
Fast Translation from LTL to Büchi Automata

via Non-transition-based Automata

Shohei Mochizuki, Masaya Shimakawa, Shigeki Hagihara, and Naoki Yonezaki

Department of Computer Science,
Graduate School of Information Science and Engineering,

Tokyo Institute of Technology.
2-12-1-W8-67 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

Abstract. In model checking, properties are typically defined in linear
temporal logic (LTL) and are translated into non-deterministic Büchi
automata (NBA). In this paper, we propose a new, efficient translation
method that is different from those used in LTL2BA, Spot and LTL3BA.
Our method produces non-transition-based generalised Büchi automata
(GBA) as an intermediate object, whereas LTL2BA, Spot, and LTL3BA
use transition-based generalised Büchi automata (TGBA). Our method
enables fast conversion because the data structure representing the ob-
ject is simpler than that used in conversions via TGBA. Furthermore,
we have developed techniques to reduce the number of states, similar
to techniques that have heretofore only been available for conversions
via TGBA. We also propose a technique to suppress the increase in the
number of states that normally occurs while GBA is converted into NBA,
using characteristics of strongly connected components of the GBA. We
implemented our method with these techniques and experimentally com-
pared our method with LTL2BA, Spot, and LTL3BA, which are the
fastest translators to date. Our conversion method was much faster than
LTL2BA and Spot, and was competitive with LTL3BA. In addition, the
number of states in the NBA resulting from our method was comparable
to that produced by LTL2BA, Spot, and LTL3BA.

1 Introduction

Recently, formal methods have become essential tools for developing safety crit-
ical systems, where behavioural correctness of the systems is the main concern.
For instance, model checking [11] is a method for checking whether models of
systems satisfy specifications. Satisfiability checking [14] is a method for check-
ing whether specifications are free of contradictions. Realisability checking [13,1]
is a method for checking whether a program that satisfies specifications exists
and includes synthesis of the program if it does [7,12]. Of these methods, linear
temporal logic (LTL) is often used for describing the specifications of systems.
In this case, algorithms for converting specifications written in LTL into non-
deterministic Büchi automata (NBA) are commonly used. The time complexity
for conversion of LTL formulae into NBA is 2O(n), where n is the number of

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 364–379, 2014.
c© Springer International Publishing Switzerland 2014

Fast Translation from LTL to Büchi Automata 365

formulae. Especially for realisability checking, because a specification includes
all the constraints of behaviour of an intended system, the size of the specifica-
tion can become very large. Therefore, efficient algorithms for converting LTL
formulae into NBA are strongly desirable to expand the applicable range of these
checking methods.

Many translation tools for converting LTL formulae into NBA have been pro-
posed, such as the tool implemented in the model checker SPIN [9] and several
more efficient tools, including LTL2BA [8], Spot [6,5], and LTL3BA[4]. Trans-
lation methods are roughly divided into two kinds: methods for conversion via
generalised Büchi automata (GBA) as an intermediate object, and methods for
conversion via transition-based generalised Büchi automata (TGBA). The meth-
ods via GBA were originally the most popular. However, since 2002, the methods
via TGBA have become more popular and have outpaced the methods via GBA.
The efficient tools LTL2BA, Spot and LTL3BA are classified as methods of con-
version via TGBA. Because TGBA can express a given accepting language by
a fewer number of states than GBA, TGBA are generally smaller than GBA.
This is because an acceptance condition in GBA is defined by the set of final
states that are passed infinitely, while an acceptance condition in TGBA is de-
fined by the set of transitions that are passed infinitely. On the other hand, the
data structure representing GBA is simpler than that representing TGBA be-
cause the number of states is much less than the number of transitions. From
this observation, it follows that if techniques for the reduction of states used for
conversion via TGBA can be implemented for conversion via GBA, the methods
using GBA would be expected to be extremely efficient. In this paper, we adopted
the GBA conversion, imported the reduction techniques into it, implemented it
and evaluated its efficiency.

Unfortunately, the techniques for reducing the number of states in TGBA,
as adopted in Spot and LTL2BA, are not directly applicable to a method of
conversion via GBA. Therefore, we developed comparable reduction techniques
that can be applied to the conversion of GBA to NBA. This enables us to
produce NBA with a comparable number of states as that resulting from TGBA
conversion using reduction techniques.

For converting LTL formulae into GBA, we adopted the algorithm proposed
by Aoshima et al. [2], with some modification. In its original form, this algo-
rithm intentionally does not execute full LTL formulae, but rather executes LTL
formulae without the next operator. This is to prevent introducing uninten-
tional synchronisation by two or more different occurrences of the next opera-
tor. However, because our aim was to make it possible to convert general LTL
formulae, we extended the algorithm to enable its application to LTL formulae
with the next operator. In addition to the reduction techniques mentioned above
for converting GBA into NBA, we also developed a technique to suppress the
increase in number of states as GBA is converted into NBA, using character-
istics of strongly connected components of GBA. We implemented our method
using these techniques and experimentally compared our method to LTL2BA,
Spot and LTL3BA, which are currently the fastest translators. Our conversion

366 S. Mochizuki et al.

method is faster than Spot and LTL2BA, and is competitive with LTL3BA. In
addition, the number of states in the NBA from our method is comparable to
that from the other methods.

The remainder of this paper is organised as follows. In Sect. 2, we give defi-
nitions of LTL and Büchi automata. In Sect. 3, we propose a new method (an
extension of our previous method) to convert LTL formulae into GBA. In Sect. 4,
we explain how to convert GBA into NBA. In Sect. 5, we describe our techniques
for reducing the number of states in the resulting NBA. In Sect. 6, we discuss
the advantages of our method over other approaches. In Sect. 7, we describe the
implementation of our method and compare it to LTL2BA, Spot and LTL3BA.
Finally, we present our conclusions in Sect. 8.

2 Preliminary

In this section, we introduce the syntax and semantics of LTL, NBA and GBA.

2.1 LTL

Let Prop be a finite set of propositions.

Definition 1 (LTL formulae). Formulae f in LTL are inductively defined as
follows:

f ::= p | ¬f | f ∨ f | f ∧ f | Xf | fUf | fRf,

where p ∈ Prop.

The notation Xf states ‘f holds at the next time’, while fUg represents ‘f
always holds until g holds’. fRg is the dual connective of fUg and represents
¬(¬fU¬g). The notation f → g, f ↔ g, �, ⊥, Ff and Gf are abbreviations for
¬f ∨ g, (¬f ∨ g) ∧ (¬g ∨ f), p ∨ ¬p, ¬�, �Uf , and ¬F¬f , respectively.
Definition 2 (Semantics). Let Σ be 2Prop, and let u = u0u1, . . . be an infinite
sequence over Σ. Let f be an LTL formula. When a formula f holds on u, we
write u |= f , and inductively define this relation as follows.

- u |= p iff p ∈ u0

- u |= ¬f1 iff u 	|= f1
- u |= f1 ∧ f2 iff u |= f1 and u |= f2
- u |= f1 ∨ f2 iff u |= f1 or u |= f2
- u |= Xf1 iff u1u2 . . . |= f1
- u |= f1Uf2 iff ∃k ≥ 0((ukuk+1 . . . |= f2) and ∀i(0 ≤ i < k. uiui+1 . . . |= f1))
- u |= f1Rf2 iff ∀k ≥ 0((ukuk+1 . . . |= f2) or ∃i(0 ≤ i < k. uiui+1 . . . |= f1))

A formula is in negation normal form (nnf) if the negation symbol (¬) occurs
only immediately above elementary propositions. Every formula can be trans-
formed to an equivalent formula in nnf. We call a formula f a temporal formula
if f is of the form Xf1, f1Uf2, or f1Rf2.

Fast Translation from LTL to Büchi Automata 367

2.2 Automata

In this section, we introduce NBA and GBA. NBA is an automaton that accepts
ω-words if there exists a corresponding run passing a final state infinitely often,
which is defined as follows.

Definition 3 (Büchi automata). Let Prop be a set of propositions. A non-
deterministic Büchi automaton on an alphabet 2Prop is defined by A = 〈Q,Σ,
δ, I, F 〉, where Q is a finite set of states, Σ = 2Prop, δ ⊆ Q × B(Prop) × Q is
a transition relation, I ⊆ Q is a set of initial states, and F ⊆ Q is a set of
final states. B(Prop) is a set of Boolean formulae which consist of propositions
in Prop and connectives ¬, ∨, and ∧. A run r of A on an ω-word u = u0u1 . . .
is an infinite sequence q0q1 . . . of states, where q0 ∈ I, (qi, bi, qi+1) ∈ δ, and
ui |= bi for some bi for all i ≥ 0. If Inf (r) ∩ F 	= ∅ holds, a run r is said to be
successful, where Inf (r) is a set of states that occur infinitely often in r. If there
is a successful run of A on u, we say that A accepts u.

On the other hand, GBA is an automaton with multiple sets of final states
(a set of sets of final states). A run is successful if, for each set of final states, it
passes infinitely often some state from the set.

Definition 4 (Generalised Büchi Automata). Let Prop be a set of propo-
sitions. A Generalised non-deterministic Büchi automaton on an alphabet 2Prop

is defined by A = 〈Q,Σ, δ, I,F〉, where Q, Σ, δ and I are defined as above for
NBA. F = {F1, . . . , Fn} is a set of sets of final states, and satisfies Fi ⊆ Q for
all 1 ≤ i ≤ n. A run r is said to be successful if ∀Fi(Inf (r) ∩ Fi 	= ∅) holds. If
there is a successful run of A on u, we say that A accepts u.

A set of ω-words that are accepted by NBA (or GBA) A is called the language
accepted by A, which is represented by L(A).

3 Converting LTL Formulae into GBA

In this section, we propose an algorithm for constructing GBA Aϕ from an LTL
formula ϕ, which satisfies L(Aϕ) = {u ∈ (2Prop)ω | u |= ϕ}. This algorithm is an
extended version of a previous algorithm proposed by Aoshima et al. [2], modified
to work with LTL with the next operator. Below, we explain the algorithm, and
for simplicity of explanation, assume that the input LTL formulae are in nnf.

Let ϕ be an input LTL formula. A state of GBA consists of a subset of
cl(ϕ) ∪ {(fUg)unsat | fUg ∈ cl(ϕ)}, which represents the constraints of the
state. Here, cl(ϕ) is the set of subformulae of ϕ. First, an initial state consists of
a singleton {ϕ} of an input formula. Next, we decompose the formulae in a state
and obtain the set of successive states. We take notice if the state involves the
‘until’ formula fUg because its meaning has eventuality. If g holds in the state,
we accept transition to the state involving no constraints on the ‘until’ formula.
If f holds in the state, we accept transition to the state involving (fUg)unsat .
The label unsat represents ‘eventuality (g in this case) is not satisfied’. By setting

368 S. Mochizuki et al.

the transition relation as stated above, if a state does not involve the labelled
formula (fUg)unsat , we can capture that g holds, (i.e., fUg holds.) If r is a run
on an ω-word, such that fUg does not hold and f always holds, then the run r
will stay only in states involving (fUg)unsat . We judge the run to be successful
only if the run infinitely often visits a state that does not involve (fUg)unsat .

The procedure Next, used to obtain the set of transitions, is defined as follows.

Procedure 1 (Next) Procedure Next takes a state q = {ϕ1, . . . , ϕn} as input
and outputs the set of transitions from q. Each transition is of the form (q, b, q′),
which indicates that q′ is a successive state of q by valuation satisfying b.

1. Σ := {q}
2. Repeat the following operations until Σ does not change. For every Si ∈ Σ,

apply one of the following, according to fij ∈ Si.
(a) if fij is of the form f1 ∧ f2, replace Si with (Si − {fij}) ∪ {f1, f2}.
(b) if fij is of the form f1 ∨ f2, replace Si with (Si − {fij}) ∪ {f1}, (Si −

{fij}) ∪ {f2}.
(c) if fij is of the form f1Uf2 or (f1Uf2)

unsat , replace Si with (Si−{fij})∪
{f2}, (Si − {fij}) ∪ {f1, X(f1Uf2)

unsat}.
(d) if fij is of the form f1Rf2, replace Si with (Si − {fij}) ∪ {f1, f2}, (Si −

{fij}) ∪ {f2, X(f1Rf2)}.
3. Output the following δq.

δq = {(q,
∧

l∈P (m)

l, {f | Xf ∈ m}) | m ∈ Σ},

where P (m) = {p | p ∈ m ∧ p ∈ Prop} ∪ {¬p | ¬p ∈ m ∧ p ∈ Prop}.
In step 2, we obtain multiple sets of formulae by decomposing a formula in a
set of formulae according to the semantics of LTL. For instance, because f1Uf2
indicates that f2 holds eventually and f1 always holds until f2 holds, {f1Uf2}
is separated into two cases {f2} and {f1, X(f1Uf2)

unsat}. These cases mean “f2
currently holds” and “f1 currently holds and f1Uf2 holds at the next time”,
respectively. In brief, if a set of formulae is obtained by step 2, the set represents
one of satisfaction of ϕ1 ∧ . . . ∧ ϕn involved by q. Therefore, in step 3, atomic
propositions and their negation in a set of formulae are considered a label of the
transition (i.e., a condition of the transition), and a set of formulae obtained by
eliminating the next operator X is considered a successive state of q.

Example 1. Let ϕ be G(r → Fs). We apply procedure Next to ϕ. The result of
step 2 is as follows.

{{¬r,Xϕ}, {s,Xϕ}, {X(Fs)unsat, Xϕ}}
The result of step 3 is the following transitions.

{({ϕ},¬r, {ϕ}), ({ϕ}, s, {ϕ}), ({ϕ},�, {(Fs)unsat, ϕ})}
These transitions are depicted in Fig.1.

Fast Translation from LTL to Büchi Automata 369

Fig. 1. Transitions generated by Next applied to G(r → Fs)

By procedure Next, we can obtain the set of successive states of a state. Hence,
by setting the initial state as a singleton {ϕ} of an input formula and applying
procedure Next iteratively, we can obtain a transition system that is part of Aϕ.
This procedure is defined as follows.

Procedure 2 (Construct) Input: ϕ: formula
Output: Q, δ
Procedure: Construct
1: Q = {{ϕ}}
2: S = {{ϕ}}
3: δ = {}
4: while S 	= ∅ do
5: Pick q from S and S = S − {q}
6: δq = Next(q)
7: δ = δ ∪ δq
8: for all (curstate, b, nextstate) ∈ δq do
9: if nextstate /∈ Q then

10: Q = Q ∪ {nextstate}
11: S = S ∪ {nextstate}
12: end if
13: end for
14: end while

Next, we define a set of sets of final states as follows. Let ϕ1, . . . , ϕn be ‘until’
formulae, which are subformulae of an input formula ϕ. The set of sets of final
states is F = {F1, . . . , Fn}, where Fi is the set of states that does not include
ϕunsat
i .
This method is an extension of our previous method [2], modified to adopt the

label unsat for setting acceptance conditions correctly. Any successive states of
a state involving X(fUg) have fUg. On the other hand, any successive states of
a state involving fUg have a labelled formula (fUg)unsat only if g does not hold
in the state. With the label unsat , we can manage successive states of a state q
involving both X(fUg) and fUg. Even if fUg is contained in a successive state

370 S. Mochizuki et al.

q′ of q, if (fUg)unsat is not contained in q′, it indicates that fUg is satisfied in q.
Without introduction of the label unsat , it is impossible to judge whether fUg
is satisfied in q for such a case.

Example 2. The formula GXFp is translated into GBA, as shown in Fig. 2
(left), by the method proposed in this section. The set of sets of final states is
{{q1, q2}}. Due to the label unsat , we can determine the final states {{q1, q2}}
appropriately. Without introduction of unsat , only the transition system shown
in Fig. 2 (right) can be obtained, and the appropriate set of sets of final states
cannot be determined. This illustrates why it is essential to introduce the label
unsat to know the acceptance conditions of GBA.

Fig. 2. GBA for GXFp, obtained by procedure Construct(left), and an incorrect tran-
sition system (right)

In the previous method proposed by Aoshima et al. in [2], binary decision
diagrams (BDDs) were used to represent transitions from a state, and a BDD-
based version of procedure Next was also used. In this current work, we have
extended the previous method to permit LTL with the next operator, and we
adopted the BDD-based procedure Next.

4 Converting GBA into NBA

An algorithm that converts TGBA into NBA was proposed for the tool LTL2BA
[8]. We modified this algorithm as follows to convert GBA into NBA.

Definition 5 (Translation from GBA to NBA). Let A = (Q,Σ, δ, I,F =
{F1, . . . , Fk}) be a GBA. The following NBA B = (Q′, Σ, δ′, I ′, F ′) satisfies
L(A) = L(B).
– Q′ = Q× {1, . . . , k + 1}, I ′ = I × {1}, F ′ = Q× {k + 1}

Fast Translation from LTL to Büchi Automata 371

– ((s, j), a, (t, i)) ∈ δ′ iff

(s, a, t) ∈ δ ∧
{
i = next(j, t) if j 	= k + 1
i = next(1, t) if j = k + 1

,

where next(i, q) =

{
min{j | i ≤ j ∧ q /∈ Fj} if ∃j ≥ i (q /∈ Fj)
k + 1 otherwise

.

States of the resulting NBA B are pairs of a state in GBA A and an integer
between 1 and k + 1 (called a counter). This counter is important to translate
GBA into NBA. Assume that there is transition (s, a, t) in A. Let us consider
the transition from (s, i) of B. If i 	= k + 1, B has transition ((s, i), a, (t, i + 3))
for the case of t ∈ Fi ∩ Fi+1 ∩ Fi+2 and t /∈ Fi+3. If i = k + 1, B has transition
((s, k+ 1), a, (t, 3)) for the case of t ∈ F1 ∩F2 and t /∈ F3. The set of final states
of B is the set of states in which the counter equals k + 1. By this definition of
final states of NBA, a run infinitely often passes a final state of B if and only if
for every set of final states of A, there is a final state such that the corresponding
run infinitely often passes it.

5 Reducing States of Automata

For checking verification properties, such as satisfiability and realisability of
specifications written in LTL formulae, automata manipulations such as empti-
ness checking, determinisation, and complementation are required. To do these
kinds of manipulations of NBA efficiently, it is important to reduce the number
of states of NBA, without changing the accepting languages. In our work, we
adopted the formulae rewriting technique proposed in [15]. Furthermore, in this
section, we propose two kinds of reduction techniques. In Sect. 5.1, we propose a
technique for reducing states of NBA based on strongly connected components
of GBA. In Sect. 5.2, we propose another technique for reducing states of NBA
based on equivalence of states in the GBA. Generally, many reduction techniques
based on simulation were proposed. This kind of techniques can be applied after
the entire autotmata were constructed. The techniques we propose in Sect.5.1
and 5.2 are lightweight and can be applied in the middle of construction of the
automata. This reduces time and space required for construction of automata.

5.1 Reduction of NBA Based on SCC of GBA

In the translation method proposed in Sect. 4, k + 1 states will be copied from
a state in the GBA, where k is the number of sets of final states in the GBA.
However, if a state q is not included in any strongly connected components that
include final states of the GBA, then it is not necessary to copy q because it is
not necessary to check the acceptance condition by q.

Formally, let F be a set of sets of final states in GBA, and let S be a strongly
connected component in GBA. We say that S is acceptable if it satisfies the
following condition.

(|S| > 1 ∧ ∀F ∈ F∃q ∈ S(q ∈ F))

∨ (|S| = 1 ∧ ∃q ∈ S(∃a(q, a, q) ∈ δ ∧ ∀F ∈ F(q ∈ F)))

372 S. Mochizuki et al.

If a state q is included in a maximal strongly connected component that is
not acceptable, then we do not copy q when we convert GBA to NBA, and we
do not include q in the set of final states of NBA.

5.2 Reduction of NBA Based on Equivalence of States in the GBA

In GBA, it is possible to identify multiple equivalent states, and to reduce the
number of states in the GBA by combining these equivalent states into one state.

Formally, let F and δ be a set of sets of final states and a transition relation
in the GBA, respectively. We say that states q1 and q2 are equivalent if the
following two conditions hold.

∀b ∈ B(Prop)∀q ∈ Q((q1, b, q) ∈ δ ⇐⇒ (q2, b, q) ∈ δ) (1)

∀F ∈ F(q1 ∈ F ⇐⇒ q2 ∈ F) (2)

If q1 and q2 in the GBA satisfy both conditions (1) and (2), we can combine q1
and q2 into one state.

Furthermore, even if states q1 and q2 in the GBA satisfy condition (1) only,
states (q1, i) and (q2, i) in the NBA converted according to Def. 5 in Sect. 4
satisfies both conditions (1) and (2) by the following theorem.

Theorem 1. Let q1 and q2 be states in GBA A, and (q1, i) and (q2, i) be states
in NBA B, which is obtained according to Def. 5. Then, if q1 and q2 satisfy
condition (1), (q1, i) and (q2, i) satisfy condition (1) and the following (2’):

(q1, i) ∈ F ⇐⇒ (q2, i) ∈ F (2’)

where F is the set of final states in NBA B.
Proof. It is trivial that (q1, i) and (q2, i) satisfy condition (2’), due to the def-
inition of final states of B in Def. 5. We show that (q1, i) and (q2, i) satisfy
condition (1). Assume that there is transition ((q1, i), a, (s, j)) in B. Then, there
is transition (q1, a, s) in A. Since q1 and q2 satisfy condition (1), there is transi-
tion (q2, a, s) in A. According to Def. 5, there exists transition ((q2, i), a, (s, j

′))
in B. Now, if i 	= k + 1 holds, then j′ = next(i, s) = j holds, and if i = k + 1
holds, then j′ = next(1, s) = j holds, where k is the number of sets of final states
in A. Hence, j′ = j holds. Therefore if there is a transition ((q1, i), a, (s, j)) in
B, there is also a transition ((q2, i), a, (s, j)) in B. This means (q1, i) and (q2, i)
satisfy condition (1). ��

According to Theorem 1, we can obtain reduced NBA directly, without calcu-
lating large-scale NBA, by producing the reduced NBA while checking whether
states in the GBA satisfy condition (1).

Example 3. We show a GBA converted from the LTL formula GFp1 ∧GFp2 in
Fig. 3 (left). The initial state is q1, and a set of sets of final states is {{q1, q3},
{q1, q2}}. The initial state q1 has four successive states q1, q2, q3, q4. Any two

Fast Translation from LTL to Büchi Automata 373

different states qi, qj ∈ {q1, q2, q3, q4} do not satisfy condition (2), but they
always satisfy condition (1). Unfortunately, because conditions (1) and (2) are
not both satisfied, we cannot reduce the GBA itself directly. However, due to
the fact that condition (1) is satisfied, we can apply our reduction technique to
the conversion of the GBA to an NBA, and all of the states (q1, i), . . . , (q4, i) in
the resulting NBA can be reduced into one state (called i). The resulting NBA
is shown in Fig. 3 (right).

Fig. 3. GBA converted from GFp1 ∧GFp2 (left) and a reduced NBA converted from
the GBA (right)

6 Advantages of Our Method Over a TGBA-Based
Approach

6.1 Features of Our Method

Translation methods are roughly divided into two kinds: those for conversion via
GBA as an intermediate object, and those for conversion via TGBA. Originally,
conversion via GBA was the most widely adopted method. However, since 2002,
most methods are based on conversion via TGBA, (e.g., [10]). This is due to the
development of efficient tools such as LTL2BA, Spot and LTL3BA (presented
in 2012), all of which are based on conversion via TGBA. One advantage of
the TGBA method is that TGBA is smaller than GBA for any given accepting
language.

On the other hand, our method is based on conversion via GBA. Unfortu-
nately, techniques that reduce the number of states of TGBA cannot be applied
to GBA, as GBA itself cannot be reduced. Hence, we introduced a technique
(Sect. 5.2) that has the same effect on the resulting NBA converted from GBA
as reduction techniques have on TGBA. This technique can be applied while
converting GBA into NBA, which means that GBA can be converted directly
into reduced NBA. With this technique, although the number of states of GBA
is larger than the number of states of TGBA, the number of states in the re-
sulting NBA from GBA is comparable to the number in the NBA converted

374 S. Mochizuki et al.

from TGBA. As illustrated in Example 3, even in case of GFp1 ∧ . . . ∧GFpn,
1

the number of states in the resulting NBA are the same. Detailed results are
presented in Sect. 7.

6.2 Our Method vs. the TGBA-Based Approach

About reduction of states As stated above, during conversion via TGBA, ‘strong’
reduction techniques can be applied while constructing TGBA as an interme-
diate object. This ‘strong’ reduction is done by calculating successive states of
each state and checking for state equivalence. Hence, it does not result in a sub-
stantial decrease in the computing cost of constructing the TGBA. On the other
hand, our reduction technique is not applied to GBA but rather to NBA. In our
reduction technique, we do not calculate successive states of NBA, but check
state equivalence only by the labels ((q, i): tuples of states of GBA and counter)
and information in the GBA. This does result in a decrease in computing cost
for constructing the NBA. Because our reduction technique has the same effect
on NBA as the ‘strong’ reductions used in conversions via TGBA, the cost of
constructing NBA by our method is expected to be no higher than the cost of
constructing NBA during conversions via TGBA. For this reason, we conclude
that conversion via TGBA is not always advantageous from the point of view of
reduction, compared to conversion via GBA.

About acceptance conditions We have observed that in TGBA converted from
LTL formulae, before the application of any reduction, there is only two cases: all
the transitions into the same state are included in an acceptance condition, or no
transitions into the state is included in the acceptance condition.2 For instance,
in the translation algorithm proposed in [8], if a formula Xf , where f represents
eventuality (e.g.X(fUg)), does not occur in the input formula, then there is only
two cases: all the transitions into the same state are included in an acceptance
condition, or no transitions into the state is included in the acceptance condition.
Therefore, with respect to efficiency of memory use, the acceptance condition
should be defined by a set of states, not by a set of transitions. Hence, in our
method, we treat formulae of the formX(fUg) as exceptions by using the special
label unsat , as stated in Sect. 3. This has the disadvantage of increasing the
number of states. However, there are few occurrences of formulae of the form
X(fUg) in practical specifications. Therefore, we expect that the advantage of
being able to omit redundant space in the acceptance conditions is greater than
any disadvantage arising from an increase in the number of states.

Necessity of NBA It is evident that TGBA is preferable to GBA for use in
model-checking directly, because the number of states of TGBA is less than the
number of states of GBA or NBA. On the other hand, there are many cases in

1 In the conversion of GFp1 ∧ . . .∧GFpn, the conversion via TGBA works very well.
2 This observation is satisfied only for TGBA before the application of any reduction
techniques including ones based on equivalence of successor states.

Fast Translation from LTL to Büchi Automata 375

which NBA is needed, such as for SPIN or realisability checking. In such cases,
the number of states of TGBA or GBA as intermediate objects is unimportant.
Therefore, we conclude that our method is valuable.

7 Evaluation

We implemented our method in C++. Our implementation is available at http://
www.yonezaki.cs.titech.ac.jp/tools/. In this section, we compare our implementation
to other tools. The comparison environment was OS:Ubuntu 12.04 64bit, CPU:
Corei7-3820 3.60GHz, 32GB memory.

7.1 Comparison with Other Works

Although there are many tools for converting LTL into NBA, we compared our
implementation to LTL2BA (version 1.1, without options), Spot (version 1.1.4,
with the option -r1)3 and LTL3BA (version 1.0.2, without options), because
Rozier et al. in [14] showed that LTL2BA [8] and Spot [6] were the most efficient
tools at that time, and LTL3BA, presented in 2012, is also known as one of the
most efficient tools. These tools are based on conversion via TGBA.

We measured the times for conversion of several LTL formulae. If the tools
could not output the results within 300 s, we aborted the execution; this is de-
noted in the results by na. For our implementation, we measured the conversion
times with and without the reduction techniques proposed in Sect. 5.

First, we generated 100 random formulae of equal size (50 characters), follow-
ing the method of [14], and measured the sum of the conversion times to NBA,
as well as the sum of the number of states in the resulting NBA. These results
are shown in Table 1.

Table 1. The sum of the number of states and the sum of conversion times (s) for 100
random formulae

Our implementation Spot LTL2BA LTL3BA
with reduction without reduction # of # of # of
of states time # of states time states time states time states time

37652 2.58 83492 3.10 29308 14.00 65903 64.15 46303 24.00

Next, we measured the conversion times and number of states for the spec-
ification of n-floor elevator systems [3]. This is a large-scale specification, with
3n+6 propositions and 6n− 1 temporal operators. The size of the specification
is O(n3). These results are shown in Table 2.

Finally, we measured the conversion times and the number of states for the
following four kinds of LTL formulae, which were used as benchmarks in [5].

– E1(n) :
∧

1≤i≤n Fpi

3 In Spot, the option -r1means that formula reduction using basic rewriting is allowed.

376 S. Mochizuki et al.

Table 2. The number of states and conversion times (s) for specifications of n-floor
elevator systems

Our implementation Spot LTL2BA LTL3BA
with reduction without reduction # of # of # of

n # of states time # of states time states time states time states time

2 24 0.01 24 0.01 23 0.05 23 0.04 23 0.01
3 182 0.02 182 0.02 170 0.15 224 5.95 182 0.06
4 1438 0.16 1757 0.17 1333 2.44 na na 1385 1.83
5 10403 2.46 16660 3.01 9585 53.96 na na 9524 118.33
6 69685 43.23 145786 90.62 na na na na na na

– E2(n) : F (p1 ∧ F (p2 ∧ . . . F (pn−1 ∧ Fpn) . . .)) ∧ F (q1 ∧ F (q2 ∧ . . . F (qn−1 ∧
Fqn) . . .))

– U(n) : (. . . (((p1Up2)Up3)Up4) . . .)Upn
– C(n) :

∧
1≤i≤n GFpi

These results are shown in Table 3.4 The formulae C(n) are known to be ef-
ficiently converted by translation methods via TGBA, such as LTL2BA, Spot
and LTL3BA. The number of states of the smallest NBA for the formulae E1(n),
E2(n) and C(n) are 2n, (n+ 1)2 and n+ 1, respectively.

7.2 Discussion

With respect to execution time, our implementation with reduction techniques
was much more efficient than LTL2BA and Spot for all of the benchmarks. The
execution time of our method was about a tenth that of Spot. For all bench-
marks except E2 and C, our implementation was more efficient than LTL3BA.
Furthermore, with respect to the size of the resulting NBA, our implementa-
tion with reduction techniques was about as efficient as the other tools. For the
benchmarks E1(n), E2(n) and C(n), the sizes of the NBAs produced by our
implementation were 2n, (n+1)2 and n+1, respectively, which are the smallest
sizes that can be expected and are the same sizes that Spot produces. Taken
together, these results indicate that with our method one can check the satisfi-
ability of LTL formulae 10 times faster than with Spot, and the NBA obtained
by our implementation is suitable for manipulations such as determinisation,
complementation, and so forth.

A comparison of our implementations with and without reduction techniques
confirmed that the reduction techniques effectively reduced conversion times.
From the results of E1(n), E2(n) and U(n), it is apparent that the number of
states of NBA in our implementation is almost the same with and without the
reduction techniques. Furthermore, the conversion times for our implementations
with and without reduction techniques were approximately equal. These results
indicate that the overhead of our reduction techniques is negligible.

4 In this benchmark, we did not use the technique introduced in Sect.5.1, since au-
tomata from C(n) have too many transitions to be decomposed into SCCs effectively.

Fast Translation from LTL to Büchi Automata 377

Table 3. The number of states and conversion times (s) for E1, E2, C and U

Our implementation Spot LTL2BA LTL3BA
with reduction without reduction # of # of # of

n # of states time # of states time states time states time states time

E1(5) 32 0.00 33 0.00 32 0.02 32 0.00 32 0.00
E1(8) 256 0.01 257 0.01 256 0.15 256 0.03 256 0.02
E1(11) 2048 0.13 2049 0.13 2048 6.75 2048 6.34 2048 1.47
E1(14) 16384 3.49 16385 3.57 na na na na 16384 131.86
E1(17) 131072 113.78 131073 106.47 na na na na na na

E2(11) 144 0.08 145 0.08 144 0.36 345 0.17 144 0.05
E2(18) 361 1.19 362 1.24 361 4.33 940 3.53 361 0.47
E2(25) 676 9.00 677 9.34 676 27.75 1829 40.66 676 2.86
E2(32) 1089 43.30 1090 45.15 1089 116.46 3012 223.90 1089 10.69
E2(39) 1600 299.31 na na na na na na 1600 30.72

U(4) 8 0.01 9 0.01 8 0.06 15 0.00 13 0.01
U(6) 32 0.01 33 0.01 32 0.05 89 0.01 87 0.02
U(8) 128 0.03 129 0.02 128 0.13 481 0.25 479 0.22
U(10) 512 0.20 513 0.21 512 1.27 2433 54.27 2431 49.35
U(12) 2048 3.33 2049 3.33 2048 23.61 na na na na
U(14) 8192 60.41 8193 59.37 na na na na na na

C(3) 4 0.00 17 0.00 4 0.02 4 0.00 4 0.00
C(7) 8 0.00 513 0.04 8 0.17 8 0.27 8 0.01
C(11) 12 0.03 12289 17.58 12 0.07 na na 12 0.02
C(15) 16 0.47 na na 16 0.89 na na 16 0.17
C(19) 20 11.38 na na 20 29.19 na na 20 4.78
C(23) na na na na na na na na 24 180.70

Finally, we discuss the reason why our implementation is more efficient than
the implementation of Spot [5], even though our implementation and Spot both
utilise BDD for representing transitions. Spot converts LTL formulae into NBA
via TGBA, and indicates by BDD whether each transition is included in the
acceptance conditions (a set of sets of final transitions). In contrast, our method
converts LTL formulae into NBA via GBA, and it is not necessary to represent
the acceptance conditions (a set of sets of final states) by BDD. Because the
number of transitions is much larger than the number of states, the size of the
BDD tends to be larger in Spot than in our method. This difference is the
reason why our implementation is more efficient than Spot. LTL3BA also uses
BDD for representing transitions from a state. However, from [4], it is not clear if
LTL3BA indicates by BDD whether each transition is included in the acceptance
conditions.

8 Conclusion

In this paper, we proposed an efficient method for translating LTL formulae into
NBA. We also compared our method to LTL2BA, Spot and LTL3BA, which
are currently the most efficient tools available. We determined that our method

378 S. Mochizuki et al.

executes much faster than LTL2BA and Spot and is competitive with LTL3BA.
Furthermore, the size of the resulting NBA generated by our method is compa-
rable to that generated by the others. These results show that our method of
translation via GBA is competitive with the most efficient currently available
tools.

Our method does not implement several reduction techniques that are imple-
mented in Spot or LTL3BA. Future work will integrate these reduction tech-
niques into our method and will also evaluate the method by applying it to
actual verification processes, such as model-checking, realisability checking, and
so forth.

Methods for converting specifications written in LTL into NBA are commonly
used in verification processes. We believe that our method will be of practical
use for the verification of safety critical systems.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Num-
ber 24500032. We would like to thank the reviewers for their valuable comments
and suggestions to improve the quality of the paper.

References

1. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of
reactive systems. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M.
(eds.) ICALP 1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)

2. Aoshima, T., Sakuma, K., Yonezaki, N.: An efficient verification procedure support-
ing evolution of reactive system specifications. In: Proc. of the 4th International
Workshop on Principles of Software Evolution, pp. 182–185. ACM (2001)

3. Aoshima, T., Yonezaki, N.: Verification of reactive system specification with outer
event conditional formula. In: International Symposium on Principles of Software
Evolution (ISPSE2000), pp. 195–199 (2000)

4. Babiak, T., Křet́ınský, M., Řehák, V., Strejček, J.: LTL to büchi automata transla-
tion: Fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012)

5. Duret-Lutz, A.: LTL translation improvements in Spot. In: Proc. of the Fifth in-
ternational conference on Verification and Evaluation of Computer and Communi-
cation Systems, VECoS 2011, pp. 72–83. British Computer Society (2011)

6. Duret-Lutz, A., Poitrenaud, D.: Spot: An extensible model checking library us-
ing transition-based generalized Büchi automata. In: Proc. of MASCOTS 2004,
pp. 76–83. IEEE Computer Society (2004)

7. Filiot, E., Jin, N., Raskin, J.F.: An antichain algorithm for LTL realizability. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer,
Heidelberg (2009)

8. Gastin, P., Oddoux, D.: Fast LTL to büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

9. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear temporal logic. In: Protocol Specification Testing and Verification,
pp. 3–18. Chapman & Hall (1995)

Fast Translation from LTL to Büchi Automata 379

10. Giannakopoulou, D., Lerda, F.: From states to transitions: Improving translation
of LTL formulae to Büchi automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE
2002. LNCS, vol. 2529, pp. 308–326. Springer, Heidelberg (2002)

11. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997), http://dx.doi.org/10.1109/32.588521

12. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: Formal Methods
in Computer Aided Design, FMCAD 2006, pp. 117–124 (2006)

13. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL 1989,
pp. 179–190 (1989)

14. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. In: Bošnački, D., Edelkamp,
S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007)

15. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emer-
son, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer,
Heidelberg (2000)

http://dx.doi.org/10.1109/32.588521

	Fast Translation from LTL to B¨uchi Automata
via Non-transition-based Automata

	1 Introduction
	2 Preliminary
	2.1 LTL
	2.2 Automata

	3 Converting LTL Formulae into GBA
	4 Converting GBA into NBA
	5 Reducing States of Automata
	5.1 Reduction of NBA Based on SCC of GBA
	5.2 Reduction of NBA Based on Equivalence of States in the GBA

	6 Advantages of Our Method Over a TGBA-Based Approach
	6.1 Features of Our Method
	6.2 Our Method vs. the TGBA-Based Approach

	7 Evaluation
	7.1 Comparison with Other Works
	7.2 Discussion

	8 Conclusion
	References

