table S,  , C ∪ D, V, f  is a simplified deci-
sion table.  is the subset of table , P is a subset of attributes,  and 

, attribute significance of  is: | ∪ | 
where \ | \ | ∪ / . 
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2.2 The MapReduce model 

MapReduce is a programming model and an associated implementation proposed by 
Google for processing and generating large data sets in a distributed computing envi-
ronment that is amenable to a broad variety of real-world tasks. There are two steps of 
a MapReduce task: map and reduce. The computation takes a set of input key/value 
pairs, and produces a set of output key/value pair[10]. 

3 Parallel Attribute Reduction Based on MapReduce 

3.1 A Traditional Attribute Reduction Algorithm 

According to Definitions 1- 4, we present a Traditional Algorithm for Computation of 
Attribute Reduction (TACAR) which based on algorithm of Xu et al. [11]. The max-
imum of attributer significance is a reduction of the result. When the simplified deci-
sion table  is empty, we get the reduction of decision table. The algorithm is 
shown in Algorithm 1 respectively. 

 
Algorithm 1. TACAR 
Input: A decision table , , ,  
Output: A reduction, Red 

1. begin 
2.   compute / , ,  ,  // is the simplified decision table 
3.      
4.   while  !   do 
5.     for each  do 
6.       compute  // attribute significance of   
7.      //  is a collection that all objects of equivalence class are in  

and 
their values of decision attribute are equal.  is a collection that all 
object of equivalence class are in . 

8.       compute ,  and / ∪ ; 
9.     end 

10.     let ; 
11.     let  ∪ ; 
12.     let  ; 
13.     let   ; 
14.     let   ; 
15.   end 
16.   ; 
17. end 
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3.2 Parallel Attribute Reduction Based on MapReduce 

3.2.1 Parallel Algorithm for Computation of a Simplified Decision Table.  
Definition 6. Given a decision table , , , . Let ∪ , where , , , . It satisfies: (1) ∪ ; 2 , , 1, , and 

. It means the decision tables S is divided into m sub-decision tables. Then we call 
 is a sub-decision table of S. 
According to Definition 6, each sub-decision table can compute equivalence 

classes independently. At the same time, the equivalence classes of different  
sub-decision tables can combine together if their information set is the same. The 
simplified decision table also can get through equivalence classes. Therefore, we can 
compute the simplified decision table in parallel. Here, we design a Parallel  
Algorithm for Computation of a Simplified Decision Table (PACSDT) based on  
MapReduce. The Algorithm PACSDT is divided into Algorithm PACSDT-Map 
and Algorithm PACSDT-Reduce, as outlined in Algorithm 2 and 3. 

 
Algorithm 2. PACSDT-Map 
Input: a decision table , ∪ , , ， ∪  
Output: < _ , _  where _  is condition of the object , _  is decision 
of the object . 

1. begin 
2.   for each   do 
3.     let key  _ ; 
4.     let value  _ ; 
5.     Output.collect (key, value); 
6.   end 
7. end 

 
 After the Algorithm 2, the results of Map will be sorted order by the key of Map. 

The pair of Map will transmit to Algorithm 3.  
 

Algorithm 3. PACSDT-Reduce 
Input: < _ , _  

  Output: < _ , _ _ _  where _  is a 
flag that   or  . 

1.  begin 
2.  let   the number of key also the No of object 
3.  let  ; 
4.  for each _  do 
5.    let key  x_C; 
6.    ispos  the flag of ; 
7.    // ispos = 1 if all _  has the same value, else ispos = 0 
8.    let value _  + ispos + num; 
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9.    // for each _  has many _ , but we just need one 
10.    let num  num++; 
11.    Output.collect (key, value); 
12.  end 
13. end 

 
We can get a new simplified decision table through Algorithm 2 and Algorithm 3. 

It has a flag of . This flag will play an important role in the computing of 
attribute significance. 

3.2.2 Parallel Algorithm for Computation of Attribute Significance 
The algorithm based on attribute significance has been widely used for classical 
attribute reduction. It is also used by Qian[8,12,15] and Yang[13,14] because of  
each attribute significance can be parallel computed. But in their algorithms each 
MapReduce can only get a significance of attribute[14,15]. In general, their  
algorithms employ the strategy in task parallel for the computations of attribute signi-
ficance. Here, we design a Parallel Algorithm for Computation of Attribute Signific-
ance (PACAS). The algorithm can get all significances of attributes just only one 
MapReduce. The Algorithm PACAS is divided into Algorithm PACAS-Map and 
Algorithm PACAS-Reduce and Algorithm PACAS, as shown in Algorithm 4, 
Algorithm 5 and Algorithm 6, respectively. 
 

Algorithm 4. PACAS-Map 
Input: A simplified decision table , ∪ , ,  
Output: < _ , _ _ _  where , _  is the 
value of attribute c for each object . 

1. begin 
2.    for each   do 
3.     for each  do 
4.      let key  c + _ ; 
5.      let value _  + _ + _ ; 
6.      Output.collect (key, value); 
7.     end 
8.    end 
9. end 

 
Algorithm 5. PACAS-Reduce 
Input: < _ , _ _ _  
Output: < ,  where ,  is a signi-
ficance of attribute.  is a collection that all objects of equivalence class are 
in  and their values of decision attribute are equal.  is a collection 
that all objects of equivalence class are in . 



636 D. Xi et al. 

1. begin 
2.    let num  0; //value of | | and | | 
3.    let posflag  false; // ∪ _  is equal or not in the same key 
4.    let B_NB  null; //value of  and  
5.    let valueofD  false; // _  is equal or not in the same key 
6.    for each _  do 
7.      for Map_value is not empty do  
8.         let num  num++; 
9.         let B_NB  x_No; 

10.     end 
11.     if all ∪ _  are equal then 
12.       let posflag  true; 
13.     end 
14.     if all _  are equal then 
15.       let valueofD  true; 
16.     end 
17.     //is ? 
18.     if posflag = true and ∪ _  = 1 and valueofD = true then 
19.       let key  c; 
20.       let value num+ B_NB; 
21.       Output.collect (key, value); 
22.       let num  0;  
23.       let posflag  false;  
24.     end 
25.     //is ? 
26.     if posflag = true and ∪ _  = 0 then 
27.       let key  c; 
28.       let value num+ B_NB; 
29.       Output.collect(key, value); 
30.       let num  0;  
31.       let posflag  false;  
32.     end 
33.    end 
34.  end 

 
By Algorithm 4 and Algorithm 5, we can get c  and c  of each attribute. 

Also can get | c | and | |. The result has been stored on the HDFS. Read 
the file from HDFS and compute the max of significance. Then we can acquire one 
reduction. The algorithm is shown in Algorithm 6 respectively. 

 
Algorithm 6. PACAS 
Input: A simplified decision table , ∪ , ,  
Output: one reduction 
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1. begin 
2.   let reduction  0; 
3.   Initiate a MapReduce job, compute ,  and  by execut-

ing 
Algorithm 4 and Algorithm 5; 

4.   Read the result from the HDFS 
5.   let max  0; 
6.   for each  do 
7.     if max < sig(c) then 
8.       let max  sig(c); 
9.       let reduction  c; 

10.     end 
11.   end 
12. end 

3.2.3  Parallel Algorithm for Computation of Attribute Reduction Based on 
Attribute Significance 
 
By Algorithm 6, we only get one reduction. So we need to execute Algorithm 6 
iterate to get the finally result. Before we execute Algorithm 6 next, we need to de-
lete redundancy of decision table. We design a Parallel Algorithm for Computation of 
Decision Table (PACDT). The algorithm is shown in Algorithm 7 respectively. 
 

Algorithm 7. PACDT-Map 
Input: A simplified decision table , ∪ , ,  
Output: A new simplified decision table , ∪ , ,  

1.   begin 
2.   let Nos ; 
3.   for each   do 
4.     if Nos is not contains x_No then 
5.       let key  x_C; 
6.       let value  x_D + ispos + num; 
7.       Output.collect(key, value); 
8.      end 
9.    end 

10.  end 

 
By Algorithm 7, we get the new simplified decision table. Next reduction can be 

computed by it. And then, the whole algorithm of attribute reduction is shown in Al-
gorithm 8. Parallel Algorithm for Computation of Attribute Reduction Based on 
Attribute Significance (PACARBAS) is summarized in Algorithm 8. 
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Algorithm 8. PACARBAS 
Input: A decision table , , ,  
Output: Reductions 

1. begin 
2.   let Reductions ; 
3.   compute a simplified decision table by Algorithm 2 and Algorithm 3; 
4.   while  is not empty do  
5.     compute a reduction by Algorithm 6; 
6.     let Reductions  reduction; 
7.     compute a new simplified decision table by Algorithm 7; 
8.   end 
9.   Reductions; 

10. end 

4 Experimental Analysis 

4.1 Experimental Setup 
This section presents the experimental results of parallel algorithm for computing 
attribute reduction. We run the experiments on the Hadoop MapReduce platform [16], 
where Hadoop MapReduce is a programming model and software framework for de-
veloping applications that rapidly process massive data in parallel on large clusters of 
compute nodes, each of which has 8GB memory and uses Intel Core i7 CPU. Hadoop 
version 2.2.0 and java 1.7.45 are used as the MapReduce system for all experiments.  

4.2 Data Sets 

We utilize the large data set KDDCup-99 from the machine learning data repository, 
University of California at Irvine [17]. The data set KDDCup-99 consists of  
approximately five million records. Each record consists of 1decsion attribute and 41 
condition attributes, where 6 are categorical and 35 are numeric. Since our parallel 
algorithms deal with categorical attributes, the 35 numeric attributes are discretized 
firstly. Besides, two synthetic data sets have been generated based on KDDCup-99. 
The data sets are outlined in Table 1. 

Table 1. Description of the datasets 

 Data Sets Records Attributes Classes Size(GB) 

1 KDD99 4,898,421 41 23 0.48 

2 KDD-1.9G 20,000,000 35 23 1.90 

3 KDD-3.9G 40,000,000 41 23 3.80 
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4.3 Experimental Results 

Our experimental results are as follows. We run the Algorithm of attribute reduction 
in 4 datanodes and 8 datanodes respectively. The running time of each dataset is 
shown in Fig 2. We can see that as the nodes increase, the running time of dataset is 
decline. But the time is not increase linear because of the network delay and data 
loading time. 
 

 

Fig. 1. Result with increasing nodes size 

 In Fig 3, we perform the speedup evaluation on datasets with different sizes and 
structures. The number of nodes varied from 1 to 8. As the result show, the proposed 
parallel algorithms have a good speedup performance. So this parallel algorithm can 
treat massive data efficiently. 

 

Fig. 2. Speadup 

5 Conclusion 

Traditional algorithm is not suitable for processing massive data. In this paper,  
we have presented a parallel algorithm of attribute reduction based on MapReduce.  
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It have been implemented the map and reduce functions for the new Simplified Deci-
sion Table and attribute significance. Experimental results present that the algorithm 
can deal with massive data better. 
   But when we run this algorithm of attribute reduction on Hadoop, there are many 
iterative computations. That means we have many IO operation with HDFS. When 
the dataset is small, most of time will waste for IO operation. So if we want to run the 
algorithm more efficiency, we can think about how to decrease iteration or run the 
algorithm on a cloud platform which is suitable of iteration. 
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Abstract. Ensemble learning also named ensemble of multiple classi-
fiers is one of the hot topics in machine learning. Ensemble learning can
improve not only the accuracy but also the efficiency of the classification
system. Constructing the component classifiers in ensemble learning is
crucial, because it has direct influence on the performance of the clas-
sification system. In the construction of component classifiers, it should
be guaranteed that the constructed component classifiers possess certain
accuracy and diversity. Based on the confidence degree of classifier, this
paper presents an approach consisting of three steps to dynamically inte-
grate rough set reducts. Firstly, multiple reducts are computed. Secondly,
multiple component classifiers with certain diversity are trained on the
different reducts. Finally, these component classifiers are integrated by
adopting dynamic integration strategy. The experimental results show
that the proposed algorithm is efficient and feasible.

Keywords: Ensemble learning, Dynamic ensemble, Component classi-
fier, Rough set, Attribute reduct, Confidence degree.

1 Introduction

Ensemble learning, also known as ensemble of multiple classifiers, multi-classifier
system, classifier integration or committee of experts, is to firstly train several
component classifiers, and then integrate the outputs of these component clas-
sifiers using a strategy to classify unknown samples. It has been proved that
ensemble learning outperforms single-classifier learning in accuracy [1]. One of
the most representative works of ensemble learning is the Boosting method pro-
posed by Schapire [2] in 1989. Freund and Schapire [3] improved this method
and proposed the AdaBoost method in 1997. Another commonly used ensem-
ble method named bagging is proposed by Breiman [4] in 1996. Many ensemble
methods reported in the literature are developed from the two methods.

It is crucial to construct and select the component classifiers which should have
certain diversity. It has been proved that ensemble of multiple component classi-
fiers with certain diversity can improve the performance of integration system [5].
There are two commonly used methods to construct component classifiers with
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certain diversity: the method based on sample subsets and the method based on
attribute subsets. The former selects sample subsets from training set to train
component classifiers. The representative works include Bagging [4], Boosting
[2, 3]. The latter selects attribute subsets which have the same expressing ability
as original attribute set to train component classifiers. The representative works
include stochastic subspacemethod [6] and integrated rough subspacemethod [7].

Classifier integration and classifier selection are two strategies commonly used
to classify the test samples in ensemble learning. Classifier integration classifies
test samples by fusing all outputs of the trained component classifiers with some
fusion strategies, for example, the averaging and the majority voting. There
are two categories of classifier selection methods: static classifier selection and
dynamic classifier selection. The static classifier selection chooses the best com-
ponent classifier to classify the test samples. The algorithms of static classifier
selection are simple and can be implemented easily, but the performances are
not always ideal. While dynamic classifier selection chooses the appropriate com-
ponent classifiers to classify different test samples. Based on the local accuracy,
a dynamic classifier selection method was proposed in [8], which uses the esti-
mation of local accuracy of each individual classifier in small regions of feature
space surrounding the test sample. By combining classifier selection and classifier
integration, the dynamic ensemble selection method was presented in [9], which
dynamically integrates several classifiers by using some ensemble strategies. The
method in [9] selects k classifiers which are most similar to the oracle in the
validation set, and then employ them as component classifiers to integrate and
classify test samples.

If at least one component classifier can classify a test sample correctly, how
to make the integrated classifier also classify this sample correctly? In order to
deal with this problem, based on confidence degree of classifiers [10], this paper
proposes an ensemble method which dynamically integrates rough set reducts.
The basic idea of the proposed method is to employ confidence degree to measure
the significance of a component classifier, and dynamically select the component
classifiers used for integration for different test samples. If the confidence degree
of one component classifier is much higher than the ones of other component
classifiers, then we call this component classifier authoritative expert and it will
be designated to classify the test samples. If there is no authoritative expert,
then the classification results of the component classifiers will be integrated to
decide the class label of the test samples.

The paper is organized as follows. In Section 2, the related basic concepts are
briefly reviewed, the proposed method is presented in Section 3, the experimental
results and analysis are given in Section 4. Finally Section 5 concludes this paper.

2 Preliminaries

In this section, we briefly review the basic concepts used in this paper including
information system, decision information system, lower approximation, positive
region, attribute reduct etc [11].
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Definition 1. An information system is a 4-tuple IS = (U,A, V, f). Where U
is a non-empty finite set of objects, and A is a non-empty finite set of attributes.
V =

⋃
a∈A Va. Va is the domain of value of attribute a ∈ A. f : U × A −→ V

is called information function which satisfy that ∀a ∈ A , ∀x ∈ U , f(x, a) ∈ Va.
If A = C ∪D, C ∩D = φ, C is the condition attribute set, D is single decision
attribute, then IS is called decision information system or simply decision table,
denoted by DT .

Definition 2. Given an information system IS = (U,A, V, f), let P ⊆ A,
x, y ∈ U , we call x and y are indiscernible to P , if and only if ∀a ∈ P ,
f(x, a) = f(y, a). ∀P ⊆ A, P is an equivalence relation on U , denoted by
IND(P ) or P in short. ∀x ∈ U , the equivalence class of x generated by P
is [X ]P . Then equivalence relation P partitions the set U into disjoint subsets,
denoted by U/P = {U1, U2, . . . , Uk}.

Definition 3. Given a decision table DT = (U,C ∪ D,V, f) , and P ⊆ C,
X ⊆ U , the lower approximation of X with respect to P is defined as:

P (X) = {x|(x ∈ U) ∧ ([x]p ⊆ X)}) (1)

Definition 4. Given a decision table DT = (U,C∪D,V, f), and P ⊆ C, U/P =
{U1, U2, . . . , Uk} is partition of U derive from D, the positive region of decision
attribute D with respect to P is defined as:

POSP (D) =

k⋃
i=1

P (Ui) (2)

Definition 5. Given a decision table DT = (U,C ∪D,V, f), and P ⊆ C, ∀a ∈
P , if POSP (D) = POSP−{a}(D), then attribute a is dispensable in P with
respect to D, otherwise attribute a is indispensable. If ∀a ∈ P , attribute a is
indispensable in P with respect to D, then P is independent with respect to D.

Definition 6. Given a decision table DT = (U,C∪D,V, f) , and P ⊆ C . P
is called a reduct of C with respect to D, if the following conditions are satisfied:
(1) P is independent with respect to D;
(2) POSP (D) = POSC(D)
The set of all reducts of C with respect to D is denoted by REDC(D).

For a given decision table, classification rules can be extracted by calculating
attribute reducts and value reducts with the following five steps:

Step1: Delete repeated objects in decision table;
Step2: Delete redundant condition attributes and obtain attribute reducts;
Step3: Delete redundant attribute values of each object and obtain value

reducts;
Step4: Get the decision table reducts;
Step5: Obtain the classification rule according to the decision table reducts.
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3 Dynamic Ensemble of Rough Set Reducts for Data
Classification

In this section, we firstly present the definition of confidence degree, and then
present the proposed algorithm.

For a given decision table, the samples in training set are categorized into
l classes, and the value domain of decision attribute D is {d1, d2, . . . , dl}. At-
tribute reduct algorithm based on discernibility matrix [12] can calculate all
reducts, denoted by R1, R2, . . . , Rs in this paper, s classifiers can be trained
with s reducts. For convenience of description, the s classifiers are also denoted
by R1, R2, . . . , Rs. Each classifier corresponds to a set of rules, and all the s rule
sets are also denoted by R1, R2, . . . , Rs.

Definition 7. Given rule set (or classifier) Rj(1 ≤ j ≤ s), confidence degree of
its ith rule is defined as:

CDij =
NCij

NSij
, 1 ≤ i ≤ |Rj |, 1 ≤ j ≤ s (3)

where |Rj | denotes the number of rules in rule set Rj , NCij denotes the
number of samples matched correctly with ith rule of jth rule setRj (or classifier)
in the training set, and NSij denotes the number of samples matched with ith
rule of jth rule set Rj (or classifier) in training set.

Definition 8. Given rule set (or classifier) Rj(1 ≤ j ≤ s) , its confidence
degree is defined as:

CDj =

|Rj |∑
i=1

CDij (4)

For a given x and Rj , group the rules successfully matched with sample x
on Rj by the second component of the rules (or class labels). Let Rjk(1 ≤ j ≤
s, 1 ≤ k ≤ l) be the rule set corresponding to kth class, we define confidence
degree of rule set Rj (or classifier) by using the confidence degree of these rule
corresponding to sample x.

Definition 9. Given a test sample x and classifier Rj, confidence degree of
classifier Rj corresponding to the sample x is defined as:

CDj(x) =
l∑

k=1

|Rjk|∑
i=1

CDij (5)

If there is an authoritative expert, then the class label of the test sample x is
decided according to the following formulation.

dk0(x) = argmax
k
{
|Rjk|∑
i=1

CDij} (6)
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If there is no authoritative expert, we group all the classification rules of all
the classifiers according to the second component of the rules (or class label)
and the class label of the test sample x is decided according to the following
formulation.

dk0 (x) = argmax
k
{CDk(x)} (7)

where

CDk(x) =

s∑
j=1

|Rjk|∑
i=1

CDij (8)

The proposed algorithm is described as follows.

Algorithm DERSR: Dynamic Ensemble Rough Set Reducts
Input: Decision table, test sample x and parameter δ(0 < δ < 1)
Output: Classification result of x
STEP1: Compute the attribute reducts REDC(D) = {R1, R2, . . . , Rs} by

the algorithm based on discernibility matrix.
STEP2: For each reductRj(1 ≤ j ≤ s), compute its value reduct and decision

table reduct and obtain a set of classification rule (rule set or classifier), also
denoted by Rj(1 ≤ j ≤ s) .

STEP3: For each rule set (classifier) Rj(1 ≤ j ≤ s), firstly, compute confi-
dence degree of its ith rule with (3), i.e. CDij , and then compute the confidence
degree of Rj with (4), i.e. CDj .

STEP4: For a given test sample x and rule set (classifier) Rj(1 ≤ j ≤ s),
compute the confidence degree of Rj on test sample x with (5), i.e. CDj(x)(1 ≤
j ≤ s).

STEP5: Decide the classification result of test sample x.
If CDi(x)−max{CDj(x)} > CDi(x)×δ (i.e. there exist authoritative expert),

the classification result of test sample x is decided by formulation (6), else,
integrate the classification results of every classifier and decide the classification
result of test sample x by formulation (7).

STEP6: Output the classification result of test sample x.

4 Experimental Results and Analysis

In order to verify the effectiveness of the proposed algorithm, we experimentally
compared our algorithm with the one in [7] in test accuracy, and with the ID3
algorithm in three aspects: the number of rules, the number of attributes used
for classification, and the test accuracy. We select 6 UCI data sets [13] for exper-
iments, which are Monks-1, Monks-2, Monks-3, Car, Balance-scale and SPECT.
In all experiments, we set δ = 0.3, the experimental results are listed in table 1
and 2 respectively.

From the experimental results listed in table 1, it can be seen that the test
accuracies of the proposed method DERSR are consistently higher than the ones
of the method in [7]. The experimental results listed in table 2 show that the test
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Table 1. The experimental results compared with the method in [7]

Test Accuracy

Data set DERSR The method in [7]

Monks-1 0.8867 0.8516
Monks-2 0.5871 0.5549
Monks-3 0.8450 0.8361
Car 0.8334 0.8119
Balance-scale 0.6571 0.6506
SPECT 0.7138 0.6950

Table 2. The experimental results compared with the ID3 algorithm

#Rule #Attribute Test Accuracy

Data Set DERSR ID3 DERSR ID3 DERSR ID3

Monks-1 21 55 3 6 0.8867 0.7867
Monks-2 236 98 6 6 0.5871 0.5347
Monks-3 44 28 4 5 0.8450 0.8383
Car 235 274 6 6 0.8334 0.7585
Balance-scale 303 401 4 4 0.6571 0.3240
SPECT 707 40 18 23 0.7138 0.6663

accuracies of our method DERSR are also consistently higher than the ones of
ID3. In addition, our method DERSR uses smaller attribute number than ID3,
and sometimes smaller rule number. In the experiments, we find that almost
all the rules extracted with ID3 are included in the rules generated with the
proposed method DERSR. In order to further to verify this phenomenon, we
also compared our approach with conventional rough set (RS in short) method,
in this experiment, only one reduct is used for classification, similar results are
obtained(see table 3). We analyzed the rules that are not included in the rule set
generated with the method DERSR, and conclude that one reason is that some
attributes are not included in reduct. Meanwhile, we also find an interesting
phenomena that ID3 can generate a few rules with which there is no sample in
training set can match. We explain this phenomenon by experiments on the Car
data set.

For Car data set, decision rules are generated by DERSR and ID3 respectively.
DERSR generates 235 rules, while ID3 method generates 274 rules and 4 of them
are not included in rules generated by DERSR. There is no sample can match
the 4 rules in the training set, see figure 1.

In figure 1, the number behind leaf node is class label. And the number behind
class label is support degree of leaf node. It denotes the proportion of samples
with leaf class label in partition data set. The 4 specific rules correspond to
the 4 leaf node with 0 support degree in figure 1. Support degree of a leaf
is 0 means that there is no sample match this leaf, namely the corresponding
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Table 3. The experimental results compared with the RS method

#Rule #Attribute Test Accuracy

Data Set DERSR RS DERSR RS DERSR RS

Monks-1 21 45 3 5 0.8867 0.8430
Monks-2 236 94 6 5 0.5871 0.5519
Monks-3 44 41 4 5 0.8450 0.8275
Car 235 269 6 6 0.8334 0.8029
Balance-scale 303 349 4 4 0.6571 0.6110
SPECT 707 38 18 17 0.7138 0.6941

Fig. 1. The classification rules generated from Car with ID3

partition data set of this leaf is empty. The reason is that ID3 method partitions
the sample set according to all attribute values of condition attribute, which
results in some empty sample sets after partition and generates specific leaf
node without support of training set.

5 Conclusion

Given a decision table, we can find multiple attribute reducts and each of them
can have different contributions to the decision-making. If we only use one of
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them, even the most important one, to make decision, some important informa-
tion will still be lost. In order to make full use of the information contributed by
different reducts, this paper presents a novel algorithm to integrate these reducts
based on the confidence degree of classifier with dynamic integration strategy,
and some experiments are conducted to verify the effectiveness of the proposed
method. Experimental results show that the proposed algorithm is efficient and
feasible. As a by-product, an interesting phenomena on ID3 algorithm is found in
our experiments. In the future, we will further study this interesting phenomena,
and we will further investigate the impact of parameter δ on the performance of
the integrated classification system.
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Abstract. In this paper, relation-based intuitionistic fuzzy rough
approximation operators determined by an intuitionistic fuzzy triangular
norm T are investigated. By employing an intuitionistic fuzzy triangular
norm T and its dual intuitionistic fuzzy triangular conorm, lower and
upper approximations of intuitionistic fuzzy sets with respect to an in-
tuitionistic fuzzy approximation space are first introduced. Properties of
T -intuitionistic fuzzy rough approximation operators are then examined.
Relationships between special types of intuitionistic fuzzy relations and
properties of T -intuitionistic fuzzy rough approximation operators are
further explored.

Keywords: Approximation operators, Intuitionistic fuzzy rough sets,
Intuitionistic fuzzy sets, Intuitionistic fuzzy triangular norms, Rough
sets.

1 Introduction

Rough set theory [8] is a new mathematical approach to deal with insufficient
and incomplete information. The basic structure of rough set theory is an ap-
proximation space consisting of a universe of discourse and a binary relation
imposed on it. Based on the approximation space, the notions of lower and up-
per approximation operators can be constructed. Using the concepts of lower
and upper approximations in rough set theory, knowledge hidden in information
tables may be unravelled and expressed in the form of decision rules.

One of the main directions in the research of rough set theory is naturally the
generalization of concepts of Pawlak rough set approximation operators. Many
authors have generalized the notion of rough set approximations by using non-
equivalence binary relations. Other authors have also generalized the notion of
rough set approximations into the fuzzy environment, and the results are called
rough fuzzy sets (fuzzy sets approximated by a crisp approximation space) and
fuzzy rough sets (fuzzy or crisp sets approximated by a fuzzy approximation
space). As a more general case of fuzzy sets, the concept of intuitionistic fuzzy
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(IF for short) sets, which was originated by Atanassov [1], has played a useful role
in the research of uncertainty theories. Unlike a fuzzy set, which gives a degree
of which element belongs to a set, an IF set gives both a membership degree and
a nonmembership degree. Obviously, an IF set is more objective than a fuzzy
set to describe the vagueness of data or information. The combination of IF set
theory and rough set theory is a new hybrid model to describe the uncertain
information and has become an interesting research issue over the years (see e.g.
[2, 3, 5, 6, 9–12, 14–17]).

It is well-known that the dual properties of lower and upper approximation
operators are of particular importance in the analysis of mathematical structures
in rough set theory. The dual pairs of lower and upper approximation operators
in the rough set theory are strongly related to the interior and closure operators
in topological space, the necessity (box) and possibility (diamond) operators
in modal logic, and the belief and plausibility functions in the Dempster-Shafer
theory of evidence. On the other hand, we know that there are a lot of triangular
norms which have been widely used in fuzzy set research. It should be noted that
fuzzy inference results often depend upon the choice of the triangular norm.
For analyzing uncertainty in complicated fuzzy systems, dual pairs of lower and
upper fuzzy rough approximations defined by arbitrary triangular norms in rough
set theory have been developed [7, 13]. According to this research line, the main
objective of this paper is to present the study of IF rough sets determined by
IF triangular norms. We will define a dual pair of lower and upper T -IF rough
approximation operators and examine their essential properties.

2 Basic Notions Related to Intuitionistic Fuzzy Sets

In this section we recall some basic notions and previous results about intuition-
istic fuzzy sets which will be used in the later parts of this paper.

Throughout this paper, U will be a nonempty set called the universe of dis-
course. The class of all subsets (respectively, fuzzy subsets) of U will be denoted
by P(U) (respectively, by F(U)). In what follows, 1y will denote the fuzzy single-
ton with value 1 at y and 0 elsewhere; 1M will denote the characteristic function
of a crisp set M ∈ P(U). For any A ∈ F(U), the complement of A will be
denoted by ∼ A, i.e. (∼ A)(x) = 1−A(x) for all x ∈ U .

We first review a lattice on [0, 1]× [0, 1] originated by Cornelis et al. [4].

Definition 1. Denote

L∗ = {(x1, x2) ∈ [0, 1]× [0, 1] | x1 + x2 ≤ 1}. (1)

A relation ≤L∗ on L∗ is defined as follows: ∀(x1, x2), (y1, y2) ∈ L∗,

(x1, x2) ≤L∗ (y1, y2) ⇐⇒ x1 ≤ y1 and x2 ≥ y2. (2)
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The relation ≤L∗ is a partial ordering on L∗ and the pair (L∗,≤L∗) is a complete
lattice with the smallest element 0

L∗ = (0, 1) and the greatest element 1
L∗ =

(1, 0) . The meet operator ∧ and the join operator ∨ on (L∗,≤L∗) linked to the
ordering ≤L∗ are, respectively, defined as follows: ∀(x1, x2), (y1, y2) ∈ L∗,

(x1, x2) ∧ (y1, y2) = (min(x1, y1),max(x2, y2)),
(x1, x2) ∨ (y1, y2) = (max(x1, y1),min(x2, y2)).

(3)

And for any index set J and aj = (xj , yj) ∈ L∗, j ∈ J , we define∧
j∈J

aj =
∧
j∈J

(xj , yj) = (
∧
j∈J

xj ,
∨
j∈J

yj),∨
j∈J

aj =
∨
j∈J

(xj , yj) = (
∨
j∈J

xj ,
∧
j∈J

yj).
(4)

Meanwhile, an order relation ≥L∗ on L∗ is defined as follows: ∀x = (x1, x2), y =
(y1, y2) ∈ L∗,

(y1, y2) ≥L∗ (x1, x2) ⇐⇒ (x1, x2) ≤L∗ (y1, y2), (5)

and
x = y ⇐⇒ x ≤L∗ y and y ≤L∗ x. (6)

For (x1, x2) ∈ L∗, we define the complement element of (x1, x2) in L∗ as
follows:

1
L∗ − (x1, x2) = (x2, x1). (7)

Since ≤L∗ is a partial ordering, the order-theoretic definitions of conjunction
and disjunction on L∗ called IF triangular norm (IF t-norm for short) and IF
triangular conorm (IF t-conorm for short) are introduced as follows:

Definition 2. An IF triangular norm (IF t-norm for short) on L∗ is an increas-
ing, commutative, associative mapping T : L∗×L∗ → L∗ satisfying T (1

L∗ , x) = x
for all x ∈ L∗.

Definition 3. An IF triangular conorm (IF t-conorm for short) on L∗ is an
increasing, commutative, associative mapping S : L∗ × L∗ → L∗ satisfying
S(0

L∗ , x) = x for all x ∈ L∗.

Obviously, the greatest IF t-norm (respectively, the smallest IF t-conorm)
with respect to (w.r.t.) the ordering ≤L∗ is min (respectively, max), defined by
min(x, y) = x ∧ y (respectively, max(x, y) = x ∨ y) for all x, y ∈ L∗.

An IF t-norm T and an IF t-conorm S on L∗ are said to be dual if

T
(
x, y

)
= 1

L∗ − S(1L∗ − x, 1L∗ − y), ∀x, y ∈ L∗,
S
(
x, y

)
= 1

L∗ − T (1L∗ − x, 1L∗ − y), ∀x, y ∈ L∗. (8)

Each IF t-norm T can be associated two functions T1, T2 : L∗ × L∗ → [0, 1]
which are defined as follows:

T
(
a, b
)
= (T1(a, b), T2(a, b)), ∀a, b ∈ L∗. (9)



656 W.-Z. Wu et al.

Likewise, from an IF t-conorm S on L∗, we can derive two functions S1, S2 :
L∗ × L∗ → [0, 1] which satisfy the following equation.

S
(
a, b
)
= (S1(a, b), S2(a, b)), ∀a, b ∈ L∗. (10)

Since T and S are increasing, by Eq. (2) we can conclude

Proposition 1. If T is an IF t-norm on L∗ and S the IF t-conorm on L∗

dual to T , then T1 and S1 are increasing and T2 and S2 are decreasing for both
arguments.

Proposition 2. If T is an IF t-norm on L∗, and S is the IF t-conorm on L∗

dual to T . Then
(1) S1(a, b) = T2(1L∗ − a, 1L∗ − b), for all a, b ∈ L∗.
(2) S2(a, b) = T1(1L∗ − a, 1L∗ − b), for all a, b ∈ L∗.
(3) T1(a, b) = S2(1L∗ − a, 1L∗ − b), for all a, b ∈ L∗.
(4) T2(a, b) = S1(1L∗ − a, 1L∗ − b), for all a, b ∈ L∗.

Proof. For a = (a1, a2), b = (b1, b2) ∈ L∗, by Eqs. (7) and (8), we have

S
(
a, b
)
= (S1(a, b), S2(a, b)) = 1

L∗ − T (1L∗ − a, 1L∗ − b)
= 1

L∗ − (T1(1L∗ − a, 1L∗ − b), T2(1L∗ − a, 1L∗ − b))
= 1

L∗ − (T1((a2, a1), (b2, b1)), T2((a2, a1), (b2, b1)))
= (T2((a2, a1), (b2, b1)), T1((a2, a1), (b2, b1)))
= (T2(1L∗ − a, 1L∗ − b), T1(1L∗ − a, 1L∗ − b)).

Thus (1) and (2) hold. Similarly, we can conclude (3) and (4).

Definition 4. [1] Let a set U be fixed. An IF set A in U is an object having the
form

A = {〈x, μ
A
(x), γ

A
(x)〉 | x ∈ U},

where μ
A
: U → [0, 1] and γ

A
: U → [0, 1] satisfy 0 ≤ μ

A
(x) + γ

A
(x) ≤ 1 for all

x ∈ U, and μ
A
(x) and γ

A
(x) are, respectively, called the degree of membership

and the degree of non-membership of the element x ∈ U to A. The family of all
IF subsets in U is denoted by IF(U). The complement of an IF set A is defined
by ∼ A = {〈x, γ

A
(x), μ

A
(x)〉 | x ∈ U}.

It can be observed that an IF set A is associated with two fuzzy sets μ
A
and

γ
A
. Here, we denote A(x) = (μ

A
(x), γ

A
(x)), then it is clear that A ∈ IF(U) iff

A(x) ∈ L∗ for all x ∈ U . Obviously, a fuzzy set A = {〈x, μA(x)〉 | x ∈ U} can be
identified with the IF set of the form {〈x, μ

A
(x), 1 − μ

A
(x)〉 | x ∈ U}. Thus an

IF set is indeed an extension of a fuzzy set.
Some basic operations on IF(U) are introduced as follows [1]: for A,B,Ai ∈

IF(U), i ∈ J , J is an index set,
• A ⊆ B iff μA(x) ≤ μB (x) and γA(x) ≥ γB (x) for all x ∈ U,
• A ⊇ B iff B ⊆ A,
• A = B iff A ⊆ B and B ⊆ A,
• A ∩B = {〈x,min(μA(x), μB (x)),max(γA(x), γB (x))〉 | x ∈ U},
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• A ∪B = {〈x,max(μ
A
(x), μ

B
(x)),min(γ

A
(x), γ

B
(x))〉 | x ∈ U},

• ⋂
i∈J

Ai = {〈x,
∧
i∈J

μ
Ai
(x),

∨
i∈J

γ
Ai
(x)〉 | x ∈ U},

• ⋃
i∈J

Ai = {〈x,
∨
i∈J

μAi
(x),

∧
i∈J

γAi
(x)〉 | x ∈ U}.

For (α, β) ∈ L∗, ̂(α, β) will be denoted by the constant IF set: ̂(α, β)(x) =
(α, β), for all x ∈ U. For any y ∈ U and M ∈ P(U), IF sets 1

y
, 1

U−{y} , and 1
M

are, respectively, defined as follows: for x ∈ U ,
μ

1y
(x) =

{
1, if x = y,
0, if x �= y. γ

1y
(x) =

{
0, if x = y,
1, if x �= y.

μ
1U−{y}

(x) =

{
0, if x = y,
1, if x �= y. γ

1U−{y}
(x) =

{
1, if x = y,
0, if x �= y.

μ1M
(x) =

{
1, if x ∈M,
0, if x /∈M. γ1M

(x) =

{
0, if x ∈M,
1, if x /∈M.

The IF universe set is U = 1
U
= ̂(1, 0) = 1̂

L∗ = {〈x, 1, 0〉 | x ∈ U} and the IF

empty set is ∅ = ̂(0, 1) = 0̂L∗ = {〈x, 0, 1〉 | x ∈ U}.
By using L∗, IF sets on U can be represented as follows: for A,B,Aj ∈

IF(U)(j ∈ J, J is an index set), x, y ∈ U , and M ∈ P(U)
• A(x) = (μ

A
(x), γ

A
(x)) ∈ L∗,

• U(x) = (1, 0) = 1
L∗ ,

• ∅(x) = (0, 1) = 0
L∗ ,

• x = y =⇒ 1y (x) = 1
L∗ and 1

U−{y}(x) = 0
L∗ ,

• x �= y =⇒ 1
y
(x) = 0

L∗ and 1
U−{y}(x) = 1

L∗ ,
• x ∈M =⇒ 1

M
(x) = 1

L∗ ,
• x /∈M =⇒ 1M (x) = 0

L∗ ,
• A ⊆ B ⇐⇒ A(x) ≤L∗ B(x), ∀x ∈ U ⇐⇒ B(x) ≥L∗ A(x), ∀x ∈ U ,
•( ⋂

j∈J

Aj

)
(x) =

∧
j∈J

Aj(x) =
( ∧
j∈J

μ
Aj
(x),

∨
j∈J

γ
Aj
(x)
) ∈ L∗,

•( ⋃
j∈J

Aj

)
(x) =

∨
j∈J

Aj(x) =
( ∨
j∈J

μAj
(x),

∧
j∈J

γAj
(x)
) ∈ L∗.

For two IF sets A, B ∈ IF(U), we define two IF sets A ∩T B and A ∪S B as
follows:

(A ∩T B)(x) = T (A(x), B(x)), x ∈ U,
(A ∪S B)(x) = S(A(x), B(x)), x ∈ U. (11)

It can easily be verified that

A ∪S B =∼ ((∼ A) ∩T (∼ B)). (12)

3 T -Intuitionistic Fuzzy Rough Approximation Operators

In this section, by employing an IF t-norm T and its dual IF t-conorm S on L∗,
we will define the lower and upper approximations of IF sets w.r.t. an arbitrary
IF approximation space and discuss properties of T -IF rough approximation
operators.
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Definition 5. Let U and W be two nonempty universes of discourse. A subset
R ∈ IF(U ×W ) is referred to as an IF binary relation from U to W , namely,
R is given by

R = {〈(x, y), μ
R
(x, y), γ

R
(x, y)〉 | (x, y) ∈ U ×W}, (13)

where μ
R

: U ×W → [0, 1] and γ
R

: U ×W → [0, 1] satisfy 0 ≤ μ
R
(x, y) +

γR(x, y) ≤ 1 for all (x, y) ∈ U ×W . We denote the family of all IF relations
from U to W by IFR(U ×W ). An IF relation R ∈ IFR(U ×W ) is said to
be serial if

∨
y∈W R(x, y) = 1L∗ for all x ∈ U . If U = W , R ∈ IFR(U × U) is

called an IF binary relation on U . R ∈ IFR(U × U) is said to be reflexive if
R(x, x) = 1

L∗ for all x ∈ U . R is said to be symmetric if R(x, y) = R(y, x) for
all x, y ∈ U . R is said to be T -transitive if

∨
y∈U T (R(x, y), R(y, z)) ≤L∗ R(x, z)

for all x, z ∈ U , where T is an IF t-norm.

Throughout this section, we always assume that T is an IF continuous t-norm
on L∗ and S the IF t-conorm dual to T .

Definition 6. Let U and W be two non-empty universes of discourse and R
an IF relation from U to W , then the triple (U,W,R) is called a generalized IF
approximation space. For A ∈ IF(W ), the T -lower and T -upper approximations
of A, denoted as R(A) and R(A), respectively, w.r.t. the approximation space
(U,W,R) are IF sets of U and are, respectively, defined as follows:

R(A)(x) =
∧
y∈W

S(1
L∗ −R(x, y), A(y)), x ∈ U. (14)

R(A)(x) =
∨

y∈W

T (R(x, y), A(y)), x ∈ U. (15)

The operators R, R : IF(W ) → IF(U) are, respectively, referred to as T -
lower and T -upper IF rough approximation operators of (U,W,R), and the pair
(R(A), R(A)) is called the T -IF rough set of A w.r.t. (U,W,R).

Theorem 1. Let (U,W,R1) and (U,W,R2) be two IF approximation spaces, if
R1 ⊆ R2, then

(1) R1(A) ⊆ R2(A) for all A ∈ IF(W ).
(2) R2(A) ⊆ R1(A) for all A ∈ IF(W ).

Proof. It can be deduced directly from Definition 6.

Definition 7. If U, V,W are three nonempty sets, R1 is an IF relation from U
to V , and R2 is an IF relation from V to W , we define an IF relation from U
to W , denoted R1 ◦R2, called the T -composition of R1 and R2 as follows:

R1 ◦R2(x, z) =
∨
y∈V

T (R1(x, y), R2(y, z)), ∀(x, z) ∈ U ×W. (16)
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Theorem 2. Let (U, V,R1) and (V,W,R2) be two IF approximation spaces, then
(1) R1 ◦R2(A) = R1(R2(A)) for all A ∈ IF(W ).
(2) R1 ◦R2(A) = R1(R2(A)) for all A ∈ IF(W ).

Proof. (1) For any u ∈ U , we have

R1(R2(A))(u) =
∨

v∈V

T (R1(u, v), R2(A)(v))

=
∨

v∈V

T (R1(u, v),
∨

w∈W

T (R2(v, w), A(w)))

=
∨

v∈V

∨
w∈W

T (R1(u, v), T (R2(v, w), A(w)))

=
∨

w∈W

∨
v∈V

T (T (R1(u, v), R2(v, w)), A(w))

=
∨

w∈W

T (
∨

v∈V

T (R1(u, v), R2(v, w)), A(w))

=
∨

w∈W

T (R1 ◦R2(u,w), A(w))

= R1 ◦R2(A)(u).

Thus, R1 ◦R2(A) = R1(R2(A)).
(2) It is similar to the proof of (1).

Theorem 3. Let (U,W,R) be an IF approximation space, T an IF t-norm on
L∗, and S the IF t-conorm dual to T , then

(IFL1) R(A) =∼ R(∼ A) for all A ∈ IF(W ).
(IFU1) R(A) =∼ R(∼ A) for all A ∈ IF(W ).

Proof. For any A ∈ IF(W ) and x ∈ U , by Eq. (4) and Proposition 2 we have

R(∼ A)(x) = ∨
y∈W

T (R(x, y), (∼ A)(y))
=

∨
y∈W

(T1(R(x, y), 1L∗ −A(y)), T2(R(x, y), 1L∗ −A(y)))
= (

∨
y∈W

T1(R(x, y), 1L∗ −A(y)),
∧

y∈W

T2(R(x, y), 1L∗ −A(y)))
= (

∨
y∈W

S2(1L∗ −R(x, y), A(y)),
∧

y∈W

S1(1L∗ −R(x, y), A(y)))
= 1

L∗ − (
∧

y∈W

S1(1L∗ −R(x, y), A(y)),
∨

y∈W

S2(1L∗ −R(x, y), A(y))).

Thus

(∼ R(∼ A))(x) = 1
L∗ −R(∼ A)(x)

= (
∧

y∈W

S1(1L∗ −R(x, y), A(y)),
∨

y∈W

S2(1L∗ −R(x, y), A(y)))
=

∧
y∈W

(S1(1L∗ −R(x, y), A(y)), S2(1L∗ −R(x, y), A(y)))
=

∧
y∈W

S(1
L∗ −R(x, y), A(y))

= R(A)(x).

Therefore, we conclude (IFL1). Similarly, we can prove that (IFU1) holds.
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Properties (IFL1) and (IFU1) in Theorem 3 show that the T -IF rough ap-
proximation operators R and R are dual with each other. The following theorem
presents some basic properties of T -IF rough approximation operators.

Theorem 4. Let (U,W,R) be an IF approximation space. Then the upper and
lower T -fuzzy rough approximation operators defined in Definition 6 satisfy the
following properties: For all A,B ∈ IF(W ), Aj ∈ IF(W )(∀j ∈ J, J is an index
set), M ⊆W, (x, y) ∈ U ×W and all (α, β) ∈ L∗,

(IFL2) R( ̂(α, β) ∪S (A) = ̂(α, β) ∪S R(A).

(IFU2) R
( ̂(α, β) ∩T A

)
= ̂(α, β) ∩T R(A).

(IFL3) R(
⋂
j∈J

Aj) =
⋂
j∈J

R(Aj).

(IFU3) R(
⋃
j∈J

Aj) =
⋃
j∈J

R(Aj).

(IFL4) A ⊆ B =⇒ R(A) ⊆ R(B).
(IFU4) A ⊆ B =⇒ R(A) ⊆ R(B).
(IFL5) R(

⋃
j∈J

Aj) ⊇
⋃
j∈J

R(Aj).

(IFU5) R(
⋂
j∈J

Aj) ⊆
⋂
j∈J

R(Aj).

(IFL6) R(W ) = U .
(IFU6) R(∅

W
) = ∅

U
.

(IFL7) R(1
W−{y})(x) = 1

L∗ −R(x, y).
(FU7) R(1

y
)(x) = R(x, y).

(IFL8) ̂(α, β) ⊆ R( ̂(α, β)).
(IFU8) R( ̂(α, β)) ⊆ ̂(α, β).
(IFL9) R(1

M
)(x) =

∧
y/∈M

(1
L∗ −R(x, y)).

(IFU9) R(1
M
)(x) =

∨
y∈M

R(x, y).

(IFL10) R(1
W−{y} ∪S

̂(α, β))(x) = S(1
L∗ −R(x, y), (α, β)).

(IFU10) R(1
y
∩T

̂(α, β))(x) = T (R(x, y), (α, β)).
Proof. The proof for properties of the upper T -IF rough approximation operator
can be found in [17], and properties of lower T -IF rough approximation operator
can be deduced directly by employing the dual properties (IFL1) and (IFU1) in
Theorem 3.

By using Theorem 5 in [17] and the dualities in Theorem 3, we can obtain
following Theorems 5-8, which show that properties of some special IF relations,
say serial IF relations, reflexive IF relations, symmetric IF relations, and T -
transitive IF relations, can be equivalently characterized by properties of the
T -IF rough approximation operators.
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Theorem 5. Let (U,W,R) be an IF approximation space, then

R is serial ⇐⇒ (IFL0) R( ̂(α, β)) = ̂(α, β), ∀(α, β) ∈ L∗.
⇐⇒ (IFU0) R( ̂(α, β)) = ̂(α, β), ∀(α, β) ∈ L∗.
⇐⇒ (IFL0)

′
R(∅W ) = ∅U .

⇐⇒ (IFU0)
′
R(W ) = U.

Theorem 6. Let (U,R) be an IF approximation space (i.e. R is an IF relation
on U), then

R is reflexive⇐⇒ (IFLR) R(A) ⊆ A, ∀A ∈ IF(U).
⇐⇒ (IFUR) A ⊆ R(A), ∀A ∈ IF(U).

Theorem 7. Let (U,R) be an IF approximation space, then

R is symmetric⇐⇒ (IFLS) R(1
U−{x})(y) = R(1U−{y})(x), ∀(x, y) ∈ U × U.

⇐⇒ (IFUS) R(1
x
)(y) = R(1

y
)(x), ∀(x, y) ∈ U × U.

Theorem 8. Let (U,R) be an IF approximation space, then

R is T − transitive⇐⇒ (IFLT) R(A) ⊆ R(R(A)), ∀A ∈ IF(U).
⇐⇒ (IFUT)R(R(A)) ⊆ R(A), ∀A ∈ IF(U).

4 Conclusion

We have studied a general type of relation-based intuitionistic fuzzy rough sets de-
termined by IF triangular norms with their dual IF triangular conorms. We have
introduced a dual pair of T -lower and T -upper IF rough approximation operators
induced from a generalized IF approximation space.We have presented some prop-
erties of T -lower and T -upper IF rough approximation operators and have also ex-
amined essential properties of T -IF rough approximation operators corresponding
to some special types of IF binary relations. For further study, we will investigate
more mathematical structures of the T -IF rough approximation operators.
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Abstract. As one of three basic theories of granular computing, rough set theory
provides a useful tool for dealing with the granularity in information systems.
Covering-based rough set theory is a generalization of this theory for handling
covering data, which frequently appear in set-valued information systems. In this
paper, we propose a covering in terms of attribute sets in a set-valued informa-
tion system and study its responding three types of covering approximations.
Moreover, we show that the covering approximation operators induced by indis-
cernible neighborhoods and neighborhoods are equal to the approximation oper-
ators induced by the tolerance and similarity relations, respectively. Meanwhile,
the covering approximation operators induced by complementary neighborhoods
are equal to the approximation operators induced by the inverse of the similarity
relation. Finally, by introducing the concept of relational matrices, the relation-
ships of these approximation operators are equivalently represented.

Keywords: Covering, Rough set, Granular computing, Approximation operator,
Set-valued information system.

1 Introduction

Rough set theory based on equivalence relations, as proposed by Pawlak [1–3] in the
early 1980s, is a mathematical tool for dealing with the uncertainty, vagueness and gran-
ularity in information systems. Owing to the restrictions of the applications of equiv-
alence relations, many researchers have presented various extensions [4–10]. For an
equivalence relation, it partitions a universe into disjoint subsets. By extending parti-
tions to coverings, covering-based rough sets [11–17] are investigated as the extensions
of rough set theory.

An information system consists of a non-empty finite set of objects, a non-empty fi-
nite set of attributes, a domain of attributes and an information function. In many prac-
tical issues, some of the attribute values for an object are set-valued, which are always
used to characterize uncertain information and missing information in the information
system [18]. For an information system, if each attribute has a unique attribute value,
then it is called a single-valued information system; otherwise, it is called a set-valued
(multi-valued) information system [19, 20]. In a set-valued information system, cov-
ering is a common form of data representation. Covering-based rough sets are useful
mathematical tools for dealing with covering data.
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In this paper, we present a covering by attribute sets in a set-valued information sys-
tem. Based on the covering, we connect three existing covering-based rough sets and
two relation-based rough sets in this system. Moreover, we prove that the covering ap-
proximation operators induced by indiscernible neighborhoods and neighborhoods are
equal to the approximation operators induced by the tolerance and similarity relations,
respectively. Furthermore, the covering approximation operators induced by comple-
mentary neighborhoods are equal to the approximation operators induced by the inverse
of a similarity relation. Finally, we redescribe the relationships of these approximation
operators from the viewpoint of Boolean matrix. Especially, we propose the character-
istic matrices of the three types of covering approximation operators.

The rest of this paper is arranged as follows. Section 2 reviews some fundamental
concepts of covering-based rough sets and set-valued information systems. In Section 3,
we present a covering in a set-valued information system. Based on the covering, we
study relationships between three types of covering approximation operators and the
approximation operators induced by two binary relations defined through attribute sets.
Section 4 redescribes the relationships among the approximation operators from the
viewpoint of Boolean matrix. Section 5 concludes this paper.

2 Preliminaries

In this section, we review some fundamental concepts and existing results of three types
of covering-based rough sets and two types of relation-based rough sets in set-valued
information systems. Throughout this paper, U is a non-empty finite universe.

2.1 Three Types of Covering-Based Rough Sets

Definition 1. [16] Let U be a universe of discourse and C a family of subsets of U . If
none subsets in C is empty and

⋃
C = U , then C is called a covering of U .

Neighborhoods are important concepts in covering-based rough sets. The following
definition will present three types of neighborhoods.

Definition 2. [21, 22] Let C be a covering of U and x ∈ U . IC(x) =
⋃{K ∈ C|x ∈

K}, NC(x) =
⋂{K ∈ C|x ∈ K} and MC(x) = {y ∈ U |x ∈ NC(y)} are called

the indiscernible neighborhood, neighborhood and complementary neighborhood of x
with respect to C, respectively. When there is no confusion, we omit the subscript C.

We often characterize data with a neighborhood granule derived from coverings. In
covering-based rough sets, neighborhood-based approximations are proposed for de-
scribing any subset of a universe. There are three pairs of of neighborhood-based lower
and upper approximation operators in the following definition.

Definition 3. [21–23] Let C be a covering of U . For allX ⊆ U ,
SHC(X) = {x ∈ U |IC(x) ∩X �= ∅}, SLC(X) = {x ∈ U |IC(x) ⊆ X},
IHC(X) = {x ∈ U |NC(x) ∩X �= ∅}, ILC(X) = {x ∈ U |NC(x) ⊆ X},
CHC(X) = {x ∈ U |MC(x) ∩X �= ∅}, CLC(X) = {x ∈ U |MC(x) ⊆ X},
are called the second, fifth and complementary upper and lower approximations of X
with respect to C, respectively. When there is no confusion, we omit the subscript C.
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In practical applications, much knowledge is redundant. Therefore, it is necessary to
remove the redundancy and retain the essence.

Definition 4. [16] Let C be a covering of U and K ∈ C. If K is a union of some sets
in C − {K}, then K is said to be reducible; otherwise, K is irreducible. The family of
all irreducible elements of C is called the reduct of C, denoted as Reduct(C).

2.2 Two Types of Relation-Based Rough Sets in Set-Valued Information Systems

An information system is a quadruple IS = (U,A, V, f), where U is a non-empty
finite set of objects; A is a non-empty finite set of attributes; V =

⋃
b∈A Vb and Vb

is a domain of attribute b; f : U × A → 2V is an information function such that
f(x, b) ∈ 2Vb for every x ∈ U , b ∈ A. For an information system IS = (U,A, V, f), if
each attribute has a unique attribute value, then IS with V =

⋃
b∈A Vb is called a single-

valued information system; if an information system is not a single-valued information
system, it is called a set-valued (multi-valued) information system (see Table 1).

Table 1. A set-valued information system

U b1 b2 b3
x1 {0} {0} {1, 2}
x2 {0, 1, 2} {0, 1, 2} {0}
x3 {1, 2} {1} {1, 2}
x4 {0, 1} {0, 2} {1}
x5 {1, 2} {1, 2} {1}

Definition 5. [19, 24] In a set-valued information system IS = (U,A, V, f), for b ∈
A, the tolerance relation Tb is defined as :
Tb = {(x, y)|f(x, b) ∩ f(y, b) �= ∅}.
For B ⊆ A, the tolerance relation TB is defined as follows:
TB = {(x, y)|∀b ∈ B, f(x, b) ∩ f(y, b) �= ∅} = ⋂

b∈B Tb.
When (x, y) ∈ TB, we call x and y are indiscernible or x is tolerant with y with

respect to B. Let TB(x) = {y|y ∈ U, yTBx}. We call TB(x) the tolerance class of x
with respect to TB .

Example 1. A set-valued information system is presented in Table 1. LetB = {b1, b2}.
The classes of objects in U can be computed by Definition 5. Then TB(x1) = {x1, x2,
x4}, TB(x2) = {x1, x2, x3, x4, x5}, TB(x3) = TB(x5) = {x2, x3, x5}, TB(x4) =
{x1, x2, x4, x5}.
Definition 6. [24] Given a set-valued information system IS = (U,A, V, f), ∀X ⊆
U , B ⊆ A, the lower and upper approximations of X with respect to TB are defined
as:
TB(X) = {x ∈ U |TB(x) ⊆ X},
TB(X) = {x ∈ U |TB(x) ∩X �= ∅}.
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Definition 7. [25] In a set-valued information system IS = (U,A, V, f), for b ∈ A,
the relation T ′

b called similarity relation is defined as :
T ′
b = {(x, y)|f(x, b) ⊆ f(y, b)}.

For B ⊆ A, the relation T ′
B is defined as follows:

T ′
B = {(x, y)|∀b ∈ B, f(x, b) ⊆ f(y, b)} = ⋂

b∈B T
′
b.

When (x, y) ∈ T ′
B , we call x and y are indiscernible with respect toB. Let T ′

B(x) =
{y|y ∈ U, xT ′

By}. We call T ′
B(x) the similarity class for x with respect to T ′

B .

Example 2. A set-valued information system is presented in Table 1. LetB = {b1, b3}.
The classes of objects in U can be computed by Definition 7. Then T ′

B(x1) = {x1},
T ′
B(x2) = {x2}, T ′

B(x3) = {x3}, T ′
B(x4) = {x4}, T ′

B(x5) = {x3, x5}.
Definition 8. Given a set-valued information system IS = (U,A, V, f), ∀X ⊆ U ,
B ⊆ A, the lower and upper approximations ofX with respect to T ′

B are defined as:
TB

′(X) = {x ∈ U |T ′
B(x) ⊆ X},

TB
′
(X) = {x ∈ U |T ′

B(x) ∩X �= ∅}.

3 Three Types of Covering Approximation Operators in
Set-Valued Information Systems

In the above section, we introduce two binary relations TB and T ′
B . In this section,

as another form of data representation in this system, a covering is proposed through
attributes.

Definition 9. Let (U,A, V, f) be a set-valued information system. For any attribute
b ∈ A, suppose that Vb = {α1, α2, · · · , αm}. We define Cb as:
Cb = {Kα1 ,Kα2 , · · · ,Kαm},
whereKαi = {x|f(x, b) ∩ {αi} �= ∅}, where i ∈ {1, 2, · · · ,m}.
Proposition 1. Let (U,A, V, f) be a set-valued information system and b ∈ A. Then
Cb forms a covering of U .

Proof. For any x ∈ U , we have f(x, b) ∈ 2Vb , i.e., f(x, b) ∩ Vb �= ∅. Hence, Kα �= ∅
for any α ∈ Vb, and there exists α′ ∈ Vb such that x ∈ Kα′ ∈ Cb. According to the
arbitrariness of x, it is easy to see that ∪α∈Vb

Kα = U , i.e., ∪Cb = U . Thus, Cb is a
covering of U .

In a set-valued information system, for B ⊆ A, we have TB =
⋂

b∈B Tb and T ′
B =⋂

b∈B T
′
b. For any attribute b ∈ A, it can induce a covering of U . However, different

attributes generate different coverings. In order to address the issues about attribute sets,
we firstly present a concept of intersection of two coverings induced by two different
attributes in the following definition.

Definition 10. Let (U,A, V, f) be a set-valued information system. Suppose that Cb1

and Cb2 are two coverings of U induced by b1 and b2, respectively. The intersection of
Cb1 and Cb2 is defined as follows:
Cb1 - Cb2 = {Ki ∩Kj|Ki ∩Kj �= ∅,Ki ∈ Cb1 ,Kj ∈ Cb2}.
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Proposition 2. Let (U,A, V, f) be a set-valued information system. Suppose that Cb1

and Cb2 are two coverings of U induced by b1 and b2, respectively. Then Cb1 - Cb2 is a
covering of U .

Proof. For any x ∈ U , since Cb1 and Cb2 are two coverings of U , there existKi ∈ Cb1

and Kj ∈ Cb2 such that x ∈ Ki and x ∈ Kj . Thus, x ∈ Ki ∩ Kj ∈ Cb1 - Cb2 .
According to the arbitrariness of x, Cb1 - Cb2 is a covering of U .

Example 3. From Table 1, we have Cb1={{x1, x2, x4}, {x2, x3, x4, x5}, {x2, x3, x5}}
and Cb2 = {{x1, x2, x4}, {x2, x3, x5}, {x2, x4, x5}}. Then Cb1-Cb2 = {{x1, x2, x4},
{x2}, {x2, x4}, {x2, x5}, {x2, x3, x5}, {x2, x4, x5}}. It is clear that Cb1 - Cb2 is still a
covering of U .

Based on the coverings induced by attributes, we can obtain the second, fifth and
complementary upper and lower approximations of any subset of a universe. Moreover,
we have the following three theorems.

Theorem 1. Let (U,A, V, f) be a set-valued information system and B ⊆ A. Denote
CB = -b∈BCb, where Cb is a covering of U induced by b. For allX ⊆ U , then
(1) SHCB

(X) = TB(X),
(2) SLCB

(X) = TB(X).

Proof. For all x, y ∈ U , suppose that (x, y) ∈ RCb

I if and only if y ∈ ICb
(x). We will

proof this theorem by the following two steps.
(1) Tb = R

Cb

I .
For all x, y ∈ U , (x, y) ∈ Tb ⇔ f(x, b) ∩ f(y, b) �= ∅ ⇔ ∃αi ∈ Vb, s.t. x, y ∈ Kαi ⇔
y ∈ ICb

(x)⇔ (x, y) ∈ RCb

I .
(2) RCB

I = -b∈BR
Cb

I .

Firstly, we prove that R
Cb1

�Cb2

I = R
Cb1

I ∩ RCb2

I , where b1, b2 ∈ A. For all x, y ∈ U ,

(x, y) ∈ RC1

I ∩ RC2

I ⇔ ((x, y) ∈ RCb1

I ) ∧ ((x, y) ∈ RC
2

I ) ⇔ (y ∈ ICb1
(x)) ∧ (y ∈

ICb2
(x)) ⇔ (∃K1 ∈ Cb1 , s.t.x, y ∈ K1) ∧ (∃K2 ∈ Cb2 , s.t.x, y ∈ K2) ⇔ ∃K =

K1 ∩K2 ∈ Cb1 - Cb2 , s.t.x, y ∈ K ⇔ y ∈ ICb1
�Cb2

(x) ⇔ (x, y) ∈ RCb1
�Cb2

I . Then

R
Cb1

�Cb2

I = R
Cb1

I ∩RCb2

I . Hence, it is clear that RCB

I = ∩b∈BR
Cb

I .

To sum up, for all X ⊆ U , SHCB
(X) = RCB

I (X) = TB(X) and SLCB
(X) =

RCB

I (X) = TB(X).

Theorem 2. Let (U,A, V, f) be a set-valued information system and B ⊆ A. Denote
CB = -b∈BCb, where Cb is a covering of U induced by b. For allX ⊆ U , then
(1) IHCB

(X) = T ′
B(X),

(2) ILCB
(X) = T ′

B(X).

Proof. For all x, y ∈ U , suppose that (x, y) ∈ RC
N if and only if y ∈ NC(x). We will

proof this theorem by the following two steps.
(1) T ′

b = R
Cb

N .
For all x, y ∈ U , (x, y) ∈ T ′

b ⇔ f(x, b) ⊆ f(y, b)⇔ ∀K ∈ Cb, x ∈ K → y ∈ K ⇔
y ∈ NCb

(x)⇔ (x, y) ∈ RCb

N .
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(2) RCB

N = -b∈BR
Cb

N .

Firstly, we prove that R
Cb1

�Cb2

N = R
Cb1

N ∩ RCb2

N , where b1, b2 ∈ A. For all x, y ∈ U ,

(x, y) ∈ RCb1

N ∩RCb2

N ⇔ ((x, y) ∈ RCb1

N ) ∧ ((x, y) ∈ RCb2

N )⇔ (y ∈ NCb1
(x)) ∧ (y ∈

NCb2
(x))⇔ (∀K1 ∈ Cb1 , x ∈ K1 → y ∈ K1) ∧ (∀K2 ∈ Cb2 , x ∈ K2 → y ∈ K2)⇔

∀K = K1 ∩ K2 ∈ Cb1 - Cb2 , x ∈ K → y ∈ K ⇔ y ∈ NCb1
�Cb2

(x) ⇔ (x, y) ∈
R

Cb1
�Cb2

N . Then R
Cb1

�Cb2

N = R
Cb1

N ∩RCb2

N . Hence, it is clear that RCB

N = ∩b∈BR
Cb

N .

To sum up, for all X ⊆ U , IHCB
(X) = RCB

N (X) = T ′
B(X) and ILCB

(X) =

RCB

N (X) = T ′
B(X).

Theorem 3. Let (U,A, V, f) be a set-valued information system and B ⊆ A. Denote
CB = -b∈BCb, where Cb is a covering of U induced by b. For allX ⊆ U , then
(1) CHCB (X) = (T ′

B)
−(X),

(2) CLCB
(X) = (T ′

B)
−(X),

where (T ′
B)

− is the inverse of T ′
B.

Proof. For all x, y ∈ U , suppose that (x, y) ∈ RC
M if and only if y ∈ MC(x). Similar

to the proof of Theorem 2, we can obtain that (T ′
b)

− = RCb

M and RCB

M = ∩b∈BR
Cb

M by

the definition of MC(x). Hence, for all X ⊆ U , CHCB
(X) = RCB

M (X) = (T ′
B)

−(X)

and CLCB
(X) = RCB

M (X) = (T ′
B)

−(X).

4 Matrix Representation of Covering Approximation Operators

In this section, we propose the characteristic functions of three pairs of covering ap-
proximation operators and discuss the reductions of covering. Firstly, we present the
concepts of the matrix representation of a covering, the relational matrix of a binary
relation and the characteristic function of a set.

Definition 11. [26] Let C={K1,K2, · · · ,Km} be a covering ofU={x1, x2,· · ·, xn}.
We defineMC = ((MC)ij)n×m as follows:

(MC)ij =

{
1, xi ∈ Kj,

0, xi �∈ Kj.

MC is called a matrix representation of C, or a matrix representing C.

Suppose R is a relation on U = {x1, x2, · · · , xn}. Then its relational matrixMR =
((MR)ij)n×n is defined as follows:

(MR)ij =

{
1, (xi, xj) ∈ R,
0, (xi, xj) �∈ R.

Definition 12. [27] Let U = {x1, x2, · · · , xn}, and X a subset of U . The charac-
teristic function G(X) = (gX(x1), gX(x2), · · · , gX(xn))

T (T denotes the transpose
operation) is defined as:

gX(xi) =

{
1, xi ∈ X,
0, xi �∈ X.
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In other words G(X) assigns 1 to an element which belongs to X and 0 to an element
which does not belong to X .

In the following definition, we present a new operation between two Boolean matri-
ces to represent covering-based rough sets in terms of the Boolean product.

Definition 13. [26] Let A = (aij)n×m and B = (bij)m×p be two Boolean matrices.
We define C = A

⊙
B as follows: C = (cij)n×p, cij = ∧m

k=1(bkj − aik + 1).

A and B are Boolean matrices, but A
⊙
B is not necessarily a Boolean matrix. We

will illustrate this argument by the following example.

Example 4. Let A = (0, 0, 0, 0) and B = (1, 1, 1, 1)T be two Boolean matrices, then
A
⊙
B = (2)1×1.

In literature [26], the type-1 characteristic matrix Γ (C) and type-2 characteristic
matrix Π(C) of C were defined, where Γ (C) = MC ·MT

C and Π(C) = MC
⊙
MT

C .
Meanwhile, it was proved that the two types of characteristic matrices were the rela-
tional matrices of the relations induced by indiscernible neighborhoods and neighbor-
hoods, respectively. Similarly, we present the type-3 characteristic matrix of C through
the following definition.

Definition 14. Let C be a covering of U andMC a matrix representing C. Then (MC⊙
MT

C )T is called the type-3 characteristic matrix of C, denoted as Θ(C).

Combining the definition of complementary neighborhoods with the relational ma-
trices of the relations induced by neighborhoods, we obtain that the type-3 characteristic
matrix of a covering is the relational matrix of the relation induced by complementary
neighborhoods.

Proposition 3. Let C be a covering of U . Then, for allX ⊆ U ,
(1)G(CH(X)) = Θ(C) ·G(X),
(2)G(CL(X)) = Θ(C)

⊙
G(X).

Proof. Denote (MC
⊙
MT

C )T =(tij)n×n. IfX=∅, thenG(CH(X))=(MC
⊙
MT

C )T ·
(0, 0, · · · , 0)T = (0, 0, · · · , 0)T andG(CL(X)) = (MC

⊙
MT

C )T
⊙

(0, 0, · · · , 0)T =
(0, 0, · · · , 0)T . HenceG(CH(X)) = G(CL(X)) = ∅.
Otherwise, (1) xi ∈ CH(X) ⇔ gCH(X)(xi) = 1 ⇔ ∨m

k=1(tik ∧ gX(xk)) = 1 ⇔
∃k0 ∈ {1, 2, · · · ,m} such that tik0 = gX(xk0 ) = 1 ⇔ xK0 ∈ MC(xi), xk0 ∈ X ⇔
MC(xi) ∩X �= ∅. So G(CH(X)) = Θ(C) ·G(X).
(2) xi ∈ CL(X) ⇔ gCL(X)(xi) = 1 ⇔ ∨m

k=1(gX(xk) − tik + 1) = 1 ⇔ if tik =
1, then gX(xk) = 1 ⇔ if xk ∈ MC(xi), then xk ∈ X ⇔ MC(xi) ⊆ X . So
G(CL(X)) = Θ(C)

⊙
G(X).

In the rest of this section, we propose the matrix representation of the covering ap-
proximation operators as shown in the above section and discuss their reductions.

Theorem 4. Let (U,A, V, f) be a set-valued information system. Denote CB=-b∈BCb,
where Cb is a covering of U induced by b. Then, for allX ⊆ U ,
(1)G(SHCB (X)) = Γ (CB) ·G(X),
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G(SLCB
(X)) = Γ (CB)

⊙
G(X);

(2)G(IHCB
(X)) = Π(CB) ·G(X),

G(ILCB
(X)) = Π(CB)

⊙
G(X);

(3)G(CHCB
(X)) = Θ(CB) ·G(X),

G(CLCB
(X)) = Θ(CB)

⊙
G(X).

If K is reducible in C, then NC(x) = NC−{K}(x) for all x ∈ U . It is clear that
MC(x) =MC−{K}(x). Therefore, we have the following two propositions.

Proposition 4. Let C be a covering of U and K ∈ C. If K is reducible, then Θ(C) =
Θ(C − {K}).

Proposition 5. Let C be a covering of U . Then Θ(C) = Θ(Reduct(C)).

Thus, we can easily obtain the following two theorems by removing smaller covering
blocks and reducible elements, respectively.

Theorem 5. Let (U,A, V, f) be a set-valued information system, Cb a covering of U
induced by an attribute b ∈ A and K ∈ Cb. If there exists K ′ ∈ Cb − {K} such that
K ⊆ K ′, for allX ⊆ U , then
Γ (Cb) ·G(X) = Γ (Cb − {K}) ·G(X),
Γ (Cb)

⊙
G(X) = Γ (Cb − {K})

⊙
G(X).

Proof. We need to prove that Γ (Cb) = Γ (Cb − {K}). Since K ⊆ K ′, it is clear that
K ∪K ′ = K ′. According to the definition of indiscernible neighborhoods, ICb

(x) =
ICb−{K}(x) for all x ∈ U . It is straightforward that Γ (Cb) = Γ (Cb − {K}).

Theorem 6. Let (U,A, V, f) be a set-valued information system and Cb a covering of
U induced by an attribute b ∈ A. Then, for allX ⊆ U ,
(1)Π(Cb) ·G(X) = Π(Reduct(Cb)) ·G(X),
Π(Cb)

⊙
G(X) = Π(Reduct(Cb))

⊙
G(X);

(2) Θ(Cb) ·G(X) = Θ(Reduct(Cb)) ·G(X),
Θ(Cb)

⊙
G(X) = Θ(Reduct(Cb))

⊙
G(X).

Proof. (1) IfK is a reducible element in Cb, it is easy to see thatNCb
(x)=NCb−{K}(x)

for all x ∈ U . It is straightforward thatΠ(Cb) ·G(X) = Π(Cb−{K}) ·G(X). Hence
Π(Cb) ·G(X) = Π(Reduct(Cb)) ·G(X).
(2) It is straightforward by Proposition 5.

5 Conclusions

In this paper, we proposed a covering in a set-valued information system. Meanwhile,
based on the covering, three types of covering approximation operators were presented
in this system. Moreover, we studied the relationships between these covering approx-
imation operators and the approximation operators induced by two binary relations.
Finally, we described them from the viewpoint of Boolean matrix.
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Abstract. The classical rough set theory can not be directly used to reduce 
knowledge in set-valued ordered fuzzy decision system. Firstly, we propose a 
dominance relation-based rough fuzzy set model in set-valued ordered fuzzy 
decision system, and some important properties are investigated. Then, based 
on rough fuzzy set, the definitions of approximation consistent set and assign-
ment consistent set are given. Judgment theorems of approximation consistent 
set and assignment consistent set are also obtained, meanwhile, attribute reduc-
tion approach based on discernibility matrices is proposed to eliminate redun-
dant attributes that are not essential from the view of fuzzy decisions. Finally, 
an example is given to illustrate the effectiveness of the proposed method. 

Keywords: Set-valued ordered fuzzy decision system, rough fuzzy set,  
knowledge reduction. 

1 Introduction 

Rough set theory, proposed by Pawlak [1, 2] in 1982, has been an effective tool to 
conceptualize and analyze various types of data. At present, the rough set theory has 
been successfully applied to artificial intelligence, data mining, decision analysis and 
intelligent information processing[3-5]. 

In many practical situations, some of the attribute values for an object may be set-
valued, which are used to characterize uncertain and missing information in informa-
tion systems [6]. Set-valued information systems are an important type of data tables, 
can be viewed as generalized models of single-valued information systems. Guan and 
Wang [7] defined tolerance relation and relative reduction in set-valued decision in-
formation systems, derived optimal decision rules. Dai et al. [8] proposed two new 
relations for set-valued information systems, and kinds of uncertainty measures of 
knowledge are defined in set-valued information systems. Qian et al. [9] proposed the 
method to queuing problems for objects and dominance-based rough set approach for 
set-valued ordered information systems in which attributes are criteria. 
                                                           
*  The work is supported by the National Natural Science Foundation of China (No. 71201044, 

No. 71131002) and the Youth Science Research Foundation of Anhui University (No. 
33050054). 
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The classical rough set theory can be used to deal with the clear concept, but in re-
ality many concepts are fuzzy. So, it is necessary to generalize rough set theory in 
fuzzy environment. Fuzzy rough set and rough fuzzy set, first proposed by Dubois 
and Prade [10], have been made up the deficiencies of the traditional rough set theory 
in several aspects [11-15]. Dai and Tian [16] define a fuzzy relation and construct a 
fuzzy rough set model for set-valued information systems. Huang et al. [17, 18] ap-
plied rough fuzzy set approach to interval-valued fuzzy objective information system 
and interval-valued intuitionistic fuzzy information systems to simplify knowledge 
representation and extract nontrivial simpler decision rules. However, so far, how to 
reduce knowledge and make decision using rough fuzzy set model has scarcely been 
reported in set-valued ordered fuzzy decision system. In this paper, we first propose 
the dominance relation-based rough fuzzy set model in set-valued ordered fuzzy deci-
sion system, and then, the concepts of approximation consistent set and assignment 
consistent set are given. Finally, knowledge reduction based on discernibility matrices 
is investigated. 

The remainder of the paper is organized as follows. Section 2 gives the concepts of 
set-valued ordered fuzzy decision system and dominance relation. In Section 3, we 
define the rough fuzzy set model while several properties of the model are also ex-
amined, and then present the definitions of approximation consistent set and assign-
ment consistent set. In Section 4, the knowledge reduction of set-valued ordered fuzzy 
decision system is investigated. Finally, some concluding remarks are presented in 
Section 5. 

2 Preliminaries 

2.1 Set-Valued Ordered Fuzzy Decision System 

Definition 1. A set-valued fuzzy decision system is a 4-tuple S =＜U, C∪D, V, f＞. 
Where U is a non-empty finite set of objects called universe, C is a non-empty finite 
set of condition attributes, D is a non-empty finite set of fuzzy decision attributes, 
C∩D=Æ , V = VC∪VD, VC and VD are the set of condition attribute value domains and 
decision attribute value domains, respectively. f is a mapping from U C´ to V such 

that : 2 CVf U C´  is a set-valued mapping, and f: U×D→[0,1] is a single-valued 
mapping, called information function. 

As discussed in [7], set-valued can be divided into conjunctive set-valued and dis-
junctive set-valued. In conjunctive set-valued information system, the value of each 
attribute is all of values in the value domain, and in disjunctive set-valued information 
system, the value of each attribute is only one of values in the value domain. This 
paper we only discusses conjunctive set-valued. 

Definition 2. A conjunctive set-valued fuzzy decision system is called a conjunc-
tive set-valued ordered fuzzy decision system if all condition attribute are inclusion 
criterion[9]. 
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Example 1. Table 1 is a conjunctive set-valued ordered fuzzy decision system, 
which is extended by a set-valued ordered decision system in [9]. Where U={x1, x2, 
x3, x4, x5, x6}, A={c1, c2, c3, c4}={Audition, Spoken Language, Reading, Writing} and 
D={d1,d2}={Most likely to excellent student, Most likely to ordinary student}. In the 
Table 1, E, F and G will stand for English, French and German, respectively. 

Table 1. A set-valued ordered fuzzy decision system about language ability 

U c1 c2 c3 c4 d1 d2

x1 {E} {E} {F,G} {F,G} 0.3 0.8 
x2 {E,G} {E,F} {F,G} {F,G} 0.8 0.2 
x3 {E,F} {E, G} {F,G} {F} 0.5 0.6 
x4 {F} {G} {F} {E,F} 0.2 0.8 
x5 {F,G} {G} {F,G} {F,G} 0.4 0.6 
x6 {E,F } {E,G} {F,G} {F,G} 0.8 0.4 

2.2 Dominance Relation 

Qian et al. [9] defined the following binary dominance relation between objects in set-
valued ordered information system with all set-valued for conjunctive type. 

Definition 3. Let S=＜U, C∪D, V, f＞,B CÍ , dominance relation with respect to 
B can be defined as: 

 {( , ) , ( , ) ( , )}
B
R x y U U a B f x a f y a³ = Î ´ " Î Ê  (1) 

B
R³  is reflexive and transitive , symmetric is not satisfied. Denoted by 

[ ] { ( , ) }
B B
x y U y x R³ ³= Î Î , [ ] { ( , ) }

B B
x y U x y R£ ³= Î Î . [ ]

B
x ³  describes objects that 

may dominate x and [ ]
B
x £  describes objects that may be dominated by x in terms of B. 

3 Rough Fuzzy Set Model for Set-Valued Ordered Fuzzy 
Decision System 

In practice, the type of data set is complicated, and classical rough set model can not 
deal with continuous or fuzzy data. So, based on dominance relation, we define the 
rough fuzzy set model for set-valued ordered fuzzy decision system. 
Definition 4. Let S=＜U, C∪D, V, f＞, B CÍ , d D" Î , x UÎ , the lower and upper 
approximation of x with respect to condition attribute subset B are defined as follows: 

 ( )( ) inf{ ( , ) : [ ] }
B

B d x f y d y x ³= Î  (2) 

 ( )( ) sup{ ( , ) : [ ] }
B

B d x f y d y x ³= Î  (3) 

( ( ), ( ))B d B d is called rough fuzzy set of fuzzy set d with respect to B. Compared 

with the classical rough set model, the presented lower and upper approximations of 
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each object in set-valued ordered fuzzy decision system are fuzzy numbers. When d is 
crisp set, rough fuzzy set ( ( ), ( ))B d B d is degenerated to Pawlak rough set based on 

dominance relation. 
Property 1. Let S=＜U, C∪D, V, f＞, A B CÍ Í , x U" Î , then 

(1)  ( )( ) ( )( )B d x B d x£ ;    (2)  ( )( ) ( )( )A d x B d x£ ;     (3)  

( )( ) ( )( )B d x A d x£ ; 

(4)  For [ ]
B

y x ³" Î , then ( )( ) ( )( )B d x B d y£ , ( )( ) ( )( )B d y B d x£ . 

Example 2. (Continued from Example 1) Compute the lower and upper approxima-
tions of all objects in Table 1, and the results are shown in Table 2. 

Table 2. All the lower and upper approximations of objects with respect to D 

U [ ]
C
x ³  

1
( )( )C d x  

1
( )( )C d x  

2
( )( )C d x  

2
( )( )C d x  

x1 {x1,x2,x6} 0.3 0.8 0.2 0.8 
x2 {x2} 0.8 0.8 0.2 0.2 
x3 {x3,x6} 0.5 0.8 0.4 0.6 
x4 {x4, x6} 0.2 0.8 0.4 0.8 
x5 {x5} 0.4 0.4 0.6 0.6 
x6 {x6} 0.8 0.8 0.4 0.4 

Definition 5. Let S=＜U, C∪D, V, f＞, B CÍ , 
1 2

{ , , , }
r

D d d d=  , [0,1]a Î is a  

fuzzy number. Denoted as 

 
1 2

( ) ( ( )( ), ( )( ), , ( )( ))
B r
L x B d x B d x B d x=   (4) 

 
1 2

( ) ( ( )( ), ( )( ), , ( )( ))
B r
H x B d x B d x B d x=   (5) 

 ( ) { ( )( ) ,1 }B j jL x d B d x j rα α= ≥ ≤ ≤  (6) 

 ( ) { ( )( ) ,1 }B j jH x d B d x j rα α= ≥ ≤ ≤  (7) 

(1) If ( ) ( )
B C
L x L x= 1, for any x UÎ , then B is called the lower approximation 

consistent set of C, and ( ) ( )
A B
L x L x¹ , for anyA BÍ , then B is called the lower 

approximation reduction of C. 

(2) If ( ) ( )
B C
H x H x= 2, for anyx UÎ , then B is called the upper approximation 

consistent set of C, and ( ) ( )
A B
H x H x¹ , for anyA BÍ , then B is called the upper 

approximation reduction of C. 

                                                           
1  ( ) ( ) ( )( ) ( )( ),

B C j j j
L x L x iff B d x C d x for d D= = " Î . 

2  ( ) ( ) ( )( ) ( )( ),
B C j j j
H x H x iff B d x C d x for d D= = " Î . 
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(3) If ( ) ( )
B C
L x L xa a= , for anyx UÎ , then B is called a lower assignment consis-

tent set of C, and ( ) ( )
A B
L x L xa a¹ , for anyA BÍ , then B is called a lower assign-

ment reduction of C. 

(4) If ( ) ( )
B C
H x H xa a= , for anyx UÎ , then B is called a upper assignment consis-

tent set of C, and ( ) ( )
A B
H x H xa a¹ , for anyA BÍ , then B is called a upper assign-

ment reduction of C. 
The lower (upper) approximation consistent set of set-valued ordered fuzzy deci-

sion system is a subset of condition attribute set that preserves certainty (possible) 
membership degree of each object in each decision attribute, and a lower (upper) 
assignment consistent set is a subset of condition attribute set that preserves that cer-
tainty (possible) membership degree of each object in each decision attribute is at 
least a . 

4 Knowledge Reduction to Set-Valued Ordered Fuzzy Decision 
System 

To acquire the approximation reduction set and assignment reduction set, the judg-
ment theorem of approximation consistent set and assignment consistent set is given 
as follows. 
Theorem 1. Let S=＜U, C∪D, V, f＞ , B CÍ , then 

(1) B is the lower approximation consistent set of C  For ,x y U" Î , 

if ( ) ( )
C C
L y L x³ 3is not satisfied, then [ ]

B
y x ³Ï . 

(2) B is the upper approximation consistent set of C  For ,x y U" Î , 

if ( ) ( )
C C
H y H x£ 4is not satisfied, then [ ]

B
y x ³Ï . 

(3) B is a lower assignment consistent set of C  For ,x y U" Î , 

if ( ) ( )C CL y L xα α⊇ is not satisfied, then [ ]
B

y x ³Ï . 

(4) B is a upper assignment consistent set of C  For ,x y U" Î , 

if ( ) ( )C CH y H xα α⊆ is not satisfied, then [ ]
B

y x ³Ï . 

Proof.  (1) “  ”: If [ ]
B

y x ³Î , then [ ] [ ]
B B
y x³ ³Í . For {1,2, }j r" Î  , ( )( )

j
B d y ³

 
( )( )
j

B d x , by Definition 5, then ( ) ( )
B C
L y L x³ . B is the lower approximation consis-

tent set of C, then ( ) ( )
B C
L x L x= . Therefore, ( ) ( )

C C
L y L x³ . 

“  ”: For [ ]
B

y x ³Î , then ( ) ( )
C C
L y L x³ . That is, for {1,2, }j r" Î  , then 

( )( )
j

C d y ³ ( )( )
j

C d x . By Definiton 4, ( , ) ( )( )
j j

f y d C d y³ , therefore, 

                                                           
3 ( ) ( ) ( )( ) ( )( ),

C C j j j
L y L x iff C d y C d x for d D³ ³ " Î . 

4 ( ) ( ) ( )( ) ( )( ),
C C j j j
H y H x iff C d y C d x for d D£ £ " Î . 
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( )( ) inf{ ( , ) [ ] } ( )( ) ( )( )
j j B j j

B d x f y d y x C d y C d x³= Î ³ ³ . According to Property 1, 

for B CÍ , then ( )( ) ( )( )
j j

B d x C d x£ . So, for 
j
d" , ( )( ) ( )( )

j j
B d x C d x= . That is, 

( ) ( )
B C
L x L x= , B is the lower approximation consistent set of C. 

(3) “ ”: If [ ]
B

y x ³Î , then [ ] [ ]
B B
y x³ ³Í . For {1,2, }j r" Î  , ( )( )

j
B d y ³ ( )( )

j
B d x , 

then, for [0,1]a" Î , ( ) ( )
B B
L y L xa aÊ . B is a  lower assignment consistent set of C, 

then ( ) ( )
B C
L x L xa a= . Therefore, ( ) ( )

C C
L y L xa aÊ . 

“ ”: ForB CÍ , then, ( )( ) ( )( )
j j

B d x C d x£ , so, for [0,1]a" Î , ( ) ( )
B C
L x L xa aÍ . 

The next, we need to prove that ( ) ( )
C B
L x L xa aÍ is satisfied. Let ( )

j C
d L xa" Î . For 

[ ]
B

y x ³Î , ( ) ( )C CL y L xα α⊇ , then ( )( ) ( )( )
j j

C d y C d x a³ ³ . In addition, 

( , ) ( )( )
j j

f y d C d y³ , therefore, ( )( ) inf{ ( , ) [ ] } ( )( )
j j B j

B d x f y d y x C d x a³= Î ³ ³ . 

So, ( )
j B
d L xaÎ , therefore, ( ) ( )

C B
L x L xa aÍ . That is, ( ) ( )

B C
L x L xa a= , B is a  lower 

approximation consistent set of C. 
The proof of (2) and (4) is similar to the proof of (1) and (3). 
The above theorem provides approach to judge whether a subset of condition 

attributes is consistent or not. We can further obtain practical approach to approxima-
tion reduction in set-valued ordered fuzzy decision system. First, the definitions of 
discernibility matrices are given as follows. 
Definition 6. Let S=＜U, C∪D, V, f＞. Denoted as 

 
{ ( , ) },

( , )
, ( ) ( )
a

C C

a C x y R otherwise
D x y

L x L y

³ìï Î Ïïï= íï Æ ³ïïî
 (8) 

 
{ ( , ) },

( , )
, ( ) ( )
a

C C

a C x y R otherwise
D x y

H x H y

³ìï Î Ïïï= íï Æ £ïïî
 (9) 

 
{ ( , ) },

( , )
, ( ) ( )

a

C C

a C x y R otherwise
D x y

L x L y
a

a a

³ìï Î Ïïï= íï Æ Êïïî
 (10) 

 
{ ( , ) },

( , )
, ( ) ( )

a

C C

a C x y R otherwise
D x y

H x H y
a

a a

³ìï Î Ïïï= íï Æ Íïïî
 (11) 

( , )D D x y= , ( , )D D x y= , ( , )D D x ya a= and ( , )D D x ya a= are called the 

lower approximation, the upper approximation, a lower assignment and a upper 
assignment discernibility matrices of set-valued ordered fuzzy decision system. 
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Theorem 2. Let S=＜U, C∪D, V, f＞，B CÍ ， ,x y U" Î ，then 

(1) B is the lower approximation consistent set of C  ( , )D x y" ¹ Æ ， then, 

( , )B D x yÇ ¹ Æ . 

(2) B is the upper approximation consistent set of C  ( , )D x y" ¹ Æ ， then, 

( , )B D x yÇ ¹ Æ . 

(3) B is a lower assignment consistent set of C  ( , )D x ya" ¹ Æ ， then, 

( , )B D x yaÇ ¹ Æ . 

(4) B is a upper assignment consistent set of C  ( , )D x ya" ¹ Æ ， then, 

( , )B D x yaÇ ¹ Æ . 

Proof. (1) “ ”: B is the lower approximation consistent set of C, for ,x y U" Î ，

a B$ Î ， such that ( , )
a

x y R³Ï while ( ) ( )
C C
L x L y³ is not satisfied. Therefore, 

( , )a D x yÎ , ( , )B D x yÇ ¹ Æ . 

“ ”: If ( , )D x y" ¹ Æ，then ( , )B D x yÇ ¹ Æ .So, for ,x y U" Î ， a B$ Î  and 

( , )a D x yÎ . while ( ) ( )
C C
L x L y³ is not satisfied, ( , )

a
x y R³Ï , i.e., [ ]

B
y x d³Ï . 

Therefore, B is the lower approximation consistent set of C. 
The proof of (2)-(4) is similar to the proof of (1). 
By Theorem 2, we know that the lower (upper) approximation reduction and 

a lower (upper) assignment reduction of C are minimum set B which satisfy 

B DÇ ¹ Æ（B DÇ ¹ Æ）and B DaÇ ¹ Æ (B DaÇ ¹ Æ ), which usually can 
be obtained by Boolean reasoning. 
Definition 7. Let S=＜U, C∪D, V, f＞, denoted by 

 
( , )

( , )
x y U U

D x y
Î ´

D =   , 
( , )

( , )
x y U U

D x y
Î ´

D =      (12) 

 
( , )

( , )
x y U U

D x ya a

Î ´
D =   , 

( , )
( , )

x y U U
D x ya a

Î ´
D =    (13) 

 ( ) ( , )
y U

x D x y
Î

D =   , ( ) ( , )
y U

x D x y
Î

D =    (14) 

 
( , )

( ) ( , )
x y U U

x D x ya a

Î ´
D =   , 

( , )
( ) ( , )

x y U U
x D x ya a

Î ´
D =    (15) 

( )D D  and ( )a aD D are called the lower (upper) approximation discernibility 

function and a lower (upper) assignment discernibility function. ( )( ( ))x xD D  

and ( )( ( ))x xa aD D  are called the lower (upper) approximation discernibility function 

and a lower (upper) assignment discernibility function of  object x . 
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Theorem 3. Let S=＜U, C∪D, V, f＞, the minimal disjunctive normal forms of D and 

D  are
1 1

k

s

qt
k s i

c
= =

  and
1 1

k

m

pr
k m i

c
= =

  , denoted by 
k
B = { : 1,2, , }

si k
c s q=  (k=1, 2, 

… , r), { : 1,2, , }
mk i k

B c m p= =  (k=1, 2, …, t), then { : 1,2, , }
k
B k t=  and 

{ : 1,2, , }
k
B k r=    are the set of all the lower and upper approximation reduction. 

Proof. It follows directly from Theorem 2 and the definition of minimal disjunctive 
normal forms of discernibility functions. 

Similarly, all a lower (upper) assignment reduction of set-valued ordered fuzzy 

decision system can be obtained from the minimal disjunctive normal forms of aD  

and aD . 
Example 3. (Continued from Example 2) Let 0.5α = , ( )BL x , ( )BH x , ( )BL xα and 

( )BH xα can be obtained, the results are shown in Table 3. 

Table 3. All the result of ( )BL x , ( )BH x , 0.5 ( )BL x and 0.5 ( )BH x  

U ( )BL x  ( )BH x  0.5 ( )BL x  0.5 ( )BH x  

x1 (0.3, 0.2) (0.8, 0.8) ∅  {d1, d2} 
x2 (0.8, 0.2) (0.8, 0.2) {d1} {d1} 
x3 (0.5, 0.4) (0.8, 0.6) {d1} {d1, d2} 
x4 (0.2, 0.4) (0.8, 0.8) ∅  {d1, d2} 
x5 (0.4, 0.6) (0.4, 0.6) {d2} {d2} 
x6 (0.8, 0.4) (0.8, 0.4) {d1} {d1} 

 Compute the approximation discernbility matrices and assignment discernibility 
matrices in Table 1. The results are shown as follows: 

 

1 2 1 2 1 2 4 1 2 1 2

1 2 1 2 4 1 2 1 2

1 2 4 1 4 4

1 2 3 1 2 4

1 2 1 2 1 2

1

, , , , , ,

, , , , ,

, , ,

, , , ,

, , ,

c c c c c c c c c c c

c c c c c c c c c

c c c c c c
D
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We have
1 4
c cD = D =  , 0.5

1
cD = , 
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c caD =  . Meanwhile, discernibility 

function of each object can be obtained. For example, 
1 2 1 2

( ) ( )x x c cD = D =  , 

3 4
( )x cD = , 
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( )x c cD =  , 

6 1
( )x cD = , 0.5

2 1 2
( )x c cD =  , 0.5

3 1 4
( )x c cD =  , 

0.5
4 1 2 4

( )x c c cD =   , 0.5
5 1 2

( )x c cD =  . The results of other objects can be derived 

similarly. Therefore, the proposed knowledge reduction method can eliminate redundant 
condition attributes and simplify the set-valued ordered fuzzy decision system. 

5 Conclusion 

Set-valued information systems are generalized models of single-valued information 
systems. In this paper, we firstly propose dominance relation-based rough fuzzy set 
model in set-valued ordered fuzzy decision system. Then, the concepts of approxima-
tion reduction and assignment reduction are given, and judgment theorems of approx-
imation consistent set and assignment consistent set are obtained. Finally, attribute 
reduction approaches based on rough fuzzy set are investigated. Although the Boo-
lean reasoning approach based on discernbility matrices can yield all attribute reduc-
tion sets, the complexity is high and grows exponentially with the attribute size. So 
efficient attribute reduction approaches are needed in the following work. Besides, we 
will develop fuzzy rough set model to those more complicated information systems. 
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Abstract. This paper focuses on the sorting problems with multiple
types of attributes. About the attributes, in which are divided into qual-
itative attributes, quantitative attributes, qualitative criteria and quanti-
tative criteria. Granules of knowledge are defined by applying four types
of relations simultaneously: indiscernibility relation defined on quali-
tative attributes, similarity relation defined on quantitative attributes,
dominance relation defined on qualitative criteria and quasi-partial order
relation defined on quantitative criteria. To guarantee the tolerance of
the system, the threshold is adjusted, resulting in a N-neighborhood sys-
tem comes into being. The consistency measure which possess properties
of monotonicity is regarded as the Likelihood Function, so the optimal
threshold is obtained by Maximum Likelihood Estimation, as a result, N-
neighborhood system is converted into optimal 1-neighborhood system.
Therefore, we proposed the Optimal-Neighborhood Statistics Rough Set
Approach with Multiple Attributes and Criteria.

Keywords: Quasi-partial order relation, Consistency measure, Maxi-
mum Likelihood Estimation, N-neighborhood system, Rough Set.

1 Introduction

Rough set theory[1-2] is a mathematic approach to process incertitude informa-
tion. The lower approximation is the union of equivalent classes which are subset
of the approximated set, so every object in the lower approximation is consis-
tent with each other. The lower approximation might be an empty set, which
is, however, should not be empty in fact, as some consistent objects may be
treated as inconsistent objects improperly owing to inevitable noise interference.
Thus some extensions of rough set model have been proposed, such as Variable
Precision Rough Set[7-8] and Bayesian Rough Set[9-10], etc.

About the attributes, among which have been divided into qualitative at-
tributes and quantitative attributes because it enables people to analyze the
characteristics of the objects better(Greco et al.,2002). In this paper, among
the criteria we distinguish between qualitative criteria and quantitative criteria.
By exploiting Pansystems Theory[5] to explore the implied laws between the
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relation defined on qualitative criteria and the relation defined on quantitative
criteria, the conclusion is discovered that the quasi-partial order relation could
analyze the objects evaluated by quantitative criteria. In view of the existing sit-
uation that the attributes set of the decision express table contains qualitative
attributes, quantitative attributes, qualitative criteria and quantitative criteria,
granules of knowledge are defined by applying four types of relations simultane-
ously: the indiscernibility relation defined on qualitative attributes, the similar-
ity relation defined on quantitative attributes, the dominance relation defined on
qualitative criteria and the quasi-partial order relation defined on quantitative
criteria.

As for quantitative attributes or criteria whose values exist by numerical val-
ues, it is acknowledged that the acquired attribute values might be incertitude,
uncertain, or unknown owing to noise interference, inaccurate measurements,
statistical errors and unclear definition, etc. So, nextly, this paper mainly dis-
cusses how to guarantee the tolerance of the system by threshold adjusting.
Neighborhoods of a object change along with the change of threshold, thus a
N-neighborhood system comes into being. The optimal threshold is obtaind by
the Maximum Likelihood Estimation, and the Likelihood Function adopts the
consistency measure which possess properties of monotonicity.

This paper is organized as follows. Section 2 deducts the relation defined on
quantitative criteria. Section 3 is devoted to present the Optimal-Neighborhood
Statistics Rough Set Approach with Multiple Attributes and Criteria. In Section
4, an example is analyzed. In Section 5, the conclusion of this paper is drawn.

2 Relation Defined on Quantitative Criteria

The cognitive complicacy of the things stems from their uncertainties and di-
versities. The uncertainties mainly express in the uncertainties of knowledge
discernment, denotation description(vague definition of some attribute values),
and denotation numbers. However, the diversity is frequently noted as using
multiple attributes of various types to describe objects, and a specialized type
of attribute are analyzed accurately by a specialized relation.

Known from literature[4], qualitative attributes are analyzed by indiscerni-
bility relation, while quantitative attributes are analyzed by similarity relation.
As was admitted in previous study, the domain of a criterion has to be ordered
by a preference. The qualitative criteria is the type of criteria whose values is
described by the concepts or symbols, so the dominance relation is defined on
them, see[4]. However, the values of the quantitative criteria are ordinal numbers,
and then the relation is deduced to dispose the objects evaluated by quantitative
criteria from the perspectives of properties of Pansystem relation.

Theorem 1. If A is a nonempty set, f ⊂ A×A, then f−f−1 is anti-symmetric,
f ∩ f−1 is symmetric.
Proof is omitted because the theorem can be easily proved. �
Theorem 2[5]. If A is a nonempty set, f ⊂ A × A, then f can be divided into
two relations f1 and f2, which are independent of each other, that is f = f1∪f2,
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where f1 = f − f−1 is anti-symmetric, f2 = f ∩ f−1 is symmetric.
Definition 1[5]. If A is a nonempty set, f ⊂ A×A, the transitivity is defined as

T [A) = {f |f1 ◦ f1, f1 ◦ f2, f2 ◦ f1, f2 ◦ f2 ⊂ f, f1 = f − f−1, f2 = f ∩ f−1} (1)

and the definition of quasi-transitivity is

Tq[A) = {f |f1 ◦ f1, f1 ◦ f2, f2 ◦ f1 ⊂ f, f1 = f − f−1, f2 = f ∩ f−1} (2)

Analysis of the above definition shows that the quasi-transitivity is the weakening
of the transitivity when the condition f2 ◦ f2 ⊂ f is not satisfied.

As we all know, if A is a nonempty set, f ∈ T [A), ∀x, y, z ∈ A, (x, y) ∈ f and
(y, z) ∈ f , then (x, z) ∈ f , which can be expressed as:
(1).(x, y) ∈ f1 and (y, z) ∈ f1 ⇒ (x, z) ∈ f1 ◦ f1 ⊂ f ⇒ (x, z) ∈ f ,
(2).(x, y) ∈ f1 and (y, z) ∈ f2 ⇒ (x, z) ∈ f1 ◦ f2 ⊂ f ⇒ (x, z) ∈ f ,
(3).(x, y) ∈ f2 and (y, z) ∈ f1 ⇒ (x, z) ∈ f2 ◦ f1 ⊂ f ⇒ (x, z) ∈ f ,
(4).(x, y) ∈ f2 and (y, z) ∈ f2 ⇒ (x, z) ∈ f2 ◦ f2 ⊂ f ⇒ (x, z) ∈ f .
However, if f ∈ T [A) is replaced by f ∈ Tq[A), without changing with (1),(2)
and (3) because f1 ◦ f1, f1 ◦ f2, f2 ◦ f1 also belong to f . While (4) does not hold
becaese f2 ◦f2 is not necessarily belong to f , so (x, y) ∈ f2 and (y, z) ∈ f2, (x, z)
is not necessarily belong to f .

Let us give a example to interpret. For a given universe A, which is a nonempty
set, ∀a, b, c ∈ A, g = {(a, b), (b, c), (a, c)}, f = {(a, b), (b, a), (a, c), (c, a), (c, b)}. It
is a obvious fact that g has transitivity as well as quasi-transitivity. After analy-
sis, f1 = {(c, b)}, f2 = {(a, b), (b, a), (a, c), (c, a)}, and f1 ◦ f1 = ∅ ⊂ f , f1 ◦ f2 =
{(c, a)} ⊂ f , f2◦f1 = {(a, b)} ⊂ f and f2◦f2 = {(a, a), (b, b), (b, c), (c, b), (c, c)} �
f , so a conclusion that f has quasi-transitivity is reached. In fact, the conclusion
can also be interpreted by the following method, (c, a) ∈ f2 and (a, b) ∈ f2 ⇒
(c, b) ∈ f , however, (a, c) ∈ f2 and (b, a) ∈ f2 ⇒ (b, c) /∈ f , so f is not transitive.
Theorem 3. If A is a nonempty set, f ⊂ A × A, f1 = f − f−1, f2 = f ∩ f−1,
then f1 ◦ f1 ⊂ f , f1 ◦ f2 ⊂ f , f2 ◦ f1 ⊂ f , f2 ◦ f2 ⊂ f ⇐⇒ f ◦ f ⊂ f .
The proof is omitted because the property can be easily proved. �

For a given universe A, which is a nonempty set, f ⊂ A × A, ∀x, y ∈ A, if
(x, y) ∈ f and (x, y) /∈ f , then x is preferred to y on f , denoted as xDk

fy, where

k > 0. If (x, y) ∈ (f ∩ f−1), then no difference is indicated between x and y on
f , denoted as xD0

fy. If (x, y) ∈ f , but there is no way to verify whether (y, x)

belongs to f , then x is not worse than y, denoted as xDk
fy, where k � 0.

Theorem 4. If A is a nonempty set, f ∈ T [A), ∀x, y, z ∈ A, then
(1)If xDk

fy and yDt
fz on f , k > 0, t > 0, then xDh

f z, h > 0 on f .

(2)If xDk
fy and yD0

fz on f , k > 0, then xDh
f z, h > 0 on f .

(3)If xD0
fy and yDk

fz on f , k > 0, then xDh
f z, h > 0 on f .

(4)If xD0
fy and yD0

fz on f , then xD0
fz on f .

Proof. (1) ∵ On f , xDk
fy and k > 0 ∴ (x, y) ∈ f and (y, x) /∈ f . ∵ yDt

fz
and t > 0 ∴ (y, z) ∈ f and (z, y) /∈ f . Theorem 2 shows that f = f1 ∪ f2,
where f1 = f − f−1, f2 = f

⋂
f−1. Analysis of the above results in (x, y) ∈ f1,

(y, z) ∈ f1. ∵ f ∈ T [A) ⇒ f1 ◦ f1 ⊂ f ∴ (x, z) ∈ f . Assuming that(z, x) ∈ f ,
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then (x, z) ∈ f2. ∵ f2 ◦ f1 ⊂ f ∴ (z, x) ∈ f2 and (x, y) ∈ f1 ⇒ (z, y) ∈ f ,
conflicts with the precondition (z, y) /∈ f . ∴ assumption is incorrect, (z, x) /∈ f .
In conclusion, xDh

f z, h > 0 on f . �
Proofs of (2) and (3) are similar to (1), so they haved been omitted. �

Proof. (4)On f , ∵ xD0
fy ∴ (x, y) ∈ f and (y, x) ∈ f ∵ yD0

fz ∴ (y, z) ∈ f
and (z, y) ∈ f . ∵ f = f1 ∪ f2, ∴ (x, y) ∈ f2, (y, z) ∈ f2, similarly, (y, x) ∈ f2,
(z, y) ∈ f2. ∵ f ∈ T [A)⇒ f2 ◦ f2 ⊂ f ∴ (x, z) ∈ f , (z, x) ∈ f . So xD0

fz on f . �
Theorem 5[5]. If A is a nonempty set, f ∈ Tq[A), ∀x, y, z ∈ A, then

(1)If xDk
fy and yDt

fz on f , k > 0, t > 0, then xDh
f z, h > 0 on f .

(2)If xDk
fy and yD0

fz on f , k > 0, then xDh
f z, h � 0 on f .

(3)If xD0
fy and yDk

fz on f , k > 0, then xDh
f z, h � 0 on f .

(4)If xD0
fy and yD0

fz on f , then xDk
f z and k is not necessarily equal to 0 on f .

The only main difference between Theorem 4 and 5 lies in a difference between
transitivity and quasi-transitivity which were analyzed previously. So the fact
is realized that the information used to describe the objects is completely or
strictly delivered by transitivity, however, quasi-transitivity delivers the infor-
mation related to the objects partly. For example, if x is preferred to y and y
is indiscernible from z on f ∈ T [A), then x is preferred to z on f , which is
supported by (2) of Theorem 4. However, about (2) from Theorem 5, if x is
preferred to y and y is indiscernible from z on f ∈ Tq[A), then x is not worse
than z on f .

It was acknowledged that dominance relation is reflexive and transitive, how-
ever, quasi-partial order relation has reflexivity and quasi-transitivity. According
to the definitions of the quantitative and qualitative criteria, the perceived fact
is that the values of qualitative criteria are often accurate or stable, while im-
precision or uncertainty is always along with the values of quantitative criteria.
So the conclusion is obtained that dominance relation is defined to dispose the
objects described by qualitative criteria, while quasi-partial order relation is
defined on quantitative criteria, because it is too strict for dominance relation
which has transitivity to analyze the objects described by quantitative criteria.
The conclusion can be illustrated by the following example.

Table 1. Assessment of student achievement

U q1 q2

s1 excellent 91
s2 good 88
s3 good 87
s4 medium 88

In table 1, there are shown four students(reference objects) described by two
condition attributes, where q1 is a survey course and q2 is a examination course.
It is obvious and acquired easily from the table that q1 is a qualitative criterion
and q2 is a quantitative criterion. In general, it is hard for a qualitative criterion
to be misjudged since the concepts are relatively stable and accurate. But it
is common that some degree of errors come with the ordinal numbers, such as
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errors in scoring and statistics during the marking process, as well as existence
of subjective interference during the fraction of the judgment.
The conclusion is realized that q1 is analyzed by dominance relation. For ex-
ample, if s1 is better than s2 and s2 is indiscernible from s3 on q1, then s1 is
better than s3 on q1. If q2 is also analyzed by dominance relation, then s1 is
better than s2 and s2 is indiscernible from s4 on q2, so s1 is better than s4. In
fact, it is a very real possibility that s1 is maybe indiscernible from s2 and s2
is maybe not indiscernible from s4 on q2 owing to some degree of errors. But
it is normal that s1 is not worse than s4 on q2. By analysis above indicates
that quasi-partial order relation is more appropriate than dominance relation to
analyze the objects described by quantitative criteria.

3 Optimal-Neighborhood Statistics Rough Set Approach
with Multiple Attributes and Criteria

Formally, by an decision express table we applied the 4-tuple S =< U,A, V, f >,
where U is a finite set of objects, called universe; A = C ∪ D is a finite set of
attributes, set C of condition attributes, set D of decision criteria, C and D
need to satisfy the equation of C ∩ D = ∅; V =

⋃
a∈C Va, Va is the domain of

the attribute a ∈ C; the information function f specifies the attribute value of
each object x. In S, D = {d} makes a partition of the set of reference objects
U into a finite number of decision classes Cl1, Cl2, · · · , Cln. Let Cl = {Clt, t ∈
T }, T = {1, 2, · · · , n}, ∀u, v ∈ T , if u > v such that the objects from Clu
are preferred to the objects from Clv, see[6]. In this paper, C can be divided
into C>, C�, C=, C�, where C> is the set of qualitative criteria, C� is the
set of quantitative criteria, C= is the set of qualitative attributes, C� is the
set of quantitative attributes, C>, C�, C=, C� need to satisfy equivalence of
C = C> ∪C� ∪C= ∪C�, and the intersection of any two subsets is empty. The
sets to be approximated are t-upward union Cl≥t =

⋃
s≥t Cls and t-downward

union Cl≤t =
⋃

s≤t Cls.
For ∀x, y ∈ U , R ⊂ U × U , if xRy, then y is R-related to x. So, for every

x ∈ U , the set of objects associated with x is called the neighborhood of x,
which is defined as n(x) = {y ∈ U : xRy}. The neighborhood system of x is a
nonempty set of all neighborhoods of x, marked as US(x), see [11].

There are two general inconsistencies need to be considered. Firstly, the ob-
jects x and y have the identical descriptions on every attribute and criterion,
but are assigned to two different decision classes. Secondly, object x dominates
object y on every criterion and x and y have identical or similar descriptions on
all considered attributes, but x is assigned to a decision class worse than y[4].

In S, for any P ⊆ C, P can be divided into P>, P�, P=, P�, where P> = P ∩
C> is the subset of qualitative criteria, P� = P∩C� is the subset of quantitative
criteria, P= = P ∩ C= is the subset of qualitative attributes, P� = P ∩ C� is
the subset of quantitative attributes. For ∀x, y ∈ U , ∀q ∈ P>, x qualitatively
dominates y on P>, denoted as xDP y; ∀q ∈ P�, x quantitatively dominates
y on P�, denoted as xBu1

P y, where u1 is the dominant threshold. However,
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for any P ⊆ P=, x is indiscernible from y on P=, denoted as xIP y; for any
P ⊆ P∼, x is similar to y on P∼, denoted as xRu2

P y, where u2 is the similarity
threshold. It was concluded that the similarity between objects is represented by
the similarity relation defined on the set of attribute values, that is, ∀x, y ∈ U ,
∀q ∈ P∼, xRu2

P y if and only if |f(x,q)−f(y,q)|
f(y,q) ≤ u2, see[4]. Similarly, xBu1

P y if and

only if f(x,q)−f(y,q)
f(y,q) ≥ u1.

Futhermore, for ∀x, y ∈ U , ∀q ∈ P>, f(x, q) ≥ f(y, q) indicates that x qual-
itatively dominates y on P>; f(x, q) = f(y, q) indicates that x is indiscernible
from y on P>; f(x, q) ≤ f(y, q) indicates that x is qualitatively dominated y

by on P>. However, ∀q ∈ P�, f(x,q)−f(y,q)
f(y,q) ≥ u1 indicates that x quantitatively

dominates y on P�; f(y,q)−f(x,q)
f(y,q) < u1 illustrates that x is not quantitatively

dominated by y on P�; |f(x,q)−f(y,q)|
f(y,q) < u1 shows that x is indiscernible from y

on P�, f(y,q)−f(x,q)
f(y,q) ≥ u1 shows that x is quantitatively dominated by y on P�,

where 0 ≤ u1 ≤ 1 is a dominate threshold. If f [y, q] �= 0, then

(1) f(x,q)−f(y,q)
f(y,q) ≥ u1 ⇒ f(x, q) ≥ (1 + u1)f(y, q)

(2) f(y,q)−f(x,q)
f(y,q) < u1 ⇒ f(x, q) > (1− u1)f(y, q)

(3) |f(x,q)−f(y,q)|
f(y,q) < u1 ⇒ (1− u1)f(y, q) < f(x, q) < (1 + u1)f(y, q)

(4) f(y,q)−f(x,q)
f(y,q) ≥ u1 ⇒ f(x, q) ≤ (1− u1)f(y, q)

Theorem 6. If U is a nonempty set, for each q ∈ P>, ∀x, y, z ∈ U , then(1)If
f(x, q) ≥ f(y, q) and f(y, q) ≥ f(z, q) on P>, then f(x, q) ≥ f(z, q) on P>.
(2)If f(x, q) ≥ f(y, q) and f(y, q) = f(z, q) on P>, then f(x, q) ≥ f(z, q) on P>.
(3)If f(x, q) = f(y, q) and f(y, q) ≥ f(z, q) on P>, then f(x, q) ≥ f(z, q) on P>.
(4)If f(x, q) = f(y, q) and f(y, q) = f(z, q) on P>, then f(x, q) = f(z, q) on P>.
The proof is omitted because the theorem can be easily proved. �
Theorem 7. If U is a nonempty set, for each q ∈ P�, ∀x, y, z ∈ U , f(y, q) �= 0,
f(z, q) �= 0, 0 ≤ t ≤ 1, then
(1)If f(x, q) ≥ (1 + t)f(y, q) and f(y, q) ≥ (1 + t)f(z, q) on P�, then f(x, q) ≥
(1 + t)f(z, q) on P�.
(2)If f(x, q) ≥ (1 + t)f(y, q) and (1− t)f(z, q) < f(y, q) < (1 + t)f(z, q) on P�,
then f(x, q) > (1− t)f(z, q) on P�.
(3)If (1− t)f(y, q) < f(x, q) < (1 + t)f(y, q) and f(y, q) ≥ (1 + t)f(z, q) on P�,
then f(x, q) > (1− t)f(z, q) on P�.
(4)If (1 − t)f(y, q) < f(x, q) < (1 + t)f(y, q) and (1 − t)f(z, q) < f(y, q) <
(1 + t)f(z, q) on P�, then there is not necessarily (1 − t)f(z, q) < f(x, q) <
(1 + t)f(z, q) on P�.
The proof is omitted because the theorem can be easily proved. �

As for quantitative attributes and criteria, neighborhoods of objects change
along with the change of threshold, thus a N-neighborhood system is engendered.
How to guarantee the optimal tolerance of the system? How to convert the N-
neighborhood into the optimal 1-neighborhood.
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Two binary relations are defined on U , denoted byMuP andM∗
uP , ∀x, y ∈ U•

xMuP y if and only if xDP y for each q ∈ P>, xBu1
P y for each q ∈ P�, xIP y for

any q ∈ P=, yRu2
P x for any q ∈ P∼.

• xM∗
uP y if and only if xDP y for each q ∈ P>, xBu1

P y for each q ∈ P�, xIP y
for any q ∈ P=, xRu2

P y for any q ∈ P∼.
From MuP and M∗

uP , four types of granules of knowledge can be generated:
(1)ML+

uP (x) = {y ∈ U |yMuPx} is a set of objects y qualitatively dominating x

on P>, quantitatively dominating x on P� and indiscernible from x on P=, and
x is similar to y on P∼.
(2)MU+

uP (x) = {y ∈ U |yM∗
uPx} is a set of objects y qualitatively dominating x

on P>, quantitatively dominating x on P� and indiscernible from x on P=, and
y is similar to x on P∼.
(3)ML−

uP (x) = {y ∈ U |xM∗
uP y} is a set of objects y qualitatively dominated by x

on P>, quantitatively dominated by x on P� and indiscernible from x on P=,
and x is similar to y on P∼.
(4)MU−

uP (x) = {y ∈ U |xMuP y} is a set of objects y qualitatively dominated by

x on P>, quantitatively dominated by x on P� and indiscernible from x on P=,
and y is similar to x on P∼.
Literature[8] proposed two types of consistency measures, that is, the gain-type
consistency measure fpx(y) and the cost-type consistency measure gpx(y), and
gave four types of monotonicity properties. For simplicity, this paper regards

a cost-type consistency measure εP
Cl≥t

(x) =
card(D+(x)∩Cl≤t−1)

card(D+(x)) as the Likelihood

Function, which possess properties of monotonicity. In fact, you can consider any
interestingness measures related to consistency and monotonicity. Probability of
intersection of all random events that are independent of each other is:

P (

n⋂
i=1

Xi = xi) =

n∏
i=1

P (Xi = xi) =

n∏
i=1

εP
Cl≥t

(xi;u) (3)

Let LL+
P (U) =

∏n
i=1 ε

P

Cl
≥
t

(xi;u
L+), the way to calculate the Maximum likeli-

hood Estimation of parameter uL+ can be converted into the question solved
by computing the maximum value of Likelihood Function LL+

P (U). By analy-

sis, max{LL+
P (U)} = max{∏n

i=1(
card(B+

u1(xi)∩Cl≤t−1)

card(B+
u1(xi))

+
card(RL

u2(xi)∩(U−Clt))

card(RL
u2(xi))

)} =
max{∏n

i=1

card(B+
u1(xi)∩Cl

≤
t−1)

card(B+
u1(xi))

}+max{∏n
i=1

card(RL
u2(xi)∩(U−Clt))

card(RL
u2(xi))

}=max{L+
P (U1

)}+max{LP (U
L
2 )}. Similarly,

LU+
P (U)=

∏n
i=1 ε

P
Cl≥t

(xi;u
U+)=

∏n
i=1(

card(B+
u1(xi)∩Cl≤t−1)

card(B+
u1(xi))

+
card(RU

u2(xi)∩(U−Clt))

card(RU
u2(xi))

)

=
∏n

i=1

card(B+
u1(xi)∩Cl≤t−1)

card(B+
u1(xi))

+
∏n

i=1
card(RU

u2(xi)∩(U−Clt))

card(RU
u2(xi))

= L+
P (U1) + LP (U

U
2 );

LL−
P (U)=

∏n
i=1 ε

P
Cl≤t

(xi;u
L−)=

∏n
i=1(

card(B−
u1(xi)∩Cl≥t+1)

card(B−
u1(xi))

+
card(RL

u2(xi)∩(U−Clt))

card(RL
u2(xi))

)

=
∏n

i=1

card(B−
u1(xi)∩Cl

≥
t+1)

card(B−
u1(xi))

+
∏n

i=1
card(RL

u2(xi)∩(U−Clt))

card(RL
u2(xi))

= L−
P (U1) + LP (U

L
2 );
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LU−
P (U)=

∏n
i=1 ε

P
Cl≤t

(xi;u
U−)=

∏n
i=1(

card(B−
u1(xi)∩Cl≥t+1)

card(B−
u1(xi))

+
card(RU

u2(xi)∩(U−Clt))

card(RU
u2(xi))

)

=
∏n

i=1

card(B−
u1(xi)∩Cl≥t+1)

card(B−
u1(xi))

+
∏n

i=1
card(RU

u2(xi)∩(U−Clt))

card(RU
u2(xi))

= L−
P (U1) + LP (U

U
2 ).

Definition 2. Given P ⊆ C, t ∈ T , the P-lower approximation of Cl≥t is

P−(Cl
≥
t ) = {x ∈ U |ML+

uP (x) ⊆ Cl≥t , u = [u1, u
L
2 ]} (4)

where, u1 = max{L+
P (U1)}, uL2 = max{LP (U

L
2 )},

the P-upper approximation of Cl≥t is

P−(Cl≥t ) = {x ∈ Cl≥t |MU+
uP (x) ∩ Cl≥t �= ∅, u = [u1, u

U
2 ]} (5)

where, u1 = max{L+
P (U1)}, uU2 = max{LP (U

U
2 )},

and the P-boundary of Cl≥t is defined as

BnP (Cl
≥
t ) = P

−(Cl≥t )− P−(Cl
≥
t ) (6)

By the same token, given P ⊆ C, t ∈ T , the P-lower approximation of Cl≤t is

P−(Cl
≤
t ) = {x ∈ U |ML−

uP (x) ⊆ Cl≤t , u = [u1, u
L
2 ]}, where u1=max{L−

P (U1)}, uL2
= max{LP (U

L
2 )}. The P-upper approximation of Cl≤t is P−(Cl≤t ) = {x ∈

Cl≤t |MU−
uP (x) ∩ Cl≤t �= ∅, u = [u1, u

U
2 ]}, where u1 = max{L−

P (U1)}, uU2 =

max{LP (U
U
2 )}. The P-boundary of Cl≤t is BnP (Cl

≤
t ) = P

−(Cl≤t )− P−(Cl
≤
t ).

Property 1. Given P ⊆ C, t ∈ T , P−(Cl
≥
t ) ⊆ Cl≥t ⊆ P−(Cl≥t ), P−(Cl

≤
t ) ⊆

Cl≤t ⊆ P−(Cl≤t ).
The proof is omitted because the property can be easily proved. �
Property 2. Given R ⊆ P ⊆ C, t ∈ T , then
P−(Cl≥t ) ⊆ R−(Cl≥t ) R−(Cl

≥
t ) ⊆ P−(Cl

≥
t ) BnP (Cl

≥
t ) ⊆ BnR(Cl≥t )

P−(Cl≤t ) ⊆ P−(Cl≤t ) R−(Cl
≤
t ) ⊆ P−(Cl

≤
t ) BnP (Cl

≤
t ) ⊆ BnR(Cl≤t )

The proof is omitted because the property can be easily proved. �
Definition 4. Given P ⊆ C, t ∈ T , the accuracy of approximation of Cl≥t and

Cl≤t are defined as ∂P (Cl
≥
t ) =

card(P−(Cl≥t ))

card(P−(Cl≥t ))
, ∂P (Cl

≤
t ) =

card(P−(Cl≤t ))

card(P−(Cl≤t ))
.

Definition 5. Given P ⊆ C, t ∈ T , the quality of approximation of partition

Cl is defined as λP (Cl) =
card(U−(

⋃
t∈T BnP (Cl≥t ))

⋃
(
⋃

t∈T BnP (Cl≤t )))

card(U) .

Definition 6. Given P ⊆ C, t ∈ T , each minimal subset R ⊆ P such that
λR(Cl) = λP (Cl), then R is called a reduct of Cl, denoted by REDCl(C).
It is acknowledged that a decision table can have more than one reduct, the
intersection of all reducts is called the core and is denoted by CORECl(C).

4 An Example

The following example(extending the one given by slowinski, 2002) illustrates the
conclusions introduced above. In table 2, there are shown exemplary decisions
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of a decision maker concerning eight warehouses(reference objects) decribed by
four types of condition attributes:
• A1, capacity of the sales staff, • A2, maintenance cost,
• A3, geographical region, • A4, area.
In the case of C = {A1, A2, A3, A4} and D = {d}. By analysis the table can
indicate that A1 is a qualitative criterion, A2 is a quantitative criterion, A3 is a
qualitative attribute, while A4 is a quantitative attribute. About this example,

Table 2. Decision table with exemplary decision

U A1 A2 A3 A4 d

w1 Medium 750 A 500 Loss
w2 Good 680 A 400 Profit
w3 Medium 720 A 450 Profit
w4 Good 650 B 400 Loss
w5 Good 700 B 475 Profit
w6 medium 710 B 425 Profit
w7 medium 730 B 350 Profit
w8 medium 750 B 350 Loss

the value of U1 is only 0.01, 0.02 and 0.03. Nextly, the optimal threshold among
them can be obtaind by Maximum Likelihood Estimation.

When Cl≥2 = {w2, w3, w5, w6, w7} is considered, thenmax{LP (U1)} = max{∏n
i=1

card(B+
u1(xi)∩Cl

≤
t−1)

card(B+
u1(xi))

} = max{∏8
i=1

card(B+
u1(xi)∩Cl≤1 )

card(B+
u1(xi))

}. We get u1 = 0.03 is

the optimal dominant threshold among u1=0.01, 0.02, 0.03. If the values of U2

are 0.08, 0.1 and 0.12, max{LP (U
L
2 )} = max{∏8

i=1
card(RL

u2(xi)∩(U−Clt))

card(RL
u2(xi))

} =

max{∏8
i=1

card(RL
u2(xi)∩Cl1)

card(RL
u2(xi))

}, we can obtain uL2 = 0.12 is the optimal similarity

threshold among u2 = 0.08, u2 = 0.1 , u2 = 0.12. While max{LP (U
U
2 )} =

max{∏8
i=1

card(RU
u2(xi)∩(U−Clt))

card(RU
u2(xi))

} = max{∏8
i=1

card(RU
u2(xi)∩Cl1)

card(RU
u2(xi))

}, we can receive

uU2 = 0.1 is the optimal similarity threshold among u2=0.08, 0.1, 0.12.
From analysis introduced above, we obtain ML+(w1) = {w1}, ML+(w2) =

{w2},ML+(w3) = {w1, w3},ML+(w4) = {w4}, ML+(w5) = {w5}, ML+(w6)
= {w6}, ML+(w7) = {w7}, ML+(w8) = {w8}. While MU+(w1) = {w1},
MU+(w2) = {w2}, MU+(w3) = {w3}, MU+(w4) = {w4}, MU+(w5) = {w5},
MU+(w6) = {w6}, MU+(w7) = {w7}, MU+(w8) = {w8}.

So the C-lower approximation, the C-upper approximation and C-boundary of
set of Cl≥2 are, respectively, C−(Cl

≥
2 ) = {w2, w5, w6, w7}, C−(Cl≥2 ) = {w2, w3,

w5, w6, w7}, Bnc(Cl≥2 ) = {w3}. By the similar way, the C-lower approximation,

the C-upper approximation and C-boundary of set Cl≤1 = {w1, w4, w8} are

C−(Cl
≤
1 ) = {w1, w4, w8}, C−(Cl≤1 ) = {w1, w4, w8}, Bnc(Cl≤1 ) = ∅. Therefore,

the accuracy of the approximation is equal to 0.8 for Cl≥2 and to 1 for Cl≤1 , and
the quality of approximation of partition Cl is 0.875. There is only one reduct
REDCl(C) = {A2, A3, A4}, which is also the core.
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5 Conclusion

The paper proposed the Optimal-Neighborhood Statistics Rough Set Approach
with Multiple Attributes and Criteria, which is based on the ideas that multi-
ple types of attributes are needed to describe objects, and the specialized type
of attribute is analyzed by the specialized relation. And the quasi-partial order
relation was deduced to analyze the objects described by quantitative criteria.
When the attributes set contains qualitative attributes, quantitative attributes,
qualitative criteria and quantitative criteria, granules of knowledge are generated
by applying four types of relations simultaneously:indiscernibility relation, sim-
ilarity relation, dominance relation and quasi-partial order relation. Because of
existence of quantitative attributes or criteria, in order to guarantee the optimal
tolerance of the system, the optimal threshold can be obtaind by the Maximum
Likelihood Estimation, and the Likelihood Function adopts the consistency mea-
sures which possesses properties of monotonicity.

Acknowledgement. The paper is supported by the Fundamental Research
Funds for the Central Universities(lzujbky-2012-43), and thanks valued amend-
ments which Professor Guoyin Wang, Weibin Deng raised.
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Abstract. Probabilistic rough sets define the lower and upper approx-
imations and the corresponding three regions by using a pair of (α, β)
thresholds. Many attempts have been made to determine or calculate ef-
fective (α, β) threshold values. A common principle in these approaches
is to combine and utilize some intelligent technique with a repetitive
process in order to optimize different properties of rough set based clas-
sification. In this article, we investigate an approach based on genetic
algorithms that repeatedly modifies the thresholds while reducing the
overall uncertainty of the rough set regions. A demonstrative example
suggests that the proposed approach determines useful threshold values
within a few iterations. It is also argued that the proposed approach
provide similar results to that of some existing approaches such as the
game-theoretic rough sets.

1 Introduction

A fundamental issue in the application of probabilistic rough set models is the
determination or estimation of (α, β) threshold values [12]. This issue is generally
approached as an optimization or minimization of some properties or examining
a tradeoff solution between multiple criteria [3]. The decision-theoretic rough
sets (DTRS) minimize the overall cost associated with different actions of clas-
sifying objects to obtain the thresholds. The game-theoretic rough sets (GTRS)
examine a tradeoff solution between multiple properties to determine the thresh-
olds [4], [10]. The information-theoretic rough sets (ITRS) minimize the overall
uncertainties of the rough set regions to estimate the thresholds [1], [2], [11].

Researchers have recently paid some attention in examining and combining
iterative or repetitive methods with existing models (such as DTRS, GTRS
and ITRS) to guide in learning and obtaining more effective thresholds. An
adaptive learning cost function algorithm called Alcofa was combined with a
DTRS model to learn the thresholds in [6]. The idea is to use a heuristic of
overall decision cost associated with different regions to guide in learning the
thresholds. The same study also utilize a genetic algorithm with the fitness
function defined as the overall decision cost using the DTRS model. A gradient
descent approach was combined with the ITRS model to iteratively reduce the
uncertainty of the rough set regions in [3]. A learning method based on improving
different proprieties of rough sets based classification was combined with the

D. Miao et al. (Eds.): RSKT 2014, LNAI 8818, pp. 693–704, 2014.
DOI: 10.1007/978-3-319-11740-9_64 c© Springer International Publishing Switzerland 2014
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GTRS model in [1]. In majority, if not in all cases, the iterative mechanisms
introduced in these studies are specifically designed and implemented to be used
with a certain model. This leads to a difficulty in making a direct comparison
between iterative determination of thresholds using different models. Moreover,
it sometimes becomes difficult to understand whether a certain performance gain
is due to the iterative process or the model itself.

In this article, we make use of genetic algorithms (GA) to construct a general
approach for determination of thresholds. The approach is demonstrated for iter-
atively reducing the overall uncertainty of rough set regions calculated using the
ITRS model. The proposed approach provides benefits in at least two aspects.
Firstly, it provides a framework for investigating further rough set models with
the GA by realizing them in the form of different fitness functions. This facilitates
and enables the comparison between different models thereby leading to a better
insight into their relative performances. Secondly, it extends and enrich the ITRS
model with capabilities of GA to improve the quality of the determined thresholds.
A demonstrative example suggests that the proposed approach provide similar re-
sults to that of some existing approaches like the GTRS model.

2 Background Knowledge

A main result of probabilistic rough sets is that we can obtain the three rough
set regions based on a pair of thresholds as,

POS(α,β)(C) = {x ∈ U |P (C|[x]) ≥ α}, (1)

NEG(α,β)(C) = {x ∈ U |P (C|[x]) ≤ β}, (2)

BND(α,β)(C) = {x ∈ U |β < P (C|[x]) < α}, (3)

where and U is the universe of objects and P (C|[x]) is the conditional probability
of an object x to be in C, given that x ∈ [x]. The three probabilistic regions
are pair-wise disjoint and lead to a partition of the universe given by, π(α,β) =
{POS(α,β)(C),NEG(α,β)(C),BND(α,β)(C)}. Another partition with respect to a
concept C is created as πC = {C,Cc}. The uncertainty in πC with respect to
the three probabilistic regions are [3]:

H(πC |POS(α,β)(C)) = −P (C|POS(α,β)(C)) log P (C|POS(α,β)(C))

−P (Cc|POS(α,β)(C)) log P (C
c|POS(α,β)(C)), (4)

H(πC |NEG(α,β)(C)) = −P (C|NEG(α,β)(C)) log P (C|NEG(α,β)(C))

−P (Cc|NEG(α,β)(C)) log P (C
c|NEG(α,β)(C)), (5)

H(πC |BND(α,β)(C)) = −P (C|BND(α,β)(C)) log P (C|BND(α,β)(C))

−P (Cc|BND(α,β)(C)) log P (C
c|BND(α,β)(C)). (6)

The above three equations may be viewed as the measure of uncertainty in πC
with respect to POS(α,β)(C), NEG(α,β)(C) and BND(α,β)(C) regions, respec-
tively. The conditional probabilities in these equations, e.g., P(C|POS(α,β)(C))
is computed as,
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P (C|POS(α,β)(C)) =
|C⋂POS(α,β)(C)|
|POS(α,β)(C)| . (7)

Equation (7) is interpreted as the portion of POS(α,β)(C) that belongs to C.
Conditional probabilities for other regions are similarly obtained. The overall
uncertainty is computed as an average uncertainty of the regions [2], [3], i.e.,

H(πC |π(α,β)) = P (POS(α,β)(C))H(πC |POS(α,β)(C))

+P (NEG(α,β)(C))H(πC |NEG(α,β)(C))

+P (BND(α,β)(C))H(πC |BND(α,β)(C)). (8)

The probability of a certain region, say, the positive region, is determined as,
P (POS(α,β)(C)) = |POS(α,β)(C)|/|U |. The probabilities of other regions are
similarly defined.

Equation (8) was reformulated in a more readable form in [1]. Considering
ΔP (α, β), ΔN (α, β) and ΔB(α, β) as the uncertainties of the positive, negative
and boundary regions, respectively, i.e.,

ΔP (α, β) = P (POS(α,β)(C))H(πC |POS(α,β)(C)), (9)

ΔN (α, β) = P (NEG(α,β)(C))H(πC |NEG(α,β)(C)), (10)

ΔB(α, β) = P (BND(α,β)(C))H(πC |BND(α,β)(C)). (11)

Using Equations (9) - (11), Equation (8) is rewritten as,

Δ(α, β) = ΔP (α, β) +ΔN (α, β) +ΔB(α, β), (12)

which represents the overall uncertainty with respect to a particular (α, β)
threshold pair. From Equation (12), it is noted that different (α, β) thresholds
will lead to different overall uncertainties. An effective model is obtained by
considering a learning mechanism that searches for effective thresholds by min-
imizing the overall uncertainty. We intend to use an approach based on GA for
such a purpose.

3 A Genetic Algorithm Based Approach

Genetic algorithms are extensively applied in optimization problems [7], [8].
They utilize techniques inspired from natural evolution, such as inheritance,
mutation, selection, and crossover to evolve an optimal solution. We briefly re-
view the working of genetic algorithms and then examine its possible application
in determining probabilistic thresholds.

3.1 Genetic Algorithms

The GA appear in different versions and variants in the literature. We consider
the Holland’s genetic algorithm which is also sometimes called as a simple or
simplified genetic algorithm (SGA) [5], [9] .
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Algorithm 1. A simple genetic algorithm

Input: Initial population
Output: Optimum solution
1. Initialize population
2. Evaluate population
3. While termination criteria is not reached
4. Selecting next population using a fitness function
5. Perform crossover and mutation
6. End

The working of the SGA is based on a population of some initial binary strings
called chromosomes. Each string represents the encoding of a possible solution of
an optimization problem. The algorithm repeatedly generates subsequent popu-
lation generations from the current population using the genetic operators such
as crossover and mutation. This process continues until a predetermined termi-
nation criteria is reached. The step by step procedure of genetic algorithm is
presented as Algorithm 1.

3.2 Threshold Determination Using Genetic Algorithms

We introduce a five step framework or approach for threshold determination
using the SGA which is adopted from the description in Section 3.1. A detailed
description of these steps and their interpretation and implication in terms of
probabilistic thresholds is elaborated and outlined below.

Step 1. Generating initial population.
The implementation of SGA starts with an encoding mechanism for representing
variables of an optimization problem. We consider a binary encoding mechanism
for the sake of simplicity. This means that the possible values of the thresholds
(α, β) are represented using binary strings. The encoded binary strings are also
referred to as chromosomes and each of them may represent a possible solution.
Considering 0 ≤ β < 0.5 ≤ α ≤ 1, we may encode possible values of α using two
bits such that 00 = 0.7, 01 = 0.8, 10 = 0.9 and 11 = 1.0. In the same way, we
may encode the values of β with two bits such that 00 = 0.0, 01 = 0.1, 10 = 0.2
and 11 = 0.3. Increasing the number of bits will result in different encoding
with a possibility of leading to a more accurate and exact solution. One may
consider the data itself to obtain the initial encoding rather than initializing
them subjectively.

A chromosome is represented by combining the encoding corresponding to
one α value and one β value. Each chromosome formed in this way corresponds
to a threshold pair. For instance, the encoding 00 for α and the encoding 00 for
β are joined to obtained a chromosome 0000 which corresponds to a threshold
pair of (α, β) = (0.70, 0.0). A set of chromosomes is known as population. From
thresholds perspective, the population is a set or collection of threshold pairs
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including a possible optimal threshold pair. The encoding performed in this way
allows for further operations to be performed on the population of chromosomes.

Another interesting issue in SGA is how to set or determine the initial popu-
lation of chromosomes. A simple approach is to select them randomly. A better
approach however is to utilize some domain specific knowledge. In case of thresh-
old determination, we may inspect the quality of data to handle this issue. For
instance, if the data contains minimum level of noise and provides precise in-
formation required to identify or specify a concept, a minimum size boundary
region is may be expected. This means that certain decisions with high accuracy
are possible while keeping α close to 1.0 and β close to 0.0. An optimal solu-
tion is expected to be in close vicinity of threshold values (α, β) = (1, 0), i.e.,
the Pawlak model. An initial population is therefore selected based on threshold
values in the neighbourhood of the Pawlak model.

Step 2. Evaluating population.
Each chromosome in the initial population generated in Step 1 is evaluated by
using a fitness function. The evaluation of a chromosome represents its fitness
to survive and reproduce. The fitness function is also used in selecting chromo-
somes for the next stage or iteration. In this study, we used Equation (12), i.e.,
the overall uncertainty of rough set regions, as a fitness function. It should be
noted that different fitness functions may be defined based on different rough set
models. For instance, the fitness function measuring the overall decision cost may
be obtained with the DTRS model [6]. Since chromosomes represent threshold
pairs, the evaluation of chromosomes is essentially the evaluation of threshold
pairs based on their associated levels of uncertainties. A threshold pair (α, β) will
be highly evaluated compared to another threshold pair (α′, β′), if the latter pro-
vides better overall uncertainty, i.e., Δ(α′, β′) < Δ(α, β). By selecting threshold
pairs that minimizes the overall uncertainty, the process will iteratively guide
towards effective thresholds.

Step 3. Termination conditions or criteria.
The iterative process of threshold optimization needs to be stopped at a suitable
point in order to ensure effective and efficient performance. This may be ap-
proached in different ways, such as, a bound on the number of iterations or the
evaluations reaching or crossing some limits or subsequent iterations does not
provide any improvements in performance. In previous studies, the stop condi-
tions are being defined in different ways. The stop condition of achieving certain
levels of classification accuracy and precision were used in [4]. The decision cost
associated with attributes was used to define the termination condition in [6].
The termination conditions of the boundary region becoming empty, the pos-
itive region size exceeds the prior probability of the concept C and the total
uncertainty of positive and negative regions exceeds that of the boundary region
were used in [1].

In the SGA based approach, the fitness function may be used to define the
termination conditions. For instance, the fitness value reaches a certain level or
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Fig. 1. Crossover

subsequent iterations do not significantly improve the fitness. These conditions
are mathematically expressed as,

Δ(α, β) < τ and Δ(α, β)i ≈ Δ(α, β)i+1 ...., (13)

where τ represents some predetermined threshold level and Δ(α, β)i denotes the
fitness value at the ith iteration. In addition, one may consider the termination
conditions utilized in the earlier studies as discussed above.

Step 4. Selecting new population.
The SGA generate new population from existing population by making use of
a selection mechanism. The design principle in selection mechanisms is to pro-
vide more chances to chromosome with higher evaluations to be selected in the
next generation. In the threshold determination perspective, this means that
the threshold pairs (corresponding to chromosomes) associated with lesser uncer-
tainty will be given higher priority for generating and obtaining further threshold
pairs.

A common selection operator is based on the roulette-wheel selection mech-
anism. The chances of selecting a chromosome is seen as spinning a roulette
wheel with the size of the slot for each chromosome as being proportional to its
fitness or evaluation. The selection mechanism is formulated by determining the
selection probability of each chromosome which is determined as a fitness value
of a chromosome divided by the average fitness value of the chromosomes in the
entire population. The values are then normalized to obtain selection probabili-
ties. The selection probabilities defined in this way, reflect the sizes of the slots in
the wheel. Now, similar to the roulette-wheel procedure, the chromosomes with
higher fitness (slot sizes) will have more chance of being chosen. It is possible
for one member to dominate all the others and get selected all the time.

Step 5. Performing crossover and mutation.
A crossover represents the exchange of genetic material between two parents to
produce a unique offspring which has properties of both parents. A crossover
can be either one-point or multi-point. The one-point crossover involves cutting
the chromosomes of the parents at a randomly chosen common point and ex-
changing the right-hand-side sub-chromosomes. The multi-point involves cutting
and exchanging of parent chromosomes from more than one point. For instance,
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Fig. 2. Mutation

Chromosome 1 = 0000 represents encoding of (α, β) = (0.7,0.0) and Chromo-
some 2 = 1111 represents encoding of (α, β) = (1.0,0.3). The one-point crossover
between Chromosome 1 and Chromosome 2 is shown in Fig. 1. The second bit
is considered as the one-point crossover point in this case. After swapping the
right-hand-side of chromosomes, the new offspring 1 = 0011 and offspring 2 =
1100, representing (α, β) = (0.7,0.3) and (α, β) = (1.0,0.0), respectively are be-
ing generated. Multi-point crossover is applied in the same way. For instance,
considering two bit cross over with bit 2 and bit 3 as crossover points. New
offspring in this case will be offspring 1 = 0010 and offspring 2 = 1101 which
correspond to (α, β) = (0.7,0.2) and (α, β) = (1.0,0.1), respectively.

There are sometimes situations in which one may obtain similar initial and
final chromosomes in a particular iteration. This may result in unnecessary it-
erations without improvements. To avoid such situations, mutation is applied
to chromosomes by inverting a bit value. The position of the inverting bit in
the bit string of a chromosome can be chosen randomly or by applying differ-
ent probabilistic approaches. We consider the random approach in this article.
For instance, in Fig. 2 we randomly choose the third bit of a chromosome and
inverted its value from 0 to 1. This results in a new offspring.

The Step 3 to Step 5 are repeated until one of the termination conditions
is satisfied. Finally, when the algorithm stops, the chromosome and its asso-
ciated threshold pair having the best fitness (or least uncertainty) among the
chromosomes in the final population is returned as the optimal solution.

4 A Demonstrative Example and Further Analysis

We further examine and analyze the applicability and usefulness of the proposed
approach in this section. A demonstrative example and a comparison with an
existing method is considered for this purpose.

4.1 An Example of Thresholds Determination

Considering probabilistic information about a concept C which is presented in
Table 1. EachXi in the table represents an equivalence class and each P (C|Xi) is
the conditional probability of Xi given C. For ease in computations, the equiva-
lence classes are written in decreasing order of P (C|Xi). Moreover, for the sake of
simplicity, we consider a majority-oriented model given by 0 ≤ β < 0.5 ≤ α ≤ 1.



700 B. Majeed, N. Azam, and J.T. Yao

Table 1. Probabilistic information about a concept

X1 X2 X3 X4 X5 X6 X7 X8

Pr(Xi) 0.0177 0.1285 0.0137 0.1352 0.0580 0.0069 0.0498 0.1070
Pr(C/Xi) 1.0 1.0 1.0 1.0 0.9 0.8 0.8 0.6

X9 X10 X11 X12 X13 X14 X15

Pr(Xi) 0.1155 0.0792 0.0998 0.1299 0.0080 0.0441 0.0067
Pr(C/Xi) 0.5 0.4 0.4 0.2 0.1 0.0 0.0

Table 2. Encoding scheme for values of α and β

α α-Encoding β β-Encoding

0.6 00 0.0 00
0.8 01 0.1 01
0.9 10 0.2 10
1.0 11 0.4 11

It should also be noted that the data in Table 1 is similar to the data considered
in [1], [2] to facilitate comparisons with existing methods.

The Step 1 to apply the SGA based approach is to encode the threshold pairs
in binary bits as outlined in Section 3.2. For the sake of simplicity, we consider
a two-bit encoding scheme presented in Table 2. This is a reasonable choice in
this case, since based on Table 1 and the conditions associated with majority
oriented model, the only values of interest for thresholds α and β appear to be
{1.0, 0.9, 0.8, 0.6} and {0.0, 0.1, 0.2, 0.4}, respectively. In other words, there are
equivalence classes associated only with these threshold values. Each threshold
value is represented by using only two bits, e.g., α = 0.6 is encoding as 00 and
α = 1.0 is encoded as 11. A population of size 4 is assumed in this example.
To start the algorithm, we randomly choose four threshold pairs resulting in
four chromosomes. This is presented in Table 3 under the column of Initial
Population. The threshold pairs (0.6, 0.0), (0.8, 0.1), (0.6, 0.2) and (1.0, 0.4)
with their corresponding chromosomes or binary encoded strings 0000, 0101,
0010 and 1111, respectively, are being chosen in this case.

The Step 2 is to evaluate the chromosomes or the resulting population us-
ing the fitness function of Equation (12). To evaluate a certain chromosome
or threshold pair, say (α, β) = (1.0, 0.0), we first determine the positive, neg-
ative and boundary regions (based on the data in Table 1 and) according to
Equations (1)- (3). The POS(1.0,0.0)(C) =

⋃{X1, X2, X3, X4}, NEG(1.0,0.0)(C) =⋃{X14, X15} and BND(1.0,0.0)(C) =
⋃{X3, X4, ..., X13}. The probability of the

positive region is P (POS(α,β)(C)) = P (X1)+P (X2)+P (X3)+P (X4) = 0.2951.
The probabilities for the negative and boundary regions are similarly obtained
from Table 1 as 0.0508 and 0.6541,respectively.
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Table 3. Initial configuration

Initial Population Thresholds Fitness Function
α β

0000 0.6 0.0 0.6756
0101 0.8 0.1 0.6286
0010 0.6 0.2 0.6701
1111 1.0 0.4 0.6228

The conditional probability of C with positive region is,

P (C|POS(1,0)(C)) =

4∑
i=1

P (C|Xi) ∗ P (Xi)

4∑
i=1

P (Xi)

=
1 ∗ 0.0177+1 ∗ 0.1285+1 ∗ 0.0137+1 ∗ 0.1352

0.0177 + 0.1285 + 0.0137 + 0.1352
=1. (14)

The probability P (Cc|POS(1,0)(C)) is computed as 1 − P (C|POS(1,0)(C)) =
1− 1 = 0. The Shannon entropy of the positive region based on Equation (4) is
therefore calculated as,

H(πC |POS(1,0)(C)) = −1 ∗ log1− (0 ∗ log0) = 0. (15)

The average uncertainty of the positive region according to Equation (9) is
ΔP (1, 0) = P (POS(1,0)(C))H(πC |POS(1,0)(C)) = 0. In the same way, the un-
certainties of the negative and boundary regions according to Equations (10)
and (11) are determined as ΔN (1, 0) = 0 and ΔB(1, 0) = 0.6537, respectively.
The total uncertainty according to Equation (12) is therefore Δ(1, 0) = 0.6537.
The fitness values for all chromosomes are similarly obtained and shown in by
column of Fitness Function in Table 3.

The algorithm enters into an iterative process once the initial configuration
as presented in Table 3 is obtained. This means that Steps 3 to Step 5 of the
of proposed approach will be executed until one of the termination conditions
is reached. A single condition of 2 iterations is used in this example. It is just
for the sake of ease and demonstration and should not be treated in any sense
as limitation. One can continue the algorithm using the guidelines outlined in
Section 3.2 to obtained more accurate results. Please be noted that the first
iteration is not counted as it is just to setup the parameters of the algorithm.

Table 4 summarizes the results for the first iteration. The first column rep-
resents the initial population which is obtained from initial configuration in
Table 3. Next, the selection operation is being applied to determine the role of
each chromosome in the next generation. The selection probability is calculated
for this purpose according the roulette-wheel principle described as Step 4 in
Section 3.2. This is determined in two sub-steps. First, divide each chromosome
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Table 4. First iteration

Initial
Population

Thresholds Fitness
Function

Fitness Selection
Probability

Crossover Final
Population

α β
0000 0.6 0.0 0.6756 1.0405 0.26 2 0100
0101 0.8 0.1 0.6286 0.9682 0.24 1 0001
0010 0.6 0.2 0.6701 1.0321 0.26 4 0110
1111 1.0 0.4 0.6228 0.9592 0.24 3 1011

Table 5. Second iteration

Initial
Population

Thresholds Fitness
Function

Fitness Selection
Probability

Crossover Final
Population

α β
0100 0.8 0.0 0.6290 0.9898 0.25 4 0010
0001 0.6 0.1 0.6758 1.0635 0.27 3 0111
0110 0.8 0.2 0.6150 0.9678 0.24 2 0000
1011 0.9 0.4 0.6220 0.9788 0.24 1 1101

fitness value by the average fitness value of all chromosomes (which in this case
is 0.6493). This is represented by the table column of Fitness in Table 4. Next,
the selection probability of a chromosome is obtained as the normalized value of
its fitness. This is shown in Table 4 under the column of Selection Probability.
We set the condition for selecting and duplicating a particular chromosome if it
is atleast 10% greater in value than the remaining selection probabilities. In this
case, all the chromosomes are selected and none of them are being duplicated,
since the difference in probabilities is not very significant.

A crossover between chromosomes is performed in Step 5 of the SGA based
approach. A random multi-point crossover on bit 1 and bit 3 is considered in
this example. The column under the name crossover in Table 4 represents this.
A crossover between chromosome 1 with chromosome 2 and chromosome 3 with
chromosome 4 are being performed. The mutation operation is not performed
in this case since, all chromosomes in initial population and final population are
not the same.

The minimum fitness value at the end of the iteration for any chromosome is
0.6228 which corresponds to (α, β) = (1.0, 0.4). The Step 3 to Step 5 are re-
peated to obtain the results for the second iteration which are summarized in Ta-
ble 5. The minimum value of uncertainty after second iteration is 0.6150 for the
thresholds (α, β) = (0.8, 0.2) which represents the optimum values in this case.

4.2 Comparison with Game-Theoretic Rough Sets

We further analyze the results with the SGA based approach by considering
its comparison with the GTRS based threshold determination. A GTRS based
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Table 6. Payoff table

D

s1 = α↓ s2 = β↑ s3 = α↓β↑
= 10% dec. α = 10% inc. β = 10% (dec. α & inc. β)

I

s1 = α↓ (0.949,0.474) (0.977,0.416) (0.946,0.480)
= 10% dec. α

s2 = β↑ (0.977,0.416) (0.944,0.490) (0.923,0.542)
= 10% inc. β

s3 = α↓β↑ =

10% (dec. α & inc. β)

(0.946,0.480) (0.923,0.542) (0.893,0.590)

Table 7. Comparison with GTRS

Approach Determined
thresholds

Solution type Fitness or payoffs associated
with thresholds

SGA based (0.8,0.2) Optimization 0.6150
GTRS based (0.8.0.1) Trade-off (0.946,0.480)

game discussed in [1] is considered for this purpose. The players in the game are
the immediate decision region (containing positive and negative regions) and the
deferred or boundary decision region. Each player can choose from three possible
strategies, i.e., s1 = α↓ = 10% decrease in α, s2 = β↑ = 10% increase in β and
s3 = α↓β↑ = 10% decrease in α and 10% increase in β. For the sake of briefness
we omit the details of the game. Interested reader is referred to reference [1].

Table 6 represents the payoff table corresponding to the game which is calcu-
lated based on the data in Table 1. The cell with bold values, i.e., (0.946,0.480),
represents the game solution in this case. This solution corresponds to strategies
(s1, s3) for the players which leads to thresholds (α, β) = (0.8, 0.1). This solution
is very similar to the one obtained with the SGA based approach, i.e., (0.8,0.2).
Table 7 summarizes the comparison between the two approaches.

The difference between the two solutions may be explained by considering the
nature of the solution provided by the two approaches. The solution provided by
the GTRS is based on the tradeoff between the uncertainties associated with dif-
ferent decision regions. The players compete and jointly determine the thresholds
which provide a balance between their personal interests. The solution provided
by the SGA based approach is based on the optimization of threshold values.
The approach iteratively utilize the genetic operators like selection, crossover
and mutation in guiding towards effective thresholds. Although the two solu-
tions are very similar in this case, they may not be always the same due to
different objectives that are being employed in these approaches.

5 Conclusion

This article introduces an approach based on genetic algorithms for determining
thresholds in probabilistic rough sets. The proposed approach utilizes the overall
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uncertainty of the rough set regions as a fitness function to evaluate the qual-
ity of obtained thresholds. The genetic operators such as selection, crossover
and mutation are iteratively used to guide in the direction of optimal values.
A demonstrative example suggests that the proposed approach provides useful
threshold values within a few iterations. Moreover, it also provides similar re-
sults to that of the game-theoretic rough set model. These preliminary results
advocates for the use of the suggested approach as an alternative method for
threshold determination. It should also be noted that the proposed approach is
also applicable if other fitness functions are being used.
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Abstract. Rough set theory (RS-Theory) is a fundamental model of
granular computing (GrC) for uncertainty information processing, and
information entropy theory provides an effective approach for its un-
certainty representation and attribute reduction. Thus, this paper hier-
archically constructs three-way weighted entropies (i.e., the likelihood,
prior, and posterior weighted entropies) by adopting a GrC strategy from
the concept level to classification level, and it further explores three-way
attribute reduction (i.e., the likelihood, prior, and posterior attribute re-
duction) by resorting to a novel approach of Bayesian inference. From
two new perspectives of GrC and Bayesian inference, this study pro-
vides some new insights into the uncertainty measurement and attribute
reduction of information theory-based RS-Theory.

Keywords: Rough set theory, uncertainty, granular computing, three-
way decision, information theory, weighted entropy, Bayesian inference,
attribute reduction.

1 Introduction

Rough set theory (RS-Theory) [1] is a fundamental model of granular comput-
ing (GrC) for uncertainty information processing. Information theory [2] is an
important way to reflect information and measure uncertainty, and it was first
introduced into RS-Theory for uncertainty representation and reduction mea-
surement by Prof. Miao in 1997 [3]; a measurement called rough entropy was
further put forward by Prof. Beaubouef in 1998 [4]. In the development of more
than a decade, many systematic fruits [5-11] based on the information entropy,
conditional entropy, and mutual information, have been widely used, especially
for attribute reduction.

The Bayesian inference in machine learning [12] provides an effective approach
for practical data processing, i.e., introducing the prior information into the like-
lihood function to produce the posterior probability. Following this approach,
this paper mainly evolves the Bayesian probability formula in RS-Theory from a
new perspective of weighted entropies, and it also explores relevant Bayesian ex-
pressions at different levels. When the weighted entropies are constructed from
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the concept level to classification level, the GrC strategy is adopted, because
GrC [13,14] is an effective structural methodology for dealing with hierarchical
issues. Finally, the hierarchical weighted entropies are utilized to construct at-
tribute reduction. In particular, three-way decision theory, proposed by Prof. Yao
[15,16], plays a key role in decision making. Herein, from the three-way decision
viewpoint, relevant Bayesian items and systemic reduction are also considered
by using a longitudinal strategy, and we will concretely construct three-way
weighted entropies and three-way reducts based on the likelihood, prior, and
posterior items.

In summary, we mainly use two new perspectives of GrC and Bayesian in-
ference to preliminary explore uncertainty measuring and attribute reduction.
Thus, this study can provide some new insights into information theory-based
RS-Theory. Moreover, the constructed three-way pattern regarding likelihood,
prior, and posterior can partially enrich the three-way decision theory from a
new perspective. Next, Section 2 provides preliminaries, Section 3 and 4 study
the three-way weighted entropies at the concept and classification levels, respec-
tively, Section 5 further discusses three-way attribute reduction, Section 6 finally
provides conclusions.

2 Preliminaries

The decision table (D-Table) (U, C ∪ D) serves as a main framework. Herein,
X ∈ U/IND(D) = {Xj : j = 1, ..,m}, A ⊆ C, [x]A ∈ U/IND(A) = {[x]iA : i =
1, .., n}. B ⊆ A ⊆ C refers to the granulation relationship with a partial order

- A � B. If A � B, then ∀[x]B ∈ U/IND(B), ∃k ∈ N, s.t.,
k⋃

t=1
[x]tA = [x]B;

thus, representative granular merging
k⋃

t=1
[x]tA = [x]B can be directly utilized for

verifying granulation monotonicity [17]. Moreover, U/IND(B) = {U} if B = ∅,
and let ∀b ∈ B.

The conditional entropy and mutual information are

H(D/A) = −
n∑

i=1

p([x]iA)
m∑
j=1

p(Xj/[x]
i
A)log p(Xj/[x]

i
A)

and I(A;D) = H(D) −H(D/A), respectively. Both uncertainty measures have
granulation monotonicity, i.e., if A � B then H(D/A) ≤ H(D/B) and I(A;D) ≥
I(B;D), so they are used to construct two types of D-Table reduct, which are
equivalent to the classical D-Table reduct based on regions [1,6,11].

(1) B is a region-based reduct of C, if POSB(D) = POSC(D), POSB−{b}(D) ⊂
POSB(D).

(2) B is a conditional entropy-based reduct of C, ifH(D/B) = H(D/C),H(D/B−
{b}) > H(D/B).

(3) B is a mutual information-based reduct of C, if I(B;D) = I(C;D), I(B −
{b};D) < I(B;D).
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Moreover, monotonous information entropy H(A) = −
n∑

i=1

p([x]iA)log p([x]
i
A) is

used to equivalently define the information-system reduct [1,3,7].

(1) B is a knowledge-based reduct of C, if U/IND(B) = U/IND(C), U/IND(B−
{b}) �= U/IND(B).

(2) B is an entropy-based reduct of C, if H(B) = H(C), H(B − {b}) < H(B).

3 Three-Way Weighted Entropies of a Concept

By evolving the Bayesian probability formula, this section mainly proposes three-
way weighted entropies of a concept. For granule [x]A and concept X , we first
analyze the relevant causality mechanism of three-way probabilities, then discuss
three-way entropies, and finally construct three-way weighted entropies.

Suppose p(T ) = |T |
|U| (∀T ∈ 2U ), then (U, 2U , p) constitutes a probability space.

Thus, there are four types of probability to construct the Bayesian formula

p([x]A/X) =
p([x]A) · p(X/[x]A)

p(X)
. (1)

For given concept X , p(X) = |X|
|U| becomes a constant, so the surplus three-way

probabilities are worth analyzing.
From a causality viewpoint, concept X represents a result while divided gran-

ule [x]A means factors. Furthermore, from a Bayesian viewpoint,A can be viewed
as a granulation parameter within a subset range of C.
(1) p(X/[x]A) =

|X∩[x]A|
|[x]A| is the likelihood probability for granulation parameter

A to describe granular decision X .

(2) p([x]A/X) = |X∩[x]A|
|X| is the posterior probability to describe granulation

parameters on a premise of result X .

(3) p([x]A) =
|[x]A|
|U| is the prior probability to describe cause parameter A.

The three-way probabilities, which correspond to relative and absolute measures
[18], respectively, exhibit different probability semantics and decision actions. In
particular, likelihood p(X/[x]A) and posterior p([x]A/X) directly reflect causal-
ity from the cause-to-effect and effect-to-cause viewpoints, respectively, so their
relevant measures can thoroughly describe correlative relationships between the
decision concept and its condition structures. Clearly, p([x]A/X) is more per-
fect for reduction because reduction is a concrete effect-to-cause pattern, and its
calculation is also more optimal. Moreover, prior p([x]A) mainly measures cause
uncertainty by reflecting structural information of A.

Our original intention is to describe the causality system regarding A and X
and to further study attribute reduction by constructing benign measures based
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on the three-way probabilities. In view of entropy’s importance for measuring
uncertainty, we next exhibit three-way entropies.

Definition 1. For concept X ,

HX(A) = −
n∑

i=1

p([x]iA)log p([x]
i
A), (2)

H(A/X) = −
n∑

i=1

p([x]iA/X)log p([x]iA/X), (3)

H(X/A) = −
n∑

i=1

p(X/[x]iA)log p(X/[x]
i
A) (4)

are called prior, posterior, and likelihood entropies, respectively.
Definition 1 proposes three-way entropies of a concept. In fact, HX(A) and

H(A/X) naturally measure uncertainty of granulation A without limitations
and on promise X , respectively, because both p([x]A) and p([x]A/X) form a
probability distribution. Moreover,H(X/A) is also formally proposed to measure

the likelihood structure, though
n∑

i=1

p(X/[x]iA) �= 1. For X , HX(A) conducts

absolute pre-evaluation, while H(X/A) and H(A/X) make relative descriptions
from two different causality directions. Thus, the three-way entropies, especially
H(X/A) and H(A/X), can measure causality between granulation parameter
A and decision set X .

Proposition 1. If A � B, then HX(A) ≥ HX(B), H(B/X) ≥ H(A/X), but
neither H(X/A) ≥ H(X/B) nor H(X/A) ≤ H(X/B) necessarily holds.

Proof. The results can be proved by entropy properties, because p([x]B) =
k∑

t=1
p([x]tA) and p([x]B/X) =

k∑
t=1
p([x]tA/X) but p(X/[x]B) �=

k∑
t=1
p(X/[x]tA). �

Granulation monotonicity is an important feature for evaluating an entropy.
Based on Proposition 1, the prior/posterior and likelihood entropies have gran-
ulation monotonicity and non-monotonicity, respectively. In particular, the fol-
lowing Example 1 illustrates the non-monotonicity of the likelihood entropy.

Example 1. Given [x]1A, [x]
2
A and complementary X1, X2. Let |[x]1A| = 40 =

|[x]2A|, |X1| = 29, |X2| = 51; moreover, |[x]1A∩X1| = 1, |[x]2A∩X1| = 28, so |[x]1A∩
X2| = 39, |[x]2A ∩X2| = 12. For [x]1A ∪ [x]2A = [x]B regarding X1, p(X1/[x]

1
A) =

0.025, p(X1/[x]
2
A) = 0.7, p(X1/[x]B) = 0.3625, so −0.025log0.025− 0.7log0.7 =

0.4932 < 0.5307 = −0.3625log0.3625; regarding X2, p(X2/[x]
1
A) = 0.975,

p(X2/[x]
2
A) = 0.3, p(X2/[x]B) = 0.6375, so −0.975log0.975−0.3log0.3=0.5567 >

0.4141 = −0.6375log0.6375. If U/IND(A) = {[x]1A, [x]2A} and U/IND(B) =
{[x]B}, then A � B but H(X1/A) ≤ H(X1/B), H(X2/A) ≥ H(X2/B). �

For the three-way probabilities, p([x]A/X) and p(X/[x]A) reflect causality be-
tween A and X ; for the three-way entropies, only HX(A) and H(A/X) exhibit
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necessary monotonicity. Thus, p([x]A/X) and further H(A/X) hold important
significance for describing A structure based on X . In fact, posterior entropy
H(A/X) reflects the average information content of granulation U/IND(A) for
given concept X , and at the entropy level, only it has perfect value for measuring
uncertainty of A for X . This posterior entropy’s function underlies latter impor-
tance of the posterior weighed entropy and posterior attribute reduction.

Though the posterior entropy is valuable, however, there are no relationships
for the three-way entropies. Thus, better three-way measures with granulation
monotonicity are worth deeply mining to establish an essential connection. For
this purpose, we first creatively evolve the Bayesian probability formula to natu-
rally mine three-way weighted entropies, and we then explore their monotonicity
and relationship.

Theorem 1. −
n∑

i=1

p(X)p([x]iA/X)log p([x]iA/X)

= −
n∑

i=1

p(X/[x]iA)p([x]
i
A)log p([x]iA) −

n∑
i=1

p([x]iA)p(X/[x]
i
A)log p(X/[x]iA)

+ p(X)log p(X).

Proof. First, p([x]iA/X) =
p([x]iA)·p(X/[x]iA)

p(X) , ∀i ∈ {1, ..., n}. Thus,
−p([x]iA/X)log p([x]iA/X) = − p([x]iA)·p(X/[x]iA)

p(X) [log p([x]iA) + log p(X/[x]iA) −
log p(X)]. Hence, −p(X)p([x]iA/X)log p([x]iA/X) = −p(X/[x]iA)p([x]iA)
log p([x]iA) − p([x]iA)p(X/[x]iA)log p(X/[x]iA) + p([x]iA)p(X/[x]iA)log p(X). Fur-

thermore, the result is obtained by summation, where
n∑

i=1

p([x]iA)p(X/[x]
i
A)

log p(X) =
n∑

i=1

p([x]iA ∩ X)log p(X) = [
n∑

i=1

p([x]iA ∩ X)]log p(X) = p(X)

log p(X). �
Theorem 1 develops the Bayesian theorem in an entropy direction, and there is

actually a core form containing both an entropy and weights, i.e., a weighted en-
tropy. Thus, a weighted entropy plays an core role and can establish an equation.
This entropy evolution inherits the Bayesian probability formula and inspires our
following further works.

Definition 2. For probability distribution (ξ, pi) and weight wi ≥ 0, HW (ξ) =

−
n∑

i=1

wipilog pi is called the weighted entropy. In particular, the generalized

weighted entropy has not constraint condition
n∑

i=1

pi = 1.

The weighted entropy mainly introduces weights into the entropy, and weights
usually reflect importance degrees for information receivers. In particular, it
develops the entropy and degenerates into the latter by setting up wi = 1. Herein,

the generalized weighted entropy is mainly used in view of
n∑

i=1

p(X/[x]iA) �= 1.
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Definition 3. For concept X ,

HX
W (A) = −

n∑
i=1

p(X/[x]iA)p([x]
i
A)log p([x]

i
A), (5)

HW (A/X) = −
n∑

i=1

p(X)p([x]iA/X)log p([x]iA/X) = p(X)H(A/X), (6)

HW (X/A) = −
n∑

i=1

p([x]iA)p(X/[x]
i
A)log p(X/[x]

i
A) (7)

are called prior, posterior, and likelihood weighted entropies, respectively.
The three-wayweighted entropies originate from three-way entropies by adding

probability-based weight coefficients. In fact, HX
W (A) improves upon absolute

HX(A) by introducing relative p(X/[x]iA), while HW (A/X) and HW (X/A) im-
prove upon relative H(A/X) and H(X/A) by introducing absolute p(X) and
p([x]iA), respectively. Thus, H

X
W (A), HW (A/X), HW (X/A) inherit uncertainty

semantics by different probability weights, and they exhibit systematic complete-
ness and superior stability from the double-quantitative perspective [18], so they
can better describe the system regarding cause A and result X . Moreover, pos-
terior weighted entropy HW (A/X) has a simple and perfect structure, because
it can be directly decomposed into a product of posterior entropy H(A/X) and
constant p(X). Note that weighted entropy symbol HW (.) is distinguished from
information entropy symbol H(.).

Proposition 2. If A � B, then HX
W (A) ≥ HX

W (B), HW (A/X) ≥ HW (B/X),
HW (X/A) ≤ HW (X/B).
Proof. Herein, we only provide the proof for the likelihood weighted entropy by

utilizing granular merging
k⋃

t=1
[x]tA = [x]B. f(u) = −ulogu (u ∈ [0.1]) is a concave

function; thus, if
k∑

t=1
λt = 1, then −

k∑
t=1
λtptlog pt ≤ −[

k∑
t=1
λtpt]log[

k∑
t=1
λtpt].

−
k∑

t=1

p([x]tA)p(X/[x]tA)log p(X/[x]tA) = −
k∑

t=1

p([x]B)
|[x]tA|
|[x]B| p(X/[x]tA)log p(X/[x]tA)

= p([x]B)[−
k∑

t=1

|[x]tA|
|[x]B| p(X/[x]tA)log p(X/[x]tA)]

≤ −p([x]B)[
k∑

t=1

|[x]tA|
|[x]B| p(X/[x]tA)]log

k∑
t=1

|[x]tA ∩X|
|[x]B|

= −p([x]B)
|[x]B ∩X|

|[x]B| log
|[x]B ∩X|

|[x]B| = −p([x]B)p(X/[x]B)log p(X/[x]B). �

Based on Proposition 2, three weighted entropies exhibit perfect granula-
tion monotonicity and thus hold significance. In particular, HW (X/A) becomes
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monotonicity though H(X/A) is non-monotonicity, and this monotonicity diffi-
culty is proved by utilizing a concave feature of function −ulogu.
Theorem 2. HW (A/X) = HX

W (A) +HW (X/A) + p(X)log p(X)
= HX

W (A)−[−p(X)log p(X)−HW (X/A)], and −p(X)log p(X)−HW (X/A) ≥ 0.
Theorem 2 provides an important relationship for the three-way weighted en-

tropies (where −p(X)log p(X) is a constant), i.e., the posterior weighted entropy
becomes a linear translation of the sum of the prior and likelihood weighted
entropies. Thus, the Bayesian probability formula can deduce essential rela-
tionships regarding not three-way entropies but three-way weighted entropies.
Furthermore, −p(X)log p(X) −HW (X/A) can be chosen as a new measure to
simplify the fundamental equation by eliminating the translation distance.

Definition 4. H∗
W (X/A) = −p(X)log p(X)−HW (X/A).

Corollary 1. (1) If A � B, then H∗
W (X/A) ≥ H∗

W (X/B).
(2) HW (A/X) = HX

W (A)−H∗
W (X/A).

Herein, H∗
W (X/A) corresponds to HW (X/A) by a negative linear transforma-

tion, so it exhibits opposite granulation monotonicity. Furthermore, the posterior
weighted entropy becomes the difference between prior weighted entropyHX

W (A)
and H∗

W (X/A), and the latter corresponds to the likelihood weighted entropy.

4 Three-Way Weighted Entropies of a Classification

Three-way weighted entropies are proposed for a concept in Section 3, and they
will be further constructed for a classification in this section by a natural inte-
gration strategy of GrC. Moreover, they will be linked to the existing RS-Theory
system with the information entropy, conditional entropy and mutual informa-
tion. Next, classification U/IND(D) = {X1, .., Xm} with m concepts is given.

Definition 5. For classification U/IND(D),

HD
W (A) =

m∑
j=1

H
Xj

W (A), HW (A/D) =
m∑

j=1

HW (A/Xj), HW (D/A) =
m∑

j=1

HW (Xj/A)

are called prior, posterior, and likelihood weighted entropies, respectively. More-

over, let H∗
W (D/A) =

m∑
j=1

H∗
W (Xj/A).

For decision classification U/IND(D), the three-way weighted entropies are
corresponding sum of concepts’ weighted entropies regarding classification’s in-
ternal concepts, because we naturally adopt a GrC strategy from an internal
concept to its integrated classification. Thus, they inherit relevant causality
mechanisms and hold corresponding functions for measuring uncertainty; more-
over, they also inherit the essential monotonicity and mutual relationship.

Proposition 3. If A � B, then HD
W (A) ≥ HD

W (B), HW (A/D) ≥ HW (B/D),
HW (D/A) ≤ HW (D/B), H∗

W (D/A) ≥ H∗
W (D/B).

Theorem 3 (Weighted Entropies’ Bayesian Formula).

HW (A/D) = HD
W (A)− [H(D)−HW (D/A)] = HD

W (A) −H∗
W (D/A).
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Theorem 3 describes an important relationship of the three-way weighted en-
tropies by introducing H(D). Thus, the posterior weighted entropy is difference
between the prior weighted entropy and H∗

W (D/A), and the latter is a linear
transformation of the likelihood weighted entropy. In particular, Theorem 3 es-
sentially evolves the Bayesian probability formula, so it is called by Weighted
Entropies’ Bayesian Formula to highlight its important values.

Next, we summarize the above GrC works via Table 1. There are three GrC lev-
els which are located at the micro bottom,meso layer, andmacro top, respectively.

(1) At Level (1), the three-way probabilities describe granule [x]A and concept
X , and the Bayesian probability formula holds by using premise p(X).

(2) At Level (2), the three-way weighted entropies describe granulation A and
conceptX and exhibit granulation monotonicity. In particular,HW (A/X) =
HX

W (A)−H∗
W (X/A) acts as an evolutive Bayesian formula, whereH∗

W (X/A)
is a linear adjustment of HW (X/A) by using premise −p(X)log p(X).

(3) At Level (3), the three-way weighted entropies describe granulation A and
classification D and inherit granulation monotonicity. In particular,
HW (A/D) = HD

W (A)−H∗
W (D/A) acts as an evolutive Bayesian result, where

H∗
W (D/A) is a linear adjustment of HW (D/A) by using premise H(D).

Thus, our GrC works establish an integrated description for A and D by using
a bottom-top strategy, so they underlie the further discussion, especially for
attribute reduction. In fact, attribute reduction is mainly located at Level (3),
where H(D) is a constant from the causality perspective.

Table 1. GrC-Based Weighted Entropies and Relevant Bayesian Formulas

Level Objects Three-Way Measures Relevant Bayesian Formulas

(1) [x]A, X p([x]A), p([x]A/X), p(X/[x]A) p([x]A/X) = p([x]A)·p(X/[x]A)
p(X)

(2) A, X HX
W (A), HW (A/X), HW (X/A) (or H∗

W (X/A)) HW (A/X) = HX
W (A)−H∗

W (X/A)
(3) A, D HD

W (A), HW (A/D), HW (D/A) (or H∗
W (D/A)) HW (A/D) = HD

W (A)−H∗
W (D/A)

Finally, we explain the novel system of the three-way weighted entropies by the
previous system based on information theory, and we also analyze both systems’
relationships.

Theorem 4. HD
W (A) = H(A), HW (A/D) = H(A/D),

HW (D/A) = H(D/A), H∗
W (D/A) = I(A;D).

Proof. (1) HD
W (A) =

m∑
j=1

H
Xj

W (A) = −
m∑
j=1

[
n∑

i=1

p(Xj/[x]
i
A)p([x]

i
A)log p([x]

i
A)]

= −
m∑
j=1

[p(Xj/[x]
1
A)p([x]

1
A)log p([x]

1
A)− ...− p(Xj/[x]

n
A)p([x]

n
A)log p([x]

n
A)]

= −[
m∑
j=1

p(Xj/[x]
1
A)]p([x]

1
A)log p([x]

1
A)− ...− [

m∑
j=1

p(Xj/[x]
n
A)]p([x]

n
A)log p([x]

n
A)

= −p([x]1A)log p([x]1A)− ...− p([x]nA)log p([x]nA) = H(A).



Three-Way Weighted Entropies and Three-Way Attribute Reduction 715

(2) HW (A/D) =
m∑
j=1

HW (A/Xj) =
m∑
j=1

p(Xj)H(A/Xj)

= −
m∑
j=1

p(Xj)
n∑

i=1

p([x]iA/Xj)log p([x]
i
A/Xj) = H(A/D).

(3) HW (D/A) = HW (X1/A) + ...+HW (Xm/A)
= [−p([x]1A)p(X1/[x]

1
A)log p(X1/[x]

1
A)−...−p([x]nA)p(X1/[x]

1
A)log p(X1/[x]

n
A)]+

...
+[−p([x]1A)p(Xm/[x]

1
A)log p(Xm/[x]

1
A)−...−p([x]nA)p(Xm/[x]

1
A)log p(Xm/[x]

n
A)]

= −p([x]1A)[p(X1/[x]
1
A)log p(X1/[x]

1
A) + ...+ p(Xm/[x]

1
A)log p(Xm/[x]

1
A)]− ...

− p([x]nA)[p(X1/[x]
1
A)log p(X1/[x]

n
A) + ...+ p(Xm/[x]

n
A)log p(Xm/[x]

1
A)]

= −
n∑

i=1

p([x]iA)
m∑
j=1

p(Xj/[x]
i
A)log p(Xj/[x]

i
A) = H(D/A).

Thus, H∗
W (D/A) = H(D)−HW (D/A) = H(D)−H(D/A) = I(A;D) �.

Theorem 5. HW (A/D) = HD
W (A)−H∗

W (D/A) is equivalent to
H(A/D) = H(A)− I(A;D).

Based on Theorem 4, three-way weighted entropies HD
W (A), HW (A/D),

HW (D/A) are equivalent to prior entropy H(A), conditional entropy H(A/D),
conditional entropy H(D/A), respectively; moreover, H∗

W (D/A) corresponds to
mutual information I(A;D). Furthermore, Theorem 5 reflects equivalence be-
tween HW (A/D) = HD

W (A) − H∗
W (D/A) and H(A/D) = H(A) − I(A;D),

which are from two different systems. Thus, the weighted entropy system (in-
cluding its Bayesian formula) has been explained/verified by the previous infor-
mation theory system. In contrast, the former can thoroughly explain the latter
as well. Therefore, both systems exhibit theoretical equivalence. However, the
weighted entropy approach conducts a GrC construction, and it also emphasizes
the causality semantics and application direction based on the Bayesian mech-
anism. Thus, the three-way weighted entropies hold at least two fundamental
values. First, they construct, explain, and deepen the existing information sys-
tem of RS-Theory by the GrC construction and Bayesian formula; moreover,
they underlie systemic attribute reduction by the essential uncertainty measure
and effective Bayesian inference.

5 Three-Way Attribute Reduction

The three-way weighted entropies (of a classification) and their monotonicity and
relationship have been provided in Section 4. This section mainly uses them to
systemically construct three-way attribute reduction, and the poster reduction
will be emphasized via the Bayesian inference and causality theory.

Definition 6. B is called likelihood, prior, and posterior reducts of C, if it
satisfies the following three conditions, respectively.

(1) H∗
W (D/B) = H∗

W (D/C), H∗
W (D/B − {b}) < H∗

W (D/B)
(or HW (D/B) = HW (D/C), HW (D/B − {b}) > HW (D/B)).

(2) HD
W (B) = HD

W (C), HD
W (B − {b}) < HD

W (B).
(3) HW (B/D) = HW (C/D), HW (B − {b}/D) < HW (B/D).
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Theorem 6.

(1) A likelihood reduct is equivalent to a D-Table reduct. Furthermore, a like-
lihood reduct based on H∗

W (D/A) or HW (D/A) is equivalent to a D-Table
reduct based on the mutual information or conditional entropy, respectively.

(2) A prior reduct is equivalent to an information-system reduct.
(3) A posterior reduct is different from both D-Table and information-system

reducts.

Proof. (1) For the D-Table reduct, the region-based method is equivalent to
the mutual information-based and conditional entropy-based ways [1,6,11]; fur-
thermore, I(A;D) and H(D/A) correspond to H∗

W (D/A) and HW (D/A), re-
spectively, so the likelihood reduct is equivalent to the two information-based
reducts and the classical region-based reduct. (2) For the information-system
reduct, the prior reduct is equivalent to the entropy-based reduct and further
knowledge-based reduct, because HD

W (A) = H(A). (3) The difference of the
posterior reduct is verified by the following D-Table example. �.
Example 2. In D-Table S = (U, C ∪ D) provided by Table 2,
U = {x1, ..., x12}, C = {a, b, c}, D = {d}, U/{d} = {X1, X2, X3},
X1 = {x1, ..., x4}, X2 = {x5, ..., x8}, X3 = {x9, ..., x12}. Thus, U/{a, b, c} =
U/{a, b} = {{x2, x3, x6, x11}, {x4, x8, x12}, {x1}, {x5}, {x7, x10}, {x9}},
U/{a} = U/{a, c} = {{x2, x3, x6, x7, x10, x11}, {x4, x8, x12}, {x1}, {x5}, {x9}},
U/{b} = {{x2, x3, x6, x11}, {x4, x8, x12}, {x1, x7, x10}, {x5, x9}},
U/{c} = {{x2, x3, x6, x7, x10, x11}, {x4, x8, x12}, {x1, x5, x9}},
U/{b, c} = {{x2, x3, x6, x11}, {x4, x8, x12}, {x1}, {x5, x9}, {x7, x10}}.

Table 2. D-Table in Example 2

U a b c d U a b c d U a b c d

x1 3 3 3 1 x5 4 4 3 2 x9 5 4 3 3
x2 1 1 1 1 x6 1 1 1 2 x10 1 3 1 3
x3 1 1 1 1 x7 1 3 1 2 x11 1 1 1 3
x4 2 2 2 1 x8 2 2 2 2 x12 2 2 2 3

First, there are only two D-Table reducts {a}, {c} and one information-system
reduct {a, b}. Herein, HW (C/D) = P (X1)H(C/X1) + P (X2)H(C/X2) + P (X3)
H(C/X3) =

4
12 [(−0.5log0.5−2×0.25log0.25)−4×0.25log0.25−4×0.25log0.25] =

1.8333 = HW ({b}/D), HW ({a}/D) = HW ({a, c}/D) = HW ({c}/D) = 4
12

(−0.5log0.5 − 2 × 0.25log0.25) × 3 = 1.500 < 1.8333. Thus, {b} becomes the
sole posterior reduct and is neither the (U, C ∪D) reduct nor (U, C) reduct; in con-
trast, neither {a}, {c} nor {a, b} is a posterior reduct. Note that the key granular
merging regarding {x1, x7, x10} is allowed not for the other reducts but for the
posterior reduct. �
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The three weighted entropies can measure uncertainty, and they are used to
naturally define the three-way reducts. In spite of measuring of all weighted en-
tropies, the three-way reducts exhibit different reduction essence. The likelihood
reduct and prior reduct, which are also related to the mutual information, con-
ditional entropy and information entropy, mainly correspond to the qualitative
reducts regarding D-Table and information-system, respectively. In contrast, the
posterior reduct completely corresponds to a quantitative reduct. Thus, the pos-
terior weighted entropy exhibit more essential metrizability, and the posterior
reduct exhibits novelty and transcendence, so both are worth emphasizing.

Next, based on the posterior weighted entropy, we analyze important signifi-
cance of the posterior reduct for D-Table reduct.

(1) The D-Table reduct usually uses likelihood information in the cause-to-effect
(or condition-to-decision) direction. According to the Bayesian inference,
the posterior weighted entropy adjusts the likelihood weighted entropy by
strengthening the prior knowledge, so the posterior reduct improves upon
the likelihood reduct by pursuing quantitative uncertainty rather than qual-
itative absoluteness. In fact, by considering the granulation distribution, the
posterior reduct achieves the highest posterior uncertainty and lowest risk
according to the granulation monotonicity and maximum entropy principle,
respectively, so it can avoid the over-fitting problem due to its measurability,
generality, and robustness.

(2) In D-Table (U, C ∪ D), granulation U/IND(A) and classification D corre-
spond to the condition cause and decision effect, respectively. D-Table re-
duction aims to choose appropriate granulation parameters A to preserve
specific decision information regarding D, i.e., it mainly seeks condition pa-
rameters A on a stable premise of D. Thus, from the causality viewpoint,
posterior weighted entropy HW (A/D) not only reflects the causality rela-
tionship between C and D but also more adheres to the operational pattern
of D-Table reduction, so the posterior reduct holds practical significance by
adopting the cause-to-effect (or decision-to-condition) strategy.

In summary, within a new framework of Bayesian inference, the posterior
weighted entropy bears important information of uncertainty distribution, and
it also positively improves upon the likelihood weighted entropy by considering
the prior information. Moreover, HW (A/D) (i.e., condition entropy H(A/D)) is
simpler than H∗

W (D/A) (i.e., mutual information I(A;D)) and HW (D/A) (i.e.,
condition entropyH(D/A)). Thus, the posterior reduct holds advantages regard-
ing uncertainty semantics, causality directness and calculation optimization.

6 Conclusions

Based on the GrC technology and Bayesian inference approach, we construct
three-way weighted entropies and three-way attribute reduction, and the rel-
evant results deepen information theory-based RS-Theory, especially the GrC
uncertainty measurement and attribute reduction. The three-way weighted en-
tropies and three-way attribute reduction actually correspond to the likelihood,
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prior, posterior decisions, so they also enrich the three-way decision theory from
a new viewpoint. In particular, hierarchies of three-way attribute reduction are
worth deeply exploring, and the posterior weighted entropy and posterior at-
tribute reduction need in-depth theoretical exploration and further practical
verification.
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Abstract. Sentiment uncertainty is a key problem of sentiment classification. In
this paper, we mainly focus on two issues with sentiment uncertainty, i.e., context-
dependent sentiment classification and topic-dependent sentiment classification.
This is the first work that applies three-way decisions to sentiment classifica-
tion from the perspective of the decision-theoretic rough set model. We discuss
the relationship between sentiment classification rules and thresholds involved in
three-way decisions and then prove it. The experiment results on real data sets
validate that our methods are satisfactory and can achieve better performance.

Keywords: Sentiment classification, sentiment uncertainty, decision-theoretic
rough sets, three-way decisions.

1 Introduction

Sentiment classification is the field of study that analyzes people’s opinions, sentiments,
evaluations, attitudes, and emotions towards entities and their attributes [1]. Sentiment
classification has made considerable progress in the past more than ten yeas. However,
the uncertainty due to the diversity of text content and form remains unsettled, and
makes sentiment classification still difficult.

Sentiment uncertainty is reflected in domain-dependence, context-dependence, topic-
dependence, and multi-label emotion [2]. The same two words may convey different
sentiment in different context or topic even though they are in the same domain [3]. In
this paper, we focus on context-dependent sentiment classification and topic-dependent
sentiment classification with single-label.

Taking the context-dependent sentiment word “high” as an example, it is negative
in “high cost” while positive in “high quality”. However, as the word “low” in phrases
like “low cost” and “low quality”, the exact reverse is the case. Those context-dependent
sentiment words can not be discarded in fact [4]. “high” and “low” form an antonym
pair that is helpful in sentiment classification [5]. We can utilize antonym pairs to guide
context-dependent sentiment classification.

D. Miao et al. (Eds.): RSKT 2014, LNAI 8818, pp. 720–731, 2014.
DOI: 10.1007/978-3-319-11740-9_66 c© Springer International Publishing Switzerland 2014
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Sentiment words are more important than topic words in sentiment classification [6],
but topic words can assist with domain adaptation sentiment classification and aspect-
based opinion mining [7]. The existing work is hardly aware that the topic can reflect
the trend of sentiment. For example, the topic “one born in 1990s became a professor”
indicates the positive trend, but “edible oil rose in price” indicates the negative trend.
We can utilize topic information to guide topic-dependent sentiment classification.

There are two main kinds of methods for sentiment classification, i.e., lexicon-based
unsupervised methods [8] and corpus-based supervised methods [9], while they are
short of sentiment uncertainty analysis. Rough set theory [10], as an effective tool for
uncertainty analysis, is seldom used in sentiment classification presently. Decision-
theoretic rough set model [11] has been studied as a generalization of Pawlak rough
set model. Three-way decisions interpret the positive, negative and boundary regions
as acceptance, rejection and deferment respectively in a ternary classification [12], and
provide a means for trading off different types of classification error in order to obtain
a minimum cost classifier [13]. Many recent studies further investigated extensions and
applications of three-way decisions [14–16]. We firstly apply three-way decisions to
sentiment classification with sentiment uncertainty.

The rest of the paper is organized as follows. In Section 2, we review three-way
decisions in decision-theoretic rough sets. In Section 3 and 4, we illustrate the context-
dependent sentiment classification method and the topic-dependent sentiment classifi-
cation method based on three-way decisions respectively. We provide the experiment
results and analysis in Section 5. The concluding remarks are given in Section 6.

2 Three-way Decisions in Decision-theoretic Rough Sets

The essential idea of three-way decisions is described in terms of a ternary classification
according to evaluations of a set of criteria [17]. Given a finite nonempty set U and a
finite set of criteria C, U is divided into three pair-wise disjoint regions, POS, NEG,
and BND respectively, based on C. We accept an object in POS as satisfying the set
of criteria, reject the object in NEG as not satisfying the criteria. We neither accept nor
reject the object in BND but opt for a noncommitment. The third option may also be
referred to as a deferment decision that requires further information or investigation.

There are a set of two states Ω = {X,¬X}, indicating that an object is inX and not
in X respectively, and a set of three actions A = {aP , aB, aN} for each state, where
aP , aB , and aN mean classifying an object into three regions, namely, POS, BND and
NEG respectively. The losses of three classification actions with respect to two states
are given in Table 1, and they are under the following conditions [18].

(c1) 0 ≤ λPP < λBP < λNP , 0 ≤ λNN < λBN < λPN

(c2) (λNP − λBP )(λPN − λBN ) > (λBP − λPP )(λBN − λNN )
(1)

Given a pair of thresholds (α, β) with 0 ≤ β < α ≤ 1, the decision-theoretic rough
set model makes the following three-way decisions forX ⊆ U :

POS(α,β)(X) = {x ∈ U |Pr(X |[x]) ≥ α}
NEG(α,β)(X) = {x ∈ U |Pr(X |[x]) ≤ β}
BND(α,β)(X) = {x ∈ U |β < Pr(X |[x]) < α}

(2)
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Table 1. Losses for three-way decisions

�������State
Action

aP aN aB

X λPP λNP λBP

¬X λPN λNN λBN

where [x] is the equivalence class containing x. The conditional probability Pr(X |[x])
and the thresholds (α, β) can be computed [18].

Pr(X |[x]) = |X ∩ [x]|
|[x]| (3)

α =
λPN − λBN

(λPN − λBN ) + (λBP − λPP )

β =
λBN − λNN

(λBN − λNN ) + (λNP − λBP )

(4)

3 Context-dependent Sentiment Classification

3.1 Contextual Antonym Pairs

It is often the case that two sentiment words from an antonym pair share the same
context yet opposite polarity.

Definition 1 (Contextual Antonym Pairs). A contextual antonym pair is represented
as AP = {sw,ws}, where sw and ws are ambiguous and antonymous adjectives.
Within the same context that is simplified into a neighboring noun nn, we have

Polarity(ws|nn) = −Polarity(sw|nn) (5)

This paper focuses on 8 antonym pairs, i.e., {high, low}, {big, small}, {many, few},
{fast, slow}, {deep, shallow}, {long, short}, {light, heavy} and {thick, thin}, denoted
as APs. The 16 context-dependent sentiment words from APs are all one-character
Chinese words and are frequently used in opinionated texts [4].

The collocations of context-dependent sentiment words and neighboring nouns in
the training set are stored in a word polarity decision table.

Definition 2 (Word Polarity Decision Table). A word polarity decision table is for-
malized as a quad WDT = (U,C ∪ D,V, f), where U is a finite nonempty set of
objects, i.e., the universal set; C = {n,w} is a finite nonempty set of two condition
attributes that respectively represent neighboring noun and context-dependent senti-
ment word; D = {l} is a finite nonempty set of one decision attribute that repre-
sents the polarity of w; V = Vn ∪ Vw ∪ Vl, Vn is a nonempty set of neighboring
nouns, Vw contains the 16 context-dependent sentiment words, and Vl = {1, 0,−1};
f = {fa|fa : U → Va}, fa is an information function that maps an object in U to one
value in Va.
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3.2 Context-dependent Sentiment Three-way Decisions

Given a word polarity decision table WDT = (U,C ∪ D,V, f), U is classified into
three polarity groups based on C, i.e., Positive = {x ∈ U |fl(x) = 1}, Negative =
{x ∈ U |fl(x) = −1}, and Neutral = {x ∈ U |fl(x) = 0}. Each polarity group is
divided into three disjoint regions, POS, NEG, and BND respectively.

Multi-category classification based on three-way decisions is usually transformed
into multiple binary classification [19]. For example, Ω = {Positive,¬Positive}
represents that an object x belongs to the positive polarity group and does not belong
to this group respectively. According to Table 1, all three-way decision losses for three
polarity groups are given by experiences [20].

Table 2. Three-way decision losses for three polarity groups (u is the unit loss)

�������Polarity
Loss

λPP λBP λNP λPN λBN λNN

Positive 0 4u 9u 8u 3u 0
Negative 0 3u 8u 7u 2u 0
Neutral 0 u 10u 9u 3.5u 0

In view of Eq. (4), we have αPositive = 0.556, αNegative = 0.625, and αNeutral =
0.846. For an object x,

If Pr(Positive|x) ≥ αPositive,Then x ∈ POS(Positive)

If Pr(Negative|x) ≥ αNegative,Then x ∈ POS(Negative)
(6)

where

Pr(Positive|x) = count(n = fn(x), w = fw(x), l = 1)

count(n = fn(x), w = fw(x))

Pr(Negative|x) = count(n = fn(x), w = fw(x), l = −1)
count(n = fn(x), w = fw(x))

(7)

To determine the polarity of context-dependent sentiment words, we propose the
following two rules: Bi-direction Rule and Uni-direction Rule.

Proposition 1 (Bi-direction Rule). Suppose that we have a neighboring noun nn and
a sentiment word sw, if there are two objects x and y, fn(x) = fn(y) = nn, fw(x) =
sw, fw(y) = ws, {sw,ws} ∈ APs, a bi-direction rule is made to obtain the polarity
of sw given nn.

Polarity(sw|nn) =
⎧⎨⎩

1 x ∈ POS(Positive) ∧ y ∈ POS(Negative)
−1 x ∈ POS(Negative) ∧ y ∈ POS(Positive)
0 otherwise

(8)
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Theorem 1. Given two objects x and y, if fn(x) = fn(y) = nn ∧ {fw(x) = sw,
fw(y) = ws} ∈ APs holds, then x ∈ POS(Positive) ∧ y ∈ POS(Negative) is
equivalent to Polarity(sw|nn) = 1.

Proof. (1) ∵ y ∈ POS(Negative) ∴ y /∈ POS(Positive), ∵ x ∈ POS(Positive) ∴
Polarity(sw|nn) = 1.
(2) Let Pr(Positive|x) = a and Pr(Negative|y) = b, the expected losses incurred
by taking actions aP , aB and aN respectively for x and y, are listed in the following
equations:

R(aP |x, aP |y) = 8u(1− a) + 7u(1− b), R(aP |x, aB|y) = 8u(1− a) + 3ub+ 2u(1− b)

R(aP |x, aN |y) = 8u(1− a) + 8ub, R(aB|x, aP |y) = 4ua+ 3u(1− a) + 7u(1− b)

R(aB|x, aB|y) = 4ua+ 3u(1− a) + 3ub+ 2u(1− b)

R(aB|x, aN |y) = 4ua+ 3u(1− a) + 8ub, R(aN |x, aP |y) = 9ua+ 7u(1− b)

R(aN |x, aB|y) = 9ua+ 3ub+ 2u(1− b), R(aN |x, aN |y) = 9ua+ 8ub

According to Eq. (5), ∵ Polarity(sw|nn) = 1 ∴ Polarity(ws|nn) = −1. Thus,
(aP , aP ) = argmin

(D1,D2)∈{aP ,aB ,aN}2

R(D1|x,D2|y) need to hold. We have a ≥ 0.556, b ≥
0.625 through pairwise comparison of expected losses. Obviously, Pr(Positive|x) ≥
αPositive, Pr(Negative|y)≥αNegative, so x ∈ POS(Positive)∧y∈POS(Negative).

When two sentiment words from one contextual antonym pair do not share the same
context, e.g., only “high price” appears in the training set but “low price” does not,
the bi-direction rule is not suitable. We compute the Z-score statistic with one-tailed
test to perform the significant test. The statistical confidence level is set to 0.95, whose
corresponding Z-score is -1.645. If Z-score is greater than -1.645, the collocation of
one sentiment word and one neighboring noun is significant.

Z-score(x,X) =
Pr(X |x)− P0√

P0·(1−P0)
|X∩[x]t|

, X ∈ {Positive,Negative} (9)

where the hypothesized value P0 is set to 0.7 [20], and [x]t is the equivalence class of
an object x based on the condition attribute t.

Proposition 2 (Uni-direction Rule). Suppose that we have a neighboring noun nn
and a sentiment word sw, if there is an object x such that fn(x) = nn ∧ fw(x) = sw
but not an object y with fn(y) = nn ∧ {sw, fw(y)} ∈ APs, then a uni-direction rule
is made to obtain the polarity of sw given nn.

Polarity(sw|nn) =

⎧⎪⎨
⎪⎩

1 x ∈ POS(Positive) ∧ Z-score(x,Positive) > −1.645

−1 x ∈ POS(Negative)∧ Z-score(x,Negative) > −1.645

0 otherwise

(10)

Theorem 2. In Uni-direction Rule, if Pr(Positive|x) ≥ P0, then Polarity(sw|nn) =
1 holds.

Proof. ∵ Pr(Positive|x) ≥ P0 > 0.556 ∴ x ∈ POS(Positive),∵ Pr(Positive|x) ≥
P0 ∴ Z-score(x, Positive) ≥ 0 > −1.645, So Polarity(sw|nn) = 1.
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4 Topic-dependent Sentiment Classification

4.1 Priori Sentiment

We believe that the first step in topic-dependent sentiment classification is to obtain the
priori sentiment from topic information. When all sentences have been classified from
the perspective of topic, the priori sentiment can be defined as follows.

Definition 3 (Priori Sentiment). Given NT sentences with topic T , among of which
NTP are positive and NTN are negative, the priori sentiment of the topic T is

Priori(T ) =

{
NTP−NTN

NT

∣∣∣NTP−NTN

NT

∣∣∣ ≥ 1
2

0 otherwise
(11)

If Priori(T ) > 0, the topic T tends to express the positive polarity. If Priori(T ) <
0, the topic T tends to express the negative polarity.

In order to describe the sentiment of a sentence, we introduce 6 features, {P , SU ,
SN , SP , ST , SD}, listed in Table 3 to represent it [2], and store in a sentence polarity
decision table.

Table 3. Feature representation for sentences

Feature Range Explanation

P {−1, 0, 1} the polarity by counting positive(negative) words
SU (0, 1] the sentiment uncertainty measure
SN N the number of single negation words
SP N the number of single punctuation marks
ST {Q,D,O} the interrogative sentence or the exclamatory sentence
SD {T, F} whether the distinguishing adverb is contained

Definition 4 (Sentence Polarity Decision Table). A sentence polarity decision table
is formalized as a quad SDT = (U,C ∪ D,V, f), where U is a finite nonempty set of
sentences, i.e., the universal set; C = {P, SU, SN, SP, ST, SD} is a finite nonempty
set of six condition attributes; D has only one decision attribute that represents the
polarity of the sentence; V = ∪Va, Va is a nonempty set of values of a ∈ C ∪ D;
f = {fa|fa : U → Va}, fa is an information function.

Definition 5 (Positive Conditional Probability). Given a sentence polarity decision
table SDT = (U,C ∪D,V, f), the positive polarity group is SPos = {x ∈ U |D(x) =
1}, then the positive conditional probability of a sentence x is

Pos(x) = Pr(SPos|[x]) = |SPos ∩ [x]|
|[x]| (12)

where [x] is the equivalent class of a sentence x based on all condition attributes C.
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4.2 Topic-dependent Sentiment Three-way Decisions

We define three regions for the positive polarity group SPos with a pair of thresholds
(α, β), 0 ≤ β < α ≤ 1. The three regions respectively correspond to the positive,
negative, and neutral polarity decisions.

POS(Positive) = {x ∈ U |Pos(x) ≥ α}
NEG(Positive) = {x ∈ U |Pos(x) ≤ β}
BND(Positive) = {x ∈ U |β < Pos(x) < α}

(13)

By virtue of SDT , we can give a sentence x the polarity label Label(x) based on
three-way decisions. Assume that x belongs to the topic T , if Label(x) and Priori(T )
are consistent, i.e., they are both greater or less than 0, the final decision is the same
thing as Label(x). But if they are contradictory, i.e., Label(x) × Priori(T ) < 0, the
final polarity decision is made by the following weighted polarity Posw or Negw.

Definition 6 (Weighted Positive Polarity). Given a sentence x with the topic T , if
Label(x) = 1 but Priori(T ) < 0, a weighted positive polarity measure is Posw:

Posw = Priori(T )× (1− Pos(x)) + (1 + Priori(T ))× Pos(x) (14)

If Posw > 0 holds, Pos(x) must be big enough, the final polarity is 1; If Posw < 0
holds, Pos(x) must be small enough, the final polarity is −1.

Theorem 3. Given a sentence x with the topic T , if Label(x)=1 and α > −Priori(T )
> 0, then Polarity(x) = 1.

Proof. ∵ −Priori(T ) > 0 ∴ Priori(T ) < 0. Meanwhile, Label(x) = 1, and ac-
cording to Eq. (14), Posw = Priori(T ) + Pos(x) holds. ∵ Label(x) = 1 ∴ x ∈
POS(Positive), i.e., Pos(x) ≥ α. ∵ α > −Priori(T ) ∴ Pos(x) > −Priori(T ),
i.e., Priori(T ) + Pos(x) > 0. So Posw > 0, i.e., Polarity(x) = 1.

Definition 7 (Weighted Negative Polarity). Given a sentence x with the topic T , if
Label(x) = −1 but Priori(T ) > 0, a weighted negative polarity measure is Negw:

Negw = Priori(T )× Pos(x) + (Priori(T )− 1)× (1− Pos(x)) (15)

If Negw < 0 holds, Pos(x) must be small enough, the final polarity is −1; If
Negw > 0 holds, Pos(x) must be big enough, the final polarity is 1.

Theorem 4. Given a sentence x with the topic T , if Label(x) = −1 and β < 1 −
Priori(t) < 1, then Polarity(x) = −1.

Proof. ∵ 1 − Priori(T ) < 1 ∴ Priori(T ) > 0. Meanwhile, Label(x) = −1, and
according to Eq. (15), Negw = Priori(T ) + Pos(x) − 1 holds. ∵ Label(x) = −1 ∴
x ∈ NEG(Positive), i.e., Pos(x) ≤ β. ∵ β < 1 − Priori(T ) ∴ Pos(x) < 1 −
Priori(T ), i.e., Priori(T )+Pos(x)−1 < 0. SoNegw < 0, i.e., Polarity(x) = −1.
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5 Experiments

5.1 Data Sets

To test our methods for context-dependent sentiment classification, two real-world data
sets are used. COAE is from Task 1 of Chinese Opinion Analysis Evaluation 2012, and
SEMEVAL is from Task 18 of Evaluation Exercises on Semantic Evaluation 2010.

To test our methods for topic-dependent sentiment classification, Weibo data set from
NLP&CC 2012 Evaluation is used. We select three representative topics: “one born in
1990s became a professor”, “ipad3”, and “edible oil rose in price”, simply marked as
“Prof”, “iPad”, and “Oil” respectively.

Table 4. Descriptions of three data sets

COAE SEMEVAL
Weibo

Prof iPad Oil

Positive 598 1202 110 41 7
Negative 1295 1715 13 60 71
Neutral 507 0 12 121 45
Total 2400 2917 480

5.2 Experiment Methods

For context-dependent sentiment classification, the evaluation criteria aremicro-F1 and
macro-F1, and the four methods are as follows.

Baseline. The method [8] discarding the context-dependent sentiment words.
TWD. Context-dependent sentiment three-way decisions for antonym pairs + Baseline.
TWD-CE. Context expansion (finding the synonyms for neighboring nouns) + TWD.
TWD-DE. Polarity expansion (finding the synonyms for context-dependent sentiment

words) + TWD-CE.

For topic-dependent sentiment classification, the evaluation criterion is micro-F1,
and the six methods are as follows.

S-RS. Three-way decisions based polarity classification for sentences.
T-S-RS. Topic-dependent sentiment three-way decisions with standard topic classifi-

cation + S-RS.
T-S-RS(KNN/1). Topic-dependent sentiment three-way decisions with KNN(k = 1)

topic classification + S-RS.
T-S-RS(KNN/11). Topic-dependent sentiment three-way decisions with KNN(k =

11) topic classification + S-RS.
T-S-RS(SVM). Topic-dependent sentiment three-way decisions with SVM topic clas-

sification + S-RS.
T-S-RS(Random). Topic-dependent sentiment three-way decisions with random topic

classification + S-RS.
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5.3 Experiment Results for Context-dependent Sentiment Classification

The comparative results between Baseline and TWD are shown in Fig. 1. The perfor-
mance on SEMEVAL is obviously improved in that those context-dependent sentiment
words appear in about 97.6% of all sentences, but the performance on COAE is slightly
improved due to the small percentage (29.5%). More sentences can be truly classified
with polarity classification for contextual antonym pairs.

Fig. 1. Comparative results between Baseline and TWD

The behavior analysis of 16 context-dependent sentiment words is carried out. About
75% of the appearance is positive or negative, and the remainder is neutral for lack of
context. We believe that classifying the context-dependent sentiment words truly is very
important to sentiment classification.

Fig. 2. Comparative results between TWD-CE, TWD-DE and TWD

When neighboring nouns or context-dependent sentiment words have been expanded
with synonym identification, TWD-CE and TWD-DE are compared with TWD (see
Fig. 2). Context expansion and polarity expansion can further improve the classifica-
tion performance, because more contextual polarities are discovered. With the aid of
double expansion, 26 additional neighboring nouns and 37 additional sentiment words
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on COAE are found, and 131 additional neighboring nouns and 60 additional sentiment
words on SEMEVAL are found.

5.4 Experiment Results for Topic-dependent Sentiment Classification

The priori sentiment for each topic is: Priori(Prof) = 0.72, Priori(iPad) = 0, and
Priori(Oil) = −0.52. The three values indicate that the topic “Prof” tends to express
the positive polarity, but the topic “Oil” tends to express the negative polarity. The
sentiment trend of the topic “iPad” is not significant.

T-S-RS combines S-RS with standard topic classification, which means each sen-
tence on Weibo data set must be truly labelled. Figure 3 shows the comparative results
between S-RS and T-S-RS.

Fig. 3. Results of Weibo sentiment classification with standard topic classification

The standard topic can be helpful to sentiment classification. If the priori sentiment
is equal to 0, the topic is useless, e.g., the performance of “iPad” is not improved. If
the priori sentiment is not equal to 0, the bigger the absolute value, the greater the
performance improvement, e.g., the improvement of “Prof” is more than that of “Oil”.

If standard topic classification is not available, automatic topic classification, i.e.,
traditional text classification, should be done before sentiment classification. Assume
that the topic for each sentence on Weibo is unknown, and four methods, i.e., SVM,
KNN(k = 11), KNN(k = 1) and Random, will be used. The results of Weibo sentiment
classification with automatic topic classification are illustrated in Fig. 4.

The performance of automatic topic classification is actually poor for Weibo texts
with the characteristic of short length. For example, SVM assigns the topic “iPad” for
all sentences. Because the priori sentiment of “iPad” is equal to 0, the performance of T-
S-RS(SVM) is the same with S-RS. The five other methods are obviously poorer than T-
S-RS. In this case, the performance of topic-dependent sentiment classification mainly
depends on the performance of topic classification. KNN(k = 1) achieves the best
performance among KNN(k = 1), KNN(k = 11) and SVM, which are all better than
Random. The short length of Weibo text results in sparseness. If both two texts have the
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Fig. 4. Results of Weibo sentiment classification with automatic topic classification

same sentiment word, their distance is quite close, it is largely right that KNN(k = 1)
labels the two texts with the same polarity.

6 Conclusions

Seeing different context can cause sentiment uncertainty, a classification method for
context-dependent sentiment words is presented based on three-way decisions. The bi-
direction and uni-direction rules are generated by the positive regions of two sentiment
words from each antonym pair. Moreover, double expansion, i.e., context expansion and
polarity expansion, can further improve the performance.

Since different topics can also bring about sentiment uncertainty, a topic-dependent
sentiment classification method is presented. The topic is transformed into the priori
sentiment for classifying sentences together with three-way decisions. The relationship
between the lower and upper-bound threshold and the priori sentiment is also proven.

In the future, we would like to dig into more accurate context information extraction
which can help to filter noisy neighboring nouns. Better automatic topic classification
will further improve the performance of topic-dependent sentiment classification.
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Abstract. In this paper, a novel concept formation and novel concept
lattices are developed with respect to a binary information table to sup-
port three-way decisions. The three-way operators and their inverse are
defined and their properties are given. Based on these operators, two
types of three-way concepts are defined and the corresponding three-
way concept lattices are constructed. Three-way concept lattices provide
a new kind of model to make three-way decisions.

Keywords: Three-way decisions, Formal concept analysis, Three-way
operators, Three-way concepts, Three-way concept lattices.

1 Introduction

Three-way decisions are widely used in real-word decision-making. They are
used in different fields and disciplines by different names and notations. Observ-
ing this phenomenon, Yao proposed a unified framework description of three-way
decisions [14]. The theory of three-way decisions is an extension of the common
two-way decision model [4, 11–14]. Its applications and extensions are investi-
gated by many recent studies [2, 4–7, 9, 15, 16].

The essential idea of three-way decisions is a ternary classification based on
the notions of acceptance, rejection and noncommitment [14]. Its aim is to divide
a universe into three pair-wise disjoint regions, called the positive, negative and
boundary regions, written as POS, NEG and BND, respectively, according to
evaluations of a set of criteria. The three regions are viewed as the regions of ac-
ceptance, rejection and noncommitment, respectively, in a ternary classification.
Corresponding to the three regions, one may construct rules for three-way deci-
sions. One can construct rules for acceptance from the positive region (inclusion
method) and rules for rejection from the negative region (exclusion method).
Whenever it is impossible to make an acceptance or a rejection decision, the
third option of noncommitment is chosen [12].

Formal concept analysis (FCA) is proposed by Wille [8]. The basis of FCA
is formal concepts and their ordered hierarchical structures, concept lattices.

D. Miao et al. (Eds.): RSKT 2014, LNAI 8818, pp. 732–741, 2014.
DOI: 10.1007/978-3-319-11740-9_67 c© Springer International Publishing Switzerland 2014
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Formal concepts can be formed through a pair of operators induced by a binary
relation between an object universe and an attribute universe.

In FCA, formal concepts are from the classical view of concepts. A concept
has two facets: extension (an object subset) and intension (an attribute subset).
Each element in the extension possesses all elements in the intension and each
element in the intension is shared by all elements in the extension. This implies
two-way decisions. For a given concept, one can determine whether an object
(an attribute) certainly possesses (is shared by) all elements in the intension (the
extension) according to whether the object (the attribute) belongs to the exten-
sion (the intension). Such decision-making (inclusion method) can be supported
in FCA.

In daily life, exclusion method is also used commonly when making decisions.
One may want to determine whether an object (an attribute) does not possesses
(is not shared by) any elements in the intension (the extension) of a concept.
Combining inclusion method (acceptance) with exclusion method (rejection) in-
duces a kind of three-way decisions. This is not supported by FCA. In order to
support three-way decisions, there is a need for a new formal concept formation
in which the extension or (and) intension of a concept should be an orthopair
studied by Ciucci [1]. The paper presents our results on this topic.

The paper is organized as follows. Section 2 introduces some preliminaries
about pairs of subsets. Section 3 discusses two-way and three-way operators
in a binary information table and their properties. Section 4 presents two-way
and three-way concept lattices defined by relevant operators. Section 5 gives an
example. Finally, Section 6 concludes the paper.

2 Preliminaries

In this section, we introduce some operators about pairs of subsets which will
be useful later.

Let S be a non-empty finite set. We write P(S) to denote the power set, the
set of all subsets, of S, and DP(S) to denote the set of all pairs of subsets of S,
i.e. DP(S) = P(S) × P(S). Set-theoretic operators on DP(S), intersection ∩,
union ∪ and complement c, can be defined componentwise using standard set
operators. For two pairs of subsets (A,B), (C,D) ∈ DP(S), we have

(A,B) ∩ (C,D) = (A ∩ C,B ∩D),

(A,B) ∪ (C,D) = (A ∪ C,B ∪D),

(A,B)c = (S −A,S −B) = (Ac, Bc).

(1)

These two pairs of subsets can be ordered by

(A,B) ⊆ (C,D)⇐⇒ A ⊆ C and B ⊆ D. (2)

Obviously, DP(S) is a Boolean algebra.
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3 Two-Way and Three-Way Operators with Binary
Information Tables

3.1 Binary Information Tables

Let U be a non-empty finite set of objects and V a non-empty finite set of at-
tributes. The relationship between objects and attributes can be formally defined
by a binary relation R from U to V , R ⊆ U × V . For a pair u ∈ U and v ∈ V ,
if uRv, we say that object u has attribute v, or alternatively, attribute v is pos-
sessed by object u. The binary relation R can also be conveniently represented
as a binary information table, where the value of the attribute v with respect to
the object u is 1 if uRv, otherwise, the value is 0. A binary information table
(U, V,R) is called a formal context in formal concept analysis [3].

For an object u ∈ U , the set of all attributes possessed by u is called its
attribute set, written as uR, that is,

uR = {v ∈ V | uRv}. (3)

Similarly, for an attribute v ∈ V , the set of all objects having v is called its
object set, written as Rv, namely,

Rv = {u ∈ U | uRv}. (4)

The complement of the binary relation R is defined by [10]

Rc = {(u, v) | ¬(uRv)} = U × V −R. (5)

That is, uRcv if and only if ¬(uRv). Similar to R, uRc = {v ∈ V | uRcv} is the
set of attributes not possessed by the object u, Rcv = {u ∈ U | uRcv} is the set
of objects not having the attribute v.

3.2 Two-Way Operators

With respect to a binary information table (U, V,R), the following pair of op-
erators can be defined. For simplicity, both operators are denoted by the same
symbol.

For X ⊆ U and A ⊆ V , a pair of operators, ∗ : P(U) −→ P(V ) and ∗ :
P(V ) −→ P(U), called positive operators, are defined by

X∗ = {v ∈ V | ∀x ∈ X(xRv)}
= {v ∈ V | X ⊆ Rv},

A∗ = {u ∈ U | ∀a ∈ A(uRa)}
= {u ∈ U | A ⊆ uR}.

(6)

This pair of operators are called derivation operators and denoted by symbol ′

in formal concept analysis [3].
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With X , the attribute set V can be divided into two disjoint regions, X∗ and
V −X∗. X∗ is the set of all attributes shared by all objects in X . And for any
attribute in V −X∗, there must exist an object in X which does not have that
attribute. There maybe exist an empty region. We regard an empty region as a
real region for convenience. Likewise, for A ⊆ V , the object set U can also be
divided into two disjoint regions, A∗ and U − A∗. A∗ is the set of all objects
having all attributes in A. And for an object in U − A∗, there must exist an
attribute in A which is not possessed by that object. Due to such bipartition,
this pair of operators are called two-way operators.

The two positive operators have the following properties [3]: if X,Y ⊆ U are
sets of objects and A,B ⊆ V are sets of attributes, then

(C1) X ⊆ X∗∗ and A ⊆ A∗∗,
(C2) X ⊆ Y =⇒ Y ∗ ⊆ X∗ and A ⊆ B =⇒ B∗ ⊆ A∗,
(C3) X∗ = X∗∗∗ and A∗ = A∗∗∗,
(C4) X ⊆ A∗ ⇐⇒ A ⊆ X∗,
(C5) (X ∪ Y )∗ = X∗ ∩ Y ∗ and (A ∪B)∗ = A∗ ∩B∗,
(C6) (X ∩ Y )∗ ⊇ X∗ ∪ Y ∗ and (A ∩B)∗ ⊇ A∗ ∪B∗.

Through the positive operators, one can obtain a set of attributes common to
the objects in a given object subset, or a set of objects having all attributes in a
given attribute subset. On the other hand, there may exist some attributes which
are not possessed by any object in a given object subset, and there may also exist
some objects which do not have any attribute in a given attribute subset. With
respect to this case, we can define another pair of operators, ∗̄ : P(U) −→ P(V )
and ∗̄ : P(V ) −→ P(U), called negative operators, as follows. For X ⊆ U and
A ⊆ V , we have

X ∗̄ = {v ∈ V | ∀x ∈ X(¬(xRv))}
= {v ∈ V | ∀x ∈ X(xRcv)}
= {v ∈ V | X ⊆ Rcv},

A∗̄ = {u ∈ U | ∀a ∈ A(¬(uRa))}
= {u ∈ U | ∀a ∈ A(uRca)}
= {u ∈ U | A ⊆ uRc}.

(7)

The same symbol is used for both operators. An attribute in X ∗̄ is not possessed
by any object inX , and an object in A∗̄ does not have any attribute in A. Clearly,
the negative operators of R are just the positive operators of the complement
of R. Hence the properties that the former have are the same as the latter. The
negative operators are also two-way operators.

3.3 Three-Way Operators

Combining the operators ∗ and ∗̄, we can get the following pair of new operators,
called three-way operators. For X ⊆ U and A ⊆ V , the three-way operators,
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� : P(U) −→ DP(V ) and � : P(V ) −→ DP(U), are defined by

X� = (X∗, X ∗̄),
A� = (A∗, A∗̄).

(8)

The same symbol is again used for both operators.
According to the operator � : P(U) −→ DP(V ), for an object subset X ⊆ U ,

one can obtain a pair of subsets, (X∗, X ∗̄), of the attribute set V . By such pair,
V can be divided into the following three regions

POSVX = X∗,

NEGV
X = X ∗̄,

BNDV
X = V − (X∗ ∪X ∗̄).

(9)

POSVX is the positive region, in which every attribute is definitely shared by
all objects in X . NEGV

X is the negative region, in which each attribute is not
possessed definitely by any object in X . Those attributes possessed by some, but
not all, objects in X belong to the boundary region BNDV

X .
If X = ∅, then POSVX = NEGV

X = V because that X∗ = X ∗̄ = V . Otherwise,
POSVX ∩NEGV

X = ∅. In this case, the three regions, POSVX , NEGV
X and BNDV

X ,
are pair-wise disjoint. The positive region POSVX and the negative region NEGV

X

are given explicitly by the operator �, while the boundary region BNDV
X is given

implicitly. One or two of the three regions may be empty, so the family of these
regions may not be a partition of V . In this paper, the family of such three
regions is still called a tripartition for convenience.

By the operator � : P(V ) −→ DP(U), for an attribute subset A ⊆ V , one
can obtain a pair of subsets, (A∗, A∗̄), of the object set U , and U can be divided
into the following three regions

POSUA = A∗,

NEGU
A = A∗̄,

BNDU
A = U − (A∗ ∪A∗̄).

(10)

The positive regionPOSUA contains objects having all attributes inA. The negative
region NEGU

A is the set of objects not possessing any attribute inA. The boundary
region BNDU

A includes objects possessing some, but not all, attributes in A.
Likewise, POSUA = NEGU

A = U if A = ∅. If A �= ∅, then POSUA ∩ NEGU
A = ∅,

and the family of the three regions, POSUA, NEG
U
A and BNDU

A, is a tripartition
of U . In these regions, POSUA and NEGU

A are given explicitly and BNDU
A is given

implicitly.
In relation to the three-way operators, we can define their inverse, � :

DP(U) −→ P(V ) and � : DP(V ) −→ P(U), for X,Y ⊆ U and A,B ⊆ V ,
as follows
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(X,Y )� = {v ∈ V | v ∈ X∗ and v ∈ Y ∗̄}
= X∗ ∩ Y ∗̄,

(A,B)� = {u ∈ U | u ∈ A∗ and u ∈ B∗̄}
= A∗ ∩B∗̄.

(11)

The same symbol is again used for both operators.
Through the inverse operators, for a pair of subsets (X,Y ) of U , we can obtain

a subset X∗∩Y ∗̄ of V , in which each attribute is shared by all objects in X and
not possessed by any object in Y . Similarly, for a pair of subsets (A,B) of V ,
one can get a subset A∗ ∩B∗̄ of U , in which each object has all attributes in A
and does not possess any attribute in B.

The following properties hold for the three-way operators and their inverse.
For X,Y, Z,W ⊆ U and A,B,C,D ⊆ V , we have

(E1) X ⊆ X�� and A ⊆ A��,

(E2) X ⊆ Y =⇒ Y � ⊆ X� and A ⊆ B =⇒ B� ⊆ A�,

(E3) X� = X��� and A� = A���,

(E4) X ⊆ (A,B)� ⇐⇒ (A,B) ⊆ X�,

(E5) (X ∪ Y )� = X� ∩ Y � and (A ∪B)� = A� ∩B�,

(E6) (X ∩ Y )� ⊇ X� ∪ Y � and (A ∩B)� ⊇ A� ∪B�.

(EI1) (X,Y ) ⊆ (X,Y )�� and (A,B) ⊆ (A,B)��,

(EI2) (X,Y ) ⊆ (Z,W ) =⇒ (Z,W )� ⊆ (X,Y )�

and (A,B) ⊆ (C,D) =⇒ (C,D)� ⊆ (A,B)�,

(EI3) (X,Y )� = (X,Y )��� and (A,B)� = (A,B)���,

(EI4) (X,Y ) ⊆ A� ⇐⇒ A ⊆ (X,Y )�,

(EI5) ((X,Y ) ∪ (Z,W ))� = (X,Y )� ∩ (Z,W )�

and ((A,B) ∪ (C,D))� = (A,B)� ∩ (C,D)�,

(EI6) ((X,Y ) ∩ (Z,W ))� ⊇ (X,Y )� ∪ (Z,W )�

and ((A,B) ∩ (C,D))� ⊇ (A,B)� ∪ (C,D)�.

4 Two-Way and Three-Way Concept Lattices

4.1 Two-Way Concept Lattices

Property (C4) shows that the pair of positive operators set up a Galois connec-
tion between P(U) and P(V ) and define a lattice of formal concepts [3].

Definition 1. [3] Let (U, V,R) be a binary information table. A pair (X,A) of
an object subset X ⊆ U and an attribute subset A ⊆ V is called a formal concept,
for short, a concept, of (U, V,R), if and only if X∗ = A and A∗ = X. X is called
the extension and A is called the intension of the concept (X,A).
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The concepts of a binary information table (U, V,R) are ordered by

(X,A) ≤ (Y,B)⇐⇒ X ⊆ Y ⇐⇒ B ⊆ A, (12)

where (X,A) and (Y,B) are concepts. (X,A) is called a sub-concept of (Y,B),
and (Y,B) is called a super-concept of (X,A). All the concepts form a complete
lattice that is called the concept lattice of (U, V,R) and written as CL(U, V,R).
The infimum and supremum are given by [3]

(X,A) ∧ (Y,B) = (X ∩ Y, (A ∪B)∗∗),
(X,A) ∨ (Y,B) = ((X ∪ Y )∗∗, A ∩B). (13)

The pair of negative operators also define a lattice that is just the concept
lattice defined by the positive operators of the complement of R. This lattice is
called a complement concept lattice and denoted by CL(U, V,Rc).

4.2 Object-Induced Three-Way Concept Lattices

From property (E4), it is easy to know that the operators � : P(U) −→ DP(V )
and � : DP(V ) −→ P(U) form a Galois connection between P(U) and DP(V )
and define a lattice of object-induced three-way concepts.

Definition 2. Let (U, V,R) be a binary information table. A pair (X, (A,B)) of
an object subset X ⊆ U and two attribute subsets A,B ⊆ V is called an object-
induced three-way concept, for short, an OE-concept, of (U, V,R), if and only if
X� = (A,B) and (A,B)� = X. X is called the extension and (A,B) is called
the intension of the OE-concept (X, (A,B)).

If (X, (A,B)) and (Y, (C,D)) are OE-concepts, then they can be ordered by

(X, (A,B)) ≤ (Y, (C,D))⇐⇒ X ⊆ Y ⇐⇒ (C,D) ⊆ (A,B), (14)

(X, (A,B)) is called a sub-concept of (Y, (C,D)), and (Y, (C,D)) is called a
super-concept of (X, (A,B)). All the OE-concepts form a complete lattice, which
is called the object-induced three-way concept lattice of (U, V,R) and written as
OEL(U, V,R). The infimum and supremum are given by

(X, (A,B)) ∧ (Y, (C,D)) = (X ∩ Y, ((A,B) ∪ (C,D))��),

(X, (A,B)) ∨ (Y, (C,D)) = ((X ∪ Y )��, (A,B) ∩ (C,D)).
(15)

4.3 Attribute-Induced Three-Way Concept Lattices

Obviously, by property (EI4), the operators � : DP(U) −→ P(V ) and � :
P(V ) −→ DP(U) also set up a Galois connection between DP(U) and P(V )
and define a lattice of attribute-induced three-way concepts.

Definition 3. Let (U, V,R) be a binary information table. A pair ((X,Y ), A) of
two object subsets X,Y ⊆ U and an attribute subset A ⊆ V is called an attribute-
induced three-way concept, for short, an AE-concept, of (U, V,R), if and only if
(X,Y )� = A and A� = (X,Y ). (X,Y ) is called the extension and A is called
the intension of the AE-concept ((X,Y ), A).
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If ((X,Y ), A) and ((Z,W ), B) are AE-concepts, then they can be ordered by

((X,Y ), A) ≤ ((Z,W ), B)⇐⇒ (X,Y ) ⊆ (Z,W )⇐⇒ B ⊆ A, (16)

((X,Y ), A) is called a sub-concept of ((Z,W ), B), and ((Z,W ), B) is called a
super-concept of ((X,Y ), A). All the AE-concepts also form a complete lattice,
which is called the attribute-induced three-way concept lattice of (U, V,R) and
written as AEL(U, V,R). The infimum and supremum are given by

((X,Y ), A) ∧ ((Z,W ), B) = ((X,Y ) ∩ (Z,W ), (A ∪B)��),

((X,Y ), A) ∨ ((Z,W ), B) = (((X,Y ) ∪ (Z,W ))��, A ∩B). (17)

5 Example

Table 1 is a binary information table with U = {1, 2, 3, 4} and V = {a, b, c, d, e}.
The corresponding concept lattice, complement concept lattice, object-induced
three-way concept lattice and attribute-induced three-way concept lattice are
shown as Figure 1 – 4, respectively. For the sake of simplicity, in the figures,
we denote the sets by listing their elements. For example, the attribute subset
{a, b, c} is denoted by abc.

The figures show that the binary information table in this example has 6
formal concepts, 6 complement concepts, 8 OE-concepts and 11 AE-concepts.
For every formal concept or every complement concept, there exists an OE-
concept with the same extension and the different intension in the object-induced
concept lattice. The intension of an OE-concept has two parts, so it can be used
to divide the attribute universe V into three regions in order to make three-
way decisions. For example, the intension of the OE-concept (13, (d, c)) is (d, c).
Based on this intension, V can be divided into the following regions: positive
region d, negative region c and boundary region abe. The same applies to the
attribute-induced concept lattice.

6 Conclusions

As an extension of classic two-way decisions, three-way decisions are widely used
in many fields and disciplines. Traditional formal concept analysis is good for
two-way decisions, but not good for three-way decisions. In this paper, we pro-
posed an extended model of formal concept analysis, three-way formal concept
analysis, which is suitable for three-way decisions. We presented a new concept
formation based on three-way operators, and constructed the object-induced
concept lattices and the attribute-induced concept latticed. Three-way concept
lattices can be used for not only normal three-way decisions but also granularity-
based sequential three-way decisions [15].
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Table 1. A binary information table

Object a b c d e

1 1 1 0 1 1
2 1 1 1 0 0
3 0 0 0 1 0
4 1 1 1 0 0

(∅, V )

(1, abde) (24, abc)

(13, d) (124, ab)

(U, ∅)

Fig. 1. The concept lattice CL(U, V,R)

(∅, V )

(3, abce) (24, de)

(13, c) (234, e)

(U, ∅)

Fig. 2. The complement concept lattice
CL(U, V,Rc)

(∅, (V, V ))

(1, (abde, c)) (3, (d, abce)) (24, (abc, de))

(13, (d, c)) (234, (∅, e)) (124, (ab, ∅))

(U, (∅, ∅))

Fig. 3. The object-induced three-
way concept lattice OEL(U, V,R)

((∅, ∅), V )

((1, ∅), abde) ((∅, 3), abce)

((1, 24), de) ((1, 3), abe) ((24, 3), abc)

((13, 24), d) ((1, 234), e) ((124, 3), ab) ((24, 13), c)

((U,U), ∅)

Fig. 4. The attribute-induced three-way
concept lattice AEL(U, V,R)
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Three-Way Decision Based on Belief Function 
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Abstract. In this paper, the basic knowledge of three-way decision and the D-S 
evidence theory are reviewed, respectively. A new model of the three-way deci-
sion is proposed, which is based on a belief function. The probability function is 
replaced with the belief function in the classical three-way decision model. Be-
sides the decision rules are proposed in this model, some properties are also 
discussed. Meanwhile, a universe is divided into three disjoint regions by the 
different values of the belief functions in this model and their decision rules. 
Finally, a comprehensive illustration is presented to verify the effectiveness and 
feasibility of this model. 

Keywords: Three-way decision, belief function, D-S theory of evidence. 

1 Introduction 

Decision rough set model was proposed by Yao, Wong and Lingras in 1990 [1, 2]. 
Subsequently, Yao founded the three-way decision theory in 2010 [3, 4, 5]. The 
theory has greatly enriched the method and theory of granular computing, which can 
represent the probability of rough sets greatly and reflect the rough sets approxima-
tion principle accurately. The thought of three-way decision is widely used in real life, 
which is groundbreaking in its systematization, theorization and modeling. Three-way 
decision is a common problem solving strategy used in many disciplines. It has been 
used in email spam filtering [6], investment management [7], cluster analysis and data 
analysis [8]. Considering the values of loss function of the three-way decision model 
are either random numbers or interval numbers [9, 10]. 

The Dempster/Shafer (D-S) theory of evidence, which was first proposed by 
Dempster and was completed by Shafer. It had further profound impact in dealing 
with uncertainty [11]. The D-S theory of evidence is a mathematical tool to deal with 
uncertain information, which continues to receive attention in the research fields. Li 
[12] used the D-S theory of evidence to evaluate the maritime management. Liu and 
Hu [13] referred to such an issue as the application of decision support systems based 
on the D-S theory of evidence, and so on. 

In recent years, the three-way decision theory is widely applied in many fields, the 
D-S theory of evidence is important for solving uncertain problems. At present, a 

                                                           
* Corresponding author. 
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research about the three-way decision based on the belief function is less. In this pa-
per, a new three-way decision model based on the belief function is proposed. The 
probability function is replaced with the belief function in the classical three-way 
decision model, and the decision rules are proposed in this model. According to the 
new model and rules, a universe can be divided into three disjoint regions. Finally, by 
an example, the validity and feasibility of the presented method is demonstrated. 

2 Preliminaries 

For the sake of convenience for statement, we firstly summarize some related defini-
tions and theorems which will be used in the following section. 

Definition 1 [8]. Let U be a finite and nonempty set and R be an equivalence rela-
tion on U. The pair ( , )apr U R=  is called an approximation space. The equivalence 

relation R induces a partition of U, denoted by /U R . For a subset A U⊆ , its lower 
and upper approximations are defined by: 

{ }( ) | [ ]Rapr X x U x X= ∈ ⊆ ,    { }( ) | [ ]Rapr X x U x X φ= ∈ ⊆ .     (1) 

The equivalence class containing object x is denoted as[ ]Rx . 

Definition 2 [8]. Based on the rough set approximations of X, one can divide the 
universe U into three disjoint regions, the positive region POS(X), the boundary re-
gion BND(X), and the negative region NEG(X): 

 { }( ) ( ) | [ ]RPOS X apr X x U x X= = ∈ ⊆ ,  

 { }( ) ( ) ( ) | [ ] [ ]R RBND X apr X apr X x U x X xφ φ= − = ∈ ≠ ∧ ⊄ , (2) 

 { }( ) ( ) | [ ]RNEG X U apr X x U x X φ= − = ∈ = . 

We can accept an object as it being an instance of a concept X based on a positive 
rule, reject an object as it being an instance of X based on a negative rule, and abstain 
based on a boundary rule. 

Here are some necessary notions about D-S theory of evidence. 

Definition 3 [14]. Let ( )1 2, ,..., nh h hΩ = be a finite set of n hypotheses (frame of 

discernment). Constructing a mapping, : 2 [0,1]m Ω → , which is called a basic proba-

bility assignment and satisfies two axioms: 

 (1) ( ) 0m φ = ，(φ  is empty set), 

(2)  ( ) 1
A

m A
⊆Ω

= .  
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A subset A ⊆ Ω is called a focal element of m, which satisfies the condi-

tion ( ) 0m A > . All the related focal elements are collectively called the body of evi-

dence. 
Definition 4 [14]. A belief function is a mapping from 2Ω  to unit interval [0,1] , 

and satisfies the following axioms:  

(1) ( ) 0Bel φ = , 

(2) ( ) 1Bel Ω = , 

(3)  For every positive integer n and every collection 1 2 n, ,A A A…, ⊆ Ω , 

{ }

1

1 1,2,...,

( 1) ( )
n

I
i i

i i II N
I

Bel A Bel A

φ

+

= ∈⊂
≠

  ≥ − 
 

  . 

The dual of a belief function, called a plausibility function Pl , is defined by: 
( ) 1 ( )Pl A Bel A= − ¬ . 

Clearly, ( )Pl A  represents the extent to which we fail to disbelieve  A. 

For any subset A⊆Ω , ( ) ( )Bel A Pl A≤ .  

[ ( ), ( )]Bel A Pl A  constitutes the interval of support A and can be seen as the  

lower and upper bounds of the probability which A is supported, named as 
( ) ( ) ( )m Pl A Bel AΩ = − . 

Definition 5 [14]. Using the basic probability assignment, belief and plausibility of 
A are expressed as: 

( ) ( )
D A

Bel A m D
⊂

=  ,     ( ) ( )
A D

Pl A m D
φ=

= 


.              (3) 

In a Pawlak rough set algebra, the qualities of lower and upper approximations of a 
subset A U⊆  are defined by [15, 16]: 

( ) ( ) /q X apr X U= ,          ( ) ( ) /q X apr X U= .            (4) 

Theorem 1 [15]. For a subset X U⊆ and R is an equivalence relation on U, and its 

partition { }1 2/ , ,..., nU R X X X= , the quality of lower approximation ( )q X  is a belief 

function. The basic probability assignment is ( ) i
i

X
m x

U
= , i=1,2,…,n  and 

( ) 0m A = , /A U R∉ ,the quality of upper approximation ( )q X  is a plausibility 

function. 
Theorem 2 [15]. Suppose Bel  is a belief function on U, which satisfies two condi-

tions: 
(1)  the set of focal elements of Bel  is a partition of U, 
(2) ( ) /m A A U= for every focal element A of Bel . 
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Where m is the basic probability assignment of Bel . There exists a Pawlak rough 
set algebra such that ( ) ( )q X Bel A= , for every A U⊆ . 

Theorem 3[15]. For a decision table A, the finite set U is divided into 

{ }(1) (2) ( )( ) , ,...,A r r r nClass D X X X=
 

by the decision attribute D, { }( ) , ( ) ( )r iX x U D x r i= ∈ = ，

( 1,2,..., )i n= . ( )r i is the value of decision, and { }(1), (2),..., ( )DV r r r n= ,for every 

focal element A and DVβ∀ ∈ . The relationship between the rough set theory and evi-

dence theory is as follows: 

( ) 0m φ = ,     
, ( )

( )
x U D x

m
U

β
β

∈ =
= , 

          ( )
i i

A

A X
Bel

U

ββ ∈∪= ,     ( )
i i

A

A X
Pl

U

β
β

∈∪
= .             (5) 

Theorem 4 [16]. The corresponding belief and plausibility functions of conditional 
set function *m  are as follows: 

0 0( / ) ( / )
X A

Bel A e m X e
⊆

=  ,    0 0( / ) ( / )
X A

Pl A e m X e
φ∩ =

=  .         (6) 

When A has a single element, 0 0( / ) ( / )Bel A e m X e= . 

Property 1 [16]. Suppose (* / )jBel r  is a belief function on the frame of discern-

ment U, 
1

( ) ( / ) ( )
m

j j
j

Bel A Bel A r p r
=

=  is a belief function. 

3 Three-Way Decision Based on Belief Function Model 

With respect to the model of three-way decision based on the belief function, we have 

a set of two states { },X XΩ = ¬ , indicating that an element is in X or not in X, re-

spectively. The set of three actions is given by { }, ,P B NA a a a= , where Pa , Ba , and 

Na  represent the three actions in classifying an object, deciding ( )x POS X∈ ,  

deciding ( )x BND X∈ , and deciding ( )x NEG X∈ , respectively. Let ( | )E X x  

and ( | )E X x¬  be the belief function of an object in X and not in X. ( )Bel X  and 

( )Pl X  are the belief function and plausibility function of an object in X. PPλ , BPλ  

and NPλ  denote the losses incurred for taking actions Pa , Ba  and Na  respectively, 

when an object belongs to X. And PNλ , BNλ , NNλ  denote the losses incurred for 

taking the same actions when the object does not belong to X. 
For every x, compute the expected loss associated with taking the individual ac-

tions, which the actions are Pa , Ba  and Na  can be expressed as: 

 ( | ) ( | ) ( | )P PP PNR a x E X x E X xλ λ= + ¬ , 
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 ( | ) ( | ) ( | )B BP BNR a x E X x E X xλ λ= + ¬ , (7) 

 ( | ) ( | ) ( | )N NP NNR a x E X x E X xλ λ= + ¬ . 

   Therefore, we can also replace (1 ( ))Pl X− with ( | )E X x¬ . Namely ( )Bel X  

and (1 ( ))Pl X−  can instead of ( | )E X x , ( | )E X x¬ .  

( | ) ( ) (1 ( ))P PP PNR a x Bel X Pl Xλ λ= + − , 

 ( | ) ( ) (1 ( ))B BP BNR a x Bel X Pl Xλ λ= + − , (8) 

 ( | ) ( ) (1 ( ))N NP NNR a x Bel X Pl Xλ λ= + − . 

The Bayesian decision procedure suggests the following minimum-risk decision 
rules: 

(P): ( | ) ( | )P BR a x R a x≤ and ( | ) ( | )P NR a x R a x≤ , decide ( )x POS X∈ , 

(B): ( | ) ( | )B PR a x R a x≤ and ( | ) ( | )B NR a x R a x≤ , decide ( )x BND X∈ , 

(N): ( | ) ( | )N PR a x R a x≤ and ( | ) ( | )N BR a x R a x≤ , decide ( )x NEG X∈ . 

Since ( ) ( ) ( )Pl A m Bel A= Ω + , we can simplify the rules only based on the belief 

function and the loss function λ . Consider a special kind of loss functions with: 

0 PP BP NPλ λ λ≤ ≤ < ,           0 NN BN PNλ λ λ≤ ≤ < .               (9) 

That is, the loss of classifying an object x belonging to X into the positive region 
POS(X), is less than or equal to the loss of classifying x into the boundary region 
BND(X), and both of these losses are strictly less than the loss of classifying x into the 
negative region NEG(X). The reverse order of the losses is used for classifying an 
object not in X. The action of conditional risk are Pa , Ba  and Na , which can also be 

written as: 

 ( | ) ( ) (1 ( ) ( ))P PP PNR a x Bel X m Bel Xλ λ= + − Ω − , 

 ( | ) ( ) (1 ( ) ( ))B BP BNR a x Bel X m Bel Xλ λ= + − Ω − , (10) 

 ( | ) ( ) (1 ( ) ( ))N NP NNR a x Bel X m Bel Xλ λ= + − Ω − . 

Under the rules (P), (B) and (N), the decision rules can be re-expressed as:  
For the rule (P): 

(1 ( ))( )
( | ) ( | ) ( ) ,

( ) ( )
PN BN

P B
PN BN BP PP

m
R a x R a x Bel X

λ λ
λ λ λ λ
− Ω −

≤ ⇔ ≥
− + −

 

(1 ( ))( )
( | ) ( | ) ( ) .

( ) ( )
PN NN

P N
PN NN NP PP

m
R a x R a x Bel X

λ λ
λ λ λ λ
− Ω −

≤ ⇔ ≥
− + −

 For the rule (B): 
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(1 ( ))( )
( | ) ( | ) ( ) ,

( ) ( )
PN BN

B P
PN BN BP PP

m
R a x R a x Bel X

λ λ
λ λ λ λ
− Ω −

≤ ⇔ ≤
− + −

 

(1 ( ))( )
( | ) ( | ) ( ) .

( ) ( )
BN NN

B N
BN NN NP BP

m
R a x R a x Bel X

λ λ
λ λ λ λ
− Ω −

≤ ⇔ ≥
− + −

 

For the rule (N): 
(1 ( ))( )

( | ) ( | ) ( ) ,
( ) ( )

PN NN
N P

PN NN NP PP

m
R a x R a x Bel X

λ λ
λ λ λ λ
− Ω −

≤ ⇔ ≤
− + −

 

(1 ( ))( )
( | ) ( | ) ( ) .

( ) ( )
BN NN

N B
BN NN NP BP

m
R a x R a x Bel X

λ λ
λ λ λ λ
− Ω −

≤ ⇔ ≤
− + −

 

Where the parameters α , β  and γ  are defined as: 

 
(1 ( ))( )

( ) ( )
PN BN

PN BN BP PP

m λ λα
λ λ λ λ
− Ω −

=
− + −

, 

 
(1 ( ))( )

( ) ( )
BN NN

BN NN NP BP

m λ λβ
λ λ λ λ
− Ω −

=
− + −

, (11) 

 
(1 ( ))( )

( ) ( )
PN NN

PN NN NP PP

m λ λγ
λ λ λ λ
− Ω −

=
− + −

. 

For the rule (B): α β> , then the loss function satisfies the condition 

NP BPBP PP

PN BN BN NN

λ λλ λ
λ λ λ λ

−−
<

− −
, as we all know, ( , , , 0)

b d b b d d
a b c d

a c a a c c

+>  > > >
+

, so 

NP PP NP BPBP PP

PN BN PN NN BN NN

λ λ λ λλ λ
λ λ λ λ λ λ

− −−
< <

− − −
, namely 0 1β γ α≤ < < ≤ . The other decision 

rules can be re-expressed as: 

 (P1): If ( )Bel X α≥ , decide ( )x POS X∈ , 

 (B1): If ( )Bel Xα β< < , decide ( )x BND X∈ , 

 (N1): If ( )Bel X β≤ , decide ( )x NEG X∈ . 

The parameter γ is no longer needed. 

For the rule (P1): We accept x as a member of X if ( )Bel X α≥ . 

For the rule (B1): We neither accept nor reject x as a member of X if 
( )Bel Xα β< < . 

For the rule(N1): We reject x as a member of X if ( )Bel X β≤ . 

Whenα β= , we haveα γ β= = . In this case, we use the decision rules: 

 (P2): If ( )Bel X α≥ , decide ( )x POS X∈ , 
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 (B2): If ( )Bel X α= , decide ( )x BND X∈ , 

 (N2): If ( )Bel X α≤ , decide ( )x NEG X∈ . 

In this situation, the three-way decision can degenerate into traditional two-way de-
cision. 

4 Example 

Suppose Table1 is given the following decision, which is a simplified diagnosis case 
library. When { }1 6: ,...,A a a is condition attributes,{temperature, permeability, the 

difference of pressure, porosity, pipe status} is replaced by { }1 2 3 4 5 6, , , , ,a a a a a a . D is 

a decision attribute. 1R , 2R  and 3R  represent the different results of decision. Ac-

cording to the above five instances of condition attributes, decision result and the 
attributes of 6c , 7c . We can get a decision for 6c  and 7c  based on the new rules of 

three-way decision. 

Table 1. Example of reservoir damage type diagnosis 

   Attribute 
U      

1a  2a  3a  4a  5a  6a  D(decision) 

1c  high  low  big  small  medium  ordinary  
1R  

2c  high  low  small  small  big  clean  
2R  

3c  low  middle  big  medium  small  dirty  
1R  

4c  low  high  medium  small  medium  ordinary 
3R  

5c  middle low  small  big  medium  clean  
2R  

6c  middle  middle  small  big  small  ordinary  ? 

7c  middle  low  medium  medium  small  ordinary  ? 

 

Here are the loss functions 
=0.385PPλ , =0.398BPλ , =0.512NPλ ;  

=0.397NNλ , =0.561BNλ , =0.714PNλ . 

We can regard the five instances information as prior experience. Combining with 
the rough sets, one can get some prior information which the theory of evidence 
needs, then the attributes of 6c  and 7c  are regarded as the known evidence. 

(1) In set 6c { }1 2 3 4 5 6, , , , ,a a a a a a , the values of each attribute can be expressed as 

{middle, middle, small, big, small, ordinary}, respectively. 
For 1a , according to the Theorem 3 and Theorem 4,  

{ }1 1 2( , high) 2 / 5m c c = = , { }1 5( =middle) 1/ 5m c = , { }1 3 4( , low) 2 / 5m c c = = . 



 Three-Way Decision Based on Belief Function 749 

 

By Property 1, { }1 1( / middle ) 0m R = , 

{ }1 2( / middle )=1/ 2m R , { }1 3( / middle ) 0m R = , 1 ( ) 0m Ω = . 

The same can be, for other five attributes 2a ~ 6a , we can get the results as follows: 

2a : { }2 1( / middle ) 1/ 2m R = , { }2 2( / middle ) 0m R = , { }2 3( / middle ) 0m R = , 

2 ( ) 0m Ω = . 

3a : { }3 1( / medium ) 0m R = , { }3 2( / medium ) 1m R = , { }3 3( / medium ) 0m R = , 

3 ( ) 0m Ω = . 

4a : { }4 1( / big ) 0m R = , { }4 2( / big ) 1/ 2m R = , { }4 3( / big ) 0m R = , 4 ( ) 3 / 5m Ω = . 

5a : { }5 1( / medium ) 1/ 2m R = , { }5 2( / medium ) 0m R = , { }5 3( / medium ) 0m R = , 

5 ( ) 3 / 5m Ω = . 

6a : { }6 1( / ordinary ) 1/ 4m R = , { }6 2( / ordinary ) 0m R = , { }6 3( / ordinary ) 0m R = , 

6 ( ) 0m Ω = . 

According to the Dempster’s rule of combination, ( ) 3/ 5*3/ 5 9 / 25 0.360m Ω = = = , 

for the Theorem 4 and Property1, the results of evidence are shown as follows: 

1( ) 1/ 2 1/ 5 1/ 2 1/ 5 1/ 4 2 / 5 3 /10Bel R = ∗ + ∗ + ∗ = , 

2( ) 1/ 2 1/ 5 1 2 / 5 1/ 2 1/ 5 6 /10Bel R = ∗ + ∗ + ∗ = , 

3( ) 0Bel R = . 

(2) In set 7c { }1 2 3 4 5 6, , , , ,a a a a a a , the values of each attribute can be expressed as 

{middle, low, medium, medium, small, ordinary}.  

1a : { }1 1( / middle ) 0m R = , { }1 2( / middle )=1/ 2m R , { }1 3( / middle ) 0m R = , 1 ( ) 0m Ω = . 

2a : { }2 1( / low ) 1/ 6m R = , { }2 2( / low ) 0m R = , { }2 3( / low ) 0m R = , 2 ( ) 0m Ω = . 

3a : { }3 1( / medium ) 0m R = , { }3 2( / medium ) 0m R = , { }3 3( / medium ) 1m R = ,

3 ( ) 0m Ω = . 

4a : { }4 1( / medium ) 1/ 2m R = , { }4 2( / medium ) 0m R = , { }4 3( / medium ) 0m R = ,

4 ( ) 3 / 5m Ω = . 

5a : { }5 1( / small ) 1/ 2m R = , { }5 2( / small ) 0m R = , { }5 3( / small ) 0m R = , 5 ( ) 3 / 5m Ω = . 

6a : { }6 1( / ordinary ) 1/ 4m R = , { }6 2( / ordinary ) 0m R = , { }6 3( / ordinary ) 0m R = , 6 ( ) 0m Ω = . 

According to the Dempster’s rule of combina-
tion ( ) 3 / 5*3 / 5 9 / 25 0.360m Ω = = =  

1( ) 1/ 6 3 / 5 1/ 2 1/ 5 1/ 2 1/ 5 1/ 4 2 / 5 4 /10Bel R = ∗ + ∗ + ∗ + ∗ = , 

2( ) 1/ 2 1/ 5 1/10Bel R = ∗ = , 

3( ) 1*1/ 5 1/ 5Bel R = = . 

According
 
to Formula 11, so 
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(1 ( ))( ) (1 0.360) (0.714 0.561)
= 0.590

( ) ( ) (0.714 0.561) (0.398 0.385)
PN BN

PN BN BP PP

m λ λα
λ λ λ λ
− Ω − − × −= =
− + − − + −

, 

(1 ( ))( ) (1 0.360) (0.561 0.397)
= 0.378

( ) ( ) (0.561 0.397) (0.512 0.398)
BN NN

BN NN NP BP

m λ λβ
λ λ λ λ
− Ω − − × −= =
− + − − + −

. 

Through the above analysis and the rules (P1) , (B1) and (N1), here we can get two 
different decisions for 6c , 7c . 

For 6c , 2R  and 3R  are divided into the negative region, and 1R  is divided into 

the positive region according to the semantic interpretation of new rules, and in the 
end, it makes a final decision that 2R is the most likely decision result of 6c . 

For 7c , 2R  and 3R  are divided into the negative region, and 1R  is divided into 

the boundary region. According to the new rules, it draws a conclusion that 2R  and 

3R  are the most unlikely decision results of 6c , so we can eliminate them imme-

diately. According to the new model of three-way decision and rules, 1R  should take 

a decision of deferment. By observing more evidences, one can make a further judg-

ment for 1R . The loss of decision can be reduced effectively. 

5 Conclusion 

In this paper, the new three-way decision model based on the belief function is mainly 
investigated. For the classical three-way decision, the universe is divided by the proba-
bility function. Instead of that, the probability function is replaced with the belief func-
tion in this new model. The universe is divided into three disjoint regions by different 
values of the belief functions in this model and those decision rules. Finally, the in-
stance is presented to verify the availability and feasibility of the new model. The 
prospect for the further research is that the three-way decision theory can be combined 
with other measures, just like, Sugeno measure, necessity measure and so on. 
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Abstract. Possibility theory can be used to translate numeric values
into semantically more meaningful representation with the help of lin-
guistic variables. The data mining applied to a dataset with linguistic
variables can lead to results that are easily interpretable due to the in-
herent semantics in the representation. Moreover, the data mining algo-
rithms based on these linguistic variables tend to orient themselves based
on underlying semantics. This paper describes how to transform a real-
world dataset consisting of numeric values using linguistic variables based
on possibilistic variables. The transformed dataset is clustered using a
recently proposed possibilistic k-modes algorithm. The resulting cluster
profiles are semantically accessible with very little numerical analysis.

Keywords: K-modes method, possibility theory, retail databases, pos-
sibility distribution.

1 Introduction

The numeric values in real-world databases do not lend themselves well to se-
mantic interpretations. Data mining based on numeric computations needs to
be interpreted with the help of a domain expert. Fuzzy set theory provides se-
mantic representation of numeric values using linguistic variables. For example,
a numeric value of temperature is represented using a fuzzy linguistic variable
with different fuzzy membership for values cold, cool, warm, and hot. Possibility
theory proposed a more flexible use of these semantic variables. Data mining
techniques based on these linguistic variables result in a semantically oriented
knowledge discovery process and lead to easily interpretable results. This pa-
per demonstrates such a process with a recently proposed possibilistic k-modes
clustering algorithm for a real-world retail dataset.

Clustering methods have been widely applied in numerous fields including
medicine, data mining, marketing, security, and banking. When clustering real-
world objects (e.g. patients, customers, visitors) into similar groups, uncertainty
is present at different levels. The main sources of uncertainty can be the lack of
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information, incomplete or imprecise knowledge, defective systems, and unreli-
able sources of information. Uncertainty can be located in clusters i.e. an object
is belonging to different groups (e.g. when a patient suffers from different sorts
of diseases), or in the values of attributes if we do not have the exact value of the
instance (e.g. when measuring blood pressure, temperature or humidity levels).

Many uncertainty theories have been applied to several clustering methods in
order to handle imperfect knowledge. The fuzzy set and the belief function theo-
ries have been adapted to the c-means method respectively in the fuzzy c-means
[6] and in the evidential c-means [16]. To handle uncertain and categorical data,
the belief k-modes [5] was proposed as well. In addition, the rough set theory
has been successfully used with different clustering methods such as the works
presented in [3], [4], [8], and [14]. Possibility theory has also attracted atten-
tion of researchers and has provided interesting results when handling uncertain
qualitative and quantitative data. We can mention the possibilistic c-means [12],
the possibilistic k-modes [1], the k-modes using possibilistic membership [2].

In this work, we focus on categorical databases and use a modified version of
the k-modes method called the possibilistic k-modes, denoted by PKM defined
in our previous work [1]. We apply this approach to a retail store database
which contains real-world transactions. Each attribute of the customer and the
product datasets is represented using a possibility distribution. Through the use
of these real-world datasets, we demonstrate the ability of the PKM to handle
uncertainty in real-world situations. Furthermore, we show how this uncertain
method can help us make better decisions by analyzing the behavior of customers
in a retail store.

The rest of the paper is structured as follows: Section 2 gives the background
relative to the possibility theory. Section 3 presents an overview of the k-modes
method. Section 4 details the possibilistic k-modes. Section 5 presents and an-
alyzes experimental results using the retail databases. Section 6 concludes the
paper.

2 Possibility Theory

Possibility theory is a well-known uncertainty theory. It was proposed by Zadeh
in [17] and further improved by Dubois and Prade [9]. It deals with imperfect
pieces of information from complete knowledge to total ignorance. Numerous re-
searchers [1], [2], [3] have applied possibility theory to several domains including
data mining, medicine, and pattern recognition.

In [17], Zadeh defined the universe of discourse Ω as the set of states (or
events) ωi. From this universe Ω = {ω1, ω2, ..., ωn}, the possibility distribution
function π associates a value from the scale L = [0, 1] to the event ωi.
Other concepts in possibility theory include the normalization and the extreme
cases of knowledge.

1. The normalization is defined by:

maxi {π (ωi)} = 1. (1)
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2. The complete knowledge presented through ∃ a unique ω0, π (ω0) = 1, oth-
erwise π (ω) = 0.

3. The total ignorance illustrated by ∀ω ∈ Ω, π (ω) = 1.

One of the well-known possibilistic similarity measures in possibility theory is
the information affinity [7]. It measures the similarity between two normalized
possibility distributions π1 and π2. Equation (2) presents the information affinity.

InfoAff (π1, π2) = 1− 0.5 [D (π1, π2) + Inc (π1, π2)] . (2)

with D(π1, π2) =
1
n

∑n
i=1 |π1 (ωi)− π2 (ωi)|, n the number of objects and

Inc (π1, π2) = 1−max (π1 (ω)Conj π2 (ω)) and ∀ω ∈ Ω,
ΠConj (ω) = min (Π1 (ω) , Π2 (ω)) where Conj denotes the conjunctive mode.

3 The K-Modes Method

The standard k-modes method, denoted in this work by SKM, is a clustering
method defined in [10], [11]. It handles large categorical datasets. It is a modified
version of the k-means algorithm [15]. The SKM was proposed to overcome the
numeric limitation of the k-means method. It uses a simple matching dissimi-
larity measure and a frequency-based function in order to cluster objects into
k clusters. The resulting partition has to have a high intra-similarity and a low
inter-similarity.

Given two objects with m categorical attributes such as X1=(x11, x12, ...,
x1m) and X2=(x21, x22, ..., x2m). The simple matching dissimilarity measure
(d) is defined by:

d (X1, X2) =

m∑
t=1

δ (x1t, x2t) . (3)

δ (x1t, x2t) =

{
0 if x1t = x2t
1 if x1t �= x2t . (4)

Thus, d ∈ [0,m] has two extreme values. It is equal to 0 when all the attributes’
values of X1 and X2 are similar. Otherwise, it is equal to m.
The frequency based method used to update the modes consists of computing
the fr(Ap) =

nCj

n where nCj is the number of objects having the same value
of attribute Ap relative to cluster Cj and 1 ≤ p ≤ m. The values that more
frequently appear are kept as new mode values.

Generally, given S = {X1, X2, ..., Xn} a set of n objects with its k-modes
Q = {Q1, Q2, ..., Qk} and k clusters C = {C1, C2, ..., Ck}, we can cluster S into
k ≤ n clusters. The minimization problem of the clustering is illustrated as
follows:

min D(W,Q) =

k∑
j=1

n∑
i=1

wi,jd(Xi, Qj). (5)

where W is an n × k partition matrix and wi,j ∈ {0, 1} presents the degree of
belonging of Xi in Cj . It is equal to 0 if the object Xi is a member of the cluster
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Cj otherwise, it is equal to 1.
The k-modes algorithm is detailed as follows:

1. Randomly select k initial modes, one mode for each cluster.
2. Calculate the dissimilarities between instances and modes using Equation (3).
3. Allocate objects to the most similar cluster.
4. Update the mode using the frequency-based function.
5. Retest the similarity and reallocate objects to appropriate clusters.
6. Repeat (2-5) until all clusters are stable.

In spite of its successful application for clustering large categorical databases,
the SKM has some issues. It faces the problem of the non-uniqueness of clus-
ters’ modes i.e. we can have several modes for a cluster and hence, we have
to randomly select a mode for this cluster. Moreover, the SKM cannot han-
dle uncertainty. It only deals with certain databases. These issues can make the
SKM results inaccurate. To overcome these limitations, the possibilistic k-modes
method (PKM) [1] has been developed.

4 The Possibilistic K-Modes: PKM

The possibilistic k-modes method [1] is a modified version of the SKM. It uses
categorical values and deduces their degrees of uncertainty by presenting them
using possibility degrees. As a result, the PKM benefits from the uncertainty
located in the attribute values to provide better clustering results. In addition,
the PKM keeps the advantages and overcomes the limitations of the SKM by
overcoming the problem of the non-uniqueness of cluster mode and by dealing
with the uncertainty in real-world databases.

4.1 Parameters

1. An uncertain training set: where each categorical attribute value in the cus-
tomers and products databases has a degree of possibility representing the
degree of uncertainty on this values.

2. The possibilistic similarity measure denoted by IA: is a modified version of
the information affinity [7] defined in Equation (2). It is applied between
two normalized possibility distributions. It provides the similarity between
objects of the training set and the cluster modes given by:

IA(X1, X2) =

∑m
p=1 InfoAff(π1p, π2p)

m
. (6)

3. The update of the clusters’ modes: It computes the average of possibility
distributions of objects belonging to the same cluster.

∀ω ∈ Ap, πpC(ω) =

∑n′

i=1 πip(ω)

n′
. (7)

where πip(ω) is the possibility degree defined for the attribute p related to
the object i in the cluster C, n′ is the number of objects, Ap is the set of t
values of the attribute p, and 1≤p≤m.
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4.2 Algorithm

The PKM algorithm takes as inputs: an uncertain database, k the number of
clusters and provides as a result groups of similar uncertain instances.

1. Randomly select k initial modes, one mode for each cluster.
2. Use Equation (6) to calculate the possibilistic similarity measure IA applied

between instances and modes.
3. Allocate an object to the most similar cluster to it based on IA.
4. Update the mode using Equation (7)
5. Retest the similarity and reallocate objects to appropriate clusters.
6. Repeat (2-5) until cluster assignments do not change.

5 Experiments

5.1 The Framework

We used retail databases consisting of real-world transactions by customers when
buying products from a small retail chain from 2005 to 2007. The database
contains 15341 customers and 8987 products. Each customer is characterized by
different attributes namely the number of visits, revenues, number of products
bought, and the profits. The number of visits corresponds to the loyalty of the
customers. Similarly, each product is represented by several attributes mainly the
number of visits, the revenues and profits realized by this product, the quantity
sold, and the number of customers that have bought the product. The number
of visits that buy a particular product corresponds to its popularity. As there
are many customers that do not often visit the retail store and many products
are rarely bought, we only consider the top 1000 of the customers and top 500
of the products.

The absolute numerical values of spending, visits, number of products bought
need to be put in context. For example, $15000 may be high spending in a com-
puter store, but it will be be considered low expenditure in a car store. Therefore,
we may want to represent the variable spending with linguistic values of high,
modest, and low. These categories are too rigid. Therefore, we will later assign a
possibilistic membership to these values. For example, a purchase of $2000 may
have a possiblistic memberships given by {(low, 0.0), (modest, 0.3), (high, 0.9)}.
Please note that unlike fuzzy memberships, the possibilistic values do not have
to add up to 1 as explained in Equation (1). Using this principle, we propose the
following representation for customers where the number of intervals depends on
the initial values and frequency of each interval.

1. #Products (number of products bought): low, modest, and high.
2. Revenues: low, modest, high, and veryHigh.
3. Loyalty (number of visits): low, modest, high, and veryHigh.
4. Profits: low, modest, and high.

Similarly, the attribute values of the products dataset are categorized:
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1. #Customers (number of customers who buy products): low, modest, and
high.

2. Quantity: small, medium, and big.
3. Revenues: low, modest, high, and veryHigh.
4. Popularity (determined using number of visits): low, modest, high.
5. Profits: modest, high, and veryHigh.

We apply the equal-frequency interval discretization function on the retail
datasets. For each attribute, we obtain categorical values described in Table 1-
Table 4 for the customers datasets and in Table 5-Table 9 for the product dataset.
We use the function summary to intervals I to identify the possibility degrees.

Table 1. Equal-frequency discretization of the attribute number of products

Number of products Summary function values
1st Quartile (1st Qu.) Median 3rd Quartile (3rd Qu.)

[5, 40) low 25 31.5 36
[40, 58) modest 43 46 51.25
[58, 546] high 67 78 102

Table 2. Equal-frequency discretization of the attribute revenues

Revenues Summary function values
1st Quartile (1st Qu.) Median 3rd Quartile (3rd Qu.)

[57, 712) low 404.2 531.5 621
[712, 1041) modest 781 849 941
[1041, 1624) high 1188 1296 1439
[1624, 12614] veryhigh 1893 2325 3245

Table 3. Equal-frequency discretization of the attribute profits

Profits Summary function values
1st Quartile (1st Qu.) Median 3rd Quartile (3rd Qu.)

[25, 287) low 160.2 214.5 251
[287, 428) modest 321 351 385
[428, 657) high 473 533 589
[657, 3484] veryhigh 767 935 1206

5.2 Possibilistic Representation of the Attribute Values

The use of possibility theory, in this step, allows the representation of the un-
certainty that can occur in the values of attributes of the customer and product
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Table 4. Equal-frequency discretization of the attribute loyalty

Loyalty Summary function values
1st Quartile (1st Qu.) Median 3rd Quartile (3rd Qu.)

[3, 16) low 11 12 14
[16, 21) modest 17 18 19
[21, 29) high 22 24 26
[29, 289] veryhigh 33 38 52

Table 5. Equal-frequency discretization of the attribute number of customers

Number of customers Summary function values
1st Quartile (1st Qu.) Median 3rd Quartile (3rd Qu.)

[7, 32) low 20 24 29
[32, 48) modest 35 38 42
[48, 377] high 56 65 84

Table 6. Equal-frequency discretization of the attribute revenues

Revenues Summary function values
1st Quartile (1st Qu.) Median 3rd Quartile (3rd Qu.)

[98, 886) low 228 388 627.5
[886, 1785) modest 1064 1268 1521
[1785, 3305) high 2035 2403 2816
[3305, 40800] veryhigh 4040 4993 7074

Table 7. Equal-frequency discretization of the attribute profits

Profits Summary function values
1st Quartile (1st Qu.) Median 3rd Quartile (3rd Qu.)

[6, 491) low 92 211 369
[491, 1063) modest 606.5 741 894.2
[1063, 20084] high 1354 1668 2425

Table 8. Equal-frequency discretization of the attribute popularity

Popularity Summary function values
1st Quartile (1st Qu.) Median 3rd Quartile (3rd Qu.)

[38, 58) low 45 49 52
[58, 86) modest 65 70 76
[86, 867] high 99 116 157
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Table 9. Equal-frequency discretization of the attribute quantity

Quantity Summary function values
1st Quartile (1st Qu.) Median 3rd Quartile (3rd Qu.)

[43, 73) small 52 57 65
[73, 120) medium 81 92 103

[120, 1395) big 136 169 224

datasets. For each attribute value, we defined a possibility distribution relative
to each object expressing the level of uncertainty. Each value of attribute known
with certainty is represented using a possibility degree equal to 1. It corresponds
to the case of complete knowledge, whereas each uncertain value is represented
using a high possibility degree (very possible value) or low possibility degree from
(may be considered as nearly impossible). We define the possibility distributions
for the attributes of the datasets with respect to their numeric values and using
these possibilistic degrees.

Assume Xi is a categorical attribute value, the trapezoidal function is used to
represent Xi.

1. If we deal with the first interval:

d =

⎧⎪⎨⎪⎩
0 if Xi > 1stQu.(I+1)

1stQu.(I+1)−Xi

1stQu.(I+1)−3rdQu.I
if 3rdQu.I ≤ Xi ≤ 1stQu.(I+1)

1 if Xi < 3rdQu.I

(8)

2. If we deal with the last interval:

d =

⎧⎨⎩
0 if Xi < 3rdQu.(I−1)
Xi−3rdQu.(I−1)

1stQu.I−3rdQu.I
if 3rdQu.(I−1) ≤ Xi ≤ 1stQu.I

1 if Xi > 1stQu.I

(9)

3. Otherwise: we are representing two intervals (I − 1) and (I + 1) with I is
the current interval:

d =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if Xi > 1stQu.(I+1) or Xi < 3rdQu.(I−1)

Xi−3rdQu.(I−1)

1stQu.I−3rdQu.(I−1)
if 3rdQu.(I−1) < Xi < 1stQu.I

1 if 1stQu.I ≤ Xi ≤ 3rdQu.I
1stQu.(I+1)−Xi

1stQu.(I+1)−3rdQu.I
if 3rdQu.I < Xi < 1stQu.(I+1)

(10)

The representations of the customers and products attributes’ values using
the trapezoidal function are illustrated in Figures 1 and 2.

5.3 Experimental Results

After experimentation with different values of k for the customer dataset, we use
k=5 and for the product dataset we use k=3 [13]. Table 10 shows the impact of
the possibilistic structure on the execution time.
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Fig. 1. Possibilistic degrees of uncertain values of attributes relative to customers data

Fig. 2. Possibilistic degrees of uncertain values of attributes relative to products data
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Table 10. The average of iteration number and execution time

Iteration number Execution time
Customer dataset 12 87 s
Product dataset 8 54 s

Based on Table 10, we notice that the running time of the databases is con-
siderably small. The customers dataset (with 1000 instances) needs more time
than the product one (with 500 objects) to get the stable partitions.

Moving now to the final partitions generated by our program, Tables 11 shows
the final attributes’ values of the modes and their possibility degrees. These latter
explain the degree of uncertainty relative to each value of attribute.

Table 11. Modes of five clusters of the customers dataset

Modes #Products Revenues Loyalty Profits
cc1 low low low low

0.68 0.75 0.71 0.63
cc2 modest modest modest modest

0.81 0.69 0.78 0.81
cc3 low low high modest

0.72 0.71 0.67 0.92
cc4 low high high high

0.85 0.73 0.64 0.59
cc5 high veryhigh veryhigh veryhigh

0.66 0.71 0.85 0.94

The PKM grouped customers into clusters based on their behaviors and char-
acteristics. The possibility degrees assigned at the beginning to instances have
ensured a high intra-similarity between objects belonging to the stable parti-
tions. The values of modes suggest that we have five types of customers.

1. Type 1 (corresponding to mode 1): customers who rarely visits, and hence
not loyal. They do not contribute significantly to revenues or profits .

2. Type 2 (corresponding to mode 2): customers that do not often visit the
stores but, they spend enough money to make a modest profit.

3. Type 3 (corresponding to mode 3): customers that do not buy or spend a
lot of money in the stores but, they frequently visit. Their visits could be
considered as a means of entertainment.

4. Type 4 (corresponding to mode 4): customers who are considered loyal. They
come often to the store, buy a lot of products and result in a reasonable profit
for the store. Generally, they have a high socio-economic status.

5. Type 5 (corresponding to mode 5): customers who frequently visit the store
indicating high loyalty. Moreover, they buy large number of products and
result in significant profits.

Tables 12 shows the three final modes with their degrees of possibility.
As shown in Tables 12, we get three stable partitions. Each partition groups

similar products having the same characteristics.
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Table 12. Modes of products dataset

Modes #Customers Revenues Popularity Profits Quantity
cp1 low low low low small

0.92 0.645 0.814 0.894 0.908
cp2 modest modest modest modest medium

0.89 0.69 0.72 0.85 0.81
cp3 high high high veryhigh big

0.79 0.85 0.91 0.93 0.877

1. Partition 1: contains products that are least bought and least profitable.
Customers seem to rarely need them.

2. Partition 2: presents products that are bought with modest quantity. They
are not needed for everyday life but, they are bought by reasonable number
of customers.

3. Partition 3: contains products which make a large profit for the store. These
products are very popular as customers often buy them in large quantity.

The profiles of customers and products obtained from the PKM using linguis-
tic variables based on possibility theory are semantically meaningful and can
be created without further assistance from the domain expert using their tabu-
lar representations from Tables 11 and 12. The fact that the linguistic values
were introduced prior to the application of the PKM algorithm, means that the
semantics is taken into account during the clustering process.

6 Conclusion

This paper illustrates how introduction of semantics through the linguistics vari-
ables based on possibility theory can lead to a more meaningful data mining in a
retail store. The numeric values from a transactional database are put in context
using linguistic values for variables such as loyalty, popularity, and revenues. A
recently proposed possibilistic k-modes (PKM) algorithm is used to create pro-
files of customers and products through a clustering process. The fact that the
linguistic values are introduced prior to the clustering process ensures that the
semantics is part of the clustering process. The modes of resulting clusters are
easily translatable to meaningful customer and product profiles. We are currently
conducting a detailed comparison of the profiles and cluster quality resulting
from the PKM and traditional numerical K-means algorithm. The results will
be presented in a forthcoming publication.
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Abstract. Clustering is one of the most widely used efficient approaches
in data mining to find potential data structure. However, there are some
reasons to cause the missing values in real data sets such as difficulties
and limitations of data acquisition and random noises. Most of clustering
methods can’t be used to deal with incomplete data sets for clustering
analysis directly. For this reason, this paper proposes a three-way de-
cisions clustering algorithm for incomplete data based on attribute sig-
nificance and miss rate. Three-way decisions with interval sets naturally
partition a cluster into positive region, boundary region and negative re-
gion, which has the advantage of dealing with soft clustering. First, the
data set is divided into four parts such as sufficient data, valuable data,
inadequate data and invalid data, according to the domain knowledge
about the attribute significance and miss rate. Second, different strate-
gies are devised to handle the four types based on three-way decisions.
The experimental results on some data sets show preliminarily the effec-
tiveness of the proposed algorithm.

Keywords: clustering, incomplete data, three-way decisions, attribute
significance.

1 Introduction

Cluster analysis is the task of grouping a set of objects in such a way that objects
in the same cluster are more similar to each other than to those in other clusters.
The study of cluster analysis not only has important theoretical significance, but
also has important engineering application value and humanistic value. Cluster-
ing has been widely applied in many fields, including pattern recognition, picture
processing, business intelligence and so on.

The missing values often appears in real data analysis. This may be due to
various reasons, such as difficulties and limitations of data acquisition, random
noises, data misunderstanding and data lost. Missing data is a big challenge that
data mining technology faced. For example, the benchmark database in machine
learning filed, UCI repository [9] even has more than 40% data sets with missing
data. Usually, a data set with missing data/values is also called as an incomplete
data set.
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DOI: 10.1007/978-3-319-11740-9_70 c© Springer International Publishing Switzerland 2014
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However, the traditional clustering approaches can not process incomplete
data sets directly. Many scholars have achieved some meaningful results. Fuzzy
clustering algorithms adapted to incomplete data perform well in recent studies.
Li et al. [8] proposed an attribute weighted fuzzy c-means algorithm for incom-
plete data which introduce weighted Euclidean distance could get better clus-
tering results; and then they [7] proposed a hybrid genetic algorithm with fuzzy
c-means approach for the problem of incomplete data clustering. Himmelspach
et al. [3] studied fuzzy clustering methods and compared the performance of
them through experiences. Yamamoto et al. [11] considered the applicability of
β-spread transformation for handling incomplete relational data in FCMdd-type
linear clustering.

Despite there are some improved fuzzy clustering algorithms for incomplete
data, there also exists some other clustering methods. For example, Wu et al.
[10] proposed a new extended mean field annealing algorithm to solve the prob-
lem of clustering for incomplete data in the continuous-value state space; this
algorithm uses a perturbation method to get the membership of each datum
to a cluster and calculates the energy function after every perturbation. Lai et
al. [5] used minimum description length concept to hierarchical clustering with
incomplete data. Honda et al. [4] proposed a PCA-guided procedure for k-Means
clustering of incomplete data sets, and the PCA-guided approach is more robust
to initialization problems than the k-Means procedure using PDS.

In order to solve the problemof clustering for incomplete data, this paper presents
a three-way decisions clustering algorithm for incomplete data. The concept of
three-way decisions plays an important role in many real world decision-making
problems. One usually makes a decision based on available information and evi-
dence. In widely used two-way decision models, it is assumed that an object either
satisfies the criteria or does not satisfy the criteria; we usually call that a posi-
tive decision or a negative decision. When the evidence is insufficient or weak, it
might be impossible to make either a positive or a negative decision. One therefore
chooses an alternative decision that is neither yes nor no. We called it the third-
way decision, or a boundary decision, or a deferred decision; actually, it is a non-
commitement. When the evidence becomes sufficient enough or strong enough, it
might be possible to make either a positive or a negative decision.

The notion of three-way decisions represents a close relationship between
rough set analysis, Bayesian decision analysis, and hypothesis testing in statistics
[13]. Furthermore, Professor Yao had outlined a theory of three-way decisions
in reference [12], and pointed out that we can describe and explain three-way
decisions in many-valued logics and generalizations of set theory, including in-
terval sets, rough sets, decision-theoretic rough sets, fuzzy sets, and shadowed
sets. Therefore, we had proposed three-way decisions with interval sets in our
previous work [14]. This three-way decisions method may have many real-world
applications [1] [16] [6].

Specifically, the main idea of the proposed algorithm is to consider attribute
significance as well as miss rate to deal with missing values. That is, the orig-
inal data set is divided into four types such as sufficient data, valuable data,
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inadequate data and invalid data, according to the domain knowledge about
the attribute significance and miss rate. Then, for sufficient data, the weighted
distance between two incomplete objects and similar value estimation formula
are defined, and a grid-based method is proposed to obtain an initial clustering
result. For other types, the distance and membership between object and cluster
are defined respectively, and three-way decisions rules are used to obtain the final
clustering result. The experimental results on some data sets show preliminarily
the effectiveness of the proposed algorithm.

2 Classify an Incomplete Data Set

2.1 Representation of Clustering

To define our framework, let a universe be U = {x1, · · · ,xn, · · · ,xN}, and the
clustering result is C = {C1, · · · , Ck, · · · , CK}, which is a family of clusters of
the universe.

The universe can be represented as an information system S = (U,A, V, F,W ).
U = {x1,x2, · · · ,xn, · · · ,xN} and A = {a1, a2, · · · , aD} are finite nonempty sets
of objects and attributes respectively. V = {V1, V2, · · · , VD} is the set of possible
attribute values, Vi is the possible attribute values of ai, f is an information
function, f : Vik = f(xi, ak) ∈ Vk. W = {w1, w2, · · · , wD} is a set of attribute
weights, wi is the weight of ai. The xn is an object which has D attributes,
namely, xn = (x1n, x

2
n, · · · , xdn, · · · , xDn ). The xdn denotes the value of dth attribute

of object xn, where n ∈ {1, · · · , N}, and d ∈ {1, · · · , D}.
When there are somemissing values, the information systemS will be an incom-

plete information system. Table 1 shows an example, which contains 10 objects,
and each object has 9 attributes. The missing value is expressed by the symbol ∗.

Table 1. An Incomplete Information System

U a1 a2 a3 a4 a5 a6 a7 a8 a9

x1 3 2 1 25 5 1 ∗ 9 ∗
x2 2 ∗ 8 15 4 2 4 6 9

x3 ∗ ∗ ∗ ∗ ∗ 6 5 ∗ 10

x4 2 ∗ ∗ 23 7 5 ∗ ∗ ∗
x5 ∗ 8 9 20 4 7 5 6 ∗
x6 ∗ ∗ ∗ ∗ ∗ 5 8 6 9

x7 ∗ ∗ ∗ 19 20 2 4 9 4

x8 2 3 9 ∗ ∗ ∗ 3 4 6

x9 3 2 1 25 5 ∗ ∗ ∗ 2

x10 3 5 ∗ ∗ 4 ∗ ∗ ∗ ∗

We can look at the cluster analysis problem from a view of decisions making.
For a hard clustering, it is a typical two-way decisions in some sense; and for a
soft clustering, it is a kind of three-way decisions. The positive decisions decide
objects into the positive region of a cluster definitely, the negative decisions
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decide objects into the negative region of a cluster definitely, and the boundary
decisions decide objects into the boundary region of a cluster. Using interval
sets to represent clusters can be more appropriate than crisp representations,
which directly leads to an interpretation in three-way decisions for clustering.
Let’s review some basic concepts of clustering using interval sets [15].

With respect to the family of clusters, C, we have the following family of
clusters formulated by interval sets as follows.

C = {[C1, C1], . . . , [Ck, Ck], . . . , [CK , CK ]} (1)

Therefore, the sets Ck, Ck −Ck and U −Ck formed by certain decision rules
construct the three regions of the cluster Ck as the positive region, boundary
region and negative region, respectively. The three-way decisions rules are de-
scribed as follows.

POS(Ck) = Ck

BND(Ck) = Ck − Ck

NEG(Ck) = U − Ck

(2)

According to Equation (2), the family of clustersC gives a three-way decisions
clustering result. Namely, objects in POS(Ck) belong to the cluster Ck definitely,
objects in NEG(Ck) don’t belong to the cluster Ck definitely, and objects in
the region BND(Ck) might belong to the cluster or not. The BND(Ck) �= ∅
means we need more information to help making decisions.

2.2 Classification of Incomplete Data

Few clustering methods consider the difference between different attributes in
the process of clustering. For example, when Euclidean distance-based clustering
algorithms calculate similarity between objects, there is an implicit assumption
that each attribute contributes the same to clustering. However, different at-
tribute produces different effect on clustering. The greater the attribute signifi-
cance degree is, the more it can reveal the underlying characteristics of the data
set.

In this paper, we suppose we get the attribute significance degree through
some way in advance. The assumption is reasonable because we really have lots
of expert knowledge in some cases. We can compute the attribute significance
by some way before clustering if we have no expert knowledge. The proposed
algorithm can still work well even if we don’t know attribute significance, to say
the least.

Therefore, we assume the descending order of attribute importance degree is
A = {a1, a2, · · · , am, · · · , aD}. Under a priori knowledge, M = {a1, a2, · · · , am}
is the set of important attributes, L = {am+1, · · · , aD} is the set of non-
important attributes. Set W = {w1, w2, · · · , wk, · · · , wD} be the set of attribute
weights, and w1 ≥ w2 ≥ · · · ≥ wk ≥ · · · ≥ wD.

The objective of this paper is incomplete data sets. However, the influence of
missing important attributes and non-important attributes to data is different.
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When missing values are with non-important attributes, but no with important
attributes, the object retains important information so that it can be considered
to be relatively complete. When both values of important attributes and non-
important attributes are partially missing, the object retains some degree of
important information. When all important attributes are missing, the quality
of clustering will decline and the cost of deciding will increase.

Therefore, we use a two-tuples I(xi) = (u, ϕ) to represent the complete degree
of an object xi. u = p/|M | represents the miss rate of important attributes,
and u ∈ [0, 1], |M | is the number of important attributes, p is the number of
missing important attributes of this object. ϕ = q/|L| represents the miss rate
of non-important attributes, and ϕ ∈ [0, 1], |L| is the number of non-important
attributes, q is the number of missing non-important attributes.

According to the concept of complete degree, the data set can be divided into
four types:

– sufficient data: when 0 ≤ u ≤ 0.2, the object belongs to sufficient data,
– valuable data: when 0.2 < u ≤ 0.5 and 0 ≤ ϕ ≤ 0.5, the object belongs to

valuable data,
– inadequate data: when 0.2 < u ≤ 0.5 and 0.5 < ϕ ≤ 1, or 0.5 < u < 1, the

object belongs to inadequate data,
– invalid data: when u = 1, the object belongs to invalid data.

Generally speaking, attribute values are missed randomly in most cases, there
exists a certain probability distribution of missing values especially for large data
sets. So we take 0.5 as the division standard for miss rate of non-important at-
tribute. On the other hand, missing more important attributes will seriously
affect the reliability of clustering, so we choose 0.2 as the division standard for
miss rate of important attribute. How to decide the two parameters automati-
cally is a problem, it could be the further work.

Let’s take Table 1 as the example again. According to the domain knowledge,
the ordered important attributes by significance is {a1, a2, a3, a4, a5}, and the
set of non-important attributes is {a6, a7, a8, a9}.

The complete degree of objects are I(x1) = (0, 0.5), I(x2) = (0.2, 0), I(x3) =
(1, 0.25), I(x4) = (0.4, 0.75), I(x5) = (0.2, 0.25), I(x6) = (1, 0), I(x7) = (0.6, 0),
I(x8) = (0.4, 0.25), I(x9) = (0, 0.75), I(x10) = (0.4, 1), respectively. So the set
of sufficient data is {x1,x2,x5,x9}, the set of valuable data is {x8}, the set of
inadequate data is {x4,x7,x10}, the set of invalid data is {x3,x6}.

3 Clustering Algorithm for Incomplete Data

3.1 Related Definitions

For sufficient data, a grid-based clustering method is proposed to obtain an
initial underlying structure of the data set U . Thus, we first introduce some
notions about grid-based clustering. For the information system S, we set G =
V1 × V2 × · · · × VD. We can partition the data space G into non-overlapping
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rectangle units by dividing the every dimension into equal intervals, and the
Rth is the length of the unit. Usually, a unit is called as a grid.

Given an ordered sequence {r1, r2, · · · , rD}, every element of the sequence de-
notes the order number of the corresponding dimension, and we say the sequence
denotes the position of a grid. A D-dimensional object xn = (x1n, x

2
n, · · · , xdn, · · · ,

xDn ) is contained in a grid having the position {r1, r2, · · · , rD}, if and only if
(rj − 1)×Rth ≤ xjn < rj ×Rth, 1 ≤ j ≤ D.The density of a grid g is defined as
the number of objects contained in it, denoted as ρ(g). A grid g is called dense if
ρ(g) ≥ minpoints, or sparse if ρ(g) < minpoints,where minpoints is a density
threshold.
Definition 1. Neighbour Grid: Neighbor grids of a grid g are those grids with
the common boundary or the common vertexes with g.
Definition 2. Adjacent Grid: Adjacent grids of a grid g include direct and
indirect adjacent grids. Direct adjacent grids are these neighbor grids of g, and
indirect adjacent grids are these neighbor grids of g’s neighbors. In this paper,
the weight of attribute is taken into account to improve the quality of clustering.
So we define a weighted distance function based on the partial distance [2] to
calculate the distance under the environment of incomplete data.
Definition 3. Weighted Distance between Two Objects: ∀xi,xj ∈ U , the
weighted distance between two objects is defined as follows.

Dist(xi,xj) =
1∑D

d=1 Idwd

(

D∑
d=1

(xd
i − xd

j )
2Idw

2
d)

1/2, where Id =

{
1 xd

i �= ∗, xd
j �= ∗

0 else

(3)

When the objects are complete, Formula (3) is the Euclidean distance for-
mula. Because an object is more similar to its nearest-neighbor than others, it
is reasonable that to estimate the object’s missing values by using its neighbor’s
features. Thus, we have the following.
Definition 4. h Nearest-Neighbors: Nearest-neighbors of object xi in a uni-
verse U is expressed as follows.

Nh(xi, U) = {x1,x2, · · · ,xh} (4)

where h is the number of nearest-neighbors, and {x1,x2, · · · ,xh} ∈ U .
It’s easy to achieve h nearest-neighbors by using Formula (3). And, the missing

attribute value of an object can be estimated by the average value of nearest-
neighbors which don’t miss this attribute value.
Definition 5. Similar Value Estimation: The similar value of the attribute
xdi for the object xi is estimated by the follow formula.

Sveh(x
d
i ) =

∑
xz∈Nh(xi,R) x

d
zI

d
z

h∑
z=1

Idz

, (5)

where

Idz =

{
1 xdz �= ∗
0 xdz = ∗
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and 1 ≤ d ≤ D,Nh(xi, U) is the h nearest-neighbors of in U .
The distance between objects can be used to express the similarity of them,

the greater the distance, the less the similarity. When deciding which cluster the
object belongs to, the decision is based on the similarity between the object and
clusters. The similarity between object and cluster is often calculated by the
distance between the object and cluster center. However, this method is suitable
for spherical clusters, not for arbitrary shape. Therefore, this paper calculates
the similarity by the average distance value of the object with all data points in
the cluster.
Definition 6. Distance between Object and Cluster: For xi is an object,
Ck is a cluster, and xi /∈ Ck, the distance between the object and cluster is
defined as follows.

DisObjClu(xi, C
k) =

∑
xj∈Ck

Dist(xi,xj)

|Ck| (6)

where Dist(xi,xj) is the distance between xi and xj , |Ck| is the cardinality of
the cluster.

According to the above definition, it’s easy to define the membership between
them. The higher the membership is, the more similar they are. So the decision
is transferred to find the membership between the object and clusters.
Definition 7. Membership between Object and Cluster: For xi is an
object, Ck is a cluster, and xi /∈ Ck, the membership of an object to a cluster is
defined as follows.

μ(xi|Ck) = 1− DisObjClu(xi, C
k)∑

1≤k≤K

DisObjClu(xi, C
k)

(7)

3.2 Description of the Algorithm

The algorithm has four phases: (1) classifying the data set into four subsets
according to the classification in Subsetion 2.2; (2) filling the missing values in
sufficient data; (3) obtaining the initial cluster partitions from sufficient data;
(4) obtaining the final clustering. The three-way decisions clustering algorithm
for incomplete data is described in Algorithm 1, shorted by TWD-CI.

The first phase, it is easy to get the four subsets corresponding to the four
types defined in Subsetion 2.2. We call them sufficient data, valuable data, in-
adequate data and invalid data. The second phase, for the sufficient data, we
first estimate missing values according to Definition 5. Since sufficient data re-
tain most of important information, it is reasonable to think they are relatively
complete. Then, the grid-based clustering method is used to obtain a general
underlying structure.

The fourth phase, the basic idea is to cluster them using corresponding three-
way decisions strategy. The useful information in valuable data, inadequate data
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Algorithm 1. TWD-CI: Three-way Decisions Clustering Algorithm for
Incomplete Data

Input: U , W , the number of important attributes R, the number of
nearest-neighbors h, the density threshold points, the length of interval Rth,
the thresholds α and β.
Output: Final clusters.
begin

Step 1: classifying the data set into four subsets according to the
classification rules in Subsetion 2.2.
Step 2: for every objects with missing values in sufficient data:

2.1 using Formula (3) to calculate the distance to other objects, then
finding its h nearest-neighbors.

2.2 using Formula (5) to fill the missing values.
Step 3: obtaining the initial cluster partitions from sufficient data:

3.1 dividing the data space into grids as introduced in Subsection 3.1.
3.2 mapping each object to the corresponding grid.
3.3 for unsolved dense grids: assign all objects in an unsolved dense grid

into a new cluster, and use the bread first searching to find its adjacent
grids; if the adjacent grid is dense, to assign objects in this grid into the
cluster, and label the dense grid with solved.

3.4 for unsolved sparse grids: if there exists dense neighbor grids, then
assign objects of this sparse grid to the cluster with the maximum dense
neighbor grids, label the sparse grids with solved.

3.5 for unsolved grids: assign objects of this grid to the cluster with the
maximum sparse neighbor grids.
Step 4: for every object xi in valuable data, inadequate data and invalid
data:

4.1 mapping each object xi to a set of grids by considering the attribute
with no missing values.

4.2 if objects in the set of grids belong to the same cluster Ck, then using
Formula (7) to calculate the membership μ(xi|Ck); if μ ≥ α, then the object
belongs to POS(Ck); if β < μ < α, then the object belongs to BND(Ck).

4.3 if objects in the set of grids belong to more than one cluster, then
using Formula (7) to calculate the membership μ; find the cluster Ck with
the maximum of membership; if μ ≥ α, then the object belongs to
POS(Ck); if β < μ < α, then the object belongs to BND(Ck).

end
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and invalid data is descending. Thus, clustering valuable data first, then we
cluster other types orderly. Because an object in these three types data has
missing values in a certain extent, it is not reasonable to assign it to a sole grid
unit; we assign it to the units according to corresponding attributes with no
missing values. Then according to the membership of an object to a cluster, we
assign the object to the positive or the boundary region. That is, the three-way
decisions rules used here are as follows.

if μ(xi|Ck) ≥ α, decide the object to POS(Ck);
if β < μ(xi|Ck) < α, decide the object to BND(Ck);
if μ(xi|Ck) ≤ β, decide the object to NEG(Ck).

(8)

4 Experiments

4.1 Experiment 1

The purpose of this experiment is to observe the statistical distribution of the
incomplete data set, in order to verify the reasonability of the classification we
introduced in Section 2.

First, we set some attribute values missed randomly on data sets. Then the
experiment tests three times under miss rate 5%, 10%, 15% and 20%, respec-
tively. In addition, the incomplete data set must meet the following conditions:
(1) any object must keep at least one complete attribute; (2) any attribute in
the data set must keep at least a complete value. That is to say, we don’t keep
the row or column with all missing values in the test.

Then, we count the proportion of every type of the data under a miss rate,
where the data sets from UCI repository [9] except Face is a synthetic data
set. Table 2 records the statistical result, |U |, D and M denote the number
of objects in the data set, the number of attributes, the number of important
attributes, respectively. The column “Miss” records the different missing rate.
The “Sufficient”, “Valuable”, “Inadequate” and “Invalid” means the four types
of data.

From Table 2 we can see that the number of sufficient data is reduced with
the increasing of miss rate. Even if the miss rate reaches to 20%, the proportion
of sufficient data is still more than 50%; which indicates the rationality of the
proposed algorithm based on sufficient data. The proportion of valuable data is
much less than sufficient data, but more than that of inadequate data and invalid
data. Seeds and Face only has sufficient data and invalid data, because Seeds
only has one important attribute and all attributes in Face are important. The
experimental result shows the rationality of classification proposed in Section 2.

4.2 Experiment 2

In order to evaluate the validity of the thought that considers the attribute
significance as well as the miss rate when classifying data set into four types, we
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Table 2. The Proportion of Four Types Data

Data Set |U | D M Miss Sufficient Valuable Inadequate Invalid

Iris 150 4 2

5% 89.33% 10.76% 0.00% 0.00%
10% 83.33% 14.67% 0.00% 2.00%
15% 72.67% 24.67% 0.66% 2.00%
20% 65.33% 29.34% 2.00% 3.30%

Banknote
Authentication

1372 4 2

5% 90.89% 8.97% 0.00% 0.15%
10% 79.96% 18.59% 0.22% 1.24%
15% 70.92% 25.87% 0.51% 2.70%
20% 62.90% 32.14% 1.38% 3.57%

Seeds 210 7 1

5% 97.62% 0.00% 0.00% 2.38%
10% 87.14% 0.00% 0.00% 2.86%
15% 95.24% 0.00% 0.00% 4.76%
20% 94.29% 0.00% 0.00% 5.71%

Wilt 4839 5 3

5% 85.45% 13.78% 0.74% 0.02%
10% 73.13% 23.77% 2.87% 0.23%
15% 61.67% 30.89% 7.07% 0.37%
20% 51.00% 37.53% 10.66% 0.81%

Face 800 2 2

5% 90.00% 10.00% 0.00% 0.00%
10% 80.00% 20.00% 0.00% 0.00%
15% 69.37% 30.63% 0.00% 0.00%
20% 60.00% 40.00% 0.00% 0.00%

Table 3. The Results of Two Strategies

Data Set Miss Rate
Parameters Strategy 1 Strategy 2

Rth minpoints h Accuracy Time Accuracy Time

Iris

5% 0.8 3 6 93.33% 0.188 88.67% 0.156
10% 0.8 6 6 93.33% 0.188 90.00% 0.172
15% 0.8 6 6 91.33% 0.250 86.67% 0.312
20% 0.8 6 6 91.33% 0.218 87.33% 0.219

Banknote
Authentication

5% 3.5 51 10 77.41% 2.562 63.63% 1.688
10% 3.5 45 10 70.34% 4.015 68.07% 1.250
15% 2.7 14 10 69.39% 4.781 68.07% 2.141
20% 3.1 22 10 68.80% 6.625 68.37% 3.047

Seeds

5% 1 6 10 86.67% 1.984 85.71% 1.562
10% 1 7 10 85.24% 1.375 84.29% 1.250
15% 1 7 10 84.76% 1.328 77.62% 1.188
20% 1 6 10 84.76% 2.14 84.29% 0.890

Wilt

5% 28 21 20 84.21% 284.404 83.43% 296.562
10% 28 20 20 81.81% 448.984 79.40% 323.219
15% 28 19 20 70.74% 277.594 70.74% 244.248
20% 28 17 20 67.95% 224.344 67.53% 286.434

Face

5% 26 21 10 79.25% 0.750 79.25% 0.750
10% 26 18 10 76.00% 1.453 76.00% 1.421
15% 24 16 10 78.88% 1,703 78.88% 1.734
20% 26 16 10 72.00% 2.578 72.00% 2.578
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compare the proposed algorithm with the one that only considers the miss rate
when classifying.

The proposed algorithm TWD-CI is called Strategy 1, another one is called
Strategy 2. That is, the input data set of Strategy 1 is the data set ordered by
attribute significance; and the input data set of Strategy 2 is the original data
set or with the random order attributes, in other words, the weights of attributes
are equal. The other processing of two strategies are same. We set the threshold
α = 0.7, β = 0.5 in experiment, and the result is shown in Table 3.

Observe Table 3, the accuracy of Strategy 1 is better than that of Strategy
2 in most cases. For Face data set, because two attribute weights are same, the
advantage of Strategy 1 is not very evident. Strategy 1 is roughly the same as
Strategy 2 in time. The results indicate that the proposed algorithm TWD-CI
is adapted to the environment of attributes with different importance.

5 Conclusions

In this paper, we presented a three-way decisions clustering algorithm for in-
complete data, which considers the attribute significance as well as miss rate.
The algorithm divides the data set into four types based on attribute signifi-
cance and the miss rate of the data. The four types are sufficient data, valuable
data, inadequate data and invalid data. For sufficient data, grid-based clustering
method is used to obtain a basic underlying structure of data. The processing
for the rest of the three parts follows the order of valuable data, inadequate data
and invalid data; and the three-way decisions rules are adopted to decide which
cluster the datum belongs to.

The essential idea of the approach is to classify data set into four subsets,
and the preliminary experimental results show that it is effective that clustering
based on the sufficient data. However, there is still some problems need to solve,
for example, how to automatically divide original incomplete data set into the
four parts no depending on the parameters. Making better of Step 3 and Step
4 of the proposed algorithm will produce an important effect to improve the
clustering performance and to reduce the time, which is also of the further work.
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Yao, J., Yang, Y., S�lowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.)
RSCTC 2012. LNCS, vol. 7413, pp. 277–286. Springer, Heidelberg (2012)

16. Zhou, B., Yao, Y.Y., Luo, J.G.: Cost-sensitive three-way email spam filtering.
Journal of Intelligent Information Systems 42, 19–45 (2013)

http://archive.ics.uci.edu/ml/


Sentiment Analysis with Automatically

Constructed Lexicon and Three-Way Decision

Zhe Zhou, Weibin Zhao, and Lin Shang

State Key Laboratory for Novel Software Technology, Department of Computer
Science and Technology, Nanjing University, Nanjing 210023, China

zhouzhenjucs@gmail.com zhaowb@njupt.edu.cn shanglin@nju.edu.cn

Abstract. An unsupervised sentiment analysis method is presented to
classify user comments on laptops into positive ones and negative ones.
The method automatically extracts informative features in testing dataset
and labels the sentiment polarity of each feature to make a domain-
specific lexicon. The classification accuracy of this lexicon will be com-
pared to that with an existing general sentiment lexicon. Besides, the
concept of three-way decision will be applied in the classifier as well,
which combines lexicon-based methods and supervised learning meth-
ods together. Results indicate that the overall performance can reach
considerable improvements with three-way decision.

Keywords: sentiment analysis, opinion mining, sentiment lexicon, three-
way decision.

1 Introduction

Sentiment analysis, also known as opinion mining, refers to detecting the senti-
ment polarity or sentiment strength of a given piece of text[1]. Nowadays people
can freely post their opinions and comments on the Internet and receive others’
views at the same time[2]. Therefore, sentiment analysis becomes popular and
urgent for some particular groups of Internet users. For example, commodity
producers may collect reviews written by consumers and try to obtain the over-
all sentiment tendency in order to know whether their products are popular or
not and what advantages and disadvantages they have[3, 4]. On the other hand,
consumers can as well search their peers’ opinions and reviews in order to know
whether the product they want is worth buying[5]. In such cases, techniques
similar to traditional topic-based classification algorithms can be used to au-
tomatically assign sentiment labels to product reviews. However, such methods
may run into difficulty due to the speciality of product review sentiment analy-
sis. Firstly, a major difference between traditional topic-based classification and
sentiment analysis is that sentiment is often expressed in a subtle way, which will
pose challenges in the classification work[6]. Besides, reviews on products or ser-
vices often pay attention to detailed features or aspects[3, 4, 7], so feature-level
analysis must be taken into consideration in the analysis process.

D. Miao et al. (Eds.): RSKT 2014, LNAI 8818, pp. 777–788, 2014.
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In this article, we will design an unsupervised sentiment analysis algorithm to
deal with these problems. The algorithm can help to understand the sentiment
of product reviews better by utilizing the feature-level information. Also, we
will apply a three-way-decision-like concept into the scheme in order to boost its
performance and get a finer-grained system. The proposed scheme will be applied
on a dataset made up by laptop reviews to test its efficiency. The remainder of
this article is organized as follows. Sect. 2 will list some related work about
sentiment analysis. Sect. 3 will explain the proposed method in detail. Sect. 4
will list and analyse the experiment results. Sect. 5 will conclude the whole work
above and look into the future work.

2 Related Work

There have been many contributions studying text sentiment analysis during the
past decade. Pang et al.[6] collected over a thousand movie reviews for binary
sentiment classification and compared performances of three different machine
learning algorithms including Naive Bayesian, Max Entropy and the Support
Vector Machine. These movie reviews have been one of the most well-known
benchmark datasets for sentiment analysis since this contribution. Besides, Pang
and Lee[8] also focused on extracting only the subjective sentences for feature
selection aiming to improve the performance of sentiment analysis. The process
of subjectivity summarization was based on the minimum-cut algorithm and
proved to be beneficial to the classifier’s performance. Recent works include Hu
et al.[9], who provided a supervised sentiment analysis approach in microblogging
by utilizing users’ social relation information to tackle noises. Besides those works
based on supervised learning, there have been enormous unsupervised-learning-
based contributions as well. Turney[10] calculates the semantic orientations of a
large number of 2-grams with the help of search engines and use them to classify
the given text. Li and Liu[11] introduced an clustering-based approach in sen-
timent analysis and obtained satisfying results by applying TF-IDF weighting,
voting mechanism and important term scores. Taboada et al.[12] used different
general sentiment lexicons in their lexicon-based sentiment analysis approaches
and made a comparison between those lexicons. Hogenboom et al.[13] manu-
ally created a lexicon consisting emoticons to aid the traditional classification
work. With the problem that current expressions on social media are usually
unstructured and informal, Hu et al.[14] incorporated emotional signals into the
unsupervised sentiment analysis framework and experimental results proved the
effectiveness of emotional signals.

Current sentiment analysis works mostly focus on adjective features as adjec-
tives are believed to be more informative in indicating sentiment orientations.
However, Zhang and Liu[15] pointed out that in sentiment analysis on product
reviews, it is often necessary to apply domain-specific noun features into the
feature space. There have been many contributions concerning this aspect. For
example, Yin and Peng[3] build semantic orientations between product features
and sentiment words in reviews written in Chinese. Hu and Liu[7] addressed sen-
timent analysis on customer reviews by extracting frequent product features and
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using them to summarize the sentiment of the whole review. Similarly, Zhang et
al.[4] addressed feature-level sentiment analysis by combining association rules
and point-wise mutual information together to extract product features and iden-
tify their sentiment orientations. Riloff et al.[16] proposed a method to extract
subjective nouns, which again proved that noun features can help sentiment
analysis quite well, especially in product reviews.

3 Proposed Method: Feature Lexicon Construction and
Three-Way Decision

In this section we will explain the proposed scheme to tackle the potential diffi-
culty in traditional sentiment analysis methods. We extract informative patterns
from the dataset and calculate sentiment scores of those patterns with the help of
a general lexicon. The newly formed product feature lexicon and the general lex-
icon will be separately used in a lexicon-based sentiment analysis algorithm and
return two different results. Finally, we will introduce the concept of three-way
decision and use a similar method to reach a better classification accuracy.

3.1 Data Preprocessing

Our work aims to run a sentiment analysis on comments written in Chinese,
so the most crucial parts in preprocessing step will be word segmentation and
part-of-speech tagging. Word segmentation refers to cutting every sentence into
its component words and part-of-speech tagging means using natural language
processing techniques to obtain the part of speech of each word.

3.2 Lexicon-Based Sentiment Analysis

A sentiment lexicon, which can be considered as a special kind of dictionary,
is a data structure containing different words and their sentiment orientations.
Typically, the sentiment orientation is represented by a numerical value. A value
greater than zero refers to a positive orientation and a value smaller than zero
indicates a negative one. At the moment there are plenty of public sentiment
lexicons on the Internet. Those general lexicons are integrated by other people’s
manual work and can be applied into sentiment analysis works of any domain.

In our proposed scheme, a general lexicon of HowNet[17], which contains about
9000 Chinese words and their sentiment polarities as positive or negative, will
be utilized as the lexicon to classify a piece of text into two sentiment categories.
The pseudo-code of classification algorithm is shown below.

As [1, 6] have mentioned, sometimes lexicon-based sentiment analysis may
encounter a large amount of ties where the sentiment score will be 0. It’s usually
because the times of occurrences of positive and negative words are equal (usually
both are 0 when the text is not long enough). According to [12], people tend to
favour positive expressions when they make comments and negative languages
are often expressed in a obscure and indirect way which is actually hard to detect.
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Fig. 1. Lexicon-based algorithm for sentiment analysis

This phenomenon makes negative oriented comments much easier to be ignored
and incorrectly classified. As a solution to the “positive bias”, [12] gives negative
words additional weights to reach a balance. For the same reason, out tie-breaker
will always label tie comments as negative ones.

3.3 Automatically Constructed Feature Lexicon

General sentiment lexicons can make contributions to many sentiment analysis
works, but our work focuses on the categorization of comments on laptops, which
will be more challenging due to their unique traits. For example, the comment
“the cost-performance is low” expresses a negative sentiment, although neither
“cost-performance” nor “low” can be found in general sentiment lexicons. From
the example, it’s easy to see that when customers comment on electronic devices,
they tend to express their opinions on product features rather than directly
use sentiment-carrying words, especially when they want to show their negative
views. So it will be inefficient to run analysis only with general lexicons. In
order to solve this problem, we design an algorithm to automatically extract the
product-feature-related phrases out of the whole corpus. These phrases together
form a laptop feature lexicon.

The process of constructing a laptop feature lexicon is based upon an assump-
tion that is consistent with people’s general intuitions: the sentiment expressed
by a word is to some extent correlated with the sentiment of words co-occurring
with it. In [10], similar assumptions were used to label target phrases by cal-
culating mutual information between the phrase and seed words. The detailed
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Fig. 2. Steps of building a laptop feature lexicon

scheme is shown below. The whole process consists of two main steps: pattern
extraction and sentiment polarity assignment.

In the patterns extraction step, the algorithm detects all the “n-adj” patterns
(a “n-adj” pattern is a noun and an adjective with no punctuations between
them) from the corpus and stores them in pre-defined data structure. Afterwards,
if a pattern’s noun part occurs at least 100 times in the corpus and the occurrence
of the pattern itself is greater than 10, then it will be put into the laptop feature
lexicon. Otherwise the pattern will be removed.

Table 1. Patterns after selection

pattern noun freq n.+adj. freq

cost-performance+high 685 233
laptop+hot 181 67
camera+clear 200 14
price+high 632 33

memory+small 491 67
speed+high 873 168
speed+low 873 321

... ... ...

Table 1 shows part of the terms in the final laptop feature lexicon. Of course
in our experiment all those patterns are written in Chinese. Then our algorithm
will automatically assign a sentiment label to every pattern in the laptop fea-
ture lexicon. When a pattern is found in the pattern extraction process, our
algorithm will extract the n words before and following its noun part and store
them in another data structure (in this work we let n=5). We call those words
“neighbourhood sentences”. For every pattern, we extract all the neighbourhood
sentences near its occurrences and use the same method as Fig. 2 to compute
their sentiment scores. After that we will be able to get the average sentiment
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Table 2. Patterns and their sentiment polarities

pattern sentiment score sentiment polarity

cost-performance+high 1.70 1
laptop+hot -0.88 -1
camera+clear 1.14 1
price+high -0.52 -1

memory+small -0.91 -1
speed+high 1.72 1
speed+low 0.07 -1

... ... ...

score of all the neighbourhood sentences, we see that as an estimation of the
sentiment score of the pattern itself. Table 2 shows part of the selected patterns,
their corresponding average sentiment scores are shown in the middle column.

Lastly we transform every sentiment score to +1/-1. This is done with the
help of an antonym lexicon which contains a large number of antonym pairs
(see Table 3). We traverse through all the frequent patterns to find the pattern
pairs whose noun parts are the same but adjective parts are antonyms. When
such pairs are encountered, the pattern with larger sentiment score is given the
sentiment polarity of +1 and the other -1. The polarity of remaining patterns
will be decided by the sign of their sentiment scores.

Table 3. An antonym lexicon

word1 word2

front back
forward backward
high low
public private
cold hot
die alive
... ...

After all the patterns are given a sentiment polarity label (see the last column
in Table 2), the laptop feature lexicon is finally constructed. Now we can run the
algorithm in Fig. 2 again with the laptop feature lexicon in place of the general
HowNet lexicon and expect the new algorithm to reach satisfying results.

3.4 Three-Way Decision

Most sentiment analysis problems are treated as binary classification tasks[3,
4, 6–8, 10–12, 14, 15], in which a piece of text is either labelled as “positive”
or “negative”. Such idea is simple and direct, but sometimes can not reflect
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the nature of the real world. Take a real world problem into consideration, if a
classifier is trained to predict whether an incoming Email is a spam one or not,
it will encounter some Emails which are hard to classify into either of the two
categories. For example, assume the classifier is trained by logistic regression, and
there is an Email whose probability of being negative (spam mail) is estimated as
0.55. Of course the Email will be classified as a spam, but the classifier will take
great risks doing so because the probability of the mail being legitimate is up to
0.45 as well. Therefore, it is necessary to introduce a third way of decision into
the classification task, where the classifier can refuse to classify emails if it’s not
confident enough of the emails’ categorization. A rejected email will be labelled
as “suspicious” and presented to the user, who will make his own judgements
whether it’s a spam or not. Such concept is called three-way decision.

Three-way decision has been widely studied in previous contributions and is
usually associated with the rough set theory, as Yao have introduced in [18, 19].
According to the three regions in the rough set, Yao concluded three rules shown
in (1)-(3) for decision. The values of alpha and beta are computed from six
predefined losses when different actions are taken on different objects. Zhou et
al.[20] put the three-way decision into application by designing a Email spam
filtering algorithm. In their work, an email may be rejected if the risk of labelling
it as either “legitimate” or “spam” is high enough. From experimental results,
the three-way classifier reached a better weighted accuracy than a normal one.

If Pr (X |[x]) ≥ α, decide x ∈ POS (X) (1)

If β < Pr (X |[x]) < α, decide x ∈ BND (X) (2)

If Pr (X |[x]) ≤ β, decide x ∈ NEG (X) (3)

In this work we will use a method which is similar to the process of three-
way decision to provide another sentiment classification algorithm on the given
dataset, which is combined by the two lexicon-based methods introduced above.
First, we apply the algorithm based on general lexicon and the algorithm based
on laptop feature lexicon separately on the dataset and get two different results
about the sentiment polarity of every piece of comment. Then we combine the
two results together and let them vote for a final one. The rule is simple: if two
results are the same, then the sentiment polarity of the comment will be the
same with the two results; if two algorithms return different sentiment labels,
then the comment will be put into the rejection set for further decision, which
means we are not assigning a sentiment label to the comment at the moment.
This allows us to put aside comments with which the classifiers are not confident
enough and thus can reach a better accuracy on the comments who are given an
exact sentiment label.

Our last aim in this work is to deal with the comments in the rejection set
in order to complete the whole three-way decision concept. The idea is shown
below in Fig. 3. We use the supervised learning method to classify the unlabelled
comments in the rejection set, and the training data in supervised learning is
made up by the comments that are previously labelled by the two lexicon-based
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algorithms. As [12, 21] have mentioned, the two main weaknesses of supervised
learning are that it’s difficult to find abundant labelled data for training and
the classifier’s performance may drop harshly when applied into a new domain
of topic. However, our work extracts training data from the unlabelled dataset
itself (see Fig. 3), which can solve the two problems at the same time.

Fig. 3. A hybrid algorithm for sentiment analysis

Obviously, the idea has its drawbacks as part of the training data may be
wrongly classified by lexicon-based algorithms and thus have an incorrect sen-
timent label, which may reduce the accuracy of supervised learning. But it has
been indicated in [21] that the supervised method can still reach considerable
accuracy provided that a large amount of training data have their labels assigned
correctly. For this reason, we can expect our supervised learning algorithm to
provide a good performance, as [21] have shown in their work.

4 Experimental Results

4.1 Dataset

Our test dataset is called ChnSentiCorp-nb-4000, which is collected by S.Tan1.
The dataset consists of 3993 different comments on laptops, 1996 of which is
positive and others negative. The average length of comments is around 60 Chi-
nese characters. We will run the sentiment classification scheme introduced in
Sect. 3 on the dataset, predicting the sentiment polarity of each comment.

1 http://www.searchforum.org.cn/tansongbo/senti_corpus.jsp

http://www.searchforum.org.cn/tansongbo/senti_corpus.jsp
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4.2 Performance Measure

We will generally evaluate the performance of our method by its classification
accuracy. When the general sentiment lexicon and the laptop feature lexicon is
independently applied to the dataset, the calculation of Accuracy is presented
below, where TP means true positives, TN means true negatives and ALL means
the number of comments in the dataset.

Accuracy =
TP+ TN

ALL
(4)

After two lexicon-based methods are combined together, the calculation of Ac-
curacy is shown in (5), where TIE means number of comments that are rejected
by the classifier because the vote results in a tie. Besides, we will introduce a
new measure called Reject (or tie rate) to represent the percentage of comments
that are rejected.

Accuracy =
TP+ TN

ALL− TIE
(5)

Reject =
TIE

ALL
(6)

When the three-way decision is applied, the calculation of Accuracy is shown
in (7). TP2 and TN2 mean the number of true positives and true negatives that
are obtained by the tie-breaker (in our work we use Naive Bayesian Classifier
as the tie-breaker). 3rdWayAccuracy represents the accuracy our tie-breaker
reached on the unassigned comments. For comparison, we set a a baseline where
we randomly “guess” a sentiment label for each rejected comment. It is obvious
that theoretically the 3rdWayAccuracy for random-choice strategy will be 50%,
so (9) represents the baseline accuracy, which our method must be superior to.

Accuracy =
TP + TN+ TP2 + TN2

ALL
(7)

3rdWayAccuracy =
TP2 + TN2

TIE
(8)

Baseline =
TP + TN+ 0.5 ∗ TIE

ALL
(9)

4.3 Results and Analysis

Before presenting our experimental results, we will firstly introduce a previous
work which is applied on the same dataset. The previous work is done by Yu
et al.[22], in which paralle1ized sentiment classification algorithms are ran with
different weighting methods, feature selection methods and supervised classifiers.
The results in [22] is shown below and the average accuracy is around 80.2%.
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Table 4. Experimental results by Yu et al.

feature selection method weighting method classifier accuracy

Bigram Boolean Knn 84%
Bigram Boolean Rocchio 82.9%
Bigram Tf-idf Knn 78.4%
Bigram Tf-idf Rocchio 87.7%

Sentimen Lexicon Boolean Knn 78.9%
Sentimen Lexicon Boolean Rocchio 78.4%

Sentimen Tf-idf Lexicon Knn 74.1%
Sentimen Tf-idf Lexicon Rocchio 81.6%
Substring Boolean Knn 79.5%
Substring Boolean Rocchio 68.8%
Substring Tf-idf Knn 82.9%
Substring Tf-idf Rocchio 85.3%

average 80.2%

Then our experimental results is shown below in Table 5. The first two rows
shows the classification accuracy of general lexicon HowNet and the laptop fea-
ture lexicon constructed in our work. Results indicate that the laptop feature
lexicon can do almost as well as the general sentiment lexicon which is publicly
available on the Internet. This suggests that our method of extracting patterns
describing product features and estimate their sentiment scores can actually
make contributions to sentiment analysis.

Furthermore, when the two lexicons are combined together to make a vote
system, the result is shown in the third row. 27.35% of all the reviews are re-
jected with rule (2) but those not rejected can reach the accuracy of 85.66%.
Taking rejection as a third way of decision will provide a more subtle view in
classification problems, which can reflect the true state of nature better[20].

According to [20], additional information is needed to deal with the undecided
samples. So we apply the algorithm in Fig. 3, use supervised learning as a tie-
breaker to classify the unlabelled data. The comparison result is shown in the
forth and fifth row in Table 5. Our proposed scheme reached accuracy of 84.90%,
which outperforms the baseline of random guess strategy and either of the two
lexicons. Also, when comparing Table 4 with Table 5 it is easy to see our proposed
scheme is better than [22] in most cases and is superior to its average accuracy
as well. Unlike [22], our proposed scheme is unsupervised (as shown in Fig. 3, the
“training data” in the supervised process is part of the testing data itself), which
again proves its effectiveness. Those results suggest that our method can return
satisfying classification results while maintaining its unsupervised feature.

5 Conclusion and Future Work

In this work, an unsupervised sentiment analysis scheme is ran on a dataset
made up by customers’ comments on laptops. A new laptop feature lexicon
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Table 5. Experimental results

algorithm accuracy reject rate

General Lexicon 77.54% -
Feature Lexicon 74.28% -

GL + FL 85.66% 27.35%
3-way: baseline 75.91% -
3-way: proposed 84.90% -

which is generated from the dataset itself is introduced to provide an extra
view in sentiment categorization. Also, three-way decision methods are used
as well in order to get better classification accuracy. Experiment results show
that the laptop feature lexicon can do almost as well as a general lexicon in
classification accuracy. Besides, when the two lexicons are combined together
with the three-way decision method, the classifier can reach a great improvement
in its performance.

In the future, we aim to apply our feature lexicon construction methods to
other domains to test its validity. Besides, the three-way decision model used in
the proposed scheme is simple and intuitive. In the future, we hope to build a
three-way classifier which is more theoretically precise in order to make the work
more convincing.
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Abstract. Multi-attribute group sorting (MAGS) has become a popu-
lar subject in multi-attribute decision making fields. The optimization
preference disaggregation method and the outranking relation method
are frequently used to solve this kind of problems. However, when faced
with a MAGS with more attributes and alternatives, these methods show
their limitations such as the intensive computations and the difficulty to
determine the necessary parameters. To overcome these limitations, we
here propose an intelligent three-way group sorting method based on
Dempster-Shafer theory for obtaining a more credible sorting result. In
the proposed method, decision evidences are constructed by comput-
ing the fuzzy memberships of an alternative belonging to the decision
classes; the famous Dempster combination approach is further used to
aggregate these evidences for making the final group sorting. In the end,
a simulation example is employed to show the effectiveness of the new
method.

Keywords: Three-way decision, Dempster-Shafer theory, Fuzzy prefer-
ence relation, Evidence combination, Group sorting.

1 Introduction

Multi-attribute decision making (MADM) is an important and familiar deci-
sion activity that usually occurs in the fields such as economics, management,
medicine, pattern recognition [9,25].There are mainly four tasks [28] in MADM
problems:

– to construct a rank of alternatives from the worst to the best [31];
– to select the best alternative(s) from the given alternative set [29];
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– to identify the major distinguish attributes and perform their description
based on these attributes [22,23];

– to sort the alternatives into predefined homogenous groups [10].

These decision making problems have been studied in variety of fields from dif-
ferent aspects[9,13,26,32]. In recent years, multi-attribute sorting has attracted
several researches’ attention and become a hot topic in decision making.

Several representative multi-attribute sorting techniques have been proposed
for solving practical problems. Multi-attribute utility theory models the deci-
sion maker’s preferential system as a value function and determines the cut
points for making sorting decision [16,18]. Outranking relation theory is a promi-
nent approach to introduce the incomparable relation to the multi-attribute
decision making. ELECTRE (ELimination Et Choix Traduisant la REalité)[27]
and PROMETHEE (Preference Ranking Organization METHod for Enrichment
Evaluations) [2] are two families of outranking relation approaches. Several im-
proved outranking relation based methods [11,15,19] were proposed for specially
solving the multi-attribute sorting problems. Case-based disaggregation meth-
ods are designed to analyze the actual decisions taken by the decision maker so
that an appropriate model can be constructed representing the decision maker
system of preferences as consistently as possible [5,6,9,12,13].

The above mentioned methods are all designed for the multi-attribute sorting
problem with a single decision maker. However, a decision making model with a
single decision maker can not adapt to the progressively complex socio-economic
environment, and more and more practical decision making problems are in need
of a group of decision makers to participate in the decision processes in order to
consider different aspects of a subject. To the best of our knowledge, only a few
researchers have addressed the multi-attribute group sorting problems. Bregar
et al. [3] presented a ELECTRE-like group sorting procedure that captures pref-
erential information in the form of the threshold model. Cai et al. [4] proposed a
interactive method which considers the inconsistency to assist a group of decision
makers with different priorities. Damart et al. [7] developed a ELECTRE-TRI
based method to solve the group sorting problem by using a decision support
system IRIS, which is considered to preserve the consistency of the sorting results
both at the individual level and at the group level. Jabeur et al. [17] proposed an
ordinal group sorting method to integrate the individual preferences expressed
in partial pre-orders by taking into the importance of experts. Kadziński et al.
[20] introduced the concept of a representative value function and proposed an
optimization model which extends Doumpos’ individual decision maker’s pref-
erence disaggregation method to aggregate the preferences of several decision
makers.

These approaches have made beneficial explorations for solving multi-attribute
group sorting. However, Refs. [4] and [20] are done by constructing a optimiza-
tion models; and Refs. [3] and [4] required some necessary parameters to be
provided before the methods being executed, and it is usually quite hard to
articulate these parameters by the decision makers. Then, it is urgent to de-
sign a new and easy understandable approach. A nature thought is to apply the
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method, which involves a single decision maker, plus voting for multi-attribute
group sorting, while there might exist too many ties in the voting process as an-
alyzed in [24]. Therefore, it is also interesting to introduce advanced aggregation
method to solve the multi-attribute group sorting problems. In this paper, the
famous Dempster-Shafer theory will be used to help to aggregate the decision
makers’ opinions in the following sections.

Three-way (positive, negative, deferment) decision is one of the most common
used sorting in real decision-making problems [21,34,35]. In an invited lecture in
International Joint Rough Set Symposium, Professor Yao has proposed a formal
framework for three-way decision theory and pointed out that it is necessary to
study the theory because of the three-way decision widely existing in human’s
daily life [36]. In this paper, we aim to propose an Dempster-Shafer theory
based method for solving the multi-attribute group sorting in which each decision
maker provide the primary three-way evaluation information by considering the
samples’ measurements under the condition attributes. Two main stages are
involved in the proposed approach. In the first Stage, given a new alternative
and L sets of three-way decision case, we construct L groups of pair of basic belief
assignments (decision evidences), i.e., the memberships of alternative belonging
to different decision classes from inner and outer perspectives. Hence, 2 × L
basic belief assignments are obtained with plenty of fuzzy sorting information.
Then, the famous Dempster’s combination method is used to combine 2 × L
basic belief assignments to make the final decision in the second stage. Since the
multi-perspective decision evidences are considered in the new method, the final
decision making result is more credible. In order to show the effectiveness of the
method, we simulate a multi-attribute group sorting process by using the open
WEKA data set PASTURE. The illustrative example shows that if each decision
maker can provide the exact sorting results for the selected sample set, a more
credible aggregation decision result can be got by using the proposed intelligent
method.

The remainder of this paper is organized as follows. Section 2 describes the
multi-attribute three-way group sorting problems, defines some basic concepts
and reviewed some basic concepts of the D-S theory. The intelligent multi-
attribute group sorting method is proposed in Section 3. In Section 4, an il-
lustrative example is given to show the effectiveness of the new method. The
paper is concluded in Section 5.

2 Preliminaries

2.1 Description of the Problem

The fundamental components involved in a multi-attribute three-way group sort-
ing model are listed as follows.

– A finite set of alternatives: A = {a1, a2, . . . , aN}(N > 1), under evaluation.
– A finite set of attributes: C = {c1, c2, . . . , cM}(M > 1), under which each

object in A is measured; a decision attribute: d.
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– A finite set of decision makers: E = {e1, e2 . . . , eL}(L > 1), who deliver their
primary decisions under d.

– A non-empty subsetAk is chosen fromA to be evaluated by ek(k = 1, 2, ..., L).
– The primary decisions are expressed as the three-way decisions: Positive (P ),

Boundary (B), Negative (N).

Let S = (A,C, f) be a multi-attribute information system, where f : A×C →
R is a measure function and f(ai, aj) = vij ∈ R. Suppose Sk = (Ak, C, d, fk)
is a multi-attribute evaluation decision system provided by ek (k = 1, 2, ..., L),
where fk : Ak × {d} → {P,B,N} is decision information function expressed by
ek, and P denotes the positive opinion, B the boundary or hesitant opinion, and
N the negative opinion. The objective of this problem is to decide the group
decision results, i.e., the sorting classes for all alternatives in A.

In this study, we assume that each attribute in C are profit, and take it for
granted that the primary decision P is preferred to B (P � B) and B is preferred
to N (P � N) under d. At the same time, the indifference relation is denoted
by ∼, i.e., P ∼ P , B ∼ B and N ∼ N. “�” means “� or =”. Given a multi-
attribute evaluation system S = (A,C, d, f). The measurement of ai under an
attribute c ∈ C is denoted as f(ai, c). The greater and less fuzzy preference
relations over A under an condition attribute c are computed by Logsig sigmoid
transfer function respectively as

r>c(ai, aj) =
1

1 + e−μ(f(ai,c)−f(aj,c))
(1)

and

r<c(ai, aj) =
1

1 + eμ(f(ai,c)−f(aj,c))
(2)

where μ > 0 is a fuzzy factor. Actually, it is easy to prove that r>c(ai, aj) +
r<c(aj , ai) = 1 and r>c(ai, aj) = r<c(aj , ai). In many practical information
system, the assessment values are usually in different domains, the values should
be normalized into [0,1] before computing the fuzzy preference relations by the
logsig function. After obtaining r>cj (ai, aj)(r

<cj (ai, aj)) for individual attribute,
we get the overall fuzzy preference relation under C as

r>C (ai, aj) = min{r>cl (ai, aj | l = 1, 2, ...,M)} (3)

and
r<C (ai, aj) = min{(r<cl (ai, aj) | l = 1, 2, ...,M} (4)

for the attribute set C. There are some other approaches for calculating the
overall fuzzy preference relations such as by weighting aggregation techniques
[14].

2.2 Dempster-Shafer Theory

The Dempster-Shafer theory of evidence (D-S theory), also called the “evidence
theory”, has been proposed as a generalization of the subjective probability
theory and as a model that allows representing the total ignorance case [1,8,30].
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Definition 1. [8] Let Θ be a nonempty finite set, called the frame of discern-
ment, and 2Θ be the set of all subsets of Θ. A set function m : 2Θ → [0, 1] is
referred to as a basic belief assessment (BBA) if it satisfies axioms (M1) and
(M2):

(M1) m(∅) = 0, (M2)
∑
X⊆Θ

m(X) = 1. (5)

The quantity m(X), called the belief mass of subset X , represents the partial
belief that X is true, but does not express any belief for the proper subset of X .
X is called a focal element when m(X) �= 0. The family of all focal elements of
m is denoted by M. Associated with each belief structure, a pair of belief and
plausibility functions[30]can be defined as

Bel(X) =
∑
B⊆X

m(B), ∀X ∈ 2Θ, (6)

and
Pl(X) =

∑
B∩X �=∅

m(B), ∀X ∈ 2Θ. (7)

Dempster’s combination rule is one of the most widely used combination rules.
It demands that the BBAs are obtained from the independent sources.

Let m1 and m2 be two independent BBAs. Dempster’s rule is defined for a
set X ∈ 2Θ as follows:

m(X) = m1 ⊕m2(X) =
{ 1

1−K

∑
B∩C=Xm1(B) ·m2(C), X �= ∅,

0, X = ∅, (8)

where K =
∑

B∩C=∅m1(B) · m2(C) is the belief mass that the combination
assigns to the empty set.

Dempster’s combination operator are commutative and associative, therefore,
the combination result of several BBAs is irrespective of the combination order.

Let m be an aggregated BBA. The BBA based decision making rule is given
as follows. Let X1, X2 ∈ 2Θ. If

m(X1) = max{m(X), X ∈ 2Θ}. (9a)

m(X2) = max{m(X), X ∈ 2Θ, X �= X1}, (9b)⎧⎨⎩
m(X1)−m(X2) > ε1,
m(Θ) < ε2,
m(X1) > m(Θ),

(9c)

then X1 is the result of judgement. ε1 and ε2 are the predefined thresholds.

3 Intelligent Group Three-Way Sorting Decision

Due to different experiences, knowledge and personalities, different decision mak-
ers might assign the same alternative into different class, and even if assign the
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same alternative into the same class, the memberships of the alternative to the
class are usually diverse for the individual attitudes. In Subsection 3.1, the fuzzy
decision evidences of alternatives are obtained from the inner and outer respec-
tive, and use Dempster’s combination rule to aggregate the evidences for make
the final decision. Subsection 3.2 proposes the algorithm for solving the multi-
attribute three-way group sorting problem.

3.1 Evidences of Three-Way Decision for Alternatives

In practical decision making, one can judge the membership of an alternative to
an decision class from inner and outer aspects. Take a paper reviewing decision
for example, to evaluate the quality of a paper and decide whether to accept
it, some reviewers compare the new manuscript with the worst accepted paper
(inner perspective) to make their final decision, and others might contrast it with
the best not-accepted paper (outer perspective) to express the final decision. In
what follows, we obtain the decision evidences for an alternative belonging to
the three-way decisions from the inner and outer perspectives.

Given a three-way evaluation decision system Sk = (Ak, C, d, fk), we denote

Z�
k = {a|fk(a, d) � Z} and Z�

k = {a|fk(a, d) � Z} as the upward and down-
ward classes of Z, respectively, where Z ∈ {P,B,N}.
Definition 2. Let S = (A,C, f) be a description information system and Sk =
(Ak, C, d, fk)(Ak ⊆ A) be an evaluation decision system provided by ek. For any
x ∈ A and Z ∈ {P,B}, the inner and outer memberships of x belonging to the

upward (downward) class Z�
k are defined as

Ẑ�
k (x) = max

y∈Z
�
k

r�C (x, y) (Ẑ�
k (x) = max

y∈Z
�
k

r≺C (x, y)), (10)

and
Ž�
k (x) = min

y/∈Z�
k

r�C (x, y) (Ž�
k (x) = min

y/∈Z�
k

r≺C (x, y)), (11)

respectively.

From Definitions 2, Ẑ�
k (x) (respectively, Ẑ�

k (x)) indicates that the member-
ship of x to the upward (respectively, downward) class of Zk depends on the

sample that is in Z�
k (respectively, Z�

k ) and produce the maximum greater (less)

preference over x. While, Ž�
k (x) (respectively, Ž�

k (x)) indicates that the mem-
bership of x to the upward (respectively, downward) class of Zk depends on the

sample that is not in Z�
k (respectively, Z�

k ) and produce the minimum greater
(less) preference over x.

Proposition 1. Let S = {A,C, f} be a description information system and
Sk = {Ak, C, d, fk}(Ak ⊆ A) be an evaluation decision system provided by ek.
Given an object x in A, we have

(1) P̂�
k (x) ≤ B̂�

k (x) ≤ N̂�
k (x);

(2) P̌�
k (x) ≤ B̌�

k (x) ≤ Ň�
k (x);
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(3) P̂�
k (x) ≥ B̂�

k (x) ≥ N̂�
k (x);

(4) P̌�
k (x) ≥ B̌�

k (x) ≥ Ň�
k (x).

Proof. (1) Since P � B � C, if f(a, d) � P , then f(a, d) � B, we have P�
k ⊆

B�
k . P̂

�
k (x) = max

y∈P�
k

r�C (x, y) ≤ max
y∈B�

k

r�C (x, y) = B̂�
k (x). Similarly, we have

B̂�
k (x) ≤ N̂�

k (x).

(2) Since P � B � C, if f(a, d) � P , then f(a, d) � B, we have P�
k ⊆ B�

k

and B�
k ⊆ P�

k . P̌
�
k (x) = min

y/∈P�
k

r�C (x, y) = min
y∈P�

k

r�C (x, y) ≤ min
y∈B�

k

r�C (x, y) =

min
y/∈B�

k

r�C (x, y) = B̌�
k (x). Similarly, we have B̌�

k (x) ≤ Ň�
k (x).

The proofs of (3) and (4) are similar to that of (1) and (2).

In what follows, we continue to obtain the inner and outer evidences from
the memberships calculated from the above two definitions. Begin with identi-
fying decision class belief assignments for each object, i.e. we set the frame of
discernment as Θ = {P,B,N}. Note that a proposition is then the assignment
an object x to a decision class P, B, or N.

For any x ∈ A, mx(Z) (Z ∈ Θ) be a basic probability mass representing the
degree of which the expert supports the hypothesis that the decision class of x is
Z. The remaining probability mass is assigned to mx(Θ), which also represents
the uncertainty degree of the BBA.

Let S = (Ak, C, d, fk) be an evaluation system provided by ek and Z ∈ Θ =
{P,B,N}. We determine the inner and outer BBAs on Θ for an object x ∈ A
as follows.

(1) The inner BBA.

m̂x
k(Z) =

1

Ixk
Ẑ�
k (x) · Ẑ�

k (x), (12a)

m̂x
k(Θ) = 1−

∑
Z∈Θ

m̂x(Z), (12b)

where
Ixk = max{1,

∑
Z∈Θ

Ẑ�
k (x) · Ẑ�

k (x)}. (13)

The coefficient Ixk is used to normalize the believe degrees. If
∑

Z∈Θ(Ẑ
�
k (x) ·

Ẑ�
k (x)) ≥ 1, then Ixk =

∑
Z∈Θ(Ẑ

�
k (x) · Ẑ�

k (x)) and m̂x
k(Θ) = 0, which means

the evidence is certain. If
∑

Z∈Θ Ẑ
�
k (x) · Ẑ�

k (x) < 1, then Ixk = 1 and m̂x
k(Θ) =

1 −∑Z∈Θ(Ẑ
�
k (x) · Ẑ�

k (x)) > 0, which means there exists uncertainty in the
evidence.

(2) The outer BBA.

m̌x
k(Z) =

1

Ox
k

Ž�
k (x) · Ž�

k (x), (14a)

m̌x
k(Θ) = 1−

∑
Z∈Θ

m̌x(Z), (14b)
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where
Ox

k = max{1,
∑
Z∈Θ

Ž�
k (x) · Ž�

k (x)}. (15)

Aggregation of decision makers’ decision judgments is a vital process in group
decision making. Then, we continue to combine the derived evidences into a
unique one and make the final sorting decision. After obtaining the decision
evidences, the next taks is to combine the evidences to the comprehensive BBA
and make the final three-way sorting decision by the overall BBA.

3.2 A Novel Multi-criteria Three-Way Group Sorting Method
Based on D-S Theory

This subsection provides an algorithm to show the detail computation processes
of the proposed multi-criteria group sorting method.

Algorithm 1. A novel multi-criteria group sorting method based on D-S theory

Input: A evaluation information system S = (A,C, d, f); L decision systems Sk =
(Ak, C, d, fk)(k = 1, 2, ..., L) provided by L different decision makers.
For each alternative x in A, execute the following procedures.
Output: The final three-way decision f(x, d) for each alternative x.

Step 1: Compute the fuzzy preference relation of x with respect to each alternative
in Ak by Eq. (3) and Eq. (4).
Step 2: For every Z ∈ Θ, calculate Ẑ�

k (x), Ẑ�
k (x), Ž�

k (x), and Ž�
k (x) by (10)-(11).

Step 3: Compute the normalizing coefficients Ikx and Ok
x by (13) and (15).

Step 4: Derive m̂x
k(Z) and m̂x

k(Θ) by (12a) and (12b).
Step 5: Derive m̌x

k(Z) and m̌x
k(Θ) by (14a) and (14b).

Step 6: Compute m̂x = m̂x
1⊕m̂x

2 ⊕ ...⊕m̂x
L and m̌x = m̌x

1 ⊕m̌x
2⊕ ...⊕m̌x

L (∀x ∈ A)
by (8).
Step 7: Calculate mx = m̂x ⊕ m̌x (∀x ∈ A) by (8).
Step 8: Use m to make the final overall decision of x (∀x ∈ A) by (9).

4 An Illustrative Example

In this section, we simulate an three-way group sorting process to show the effec-
tive of the proposedmethod.A three-way sorting data set, PastureProduction,was
download from the WEKA web site (http://www.cs.waikato.ac.nz/ml/weka/).
Thedata setwas collectedandorganizedbyDaveBarker for predictingpasturepro-
duction from a variety of biophysical features. Vegetation and soil variables from
areas of the North Island hill country with different management histories (1973-
1994)weremeasured and subdivided into 36 paddocks (the evaluation alternatives
denoted as a1, a2, ... and a36), which are characterized by 22 attributes. The 22 at-
tributes are: Fertilizer , Slope (c1), Aspect-dev-NW (c2), OlsenP (c3), MinN (c4),
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TS (c5), Ca-Mg (c6), LOM (c7), NFIX-mean (c8), EWorms-main-3 (c9), Eworms-
No-species (c10), KUnSat (c11), OM, Air-Perm (c12), Porosity (c13), HFRG-pct-
mean (c14), Legume-yield (c15), OSPP-pct-mean (c16), Jan-Mar-mean-TDR(c17),
Annual-Mean-Runoff (c18),Root-surface-area (c19), Leaf-P (c20).The pasture pro-
ductions are classified into three groups: Low (N), Median(B), High(P ). The first
criterion is enumerated, and the thirteenth is with no information for all 36 pad-
docks being with 0. Therefore, we remove the first and the thirteenth criteria.

As discussed in Ref. [10], the model validation of decision making is usually
implemented by interacting with the decision makers. Doumpos et al. also in-
dicated that the validation mechanism of multi-criteria group decision making
could be referred to that of statistical learning. In this study, we assign three
decision makers with different samples and suppose they can make the exact
sorting decisions for the alternatives in their individual sample sets. Then an
existing method is used to make the final decisions. Finally, we compare the
decision result with the actual decision to show the validation of the model.

We start with a multi-criteria information system S = (A,C, f), where A =
{a1, a2, ..., a36}, C = {c1, c2, ..., c20} and f is shown as in the pasture data set.
Before the decision process, we first normalized the measurements under criteria
by the approach given in Ref. [33]. Three decision makers e1, e2, e3 take part in
the decision process. Suppose Sk = {Ak, C, d, fk} is provided by ek (k = 1, 2, 3).
Assume ek chooses Ak = {al|l mod 6 = k+1} and makes the accurate decisions
with fk(ai, d) being equal to the real label in the pasture data set. In what
follows, we use a1 under the perspective of e1 to detail the calculation process.

Step 1: Compute the fuzzy preference relation
(r�C (a1, a1), r

�C (a1, a7), ..., r
�C (a1, a34)) = (0.500, 0.003, ..., 0.002) and

(r≺C (a1, a1), r
≺C (a1, a7), ..., r

≺C (a1, a34)) = (0.500, 0.017, ..., 0.005) by Eq. (3)
and Eq. (4).

Step 2: By using Eqs. (10), (11), we get

P̂�
1 (a1) = 0.008, B̂�

1 (a1) = 0.500, N̂�
1 (a1) = 0.500,

P̂�
1 (a1) = 0.500, B̂�

1 (a1) = 0.500, N̂�
1 (a1) = 0.1641,

P̌�
1 (a1) = 0.003, B̌�

1 (a1) = 0.0004, Ň�
1 (a1) = 1,

P̌�
1 (a1) = 1, B̌�

1 (a1) = 0.0046, Ň�
1 (a1) = 0.0046.

Step 3: By using Eqs. (13) and (15), we compute the normalizing coefficients
as Ikx = 1 and Ok

x = 1.

Step 4: From (12a) and (12b), we get m̂1(P ) = P̂
�
1 (a1) × P̂�

1 (a1) = 0.009×
0.500 = 0.0004, m̂1(B) = B̂�

1 (a1) × B̂�
1 (a1) = 0.25, m̂1(N) = 0.0821 and

m̂1(Θ) = 1− (m̂1(p) + m̂1(B) + m̂1(N) = 0.6675.
Step 5: Similarly, m̌1(P ) = 0.0003, m̌1(B) = 0.0000, m̌1(N) = 0.0046 and

m̌1(Θ) = 0.9951.
The other two groups of decision evidences are calculated as

m̂2(P ) = 0.0001, m̂2(B) = 0.0004, m̂2(N) = 0.0054, m̂2(Θ) = 0.9941,
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m̌2(P ) = 0.0001, m̌2(B) = 0.0000, m̌2(N) = 0.0010, m̌2(Θ) = 0.9989,

m̂3(P ) = 0.0002, m̂3(B) = 0.0004, m̂3(N) = 0.0012, m̂3(Θ) = 0.9982,

m̌3(P ) = 0.0001, m̌3(B) = 0.0000, m̌3(N) = 0.0014, m̌3(Θ) = 0.9985.

Step 6: m̂a1(P ) = 0.0007, m̂a1(B) = 0.2493, m̂a1(N) = 0.0865 and m̂a1(Θ) =
0.6636 are calculated from combination of three decision makers’ inner evidences.

Step 7: m̌a1(P ) = 0.0005, m̌a1(B) = 0.0000, m̌a1(N) = 0.0070 and m̌a1(Θ) =
0.9925 are calculated from combination of three decision makers’ outer evidences.

Step 8: Combine the inner and outer evidences: ma1(P ) = 0.0095, ma1(B) =
0.2479, ma1(N) = 0.0912 and ma1(Θ) = 0.6599. According to (9), the final
integrated sorting decision is B by setting the parameters ε1 and ε2 as 0.001 and
0.8,respectively.

Other alternatives can be similarly obtained. There are 24 out of 36 paddocks
being evaluated exactly. In many group decision making problems, majority vot-
ing is a good procedure to aggregate the views of different decision makers’ sort-
ing. Here we compare our method with the two sorting methods: “SVM+vote”
and “UTIDIS+vote”. The decision conditions are the same as the above. The
first “SVM+vote” which with the Gaussian kernel function present the 21 cor-
rect sorting results out of 36 paddocks, and the second one carry out 12 correct
sorting results out of 36 paddocks. Therefore, the decision result got from our
method is better than the other two, so the result is more credible.

5 Conclusion

In this paper, we propose a novel Dempster-Shafer theory based multi-attribute
three-way group sorting method for obtaining more credible sorting results. The
new method has two characteristics different from the methods in literature:
(1) only one parameter, fuzzy factor, is needed in the method; (2) from each
decision maker’s sample set, the soft decision, i.e., basic belief assignment of an
alternative belonging to three-way decision classes is constructed along with the
consideration of the uncertainty degree. The superiority of the proposed method
is also shown in an illustrative example.
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S�lowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS
(LNAI), vol. 7413, pp. 1–17. Springer, Heidelberg (2012)



Dynamic Maintenance of Three-Way Decision

Rules

Chuan Luo1,2, Tianrui Li1, and Hongmei Chen1

1 School of Information Science and Technology, Southwest Jiaotong University,
Chengdu, 610031, China

luochuan@my.swjtu.edu.cn,{trli,hmchen}@swjtu.edu.cn
2 Department of Computer Science, University of Regina, Regina, Saskatchewan,

S4S 0A2, Canada
luo256@cs.uregina.ca

Abstract. Decision-theoretic rough sets provide a three-way decision
framework for approximating a target concept, with an error-tolerance
capability to handle uncertainty problems by using a pair of thresholds
on probability. The three-way decision rules of acceptance, rejection and
deferment decisions can be derived directly from the three regions im-
plied by rough set approximations. The decision environment is prone to
dynamic instead of static in reality. With the data changed continuously,
the three regions of a target decision will be changed inevitably, while the
induced three-way decision rules will be changed avoidably. In this pa-
per, we discuss the dynamic maintenance principles of three-way decision
rules based on the variation of three regions with an incremental object.
Decision rules can be updated incrementally without re-computing rule
sets from the very beginning when a new object is added up to an infor-
mation system.

Keywords: three-way decisions, decision-theoretic rough sets, incremen-
tal object.

1 Introduction

Rough sets theory (RST) is a relatively new mathematical tool to represent and
reason imprecision and uncertain information emphasized in decision making
[12]. For a target concept, RST provides a method for approximating concept
according to three pair-wise disjoint regions, namely, the positive, boundary
and negative regions. The three-way decision rules of acceptance, rejection and
deferment decisions are derived from the above three regions [16]. In the Pawlak
RST, the decisions of acceptance and rejection are made without any error,
i.e., the classification must be fully correct or certain which is too restrictive
in practical applications. In order to resolve this situation, probabilistic RST
with probabilistic information, which is a generalization of Pawlak RST, was
proposed by allowing acceptable tolerance of errors [17]. By considering the
costs of different types of classification decisions, Yao et al. proposed a more
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general probabilistic RST, called decision theoretic rough sets (DTRS), which
can derive various existing probabilistic RST models through setting different
pairs of thresholds α and β, such as 0.5 probabilistic RST, variable precision
RST and Bayesian RST [18]. Nowadays, DTRS has been applied in a wide
variety of applications, such as email filtering [21], investment decision [9] and
cluster analysis [20].

In real-world applications, data in an information system does not usually re-
main a stable condition [13]. However, most of RST-based data analysis methods
in a batch mode cannot be effectively applied when data are collected sequen-
tially. Recent years have witnessed great success of incremental learning tech-
niques in improving the data analysis algorithms based on RST. Current studies
on incremental RST-based data analysis can be classified into three categories:
rough approximation, attribute reduction, and rule induction.

(1) Rough approximation
Li et al. proposed an incremental method for updating rough approximations

in incomplete information system under the characteristic relation [7]. Chen
et al. presented dynamic maintenance approach for computing approximations
with the refining and coarsening of attribute values [1]. Luo et al. proposed in-
cremental approaches for updating approximations in the set-valued information
systems [5,6].

(2) Attribute reduction
Wang et al. developed a dynamic attribute reduction approach based on in-

formation entropy with dynamically-increasing attributes [15]. Liang et al. pre-
sented a group incremental attribute reduction algorithm with the addition of
multiple objects [11]. Shu et al. proposed an incremental positive region-based
attribute reduction algorithm with the variation of attributes [14].

(3) Rule induction
Fan et al. developed an incremental rule-extraction algorithm to efficiently

handle added-in data [2]. Guo et al. proposed an incremental method for ex-
tracting rules based on the discernibility matrix and search tree [3]. Huang et al.
proposed dynamic alternative rule induction algorithms with incremental objects
[4].

Recently, three-way decisions have been paid close attentions. Many attempts
have been made to apply the three-way decisions in a dynamical environment.
Yao presented sequential three-way decisions from granular computing perspec-
tive, and demonstrated its superior in the context of multiple levels of infor-
mation granularity [19]. Li et al. proposed a cost-sensitive sequential three-way
decision model by considering the costs of decision result and decision process in
sequential decision making [10]. Liu et al. investigated a dynamic DTRS model
to deal with the dynamic change of loss functions [8]. To deal with the dynamic
data set, in this paper, we propose a dynamic maintenance framework for three-
way decisions, capable of dealing with an incremental object each time.

The remainder of the paper is organized as follows. In Section 2, some basic
concepts of the three-way decisions based on DTRS are briefly reviewed. Prin-
ciples of dynamic maintenance of three-way decision rules with an incremental
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object are analyzed in Section 3. The paper ends with conclusions and further
research topics in Section 4.

2 Three-Way Decisions with DTRS

Basic concepts, notions and results of three-way decisions based on DTRS are
outlined in this section [16,18].

Definition 1. An information system is defined by a tuple:

S = (U,AT, {Va|a ∈ AT }, {Ia : U → Va|a ∈ AT }), (1)

where U is a finite nonempty set of objects called the universe, AT is a finite
nonempty set of attributes, Va is the domain of an attribute a and Ia is a de-
scription function that assign a value from Va to each object.

Definition 2. Given a subset of attributes A ⊆ AT , let ind(A) denote an equiv-
alence relation on a nonempty and finite set of objects U , which can be defined
as follows:

x ind(A) y ⇐⇒ ∀a ∈ A [Ia(x) = Ia(y)], (2)

where Ia(x) denotes the value of an object x ∈ U on an attribute a ∈ A.
The equivalence class containing x is given by [x] = {y ∈ U |x ind(A) y}.

The partition U/ind(A) induced by the equivalence relation ind(A) contains all
equivalence classes which are the building blocks to construct rough set approx-
imations.

Definition 3. Given a subset of universe C ⊆ U , ∀x ∈ U , the conditional
probability of x belonging to C can be simply estimated as follows:

Pr(C|[x]) = |C ∩ [x]|/|[x]|, (3)

where | • | denotes the cardinality of a set.

In terms of conditional probability, a pair of thresholds (α, β) should be cho-
sen to introduce three probabilistic regions with acceptable tolerance of errors.
The required thresholds can be derived from DTRS based on Bayesian decision
procedure [18].

Definition 4. Given a pair of thresholds α and β with α > β, the (α, β)-
probabilistic positive, boundary and negative regions are defined as follows:

POS(α,•)(C) = {x ∈ U |Pr(C|[x]) ≥ α},
BND(α,β)(C) = {x ∈ U |β < Pr(C|[x]) < α}, (4)

NEG(•,β)(C) = {x ∈ U |Pr(C|[x]) ≤ β}.
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The (α, β)-probabilistic lower and upper approximations are defined by:

apr
(α,•)(C) = {x ∈ U |Pr(C|[x]) ≥ α}, (5)

apr(•,β)(C) = {x ∈ U |Pr(C|[x]) > β}, (6)

where α and β can be systematically computed from a risk or loss function based
on the Bayesian decision procedure.

According to the three probabilistic regions, one can make three-way decisions
based on the following positive, boundary and negative rules:

,P (C) : Des([x])→ Des(C), for [x] ⊆ POS(α,•)(C),
,B(C) : Des([x])→ Des(C), for [x] ⊆ BND(α,β)(C),

,N (C) : Des([x])→ Des(C), for [x] ⊆ NEG(•,β)(C),

whereDes([x]) denotes the logic formula defining the equivalence class [x], which
is typically a conjunction of attribute-value pairs in an information system, and
Des(C) is the name of the concept. For each decision rules, the conditional
probability Pr(C|[x]) can be associated as a probabilistic measure called the
accuracy or confidence of the rule.

3 Dynamic Three-Way Decisions Based on Incremental
Object

Given a dynamic information system with incremental object, principles for
maintaining and updating the three-way decision rules based on DTRS are pro-
posed in this section. To describe a dynamic maintenance process from time t
to time t+1, we denote the notions at time t with the same superscript (t), and
those at time t+ 1 with the same superscript (t+ 1). Specially, the conditional
probabilities are denote as Pr(t) and Pr(t+1) at time t and t+1 for convenience.

With the additional of an object x to a given information system, the equiv-
alence class and target concept will be updated as follows:

[x](t+1) =

{
[x](t) ∪ {x}, x blongs to the equivalence class [x];

[x](t), otherwise.

C(t+1) =

{
C(t) ∪ {x}, x blongs to the target concept C;
C(t), otherwise.

From the definition of conditional probability in Definition 3, Pr(C|[x]) may
non-monotonically change due to the variation of intersection of [x] and C which
is shown in Table 1.

Based on the above four updating patterns of the conditional probability, in
the following, we focus on the implementation of the dynamic maintenance of
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Table 1. Updating patterns of the conditional probability

Patterns [x] C Pr(C|[x])
1. x ∈ [x] ∧ x ∈ C [x] ∪ {x} C ∪ {x} |C∩[x]|+1

|[x]|+1

2. x �∈ [x] ∧ x ∈ C [x] C ∪ {x} |C∩[x]|
|[x]|

3. x ∈ [x] ∧ x �∈ C [x] ∪ {x} C |C∩[x]|
|[x]|+1

4. x �∈ [x] ∧ x �∈ C [x] C |C∩[x]|
|[x]|

three-way decision rules with an incremental object.

Case 1: x ∈ [x] and x ∈ C;
In this case, for the conditional probability, we have:

Pr(t+ 1) ≥ Pr(t)
(1) If [x] ⊆ POS(t)

(α,•)(C), i.e., Des([x])→ Des(C) ∈ ,P (C), then

POS
(t+1)
(α,•) (C) = POS

(t)
(α,•)(C) ∪ {x}.

Furthermore, since Des({x}) = Des([x]), the three-way decision rules for
the target concept C: ,P (C), ,B(C) and ,N(C) will remain constant.

(2) If [x] ⊆ BND(t)
(α,•)(C), i.e., Des([x])→ Des(C) ∈ ,B(C), we have:

(a) if Pr(t + 1) ≥ α, then
POS

(t+1)
(α,•) (C) = POS

(t)
(α,•)(C) ∪ ([x] ∪ {x}),

BND
(t+1)
(α,•) (C) = BND

(t)
(α,•)(C)− [x].

Furthermore, Des([x]) will be included into the conditions of positive rule
,P (C), and will be excluded from the conditions of boundary rule ,B(C).
The negative rule ,N (C) will remain constant.
(b) if Pr(t+ 1) < α, then

BND
(t+1)
(α,•) (C) = BND

(t)
(α,•)(C) ∪ {x}.

The three-way decision rules for the target concept C: ,P (C), ,B(C) and
,N (C) will remain constant.

(3) If [x] ⊆ NEG(t)
(α,•)(C), i.e., Des([x])→ Des(C) ∈ ,N(C), we have:

(a) if Pr(t + 1) ≥ α, then
POS

(t+1)
(α,•) (C) = POS

(t)
(α,•)(C) ∪ ([x] ∪ {x}),

NEG
(t+1)
(α,•) (C) = NEG

(t)
(α,•)(C)− [x].

Furthermore, Des([x]) will be included into the conditions of positive rule
,P (C), and will be excluded from the conditions of negative rule ,N (C).
The boundary rule ,B(C) will remain constant.
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(b) if β < Pr(t+ 1) < α, then

BND
(t+1)
(α,•) (C) = BND

(t)
(α,•)(C) ∪ ([x] ∪ {x}),

NEG
(t+1)
(α,•) (C) = NEG

(t)
(α,•)(C)− [x].

Furthermore, Des([x]) will be included into the conditions of boundary rule
,B(C), and will be excluded from the conditions of negative rule ,N (C).
The positive rule ,P (C) will remain constant.
(c) if Pr(t+ 1) ≤ β, then

NEG
(t+1)
(α,•) (C) = NEG

(t)
(α,•)(C) ∪ {x}.

Furthermore, the three-way decision rules for the target concept C: ,P (C),
,B(C) and ,N(C) will remain constant.

Case 2: x �∈ [x] and x ∈ C;
In this case, for the conditional probability, we have:

Pr(t+ 1) = Pr(t)

Therefore, the three-way decision rules for the target concept C: ,P (C),
,B(C) and ,N (C) will always remain constant.
Case 3: x ∈ [x] and x �∈ C;

In this case, for the conditional probability, we have:

Pr(t+ 1) < Pr(t)

(1) If [x] ⊆ POS(t)
(α,•)(C), i.e., Des([x])→ Des(C) ∈ ,P (C), we have:

(a) if Pr(t + 1) ≥ α, then
POS

(t+1)
(α,•) (C) = POS

(t)
(α,•)(C) ∪ {x}.

Since Des({x}) = Des([x]), the three-way decision rules: ,P (C), ,B(C)
and ,N (C) will always remain constant.
(b) if β < Pr(t+ 1) < α, then

BND
(t+1)
(α,•) (C) = BND

(t)
(α,•)(C) ∪ ([x] ∪ {x}),

POS
(t+1)
(α,•) (C) = POS

(t)
(α,•)(C) − [x].

Furthermore, Des([x]) will be included into the conditions of boundary rule
,B(C), and will be excluded from the conditions of positive rule ,P (C).
The negative rule ,N (C) will remain constant.
(c) if Pr(t+ 1) ≤ β, then

NEG
(t+1)
(α,•) (C) = NEG

(t)
(α,•)(C) ∪ ([x] ∪ {x}),

POS
(t+1)
(α,•) (C) = POS

(t)
(α,•)(C)− [x].

Furthermore, Des([x]) will be included into the conditions of negative rule
,N (C), and will be excluded from the conditions of positive rule ,P (C).
The boundary rule ,B(C) will remain constant.
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(2) If [x] ⊆ BND(t)
(α,•)(C), i.e., Des([x])→ Des(C) ∈ ,B(C), we have:

(a) if Pr(t + 1) > β, then

BND
(t+1)
(α,•) (C) = BND

(t)
(α,•)(C) ∪ {x}.

The three-way decision rules for the target concept C: ,P (C), ,B(C) and
,N (C) will always remain constant.
(b) if Pr(t+ 1) ≤ β, then

NEG
(t+1)
(α,•) (C) = NEG

(t)
(α,•)(C) ∪ ([x] ∪ {x}),

BND
(t+1)
(α,•) (C) = BND

(t)
(α,•)(C)− [x].

Furthermore, Des([x]) will be included into the conditions of negative rule
,N (C), and will be excluded from the conditions of boundary rule ,B(C).
The positive rule ,P (C) will remain constant.

(3) If [x] ⊆ NEG(t)
(α,•)(C), i.e., Des([x])→ Des(C) ∈ ,N(C), we have:

NEG
(t+1)
(α,•) (C) = NEG

(t)
(α,•)(C) ∪ {x}.

Furthermore, the three-way decision rules for the target concept C: ,P (C),
,B(C) and ,N(C) will remain constant.

Case 4: x �∈ [x] and x �∈ C;
In this case, for the conditional probability, we have:

Pr(t+ 1) = Pr(t)

Therefore, the three-way decision rules for the target concept C: ,P (C),
,B(C) and ,N (C) will always remain constant.

4 An Illustrative Case Study

A given information system S = (U,AT, {Va|a ∈ AT }, {Ia : U → Va|a ∈ AT })
shown in Table 2 is used for exemplifying the dynamic maintenance of three-way
decision rules with an incremental object.

The equivalence relation ind(AT ) partitions the universe into six equivalence
classes: [x1] = {x1}, [x2] = {x2, x6, x8}, [x3] = {x3}, [x4] = {x4}, [x5] = {x5, x9},
[x7] = {x7}. Furthermore, the decision attribute d partitions the universe into
three decision classes: M = {x1, x2}, Q = {x3, x4, x5}, F = {x6, x7, x8, x9}.
Suppose the two thresholds α = 0.75 and β = 0.60 are calculated from the loss
functions for the three states regarding M , Q and F . The three regions of the
decision F can be obtained as follows:

POS
(t)
(α,•)(F ) = {x7};

BND
(t)
(α,β)(F ) = {x2, x6, x8};
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Table 2. The original information system of case study

U a1 a2 a3 a4 a5 a6 d

x1 1 1 1 1 1 1 M
x2 1 0 1 0 1 1 M
x3 0 1 1 1 0 0 Q
x4 1 1 1 0 0 1 Q
x5 0 0 1 1 0 1 Q
x6 1 0 1 0 1 1 F
x7 0 0 0 1 1 0 F
x8 1 0 1 0 1 1 F
x9 0 0 1 1 0 1 F

NEG
(t)
(•,β)(F ) = {x1, x3, x4, x5, x9}.

The three-way decision rules for the decision F can be obtained as follows:

,P (F ): Des([x7])→ Des(F );
,B(F ): Des([x2])→ Des(F );
,N (F ): Des([x1] ∪ [x3] ∪ [x4] ∪ [x5])→ Des(F ).

In the following, to illustrate the dynamic maintenance process of three-way
decision rules, we assume that object x10, x11, and x12 in Table 3 are inserted
into Table 2, respectively.

Table 3. The incremental objects of case study

U a1 a2 a3 a4 a5 a6 d

x10 1 0 1 0 1 1 F
x11 1 0 1 0 1 1 M
x12 0 0 0 1 1 0 F

(1) The insertion of object x10.
For the equivalence classes induced by U/ind(AT ), we have x10 ∈ [x2]∧x10 ∈

F . Then, according to Case 1, since [x2] ⊆ BND(α,β)(F ) and Pr(t + 1) =
0.75 ≥ α, we have

POS
(t+1)
(α,•) (F ) = POS

(t)
(α,•)(F ) ∪ [x2] ∪ {x10} = {x2, x6, x7, x8, x10};

BND
(t+1)
(α,•) (F ) = BND

(t)
(α,•)(F )− [x2] = ∅.

For the equivalence classes [xi], i �= 2, we have x10 �∈ [xi]∧x10 ∈ F , according
to Case 2, Des([xi]) in the three-way decision rules remains constant.
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Finally, the three-way decision rules for the decision F are updated as follows:

,P (F ): Des([x2] ∪ [x7])→ Des(F );
,B(F ): ∅;
,N (F ): Des([x1] ∪ [x3] ∪ [x4] ∪ [x5])→ Des(F ).

(2) The insertion of object x11.
For the equivalence classes induced by U/ind(AT ), we have x11 ∈ [x2]∧x11 �∈

F . Then, according to Case 3, since [x2] ⊆ BND(α,β)(F ) and Pr(t + 1) =
0.50 < β, we have

NEG
(t+1)
(α,•) (C) = NEG

(t)
(α,•)(C) ∪ [x2] ∪ {x10} = {x1, x2, x3, x4, x5, x6, x8, x9};

BND
(t+1)
(α,•) (C) = BND

(t)
(α,•)(C)− [x2] = ∅;

For the equivalence classes [xi], i �= 2, we have x10 �∈ [xi]∧x10 �∈ F , according
to Case 4, Des([xi]) in the three-way decision rules remains constant.

Finally, the three-way decision rules for the decision F are updated as follows:

,P (F ): Des([x7])→ Des(F );
,B(F ): ∅;
,N (F ): Des([x1] ∪ [x2] ∪ [x3] ∪ [x4] ∪ [x5])→ Des(F ).

(3) The insertion of object x12.
For the equivalence classes induced by U/ind(AT ), we have x12 ∈ [x7]∧x12 ∈

F . Then, according to Case 1, since [x7] ⊆ POS(α,β)(F ), we have

POS
(t+1)
(α,•) (F ) = POS

(t)
(α,•)(F ) ∪ {x12} = {x7, x12};

For the equivalence classes [xi], i �= 2, we have x12 �∈ [xi]∧x12 ∈ F , according
to Case 2, Des([xi]) in the three-way decision rules remains constant.

Finally, since Des({x12}) = Des([x7]), the three-way decision rules for the
decision F remain constant.

5 Conclusion

The three-way decisions implied by rough set approximations has attracted in-
creasing attentions. In this paper, we have focused on the dynamic maintenance
of three-way decision rules with an incremental object. When a new object is
added up, the conditional probability may non-monotonically change, which rep-
resents four different updating patterns. Based on the change of conditional prob-
ability, four different maintenance strategies of the three-way decision rules based
on the three regions were implemented, respectively. The proposed approach can
update decision rules by modifying partial original rule sets without forgetting
prior knowledge. An illustrative case study was presented to demonstrate the
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feasibility of the proposed approach. In our future study, the experimental anal-
ysis will be carried out to verify the effectiveness of the proposed approach in
real applications.
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Abstract. By considering the various of studies on loss functions with
three-way decisions, a function based three-way decisions is proposed
to generalize the existing models. A “four-level” approach with granu-
lar perspective is built, and the existing models can be categorized to a
“four-level” framework through different decision criteria. Our work pro-
vides a novel “granularity” viewpoint on the current three-way decision
researches.
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1 Introduction

Three-way decisions (TWD), a new perspective of probabilistic rough sets, which
were proposed by Y.Y. Yao, have drawn more and more attentions in nearly
five years [38, 39, 42, 43]. A theory of three-way decisions is constructed based
on the notions of the acceptance, rejection or noncommitment, which can be
directly generated by the three regions of probabilistic rough sets. The rules
generated by the positive region are used to make a decision of acceptance, the
rules generated by the negative region are used to make a decision of rejection,
the rules generated by the boundary region are used for making a decision of
noncommitment [38, 40]. In general, three-way decisions describe the human
cognitive process during decision making, and establish an intimate connection
between rough sets and decision theory.

With carefully investigate current studies, there are three main research direc-
tions on three-way decisions. (1). The extended models of three-way decisions. By
considering the key ingredient in three-way decisions is the loss functions, some
researches adopted stochastic numbers [21], intervals [14, 23], fuzzy intervals
[24, 27], triangular fuzzy numbers [12], intuitionistic fuzzy numbers [15], hesitant
fuzzy numbers [13], shadow sets [5] to estimate the losses in three-way decisions,
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which are the extension of losses under uncertain decision environments. An-
other extending of three-way decisions emphasized on the methodologies, e.g.,
multiple-classification three-way decisions [20, 46, 47], multi-agent three-way de-
cisions [33], cost-sensitive three-way decisions [30], information-theoretic based
three-way decisions [4], sequential three-way decisions [41], dynamic three-way
decisions [28], game-theoretic based three-way decisions [1, 7], clusters based
three-way decisions [16, 44], three-way decisions with two universes [29], etc. (2).
The attributes reduction methods and rules acquisitions approaches of three-way
decisions. The main attribute reduction methods in three-way decisions include
probabilistic attribute reduct [37, 45], non-monotonicity of probabilistic positive
region reduct [10], minimum cost attribute reduction [8], cost-sensitive attribute
reduction [11] and some machine learning based attribute reduction [3]. (3). The
applications of three-way decisions. The essential ideas of three-way decisions
are commonly used in many domains, e.g., information sciences, engineering,
management sciences, medical decision-making, etc [17, 26]. The aforementioned
studies indicate that the three-way decisions has gradually been a hot research
topic in granular computing and rough sets.

In this paper, we focus on investigating the loss functions in three-way deci-
sions. The remainder of this paper is organized as follows: Section 2 provides the
basic concepts of three-way decisions and it’s extensions. A generalized three-
way decision model with functional perspective is proposed in Section 3. Then,
the similarity and difference of existing three-way decision models are carefully
analyzed in Section 4, and a “four level” structure model for three-way decisions
is built. Section 5 concludes the paper and outlines the future work.

2 Preliminaries

Basic concepts, notations and results of three-way decisions are briefly reviewed
in this section [2, 18, 22, 31, 32, 34–36, 38, 48].

As Yao stated in [42, 43], many generalizations of sets have been proposed and
studied with three-way decisions, including interval sets and three-valued logic,
Pawlak rough sets, Decision-theoretic rough sets (DTRS), three-valued approx-
imations in many-valued logic, fuzzy sets and shadowed sets. In our following
discussions, we mainly discuss three-way decisions in DTRS.

The DTRS model is inspired by the Bayesian decision theory, a well known
theorem in decision analysis [6]. It considers 2 states Ω = {X,¬X} and 3 actions
A = {aP , aB, aN} during decision process. The set of states is given by Ω indi-
cating that an object is in X and not in X , respectively. Meanwhile, aP , aB, and
aN in A represent the three actions in classifying an object x, namely, deciding
x ∈ POS(X), deciding x should be further investigated x ∈ BND(X), and decid-
ing x ∈ NEG(X), respectively. The loss function λ regarding the risk or cost of
actions in different states is given by the 3 × 2 matrix:

X (P ) ¬X (N)

aP λPP λPN

aB λBP λBN

aN λNP λNN
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In the matrix, λPP , λBP and λNP denote the losses incurred for taking actions
of aP , aB and aN , respectively, when an object belongs to X . Similarly, λPN ,
λBN and λNN denote the losses incurred for taking the same actions when the
object belongs to ¬X . Pr(X |[x]) is the conditional probability of an object x
belonging to X given that the object is described by its equivalence class [x].
For an object x, the expected loss R(ai|[x]) associated with taking the individual
actions can be expressed as:

R(aP |[x]) = λPPPr(X|[x]) + λPNPr(¬X|[x]),
R(aB|[x]) = λBPPr(X|[x]) + λBNPr(¬X|[x]),
R(aN |[x]) = λNPPr(X|[x]) + λNNPr(¬X|[x]).

The Bayesian decision procedure suggests the following minimum-cost deci-
sion rules:

(P) If R(aP |[x]) ≤ R(aB|[x]) and R(aP |[x]) ≤ R(aN |[x]),decide x ∈ POS(X);

(B) If R(aB|[x]) ≤ R(aP |[x]) and R(aB|[x]) ≤ R(aN |[x]), decide x ∈ BND(X);

(N) If R(aN |[x]) ≤ R(aP |[x]) and R(aN |[x]) ≤ R(aB|[x]),decide x ∈ NEG(X).

Since Pr(X |[x]) + Pr(¬X |[x]) = 1, we simplify the rules based only on the
probability Pr(X |[x]) and the loss function. By considering a reasonable kind
of loss functions with λPP ≤ λBP < λNP and λNN ≤ λBN < λPN , the decision
rules (P)-(N) can be expressed concisely as:

(P) If Pr(X|[x]) ≥ α and Pr(X|[x]) ≥ γ, decide x ∈ POS(X);

(B) If Pr(X|[x]) ≤ α and Pr(X|[x]) ≥ β, decide x ∈ BND(X);

(N) If Pr(X|[x]) ≤ β and Pr(X|[x]) ≤ γ, decide x ∈ NEG(X).

The thresholds values α, β, γ generated by DTRS are given by:

αDTRS =
(λPN − λBN)

(λPN − λBN ) + (λBP − λPP )
;

βDTRS =
(λBN − λNN)

(λBN − λNN) + (λNP − λBP )
;

γDTRS =
(λPN − λNN )

(λPN − λNN ) + (λNP − λPP )
. (1)

In addition, as a well-defined boundary region, the conditions of rule (B)
suggest that α > β, which implies 0 ≤ β < γ < α ≤ 1. ∀X ⊆ U , the (α, β)-lower
approximation, (α, β)-upper approximation of DTRS are defined as follows:

aprDTRS
(α,β)

(X) = {x ∈ U |Pr(X |[x]) ≥ (λPN − λBN )

(λPN − λBN ) + (λBP − λPP )
};

aprDTRS
(α,β) (X) = {x ∈ U |Pr(X |[x]) > (λBN − λNN )

(λBN − λNN ) + (λNP − λBP )}. (2)
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The three regions of (α, β)- positive, boundary and negative regions in DTRS
can be written as:

POSDTRS
(α,β) (X) = {x ∈ U | Pr(X |[x]) ≥ (λPN − λBN )

(λPN − λBN ) + (λBP − λPP )
},

BNDDTRS
(α,β) (X) = {x ∈ U | (λBN − λNN )

(λBN − λNN ) + (λNP − λBP ) < Pr(X |[x])

<
(λPN − λBN )

(λPN − λBN ) + (λBP − λPP )
},

NEGDTRS
(α,β) (X) = {x ∈ U | Pr(X |[x]) ≤ (λBN − λNN )

(λBN − λNN) + (λNP − λBP )}.

Specially, if the assumption “α > β” does not hold, the three-way decisions
convert to two-way decisions, and it can be rewritten as:

POSDTRS
(γ,γ) (X) = {x ∈ U | Pr(X |[x]) ≥ (λPN − λNN )

(λPN − λNN ) + (λNP − λPP )},

NEGDTRS
(γ,γ) (X) = {x ∈ U | Pr(X |[x]) < (λPN − λNN )

(λPN − λNN ) + (λNP − λPP )}.

According to above discussions, DTRS gives a brief semantics explanation
with minimum decision risks when comparing with other rough set models (e.g.,
probabilistic rough set model). Note that, the two thresholds α and β in DTRS
are not setting in advance by human’s experiments, and they are associated to
decision risk with different loss functions [19, 38, 39, 42, 43].

3 A Function Based Perspective of Three-Way Decisions

In this section, we propose a more generalized model of three-way decisions. As
we stated in Section 2, the decision rules generated by the three regions are
closely related with loss functions. In DTRS, the values of losses are precise real
numbers. In some cases, one can directly utilize the precise value (i.e., money,
energy and time, etc) to estimate the costs [19]. However, in most of cases, it is
rather difficult to utilize one value to illustrate the costs [12–14, 21, 23, 24, 27].
Inspired by the deficiencies, we propose a function based three-way decisions.
In this model, we use two groups of loss functions f(λPP ), f(λBP ), f(λNP ) and
f(λPN ), f(λBN ), f(λNN ) to instead of six single values, and the matrix refers to
the cost of actions in different states can be rewritten as:

X (P ) ¬X (N)

aP f(λPP ) f(λPN )
aB f(λBP ) f(λBN )
aN f(λNP ) f(λNN )

In the matrix, λ•• (• = P,B,N) is not a fixed number, but an independent
variable. Given a fixed λ••, by considering the losses of classifying an object x



816 D. Liu and D. Liang

belonging to X into the positive region POS(X) is less than or equal to the loss
of classifying x into the boundary region BND(X), and both of these losses are
strictly less than the loss of classifying x into the negative region NEG(X). The
reverse order of losses is used for classifying an object not in X . Therefore, the
following two conditions should be considered:

f(λPP ) ≤ f(λBP ) < f(λNP ),

f(λNN) ≤ f(λBN ) < f(λPN ). (3)

Under (3) and Pr(X |[x])+Pr(¬X |[x]) = 1, the thresholds values α, β, γ with
a function based three-way decisions can be calculated as:

αDTRS =
f(λPN )− f(λBN )

(f(λPN )− f(λBN )) + (f(λBP )− f(λPP ))
;

βDTRS =
f(λBN )− f(λNN )

(f(λBN )− f(λNN )) + (f(λNP )− f(λBP )) ;

γDTRS =
f(λPN )− f(λNN)

(f(λPN )− f(λNN )) + (f(λNP )− f(λPP )) . (4)

Similarly, suppose 0 ≤ β < γ < α ≤ 1, the three regions of (α, β)- positive,
boundary and negative regions with a function based three-way decisions can be
written as:

POSDTRS
(α,β) (X) = {x ∈ U | Pr(X|[x]) ≥ f(λPN )− f(λBN))

(f(λPN )− f(λBN )) + (f(λBP )− f(λPP ))
},

BNDDTRS
(α,β) (X) = {x ∈ U | f(λBN )− f(λNN )

(f(λBN)− f(λNN ) + f(λNP )− f(λBP ))
< Pr(X|[x])

<
f(λPN )− f(λBN )

(f(λPN)− f(λBN )) + (f(λBP )− f(λPP ))
},

NEGDTRS
(α,β) (X) = {x ∈ U | Pr(X|[x]) ≤ f(λBN )− f(λNN)

(f(λBN )− f(λNN )) + (f(λNP )− f(λBP ))
}.

Specially, if the assumption “α > β” does not hold, the three-way decisions
converts to two-way decisions, and it can be rewritten as:

POSDTRS
(γ,γ) (X) = {x ∈ U | Pr(X|[x]) ≥ f(λPN )− f(λNN )

(f(λPN )− f(λNN )) + (f(λNP )− f(λPP ))
},

NEGDTRS
(γ,γ) (X) = {x ∈ U | Pr(X|[x]) < f(λPN )− f(λNN )

(f(λPN )− f(λNN )) + (f(λNP )− f(λPP ))
}.

4 The Framework and Comparison of Existing
Three-Way Decision Models

In the following, we construct a “four-level” framework of existing three-way
decision models, which can be regarded as the “granular structure” of three-way
decisions with loss functions.
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Level 1: The basic expression of three-way decisions
In this basic level, the loss function f(λ••) (• = P,B,N) is set as a precise

value number: f(λ••) = λ•• (• = P,B,N), and the function based three-way
decisions degenerate into precise-value based three-way decisions. Obviously, the
basic model of three-way decisions is DTRS [34, 35]. Furthermore, due to the
single valued losses in DTRS, the precise-value based three-way decisions can be
regarded as static and certain decision model.

Level 2: Three-way decisions with uncertainty
As we known, “uncertainty” in decision making means the lack of certainty, it

used to describe the state of having limited knowledge where it is impossible to
exactly describe the existing state, a future outcome, or more than one possible
outcome. The main mathematical theories to describe uncertainty are probabil-
ity theory, fuzzy set theory, rough set theory, interval set theory, inclusion degree
theory, evidence theory, etc. The former three theorems are most famous uncer-
tainty methodologies and have been widely used in human’s decision process.
(1). Probability theory is the branch of mathematics concerned with probability,
the analysis of random phenomena, it utilizes “stochastic number” to express
uncertainty and indicates that a particular subject is seen from point of view
of randomness. The uncertainty in probability theory means one thing cannot
definite happened, but may happen with a probability. The central objects of
probability theory are random variables, stochastic processes, and events: math-
ematical abstractions of non-deterministic events or measured quantities that
may either be single occurrences or evolve over time in an apparently random
fashion. (2). The uncertainty in fuzzy set theory comes from the fuzzification,
which is used to describe the unclear classification for a concept. (e.g., the con-
cept of “young”). The fuzzification comprises the process of transforming crisp
values into grades of membership for linguistic terms of fuzzy sets. (3). The un-
certainty in rough set theory comes from the inaccuracy for boundary sets. A
rough set is a formal approximation of a crisp set in terms of a pair of sets which
give the lower and the upper approximation of the original set, and can deal
with inaccuracy, inconsistent, incomplete information in a decision system.

With above discussions, we investigate three types of uncertain three-way
decision models as follows.
• Interval three-way decisions
In this scenario, the loss function f(λ••) (• = P,B,N) can be rewritten as:

f(λ••) = [λ−••, λ
+
••] (• = P,B,N), λ−•• and λ+•• are the lower bound and the

upper bound of λ••. Liu et al. firstly introduced interval-valued loss functions
to DTRS and carefully discussed the corresponding propositions and criteria
of interval-valued three-way decisions [23]. Furthermore, Liu et al. used a fuzzy

interval number [λ̃−••, λ̃
+
••] and proposed fuzzy interval-valued three-way decisions

[27]. Liang and Liu did systematic studies on three-way decisions with interval-
valued decision-theoretic rough sets, they derived three-way decisions with the
aid of two conventional methods and proposed a new optimization method in
the viewpoint of the flexibility of information granularity [14].
• Fuzzy three-way decisions
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In this scenario, the loss function f(λ••) (• = P,B,N) can be rewritten as:

f(λ••) = λ̃•• (• = P,B,N). Liu et al. firstly introduced fuzzy loss functions
to DTRS and investigated the corresponding propositions and criteria of fuzzy
three-way decisions [24]. Liang et al. considered the triangular fuzzy loss func-

tions λ̃•• = (l••,m••, u••) (• = P,B,N), and discussed 5 ranking functions for
measure triangular fuzzy number [12]. In addition, Liang and Liu further took

into account the losses of DTRS with hesitant fuzzy elements (λ̃•• = hE(λ••))
and proposed a new model of hesitant fuzzy three-way decisions, a novel risk
decision-making method with the aid of hesitant fuzzy DTRS was developed in
their work [13]. As to intuitionistic fuzzy sets, Liang and Liu used the degree
of membership μ and degree of non-membership ν to depict the fuzzification
[15]. The loss function for the intuitionistic fuzzy three-way decisions can be

set as: λ̃•• = (λ••, μ(λ••), ν(λ••)). The decision rules generated by intuitionistic
fuzzy three-way decisions both considered the membership and non-membership
functions. In addition, Deng and Yao investigated mean-value-based three-way
shadowed sets, they introduced a generalized decision-theoretic shadowed set
model using the mean value [5]. In a word, all the aforementioned work have
solid contributions to develop fuzzy three-way decision theorems.
• Stochastic three-way decisions
In this scenario, the loss function f(λ••) (• = P,B,N) can be rewritten as:

f(λ••) = λε•• (ε denotes the loss function λε•• is a stochastic number). Liu et al.
introduced stochastic loss functions to DTRS and proposed stochastic decision-
theoretic rough set theory [21]. In their studies, a model of stochastic three-way
decisions was built with respect to the minimum bayesian expected risk, and
they further investigated two special stochastic three-way models under uniform
distribution and normal distribution, respectively.

To sum up, Level 2 focuses on the decision of uncertainty, but these models
are still within a static and close decision environment.

Level 3: Three-way decisions with multi-stage decision making
Level 3 begins to discuss the dynamic decision environment, and the rules ac-

quisition by three-way decisions are not a single step decision, but a multi-stage
process. Liu et al. considered the dynamic change of loss functions f(λ••) =
g(λt••) (• = P,B,N) in DTRS with the time t, and proposed dynamic three-way
decisions [28]. Yang and Yao proposed a multi-agent three-way decision model,
the new model is utilized to seek for synthesized or consensus decisions when
there are multiple decision preferences and criteria adopted by different agents
[33]. Yao and Deng discussed sequential three-way decisions when adding at-
tributes [41]. It suggested that if a decision of acceptance or rejection with certain
tolerable levels of errors can be made at a higher level, it is not necessary to move
to a lower level. This work enabled the decision maker to consider both the cost
of various mis-classifications and the cost of obtaining the necessary evidence for
making a classification decision. Liu et al. investigated multiple-category classifi-
cation problems with three-way decisions [20], and further proposed a two-stage
method to choose the best candidate classification. Zhou also provided a new
formulation of multi-class three-way decision model, which can be well suited
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for cost-sensitive classification tasks where different types of classification errors
have different costs [46, 47]. In summary, all the above mentioned studies make
effective interpretations on dynamic three-way decisions.

Level 4: Function based three-way decisions
As we stated in Levels 1-3, Level 4 is the generation level for three-way deci-

sions because the loss function in former three levels can be treated as a special
case of f(λ••) . In Level 4, f(λ••) can be treated as power function, exponeneial
function, nonlinear function, etc. It is the generalization level for three-way de-
cisions.

For simplicity, we choose three dimensions (characters): certain or uncertain
decisions, single-stage or multi-stage decisions, static or dynamic decisions, to
illustrate the similarity and difference of different three-way decision models.
Figure 1 outlines the framework of the four-level model in three-way decisions.
Table 1 summarizes the characters for the models in Figure 1.

Table 1. The characters for different three-way decision models

Level Model Character 1 Character 2 Character 3

Level 1 Precise-value (DTRS) Certain Single-stage Static

Level 2

Interval

Interval-valued Uncertain Single-stage Static
Fuzzy interval Uncertain Single-stage Static
Interval sets Uncertain Single-stage Static

Fuzzy

Triangular Uncertain Single-stage Static
Intuitionistic Uncertain Single-stage Static

Hesitant Uncertain Single-stage Static
Shadow Uncertain Single-stage Static

Stochastic

Uniform Uncertain Single-stage Static
Normal Uncertain Single-stage Static
Other Uncertain Single-stage Static

Level 3

Dynamic Uncertain Multi-stage Dynamic
Multi-agent Uncertain Multi-stage Dynamic
Sequential Uncertain Multi-stage Dynamic

Multiple-category Uncertain Multi-stage Dynamic

Level 4 Function Both Both Dynamic

In Figure 1 and Table 1, Level 1 and Level 2 are based on the static three-way
decisions, Level 3 and Level 4 are based on the dynamic three-way decisions.
If we consider the variation of loss functions, the static models can change to
dynamic models. In addition, Level 1 is the specialization level, and Level 4
is the generalization level. Between Level 1 and Level 4, the middle two levels
respectively consider the decision risk and decision stages. With the insightful
gain from the top-down or bottom-up perspective in granular computing, DTRS
model in three-way decisions corresponds finest granularity, and the function
based three-way decision model corresponds the coarsest granularity. In general,
one can choose a special model by using different decision criterion or viewpoint
in a real decision problem.
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Fig. 1. The framework of the four-level model in three-way decisions
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5 Conclusions

In this paper, we systematically study the loss functions with three-way decisions
in nearly two decades and propose a function based three-way decision model.
The current models of three-way decisions are carefully investigated, then clas-
sified into a generalization research framework via three different dimensions. A
“four-level” model in three-way decisions is built, which draw an intuitive and
clear impression for different three-way decision models. Our future researches
will focus on properties for different types of function based three-way decisions,
the group decision method in three-way decisions will be our another future
research topic.
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Abstract. Decision-theoretic rough set comes from Bayesian decision
procedure, in which a pair of the thresholds is derived by the cost ma-
trix for the construction of probabilistic rough set. However, classical
decision-theoretic rough set can only be used to deal with complete in-
formation systems. Moreover, it does not take the property of variation
of cost into consideration. To solve above two problems, the maximal
consistent block is introduced into the construction of decision-theoretic
rough set by using multiple cost matrixes. Our approach includes op-
timistic and pessimistic multicost decision-theoretic rough set models.
Furthermore, the whole decision costs of optimistic and pessimistic mul-
ticost decision-theoretic rough sets are calculated in decision systems.
This study suggests potential application areas and new research trends
concerning decision-theoretic rough set.

Keywords: Decision-theoretic rough set, incomplete information sys-
tem, multicost, maximal consistent block.

1 Introduction

Rough set [1] is a mathematical tool which can be used to characterize the
uncertainty by the difference between the lower and upper approximations. In
recent years, this theory has been widespread concerned by research scholars
[2–5] in many areas. The traditional rough set method can be used to deal with
complete information systems with discrete attribute values. However, due to
the error of the measurement data, the data acquisition constraints and other
factors, we often face the incomplete data in information systems. To deal with
such problems, many scholars have made great efforts [6–8].
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Obviously, the above rough set models do not take the cost into consideration.
Moreover, in the field of machine learning and data mining, the cost sensitive
learning occupies a significant position. Currently, many rough set scholars have
explored many rough set problems related to the test cost and the misclassi-
fication cost. For instance, Yang et al. [9] proposed test cost-sensitive multi-
granulation rough set; Min et al. [10–13] proposed the concept of the test cost
system and discussed the related problem of attribute reduction. For the misclas-
sification cost, Yao [14] proposed decision-theoretic rough set in 1990, which used
cost matrix to obtain a pair thresholds to construct the probabilistic approxi-
mation, from this point of view, Liu et al. [15] studied the multi-classification
decisions which based on rough sets.

However, Yao’s decision-theoretic rough set is based on complete information
systems, therefore, introducing the concept of decision-theoretic into incomplete
information systems can bring a new solution to deal with incomplete data. Fur-
thermore, Yao’s decision-theoretic rough set model only uses a cost matrix to de-
scribe the costs, which have some limitations in dealing with practical problems.
For example, for the same medical diagnosis, different countries or regions may
execute different compensation standards, using the same standards to evaluate
all countries is unreasonable. This phenomenon indicates that Yao’s decision-
theoretic rough set did not consider costs inherent diversity and variability.

Therefore, we will discuss the concept of maximal consistent blocks and mul-
tiple cost matrixes in decision-theoretic rough set model. Furthermore, we will
propose new rough set models based on multiple cost matrixes. In the models,
the optimistic and pessimistic models will be discussed.

2 Preliminary Knowledge on Rough Sets

2.1 Maximal Consistent Block in Rough Set

Formally, an information system can be considered as a pair I =< U,AT >,
in which U is a non-empty finite set of the objects called the universe; AT is a
non-empty finite set of the attributes. ∀a ∈ AT , Va is the domain of attribute a.
∀x ∈ U , a(x) denotes the value that x holds on a(∀a ∈ AT ).

It may happen that some of attribute values for an object are missing. We
call it null value on this paper. For at least one attribute a ∈ AT , Va contains
null value, then I is called an incomplete information system, otherwise it is
complete. In this paper, the null value is denoted by *.

Definition 1. [6] Let I be an incomplete information system in which A ⊆ AT ,
the tolerance relation in terms of A is denoted by TOL(A) where

TOL(A) = {(x, y) ∈ U2 : ∀a ∈ AT, a(x) = a(y) ∨ a(x) = ∗ ∨ a(y) = ∗}.

Though the tolerance relation has been widely used to deal with incomplete
information system, it has the following limitations[17]:
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1. Firstly, different two tolerance classes may have inclusion relation.
2. Secondly, for all objects in TOLA(x) = {y ∈ U : (x, y) ∈ TOL(A)}, they

may have no common values.
From discussion above, a more reasonable classification analysis in incomplete

information system has become a necessity. To solve such problem, Leung et al.[8]
proposed the maximal consistent block technique, which is adopted from discrete
mathematics.

Definition 2. [8] Let I be an incomplete information system in which A ⊆ AT ,
the set of all maximal consistent block in terms of A is denoted by μ(A) where

μ(A) = {Y ⊆ U : X2 ⊆ TOL(A) ∧ (∀x /∈ Y → (Y ∪ {x})2) � TOL(A))}. (1)

Definition 3. [8] Let I be an incomplete information system in which A ⊆ AT ,
the lower and upper approximations of X in terms of μ(A) are denoted by μA(X)
and μA(X), respectively, where

μA(X) = ∪{Y ∈ μ(A) : Y ⊆ X}; (2)

μA(X) = ∪{Y ∈ μ(A) : Y ∩X �= ∅}. (3)

The pair [μA(X), μA(X)] is referred to as the rough set of X in terms of the
maximal consistent blocks in μ(A).

2.2 Maximal Consistent Block in Rough Set

For a Bayesian decision procedure, a finite set of the states can be denoted
by Q = {w1, w2, . . . , ws}, a finite set of t possible actions can be denoted by
B = {b1, b2, . . . , bt}. ∀x ∈ U , let Pr(wj |x) be the conditional probability of
object x being in state wj , and λ(bi|wj) be the loss, or cost for taking action bi
when the state is wj . Suppose that we take the action bi for object x, then the
expected loss is R(bj |x) =

∑s
i=1 λ(bi|ωj) · Pr(ωj |x).

For Yao’s decision-theoretic rough set model, the set of states is composed by
two classes such that P = {X,∼ X}, it can be used to indicate that an object
is in class X or out of class X ; the set of actions is given by E = {eP , eB, eN},
in which eP ; eB and eN express three actions: eP means that x is classified into
positive region of X , i.e., POS(X); eB means that x is classified into boundary
region of x, i.e., BND(X); eN means that x is classified into negative region of
X , i.e., NEG(X). The loss function regarding the costs of three actions in two
different states is given in Tab. 1. Obviously, Tab. 1 is a 3 × 2 matrix and it is
denoted by M in this paper.

In Tab. 1, λPP ;λBP and λNP are the losses for taking actions of eP ;eB and
eN , respectively, when stating x is included into class X . λPN ; λBN and λNN

are the losses for taking actions of eP ; eB and eN , respectively, when stating x is
out of class X .∀x ∈ U , by using the conditional probability Pr(X |Y ), in which
Y ⊂ μA(x), μA(x) = {y ∈ μ(A) : x ∈ Y }, the expected losses associated with
three different actions.
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Table 1. Cost matrix of decision-theoretic rough set

X ∼ X

eP λPP λPN

eB λBP λBN

eN λNP λNN

We can assume a reasonable loss function with the conditions in decision-
theoretic rough set model, such that 0 ≤ λPP ≤ λBP ≤ λNP and 0 ≤ λNN ≤
λBN ≤ λPN , then in an incomplete information system, ∀x ∈ U , by the maximal
consistent block technique decision rules (P), (B) and (N) can be expressed as
follows:

(P) if ∃Y ⊂ μA(x),s.t. Pr(X |Y ) ≥ α and Pr(X |Y ) ≥ γ, then x ∈ POS(X);
(B) if ∃Y ⊂ μA(x), s.t. Pr(X |Y ) < α and Pr(X |Y ) < β, then x ∈ BND(X);
(N) if ∃Y ⊂ μA(x), s.t. Pr(X |Y ) < γ and Pr(X |Y ) ≤ β, then x ∈ NEG(X);

where α = (λPN−λBN )
(λPN−λBN )+(λBP−λPP ) ; β = (λBN−λNN )

(λBN−λNN )+(λNP−λBP ) ;

γ = (λPN−λNN)
(λPN−λNN )+(λNP−λPP ) .

∀x ∈ U , since 0 ≤ β < γ < α ≤ 1, then we have
(P) if ∃Y ⊂ μA(x), s. t. Pr(X |Y ) ≥ α, then x ∈ POS(X);
(B) if ∃Y ⊂ μA(x), s. t. β < Pr(X |Y ) < α, then x ∈ BND(X);
(N) if ∃Y ⊂ μA(x), s. t. Pr(X |Y ) ≤ β, then x ∈ NEG(X).
From discussions above, the lower approximation, the upper approximation

of X are

ADT (X) = {x ∈ U : ∃Y ⊂ μA(x), s.t.Pr(X |Y ) 
 α};
ADT (X) = {x ∈ U : ∃Y ⊂ μA(x), s.t.Pr(X |Y ) > β}.

The pair [ADT (X), ADT (X)] is referred to as a decision-theoretic rough set
of X in incomplete information system, POSA

DT = ADT (X) is referred to as the
decision-theoretic positive region ofX ,BNDA

DT = ADT (X)−ADT (X) is referred
to as the decision-theoretic boundary region of X , NEGA

DT = U − ADT (X) is
referred to as the decision-theoretic negative region of X .

3 Multicost Based Decision-Theoretic Rough Sets

For Yao’s classical decision-theoretic rough set, one and only one 3 × 2 cost
matrix is used. Yao assumed that such cost matrix comes from the experts
evaluation. However, as what have been argued in Introduction part, it is clear
that a single cost matrix is too subjective to help us make a better or a more
suitable decision. Therefore, multiple cost matrixes and related decision-theoretic
rough set approach will be explored in this section.

3.1 Decision Rules Based on Multicost

Suppose that M1,M2, . . . ,Mm are m different cost matrixes, ∀i = 1, . . . ,m, the
i-th loss function regarding the costs of three actions in two different states is
given in Tab. 2.
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Table 2. i-th cost matrix

X ∼ X

eP λi
PP λi

PN

eB λi
BP λi

BN

eN λi
NP λi

NN

In Tab. 2, λiPP ; λ
i
BP and λiNP are the i-th losses for taking actions of eP ;

eB and eN , respectively, when x is included into class X . λiPN ; λiBN and λiNN

are the i-th losses for taking actions of eP ; eB and eN , respectively, when x is
out of class X . Similar to classical decision theoretic rough set, for each cost
matrix, we may obtain three minimum-risk decision rules. For example, ∀x ∈ U ,
by considering the i-th cost matrix, the corresponding minimum-risk decision
rules are:

(P) if ∃Y ⊂ μA(x), s.t. Pr(X |Y ) ≥ αi, then x ∈ POS(X);
(B) if ∃Y ⊂ μA(x), s.t. βi < Pr(X |Y ) < αi, then x ∈ BND(X);
(N) if ∃Y ⊂ μA(x), s.t. Pr(X |Y ) ≤ βi, then x ∈ NEG(X);

where αi =
(λi

PN−λi
BN )

(λi
PN−λi

BN )+(λi
BP−λi

PP )
;βi =

(λi
BN−λi

NN )

(λi
BN−λi

NN )+(λi
NP−λi

BP )
.

Therefore, the immediate problem is to fuse these m different (P), (B) or (N)
rules when facing m cost matrixes. To achieve such goal, we will present the
following two fusion strategies: one is the optimistic strategy and the other is
the pessimistic strategy.

1. Firstly, we may consider the minimal values of m different values of α or β
and then the corresponding fusions of risk decision rules are:

(IP) if ∃Y ⊂ μA(x), s.t. Pr(X |Y ) ≥ minmi=1 αi, then x ∈ POS(X);
(IB) if ∃Y ⊂ μA(x), s.t. minmi=1 βi < Pr(X |Y ) < minmi=1 αi, then x ∈

BND(X);
(IN) if ∃Y ⊂ μA(x), s.t. Pr(X |Y ) ≤ minmi=1 βi, then x ∈ NEG(X).
Take for instance (IP), we can see that if the probability Pr(X |Y ) is greater

than or equal to the minimum of m values of α, then x should be included into
the positive region of X . The explanations of (IB) and (IN) are similar to that
of (IP). These semantic explanations show us an optimistic view of the fusion of
m decision rules.

2. Secondly, we may consider the maximal values of m different values of α
or β and then the corresponding fusions of risk decision rules are:

(IIP) if ∃Y ⊂ μA(x), s.t. Pr(X |Y ) ≥ maxmi=1 αi, then x ∈ POS(X);
(IIB) if ∃Y ⊂ μA(x), s.t. maxmi=1 βi < Pr(X |Y ) < maxmi=1 αi, then x ∈

BND(X);
(IIN) if ∃Y ⊂ μA(x), s.t. Pr(X |Y ) ≤ maxmi=1 βi, then x ∈ NEG(X).
Take for instance (IIP), we can see that if the probability Pr(X |Y ) is greater

than or equal to the maximum of m values of α, then x can be included into
the positive region of X . The explanations of (IIB) and (IIN) are also similar
to that of (IIP). These semantic explanations show us a pessimistic view of the
fusion of m decision rules.
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3.2 Optimistic and Pessimistic Decision-Theoretic Rough Sets

From the above two fusion strategies of risk decision rules, it is not difficult to
present the following two multicost based decision-theoretic rough sets, we call
them optimistic and pessimistic decision-theoretic rough sets, respectively.

Definition 4. Let I =< U,AT > be an information system in which A ⊆
AT , M1,M2, . . . ,Mm are m different cost matrixes, ∀X ⊆ U , the optimistic
decision-theoretic lower approximation, upper approximation and boundary re-
gion of X are defined as

AODT (X) = {x ∈ U : ∃Y ⊂ μA(x), s.t.Pr(X |Y ) 

m
min
i=1

αi}; (4)

AODT (X) = {x ∈ U : ∃Y ⊂ μA(x), s.t.Pr(X |Y ) >
m
min
i=1

βi}; (5)

BNDODT (X) = {x ∈ U : ∃Y ⊂ μA(x), s.t.
m
min
i=1

βi < Pr(X |Y ) <
m
min
i=1

αi}. (6)

the pessimistic decision-theoretic lower approximation, upper approximation
and boundary region of X are defined as

APDT (X) = {x ∈ U : ∃Y ⊂ μA(x), s.t.Pr(X |Y ) 
 m
max
i=1

αi}; (7)
APDT (X) = {x ∈ U : ∃Y ⊂ μA(x), s.t.Pr(X |Y ) > m

max
i=1

βi}; (8)
BNDPDT (X) = {x ∈ U : ∃Y ⊂ μA(x), s.t. m

max
i=1

βi < Pr(X |Y ) < m
max
i=1

αi}. (9)

Proposition 1. Let I =< U,AT >be an information system in which A ⊆
AT , M1,M2, . . . ,Mm are m different cost matrixes, ∀X ⊆ U , the optimistic
decision-theoretic lower approximation, upper approximation and boundary re-
gion of X are defined as

AODT (X) ⊇ APDT (X); (10)

AODT (X) ⊇ APDT (X). (11)

Proof. ∀X ∈ APDT (X), by Eq.(7), we have Pr(X |μA(x)) ≥ maxmi=1αi and then
Pr(X |μA(x)) ≥ minmi=1αi holds obviously, it follows that X ∈ AODT (X), i.e.,
AODT (X) ⊇ APDT (X), Similarity, it is not difficult to prove that AODT (X) ⊇
APDT (X).

Proposition 1 shows the relationships between optimistic decision-theoretic
lower/upper approximations and pessimistic decision-theoretic lower/upper ap-
proximations, respectively. It tells us that optimistic decision-theoretic lower and
upper approximations include pessimistic decision-theoretic lower and upper ap-
proximations, respectively.
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Proposition 2. Let I =< U,AT >be an information system in which A ⊆ AT ,
M1,M2, . . . ,Mm are m different cost matrixes, ∀X ⊆ U , we have

AODT (X) = ∪m
i=1A

i
DT (X); (12)

AODT (X) = ∪m
i=1A

i

DT (X); (13)

APDT (X) = ∩m
i=1A

i
DT (X); (14)

APDT (X) = ∩m
i=1A

i

DT (X). (15)

where Ai
DT (X) and A

i

DT (X) are classical decision-theoretic lower and upper
approximations constructed by the i-th cost matrix.

Proof. ∀x ∈ U , by Eq. (4), we have x ∈ AODT (X)⇔ Pr(X |Y ) ≥ minmi=1αi

⇔ Pr(X |Y ) ≥ α1 ∨ Pr(X |Y ) ≥ α2 ∨ . . . ∨ Pr(X |Y ) ≥ αm

⇔ x ∈ A1
DT (X) ∨ x ∈ A2

DT (X) ∨ . . . ∨ x ∈ Am
DT (X)

⇔ x ∈ ⋃m
i=1A

i
DT (X).

That completes the proof of AODT (X) =
⋃m

i=1A
i
DT (X). Similarity, it is not

difficult to prove Eqs. (13), (14) and (15).
Proposition 2 shows the relationships among multicost based two decision-

theoretic rough sets and classical decision-theoretic rough set. The details are:
(1) optimistic decision-theoretic lower approximation is the union of m classical
decision-theoretic lower approximations; (2) optimistic decision-theoretic upper
approximation is the union of m classical decision-theoretic upper approxima-
tions; (3) pessimistic decision-theoretic lower approximation is the intersection
of m classical decision-theoretic lower approximations; (4) pessimistic decision-
theoretic upper approximation is the intersection ofm classical decision-theoretic
upper approximations.

3.3 Costs in Decision System

The end result of rough set theory is to derive decision rules from decision
system. A decision system is a special information system I =< U,AT ∪D >, in
which AT is the set of the condition attributes, while D is the set of the decision
attributes. To simplify our discussions, we only consider one decision attribute
d and then the decision system is denoted by I =< U,AT ∪ d > in the context
of this paper.

Generally speaking, decision attribute d can partition the universe into a set
of the equivalence classes such that U/IND(d) = {D1, D2, . . . , Dn}. Then, a de-
cision rule can be regarded as the relationship between descriptions on condition
and decision attributes. In decision-theoretic rough set theory, three important
decision rules should be considered, they are positive, boundary and negative
rules. In Section 3.1 we have presented the rules. Since we have presented opti-
mistic and pessimistic decision-theoretic rough sets in Section 3.2, and then it is
interesting to discuss the costs of different decision rules, which are supported
by objects in our optimistic and pessimistic decision-theoretic rough sets.
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For optimistic decision-theoretic rough set, we may consider following three
optimistic costs of decision rules which are supported by objects in lower ap-
proximation, boundary region and negative region, respectively.
• Optimistic cost of positive rule which is supported by x ∈ AODT (Dj), where

Pr(Dj |Y ) = max{Y ⊂ μA(x) : Pr(Dj |Y ) ≥ minmi=1αi},
Pr(Dj |Y ) ·minmi=1λ

i
PP + (1 − Pr(Dj |Y )) ·minmi=1λ

i
PN ;

• Optimistic cost of boundary rule which is supported by x ∈ BNDODT (Dj),
where Pr(Dj |Y ) = max{Y ⊂ μA(x) : minmi=1βi < Pr(Dj |Y ) ≥ minmi=1αi},
Pr(Dj |Y ) ·minmi=1λ

i
BP + (1− Pr(Dj |Y )) ·minmi=1λ

i
BN ;

• Optimistic cost of negative rule which is supported by x /∈ AODT (Dj), where
Pr(Dj |Y ) = max{Y ⊂ μA(x) : Pr(Dj |Y ) > minmi=1βi},
Pr(Dj |Y ) ·minmi=1λ

i
NP + (1− Pr(Dj |Y )) ·minmi=1λ

i
NN .

Optimistic costs mean that we are expecting to get the lowest possible costs
in terms of m different cost matrixes. By considering three optimistic costs we
mentioned above, it is not difficult to present the following optimistic cost in a
decision system.

COSTOPT
A =

Σn
j=1Σx∈AODT (Dj)Pr(Dj |Y ) ·minmi=1λ

i
PP + (1 − Pr(Dj |Y )) ·minmi=1λ

i
PN

+Σn
j=1Σx∈BNDODT (Dj)Pr(Dj |Y ) ·minmi=1λ

i
BP + (1− Pr(Dj |Y )) ·minmi=1λ

i
BN

+Σn
j=1Σx/∈AODT (Dj)

Pr(Dj |Y ) ·minmi=1λ
i
NP + (1− Pr(Dj |Y )) ·minmi=1λ

i
NN .

Similar to optimistic case, for pessimistic decision-theoretic rough set, we
may also consider following three pessimistic costs of decision rules which are
supported by objects in lower approximation, boundary region and negative
region, respectively.
• Pessimistic cost of positive rule which is supported by x ∈ APDT (Dj), where

Pr(Dj |Y ) = min{Y ⊂ μA(x) : Pr(Dj |Y ) ≥ maxmi=1αi},
Pr(Dj |Y ) ·maxmi=1λ

i
PP + (1 − Pr(Dj |Y )) ·maxmi=1λ

i
PN ;

• Pessimistic cost of boundary rule which is supported by x ∈ BNDPDT (Dj),
where Pr(Dj |Y ) = min{Y ⊂ μA(x) : maxmi=1βi < Pr(Dj |Y ) ≥ maxmi=1αi},
Pr(Dj |Y ) ·maxmi=1λ

i
BP + (1− Pr(Dj |Y )) ·maxmi=1λ

i
BN ;

• Pessimistic cost of negative rule which is supported by x /∈ APDT (Dj),
where Pr(Dj |Y ) = min{Y ⊂ μA(x) : Pr(Dj |Y ) > maxmi=1βi},
Pr(Dj |Y ) ·maxmi=1λ

i
NP + (1− Pr(Dj |Y )) ·maxmi=1λ

i
NN .

Pessimistic costs mean that we are expecting to get the highest possible costs
in terms of m different cost matrixes. Similar to the optimistic case, we may also
present the following pessimistic cost in a decision system:

COSTPES
A =

Σn
j=1Σx∈APDT (Dj)Pr(Dj |Y ) ·maxmi=1λ

i
PP + (1− Pr(Dj |Y )) ·maxmi=1λ

i
PN

+Σn
j=1Σx∈BNDPDT (Dj)Pr(Dj |Y ) ·maxmi=1λ

i
BP + (1 − Pr(Dj |Y )) ·maxmi=1λ

i
BN

+Σn
j=1Σx/∈APDT (Dj)

Pr(Dj |Y ) ·maxmi=1λ
i
NP + (1− Pr(Dj |Y )) ·maxmi=1λ

i
NN .

We have presented the optimistic and pessimistic costs in a decision sys-
tem, which can be computed by objects in different regions of the optimistic
and pessimistic decision theoretic rough sets, respectively. Since optimistic and
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pessimistic decision-theoretic rough sets were proposed based on multiple cost
matrixes, then it is interesting to analyze the differences between costs come
from decision-theoretic rough sets with respect to multiple cost matrixes and
single cost matrix. From such point of view, we will compute four different types
of costs, they are optimistic cost, pessimistic cost, maximal cost and minimal
costs. The mathematical expressions of maximal and minimal costs are presented
as follows.

COSTMAX = maxmi=1COST
i
A;

COSTMIN = minmi=1COST
i
A.

where COST i
A is the decision cost for the i-th cost matrix, i.e., the cost derived

from Yao’s decision-theoretic rough set, which is constructed based on the i-th
cost matrix. Maximal/Minimal costs are the greatest/least values of m decision
costs, which are derived from m Yao’s decision theoretic rough sets since each
cost matrix supports one Yao’s decision-theoretic rough set.

COST i
A = Σn

j=1Σx∈ADT (Dj)Pr(Dj |Y ) · λiPP + (1− Pr(Dj |Y )) · λiPN

+ Σn
j=1Σx∈ADT (Dj)−ADT (Dj)

Pr(Dj |Y ) · λiBP + (1− Pr(Dj |Y )) · λiBN

+ Σn
j=1Σx/∈ADT (Dj)

Pr(Dj |Y ) · λiNP + (1− Pr(Dj |Y )) · λiNN

4 Conclusions

According to the real world applications, generalising classical rough set model
is important to rough set theory. This paper introduced the decision-theoretic
rough set into incomplete information systems, and applied maximal consistent
blocks to construct decision-theoretic rough set model. Furthermore, by consid-
ering the cost’s diversity and variability, the notions of optimistic and pessimistic
multicost decision-theoretic rough set models were proposed. Finally, the whole
decision costs of optimistic and pessimistic multicost decision-theoretic rough
sets have been further analyzed. The further research will focus on the attribute
reduction of multicost decision-theoretic rough set and propose a more general
model as far as possible.
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Abstract. A method for dealing the boundary region in three-way de-
cision theory is proposed. In the three-way decision theory, all the ele-
ments are divided into three regions: positive region, negative region and
boundary region. Positive region makes a decision of acceptance, nega-
tive region makes a decision of rejection. They can generate certain rules.
However, boundary region makes a decision of abstaining. They generate
uncertain rule. In classification, we always do with the boundary region.
In this paper, we propose a method based on tri-training algorithm to
reduce the boundary region. In the tri-training algorithm, we build up
three classifiers based on three-way decision. We divide all the data into
three parts randomly, aiming to keep the three classifiers different. We
adopt a voting mechanism to label test samples. Experiments have shown
that in most cases, tri-training algorithm is not only benefit for reduc-
ing boundary regions but also for improving classification precision. We
also find some rules about the parameters alpha and beta how to affect
boundary regions and classification precision.

Keywords: Boundary region, three-way decision theory, tri-training
algorithm.

1 Introduction

Since Y ao proposed Decision-theoretic rough set model(DTRS)[1], many re-
searchers have concentrated on the study of the theory. DTRS is probabilistic
rough set model and mainly makes two contributions to rough set theory [2]. On
one hand, it provides the semantic interpretation of positive regions and negative
regions which are used in the rough set models. On the other hand, compared
with other probabilistic rough set model[3,4,5], it provides a theoretic framework
to calculate the thresholds.

Based on Decision-theoretic rough set model, Y ao proposed three-way de-
cision theory[6]. It is an extension of two-way decision theory. In traditional
two-way decision theory, there are only two actions being taken: one is accept-
ing, which means divide the sample into positive regions; another is rejecting,
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which means divide the sample into negative regions. The theory requires the
decision makers to make decision actions immediately regardless of lack of in-
formation or not. Thus, it may result in wrong decisions when the information
is not enough. In this situation, we can take three-way decision strategy. This
strategy is similar to human decision procedure in practical decision problems.
When the information is enough, human will make decisions immediately; how-
ever, when the available information is limited, human will wait and see. Thus,
the three-way decision consists of three regions: positive regions, negative regions
and boundary regions.

All the time, the idea of three-way decision is widely used in many fields such
as medical diagnosis [7,8,9,10], social judgment theory [11], management theory
[12,13,14], paper review [15] and etc. After three-way decision theory was pro-
posed by Y ao, Many researchers also applied this theory in many applications,
e.g. spam filtering [16, 17], text classification[18] and etc.

The main superiority of three-way decision compared to two-way decision
is the utility of the boundary decision. However, it is also a disadvantage of
three-way decision. Because we need to deal with the boundary regions. In those
applications, they usually don’t handle the boundary regions, just leave them to
decision makers. If the boundary regions are large, decision makers may spend a
lot of time dealing with them. In this case, how to reduce the boundary regions
is a new problem. Aiming to solve this problem, we propose a method to reduce
the boundary regions in three-way decisions. We adopt the idea of tri-training
algorithm [19] and put forward a tri-training algorithm based on three-way de-
cisions. Experimental results show the method we proposed is good at reducing
the boundary regions.

The paper is organized as follows: In section 2, we introduce the basic theory
of three-way decisions. In section 3, we introduce tri-training algorithm based
on three-way decisions in detail. In section 4, we conduct several groups of com-
parative experiments and analyze the experimental results. In the last, we draw
a conclusion.

2 Preliminaries

In this section, we will review some basic notions of three-way decision theory[6].

2.1 Basic Knowledge of Three-Way Decision

In the three-way decision, Ω =
(
X, X̄

)
, which represents the actual state of an

object. A = {aP , aN , aB} means action set,where aP , aN , aB represent the ac-
tions that decide an object to POS(X), NEG(X) and BND(X) respectively,
where POS(X), NEG(X), BND(X) represent positive region, negative region
and boundary region respectively. Table 1 presents all costs for three-way de-
cisions. The cost λij forms a matrix denoted as (λij)2∗3, where i ∈ {P,B,N}
which represents three actions; and j ∈ {P,N} which represents actual states
of objects.
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Normally, we have λPP ≤ λBP ≤ λNP and λNN ≤ λBN ≤ λPN . Because
the costs of right decisions are less than wrong decisions. Moreover, we make a
reasonable assumption is that λPP and λNN are equal to zero.

Table 1. Decision cost Matrix

Actual States Decide
POS(X)

Decide
BND(X)

Decide
NEG(X)

X λPP λBP λNP

X̄ λPN λBN λNN

According to Bayesian decision theory, we compare all decision costs of A =
{aP , aN , aB} and select out the action which has the minimum expected decision
cost. So we first define the expected decision cost of action aP , aN , aB as follows:

R (aP | [x]) = λPPP (X| [x]) + λPNP
(
X̄ | [x]). (1)

R (aN | [x]) = λNPP (X| [x]) + λNNP
(
X̄ | [x]). (2)

R (aB| [x]) = λBPP (X| [x]) + λBNP
(
X̄| [x]). (3)

According to the Bayesian decision procedure, the minimum risk decision rules
are shown as follows:

ifR (aP | [x]) ≤ R (aN | [x]) &&R (aP | [x]) ≤ R (aB | [x]) , then decidePOS (X). (4)

ifR (aN | [x]) ≤ R (aP | [x])&&R (aN | [x]) ≤ R (aB | [x]) , thendecideNEG (X). (5)

ifR (aB | [x]) ≤ R (aP | [x])&&R (aB | [x]) ≤ R (aN | [x]) , then decideBND (X). (6)

As defined above, λPP ≤ λBP ≤ λNP and λNN ≤ λBN ≤ λPN , and
P (X | [x]) + P (X̄ | [x]) = 1, we can get same equivalent formulas as follows:

ifP (X| [x]) ≥ λ&&P (X| [x]) ≥ α, then decidePOS (X). (7)

ifP (X| [x]) ≤ λ&&P (X| [x]) ≤ β, then decideNEG (X). (8)

ifP (X| [x]) ≥ β&&P (X| [x]) ≤ α, then decideBND (X). (9)

where
α =

λPN−λNN

(λPN−λNN )+(λNP −λPP )
, β =

λBN−λNN

(λBN−λNN)+(λNP−λBP )
, γ =

λPN−λNN

(λPN−λNN)+(λNP −λPP )

Because α ≥ β ≥ γ, the variations of decision rules are shown as follows:

ifP (X| [x]) ≥ α, then decidePOS (X). (10)
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ifP (X| [x]) ≤ β, thendecideNEG (X). (11)

ifP (X| [x]) ≥ β&&P (X| [x]) ≤ α, then decideBND (X). (12)

2.2 The Calculated Way of Three Regions

As all we know, when we want to classify a sample into one of these three regions,
we need to compute P (X | [x]). However, the posterior probability P (X | [x]) is
not always easy to get from data directly. So in paper[17], it use a monotonic
transformation of the posterior probability to construct an equivalent classifier.
For the transformation, the decision rules are as follows:

POS (X) = {x|
n∑

i=1

log
P (xi|X)

P
(
xi|X̄

) ≥ α
′}. (13)

BND (X) = {β′ ≺
n∑

i=1

log
P (xi|X)

P
(
xi|X̄

) ≺ α′}. (14)

NEG (X) = {x|
n∑

i=1

log
P (xi|X)

P
(
xi|X̄

) ≤ β
′}. (15)

where α
′
= log

P(X̄)
P (X) + log λPN−λBN

λBP−λPP
, β

′
= log

P(X̄)
P (X) + log λBN−λNN

λNP−λBP

We know from the formulas, the parameters α
′
and β

′
are not in [0, 1] anymore.

According to formulas above, all the factors are easy to get from data, so in
this paper, we use these formulas above to compute probabilities.

3 The Method to Reduce Boundary Regions in
Three-Way Decisions

In this section, we will show the tri-training algorithm based three-way decisions
for reducing the boundary regions.

Tri-training algorithm[19] was proposed by Zhou in 2005 for semi-supervised
learning. It is a new co-training[20] style algorithm. Compared with traditional
co-training algorithm, tri-training algorithm does not require sufficient and re-
dundant views, nor does it require different classifiers. Zhou firstly trained three
initial classifiers from data sets which are labeled. Then, for any classifier, an
unlabeled example can be labeled for it as long as the other two classifiers agree
on the labeling of this example.

According to the idea, we propose the tri-training algorithm based on three-
way decisions for reducing boundary regions. Firstly, we select three splits of
training data via random sampling. Then we train three classifiers based on
three-way decisions on these splits. Because these splits are different, there are
some differences between the classifiers. When a test example comes in, we use
these three classifiers to make a decision. If more than two of these three clas-
sifiers give the same classification result, then the example will be given the
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result label. For example, two classifiers label it as POS(NEG or BND), then
the example will be given POS(NEG or BND) respectively. If exists this situa-
tion like that one classifier label it as POS, one classifier label it as NEG and
the last classifier label it as BND, then the example will be given boundary label
finally.

The detail of our algorithm is presented as below.

Algorithm 1. Three-way decision classifier

Input:
Decision table S = (U,C,D, V, f).

Output:
a set named bnd, means all the samples in the boundary regions.

1. bnd = φ
2. initialize λPP , λPN , λPB , λNN , λNP , λNB , then compute parameters α, β;

or set up α, β artificially.
3. make statistic of training data, preparing for probability calculation.
4. for every test sample, compute p =

∑n
i=1 log

P (xi|X)

P(xi|X̄)
according to the statistic

results.
if p ≥ α, then divide the test sample into positive class.
if p ≤ β, then divide the test sample into negative class.
if β ≺ p ≺ α, then divide the test sample into boundary region, add the sample
into bnd

5. output bnd

Algorithm 1 describes a classifier based on three-way decision theory in detail.
Firstly, we compute the probability of each test sample, according to which we
divide the sample into respective regions.

Algorithm 2. Tri-training algorithm based on three-way decisions

Input:
Decision table S = (U,C,D, V, f).

Output:
a set named bnd, means all the samples in the boundary regions.

1. bnd = φ
2. generate si, i = 1...3 randomly, si presents a split of training data for each three-

way decision classifier.
3. for (i = 1...3)

train the three-way decision classifier according to si.
4. for each test sample, three classifiers give the classification result respectively.

if more than two classifiers give the same results, then the test sample will be
classified according to the result.
if one classifier label it as POS, one classifier label it as NEG, and another classifier
label it as BND, then add the sample into bnd.

5. output bnd

Algorithm 2 describes the tri-training algorithm based on three-way decisions
in detail. Each classifier is a three-way decision classifier.
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4 Experiments

We carry out several experiments to show that the tri-training algorithm are
effective to reduce boundary regions. At the same time, we find some rules about
the parameters alpha and beta how to affect boundary regions and classification
precision.

4.1 Experimental Settings

Our experimental environment is as follows: Hardware environment: Inter(R)
Core(TM) 2 Duo, 2.4GHz, 4GB memory; Software environment: the operation
system is windows7; development environment is Kepler Release 2013, JDK7.

We choose two data sets from UCI machine learning repository[21]. Table 2
shows the details of the data sets.

Table 2. Data sets from UCI

Data Data Description Number of
Training data

Number of
Testing data

Attributes Classes

wdbc Breast Cancer
Wiscon-

sin(Diagnostic)

469 100(pos:77,
neg:33)

32 2

wpdc Breast Cancer
Wiscon-

sin(Prognostic)

198 28(pos:10,
neg:18)

34 2

In first dataset wdbc, we set up different α
′
and β

′
by changing decision cost.

With these different parameters, we conduct four groups of comparative exper-
iments between three-way decision classifier and tri-training algorithm based
on three-way decision classifier. In second dataset wpdc, we change α

′
and β

′

artificially. We also conduct two groups of comparative experiments.

4.2 Experimental Results

The experimental results are shown in Table 3, Fig 1, Table 4, and Fig 2. TW
means three-way decision classifier, TR means tri-training algorithm based on
three-way decision classifier.

In Table 3, we conduct four groups of experiments. Group 1 is that we set
up PN/NP={10,50,100}, and parameter β

′
is not changed, but α

′
grows grad-

ually; Group 2 is that we set up NP/PN={10,50,100}, and parameter α
′
is

not changed, but β
′
declines gradually; Group 3 and Group 4 are that we

set up BP/BN={10,20,30} and BN/BP={10,20,30} respectively, and the pa-
rameter α

′
declines but β

′
grows gradually. PN, NP, BP and BN represent

λPN , λNP , λPB , λBN respectively.
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Table 3. Experimental results on dataset wdbc

Group Decision Cost α
′
and β

′
preOfTW preOfTR bndOfTW bndOfTR

1 PN=100.0, BN=5.0,
BP=5.0, NP=10.0

α
′
=1.10805,

β
′
=-0.17069

0.92 0.93 1 1

1 PN=500.0, BN=5.0,
BP=5.0, NP=10.0

α
′
=1.82493,

β
′
=-0.17069

0.92 0.92 1 3

1 PN=1000.0, BN=5.0,
BP=5.0, NP=10.0

α
′
=2.12815,

β
′
=-0.17069

0.92 0.92 1 3

2 PN=10.0, BN=5.0,
BP=5.0, NP=100.0

α
′
=-0.17069,

β
′
=-1.44944

0.92 0.94 3 1

2 PN=10.0, BN=5.0,
BP=5.0, NP=500.0

α
′
=-0.17069,

β
′
=-2.16633

0.92 0.94 3 1

2 PN=10.0, BN=5.0,
BP=5.0, NP=1000.0

α
′
=-0.17069,

β
′
=-2.46954

0.92 0.94 3 1

3 PN=500.0, BN=5.0,
BP=50.0, NP=500.0

α
′
=0.82493,

β
′
=-2.12493

0.92 0.93 4 2

3 PN=500.0, BN=5.0,
BP=100.0, NP=500.0

α
′
=0.52390,

β
′
=-2.07378

0.92 0.93 3 2

3 PN=500.0, BN=5.0,
BP=150.0, NP=500.0

α
′
=0.34781,

β
′
=-2.01579

0.92 0.93 3 2

4 PN=500.0, BN=50.0,
BP=5.0, NP=500.0

α
′
=1.78354,

β
′
=-1.16633

0.92 0.92 3 4

4 PN=500.0, BN=100.0,
BP=100.0, NP=5.0

α
′
=1.73239,

β
′
=-0.86530

0.92 0.92 3 4

4 PN=500.0, BN=150.0,
BP=5.0, NP=500.0

α
′
=1.67440,

β
′
=-0.689210

0.92 0.92 2 4

According to the results in Table 3, we generate 4 line charts in Fig 1, where
alpha and beta means α

′
and β

′
; preOfTW and preOfTR means classification

precision of three-way decision classifier and that of tri-training classifier; bnd-
OfTW and bndOfTR means the number of boundary regions of three-way clas-
sifier and that of tri-training classifier.

From Table 3 and Fig 1, we can obtain:
(1)When the parameters α

′
and β

′
are same, the classification precision of tri-

training classifier is higher than three-way decision classifier.
(2)When β

′
is not changed, α

′
grows gradually, there is no change in boundary

regions of three-way decision classifier; however, the boundary regions of tri-
training classifier grows a little.
(3)When α

′
is not changed, β

′
declines gradually, there is no change in boundary

regions of three-way decision classifier and tri-training classifier, and at the same
time, the number of boundary regions of tri-training classifier is less than three-
way decision classifier.
(4)When α

′
declines and β

′
grows, the boundary regions in three-way decision

classifier declines; however, there is no change of tri-training classifier.
(5)In most cases, the boundary regions of tri-training classifier is less than three-
way decision classifier.
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Fig. 1. Results of experiment group 1-4 on dataset wdbc

In Table 4, we set up parameters α
′
and β

′
artificially. We conduct two groups

of comparative experiments. One is that keeping β
′
unchangeable, α

′
grows

gradually; another is that keeping α
′
unchangeable, β

′
declines gradually.

Table 4. Experimental results on dataset wpbc

Group α
′
and β

′
preOfTW preOfTR bndOfTW bndOfTR

1 α
′
=0.3, β

′
=0 0.6428 0.75 2 1

1 α
′
=0.5, β

′
=0 0.6428 0.75 3 1

1 α
′
=1.0, β

′
=0 0.5714 0.67 7 3

2 α
′
=0.3, β

′
=-0.2 0.6428 0.75 3 1

2 α
′
=0.3, β

′
=-0.5 0.6428 0.7142 3 2

2 α
′
=0.3, β

′
=-1.0 0.6428 0.6428 3 6

According to the results, we also generate 2 line charts in Fig 2.
From Table 4 and Fig 2, we can obtain:

(1)When the parameters α
′
and β

′
are same, the classification precision of tri-

training classifier is higher than three-way decision classifier.
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(2)When β
′
is not changed, α

′
grows gradually, the boundary regions of both

classifiers grows, however that of tri-training classifier is obviously less than that
of three-way decision classifier.
(3)When α

′
is not changed, β

′
declines gradually, there is no change in the

boundary region of three-way decision classifier, however, that of tri-training
classifier grows a little.
(4)In most cases, the boundary regions of tri-training classifier is less than three-
way decision classifier.

Fig. 2. Results of experiment group 1-2 on dataset wpbc

To sum up, we can obtain:
(1)When the parameters α

′
and β

′
are same, the classification precision of tri-

training classifier is higher than three-way decision classifier.
(2)The parameters α

′
and β

′
will affect the boundary regions. With the change

of these two parameters, the boundary regions of tri-training algorithm is not
always superior to that of three-way decision classifier; however, in most cases,
it is superior to that of three-way decision classifier.

5 Conclusion

In this paper, we proposed a method to reduce boundary regions in three-way
decision. We adopted the idea of tri-training. In the tri-training algorithm, we
built up three classifiers based on three-way decision. For a test sample, we used a
voting mechanism to label it. We conducted several groups of comparative exper-
iments between three-way decision and tri-training algorithm. The experimental
results show that compared with three-way decision classifier, the classification
precision of tri-training algorithm is higher; and in most cases, the boundary re-
gions are less. Thus, tri-training algorithm based on three-way decision is benefit
for reducing boundary regions and improving classification precision.
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Abstract. Microblog's subjective sentence recognition is the basis of it's public 
opinion analysis further research .Therefore, its recognition accuracy is crucial 
for future research work. Owing to the imprecision or incomplete of information, 
the precision of traditional SVM, NB and other machine learning algorithms  
that for microblog's subjective sentence recognition is not ideal. Presents a  
method based on the integrated of three-way decision and Bayesian algorithms 
to distinguish microblog's subjective sentence. Compared with traditional  
Bayesian algorithms, Experimental results show that the proposed integrated  
approach can significantly improve the accuracy of subjective sentence's  
recognition . 

Keywords: Three-way decision, Bayes, micro-blog, subjective sentence. 

1 Introduction 

With the rapid development of Internet, for people to obtain information ，micro-
blog has become an important channel. Statistical Report ,which was on Internet De-
velopment 33rd China Internet Network [1] shows that by the end of December 
2013,China micro-blog users reached 281 million, and in  netizen the Micro-blog 
unilization ratio was 45.5%. In recent years，many scholars launched the study of 
micro-blog identificational subjective sentences，Yang Wu et al [2] by using Bayes 
classifier, researched the classification of subjective and objective to micro-blog 
statement. Firstly, they analyzed the main differences between micro-blog text and 
other texts, and extract some features of subjective and objective clues for the charac-
teristics of expression about micro-blog text. Then, they researched to 2-POS mode 
on the best select way, finally, as semantic features by feature words and the objective 
and subjective clues, as grammatical features by 2-POS mode, to study their impact 
on the classification results using Naïve Bayes classifier. Experimental results  
show that the method of taking into account semantic features and the structural cha-
racteristics of grammatical is better than the mehtod of only considering a feature 
better. Its classification precision was 81.9%, the recall 80.5%, F-Measure 81.2%.  
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Alexander Pak et al [3] to select N-Gram and speech tagging of micro-blog as feature, 
identification research on subjective sentences of micro-blog using Naïve Bayes clas-
sifier, compare with the two kinds of classifiers that SVM(support vector machine) 
and CRFs, expermental results show that, subject sentence identification of micro-
blog based on Naïve Bayes was the best.  

It’s a binary classification problem about identification of subjective sentence. 
Since micro-blog has characteristics of short text, colloquial, randomness, etc, the 
subjective information is often imprecise,  incomple, and the classification accuracy 
rate is not high enough .This paper presents the method of subjective sentence recog-
nition that micro-blog based on Three-Way Decision and machine learning algorithms 
integrated，the method using decision-rough sets and Three-Way Decision as theo-
retical basis，achieve identification that subjective sentence of micro-blog through 
integration with Bayes classifier that many previous studies and the best effect. The 
experiments show that the method can significantly impove the accuracy of subjective 
sentence recongnition. 

2 Three-Way Decision Theory 

Three-Way Decision theory [4-6] is proposed in rough sets [7-8] and decision-
rough sets [9-13] by Yao, based on this model, Yao study on the semantic of  
positive region, negative region, boundary region in the rough sets theory and pro-
posed to explain the rough sets rules extraction problem from the perspective of 
three-way decisions. 

Decision-rough set is the expand of Pawlak algebra rough sets and 0.5-
probability rough sets[10].the core of rough sets is the definition of the upper and 
lower approximation. 

Definition of the upper and lower approximation of Pawlak algebra rough sets:  
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For the set of states },{ XX
¬=Ω , there is the probability of conditions ,following:  
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Which  . represents a potential of collection, namely the number of collection, ][ x

said equivalence class. The three domains of Pawlak algebra rough sets is described 
by using the probability as follows: 
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The rough sets mode only using two extreme values of probability, it lack of fault 
tolerance when applied to classification decisions. Based on this, Yao et al proposed a 
decision-rough set model .Suppose 10 ≤<≤ αβ , as a pair of thresholds, and 

define three domain as follows: 
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When objectx belongsX , orders ppλ , npλ , bpλ as the loss function of x divided 

into )(POSX , )(NEGX , )(BNDX , when x  belongs to X
¬ , appropriate orders 

pnλ , nn
λ , bn

λ  as the loss function of divided into the same three domains. Shown 
in the following table:  

Table 1. Table of Loss Function 

 (X)POS  (X)BND  (X)NEG  

X  ppλ  bpλ  npλ  

X
¬

 pnλ  
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λ  
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λ  

The risk of equivalence class divided into three domains is defined as: 
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 Given the minimum rish decision rule by Bayes decision theory: 

If ])[|)(POS( xXR ≤ ])[|)(BND( xXR and ])[|)(POS( xXR ≤
])[|)(NEG( xXR  then )(POSXx ∈ ; 

If ])[|)(BND( xXR ≤ ])[|)(POS( xXR and ])[|)(BND( xXR ≤
])[|)(NEG( xXR ，then )(BNDXx ∈ ; 

If ])[|)(NEG( xXR ≤ ])[|)(POS( xXR and ])[|)(NEG( xXR ≤
])[|)(BND( xXR  then )(NEGXx ∈ . 
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The above rules has the following equivalent description: 

If α≥])[|( xXp then )(POSXx ∈ ; 

If αβ << ])[|( xXp then )(BNDXx ∈ ; 

If β≤])[|( xXp then )(NEGXx ∈ . 

3 Three-Way Decision Approach to Microblog Subjective 
Sentence Recognition 

To the positive , negative and boundary region of decision-theoretic rough set,Yao 
proposed positive rules, negative rules, boundary rules of three-way decisions .Sets 
said as follows: 

)(POS][,])[|(:rulespositive ),( XxxXP βαα ⊆≥  

)(NEG][,])[|(：rules  negative ),( XxxXP βαβ ⊆≤  

)(BND][,])[|(：rules  boundary ),( XxxXP βααβ ⊆<<  
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 That is: Ux ∈∀ , the rate of ])[|( xXP is greater than or equal to theα
.Then divided ][ x into positive region of X ,At the same time make positive re-
gion decision, Other formula explained in the same way. And U is a finite set of 
objects. 

Use )|( xLp  represent the rate thatx is belong to subjective sentences catego-
ry,It microblog whether belongs to the subjective sentences three-way decisions re-
presentation are as follows: 

 
α≥)|( xLp , Decidex is subjective sentences; 

β≤)|( xLp , Decidex is not subjective sentences 

αβ << )|( xLp , It microblog whether belongs to the subjective sen-

tences is uncertain, made by artificial processing decisions. 
Three-way decisions model divided microblog into subjective sentences classes, 

not subjective sentences classes and boundary classes and compared with two classi-
fication model, not simply added a category, transformed the two classification prob-
lems into the multi-classification problems, But building on the basis of the decision-
theoretic rough set for the target concept collection of positive ,negative and boundary 
region depiction. 

4 Evaluation Standard 

For positive class (category of subjective sentences), and negative class (category of 
nor subjective sentences) of the three-way decisions, this paper uses four evaluation 
indexes which are  namely ,precision rate (P ), recalling rate (R ), F and macro-
average. The table as follows: 

Table 2.   Contingency Table of Categories 

 Actually belong to posi-
tive classes documents 

Actually belong to nega-
tive  classes documents 

Judged belong to posi-
tive classes documents 

pp
a  

pn
a  

Judged belong to nega-
tive classes documents 

npa  nn
a  

judged belong to boun-
dary classes documents 

bpa  bn
a  

 
Then, there are evaluation indexes of positive classes and negative classes, as  

follows:  
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In the formula, pP , nP and avgP denote the precision for the positive classes ,negative 
class and macro-average, Similarly, other the same subscript do the corresponding 
explanation. 

5 Experimental Design 

5.1 Microblog Feature Extraction 

This paper uses the method on the base of combination of dictionary and statistical 
analysis to select microblog's candidate subjective features, and information gain (IG) 
method to extract features.  All steps are as follows: 

Step1：Structuring basic domain of view dictionary. Using the positive and nega-
tive emotion words of HowNet [14]. For positive and negative evaluation words, 
there are 8746 words after removing duplicate words. 

Step2：Using multiple word segmentation system [15] to build custom thesaurus 
for the recognition of the domain of view word. To get 5820 custom thesaurus words . 

Step3：Constructing view words in candidate domain. Combined the word in 
step1 and step2, so as to remove duplicate words, and then there will be 13827 words 
of the candidate domain of view words. 

Step4：Expanding the domain of view words by the conjunctions word dictionary. 
To get 14064 words of the candidate domain of view words. 

Step5：Statistics corpus question mark and exclamation point are occupying a 
larger proportion. Besides that there is differences of its proportion from its subjective 
sentence and non-subjective sentence. So the question mark and exclamation point 
can be candidate subjective features. 

Step6：Building the candidate subjective features. Emerged step4 and step5, and 
see this combination as custom thesaurus to separate Corpus's words and added into 
segmentation system of ICTCLAS2014[16]. Extracted the same words from segmen-
tation corpus and custom thesaurus, and see it as candidate subjective features. Finally 
get 6232 candidate subjective features. 

Step7：Using IG to extract candidate subjective features, the extracting number is 
determined by experiment . 
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5.2 Threshold—An Explanation 

Make the following assumptions: 
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Because in the massive micro-blog text environment, subjective sentence recognition 
is a consideration of sensitive issues. The cost of subjective micro-blog into non-
subjective micro-blog is smaller than non- subjective micro-blog divided into subjec-
tive micro-blog. There are:  
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2>η , as βγα >> . The final value for η  is determined by experiment. 

5.3 The Three-Way Decision Classifier Design Based on NB 

Using the prior probability and class-conditional estimate probability )|( xLp [17]: 

 )(

)|()(
)|(

xp

LxpLp
xLp

×=
. (11) 

(1) NB probability estimation model uses the Bernoulli model : 

)(Lp = The total number of documents subjective sentence / The total number of 

documents in the training text . 

)|( Lxp
i

=(The number of contain L  of subjective sentences and 
i

x of fea-

tures +1) / ( The total number of documents L of subjective sentence +2) . 
(2) Assume that each feature is independent to each other . 

(3) Total Probability : =
iL

ii
LpLxpxp )()|()( . 

5.4  Experimental Result and Analysis 

Experimental corpus as "Chinese micro-blog sentiment analysis evaluation data set" 
[18] , Choose one of 3415 in the corpus , After feature selection, feature extraction 
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and feature weighting, using the vector space model for text representation. With 
constructing micro-blog decision table, in the experiment shows that the number of 
features being the 3000, based on a subjective sentence micro-blog NB best recogni-
tion performance. With this micro-blog decision table, Threshold test, Experimental 
set the interval [2,22], In steps of 0.5 threshold value of the experiment. Experimental 
results shown in Figure 1, Figure 2, Figure 3.  

 
Fig. 1. Parameterη experimental result for the positive class 

 
Fig. 2. Parameterη experimental result for the negative class 

 
Fig. 3. Parameterη  experimental result for the macro-average 
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By comparison chart shows the experimental results, The overall trend with increas-
ing values of η , precision rate on the rise, The recall and F-measure show a down-

ward trend. Precision rate of the positive class is highest at 5.14=η , Precision 

rate of the negative class is 1 at 5.15=η , Precision rate of the macro-average is 

highest at 5.15=η . The results shown in Table 3, Table 4, Table 5: 

Table 3. Three-way decisions improve precision rate effectively of the positive class 

The positive class 5.14=η  

Precision Recall F-Measure 

0.937398 0.780598 0.8518 

Table 4. Three-way decisions improve precision rate effectively of the negative class 

The negative class 5.15=η  

Precision Recall F-Measure 

1 0.28039 0.437984 

Table 5. Three-way decisions improve precision rate effectively of the macro-average 

The macro-average 5.15=η  

Precision Recall F-Measure 

0.968699 0.53049 0.645 

Considering the precision, accuracy, recall and F-measure, 3=η  shows the 
best results of the experiment and results were compared with the NB classification. 
The results are shown in Table 6, Table 7, Table 8, Figure 4, Figure 5, Figure 6: 

Table 6. Comparison of experimental results of the positive class at 3=η  

 The positive class 
Precision Recall F-Measure 

Three-way 
0.921294 0.864914 0.8923 

NB 0.823259 0.975521 0.8929 

Table 7. Comparison of experimental results of the negative class at 3=η  

 The negative class 
Precision Recall F-Measure 

Three-way 
0.906852 0.70058 0.79048 
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NB 0.932584 0.61786 0.74328 

Table 8. Comparison of experimental results of the macro-average at 3=η  

 The macro-average 
Precision Recall F-Measure 

Three-way 
0.914073 0.78275 0.842 

NB 0.877922 0.79669 0.818 

 

 

Fig. 4. Comparison of the positive class results 

 

Fig. 5. Comparison of the negative class results 

 

Fig. 6. Comparison of the macro-average results  
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By comparing the experimental results, compared with the NB method, Precision is 
improved by nearly 10%, F-Measure basically unchanged, Recall rate decreased 
slightly according to Three-Way Decision, which means the macro-average experi-
mental result was significantly higher than NB. It described the Three-Way Decision 
method ,meanwhile maintaining the overall identification performance of subjective 
sentence, can significantly improve the accuracy of classification. There are a lot of 
subjective micro-blog statements in the mass micro-blog text environment. It plays a 
very important role for subsequent emotional research and improves the accuracy of 
the analysis of public opinion that improving the recognition accuracy of subjective 
sentence. 

6 Summary and Outlook 

Using three-way decision, and set the reasonable Threshold of α , β ,while maintain-
ing the overall recognition performance of subjective sentence, can effectively im-
prove the recognition accuracy of subjective sentence. The next job of this paper is 

mainly on the extraction of  α  and β 's threshold, while researching the considera-
tion of microblog's three decisions. And probing a more effective evaluation criteria 
which based on three-way decision. 
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Abstract. Unlike Pawlak rough set, probabilistic rough set models allow
a tolerance inaccuracy in lower and upper approximations. Dominance re-
lation cannot establish probability measure space for the universe. In this
paper, the basic set assignment function, namely partition function is in-
troduced into our work, which can transform the non-probability measure
generated by dominance relation into a probability measure space. The
probabilistic rough set model is established based on dominance relation,
and explained clearly through an example.

Keywords: Dominance relation, Probabilistic rough set, Partition func-
tion, Probability space.

1 Introduction

The notion of probabilistic rough set approximationswas first introduced byWong
and Ziarko [11], expressed through a pair of lower and upper approximations. The
acceptance of probabilistic rough sets ismerely due to the fact that they are defined
by using probabilistic information and aremore general and flexible. The introduc-
tion of probability enables the models to treat the universe of objects as samples
from amuch larger universe [8]. Yao presented a decision makingmethod based on
probabilistic rough set, which is called decision-theoretic rough set, where decision
rules obtained from positive region, negative region and boundary region [15], [17].
Essentially, the decision-theoretic rough set is a special case of probabilistic rough
set. The two thresholds in the probabilistic rough set model can be directly and
systematically calculated by minimizing the decision costs with Bayesian decision
procedure, which gives a brief semantics explanation in practical applications with
minimumdecision risks. Bayesian decision theory dealswithmaking decisionswith
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minimum risk based on observed evidence. The probabilistic rough set has much
more wider application after introducing the Bayesian decision principle.

Since the decision-theoretic rough set was proposed by Yao in 1990 [16], it
has attracted much more attentions. Yao gave a decision theoretic framework for
approximating concepts in 1992 [14]. Azam et al. proposed a threshold configu-
ration mechanism for reducing the overall uncertainty of probabilistic regions in
the probabilistic rough sets [1]. Jia et al. developed an optimization representa-
tion of decision-theoretic rough set model and raised an optimization problem
[5]. Yu et al. applied decision-theoretic rough set model for automatically de-
termining the number of clusters with much smaller time cost [18]. Liu et al.
combined the logistic regression and the decision-theoretic rough set into a new
classification approach [7].

The original rough set theory does not consider attributes with preference
ordered domain, relations in the rough set theory are not equivalence relations.
It is vital to propose an extension rough set theory called the dominance-based
rough set approach [3] to take account into the ordering properties of criteria.
The innovation is mainly based on substitution of the indiscernibility relation
by a dominance relation. Recently, several studies have been made on properties
and algorithmic implementations of dominance-based rough set approach [10].
Nevertheless, with the dominance-based rough set approach proposed by Greco
et al. [3], only a limited number of methods use dominance-based rough set
approach to acquire knowledge from inconsistent ordered information systems ,
but they did not clearly point out the semantic explanation of unknown values.
Then Shao et al. further explored an extension of the dominance relation in
an inconsistent ordered information system [9]. Many researchers have enriched
the ordered theories and obtained many achievements. For instance, Xu et al.
constructed a method of attribute reduction based on evidence theory in ordered
information system [12], and others [2], [13].

Probabilistic rough set is based on an equivalence relation. However, in real life,
one may often consider the rank of attributes. So we need to extend the proba-
bilistic rough set theory by considering dominance relation. Relevantly, Greco et
al. discussed a Bayesian decision theory for dominance-based rough set model in
2007 [4]. Kusunoki et al. studied an empirical risk associated with the classifica-
tion function [6]. These approach want to take account into costs of misclassifica-
tion in fixing parameters of the dominance-based rough set approach, while didn’t
transact the essence of issue about how to establish a probability measure space
through a dominance relation. When we use the probabilistic rough set theory by
considering a dominance relation, we may be face with problems that the domi-
nance relation can’t induce probability measure spaces. It is important that one
solves this issue. Our objective is to explore how to establish probabilistic rough
set model based on dominance relation. The rest of this paper is organized as fol-
lows. Some preliminary concepts about the rough set model based on dominance
relation and probabilistic rough set are briefly reviewed in Section 2. In Section 3,
we developed the probabilistic rough set based on dominance relation by using the
partition function. Finally, Section 4 gets the conclusions.
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2 Preliminaries

In this section, we review some basic concepts about rough sets based on domi-
nance relation [3], probabilistic approaches to rough set theory.

A partial relation from U to U meets reflexivity, antisymmetry and transi-
tivity, including decreasing preference R� and increasing preference R�. As the
decreasing preference can be converted to increasing preference, in this paper
we only consider the increasing preference, namely the dominance relation R�

without any loss of generality.
Let U be a universe of discourse, and R� be a dominance relation on U . U/R�

is the set of dominance classes induced by a dominance relation R�, and [x]R�

is called dominance class containing x. For an arbitrary set X ⊆ U , one can
characterize X by a pair of lower and upper approximations which are defined
as follows.

R�(X) = {x ∈ U |[x]R� ⊆ X},
R�(X) = {x ∈ U |[x]R� ∩X �= ∅}.

The pair (R�(X), R�(X)) is called the dominance-based rough set of X with
respect to (U,R). If R(X) �= R(X), then X is said to be a dominance-based
rough set.

One can define P as probability measure if the set-valued function P maps
from 2U to [0, 1], which can satisfy the two conditions: P (U) = 1; if A ∩B = ∅,
then P (A∪B) = P (A)+P (B). And then P is a probability measure of σ−algebra
which is combined by the family subset of U .

Mathematically, one may introduce a probability function on σ − algebra of
a universal set to construct a probabilistic approximation space, with which
relationships between concepts can be defined in probabilistic terms. We can
estimate the conditional probability of a set given an equivalence class. With
probabilistic theory, an equivalence class is in the lower approximation if and
only if an element in the equivalence class has a high probability (i.e., greater
than or equal to a threshold) to be in the set.

Given U as a non-empty and finite set of objects, where R is an equivalence
relation in U . Denote [x]R as the equivalence class with respect to x. And P is
a probability measure of σ − algebra which is combined by the family subset of
U . The triple AP = (U,R, P ) is called probability approximation space.

Definition 2.1. [14] Let 0 ≤ β < α ≤ 1, for any X ⊆ U , the lower and upper
approximations based on thresholds α, β with respect to AP = (U,R, P ) are
defined as follows

pr(α,β)
R

(X) = {x ∈ U |P (X |[x]R) ≥ α},

pr
(α,β)
R (X) = {x ∈ U |P (X |[x]R) > β}.

If pr
(α,β)
R (X) = pr

(α,β)
R (X), then X is a definable set, otherwise X is a rough

set.
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Accordingly, the probabilistic positive, negative and boundary region are

pos(X) = pr(α,β)
R

(X) = {x ∈ U |P (X |[x]R) ≥ α};
neg(X) = U − pr(α,β)R (X) = {x ∈ U |P (X |[x]R) ≤ β};
bn(X) = pr

(α,β)
R (X)− pr(α,β)

R
(X) = {x ∈ U |β < P (X |[x]R) < α}.

The parameters α, β in the probabilistic rough set theory above can be deter-
mined by special methods according to some additional conditions.

Based on the well-established Bayesian decision procedure, the decision-
theoretic rough set model is derived from probability. That is to say, the decision-
theoretic rough set model is a kind of probabilistic rough set model. The
decision-theoretic rough set provides systematicmethods for deriving the required
thresholds on probabilistic rough set.

In real application of the probabilistic rough set models, we can obtain the
thresholds α, β based on an intuitive understanding the levels of tolerance for
errors. Just like we confirm the value of parameters α and β included in the
Section 3. And the calculation methods of the conditional probability can also
meet for demands in application.

3 Probabilistic Rough Set Model Based on Dominance
Relation

Probabilistic rough set models allow a tolerance inaccuracy in lower and upper
approximations, or equivalently in the probabilistic positive, negative and bound-
ary regions. When the relations are never equivalence relations but dominance
relations, they will not produce the probability measure space. Here one can han-
dle the dominance classes induced by the dominance relation with an operator to
transform the non-probability measure into a probability measure space.
R�

A is a dominance relation, [x]
R�

A
is the dominance class containing x. And

P (X |Y ) is the conditional probability of whether concept X happens or not
depends on Y . We get the following definition.

Definition 3.1. Let R�
A be a dominance relation. The basic set assignment

function j is from 2U to 2U , is defined as

j(X) = {x ∈ U |[x]
R�

A
= X}, X ∈ 2U .

Obviously, x ∈ j(X)⇔ [x]
R�

A
= X.

The basic set assignment function j([x]
R�

A
) contains these two properties:

• ⋃
X⊆U

j(X) = U ;

• ForX �= Y , then j(X)
⋂
j(Y ) = ∅.
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It is easy to notice that the function j([x]
R�

A
) is a partition function of

the universe U , one can also call the partition function as set-valued map-
ping approximation operator. Accordingly, this operator transforms the triple
AP = (U,R�

A , P ), which is not a probability approximation space into probabil-
ity measure approximation space.
Definition 3.2 Let R�

A be a dominance relation. Set 0 ≤ β < α ≤ 1, for any
X ⊆ U , the lower and upper approximations based on parameters α, β with
respect to AP = (U,R�

A, P ) are defined as follows

jpr
(α,β)

R�
A

(X) = {x ∈ U |P (X |j([x]
R

�
A
)) ≥ α},

jpr
(α,β)

R�
A

(X) = {x ∈ U |P (X |j([x]
R�

A
)) > β}.

If jpr
(α,β)

R�
A

(X) = jpr
(α,β)

R�
A

(X), then X is a definable set, otherwiseX is a rough

set.
Accordingly, the probabilistic positive, negative and boundary region are

pos(X) = jpr
(α,β)

R�
A

(X) = {x ∈ U |P (X |j([x]
R

�
A
)) ≥ α};

neg(X) = U − jpr(α,β)
R�

A

(X) = {x ∈ U |P (X |j([x]
R�

A
)) ≤ β};

bn(X) = jpr
(α,β)

R�
A

(X)− jpr(α,β)
R�

A

(X) = {x ∈ U |β < P (X |j([x]
R�

A
)) < α}.

An example is employed to present the probabilistic rough sets based on
dominance relation.
Example 3.1 In Table 1, U = {x1, x2, · · · , x7} is a universe which consists of
7 objects, a1, a2, a3, a4 are the conditional attributes. One uses A, B, C, D to
denote the values of these attributes. Moreover, A ≥ B ≥ C ≥ D.

Table 1. An information table

U a1 a2 a3 a4

x1 B C C D
x2 C B B A
x3 B B C B
x4 A D A C
x5 C B B A
x6 B A D B
x7 B C C D

Here we consider all of these four conditions: a1, a2, a3, a4, accordingly, R
� is

the dominance relation induced by these four attributes. Then one can obtain
that the dominance classes are as following

[x1]R� = {x1, x3, x7}, [x2]R� = {x2, x5}, [x3]R� = {x3}, [x4]R� = {x4},
[x5]R� = {x2, x5}, [x6]R� = {x6}, [x7]R� = {x1, x3, x7}.

It is obvious that these seven classes form a covering of the universe, but not
a partition. Accordingly, one may use the partition function j. Then we can get
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j(X1) = {x1, x7},
j(X2) = {x2, x5},
j(X3) = {x3},
j(X4) = {x4},
j(X5) = {x6}.

These five sets, namely j(X1), j(X2), j(X3), j(X4) and j(X5) form a partition
of the universe U .

Given X = {x2, x3, x5}. We assume that α = 2/3, β = 1/4. Conditional
probability is P (X |Y ), where

P (X |Y ) = |X ⋂Y |
|Y | .

Then the conditional probabilities with respect to R� are shown as following:
P (X |j([x1]R�)) = 1/3, P (X |j([x7]R�)) = 1/3,
P (X |j([x2]R�)) = 1, P (X |j([x5]R�)) = 1,
P (X |j([x3]R�)) = 1,
P (X |j([x4]R�)) = 0,
P (X |j([x6]R�)) = 0.
The lower and upper approximations based on parameters α, β with respect

to AP = (U,R�, P ) are computed as

jpr
( 2
3 ,

1
4 )

R� (X) = {x ∈ U |P (X |j([x]R�)) ≥ 2/3} = {x2, x3, x5},
jpr

( 2
3 ,

1
4 )

R� (X) = {x ∈ U |P (X |j([x]R�)) > 1/4} = {x1, x2, x3, x5, x7}.
And then the probabilistic positive, negative and boundary region are

pos(X) = jpr
( 2
3 ,

1
4 )

R� (X) = {x2, x3, x5};
neg(X) = U − jpr(

2
3 ,

1
4 )

R� (X) = {x4, x6};
bn(X) = jpr

( 2
3 ,

1
4 )

R� (X)− jpr( 2
3 ,

1
4 )

R� (X) = {x1, x7}.
Through the basic set assignment function, namely the partition function j,

one can easily achieve the probability approximation space.

4 Conclusions

By considering the probabilistic rough sets based on dominance relation, the
basic set assignment function, namely partition function is introduced into our
work. The dominance relation results in a non-probability measure space. By
the basic set assignment function, we can transact the covering of universe U
induced by a dominance relation into a partition of the universe U . This paper
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presents a partition function to construct a probability measure combining the
probability and rough set theory, and proposes the probabilistic rough set based
on dominance relation. In the future work, we can do further and relevant studies
about the probabilistic rough set model based on dominance relation.
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