
Stephan Merz
Jun Pang (Eds.)

 123

LN
CS

 8
82

9

16th International Conference
on Formal Engineering Methods, ICFEM 2014
Luxembourg, Luxembourg, November 3–5, 2014, Proceedings

Formal Methods
and Software Engineering

Lecture Notes in Computer Science 8829
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Stephan Merz Jun Pang (Eds.)

Formal Methods
and Software Engineering

16th International Conference
on Formal Engineering Methods, ICFEM 2014
Luxembourg, Luxembourg, November 3-5, 2014
Proceedings

13

Volume Editors

Stephan Merz
Inria Nancy - Grand Est
615 rue du Jardin Botanique
54602 Villers-lès-Nancy, France
E-mail: stephan.merz@loria.fr

Jun Pang
Université du Luxembourg
6 rue Richard Coudenhove-Kalergi
1359 Luxembourg, Luxembourg
E-mail: jun.pang@uni.lu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-11736-2 e-ISBN 978-3-319-11737-9
DOI 10.1007/978-3-319-11737-9
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014948936

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The International Conference on Formal Engineering Methods (ICFEM) is a
premier conference for research in all areas related to formal engineering meth-
ods, such as verification and validation, software engineering, formal specifica-
tion and modeling, software development, software security, and reliability. Since
1997, ICFEM has been an international forum for researchers and practitioners
from academia, industry, and government. It is devoted to presentations and ex-
changes that advance the state of the art of applying formal methods in practice.
Submissions that present combinations of conceptual and methodological aspects
with their formal foundation and tool support are particularly encouraged.

In recent years, ICFEM has taken place in Queenstown, New Zealand (2013),
Kyoto, Japan (2012), Durham, UK (2011), Shanghai, China (2010), and Rio de
Janeiro, Brazil (2009). The 16th edition of ICFEM took place in Luxembourg
during 3 – 5 November, 2014. The Program Committee (PC) received 73 full
paper submissions, of which one was withdrawn. Each paper received at least
3 review reports from PC members or external reviewers. On the basis of these
reports, each submission was extensively discussed in the virtual meeting of
the PC, and the PC decided to accept 28 papers. The proceedings also include
the abstracts from the 3 keynote speakers Nikolaj Bjørner, Lionel Briand, and
Vincent Danos.

ICFEM 2014 was organized and sponsored by the Interdisciplinary Centre
for Security, Reliability and Trust (SnT) at the University of Luxembourg. We
are also grateful for the financial support received from the Fonds National de
la Recherche (FNR - National Research Fund) in Luxembourg, the Computer
Science and Communications Research Unit (CSC) and the Laboratory of Al-
gorithmics, Cryptology and Security (LACS) at University of Luxembourg. We
thank the Local Organizing Committee for their hard work in making ICFEM
2014 a successful and exciting event.

The main event was preceded by the seventh International Summer School on
Verification Technology, Systems & Applications (VTSA 2014). The third Inter-
national Workshop on Formal Techniques for Safety-Critical Systems (FTSCS
2014) and the fourth Workshop on SOFL + MSVL were co-located with ICFEM
and took place immediately following the conference.

We thank all the PC members for their support, completing quality reviews
on time, and being active in discussions during the review process. We thank
the external reviewers for their reports that helped the PC decide on which
submissions to accept. Most importantly, we thank the authors for submitting

VI Preface

their papers to the conference, and the participants for attending it. Finally,
we also thank the EasyChair team for its great conference system and Springer
Verlag for the smooth cooperation in the production of this proceedings volume.

July 2014 Stephan Merz
Jun Pang

Organization

Program Committee

Jonathan P. Bowen Birmingham City University, UK
Michael Butler University of Southampton, UK
Konstantinos Chatzikokolakis CNRS & Ecole Polytechnique of Paris, France
Frank De Boer CWI, The Netherlands
Zhenhua Duan Xidian University, China
Colin Fidge Queensland University of Technology, Australia
Stefania Gnesi ISTI-CNR, Italy
Peter Gorm Larsen Aarhus University, Denmark
Radu Grosu Vienna University of Technology, Austria
Ian J. Hayes University of Queensland, Australia
Michaela Huhn Technische Universität Clausthal, Germany
Pierre Kelsen University of Luxembourg, Luxembourg
Steve Kremer Inria Nancy - Grand Est, France
Jean Krivine CNRS & Paris Diderot University, France
Xuandong Li Nanjing University, China
Shang-Wei Lin National University of Singapore, Singapore
Shaoying Liu Hosei University, Japan
Yang Liu Nanyang Technological University, China
Sjouke Mauw University of Luxembourg, Luxembourg
Dominique Mery Université de Lorraine, LORIA, France
Stephan Merz Inria Nancy - Grand Est, France
Mohammadreza Mousavi Halmstad University, Sweden
Peter Müller ETH Zürich, Switzerland
Shin Nakajima National Institute of Informatics, Japan
Jun Pang University of Luxembourg, Luxembourg
Ion Petre Åbo Akademi University, Finland
Shengchao Qin Teesside University, UK
Zongyan Qiu Peking University, China
Jing Sun The University of Auckland, New Zealand
Jun Sun Singapore University of Technology and Design,

Singapore
Kenji Taguchi AIST, Japan
Viktor Vafeiadis MPI-SWS, Germany
Jaco Van De Pol University of Twente, The Netherlands
Hai H. Wang University of Aston, UK
Wang Yi Uppsala University, Sweden
Huibiao Zhu East China Normal University, China

VIII Organization

Additional Reviewers

Azadbakht, Keyvan
Battle, Nick
Beohar, Harsh
Bessling, Sara
Bezirgiannis, Nikolaos
Bodeveix, Jean-Paul
Boström, Pontus
Bu, Lei
Coleman, Joey
Colley, John
Craciun, Florin
Dghaym, Dana
Dima, Catalin
Dong, Naipeng
Fang, Huixing
Fantechi, Alessandro
Ferrari, Alessio
Gengler, Marc
Gheorghe, Marian
Gratie, Cristian
Gratie, Diana-Elena
Guck, Dennis
Gui, Lin
Hansen, Henri
Huang, Yanhong
Ishikawa, Fuyuki
Islam, Md. Ariful
Ivanov, Sergiu
Jongmans, Sung-Shik T.Q.
Jonker, Hugo
Kalajdzic, Kenan
Kant, Gijs
Kassios, Ioannis
Keiren, Jeroen J.A.
Khakpour, Narges
Kromodimoeljo, Sentot
Laarman, Alfons

Li, Jianwen
Lime, Didier
Lluch Lafuente, Alberto
Ma, Qin
Melnychenko, Oleksandr
Mizera, Andrzej
Mohaqeqi, Morteza
Nguyen, Truong Khanh
Noroozi, Neda
Ouchani, Samir
Petrocchi, Marinella
Petrucci, Laure
Qu, Hongyang
Rezazadeh, Abdolbaghi
Ruijters, Enno
Sanán, David
Selyunin, Konstantin
Singh, Neeraj
Solin, Kim
Song, Songzheng
Spagnolo, Giorgio Oronzo
Strejcek, Jan
Su, Wen
Sulskus, Gintautas
Trujillo, Rolando
van Dijk, Tom
Vanzetto, Hernán
Versari, Cristian
Wang, Ting
Wijs, Anton
Wildman, Luke
Winter, Kirsten
Wu, Xi
Würtz Vinther Jørgensen, Peter
Zhang, Tian
Zhao, Jianhua
Zou, Liang

Abstracts of Invited Talks

SecGuru: Azure Network Verification Using Z3

Nikolaj Bjørner1 and Karthick Jayaraman2

1 Microsoft Research
nbjorner@microsoft.com

2 Microsoft Azure

karjay@microsoft.com

This talk describes the use of SMT solving for Network Verification. We take
as starting point experiences using Z3 in checking network configurations in the
Microsoft Azure public cloud infrastructure.

The Azure infrastructure is a prime example of a state-of-the art global and
highly complex network infrastructure. It supports a wide range of usage sce-
narios and security is a principal concern. As a result, there is an urgent need
for formal methods tools that provide diagnostic feedback when there are errors
and otherwise correctness guarantees.

The Azure architecture enforces network access restrictions using ACLs that
are placed on multiple routers and firewalls. Mis-configurations are a dominant
source of network outages. The SecGuru tool uses the SMT solver Z3 to check
contracts on firewall ACLs. ACLs are checked for containment and equivalence
with contracts. SecGuru checks all routers on a continuous basis: each router
is checked every 30 minutes against a data-base of contracts. SecGuru relies on
checking satisfiability of bit-vector formulas. SecGuru’s model extraction algo-
rithm exploits that properties can be captured succinctly as combinations of
ranges.

Each Azure data-center is built up around a hierarchy of routers that facili-
tate high-bandwidth traffic in and out as well as within the data-center. Traffic
that leaves and enters the data-center traverses four layers of routers, while traf-
fic within the data-center may traverse only one, two or at most three layers
depending on whether the traffic is within a logical partition called a cluster.
We describe a set of invariants that capture reachability properties of the Azure
architecture. Data-centers are instantiations of this general architecture and we
describe how SecGuru is used for checking network invariants on a continuous
basis while data-centers are built out and updated.

Scalable Software Testing and Verification

through Heuristic Search and Optimization

Lionel C. Briand

SnT Centre for Security, Reliability and Trust, University of Luxembourg

Email: lionel.briand@uni.lu

Testing and verification problems in the software industry come in many dif-
ferent forms, due to significant differences across domains and contexts. But
one common challenge is scalability, the capacity to test and verify increasingly
large, complex systems. Another concern relates to practicality. Can the inputs
required by a given technique be realistically provided by engineers?

This talk reports on 10 years of research tackling verification and testing as
a search and optimization problem, often but not always relying on abstractions
and models of the system under test. Our observation is that most of the prob-
lems we faced could be re-expressed so as to make use of appropriate search and
optimization techniques to automate a specific testing or verification strategy.
One significant advantage of such an approach is that it often leads to solu-
tions that scale in large problem spaces and that are less demanding in terms
of the level of detail and precision required in models and abstractions. Their
drawback, as heuristics, is that they are not amenable to proof and need to be
thoroughly evaluated by empirical means. However, in the real world of software
development, proof is usually not an option, even for smaller and critical sys-
tems. In practice, testing and verification is a means to reduce risk as much as
possible given available resources and time.

Concrete examples of problems we have addressed and that I will cover in
my talk include schedulability analysis, stress/load testing, CPU usage analysis,
robustness testing, testing closed-loop dynamic controllers, and SQL Injection
testing. Most of these projects have been performed in industrial contexts and
solutions were validated on industrial software. There are, however, many other
examples in the literature, a growing research trend that has given rise to a new
field of study named search-based software testing.

Further information is available in the following selected references:

References

1. Ali, S., et al.: Generating test data from ocl constraints with search techniques.
IEEE Transactions on Software Engineering Journal (2013)

2. Matinnejad, R., et al.: Search-based automated testing of continuous controllers:
Framework, tool support, and case studies. Information and Software Technology
Journal (2014)

Scalable Software Testing and Verification XIII

3. Briand, L.C., et al.: Using genetic algorithms for early schedulability analysis and
stress testing in real-time systems. Genetic Programming and Evolvable Machines
Journal (2006)

4. Iqbal, M.Z.Z., et al.: Empirical investigation of search algorithms for environment
model-based testing of real-time embedded software. In: ISSTA (2012)

5. Nejati, S., et al.: Identifying optimal trade-offs between cpu time usage and tem-
poral constraints using search. In: ISSTA (2014)

6. Nejati, S., Di Alesio, S., Sabetzadeh, M., Briand, L.: Modeling and analysis of CPU
usage in safety-critical embedded systems to support stress testing. In: France,
R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590,
pp. 759–775. Springer, Heidelberg (2012)

Approximations for Stochastic Graph Rewriting

Vincent Danos1, Tobias Heindel1, Ricardo Honorato-Zimmer1,
and Sandro Stucki2

1 School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
2 Programming Methods Laboratory, EPFL, Lausanne, Switzerland

In this note we present a method to compute approximate descriptions of a class
of stochastic systems. For the method to apply, the system must be presented as
a Markov chain on a state space consisting in graphs or graph-like objects, and
jumps must be described by transformations which follow a finite set of local
rules.

The method is a form of static analysis and uses a technique which is reminis-
cent of theories of critical pairs in term rewriting systems. Its output is a system
of coupled ordinary differential equations (ODE) which tracks the mean evolu-
tion of the number of (typically small) subgraphs. In some cases, these ODEs
form an exact and finite description of these mean numbers. But even when
the ODE description is only an approximation, it can often reveal interesting
properties of the original system.

The method was first conceived in relation to a special type of graphs, namely
the site graphs which form the basis of the Kappa language [3]. Recently, the
authors have taken again this method with the goal to extend it to a broader
class of objects. In this note, the goal is rather the opposite. We narrow down
the construction to consider only simple graphs and invertible rules, to not be
distracted by technicalities, and give a simple account. The exposition is mostly
informal.

Table of Contents

Approximations for Stochastic Graph Rewriting . 1
Vincent Danos, Tobias Heindel, Ricardo Honorato-Zimmer, and
Sandro Stucki

Computing Maximal Bisimulations . 11
Alexandre Boulgakov, Thomas Gibson-Robinson, and A.W. Roscoe

Improving the Model Checking of Strategies under Partial
Observability and Fairness Constraints . 27

Simon Busard, Charles Pecheur, Hongyang Qu, and
Franco Raimondi

A Formal Model for Natural-Language Timed Requirements of Reactive
Systems . 43

Gustavo Carvalho, Ana Carvalho, Eduardo Rocha,
Ana Cavalcanti, and Augusto Sampaio

A Hybrid Model of Connectors in Cyber-Physical Systems 59
Xiaohong Chen, Jun Sun, and Meng Sun

A Language-Independent Proof System for Mutual Program
Equivalence . 75

Ştefan Ciobâcă, Dorel Lucanu, Vlad Rusu, and Grigore Roşu

PHASE: A Stochastic Formalism for Phase-Type Distributions 91
Gabriel Ciobanu and Armand Stefan Rotaru

CASSANDRA: An Online Failure Prediction Strategy for Dynamically
Evolving Systems . 107

Francesco De Angelis, Maria Rita Di Berardini,
Henry Muccini, and Andrea Polini

Modal Characterisations of Probabilistic and Fuzzy Bisimulations 123
Yuxin Deng and Hengyang Wu

Pointer Program Derivation Using Coq: Graphs and Schorr-Waite
Algorithm . 139

Jean-François Dufourd

An LTL Model Checking Approach for Biological Parameter
Inference . 155

Emmanuelle Gallet, Matthieu Manceny, Pascale Le Gall, and
Paolo Ballarini

XVI Table of Contents

SCC-Based Improved Reachability Analysis for Markov Decision
Processes . 171

Lin Gui, Jun Sun, Songzheng Song, Yang Liu, and Jin Song Dong

Comprehension of Spacecraft Telemetry Using Hierarchical
Specifications of Behavior . 187

Klaus Havelund and Rajeev Joshi

Timed Automata Verification via IC3 with Zones . 203
Tobias Isenberg and Heike Wehrheim

GRL: A Specification Language for Globally Asynchronous Locally
Synchronous Systems . 219

Fatma Jebali, Frédéric Lang, and Radu Mateescu

A Formal Framework to Prove the Correctness of Model Driven
Engineering Composition Operators . 235

Mounira Kezadri Hamiaz, Marc Pantel, Benoit Combemale, and
Xavier Thirioux

A Formula-Based Approach for Automatic Fault Localization
of Imperative Programs . 251

Si-Mohamed Lamraoui and Shin Nakajima

A Resource-Based Logic for Termination and Non-termination
Proofs . 267

Ton Chanh Le, Cristian Gherghina, Aquinas Hobor, and
Wei-Ngan Chin

Practical Analysis Framework for Software-Based Attestation
Scheme . 284

Li Li, Hong Hu, Jun Sun, Yang Liu, and Jin Song Dong

TAuth: Verifying Timed Security Protocols . 300
Li Li, Jun Sun, Yang Liu, and Jin Song Dong

On the Formal Analysis of HMM Using Theorem Proving 316
Liya Liu, Vincent Aravantinos, Osman Hasan, and Sofiène Tahar

Formal Modeling and Analysis of Cassandra in Maude 332
Si Liu, Muntasir Raihan Rahman, Stephen Skeirik,
Indranil Gupta, and José Meseguer

Bounded Model Checking High Level Petri Nets in PIPE+Verifier 348
Su Liu, Reng Zeng, Zhuo Sun, and Xudong He

Fast Translation from LTL to Büchi Automata via Non-transition-Based
Automata . 364

Shohei Mochizuki, Masaya Shimakawa, Shigeki Hagihara, and
Naoki Yonezaki

Table of Contents XVII

Complete Model-Based Equivalence Class Testing for the ETCS Ceiling
Speed Monitor . 380

Cécile Braunstein, Anne E. Haxthausen, Wen-ling Huang,
Felix Hübner, Jan Peleska, Uwe Schulze, and Linh Vu Hong

Contract-Based Verification of MATLAB and Simulink
Matrix-Manipulating Code . 396

Jonatan Wiik and Pontus Boström

GPU Accelerated Counterexample Generation in LTL Model
Checking . 413

Zhimin Wu, Yang Liu, Yun Liang, and Jun Sun

Formal Throughput and Response Time Analysis of MARTE Models . . . 430
Gaogao Yan, Xue-Yang Zhu, Rongjie Yan, and Guangyuan Li

Extending MSVL with Function Calls . 446
Nan Zhang, Zhenhua Duan, and Cong Tian

Author Index . 459

Approximations for Stochastic Graph Rewriting�

Vincent Danos1, Tobias Heindel1, Ricardo Honorato-Zimmer1,
and Sandro Stucki2

1 School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
2 Programming Methods Laboratory, EPFL, Lausanne, Switzerland

In this note we present a method to compute approximate descriptions of a class
of stochastic systems. For the method to apply, the system must be presented as
a Markov chain on a state space consisting in graphs or graph-like objects, and
jumps must be described by transformations which follow a finite set of local
rules.

The method is a form of static analysis and uses a technique which is reminis-
cent of theories of critical pairs in term rewriting systems. Its output is a system
of coupled ordinary differential equations (ODE) which tracks the mean evolu-
tion of the number of (typically small) subgraphs. In some cases, these ODEs
form an exact and finite description of these mean numbers. But even when
the ODE description is only an approximation, it can often reveal interesting
properties of the original system.

The method was first conceived in relation to a special type of graphs, namely
the site graphs which form the basis of the Kappa language [3]. Recently, the
authors have taken again this method with the goal to extend it to a broader
class of objects. In this note, the goal is rather the opposite. We narrow down
the construction to consider only simple graphs and invertible rules, to not be
distracted by technicalities, and give a simple account. The exposition is mostly
informal.

An example. Let us start with an example taken from Ref. [1] which illustrates
the type of systems we are interested in. One has a graphG whose nodes can be in
either of two states 0 (red) or 1 (blue). There are two possible rules to transform
G which we call flips and swaps. To apply either type of transformation, we first
need to locate in G a pair of neighboring nodes u, v with different states. For
flips, we just flip the internal state of u or v to match its neighbor’s state. For
swaps, we replace the edge connecting u and v with an edge connecting u or v to
another node w. In each case we obtain a new graph (on the same set of nodes).
The evolution of the system consist then in repeatedly applying flips and swaps.
Fig. 1 illustrates the basic transformation steps. Fig. 2 shows an example of a
graph which can be transformed by both types of rules.

If we say that colors represent opinions, then we can interpret the rules as the
nodes trying to not have neighbors of a different opinion. A node with a neighbor

� This research was sponsored by the European Research Council (ERC) under the
grants 587327 “DOPPLER” and 320823 “RULE”.

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 1–10, 2014.
c© Springer International Publishing Switzerland 2014

2 V. Danos et al.

of the opposite persuasion can change his (by a flip), or turn to another neighbor
(by a swap). Several variants of this “voter” models are studied. For instance
w, the target node of the swap, can be chosen of the same color as u the node
doing the swapping, and/or can be picked within a prescribed distance of u.

10 00

10 10

**

Fig. 1. Flips and Swaps - we use colors to represent the internal states of nodes: red
for 0, blue for 1, and ∗ for the unknown state. The symmetric transformations are
not shown. In textual notation we write the flip as 0a, 1a ⇒ 0a, 0a (flip to zero), and
the swap as 0a, 1a, ∗ ⇒ 0a, 1, ∗a. We use common exponents to indicate edges between
nodes.

At any given point, several transformation rules might be applicable to a
graph, and each applicable rule can be applied in several different ways depending
on where the rule left hand side is matched in the current graph. A way in which
a rule can be applied is called an instance of that rule. If a graph is such that
no rules can be applied to it, we call it a normal form. Normal forms are also
called sometimes frozen states. In the example, normal forms are “fragmented”
graphs with no edge connecting two nodes of opposing colors. The graph of Fig. 2
can be frozen in just one step. In the opinion interpretation, one is interested,
among other things, in understanding how likely it is that an opinion wins over
the entire graph; that is to say, how likely it is that one reaches a normal form
which is monochrome. For instance, in Fig. 2, it is still possible, by a long series
of steps, to propagate the red color to the entire graph. To address this type
of question, one needs to define the likelihood of a given instance to apply, and
equip transformations with a probabilistic structure.

Notations. Before we turn to probabilities, we fix a few notations. This example,
as all the ones which we will treat in this note, has rules which preserve the un-
derlying set of nodes and can explore only finitely many colors (those mentioned
in the rules). Therefore the set of graphs reachable from a given initial graph is
finite. If we write N for the set of nodes of an initial graph G0, and GN for the
set of all graphs on N with reachable colors, then all graphs reachable from G0

will be in GN . In our voter example, the number of edges is also preserved and
this provides a further restriction on the set of reachable graphs.

Approximations for Stochastic Graph Rewriting 3

Fig. 2. An almost frozen state: it is enough to swap the dotted edge to reach a normal
form where red and blue nodes no longer have any connexions; on the other hand, it
also possible to reach a frozen state which is entirely red

Let us assume from now on that we are given a finite set of rules R and an
initial graph G0 with nodes in N . The objects which we transform are simple
graphs where nodes have colors (represented by integers). In other words, we
consider triples N , E, σ where N is a finite set of nodes, E a finite set of
undirected edges over N , and σ maps a subset of N to integers. Partially colored
graphs are only used in rules (eg the swap rule in Fig. 1).

We will use the following typographic conventions: we will write A, B, etc, for
(typically small) graphs (e.g. those which appear on the left hand sides of rules
in R) which may have nodes without colors, and x, y, etc, for arbitrary graphs
in GN to which rules are applied and which are fully colored.

A match f : A → x is a graph morphism from A to x which 1) preserves
internal states, and 2) is injective on nodes. We write c(f) for the codomain x of
f . The codomain of f is not to be confused with f ’s image, written f(A), which
in general is a strict subgraph of its codomain x.

Let us write [A;x] for the set of matches between A and x and, [A] for the
map on GN defined as [A](x) = |[A;x]|. This map [A] is counting the number of
instances of A in x. We call such maps graph observables. We write C for the
set of connected graph observables, B for set of all graph observables, and A
for the linear subspace spanned by B in the vector space �(GN) of real-valued
functions over GN .

Clearly:

C ⊆ B ⊆ A ⊆ �(GN)

We call A the algebra of graph observables, because it also has a commutative
algebra structure as we will see.

A rule is α is a pair of graphs αL, αR which are defined on the same set of
nodes. To apply such a rule to a graph x, we choose a match f ∈ [αL;x] (if any),
and replace the edges and states in the image subgraph f(αL) of αL as we find
them in αR.

4 V. Danos et al.

An example of rule and rule application is given in Fig. 3.

Fig. 3. Example of a rule and rule application. Note that the rule left hand side does
not need to be connected. The white node stands for a node of unspecified color.

Thus, the difference between αL and αR, which are usually called the rule left
and right hand sides, represent the modifications subsequent to the application
of the rule. We write α(f) for the residue of the match after applying the rule
(which is the same map as f on nodes).

We write α† for the rule inverse to α.

Stochastic dynamics. Now that we have the non-deterministic structure of the
evolution of G0 under R in place, we add the quantitative aspects. The set of
rules R can be used to generate a continuous-time Markov chain (CTMC) with
values in GN by assigning rates to rules in R. Thus, suppose given a rate map
k : R → R+ which associates to each rule a positive real number.

We define the transition rates of the associated CTMC on GN as follows. For
α in R, x, y in GN , we define a rate matrix Qα with coefficients:

qαxy = |{f ∈ [αL;x] | α(f) ∈ [αR; y]}|
qαxx =

∑
x �=y −qαxy

The coefficient qαxy counts the number of instances of the rule α which transform
state x into state y.

The rate matrix Q of our system is then defined by combining the Qα:

Q =
∑

α∈R k(α) ·Qα

The rate matrix (also known as the infinitesimal generator of the CTMC) defines
a linear operator on the vector space �(GN). Specifically, if we write qxy for Q’s
coefficients, and pick f a function in �(GN), Q’s action on f is given by:

Q(f)(x) =
∑

y qxy(f(y)− f(x))

Approximations for Stochastic Graph Rewriting 5

In words, Q(f)(x) is the mean rate of change of f at x.
Suppose now we write p(x) for the time-dependent probability to be at a

certain state x in GN . We can consider p as an element of �(GN). The rate
matrix Q governs the evolution of p via the master equation [4]:

d

dt
pT = pTQ (1)

where pT is the transpose of p. (The transpose comes from the convention that
qxy is the rate at which the chain jumps from x to y.)

For f a function in �(GN), the (time-dependent) mean (or expected value or
average) of f according to p is Ep(f) := pT f , and it follows directly from the
master equation that:

d

dt
Ep(f) = Ep(Q(f)) (2)

It easy to see that if we take as function f = δx the function which is 1 at x
and zero else, Ep(δx) is the same as p(x) and the equation we have just written
is the master equation (1) for p(x) (ie the projection of the master equation on
the x-coordinate).

Return to the example. Suppose we pick as our f the function [0] which counts
the number of nodes in state 0. Clearly Qswap0

([0]) = Qswap1
([0]) = 0 as swaps

do not change colors.
For the flips from 0 to 1, we compute:

Qflip0
([0])(x) = −

∑
y �=x qxy = [01]

where 01 is short for the pattern 0a, 1a, and [01] is the observable which counts
the number of edges between neighbors of opposite colors.

The symmetric flip is computed in the same way and by summing all contri-
butions we get the following instance of (2):

d
dtEp([0]) = −k01Ep([01]) + k10Ep([01]) = (k10 − k01)Ep([01])

with k01 and k10 the respective rates associated to flip0 (flip from 0 to 1), and
flip1 (the symmetric flip).

We can already notice a few things.
First, a formal remark: the equation obtained for the evolution of [0], which

is in our algebra A , introduces another function [01] also in A . In other words,
Q([0]) is a (linear) function of [01]. This is a general fact. For all αs, A is closed
under the linear map Qα. Therefore, the same holds of Q which is a linear
combination of Qαs. In fact, this is our main result! We will derive below a
concrete expression for Qα([F]) for any graph observable F , and any rule α.
This will establish the closure of A under Q, and give an effective way to write
(2) for all observables in A .

6 V. Danos et al.

Second, a concrete remark: if the flip rules are symmetric (corresponding
to opinions which are equally persuasive), that is to say if k01 = k10, then
d
dtEp([0]) = 0. This does not mean that the final number of 0s will be the
same in all trajectories to normal form, just that, on average, this number will
be exactly what it was at the start. Thus, interesting information about the
dynamics can be found from ODEs such as the one we have derived above. So
seeking a general method to generate them, as we do here, is a worthy pursuit.

Last, another general remark: the new observable [01] is larger than [0] in the
sense that the underpinning graph is larger. This is also general. As we will see,
the new observables needed to express Q([F]) can be larger than F . The idea
is that one has to write an instance of equation (2) for them as well. Hence,
the process of deriving the ODE system for a graph observable of interest can
be seen as an expansion. Even if in our case the expansion is finite, as [F] = 0
as soon as F has more than N nodes, in practice, one needs to truncate the
expansion.

Gluings. To derive an effective version of (2) in the general case, we need a
additional ingredient, namely minimal gluings. A gluing μ of two graphs A, B
is a pair of matches f : A→ x, g : B → x. We write π0(μ) = f , π1(μ) = g, and
c(μ) = x for the common codomain of f and g. Given μ, one can always obtain
a new gluing f1 : A → C, g1 : B → C with C the union of the images of f and
g, and f = j ◦ f1, g = j ◦ g1, where j is the inclusion of C in x. We call the pair
f1, g1 a minimal gluing of A and B.

There are finitely many minimal gluings of A and B up to isomorphism. We
write m(A,B) for this (finite) set of minimal gluings. In the worst case, there can
be exponentially many non-isomorphic minimal gluings, as each corresponds to
determining a shared subgraph of A and B in the gluing, namely the intersection
of the images of f and g. There is a largest minimal gluing, corresponding to no
sharing at all, which is the disjoint sum of A and B, written A+B.

A gluing decomposes through exactly one minimal gluing. Hence:

[A][B] =
∑

μ∈m(A,B)[μ]

It follows that A is closed under product, hence is a sub-algebra. Besides, we
can rewrite the above as:

[A+B] = [A][B]−
∑

μ∈m(A,B)\{A+B}[μ]

and one sees that non-connected observables can be expressed as polynomials
of connected ones. In other words, A is the polynomial closure of C the set of
connected observables. (The degree of the polynomial decomposition of [F] in C
is the number of connected components of F .)

Proving that A is closed. We can now prove that A is closed under the action
of Q. As Q is a linear combination of Qαs, it is enough to prove closure under
Qα, and as B spans A , it is enough to examine the action of Qα on a graph

Approximations for Stochastic Graph Rewriting 7

observable. So, let [F] be that observable, and x a graph in GN . By definition of
Qα we get:

(Qα[F])(x) =
∑

y q
α
xy([F](y)− [F](x))

=
∑

f∈[αL;x] |[F ; c(α(f))]| −
∑

f∈[αL;x] |[F ;x]|

where α(f) is the post-match corresponding to f after firing α at f , and c(α(f))
its codomain, that is the graph resulting from firing α.

We see that the action of Qα at x decomposes naturally in two terms, Qα =
Q+

α − Q−
α , one which produces new instances of F and one which consumes

existing ones. The consumption part is easy to evaluate:

Q−
α ([F]) =

∑
μ∈m(F,αL)[c(μ)]

Indeed the right hand side is equal to [F][αL] by definition of minimal gluings.
For the production term, we get a similar expression:

Q+
α ([F]) =

∑
μ∈m(F,αR)[c(α

†(π0(μ))))]

Recall that π0(μ) is the first match in the gluing μ. We apply the inverse rule α†

to this post-match to obtain c(α†(π0(μ))). This counting is correct because there
is a bijection between post-matches from c(π0(μ)) to c(α(f)), and pre-matches
from c(α†(π0(μ))) to x.

Thus we obtain that B, and therefore evidently A its linear span, is closed
under the action of Qα, and therefore any linear combination of such.

Remarks. Again there are few remarks worth making.
First, even if the graph observable F which we start form is connected, the

observables on the right hand side of Q±
α ([F]) might not be. That is to say, the

linear span of C is not necessarily closed under Q. However, it is not difficult to
see that this will be the case if all rules in R have a connected left hand side.
Such rules sets form an interesting subclass of “solid-state” transformations.

The second remark is a caveat. For rules more general than the ones considered
here, where one can create nodes, the bijection argument which we have relied
on to justify the production term fails. A more detailed analysis is needed. But
the ideas are essentially the same and the formula obtained only slightly more
complex.

Last, in the two terms which we have introduced above, Q±
α ([F]), the sum-

mation extends to all minimal gluings of F on both sides of the rule; in practice,
we can restrict these sums to gluings where F undergoes an actual modification
due to the firing of α or α†. We call these gluings relevant. The contributions of
the irrelevant ones cancel out. In examples, we never consider those.

The general rate equation for graphs. From the above, using the linearity of
expectations, we derive the explicit form of (2) which we seek. Specifically, for a
graph observable F in B, we get:

d
dt
Ep([F]) =∑

α∈R k(α)
(∑

μ∈m(F,αR) Ep([c(α
†(π0(μ)))])−

∑
μ∈m(F,αL) Ep([c(μ)])

)

8 V. Danos et al.

So far there is no approximation involved. The equation is exact. But as we
have seen in the example, it requires the knowledge of additional observables
which leads to writing more similar equations, possibly of increasing complexity.

Example continued. To see concretely how more complex terms follow from the
expansion, we can return to the example and compute the equations associated
to [01] the number of opposing neighbors or the distance to normal form. As we
have seen earlier, the equation for Ep[0] generates [01] as a new observable (in
the non symmetric case at least). So it is the natural next step.

Below we neglect irrelevant gluings. We use abbreviation similar to the ones
used before, eg we write 101 instead of the correct 1a, 0a,b, 1b.

Q−
flip0

([01]) = −[01]− [101]

Q+
flip0

([01]) = [001]

Q−
flip1

([01]) = −[01]− [010]

Q+
flip1

([01]) = [011]

Q−
swap0

([01]) = −[01]
Q+

swap0
([01]) = [01 + 1]

Q−
swap1

([01]) = −[01]
Q+

swap1
([01]) = [01 + 0]

Hence if we write k0, k1 for the swap rates we can collect all the contributions
above and we obtain the following ODE:

d

dt
Ep([01]) = k01(Ep[001]− Ep[01]− Ep[101]) + k10(Ep[011]− Ep[01]− Ep[010])

+ k0(Ep[01 + 1]− Ep[01]) + k1(Ep[01 + 0]− Ep[01])

We can simplify this general expression by supposing that flips and swaps are
symmetric. If we set the following notations: k = k01 = k10, k

′ = k0 = k1, and
arrange the terms below by size, we get:

d

dt
Ep([01]) = −2(k + k′)Ep[01] + k(Ep[001] + Ep[011]− Ep[101]− Ep[010])

+ k′(Ep[01 + 1] + Ep[01 + 0])

Non-connected observables [01+1], and [01+0] appear as anticipated, as well
as larger observables such as [001]. In Ref. [1] where this is example is developed,
the authors derive a similar ODE by hand. (There is a slight difference due to
the fact that their swap rules do not take into account the multiplicity of the
∗ node in the definition of an instance; but that is of no consequence for our
exposition.)

At this stage, we are facing the problem of either writing an ODE for all the
new terms which have appeared (which poses no conceptual problem but would
be extremely tedious to do by hand), or to truncate and express the new larger
observables as functions of simpler ones. Even if we were to go for the former

Approximations for Stochastic Graph Rewriting 9

option, we would have to find a way of truncating the expansion at some point!
So let us follow the second option and see how this can be done.

To get rid of the non-connected observables, we can exploit the polynomial
decomposition above. This gives us [01+1] = [01][1]−[01] and hence Ep[01+1] =
Ep([01][1])−Ep[01]. Now, using an approximation, we can simplify the first term
as:

Ep([01][1]) ∼ Ep([01])Ep([1])

This type of approximation can be performed in general and consists in assuming
independence of observables. To get rid of the connected terms of the form [001],
we need another approximation principle. We can either set them brutally to
zero, or else, more subtly, apply what is known as a pair approximation which
in this case takes the form:

Ep([001])Ep([0]) ∼ Ep([00])Ep([01])

This second type of approximation is an assumption of conditional independence.
Neither comes with a general bound on the error they introduce. But in practice,
they often give interesting results.

Example concluded. Using the same machinery, one can compute higher order
moments of (the distributions of) observables. Say we want to estimate the
variance of [0] the mean of which we have seen is a constant in the symmetric
case k = k01 = k10. In the extreme case where there are no swaps allowed
(k′ = 0), and assuming the initial graph G0 is connected, normal forms can only
be monochrome. This means that one opinion disappears (and it is easy to see
that the probability for an opinion to win this all-or-nothing competition is equal
to its initial fraction). So, intuitively, in this case [0] will have a high variation,
and in general, the lower the variance the more likely it is that the graph will
split in two separate colors with none of the colors completely winning.

To compute this variance, it is enough to evaluate Ep([0]
2) as we know that

Ep([0]) is constant. We get

d
dtEp([0]

2) = d
dtEp([0 + 0]) + d

dtEp([0]) =
d
dtEp([0 + 0])

Using the connected decomposition and, again, our general equation (2), we get
after some calculations:

d
dtEp([0 + 0]) = = 2kEp([0 + 01])

This expression, differently to that for the mean Ep([0]) is not degenerate even
in the symmetric case. In fact, in the symmetric case, the calculation above tell
us that the right hand side is about 2kEp([0]) ·Ep([01]) and the variance will be
monotonically increasing as long as there are 01-edges remaining in the graph.

Conclusion. There are many examples other than the one we have used here
where the type of deterministic approximations considered in this note have been
found useful. Examples abound in particular in the literature of the so-called

10 V. Danos et al.

adaptive networks [2]. The ability to define and generate them in a systematic
way, as we have presented, is important on several counts. For one thing, the
derivation involves combinatorics and there is a limit to the size of an expansion
one can do by hand. With a proper implementation, one could go higher in
the order of expansion before introducing approximations, and thus obtaining
potentially more accurate approximations. For the same reason, the derivation
of these approximations is quite error-prone and a mechanical derivation can be
beneficial. Our careful and explicit construction carries over to several graph-
like structures with little modifications. One can play with the type of objects
(eg directed graphs, hypergraphs, simplicial sets), or the type of matches (eg
induced subgraphs) or even the type of rules (eg considering rules which create
and/or merge nodes). The general axiomatic approach leads to a more unified
picture. Finally, our method to generate the differential system associated to an
observable, and its subsequent expansion, could lead to interesting formalizations
of the approximation principles used to cut the expansion beyond the simple pair
approximation.

References

1. Durrett, R., Gleeson, J.P., Lloyd, A.L., Mucha, P.J., Shi, F., Sivakoff, D., Socolar,
J.E., Varghese, C.: Graph fission in an evolving voter model. Proceedings of the
National Academy of Sciences 109(10), 3682–3687 (2012)

2. Gleeson, J.P.: High-accuracy approximation of binary-state dynamics on networks.
Physical Review Letters 107(6), 068701 (2011)

3. Harmer, R., Danos, V., Feret, J., Krivine, J., Fontana, W.: Intrinsic information
carriers in combinatorial dynamical systems. Chaos 20(3) (2010)

4. Norris, J.R.: Markov chains. Cambridge series in statistical and probabilistic math-
ematics. Cambridge University Press (1998)

Computing Maximal Bisimulations

Alexandre Boulgakov, Thomas Gibson-Robinson, and A.W. Roscoe

Department of Computer Science, University of Oxford,
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

{alexandre.boulgakov,thomas.gibson-robinson,bill.roscoe}@cs.ox.ac.uk

Abstract. We present and compare several algorithms for computing
the maximal strong bisimulation, the maximal divergence-respecting
delay bisimulation, and the maximal divergence-respecting weak bisim-
ulation of a generalised labelled transition system. These bisimulation
relations preserve CSP semantics, as well as the operational semantics
of programs in other languages with operational semantics described by
such GLTSs and relying only on observational equivalence. They can
therefore be used to combat the space explosion problem faced in ex-
plicit model checking for such languages.

1 Introduction

Many different variations on bisimulation have been described in the literature
of process algebra, for example [1–5]. They are typically used to characterise
equivalences between nodes of a labelled transition system (LTS), but they can
also be used to calculated state-reduced LTSs that can represent equivalent pro-
cesses. They have the latter function in the CSP-based [6–8] refinement checker
FDR [9], of which the third major version FDR3 has recently been released [10].
The present paper sets out the approaches to bisimulation reduction taken in
FDR and especially FDR3.

FDR typically builds the transition system of a large process as the parallel
composition (closely related to Cartesian product) of those of component pro-
cesses, which are often sequential. One of the approaches it takes to the state
explosion problem is to supply a number of compression functions that attempt
to reduce the state spaces of these components. The set of compressions intro-
duced in [11], which included strong bisimulation, has been extended by several
other versions of bisimulation in the most recent versions of FDR.

The main purpose of this paper is to set out the bisimulation algorithms used
by FDR3 and compare them with alternatives. Our strong bisimulation algo-
rithm is related to Paige and Tarjan’s bisimulation algorithm [12, 13], and is
compared with that. When more compression is needed, other tools frequently
use branching bisimulation [14] due to the existence of an efficient O(nt) algo-
rithm [15]. In contrast, FDR3 uses the even coarser delay and weak bisimulations;
we present innovative algorithms to compute these bisimulations based on dy-
namic programming. These latter algorithms were introduced because, although

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 11–26, 2014.
c© Springer International Publishing Switzerland 2014

12 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

they typically achieve slightly poorer compression than FDR’s existing compres-
sions, bisimulations are more widely applicable. In Section 5.2 we compare these
two classes of compressions.

2 Strong Bisimulation

FDR uses LTSs in which nodes sometimes have additional behaviours repre-
sented by labellings such as divergences or minimal acceptances.

Definition 1. A generalised labelled transition system (GLTS) is a tuple (N , Σ,
E , Λ, λ) where N is a set of nodes, Σ is a set of events, Στ = Σ ∪ {τ}, −→⊆
N ×Στ ×N is a labelled transition relation (with p

a−→ q indicating a transition
from p to q with action a), Λ is a set of labels, and λ : N → Λ is a total function
labelling each node. The following shorthand is used:

– initials(m) = {e | ∃n ·m e−→ n} denotes m’s initial events;

– afters(m) = {(e, n) | m e−→ n} denotes m’s directly enabled transitions;

– m ⇑ ⇔ ∃m0,m1, ... ·m0 = m ∧ ∀ i ·mi
τ−→ mi+1 denotes divergence, i.e. an

infinite cycle of internal τ actions corresponding to livelock.

Definition 2. A relation R ⊆ N × N is a strong bisimulation of a GLTS S if
and only if it satisfies all of the following, where n1, n2,m1,m2 ∈ N and x ∈ Στ :

∀n1, n2,m1 · ∀ x · n1R n2 ∧ n1
x−→ m1 ⇒ ∃m2 ∈ N .n2

x−→ m2 ∧m1Rm2

∀n1, n2,m2 · ∀ x · n1R n2 ∧ n2
x−→ m2 ⇒ ∃m1 ∈ N .n1

x−→ m1 ∧m1Rm2

∀n1,m1 · n1 R n2 ⇒ λ(n1) = λ(n2)

Two nodes are strongly bisimilar if and only if there exists a strong bisimu-
lation that relates them. The maximal strong bisimulation on a GLTS S is the
relation that relates two nodes if and only if they are strongly bisimilar. The
FDR function sbisim computes the maximal strong bisimulation on its input
GLTS and returns a GLTS with a single node bisimilar to each equivalence class
in the input. FDR has included the sbisim compression function since its early
days. However the algorithm has not been described in the literature in detail
(a brief outline is found in [8]) until now.

2.1 Näıve Iterative Refinement

The FDR2 implementation of sbisim first computes the desired equivalence
relation as a two-directional one-to-many map between equivalence class and
node identifiers. It then generates a new GLTS based on the input and the
computed equivalence relation. This final step is straightforward to implement
and dependent more on the internal GLTS format than the strong bisimulation
algorithm and will not be discussed in this paper. Furthermore, it is not specific
to strong bisimulation and can be used to factor a GLTS by an arbitrary relation.

Computing Maximal Bisimulations 13

It is computing the desired equivalence relation that requires the most effort both
on the part of the algorithm designer and on the part of the computer.

A coarse approximation of the equivalence relation is first computed by using
the first-step behaviour of each node, and each class in this relation is repeatedly
refined using the first-step behaviours of the nodes under the current approxi-
mation. This is related to the formulation of strong bisimulation given in [2] as
a series of experiments of increasing depth.

Initial Approximation. The initial approximation can most simply be com-
puted by identifying all nodes. However, FDR employs a finer initial approxi-
mation that saves time later on.

Unlike the afters of a node, whose equivalence depends on the current equiv-
alence relation, these are fixed labels and we can save time by only comparing
them once. We can compute an initial approximation by comparing the nodes’
labels and initials and need not look at the labels again. This is equivalent to
identifying all nodes and then performing one refinement using the nodes’ labels
and their afters ’ equivalence classes.

Iteration. Assume that we have already separated the nodes into equivalence
classes, whether from the initial approximation or from a previous refinement
step. We will now attempt to refine these classes further. After computing the
afters of each node under the latest equivalence relation, we sort the afters for
the nodes in each class in order to reclassify them. A single in-order traversal
through the sorted lists allows us to reclassify the nodes in each class.

If any nodes have changed class during this pass, we must proceed to refine the
classes again. Otherwise, we are done. We can determine whether any nodes have
changed class during the final reclassification traversal with very little additional
work.

Construction. The final step is to construct the output GLTS. To do this,
we first create a node for each equivalence class. Next, we can use the already
computed afters to create the transition system, using an arbitrary representa-
tive from each class since the afters for each of the nodes in an equivalence class
are guaranteed to be equivalent (since the refinement phase has terminated).
Any node labels can also be copied from the representative directly as they are
guaranteed to be equivalent.

Complexity. The initial approximation takes up to a constant factor more
time than one iterative step and construction only requires a traversal of the
output of the iterative step, so the run time is dominated by the iteration.

Assume an input GLTS with n nodes and t transitions. In FDR’s representa-
tion, the transition set is sorted first by source and then by event, so recomput-
ing the afters is a relatively inexpensive operation requiring simply an in-order
traversal of the transition set and a random lookup per transition to compute
the equivalence class of its destination, taking O(t) time. The following sort can
take O(n log(n)) time in the worst case where the nodes are spread across few
classes, and the reclassification is done in O(n) time. Since we refine at least
one class on each iteration except the final one, there can be no more than n
iterations. The worst-case time complexity is therefore in O(nt + n2 log(n)).

14 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

2.2 Change-Tracking Iterative Refinement

We will now present an improvement on Näıve Iterative Refinement that is in-
cluded in FDR3. With some bookkeeping, we can determine which states’ afters
could not have changed after the previous iteration. The proposed algorithm uses
this information to avoid recomputing and sorting the afters for these states.

It is clear that in a process such as P(n) where

P(0) = STOP P(n) = a → P(n − 1)

näıve iterative refinement would first identify all the states except P(0), then
split off P(1), then P(2), and so on, recalculating the afters for all n + 1 nodes,
and sorting a list of n−i elements and i+1 lists of 1 element on the ith iteration.
However, we can note that only one node changes class on each iteration, so we
need only to recompute the afters for that node.

We can also use this knowledge to reduce the number of nodes that have to be
sorted. To do so, we must keep track of which nodes are affected by each node
(that is, a copy of the transition system with the transitions reversed and the
labels removed), and we must also keep track of which nodes change class on each
iteration. As FDR represents states as consecutive integers and the transitions
are stored in an array, we can easily construct a constant-time accessible map
from nodes to their predecessors.

We will maintain as running state a bit vector changed containing the nodes
whose equivalence class changed on the previous iteration, and a bit vector
affected containing the nodes that might be affected by those changes. affected
should be initialised with all nodes marked since we need to compute the afters
for all of the nodes initially.

Following this initialisation, on each iteration we will perform the following
sequence of actions. First, we will recompute the afters for each of the nodes in
affected . All nodes that are not marked for update get to keep their afters from
the previous iteration. Next, we compute the equivalence classes that contained
the affected nodes in the previous iteration; these are the equivalence classes
that might need to be refined, and this can be computed in linear time in the
number of nodes by iterating over affected . We must also clear changed for the
next step.

For each of the classes that we consider for refinement, we first separate the
nodes that have not changed class from those that have (which are in affected).
Next, we sort the nodes that are in affected and in this class in order to partition
this class. At this point, we can go through the sorted nodes and assign each
group a new class index. However, this does not perform well on examples like
R (with the LTS shown in Figure 1) where

R = (�
i∈{0..n}

b → b → Q(i)) � a → R′

R′ =�
i∈{0..n}

a → Q(i)

Q(i) = a → STOP

Computing Maximal Bisimulations 15

R

Q0

Qi

Qn

R′

b

b

b

a

b

b

b

a

a

aa

a

a

Fig. 1. R′ has the same initials as each of the Qi , but is in a different equivalence class
from them. An initial classification based on initials would therefore place them in the
same equivalence class, but a future refinement would reclassify either R′ or all of the
Qi , which would change the afters of R only or all of the b → Q(i), respectively.

In particular, the initial classification places R′ and each of the Q(i) into the
same equivalence class, but the next iteration reclassifies each of the Q(i). This
forces each of the b → Q(i) to be reclassified as well. However, when splitting
an equivalence class we are free to assign class indices in an arbitrary way; in
particular, rather than changing the indices of the Q(i), we could instead have
changed the index of the single node R′, which has the single predecessor R.
To do this algorithmically, once we have sorted the classes of all of the affected
nodes in a given class, we choose the largest sequence of nodes with the same
class to keep the original class index and assign new indices to the rest, rather
than picking the first such sequence. We must also record the nodes that had
new indices assigned in changed .

Once we have refined each of the classes that needed to be refined, we can
iterate through changed and add to affected each of their predecessors for the
next iteration. If changed is empty, we can conclude that we have reached a fixed
point, and we can terminate the algorithm, returning the bisimulation relation
we have computed implicitly in the equivalence class indices of the nodes.

2.3 Paige-Tarjan Algorithm

The algorithm outlined in [13] is an adaptation of Paige and Tarjan’s solu-
tion (described in Section 3 of [12]) to the relational coarsest partition problem
(which is equivalent to single-action strong bisimulation) that works with LTSs
by splitting with respect to each element of the alphabet in sequence whenever
the original algorithm would split a class. In summary, each time a class is split,
the resulting subclasses are recorded. Refinement is then performed with respect
to the initial classes (separating nodes with edges into each class from those
without) and with respect to each split class (separating nodes with edges into
one subclass, the other, or both) using the inverse labelled transition relation.

16 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

Table 1. sbisim timings. Total runtime and the 5 longest invocations for each algo-
rithm (not necessarily corresponding to the same inputs).

Näıve (s) Change-Tracking (s) P-T (s)

Total 186 40 55

1 22.51 3.38 4.32

2 22.03 2.89 3.84

3 21.99 2.84 3.68

4 21.80 2.70 3.56

5 17.10 2.69 3.07

Complexity. The worst-case time complexity for a graph with n nodes and
t transitions is in O(t log(n)). However, the cached in-counts (the info maps
in [13]) necessary to achieve this bound can be unwieldy to manipulate, raising
the implementation and runtime costs. In addition, as the algorithm requires
frequent construction and traversal of sets, there is a time or space penalty
depending on the set representation used.

2.4 Performance

We will now compare the performance of the three algorithms for sbisim on
several real-world and generated examples. The test system used contains a
medium-range CPU1 and 4 GiB of memory, running 64-bit Ubuntu 12.10.

FDR3 Test Suite. To ensure proper operation of FDR3, we have developed
a suite of regression and feature tests containing tests generated randomly at
runtime, examples from [7] and [8], and assorted test files. Since sbisim is applied
to all component processes by default, many of these tests exercise sbisim. There
are about 60,000 invocations of sbisim over the test suite, and they are a good
comparison of the algorithms’ performance on small leaf components typical in
a system that does not use sbisim explicitly. The move from näıve to change-
tracking iterative refinement affords a nearly five-fold speedup, as evidenced
by Table 1. The Paige-Tarjan algorithm is slightly slower than change-tracking
iterative refinement, but part of this might be due to the heavy optimisation that
our implementation of iterative refinement has gone through over the years.

Towers of Hanoi. The first example is a model of the classic Towers of Hanoi
puzzle. The puzzle consists of three rods and N disks of varying sizes, with an
invariant that the disks on any rod are arranged in ascending order. A move
consists of moving the topmost disk from one rod to another, while preserving
the invariant. The objective is to move all the disks from one rod to another.
There are 3N possible configurations, since each disk can be on any of the three
rods at any time and its position on the rod is determined by the other disks
on the rod (due to the invariant). From each configuration, either two or three

1 The CPU is a quad-core Intel R© CoreTM i5-750 with 8 MB of cache. The number of
cores is not relevant, since the strong bisimulation algorithm is single threaded.

Computing Maximal Bisimulations 17

others are reachable: if all the disks are on one rod, the two valid moves are to
move the topmost disk to either of the two remaining rods, and if not all the
disks are on one rod, the smallest of the topmost disks can be moved to either
of the two other rods and the second smallest to one rod. In our model, if all
the disks are on one rod, the system can also perform a completion event but
remain in the same configuration, resulting in 3N+1 transitions. We have hidden
(i.e., renamed to τ) all events except for one completion event (as one might do
when solving the puzzle using FDR) and applied sbisim to the result.

As we can see from Table 2, there is a significant speedup due to change-
tracking iterative refinement that grows even more pronounced as the problem
size grows. The Paige-Tarjan algorithm is consistently faster, likely due to the
small amount of branching.

Dining Philosophers. The next example is a model of the Dining Philoso-
phers problem with N right-handed philosophers. We hide all visible events
(so the states are now distinguished by how many events must occur before
the inevitable deadlock) and apply sbisim to the result. We also do the same
for two deadlock-free solutions (which therefore have a single state after hiding
and strong bisimulation, obtained in one step of iterative refinement). The first
solution involves introducing asymmetry by making one of the philosophers left-
handed. The second solution introduces a butler who ensures there are never
more than N − 1 of the philosophers seated.

As we can see in Table 2, change-tracking iterative refinement is significantly
faster than näıve iterative refinement for the deadlocking problem, and increas-
ingly so for larger numbers of philosophers, but somewhat slower for the non-
deadlocking variants. This is likely due to the fact that the additional bookkeeping
it must perform does not have a chance to become useful – there is no second it-
eration after all the nodes are identified. However, the slowdown is not significant
(less than twofold). The modified Paige-Tarjan algorithm is intermediate to the
two variants of iterative refinement for the deadlocking cases and slower than both
for the non-deadlocking variants.

Matrix. The final example is a matrix of N + 1 by N + 1 nodes, each being
able to transition to the node on its right or the node below it with an event a.
This is process Q(N) where

P(0) = STOP

P(n) = a → P(n − 1)

Q(n) = P(n) ||| P(n)

It has (N + 1)2 states and 2N ∗ (N + 1) transitions, but sbisim can reduce
this to 2N + 1 states and 2N transitions, since each node simply performs a
number of as and deadlocks, and the number is no more than 2N , N from each
of the component P(N).

Summary. For most of our experiments, change-tracking iterative refinement
and the modified Paige-Tarjan algorithm both outperformed näıve iterative re-
finement and exhibited similar performance. For problems where only a small

18 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

Table 2. sbisim statistics. Times for Näıve Iterative Refinement, Change-Tracking
Iterative Refinement, and the Paige-Tarjan algorithm in seconds.

Problem
States Transitions

Näıve CTIR P-T
Output Input Output Input

Hanoi N = 8 1,645 6,561 4,927 19,683 1.15 0.099 0.038

Hanoi N = 9 4,926 19,683 14,769 59,049 9.37 0.467 0.184

Hanoi N = 10 14,768 59,049 44,294 177,147 79.8 2.96 0.631

Hanoi N = 11 44,293 177,147 132,868 531,441 702 18.2 2.91

5 Phils (deadlock) 1,558 7,774 6,825 34,241 0.283 0.034 0.087

6 Phils (deadlock) 7,825 46,656 41,054 246,613 3.06 0.399 1.13

7 Phils (deadlock) 39,994 279,934 246,549 1,726,257 29.6 2.99 11.2

7 Phils (butler) 1 218,751 2 1,266,616 0.354 0.597 0.852

7 Phils (asymm) 1 266,604 2 1,641,653 0.454 0.759 1.126

Q(100) 201 10,201 201 20,201 1.03 0.064 0.024

Q(300) 601 90,601 601 180,601 66.1 1.77 0.418

Q(1000) 2,001 1,002,001 2,001 2,002,001 4540 60.2 16.3

number of refinements were required, they were slightly slower due to bookkeep-
ing overhead, but not significantly so.

3 Divergence-Respecting Delay Bisimulation

While FDR has long supported strong bisimulation, it has only recently sup-
ported variants of weak bisimulation. This was because the weak bisimulation
of [2] is not compositional for most CSP models and because FDR already
had compressions (e.g., diamond and normal) that successfully eliminated τ ac-
tions. However the implementation of priority, Timed CSP, and semantic models
such as refusal testing in FDR created the need for further compressions, since
diamond is not compositional with these and normal is problematic. The first
compression introduced for this reason is dbisim (called wbisim when it was in-
troduced in FDR 2.94), which returns the maximal divergence-respecting delay
bisimulation (DRDB) of its input.

Given the transition relation −→ of a GLTS S , let us define a binary relation
=⇒ such that p =⇒ q if and only if there is a sequence p0, ..., pn (with n possibly

0) such that p = p0, q = pn , and ∀ i < n.pi
τ−→ pi+1. Let us further define a

ternary relation ↪→ with p
a
↪→ q for a ∈ Σ if and only if ∃p′.p =⇒ p′ ∧ p′ a−→ q,

and p
τ
↪→ q if and only if p =⇒ q. We will refer to this relation as the delayed

transition relation, since the visible events are delayed by 0 or more τs.

Definition 3. A relationR ⊆ N×N is a divergence-respecting delay bisimulation
of a GLTS S if and only if it satisfies all of the following requirements, where
n1, n2,m1,m2 ∈ N and x ∈ Στ :

Computing Maximal Bisimulations 19

∀n1, n2,m1 · ∀ x · n1R n2 ∧ n1
x
↪→ m1 ⇒ ∃m2 ∈ N .n2

x
↪→ m2 ∧m1Rm2

∀n1, n2,m2 · ∀ x · n1R n2 ∧ n2
x
↪→ m2 ⇒ ∃m1 ∈ N .n1

x
↪→ m1 ∧m1Rm2

∀n1, n2 · n1 R n2 ⇒ λ(n1) = λ(n2)

∀n1, n2 · n1 R n2 ⇒ n1 ⇑ ⇔ n2 ⇑

Note that the definition is very similar to that of strong bisimulation. The
differences are the use of the delayed transition relation and the added clause
about divergence, which is necessary to make the compression compositional
for CSP. However, if we precompute divergence information and record it in
each node’s label, the requirement that n1 ⇑ ⇔ n2 ⇑ will be absorbed into the
requirement that λ(n1) = λ(n2).

The FDR compression function dbisim computes the maximal DRDB on its
input GLTS and returns a GLTS with a single node DRD-bisimilar to each
equivalence class in the input. It is an important compression because it pre-
serves semantics in all CSP models, while potentially offering a significantly
higher amount of compression than strong bisimulation. FDR has included this
compression since version 2.94 as an effective compression for CSP models richer
than the failures model [16]. However the algorithm has not been described in
the literature until now.

3.1 Reduction to Strong Bisimulation

FDR2 employs an adaptation of the näıve iterative refinement discussed in 2.1
to compute a maximal DRDB. A näıve implementation can apply the algorithm
directly to an input with nodes containing divergence information, but for any
of the requested properties (initials or labels) consider the τ -closure of the node
(all nodes reachable from the given node by a sequence of τs) and allow the
behaviours of each of the nodes in the τ -closure for the given node.

For an input GLTS S , we can compute a GLTS Ŝ with a transition for each
delayed transition of the input and mark each node with divergence information
computed from S . Care is required not to introduce divergences not present in
S due to the τ self-loops introduced in Ŝ because the original node can take
an empty sequence of τs to itself. The maximal strong bisimulation of Ŝ is the
maximal DRDB of S by construction.

Complexity. A significant problem with this approach is the high worst-case
space complexity. Ŝ can have up to An2 transitions if the input has n nodes and
an alphabet of size A, even if S has o(An2) transitions. For example, a process
that performs N τs before recursing exhibits this worst-case behaviour. Since
all nodes are mutually τ -reachable, a transition system with N 2 transitions is
constructed. Figure 2 demonstrates this quadratic explosion for N = 4.

Construction of Ŝ can take a correspondingly significant amount of time.
For example, using an adaptation of the Floyd-Warshall algorithm [17] requires
O(n3) operations. The strong bisimulation step after this transformation takes
up to O(n3) operations since the number of transitions can grow to O(n2) and
dominate the n log(n) term.

20 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

τ τ

ττ

(a) The input, P(4), has only four tran-
sitions and four nodes.

(b) The output has sixteen transitions
for the same four nodes. Labels
have been omitted for clarity.

Fig. 2. The constructed LTS can be quadratically larger than the input

3.2 Dynamic Programming Approach

Rather than constructing Ŝ and keeping it in memory (which is often the limiting
factor for such computations, since main memory is limited and the hard disk
is prohibitively slow given the random nature of the accesses required by parts
of the strong bisimulation algorithm), FDR3 instead recomputes the relevant
information using the original transition system on each refinement iteration.

Algorithm. First, noting that two nodes on a τ loop are both DRD-bisimilar
and divergent, we factor the input GLTS S by the relation that identifies nodes
on a τ loop. FDR has a function built in that does this, tau loop factor. We
will not discuss it in detail here, but it uses Tarjan’s algorithm for finding strongly
connected components [18] via a single depth-first search and runs in O(n + t)
time for a system with n nodes and t transitions. In addition to eliminating
τ loops, it marks each node as divergent or stable. Now that we have ensured
there are no τ loops, the τ -transition relation can be used to topologically sort
the nodes with another depth-first search [19], so that there are no upstream
τ -transitions.

The topological sort allows us to obtain the transitions of the Ŝ described
in Section 3.1 using a dynamic programming approach. The last node in this
topological sort has no outgoing τ transitions, so its new initials and afters are
precisely those in S with the addition of itself after τ . We then proceed upstream
and for each node compute the union of its own afters (with the inclusion of a
self-transition under τ) and the afters of each of the nodes it can reach under
a single τ transition. Of course, since we are doing this in a topological order,
these nodes have been processed already, so we have computed the union of the
afters of all τ -reachable nodes from the given node.

Computing Maximal Bisimulations 21

We can apply a modified Näıve Iterative Refinement (Section 2.1) to compute

the maximal strong bisimulation of Ŝ , which is itself never constructed. The
faster CTIR or modified Paige-Tarjan algorithms require the inverted transition
relation, and we have not found a way to do this dynamically. We compute the
initials and labels for the initial approximation using dynamic programming on
the topologically sorted nodes. For each refinement, we compute the equivalence
classes of the afters using the dynamic programming approach described above,
but keeping track of equivalence classes rather than node identifiers for each
after . For the construction step, we compute the equivalence classes of the afters
as above, but without inserting the τ self-transition.

Complexity. The space complexity for this algorithm is never significantly
higher than that of the explicit reduction, and can be significantly lower. The
only additional information we have is the transient DFS stack and bookkeeping
information, and the sorted node list. The afters we compute for each node take
no more space than the exploded transition system, and will take less if any
nodes are identified – and if the user is running the algorithm there is reason to
believe that they will be. In addition, since the afters are recomputed at each
iteration, the working set for each refinement iteration can be smaller than the
peak working set required by the final one. For example, for the process P(N)
portrayed in Figure 2, the initial classification will identify all nodes, and the
first afters computation will have a single after for each node: equivalence class
0 under τ .

We still traverse the entire transition set a single time (split across nodes).
But now, for each node, we have to take the union of its afters and the ones
preceding it. Provided we keep these sorted, and use a merge sort for union, we
will have in the worst case O(Acn) operations for each node, where A is the size
of the alphabet, c is the number of classes in this iteration, and n is the number
of nodes, since Ac is the maximal number of afters a node could have and we
could have O(n) nodes following this one. This means an upper bound on the
overall worst-case runtime is O(An4).

However, in practice the time complexity is much lower. Removing τ loops
ensures that the graph is not fully connected and reduces the number of unions
for each node significantly. The number of classes c is often much less than
n. In addition, there are further optimisations that could be made to reduce
the runtime, the union operation can be made faster by keeping metadata that
allows us to avoid unioning duplicate afters sets. Section 5.2 demonstrates that
the dynamic programming approach is faster on many examples with a large
number of τs than the explicit reduction approach.

4 Divergence-Respecting Weak Bisimulation

FDR3 adds support for compression by an even weaker equivalence relation,
divergence-respecting weak bisimulation (DRWB).

Given the transition relation −→ of a GLTS S and the binary relation

=⇒≡ τ−→
∗
, let us define a ternary relation =⇒ with p

a
=⇒ q for a ∈ Σ if and

22 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

only if ∃p′, q ′.p =⇒ p′ ∧ p′ a−→ q ′ ∧ q ′ =⇒ q, and p
τ

=⇒ q if and only if p =⇒ q.
We will refer to this relation as the observed transition relation.

Definition 4. A relation R ⊆ N×N is a divergence-respecting weak bisimulation
of a GLTS S if and only if it satisfies all of the following requirements, where
n1, n2,m1,m2 ∈ N and x ∈ Στ :

∀n1, n2,m1 · ∀ x · n1R n2 ∧ n1
x

=⇒ m1 ⇒ ∃m2 ∈ N .n2
x

=⇒ m2 ∧m1Rm2

∀n1, n2,m2 · ∀ x · n1R n2 ∧ n2
x

=⇒ m2 ⇒ ∃m1 ∈ N .n1
x

=⇒ m1 ∧m1Rm2

∀n1, n2 · n1 R n2 ⇒ λ(n1) = λ(n2)
∀n1, n2 · n1 R n2 ⇒ n1 ⇑ ⇔ n2 ⇑

Note that the definition is very similar to that of divergence-respecting delay
bisimulation. The only difference is the use of the observed transition relation in
place of the delayed transition relation.

The FDR3 compression function wbisim computes the maximal DRWB on its
input GLTS and returns a GLTS with a single node DRW-bisimilar to each equiv-
alence class in the input. It is an important compression because, like sbisim

and dbisim it preserves semantics in all CSP models, while potentially offering
a higher amount of compression than dbisim. This compression is new in FDR3
and is the strongest implemented compression for CSP models richer than the
failures model.

4.1 Algorithm

We proceed in a manner similar to that described in Section 3.2. Noting that two
nodes on a τ loop are both DRW-bisimilar and divergent, we factor the input
GLTS by the relation that identifies nodes on a τ loop using tau loop factor.
We then topologically sort the nodes by the τ -transition relation.

The topological sort allows us to obtain the observed transitions using a two-
pass dynamic programming approach. One pass as in delay bisimulation is not
sufficient here since we need to determine the τ∗ afters of the visible afters of
each node, and these visible afters might not have been previously explored.
In the first pass, we compute the τ∗ afters of each node. The last node in this
topological sort has no outgoing τ transitions, so its only τ∗ after is itself. We
then proceed upstream and for each node compute the union of its own τ afters
(with the inclusion of itself) and the previously computed τ∗ afters of each of
the nodes it can reach under a single τ transition. The second pass computes
the visible observed transitions. For each node, these are the union of the τ∗

afters of its visible afters and the visible observed transitions of its τ afters . If
we proceed in topological order, the visible observed transitions of each node’s
τ afters will have already been computed by the time they are needed.

We can apply a modified Näıve Iterative Refinement to compute the maximal
strong bisimulation of the induced GLTS as in Section 3.2, removing the τ self-
transition from each node in the construction step.

Complexity. In the typical case this algorithm will require more space to
store the afters than the DRD-bisimulation algorithm since it must follow the

Computing Maximal Bisimulations 23

τ transitions after a visible event in addition to the ones tracked by the DRD-
bisimulation algorithm. However, the worst-case space complexity for this algo-
rithm is the same, since in the worst case all the nodes are mutually reachable
under both the delayed transition relation and the observed transition relation.
The time complexity is a constant factor greater since at each iteration two
passes through the topologically sorted nodes must be performed.

However, in practice we have found that wbisim is nearly as fast as dbisim,
and produces identical results on all example files other than ones we have con-
trived to prove that the two are in fact different.

5 Performance

5.1 Diamond Elimination

It is interesting to compare dbisim with alternatives available in FDR prior to
its introduction. The most widely used compression was sbisim(diamond(P)),
which we will call sbdia. In all the following examples sbdia is valid.

5.2 Timing

This section is primarily to compare the runtimes of sbdia and the algorithms
we have presented for dbisim and wbisim. We will use the same system as for
the sbisim tests, described in 2.4. Reduction to strong bisimulation has only
been implemented in FDR2 and the dynamic programming approach has only
been implemented in FDR3, so the timings are not directly comparable due to
differences in other components such as the compiler, which is single-threaded in
FDR2 and multi-threaded in FDR3. However, the examples have been designed
to heavily use dbisim, and most of the runtime will be due to dbisim rather
than these other components. We will use the same examples here as in the
sbisim tests, so section 2.4 should be consulted for more details.

Towers of Hanoi. As in the sbisim test, we have hidden all events except for
one completion event, resulting in a strongly connected network of τs, with a
single visible transition. dbisim reduces this to a system with one node and two
transitions in one iteration. However, FDR2 does not always reach this iteration –
4 GiB of RAM is not enough for an exploded transition system corresponding to
N � 8, and it uses 537 MiB for the N = 7 problem, while FDR3 uses only 700
MiB for the 729 times larger N = 13 problem and 1.9 GiB for the 2187 times
larger N = 14 problem. The situation is similar for the Dining Philosophers.

Matrix. The matrix example perhaps shows best the difference between the
two algorithms using P and Q as defined in 2.4 and R(n) = Q(n) \ a.

We have tested both Q(N) and R(N) for various values of N . The FDR2
algorithm, which explicitly constructs an LTS representing the delay transitions
performs better on Q , which doesn’t contain any τs (so the exploded transition
system is the same size as the original one), since the dynamic programming
approach performs unnecessary work at each iteration as well as at the start.

24 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

Table 3. dbisim, wbisim, and sbdia timings in seconds

Problem States Transitions Explicit dbisim Dynamic dbisim wbisim sbdia

Hanoi (7) 2,187 6,561 13 0.03 0.05 0.04

Hanoi (8) 6,561 19,683 – 0.08 0.08 0.08

Hanoi (12) 531,441 1,594,323 – 2.49 2.49 2.49

Hanoi (13) 1,594,323 4,782,969 – 6.83 6.85 6.72

Hanoi (14) 4,782,969 14,348,907 – 24.1 26.21 24.1

Q(10) 2,601 5,101 0.01 0.01 0.01 0.01

Q(100) 10,201 20,201 1.29 2.05 2.18 0.10

Q(300) 90,601 180,601 27.5 109 109 2.28

R(10) 2,601 5,101 0.02 0.01 0.01 0.01

R(100) 10,201 20,201 69.4 0.03 0.03 0.02

R(300) 90,601 180,601 – 0.38 0.39 0.11

R(1000) 1,002,001 2,002,001 – 4.63 4.89 1.35

However, the FDR3 algorithm performs vastly better on R which has a lot of τ∗-
connectivity, but relatively few τ transitions (so the FDR2 algorithm constructs
an LTS withΘ(N 4) transitions, when the input only hasΘ(N 2)). We were unable
to obtain FDR2 timings for R(300) and R(1000) due to insufficient memory
(R(100) used 2.2 GiB), while FDR3 coped with these examples very well.

Summary. For computing dbisim, the explicit reduction approach is pro-
hibitively memory-intensive for large graphs with a high degree of τ -connectivity.
The dynamic programming approach, on the other hand, is somewhat slower
for problems with few τs. Little difference was observed between wbisim and
dbisim, both in terms of runtime and output. The latter is not surprising given
that delay bisimulation lies between weak and branching bisimulation, which are
known to frequently coincide in a non divergence-respecting context.

5.3 Amount of Compression

We will examine the performance and effectiveness of dbisim and sbdia on the
bully algorithm (the FDR implementation is outlined in Section 14.4 of [8]) with
5 processors and an implementation of Lamport’s bakery algorithm (Section
18.5 of [8]) with either 3 or 4 threads and integers ranging from 0 to 7. These
are typical examples composed of a variable number of parallel processes, with
many τs and symmetry that can be reduced by either dbisim or sbdia. We will
compress these processes inductively2 (as described in Section 8.8 of [8]); that is,
add them to the composition one at a time, compressing at every step. This is
a common technique that allows a large portion of the system to be compressed
while keeping each compression’s inputs manageable. Table 5 shows that sbdia
runs much faster than dbisim and Table 4 shows that it is more effective at
reducing state counts, but can add transitions, whereas dbisim cannot by design.

2 We used inductive compression to increase the time spent on the compressions. This
is not necessarily the most efficient approach to checking these systems in FDR.

Computing Maximal Bisimulations 25

Table 4. State and transition counts with no compression, dbisim, and sbdia

Problem
States Transitions

Uncompressed dbisim sbdia Uncompressed dbisim sbdia

Bully 492,548 140,776 105,701 3,690,716 1,280,729 3,872,483

Bakery (3) 9,164,958 29,752 17,787 27,445,171 85,217 64,283

Bakery (4) – 1,439,283 716,097 – 5,327,436 3,408,420

Table 5. Timings with no compression, dbisim, and sbdia

Problem
Compilation Time (s) Exploration Time (s)

Uncompressed dbisim sbdia Uncompressed dbisim sbdia

Bully 0.06 185.46 25.17 1.76 0.36 0.88

Bakery (3) 0.37 0.57 0.36 137.52 0.93 1.07

Bakery (4) – 105.88 9.54 – 3.63 1.64

6 Conclusions

We have presented a number of GLTS compression algorithms, including novel
algorithms as well as ones that had been implemented previously, but not charac-
terised until now. Our change-tracking iterative refinement algorithm for sbisim
showed comparable performance to the Paige-Tarjan algorithm (the current state
of the art) and offered a significant improvement over the näıve iterative refine-
ment used by previous versions of FDR. We have shown that explicitly con-
structing a τ -closed transition relation for weak bisimulations, the current state
of the art, is prohibitively memory-intensive and provided an efficient alterna-
tive based on dynamic programming. Comparing dbisim and wbisim, we have
noticed that they produce identical output on all the real-world examples we
have tested, and exhibit a similar runtime.

Future Work. We plan to explore implementing DRD-bisimulation by reduc-
tion to strong bisimulation for FDR3 for those cases where this approach is more
efficient. We can provide the alternatives to the user, but we would like to find
and implement a heuristic that would allow FDR3 to automatically select of the
two algorithms the one that is likely to be faster for the given problem. We would
also like to find heuristics for deciding which compression to use, in particular
for inductively compressing large parallel compositions.

It would be interesting to come up with versions of the dynamic DRD-
bisimulation or DRW-bisimulation algorithms that use Change-Tracking Itera-
tive Refinement or The Paige-Tarjan Algorithm.3 This is challenging due to the
difficulty of inverting the delayed and observed transition relations dynamically.

Despite the multi-threaded core of FDR3, compressions are still single
threaded, though independent compressions can be run in parallel. Iterative
refinement consists of massively parallel afters computations and parallel sorts

3 Since submitting the first version of the paper, the authors have developed such an
algorithm, and intend to publish results once it is implemented.

26 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

of a number of afters lists of arbitrary size. Both phases could be sped up by a
multi-threaded implementation. The näıve parallelisation has the nice property
that the transition set can be partitioned across threads and only the node to
equivalence class map needs to be shared. This could allow for an efficient GPU
implementation.

References

1. Park, D.: Concurrency and automata on infinite sequences. Springer, Heidelberg
(1981)

2. Milner, R.: A modal characterisation of observable machine-behaviour. In: Aste-
siano, E., Böhm, C. (eds.) CAAP 1981. LNCS, vol. 112, pp. 25–34. Springer,
Heidelberg (1981)

3. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43, 555–600 (1996)

4. Phillips, I., Ulidowski, I.: Ordered SOS rules and weak bisimulation. In: Theory
and Formal Methods (1996)

5. Sangiorgi, D.: A theory of bisimulation for the π-calculus. Acta informatica 33(1),
69–97 (1996)

6. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Inc., Upper
Saddle River (1985)

7. Roscoe, A.W.: The Theory and Practice of Concurrency (1998)
8. Roscoe, A.W.: Understanding Concurrent Systems. Springer, Heidelberg (2010)
9. Roscoe, A.W.: Model-Checking CSP. In: A Classical Mind: Essays in Honour of

CAR Hoare (1994)
10. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.: FDR3—AModern

Refinement Checker for CSP (2014)
11. Roscoe, A.W., Gardiner, P., Goldsmith, M., Hulance, J., Jackson, D.M., Scatter-

good, J.: Hierarchical compression for model-checking CSP, or How to check 1020

dining philosophers for deadlock. In: Brinksma, E., Steffen, B., Cleaveland, W.R.,
Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 133–152.
Springer, Heidelberg (1995)

12. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal on
Computing 16(6), 973–989 (1987)

13. Fernandez, J.-C.: An implementation of an efficient algorithm for bisimulation
equivalence. Science of Computer Programming 13(2), 219–236 (1990)

14. Van Glabbeek, R., Weijland, W.: Branching time and abstraction in bisimulation
semantics: extended abstract. Rep./Centrum voor wiskunde en informatica. Com-
puter science; CS-R8911 (1989)

15. Groote, J., Vaandrager, F.: An efficient algorithm for branching bisimulation and
stuttering equivalence. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp.
626–638. Springer, Heidelberg (1990)

16. Armstrong, P., Goldsmith, M., Lowe, G., Ouaknine, J., Palikareva, H., Roscoe,
A.W., Worrell, J.: Recent developments in FDR. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 699–704. Springer, Heidelberg (2012)

17. Floyd, R.W.: Algorithm 97: Shortest path. Commun. ACM 5, 345 (1962)
18. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM Journal on

Computing 1(2), 146–160 (1972)
19. Tarjan, R.E.: Edge-disjoint spanning trees and depth-first search. Acta Informat-

ica 6(2), 171–185 (1976)

Improving the Model Checking of Strategies

under Partial Observability
and Fairness Constraints

Simon Busard1,�, Charles Pecheur1, Hongyang Qu2, and Franco Raimondi3

1 ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
{simon.busard,charles.pecheur}@uclouvain.be

2 Dept. of Automatic Control and Systems Engineering, University of Sheffield,
Sheffield, United Kingdom
h.qu@sheffield.ac.uk

3 Dept. of Computer Science, Middlesex University, London, United Kingdom
f.raimondi@mdx.ac.uk

Abstract. Reasoning about strategies has been a concern for several
years, and many extensions of Alternating-time Temporal Logic have
been proposed. One extension, ATLKirF , allows the user to reason about
the strategies of the agents of a system under partial observability and
unconditional fairness constraints. However, the existing model-checking
algorithm for ATLKirF is inefficient when the user is only interested in
the satisfaction of a formula in a small subset of states, such as the set of
initial states of the system. We propose to generate fewer strategies by
only focusing on partial strategies reachable from this subset of states,
reducing the time needed to perform the verification. We also describe
several practical improvements to further reduce the verification time
and present experiments showing the practical impact of the approach.

1 Introduction

Logics to reason about the strategies of a group of agents have been studied for
years and they have a number of practical applications, from security to synthe-
sis of plans to achieve a certain goal. Starting with Alternating-time Temporal
Logic (ATL), reasoning about all strategies of the agents [1], many extensions
have been developed. For example, ATLir restricts the strategies of interest
to those that the players can actually play, based on their local knowledge of
the system [2]. ALTKirF [3] is another extension that combines strategies under
partial observability and unconditional fairness constraints, with branching-time
and epistemic operators. This logic can be used, for example, to verify strate-
gic properties of multi-agent programs in the presence of a fair scheduler [4].
However, the basic algorithm proposed in [3] is inefficient when the user is in-
terested in the existence of a winning strategy in a small subset of the states of
the system, such as the initial states, instead of all the states of the system.

� This work is supported by the European Fund for Regional Development and by the
Walloon Region.

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 27–42, 2014.
c© Springer International Publishing Switzerland 2014

28 S. Busard et al.

The objective of this paper is to improve the practical efficiency of the algo-
rithm presented in [3] by checking fewer strategies. Let us consider the following
simple motivational example of a 3-card poker, inspired by the card game of [5]:
the system is a card game played between two agents, a player and a dealer.
The game is composed of three cards: the ace A, the king K and the queen Q;
the ace wins over the two others and the king wins over the queen. The game is
played in three steps: 1) the dealer gives a card to the player; he also takes one
for himself and keeps it secret; 2) the player can abandon the game or continue;
3) the player can choose to keep his card or to swap it with the third one. If the
third step is reached—the player did not abandon after the first step—the win-
ner is the one with the winning card, and the game restarts from the beginning.
The graph of the system is illustrated in Figure 1.

−,−

Q,K A,K A,Q K,Q K,A Q,A

Q,K A,K A,Q K,Q K,A Q,A

Q,K A,K A,Q K,Q K,A Q,A

−,−

Fig. 1. The graph of the card game. Circles are states, (K,A means the player has K,
the dealer has A). Arrows are transitions (actions of the agents are easily inferred).
Waved edges link together the states that are indistinguishable for the player.

We are interested in whether the player has a strategy to eventually win the
game before the dealer. Intuitively, to consider all strategies of the player in the
initial state, we have to consider his choices at the second step—abandoning or
continuing the game—and, if he chooses to continue the game, his choices at the
third step—keeping or swapping his card. But if he chooses to abandon when
he does not receive the ace, we do not need to consider his choice at third step
when his card is the king or the queen. This amounts to considering 27 strategies.
Figure 1 shows such a strategy in bold and the states in which we do not need
to consider the player’s choices with dashed borders.

Improving the Model Checking of Strategies 29

On the other hand, the algorithm presented in [3] blindly makes a choice for
all possible sets of indistinguishable states of the system. In the present case,
it considers whether the player keeps or swaps his king (or queen) at the third
step, even if the considered strategy is to abandon the game at step 2; that is,
the algorithm enumerates the strategies in the dashed states of Figure 1, too,
considering 64 strategies. The contributions of this paper are:

– an algorithm to generate only strategies that are relevant for given states;
– an new model-checking algorithm for ATLKirF based on these strategies;
– further practical improvements of this algorithm—for example, stopping

when a winning strategy has been found instead of checking them all;
– an implementation of these algorithms (to the best of our knowledge, this is

the only implementation currently available);
– experiments showing the benefits of the approach.

The paper is organized as follows: Section 2 briefly describes ATLKirF and
the original model-checking algorithm; Section 3 proposes an algorithm to gen-
erate fewer strategies and Section 4 presents the new model-checking algorithm;
Section 5 describes further improvements to the approach, and Section 6 presents
experiments made on the implementation of the approach. The proof of theorems
are omitted due to space constraints.

2 Background

This section presents the syntax and the semantics of ATLKirF . This logic has
been presented in [3], where it is called ATLKF

po. This section also describes
the original model-checking algorithm for ATLKirF proposed in [3] and gives
an intuition of how to use partial strategies—that is, strategies that give actions
for a subset of the state space—to improve the algorithm.

Syntax and Semantics. Formulas of ATLKirF are built from a set of atomic
propositions AP , standard Boolean connectives, CTL operators [6], epistemic
operators [7] and strategic operators [1]. They follow this grammar:

φ ::= true | p | ¬φ | φ ∨ φ | Eψ | 〈Γ 〉ψ | Kiφ | EΓφ | DΓφ | CΓφ

ψ ::= Xφ | φ U φ | φ W φ

where p ∈ AP , Γ is a subset of a set of agents Ag, i is an agent of Ag.

Models and Notations.ATLKirF formulas are interpreted over states of mod-
els M = 〈Ag, S,Act, T, I, {∼i}i∈Ag, V, FC〉 where (1) Ag is a set of n agents;
(2) S is a set of states; (3) Act ⊆ Act1 × ...× Actn is a set of joint actions (one
action for each agent); (4) T ⊆ S×Act×S is a transition relation giving at least

one successor for each state (we write s
a−→ s′ for (s, a, s′) ∈ T); (5) I ⊆ S is the

set of initial states; (6) {∼i}i∈Ag is a set of equivalence relations on S × S, one
for each agent (we write ∼Γ for

⋂
i∈Γ ∼i, the distributed knowledge relation of

30 S. Busard et al.

agents in Γ ⊆ Ag); (7) V : S → 2AP is a function labeling the states of M with
atomic propositions of AP ; (8) FC ⊆ 2S is a set of fairness constraints.

The function img : S × Act → 2S returning the set of states accessible from
a given state through a given action is defined as img(s, a) = {s′ ∈ S|s a−→ s′}.
Furthermore, the set of states that are indistinguishable for Γ from the states
of Z is defined as [Z]Γ = {s′|∃s ∈ Z s.t. s′ ∼Γ s}.

A partially joint action is an element aΓ of ActΓ =
∏

i∈Γ Acti; we say that
action a ∈ Act completes aΓ , written aΓ � a, if the actions of agents of Γ in
aΓ correspond to the actions of Γ in a. The function enabled : S × Ag → 2Act

returning the actions a group of agents can perform in a state is defined as

enabled(s, Γ) = {aΓ ∈ ActΓ |∃s′ ∈ S, a ∈ Act s.t. aΓ � a ∧ s
a−→ s′}. (1)

Two additional constraints are set on the models:

∀s, s′ ∈ S, s ∼i s
′ =⇒ enabled(s, i) = enabled(s′, i), (2)

∀s ∈ S, enabled(s, Ag) =
∏
i∈Ag

enabled(s, i). (3)

They ensure that an agent only needs its own information about the current
state to make a choice (2), and that nobody can prevent him from choosing an
enabled action (3).

A path is a sequence π = s0
a1−→ s1

a2−→ ... such that (si, ai+1, si+1) ∈ T for all
i ≥ 0. We write π(d) for sd. A path π is fair according to FC if for each fairness
constraint fc ∈ FC, there exist infinitely many d such that π(d) ∈ fc.

A memoryless strategy for Γ is a function fΓ : S → ActΓ such that ∀s, fΓ (s) ∈
enabled(s, Γ), specifying, for each state of the model, which action group Γ has to
choose in each state. A strategy fΓ is uniform iff ∀s, s′ ∈ S, s ∼Γ s′ =⇒ fΓ (s) =
fΓ (s

′). In the sequel, we only speak about memoryless uniform strategies, and
simply call them strategies. The outcomes out(s, fΓ) of a strategy fΓ from state
s is the set of paths reached by fΓ from s and is defined as

out(s,fΓ)=
{
π=s0

a1−→s1...
∣∣∣s0 = s ∧
∀d ≥ 0, sd+1 ∈ img(sd, ad+1)∧fΓ (sd)�ad+1

}
. (4)

Finally, a move of Γ is a state/action pair, that is, an element of S × ActΓ .
A strategy fΓ can be represented as a set of moves as

{〈s, aΓ 〉|s ∈ dom(fΓ) ∧ aΓ = fΓ (s)}, (5)

that is, the set of moves 〈s, aΓ 〉 such that s is a state for which fΓ is defined and
aΓ is the action that fΓ chooses.

Semantics. The semantics of ATLKirF is defined over states of a model M as
the relation M, s |= φ, where s is a state of M and φ is a formula of the logic.
This relation is defined in the standard way for atomic propositions, Boolean
connectors, branching-time and epistemic operators. The semantics of strategic
operators is defined as

M, s |= 〈Γ 〉ψ ⇐⇒ there exists a strategy fΓ s.t.
∀s′ ∼Γ s, ∀ fair paths π ∈ out(s′, fΓ),M, π |= ψ,

(6)

Improving the Model Checking of Strategies 31

where the relation M,π |= ψ is defined as

M,π |= Xφ ⇐⇒ M,π(1) |= φ; (7)

M,π |= φ1Uφ2 ⇐⇒ ∃d ≥ 0 s.t. M,π(d) |= φ2 ∧ ∀e < d,M, π(e) |= φ1; (8)

M,π |= φ1Wφ2 ⇐⇒ ∀d ≥ 0,M, π(d) |= φ1 ∨ ∃e ≤ d s.t. M,π(e) |= φ2. (9)

Note that the remaining strategic operators can be expressed in terms of the
previous three operators: [Γ]ψ = ¬〈Γ 〉¬ψ, Gφ = φ W false and Fφ = true U φ.

Due to space constraints, we only focus on strategic operators in this paper,
but our approach can be employed for the remaining operators (our implemen-
tation has all the operators).

Standard Model-Checking Algorithm. The original algorithm consists in
enumerating all the strategies of the model and accumulating, for each of them,
the set of states for which the strategy is winning. Algorithm 1 is the original
algorithm for evaluating the set of states satisfying a strategic operator; it uses
Algorithm 2 for computing the set of strategies of the model as sets of moves
and the function evalIrF (〈Γ 〉ψ, fΓ) for computing the set of states for which
strategy fΓ is winning on ψ for Γ . The function evalIrF (〈Γ 〉ψ, fΓ) relies on the
function Pre〈Γ 〉(Z, fΓ), defined as, given fΓ ⊆ S ×ActΓ and Z ⊆ S,

Pre〈Γ 〉(Z, fΓ) = {s|∀a, fΓ (s) � a =⇒ img(s, a) ⊆ Z}. (10)

Pre〈Γ 〉(Z, fΓ) computes the set of states for which Γ can force to reach states
of Z in one step, by using the actions provided by fΓ . evalIrF is defined using
fix-point operations as

evalIrF (〈Γ 〉Xφ, fΓ) = Pre〈Γ 〉
(
evalirF (φ) ∪NFair〈Γ 〉(fΓ), fΓ

)
(11)

evalIrF (〈Γ 〉φ1Uφ2, fΓ) =

μZ.Φ ∩
(
Φ2 ∪

⋃
fc∈FC

Pre〈Γ 〉

(
νY.

Φ ∩ (Z ∪ fc) ∩(
Φ2 ∪ Pre〈Γ 〉(Y, fΓ)

) , fΓ)) (12)

evalIrF (〈Γ 〉φ1Wφ2, fΓ) = νZ.Φ ∩
(
Φ2 ∪ Pre〈Γ 〉(Z, fΓ)

)
(13)

where

fc = S\fc, (14)

Φ = evalirF (φ1) ∪ evalirF (φ2) ∪NFair〈Γ 〉(fΓ), (15)

Φ2 = evalirF (φ2), (16)

NFair〈Γ 〉(fΓ) = μZ.
⋃

fc∈FC

Pre〈Γ 〉(νY.(Z ∪ fc) ∩ Pre〈Γ 〉(Y, fΓ), fΓ). (17)

Given a set of moves SA, Algorithm 2 produces all the strategies only com-
posed of moves of SA. When Algorithm 1 uses Split(S×ActΓ) at Line 2, it gets
all the strategies of the whole model.

32 S. Busard et al.

Algorithm 1. evalirF (〈Γ 〉ψ)
Data: Γ a set of agents of a model M , ψ an ATLKirF path formula.
Result: The set of states of M satisfying 〈Γ 〉ψ.
sat = {}

2 for fΓ ∈ Split(S × ActΓ) do
winning = evalIrF (〈Γ 〉ψ, fΓ)
sat = sat ∪ {s ∈ winning|∀s′ ∼Γ s, s′ ∈ winning}

return sat

The goal of evalirF (〈Γ 〉ψ) is to compute the set of states of the system that
satisfy 〈Γ 〉ψ, that is, the set of states for which there exists a winning strategy.
For this, the algorithm has to produce and check all strategies of the entire
model. But when we only need to know if some states satisfy the formula—for
example, when we want to know if the initial states of the model satisfy 〈Γ 〉ψ—
we can improve this algorithm by only checking the partial strategies reachable
from these states. We say that a strategy is partial if it provides moves for a
subset of the states of the model.

Algorithm 2. Split(SA)

Data: Γ a given (implicit) subset of agents, SA ⊆ S × ActΓ .
Result: The set of all the strategies fΓ composed only of moves of SA.

conflicting = {〈s, aΓ 〉 ∈ SA|∃〈s′, a′
Γ 〉 ∈ SA s.t. s′ ∼Γ s ∧ aΓ �= a′

Γ }
if conflicting = ∅ then return {SA}

else
〈s, aΓ 〉 = pick one element in conflicting
equivalent = {〈s′, a′

Γ 〉 ∈ SA|s′ ∼Γ s}
actions = {a′

Γ ∈ ActΓ |∃〈s, a′
Γ 〉 ∈ equivalent}

substrats = Split(SA\equivalent)
strats = {}
for aΓ ∈ actions do

equivStrat = {〈s′, a′
Γ 〉 ∈ equivalent|a′

Γ = aΓ }
strats = strats ∪ {equivStrat ∪ substrat|substrat ∈ substrats}

return strats

If a state in not reachable from the initial states through a given strategy, then
it is useless to consider all the possible choices in this state, since no particular
choice will modify the fact that the strategy is winning or not in the initial
states. This is illustrated with the example in Figure 2. There are eight possible
strategies, choosing one action per state; but if a strategy chooses action (1) in
s0, then the choice made in s2 is irrelevant regarding the fact that the strategy
is winning or not for s0 because s2 is not reachable from s0 in this strategy. In
fact, there are only four (partial) strategies to check to know if the initial state
satisfies a given 〈Γ 〉ψ formula:

Improving the Model Checking of Strategies 33

1. 〈s0, (1)〉, 〈s1, (1)〉, 〈s3, (1)〉;
2. 〈s0, (1)〉, 〈s1, (2)〉, 〈s4, (1)〉;

3. 〈s0, (2)〉, 〈s2, (1)〉, 〈s5, (1)〉;
4. 〈s0, (2)〉, 〈s2, (2)〉, 〈s6, (1)〉.

These partial strategies cover all the ways the agent can act from the initial state
and are sufficient to know whether the initial state satisfies a strategic formula.

s0

s1 s2

s3 s4 s5 s6

(1) (2)

(1) (2) (1) (2)

(1) (1) (1) (1)

Fig. 2. A model where a strategy from the initial state s0 makes a part of the model
unreachable

3 Generating Partial Strategies

This section presents the notions of partial strategies and maximal partial strate-
gies, and shows how to generate them. A partial strategy is a strategy that is
defined for a subset of the states of the model.

Given a set of states S′ ⊆ S, a partial strategy that contains a move for
all s ∈ S′, and that contains a move for all states reachable from the moves
it defines is called maximal. More formally, a partial strategy fΓ is a maximal
partial strategy reachable from S′ iff

S′⊆dom(fΓ) ∧ ∀〈s, aΓ 〉∈fΓ , ∀a∈Act, aΓ �a =⇒ img(s, a)⊆dom(fΓ). (18)

Such a strategy is uniform iff ∀s, s′ ∈ dom(fΓ), s ∼Γ s′ =⇒ fΓ (s) = fΓ (s
′).

The main advantage of maximal partial strategies reachable from S′ is that
they can be used to check if there is a winning strategy for the states of S′.

Theorem 1. Given a model M = 〈Ag, S,Act, T, I, {∼i}i∈Ag, V, FC〉, a set of
states S′ ⊆ S and a group of agents Γ ⊆ Ag, we have that for all s ∈ S′,
M, s |= 〈Γ 〉ψ iff there exists a uniform maximal partial strategy fΓ reachable from
[S′]Γ such that for all s′ ∈ [S′]Γ , for all fair paths π of out(s′, fΓ),M, π |= ψ.

Proof (Proof sketch). We can proof this theorem by showing that there exists
a winning uniform strategy in s′ ∈ S′ iff there exists a winning uniform max-
imal partial strategy reachable from [S′]Γ . Indeed, a strategy can be reduced
to a partial one by removing unreachable moves, and a partial strategy can be
augmented with moves in unreachable states, producing a complete strategy.

By Theorem 1, it is sufficient to check all maximal partial strategies reachable
from [S′]Γ to know whether there exists a winning strategy for the states of S′.
Thus, if we are interested in the satisfaction of a strategic operator for only
a subset of states S′, it is sufficient to check the maximal partial strategies
reachable from [S′]Γ . Before focusing on such a model-checking algorithm, we
propose an algorithm to produce these maximal partial strategies.

Algorithm 3 can be used to generate the set of maximal partial strategies
reachable from a set of states. It uses functions Post, Compatible and Split.

34 S. Busard et al.

Post(Z, fΓ) is a version of the post-image computation modified to take actions
present in fΓ and states of Z into account. More formally, given Z ⊆ S and a
strategy fΓ ⊆ S ×ActΓ ,

Post(Z, fΓ) =
{
s
∣∣∣∃〈s′, a′Γ 〉 ∈ fΓ , a

′ ∈ Act s.t.
s′ ∈ Z ∧ a′Γ � a′ ∧ s ∈ img(s′, a′)

}
. (19)

is the set of states reachable through a move of fΓ from states of Z. Compatible
is defined by

Compatible(Z,fΓ)=
{
〈s, aΓ 〉

∣∣∣ s ∈ Z ∧ aΓ ∈ enabled(s, Γ) ∧
� ∃〈s′, a′Γ 〉∈fΓ s.t. s ∼Γ s′∧aΓ �=a′Γ

}
. (20)

It returns the set of moves m, composed of states of Z and actions enabled in
these states, such that m are not conflicting with any move of fΓ . We say that
two moves 〈s, aΓ 〉 and 〈s′, a′Γ 〉 are conflicting iff s ∼Γ s′ and aΓ �= a′Γ , that is, if
they propose different actions for states that are indistinguishable by Γ .

Given a partial strategy represented by a set of moves, Algorithm 3 returns
the set of maximal partial strategies extending the given one. A partial strategy
f ′
Γ extends another partial strategy fΓ if the choices made in f ′

Γ match the
choices in fΓ , that is, if fΓ ⊆ f ′

Γ .

Algorithm 3. ReachSplitΓ (fΓ)

Data: Γ a subset of agents, fΓ ⊆ S × ActΓ a partial strategy.
Result: The set of maximal strategies extending fΓ .

1 new = Post(dom(fΓ), strat)\(dom(fΓ))
if new = ∅ then return {fΓ }

else
5 compatible = Compatible(new, fΓ)

newstrats = Split(compatible)
strats = {}
for f ′

Γ ∈ newstrats do strats = strats ∪ReachSplitΓ (fΓ ∪ f ′
Γ)

return strats

Algorithm 3 first gets the states reachable in one step from fΓ that are not yet
included in fΓ (Line 1). These states are the states reachable in one step from
fΓ for which an action is not already chosen. If there are no such states, fΓ is
already maximal since a choice has already been made for each reachable state.
Otherwise, we have to make some choices for new states. First, some uniform
choices may have already been made through choices of fΓ : if a new state s is
indistinguishable from a state s′ in fΓ , the choice in s must follow the one in s′.
Thus, we can remove from the choices possible in states of new all the choices
that are conflicting with the ones in fΓ (Line 5). After that, compatible can
still contain conflicts, which are resolved by splitting compatible into strategies
with Split. These strategies are compatible with fΓ because all the potentially
conflicting choices are removed at Line 5. Thus, any splitting f ′

Γ of compatible

Improving the Model Checking of Strategies 35

combined with fΓ is a partial strategy extending fΓ and we can recursively call
ReachSplit until all reachable states are encountered.

The correctness of Algorithm 3 is given by the following theorem.

Theorem 2. Given a subset Γ of the agents of a model M = 〈Ag, S,Act, T, I,
{∼i}i∈Ag, V, FC〉 and a partial strategy represented by a set of moves fΓ , the
result of ReachSplitΓ (fΓ) is the set of maximal strategies extending fΓ .

Finally, we can compute the set of maximal partial strategies reachable from
S′ by using ReachSplit: let PartialStrats be the function defined as

PartialStrats(S′) =
⋃
{ReachSplitΓ (st)|st ∈ Split(MovesΓ (S

′))}, (21)

where MovesΓ (Z) = {〈s, aΓ 〉|s ∈ Z ∧ aΓ ∈ enabled(s, Γ)} is the set of moves
that Γ can play from states of Z. PartialStrats(S′) computes the set of maximal
partial strategies reachable from S′.

Theorem 3. Given a model M = 〈Ag, S,Act, T, I, {∼i}i∈Ag, V, FC〉, a subset
Γ of the agents of M and a subset S′ of states of M , PartialStrats(S′) is the
set of maximal partial strategies reachable from S′.

4 Model Checking ATLKirF with Partial Strategies

The number of partial strategies to consider to determine whether a group of
agents Γ has a winning strategy in a subset of states S′ can be substantially
smaller than the overall number of strategies of the model (see Section 2). We can
thus improve the model-checking algorithm for ATLKirF presented in Section 2
by using partial strategies. The idea is to only get the satisfaction of the formula
in the states that matter, instead of getting it in all states of the system. For
example, when checking whether a model satisfies 〈Γ 〉Fp, we only need to know
whether all the states indistinguishable from the initial states satisfy the formula,
instead of knowing all states satisfying the formula. On the other hand, when
checking AG〈Γ 〉Fp, we need to know whether all reachable states satisfy 〈Γ 〉Fp
to say whether the formula is satisfied or not by all initial states.

Our algorithm keeps track of the set of states for which the satisfaction of the
formula has to be known. Whenever an operator is evaluated, the algorithm is
recursively called on the set of states in which the satisfaction of the top-level
subformulas have to be known before evaluating the current operator. Given the
initial states, the algorithm returns all the initial states satisfying the formula.

Given a set of states Z and a formula φ, Algorithm 4 returns the states of
Z that satisfy φ. It works recursively on the structure of φ, and evaluates, on
each step, the set of states in which it is necessary to know the satisfaction of
the top-level subformulas. Due to space constraints, only the cases for strategic
operators are presented. In these cases, the algorithm goes through all partial
strategies reachable from Z and their indistinguishable states, and needs to know
the satisfaction for the top-level subformulas in the states reachable by each
partial strategy before computing the states of Z satisfying the main formula.

36 S. Busard et al.

The goal of Algorithm 4 is to evaluate the satisfaction of the formula in as
few states as possible. When dealing with strategic operators, the generation of
partial strategies allows the algorithm to avoid a potentially large number of
strategies. Note that, while it computes the partial strategies through a forward
traversal of the model (see Section 3), it performs the evaluation of the states
satisfying a given strategic operator with a backward traversal of the strategy.

Algorithm 4. evalPartial
irF (Z, 〈Γ 〉ψ)

Data: Z ⊆ S a subset of states, 〈Γ 〉ψ an ATLKirF formula.
Result: The set of states of Z satisfying 〈Γ 〉ψ.
sat = {}

2 for fΓ ∈ PartialStrats([Z]Γ) do
3 case ψ = Xφ′

Φ′ = evalPartial
irF (Post([Z]Γ , fΓ), φ

′)
5 win = Pre〈Γ 〉(Φ

′ ∪NFair〈Γ 〉(fΓ), fΓ)

case ψ = φ1Uφ2

Φ1 = evalPartial
irF (dom(fΓ), φ1); Φ2 = evalPartial

irF (dom(fΓ), φ2)
8 win =

μX.(Φ1 ∪ Φ2 ∪NFair〈Γ 〉(fΓ)) ∩(
Φ2 ∪

⋃
fc∈FC

Pre〈Γ 〉
(
νY.

(Φ1 ∪ Φ2 ∪NFair〈Γ 〉(fΓ))
∩ (X ∪ fc) ∩

(
Φ2 ∪ Pre〈Γ 〉(Y, fΓ)

) , fΓ
))

case ψ = φ1Wφ2

Φ1 = evalPartial
irF (dom(fΓ), φ1); Φ2 = evalPartial

irF (dom(fΓ), φ2)
11 win = νX.(Φ1 ∪ Φ2 ∪NFair〈Γ 〉(fΓ)) ∩

(
Φ2 ∪ Pre〈Γ 〉(X, fΓ)

)
sat = sat ∪ {s ∈ win ∩ Z|∀s′ ∼Γ s, s′ ∈ win}

return sat

Finally, to get the set of initial states satisfying an ATLKirF formula φ, we
can simply use Algorithm 4 on these initial states. The following theorem proves
the correctness of Algorithm 4:

Theorem 4. Given a model M = 〈Ag, S,Act, T, I, {∼i}i∈Ag, V, FC〉, a set of
states Z ⊆ S and an ATLKirF formula 〈Γ 〉ψ, evalPartial

irF (Z, 〈Γ 〉ψ) is the subset
of states of Z that satisfy 〈Γ 〉ψ.

The strategies considered by ATLKirF are slightly different from the strate-
gies of ATLir [2]. ATLKirF considers the agents of Γ under supervision of a
virtual supervisor, as in the case of ATLD

iR, a variant of ATLir using distributed
knowledge, perfect recall and partial observability [8]. On the other hand, ATLir

considers that each agent acts independently and does not share his knowledge
with the other agents of Γ . Nevertheless, the approach of this paper can be
easily adapted to fit ATLir strategies: the notion of conflicting moves needs to
be changed to take into account the knowledge of each agent individually in-
stead of as a group, and the Compatible and Split algorithms must be adapted
accordingly.

Improving the Model Checking of Strategies 37

5 Further Optimisations

Several improvements can be added to Algorithm 4 to make it more efficient in
common cases.

Checking Fewer Strategies by Early Termination. When dealing with a
strategic operator 〈Γ 〉ψ, evalPartial

irF goes through all partial strategies generated
from [Z]Γ and accumulates in sat the subset of Z for which the current strategy
is winning. The for loop at Line 2 could be terminated as soon as all states of Z
are winning, that is, when sat = Z. In this case, we know that we found winning
partial strategies for all states of Z and it is not necessary to check the remaining
strategies. But if a state of Z does not satisfy 〈Γ 〉ψ, all partial strategies must
be checked. In the sequel, we call this improvement full early termination.

Following this idea, we could reconsider smaller strategies when sat grows.
Indeed, when checking the strategies computed by PartialStrats([Z]Γ), we could
recompute the smaller strategies reachable from [Z]Γ \sat when states are added
to sat, ignoring the part of these strategies taking sat states into account. This
can be done by recomputing a new set of strategies whenever sat grows—we call
this approach partial early termination.

We can also perform fewer recomputations of the strategies by recomputing
them when the number of states of Z that are not in sat decreases under a certain
threshold; the value given in the following is the threshold under which the part
of the remaining states must be to trigger the recomputation of strategies. We
call this approach threshold-based early termination.

The main drawback of the two last approaches is that parts of some strategies
will be checked again, while we know they are not winning for the remaining
states: indeed, when recomputing partial strategies for the remaining states,
some of the new partial strategies will be parts of a partial strategy that has
already been checked, and thus they cannot be winning for the remaining states.

Another approach to tackle this drawback would be to avoid recomputing the
strategies and simply reduce the remaining ones to the moves reachable from
the remaining states. In this case, we would need a mechanism to filter out the
reduced strategies that are met multiple times. The current implementation (see
next Section) only uses the approach of recomputing strategies.

Avoiding Recomputation of Subformulas with Caching.When the model-
checking algorithm deals with a strategic operator 〈Γ 〉ψ, it enumerates all partial
strategies reachable from [Z]Γ and, for each of them, first computes the set of
states of the strategy satisfying the top-level subformula(s) of ψ. This can per-
form a lot of redundant work since several strategies can share the same subpart
of the model. We can improve this by accumulating, for each subformula of ψ,
their satisfaction value in encountered states.

Note that there is a difference between this approach and the standard caching
techniques for BDD-based CTL model checking. BDD-based CTL model check-
ing keeps track of BDDs representing states satisfying a property; these BDDs
do not change for different occurrences of a subformula since they represent all
the states satisfying it. This mechanism can not be used here because subsets of

38 S. Busard et al.

states of interest change for different strategies, thus BDDs change, and these
new BDDs must be completely recomputed. The caching mechanism we propose
is to only recompute satisfaction for new states, and keep the results in two
accumulated BDDs, avoiding to recompute strategies for states for which it has
already been done.

Pre-filtering Out Losing Moves. A move is losing if it does not belong to a
winning strategy. Experiments showed that pre-filtering out moves that are not
winning under full observability can decrease the time needed to check a strategic
operator [3]. We can include this improvement in evalPartial

irF by pre-filtering the
state space reachable from [Z]Γ before building the partial strategies, and only
consider the remaining submodel. This can lead to ignoring a large part of the
system if this part cannot be winning, reducing the number of choices to make
and the number of strategies to consider.

6 Experiments

The algorithm generating partial strategies shown in Section 3, the model-
checking algorithm presented in Section 4 and the improvements discussed in
Section 5 have been implemented with PyNuSMV, a Python framework for pro-
totyping and experimenting with BDD-based model-checking algorithms based
on NuSMV [9]. The implementation has been tested on two different models and
several ATLKirF formulas.

The first model is another variant of the card game from [5]. The game is
composed of two players—the player and the dealer—and n cards. The n cards
c1, ..., cn are such that ci wins over cj if i > j or i = 1 and j = n. The game is
played in four steps: 1) the dealer gives one card to himself; 2) he gives one card
to the player; 3) the player can choose to keep his card or to ask for another,
but cannot get back a card he discarded before; 4) the game stops when the
player chooses to keep his card or when the stack of cards is empty. The winner
of the game, known during the last step, is the one with the winning card. The
game can then be repeated infinitely many times and the dealer is fair, that is,
if the game is repeated infinitely many times, the dealer gives the cards in each
possible order infinitely many times.

The second model is inspired from the ancient tale of Tian Ji. It is composed
of two agents: Tian Ji and the king. Both agents have n horses h1, ..., hn and
horse hi wins over hj if i > j; if i = j, the winner is chosen non-deterministically.
Their game is as follows: Tian Ji and the king go for n races, with n different
horses. They can choose their own horses in the order they want, but do not
know the horse the opponent chose. The winner is the one with the most won
races. The game can then be repeated infinitely many times and the king is fair,
that is, if the game is repeated infinitely many times, the king will choose his
horses in each possible order infinitely many times.

Several ATLKirF formulas have been checked on each model to assess the
impact of partial strategies and the improvements presented in Section 5. These
formulas are listed in Table 1. They use different atomic propositions; for exam-
ple, playerWins is true when the game is done (at the fourth step) and the card

Improving the Model Checking of Strategies 39

of the player wins over the dealer’s card; playerHasF irst is true when the player
has card c1. Similarly, tianjiWins is true when the game is done (all horses have
been used) and Tian Ji won more races than the king; tianjiLostUpToNow is
true when Tian Ji has lost all races since the beginning of the game.

Table 1. Formulas checked over the models of the card game and Tian Ji’s race

Card game formulas Tian Ji’s race formulas
〈player〉F playerWins 〈tianji〉F tianjiWins
〈player〉F (playerWins ∧ playerHasFirst)
〈player〉G 〈player〉F playerWins 〈tianji〉G 〈tianji〉F tianjiWins
〈player〉F 〈player〉[¬dealerWins U playerWins] 〈tianji〉F 〈tianji〉[¬kingWins U tianjiWins]
AF 〈player〉X playerHasFirst 〈tianji〉X tianjiLostUpToNow
AG(FirstStep =⇒ ¬〈player〉X playerWins) 〈tianji〉G 〈tianji〉X tianjiWon < 2Races

These formulas are intended to test the proposed algorithms under different
circumstances. For example, the formula 〈tianji〉F tianjiWins must only be
checked over the initial states. In this case, partial strategies should help since
the number of strategies to check substantially decreases. On the other hand, for
the formula 〈tianji〉G 〈tianji〉F tianjiWins, the 〈tianji〉F tianjiWins subfor-
mula must be evaluated on all states, and partial strategies do not help. Other
formulas, like AF 〈player〉X playerHasF irst, are used to test the improvements
presented in Section 5. In this case, the 〈player〉X playerHasF irst subformula
is true in a significantly small subset of the states, thus pre-filtering out losing
moves before generating partial strategies should help.

A first set of tests have been performed to assess the efficiency of the model-
checking algorithm of Section 4 compared to the original algorithm presented
in Section 2. For each formula of Table 1, the size of the model to check has
been increased and both model-checking algorithms have been run with a limit
of 15 minutes. Some of the results are shown in Table 2. They show that using
partial strategies can improve the efficiency of the process: for example, for the
specification 〈player〉F playerWins, and even more for 〈tianji〉F tianjiWins,
the time needed for the verification is significantly decreased. This is due to the
fact that in these cases, we are interested in the existence of winning strategies
in the initial states, and thus the number of strategies to consider is smaller. On
the other hand, for the specification AF 〈player〉X playerHasF irst, we need to
know the satisfaction of the inner strategic operator in all reachable states, and
thus the verification does not run faster.

A second set of tests have been performed to assess the impact of the proposed
improvements. Each formula of Table 1 has been checked with partial strategies
on models of increasing sizes, with all combinations of improvements of Section 5
and with the same limit of 15 minutes. This resulted in a huge set of time results
that have been analyzed with box plots. More precisely, for each formula, each
improvement type and each size of the model, a box plot has been drawn showing
the time results for each possible value of the improvement. For example, Figure 3
shows the box plots for times to check the formula 〈tianji〉F tianjiWins for 3
to 5 horses, grouped by value of early termination. The box plots show, for a
given parameter, the time needed for model checking the property when the
parameter takes a particular value. This means that, in a box plot, a single box

40 S. Busard et al.

Table 2. Execution times of the original algorithm and the algorithm based on partial
strategies, for some formulas checked over the card game and the problem of Tian Ji

Formula Size # States Original algorithm Partial strategies
〈player〉F playerWins 3 28 0m2.527s 0m2.603s

4 101 0m8.035s 0m8.205s
5 326 0m34.937s 0m30.885s
6 967 2m14.461s 1m39.931s
7 2696 > 15m 9m46.126s

〈tianji〉F tianjiWins 3 61 0m5.388s 0m2.489s
4 409 > 15m 0m25.172s

AF 〈player〉X playerHasFirst 3 28 0m1.506s 0m1.444s
6 967 0m39.285s 0m38.535s
8 7177 11m37.270s 12m9.149s
9 18442 > 15m > 15m

represent the model-checking time when the other parameters vary. Thus, if a
box is much lower than another, this means that whatever the other parameters
are, the first parameter value gives better performances than the other.

From these box plots, we analyzed the effect of each improvement value on the
time needed to model check a formula. For example, the box plots of Figure 3
show that when checking the formula 〈tianji〉F tianjiWins, early termination
really decreases the time needed, but the kind of early termination used has
no significant impact; this is expected since the formula is satisfied in all states
with all strategies, and the model checking algorithm stops at the first strategy
(instead of having to check all of them if early termination is deactivated).

Fig. 3. Box plot of time (in seconds) needed for checking the formula
〈tianji〉F tianjiWins with 3 to 5 horses. In each plot, boxes represent measures with
different type of early termination (from left to right): threshold (trigger value: 0.9),
partial, threshold (trigger value: 0.1), threshold (trigger value: 0.5), full, no early ter-
mination. On the third box plot, model checking exceeded the limit of 900 seconds for
all checks without early termination.

The box plots of Figure 4 show that, when model checking the formula
〈tianji〉G 〈tianji〉X tianjiWon < 2Races, filtering can really decrease the time
needed for the verification. This is expected since the 〈tianji〉X tianjiWon <
2Races subformula is true in a small subset of the states, reducing the number
of strategies to consider.

Finally, the box plots of Figure 5 show that, when checking the formula
〈player〉G 〈player〉F playerWinswithout early termination, caching really helps.
This is expected because without early termination, all strategiesmust be checked;

Improving the Model Checking of Strategies 41

Fig. 4. Box plot of time (in seconds) needed for checking the formula
〈tianji〉G 〈tianji〉X tianjiWon < 2Races with 3 to 5 horses. In each plot, boxes
represent measures without filtering and with filtering (from left to right). On the
third box plot, model checking exceeded the limit of 900 seconds for all checks without
filtering.

Fig. 5. Box plot of time (in seconds) needed for checking the formula
〈player〉G 〈player〉F playerWins with 3 to 6 cards. In each plot, boxes represent
measures without caching and with caching (from left to right), when early termina-
tion is not activated. On the last two box plots, model checking exceeded the limit of
900 seconds for all checks without caching.

thus, a lot of redundant work is performed to get the states satisfying the subfor-
mula and this redundant work is avoided with caching.

The conclusions we can make based on the test results are the following.

– Activating pre-filtering can greatly improve the process—when there is only
a small part of the model that satisfies the formula under full observability—
but can also generate unnecessary work when this is not the case, and this
can become significant when the number of strategies is small—for example,
when early termination is activated. This improvement can thus be helpful
in certain cases, but decreases performances for some other cases.

– Activating early termination has, at worst, no impact. It should always be
activated since it can greatly improve the verification time when most of the
strategies are winning. However, the performed tests did not show a type of
early termination better than the others;

– Caching increases performances in some of the tests above; for the others, it
has no impact. It should thus be always activated.

42 S. Busard et al.

7 Conclusion

The model-checking algorithm for ATLKirF presented in [3] is in many cases
inefficient because it blindly enumerates all possible strategies to check whether
there exists a winning strategy in some states. This paper has presented an
approach to generate fewer strategies when we are interested in whether there
exists a winning strategy in a small subset of the states of the model. More
precisely, we proposed to generate partial strategies reachable from a subset of
states of the model that are sufficient to determine the satisfaction of a strategic
formula in these states. Based on the generation of these partial strategies, a
new algorithm has been designed and the experimental results showed that in a
number of cases, the new approach is more efficient than the original one.

While the presented model-checking algorithm clearly improves the efficiency
of the verification, it may still be improved along different directions. For exam-
ple, given the ATLKirF formula 〈player〉F playerWins, it is in theory not nec-
essary to generate and check any strategy if the initial states satisfy playerWins.
The approach of on-the-fly model checking consists in exploring only the part of
the system that is necessary to know whether a particular state satisfies or not
a given property. It has been studied by several authors and many techniques
have been developed in this direction [10,11,12]. One possible extension of our
work involves the possibility of applying such techniques to our setting.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

2. Schobbens, P.Y.: Alternating-time logic with imperfect recall. Electronic Notes in
Theoretical Computer Science 85(2), 82–93 (2004)

3. Busard, S., Pecheur, C., Qu, H., Raimondi, F.: Reasoning about strategies under
partial observability and fairness constraints. In: SR, pp. 71–79 (2013)

4. Dastani, M., Jamroga, W.: Reasoning about strategies of multi-agent programs.
Proceedings of AAMAS 10, 997–1004 (2010)

5. Jamroga, W., van der Hoek, W.: Agents that know how to play. Fundamenta
Informaticae 63(2), 185–219 (2004)

6. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
7. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.

MIT Press, Cambridge (1995)
8. Dima, C., Enea, C., Guelev, D.: Model-checking an alternating-time temporal logic

with knowledge, imperfect information, perfect recall and communicating coali-
tions. In: GANDALF, pp. 103–117 (2010)

9. Busard, S., Pecheur, C.: PyNuSMV: NuSMV as a python library. In: Brat, G.,
Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 453–458. Springer,
Heidelberg (2013)

10. Stirling, C., Walker, D.: Local model checking in the modal mu-calculus. In: Dı́az,
J., Orejas, F. (eds.) TAPSOFT 1989. LNCS, vol. 351, pp. 369–383. Springer,
Heidelberg (1989)

11. Bhat, G., Cleaveland, R., Grumberg, O.: Efficient on-the-fly model checking for
ctl. In: LICS 1995, pp. 388–397 (1995)

12. Mateescu, S.: Efficient on-the-fly model-checking for regular alternation-free mu-
calculus. Science of Computer Programming 46(3), 255–281 (2003)

A Formal Model for Natural-Language Timed

Requirements of Reactive Systems

Gustavo Carvalho1,3, Ana Carvalho2, Eduardo Rocha1,
Ana Cavalcanti3, and Augusto Sampaio1

1 Universidade Federal de Pernambuco - Centro de Informática, 50740-560, Brazil
2 Universidade Federal de Pernambuco - NTI, 50670-901, Brazil

3 University of York - Department of Computer Science, YO10 5GH, UK
{ghpc,ebr,acas}@cin.ufpe.br, ana.alves@ufpe.br, ana.cavalcanti@york.ac.uk

Abstract. To analyse the behaviour of reactive systems formally, it
is necessary to build a model. At the very beginning of the develop-
ment, typically only natural language requirements are documented. We
present a formal model, named Data-Flow Reactive Systems (DFRS),
which can be automatically obtained from natural language requirements
that may also describe temporal properties. We prove that a DFRS can
be mapped to a timed input-output transition system, which is widely
used to characterise conformance relations for timed reactive systems.
To validate the proposed model as well as the mechanisation developed
to support its analysis, we consider two toy examples and two examples
from the aerospace and automotive industry. Test cases are indepen-
dently created and we verify that they are all compatible.

Keywords: Model mapping, TIOTS, test-case generation.

1 Introduction

The need to model the behaviour of a system may become an obstacle to the
use of formal methods as the requirements are commonly written in Natural
Language (NL). In 2009, the Federal Aviation Administration (FAA) published
a report [12] that discusses current practices concerning requirements engineering
management. The report states that “... the overwhelming majority of the survey
respondents indicated that requirements are being captured as English text...”.

With this in mind, we have investigated how we can obtain formal models from
NL requirements of reactive systems automatically, particularly to generate test
cases. Automation is essential, since requiring knowledge of formal modelling by
practitioners is often not feasible. Automation also allows an early application of
formal methods within the development of reactive systems. To accomplish this
goal, we have previously developed a strategy (NAT2TEST) that generates test
cases from NL requirements based on different internal and hidden formalisms:
SCR [14] (NAT2TESTSCR [8]), and IMR [18] (NAT2TESTIMR [6]).

Both in [8] and in [6], the input is NL requirements. The first phase of the test-
generation strategy is a Syntactic Analysis to generate a syntax tree. The second

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 43–58, 2014.
c© Springer International Publishing Switzerland 2014

44 G. Carvalho et al.

Fig. 1. The NAT2TEST Strategy

phase is a Semantic Analysis, which maps the syntax trees into an informal
semantic representation based on the Case Grammar theory [13].

Based on the experience of generating test cases using two different formal
representations, and with the perspective of instantiating our approach to sev-
eral other target notations, translating the NL requirements to an intermediate
formal notation is a more promising alternative, since the translation from a NL
is a more elaborate task. Then, from an intermediate, and formal, representa-
tion, one might explore different target notations and analyse the system from
several perspectives, using different languages and tools. For example, one might
want to generate SCR code and then use T-VEC [2] to generate test cases, as
already mentioned, but also to analyse the completeness and disjointness of sys-
tem requirements [3]. As another example, it is possible to generate CSP models
and use tools like FDR1 to prove both classical and domain specific properties
of the system requirements.

Therefore, a new architecture for our strategy, which is based on the genera-
tion of an intermediate notation from NL requirements, is presented in Figure 1.
Our focus here is the third step of this strategy (DFRS Generation) and the
DFRS (Data-Flow Reactive System) model that it generates.

Our claim that a DFRS is a good candidate for such an intermediate notation
comes from a theoretical and an empirical perspective. First, as we detail in this
paper, a DFRS can be characterised as a Timed Input-Output Transition System
(TIOTS) – a labelled transition system extended with time, which is widely used
to characterise conformance relations for timed reactive systems. Being more ab-
stract than a TIOTS, a DFRS comprises a more concise representation of timed
requirements. Second, we have so far derived two different formal models from
NL requirements (namely, SCR [8] and IMR [6]), besides other notations that
are currently being considered, and the DFRS model encompass the information
required to derive models in these notations.

1 https://www.cs.ox.ac.uk/projects/fdr/

https://www.cs.ox.ac.uk/projects/fdr/

A Formal Model for Natural-Language Timed Requirements 45

idle

choiceweak strong

?coin,,
r:=gc

?coffee,
(gc-r)≤30,
r:=gc

?coffee,
(gc-r)>30,
r:=gc

,10≤(gc-r)≤30,
!weak coffee

,30≤(gc-r)≤50,
!strong coffee

Fig. 2. The Vending Machine Specification

In [10] we briefly present our first ideas of a DFRS as it is used as a source
model to derive a CSP specification, which is later used within the context of a
timed conformance relation. Here, we formalise the definition and properties of
a DFRS, using Z [15] with the support of Z/EVES [19]. We also prove that a
DFRS can be characterised as a Timed Input-Output Transition System

To evaluate the expressiveness of DFRSs, we consider examples from four
domains: a Vending Machine (VM — toy example); a control system for safety
injection in a Nuclear Power Plant (NPP — toy example), a Priority Command
(PC) control provided by Embraer2; and the Turn Indicator System (TIS) of
Mercedes vehicles. Test cases are independently generated for each example,
and we assess whether they are compatible with those generated using a DFRS.

The main contributions of this paper are a formalisation of DFRSs, a theoret-
ical and a practical analysis of these models, and a strategy to generate DFRSs
from NL requirements automatically.

Next section gives the formal definition of a DFRS. Section 3 defines a TIOTS
and how any DFRS can be mapped to a TIOTS. Section 4 describes how a DFRS
can be automatically obtained from NL requirements. Section 5 considers the
test cases of our examples for an empirical analysis of DFRSs. Finally, Section
6 presents our conclusions, and addresses related and future work.

2 Definition and Properties of a DFRS

To illustrate our work, we consider a toy example — the Vending Machine (VM)
presented in Figure 2 as a timed statechart — it is an adaptation of the Coffee
Machine in [16]. We present this statechart just for a concise illustration of the
structure of DFRSs. The input of our strategy is NL requirements.

Initially, the VM is in an idle state. When it receives a coin, it goes to the
choice state and resets the reqTimer (r in Figure 2) clock. This assigns the
current global time (gc) to this variable. After inserting a coin, when the coffee
option is selected, the system goes to the weak or strong coffee state. If coffee is
selected within 30 seconds after inserting the coin, the system goes to the weak
coffee state. Otherwise, it goes to the strong coffee state. The time required to
produce a weak coffee is also different from that of a strong coffee.

2 www.embraer.com.br

www.embraer.com.br

46 G. Carvalho et al.

Formally, a DFRS is a 7-tuple: (I, O, T, gcvar, S, s0, TR). Inputs (I) and
outputs (O) are system variables, whereas timers (T) are a distinct kind of
variable, which can be used to model temporal behaviour. The global clock is
gcvar, a variable whose values are non-negative numbers representing a discrete
or a dense time. S denotes a (possibly infinite) set of states, s0 is the initial state,
and TR is a (possibly infinite) transition relation between states.

Below, we describe a formal definition of a DFRS available in full in [7].

2.1 Inputs, Outpus and Timers

We use a given set NAME containing the set of all valid variable names, and
define gc to be the name of the system global clock (gc : NAME). Also VNAME
is the set of all system variables except for the global clock (NAME \ {gc}).

Based on these definitions, we define SVARS and STIMERS to represent in-
puts and outputs (defined later as different mappings of the same type SVARS),
and timers, respectively, as partial functions from VNAME to TYPE. In this
work, we consider as valid types boolean and numerical types (bool, int, nat,
float, p float – where p float represents non-negative floating-point numbers).
We restrict our model to these types as they are sufficient to describe the con-
sidered domain of requirements – embedded reactive systems whose inputs and
outputs can be seen as signals. Despite that, one can expand the model to in-
corporate new types.

SVARS == {f : VNAME �→ TYPE | f �= ∅ ∧ ran f ⊆ {bool , int ,float}}
STIMERS == {f : VNAME �→ TYPE | ran f = {nat} ∨ ran f = {p float}}

The functions f in SVARS are not empty: the system needs to have at least
one input and one output variable. Differently, one can have a system without
timers, that is, a DFRS whose behaviour is not dependent on time elapsing.

The possible types of an element of SVARS are bool, int and float. The types
nat and p float are used to restrict the possible values of timers since time is
a non-negative number. Besides that, the type of all timers must be the same:
you can analyse the behaviour of the system discretely or continuously, but not
in both ways simultaneously.

Example. Besides the system global clock, five variables are identified in the
context of the VM example: two system inputs (coin sensor, coffee request but-
ton), two outputs (system mode, coffee machine output), and one timer (request
timer) whose types are bool, nat, and p float, respectively. �

2.2 States

A state is a relation between names and values (STATE == NAME �→ VALUE).
VALUE is a free type that includes booleans and numerical values. As float num-
bers are not part of Standard Z, we declare them as given sets. Despite being

A Formal Model for Natural-Language Timed Requirements 47

out of the scope of this work, it is possible to represent float numbers in Z. For
more details, refer, for instance, to ProofPower-Z3.

The valuation of a variable n defined to have a type t is well typed in a state
s if, and only if, n belongs to the domain of s, and the value associated with
n in s belongs to the set of possible values of t. The function values yields all
possible values of a specific type t. This property of well typedness for variables
in the context of a state is captured by the following predicate.

well typed var : P(STATE ×NAME × TYPE)

∀ s : STATE ; n : NAME ; t : TYPE ; v : VALUE |
n ∈ dom s ∧ s(n) = v • (s , n, f (n)) ∈ well typed var ⇔ v ∈ values(t)

Considering a set f of variables (names related to types), a state s is well typed
if, and only if, it provides a value for each variable (that is, its domain is that
of the function f) and those variables are well typed in s .

well typed state : P(STATE × (NAME �→ TYPE))

∀ s : STATE ; f : NAME �→ TYPE •
(s , f) ∈ well typed state ⇔ dom s = dom f ∧
(∀ n : dom f ; t : TYPE | f (n) = t • (s , n, t) ∈ well typed var)

The set of states is defined as a (possibly infinite) non-empty set of states
(STATE SET == P1 STATE), since it must contain at least an initial state.

Example. Considering the VM example, a possible initial state of the corre-
sponding DFRS is the following.

{(coin sensor �→ b(false)), (coffee request button �→ b(false),
(system mode �→ n(1)), (coffee machine output �→ n(1)),

(request timer �→ p fl(0.0), (system global clock �→ p fl(0.0))}
where b, n, and p fl are free type constructors associated with boolean values,
natural numbers, and non-negative floating-point values, respectively. We con-
sider that false is used to represent that a coin was not inserted, as well as that
the coffee request button was not pressed. Regarding the variables system mode
and coffee machine output, the natural numbers represent elements of an enu-
meration of possible values: {0 �→choice, 1 �→idle, 2 �→preparing strong coffee,
3 �→preparing weak coffee}, and {0 �→strong, 1 �→undefined, 2 �→weak}. �

2.3 Transitions

A transition relates two states by means of a label. A label represents the oc-
currence of a functional behaviour (fun) or time elapsing (del).

TRANS == (STATE × TRANS LABEL× STATE)
TRANS LABEL ::= fun〈〈FUNCTION ENTRY 〉〉 |

del〈〈DELAY × STMT SET 〉〉
3 http://www.lemma-one.com/ProofPower/index/index.html

http://www.lemma-one.com/ProofPower/index/index.html

48 G. Carvalho et al.

Function Transition. With the system behaviour defined as a function that
describes how the system reacts in a given scenario, the occurrence of a func-
tion transition leads to the application of an entry of this function. A function
entry models a scenario as a pair of static and timed guards, related to a set
of statements. When both guards evaluate to true, the system reacts instantly
performing the set of statements. One of the guards can be empty, but not both.

FUNCTION ENTRY ==
{sGuard , tGuard : EXP ; stmts : STMT SET | sGuard ∪ tGuard �= ∅}

The guards are expressions whose structure adheres to a Conjunctive Normal
Form: a finite set of conjunctions of disjunctions, where each disjunction is a non-
empty binary expression. Above, EXP refers to the set of such expressions. Each
binary expression is a static or a timed expression. A binary expression is said
to be static if, and only if, the name it mentions is the name of a system input
or output. Otherwise, it is a timed expression. Similarly, a guard is static (or
timed) if all its conjunctions and disjunctions are static (or timed). A statement
(STMT == VNAME × VALUE) is an assignment of a value to a name, and
STMT SET a non-empty set of statements (STMT SET == F1 STMT).

Delay Transition. Time elapsing is characterised by a delay and a set of
statements, which model stimuli from the environment that happens immedi-
ately after the delay. A delay can represent a discrete or dense time elapsing.
The former delay is characterised by a positive natural number (N1), whereas the
latter by a positive float number (P FLOAT1), which is a subset of P FLOAT .

DELAY ::= discrete〈〈N1〉〉 | dense〈〈P FLOAT1〉〉

Based on these definitions, we define the DFRS transition relation as a set of
transitions (TRANSREL == PTRANS). Each transition must be well typed. A
function transition is well typed if, and only if, the statements of its label modify
only values of outputs and timers. In other words, the system does not interfere
with the environment stimuli, which is modelled by the input variables.

well typed function transition : P(TRANS LABEL×
(VNAME �→ TYPE)× (VNAME �→ TYPE)×
(VNAME �→ TYPE))

∀ trans : TRANS LABEL; I ,O : VNAME �→ TYPE ;
T : VNAME �→ TYPE | trans ∈ ran fun •

(trans , I ,O ,T) ∈ well typed function transition ⇔
(∀ stmt : (functionTransition(trans)).3 •

stmt .1 ∈ domO ∪ domT) ∧
((functionTransition(trans)).1, I ,O) ∈ static exp ∧
((functionTransition(trans)).2,T) ∈ timed exp

Furthermore, the first guard of a function entry must be static, whereas the
second must be timed. To formalise these requirements, we rely on an auxiliary

A Formal Model for Natural-Language Timed Requirements 49

function (functionTransition : TRANS LABEL �→ FUNCTION ENTRY) that
extracts the corresponding function entry given a transition label. We note that
the notation .i is used to refer to the projection of the i-th element of a tuple.

Similarly, a delay transition is well typed if, and only if, its statements modify
only values of inputs. Furthermore, there must be one statement concerning each
input, that is, on the occurrence of each delay transition, the system receives the
current value of all its inputs.

Moreover, the delay transitions need to be compatible with the global clock,
that is, if the delay is discrete, the type of the system global time must be
nat , whereas if the delay is dense, the type of the clock must be p float . As
a consequence, all delay transitions share the same type of delay, that is, they
are all discrete or dense. This is captured by the clock compatible transition
property.

clock compatible transition : P(TRANS LABEL× ({gc} → TYPE))

∀ trans : TRANS LABEL; gcvar : {gc} �→ TYPE •
(trans , gcvar) ∈ clock compatible transition ⇔ trans ∈ ran del ∧
(((delayTransition(trans)).1 ∈ ran discrete ∧ ran gcvar = {nat}) ∨
((delayTransition(trans)).1 ∈ randense ∧ ran gcvar = {p float}))

From these definitions, a transition is said to be well typed (well typed transition)
if it satisfies the restrictions for function and delay transitions defined above.

Example. If s0 is the initial state presented in Section 2.2, inserting a coin after
3.14 time units is represented by the following entry in the transition relation.

(s0, del(dense(3.1), {(coin sensor, b(true)), (coffee request button, b(false))}), s1).
It leads to a new state, named s1 �

2.4 Complete Definition

The variables of a DFRS (I, O, T, and gcvar) are defined by the DFRS Variables
schema. It defines that the set of inputs, outputs and timers are disjoint, and
the type of the timers is equal to that of the system global clock.

DFRS Variables
I ,O : SVARS ; T : STIMERS ; gcvar : {gc} → {nat , p float}

disjoint 〈dom I , domO , domT 〉 ∧ ranT = ran gcvar

The initial state and the set of states of a DFRS (s0, S) are defined by the
following schema. The initial state of the DFRS is an element of its set of states.

DFRS States == [S : STATE SET ; s0 : STATE | s0 ∈ S]

The transition relation (TR) is defined in DFRS TransitionRelation, which es-
tablishes that for each state, it is not possible to have both function and delay

50 G. Carvalho et al.

transitions; that is, or the system receives stimuli from the environment or reacts
to it, but not both at the same state.

DFRS TransitionRelation
TR : TRANSREL

∀ entry1, entry2 : TR | entry1.1 = entry2.1 •
{entry1.2, entry2.2} ⊆ ran fun ∨ {entry1.2, entry2.2} ⊆ ran del

Finally, a DFRS is defined formally by the following schema that includes the
three previous schemas. It establishes that each state in S is well typed with
respect to the system variables. As a consequence we impose that the same
name cannot be associated with values of different types in different states. We
also enforce that TR relates states of S, and each transition is well typed.

DFRS
DFRS Variables
DFRS States
DFRS TransitionRelation

∀ s : S • (s , I ∪O ∪ T) ∈ well typed state
∀ entry : TR • {entry.1, entry.3} ⊆ S ∧

(entry.2, I ,O ,T , gcvar) ∈ well typed transition

This structure is rich enough to represent requirements written using several
different sentence formations in the context of a variety of application domains.

3 Theoretical Validation: Mapping DFRSs to TIOTSs

An important validation is the definition of the semantics of a DFRS. We show
here that any DFRS can be mapped to a corresponding TIOTS.

3.1 Definition and Properties of a TIOTS

A TIOTS is a 6-tuple (Q, q0, I, O, D, T), where Q is a (possibly infinite) set of
states, q0 is the initial state, I represents input actions and O output actions, D
is a set of delays, and T is a (possibly infinite) transition relation relating states.

Inputs and Outputs. TIOTS ACTION is a given set of all valid actions, that
is, inputs and outputs, and TIOTS ACTIONS the set of sets of actions.

Delays. A TIOTS delay represents a discrete or a dense time elapsing, but
differently from a DFRS delay, a delay in a TIOTS can also be 0.

TIOTS DELAY ::= tiots discrete〈〈N〉〉 | tiots dense〈〈P FLOAT 〉〉

TIOTS DELAYS is defined as a set of TIOTS DELAY.

A Formal Model for Natural-Language Timed Requirements 51

States. A state of a TIOTS is an element of the given set TIOTS STATE, and
TIOTS STATE SET is a non-empty set of states (P1 TIOTS STATE).

Transition Relation. The transition relation (TIOTS TRANSREL) relates
two states by means of a label (TIOTS TRANS LABEL). A label may concern
an input or output action, a delay, or an internal invisible action (τ – tau).

TIOTS TRANS LABEL ::= in〈〈TIOTS ACTION 〉〉 |
out〈〈TIOTS ACTION 〉〉 | tiots del〈〈TIOTS DELAY 〉〉 | tau

TIOTS TRANS == (TIOTS STATE×
TIOTS TRANS LABEL× TIOTS STATE)

TIOTS TRANSREL == PTIOTS TRANS

Complete Definition. TIOTS Variables defines input and output actions as
disjoint sets, besides defining a set of delays, which needs to be time compatible
(tiots time compatible): all delays must be of the same type (discrete or dense).

TIOTS Variables
I ,O : TIOTS ACTIONS ; D : TIOTS DELAYS

disjoint 〈I ,O〉 ∧ D ∈ tiots time compatible

A TIOTS comprises a set of states and the initial state is in this set.

TIOTS States == [Q : TIOTS STATE SET ; q0 : TIOTS STATE | q0 ∈ Q]

Finally, a TIOTS is defined by the schema below, which requires that each
transition relates states of Q and is well-typed (well typed tiots transition),
that is, comprises elements of I, O, or D. In other words, an input transition
must be labelled by an input action, and an output transition by an output
action. Similarly, a delay transition must be labelled by an element of D.

TIOTS
TIOTS Variables
TIOTS States
T : TIOTS TRANSREL

∀ entry : T • {entry.1, entry.3} ⊆ Q ∧
(entry.2, I ,O ,D) ∈ well typed tiots transition

It also makes sense to constraint a TIOTS by other properties [21]: time addi-
tivity (time additivity TIOTS), null delay (null delay TIOTS), and time de-
terminism (time determinism TIOTS). Informally, time additivity states that
if a state can be reached by two consecutive delay transitions, then it can also
be reached by just one delay transition whose delay is equal to the sum of the
original delays. The second property enforces that two states related by a zero
delay transition are the same. Time determinism ensures that if two states can
be reached by the same amount of delay, then they are the same too.

52 G. Carvalho et al.

3.2 From DFRSs to TIOTSs

The function fromDFRStoTIOTS maps a DFRS to a TIOTS. Figure 3 presents
an informal overview of this mapping process. The states of a DFRS are mapped
to TIOTS states (for instance, 1 �→ A; 2 �→ B ; 3 �→ C), but some new states
are also introduced in the TIOTS (these are unnamed in Figure 3). The delay
of a delay transition (DFRS) is straightforwardly mapped to a delay in the
TIOTS (for example, tiots del(tiots dense(3.14))), whereas the statements of a
function or a delay transition (DFRS) are mapped to a chain of transitions such
that each one corresponds to an output or an input action (TIOTS), respectively
(for instance, (coin, b(true)) �→ in(coin true); (mode, n(0)) �→ out(mode 0)).

Fig. 3. From DFRS to TIOTS – Mapping Transitions

The delay transition of the DFRS is mapped to a chain of three transitions
(from states A to B) with two new intermediate states. The first transition
represents the time elapsing, whereas the next two represents the stimuli from
the environment. Similarly, the function transition of the DFRS is mapped to a
chain of two transitions (from B to C). Next, we formalise the mapping process.

TIOTS – Inputs, Outputs and Delays. The set of input actions is derived
from the statements of a delay transition as they represent stimuli provided by
the environment. This is formalised by the function mapInputActions . Similarly,
the output actions are derived from the statements of a function transition as it
represents a functional response of the system for a given context. The function
mapStatement maps a DFRS statement into a TIOTS action. The mapping of
delays is straightforward and its formalisation is omitted here.

A Formal Model for Natural-Language Timed Requirements 53

mapInputActions : TRANSREL→ TIOTS ACTIONS

∀ transRel : TRANSREL • mapInputActions(transRel) =⋃
{entry : transRel | entry.2 ∈ ran del •
{stmt : (delayTransition(entry.2)).2 • (mapStatement(stmt))}}

TIOTS – States. The functionmapState : STATE � TIOTS STATE maps a
DFRS state to a TIOTS state, represented abstractly by a name;mapStatements :
STMT SET → TIOTS ACTIONS maps DFRS statements to a set of TIOTS
actions. Each action is a name to represent the corresponding statement.

TIOTS – Transitions. From the transition relation of a DFRS we derive
that of the TIOTS using the function mapTransitionRelation, formalised below.
Figure 3 illustrates this mapping with an example.

mapTransitionRelation : TRANSREL→ TIOTS TRANSREL

∀ transRel : TRANSREL •
∃ tr1, tr2 : TIOTS TRANSREL |
tr1 = mapFunctionTransitions(getTransitions(transRel , ran fun),

ranmapState) ∧
tr2 = mapDelayTransitions(getTransitions(transRel , ran del),

ranmapState ∪ getStates(tr1)) •
mapTransitionRelation(transRel) = tr1 ∪ tr2

The function getTransitions is used to extract the transitions of the transi-
tion relation transRel of a particular type characterised by the range of the
fun or del constructors. The translation functions mapFunctionTransitions and
mapDelayTransitions for the different kinds of transitions take the sets of states
already in use as an extra parameter,since, as illustrated, they create new states.

For illustration, we show the mapping of delay transitions.

mapDelayTransitions : (TRANSREL× TIOTS STATE SET) �→
TIOTS TRANSREL

dommapDelayTransitions =
{tr : TRANSREL | ∀ en : tr • en.2 ∈ ran del} × TIOTS STATE SET

∀ transRel : TRANSREL; used : TIOTS STATE SET •
∃ tr1, tr2 : TIOTS TRANSREL •
tr1 = mapTDDelayTransitions(⋃

{set : groupNTDDelayTrans(transRel) | #set = 1}, used) ∧
tr2 = mapSetOfNTDDelayTransitions(
{set : groupNTDDelayTrans(transRel) | #set > 1}, used ∪ getStates(tr1)) ∧
mapDelayTransitions(transRel , used) = tr1 ∪ tr2

The function mapDelayTransitions applies to sets of transitions whose entries en
are of type del (en.2 ∈ ran del). For those, the functionsmapTDDelayTransitions
and mapSetOfNTDDelayTransitions are used to map the deterministic and non-
deterministic transitions. The function groupNTDDelayTrans defines a set of sets
of transitions with the same delay. The sets set of size 1 contain the time deter-
ministic transitions. The sets of size greater than one group the nondeterministic

54 G. Carvalho et al.

transitions. For each of these sets, a chain of transitions is defined. For the nonde-
terministic transitions, we ensure that the TIOTS target state obtained from the
mapping of the transitions is the same. This becomes the initial state of the chain
of input actions obtained from the statements of each delay transition.

Mapping a DFRS to a TIOTS. We use the functions named above to define
how a DFRS is mapped to a TIOTS. The set of states of a TIOTS is defined as
the union of the states obtained from its transition relation with its initial state.
Our mapping function is total, that is, every data-flow reactive system can be
mapped to a corresponding timed input-output system.

Theorem 1 Totality of fromDFRStoTIOTS

∀ d : DFRS • (∃ t : TIOTS • t = fromDFRStoTIOTS (d))

Furthermore, the obtained TIOTS preserves the time additivity and null delay
properties, and it is time deterministic. The proofs of these results are in [7].

4 Formalising Natural Language Requirements

A DFRS model can automatically generated from NL requirements described by
actions guarded by conditions. Here, we provide an overview of how it is done.
Pseudo-code of the related algorithms can be seen in [7]. For more details about
the format of the requirements we refer to [8,6,9].

First, the requirements are parsed to assess whether they are correct with
respect to a Controlled Natural Language (CNL) defined in [9]. For instance,
the following is an example of a valid requirement of the VM: “When the system
mode is idle, and the coin sensor changes to true, the coffee machine system
shall: reset the request timer, assign choice to the system mode” [REQ001].

Afterwards, the syntax trees obtained from the requirements are automatically
mapped into an informal semantic representation based on the Case Grammar
theory [13]. In this theory, a sentence is analysed in terms of the semantic roles
played by each word or group of words in the sentence (e.g., Agent — who
performs the action; Patient — who is affected by the action, To Value — value
associated with action, and so on). Table 1 shows a concrete example obtained
from REQ001. More details of this step are reported in [9].

Finally, we employ an algorithm defined to generate a DFRS from a list of
case frames (Algorithm 1). First, the algorithm calls identifyVariables to identify

Table 1. Example of Case Frames (Vending Machine)

Condition #1 - Main Verb: is
Patient: the system mode To Value: idle
Condition #1 - Main Verb: changes
Patient: the coin sensor To Value: true
Action #1 - Main Verb: reset
Agent: the coffee machine system To Value: - Patient: the request timer
Action #2 - Main Verb: assign
Agent: the coffee machine system To Value: choice Patient: the system mode

A Formal Model for Natural-Language Timed Requirements 55

Algorithm 1. Derive DFRS
input : reqCFList
output : dfrs

1 inputList, outputList, timerList = identifyVariables(reqCFList);
2 initialState = buildInitialState(inputList, outputList, timerList);
3 functionEntries = identifyFunctions(reqCFList, inputList, outputList, timerList);
4 dfrs = new DFRS();
5 dfrs.I = inputList;
6 dfrs.O = outputList;
7 dfrs.T = timerList;
8 dfrs.gcvar = setSystemGC (timerList);
9 dfrs.s0 = initialState;

10 dfrs.TR = generateTransition(functionEntries);

the system variables (line 1). A variable is classified as an input if, and only
if, it appears only in patient roles of conditions; otherwise it is an output. To
distinguish timers, we require their names to have “timer” as a suffix.

The type of the variables is inferred from the values mentioned in the to value
role. Then, we create an initial state for these variables (line 2) considering initial
default values (like 0 for int and nat, and false for bool, for instance).

Afterwards, the algorithm calls identifyFunctions to identify the function tran-
sitions that describe the system behaviour (line 3). We identify one function for
each different agent. Therefore, identifyFunctions yields a list of functions in-
dexed by the corresponding agents. Each function is a list of action statements
mapped to the respective discrete and timed guards. In the end (lines 4–9), the
algorithm creates a DFRS. The complete definition can be seen in [7]. Here, we
now present the algorithm for statement generation.

Algorithm 2 generates an action statement from a case frame that depicts an
action. First (lines 1–3), we retrieve the verb from the Action and the name of
the variable involved from the Patient. If the variable is a timer and the verb is
not reset, an exception is raised since timers can only be reset (line 4–5).

The next step is the identification of the value being assigned to the vari-
able (lines 6–10). If the verb is “reset” the value is the system global time (line
7). Otherwise, it is the content of the To Value (line 8). If the content of the To
Value is not an integer, a float or a boolean, it is a string and the value is the
index of this string within the list of possible values of the variable (lines 9–10).

If the verb being used describes a simple mathematical operation, the algo-
rithm creates the corresponding expression considering the variable and values
identified (lines 11-16). Then, a new statement is created considering the variable
and values identified (lines 17–18).

5 Practical Validation: Test Cases from NL Requirements

To provide an empirical argument as to whether the DFRS model is expressive
enough to represent the behaviour of a timed reactive system as defined using
natural language, we consider the four examples listed in Section 1. Supported by
a mechanisation of the strategy presented in Section 4, we assess whether test

56 G. Carvalho et al.

Algorithm 2. Generate Statement
input : action, varList
output : actionStatement

1 verb = action.ACT ;
2 varName = toString(action.PAT);
3 var = varList.find(varName);
4 if var .kind = timer ∧ ¬ verb.equals(“reset”) then
5 throw Exception(“timers can only be reset”);

6 value = null;
7 if verb.equals(“reset”) then value =“gc”;
8 else value = toString(action.TOV);
9 if ¬ isInteger(value) ∧ ¬ isFloat(value) ∧ ¬ isBoolean(value) then

10 value = var .possibleValuesList.getIndex(value);

11 rhsExp = newExp();
12 if verb.equals(“add”) then rhsExp = varName + “+” + value;
13 else if verb.equals(“subtract”) then rhsExp = varName + “-” + value;
14 else if verb.equals(“multiply”) then rhsExp = varName + “*” + value;
15 else if verb.equals(“divide”) then rhsExp = varName + “/” + value;
16 else rhsExp = value;

17 actionStatement = new Statement();
18 actionStatement = varName + “:=” + rhsExp;

cases, either independently written by specialists of our industrial partner or
generated by a commercial tool (RT-Tester4) from the same set of requirements,
are compatible with the corresponding DFRS models.

To analyse the compatibility with the corresponding DFRS model, we im-
plemented a depth-first search algorithm that explores the DFRS state space
guided by a test case. We provide to the DFRS the inputs described by each
test vector, and check whether the outputs provided by the system are equal to
those in the vector. This comparison is straightforward since we are dealing with
primitive types.

The selected tests are relevant as they are able to detect a high amount of er-
rors introduced by mutation testing as reported in [6]. The verdict of our testing
experiments have been successful as all considered test vectors are compatible
with the corresponding DFRS models, which gives evidence that the generated
DFRSs indeed capture the NL requirements as suggested in this paper.

6 Conclusions

We have presented DFRSs, a concise formal model to represent timed reactive
systems. It is part of an automatic strategy to generate test cases from natu-
ral language requirements that may also describe temporal properties. We have
given a semantics for DFRSs based on TIOTSs. This mapping preserves desired
properties of a TIOTS, namely, time additivity, null delay, and time determin-
ism. We have also considered examples from four different domains, and showed
that the derived DFRS models are expressive enough to represent a set of inde-
pendently written and generated test cases. To support this analysis, we have

4 www.verified.de/products/rt-tester/

www.verified.de/products/rt-tester/

A Formal Model for Natural-Language Timed Requirements 57

developed a tool NAT2TEST5 that automatically generates DFRS models from
NL requirements, besides other features such as animation of DFRS models.

Previous studies have already addressed the topic of formal modelling natural
languages. These works differ in two main aspects: (1) structure of NL require-
ments, or (2) support for timed requirements.

Some studies opt for a more free structure, whereas other impose more re-
strictions when writing the requirements. In general, this choice is related to
the trade-off of a greater or lesser level of automation. Works such as those
reported in [4,20] generate a formal model from unrestricted NL requirements.
This makes the strategy more flexible than ours, but requires user interaction
for the generation process, whereas our strategy is fully automated. Other stud-
ies [17] achieve a high level of automation by imposing restrictions that make the
NL requirements resemble an algorithm. In our work, we reach a compromise.

Our NL imposes some restrictions, but the requirements still resemble a tex-
tual specification. Our restrictions make our approach suitable for describing
actions guarded by conditions, and thus we cannot express properties like in-
variants; this can be accomplished by works such as [1].

A compromise similar to ours is reached, for instance, in [5], but timed re-
quirements are not covered. In [17] timed requirements are considered, but as
previously said from a not so natural textual representation. In [11] timed re-
quirements are handled, but the strategy requires human intervention.

We intend to: (1) integrate this study with our previous works to take ad-
vantage of the generality of DFRS as indicated in Figure 1; (2) analyse the
soundness of our DFRS encoding in CSP; (3) propose a conformance relation to
DFRS models, and (4) compare it with typical conformance relations defined to
TIOTSs, as well as with the conformance relation we define in [10].

Acknowledgments. This work was carried out with the support of the CNPq
(Brazil), INES6, and the grants: FACEPE 573964/2008-4, APQ-1037-1.03/08,
CNPq 573964/2008-4 and 476821/2011-8.

References

1. Bajwa, I., Bordbar, B., Anastasakis, K., Lee, M.: On a chain of transformations
for generating alloy from NL constraints. In: International Conference on Digital
Information Management, pp. 93–98 (2012)

2. Blackburn, M., Busser, R., Fontaine, J.: Automatic Generation of Test Vectors for
SCR-style Specifications. In: Annual Conference on Computer Assurance (1997)

3. Blackburn, M.R., Busser, R., Nauman, A.: Removing Requirement Defects and
Automating Test. In: International Conference on Software Testing Analysis &
Review (2001)

4. Boddu, R., Guo, L., Mukhopadhyay, S., Cukic, B.: RETNA: from Requirements
to Testing in a Natural Way. In: IEEE International Requirements Engineering
Conference, pp. 262–271 (2004)

5 The NAT2TEST tool can be obtained by contacting the authors.
6 www.ines.org.br

www.ines.org.br

58 G. Carvalho et al.

5. Brottier, E., Baudry, B., Le Traon, Y., Touzet, D., Nicolas, B.: Producing a Global
Requirement Model from Multiple Requirement Specifications. In: Entreprise Dis-
tributed Object Computing Conference, pp. 390–401 (2007)

6. Carvalho, G., Barros, F., Lapschies, F., Schulze, U., Peleska, J.: Model-Based Test-
ing from Controlled Natural Language Requirements. In: Artho, C., Ölveczky, P.C.
(eds.) FTSCS 2013. CCIS, vol. 419, pp. 19–35. Springer, Heidelberg (2014)

7. Carvalho, G., Carvalho, A., Rocha, E., Cavalcanti, A., Sampaio, A.: Z Definition,
Algorithms and Proofs for Data-Flow Reactive Systems. Tech. rep., UFPE (2014),
http://www.cin.ufpe.br/~ghpc/

8. Carvalho, G., Falcão, D., Barros, F., Sampaio, A., Mota, A., Motta, L., Blackburn,
M.: Test Case Generation from Natural Language Requirements based on SCR
Specifications. In: Symposium on Applied Computing, vol. 2, pp. 1217–1222 (2013)

9. Carvalho, G., Falcão, D., Barros, F., Sampaio, A., Mota, A., Motta, L., Black-
burn, M.: NAT2TESTSCR : Test case generation from natural language require-
ments based on SCR specifications. Science of Computer Programming (2014)

10. Carvalho, G., Sampaio, A., Mota, A.: A CSP Timed Input-Output Relation and
a Strategy for Mechanised Conformance Verification. In: Groves, L., Sun, J. (eds.)
ICFEM 2013. LNCS, vol. 8144, pp. 148–164. Springer, Heidelberg (2013)

11. Cavada, R., Cimatti, A., Mariotti, A., Mattarei, C., Micheli, A., Mover, S., Pen-
sallorto, M., Roveri, M., Susi, A., Tonetta, S.: Supporting Requirements Valida-
tion: The EuRailCheck Tool. In: International Conference on Automated Software
Engineering, pp. 665–667 (2009)

12. FAA: Requirements Engineering Management Findings Report. Tech. rep., U.S.
Department of Transportation - Federal Aviation Administration (2009)

13. Fillmore, C.J.: The Case for Case. In: Bach, H. (ed.) Universals in Linguistic
Theory, pp. 1–88. Holt, Rinehart, and Winston, New York (1968)

14. Heninger, K., Parnas, D., Shore, J., Kallander, J.: Software Requirements for the
A-7E Aircraft - TR 3876. Tech. rep., U.S. Naval Research Laboratory (1978)

15. ISO: Z formal specification notation (ISO/IEC 13568). Tech. rep., International
Organization for Standardization (2002)

16. Larsen, K., Mikucionis, M., Nielsen, B.: Online Testing of Real-time Systems us-
ing Uppaal: Status and Future Work. In: Perspectives of Model-Based Testing -
Dagstuhl Seminar, vol. 04371 (2004)

17. Li, J., Pu, G., Wang, Z., Chen, Y., Zhang, L., Qi, Y., Gu, B.: An Approach to
Requirement Analysis for Periodic Control Systems. In: Annual IEEE Software
Engineering Workshop, pp. 130–139 (2012)

18. Peleska, J., Vorobev, E., Lapschies, F., Zahlten, C.: Automated Model-Based Test-
ing with RT-Tester. Tech. rep., Universität Bremen (2011)

19. Saaltink, M.: The Z/EVES System. In: Till, D., Bowen, J.P., Hinchey, M.G. (eds.)
ZUM 1997. LNCS, vol. 1212, pp. 72–85. Springer, Heidelberg (1997)

20. Santiago Junior, V., Vijaykumar, N.L.: Generating Model-based Test Cases from
Natural Language Requirements for Space Application Software. Software Quality
Journal 20, 77–143 (2012)

21. Schmaltz, J., Tretmans, J.: On Conformance Testing for Timed Systems. In:
Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 250–264.
Springer, Heidelberg (2008)

http://www.cin.ufpe.br/~ghpc/

A Hybrid Model of Connectors
in Cyber-Physical Systems

Xiaohong Chen1, Jun Sun2, and Meng Sun1

1 LMAM & Department of Informatics, School of Mathematical Sciences,
Peking University, China

2 Singapore University of Technology and Design, Singapore
xiaohong.chen@pku.edu.cn, sunjun@sutd.edu.sg,

sunmeng@math.pku.edu.cn

Abstract. Compositional coordination models and languages play an important
role in cyber-physical systems (CPSs). In this paper, we introduce a formal model
for describing hybrid behaviors of connectors in CPSs. We extend the constraint
automata model, which is used as the semantic model for the exogenous channel-
based coordination language Reo, to capture the dynamic behavior of connectors
in CPSs where the discrete and continuous dynamics co-exist and interact with
each other. In addition to the formalism, we also provide a theoretical composi-
tional approach for constructing the product automata for a Reo circuit, which is
typically obtained by composing several primitive connectors in Reo.

1 Introduction

Cyber-physical systems (CPSs) are systems that integrate computing and communica-
tion with monitoring and control of physical entities. The complex interaction with the
physical world through computation, communication and control leads to the dynamic
behavior of CPSs. CPSs are present everywhere, such as airplanes and space vehicles,
hybrid gas-electric vehicles, power grids, oil refineries, medical devices, defense sys-
tems, etc. The design of such systems requires understanding the complex interactions
among software, hardware, networks and physical components. Coordination models
and languages that provide a formalization of the “glue code” that interconnects the
components and organizes their interactions in a distributed environment, are extremely
important to the success of CPSs [9].

The use of coordination models and languages distinguishes the interaction among
components from computing in single component explicitly. This can simplify the
development process for complex systems and reasoning and verification of system
properties. For example, Reo [2] is a powerful coordination language that offers an ap-
proach to express interaction protocols. Such coordination languages provide a proper
approach that focuses on the interaction aspects in distributed applications, instead of
the behavior models for individual components. However, most of existing coordina-
tion models and languages focused only on interactions among software components
with discrete behavior. In CPSs, not only software components, but also physical com-
ponents are coordinated together as well. This makes the integration of discrete and
continuous dynamics for coordination an important issue in CPSs.

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 59–74, 2014.
© Springer International Publishing Switzerland 2014

60 X. Chen, J. Sun, and M. Sun

In this paper, we investigated the problem of using Reo to model connectors in CPSs.
As channels in CPS have often both discrete and continuous dynamics, existing seman-
tics for Reo [2] is insufficient. Thus, we use hybrid constraint automata (HCA) which
is an extension of constraint automata (CA), to capture the dynamic behavior of con-
nectors in CPSs where the discrete and continuous dynamics co-exist and interact with
each other. The concepts in HCA are borrowed from classical hybrid automata [1,6].
There are three types of transitions in HCA: (1) continuous flow inside one control
state captured by some differential equations; (2) discrete jump between two control
states representing the execution of some I/O operations; (3) discrete jump between two
control states caused by violating the location invariant. Furthermore, a compositional
approach for construction of HCA from a given Reo connector is provided, where the
composition operator on HCA models the join operator in Reo to build complex con-
nectors from basic channels.

This work is related to existing semantic models for connectors in CPSs. The time
aspects of Reo has been investigated in [3], which uses timed constraint automata (TCA)
as the operational semantics for Reo connectors and provides a variant of LTL as a
specification formalism for timed Reo connectors. In [7,8] the TCA model has been
translated into mCRL2 for model checking timed Reo connectors. The UTP model for
timed connectors in Reo has been proposed in [12]. However, both the TCA model and
UTP model lack of mechanisms to describe continuous dynamics for connectors. Lynch
et al. proposed the Hybrid I/O Automata (HIOA) model [11,10] for the hybrid behavior
in composition of components, where the input action enabling and input flow enabling
axioms should be satisfied, which is not required in the constraint automata (and HCA)
model.

The paper is structured as follows. We briefly summarize the coordination language
Reo in Section 2. In Section 3 we introduce the hybrid constraint automata model. In
Section 4 we show some examples of hybrid Reo circuits and how HCA can serve as
their operational model. Finally, Section 5 concludes with further research directions.

2 A Reo Primer

Reo is a channel-based exogenous coordination model wherein complex coordinators,
called connectors, are compositionally constructed from simpler ones. We summarize
only the main concepts in Reo here. Further details about Reo and its semantics can be
found in [2,4,5].

A connector provides the protocol that controls and organizes the communication,
synchronization and cooperation among the components that they interconnect. Prim-
itive connectors in Reo are channels that have two channel ends. There are two types
of channel ends: source and sink. A source channel end accepts data into its channel,
and a sink channel end dispenses data out of its channel. It is possible for the ends of
a channel to be both sinks or both sources. Reo places no restriction on the behavior
of a channel and thus allows an open-ended set of different channel types to be used
simultaneously. Each channel end can be connected to at most one component instance
at any given time.

Figure 1 shows the graphical representation of some simple channel types in Reo. A
FIFO1 channel represents an asynchronous channel with one buffer cell which is empty

A Hybrid Model of Connectors in Cyber-Physical Systems 61

Fig. 1. Some basic channels in Reo

if no data item is shown in the box (this is the case in Figure 1). If a data element d is
contained in the buffer of an FIFO1 channel then d is shown inside the box in its graph-
ical representation. A synchronous channel has a source and a sink end and no buffer. It
accepts a data item through its source end iff it can simultaneously dispense it through
its sink. A lossy synchronous channel is similar to a synchronous channel except that
it always accepts all data items through its source end. The data item is transferred if
it is possible for the data item to be dispensed through the sink end, otherwise the data
item is lost. For a filter channel, its pattern P specifies the type of data items that can
be transmitted through the channel. Any value d ∈ P is accepted through its source end
iff its sink end can simultaneously dispense d; all data items d ∉ P are always accepted
through the source end, but are immediately lost. The synchronous drain has two source
ends and no sink end. It can accept a data item through one of its ends iff it can simul-
taneously accept data item through the other end, and all data accepted by the channel
are lost.

Complex connectors are constructed by composing simpler ones mainly via the join
and hiding operations. Channels are joined together in a node which consists of a set
of channel ends. Nodes are categorized into source, sink and mixed nodes, depending
on whether all channel ends that coincide on a node are source ends, sink ends or a
combination of the two. The hiding operation is used to hide the internal topology of a
component connector. The hidden nodes can no longer be accessed or observed from
outside. A complex connector has a graphical representation, called a Reo circuit, which
is a finite graph where the nodes are labeled with pair-wise disjoint, non-empty sets of
channel ends, and the edges represent the connecting channels. The behavior of a Reo
circuit is formalized by means of the data-flow at its sink and source nodes. Intuitively,
the source nodes of a circuit are analogous to the input ports, and the sink nodes to
the output ports of a component, while mixed nodes are its hidden internal details.
Components cannot connect to, read from, or write to mixed nodes. Instead, data-flow
through mixed nodes is totally specified by the circuits they belong to.

A component can write data items to a source node that it is connected to. The write
operation succeeds only if all (source) channel ends coincident on the node accept the
data item, in which case the data item is simultaneously written to every source end
coincident on the node. A source node, thus, acts as a replicator. A component can ob-
tain data items, by an input operation, from a sink node that it is connected to. A take
operation succeeds only if at least one of the (sink) channel ends coincident on the node
offers a suitable data item; if more than one coincident channel end offers suitable data
items, one is selected nondeterministically. A sink node, thus, acts as a nondetermin-
istic merger. A mixed node nondeterministically selects and takes a suitable data item
offered by one of its coincident sink channel ends and replicates it into all of its co-
incident source channel ends. A component can not connect to, take from, or write to
mixed nodes.

62 X. Chen, J. Sun, and M. Sun

3 Hybrid Constraint Automata

In order to capture both discrete and continuous behaviors of connectors in CPSs, we
extend the model of constraint automata as hybrid constraint automata. The formal
definition of hybrid constraint automata (HCA) arises by combining the concepts of
constraint automata and hybrid automata.

3.1 Syntax of HCA

Data Assignments and Data Constraints. Let Data be a finite and non-empty set
of data items that can be transferred through channels, and N a finite and non-empty
set of node names. A data assignment δ denotes a function δ ∶ N → Data where ∅ ≠

N ⊆ N . All possible data assignments on N is denoted as DA(N) or DataN . For a
subset N0 ⊆ N, the restriction of δ over N0 is a data assignment δ ↾N0∈ DA(N0) defined
as δ↾N0(A) = δ(A) for each A ∈ N0. We use the notation of δ = [A ↦ d ∣ A ∈ N]
to specify a data assignment that assigns a value d ∈ Data to every node A ∈ N. For
example, if d1 is transferred through node A and d2 is transferred through node B, then
the corresponding data assignment is δ = [A ↦ d1, B ↦ d2].

Formally, a data constraint g over N is a propositional formula built from the atoms
such as “dA ∈ P” and “dA = dB” and boolean operators ∧,∨,¬, etc. where A, B ∈ N ,
P ⊆ Data and dA is interpreted as δ(A). For N ⊆ N , DC(N) denotes the set of all data
constraints that specify values being transferred on nodes in N. We use δ ⊧ g to denote
that the data assignment δ satisfies the data constraint g.

Example 1. Let N = {A, B,C} and Data = {d0,d1}. Data assignment δ = [A ↦ d1,C ↦

d0] says that d1 and d0 are transferred through nodes A and C respectively, while no
data item is transferred through B. Let g1 = (dA = d1) and g2 = (dA = dC) be two data
constraints, then δ ⊧ g1 and δ ⊭ g2.

Dynamical Systems and Space Constraints. Dynamical systems can model systems
with continuous behaviors. Consider the differential equation:

ξ̇ = f (ξ) (1)

where the dotted variables represent the first derivatives during continuous change and
f ∶ IRn

→ IRn is an infinitely differentiable function. We also call such functions smooth.
By a trajectory of (1) with initial condition x ∈ IRn, we mean a smooth curve

ξ ∶ [0, τ) → IRn (2)

satisfying

– τ > 0;
– ξ(0) = x;
– ξ̇(t) = f (ξ(t)) for each t ∈ (0, τ).

In this case, we say the duration of the trajectory ξ is τ.

A Hybrid Model of Connectors in Cyber-Physical Systems 63

Definition 1 (Dynamical system). An n-dimensional dynamical system Σ = (IRn, f)
is the real space IRn equipped with differential equation given by a smooth map f ∶

IR → IRn. A trajectory of a dynamical system is a trajectory of the differential equation
defined by f .

We also consider systems (X , f) with f defined in a subset X of IRn. A trajectory ξ
of the dynamical system Σ = (X , f) with a duration τ and initial condition x ∈ X is a
solution to (1) satisfying

– τ > 0;
– ξ(0) = x;
– ξ̇(t) = f (ξ(t)) for each t ∈ (0, τ);
– ξ(t) ∈ X for each t ∈ [0, τ).

Intuitively, an n-dimensional dynamical system Σ = (IRn, f) describes how a point
P evolves and flows in space IRn based on the rules given as differential equations. If at
present time t = t0, the coordination of P’s location is x0 ∈ IRn, then in the near future
P follows a trajectory ξ with duration τ and initial condition x0. At time t = t0 + Δt
where Δt < τ, P will locate in point ξ(Δt) ∈ IRn. This intuition makes sense in that if
there are two trajectories, ξ1 with duration τ1 and ξ2 with duration τ2 sharing the same
initial condition, then ξ1(t) = ξ2(t) for each t ∈ [0,min{τ1, τ2}). This is concluded in
Theorem 1 which comes directly from the Peano existence theorem [13], a fundamental
theorem in the study of ordinary differential equations that guarantees the existence of
solutions to certain initial value problems.

Theorem 1. Let X ⊆ IRn be a nonempty subset, f ∶ X → IRn a continuously differen-
tiable function, and x0 ∈ X an interior point. Then there exists some τ > 0 and a unique
solution ξ ∶ [0, τ) → X of the differential equation ξ̇ = f (ξ) satisfying ξ(0) = x0.

A space constraint ϕ to an n-dimensional dynamical system Σ is defined as a pred-
icate over free variables {#1,#2,⋯,#n} where #i is interpreted as the i-th coordinate of
a point x ∈ IRn for each i ∈ {1,2,⋯,n}. If the dimension n = 1, then we abbreviate #1

as #. The set of all n-dimensional space constraints is denoted as S C(n) or S C. We use
x ⊧ ϕ to denote that the point x in space IRn satisfies the space constraint ϕ.

Example 2. Let x1, x2, x3 be three points in space IR3 with their coordinations:

x1 = (1,2,3) , x2 = (1,0,−1) , x3 = (0,0,0) (3)

and ϕ1 and ϕ2 two space constraints defined as

ϕ1 = (#1 = #2) ∧ (#2 ≤ #3) , ϕ2 = (#1 + #2 + #3 = 0) . (4)

Then we have
x1 ⊭ ϕ1 , x1 ⊭ ϕ2 ,
x2 ⊭ ϕ1 , x2 ⊧ ϕ2 ,
x3 ⊧ ϕ1 , x3 ⊧ ϕ2 .

(5)

64 X. Chen, J. Sun, and M. Sun

Hybrid Constraint Automata. We now give the formal definition of HCA and some
intuitive interpretation on how it operates.

Definition 2 (Hybrid constraint automata). A hybrid constraint automata (HCA) T
is a tuple (S , IRn,N ,E , IS ,{Ins}s∈S ,{ fs}s∈S ,{ret}t∈E) consisting of

– a finite set of control states S and a set of initial control states IS ⊆ S ;
– the dynamical system space IRn;
– a finite set of nodes N ;
– an n-dimensional dynamical system Σs = (Ins, fs) for each s ∈ S ;
– an edge relation E which is a subset of S × 2N × DC × S C × S ;
– a reset function re

(s,N,g,ϕ, s̄) ∶ DataN
× Ins → Ins̄.

Instead of writing (s,N,g, ϕ, s̄) ∈ E , we use s
N, g, ϕ
���→ s̄. If re

(s,N,g,ϕ, s̄) = r then we say

s
N, g, ϕ
���→

r
s̄.

The intuitive interpretation of how an HCA T operates is as follows. In the begin-
ning, T stays in one of the initial control states s0 ∈ IS and behaves exactly as the
dynamical system Σs0 , that is, it starts with a point x0 ∈ Ins0 and then flows based on the
differential equation given by fs0 . If T stays in control state s ∈ S and locates at point
x ∈ Ins, it

– must choose an edge t = (s,N,g, ϕ, s̄) from E such that the data assignment δ ⊧ g
and x ⊧ ϕ, if some I/O operations specified by δ happen on exact those nodes in N.
If more than one edges are available, T chooses one of them nondeterministically.
If T chooses t = (s,N,g, ϕ, s̄), it successfully accepts I/O operations and jumps
to control state s̄ and then behaves exactly as the dynamical system Σs̄ with initial
condition ret(δ, x) ∈ Ins̄. If no such edge is available, T halts;

– must choose an edge t = (s,N,g, ϕ, s̄) from E where N = ∅ and g = [] such that x ⊧
ϕ, if T is about to violate the invariant Ins and no I/O operation happens at the time.
If more than one edges are available, T chooses one of them nondeterministically.
If T chooses t = (s,∅, [], ϕ, s̄), it jumps to control state s̄ and then behaves exactly
as the dynamical system Σs̄ with initial condition ret([], x) ∈ Ins̄. If no such edge
is available, T halts;

– may stay in the control state s and behaves exactly as the dynamical system Σs as
long as it is not forced to make a jump to a new control state.

3.2 The State-Transition Graph of an HCA

So far we described the syntax of HCA and gave some intuitive explanations for their
meaning. The following definition formalizes this intuitive behavior by means of a state-
transition graph.

Definition 3 (State-transition graph). Given an HCA T = (S , IRn,N ,E , IS ,{Ins}s∈S ,
{ fs}s∈S ,{ret}t∈E) as above, T induces a state-transition graphAT = (Q,�→, IQ) con-
sisting of

A Hybrid Model of Connectors in Cyber-Physical Systems 65

– a set of states Q = {⟨s, x⟩ ∣ s ∈ S ∧ x ∈ Ins};
– a set of initial states IQ = {⟨s, x⟩ ∣ s ∈ IS ∧ x ∈ Ins};
– a transition relation �→ ⊆ Q × 2N × DA × IR≥0 × Q;

where ⟨s, x⟩
N, δ, τ
��→ ⟨s̄, x̄⟩ if and only if one of the following conditions holds:

– (Flows) s = s̄, N = ∅, δ = [], τ > 0 and there exists a trajectory ξ with duration τ
and initial condition x in the dynamical system Σs = (Ins, fs). The trajectory heads
for the point x̄, that is

lim
t→τ−
ξ(t) = x̄ ; (6)

– (External interactions) s
N, g, ϕ
���→

re
s̄, N ≠ ∅, δ ∈ DA(N), δ ⊧ g, x ⊧ ϕ, τ = 0 and

x̄ = re(δ, x);

– (Internal jumps) s
N, g, ϕ
���→

re
s̄, N = ∅, δ = [], g = true, x ⊧ ϕ, τ = 0 and x̄ = re([], x).

According to Definition 3, transitions in a state-transition graph AT are disjointly
divided into three categories: flows, external interactions (or briefly interactions) and
internal jumps (or briefly jumps). Both interactions and jumps are discrete behavior
while flows are continuous. Given a state q ∈ Q, a successor of q is a state p ∈ Q such

that there exists a transition q
N, δ, τ
��→ p inAT . If this transition is a flow, then p is called a

flow-successor of q with duration τ. Similarly, we can define interaction-successor and
jump-successor. A state q = ⟨s, x⟩ is called terminal if and only if it has no outgoing
transition.

Given an HCA T and a state q = ⟨s, x⟩ in AT , a q-run (or briefly run) in T de-
notes any finite or infinite sequence of successive transitions in AT starting in state q.
Formally, a q-run has the form

� = q0
N0, δ0, τ0
����→ q1

N1, δ1, τ1
����→⋯ (7)

where q0 = q. It is required that for any sequence segment

qi
Ni , δi, τi
���→ qi+1

Ni+1, δi+1, τi+1
������→ qi+2 (8)

in �, exactly one of the two transitions is flow for the following reasons. If a run � con-

tains two consecutive flow-transitions, say, qi
∅, [], τi
���→ qi+1

∅, [], τi+1
����→ qi+2, then it can be

replaced by one flow-transition qi
∅, [], τi + τi+1
������→ qi+2 without any change of its behavior.

On the other hand, if � contains two consecutive discrete actions (interaction- or jump-
transition), then these actions occur at the same time point, which violates the general
idea of constraint automata where all observable activities that occur simultaneously
are collapsed into a single transition. Therefore, a run � in HCA actually consists of an
alternating sequence of continuous transitions (flows) and discrete actions (interactions
or jumps).

Let t = q
N, δ, τ
��→ q̄ be a transition in AT , we introduce some abbreviate notations as

follows:

66 X. Chen, J. Sun, and M. Sun

– instead of writing q
∅, [], τ
���→ q̄, we say q

τ
�→ q̄ if t is a flow-transition. Under this

circumstances, τ > 0;

– instead of writing q
N, δ, 0
��→ q̄, we say q

N, δ
��→ q̄ if t is an interaction-transition. Under

this circumstances, N ≠ ∅;

– instead of writing q
∅, [], 0
���→ q̄, we say q

0
�→ q̄ if t is a jump-transition.

The q-run � is called initial if q ∈ IQ and the first transition of � is a flow. The q-run
� is called time divergent if � is infinite and

lim
n→+∞

n

∑

i=0
τi = +∞ . (9)

For an initial run �, instead of using general notation as in (7), we use the following
simplified notation:

� = q0
τ0
�→ q1

N1, δ1
��→ q2

τ2
�→ q3

N3, δ3
��→ ⋯ (10)

where the notation q1
N1, δ1
��→ q2 should be regarded as an interaction-transition if N1 ≠ ∅

or a jump-transition if N1 = ∅ and δ1 = []. Maximality of a run means that it is either
time divergent or finite and ends in a terminal state.

Intuitively, Ni is the set of nodes in state qi that are scheduled to synchronously
perform the next set of I/O operations, while δi represents the concrete values that are
exchanged through those operations at the nodes A ∈ Ni. The value τi stands for the
duration time when the system evolves based on differential equations.

We now define the notion of timed data stream (TDS) which serves to formalize the
observable data flows of the runs in an HCA and thus formally define the behavior of
an HCA. A TDS is a sequence of triples (N, δ, t) where N is a non-empty set of nodes,
δ is a data assignment over N and t is a time point. The intuitive meaning of (N, δ, t) is
that at time t the nodes in N simultaneously perform some I/O-operations specified by
the pair (N, δ).

Definition 4 (Timed data stream). A timed data stream for a node-set N denotes any
finite or infinite sequence

Θ = (N0, δ0, t0) , (N1, δ1, t1) , ⋯ ∈ (2N × DA × IR≥0)
∗ (11)

such that Ni ≠ ∅, δi ∈ DA(Ni), 0 < t0 < t1 < ⋯. The empty timed data stream is denoted
by the symbol ε. The length ∥Θ∥ ∈ IN ∪ {∞} is defined as the number of triples (N, δ, t)
in Θ. The execution time

τ(Θ) =

⎧
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎩

tk ∥Θ∥ = k + 1

lim
i→+∞

ti ∥Θ∥ = ∞

0 Θ = ε

Θ is called time divergent if it is infinite and τ(Θ) = +∞.

Definition 5 (Timed data stream language). If � is a run of HCA T as above then the
induced TDS Θ(�) = (Ni0 , δi0 , ti0) , (Ni1 , δi1 , ti1) , ⋯ is obtained by

A Hybrid Model of Connectors in Cyber-Physical Systems 67

1. removing all flow- and jump-transitions in �;
2. building the projection on the transition labels;
3. replacing the duration time τi by the absolute time points ti = ∑

i
j=0 τi.

The generated TDS language of a state q in AT is

L(T ,q) = {Θ(�) ∶ � is a maximal q-run} . (12)

The language L(T) consists of all timed data streams Θ(�) where � is a maximal and
initial run.

s
ξ̇ = 0
ξ = 0

s̄
ξ̇ = −1

0 ≤ ξ ≤ 1

{A},#� 1

= 0

Fig. 2. HCA for a delay channel

Example 3. Let Data = {d} and N = {A}. Fig. 2 shows an HCA T with the set
of control states S = {s, s̄} and the initial control state s ∈ S 1. T has two edges:

s
{A},true,true
������→

#�1
s̄ and s̄

∅,true,#=0
�����→

σx

s. Here, # � 1 is an abbreviation of the function

re ∶ [A ↦ d] × {0} ↦ {1} and σx ∶ DataN → IR is the projection function satisfy-
ing σx(δ, x) = x for any δ ∈ DA(N) and x ∈ IR. According to Definition 3, we can
give the corresponding state-transition graph AT = (Q,�→, IQ) of the HCA T , where
Q = {⟨s,0⟩} ∪ {⟨s̄, x⟩ ∣ 0 ≤ x ≤ 1}, IQ = {⟨s,0⟩} and �→ consists of

– flow-transitions in control state s, that is ⟨s,0⟩
∅,[],τ
���→ ⟨s,0⟩ for each τ > 0;

– flow-transitions in control state s̄, that is ⟨s̄, x⟩
∅,[],τ
���→ ⟨s̄, x − τ⟩ for each x ∈ (0,1]

and 0 < τ ≤ x;

– an interaction-transition ⟨s,0⟩
{A},[A↦d],0
������→ ⟨s̄,1⟩;

– a jump-transition ⟨s̄,0⟩
∅,[],0
���→ ⟨s,0⟩.

The intuitive interpretation of how AT works is as follows. At the beginning,AT stays
in state ⟨s,0⟩, where there are two outgoing transitions: one is an interaction-transition
to state ⟨s̄,1⟩ and the other is a self-loop flow-transition to state ⟨s,0⟩ itself. Therefore
if no I/O-transition is performed, then AT must stay in state ⟨s,0⟩, until some I/O-
operations happen. Because T has only one node A and the data set Data contains only
one data item d, the only I/O-operation that can happen here is the one specified by the
data assignment δ = [A ↦ d], which triggers AT moving to state ⟨s̄,1⟩ through the

only interaction-transition ⟨s,0⟩
{A},[A↦d],0
������→ ⟨s̄,1⟩. From then on, AT will flow based

1 To make the graph simple and clear, here we omit all the trivial conditions and labels such as
the projection function σx, the true predicate and empty node-set ∅.

68 X. Chen, J. Sun, and M. Sun

on the differential equation ξ̇ = −1. Notice that in any state ⟨s̄, x⟩ where x ∈ (0,1], the
only outgoing transitions for AT is flow-transitions, which implies that AT will stay in
control state s̄ and keep flowing until it reaches the state ⟨s̄,0⟩. As soon as it reaches

⟨s̄,0⟩, it will choose the only outgoing transition ⟨s̄,0⟩
∅,[],0
���→ ⟨s,0⟩ and finally come

back to the initial state ⟨s,0⟩.
A typical maximal and initial run � of the HCA T has the form

� = ⟨s,0⟩
τ1
�→ ⟨s,0⟩

{A}, [A↦ d]
������→ ⟨s̄,1⟩

1
�→ ⟨s̄,0⟩

0
�→ ⟨s,0⟩

τ2
�→⋯ (13)

where τ1, τ2, . . . are positive real numbers and τ(�) = τ1 + 1 + τ2 + 1 +⋯ = +∞, which
means � is time divergent. The corresponding TDS Θ(�) induced by q is

Θ(�) = ({A}, [A ↦ d], τ1), ({A}, [A ↦ d], τ1 + 1 + τ2),⋯ (14)

and the TDS-language L(T) of T is set of sequences ({A}, [A ↦ d], t1), ({A}, [A ↦

d], t2),⋯ where ti+1 − ti > 1 for each i ≥ 1.

4 Hybrid Reo Circuits

This section explains how HCA is able to formalize connectors with hybrid behaviors
in Reo in a compositional way.

4.1 Hybrid Primitive Channels

Reo defines what a channel is and how channels can be composed into more com-
plex connectors. Reo places no restrictions on the behavior of channels. This allows
an open-ended set of user-defined channel types as primitives for constructing com-
plex connectors (also called circuits in Reo). In the sequel, we introduce a number of
common channel types when considering the hybrid behavior of CPSs.

s s̄(d)

{A},d � dA

{B},dB = d

Fig. 3. HCA for FIFO1 channel

FIFO channels. FIFO channels are the most common form of asynchronous channels.
The word “asynchronous” here means that there exists some delay after a data item
is written into the input port for the data item to be available on the output port. The
simplest FIFO channel with discrete behavior only is the FIFO1 channel. A FIFO1
channel is a FIFO channel with one buffer cell, which has a source end and a sink end.
The corresponding HCA for the FIFO1 channel is shown in Fig. 3, where all the trivial
conditions and labels are omitted intentionally.

A Hybrid Model of Connectors in Cyber-Physical Systems 69

s s̄(1)s̄(0)

{A},dA = 1

{B},dB = 1{A},dA = 0

{B},dB = 0

Fig. 4. Non-parametric HCA for FIFO1 channel

Note that in Fig. 3 we use a parametric notation for HCA which can be easily un-
folded to a standard HCA as in Definition 2. For example, let Data = {0,1} be the set
of data items, the unfolded non-parametric HCA is given in Fig. 4.

There are FIFO channels with some time properties such as the expiring FIFO1 chan-
nel, where a data item is lost if it is not taken out from the buffer through the sink end
within τ time units after it enters the source end. The HCA for an expiring FIFO1 chan-
nel is shown in Fig. 5. The edge from s to s̄(d) models a write action on the source end
A, which triggers the HCA moving to control state s̄(d), where the differential equa-
tion ξ̇ = −1 forces the automata to flow from the point τ ∈ IR towards 0 ∈ IR. If no
interaction-transition is available, i.e., the sink end B is not ready for a take operation,
then the automata will reach the point 0 ∈ IR finally and immediately jump to the control

state s trough s̄(d)
= t
��→ s in order to avoid violating the invariant predicate ξ ≥ 0. Under

this circumstance, the channel loses the data item in its buffer, which is exactly the be-
havior as we supposed. It is also possible that when the automaton is in the control state
s̄(d) a take operation happens on the sink end B. This will force the automata to accept

the I/O-operation and move back to the initial state s through s̄(d)
{B}, dB = d, # ≥ 0
��������→

� 0
s.

s
ξ̇ = 0
ξ = 0

s̄(d)
ξ̇ = −1
ξ ≥ 0

{A},d � dA,#� τ

{B},dB = d,# ≥ 0,#� 0

= 0

Fig. 5. HCA for expiring FIFO1 channel

A more interesting example is the data-sensitive FIFO1 channel where the behavior
is determined by not only the external environment (i.e., the I/O-operations on its chan-
nel ends) but also the data items which are transferred through the channel. A typical
example is a variant of a standard FIFO1 channel where after a write operation happens
on the source end A, the times it takes to “transfer” the data item from A to the sink
end B depends on the size of the data item being transferred. Let size ∶ Data → IR>0 be
a primitive function where size(d) gives the size of data item d ∈ Data and a constant
data transferring speed k ∈ IR>0. The HCA for such a channel is shown in Fig. 6. The

edge s
{A},d�dA
�����→

� size(d)
s̄(d) models a write operation on A which forces the automata to

70 X. Chen, J. Sun, and M. Sun

move to the control state s̄(d) and locates in size(d) ∈ IR. When the automata stays in
s̄(d), it flows based on the differential equation ξ̇ = −k in the negative direction in IR.
Notice the invariant set of s̄(d) is the entire space IR, therefore the automata is allowed
to stay in the control state s̄(d) as long as there is no I/O-operation succeeds on B. If a
take operation successfully happens on B, then the automata checks all legal outgoing

transitions from s̄(d). Since the only outgoing transition is s̄(d)
{B}, dB = d, # ≤ 0
��������→

� 0
s where

the space constraint is # ≤ 0, the automata is able to make the transition only when it
reaches the non-positive part in IR, that is at least size(d)/k time units after the write
operation happened on A.

s
ξ̇ = 0
ξ = 0

s̄(d)
ξ̇ = −k
ξ ∈ IR

{A}, d � dA, #� size(d)

{B}, dB = d, # ≤ 0, #� 0

Fig. 6. HCA for constant speed transferring FIFO1 channel

4.2 Join on HCA

In Reo, complex circuits can be composed by primitive channels. We now define the
composition operator on HCA that serves to formalize Reo circuits in a compositional
way.

Definition 6 (HCA product). Let T1 and T2 be two HCA

Ti = (S i, IR
ni ,Ni,Ei, IS i,{Ins}s∈S i ,{ fs}s∈S i ,{ret}t∈Ei) (15)

where i ∈ {1,2} such that the set of all shared nodes N0 = N1∩N2. The product T1!T2

is defined as an HCA

T = (S , IRn,N ,E , IS ,{Ins}s∈S ,{ fs}s∈S ,{ret}t∈E) (16)

consisting of

– a set of control states S = S 1 × S 2 and a set of initial control states IS = IS 1 × IS 2;
– the dynamical system space IRn where n = n1 + n2;
– a finite set of nodes N = N1 ∪N2;
– an n-dimensional dynamical system Σs = (Ins, fs) for each s = ⟨s1, s2⟩ ∈ S ,

where Ins = Ins1 × Ins2 , and fs ∶ Ins → IRn is a function defined as fs(x1, x2) =

(fs1(x1), fs2(x2)) for each x1 ∈ Ins1 and x2 ∈ Ins2;
– an edge relation E which is a subset of S × 2N × DC × S C × S ;
– a reset function ret ∶ DataN

× Ins → Ins̄ for each t = (s,N,g, ϕ, s̄) ∈ E .

A Hybrid Model of Connectors in Cyber-Physical Systems 71

Intuitively, the compositional product HCA T behaves exactly as the parallel of T1

and T2, with the only constraint that all I/O-operations happen on the shared ports in N

should coincide with each other. Therefore, ⟨s1, s2⟩
N, g, ϕ
���→

re
⟨s̄1, s̄2⟩ ∈ E is defined by the

following rules.

– The first rule deals with the situation when T1 and T2 are about to do some I/O-
operations on the nodes in N1 and N2 respectively at the same time. This is allowed
only when they coincide on the shared nodes, that is

s1
N1, g1, ϕ1
����→

re1

s̄1 ∈ E1

s2
N2, g2, ϕ2
����→

re2

s̄2 ∈ E2

N1 ∩N0 = N2 ∩N0

g1 ∧ g2 ≢ f alse
ϕ1 ∧ ϕ2 ≢ f alse

⟨s1, s2⟩
N1 ∪ N2, g1 ∧ g2, ϕ1 ∧ ϕ2
�����������→

re
⟨s̄1, s̄2⟩ ∈ E

(17)

where re ∶ DataN
× In

⟨s1,s2⟩
→ ⟨s̄1, s̄2⟩ is a function defined as follows. For each

δ ∈ DataN and i ∈ {1,2}, let δi ∈ DataNi satisfy δi(A) = δ(A) for each A ∈ Ni. For
each δ ∈ DataN and ⟨x1, x2⟩ ∈ ⟨Ins1 , Ins2⟩,

re(δ, ⟨x1, x2⟩) = ⟨re1(δ1, x1), re2(δ2, x2)⟩.

– The second rule deals with the situation when T1 is about to make a discrete tran-
sition while T2 continues in flowing. This is allowed if T1’s transition does not ask
T2 to coordinate with it, that is

s1
N1 , g1, ϕ1
����→

re1

s̄1 ∈ T1

s2 ∈ S 2

N1 ∩N0 = ∅

⟨s1, s2⟩
N1, g1, ϕ1
����→

re
⟨s̄1, s2⟩

(18)

where re ∶ DataN
× In

⟨s1,s2⟩ → ⟨s̄1, s̄2⟩ is a function defined as re(δ, ⟨x1, x2⟩) =

re1(δ, x1) which is well defined since N = N1. There is a symmetric rule which
deals with the situation when T2 is about to make a discrete transition while T1

continues in flowing:

s2
N2 , g2, ϕ2
����→

re2
s̄2 ∈ T2

s1 ∈ S 1

N2 ∩N0 = ∅

⟨s1, s2⟩
N2, g2, ϕ2
����→

re
⟨s1, s̄2⟩

(19)

72 X. Chen, J. Sun, and M. Sun

Roughly speaking, the product HCA T needs to deal with three situations:

– both HCA choose to make discrete transitions. This is captured by (17);
– one of the HCA chooses to make a discrete transition while the other chooses to stay

in current control state and continues in flowing. This is captured by (18) and (19).
– both HCA choose to stay in their current control states respectively and continue in

flowing. This is captured by the composed dynamical systems Σ
⟨s1,s2⟩.

Here we introduce some convenient notations for the join operation. For s = ⟨s1, s2⟩,
we use s. f irst, s.second to denote s1, s2 respectively. Similarly, for x = ⟨x1, x2⟩, we use
x. f irst, x.second to denote x1, x2 respectively.

The join operator introduced in Definition 6 captures the replicator semantics of
source nodes in Reo. Therefore it can serve as the semantic operator for the join of two
nodes where at least one of them is a source node. To mimic the merge semantics of
sink nodes, we introduce the HCA TMerger shown in Fig. 7. To join two sink nodes A and
B, we first choose a new node named C and then return TMerger(A, B,C)!TA!TB where
TA and TB are the HCA that model the sub-circuits containing A and B respectively.

s
ξ̇ = 0
ξ = 0

{A,C}, dA = dC {B,C}, dB = dC

Fig. 7. HCA for merger

The correctness of the join operator on HCA is guaranteed by means of TDS-
languages. For this purpose, we define the join operator on TDS-languages and es-
tablish a compositionality result in Theorem 2.

Definition 7 (Join on timed data streams and TDS languages). Let Θ = ((Ni, δi, ti))i

andΦ = ((M j, γ j, s j)) j be two TDS over N and M respectively. The common node-set
is denoted as N0 = N ∩M. We say that Θ and Φ are inconsistent if there exist i ∈ IN
and j ∈ IN such that ti = s j, (Ni ∪ M j) ∩ N0 ≠ ∅ and δi ↾N0≠ γ j ↾N0 . We say that Θ and
Φ are consistent if they are not inconsistent. The join Θ !Φ of two consistent TDS can
be inductively defined as a sequence generated by

– appending (N1, δ1, t1) to Θ′ !Φ, if t1 < s1;
– appending (M1, γ1, s1) to Θ !Φ′, if s1 < t1;
– appending (N1 ∪ M1, δ1 ∪ γ1, t1) to Θ′ !Φ′, if s1 = t1. δ1 ∪ γ1 is well defined since
Θ and Φ are consistent.

Let L1 and L2 be two TDS-languages overN1 andN2 respectively. The join L1!L2 is
a TDS-language over N1∪N2 consists of all timed data streams Θ that can be obtained
by joining two consistent timed data streams Θ1 ∈ L1 and Θ2 ∈ L2.

Lemma 1. Let T1 and T2 be HCA, then

L(T1 ! T2) = L(T1) ! L(T2) . (20)

A Hybrid Model of Connectors in Cyber-Physical Systems 73

Lemma 1 directly leads to the following compositional theorem, which implies the
correctness of the product operator on HCA.

Theorem 2. Let T1, T2 and T3 be HCA, then

L((T1 ! T2) ! T3) = L(T1 ! (T2 ! T3)) (21)

Example 4. Figure 8 shows a Reo circuit consisting of two expiring FIFO1 channels,
with expiring limit τ and ω respectively. The HCA for the two channels and the whole
circuit obtained by their join are shown in Fig. 9.

Fig. 8. The Reo circuit obtained by joining two expiring FIFO1 channels

s
ξ̇ = 0
ξ = 0

s̄
ξ̇ = −1
ξ ≥ 0

{A},dA = d,#� τ

{B},dB = d,# ≥ 0,#� 0

= 0

p
η̇ = 0
η = 0

p̄
η̇ = −1
η ≥ 0

{B},dB = d,#� ω

{C},dC = d,# ≥ 0,#� 0

= 0

sp sp̄

s̄p s̄p̄

{
A
}
,d

A
=

d,
1
�
τ

{C}, dC = d, #2 ≥ 0

#2 = 0
{

A
}
,d

A
=

d,
1
�
τ

{A}, dA = d, #1 � τ, #2 = 0

{A
,C
},

d A
=

dC
=

d,
1
�
τ,

2
≥

0

1
=

0

{B
},

d B
=

d,
1
≥

0,
2
�
ω

#
1

#
2 = 0

{C
}, #

1 = 0

=

∧

0

#

∧

2 ≥ 0, dC
= d # 1

=
0

#2 = 0

{C}, dC = d, #2 ≥ 0

Fig. 9. HCA for two expiring FIFO1 channels and the Reo circuit consisting of them

5 Conclusion

In this paper we introduced hybrid constraint automata (HCA) as a formal model to
define hybrid behavior for Reo component connectors. We presented a compositional
product operator that can serves as a basis for the automated construction of a hybrid

74 X. Chen, J. Sun, and M. Sun

constraint automaton model from a given Reo circuit, and as a starting point for its
formal verification.

In terms of future work, what we would like to do in the next step is to develop
proper logics for specifying hybrid properties of Reo connectors. Development of suit-
able algorithms and model checking tools to verify hybrid properties of connectors in
Reo based on the HCA model will also be studied.

Acknowledgement. The work was partially supported by the National Natural Science
Foundation of China under grant no. 61202069 and 61272160, project IGDSi1305012
from SUTD, and Research Fund for the Doctoral Program of Higher Education of China
under grant no. 20120001120103.

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid Automata: An Algorithmic
Approach to the Specification and Verification of Hybrid Systems. In: Grossman, R.L., Ravn,
A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 209–229.
Springer, Heidelberg (1993)

2. Arbab, F.: Reo: A Channel-based Coordination Model for Component Composition. Mathe-
matical Structures in Computer Science 14(3), 329–366 (2004)

3. Arbab, F., Baier, C., de Boer, F., Rutten, J.: Models and Temporal Logics for Timed Com-
ponent Connectors. In: Proceedings of SEFM2004, pp. 198–207. IEEE Computer Society
(2004)

4. Arbab, F., Rutten, J.: A coinductive calculus of component connectors. In: Wirsing, M.,
Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 34–55. Springer,
Heidelberg (2003)

5. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in Reo by con-
straint automata. Science of Computer Programming 61, 75–113 (2006)

6. Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE Computer
Society (1996)

7. Kokash, N., Krause, C., de Vink, E.: Time and data aware analysis of graphical service mod-
els. In: Proceedings of SEFM 2010, pp. 125–134. IEEE Computer Society (2010)

8. Kokash, N., Krause, C., de Vink, E.: Reo+mCRL2: A framework for model-checking
dataflow in service compositions. In: Formal Aspects of Computing, vol. 24, pp. 187–216.

9. Lee, E.A.: Computing Foundations and Practice for Cyber Physical Systems: A Preliminary
Report. Technical Report UCB/EECS-2007-72, Department of Electrical Engineering and
Computer Sciences, UC Berkeley (2007)

10. Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O Automata Revisited. In: Di Benedetto,
M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 403–417.
Springer, Heidelberg (2001)

11. Lynch, N., Segala, R., Vaandrager, F., Weinberg, H.: Hybrid I/O Automata. In: Alur, R.,
Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 496–510. Springer,
Heidelberg (1996)

12. Meng, S.: Connectors as designs: The time dimension. In: Proceedings of TASE 2012,
pp. 201–208. IEEE Computer Society (2012)

13. Peano, G.: Demonstration de l’intégrabilité des équations defférentielles ordinaires. Mathe-
matische Annalen 37, 182–228 (1890)

A Language-Independent Proof System

for Mutual Program Equivalence�

Ştefan Ciobâcă1, Dorel Lucanu1, Vlad Rusu2, and Grigore Roşu1,3

1 “Alexandru Ioan Cuza” University, Romania
2 Inria Lille, France

3 University of Illinois at Urbana-Champaign, USA

Abstract. Two programs are mutually equivalent if they both diverge
or they both terminate with the same result. In this paper we introduce
a language-independent proof system for mutual equivalence, which is
parametric in the operational semantics of two languages and in a state-
similarity relation. We illustrate it on two programs in two different lan-
guages (an imperative one and a functional one), that both compute the
Collatz sequence.

1 Introduction

Two terminating programs are equivalent if the final states that they reach
are similar (they have the same result). Nontermination can be incorporated in
equivalence in several ways. In this article, we explore mutual equivalence, an
equivalence relation that is also known in the literature as full equivalence [6].
Two programs are said to be mutually equivalent iff they either both diverge or
they both terminate and then the final states that they reach are similar. Mutual
equivalence is thus an adequate notion of equivalence for programs written in
deterministic sequential languages and is useful, e.g., in compiler verification.

In this paper we formalize the notion of mutual equivalence and propose a
logic with a deductive system for stating and proving mutual equivalence of
two programs that are written in two possibly different languages. The deduc-
tive system is language-independent, in the sense that it is parametric in the
semantics of the two-languages. We prove that the proposed system is sound:
when it succeeds it proves the mutual equivalence of the programs given to it
as input. The key idea is to use the proof system to build a relation on configu-
rations that is closed under the transition relations given by the corresponding
operational semantics. This involves constructing a single language that is capa-
ble of executing pairs of programs written in the two languages. The challenge
is how to achieve that generically, where the two languages are given by their
formal semantics, without relying on the specifics of any particular language.
The aggregated language must be capable of independently “executing” pairs of

� This paper is supported by the Sectorial Operational Programme Human Resource
Development (SOP HRD), financed from the European Social Fund and by the
Romanian Government under the contract number POSDRU/159/1.5/S/137750.

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 75–90, 2014.
c© Springer International Publishing Switzerland 2014

76 Ş. Ciobâcă et al.

programs in the original languages. Once the aggregated language constructed,
the most important rule in our proof system for mutual equivalence is the Cir-
cularity rule, which incrementally postulates synchronization points in the two
programs. We illustrate the proof system on two programs (Fig. 5 on page 88)
that both compute the Collatz sequence, but in different ways: one is written in
an imperative language and the other one in a functional language. We prove
with our system that they are mutually equivalent without, of course, knowing
whether they terminate.

Section 2 introduces preliminaries needed in the rest of the paper. Section 3
presents matching logic, a specialization of first-order logic, and shows how it
can be used to give operational semantics to programming languages. Section 4
then shows how to aggregate matching logic semantics. Section 5 shows how our
formalism can be used to specify equivalent programs and Section 6 presents our
proof system for mutual equivalence and applies it to two programs computing
the Collatz sequence. Section 7 discusses related work and concludes. Proofs not
included due to space constraints can be found in the technical report [2].

2 Preliminaries

We present the syntax and semantics of many-sorted first-order logic, used
to define matching logic. We state the amalgamation theorem for first-order logic,
a known result that allows us to construct a model for the pushout construction
of two signatures, from the the models of the two signatures, even when the two
signature share function symbols. We use the amalgamation result to construct
the aggregated semantics of two languages from their individual semantics.

2.1 Many-Sorted First Order Logic

Let S be a set of sorts, Σ an S-sorted algebraic signature (i.e., an indexed set
Σ = ∪w∈S∗,s∈SΣw,s, where Σw,s is the set of function symbols of arity w with
a result of sort s) and Π an indexed set Π = ∪w∈S∗Πw of predicate symbols.
Then Φ = (S,Σ,Π) is called a many-sorted FOL signature. We write x ∈ Φ
instead of x ∈ S ∪ Σ ∪ Π . By TΣ,s(Var) we denote the set of terms of sort s
built over the variables Var with function symbols in Σ. We sometimes omit Σ
if it is clear from the context and we write Ts(Var) instead of TΣ,s(V ar).

Example 1. The signatures ΦI = (SI , ΣI , ΠI) and ΦF = (SF , ΣF , ΠF) in Fig-
ure 1 model the syntax of an imperative and a functional programming
language, with sorts SI = {Int, Var, ExpI, Stmt, Code, CfgI} in IMP and sorts
SF = {Var, Int, ExpF, Val, CfgF} in FUN, and function symbols

ΣI = { + , * , - , + Int, - Int, * Int, := , skip, ; , i t e , while do , 〈 , 〉},
ΣF = { + , * , - , + Int, - Int, * Int, , letrec = in , i t e , μ . , λ . , 〈 〉}.

The functions above are written in Maude-like notation, the underscore () de-
noting the position of an argument. The symbol i t e stands for if then else .
Althought not written explicitly above, the signatures also include the one-
argument injections needed to inject sorts like Int and Var into ExpI.

A Language-Independent Proof System for Mutual Program Equivalence 77

ExpI ::= Var | Int | ExpI + ExpI

Stmt ::= Var := ExpI

| skip | Stmt ; Stmt

| if ExpI then Stmt else Stmt

| while ExpI do Stmt

Code ::= ExpI | Stmt

CfgI ::= 〈Code, Map{Var, Int}〉

ExpF ::= Var | Val | ExpF + ExpF

| ExpF ExpF

| letrec Var Var = ExpF in ExpF

| if ExpF then ExpF else ExpF

| μ Var . ExpF

Val ::= Int | λ Var . ExpF

CfgF ::= 〈ExpF〉

Fig. 1. ΦI = (SI , ΣI ,ΠI) and ΦF = (SF , ΣF ,ΠF), the signatures of IMP and FUN,
detailed in Example 1. Only the function symbols are detailed in the figure; the pred-
icates consist of the arithmetic comparison operators: ΠI = ΠF = {=Int, <Int,≤Int}.
The difference between the operators + , * , etc. and their correspondants + Int,
∗ Int, etc. is that the former are the syntactic language constructs for addition, etc.,

while the later are the actual function symbols denoting integer addition, etc.

Definition 1. We say that T = (�·�ST , �·�FT , �·�PT) is a model of a many-sorted
signature Φ = (S,Σ,Π) if:

1. �s�
S
T , the interpretation of the sort s in the model T , is a set for each s ∈ S

2. �f�
F
T , read as the interpretation of the function symbol f in the model T ,

is a function defined on �s1�T × . . . × �sn�T with values in �s�T , for every
function symbol f ∈ Σs1,...,sn,s.

3. �p�
P
T , read as the interpretation of the predicate symbol p in the model T , is

a subset of �s1�T × . . .× �sn�T for every predicate symbol p ∈ Πs1,...,sn .

From now on, we write �·�T instead of �·�ST , �·�FT and �·�PT when the type of
the argument (sort, function symbol or predicate symbol), is clear from context.

Example 2. We consider TI to be a model of ΦI = (SI , ΣI , ΠI) where the inter-
pretation �Var�TI

of the sort Var is the set of strings, the interpretation �Int�TI

of the sort Int is the set of integers and the function symbols are interpreted
syntactically (as terms). The predicates =Int, <Int,≤Int are interpreted as the
respective comparison relations between integers.

Definition 2. Let Φ = (S,Σ,Π) and Φ′ = (S′, Σ′, Π ′) be two many-sorted FOL
signatures and let h be a function from S ∪Σ ∪Π to S′ ∪Σ′ ∪Π ′. The function
h is a morphism between Φ and Φ′ if it preserves sort compatibility.

Definition 3. Let h be a morphism from Φ = (S,Σ,Π) to Φ′ = (S′, Σ′, Π ′) and
T ′ be a model of Φ′ = (S′, Σ′, Π ′). We define T ′�h (the reduct of T ′ through h)
to be the model of Φ such that:

1. �s�T ′�h = �h(s)�T ′ for all s ∈ S.

2. �f�T ′�h(e1, . . . , en) = �h(f)�T ′(e1, . . . , en) for all f ∈ Σs1,...,sn,s and for all

e1 ∈ �s1�T ′�h , . . ., en ∈ �sn�T ′�h .
3. (e1, . . . , en) ∈ �p�T ′�h iff (e1, . . . , en) ∈ �h(p)�T ′ for all p ∈ Πs1,...,sn and for

all e1 ∈ �h(s1)�T ′ , . . . , en ∈ �h(sn)�T ′ .

78 Ş. Ciobâcă et al.

(S0, Σ0,Π0) (SR, ΣR,ΠR)

(SL, ΣL,ΠL) (S′, Σ′,Π ′)

hR

hL
h′
L

h′
R

Fig. 2. Push-out diagram assumed throughout the paper

Example 3. Let Φ = ({Int}, {opInt | op ∈ { + , - , * }}, {opInt | op ∈ {=, <
,≤}) be a signature and let h (with h(Int) = Int and h(opInt) = opInt for
op ∈ { + , - , * }) be a morphism from Φ to ΦI (defined above in Example 1).
Let TI be the model of ΦI considered above in Example 2. We have that �Int�T ′�h
is the set of integers, � + Int�T ′�h is the addition of integers, etc.

2.2 The Amalgamation Theorem

Theorem 1 (Pushout). Let ΦR, ΦL and Φ0 be three FOL signatures, hR a
morphism from Φ0 to ΦR and hL a morphism from Φ0 to ΦL. There exists a

tuple (h′
L, Φ

′, h′
R), called the pushout of ΦL

hL←− Φ0
hR−→ ΦR, where h′

L is a
morphism from ΦL to Φ′ and h′

R a morphism from ΦR to Φ′ such that:

1. (commutativity) h′
L(hL(x)) = h′

R(hR(x)) for all x ∈ Φ0 and
2. (minimality) if there exist Φ′′ and morphisms h′′

L (from ΦL to Φ′′) and h′′
R

(from ΦR to Φ′′) such that h′′
L(hL(x)) = h′′

R(hR(x)) for all x ∈ Φ0 then there
exists a morphism h from Φ′ to Φ′′.

Furthermore, the pushout is unique (up to renaming). See, e.g., [7], for a proof.
The push-out is summarised in Figure 2, which is used throughout the paper.

Proposition 1. In the push-out in Figure 2, if x′ ∈ Φ′ = (S′, Σ′, Π ′) such that
there exist xL ∈ ΦL and xR ∈ ΦR with h′

R(xR) = x′ = h′
L(xL), then there exists

x ∈ Φ such that hL(x) = xL and hR(x) = xR.

Theorem 2 (Amalgamation). If TR, TL and T0 are models of ΦR, ΦL and
respectively Φ0 such that TR�hR

= TL�hL
= T0, there exists a unique model T ′

of Φ′ such that T ′�h′
L
= TL and T ′�h′

R
= TR.

3 Matching Logic Syntax and Semantics

We introduce notation used throughout the paper and the recently introduced
matching logic [16,17], a language-parametric logic for reasoning about program
configurations, and its use in language semantics. We choose matching logic as
it allows to faithfully represent all of the usual operational semantics styles such
as small-step, big-step, etc [16]. Matching logic extends FOL with basic patterns,
which are open terms (i.e., terms with variables) that can be used as basic formu-
lae in the logic. We first introducematching logic signatures (ML signatures),
which extend FOL signatures by fixing a sort of program configurations.

A Language-Independent Proof System for Mutual Program Equivalence 79

Definition 4. A matching logic signature is a tuple (Cfg, S,Σ,Π), where the
tuple (S,Σ,Π) is a FOL signature and Cfg ∈ S.

Example 4. Recall the first-order signature ΦI = (SI , ΣI , ΠI) in Example 1. We
have that (CfgI, SI , ΣI , ΠI) is a matching logic signature. Note that ground
instances of sort CfgI represent actual configurations of IMP programs.

Matching logic formulae extend FOL formulae with terms of sort Cfg as atomic
formulae called basic patterns:

Definition 5. Given a matching logic signature (Cfg, S,Σ,Π), the following are
matching logic formulae (ML formulae) over (Cfg, S,Σ,Π) and the set of
sorted variables Var: ϕ ::= ¬ϕ, ϕ ∧ ϕ, ∃x.ϕ, π where π ∈ TCfg(Var), x ∈ Var.

Example 5. Continuing Example 4, ϕ = 〈skip, x �→ x, y �→ y〉 ∧ x >Int 10 is
a matching logic formula over the matching logic signature (CfgI, SI , ΣI , ΠI).
Note that x and y (written in teletype font) are program variables (therefore
constant symbols in ΣI , while x and y (written in italics) are variables. Intu-
itively, and as we will see later on, the formula above denotes IMP configurations
that have terminated (only the instruction skip is left in the code to execute)
and in which the program variable x is mapped to an integer strictly greater than
10 and the program variable y is mapped to an integer y that is unconstrained.

Definition 6. We say that T is a matching logic model of (Cfg, S,Σ,Π) if
T is a first order model of (S,Σ,Π).

Example 6. The model T defined in Example 2 is also a model of the matching
logic signature (CfgI, SI , ΣI , ΠI).

In what follows, we fix a model T of (Cfg, S,Σ,Π). Elements of �Cfg�T are
called concrete configurations. We represent concrete configurations by γ, γ′, γ1
and variations thereof. Valuations ρ : Var → T of matching logic are simply
valuations of the corresponding first order logic. The satisfaction relation of
matching logic is defined between pairs (γ, ρ) of configurations and valuations
and ML formulae ϕ as follows:

Definition 7. The matching logic satisfaction relation |= (written as (γ, ρ)
|= ϕ and read as (γ, ρ) is a model of ϕ) is defined inductively as follows:

1. (γ, ρ) |= ¬ϕ′ if it is not true that (γ, ρ) |= ϕ′

2. (γ, ρ) |= ϕ1 ∧ ϕ2 if (γ, ρ) |= ϕ1 and (γ, ρ) |= ϕ2

3. (γ, ρ) |= ∃x.ϕ′, where x is of sort s, if there exists e ∈ �s�T such that
(γ, ρ[e/x]) |= ϕ′ (where ρ[e/x] is the valuation obtained from ρ by updating
the value of x to be e).

4. (γ, ρ) |= π, where π is a basic pattern if ρ(π) = γ.

Example 7. We continue Example 5, where we defined ϕ = 〈skip, x �→ x, y �→
y〉 ∧ x >Int 10. Let ρ be a valuation where ρ(x) = 12 and ρ(y) = 3. Let γ =
〈skip, x �→ 12, y �→ 3〉. We have that (γ, ρ) |= ϕ. Considering γ′ = 〈skip, x �→

80 Ş. Ciobâcă et al.

3, y �→ 13〉 and a valuation ρ′ with ρ′(x) = 3 and ρ′(y) = 13, we have that
(γ′, ρ′) �|= ϕ because the condition x >Int 10 is not satisfied. Furthermore, if
γ′′ = 〈skip, x �→ 3, y �→ 13〉 and ρ′′ is a valuation with ρ′′(x) = 7 and ρ′′(y) = 13,
we have that (γ′′, ρ′′) �|= ϕ because γ′′ will not match against the basic pattern
〈skip, x �→ x, y �→ y〉 with the valuation ρ′′ (the valuation ρ′′ assigns 7 to the
variable x, while x should be 3 due to matching).

Definition 8. A matching logic semantic domain for a language is a tuple
(Cfg, S ,Σ ,Π , T), where (Cfg, S ,Σ ,Π) is a matching logic signature and T a
matching logic model of (Cfg, S ,Σ ,Π).

Example 8. For TI defined in Example 6, we have that (CfgI, SI , ΣI , ΠI , TI) is
a matching logic semantic domain for the IMP language.

Note that the matching logic semantic domain fixes the abstract syntax of the
language (programs are first-order terms of sort Cfg) and the configuration space
(given by the model T). However, the matching logic semantic domain does not
say anything about the dynamic behavior of configurations. This is the role of
the matching logic semantics. A matching logic semantics for a programming
language extends the matching logic semantic domain by the addition of several
reachability rules:

Definition 9. A reachability rule is a pair ϕ⇒ ϕ′ of matching logic formulae.

Example 9. Let us consider the rule 〈skip;s,m〉 ⇒ 〈s,m〉. In the rule above, s
is a variable of sort Stmt and m is a variable of sort Map{Var,Int}. It describes
what happens in the IMP language when the code to execute is a sequence com-
posed of the skip instruction and another statement s. The skip instruction
is simply dissolved and the sequence is simply replaced by s. The environment
(captured in the variable m) is not changed during this step.

Definition 10. The matching logic semantics for a language is a tuple
(Cfg, S ,Σ ,Π , T ,A,�T), where (Cfg, S ,Σ ,Π , T) is matching logic semantic do-
main, A a set of reachability rules and �T is the transition system generated by
A on T , that is, �T ⊆ TCfg ×TCfg with γ �T γ′ iff there exist ϕ⇒ ϕ′ ∈ A and
ρ such that (γ, ρ) |= ϕ and (γ′, ρ) |= ϕ′.

Example 10. Figure 3 presents the set of reachability rules AI of IMP. Due to
space constraints, the rules AF for FUN can be found in the technical report [2].

As discussed in [16], conventional operational semantics of programming lan-
guages can be regarded as matching logic semantics: Σ includes the abstract
syntax of the language as well as the syntax of the various operations in the
needed mathematical domains; A is the (possibly infinite) set of operational
semantics rules of the language; T is the model of configurations of the lan-
guage merged together with the needed mathematical domains, and the relation
�T is precisely the transition relation defined by the operational semantics.
Fig. 3 shows the matching logic semantics of the IMP, obtained by mechanically

A Language-Independent Proof System for Mutual Program Equivalence 81

〈x, env〉 ⇒ 〈env(x), env〉 ∈ AI

〈i1 op i2, env〉 ⇒ 〈i1 opInt i2, env〉 ∈ AI

〈x := i, env〉 ⇒ 〈skip, env[x �→ i]〉 ∈ AI

〈skip;s, env〉 ⇒ 〈s, env〉 ∈ AI

〈if i then s1 else s2, env〉 ∧ i �= 0⇒ 〈s1, env〉 ∈ AI

〈if 0 then s1 else s2, env〉 ⇒ 〈s2, env〉 ∈ AI

〈while e do s, env〉 ⇒ 〈if e then s while e do s else skip, env〉 ∈ AI

〈C[code], env〉 ⇒ 〈C[code ′], env′〉 ∈ AI if 〈code, env〉 ⇒ 〈code ′, env′〉 ∈ AI

where C ::= | C op e | i op C | if C then s1 else s2 | v := C | C s

Fig. 3. Matching logic semantics of IMP as a set AI of reachability rules (schemata).
op ranges over the binary function symbols and opInt is their denotation in TI .

representing the conventional operational semantics of this language based on
reduction semantics with evaluation contexts into matching logic. The only ob-
servable difference between the original semantics of these languages and their
matching logic semantics is that the side conditions have been conjuncted with
the left-hand-side patterns in the positive case of the conditionals. Note that
AIMP and AFUN are infinite, as the rules in Fig. 3 are schemata in meta-variable
C (the evaluation context).

Given a matching logic language semantics as a set of reachability rules, it
is possible to derive other reachability rules that “hold” as consequences of the
initial set of rules. This is captured by the following definition.

Definition 11. Given a matching logic semantics (Cfg,Σ ,Π , T ,A,�T), we say
that ϕ→∗ ϕ′ (resp. ϕ→+ ϕ′) is a semantic consequence of A, and we write
A |= ϕ→∗ ϕ′ (resp. A |= ϕ→+ ϕ′), if for any γ ∈ �Cfg�T , for any valuation ρ
such that (γ, ρ) |= ϕ, there exists γ′ ∈ �Cfg�T such that (γ′, ρ) |= ϕ′ and γ →∗

T γ′

(resp. γ →+
T γ′).

Example 11. In the set of reachability rules AI for the IMP languages (given
in Figure 3), if we let SUM ≡ while i <= n do (s := s + i; i := i + 1) be
the program that computes the sum of all numbers between i and n, then we
have

AI |= 〈SUM, n �→ n, i �→ 0; s �→ 0〉 ∧ n ≥Int 0→+

〈skip, [n �→ n; i �→ n+ 1; s �→ n(n+Int1)/Int2]〉.

Intuitively the above reachability rule that is a semantic consequence of the IMP
set of leachability rules claims that the program SUM indeed computes the sum
of the numbers 1 upto n.

We have previously shown (see [16] and subsequent papers) that there exists
a sound and (relatively) complete proof system for establishing semantic con-
sequences such as the above. In this article, we assume that such a system is
available as an oracle to our proof system for program equivalence.

82 Ş. Ciobâcă et al.

4 Aggregation of Matching Logic Semantic Domains

In this section we show how, given the matching logic semantic domains for
two languages, we can construct a matching logic semantic domain for the
aggregation of the two languages. The aggregation of two languages is a new
language in which programs consists of pairs of programs in the two languages.
The challenge is how to construct the domain such that sorts that are common
in the two languages (i.e. the sort of integers) has a common interpretation in
the aggregated domain. Note that it is always possible to aggregate two lan-
guages, because the common part Σ0 can be chosen to be empty. We rely on
pushout construction in Section 2 (Theorem 1) and the amalgamation theorem
(Theorem 2) in order to perform the aggregation as expected. This construction
involves significant technical and conceptual difficulties and, to our knowledge,
it has not been described before.

Let Si = (Cfgi , Si ,Σi ,Πi , Ti), i ∈ {L,R} be the matching logic semantic do-
mains of two languages, (S0, Σ0, Π0) a matching logic signature, hL and hR mor-
phisms from (S0, Σ0, Π0) to (SL, ΣL, ΠL) and from (S0, Σ0, Π0) to (SR, ΣR, ΠR).
Let TL, TR, T0 be models of (SL, ΣL, ΠL), (SR, ΣR, ΠR) and resp. (S0, Σ0, Π0)
such that TL�hL

= T0 = TR�hR
. Let (h′

L, (S
′, Σ′, Π ′), h′

R) be the pushout of

(SL, ΣL, ΠL)
hL←− (S0, Σ0, Π0)

hR−→ (SR, ΣR, ΠR).
By Theorem 2, there exists a unique (S′, Σ′, Π ′)-model T ′ such that T ′�h′

L
=

TL and T ′�h′
R
= TR. We define now the aggregation of the two matching logic

semantic domains. We let S = (Cfg, S ,Σ ,Π , T), where

– Cfg is a new distinguished sort;
– S = S′ ∪ {Cfg}
– Σ = Σ′∪{〈 , 〉 : hL(CfgL)×hR(CfgR)→ Cfg, pri : Cfg → Cfgi , i ∈ {L,R}};
– Π = Π ′;
– TCfg = T ′

h′
L(CfgL) × T ′

h′
R(CfgR)

– T〈 , 〉(γL, γR) = (γL, γR), TprL((γL, γR)) = γL, TprR((γL, γR)) = γR.
– To = T ′

o for any other object o ∈ S ∪Σ ∪Π .

We define a new matching logic semantic domain S ′
i = (h′

i(Cfgi), S
′,Σ ′,Π ′, T ′)

for each i ∈ {L,R}. The matching logic semantic domain S ′
i is the embedding

of Si into S. The difference between Si and S ′
i is that S ′

i works in a slightly
larger algebra that contains symbols from the other language. However, since
the matching logic semantics rules do no mention these additional symbols, exe-
cutions of programs in Si coincide with executions of programs in S ′

i. In the rest
of this section we show that this is indeed the case and we establish relations
between executions of the aggregate language and the individual languages.

Remark 1. Let i ∈ {L,R}. For every valuation ρ : Var → Ti, we define h(ρ) to
be the valuation h(ρ) : h(Var)→ Ti, with h(ρ)(x) = ρ(x) for all x ∈ Var .

We first show that applying the morphism h′
i on both the matching logic

formula and valuation does not change the matching logic satisfaction relation.

A Language-Independent Proof System for Mutual Program Equivalence 83

Proposition 2. For any pattern π and any valuation ρ, ρ(π) = h(ρ)(π).

Let γi ∈ �h′
i(Cfgi)�T ′ be a configuration and ϕi a matching logic formula over

(Si, Σi, Πi) and the set of variables Var , for each i ∈ {L,R}. Note that the same
set of variables Var is used for both semantic domains SL and SR.

Lemma 1. For all valuations ρ : Var → Ti, (γi, h′
i(ρ)) |= h′

i(ϕi) iff (γi, ρ) |= ϕi

(where i ∈ {L,R}).
The above lemma allow us to conclude that executions in Si and S ′

i coincide:

Proposition 3. If γi, γ
′
i ∈ �h′

i(Cfgi)�T ′ , then γi �S′
i
γ′
i iff γi �Si γ

′
i.

We now establish the connection between matching logic formulae over the
aggregate language and the two individual languages. We first define the left-
and right-projection of matching logic formulae.

Definition 12. Let ϕ be a (S,Σ,Π)-matching logic formula. For i ∈ {L,R},
we define the (S′i, Σ′i, Π ′i)-matching logic formula pri(ϕ) (for i = L, the left-
projection and for i = R, the right-projection) to be ϕ where every term
〈tL, tR〉 of sort Cfg is replaced by ti.

We now distinguish a class of matching logic formulae which behave well with
respect to the aggregate semantics.

Definition 13. A (S,Σ,Π)-matching logic formula is pure if no term of sort
Cfg in the formula appears under a negation.

For such pure formulae, we establish the following proposition, which con-
nects satisfaction of matching logic formulae over the aggregate language with
satisfaction of matching logic formulae over the individuals languages:

Proposition 4. Let (γL, γR) ∈ �Cfg�T be a configuration. Let ϕ be a pure
matching logic formula with no variables of sort Cfg. For any ρ : Var → T ,
we have that ((γL, γR), ρ) |=S ϕ iff (γL, ρ) |=S′

L
prL(ϕ) and (γR, ρ) |=S′

R
prR(ϕ).

In order to define programming language semantics, which have been shown
to be written as sets of rewrite rules of the form a ⇒ b if c [16], only pure
matching logic formulae are needed. In the rest of this article, we will assume
that we only deal with such formulae.

5 Specifying Equivalent Programs

Aggregate matching logic patterns can be used to specify pairs of configurations
of the two involved languages:

Definition 14. The denotation of an aggregated matching logic pattern ϕ, writ-
ten �ϕ�, is the set of all pairs of configurations that satisfy it:

�ϕ� = {(〈γL, γR〉 | there exists a valuation ρ such that (〈γL, γR〉, ρ) |= ϕ}.
This notation extends to sets E of patterns, written �E�, as expected:

�E� = ∪ϕ∈E�ϕ�.

84 Ş. Ciobâcă et al.

Example 12. The following set

E = {∃i.〈〈skip, (x �→ i,)〉, 〈j〉〉 ∧ i =Int j} (1)

containing one matching logic formula, captures in its denotation all pairs of IMP
and respectively FUN configurations that have terminated (since there is no more
code to execute) and where the IMP variable x holds the same integer as the
result of the FUN program. Note that in the above pattern, is an anonymous
variable meant to capture all of the variable bindings other than x.

Suppose we have an IMP program that computes its result in a variable x

and suppose we want to show it computes the same integer result as a FUN

program. Then the denotation �E� of set E above holds exactly the set of pairs
of terminal configurations in which the two programs should end in order for
them to compute the same result.

When trying to prove that two programs compute the same result, it is tempt-
ing to say that the two programs should reach the same configuration at the end.
However, this is not feasible since the configuration might contain additional in-
formation (such as temporary variables) that was used in the computation but
is not part of the result. When testing if the final configurations are the same
in the two programs, it is important to ignore such additional information. In
the example above, only the variable x is inspected (the values of all other vari-
ables are ignored) when comparing final configurations. Another aspect is that,
when working in a general setting where we are comparing programs from two
arbitrary programming languages, the configurations of the two languages might
be significantly different. This is the case above, with the configuration for IMP
holding code and an environment and the configuration for FUN holding only (ex-
tended) lambda expressions. Therefore, in general, to show that two programs
end up with the same result there is a need to design such a set �E� of ”base”
pairs which are known to be equivalent.

6 Proving Mutual Program Equivalence

Here we provide a language-parametric foundation for showing equivalence of
programs written in possibly different languages. Like in the previous section, we
generically assume that the two languages are given as matching logic semantics
SL = (CfgL, ΣL, ΠL,AL,TL,�TL) and SR = (CfgR, ΣR, ΠR,AR,TR,�TR) with
aggregation S = (Cfg,Σ ,Π ,A, T ,�T), but when we discuss examples we assume
them to be the semantics SIMP and SFUN of, respectively, IMP and FUN.

Two programs are then considered mutually equivalent when, for all inputs,
they both diverge or they both reach a pair in the base equivalence �E�. This
intuition is captured by the following definition:

Definition 15. We write |= ϕ ⇓∞ E, and say that ϕ reaches E, iff for all
configurations γL, γR and for all valuations ρ such that (〈γL, γR〉, ρ) |= ϕ we
have that at least one of the following conditions holds:

A Language-Independent Proof System for Mutual Program Equivalence 85

1. both γL and γR diverge (i.e. γC →T γ1
C →T . . .→T γi

C →T for any natural
number i and any C ∈ {L,R});

2. there are configurations γ′
L, γ

′
R with γL�∗

T γ′
L, γR�∗

T γ′
R and (γ′

L, γ
′
R) ∈ �E�.

Example 13. Let E = {∃i.〈〈skip, (n �→ i,)〉, 〈i〉〉} and let

ϕ1 = ∃n.〈〈code1, n �→ n〉, 〈exp1(n)〉〉
ϕ2 = 〈〈while 1 do skip, ∅〉, 〈letrec f x = f(x + 1) in f(1)〉〉
ϕ3 = ∃n.〈〈code3, n �→ n〉, 〈exp3(n)〉〉.

where code1 ≡ i:=1; n:=0; while i<=n do (n:=n+i; i:=i+1) is the IMP

program that computes the sum of the numbers from 1 to n, where exp1(n) ≡
letrec f x = if x=1 then 1 else x+f(x-1) in f(n) is the FUN program
computing the same sum, and where code3 ≡ PGML and, resp., exp3(n) ≡
PGMR(n) are the IMP and FUN programs in Fig. 5 that compute the Collatz
function.

We have that |= ϕ1 ⇓∞ E since both programs end up in a pair from �E�:
〈code1, n �→ n〉 �∗

T 〈skip, n �→ 1+2+. . .+n〉 and 〈exp1(n)〉 �∗
T 〈1+2+. . .+n〉.

We also have that |= ϕ2 ⇓∞ E, since both configurations in ϕ2 clearly diverge.
We also have that |= ϕ3 ⇓∞ E, but this is more difficult to establish. In fact, it is
currently only conjectured (not proven) that the programs terminate no matter
what the input value n is. But it can be proven that if one does not terminate, the
other does not terminate either and therefore |= ϕ3 ⇓∞ E holds independently
of the Collatz conjecture. However, |= ϕ3 ⇓∞ E is more difficult to show than
the previous examples since it is not clear if both programs terminate or diverge.
We next propose a proof system that allows us to derive such properties.

6.1 Proof System

In this section, we introduce a proof system that is able to derive sequents of
the form � ϕ ⇓∞ E denoting mutual equivalences that are sound in the sense
that � ϕ ⇓∞ E implies |= ϕ ⇓∞ E. Fig. 4 contains the 5-rule proof system
for proving mutual equivalence of programs. The first rule is Axiom. There is
nothing suprizing about this rule; it simply states that if an equivalence is known
to be true, then it can be derived.

The second rule is Step. It allows to take an arbitrary finite number of steps
(zero, one or more steps) in each of the two programs. If by taking such steps
from ϕ to ϕ′, we reach an equivalence ϕ′ that is derivable, then we conclude that
ϕmust also be derivable. The Step rule requires an oracle to reason about reach-
ability in operational semantics. This oracle can be, for example, the reachability
proof system in [16], but any other valid reasoning will also work.

The third rule is Conseq(uence). This rule states that if an equivalence for-
mula ϕ implies another equivalence formula ϕ′ (which means that ϕ′ is more
general than ϕ) and the formula ϕ′ is derivable, then ϕ must also be derivable.
The required implication might seem surprizing at first (we might expect it in
reverse), but the intuition is that ϕ′ is more general than ϕ. Therefore if we
are able to prove the equivalence ϕ′, then ϕ must also hold. This rule is used

86 Ş. Ciobâcă et al.

Axiom

ϕ ∈ E

� ϕ ⇓∞ E
Step

ϕ⇒∗ ϕ′ � ϕ′ ⇓∞ E

� ϕ ⇓∞ E
Conseq

|= ϕ→ ϕ′ � ϕ′ ⇓∞ E

� ϕ ⇓∞ E

Case Analysis

� ϕ ⇓∞ E � ϕ′ ⇓∞ E

� ϕ ∨ ϕ′ ⇓∞ E
Circularity

� ϕ′ ⇓∞ E ∪ {ϕ} ϕ⇒+ ϕ′

� ϕ ⇓∞ E

Fig. 4. Mutual Equivalence Proof System. We use ϕ ⇒∗ ϕ′ as syntactic sugar for
AL |= prL(ϕ) →∗ prL(ϕ

′) and AR |= prR(ϕ) →∗ prR(ϕ
′) and ϕ ⇒+ ϕ′ as syntactic

sugar for AL |= prL(ϕ)→+ prL(ϕ
′) and AL |= prR(ϕ)→+ prR(ϕ

′).

in the example proof tree below (in Fig. 5) to rearrange a formula of the form
(n > 0 ∨ n = 0) ∧ . . . into n ≥ 0 ∧ Another possible use of Conseq would
be, for example, to transform a more particular case, like “n = 20”, into a more
general case “n is even” in order to be able to apply other rules.

The fourth case is Case Analysis. This allows to branch the proof depend-
ing on the different cases to consinder. Typically, Case Analysis is used to
branch the proof when the two programs also branch. In the proof tree below
(in Fig. 5), this rule is used to perform a case analysis between the case where
both programs end (because of reaching the termination condition n = 0) and
where the programs continue (n > 0).

The fifth rule is Circularity. This rule is used to handle repetitive program
structures such as loops or recursive functions. Circularity allows to postulate
that the equivalence being proven (ϕ) holds, make progress (ϕ ⇒+ ϕ′) in both
programs that we want to show equivalent, and then derive ϕ′ possibly using ϕ
as an axiom, i.e., � ϕ′ ⇓∞ E ∪ {ϕ}. We use this rule in the proof tree below to
assume that at the start of the repetitive behavior (the loop for the program on
the left and the recursive call for the program on the right) the two programs
are equivalent; we make progress by executing the body of the loop on the left
and the body of the recursive call on the right and end up with the equivalence
that we assumed to hold. The rule is sound because we require both programs
to make progress. Therefore, intuitively, when � ϕ′ ⇓∞ E ∪ {ϕ} is derivable,
either both programs diverge because ϕ is applied as an axiom in the proof tree
or the programs end up in E. As for the first rule, an oracle to reason about
reachability in operational semantics is also needed here.

Theorem 3 (Soundness). For any set of aggregated matching logic patterns
E and for any aggregated matching logic pattern ϕ, if the sequent � ϕ ⇓∞ E is
derivable using the proof system given in Fig. 4 then |= ϕ ⇓∞ E.

In order to prove the above theorem, we need several intermediate steps that
follow. In the following, we let c ∈ {L,R} denote either left or right. By c̄ we
denote the single element of the set {L,R} \ {c}.

Let E be a set of mutual matching logic formulae. Let AL and AR be a
set of reachability formulae which describe the semantics of two languages: AL

A Language-Independent Proof System for Mutual Program Equivalence 87

the “left” language and AR the “right” language. We extend the definition of
|= ϕ ⇓∞ E to sets of mutual matching logic formulae as expected:

Definition 16. If F is a set of mutual matching logic formulae, then we write

|= F ⇓∞ E if |= ϕ ⇓∞ E for all ϕ ∈ F.

The following definitions will be useful in the proof of soundness. Let G denote
a set of pairs of configurations.

Definition 17. We say that a pair (γL, γR) reaches G, written (γL, γR)→∗ G,
if there exist configurations γ′

L and γ′
R such that γL �∗

AL
γ′
L, γR �∗

AR
γ′
R and

(γ′
L, γ

′
R) ∈ G.

Definition 18. We say that a pair (γL, γR) diverges, written (γL, γR)↑∞, if both
γL and γR diverge (in AL and respectively AR).

Definition 19. We say that a pair (γL, γR) co-reaches G, written (γL, γR)
→∗,∞ G, if at least one of the following conditions holds:

1. (γL, γR) diverges (i.e. (γL, γR)↑∞),
2. (γL, γR) reaches G (i.e. (γL, γR)→∗ G).

The following utility lemma establishes the link between models of mutual
matching logic formulae and the notion of co-reachability introduced above. Its
proof following trivially by unrolling the above definitions.

Lemma 2. For all sets of mutual matching logic formulae E and for any mutual
matching logic formula ϕ, we have that:

|= ϕ ⇓∞ E iff for all γL, γR such that (γL, γR) ∈ �ϕ�, (γL, γR)→∗,∞ �E�.

The next lemma is the core of our soundness proof.

Lemma 3 (Circularity Principle).
Let F be a set of mutual matching formulae. If for each (γL, γR) ∈ �F � there

exist γ′
L, γ

′
R such that γL �+

AL
γ′
L, γR �+

AR
γ′
R, and (γ′

L, γ
′
R)→∗,∞ �E∪F �, then

|= F ⇓∞ E.

It lies at the core of the proof for Theorem 3, which can be found in our
accompanying technical report [2].

6.2 Example

We next show the proof tree for the equivalence of the two Collatz programs
in Fig. 5. As we have already discussed, in order to talk about mutual equiva-
lence, we have to establish a “base” equivalence that contains programs that are
clearly equivalent. For this case study, for the “base” equivalence, we choose
to equate FUN programs that terminate by returning an integer i with IMP

88 Ş. Ciobâcă et al.

PGML := c := 1; LOOPL
LOOPL := while (n != 1)

c := c + 1;

if (n % 2 != 0)

then n := 3 * n + 1

else n := n / 2

PGMR(n) := letrec f n i = LOOPR in f n 0

LOOPR := if (n != 1)

then if (n % 2 != 0)

then f (3 * n + 1) (i + 1)

else f (n / 2) (i + 1)

else i

ϕ := ∃i, n.(n > 0 ∧ 〈LOOPL, n �→n, c �→ i〉, 〈i + LOOPR〉)
1. � (〈skip, c �→ i, 〉, 〈i〉) ⇓∞ E Axiom

2. � (〈skip, c �→ i, 〉, 〈i〉) ⇓∞ E ∪ {ϕ} Axiom

3. � (〈skip, n �→n, c �→ i〉, 〈i〉) ⇓∞ E Conseq(1)
4. � (〈skip, n �→n, c �→ i〉, 〈i〉) ⇓∞ E ∪ {ϕ} Conseq(2)
5. � (n = 0 ∧ 〈LOOPL, n �→n, c �→ i〉, 〈LOOPR〉) ⇓∞ E Step(3)
6. � ∃i, n.(n = 0 ∧ 〈LOOPL, n �→n, c �→ i〉, 〈LOOPR〉) ⇓∞ E ∪ {ϕ} Step(4)
7. � ∃i, n.(n > 0 ∧ 〈LOOPL, n �→n, c �→ i〉, 〈LOOPR〉) ⇓∞ E ∪ {ϕ} Axiom

8. � ∃i, n.(n ≥ 0 ∧ 〈LOOPL, n �→n, c �→ i〉, 〈LOOPR〉) ⇓∞ E ∪ {ϕ} Conseq(CA(6, 7))
9. � ∃i, n.(n > 0 ∧ 〈LOOPL, n �→n, c �→ i〉, 〈LOOPR〉) ⇓∞ E Circularity (8)

10. � ∃i, n.(n ≥ 0 ∧ 〈LOOPL, n �→n, c �→ i〉, 〈LOOPR〉) ⇓∞ E Conseq(CA(5, 9))
11. � ∃i, n.(n ≥ 0 ∧ 〈PGML, n �→n〉, 〈PGMR(n)〉) ⇓∞ E Step (10)

Fig. 5. Formal proof showing that the two Collatz programs are mutually equivalent.
CA stands for Case Analysis. Conseq is used in the proof tree above to show that
n > 0 ∨ n = 0 implies n ≥ 0.

programs that terminate with the same integer i in the variable c. The set
E = {∃i.〈〈skip, (c �→ i,)〉, 〈i〉〉} defined in Equation 1 captures the intuition
above. It says that an IMP configuration 〈skip, (c �→ i,)〉 (describing programs
that stopped (because the code cell contains skip) and that have the integer i in
the c memory cell) is equivalent to a FUN configuration that contains exactly the
integer i. The proof tree in Fig. 5 shows that the two programs are equivalent.

7 Discussion, Related Work and Conclusion

We have introduced mutual matching logic, a 5-rule proof system for proving
mutual equivalence of programs. Mutual equivalence is a natural equivalence
between programs: two programs are mutually equivalent if either they both
diverge or if they eventually reach the same state. Mutual equivalence can be
used, for example, to prove that compiler transformations preserve behavior.

Our approach is language independent. The proof system takes as input two
language semantics (in the form of reachability rules) that share certain domains
such as integers (the model of the shared domain is also an input to the aggre-
gation operation) and produces sequents of the form � ϕ ⇓∞ E whose semantics
is that for any pair of programs that matches ϕ, both programs diverge or they
reach a state in E. Note that in our running example (the two Collatz programs),
both programs have a parameter n that is left unspecified. This shows that our
approach allows parameterized programs.

A Language-Independent Proof System for Mutual Program Equivalence 89

Symbolic programs are considered in [12] but for a different notion of bisimu-
lation-based program equivalence.

Related Work. It was first remarked by Hoare in [8] that program equivalence
might be easier than program correctness. Among the recent works on equiv-
alence we mention [6,5,3]. The first one targets programs that include recur-
sive procedures, the second one exploits similarities between single-threaded
programs in order to prove their equivalence, and the third one extends the
equivalence-verification to multi-threaded programs. They use operational se-
mantics (of a specific language they designed, called LPL) and proof systems,
and formally prove their proof system’s soundness. In [6] a classification of equiv-
alence relations used in program-equivalence research is given, one of which is
mutual equivalence (called full equivalence there). The main difference with our
approach is that our proof system is language-independent, i.e., it is parametric
in the semantics of the two languages in which candidate equivalent programs
are written; whereas the deductive system of [6] proves equivalence for LPL pro-
grams. On the other hand, [6] propose deductive systems for several kinds of
equivalences, whereas we focus on mutual (a.k.a. full) equivalence only. In [9],
an implementation of a parametrized equivalence prover is presented.

A lot of work on program equivalence arise from the verification of compilation
in a broad sense. One approach is full compiler verification (e.g. CompCert [11]),
which is incomparable to our work since it produces computer-checked proofs of
equivalence for a particular language, while our own work produces proofs (not
computer-checked) of equivalence for any language. Another approach is the indi-
vidual verification of each compilation [14] (we only cite two of the most relevant
recent works). Other work targets specific classes of languages: functional [15],
microcode [1], CLP [4]. In order to be less language-specific some approaches
advocate the use of intermediate languages, such as [10], which works on the
Boogie intermediate language. However, our approach is better, since our proof
system works directly with the language semantics; therefore there is no need to
trust the compiler from the original language to Boogie. Finally, our own related
work [13] gives a proof system for another equivalence relation between programs
that is based on bisimulation and an observation relation and that uses other
technical mechanisms. We believe that the equivalence relation that we consider
in this article in more natural for certain classes of applications such as proving
compilers.

Further Work. Our definition (Definition 15) of mutual equivalence is existen-
tial in the sense that two programs are equivalent when there exists execution
paths in each of the programs such that the paths diverge or end in configura-
tions that are known to be equivalent. Although for deterministic languages this
cannot constitute a problem (there exists exactly one execution path for each
program), for non-deterministic languages stronger equivalences might be desir-
able. We leave such stronger equivalences as object of further study. Another
issue is completeness. Although relative completeness results have been shown
for matching logic based proof systems for showing partial correctness [16], it is

90 Ş. Ciobâcă et al.

less clear how a relevant relative-completeness result can be obtained for equiva-
lence, since the problem is known to be Π0

2 -complete. Another issue that we leave
for further study is compositionality. Our goal here was just to obtain a sound
and useful language independent proof system for reasoning about equivalence.
We also plan to implement a semi-automated version of the proof system.

References

1. Arons, T., Elster, E., Fix, L., Mador-Haim, S., Mishaeli, M., Shalev, J., Singerman,
E., Tiemeyer, A., Vardi, M.Y., Zuck, L.D.: Formal verification of backward com-
patibility of microcode. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 185–198. Springer, Heidelberg (2005)

2. Çiobâcă, S., Lucanu, D., Rusu, V., Roşu, G.: A language independent proof system
for mutual program equivalence. Technical Report 14-01, Al. I. Cuza Univ.

3. Chaki, S., Gurfinkel, A., Strichman, O.: Regression verification for multi-threaded
programs. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 119–135. Springer, Heidelberg (2012)

4. Craciunescu, S.: Proving the equivalence of CLP programs. In: Stuckey, P.J. (ed.)
ICLP 2002. LNCS, vol. 2401, pp. 287–301. Springer, Heidelberg (2002)

5. Godlin, B., Strichman, O.: Regression verification: proving the equivalence of
similar programs. Software Testing, Verification and Reliability (To appear)

6. Godlin, B., Strichman, O.: Inference rules for proving the equivalence of recursive
procedures. Acta Informatica 45(6), 403–439 (2008)

7. Haxthausen, A.E., Nickl, F.: Pushouts of order-sorted algebraic specifications.
In: Nivat, M., Wirsing, M. (eds.) AMAST 1996. LNCS, vol. 1101, pp. 132–147.
Springer, Heidelberg (1996)

8. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (1969)

9. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameter-
ized program equivalence. In: PLDI, pp. 327–337. ACM (2009)

10. Lahiri, S., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: Symdiff: A language-agnostic
semantic diff tool for imperative programs. In: Madhusudan, P., Seshia, S.A. (eds.)
CAV 2012. LNCS, vol. 7358, pp. 712–717. Springer, Heidelberg (2012)

11. Leroy, X.: Formal verification of a realistic compiler. Communications of the
ACM 52(7), 107–115 (2009)

12. Lucanu, D., Rusu, V.: Program equivalence by circular reasoning. Technical Report
RR-8116, INRIA (2012)

13. Lucanu, D., Rusu, V.: Program equivalence by circular reasoning. In: Johnsen,
E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 362–377. Springer, Heidelberg
(2013)

14. Necula, G.: Translation validation for an optimizing compiler. In: PLDI, pp. 83–94.
ACM (2000)

15. Pitts, A.: Operational semantics and program equivalence. In: Barthe, G., Dybjer,
P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 378–412.
Springer, Heidelberg (2002)

16. Roşu, G., Ştefănescu, A.: Checking reachability using matching logic. In: OOPSLA,
pp. 555–574. ACM (2012)

17. Roşu, G., Ellison, C., Schulte, W.: Matching logic: An alternative to hoare/Floyd
logic. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486,
pp. 142–162. Springer, Heidelberg (2011)

PHASE: A Stochastic Formalism

for Phase-Type Distributions

Gabriel Ciobanu and Armand Stefan Rotaru

Romanian Academy, Institute of Computer Science,
Blvd. Carol I no. 8, 700505, Iaşi, Romania

gabriel@info.uaic.ro, armand@iit.tuiasi.ro

Abstract. Models of non-Markovian systems expressed using stochastic
formalisms often employ phase-type distributions in order to approx-
imate the duration of transitions. We introduce a stochastic process
calculus named PHASE which operates with phase-type distributions,
and provide a step-by-step description of how PHASE processes can
be translated into models supported by the probabilistic model checker
PRISM. We then illustrate our approach by analysing the behaviour of a
simple system involving both non-Markovian and Markovian transitions.

1 Introduction

In general, stochastic systems are divided into Markovian systems and non-
Markovian systems, based on the temporal properties of their transitions: in the
former, the time after which the system leaves any particular state (i.e., performs
a transition) does not depend on the time already spent in that state, while in the
latter, there is at least one transition between two states which does not satisfy
the aforementioned property. A potential shortcoming of current stochastic pro-
cess calculi refers to the fact that almost all of these formalisms were designed for
Markovian systems, which can be expressed in terms of continuous-time Markov
chains (CTMCs), and for which a solid mathematical theory exists [20]. This
body of theory greatly facilitates performance analysis and allows one to easily
derive the exact numerical value of transient, passage time, and steady-state
performance measures. However, a sometimes severe downside of this approach
lies in having to use only exponential distributions for stochastic variables. This
restriction limits the possibility of accurately modelling certain performance vari-
ables, such as job service times or process execution times in software/hardware
systems, which follow heavy tailed distributions [6], or the durations of point-
ing gestures in human-computer interaction systems, which follow log-normal
distributions [9], to name but a few (for additional examples, see [17]). More
specifically, the theory underlying non-Markovian systems is far less developed
than that for Markovian systems, which means that performance measures typ-
ically cannot be derived analytically (but only approximated). The derivation
of these measures is usually performed either by employing non-Markovian for-
malisms, which rely on discrete event simulation techniques, or by constructing

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 91–106, 2014.
© Springer International Publishing Switzerland 2014

92 G. Ciobanu and A.S. Rotaru

a Markovian system which approximates the behaviour of a non-Markovian sys-
tem, and then analysing the Markovian system.

At the current stage in the evolution of stochastic process calculi, effectively
using non-Markovian process calculi is a real challenge. The main impediment
that arises is the almost complete lack of dedicated software tools. Several theo-
retical approaches to representing non-Markovian systems have been put forward
[5,17], and a number of non-Markovian process calculi have been created (e.g.,
SPADES [12]; ♠ [8,7]; SM-PEPA [4]), but tool support for these process calculi
is either absent, or limited to prototype implementations. Two notable excep-
tion are the tools Ymer [25] and MODEST [11], which employ statistical model
checking. However, both tools are still in development and have not yet attracted
a substantial community of users.

An alternative to employing non-Markovian process calculi is that of relying on
phase-type approximations for transition durations, in the context of Markovian
process calculi. Phase-type distributions are adequate for such an enterprise given
their strong closure properties (i.e., their are closed under convolution, maximum,
minimum and convex mixture, unlike exponential distributions, which are closed
only under minimum) and the fact that they can approximate any positive-valued
distribution to an arbitrary degree of accuracy [18]. A number of Markovian pro-
cess calculi which support phase-type distributions do exist (e.g., [10,24,21,26]),
but they too suffer from a lack of tool support. Furthermore, some of these cal-
culi ([10]) are compatible only with certain subclasses of non-Markovian systems,
while others ([24,21,26]) do not support certain complex patterns of interaction
between processes, such as those generated by processes synchronizing over user-
defined sets of shared actions.

As a possible solution to the aforementioned problems, we develop a new
Markovian process calculus, called PHASE, for modelling non-Markovian sys-
tems through the use of phase-type distributions. Our formalism is parsimonious
in terms of syntax and semantics, it includes action-based synchronisation, and
it can be faithfully translated into the stochastic language of PRISM. The struc-
ture of our paper is as follows. In Section 2, we introduce the new calculus,
describe its syntax and semantics, and give a detailed account of how it can be
implemented in PRISM. We present a small example of a non-Markovian sys-
tem in Section 3, and illustrate our approach by approximating its behaviour in
PHASE and analysing the resulting model in PRISM. We end the paper with
conclusions and references.

2 Phase-Type Distributions and Process Calculi

In order to allow a better integration of phase-type distributions within stochas-
tic process calculi, we propose a very simple process calculus, inspired by PEPA
[15], PEPA∞

ph [10] and IMC [13], and describe an algorithm for its implementa-
tion in the model checker PRISM. The new calculus employs transitions whose
durations are phase-type distributed [19]. For ease of modelling, we restrict our
calculus to phase-type representations whose probability of starting in state 1

PHASE: A Stochastic Formalism for Phase-Type Distributions 93

is equal to 1 (i.e., there is a single initial state), which can therefore be fully
specified in terms of their infinitesimal generator matrix. We denote by PH(A)
the phase-type distribution whose generator is A. The distribution PH(A) de-
scribes the time until absorption for a CTMC of size ord(A) (i.e., the order
of A), which we denote by CTMC(A), where state ord(A) is absorbing, and all
the other states are transient. The element A(i, j), for 1 ≤ i, j ≤ ord(A) and
i �= j, represents the rate of a transition from state i to state j. Furthermore,
the element A(i, i), for 1 ≤ i ≤ ord(A), is the negative sum of the rates of all
the transitions originating in state i.

Our calculus includes only three operators, namely the sequential operator,
the choice operator, and the parallel operator. The full syntax of PHASE can be
given as follows, where Pseq is a sequential process, Ppar is a parallel process, α
is an action, (α, PH(A)) is a phase-type transition, {L} is a set of actions, and
n ≥ 2 is a natural number:

Pseq ::= (α, PH(A)).Pseq | (α1, PH(A1)).P
1
seq + . . .+ (αn, PH(An)).P

n
seq

Ppar ::= Pseq | P 1
par

��
{L} P

2
par

The sequential expression (α, PH(A)).Pseq indicates that the process performs
the action α, after a delay distributed according to PH(A), and then behaves
like Pseq . The choice expression (α1, PH(A1)).P

1
seq + . . . + (αn, PH(An)).P

n
seq

indicates a race for execution between the transitions (α1, PH(A1)), with 1 ≤
i ≤ n, such that the first transition to complete (i.e., the transition with the short-
est duration) is selected and performed, while all the other transitions are halted
and discarded. In other words, the choice operator denotes a competition between
processes, via their current transitions, in which the fastest process wins. The par-
allel expressionP 1

par
��
{L}P

2
par indicates that the processes P

1
par and P 2

par must syn-

chronize whenever performing an action from the cooperation set {L}. This means
that, for any actionα ∈ {L}, if P 1

par finishes a transition (α, PH(A1)), then P 1
par is

afterwards blocked and cannot make any further transitions until P 2
par completes

a corresponding transition (α, PH(A2)), and vice-versa.The interpretation of this
operator is that it forces processes to cooperate on certain transitions (whose ac-
tions are included in {L}), by waiting for each other to complete, therefore gener-
ating a shared transition. However, the transitions whose actions are not in {L}
can proceed unaffected by cooperation. In addition, no associativity rules are de-
fined for the parallel composition of more than two processes: the order in which
the processes are composed must be made explicit through the use of parentheses.

In order to define the formal operational semantics of PHASE, we first
separate transition durations from the occurrence of actions, and then we
express phase-type distributions in terms of their associated CTMC. More specif-
ically, we make the distinction between Markovian transitions and action tran-
sitions : Markovian transitions, denoted by 〈r〉 (or r

=⇒), indicate a temporal delay
drawn from an exponential distribution with a rate of r, while action transi-
tions, denoted by α (or

α−→), indicate the (immediate) occurrence of action α.
Next, we translate any sequential expression (α, PH(A)).P fin

seq into the following

94 G. Ciobanu and A.S. Rotaru

equivalent form, where o = ord(A) and ⊕ denotes an internal choice between
Markovian transitions (as in classical process calculi, such as PEPA):

Int1 = 〈A(1, 1)〉.Int1 ⊕ 〈A(1, 2)〉.Int2 ⊕ . . .⊕ 〈A(1, o)〉.Into
Int2 = 〈A(2, 1)〉.Int1 ⊕ 〈A(2, 2)〉.Int2 ⊕ . . .⊕ 〈A(2, o)〉.Into
...
Into−1 = 〈A(o− 1, 1)〉.Int1 ⊕ 〈A(o − 1, 2)〉.Int2 ⊕ . . .⊕ 〈A(o − 1, o)〉.Into
Into = α.P fin

seq

As a result, P init
seq = (α, PH(A)).P fin

seq becomes P init
seq = Int1, while Pseq =

(α1, PH(A1)).P
1
seq + . . .+(αn, PH(An)).P

n
seq becomes Pseq = Int11+ · · ·+ Intn1 .

The states Int1, . . . , Into correspond to the states of CTMC(A), while the val-
ues A(i, j), with 1 ≤ i, j ≤ o, correspond to the rates of the transitions from
CTMC(A), as described at the beginning of this section. The operational se-
mantics of PHASE, which makes use of both Markovian and action transitions,
is given in Table 1, where the transitions above the line form the necessary
conditions for the transitions bellow the line to take place. Since the operators
⊕, + and ��

{L} are commutative, rules CH1 through PAR5 remain valid when

replacing P1 with P2, and vice-versa.
Rules SEQ1 and SEQ2 make explicit the (immediate) occurrence of actions,

in the case of action transitions, and the passage of time, for Markovian tran-
sitions. Rule CH1 describes the usual race between the Markovian transitions

Table 1. PHASE Operational Semantics

(SEQ1)
α.P

α−→ P
(SEQ2)

〈r〉.P r
=⇒ P

(CH1)
P1

r1=⇒ Q1

P1 ⊕ P2
r1=⇒ Q1

(CH2)
P1

r1=⇒ Q1 P2
r2=⇒ Q2

P1 + P2
r1=⇒ Q1 + P2

(CH3)
P1

α1−−→ Q1 P2
r2=⇒ Q2

P1 + P2
α1−−→ Q1

(PAR1)
P1

r1=⇒ Q1 P2
r2=⇒ Q2

P1 ��{L}P2
r1=⇒ Q1 ��{L}P2

(PAR2)
P1

α1−−→ Q1 P2
r2=⇒ Q2

P1 ��{L}P2
α1−−→ Q1 ��{L}P2

(α1 /∈ {L})

(PAR3)
P1

α1−−→ Q1 P2
r2=⇒ Q2

P1 ��{L}P2
r2=⇒ P1 ��{L}Q2

(α1 ∈ {L})

(PAR4)
P1

α1−−→ Q1 P2
α2−−→ Q2

P1 ��{L}P2
α1−−→ Q1 ��{L}P2

(α1 /∈ {L})

(PAR5)
P1

α−→ Q1 P2
α−→ Q2

P1 ��{L}P2
α−→ Q1 ��{L}Q2

(α ∈ {L})

PHASE: A Stochastic Formalism for Phase-Type Distributions 95

that produce the phase-type distributions in PHASE. Rule CH2 is similar to
CH1, except that now the race takes place not within a phase-type distribu-
tion, but between two (or more) such distributions, as required by the choice
operator in PHASE. Next, rule CH3 specifies the race policy through which the
action associated with the fastest phase-type transition is selected for execution,
while the rest of the phase-type transitions (and their corresponding actions)
are discarded. The remaining rules refer to the parallel composition of PHASE
processes. Firstly, rule PAR1 treats the case in which two processes are engaged
in Markovian transitions, which means that they do not interact with each other.
Secondly, rule PAR2 deals with the parallel composition of an action transition
and a Markovian transition: given that the action in question does not belong to
the cooperation set {L}, its associated action transition gains precedence over
the Markovian transition, due to the immediacy of actions. In contrast, when-
ever the action is included in {L}, as in rule PAR3, the process that contains
the action transition needs to wait for the other process to enable a matching
action transition. Finally, rules PAR4 and PAR5 handle the synchronization
between action transitions: those transitions which are not part of the coopera-
tion set proceed independently, while matching transitions with actions in {L}
are performed simultaneously.

Given that the semantics of PHASE employs both Markovian and action
transitions, it is possible to have instances of action non-determinism during the
evolution of certain PHASE processes. Somewhat surprisingly, this form of non-
determinism is caused by the parallel operator, and not by the choice operator.
As an example of action non-determinism, let us consider the following processes:

P1 = (α, PH(A1)).P1 P2 = (α, PH(A2)).P2 P3 = (α, PH(A3)).P3

P = (P1 ��∅ P2)��{α} P3

Within P , if the duration of transitions tr1 = (α, PH(A1)) and tr2 =
(α, PH(A2)) is shorter than that of transition tr3 = (α, PH(A3)), then tr3
can synchronize with either tr1 or tr2, since both transitions are available for
cooperation once the delay associated with tr3 has elapsed. In order to be able
to derive performance measures over PHASE processes such as P , we need to
resolve all instances of action non-determinism. Our option in this matter is to
assume that the competing alternatives are all equally likely to be chosen (i.e.,
the winning shared action transition is drawn from a uniform distribution de-
fined over all the competitors) 1. In the case of P , this results in tr1 and tr2 each
having a probability of 0.5 to be selected for synchronization.

The intermediate states and transitions, introduced when defining the
meaning of PHASE transitions and operators, are useful in making explicit the
relationship between PHASE, which deals with phase-type distributions, and
classical Markovian process calculi, such as PEPA, which employ exponential

1 If necessary, there are plenty of other solutions for dealing with non-determinism,
which employ priority levels and weights, or more advanced schedulers [3].

96 G. Ciobanu and A.S. Rotaru

distributions. However, when reasoning about the behaviour of PHASE pro-
cesses, it is natural to ignore these internal states and transitions, given that
their utility is solely technical. Therefore, unless otherwise noted, when we refer
to the states and transitions of a sequential PHASE process P , we have in mind
only transitions of the form (α, PH(A)) and the states that these transitions
connect, with respect to P . The set of states that can be reached by P is de-
noted by ds(P), while the multiset of transitions that can occur between the
states in ds(P) is denoted by trm(P).

A model P specified in PHASE can be translated into the stochastic subset
of the PRISM language, by going through the following steps:

1. Express P in a form compatible with the structure of PRISM models;

2. Generate the states and transitions of P , while ignoring the duration of the
transitions and internal parallelism;

3. Implement the sequential and choice operators;

4. Implement the parallel operator, to finalize the description of P in PRISM.

We now dedicate a separate subsection for the detailed description of each step.

2.1 Step 1: Bringing the Model to a Simpler Form

Since PRISM models are limited to sets of sequential components, composed
in parallel, we express P in an equivalent form, denoted by PB , which consists
only of sequential processes, parallel operators, and parentheses. However, the
presence of the parallel operator and that of parentheses is not compulsory,
being dictated by the structure of the model. The form PB is generated by
replacing any parallel process Ppar with its explicit decomposition, in terms of
its subcomponents. The decomposition is performed in a recursive manner, until
all the resulting subcomponents are sequential. Finally, let SP = {P1, . . . , Pm}
denote the multiset of sequential PHASE processes that form the definition of

PB, and let TR(PB) =
⊎

1≤i≤m

trm(Pi) denote the multiset of the transitions that

can (eventually) be performed by the sequential processes in SP .

2.2 Step 2: Representing the States and the Transitions of the
Model

At this stage, we are not yet interested in the stochastic elements that make
up the behaviour of PB, namely the phase-type distributions which determine
the duration of its transitions. These stochastic elements, as well as the internal
parallelism of PB, are treated in Steps 3 and 4. More specifically, we focus only
on the states that can be reached by PB during its evolution, as well as on the
transitions that exist between these states. Also, for tractability, we do not model
PB in a global manner, but instead deal with each Pi individually, for 1 ≤ i ≤ m,
leaving the final, complete description of PB to be discussed in Step 4.

PHASE: A Stochastic Formalism for Phase-Type Distributions 97

Within PRISM, the states of a process are described by associating one or
more local variables with that process, such that each state is mapped to a dif-
ferent valuation over the set of said variables. Moreover, the local variables must
be part of a module, to indicate that they belong to a particular process. To
begin with, we assign a valid PRISM name to each process Pi, by defining an
injective function f : SP → IDPRISM . We find it intuitive and convenient to
represent each Pi through a single variable. Having just one variable per process
makes the behaviour of Pi easier to examine, and it allows us to use the notions
of “module” and “variable” interchangeably, for the purposes of our paper. This
is where the function f comes in handy, as it gives us the name of both the
variable corresponding to Pi, and that of the module in which this variable is
placed. Next, we encode the possible states of Pi as numerical values for the
previously mentioned variable, by defining an injective function gi : ds(Pi)→ N.
So far, we obtain the following module, whose initial state is exactly Pi:

module f(Pi)

f(Pi) :

[
0.. max

S∈ds(Pi)
(gi(S))

]
init gi(Pi);

endmodule .

Thus, we map sequential PHASE processes to PRISM modules, in terms of
their possible states, such that if process Pi is in state S, then module f(Pi)
(represented by the variable f(Pi)) is in state gi(S). Then, we need to turn our
attention to the transitions that can be performed by Pi during its evolution.
Similar to the case for states, we assign a valid PRISM name for each transition
in TR(PB), by defining an injective function h : TR(PB)→ IDPRISM . We en-
code any transition tr of the form (α, PH(A)), leading Pi from state S0 to S1,
in the following manner:

[α] (f(Pi) = gi(S0)) & (h(tr) won=true) −> 1 : (f(Pi)
′ = gi(S1));

The interpretation is that whenever Pi is in state S0 (i.e., f(Pi) = gi(S0))
and the transition tr won the race for execution (i.e., h(tr) won=true), then
the transition becomes enabled and action α is performed, which results in Pi

entering state S1 (i.e., f(Pi)
′ = gi(S1)). The meaning of the variable h(tr) won,

and the fact that the rate of the transition is equal to 1, are properly explained
in Steps 3 and 4, respectively. Finally, the transition tr is added to module f(Pi).

At the end of this step, the states and the transitions of the sequential PHASE
processes Pi, for 1 ≤ i ≤ m, have been translated into PRISM. However, any
PHASE transition tr = (α, PH(A)), whose duration is phase-type distributed
according to PH(A), is represented in PRISM by a transition tr′ = (α, 1), the
duration of which is exponentially distributed, with a rate of 1. In Step 3, we
present our solution to this problem.

98 G. Ciobanu and A.S. Rotaru

2.3 Step 3: Implementing the Sequential and Choice Operators

Before we can tackle the sequential and choice operators, we must first clarify how
to accommodate the phase-type duration of transitions, since PRISMonly handles
exponentially distributed transitions. To deal with this issue, we begin by sepa-
rating transition durations from the occurrence of actions, which are assumed to
be (nearly) instantaneous. If we consider a transition tr of the form (α, PH(A)),
originating in state S0 of process Pi, the action α is performed immediately after
a delay has elapsed, and the delay is sampled from the distribution PH(A).

One elegant (but tentative) solution for implementing this separation is to
create a module for tr, which becomes active whenever Pi enters state S0 and
whose stochastic behaviour matches that of CTMC(A), state by state and tran-
sition by transition. Given that PRISM does not allow the dynamic creation of
new modules (i.e., all modules must be specified explicitly when describing the
initial system), we cannot create a new module each time tr is encountered, and
then discard it after serving its purpose. Instead, we define a single module for
tr, and reuse it whenever necessary. In addition, we need to make sure that Pi

can execute the action α only after the module for tr has entered the absorbing
state of CTMC(A) (i.e., after the delay associated with tr has expired). The
resulting module is the following:

module h(tr)

h(tr) won : bool init false;
h(tr) : [0..ord(A)] init 1;
. . .
[] (f(Pi) = gi(S0)) & (h(tr) = j) −> A(j, 1) : (h(tr)′ = 1) + . . .+

+A(j, j − 1) : (h(tr)′ = j − 1) +A(j, j + 1) : (h(tr)′ = j + 1) + . . .+
+ A(j, ord(A) − 1) : (h(tr)′ = ord(A) − 1) + A(j, ord(A)) : (h(tr)′ = ord(A)) &
(h(tr) won′=true);

. . .
endmodule .

where 1 ≤ j ≤ ord(A) − 1, and the + operator denotes a choice between ex-
ponentially distributed PRISM transitions, based on the usual race condition.
The states of the module h(tr), given by the values of the variable h(tr) (with
the exception of 0), correspond exactly to the states of CTMC(A)2. This cor-
respondence also holds for the transitions of the module h(tr) and those of
CTMC(A) (except for self loops, which are redundant). We also add a Boolean
variable h(tr) won, which was mentioned in Step 2 and has the role of signalling
the current status of transition tr: if h(tr) won=false, then the delay for tr
is in still in progress (or, alternatively, process Pi is not in state S0, and the
module h(tr) is inactive); on the other hand, if h(tr) won=true, then the delay
has elapsed and the process Pi must perform the action α. Unfortunately, the

2 State 0 is included, but never used, simply because PRISM cannot handle intervals
of the form [1..1], which arise when ord(A) = 1.

PHASE: A Stochastic Formalism for Phase-Type Distributions 99

straightforward translation we have just described is incomplete, because it fails
to consider two aspects. Firstly, after process Pi leaves state S0, the module
h(tr) becomes inactive3, as expected, but if Pi re-enters state S0 at a later time,
then the module h(tr) does not reset itself to its initial state, leading to incor-
rect behaviour. Secondly, phase-type transitions in sequential PHASE processes
usually occur within choice expressions, in which case the module h(tr) must
take into account the context in which the transition tr is situated.

We can now proceed to translate the sequential and choice operators into
PRISM. Let us note that the sequential operator is equivalent to a choice over
a single possible transition, which means that it is sufficient to discuss only the
choice operator. In order to correctly implement the functionality of the choice
operator, and also make sure that phase-type transitions are reset properly, we
must operate certain changes to the modules which capture the duration of
phase-type transitions. Let us assume that the state S0 of Pi is defined in terms
of the choice operator, such that:

S0 = (α1, PH(A1)).S1 + . . .+ (αn, PH(An)).Sn .

Also, let trk = (αk, PH(Ak)), for 1 ≤ k ≤ n. We begin by enforcing the rule
that the module h(trk) is active only as long as none of the transitions from S0

have yet won the race for execution, as imposed by the race condition of the
choice operator. To do so, we create a Boolean property f(Pi) gi(S0) race on,
defined by the following PRISM formula:

formula f(Pi) gi(S0) race on = (h(tr1) won=false) & . . . & (h(trn) won=false);

The property is true if the race between the PHASE transitions trk, for
1 ≤ k ≤ n, is currently in progress, and is false otherwise. We add this property
to the guards for all the transitions in the module h(trk), such that any PRISM
guard of the form

(f(Pi) = gi(S0)) & (h(trk) = j)

is now replaced by the guard

(f(Pi) = gi(S0)) & (h(trk) = j) & f(Pi) gi(S0) race on .

As a result, once the outcome of the choice is decided, the modules for the
PHASE transitions that were involved in the choice are inactivated. Next, we
ensure that these modules are reset once the race for execution is over. The reset
can be performed at any moment between that at which the race is over, and
that at which Pi returns to state S0. We apply the reset as soon as the choice is

3 An inactive module is one in which no transition is currently enabled. Such a module
can reactivate itself at a later time, if the guards for (at least) one of its transitions
are satisfied. Otherwise, the module retains its current state (i.e., the values of its
local variables) indefinitely.

100 G. Ciobanu and A.S. Rotaru

settled, since this seems the most natural choice in the context of our approach,
and it is also easy to implement. More specifically, within the module h(trk) we
replace all updates h(trk)

′ = ord(Ak) with the following update:

(h(tr1)
′ = 1) & . . . & (h(trn)

′ = 1) .

The update h(trk)
′ = ord(Ak) can be safely eliminated since its functionality

is redundant, as the expressions h(trk)
′ = ord(Ak) and h(trk) won′=true both

serve the same purpose, which is to indicate that transition trk won the race.
However, the new update does not yet work as intended, given that PRISM does
not allow modules to change the values of local variables defined in other mod-
ules (i.e., local variables can be read globally, but modified only locally). Thus,
it is also necessary to turn the local variable h(trk) into a global one, so that it
can be updated by the competitors of trk, if they happen to win the race. This
is the reason why, unlike the functions g1, . . . , gm, which are defined locally, the
function h is defined globally: if local functions h1, . . . , hm would have been used
instead of h, then naming conflicts could have occurred at this stage. Practically,
we have to remove the declaration

h(trk) : [0..ord(Ak)] init 1;

from the module h(trk), and instead declare the variable h(trk) globally, outside
any module, as follows:

global h(trk) : [0..ord(Ak)] init 1;

At this stage, if the transition trk wins the race for execution, then the
modules corresponding to the losing transitions are blocked and reset, as ex-
pected. Nevertheless, whenever the process Pi re-enters the state S0, the modules
h(tr1), . . . , h(trn) remain inactive, given that f(Pi) gi(S0) race on is (still) false,
since h(tr) won is (still) true. Therefore, to avoid such incorrect behaviour, once
the transition trk is performed we also reset the variable h(trk) won to false,
thus guaranteeing that f(Pi) gi(S0) race on is true. In order to implement this
final part of the reset, we include the following transition in the module h(trk):

[αk] (f(Pi) = gi(S0)) & (h(trk) won=true) −> 1 : (h(trk) won’=false);

By synchronizing the module h(trk) with the module f(Pi) over the action
αk, as will be shown in Step 4, we know that h(tr) won is set to false as soon as
Pi finishes transition trk.

After completing this step, all that is left to do is to translate the interac-
tions between the sequential PHASE processes from SP , and to make sure that
actions are indeed immediate (i.e., at this point, actions are still represented by
exponentially distributed PRISM transitions, with rates equal to 1).

PHASE: A Stochastic Formalism for Phase-Type Distributions 101

2.4 Step 4: Implementing the Parallel Operator and Generating the
Final Model

Unlike the sequential and choice operators, which are relatively difficult to im-
plement in PRISM, the parallel operator can be translated into PRISM in a
simpler manner. This is a direct consequence of the separation between transi-
tion durations and the occurrence of actions, combined with the fact that actions
are performed instantaneously. Since PRISM does not support immediate tran-
sitions, we approximate this functionality by creating a module named inst sync,
such that for any action α which can (eventually) be performed by one of the pro-
cesses Pi, with 1 ≤ i ≤ m, the module inst sync contains a transition of the form

[α] true −> infty : true;

where infty is a very large number 4. When the module inst sync is synchronized
with the rest of the modules, the multiplicative law used by PRISM in computing
synchronization rates forces the immediacy of actions: all transitions of the form
[α] . . .−> . . ., executed by any single module f(Pi) (or by any cooperation
between the modules for SP), have a rate of 1 · . . . · 1 · infty = infty, which
means that their average duration is equal to 1/infty ≈ 0 .

We are now ready to put all the modules together and obtain the full trans-
lation of P in PRISM, starting from PB. All we have to do is to use the parallel
operators offered by PRISM, which follow the same waiting condition as the
parallel operator in PHASE. Firstly, we replace any process Pi from PB with
the following parallel composition of modules:

f(Pi) ||
(

|||
tr∈trm(Pi)

h(tr)

)
.

The operator ||| denotes parallel composition without any synchronization over
actions, and it is used to indicate that the modules h(tr) interact with one
another by means of shared variables, and not actions. The operator || denotes
parallel composition over all the actions common to both participants, and it is
employed in both separating transition durations from the occurrence of actions,
and assuring the correct reset of the modules h(tr). Secondly, we replace all
instances of the ��

{L} operator with its analogue in PRISM, namely |[L]|, and we

denote the resulting PRISM expression by P ′
B . Just like the PHASE operator

��
{L} , the parallel operator |[L]| forces the participants to synchronize only on

the actions in {L}. Thirdly, we link P ′
B to the module inst sync, resulting in the

model P ′ = P ′
B || inst sync. Thanks to the module inst sync, the actions in the

model P ′ are (almost) immediate. However, a caveat is in order here: given that

4 The exact definition of a “very large number” depends on the structure of the PHASE
process P , and especially on the rates of the transitions that produce the phase-type
distributions employed by the process. Our recommendation is to select a value for
infty that is at least a few orders of magnitude larger than any value found in the
generator matrices associated with the transitions from TR(PB).

102 G. Ciobanu and A.S. Rotaru

immediate actions are not allowed by PRISM, in our translation the duration of
the PHASE transition tr = (α, PH(A)) is distributed according not to PH(A),
but instead to the convolution of PH(A) (i.e., the delay associated with tr)
and Exp(infty) (i.e., the duration for generating the “immediate” action α).
Nevertheless, selecting an appropriately large value for infty can reduce the
error introduced by Exp(infty) to a negligible level. Finally, we inform PRISM
that the model we wish to work with is indeed P ′, by using the construct system
P ′ endsystem, and that our model ultimately describes a CTMC, by inserting
the keyword ctmc at the very beginning of the specification for P ′. Thus, the
PRISM implementation of the PHASE model P is complete, in the form of the
corresponding model P ′.

3 PHASE Example of a Non-Markovian System

In order to illustrate our approach to modelling non-Markovian systems by using
PHASE and PRISM, we present and analyse the behaviour of a very simple
system, which employs both non-exponential and exponential transitions. The
structure of the system is shown in Figure 1, in terms of states and transitions.

Fig. 1. An example of a non-Markovian system, where two processes P1 and P2 co-
operate over the shared action a

The system consists of two processes, P1 and P2, which operate in parallel
and synchronize over the action a. The delay associated with each transition is
given by a different distribution, where Norm(4, 1) is a normal distribution with
a mean of 4 and a standard deviation of 1, Exp(4) is an exponential distribution
with a rate of 4, Lnorm(0, 0.5) is a log-normal distribution with a mean of 0
and a standard deviation of 0.5, on the log scale, Unif(1.5, 2.5) is a uniform

PHASE: A Stochastic Formalism for Phase-Type Distributions 103

distribution with a lower bound of 1.5 and an upper bound of 2.5, and finally,
Weibull(1.5, 1) is a Weibull distribution with a shape of 1.5 and a scale of 1.

This system can be represented in PHASE by approximating all transitions
with PH transitions, as follows:

P11 = (d, PH(A1)).P12
P12 = (c, PH(A2)).P13 + (a, PH(A3)).P13
P21 = (a, PH(A4)).P22 + (b, PH(A5)).P22

Sys = P11 ��{a} P21 .

The complete PHASE system is denoted by Sys, where PH(A1) ≈ Norm(4, 1),
PH(A2) ≈ Exp(4), PH(A3) ≈ Lnorm(0, 0.5), PH(A4) ≈ Unif(1.5, 2.5), and
PH(A5) ≈Weibull(1.5, 1). There are several options for generating the distribu-
tions PH(A1) through PH(A5), given the existence of multiple, general purpose
tools for fitting phase-type distributions, such as EMpht [1], jPhase [23], Hyper-
Star [22] and PhFit [16]. Our decision is to use the tool EMpht, for two main
reasons: it allows us to impose structural constraints on the resulting PH repre-
sentations (i.e., in our case, the requirement that there must be a single initial
state for each representation), and also, its pre-specified input distributions al-
ready include all the distributions that appear in our example, which means that
the input to the fitting algorithm can be provided in an effortless manner. Since
we wish to obtain accurate approximations, we employ moderately large PH rep-
resentations, having either 1 phase (PH(A2)), 10 phases (PH(A3), PH(A5)),
15 phases (PH(A1)), or 20 phases (PH(A4)). The match between the PH dis-
tributions produced by EMpht and the initial distributions is excellent, with
the exception of the uniform distribution, which is approximated by a (normal-
like) Erlang distribution. We now have everything we need to implement the full
PHASE model in PRISM.

In order to test how well the behaviour of the PRISM model for Sys matches
that of the non-Markovian model depicted in Figure 1, which we refer to as
SysNM , we simulated the dynamics of SysNM using an R script. The simulation
involved generating 1 million traces for SysNM and recording the moment at
which any event of interest took place, for each trace. Then, we compared the
results of the simulation with those produced by PRISM’s numerical engine,
for the model corresponding to Sys. Firstly, we looked at the time it took P1
and P2 to reach their final states, in the cases where there was no deadlock
due to a failed synchronization over a. The distributions for Sys and SysNM ,
shown in Figure 2, are very similar, and we believe that the existing differences
between the two distributions are caused not by faults in the translation of
Sys into PRISM, but rather by the imperfect approximation for the duration
of transition tr4. Secondly, we computed the percentage of deadlocks that were
caused by the synchronization between P1 and P2 (i.e., in situations where tr3
became enabled, but tr4 did not, or vice-versa), yielding a value of 0.118744 for
Sys, and 0.105986 for SysNM . Furthermore, we also calculated the probability
of successful synchronization over a, finding a value of 0.003618 for Sys, and

104 G. Ciobanu and A.S. Rotaru

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Non−Markovian System versus PRISM Approximation

Time

P
ro

ba
bi

lit
y

Non−Markovian System
PRISM Approximation

Fig. 2. The distributions of the time elapsed until SysNM and Sys terminate

0.003007 for SysNM . Taken together, the comparable results obtained for the
performance measures involving Sys and SysNM support the correctness of our
PHASE-to-PRISM translation.

4 Conclusion

In our study, we introduce a new stochastic process calculus, named PHASE,
which allows phase-type distributions for transition durations. The new for-
malism has a very simple syntax, involving only the sequential, choice, and
parallel operators. This parsimony is motivated by the practical purpose for
which PHASE was created: we did not wish to design a comprehensive, theoret-
ically oriented calculus, such as those developed by Hermanns and his colleagues
[13,24,21,26], but rather to propose a formalism whose specifications can be
easily implemented and analysed in an existing model checker. As a result, we
provide a step-by-step description of how PHASE processes can be translated
into PRISM models, in a relatively straightforward manner. The guiding idea
for our translation is that of separating the structural and the stochastic aspects
of PHASE, inspired by the definition of the elapse operator in IMC [14].

Our option for expressing PHASE processes in PRISM is based on two impor-
tant reasons: firstly, due to its advanced language elements (i.e., action guards,
local and global variables, complex effects for single transitions), PRISM is ide-
ally suited for implementing the PH distributions and operators in PHASE;
secondly, PRISM is arguably one of the most powerful stochastic model check-
ers currently available. More specifically, PRISM allows the specification and

PHASE: A Stochastic Formalism for Phase-Type Distributions 105

verification of steady-state, transient and passage-time measures, by employing
an extended version of Continuous Stochastic Logic (CSL) [2]. In addition to
CSL, the model checker also supports reward properties: instead of reasoning
about the probabilities of certain behaviours, as is usually done when employing
stochastic process calculi, it is possible to assign numerical values (i.e., rewards)
to the states and the transitions which form a particular behaviour, in order
to compute the expected values of the rewards associated with that behaviour.
Furthermore, PRISM includes features such as statistical model checking (i.e.,
a type of statistically informed, discrete event simulation, in which a number of
model executions are generated, in order to perform an approximate verification
of CSL formulas), interactive simulation (i.e., a user-guided, step-by-step simu-
lation of model behaviour), as well as the possibility of exporting models in the
MATLAB and Markov Reward Model Checker (MRMC) formats.

To illustrate our approach, we give an example of a non-Markovian system
SysNM and approximate its stochastic behaviour in PHASE, using the software
tool EMpht for producing the required phase-type representations. We then
translate the PHASE model into PRISM, and analyse some of its quantitative
properties. We also construct an R implementation for SysNM , based on discrete
event simulation, and show that the PHASE/PRISM and R models produce
closely matching results, with respect to the performance measures in question.

Acknowledgement. The work was supported by a grant of the Romanian
National Authority for Scientific Research CNCS-UEFISCDI, project number
PN-II-ID-PCE-2011-3-0919.

References

1. Asmussen, S., Nerman, O., Olsson, M.: Fitting Phase-type Distributions via the
EM Algorithm. Scandinavian Journal of Statistics 23(4), 419–441 (1996)

2. Baier, C., Katoen, J.-P., Hermanns, H.: Approximate Symbolic Model Checking of
Continuous-Time Markov Chains (Extended Abstract). In: Baeten, J.C.M., Mauw,
S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 146–161. Springer, Heidelberg
(1999)

3. Bernardo, M., Gorrieri, R.: Extended Markovian Process Algebra. In: Sassone,
V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 315–330. Springer,
Heidelberg (1996)

4. Bradley, J.T.: Semi-Markov PEPA: Modelling with generally distributed actions.
International Journal of Simulation 6(3-4), 43–51 (2005)

5. Bravetti, M., D’Argenio, P.R.: Tutte le algebre insieme: Concepts, discussions
and relations of stochastic process algebras with general distributions. In: Baier,
C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of
Stochastic Systems. LNCS, vol. 2925, pp. 44–88. Springer, Heidelberg (2004)

6. Crovella, M.E.: Performance Evaluation with Heavy Tailed Distributions. In: Feit-
elson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 1–10. Springer,
Heidelberg (2001)

7. D’Argenio, P.: Algebras and Automata for Timed and Stochastic Systems. PhD
thesis, University of Twente (1999)

106 G. Ciobanu and A.S. Rotaru

8. D’Argenio, P., Katoen, J.-P., Brinksma, E.: A compositional approach to gener-
alised semi-Markov processes. In: Guia, A., Spathopoulos, M., Smedinga, R. (eds.)
Proceedings of WODES 1998, pp. 391–397. IEEE Press, New York (1998)

9. Doherty, G., Massink, M., Faconti, G.: Reasoning about interactive systems with
stochastic models. In: Johnson, C. (ed.) DSV-IS 2001. LNCS, vol. 2220, pp. 144–
163. Springer, Heidelberg (2001)

10. El-Rayes, A., Kwiatkowska, M., Norman, G.: Solving infinite stochastic process
algebra models through matrix-geometric methods. In: Hillston, J., Silva, M. (eds.)
Proceedings of PAPM 1999, Zaragoza, Spain, pp. 41–62. Prensas Universitarias de
Zaragoza (1999)

11. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.-P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. In: Formal Methods
in System Design (2012)

12. Harrison, P.G., Strulo, B.: Stochastic process algebra for discrete event simulation.
In: Baccelli, F., Jean-Marie, A., Mitrani, I. (eds.) Quantitative Methods in Parallel
Systems, pp. 18–37. Springer, Berlin (1995)

13. Hermanns, H.: Interactive Markov Chains - The Quest for Quantified Quality.
Springer, Berlin (2002)

14. Hermanns, H., Katoen, J.-P.: Automated compositional Markov chain generation
for a plain-old telephone system. Science of Computer Programming 36(1), 97–127
(2000)

15. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

16. Horváth, A., Telek, M.: PhFit: A General Phase-Type Fitting Tool. In: Computer
Performance Evaluation: Modelling Techniques and Tools, pp. 82–91. Springer,
Heidelberg (2002)

17. Katoen, J.-P., D’Argenio, P.R.: General distributions in process algebra. In:
Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA
2000. LNCS, vol. 2090, pp. 375–429. Springer, Heidelberg (2001)

18. Nelson, R.: Probability, Stochastic Processes, and Queueing Theory. Springer, New
York (1995)

19. Neuts, M.F.: Matrix-geometric solutions in stochastic models: an algorithmic
approach. Dover Publications (1981)

20. Norris, J.R.: Markov chains. Cambridge University Press, Cambridge (1998)
21. Pulungan, M.R.: Reduction of Acyclic Phase-Type Representations. PhD thesis,

Saarland University, Germany (2009)
22. Reinecke, P., Krauss, T., Wolter, K.: HyperStar: Phase-type Fitting Made Easy.

In: Proceedings of QEST 2012, pp. 201–202. IEEE Computer Society, Washington,
DC (2012)

23. Riaño, G., Pérez, J.F.: jPhase: an Object-Oriented Tool for Modeling Phase-Type
Distributions. In: Meini, B., van Houdt, B. (eds.) Proceeding of SMCTools 2006,
vol. 5, ACM, New York (2006)

24. Wolf, V.: Equivalences on phase type processes. PhD thesis, University of
Mannheim, Germany (2008)

25. Younes, H.L.S.: Ymer: A statistical model checker. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005)

26. Zeng, K.: Logics and Models for Stochastic Analysis Beyond Markov Chains. PhD
thesis, Technical University of Denmark, Denmark (2012)

CASSANDRA: An Online Failure Prediction

Strategy for Dynamically Evolving Systems�

Francesco De Angelis1, Maria Rita Di Berardini1, Henry Muccini2,
and Andrea Polini1

1 Computer Science Division, University of Camerino, Italy
2 Dipartimento di Informatica, University of L’Aquila, Italy

Abstract. Dynamically evolving systems are characterized by compo-
nents that can be inserted or removed while the system is being operated
leading to unsafe run-time changes that may compromise a correct ex-
ecution. To mitigate the effects of such a failure we propose an online
analysis technique that admit an integration “a-priori” and a monitoring
of the run-time behaviour to provide information about possible errors
when these can happen. Our Cassandra technique proposes a novel
run-time monitoring and verification algorithm with the ability to pre-
dict potential failures that can happens in future states of the systems.
Cassandra combines design-time and run-time information. Both are
used to identify the current execution state, and to drive the construc-
tion of predictions that look to a number k of steps ahead of the current
execution state. This paper provides a detailed formalization of the tech-
nique then it introduces a formal definition of the Cassandra algorithms
and reports some complexity measures. Finally the paper closes with a
description of a first concrete implementation of the approach, and its
evaluation.

1 Introduction

Software is not anymore an artifact that can be (always) potentially fully
designed and understood at design-time. It emerges instead at run-time, with
behaviors and configurations that can be modified while the system is being op-
erated. This is for instance the case of SOA-based and Future Internet-oriented
applications [1], where dynamically integrated components or services1 may come
from partially unknown third parties, thus further limiting the trust on their cor-
rect and unmalicious behavior.

The very late integration of software elements limits the possibility of carry-
ing on software quality related activities in advance. Therefore, preventing fail-
ures on those dynamically evolving systems is far from simple, and requires the

� This work has been partially supported by the project ”Open City Platform - SCN
00467” in the ”Smart Cities and Communities” initiative sponsored by the Italian
Ministry of Education, University and Research.

1 Hereafter, we will use the term component(s), to refer to both concepts.

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 107–122, 2014.
c© Springer International Publishing Switzerland 2014

108 F. De Angelis et al.

introduction and reinforcement of software quality verification activities during
the run-time phase.

Nevertheless, when we consider a running context in which many components
are involved in a composition, and they can discover each other at run-time,
immediately trying to start to interact, it becomes really difficult to check the
correctness of the resulting composition before to permit the integration and
communication among the components. Moreover, with the emergence of short
living compositions, we think that it could be more fruitful to permit the inte-
gration “a-priori”, and then to monitor components behaviour in order to detect
possible failures, and (if possible) to avoid them. In such a context, traditional
testing and static analysis strategies may not be enough and they should be
complemented with run-time validation and verification activities. Moreover the
off-line analysis of some configurations, when feasible, may be also inefficient
since the lifetime of a certain configuration can be limited with a small fragment
of the provided behavior exercised before the system evolves. In this scenario,
new verification techniques need to be devised, that may take advantage of both
(classical) design-time and (more recent) run-time verification techniques, that
can efficiently and effectively manage frequent run-time updates, and may enable
actions to predict and prevent potential failures allowing the implementation of
recovery strategies if failures are detected. This will lead to systems in which
dependability and resilience are managed even in the presence of frequent con-
figuration updates.

The goal of this research paper is to propose and formalize an online failure
prediction strategy for dynamically evolving systems2. Towards this research
goal, we here propose Cassandra, a novel approach to predict potential fail-
ures by looking ahead the current execution state. To this end, Cassandra

combines design-time and run-time information for proactive run-time verifica-
tion of dynamic component-based systems.

This paper contributes to the state-of-the-art in failure prediction of dynami-
cally evolving systems in this respect: i) it introduces a new approach for predict-
ing integration failures in systems subject to dynamic evolution, ii) it provides
and formalizes new failure prediction algorithms enabling the discovery of poten-
tial run-time integration problems, iii) it provides reasoning on the algorithms
complexity, applicability, and implementation issues, derived from a real experi-
ence on a concrete implementation of the approach.

Section 2 provides some introductory material on Interface Automata. The
approach is introduced in Section 3 and fully elaborated in Section 4. General
remarks in terms of the Cassandra complexity, ideas and issues related to a
concrete implementation of the proposed approach are introduced in Section 5.
Related work are discussed in Section 6 while Section 7 concludes the paper and
provides a list of future research directions.

2 Fault prevention [2] strategies are not the focus of this paper. Nevertheless the
approach can certainly foster novel prevention and avoidance strategies.

CASSANDRA: An Online Failure Prediction Strategy 109

2 Background

Interface automata have been introduced in [3] as a light-weight formalism
for modeling temporal aspects of software components interfaces. Interface au-
tomata interact through the synchronization of input and output actions, and
asynchronously interleave all the other (i.e. internal) actions. Below we provide
some basic definition mostly taken from [3].

Definition 1. An interface automaton is a tuple P = 〈VP , V init
P ,AI

P ,AO
P ,AH

P ,
TP 〉 where:

– VP is a set of states and V init
P is a set of initial states that contains at most

one state.
– AI

P ,AO
P and AH

P are mutually disjoint sets of input, output and internal
actions. We define AP = AI

P ∪ AO
P ∪ AH

P .
– TP ⊆ VP ×AP × VP is a set of steps.

We say that an action a ∈ AP is enabled at a state v ∈ VP if there is a step
(v, a, v′) ∈ TP . AI

P (v), AO
P (v) and AH

P (v) are the subsets of input, output and
internal actions that are enabled at v and AP (v) = AI

P (v) ∪ AO
P (v) ∪ AH

P (v)
is the set of action enabled at v. A key feature is that interface automata are
not required to be input-enabled, i.e. we do not assume that AI

P (v) = AI
P for

each v ∈ VP . The inputs in AI
P \AI

P (v) are called illegal inputs at v. The set of
input steps is the subset of steps T I

P = {(v, a, u) ∈ TP | a ∈ AI
P } ⊆ TP . Similarly

we define the sets T O
P and T H

P of output and internal steps. Moreover, a state
u is reachable from v if there is an execution sequence, namely an alternating
sequence of states and actions of the form v = v0, a0, v1, a1, . . . , vn = u where
each (vi, ai, vi+1) is a step.

Two interface automata are mutually composable if their set of actions are
disjoint, except that some input actions of one automaton can be output actions
of the other one [3].

Definition 2. Two interface automata P and Q are mutually composable (com-
posable, for short) if AH

P ∩ AQ = AH
Q ∩ AP = ∅ and AI

P ∩ AI
Q = AO

P ∩ AO
Q = ∅.

Essentially, P and Q are composable whenever they only share some input and
output actions and, hence, shared(P,Q) = AP ∩AQ = (AI

P ∩AO
Q)∪ (AI

Q ∩AO
P).

If two interface autoamata P and Q are composable, their product P⊗Q is an
interface automaton whose set of states is VP ×VQ and that will synchronize on
shared actions, while asynchronously interleave all other (i.e. internal) actions.
Since P and Q are not required to be input-enabled, their product P ⊗Q may
have one or more states where one component produces an output that the
other one is not able to accept. The states where this happens, i.e. all pairs
(v, u) ∈ VP × VQ where there is an action a ∈ shared(P,Q) such that either
a ∈ AO

P (v)\AI
Q(u) or a ∈ AO

Q(u)\AI
P (v), are called illegal in [3]. They represent

error states that the composed system should not be able to reach. Indeed, in [3],
two interface automata P and Q can be used together if there is at least a legal
environment, i.e. an environment that can prevent (by generating appropriate
inputs) P ⊗Q from entering its illegal states.

110 F. De Angelis et al.

3 Approach Overview

Cassandra defines an approach to forecast possible failures in the dynamic inte-
gration of software components. It explores design-time system models together
with events observed at run-time. The exploration strategy, starting from the
current system state (monitored at run-time), builds a global design-time model
looking k steps ahead (with respect to the current system state) to check if a pos-
sible illegal state is reachable. Different strategies can be defined to choose the
value of k in order to improve performace or prediction capability. Also dynamic
strategies could be conceived to adapt to increasing/reducing load. Nevertheless
in this paper we do not further investigate such problem and we assume that
the value of k is defined by the user.

The online failure prediction algorithm we have implemented (described in
Section 4.2) relies on a specification of the component behaviour based on the
interface automata formalism. The algorithm suitably composes the specifica-
tions of those components under execution. Nevertheless instead of using the
classical composition operator defined in [3], we base our algorithm on a slightly
different composition operator (defined in Section 4.1, Def. 4) that, according to
us, is more suitable for the online prediction of failures in a dynamic environment
(see Section 4.1). According to our composition operator, any pair of components
sharing a set o I/O actions can be integrated. Then, the composed automata is
navigated by looking ahead to the current execution state. It is the task of our
failure prediction approach to check whether the system is approaching an illegal
state, and so to inform a possible failure avoidance mechanism that will possibly
take care of repair actions. In our approach an illegal state corresponds to an in-
tegration failure, by any path shorter than k steps and originating in the current
state. In a sense, we assume that an illegal state can be reached as consequence
of a wrong invocation/message done by one component on a component that
either is not willing to accept it in the current state or does not exist at all.

Figure 1 sketches the general idea of our algorithm in case of two simple
components P and Q. The component Q models a simple resource which can be
accessed (read) and modified (write) after it has been correctly opened (open).
The automaton P represents a process that wants to use the resource made
available by Q.The two components cannot always correctly cooperate since they
make different assumptions on their respective behaviour. P assumes that after a
successful opening the resource can be used without receiving any failure, and till
its usage is interrupted (closed). Q (which may work through a not completely
realiable medium) can return a failure also on correspondence of a read or write
action. It can be noticed that the system resulting from the composition of
P and Q is closed (the communication medium is embedded in Q) therefore
according to the standard Interface Automata theory the two automata cannot
be composed since no environment exist permitting a correct integration.

On the right side of Figure 1 we provide some additional details about the
Cassandra strategy. Here, we consider the system whose components are P and
Q and we assume that the number k of lookahead steps is equal to 2 (i.e. we look
2 steps in the future). Cassandra will start its execution deriving the composed

CASSANDRA: An Online Failure Prediction Strategy 111

Fig. 1. Composition and CASSANDRA model exploration for two simple components

model (that we call exploration tree) shown in step 1. This tree describes how
the system can evolve in the next k steps. Now, assuming that the open action
is performed by the two components, Cassandra will bring the exploration one
step ahead as shown in step 2; the reader can notice the new states outgoing
from the states (1,1) and (3,3). At step 3, after that the action ok has been
observed, Cassandra will encounter two possible failure states (represented in
black). This two failure states are those which will be reached in case a fail
action is raised by Q after a read or a write action. Cassandra will report the
traces bringing to the failure states; nevertheless, the execution can continue. In
case a read action is requested by P the exploration tree will be the one shown
at step 4. Here it is still possible to reach a failure within two steps, and the
failure trace will be reported. In case Q correctly replies with a data action,
the tree will be modified as shown in step 5. Also in this case the possibility of
reaching failure states is reported by Cassandra. Finally P decides to stop the
usage of Q and closes the interaction.

4 Cassandra – Approach Details

4.1 A Model for Dynamic Composition and Compatibility

In this section we formally define the new product operator on which our algo-
rithm is based on. Before providing all the technical details, we illustrate the
main differences w.r.t. the original product operator introduced by De Alfaro
and Henzinger in [3]. The changes we introduce are mainly concerned with the
notion of illegal or error states. As already said, in [3] an illegal state of P ⊗Q
is a state where one component can produce an output that the other one is not
able to accept. More formally, a state (v, u) ∈ VP × VQ is illegal if there is a
shared action such that either a ∈ AO

P (v)\AI
Q(u) or a ∈ AO

Q(u)\AI
P (v).

This notion of error states essentially considers as erroneous the states where
integration failures are possible and clearly reflects the intention of preventing

112 F. De Angelis et al.

wrong system behaviours at design time. In our opinion, this notion is no suitable
for failure prediction purposes. It seems more reasonable to declare erroneous the
states where an integration failure occurred, instead of those where integration
failures are possible, as done in [3], since even in a state in which an illegal state
is possible the components can decide to interact using a correct action (this
is for instance the case in Figure 1 going from “Step4” to “Step5”). To better
illustrate the difference, assume that (v, u) is an illegal state according to the
definition in [3]. In this state, P (symmetrically Q) can produce a shared output
a (and, hence, there is a corresponding step (v, a, w) enabled at v) that Q is not
able to accept. Instead of declaring (v, u) illegal, we admit that P can perform
this step and consider the state (w, u) so reached as a failure state. Essentially,
failure states are witnesses of the fact that a protocol mismatch has emerged.
Below we refer to the actions leading to a failure state as failure actions.

Another main difference w.r.t. the approach in [3] is that we are consider-
ing dynamically evolving systems, i.e. systems whose components may vary at
run-time. In these contexts, it may happen that one component tries to com-
municate (via output actions) with another component that does not exist any
more because removed at some previous stage of the system evolution. To be
able to monitor also this kind of erroneous behaviour, we collect in a set W all
the actions that represent an attempt to synchronize with some removed com-
ponent. We call actions in W warning actions and the states reached by means
of their execution warning states. All the states which are neither a failure nor
a warning state are called ordinary states. Below we write P ⊗W Q to denote
the interface automaton resulting from the composition of P and Q when W is
the set of warning actions. Moreover, since actions in W are actions that either
P and Q (but not both) has shared with some other component, we assume that
W ∩ shared(P,Q) = W ∩ AH

P = W ∩ AH
Q = ∅.

In a nutshell, P⊗WQ is an interface automaton whose set of states is still VP×
VQ, that still synchronizes on shared actions and asynchronously interleaves any
other action (exactly as in the original definition in [3]), but now we distinguish
two different kinds of illegal or error states (failure and warning states) and we
want to prevent any step from the failure ones.

Finally we are ready to provide the definition of the product automaton.

Definition 3. The product automaton
⊗

W

{
Pi

}
i∈[1,n]

of n ≥ 2 mutually com-

posable automata P1, . . . , Pn defined as TP = I
⋃

S where:

I =
⋃

i∈[1,n]{ (v, a, v[ui/vi]) | v /∈ AF
P ∧ (vi, a, ui) ∈ Ti∧(

a /∈
⋃

j∈[1,n] shared(Pi, Pj) ∨ a ∈ AF
i (v)

)
}

S =
⋃

i,j∈[1,n]{ (v, a, (v[ui/vi, uj/vj]) | v /∈ AF
P ∧ (vi, a, ui) ∈ Ti∧

(vj , a, uj) ∈ Tj ∧ a ∈ shared(Pi, Pj) }

Definition 4. Let
{
Pi

}
i∈[1,n]

be a set of n ≥ 2 mutually composable interface

automata and W a set of actions such that W ∩ shared(Pi, Pj) = W ∩ AH
i = ∅

CASSANDRA: An Online Failure Prediction Strategy 113

for each i, j. We define P =
⊗

W {Pi}i∈[1,n] to be the interface automaton such
that:

– VP = V1 × V2 × · · · × Vn,
– VP = V init

1 × V init
2 × · · · × V init

n ,
– AI

P =
(⋃

i∈[1,n]AI
i

)
\
(⋃

i,j∈[1,n] shared(Pi, Pj)
)
,

– AO
P =

(⋃
i∈[1,n]AO

i

)
\
(⋃

i,j∈[1,n] shared(Pi, Pj)
)
,

– AH
P =

(⋃
i∈[1,n]AH

i

)
∪
(⋃

i,j∈[1,n] shared(Pi, Pj)
)

and whose set of steps is provided in Def. 3.

In Def. 4. we use the following notation: given two states v = (v1, . . . , vn) ∈
VP and ui ∈ Vi, v[ui/vi] is the state we obtain from v by replacing the state
component vi by ui; i.e. v[ui/vi] = (v1, . . . , vi−1, ui, vi+1 . . . , vn) ∈ VP . Finally,
v[ui/vi, uj/vj] denotes the state (v[ui/vi])[uj/vj].

The set of failure actions enabled at v ∈ VP is

AF
P (v)

⋃
i∈[1,n]

AF
i (v)

where, for each i ∈ [1, n], the set

AF
i (v) = AO

i (vi) ∩
⋃

j∈[1,n]

(
AI

j\AI
j (vj)

)
contains all the actions of the automaton Pi that can lead v to a failure state.
Due to the mutual composability, each action is shared by at most one pair of
interface automata. So, for each i ∈ [1, n], there is at most one j �= i such that
AO

i (vi) ∩ (AI
j\AI

j (vj)) �= ∅.
If v ∈ VP , a ∈ AF

i (v) (a ∈ W) and there is a step (vi, a, ui) ∈ Ti for some
i ∈ [1, n], then v[ui/vi] is a failure (respectively, a warning) state. The sets of
failure and warning states are denoted by AF

P and AW
P .

The following proposition, the proof is not shown given the page limit, shows
that our product operator is still associative. This is a key result because it allows
components to be composed on-the-fly depending on the dynamical evolution of
the system

Proposition 1. Let P1, P2 and P3 be three mutually composable interface au-
tomata and W be a set of warning actions such that, for each i, j ∈ [1, 3],
W ∩shared(Pi, Pj) = W ∩AH

i = ∅. Then: (P1⊗W P2)⊗W P3 = P1⊗W (P2⊗W P3).

4.2 The Online Failure Prediction Algorithm

From now on we assume that at any time an arbitrary number (let say n) of
components are running on our platform; each component is provided with an
interface automaton Pi = 〈Vi, V

init
i ,AI

i ,AO
i ,AH

i , Ti〉 (i ∈ [1, n]) that describes
its interface. We also assume that these automata are deterministic and mutually

114 F. De Angelis et al.

composable. BelowW denotes the set of warning actions, while the global variable
k represents the number of lookahead steps.

To keep track of how P =
⊗

W {Pi}i∈[1,n] evolves over time, we use an explo-
ration tree T = (VT , ET) whose nodes and edges basically correspond to states
and steps of P . The underlying assumption is that the sub-tree of T whose nodes
are those reachable from ρ (the current node, see below) by means of a depth-
first search describes how the system will evolve in the next k steps. Each node
in VT stores a state together with some additional information; more precisely,
a node is tuple α = (v, d, t, p) where v ∈ VP is a state and:

– d is a non-negative integer that represents the distance (in terms of number
of steps) of v from the initial state vinit = (vinit1 , . . . , vinitn).

– t is the type of the node; t can assume values 0, 1 or 2 to denote that v is an
ordinary, a warning or a failure state, respectively.

– p is the parent of the node α in the exploration tree.

Nodes of the exploration tree are ranged over by α, β, . . . ; a special symbol ρ
represents the current node, i.e. the node containing the current system state. If
α is a node, we often write α.distance, α.type and α.parent to denote the distance,
the type and the parent of α. Finally, an edge (α, a, β) belongs to ET if α, β ∈ VT

such that α = (v, d, t, p), t �= 2 (i.e. α is not a failure node), β = (u, d+ 1, t′, α)
and there is a step (v, a, u) ∈ TP . Below we use the following notation.

– shared(Pi) =
⋃

j∈[1,n]: j �=i shared(Pi, Pj) is the set of actions that each Pi

shares with the other components.
– If Q is the interface automaton associated with a new component, v =

(v1, . . . , vn) ∈ VP and vq ∈ VQ, we write v•vq to denote the state (v1, . . . , vn,
vq) ∈ VP × VQ. Finally, if α = (v, d, s) ∈ VG, we often write α • vq to denote
the node (v • vq, d, t).

Our algorithm for failure prediction is described by Algorithm 1. It first sets W
to be empty and then builds the initial exploration tree (see Algorithm Init).
Once the exploration tree has been initialized, this algorithm repeatedly waits
for an event e. This event can be either the occurrence of a monitored action a
or a request of adding/removing a component from the system; as expected, for
each event there is a corresponding algorithm able to manage it.

Procedure Init() calls – at most k times – NextFrom(X) (Algorithm 3)
which takes in input a set X of nodes in VT and, by using information provided
by each automaton Pi, adds to the tree T all the nodes (and the corresponding
edges) that are obtained from those in X in exactly one step. At first, X only
contains the initial node ρ = (vinit, 0, 0, null); afterwards, each iteration of a
while cycle uses as X the set of nodes produced by the previous one.

Algorithm NextFrom considers each node α = (v, d, t, p) in X that does not
contain a failure state (recall that no steps are possible from a failure state).
Then, for each action a enabled at v, the algorithm distinguishes two possible
sub-cases: a is either a non-shared3 or a failure action (line 6), and a is a shared

3 By Definition 4 this also includes the case where a is a warning action.

CASSANDRA: An Online Failure Prediction Strategy 115

1 Input: A set
{
Pi

}
i∈[1,n]

of mutually composable interface automata

2 W := ∅; Init();
3 while true do
4 wait until en event e occurs
5 switch e do
6 case e = a ∈

⋃
i∈[1,n]Ai

7 Explore(a);
8 case e = remove(i)
9 Remove(i);

10 case e = add(Q)
11 Add(Q);

12 endsw

13 end

Algorithm 1. The online failure prediction algorithm.

1 Output: The initial exploration tree T = 〈VT , ET 〉
2 ρ← newNode(vinit, 0, 0, null);
3 VT ← {ρ}; ET ← ∅;
4 X ← {ρ};
5 i← 1;
6 while i ≤ k and X �= ∅ do
7 X ← NextFrom(X);
8 i← i+ 1;

9 end

Algorithm 2. Init()

but not a failure action (line 18). In the former case, there is an index i ∈ [1, n]
and a corresponding step (vi, a, ui) in Ti that either does not require synchro-
nization or leads to a failure state. In this case, we create a new node β whose
state is v[ui/vi], whose distance from ρ is d+1, whose parent is α and whose type
is initially set to 0 (see line 8). The type of β can be changed in the next two lines
according to the type of the action a. Finally the node β and the edge (α, a, β)
are added to T ; β is also added to Y . In case a is a shared but not a failure action
we proceed similarly. The only difference is that now, in the construction of β,
we consider that the execution of a is the result of a synchronization between
two components Pi and Pj .

Algorithm Explore(a) inspects the exploration tree T to check if there are
nodes containing failure or warning states along the next k steps from the node
α such that (ρ, a, α) ∈ ET . This algorithm is a breath-first search with α as
starting node. Moreover, to be able to produce the proper warnings, we collect
in the set Illegal all the nodes with a warning or failure state we meet during this
search. Note that, during each iteration of the while cycle of line 6, X is the set
of all nodes reachable from α in i−1 steps. The next for-each cycle (line 8) stores
in Y all nodes reachable from those in X in one step. So, at the end of the while
cycle of line 6, X contains all nodes that are reachable from α in exactly k − 1

116 F. De Angelis et al.

1 Input: A set of nodes X ⊆ VT

2 Output: The set Y of nodes reachable from X in one step.
3 Y ← ∅;
4 foreach α ∈ X with α.type �= 2 do
5 foreach a ∈

⋃
i∈[1,n]Ai do

6 if ∃i ∈ [1, n] s.t. a ∈ (Ai(vi)\shared(Pi)) ∪AF
i (v) and (vi, a, ui) ∈ Ti

then
7 u← v[ui/vi];
8 β ← newNode(u, α.distance+ 1, 0, α);
9 if a ∈W then

10 β.type← 1;
11 end

12 if a ∈ AF
i (v) then

13 β.type← 2;
14 end
15 VT ← VT ∪

{
β
}
; ET ← ET ∪

{
(α, a, β)

}
;

16 Y ← Y ∪
{
β
}

17 end
18 if ∃i, j ∈ [1, n] such that a ∈ shared(Pi, Pj), (vi, a, ui) ∈ Ti and

(vj , a, uj) ∈ Tj then
19 u← v[ui/vi, uj/vj];
20 β ← newNode(u, α.distance+ 1, 0, α);
21 VT ← VT ∪

{
β
}
; ET ← ET ∪

{
(α, a, β)

}
;

22 Y ← Y ∪
{
β
}

23 end

24 end

25 end
26 return Y

Algorithm 3. NextFrom(X)

steps. If this set is not empty, we update the tree T by using NextFrom(X)
(line 15). This keeps the exploration tree coherent with the assumption that
it describes the evolution of the system k steps ahead the current node, i.e. α.
Finally, we provide information about the error states we have met. In particular,
the procedure PrintTrace(β) provides the trace bringing to the error node β
by going up the tree T from the node β to ρ by using the information stored by
the parent component of each node.

Now we briefly describe the behaviour of our algorithm when the component
of index i is removed or added from the system. Pseudo-code for these two algo-
rithms is not provided given the page limit. Algorithm Remove(i) is essentially
a breadth-first search of the exploration tree T that starts from ρ and aims at
replacing each state v = (v1, . . . , vn) of each node α we meet during this search
with a state u = (v1, . . . , vi−1, vi+1, . . . , vn). It also has to remove all the edges
that correspond to steps to which only component Pi can contribute because
they are no longer possible. Let instead Q be the interface automaton describing
the interface of a newly added component. As already mentioned, we assume that

CASSANDRA: An Online Failure Prediction Strategy 117

Q is mutually composable with any other automaton we are already monitoring
and that no internal action of Q belongs to the set warning actions W . The basic
idea of procedure Add(Q) is quite easy: it combines nodes of the exploration
tree before the insertion with states of Q. To keep track of how these nodes and
states are combined, this algorithm uses a set X that contains tuples of the form
(α, v, γ) where: α ∈ V is a node before the insertion, v ∈ VQ and γ is the node of
T (after the insertion) we get by merging the state in α with v. All nodes that
can be reached from γ are then obtained by properly combining those reach-
able from α with steps from the state v. At first, X = {(ρ, vinitQ , ρnew)} where

ρnew = ρ • vinitQ .

1 Input: An action a ∈
⋃

i∈[1,n]Ai

2 Let α ∈ VT such that (ρ, a, α) ∈ ET ;
3 X ← {α}; Illegal← ∅;
4 If α.type �= 0 then Illegal← Illegal ∪ {α};
5 i← 1;
6 while X �= ∅ and i ≤ k − 1 do
7 Y ← ∅;
8 foreach β ∈ X and (β, b, γ) ∈ ET do
9 Y ← Y ∪ {γ};

10 If γ.type �= 0 then Illegal← Illegal ∪ {γ} ;

11 end
12 X ← Y ; i← i+ 1;

13 end
14 α.distance← 0; α.parent← null; ρ← α;
15 If X �= ∅ then X ← NextFrom(X) ;
16 foreach β ∈ X do
17 If β.type �= 0 then Illegal← Illegal ∪ {β} ;
18 end
19 foreach β ∈ Illegal do
20 if β.type = 1 then Warning(”Warning state”);
21 else Warning(”Failure state”);
22 PrintTrace(β);

23 end
Algorithm 4. Explore(a)

5 General Remarks

This section wants to provide further details on the Cassandra approach, in
particular it reports some complexity measures for the algorithms illustrated
in the previous section, and successively we report ideas and issues in order to
derive a possible concrete implementation of the proposed approach.

118 F. De Angelis et al.

5.1 Time Complexity

The complexity of our online failure prediction algorithm mainly depends on
the size (in terms of number of nodes and edges) of the exploration tree T . So,
we first determine the size of T as a function of the number of lookahead steps
k and the sizes of the interface automata in

{
Pi

}
i∈[1,n]

, where the size of each

automaton Pi is defined by
∣∣Pi

∣∣ = (
∣∣Ai

∣∣+ ∣∣Ti∣∣).
Among the presented algorithms, NextFrom(X) is particularly important

since it is used to proceed with each exploration step. Assume X = {α1, . . . , αm}
where each node α� (� ∈ [1,m]) is of the form α� = (v�, d�, t�, p�) and contains a
composed state v� = (v�1, . . . , v

�
n). NextFrom(X) generates a new node (and its

outgoing edges) for each node α� ∈ X with t� �= 2 and for each action a enabled
at v�. For the sake of simplicity, we can assume that N is the upper bound to
the number of actions enabled at each state of the composed automaton P =⊗

W {Pi}i∈[1,n]. In other terms we assume that, for each v = (v1, . . . , vn) ∈ VP ,

it is
∣∣⋃

i∈[1,n]Ai(vi)\shared(Pi)
∣∣ +

∣∣⋃
i∈[1,n]

(
AO

I (vi) ∩
⋃

j∈[1,n]AI
j\AI

j (vj)
)∣∣ +∣∣⋃

i,j∈[1,n]: i�=j Ai(vi) ∩ Aj(vj)
∣∣ ≤ N .

On the basis of this assumption, each node without a failure state generates
(visits) at most N nodes and, hence, NextFrom(X) produces at most

∣∣X∣∣ ·N
nodes and edges.

Now, observe that Init() consists of (at most) k calls of NextFrom, where
the i-th call (1 ≤ i ≤ k) of NextFrom(Xi) inside the body of Init produces at
most

∣∣Xi

∣∣ · N = N i−1 ·N = N i new nodes and edges. As a result nextFrom
will have a complexity in O(Nk).

Both Explore(a) and Remove(i) are essentially breadth-first searches of T
and, as well-known, their time complexity is O(|VT |+ |ET |) = O(Nk).

Finally the Add procedures has a complexity in O((2N − S)k) edges where
S is an upper bound to the actions that the inserted component share with the
already integrated one.

In conclusion the complexity analysis not surprisingly says that the cost of the
Cassandra strategy increases the more we try to forecast in the future (which
relates to the value of k).

5.2 Implementing Cassandra

The Cassandra approach has been tested on the simple scenario of Figure 1
implemented using the actor programming model. Actor model appears to be
a scalable solution for distributed system design and implementations. It takes
advantage of entities - called actors - that have an internal behavior and are able
to send and receive messages concurrently with other actors in the system. An
actor system provides a dynamic context for actor execution: actors can generate
other actors, actors can be started, stopped, managed in case of fault, etc.

The actor model implementation we use is Akka (http://www.akka.io) and
our demo system is made by 2 Java actors that behave as P and Q and one
actor that behave as a bridge to Cassandra. This system allows the message

CASSANDRA: An Online Failure Prediction Strategy 119

exchange between P and Q through an observable event bus that is responsible
to call Cassandra to add/remove components and to initialize the exploration.

The design of this demo and of other applications that use Cassandra are
based on a set of following assumptions.

Run-time models. Each component/service to be integrated at run-time must
be augmented with model definitions describing how the provided functionality
should be used, and how the components interacts with the environment. In
some real context this assumption can be judged a bit strong, nevertheless we
think that in a multi-parties and dynamic environment the availability of models
at run-time will become frequent so to enable run-time analysis activities. We
use the State Chart XML (SCXML) specification (State Machine Notation for
Control Abstraction) to describe the behavior of an actor. SCXML provide a
general-purpose event-based state machine language that is suitable to describe
an interface automata.

Centralized control. Cassandra algorithms are currently relying on a central-
ized analysis, i.e. all the interactions happening between the various components
should be reported to the Cassandra bridge. This logical component should
have an up-to-date view over the current system configuration since the explo-
ration of the model depends on the actual components and then on the run-time
synchronization. In turn this means that “add” and “remove” actions must be
notified to the Cassandra component. In our actor system, each actor is able to
send its SCXML description to Cassandra using a special message that is sent
to the event bus and recognized by the Cassandra bridge. Cassandra is able
to react to these messages during the system execution altering the exploration
tree to reflect the available components at runtime. In the future, an extension
of Cassandra to a decentralized scenario is certainly an interesting challenge.

Events Monitoring and Prediction notification. Cassandra should receive in-
formation about the run-time events that are included in the interface automata
models declared by the components. Our implementation rely on a shared bus
used by Akka to convey messages among actors. While actors exchange messages
each other to synchronize, Cassandra should be notified to explore the tree of
possible future states. We can do this in two ways:

– Asynchronous monitoring: The actors are not coupled with Cassandra,
the bridge intercepts the messages exchanged by P and Q and send them
to the Cassandra algorithm. The algorithm establish a possible future,
i.e. a prediction, that is returned to the bridge to implement fault handling
strategies that impact on the entire system asynchronously. The execution
of P and Q is not directly affected nor modified by the prediction that is
reported to the bridge.

– Synchronous notifications: The actors are coupled with Cassandra and
call the algorithm implementation without the bridge intermediation. Each
actor asks Cassandra for a prediction before sending a message on the
bus and change its internal state. The prediction is returned to the actor

120 F. De Angelis et al.

synchronously to the system execution and the management of the possi-
ble futures is left to the programmer of the actor. This strategy allow the
programmer to implementation a fault tolerant component that ask the en-
vironment to check if an action can be performed safely.

In both ways the characterization of the states in the explored trees will
result from the observed events and the actual configuration of the system to
make prediction that can be coupled with the system behavior and used into a
strategy for fault management or used for logging and analysis purpose without
altering the component implementation. The monitoring implemented in our
demo is explicit in the sense that we intercept messages already sent to the
bus or ask Cassandra if a specific message can be sent to the bus. Other
implicit approaches can rely on different styles of monitoring performing more
complex inferences to observing the system, infer a message/action and send it
to Cassandra.

Evaluation. We evaluate the impact of Cassandra on the test scenario using
a system that will perform 10, 100 and 200 read cycles stated by traces of
P containing read!.data? actions and traces of Q containing read?.data!. These
traces allowQ to respond correctly for almost all the cycles but in last interaction
the synchronization is broken by a fail! action bringing the state of the system
to a failure reported by Cassandra (if used for synchronous monitoring) or
prevented by Cassandra (if used for synchronous notifications).

We evaluate the running time of the system with and without Cassandra.
The system performs real actions to a file at each read action synchronization.
When Cassandra is involved we evaluate the duration of each portion of the
algorithm. We run these experiments using a machine with a Core2 duo pro-
cessor, 4 Gb of ram, Java SE Runtime Environment (build 1.6.0). We use the
tool btrace to measure the Cassandra time and the java.lang.System utilities
to track the running time.

Table 1. Running time for the composition of Figure 1

trace length time w/o c. time w/ c.
time of c.

num. of calls
init explore nextFrom total

10 13351 15513 21,82 70,59 57,85 150,51 46

100 121720 204508 22,88 526,14 424,79 973,82 203

200 242205 764202 20,28 716,36 444,74 1181,39 403

Table 1 shows the result of our evaluation. The footprint of our algorithm is
acceptable for short traces while for long traces the execution time is altered
by the garbage collection time However the running time of Cassandra is ac-
ceptable for us in this first evaluation considering the type of scenarios in which
Cassandra will be used, distributed systems, dominated by latency due to net-
working. We are working now to improve the implementation performance and
to apply the strategy on a more complex scenario.

CASSANDRA: An Online Failure Prediction Strategy 121

6 Related Work

This section provides related work on failure prediction, and run-time verification
of dynamically evolving systems.

Failure Prediction. The most significant paper on online failure prediction
can be most probably considered the survey conducted by Salfner et al. in [4].
This survey analyzes and compares a number of existing online failure predic-
tion methods. First, a taxonomy is proposed in order to structure and classify
the existing online failure prediction methods. Then, forty seven online predic-
tion methods are considered and mapped into the taxonomy. Most of them use
heuristics, statistics or probabilistic models to predict failures that may poten-
tially happen in the near future. Metrics are also defined to be able to compare
the failure prediction accuracy of the surveyed approaches. Although Cassan-

dra belongs to the online failure prediction research branch, differently from
the surveyed approaches we specialize on component-based, dynamically evolv-
ing systems. In [5] the authors discuss how to use model checking techniques for
discovering defects before they happen. While in general related to our approach,
this work does not focus on failure prediction of dynamically evolving systems.
Cassandra could also be used in service-based modeling. In this respect the
SOFL [6] engineering approach could be an interesting notation to use to model
services in combination/substitution of the IA modeling notation.

Run-Time Verification of Dynamically Evolving Systems.A considerable
number of approaches have been developed for run-time monitoring of dynam-
ically evolving systems (e.g., [7,8])The authors in [7] show how it is possible
to generate a snapshot of the structure of a running application, and how this
can be combined with behavioral specifications for components to check com-
patibility against system properties. Barringer et al. [8] describe mechanisms for
combining programs from separate components and an operational semantics
for programmed evolvable systems. Goldsby et al. [9] propose a run-time moni-
toring and verification technique that can check whether dynamically adaptive
software satisfies its requirements. Baresi et al. [10] propose Dynamo, a simple
architecture that, through specific and simple annotations, enables the automatic
creation of instrumented WS-BPEL processes that can be monitored. The level
of monitoring can be dynamically set through a web-based interface. Filieri et
al. [11], propose the KAMI holistic approach to support the continuous verifica-
tion of non functional properties (and specifically, reliability and performance).
KAMI, while supporting fault detection, may possibly lead to failure prediction.
In this line, it shares similar goals with Cassandra, even if we focus on func-
tional failures. The work in [12] shares with Cassandra the need to monitor
the system execution for inferring a run-time model of it. The approach is used
for monitoring functional properties in dynamically evolving systems, but not
for failure prediction.

7 Conclusions and Future Work

This paper has proposed a novel theoretical framework and algorithms for run-
time failure prediction of dynamically evolving systems. The approach, named

122 F. De Angelis et al.

Cassandra, captures the current state of a component/service based system
through monitoring its execution, and uses observed interactions to explore on-
the-fly design-time system models to check if in the near future possible protocol
mismatches can emerge. Proposed algorithms have a time complexity in O(Nk)
We think that the approach embedded in Cassandra is quite promising and
it can open different research paths, both of technical and more theoretical na-
ture. On the “theoretical list” two items seem particularly interesting and we
consider to investigate in the near future. The first one concerns investigations
on a decentralized version of Cassandra. The second item refers to a possible
extension of Cassandra to check safety and bounded liveness properties. On
the “technical list” the first item refers to a running example able to scale in
a large context. Successively we intend to investigate on possible strategies to
optimize the choice of the k parameter respect to the number of potential inter-
actions made by the components. Finally, we aim to investigate the application
of the strategy in the service-oriented architecture setting.

References

1. Baresi, L., Nitto, E.D., Ghezzi, C.: Towards open-world software: Issue and chal-
lenges. In: SEW-30 2006, Columbia, MD, USA, April 25-28, pp. 249–252 (2006)

2. Mariani, L., Pastore, F., Pezzè, M.: Dynamic analysis for diagnosing integration
faults. IEEE Trans. Software Eng. 37(4), 486–508 (2011)

3. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/SIGSOFT FSE, pp.
109–120 (2001)

4. Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods.
ACM Comput. Surv. 42(3) (2010)

5. de Alfaro, L., Henzinger, T.A., Mang, F.Y.C.: Detecting errors before reaching
them. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 186–
201. Springer, Heidelberg (2000)

6. Liu, S., Offutt, A., Ho-Stuart, C., Sun, Y., Ohba, M.: Sofl: a formal engineering
methodology for industrial applications. IEEE Transactions on Software Engineer-
ing 24(1), 24–45 (1998)

7. Chatley, R., Savani, R., Kramer, J., Magee, J., Uchitel, S.: Predictable dynamic plu-
gin systems. In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004. LNCS,
vol. 2984, pp. 129–143. Springer, Heidelberg (2004)

8. Barringer, H., Gabbay, D.M., Rydeheard, D.E.: From runtime verification to evolv-
able systems. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp.
97–110. Springer, Heidelberg (2007)

9. Goldsby, H., Cheng, B.H.C., Zhang, J.: Amoeba-rt: Run-time verification of adap-
tive software. In: MoDELS Workshops, pp. 212–224 (2007)

10. Baresi, L., Guinea, S.: Towards dynamic monitoring of WS-BPEL processes. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
269–282. Springer, Heidelberg (2005)

11. Filieri, A., Ghezzi, C., Tamburrelli, G.: A formal approach to adaptive software:
continuous assurance of non-functional requirements. Formal Aspects of Comput-
ing 24, 163–186 (2012)

12. Ghezzi, C., Mocci, A., Sangiorgio, M.: Runtime monitoring of component changes
with spy@runtime. In: ICSE 2012, pp. 1403–1406 (June 2012)

Modal Characterisations of Probabilistic
and Fuzzy Bisimulations

Yuxin Deng1,� and Hengyang Wu2,��

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
2 Information Engineer College, Hangzhou Dianzi University, China

Abstract. This paper aims to investigate bisimulation on fuzzy systems. For that
purpose we revisit bisimulation in the model of reactive probabilistic processes
with countable state spaces and obtain two findings: (1) bisimilarity coincides
with simulation equivalence, which generalises a result on finite-state processes
originally established by Baier; (2) the modal characterisation of bisimilarity by
Desharnais et al. admits a much simpler completeness proof. Furthermore, in-
spired by the work of Hermanns et al. on probabilistic systems, we provide a
sound and complete modal characterisation of fuzzy bisimilarity.

1 Introduction

The analysis of fuzzy systems has been the subject of active research during the last
sixty years, and many formalisms have been proposed to model them: fuzzy automata
(see, for example, [3,4,8,24,26,30,37]), fuzzy Petri nets [31,33], fuzzy Markov pro-
cesses [5] and fuzzy discrete event systems [25,32].

Recently, a new formal model for fuzzy systems, fuzzy labelled transition systems
(fLTSs, for short), has been proposed [15,7,21]. fLTSs are a natual generalization of the
classical labelled transition systems in computer science in that after performing some
action a system evolves from one state to a fuzzy set of successor states instead of a
unique state. Many formal description tools for fuzzy systems, such as fuzzy Petri nets
and fuzzy discrete event systems, are not fLTSs. However, it is possible to translate a
system’s description in one of these formalisms into an fLTS to represent its behaviour.

Bisimulation [28] has been investigated in depth in process algebras because it offers
a convenient co-inductive proof technique to establish behavioural equivalence [27].
It has been mostly used for verifying formal systems and is the foundation of state-
aggregation algorithms that compress models by merging bisimilar states. State aggre-
gation is routinely used as a preprocessing step before model checking [1,17].

Errico and Loreti [15] proposed a notion of fuzzy bisimulation and applied it to
fuzzy reasoning; Kupferman and Lusting [22] defined a latticed simulation between
two lattice-valued Kripke structures, and applied it to latticed games; Cao et al. [7]

� Partially supported by the National Natural Science Foundation of China (61173033,
61033002, 61261130589) and ANR 12IS02001 “PACE”.

�� Supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No.
LY13F020046 and Zhejiang Provincial Education Department Fund of China under Grant No.
Y201223001.

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 123–138, 2014.
c© Springer International Publishing Switzerland 2014

124 Y. Deng and H. Wu

defined a fuzzy bisimulation relation between two different fLTSs by a correlational pair
based on some relation; Ćirić et al. [9] introduced four types of bisimulations (forward,
backward, forward-backward, and backward-forward) for fuzzy automata.

All these approaches can be divided into two classes. In the first class, bisimulations
are based on a crisp relation on the state space, so one state is either bisimilar to another
state or not. As in [7,15], the current paper falls into this class. In the second class,
simulations or bisimulations are based on a fuzzy relation (or a lattice-valued relation)
on the state space, which shows the degree of one state being bisimilar to another. This
approach was adapted in [9,22]. In addition, in [15] a bisimulation is necessarily an
equivalence relation, which is not the case for [7] and the current work.

Following the seminal paper on exploring the connection between bisimulation and
modal logic [19], a great amount of work has appeared that characterizes various kinds
of bisimulations by appropriate logics. A logical characterizations of fuzzy bisimulation
appeared in [15], which uses recursive formulas, and interprets a formula as a fuzzy set
that gives the measure, respectively, of satisfaction and unsatisfaction of the formula.

In this paper we seek a variant of the Hennessy-Milner Logic (HML) to characterise
fuzzy bisimulation. Since fuzzy systems are close to probabilistic systems, we revisit
probabilistic bisimulations and their logical characterisations e.g. [13,14,20,23]. We
find that two results in probabilistic concurrency theory can be generalised or simplified.

– For finite-state reactive probabilistic labelled transition systems (rpLTSs) it is known
that bisimilarity coincides with simulation equivalence. The result was originally
proved by Baier [2], using techniques from domain theory. That proof is sophis-
ticated and later on simplified by Zhang [39]. In the current work we generalise
the above coincidence result to rpLTSs with countable state space. Our proof is
surprisingly elementary and employs only some basic concepts of set theory.

– Desharnais et al. [14] proposed a probabilistic version of the HML to capture bisim-
ilarity on rpLTSs. Their logic has neither negation nor infinite conjunctions, but
is expressive enough to work for general rpLTSs that may have continuous state
spaces. Their proof of this fact uses the machinery of analytic spaces. For rpLTSs
with countable state spaces, we find that the completeness proof of their modal
characterisation can be greatly simplified.

By adding negation and infinite conjunctions to the logic of Desharnais et al. we ob-
tain a fuzzy variant of the HML to characterise bisimulation on general fLTSs. Unlike
[15], there is no need of recursive formulas in our logic. For fLTSs with countable state
spaces and finite-support possibility distributions, infinite conjunctions can be replaced
by binary conjunctions. The completeness proofs of our logical characterisations are
inspired by Hermanns et al. [20]. Since the differences between the two models, fLTSs
and rpLTSs, seem to be small, one is tempted to think that the current work might be a
straightforward generalization of the above mentioned works for rpLTSs. However, this
is not the case. For rpLTSs, negation is unnecessary to characterize bisimulation and
binary conjunction is already sufficient, whereas for fLTSs both negation and infinite
conjunction are necessary to characterize bisimulation for general fLTSs that may be in-
finitely branching. Therefore, fLTSs resemble more to nondeterministic systems rather
than to deterministic systems in this aspect. Moreover, different techniques are needed
for proving characterization theorems for fLTSs and rpLTSs. For example, in the case

Modal Characterisations of Probabilistic and Fuzzy Bisimulations 125

of rpLTSs the famous π-λ theorem [6] holds, which greatly simplifies the completeness
proof of the logical characterization. However, the π-λ theorem is invalid for fLTSs, so
we adopt a different approach to proving completeness: the basic idea is to construct
a characteristic formula for each equivalence class, i.e. the formula is satisfied only by
the states in that equivalence class. See Section 6 for more details.

The rest of this paper is structured as follows. We briefly review some basic con-
cepts used in this paper in Section 2. Section 3 is devoted to showing the coincidence of
bisimilarity with simulation equivalence in countable rpLTSs. Section 4 gives a modal
characterization of probabilistic bisimulation for rpLTSs. Fuzzy bisimulation is intro-
duced in Section 5 and a modal characterisation is provided in Section 6. Finally, this
paper is concluded in Section 7.

2 Preliminaries

Let S be a set and Δ : S → [0, 1] a fuzzy set. The support of Δ is the set supp(Δ) =
{s ∈ S | Δ(s) > 0}. We denote by F(S) the set of all fuzzy sets in S, and Ff (S) the
set of all fuzzy sets with finite supports, i.e. Ff (S) = {Δ ∈ F(S) | supp(Δ) is finite}.
With a slight abuse of notations, we sometimes write a possibility distribution to mean
a fuzzy set1.

A probability distribution on S is a fuzzy set Δ with
∑

s∈S Δ(s) = 1. We write
D(S) for the set of all probability distributions on S. We use s to denote the point
distribution, satisfying s(t) = 1 if t = s, and 0 otherwise. If pi ≥ 0 and Δi is a
distribution for each i in some index set I , then

∑
i∈I pi ·Δi is given by

(
∑
i∈I

pi ·Δi)(s) =
∑
i∈I

pi ·Δi(s)

If
∑

i∈I pi = 1 then this is easily seen to be a distribution in D(S).
Let S be a set. For a binary relation R ⊆ S × S we write s R t if (s, t) ∈ R. A

preorder relation R is a reflexive and transitive relation; an equivalence relation is a
reflexive, symmetric and transitive relation. An equivalence relation R partitions a set
S into equivalence classes. For s ∈ S we use [s]R to denote the unique equivalence
class containing s. We drop the subscript R if the relation considered is clear from the
context. Let R(s) denote the set {s′ | (s, s′) ∈ R}. A set U is said to be R-closed if
R(s) ⊆ U for all s ∈ U , i.e. the image of U under R, written R(U), is contained in U .
We let R∗ be the reflexive transitive closure of R. Note that if R is a preorder then R∗

coincides with R. For any s ∈ S, the set R∗(s) is clearly a R-closed set.

Definition 1. A fuzzy labelled transition system (fLTS) is a triple (S,A,→) where S
is a countable set of states2, A is a set of actions, and the transition relation → is a

1 Strictly speaking a possibility distribution is different from a fuzzy set, though the former can
be viewed as the generalized characteristic function of the latter. See [38] for more detailed
discussion.

2 The constraint that S is countable will be important for later development, especially for the
validity of the proof of Theorem 5.

126 Y. Deng and H. Wu

partial function from S × A to F(S). If the transition relation → is a partial function
from S×A toD(S), we say the fLTS is a reactive probabilistic labelled transition system
(rpLTS).

We sometimes write s a−→ Δ and s
a[λ]−−→ s′ for→ (s, a) = Δ and→ (s, a)(s′) = λ,

respectively. An fLTS (S,A,→) is said to be image-finite if for each state s and label
a, we have→ (s, a) ∈ Ff (S).

The fLTSs defined above are deterministic in the sense that for each state s and label
a, there is at most one possibility distribution Δ with s a−→ Δ. The rpLTSs defined
above are usually called reactive probabilistic systems [18] or labelled Markov chains
[13] in probabilistic concurrency theory. Similar to simple probabilistic automata [36],
one could also define nondeterministic fuzzy transition systems by allowing for more
than one transitions labelled with a same action leaving from a state.

3 Probabilistic Bisimulation and Simulation Equivalence

Let s and t be two states in a probabilistic labelled transition system, we say t can simu-
late the behaviour of s if whenever the latter can exhibit action a and lead to distribution
Δ then the former can also perform a and lead to a distribution, say Θ, which can mimic
Δ in successor states. We are interested in a relation between two states, but it is ex-
pressed by invoking a relation between two distributions. To formalise the mimicking
of one distribution by the other, we make use of a lifting operation by following [11].

Definition 2. Given a set S and a relation R ⊆ S×S, we define R†⊆ D(S)×D(S)
as the smallest relation that satisfies:

1. s R t implies s R† t
2. Δi R† Θi implies (

∑
i∈I pi ·Δi) R† (

∑
i∈I pi · Θi), where I is an index set and∑

i∈I pi = 1.

The proposition below is immediate.

Proposition 1. Let Δ and Θ be two distributions over S, and R ⊆ S×S. Then Δ R† Θ
if and only if there are two collections of states, {si}i∈I and {ti}i∈I , and a collection
of probabilities {pi}i∈I , for some index set I , such that

∑
i∈I pi = 1 and Δ,Θ can be

decomposed as follows:

1. Δ =
∑

i∈I pi · si
2. Θ =

∑
i∈I pi · ti

3. For each i ∈ I we have si R ti.

An important point here is that in the decomposition of Δ into
∑

i∈I pi ·si, the states
si are not necessarily distinct: that is, the decomposition is not in general unique. Thus
when establishing the relationship between Δ and Θ a given state s in Δ may play a
number of different roles.

If R is an equivalence relation, the lifted relation R† can be defined alternatively as
given in the orginal work by Larsen and Skou [23].

Modal Characterisations of Probabilistic and Fuzzy Bisimulations 127

Proposition 2. Let Δ,Θ be two distributions over S and R ⊆ S×S be an equivalence
relation. Then Δ R† Θ if and only if Δ(C) = Θ(C) for each equivalence class C ∈
S/R, where Δ(C) stands for the accumulation probability

∑
s∈C Δ(s).

Proof. See Theorem 2.4 (2) in [10]. #$

Lemma 1. Let Δ,Θ ∈ D(S) and R be a binary relation on S. If Δ R† Θ then we have
Δ(A) ≤ Θ(R(A)) for each set A ⊆ S.

Proof. Since Δ R† Θ, by Proposition 1 we can decompose Δ and Θ as follows.

Δ =
∑
i∈I

pi · si si R ti Θ =
∑
i∈I

pi · ti

Note that {si}i∈I = supp(Δ). We define an index set J ⊆ I in the following way:
J = {i ∈ I | si ∈ A}. Then Δ(A) =

∑
j∈J pj . For each j ∈ J we have sj R tj , i.e.

tj ∈ R(sj). It follows that {tj}j∈J ⊆ R(A). Therefore, we can infer that

Δ(A) = Δ({sj}j∈J) =
∑
j∈J

pj = Θ({tj}j∈J) ≤ Θ(R(A)).

#$

Remark 1. The converse of Lemma 1 also holds [34], though it is not used in this paper.
So an alternative way of lifting relations [12] is to say that Δ is related to Θ by lifting
R if Δ(A) ≤ Θ(R(A)) for each set A ⊆ S.

Corollary 1. Let Δ,Θ ∈ D(S) and R be a binary relation on S. If Δ R† Θ then
Δ(A) ≤ Θ(A) for each R-closed set A ⊆ S.

Proof. Let A ⊆ S be R-closed. Then we have R(A) ⊆ A, and thus Θ(R(A)) ≤ Θ(A).
By Lemma 1, if Δ R† Θ then Δ(A) ≤ Θ(R(A)). It follows that Δ(A) ≤ Θ(A). #$

Remark 2. Let Δ,Θ ∈ D(S) and R be a binary relation on S. A curious reader may
ask if the follwoing two conditions are equivalent:

1. Δ(A) ≤ Θ(R(A)) for each set A ⊆ S;
2. Δ(A) ≤ Θ(A) for each R-closed set A ⊆ S.

Obviously, item 1 implies item 2. The converse, however, is not valid in general. For
example, let S = {s, t}, R = {(s, t)}, Δ = 1

2s + 1
2 t and Θ = 1

3s + 2
3 t. There are

only two non-empty R-closed sets: {t} and S. We have both Δ({t}) ≤ Θ({t}) and
Δ(S) ≤ Θ(S). However, Δ({t}) = 1

2 �≤ 0 = Θ(∅) = Θ(R({t})).
Nevertheless, if R is a preorder, then item 2 does imply item 1. For any set A ⊆ S,

the transitivity of R implies that R(A) is R-closed and the reflexivity of R tells us that
A ⊆ R(A), from which, together with item 2, we have Δ(A) ≤ Δ(R(A)) ≤ Θ(R(A)).

Lemma 2. Let R be a preorder on a set S and Δ,Θ ∈ D(S). If Δ R† Θ and Θ R† Δ
then Δ(C) = Θ(C) for all equivalence classes C with respect to the kernel R ∩ R−1

of R.

128 Y. Deng and H. Wu

Proof. Let us write ≡ for R ∩ R−1. For any s ∈ S, let [s]≡ be the equivalence class
that contains s. Let As be the set {t ∈ S | s R t ∧ t �R s}. It holds that

R(s) = {t ∈ S | s R t}
= {t ∈ S | s R t ∧ t R s} % {t ∈ S | s R t ∧ t �R s}
= [s]≡ % As

where % stands for a disjoint union. Therefore, we have

Δ(R(s)) = Δ([s]≡) +Δ(As) and Θ(R(s)) = Θ([s]≡) +Θ(As) (1)

We now check that both R(s) and As are R-closed sets, that is R(R(s)) ⊆ R(s) and
R(As) ⊆ As. Suppose u ∈ R(R(s)). Then there exists some t ∈ R(s) such that t R u,
which means that s R t and t R u. As a preorder R is a transitive relation. So we have
s R u which implies u ∈ R(s). Therefore we can conclude that R(R(s)) ⊆ R(s).

Suppose u ∈ R(As). Then there exists some t ∈ As such that t R u, which means
that s R t, t �R s and t R u. As a preorder R is a transitive relation. So we have s R u.
Note that we also have u �R s. Otherwise we would have u R s, which means, together
with t R u and the transitivity of R, that t R s, a contradiction to the hypothesis t �R s.
It then follows that u ∈ As and then we conclude that R(As) ⊆ As.

We have verified that R(s) and As are R-closed sets. Since Δ R† Θ and Θ R† Δ,
we apply Corollary 1 and obtain that Δ(R(s)) ≤ Θ(R(s)) and Θ(R(s)) ≤ Δ(R(s)),
that is

Δ(R(s)) = Θ(R(s)) (2)

Similarly, using the fact that As is R-closed we obtain that

Δ(As) = Θ(As) (3)

It follows from (1)-(3) that
Δ([s]≡) = Θ([s]≡)

as we have desired. #$
Remark 3. Note that in the above proof the equivalence classes [s]≡ are not necessarily
R-closed. For example, let S = {s, t}, IdS = {(s, s), (t, t)} and R = IdS ∪ {(s, t)}.
Then ≡ = R ∩ R−1 = IdS and [s]≡ = {s}. We have R(s) = S �⊆ [s]≡. So a more
direct attempt to apply Corollary 1 to those equivalence classes would not work.

A restricted version of Lemma 2 (by requiring the state set S to be finite) has ap-
peared as Lemma 5.3.5 in [2], but the proof given there is much more complicated as
it relies on some properties of DCPOs, which is then simplified in [39]. In this paper,
we allow the state set of a rpLTS to be a countably infinite set. With this key technical
lemma at hand, we are ready to prove the coincidence of simulation equivalence and
bisimilarity, which was originally given as Theorem 5.3.6 in [2].

Definition 3. A relation R ⊆ S × S is a probabilistic simulation if s R t and s a−→ Δ
implies that some Θ exists such that t a−→ Θ and Δ R† Θ. If both R and R−1 are
probabilistic simulations, then R is a probabilistic bisimulation. The largest proba-
bilistic bisimulation, denoted by ∼p, is called probabilistic bisimilarity. The largest
probabilistic simulation, denoted by≺p, is called probabilistic similarity. The kernel of
probabilistic similarity, i.e≺p ∩ ≺−1

p , is called simulation equivalence, denoted by'p.

Modal Characterisations of Probabilistic and Fuzzy Bisimulations 129

In general, simulation equivalence is coarser than bisimilarity. However, for rpLTSs,
the two relations do coincide.

Theorem 1. For rpLTSs, simulation equivalence coincides with bisimilarity.

Proof. It is obvious that ∼p is included in 'p. For the other direction, we show that
'p is a bisimulation. Let s, t ∈ S and s ' t. Suppose that s a−→ Δ. There exists a
transition t a−→ Θ with Δ (≺p)

† Θ. Since we are considering reactive probabilistic
systems, the transtion t a−→ Θ from t must be matched by the transiton s a−→ Δ from
s, with Θ (≺p)

† Δ. Note that≺p is obviously a preorder on S. It follows from Lemma 2
that Δ(C) = Θ(C) for any C ∈ S/ 'p. Since 'p is clearly an equivalence relation, by

Proposition 2 we see that Δ ('p)
†
Θ. Therefore, 'p is indeed a bisimulation relation.

#$

4 Modal Characterisation of Probabilistic Bisimulation

Let A be a set of actions ranged over by a, b, · · · , and let(be a propositional constant.
The language Lp of formulas is the least set generated by the following BNF grammar:

ϕ ::= (| ϕ1 ∧ ϕ2 | 〈a〉pϕ.

where a is an action and p is a rational number in the unit interval [0, 1]. This is the
basic logic with which we establish the logical characterization of bisimulation.

Let us fix a rpLTS (S,A,→). The semantic interpretation of formulas in Lp is given
by:

– s |=p (, for any state s;
– s |=p ϕ1 ∧ ϕ2, if s |=p ϕ1 and s |=p ϕ2;
– s |=p 〈a〉pϕ, if s a−→ Δ and ∃A ⊆ S. (∀s′ ∈ A. s′ |=p ϕ) ∧ (Δ(A) ≥ p).

We write [[ϕ]] for the set {s ∈ S | s |=p ϕ}. Then it is immediate that s |=p 〈a〉pϕ
iff s a−→ Δ and Δ([[ϕ]]) ≥ p, i.e.

∑
s′∈[[ϕ]]Δ(s′) ≥ p. Thus s |=p 〈a〉pϕ says that the

state s can make an a-move to a distribution that evolves into a state satisfying ϕ with
probability at least p. In the sequel we always use this fact as the semantic interpretation
of the formula 〈a〉pϕ in Lp.

The logic above induces a logical equivalence relation between states.

Definition 4. Let s and t be two states in a rpLTS. We write s =p t if s |=p ϕ⇔ t |=p ϕ
for all ϕ ∈ Lp.

The following lemma says that the transition probabilities to sets of the form [[ψ]] are
completely determined by the formulas. It has appeared as Lemma 7.7.6 in [35].

Lemma 3. Let s and t be two states in a rpLTS. If s =p t and s a−→ Δ, then some Θ
exists with t a−→ Θ, and for any formula ψ ∈ Lp we have Δ([[ψ]]) = Θ([[ψ]]).

130 Y. Deng and H. Wu

Proof. First of all, the existence of Θ is obvious because otherwise the formula 〈a〉1(
would be satisfied by s but not by t.

Let us assume, without loss of generality, that there exists a formula ψ such that
Δ([[ψ]]) < Θ([[ψ]]). Then we can squeeze in a rational number p with Δ([[ψ]]) < p ≤
Θ([[ψ]]). It follows that t |=p 〈a〉pψ but s �|=p 〈a〉pψ, which contradicts the hypothesis
that s =p t. #$

We will show that the logic Lp can characterise bisimulation. The completeness
proof of the characterisation crucially relies on the π-λ theorem [6]. Let P be a family
of subsets of a set X . We say P is a π-class if it is closed under finite intersections; P
is a λ-class if it is closed under complementations and countable disjoint unions.

Theorem 2 (The π-λ theorem). If P is a π-class, then σ(P) is the smallest λ-class
containing P , where σ(P) is a σ-algebra containing P .

The next proposition is a typical application of the π-λ theorem [16], which tells
us that when two probability distributions agree on a π-class they also agree on the
generated σ-algebra.

Proposition 3. Let S be a state space, A0 = {[[ϕ]] | ϕ ∈ Lp}, and A = σ(A0). For
any Δ,Θ ∈ D(S), if Δ(A) = Θ(A) for any A ∈ A0, then Δ(B) = Θ(B) for any
B ∈ A.

Proof. Let P = {A ∈ A | Δ(A) = Θ(A)}. Then P is closed under countable disjoint
unions because probability distributions are σ-additive. Furthermore, Δ(S) = Θ(S) =
1 implies that if A ∈ P then Δ(S\A) = Δ(S) −Δ(A) = Θ(S) − Θ(A) = Θ(S\A),
i.e. S\A ∈ P . Thus P is closed under complementation as well. It follows that P is a
λ-class. Note that A0 is a π-class in view of the equation [[ϕ1 ∧ ϕ2]] = [[ϕ1]] ∩ [[ϕ2]].
Since A0 ⊆ P , we can apply the π-λ Theorem to obtain that A = σ(A0) ⊆ P ⊆ A,
i.e. A = P . Therefore, Δ(B) = Θ(B) for any B ∈ A. #$
Theorem 3. Let s and t be two states in a rpLTS. Then s ∼p t iff s =p t.

Proof. The proof of soundness is carried out by a routine induction on the structure of
formulas. Below we focus on the completeness. It suffices to show that =p is a bisim-
ulation. Note that =p is clearly an equivalence relation. For any u ∈ S the equivalence
class in S/=p

that contains u is

[u] =
⋂
{[[ϕ]] | u |=p ϕ} ∩

⋂
{S\[[ϕ]] | u �|=p ϕ}. (4)

In (4) only countable intersections are used because the set of all the formulas in the
logic Lp is countable. Let A0 be defined as in Proposition 3. Then each equivalence
class of S/=p

is a member of σ(A0).
On the other hand, s =p t and s a−→ Δ implies that some distribution Θ exists with

t a−→ Θ and for any ϕ ∈ Lp, Δ([[ϕ]]) = Θ([[ϕ]]) by Lemma 3. Thus by Proposition 3
we have

Δ([u]) = Θ([u]) (5)

where [u] is any equivalence class of S/=p
. Then it follows from Proposition 2 that

Δ (=p)
†
Θ. Symmetrically, any transition of t can be mimicked by a transition from s.

Therefore, the relation =p is a bisimulation. #$

Modal Characterisations of Probabilistic and Fuzzy Bisimulations 131

Theorem 3 tells us that Lp can characterize bisimulation for rpLTSs, and this logic
has neither negation nor infinite conjunction. Moreover, the above result holds for gen-
eral rpLTSs which are not necessarily finitely branching.

Remark 4. The proof of Theorem 3 does not carry over to fLTSs. For possibility dis-
tributions the family of sets P in the proof of Proposition 3 is closed under neither
complementations nor countable intersections. So we cannot show that all equivalence
classes are in P (i.e. σ(A0)). It follows that (5) cannot be established for fLTSs.

5 Fuzzy Simulation and Bisimulation

In this section we introduce our notions of simulation and bisimulation for fLTSs and
discuss their properties.

In line with probabilistic simulation and bisimulation (Definition 3), we require that
if (s, t) is a pair of states in a fuzzy simulation then t can mimic all stepwise behavior
of s with respect to R that is lifted to compare possibility distributions. For probability
distributions, we use Δ(U) to mean accumulation probabilities

∑
s∈U Δ(s), which no

longer makes sense for possibility distributions. Now we replace the summation by a
supremum. That is, for any Δ ∈ F(S) and U ⊆ S, the notation Δ(U) stands for
sups∈U Δ(s), the supremum of all the possibilities in U . Possibility distributions are
then compared by using R-closed sets.

Definition 5. A relation R ⊆ S × S is a fuzzy simulation relation if (s, t) ∈ R implies
that, for any action a ∈ A, if s a−→ Δ then there exists some Θ such that t a−→ Θ and
Δ(U) ≤ Θ(U) for any R-closed set U ⊆ S. If both R and R−1 are fuzzy simulations,
then R is a fuzzy bisimulation. The largest fuzzy simulation, denoted by ≺f, is called
fuzzy similarity; the largest fuzzy bisimulation, written ∼f, is called fuzzy bisimilarity.

The following proposition follows easily from the above definition.

Proposition 4. 1. ∼f is an equivalence relation and ≺f is a preorder.
2. If R is a bisimulation and t ∈ R∗(s), then for any action a ∈ A we have s a−→ Δ

implies t a−→ Θ for some Θ with Δ(U) = Θ(U) for any R-closed set U .

The kernel of fuzzy similarity, ≺f ∩ ≺−1
f , is called fuzzy simulation equiva-

lence. Different from rpLTSs, in fLTSs bisimilarity is strictly finer than simulation
equivalence.

�
��

�
��

�

s3 s1

s2

a[2
3
]a[1

2
]

b[3
4
]

s

�

�

t1

t2

t
a[2

3
]

b[3
4
]

Fig. 1. Fuzzy bisimilarity is strictly finer than fuzzy simulation equivalence

132 Y. Deng and H. Wu

Example 1. Consider the fLTS depicted in Figure 1. We let S = {s, t, s1, s2, s3, t1, t2}
and R = {(s, t), (s1, t1), (s2, t2), (s3, t1)}. It is easy to check that R is a simulation,
thus s ≺f t. Now let R′ = {(t, s), (t1, s1), (t2, s2)}. Obviously R′ is also a simulation,
and hence we have t ≺f s. It follows that s and t are simulation equivalent.

Now assume by contradiction that s and t are bisimilar. Then there exists a bisim-
ulation R with (s, t) ∈ R. Let s

a−→ Δ and t
a−→ Θ. Then we have Δ(R∗(s3)) =

Θ(R∗(s3)). Since Δ(R∗(s3)) �= 0 and Θ takes a non-zero value only at t1, we infer
that t1 ∈ R∗(s3). By Proposition 4 (2), s3 and t1 can mimic the behaviour of each other,
which contradicts the fact that t1 can perform the action b to a nonempty distribution
while s3 cannot. Hence s and t are not bisimilar.

The following property is a counterpart of Proposition 2, by replacing accumulation
probabilities by suprema of possibilities.

Proposition 5. Let R ⊆ S × S be an equivalence relation. It is a fuzzy bisimulation iff
for all (s, t) ∈ R and a ∈ A, s a−→ Δ implies t a−→ Θ with Δ(U) = Θ(U) for any
equivalence class U ∈ S/R.

6 Modal Characterisation of Fuzzy Bisimulation

Since the differences between the models fLTSs and rpLTSs do not seem to be big, one
is tempted to think that a logic more or less the same as Lp might characterise fuzzy
bisimulation. However, as we have hinted in Remark 4, the modal characterisation of
bisimulation for rpLTSs cannot be simply transplanted to fLTSs. In this section, we
introduce another variant of the Hennessy-Milner Logic by adding negation to Lp, and
by allowing infinite conjunctions.

The language Lf of formulas is the least set generated by the following BNF
grammar:

ϕ ::= (|
∧

i∈I ϕi | ¬ϕ | 〈a〉pϕ.
where I is a countable index set and p is a rational number in the unit interval [0, 1].

Let us fix an fLTS (S,A,→). The semantic interpretation of formulas inLf is similar
to that of Lp (cf. Section 4). We have s |=f 〈a〉pϕ iff s a−→ Δ and Δ([[ϕ]]) ≥ p, i.e.
sups′∈[[ϕ]]Δ(s′) ≥ p. Thus s |=f 〈a〉pϕ says that the state s can make an a-move to
a state that satisfies ϕ with possibility greater than p. The interpretation of negation is
standard. We denote by =f the logical equivalence induced by Lf. That is, s =f t iff
s |=f ϕ⇐⇒ t |=f ϕ for any ϕ ∈ Lf.

Consider again the fLTS depicted in Figure 1, we see that s satisfies, among others,
the formula 〈a〉 1

2
¬〈b〉 3

4
(because s can make an a-move to state s3 which is a deadlock

state and thus cannot perform action b with possibility at least 3
4 .

Example 2. We give an example to show the importance of negation in Lf but not
in Lp.

Consider the rpLTSs in Figure 2, where m �= 0. It is easy to see that t |=p 〈a〉1〈b〉1(
but s �|=p 〈a〉1〈b〉1(. Hence s and t can be distinguished without negation in this rpLTS.

However, the case is different for fLTSs. In Example 1 we have shown that the two
states s and t in Figure 1 are not bisimilar. But they cannot be distinguished by the

Modal Characterisations of Probabilistic and Fuzzy Bisimulations 133

�
��

�
��

�

• •

•

a[1−m]a[m]

b[1]

s

�

�

•

•

t
a[1]

b[1]

Fig. 2. Two states can be distinguished without negation in rpLTSs

�������

						
�

� �

�

t0 t1 t2 • • •

t0 t1

t0

a[1
2
]

a[1
2
]

a[1
2
]

a[1
2
] a[1

2
]

a[1
2
]

s
�������

						
�

� �

�

t0 t1 t2 • • •

t0 t1

t0

a[1
2
]

a[1
2
]

a[1
2
]

a[1
2
] a[1

2
]

a[1
2
]

t
� a[1

2
]

Fig. 3. Two states cannot be distinguished without infinite conjunction in fLTSs

logic Lf if negation is removed. The reason is as follows. Since s |=f 〈a〉pϕ iff s a−→
Δ for some Δ with sups′∈[[ϕ]]Δ(s′) ≥ p, the non-trivial formulas that both s and t

satisfy are 〈a〉p((p ≤ 2
3), 〈a〉q〈b〉r((q ≤ 2

3 and r ≤ 3
4) and binary conjunction

of these formulas. Moreover the non-trivial formulas that both s and t do not satisfy
are 〈a〉p((p > 2

3) and 〈a〉q〈b〉r((q > 2
3 or r > 3

4). Hence the logic Lf without
negation cannot differentiate s from t. However, we can easily tell apart these two states
if negation is allowed. For instance, we have s |=f 〈a〉 1

2
¬〈b〉 3

4
(but t �|=f 〈a〉 1

2
¬〈b〉 3

4
(.

Example 3. This example shows that finite conjunctions are insufficient to characterize
bisimulations for fLTSs. It is adapted from Example 5.1 in [20].

The only difference between the two fLTSs in Figure 3 is that t has a transition to
itself. We first show that s and t are not bisimilar. Let S = {s, t, t0, t1, t2, · · · }, t a−→ Δ,
tn

a−→ Δn(n = 1, 2, · · ·), and s
a−→ Θ. Now suppose that s and t are bisimilar. Then

there exists a bisimulation R with (s, t) ∈ R. It follows that Θ(R∗(t)) = Δ(R∗(t)) ≥
1
2 . Since Θ takes value 0 at s and t, R∗(t) includes at least a tn(n = 0, 1, 2, · · ·)
besides s and t. Thus it follows from Proposition 4 that Δn(R

∗(t)) = Θ(R∗(t)). Since
Δn takes value 1

2 only at tn−1 and 0 otherwise, tn−1 ∈ R∗(t) and Δn−1(R
∗(t)) =

Δ(R∗(t)) = 1
2 . Continue this way and we obtain t0 ∈ R∗(t) in the end, which leads to

a contradiction because t can perform an a-action to a nonempty distribution while t0
cannot. Hence s and t are not bisimilar.

134 Y. Deng and H. Wu

However, if only finite conjunctions are used in the logic Lf then we cannot find a
formula which can differentiate s from t. The reason is as follows. For each formula ϕ,
the maximum number of nested diamond connectives in the formula is finite, thus the
satisfiability of ϕ is determined by some state tn for a finite number n. Such a state tn
can also be reached from s immediately after one step of transition.

The situation is different if infinite conjunction is allowed. Consider the formula ϕi

defined as follows: ϕ0 = (, and ϕi = (〈a〉 1
2
)(i)(for i > 0, which means

〈a〉 1
2
〈a〉 1

2
· · · 〈a〉 1

2︸ ︷︷ ︸
i times

(.

Let ϕ =
∧

i∈N
ϕi. Then t |=f ϕ. By mathematical induction one can prove that for any

n, tn |=f ϕn but tn �|=f ϕn+1. It follows that tn �|=f ϕ for any n. Now let ψ = 〈a〉 1
2
ϕ.

Then t |=f ψ because t ∈ [[ϕ]] and Δ(t) = 1
2 . However, s �|=f ψ since Θ takes nonzero

values only at tn (n = 0, 1, · · ·) and tn �∈ [[ϕ]]. Consequently, we find a formula with
infinite conjunction to distinguish s from t.

We see from the above examples that fLTSs resemble nondeterministic systems
rather than deterministic systems, so they are fairly different from rpLTSs.

Below we show that two states in an fLTS are observationally indistinguishable or
bisimilar if and only if they are logically indistinguishable.

We first observe that for fLTSs we have a counterpart of Lemma 3.

Lemma 4. Let s and t be two states in an fLTS. If s =f t and s a−→ Δ, then there is
some Θ such that t a−→ Θ and Δ([[ϕ]]) = Θ([[ϕ]]) for any ϕ ∈ Lf.

Proof. Similar to the arguments for proving Lemma 3. #$

Theorem 4. Let s and t be two states in an fLTS. Then s ∼f t iff s =f t.

Proof. First we show soundness. Suppose that s ∼f t. For any ψ ∈ Lf, we show
s |=f ψ ⇐⇒ t |=f ψ (meaning that [[ψ]] is∼f-closed) by structural induction on ψ. The
cases of (and conjunction are trivial. Now consider other cases:

– ψ ≡ ¬ϕ. In this case s |=f ψ ⇐⇒ s �|=f ϕ. By structural induction we have
s �|=f ϕ⇐⇒ t �|=f ϕ. Notice that we also have t �|=f ϕ⇐⇒ t |=f ψ.

– ψ ≡ 〈a〉pϕ. If s |=f ψ then s a−→ Δ for some Δ with Δ([[ϕ]]) ≥ p. By induc-
tion, [[ϕ]] is ∼f-closed. It follows from s ∼f t that t a−→ Θ for some Θ such that
Θ([[ϕ]]) = Δ([[ϕ]]). Then it is immediate that t |=f ψ. By symmetry, if t |=f ψ then
we have s |=f ψ.

For completeness, it suffices to prove that =f is a bisimulation. Obviously =f is an
equivalence relation. Let E = {Ui | i ∈ I} be the set of all equivalence classes of =f.
Then by Proposition 5 it remains to show that, for any s, t with s =f t, if s a−→ Δ then
t a−→ Θ for some Θ with

Δ(Ui) = Θ(Ui) for any i ∈ I. (6)

We first claim that, for any equivalence class Ui, there exists a characteristic formula
ϕi in the sense that [[ϕi]] = Ui. This can be proved as follows:

Modal Characterisations of Probabilistic and Fuzzy Bisimulations 135

– If E contains only one equivalence class U1, then U1 = S. So we can take the
characteristic formula to be (because [[(]] = S.

– If E contains more than one equivalence class, then for any i, j ∈ I with i �= j,
there exists a formula ϕij such that si |=f ϕij and sj �|=f ϕij for any si ∈ Ui

and sj ∈ Uj . Otherwise, for any formula ϕ, si |=f ϕ implies sj |=f ϕ. Since
the negation connective exists in the logic Lf, we also have si |=f ¬ϕ implies
sj |=f ¬ϕ, which means sj |=f ϕ implies si |=f ϕ. Then si |=f ϕ ⇔ sj |=f ϕ
for any ϕ ∈ Lf, which contradicts the fact that si and sj are taken from different
equivalence classes. For each i ∈ I , define ϕi =

∧
j �=i ϕij , then by construction

[[ϕi]] = Ui. Let us check the last equality. On one hand, if s′ ∈ [[ϕi]], then s′ |=f ϕi

which means that s′ |=f ϕij for all j �= i. That is, s′ �∈ Uj for all j �= i, and this in
turn implies that s′ ∈ Ui. On the other hand, if s′ ∈ Ui then s′ |=f ϕi as si |=f ϕi,
which means that s′ ∈ [[ϕi]].

This completes the proof of the claim that each equivalence Ui has a characteristic
formula ϕi.

Now suppose s =f t. By Lemma 4, if s a−→ Δ then there exists some Θ such that
t a−→ Θ and Δ([[ϕi]]) = Θ([[ϕi]]) for all i ∈ I . Using the above claim, we can infer that

Δ(Ui) = Δ([[ϕi]]) = Θ([[ϕi]]) = Θ(Ui)

for each i ∈ I . Hence the equation in (6) holds. #$

In the above proof, the idea of using characteristic formulas is inspired by [20]. We
can see that the logic Lf is very expressive, since it characterizes not only bisimulation
but also equivalence classes in the sense that there does necessarily exist a formula for
each equivalence class which is satisfied only by the states in that class.

Moreover, from the construction of formula ϕi above we can see that infinite con-
junctions are indeed necessary. The advantage of infinite conjunctions lie in the fact that
they allow for a universal description of a class of states of interest. However, infinity
is difficult to process in real applications. Fortunately, in most practical applications the
supports of fuzzy sets are finite and then the logic Lf restricted to binary conjunctions
is already sufficient to characterize fuzzy bisimulation. Let us write =f′ for the logical
equivalence induced by Lf restricted to binary conjunctions.

Theorem 5. Let (S,A,→) be an image-finite fLTS. Then for any two states s, t ∈ S,
s ∼f t iff s =f′ t.

Proof. Theorem 4 implies the soundness. For the completeness, let E and {ϕij}i,j∈I be
defined as in the proof of that theorem. Note that E is countable because the state space
S is countable. We fix an arbitrary index k. For each i ∈ I , define Φk

i =
∧

j≤k ϕij . It is
then easy to see that for each i ∈ I , the formula Φk

i only has finite conjunctions, and

Ui ⊆ [[Φk
i]] ⊆ Ui ∪

⋃
m∈I∧m>k

Um.

Hence for any Γ ∈ Ff (S), Γ (Ui) ≤ Γ ([[Φk
i]]) ≤ Γ (Ui ∪

⋃
m∈I∧m>k Um). Recall that

for any U ⊆ S, the notation Γ (U) means the maximal possibility assigned by Γ to a

136 Y. Deng and H. Wu

state in U . Therefore, we have

Γ (Ui) ≤ Γ ([[Φk
i]]) ≤ Γ (Ui) $ Γ (

⋃
m∈I∧m>k

Um) (7)

for any Γ ∈ Ff (S), where we use the notation p1 $ p2 to mean max(p1, p2). Fix an
arbitrary index i and then take the infimum for k ∈ I , we can get

Γ (Ui) ≤ inf
k∈I

Γ ([[Φk
i]]) ≤ inf

k∈I
[Γ (Ui) $ Γ (

⋃
m∈I∧m>k

Um)],

i.e.
Γ (Ui) ≤ inf

k∈I
Γ ([[Φk

i]]) ≤ Γ (Ui) $ inf
k∈I

Γ (
⋃

m∈I∧m>k

Um). (8)

We argue that
inf
k∈I

Γ (
⋃

m∈I∧m>k

Um) = 0. (9)

As a matter of fact, since supp(Γ) is finite, there exists a sufficiently large number
N ∈ I such that for any s ∈ supp(Γ), there exists some ms ∈ I with ms < N and
s ∈ Ums . Thus we always have Γ (

⋃
m∈I∧m>k Um) = 0 when k ≥ N . Hence the

equation in (9) holds.
By combining (8) and (9), for any i ∈ I and any Γ ∈ Ff (S), we have

Γ (Ui) = inf
k∈I

Γ ([[Φk
i]]). (10)

Now assume that s =f′ t and s a−→ Δ. Then s satisfies the formula 〈a〉1(. In order
for t to satisfy that formula, there must exist a transition t a−→ Θ for some Θ. It remains
to show that Δ(Ui) = Θ(Ui) for any i ∈ I . By the left part of (7) applied to Δ we have
Δ([[Φk

i]]) ≥ Δ(Ui) for each i ∈ I , implying s |=f 〈a〉piΦ
k
i for each i, k ∈ I where

pi = Δ(Ui). Then t |=f 〈a〉piΦ
k
i for each i, k ∈ I . Hence Θ([[Φk

i]]) ≥ pi for each i ∈ I .
By the right part of (7) applied to Θ, for an arbitrary index i and any k ∈ I we can get

pi ≤ Θ([[Φk
i]]) ≤ Θ(Ui) $Θ(

⋃
m∈I∧m>k

Um).

It follows that pi ≤ Θ(Ui) $ infk∈I Θ(
⋃

m∈I∧m>k Um). Thus, by (9) we have pi ≤
Θ(Ui). That is, Δ(Ui) ≤ Θ(Ui) for each i ∈ I . Now suppose that there exists an
i0 ∈ I such that Δ(Ui0) < Θ(Ui0). Then we can take ε0 > 0 such that Δ(Ui0) <
Δ(Ui0) + ε0 < Θ(Ui0). For this ε0, by (10) applied to Ui0 we can see that there exists
some k0 ∈ I such that Δ([[Φk0

i0
]]) < Δ(Ui0) + ε0. Thus s �|=f 〈a〉Δ(Ui0)+ε0Φ

k0

i0
but

t |=f 〈a〉Δ(Ui0)+ε0Φ
k0

i0
since Θ([[Φk0

i0
]]) ≥ Θ(Ui0) > Δ(Ui0) + ε0, which contradicts

the assumption that s =f′ t. Hence for each i ∈ I , Δ(Ui) = Θ(Ui) as desired. #$

7 Conclusions and Future Work

We have shown that on reactive probabilistic processes with countable state-space bisim-
ilarity coincides with simulation equivalence, and the proof is very elementary. We have

Modal Characterisations of Probabilistic and Fuzzy Bisimulations 137

also simplified the modal characterisation of bisimilarity proposed by Desharnais et al.;
our completeness proof does not invole advanced machinery on analytic spaces. For
fuzzy labelled transition systems, we have presented a variant of the Hennessy-Milner
Logic to capture bisimilarity. If the systems are image-finite, it is possible to use bi-
nary conjunctions instead of infinite conjunctions in the fuzzy logic, but negation has to
be kept.

As future work, it would be interesting to investigate logical characterizations for
nondeterministic fuzzy transition systems [8]. We believe that the logic for nondeter-
ministic systems may need distribution semantics [29], i.e. semantic interpretation of
the logic is given in terms of distributions.

Acknowledgement We thank the anonymous referees for their helpful comments on a
preliminary version of the paper.

References

1. Abdulla, P.A., Legay, A., d’Orso, J., Rezine, A.: Tree regular model checking: A simulation-
based approach. J. Logic. Algebr. Progr. 69(1/2), 93–121 (2006)

2. Baier, C.: On Algorithmic Verification Methods for Probabilistic Systems. Habilitationss-
chrift zur Erlangung der venia legendi der Fakultät für Mathematik and Informatik, Univer-
sität Mannheim (1998)

3. Bailador, G., Triviño, G.: Pattern recognition using temporal fuzzy automata. Fuzzy Sets
Syst. 161(1), 37–55 (2010)

4. Bělohlávek, R.: Determinism and fuzzy automata. Inform. Sci. 142(1-4), 205–209 (2002)
5. Bhattacharyya, M.: Fuzzy Markovian decision process. Fuzzy Sets Syst. 99(3), 273–282

(1998)
6. Billingsley, P.: Probability and Measure. Wiley-Interscience, New York (1995)
7. Cao, Y., Chen, G., Kerre, E.E.: Bisimulations for fuzzy transition systems. IEEE Trans. Fuzzy

Syst. 19(3), 540–552 (2010)
8. Cao, Y., Ezawa, Y.: Nondeterministic fuzzy automata. Inform. Sci. 191(1), 86–97 (2012)
9. Ćirić, M., Ignjatović, J., Damljanović, N., Bašić, M.: Bisimulations for fuzzy automata.

Fuzzy Sets Syst. 186(1), 100–139 (2012)
10. Deng, Y., Du, W.: Logical, Metric, and Algorithmic Characterisations of Probabilistic Bisim-

ulation., Technical Report CMU-CS-11-145, Carnegie Mellon University (2011)
11. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C.: Testing finitary probabilistic

processes. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 274–
288. Springer, Heidelberg (2009)

12. Desharnais, J.: Labelled Markov Processes. Ph.D. thesis, McGill University (1999)
13. Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov processes. Inf.

Comput. 179(2), 163–193 (2002)
14. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximating labelled Markov

processes. Inf. Comput. 184(1), 160–200 (2003)
15. D’Errico, L., Loreti, M.: A process algebra approach to fuzzy reasoning. In: Proceedings of

the Joint 2009 International Fuzzy Systems Association World Congress and 2009 European
Society of Fuzzy Logic and Technology Conference, pp. 1136–1141 (2009)

16. Doberkat, E.-E.: Stochastic Coalgebraic Logic. Springer, Heidelberg (2010)
17. Fisler, K., Vardi, M.Y.: Bisimulation minimization and symbolic model checking. Form.

Method. Syst. Des. 21(1), 39–78 (2002)

138 Y. Deng and H. Wu

18. van Glabbeek, R.J., Smolka, S.A., Steffen, B., Tofts, C.M.N.: Reactive, generative, and strat-
ified models of probabilistic processes. In: Proc. 5th Annu. IEEE Symp. Logic in Computer
Science, pp. 130–141 (1990)

19. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM. 32(1), 137–161 (1985)

20. Hermanns, H., Parma, A., et al.: Probabilistic logical characterization. Inf. Comput. 209(2),
154–172 (2011)

21. Ignjatović, J., Ćirić, M., Simović, V.: Fuzzy relation equations and subsystems of fuzzy tran-
sition systems. Knowl-Based Syst. 38(1), 48–61 (2013)

22. Kupferman, O., Lustig, Y.: Latticed simulation relations and games. Int. J. Found. Comput.
S. 21(2), 167–189 (2010)

23. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28
(1991)

24. Li, Y.M., Pedrycz, W.: Fuzzy finite automata and fuzzy regular expressions with membership
values in lattice-ordered monoids. Fuzzy Sets Syst. 156(1), 68–92 (2005)

25. Lin, F., Ying, H.: Modeling and control of fuzzy discrete event systems. IEEE Trans. Syst.,
Man, Cybern., B, Cybern. 32(4), 408–415 (2002)

26. Mordeson, J.N., Malik, D.S.: Fuzzy Automata and Languages:Theory and Applications.
Chapman & Hall/CRC, Boca Raton (2002)

27. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg
(1980)

28. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS
1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

29. Parma, A., Segala, R.: Logical characterizations of bisimulations for discrete probabilis-
tic systems. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 287–301. Springer,
Heidelberg (2007)

30. Pedrycz, W., Gacek, A.: Learning of fuzzy automata. Int. J. Comput. Intell. Appl. 1(1), 19–33
(2001)

31. Pedrycz, W., Gomide, F.: A generalized fuzzy Petri net model. IEEE Trans. Fuzzy Syst. 2(4),
295–301 (1994)

32. Qiu, D.W.: Supervisory control of fuzzy discrete event systems: a formal approach. IEEE
Trans. Syst., Man, Cybern., B, Cybern. 35(1), 72–88 (2005)

33. Shen, V.R.L.: Knowledge representation using high-level fuzzy Petri nets. IEEE Trans. Syst.,
Man, Cybern. A, Syst., Humans 36(6), 1220–1227 (2006)

34. Sack, J., Zhang, L.: A General Framework for Probabilistic Characterizing Formulae. In:
Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 396–411. Springer,
Heidelberg (2012)

35. Sangiorgi, D., Rutten, J. (eds.): Advanced Topics in Bisimulation and Coinduction.
Cambridge University Press (2011)

36. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic process. Nord. J. Com-
put. 2(2), 250–273 (1995)

37. Wee, W.G., Fu, K.S.: A formulation of fuzzy automata and its application as a model of
learning systems. IEEE Trans. Syst. Sci. Cybern. SSC-5(3), 215–223 (1969)

38. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)
39. Zhang, L.: Decision Algorithms for Probabilistic Simulations. Ph.D. thesis, Saarland Univer-

sity (2008)

Pointer Program Derivation Using Coq:

Graphs and Schorr-Waite Algorithm

Jean-François Dufourd�

University of Strasbourg - CNRS, ICUBE Laboratory,
Pôle API, Boulevard S. Brant, CS 10413, 67412 Illkirch, France

jfd@unistra.fr

Abstract. We present a specification, a derivation and total correctness
proofs of operations for bi-functional graphs implemented with pointers,
including the Schorr-Waite algorithm. This one marks such a graph with
an economical depth-first strategy. Our approach is purely algebraic and
functional, from a simple graph specification to the simulation of a tail-
recursive imperative program, then to a true C pointer program by el-
ementary classical transformations. We stay in the unique higher-order
formalism of the Calculus of Inductive Constructions for specifications,
programs and proofs. All the development is supported by Coq.

1 Introduction

The Schorr-Waite (in short SW) algorithm [31] traverses iteratively a bi-
functional graph coded by pointers in depth-first order from an initial vertex
and marks all the visited vertices. The problem is classical, but the solution of
Schorr and Waite is inexpensive because it avoids any auxiliary storage by a
clever use of temporarily unemployed graph pointers. Such an algorithm is use-
ful in the cell marking step of a garbage collector, when the available memory
is scarce. Many researchers used this algorithm as a benchmark to test man-
ual (or little automated) methods of program transformation and verification
[32,33,8,20,19,17,9,4,28,34]. Since 2000, studies have addressed the proofs with
automatic tools, for partial or total correctness [3,1,27,22,26,15,29]. Indeed, the
proof of total correctness is considered as the first montain to climb in the veri-
fication of pointer programs [3].

Here, we report a new experiment of formal specification, derivation and total
correctness proof of a bi-functional graph datatype with its concrete operations,
including the SW algorithm whose study is particularly difficult. We highlight
the following novelties of the derivation process:

• Formalism. We stay in the general higher-order Calculus of Inductive Con-
structions (in short CiC) formalism for specifications, programs and proofs, and
use the Coq proof assistant as single software tool [2]. The only added axioms
are proof-irrelevance, extensionality, and an axiom of choice for a fresh address
during an allocation. We thus intentionally avoid assertions method and Hoare
logic underlying most works in verification of programs.

� This work was supported in part by the French ANR white project Galapagos.

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 139–154, 2014.
c© Springer International Publishing Switzerland 2014

140 J.-F. Dufourd

• Abstract level. We first focus on the algebraic specification in Coq of ab-
stract datatypes. We define by structural or Noetherian induction the results as
abstract functions and prove required properties.
• Concrete level. We specify a memory algebraic type with pointers in which
we implement the abstract specification. We seek morphisms carrying properties
from abstract to concrete levels.
• Programming. Coq does an extraction in OCaml, while forgetting proof-
parameters. Memory parameters are removed to go into an imperative program.
• Orbits. At the abstract and concrete levels, the orbit notion helps to man-
age the track of function iterations, e.g. to concisely write type invariants and
to manage linkage traversals as in shape analysis [21]. Orbits were approached
in [6,30,3,27,21] and deeply studied in [13]. They allow to deal with separation
problems [30] without extending the CiC. To specify combinatorial hypermaps
[18,10], and to derive imperative pointer geometric datatypes and programs, or-
bits are particularly efficient [14]. So, our correctness proof of the SW algorithm
can be considered as another case study for orbits.
• SW algorithm. Finally, this process provides a version of the SW algorithm
acting on any marked bi-functional graph, for which there is a proof that the cor-
responding operation is idempotent, i.e. it has the same effect whatever applied
once or several times.

Sect. 2 specifies marked bi-functional graphs and Sect. 3 a depth-first graph
marking. Sect. 4 defines internal stacks and Sect. 5 constructs a depth-first mark-
ing with them. Sect. 6 specifies memories and Sect. 7 defines a graph-memory
isomorphism. Sect. 8 carries the marking with internal stack from graph to mem-
ory. Sect. 9 extracts it into an OCaml function, which is transformed “by hand”
into an iterative C-program. Sect. 10 proves that the initial specification fits well
with reachability. Sect. 11 presents work related to the SW algorithm, and Sect.
12 concludes. The complete Coq development (with proofs) is available on-line
[12], including [13]. A preliminary French version, with another specification, is
in [11]. A basic knowledge of Coq makes the reading of this article easier.

2 Bi-functional Graphs

Basic definitions. As in Coq [2], we write nat for the type of natural numbers.
We assume that undef and null, not necessarily distinct, code particular natural
values. In this work, a (marked bi-functional) graph g = (E,mark,son0,son1) is a
finite subset E of vertices (or nodes) in nat - {undef,null}, so-called support of
g, equipped with three functions: mark returning a number inside {0,1,2}, son0
and son1 returning natural numbers named left and right sons, which do not
necessarily belong to E. An example is given in Fig. 1(Left), with E = {1,...,8},
marks in the vertex circles (filled with blank, light or dark grey depending on
the mark value: 0, 1 or 2), son0 and son1 represented by arcs with labels 0 or 1.

In the specification, the functions are extended at the whole nat: outside E,
mark returns 0, and son0, son1 return undef. To avoid tedious elementary tests,
we first inductively (here just enumeratively) define in Coq the mark type nat2

Pointer Program Derivation Using Coq: Graphs and Schorr-Waite Algorithm 141

0

0

1

1

1 6

7

2

5

3

0

4 1

00
0

0 0

0

0

1

1

2

8

0

0

0 1 1

0

1

undef

null

9 1

Left: Initial graph

0

0

1

1

6

7

2

5

3

0

4 1

0

0

0

0

1

1

2

8

0

0

0 1 1

0

1
2

2
2

null

undef

t = 1 9 1

Right: Final graph

Fig. 1. Graph before (Left) and after (Right) depth-first marking from t = 1

(Type is viewed as the “type of types”). Then, it is convenient to inductively
define the type graph by two constructors: vg, returning the empty (or void)
graph, and iv g x m x0 x1, inserting in the graph g a new vertex, x, with its
mark, m, and its two sons, x0 and x1:

Inductive nat2 : Type:= zero : nat2 | one : nat2 | two : nat2.
Inductive graph : Type:= vg : graph | iv : graph -> nat -> nat2 -> nat -> nat -> graph.

Observers and graph invariant. A predicate, exv g z, for testing the ex-
istence of any z:nat in a graph g is recursively defined in Coq by a pattern
matching on graph (Prop is the type of propositions and is a placeholder).
Then, functions mark and son are also recursively written in functional style
(son0, son1 are compacted into a unique son parameterized by a label k = 0 or
1). However, to construct only well-formed graphs, the calls of iv must respect
the precondition prec iv. So, if necessary, graph may be constrained by the
invariant inv graph (~ is written for not and <> for �=):

Fixpoint exv(g:graph)(z:nat): Prop:=
match g with vg => False | iv g0 x _ _ _ => x = z \/ exv g0 z end.

Definition prec_iv(g:graph)(x:nat): Prop := ~ exv g x /\ x <> null /\ x <> undef.
Fixpoint inv_graph(g:graph): Prop :=
match g with vg => True | iv g0 x m _ _ => inv_graph g0 /\ prec_iv g0 x end.

Other graph observers are similarly defined: nv is the number of vertices and
marksum is the sum of the mark values of the existing vertices. Numerous results
on them are proved, often by structural induction on graph, e.g. the lemma:

Lemma marksum_bound: forall g, marksum g <= 2 * nv g.

Mutators. Functions to update graphs are also written: chm g z m changes
the mark of z into m, and cha g k z zs the k-th son (or arc, for k = 0 or 1)
of z into zs. They preserve the graph invariant and enjoy properties of idem-
potence, permutativity and absorption which are essential in the following, e.g.
(eq_nat_dec tests the equality in nat):

Lemma chm_chm: forall g z1 m1 z2 m2,
chm (chm g z1 m1) z2 m2 = if eq_nat_dec z1 z2 then chm g z2 m2 else chm (chm g z2 m2) z1 m1.

Lemma chm_idem: forall g z, chm g z (mark g z) = g.
Lemma cha_chm: forall g x y z k m, k <= 1 -> cha (chm g z m) k x y = chm (cha g k x y) z m.

142 J.-F. Dufourd

3 Specification of Depth-First Marking

Preliminaries.We slightly enlarge the traditional marking problem: (i) we deal
with any graph g, i.e. equipped with any marking (between 0 and 2) and any
sons (in the support of g or not); (ii) starting from any natural number t, the
problem consists in traversing in depth-first order the subgraph of g of all the 0-
marked vertices reachable from t and in marking them by 2. Fig. 1(Right) gives
the final marking of the graph in Fig. 1(Left) when t = 1. With this setting,
the stopping condition of the depth-first traversal from any t is:

Definition stop g t := ~ exv g t \/ mark g t <> 0.

Then, naming stop dec the function which tests if stop g t is satisfied or not
(stop is easily proved decidable), the entire problem is solved by the function
which we name df and define in Coq syntax as follows (surrounded by quotes
because this non-primitive recursive definition is not accepted as such by the
Coq system):

"Definition df(g:graph)(t:nat): graph :=
if stop_dec g t then g
else let g0 := df (chm g t two) (son g 0 t) in df g0 (son g 1 t)."

As other authors [19,33,9], we consider that df explicitly states the problem as
simply as possible, as if g was a binary tree. From now on we consider it as
our specification. Unfortunately, such a recursive definition cannot be directly
written in Coq without dealing with termination. Moreover, the nested (double)
recursion adds a difficulty. But such problems of general recursion can be over-
come in Coq [2] (p. 419-420, for numerical problems).

True Coq specification. First, we define a graph measure, mes, which will
decrease at each recursive call. Then, we consider two binary relations on graph:

Definition mes g := 2 * nv g - marksum g.
Definition ltg g’ g := mes g’ < mes g.
Definition leg g’ g := mes g’ <= mes g.

They are a strict and a large preorder, ltg is Noetherian (or well-founded), and
the use of chm inside df’s body decreases mes. In fact, the termination of df needs
ltg (chm g t two) g, which is immediate, and ltg g0 g, which is satisfied if
leg g0 (chm g t two). This requires as result a graph, and also the fact that
this graph is less than or equal to g. In Coq, such a result has the existential type
depending on g denoted by {g’:graph | leg g’ g}, as for usual mathematical
subsets. Then, an auxiliary function of df, named df aux, with a result of this
type, has itself a functional type which is defined by:

Definition df_aux_type := fun g:graph => nat -> {g’:graph | leg g’ g}.

So, df auxmust be a function which transforms a graph, g:graph, into a function
which in turn transforms t:nat into a pair, (g’, H’), where g’ is the marked
graph and H’ a proof of leg g’ g. The building of df aux corresponds with the

Pointer Program Derivation Using Coq: Graphs and Schorr-Waite Algorithm 143

proof of a theorem. Indeed, Coq implements the Curry-Howard correspondence,
stating that proofs and functions are isomorphic. The proof, which has roughly
the skeleton of df’s informal specification, uses our results on the decreasing of
mes in the recursive calls of df. We do not give the exact definition of df aux

which is rather technical, but the interested reader may consult [11]. Finally,
remembering that exist is the Coq constructor of {g’:graph | leg g’ g},
the “true” df is obtained by extracting the witness of the result, i.e. the marked
graph g’:

Definition df(g:graph)(t:nat): graph := match df_aux g t with exist g’ _ => g’ end.

Of course, the termination of df aux, and of df, is automatically ensured by
these constructions. The definition of df is rather mysterious for non-specialists,
but the following properties are illuminating.

Properties of the Coq specification. Most properties of df are obtained by
Noetherian induction on df aux using built-in recursors. First of all, df pre-
serves inv graph, the initial graph vertices and sons, and the marking is always
increasing. An important result − absent from all studies considering an initial
marking with 0 only −, is that df is idempotent, i.e. reapplying it does not change
the result. Finally, we exactly obtain the expected original definition of df by
proving the fixpoint equation df_eqpf. So, since it possesses all the properties we
want to prove, df is a solid reference for transformations towards a real program:

Lemma inv_graph_df: forall g t, inv_graph g -> inv_graph (df g t).
Lemma exv_df: forall g t z, exv (df g t) z <-> exv g z.
Lemma son_df: forall g t z k, son (df g t) k z = son g k z.
Lemma mark_le_mark_df: forall g t z, mark g z <= mark (df g t) z.
Lemma df_idem: forall g t, df (df g t) t = df g t.
Theorem df_eqpf: forall g t,

df g t = if stop_dec g t then g
else let g0 := df (chm g t two) (son g 0 t) in df g0 (son g 1 t).

4 Succession Function, Orbits, Internal Stack

Orbits. Now, we simulate an (internal) stack inside a graph g , thanks to a total
function succ:

Definition succ g z :=
if eq_nat_dec z null then null
else if eq_nat_dec (mark g z) 0 then null else son g ((mark g z) - 1) z.

This function can be iterated: for any integer k, the k-th iterate of succ g from
z is zk := Iter (succ g) k z, where Iter is the classical iteration functional
(with z0 = z). The iterates form in g’s support a list that we call the orbit of
z. We studied this notion in a general way [13]. Here, it is used to express that
such a list always ends on null, outside g’s support.

Internal stack. For us, the orbit of z in g’s support − the orbit length is
written lenorb g z − is an internal stack if it satisfies the following invariant:

144 J.-F. Dufourd

z1 z0=zr = null z1 r−1
2 z3

1 z2
z1 1

1 0 0 00

(top)(basis)
Graph support

Fig. 2. Shape of a (non-empty) internal stack, with r = 5

Definition inv_istack g z : Prop :=
let r := lenorb g z in let zr := Iter (succ g) r z in let zr_1 := Iter (succ g) (r-1) z in

zr = null /\ (0 < r -> 1 <= mark g zr_1 <= 2).

In Fig. 2, r (= 5) gives the internal stack height, whereas z (= z0) and zr 1

can be viewed as its top and basis when the orbit is non-empty. Consequently, all
the internal stack elements are (genuine) non-zero marked vertices of g. Inter-
nal stacks are affected by mark or son updates. For general orbits, the different
updating cases are thoroughly analyzed [13] as in shape analysis [21]. However,
the SW algorithm only uses some particular configurations which are related to
three basic operations, which we present now.

Internal stack operations. They are defined as follows:

Definition ipush g t p := cha (chm g t one) 0 t p.
Definition iswing g t p := cha (cha (chm g p two) 0 p t) 1 p (succ g p).
Definition ipop g t p := cha g 1 p t.

• ipush g t p pushes a vertex t on an internal stack whose top is p, after a
change of t’s mark into one (Fig. 3(a1)). Its precondition requires that t is a
true zero-marked vertex. After ipush g t p, p remains the top of an internal
stack, but t is also the top of another one including the former. The left son of
t is now used to access to t’s successor, i.e. p, in the new stack.
• iswing g t p is a rotation at the top p of an internal stack to change its sons
after change of its mark from one into two. This “stack” operation is emblematic
of the SW algorithm (Fig. 3(b1)): iswing g t p replaces the left son which led
to the successor in the internal stack by the right son, reestablishing the initial
left son of p into t, p being no more father of its true right son.
• ipop g t p pops from an internal stack p its top (i.e. p), and reestablishes
its right son. The precondition requires that p’s mark is two (so exv g p is
verified) (Fig. 3(c1)): after ipop g t p, succ g p is the top of the remaining
stack, whose height decreases by 1 and which might become empty.

It is proved that these operations preserve the graph and internal stack in-
variants, the graph vertices, and that ipush and iswing add 1 to the mark sum,
whereas ipop leaves it unchanged.

Pointer Program Derivation Using Coq: Graphs and Schorr-Waite Algorithm 145

2
0

1

p

t

new parameters
2

0 1

p 2
0 1

p

t

(c1) (c2)

g t pipop

0
0 1

p

t 1

0

1

p

t

t

1

0

1

p

(a1)

new parameters

(a2)

ipush g t p

1

0

1

p

t

2
0

1

p

t t

2
0

1

p

(b1)

new parameters

(b2)

g t piswing

t

Fig. 3. Operations on internal stacks

5 Depth-First Marking Using an Internal Stack

Cartesian product. To simulate the SW algorithm, we have to deal with the
type, named graphistack, of the pairs (g,p) composed of a graph g and an
internal stack top p (In Coq, * is the Cartesian type product, used with %type

to remove ambiguities). We equip it with the invariant inv graphistack (fst
and snd are the classical projections). This invariant is satisfied with the empty
internal stack and is preserved by each of the three operations defined in Sect. 4:

Definition graphistack := (graph * nat)%type.

Definition inv_graphistack(gp:graphistack) := inv_graph (fst gp) /\ inv_istack (fst gp) (snd gp).

Designing the algorithm. The algorithm we look for is simply tail-recursive.
For the parameter gp = (g,p), its termination will be warranted by the strict
decreasing of the measure 2 * mes g + lenorb g p at each recursive call in-
volving one of the operations ipush, iswing or ipop. Our previous results entail
this decreasing. So, a suitable binary relation on graphistack is ltgip, which
is quickly proved to be a Noetherian strict preorder:

Definition ltgip (gp’ gp:graphistack) := let (g’,p’) := gp’ in let (g,p) := gp in
2 * mes g’ + lenorb g’ p’ < 2 * mes g + lenorb g p.

The same method as for df allows us to define dfi, our new recursive marking
function with internal stack. A large preorder is useless since the algorithm is sim-
ply recursive. However, the proofs of measure decreasing need inv graphistack

146 J.-F. Dufourd

at each recursive call. So, for the result of our auxiliary function dfi aux,
whose type is dfi aux type, we introduce the subtype {gp:graphistack |

inv graphistack gp}. We then complete the stopping predicate stop of df

into stopi:

Definition dfi_aux_type :=
fun gp:graphistack => inv_graphistack gp -> nat -> {gp’:graphistack | inv_graphistack gp’}.

Definition stopi p g t := p = null /\ stop g t.

The algorithm stops when p is null, and t is not in g or has a non-zero mark,
the corresponding testing function being stopi dec. To construct dfi aux, the
method is similar to that of df aux (Sect. 3), following the subsequent informal
specification written in Coq pseudo-code. The new parameters g, p, t for the
three recursive internal calls to dfi aux corresponding to ipop, iswing and
ipush are given in Fig. 3(a2,b2,c2):

"Definition dfi_aux (g, p) t :=
if stopi_dec p g t then (g, p)
else if stop_dec g t

then if eq_nat_dec (mark g p) 2
then dfi_aux (ipop g t p, son g 1 p) p
else dfi_aux (iswing g t p, p) (son g 1 p)

else dfi_aux (ipush g t p, t) (son g 0 t)"

Finally, dfi is obtained by the projection of dfi aux on the graph component
when starting with an empty stack (inv graphistack null g hg is a proof that
inv graphistack is satisfied for the genuine graph g with the empty stack):

Definition dfi (g:graph)(hg:inv_graph g)(t:nat) : graph:=
match dfi_aux (g,null) (inv_graphistack_null g hg) t with exist (g’,s) _ => g’ end.

Note that dfi keeps a proof argument, hg:inv graph g. Besides, a fixpoint
equation similar to the above informal specification is proved for dfi aux in the
same way as for df (Sect. 3).

Total correctness of the algorithm. The termination of dfi being automat-
ically ensured, the great question is the partial correctness of dfi with respect
to df. In fact, our fundamental result is the identity between dfi and df: for the
same g and t, they return the same graph regardless of what the actual proof
argument hg for dfi is:

Theorem df_dfi : forall g hg t, dfi g hg t = df g t.

The proof uses a new iteration function on an argument gp:graphistack [11]
and the general properties of orbit update operations, particularly the mutation
[13]. The consequences are numerous, since all the nice properties of df are imme-
diately transposed to dfi, e.g. preservation of the graph invariant, preservation
of the initial vertices and sons, mark growing, idempotence (Sect. 3). As far as
the SW algorithm, we could stop the study at this point, considering that the
path is well traced towards an imperative iterative C-program for an experienced
programmer, especially since df is simply tail-recursive. But a lot of implemen-
tation problems are still to be solved, particularly regarding pointers, because

Pointer Program Derivation Using Coq: Graphs and Schorr-Waite Algorithm 147

the graph which we use for convenience is a “ghost”, i.e. it does not explicitly
appear in the final program. Indeed, in imperative programming, a function like
dfi should only be parameterized by an address t. So, we now model memories
to translate our graph specification into a C-program.

6 Memory Model

Cells and memory. Advanced memory models allow to capture allocator sub-
tleties which are useful to prove the correctness of compilers or intricate programs
with composite data [25]. Our present goal being to derive only one structured
program on a unique datatype, our memory model is directly specialized to-
wards a graph pointer representation. Memory cells are of the following type,
cell, where mkcell is the constructor, and val, s0, s1 are field selectors, for
mark, left and right sons. An exception cell, initcell, is defined. Rather than
giving a complex − dangerous in sense of consistency − axiom system, we found
it safe to algebraically define the memory type Mem as follows:

Record cell:Type:= mkcell {val : nat2; s0 : nat; s1 : nat}.
Definition initcell := mkcell zero undef undef.
Inductive Mem:Type:= init : Mem | alloc : Mem -> nat -> cell -> Mem.

The addresses are simulated by natural numbers, init returns the empty mem-
ory, and alloc inserts in a memory a cell value at a (new) address, during an
allocation. Our memories are finite, unbounded, and allocations never fail.

Memory operations. Now, a predicate exm tests if an address is valid in a
memory, i.e. corresponds to an allocated cell. Then, the usual functions, load,
free and mut, respectively to get from an address a cell contents, to free a
cell (and its address), and to change a cell contents giving its address, are easily
defined by pattern matching [11]. However, allocations must satisfy the following
precondition, which leads to an invariant inv Mem for Mem:

Definition prec_alloc M a := ~exm M a /\ a <> undef /\ a <> null.
Fixpoint inv_Mem(M:Mem): Prop :=

match M with init => True | alloc M0 a c => inv_Mem M0 /\ prec_alloc M0 a end.

A lot of lemmas about the behavior of the operations are proved by induction
on Mem. We have mimicked more realistic programming primitives, particularly
a C-like malloc returning from a memory a fresh address, thanks to an address
generator, whose behavior is governed by a dedicated axiom [11].

7 Memory to Graph, Graph to Memory

Abstraction and representation.We define two operations: Abs, to abstract a
memory into a graph, and Rep to represent a graph as a memory, the reversibility
of which is confirmed by the following theorems:

148 J.-F. Dufourd

Fixpoint Abs(M:Mem): graph :=
match M with init => vg | alloc M0 a c => iv (Abs M0) a (val c) (s0 c) (s1 c) end.

Fixpoint Rep (g:graph) : Mem :=
match g with vg => init | iv g0 x m x0 x1 => alloc (Rep g0) x (mkcell m x0 x1) end.

Theorem Rep_Abs : forall M, Rep (Abs M) = M.
Theorem Abs_Rep : forall g, Abs (Rep g) = g.
Theorem inv_graph_Abs : forall M, inv_Mem M -> inv_graph (Abs M).
Theorem inv_Mem_Rep : forall g, inv_graph g -> inv_Mem (Rep g).

Transposition of operations and properties. Graph operations are imple-
mented by load and mut into memory ones, here with the same name preceded
by “R”, e.g. Rcha and Rchm. In fact, Abs and Repmake graph and Mem isomorphic.
So, the behavioral proofs of graph operations are simply carried on Mem:

Lemma Rchm_chm : forall M x m, Rchm M x m = Rep (chm (Abs M) x m).
Lemma chm_Rchm : forall g x m, chm g x m = Abs (Rchm (Rep g) x m).
Lemma Rcha_cha : forall M k x y, Rcha M k x y = Rep (cha (Abs M) k x y).
Lemma cha_Rcha : forall g k x y, cha g k x y = Abs (Rcha (Rep g) k x y).

8 Depth-First Marking in Memory

Specification of marking in a memory. The predicates stop and ltg be-
come Rstop and Rltg for memories. The lemmas we had for df are transposed
to specify the (nested) recursive depth-first marking Rdf in memories, with ex-
change theorems. Consequently, all the properties of df in graph are transposed
to Rdf in Mem, e.g. we have a fixpoint equation, Rdf eqpf, similar to df eqpf:

Theorem df_Rdf : forall g t, df g t = Abs (Rdf (Rep g) t).
Theorem Rdf_df : forall M t, Rdf M t = Rep (df (Abs M) t).

Depth-first memory marking with internal stack. Operations ipush,
iswing and ipop are easily transposed for Mem into Ripush, Riswing and Ripop

with the same properties. Then, the counterpart of graphistack is Memistack,
with the invariant inv Memistack:

Definition Memistack := (Mem * nat) %type.
Definition inv_Memistack(Mp:Memistack) := inv_Mem (fst Mp) /\ inv_Ristack (fst Mp) (snd Mp).

At stopi and ltgip correspond Rstopi and Rltgip. The definition of the mark-
ing in memory with internal address stack, i.e. Rdfi (with Rdfi aux), follows.

Total correctness. Of course, Rdfi is terminating. Then, by our isomorphism
graph - Mem, we transpose in Mem our proof of correctness of dfi w.r.t. df into a
proof of correctness of Rdfi w.r.t. dfi. Better, we have for free the correctness
of Rdfi w.r.t. our specification df in graphs:

Theorem Rdfi_dfi : forall (M : Mem) (hM : inv_Mem M) (t : nat),
Rdfi M hM t = Rep (dfi (Abs M) (inv_graph_Abs M hM) t).

Theorem Rdfi_df : forall (M : Mem) (hM : inv_Mem M) (t : nat),
Rdfi M hM t = Rep (df (Abs M) t).

Pointer Program Derivation Using Coq: Graphs and Schorr-Waite Algorithm 149

9 Towards Concrete Programming

Extraction in OCaml. The extraction-of-functional-program Coq tool [2] leads
to an OCaml version of our development. Hence, after an elementary substitu-
tion, we get the following program for Rdfi aux and Rdfi (in OCaml, “R” and
“M” are in lower case, the Coq decision functions, Rstopi dec and Rstop dec,
become Boolean functions, and the natural numbers are in Peano notation).
As usual, the extraction removes all the proof-terms and retains the common
data only. A functional form of the SW algorithm follows. Since rdfi aux is
tail-recursive, it will be easy to write it iteratively without a stack:

let rec rdfi_aux m p t =
if rstopi_dec p m t then (m, p)
else if rstop_dec m t

then if eq_nat_dec (rmark m p) (S (S O))
then rdfi_aux (ripop m t p) (rson m (S O) p) p
else rdfi_aux (riswing m t p) p (rson m (S O) p)

else rdfi_aux (ripush m t p) x (rson m O t)
let rdfi m t = fst (rdfi_aux m null t)

Derivation of a C-program. From the OCaml version, we derive graph im-
perative operations. We first define in C the types of cells and addresses, which
were integers (nat2 is suppressed for simplicity):

typedef struct strcell {nat val; struct strcell * s0; struct strcell * s1;} cell, * address;

As usual in C, null is written NULL, the memory is implicit and modified by side-
effects. As far as the SW algorithm, Fig. 3(a2,b2,c2) explains how the parameter
pair (p, t) mutates by ripush, riswing and ripop, like in the functional ver-
sion. An auxiliary variable, q, is used to serialize C assignments. We can as usual
replace exm t by t != NULL, and the way undef is translated is not important.
Finally, we transform the tail-recursion into an iteration, unfold all internal func-
tions, and the imperative iterative (ingenious) SW procedure looks like a variant
of the C version in [22], where each mark is coded by two bits. The procedure
works correctly regardless of what the initial marking is, the standard situation
− all marks are 0 − being just a particular case:

void rdfi(address t){
address p = NULL, q;
while (!(p == NULL && (t == NULL || t->val != 0)))){

if(t == NULL || t->val != 0){
if(p->val==2) {q = p->s1; p->s1 = t; t = p; p = q;}
else {p->val = 2; q = p->s0; p->s0 = t; t = p->s1; p->s1 = q;}

}
else {t->val = 1; q = t->s0; t->s0 = p; p = t; t = q;}

}
}

10 Back to the Specification

Although the starting point of numerous studies, df can be considered as too
constructive w.r.t. the reachability (Sect. 3) [19,27,22,26,24]. If reachable g t

z means that, in g, z can be reached from t only via zero-marked vertices, its
definition can be (nat2 to nat maps nat2 into nat):

150 J.-F. Dufourd

Fixpoint reachable(g:graph)(t z:nat): Prop : match g with
vg => False

| iv g0 x m x0 x1 => reachable g0 t z \/ nat2_to_nat m = 0 /\
(x = t /\ x = z \/ (x = t \/ reachable g0 t x)
/\ (x0 = z \/ reachable g0 x0 z \/ x1 = z \/ reachable g0 x1 z))

end.

Under some simple conditions, reachable g is proved decidable (with decision
function reachable dec), reflexive and transitive. The specifications reachable
and df should be compared. We did it through a simply recursive marking,
named dfs, using a classical external vertex stack and enjoying the same behav-
ior as dfi. So df = dfs, and since df = dfi (Sect. 5), then df = dfs = dfi.
Finally, the following theorem fully characterizes the effect of dfs, and df, on
all g’s vertices. It also entails the correctness of dfi, and Rdfi, with respect to
reachability:

Theorem reachable_dfs : forall g hg t z, mark (dfs g t hg) z =
if reachable_dec g t z then if stop_dec g z then mark g z else two else mark g z.

In summary, the whole derivation process is synthesized in Fig. 4 where all
functions, relations, equalities, isomorphisms and equivalences appear.

dfs g t H

reachable g t z

=

== df g t

Rdf M t

∼

dfi g t H

Rdfi M t H

∼

rdfi M t

rdfi t

ABSTRACT DATATYPE

REPRESENTATION

EXTRACTION

PROGRAMMING

Fig. 4. Derivation levels, functions and relations

11 Work Related to Schorr-Waite Algorithm

Pioneering work. The SW algorithm, discovered independently by Deutsch
([23], p. 417) was published as a routine for garbage collection [31]. Many pro-
gram constructions by derivation, e.g. by Griffiths [20], start with a doubly re-
cursive imperative procedure, introduce progressively (internal) stack elements,
and show that transformations preserve good properties.

Topor and Suzuki give the first formal proofs “by hand” [33,32]. Topor in-
troduces predicates and procedures comparable to df, dfs and dfi, but acting
on sets and lists with side-effects. The proof applies the intermittent assertions
method, with an induction on the data structure size that our graph inductions

Pointer Program Derivation Using Coq: Graphs and Schorr-Waite Algorithm 151

sometimes remind. Suzuki develops an automatic program verifier able to deal
with pointers, but his attempt on the SW algorithm remains incomplete.

Gries publishes a correctness proof of the SW program using the assertions
method with weakest preconditions [19]. In a vertex array simulating the mem-
ory, the graph is represented by a set of paths. Morris writes a proof in the
same spirit using Hoare logic [28]. Gerhart [17] proposes a proof by derivation
from an abstract problem of transitive closure to Gries’s program using sets,
sequences and arrays. The proof using the assertions method is partially ver-
ified by Affirm. Following Topor’s proof, de Roever [8] illustrates the greatest
fixpoint theory by the total correctness of a SW algorithm which is far enough
a way from the C program. Dershowitz revisits in rather informal style the SW
algorithm derivation and proof for vertices with d sons [9]. He starts with a
recursive procedure having an internal loop, progressively introduces counters,
then an internal stack, and ends with a version including two goto’s. Ward uses a
transformational model-based method to set the problem then to derive in WSL
and prove the SW algorithm [34]. It uses transformation rules which are proved
correct, thus avoiding to prove the correctness of the derivation itself.

Broy and Pepper use algebraic specifications to derive and prove the total cor-
rectness of the algorithm [4]. They specify marked vertex sets, then 2-graphs as
sets with 2 functions. An axiom of permutativity forces to use an equality modulo
for graphs. The same in Coq would alter Leibniz equality and prevent proofs of
equality for functions returning graphs. This explains our focus on the graph

specification. The starting point is a doubly recursive procedure acting on a set
and a graph. They algebraically specify generic arrays to simulate memories.
Several imperative procedures are obtained thanks to a generic transformation
rule eliminating double recursions. The last version mentions a set and a path
and is still far from the C program. Our study can be viewed as a logical con-
tinuation of this work.

Work using automated tools. Following Burstall [6], Bornat [3] gives a ra-
tionale to prove pointer programs in Hoare logic with semantic models of stack
and heap. In a memory (heap) viewed as an array, he follows iterated addresses
by an f function, defines f-linked sequences, and studies their dynamic behavior.
The SW algorithm is partially verified in the proof editor Jape [3].

Abrial uses the model-based Event B method to refine and merge (in 8 steps)
specifications given by separate elementary assignments into a final pointer pro-
gram [1]. Invariants, with pre-postconditions on sets and relations are progres-
sively built with proof obligations. The Atelier B is used to prove the partial
correctness, 70% automatically.

Mehta and Nipkow propose an Isabelle framework to prove pointer programs
in higher-order logic [27]. They implement a small language for annotated pro-
grams and tools to reason in Hoare logic with a semantic model of heap and
stack. A special attention is paid to capture separation properties [3,30] with list
and path abstractions. They prove the partial correctness of two versions of the
SW algorithm from Bornat’s work [3].

152 J.-F. Dufourd

Loginov et al. elaborate a completely automated proof of total correctness us-
ing three-valued logic, with deep analysis of reachability in pointer structures, but
only for binary trees or dags [26]. Hubert and Marché use the assertion method in
the Caduceus system for a direct proof of a C source version of the SW algorithm
[22]. A big invariant concerns the evolution of reachability, marking, stack, sons,
paths, etc. They automatically prove about 60% of the correctness, the rest, e.g.
termination, being left to Coq (about 3000 lines). Bubel relates a proof part of a
Java implementation. The specification in Java Card DL is based on reachability,
the proofs use the KeY system but do not mention termination [5].

Leino describes in Dafny a very performing implementation. Big pre-, postcon-
ditions and loop invariant group four kinds of properties. The total correctness
verification is automatic (in a few sec.) thanks to SMT solvers [24]. However,
the author says he finally prefers a method by refinement, like [1]. Yang uses
the relational separation logic to show that the SW algorithm is equivalent to a
depth-first traversing, but he mentions no automation [35].

Giorgino et al. study a method by refinement, first based on spanning trees
then enriched to graphs, for the total correctness of the SW algorithm, using
Isabelle/HOL [15]. Finally, they use state-transformers and monads (in Isabelle)
to deal with imperative programs. Proteasa and Back present the invariant based
programming, a refinement approach by predicate transformers supported by
invariant diagrams [29]. A diagram contains the information necessary to verify
that each derivation towards the SW algorithm is totally correct. The process
has been verified by Isabelle.

12 Conclusion

Coq development. We derived a graph library and the SW algorithm, and
proved their total correctness with Coq. The development from scratch repre-
sents about 8,400 lines, with 480 definitions, lemmas or theorems. That is the
price for such a complete study with a general proof assistant.

Advantages of our approach. We deal with a single powerful logical frame-
work, i.e. CiC and Coq, at abstract and concrete levels. Coq allows us to simulate
algebraic datatypes with inductive types equipped with preconditions and invari-
ants. It offers good facilities for general recursive functions if proof parameters
are added to address nested recursions [2]. This is facilitated by the mechanism
of dependent type.

Our approach is global because, at the two levels, graph types and operations
have to be specified, implemented and proved correct all together. Constraints
are distributed among invariants, preconditions and proof-parameters. So, big
complex invariants, as in monolithic proofs of the SW algorithm, are broken in
several pieces easier to manage.

Besides, orbit features allow to express predicates about data separation or
collision at high and low levels in a synthetical way [13,14].

Abstraction and representationmorphisms carry on operations and properties,
which are proved once, and, with extensionality, help to prove the equality of

Pointer Program Derivation Using Coq: Graphs and Schorr-Waite Algorithm 153

functions. The final step towards programming uses the extraction-from-proof
mechanism and classical elementary program transformations.

Limitations and future work. Complex algebraic data must be studied to
see how equalities of objects and functions will behave. For instance, dependent
constructors force to congruences, which are difficult to deal with in Coq, even
with setoids, and we could sometimes be happy with observational equalities.

The transformation of a functional recursive version with memory into an
iterative imperative program is classical and has good solutions in well-defined
cases. However, it should be computer-aided, even automated in a compiler.

Our approach prevents the help of program verification tools based on Hoare
logic, e.g. Why3 [16] or Bedrock [7], which also use Coq. However, the intro-
duction of our orbits in such frameworks must be considered to write predicates
about separation and collision, as in [13,14].

Finally, as our predecessors, we found the total correctness proof of the SW
algorithm to be hard work. But the memory management is still simple in this
algorithm, since it does not include allocation nor deallocation. In fact, the most
delicate was not to do proofs, but to find how the problem should be posed.

References

1. Abrial, J.-R.: Event Based Sequential Program Development: Application to Con-
structing a Pointer Program. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME
2003. LNCS, vol. 2805, pp. 51–74. Springer, Heidelberg (2003)

2. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development
- Coq’Art: The Calculus of Inductive Constructions. Springer-Verlag (2004)

3. Bornat, R.: Proving Pointer Programs in Hoare Logic. In: Backhouse, R., Oliveira,
J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 102–126. Springer, Heidelberg (2000)

4. Broy, M., Pepper, P.: Combining Algebraic and Algorithmic Reasoning: An Ap-
proach to the Schorr-Waite Algorithm. ACM-TOPLAS 4(3), 362–381 (1982)

5. Bubel, R.: The schorr-waite-algorithm. In: Beckert, B., Hähnle, R., Schmitt, P.H.
(eds.) Verification of Object-Oriented Software. LNCS (LNAI), vol. 4334, pp. 569–
587. Springer, Heidelberg (2007)

6. Burstall, R.M.: Some techniques for proving correctness of programs which alters
data structures. Machine Intelligence 7, 23–50 (1972)

7. Chlipala, A.: Mostly-automated verification of low-level programs in computational
separation logic. In: PLDI, pp. 234–245 (2011)

8. de Roever,W.-P.:OnBacktracking andGreatest Fixpoints. In: Salomaa, A., Steinby,
M. (eds.) ICALP 1977. LNCS, vol. 52, pp. 412–429. Springer, Heidelberg (1977)

9. Dershowitz, N.: The Schorr-Waite Marking Algorithm Revisited. Inf. Proc.
Lett. 11(3), 141–143 (1980)

10. Dufourd, J.-F.: Polyhedra genus theorem and Euler formula: A hypermap-
formalized intuitionistic proof. Theor. Comp. Sci. 403(2-3), 133–159 (2008)

11. Dufourd, J.-F.: Dérivation de l’algorithme de Schorr-Waite en Coq par une
méthode algébrique. In: JFLA 2012, INRIA (2012),
http://hal.inria.fr/hal-00665909

12. Dufourd, J.-F.: Schorr-Waite Coq Development On-line Documentation (2013),
http://dpt-info.u-strasbg.fr/~jfd/SW-LIB-PUBLI.tar.gz

http://hal.inria.fr/hal-00665909
http://dpt-info.u-strasbg.fr/~jfd/SW-LIB-PUBLI.tar.gz

154 J.-F. Dufourd

13. Dufourd, J.-F.: Formal Study of Functional Orbits in Finite Domains, 35 pages
(2013) (submitted)

14. Dufourd, J.-F.: Hypermap specification and certified linked implementation using
orbits. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 242–257.
Springer, Heidelberg (2014)

15. Giorgino, M., Strecker, M., Matthes, R., Pantel, M.: Verification of the schorr-waite
algorithm – from trees to graphs. In: Alpuente, M. (ed.) LOPSTR 2010. LNCS,
vol. 6564, pp. 67–83. Springer, Heidelberg (2011)

16. Filliâtre, J.-C.: Verifying two lines of C with why3: An exercise in program verifi-
cation. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152,
pp. 83–97. Springer, Heidelberg (2012)

17. Gerhardt, S.L.: A derivation-oriented proof of the Schorr-Waite algorithm. In:
Gerhart, S.L., et al. (eds.) Program Construction. LNCS, vol. 69, pp. 472–492.
Springer, Heidelberg (1979)

18. Gonthier, G.: Formal Proof - The Four-Color Theorem. Notices of the AMS 55(11),
1382–1393 (2008)

19. Gries, D.: The Schorr-Waite Graph Marking Algorithm. Acta Informatica 11,
223–232 (1979)

20. Griffiths, M.: Development of the Schorr-Waite algorithm. In: Gerhart, S.L., Pair,
C., Pepper, P.A., Wössner, H., Dijkstra, E.W., Guttag, J.V., Owicki, S.S., Partsch,
H., Bauer, F.L., Gries, D., Griffiths, M., Horning, J.J., Wirsing, M. (eds.) Program
Construction. LNCS, vol. 69, pp. 464–471. Springer, Heidelberg (1979)

21. Hackett, B., Rugina, R.: Region-Based Shape Analysis with Tracked Locations.
In: 32nd ACM POPL 2005, pp. 310–323 (2005)

22. Hubert, T., Marché, C.: A case study of C source code verification; the Schorr-
Waite algorithm. In: 3rd IEEE SEFM 2005, pp. 190–199 (2005)

23. Knuth, D.E.: The Art of Computer Programming: Fundamental Algorithms, vol. I.
Add. -Wesley (1968)

24. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

25. Leroy, X., Blazy, S.: Formal Verification of a C-like Memory Model and Its Uses
for Verifying Program Transformations. JAR 41(1), 1–31 (2008)

26. Loginov, A., Reps, T., Sagiv, M.: Automated verification of the deutsch-schorr-
waite tree-traversal algorithm. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134,
pp. 261–279. Springer, Heidelberg (2006)

27. Mehta, F., Nipkow, T.: Proving pointer programs in higher-order logic. Info. and
Comp. 199(1-2), 200–227 (2005)

28. Morris, J.M.: A Proof of the Schorr-Waite Algorithm. In: TFPM, vol. 91, pp.
43–51. NATO, D. Reidel (1982)

29. Preoteasa, V., Back, R.-J.: Invariant diagrams with data refinement. FAC 24(1),
67–95 (2012)

30. Reynolds, J.C.: Separation Logic: A Logic for Shared Mutable Data Structures. In:
LICS 2002, pp. 55–74 (2002)

31. Schorr, H., Waite, W.R.: An Efficient Machine-Independent Procedure for Garbage
Collection in Various List Structures. CACM 10(8), 501–506 (1967)

32. Suzuki, N.: Automatic Verification of Programs with Complex Data Structures.
PhD Th., Dept. of CS, Stanford (1976)

33. Topor, R.W.: The Correctness of the Schorr-Waite List Marking Algorithm. Acta
Inf. 11, 211–221 (1979)

34. Ward, M.: Derivation of Data Intensive Algorithms by Formal Transformation.
IEEE-TOSE 22(9), 665–686 (1996)

35. Yang, H.: Relational separation logic. TCS 375(1-3), 308–334 (2007)

An LTL Model Checking Approach

for Biological Parameter Inference

Emmanuelle Gallet1, Matthieu Manceny2,
Pascale Le Gall1, and Paolo Ballarini1

1 Laboratoire MAS, Ecole Centrale Paris, 92195 Châtenay-Malabry, France
{emmanuelle.gallet,pascale.legall,paolo.ballarini}@ecp.fr

2 Laboratoire LISITE, ISEP, 28 Rue Notre-Dame-des-Champs 75006 Paris, France
matthieu.manceny@isep.fr

Abstract. The identification of biological parameters governing dynam-
ics of Genetic Regulatory Networks (GRN) poses a problem of com-
binatorial explosion, since the possibilities of parameter instantiation
are numerous even for small networks. In this paper, we propose to
adapt LTL model checking algorithms to infer biological parameters
from biological properties given as LTL formulas. In order to reduce
the combinatorial explosion, we represent all the dynamics with one
parametric model, so that all GRN dynamics simply result from all
eligible parameter instantiations. LTL model checking algorithms are
adapted by postponing the parameter instantiation as far as possible.
Our approach is implemented within the SPuTNIk tool.

Keywords: LTL Model Checking, Parameter Identification, Symbolic
Execution, Genetic Regulatory Network, Thomas Discrete Modeling.

1 Introduction

Gene expression is a biological process where proteins are synthesized from
genes. These proteins can regulate the synthesis of other proteins provided that
their concentrations are sufficient. A collection of regulatory inter-dependencies
between genes/proteins is called a Genetic Regulatory Network (GRN). In this
paper we consider a discrete-state formalism, the René Thomas’ formalism [2,
3, 6, 18, 19], according to which the amounts of proteins in a GRN are discrete
abstractions of continuous concentrations. Hence the overall evolution of protein
concentration along time, called the dynamics of the network, is captured by a
discrete-state transition system. Given a René Thomas GRN model, the main
interest is in analyzing the possible dynamics that may be associated to it.
However, from the dynamics point of view, a GRN on its own is an underspecified
type of representation: it represents the dependencies between a set of genes,
but it does not describe what effect the combination of all such dependencies
has on a given state of the network, hence on its evolution. The mapping of
a GRN model to a specific dynamic (i.e. a transition system) is achieved by
considering an instantiation of so-called biological parameters, i.e., a specification

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 155–170, 2014.
c© Springer International Publishing Switzerland 2014

156 E. Gallet et al.

of the combined effect that all activated regulators have on a given state of the
network. Since the number of possible instantiations of biological parameters is a
double exponential function of the GRN size (in terms of number of genes and of
interactions), the analysis of the possible dynamics associated to a GRN model
is a complex task. In this paper we consider the application of formal methods,
namely model checking [1], as a means to reason about the possible dynamics
associated to a GRN specification. In particular we tackle the following problem:
given a relevant behavior of interest, formally expressed in terms of a temporal
logic property, say ϕ, we want to be able to automatically identify the biological
parameters instances which give rise to dynamics complying with ϕ.

Related work. Model checking techniques have been widely advocated in several
works to verify whether a given discrete Thomas model fulfills some relevant
biological temporal properties. In [3] Bernot et al. expressed biological knowledge
with Computation Tree Logic (CTL) formulas [1]. To exhaustively search the
parameters’ space, the set of all possible dynamics is generated and a CTL model
checking procedure is iterated, one dynamics after the other. This approach
is implemented in the SMBioNet tool [16] and has been illustrated in [8]. In
[12], the approach has been extended to cope with the formation of complexes
from proteins which allows modelers to express relationships between biological
parameters leading to a reduced set of dynamics to be investigated. This work
prefigures the interest of using constraints on the parameters. [2, 13] define
an approach based on an encoding technique to share computations between
different dynamics. Sets of dynamics are encoded by a binary vector, one bit
(or color) per dynamics, and LTL model checking algorithms [1] are extended
with Boolean operations on vectors. In [5, 6], the tool GNBox uses Constraint
Logic Programming (CLP) techniques to identify parameters. GRN dynamics
and biological knowledge are described by declarative rules and constraints on
parameters, then target behaviors are expressed as some kind of finite paths
that models have to verify. [9] also uses CLP techniques to adapt CTL model
checking, but the encoding introduces a lot of fresh logical variables that hamper
to scale up the method.

Our contribution. We propose a new approach that is based on a parametric
model, called Parametric GRN (PGRN). This allows us to encompass all the
dynamics of a GRN in a unique representation, biological parameters being
processed as symbols, and to implement an efficient (on-the-fly) searching of
(a symbolic representation of) the parameter’s space. Similarly to [13], our
approach is based on LTL model checking. While in, [13], LTL model checking
algorithms are optimized for the particular case of time series, that are sequences
of states made of one expression level per gene, observed one by one, we follow
the same creed as the one advocated in [5, 6]: model sets are handled through
some logical language both to avoid combinatorial explosion and to take benefit
of constraint solving techniques. A preliminary version of our approach has
been described in [14]. In the present version, algorithms combining symbolic
execution and constraint solving techniques have been reengineered and tuned
to be more efficient and cope with GRN features. Thereby, we consider the full

An LTL Model Checking Approach for Biological Parameter Inference 157

LTL language while [13] essentially focuses on time series and [5, 6] focuses on
properties carrying on finite paths.

Paper organization. We reformulate the logical description of Thomas’ modeling
framework in section 2, and explain how we encode the set of dynamics of a GRN
with Parametric GRN in section 3. Section 4 presents our adaptation of LTL
model checking algorithms with symbolic execution techniques. In section 5, we
briefly discuss the validity of our approach with our dedicated tool SPuTNIk.
Finally, section 6 contains some concluding remarks.

2 Genetic Regulatory Networks

A Genetic Regulatory Network (GRN) is a collection of regulatory inter-depen-
dencies between genes to represent the mechanism of gene expression, i.e. the
biological process by means of which proteins are synthesized. Two kinds of
interactions exist: activation or inhibition depending on whether the protein
expressed from the source gene can enhance or reduce the expression of the
target gene. Moreover, an interaction is effective only if the concentration of the
source protein is sufficient, in other words if its level of expression is above a
given threshold. From the modeling point of view, a gene g is assimilated to the
protein it synthesizes. In particular, it inherits the protein’s level of expression,
denoted xg , which, in this context, is abstractly represented by a non-negative
integer ranging from 0 (absence of protein or very low concentration level) to a
maximal value mg. A GRN is classically represented by an interaction graph.

Definition 1 (Interaction graph). An n-order interaction graph (IG) is a
labeled directed graph Γ = (G, I) where G is a finite set of gene nodes, n= |G|
and I ⊆ G×{+,−}×N+×G is the set of interactions. Given (g1, s, t, g2)∈I, s
indicates the effect of g1 over g2 (sign ”+” for activation and ”−” for inhibition)
and t denotes the threshold of the interaction. Moreover, the following properties
hold: i) ∀(g1, g2) ∈G2, there exists at most one interaction (g1, s, t, g2) ∈ I; ii)
∀(g1, s, t, g2)∈I, t > 1⇒ ∃(g1, s′, t′, g3)∈I, t′= t− 1.

The threshold t of an interaction (g1, s, t, g2) ∈ I indicates the minimal level
that g1 needs to be at in order to affect the expression of g2. The condition on
thresholds states that for any gene g1 every intermediate threshold level must
appear on at least an interaction arc originating in g1. Since an interaction graph
may contain at most one interaction between two genes, then for an interaction
(g1, s, t, g2) ∈ I, we denote s(g1, g2) its sign, and t(g1, g2) its threshold. mg =
max{t | ∃(g, s, t, g′) ∈ I} is1 the maximal level of expression of gene g, and
G−(g)⊆G is the set of regulators of g (i.e. G−(g) = {g′′|∃(g′′, s, t, g) ∈ I}).

A dynamics of a GRN corresponds to an evolution over time of the levels of
expression of all genes, The state space describes the states that may be observed
during such a possible evolution.

1 mg is equal to 1 if there does not exist edges outgoing from g.

158 E. Gallet et al.

Definition 2 (State space of an interaction graph). For Γ = (G, I) an
interaction graph we define X =

∏
g∈G Xg the state space underlying Γ , where

Xg = {0, ...,mg} is the set of possible levels of expression for gene g.

Example 1 (Interaction graph and state space). Figure 1 presents a two-genes
interaction graph Γ0 where gene α is both an activator of β and of itself (self-
activator) while β is an inhibitor of α. In particular α activates the expression of
β whenever its level of expression is at least 1, while when its level of expression is
at least 2 it activates both itself and β. The thresholds of Γ0 induce the following
sets of levels for the two genes, Xα = {0, 1, 2} and Xβ = {0, 1}, hence the state
space X={(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)}.

α β

[+, 2]

[+, 1]

[−, 1]

Fig. 1. Γ0: an example of a two-genes
interaction graph.

xα

xβ

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Fig. 2. Dynamics DK induced by the
parameters mapping K

For Γ an interaction graph with state space X, we denote D=(X,→) a generic
transition system2 called dymanics of Γ . With respect to D, Γ can be regarded as
an underspecified formalism: from Γ , on its own, one cannot devise any concrete
dynamics D. To obtain a dynamics for Γ we need to describe for each gene g
the effect that any subset of its regulators ω⊆G−(g) would have on g. This is
achieved by associating biological parameters with Γ .

Definition 3 (Biological parameters). For g a gene of Γ = (G, I), the set

of biological parameters of g is Kg = {Kg(ω) | ω ⊆ 2G
−(g)} and the set of all

biological parameters of Γ is K = ∪g∈GKg.
An instantiation of biological parameters is defined by any mapping

K : K → ∪g∈GXg associating to any parameter Kg(ω) a value in
Xg. Any instantiation K : K → ∪g∈GXg defines a mapping K :

⊗g∈G2
G−(g) → X verifying ∀(ωg1 , . . . , ωgn) ∈ ⊗g∈G2

G−(g),K((ωg1 , . . . , ωgn)) =
(K(Kg1(ωg1)), . . . ,K(Kgn(ωgn))) (with G = {g1, . . . , gn}).

In the sequel, for simplicity purpose, an instantiation K associating the value x
to the parameter Kg(ω) will be simply given by the equality Kg(ω) = x.
The biological parameters of an IG indicate the values the genes of the GRN tend
towards when a certain n-tuple of regulators is activated. Thus to obtain the
dynamics DK corresponding to parameters K we need to know what regulators

2 A transition system (E,R) verifies that R is a binary relation on E × E.

An LTL Model Checking Approach for Biological Parameter Inference 159

are activated in a state x ∈ X. We say that a set of regulators ω ⊆ G−(g) of
gene g is activated in state x = (x1, . . . , xn) ∈ X, denoted (x1, . . . , xn) |= ω,

iff
(∧

g′∈ω xg′ ≥ t(g′, g) ∧
∧

g′∈G−(g)\ω xg′ < t(g′, g)
)
, that is: if and only for

every regulator g′ ∈ω the corresponding component xg′ of state x is above the
corresponding activation threshold (i.e., xg′ ≥ t(g′, g)) while no other regulator

of g does. In the remainder we denote ActR : X→ ⊗g∈G2
G−(g) the function that

maps each state x into the corresponding n-tuples of activated regulators for the
n genes of a GRN. In the remainder, for x∈X, we denote x[xg ↑] (resp. x[xg ↓])
the state resulting from x by increasing (resp. decreasing) the xg component of
one unit.

Definition 4 (dynamics induced by an instantiation of parameters).
For Γ = (G, I) an n-order IG, K : K → ∪g∈GXg a set of biological parameters
of Γ , we define DK = (X,→

K
) the dynamics (transition system) of Γ induced

by K. The transition relation →
K
⊆X×X is minimally defined as follows:

∀x=(x1, . . . xn)∈ X let x∗=(x∗
1, . . . , x

∗
n)=K ◦ActR((x1, . . . , xn)):

– if x �= x∗ then ∀i, 1≤ i≤n
• if xi<x∗

i , then x→
K

x[xi ↑] (increment gene i)
• if xi>x∗

i , then x→
K

x[xi ↓] (decrement gene i)
– else if x = x∗ then x→

K
x (self-loop)

Then for each state x ∈ X we determine the corresponding attractor state x∗

(by application of the parameters mapping K to the regulators activated in x
i.e., x∗ = K ◦ ActR(x)). If the attractor state x∗ is different from x then for
each different component xi �= x∗

i we add either an increment or a decrement
transition in →

K
. Conversely if x∗=x we add a self-loop in →

K
.

Example 2 (Biological parameters and Dynamics). The subsets of regulators for

the two genes of Γ0 (Figure 1) are 2G
−(α)={{}, {α}, {β}, {α, β}}, resp. 2G−(β)=

{{}, {α}} hence the biological parameters of Γ0 are: K = {Kα({}), Kα({α}),
Kα({β}), Kα({α, β}), Kβ({}), Kβ({α})}. According to |= the association be-
tween states of X and n-tuples of activated regulators is: (0, 0) |=({}, {}), (0, 1) |=
({β}, {}), (1, 0) |= ({}, {α}), (1, 1) |= ({β}, {α}), (2, 0) |= ({α}, {α}), (2, 1) |=
({α, β}, {α}). As an example we consider the following mapping (instantiation)
of the parameters for gene α and β into corresponding target levels: Kα({})=2,
Kα({α}) = 2, Kα({β}) = 0, Kα({α, β}) = 2, Kβ({}) = 0 and Kβ({α}) = 1
yielding the combined mapping K=Kα×Kβ= {({}, {})→ (2, 0), ({{}, {α})→
(2, 1), . . . , ({α, β}, {α}) → (2, 1)} Figure 2 shows the dynamics DK yielded by
the parameters mapping K.

A parameters mapping K for an IG Γ yields a dynamics DK . However some
mappings K may result into inconsistent dynamics. To rule out inconsistent
dynamics, mapping must comply with the following constraints.

Definition 5 (Constraints for parameters mapping). Let Γ = (G, I) be
an IG. Definition constraint: ∀g∈G, ∀g′∈G−(g), ∀ω⊆G−(g)\{g′}: if s(g′, g)= +

160 E. Gallet et al.

then Kg(ω)≤Kg(ω∪{g′}), if s(g′, g) = − then Kg(ω)≥Kg(ω∪{g′}). Observation
constraint: ∀g ∈G, ∀g′ ∈G−(g), there exists ω ⊆ G−(g) \ {g′}: if S(g′, g) = +
then Kg(ω)<Kg(ω∪{g′}), if s(g′, g)=− then Kg(ω)>Kg(ω∪{g′}). Min/Max
constraint: ∀g ∈ G, Kg({g′|g′ ∈ G−(g), s(g′, g) = −}) = 0 and Kg({g′|g′ ∈
G−(g), s(g′, g)=+})=mg.

The Definition constraint (or Snoussi constraint [17]) states that if the level
of expression of a gene g′ which activates (resp. inhibits) a gene g becomes
greater than its threshold, then the expression level of g cannot decrease (resp.
increase). The Observation constraint expresses how we identify regulators. If g′

is an activator (resp. inhibitor) of g, then there exists at least one dynamic state
where the increase of the level of expression of g′ leads to an increase (resp.
decrease) of the expression level of g. Finally, the Min/Max constraint states
that in a dynamic state where all the activators (resp. inhibitors) of a gene are
above the threshold and simultaneously none of the inhibitors (resp. activators)
is, then the level of expression of the attractor of the gene is maximum (resp.
minimum).

Example 3. The Constraints for IG Γ0 (Figure 1) correspond to the following
conditions: Kα({α}) = 2, Kα({β}) = 0, Kβ({}) = 0, Kβ({α}) = 1,

(
Kα({}) <

2 ∨ 0 < Kα(α, β)
)
and

(
Kα({}) > 0 ∨ 2 > Kα(α, β)

)
. Notice that amongst

the 324 possible parameter mappings3 for Γ0, only 7 are consistent with the
Constraints for Γ0.

Even if these constraints are well-founded, there are not always considered
by biologists. In the sequel, by default, they will be considered and generically
denoted as CI , but they can be relaxed on demand.

3 Modeling Dynamics with Parametric GRN

In order to study all the dynamics simultaneously, we represent them all through
a single (meta)model, called Parametric GRN (PGRN), i.e. a facility of transi-
tion systems parameterized by the biological parameters.

Parametric GRN. A PGRN is a transition system associated with an interaction
graph Γ = (G, I). It involves two families of symbols: the biological parameters

K = {Kg(ω) | g ∈ G,ω ⊆ 2G
−(g)} and the state variables G = {xg|g ∈ G}. Note

that, according to the context, xg will denote either a state variable or a value
representing a concentration level.

The main idea is to encode state evolution with transitions parameterized
by parameters of K. A PGRN is composed of two states: T (transient) corre-
sponding to configurations such that at least one gene can change its current
level, and S (stable) corresponding to situations where no change is possible
for any gene. A transition of a PGRN is characterized by a guard (a condition

3 The number of possible parameters instantiation is equal to
∏

g∈G (mg + 1)2
|G−(g)|

.

An LTL Model Checking Approach for Biological Parameter Inference 161

over parameters K and state variables of G) and an assignment (an application
X → X expressing how states of a dynamics evolve). For example, transition

T
(xα<2∧xβ=0∧xα<Kα({})[xα↑]−−−−−−−−−−−−−−−−−−−→ T (see Fig. 3) indicates that for any (transient) state

x∈X such that xβ =0, xα<2 and xα<Kα({}) then a transition corresponding
to an increase of the level of α exists.

More precisely, for each gene g, there is a transition from T to T for each
kind of variation (increase or decrease) of xg. For ω ⊆ G−(g) a subset of reg-
ulators of g, let us introduce the predicate Pg(ω) : X → {(,⊥} defined by:
(
∧

g′∈ω xg′ ≥ t(g′, g)) ∧ (
∧

g′∈G−(g)\ω xg′ < t(g′, g)). Pg(ω) characterises the set
of states in which regulators ω are the only effective ones on g. The transition
associated to the increase of xg is conditioned by the guard Increase(g) =
∨ω⊂G−(g)(Pg(ω) ∧ xg < Kg(ω)). Similarly, the transition associated to the de-
crease of xg is conditioned by the guard Decrease(g) = ∨ω⊂G−(g)(Pg(ω) ∧ xg >
Kg(ω)). Finally there is one transition from T to S when the expression level
of all genes remains stable, i.e. if any gene g satisfies the condition Stable(g) =
∧ω⊂G−(g) (Pg(ω) ∧ xg = Kg(ω)), and one last transition from S to S where the
guard is always true.

Definition 6 (PGRN). A PGRN associated to an interaction graph Γ =
(G, I) is a pair P = (QP , δP) with QP = {T, S} the set of states and δP a
set of transitions. A transition of δP is of the form (qP , gP , aP , q

′
P), also denoted

qP
(gP)[aP]−−−−−→ q′P , with qP and q′P states of QP , gP a guard, i.e. a formula over

K∪G and aP an assignment, i.e. an application X → X. More precisely, δP is
the set of all following transitions:

– (T, Increase(g), xg ↑, T) with g in G,

– (T,Decrease(g), xg ↓, T) with g in G,

– (T,∧g∈GStable(g), id, S) where id is the identity assignment,

– (S,(, id, S) where (indicates the guard always true.

Let us remark that unfolded versions of guards can be rather long and com-
plex, but in the best cases they can be simplified by application of the initial
constraints CI . Nevertheless, generally, the most complex guard is the one label-
ing the transition T → S since it corresponds to the conjunction of all Stable(g)
conditions. On the other hand, once in S, the guard of the only possible transition
(S → S) is simply true ((). Moreover, transitions involving disjunctions in their
guard can be split. Indeed, transition (T, gP ∨g′P , aP , T) can be equivalently split
in (T, gP , aP , T) and (T, g′P , aP , T).

Example 4 (PGRN). Fig. 3 represents the PGRN associated with the interaction
graph of Fig. 1. In relation with the different possible subsets ω, one can explicit
the different guards: e.g. Increase(β) ≡ (xα < 1∧xβ < Kβ({}))∨(xα ≥ 1∧xβ <
Kβ({α}))). The Initial constraints CI (cf. Def 5) can be used to simplify the
guards: e.g. CI implies Kβ({}) = 0 and Kβ({}) = 1 and then Increase(β) ≡
(xα > 0 ∧ xβ = 0).

162 E. Gallet et al.

T S

(xα < 2 ∧ xβ = 0 ∧ xα < Kα({}))[xα ↑]
(xα > 0 ∧ xβ = 0)[xβ ↑]

(xα = 0 ∧ xβ = 1)[xβ ↓] (xα = 1 ∧ xβ = 0 ∧ Kα({}) = 0) ∨ (xα = 1 ∧ xβ = 1)∨
(xα = 2 ∧ xβ = 1 ∧ Kα({α, β}) < 2)[xα ↓]

(xα = 0 ∧ xβ = 0 ∧Kα({}) = 0)∨
(xα = 2 ∧ xβ = 1 ∧ Kα({α, β}) = 2)[id]

�[id]

Fig. 3. PGRN associated to the interaction graph in Figure 1

Annotated dynamics. A PGRN characterizes a set of dynamics, one for each
possible instantiation of biological parameters, that is, for any parameter map-
ping K : K → ∪g∈GXg. For gP a transition guard of a PGRN, x∈X a state of
the corresponding GRN, and K an instance of biological parameters, we denotes
�gP �x,K the instance of gP obtained by substituting gP ’s state variables and gP ’s
biological parameters with the corresponding state value of x, and parameter
values of K. Similarly, we denote �gP �x the resulting substitution only of gP ’s
state variables (parameters in K remain symbolic).

Definition 7 (Annotated Dynamics). Let P = (QP , δP) be a PGRN asso-
ciated with an interaction graph Γ = (G, I), and let K : K → ∪g∈GXg. The
annotated dynamics associated to P and K is a pair DK = (QD, δD) where
the set of states QD ⊂ QP × X and the set of transitions δD ⊂ QD × QD

are mutually defined by: ∀x ∈ X, (T, x) ∈ QD and for all (qP , x) ∈ QD and
(qP , gP , aP , q′P) ∈ δP s.t. �gP �x,K is evaluated to True, then (q′P , aP (x)) ∈ QD

and ((qP , x), (q′P , aP (x))) ∈ δD.

Example 5 (Annotated Dynamics). Figure 4 presents one possible annotated
dynamics for the PGRN represented in Figure 3, with the following instantiation
of parameters: Kα({}) = 2, Kα({α}) = 2, Kα({β}) = 0, Kα({α, β}) = 2,
Kβ({}) = 0 and Kβ({α}) = 1.

(
T, (0, 0)

) (
T, (1, 0)

) (
T, (2, 0)

)

(
T, (0, 1)

) (
T, (1, 1)

) (
T, (2, 1)

) (
S, (2, 1)

)

Fig. 4. A possible annotated dynamics for the PGRN in Figure 3

By construction, for a given instantiation K : K → ∪g∈GXg, the associated
annotated dynamicsDK corresponds to the dynamics DK of the underlying IG Γ
induced by the instantiation K (cf Def 4). For a transition ((qP , x), (q′P , aP (x)))
in δD, it suffices to give up the first component and keep the second one, x →
aP (x), to retrieve a dynamics of Γ . Thus, the dynamics represented in Fig. 2

An LTL Model Checking Approach for Biological Parameter Inference 163

can be obtained from the annotated dynamics of Fig. 4. The first component (T
or S) is somehow a technical artifact annotating the presence of a stable state
when building sequences of consecutive states. Depending on the context, we
will assimilate DK and DK or will work with the most appropriate of the two
forms. Motivated by efficiency considerations, we will apply a specific treatment
for states x already recognized as stable, that is, annotated by S.

4 Adapting LTL Model-Checking to PGRN

The classical approach of LTL model-checking [15] consists in confronting a
model (e.g. a dynamics) against an LTL formula. To do so, the negation of the
LTL formula is transformed into a Büchi automaton and the product between
the automaton and the dynamics is computed. We then look for accepting paths
in the product by checking the existence of reachable cycles containing at least
an accepting state. Model checking is usually time consuming, and since the
number of dynamics is large, this method is not applicable in our case. To avoid
the combinatorial explosion, we want to check all the dynamics simultaneously,
i.e. we check directly the PGRN. To do so, we first build the Parametric Product
between the PGRN and the Büchi Automaton associated to the LTL formula ϕ.
We then use symbolic execution technics in order to search for accepting cycles.
As a result, we obtain a set of constraints C that a parameter instantiation K
must fulfill such that the associated dynamics DK verifies ϕ.

Büchi Automaton and Parametric Product. Biological properties on a
sequence of states can be expressed using LTL formulas built from a set of
atomic propositions using the usual logical operators in {(, ⊥, ¬, ∧, ∨} and
the temporal operators X (for neXt time), G (Globally), F (Finally) and U
(Until) [1]. Since we need to express biological knowledge on levels of expression
of genes, atomic propositions are of the form xg �� c where xg denotes the level
of expression of a gene g, ��∈ {=, �=, <,>,≤,≥} and c∈N. Any LTL formula ϕ
can be translated into a Büchi automaton B(ϕ).

Definition 8 (Büchi Automaton associated to an LTL formula). Let Γ
be a GRN and ϕ an LTL formula over the levels of expression of genes of Γ .
A Büchi Automaton associated to ϕ is a tuple B(ϕ) = (QB, q0B, AB , δB) where
QB is the set of states, q0B ∈ QB is the initial state, AB ⊆ QB is the set of
accepting states and δB is the set of transitions. A transition of δB is of the
form (qB , gB, q′B) with qB and q′B states of QB and gB a non temporal formula
over the levels of expressions of genes in Γ . Moreover, B(ϕ) is such that an
infinite sequence of states provided with truth values for all atomic propositions
(a path) verifies ϕ iff this path is accepted by B(ϕ), i.e. iff this path contains at
least a so-called accepting state infinitely often.

Example 6 (LTL formula and associated Büchi automaton). The existence of a
steady state (i.e. a state which is itself its only own successor) in (xα, xβ) = (2, 1)
corresponds to the LTL formula G((xα = 2 ∧ xβ = 1)→ X(xα = 2 ∧ xβ = 1)).
Fig. 5 presents a Büchi Automaton associated to the negation of this formula.

164 E. Gallet et al.

s0start

s1 s2

s3

�
xα = 2 ∧ xβ = 1 xα = 2 ∧ xβ = 1

xα < 2 xβ = 0

�

Fig. 5. B(¬ϕ) with ϕ ≡ G
(
(xα = 2 ∧ xβ = 1)⇒ X(xα = 2 ∧ xβ = 1)

)

Definition 9 (Parametric Product). Let P = (QP , δP) be a PGRN and
B(¬ϕ) = (QB, q0B, AB, δB) a Büchi Automaton associated to the LTL formula
¬ϕ. The product Π = P ⊗ B(¬ϕ) is the tuple (QΠ , q0Π , AΠ , δΠ) with QΠ =
QP × QB the set of vertices, q0Π = (T, q0B) the initial vertex, AΠ = QP × AB

the set of accepting vertices, and δΠ the set of transitions. A transition of δΠ is
of the form (qΠ , gΠ , aP , q

′
Π) with qΠ = (qP , qB), q′Π = (q′P , q′B), gΠ = gP ∧ gB

such that (qP , gP , aP , q
′
P) ∈ δP , (qB, gB, q′B) ∈ δB and gΠ is satisfiable.

Example 7. The product of the PGRN in Fig. 3 and the Büchi Automaton in
Fig. 5 is represented in Fig. 6. The product has been simplified by removing
output transitions whose guard on expression levels is not satisfiable according
to the guards and assignments of the input transitions of the same vertex; we
also remove the transitions whose guard is not satisfiable according to the guards
on parameters necessarily crossed (φ21 and φ22 here). Finally, we remove vertices
which can not be reached and those belonging to a terminal cycle without
accepting vertex.

Search for Parametric Accepting Cycles. The search for accepting cycles is
based on symbolic execution techniques which are program analysis techniques.
The key point is the substitution of actual values by symbolic variables in order
to symbolically perform computations. Each execution (or path) of the program
associates to each variable a symbolic computation together with a path condition
that expresses what are the conditions on input values to execute the given path.
Symbolic execution techniques has been extended to symbolic transition systems
[11] by unfolding transition systems as symbolic trees. As symbolic execution is
only applicable for finite paths, selection criteria are used to cut infinite paths
when considering testing. In the sequel, we will take particular care to cut infinite
paths in identifying situations of return on a node already encountered. Indeed
such situations reveal the presence of cycles.

In the symbolic execution of the parametric product Π , the parametersKg(ω)
are handled as symbolic variables (i.e. not evaluated), and Π is unfolded leading
to the construction of several Symbolic Execution Trees (SET), one for any x ∈ X.

An LTL Model Checking Approach for Biological Parameter Inference 165

Ts0start

Ts1

Ts3

Ss3

φ1[xα ↑] φ21
[xα ↓] φ22

[xα ↓] φ23
[xα ↓] φ3[xβ ↓] φ4[xβ ↑]

φ21 [xα ↓]

φ22
[xα ↓]

φ1[xα ↑] φ21
[xα ↓] φ22

[xα ↓] φ23
[xα ↓] φ3[xβ ↓] φ4[xβ ↑]

φ5[id]

�[id]

Fig. 6. Parametric product P ⊗B(¬ϕ) associated to the Parametric GRN in Figure 3
and the Büchi Automaton in Figure 5 (after simplification), with:
φ1 ≡ xα < 2 ∧ xβ = 0 ∧ xα < Kα({}) φ3 ≡ xα = 0 ∧ xβ = 1
φ21 ≡ xα = 2 ∧ xβ = 1 ∧Kα({α, β}) < 2 φ4 ≡ xα > 0 ∧ xβ = 0
φ22 ≡ xα = 1 ∧ xβ = 1 φ5 ≡ xα = 0 ∧ xβ = 0 ∧Kα({}) = 0.
φ23 ≡ xα = 1 ∧ xβ = 0 ∧Kα({}) = 0

Definition 10 (Symbolic Execution Tree). Let Π = (QΠ , q0Π , AΠ , δΠ) be a
parametric product. The Symbolic Execution Tree associated to Π and x ∈ X is a
transition system (QT , δT) where the set of nodes QT and the set of transitions
δT ⊂ QT × QT are mutually defined by: (q0Π , x,() ∈ QT and for all qT =
(qΠ , x, pc) ∈ QT , for all (qΠ , gΠ , aP , q

′
Π) ∈ δΠ such that pc′ = pc ∧ �gΠ�x �= ⊥,

then q′T = (q′Π , aP (x), pc
′) ∈ QT and (qT , q

′
T) ∈ δT . If qΠ ∈ AΠ , then the node

is said to be accepting.

For any node (qΠ , x, pc) ∈ QT with qΠ = (qP , qB) ∈ QP × QB, pc is the path
condition in the form of a constraint over parameters in K. It defines the set of
annotated dynamics D that can reach the state (qP , x) from the state in QP ×X
associated to the ancestor of (qΠ , x, pc). With the process described in the section
3, D itself allows the definition of the set of dynamics of the corresponding GRN
which can reach all the states associated to nodes of the node path along the
same sequence of traversed states. By construction, path conditions expressed
over parameters increase along paths of SET and reduce the number of dynamics
compatible with the path under construction.

Biological properties are expressed along infinite sequences, and thus, paths
of the product and paths of SET are also infinite. But, by disregarding path
conditions, the number of possible nodes in a SET is finite4. So, when we are
building a new node (qΠ , x, pc′) whereas it is descendant of a node (qΠ , x, pc)

4 it is bounded by the product of all combinations of levels of expression, the number
of vertices of the Büchi automaton and the number of vertices (2) of the PGRN.

166 E. Gallet et al.

(same vertex in QΠ and same value in X), we stop the analysis of the path; these
two nodes are respectively called child node and return node. By construction,
the path condition of the child node is included in the path condition of the
return node, i.e. all parameter instantiations satisfying the child path condition
also satisfy the return path condition.

Thus, by performing a mixed symbolic and numerical execution (parameters
in K remain unchanged and state variables in X are evaluated), we can stop the
execution procedure of the product Π so that each path of the resulting SET
is finite and contains a cycle (starting at the return node and ending with the
transition leading to the child node). If there exists an accepting node between
the return node and the child node, the path condition is said accepting.

Once all finite SET are built, it remains to compute for which parameter instan-
tiations there exist accepting paths. For that, it suffices to consider every accepting
path conditions of the SET associated toΠ . Each accepting path condition can be
satisfied by (at least) one instantiation of parameters in K, it means that there
exists a path in Π going infinitely often through the associated cycle, and thus
passing infinitely often by an accepting state. And so there exists a path in the
dynamics corresponding to this accepting path condition verifying ¬ϕ.

Thus, instantiations of parameters verifying the conjunction of the negation
of every accepting path condition of the SET associated to Π correspond to
the dynamics such that there is no path verifying ¬ϕ, in other words, all paths
verify ϕ. Note that the obtained dynamics verify ϕ along all paths; if the model
must verify ϕ only on at least one path, our approach remains adequate with a
small adaptation: to do this, we have to get the disjunction of all accepting path
conditions of the SET associated to the product P ⊗B(ϕ).

Example 8. For the Product in Figure 6, there are two solutions after computa-
tion; the corresponding values of parameters are: Kα({}) = 1 or 2, Kα({α}) = 2,
Kα({β}) = 0, Kα({α, β}) = 2, Kβ({}) = 0 and Kβ({α}) = 1. One of the
corresponding dynamics (with Kα({}) = 2) is represented in Figure 2.

Algorithm of Traversal of SET. Algorithm 1, based on a Depth First Search
schema, gives an overview of how we practically compute the accepting path
conditions. We use three global variables: the parametric product Π , the list of
accepting path conditions acceptingPC, and the list nodesList of SET nodes
which have already been analyzed.

Starting with a SET node, line 2 to line 4 test and compute its successors,
as explained in the ”Symbolic Execution Trees” part of section 4. Three tests
are then performed successively. Firstly, if the path condition of the successor
node is already known, it cannot provide additional information (the pc becomes
more specific every depth call), and we stop the study of this successor (line 5).
Secondly, line 7 tests if one of the ancestors of the successor is a return node
(ancestor with the same vertex and state). If it is the case, then there is an
infinite cycle between them and, if there is an accepting node in that cycle, then
the successor node is an accepting return node, and its path condition is added
to the list accepting PCs (lines 8 to 9). Thirdly, if the successor is not a return

An LTL Model Checking Approach for Biological Parameter Inference 167

Algorithm 1. Overview of DFS((qΠ , x, pc), ancestorsList)

Data: global Π = (QΠ , q0Π , AΠ , δΠ), global acceptingPC, global nodesList
1 ancestorsList.add((qΠ , x, pc));
2 forall the (qΠ , gΠ , aP , q

′
Π) ∈ δΠ do // calculation of all successors

3 pc′ ← pc ∧ �gΠ�x ; // pc of the new node

4 if pc′ �= ⊥ then // the transition can be crossed

5 if pc′ �⊂ acceptingPC then // pc not included in the analyzed

accepting pc

6 x′ ← aP (x) ; // state of the new node

7 if ∃(q′Π , x′, pc′′) ∈ ancestorsList then // an ancestor of the new

node is a return node

8 if ∃(q′′′Π ∈ AΠ , x′′′, pc′′′) ∈ [(q′Π , x′, pc′′), . . . , (q′Π , x′, pc′)] ⊂
ancestorsList then // a descendant of the return node is

accepting

9 acceptingPC.add(pc′)

10 else if �(q′Π , x′, pc′′′′) ∈ nodesList with pc′ ⊂ pc′′′′ then // no

copy node: recall of DFS()

11 DFS((q′Π , x′, pc′), ancestorsList);
12 nodesList.add((q′Π , x′, pc′));

node, we check (line 10) if the node corresponds to a node in nodesList with
the same vertex, the same state and the same or a more general path condition.
If it is not the case (no copy node), then the DFS function is recalled with the
successor node in argument (line 11), which is then added to nodesList (line 12).

Transient and Stable. Nodes of the tree are of the form (qΠ , x, pc) with qΠ =
(qP , qB) ∈ QP × QB. According to the value of qP (either T or S, from the
PGRN), we say that the node is either transient or stable. By construction of
the PGRN, the target vertices of all transitions outgoing from a stable vertex
are vertices of the same type, hence the appellation stable. Furthermore, the
guards of the transitions between the stable vertices are always of the form
gΠ = gP ∧ gB with gP = (, and the assignment of the transitions is aP = id
(identity assignment). Thus a specific treatment can be provided for the stable
nodes, briefly described in the sequel.

In the algorithm 1, the line 11 can be split in two calls, one for the current
function and another for the specific treatment of stable nodes (called if the
successor node is stable, called stable root in the sequel). In this case, the
second argument of the function, the list of ancestors, is an empty list since
none of the previous ancestors (all transient) can be a return node of a stable
node. According to the characteristics of the transitions between stable vertices
mentioned above, for the treatment of stable nodes there is no need to test if the
path condition is already known (line 5, already tested with the corresponding
stable root), there is no guard on parameters to symbolically verify and no

168 E. Gallet et al.

substitution of levels of expression (lines 3 to 4), and there is no update of the
state to do (line 6). Furthermore, if a node is accepting then all the explorations
of the SET from the stable root can be stopped; indeed, its path condition is
identical to all path conditions of the nodes which can be built from it.

5 Assessment

The methodology described above has been implemented in a prototype software
tool called SPuTNIk. SPuTNIk is written in Java and relies on the Z3 constraint
solver [7] to check the satisfiability of path conditions during the traversal of SET
and on the ltl2ba and LTL2BA4J libraries [4,10] to generate a Büchi Automaton
of minimal size from an LTL formula. To validate our approach with SPuTNIk,
we have considered a common biological case study: the analysis of the genetic
network that controls the life cycle of the λ phage virus [19]. The λ phage can
infect the E. coli bacterium with two different outcomes: either it integrates the
genome of the host through a process called lysogeny or it enters a lytic phase
where it kills the residing cell to reproduce itself. We based our approach on
the λ phage model studied in [13] by Klarner et al. and composed of four genes,
denoted cI, cII, cro and N, and ten interactions described Fig. 7.

cI cro

cII N

[3,−]
[1,−]

[3
,−
]

[2
,−

]

[2,+]

[2,−]

[2
,−

] [1,−
]

[1,+]

[1
,+

]

Fig. 7. The interaction graph Gλ for the λ phage

Klarner et al. describe biological properties as time series : a sequence of
specific states given in the form θ ≡ s1, ∗, s2, ∗, . . . , ∗, sn where si is the ith

observed state while ∗ denotes a possibly empty sequence of unspecified states.
Times series are equivalent to LTL formulas of the form φ ≡ s1 ∧F(s2 ∧F(· · · ∧
F(sn) . . .)) (i.e. only composed of ∧ and F operators). Moreover, the states
of time series are fully determined, each level of expression corresponds to a
single value. For example for Gλ, each state is a quadruple (xcI , xcII , xcro, xN)∈
{0, 1, 2}×{0, 1}×{0, 1, 2, 3}×{0, 1}). Given a time series θ and an interaction
graph, the goal of Klarner et al. is to find out all models which contain at least
one path matching θ (i.e. passing through the states of θ in the correct order).
Klarner et al. distinguish the following states: init ≡ [0000], lyt1 ≡ [0021],

An LTL Model Checking Approach for Biological Parameter Inference 169

lyt2 ≡ [0020], lyt3 ≡ [0030], lys1 ≡ [2101] and lys2 ≡ [2000], belonging to
time series θ1 ≡ init, ∗, lyt1, ∗, lyt2, ∗, lyt3 and θ2 ≡ init, ∗, lys1, ∗, lys2, which
correspond to evolution towards lytic and lysogenic phases. The equivalent LTL
counterparts for θ1 and θ2 are respectively φ1 ≡ init∧F(lyt1∧F(lyt2 ∧F(lyt3 ∧
F(lyt2)))) and φ2 ≡ init ∧F(lys1 ∧F(lys2)).

In order to reproduce the same experiment than Klarner et al., we discard the
Min/Max constraint for all genes (as it is not supported in [13]), and we relax
the Observation constraint for the specific case where cI is activator of itself (as
done in [13]). We then use SPuTNIk to find out the parameter instantiations
corresponding to dynamics which are guaranteed to exhibit either a lytic or a
lysogenic phenotype in compliance with series θ1 and θ2 (i.e. all models that
contain at least one path that satisfies φ1 and at least one that satisfies φ2).

The obtained results are in accordance: amongst the 7 billions possible models,
we obtain the same number (8759) of valid ones as in [13]. But unlike Klarner
et al. our method is not restricted to time series: we can consider any form of
LTL formulas and there is no need to fully specify all the levels of expression.
For example, it is known that a lytic λ phage can not become lysogenic in the
future (and conversely). This knowledge cannot be expressed with time series,
but it corresponds to the following LTL formulas: φ3 ≡G(lys2 ⇒ ¬F(lyt3)) and
φ4 ≡G(lyt3 ⇒ ¬F(lys2)). By adding these formulas to the previous, we reduce
the number of solutions to 2390.

6 Conclusion

In this paper we introduced a new methodology for reverse-engineering of genetic
network models, based on adaptation of classical LTL model-checking with sym-
bolic execution. In order to find dynamics consistent with biological knowledge,
we use the whole extent of LTL to express biological knowledge in terms of
constraints over time. Instead of checking each dynamics of the GRN, we propose
a method which performs checking with a novel formalism, the Parametric
GRN, a compact (symbolic) representation of all the dynamics associated to an
interaction graph within a single structure. From the Parametric GRN and LTL
formulas, our algorithm processes parameters, defining the dynamics, as symbols
in order to avoid combinatorial explosion. The solutions are in the form of a set
of constraints that the parameters must fulfill. Such analysis has been carried
out through the SPuTNIk tool, a prototype software of the proposed method.
We are working on a parallel version of SPuTNIk, based on the splitting of the
Parametric Product into strongly connected components in order to detect the
accepting cycles in each component.

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press (2008)
2. Barnat, J., Brim, L., Krejci, A., Streck, A., Safránek, D., Vejnar, M., Vejpustek, T.:

On parameter synthesis by parallel model checking. IEEE/ACM Trans. Comput.
Biology Bioinform. 9(3), 693–705 (2012)

170 E. Gallet et al.

3. Bernot, G., Comet, J.-P., Richard, A., Guespin, J.: Application of formal methods
to biological regulatory networks: extending Thomas’ asynchronous logical ap-
proach with temporal logic. Journal of Theoretical Biology 229(3), 339–347 (2004)

4. Bodden, E.: LTL2BA4J Software. RWTH Aachen University (2011),
http://www.sable.mcgill.ca/~ebodde/rv/ltl2ba4j/

5. Corblin, F., Fanchon, E., Trilling, L.: Applications of a formal approach to decipher
discrete genetic networks. BMC Bioinformatics 11, 385 (2010)

6. Corblin, F., Tripodi, S., Fanchon, E., Ropers, D., Trilling, L.: A declarative
constraint-based method for analyzing discrete genetic regulatory networks.
BioSystems 98, 91–104 (2009)

7. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

8. Filopon, D., Mérieau, A., Bernot, G., Comet, J.-P., Leberre, R., Guery, B., Polack,
B., Guespin, J.: Epigenetic acquisition of inducibility of type III cytotoxicity in P.
aeruginosa. BMC Bioinformatics 7, 272–282 (2006)

9. Fromentin, J., Comet, J.-P., Le Gall, P., Roux, O.: Analysing gene regulatory
networks by both constraint programming and model-checking. In: 29th IEEE
Engineering in Medicine and Biology Society, EMBC 2007, pp. 4595–4598 (2007)

10. Gastin, P., Oddoux, D.: Fast LTL to büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

11. Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic execution techniques for
test purpose definition. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom
2006. LNCS, vol. 3964, pp. 1–18. Springer, Heidelberg (2006)

12. Khalis, Z., Comet, J.-P., Richard, A., Bernot, G.: The SMBioNet method for
discovering models of gene regulatory networks. Genes, Genomes and Genomics
3(special issue 1), 15–22 (2009)

13. Klarner, H., Streck, A., Šafránek, D., Kolčák, J., Siebert, H.: Parameter identifi-
cation and model ranking of thomas networks. In: Gilbert, D., Heiner, M. (eds.)
CMSB 2012. LNCS, vol. 7605, pp. 207–226. Springer, Heidelberg (2012)

14. Mateus, D., Gallois, J.-P., Comet, J.-P., Le Gall, P.: Symbolic modeling of genetic
regulatory networks. Journal of Bioinformatics and Computational Biology 5(2B),
627–640 (2007)

15. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, SFCS 1977, pp. 46–57. IEEE
Computer Society, Washington, DC (1977)

16. Richard, A.: SMBioNet User manual (2010),
http://www.i3s.unice.fr/~richard/smbionet/

17. Snoussi, E., Thomas, R.: Logical identification of all steady states: the concept of
feedback loop characteristic states. Bull. Math. Biol. 55(5), 973–991 (1993)

18. Thieffry, D., Colet, M., Thomas, R.: Formalisation of regulatory networks: a logical
method and its automation. Math. Modelling and Sci. Computing 2, 144–151
(1993)

19. Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks
- II. immunity control in bacteriophage lambda. Bull. Math. Biol. 57(2), 277–297
(1995)

http://www.sable.mcgill.ca/~ebodde/rv/ltl2ba4j/
http://www.i3s.unice.fr/~richard/smbionet/

SCC-Based Improved Reachability Analysis
for Markov Decision Processes�

Lin Gui1, Jun Sun2, Songzheng Song3, Yang Liu3, and Jin Song Dong1

1 National University of Singapore, Singapore
2 Singapore University of Technology and Design, Singapore

3 Nanyang Technological University, Singapore

Abstract. Markov decision processes (MDPs) are extensively used to model sys-
tems with both probabilistic and nondeterministic behavior. The problem of cal-
culating the probability of reaching certain system states (hereafter reachability
analysis) is central to the MDP-based system analysis. It is known that existing
approaches on reachability analysis for MDPs are often inefficient when a given
MDP contains a large number of states and loops, especially with the existence of
multiple probability distributions. In this work, we propose a method to eliminate
strongly connected components (SCCs) in an MDP using a divide-and-conquer
algorithm, and actively remove redundant probability distributions in the MDP
based on the convex property. With the removal of loops and parts of proba-
bility distributions, the probabilistic reachability analysis can be accelerated, as
evidenced by our experiment results.

1 Introduction

Markov decision processes (MDPs) are extensively used to model a system with both
non-determinism and probabilistic behavior. One fundamental task in probabilistic
model checking is to decide the probability of reaching a set of target states in an
MDP. We refer to this as the reachability analysis problem. A discrete time Markov
chain (DTMC) can be considered as a special form of MDPs with unique reachabil-
ity probability since it has only one probability distribution at each state. For general
MDPs, there are multiple probability distributions in a state, and thus the practical in-
terests for the reachability analysis focus on the maximum and minimum reachability
probabilities.

Given an MDP and a set of target states, a variable can be created for each state to
present the probability of that state reaching the target states. There are two main meth-
ods to calculate or approximate the values of these variables [4]. One method encodes
the probabilistic reachability problem into a linear optimization problem where each
probability distribution is encoded into an inequality. Thus, the goal is to maximize or
minimize the sum of the variables. It should be noted that the state-of-the-art linear
solvers are limited to small systems. However, a practical MDP model is often resulted
from parallel composition of several MDPs/DTMCs, which would have an even larger
number of states.
� This project is partially supported by project IDD11100102A/IDG31100105A from SUTD.

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 171–186, 2014.
c© Springer International Publishing Switzerland 2014

172 L. Gui et al.

Fig. 1. Running examples of (a) an MDP and (b) an acyclic MDP

The other method is based on value iteration by finding a better approximation itera-
tively until the result satisfies a certain stopping criterion, and performs generally better
in system with a large number of states [4]. The approximation of the variable of a state
needs to be updated whenever any of its successive states are changed. When there are
loops in an MDP, this approach tends to require many iterations before converging to a
value, and thus lead to slow convergence. Fig. 1(a) shows an example of a simple MDP
with loops among states s1, s2 and s3. Suppose the task is to calculate the probability
of reaching state s4 from state s0. If the approximation in s2 is updated during the kth

iteration, the approximation in s1 will be updated during the (k + 1)th iteration as s2
is successive to s1. The update of s1 will trigger s3 to update its value subsequently,
which requires s2 to be updated again. This iteration can only be stopped by enforcing
a stopping criterion, thus one major issue associated with such an approach is that the
difference between the approximated and ‘actual’ probabilities remains unknown even
after the iteration is stopped [9]. On the other hand, in an acyclic MDP in Fig. 1(b),
each state will be visited only a few rounds for backward calculation without iterations.
In this case, the exact maximum and minimum probabilities can be calculated without
the necessity of approximation. Therefore, we are motivated to improve reachability
analysis by removing loops in an MDP.

Some foundation has been established by recent works on the elimination of strongly
connected components (SCCs) in DTMC [3,2,13]. To remove the loops, SCCs are first
identified, and the transition probabilities from every input to output states of each SCC
are calculated. The loops can then be removed by connecting the inputs to the outputs
with the computed probability transitions (i.e., abstraction of SCC). After all the SCCs
are abstracted, the whole model becomes acyclic. With such an acyclic set of states,
value iteration can be used to calculate the probability from initial states to the target
states. Although this approach works for DTMCs, eliminating loops in an MDP is par-
ticularly challenging due to the existence of multiple probability distributions. In an
MDP, the number of memoryless schedulers increases exponentially with the number
of the states that have multiple probability distributions. During the abstraction of a
group of states, a probability distribution must be calculated under different memory-
less scheduler in the group. As a result, the total number of probability distributions
can increase exponentially after abstraction. Therefore, directly applying the existing
approaches [3,2,13] to MDPs is often infeasible.

To overcome this challenge, we propose a divide-and-conquer algorithm to remove
loops in an MDP. For each SCC in the MDP, we first construct partitions, i.e., each state
in the SCC forms a partition. By solving sets of linear equations, new probability dis-
tributions can be calculated from each partition to replace the loops without varying the
overall reachability probabilities. With the new equivalent probability distributions, the

SCC-Based Improved Reachability Analysis for Markov Decision Processes 173

new partition will be free of loops, and have the same reachability probabilities with the
original model. We repeatedly merge a few partitions into one partition, and eliminate
loops in this new partition by performing the above abstraction until only one partition
is left in the SCC. After the reduction for all the SCCs, the remaining acyclic MDP can
be solved efficiently via the value iteration approach. After this reduction, the maximum
and minimum reachability probabilities of the reduced MDP remain unchanged as com-
pared with those of the original MDP. As introduced earlier, reducing states in SCCs of
an MDP may result in exponentially many probability distributions, and our algorithm
is thus designed to eliminate redundant or infeasible probability distributions on-the-fly
to achieve better performance. The underlying observation is that, a probability distri-
bution will not affect the maximum or the minimum reachability probability, if it is not
a vertex of the convex hull of a set of probability distributions. Our contributions are
three-fold and are summarized as follows.

1. To tackle the problem of slow convergence, we propose a divide-and-conquer ap-
proach to eliminate SCCs in an MDP. Our approach works on the partitions and
can effectively avoid generating large number of schedulers.

2. To reduce the cost of loop eliminations within each partition of an MDP, we remove
redundant nondeterministic choices/probability distributions based on convex hull
theory.

3. The new approach has been implemented in our model checking framework PAT [15],
and two practical case studies (i.e., software reliability assessment and tennis tour-
nament prediction) have been conducted to show its effectiveness.

2 Preliminaries

2.1 Markov Decision Processes

Markov Decision Processes. (MDPs) are popular choices to model a system exhibiting
both probabilistic and nondeterministic behavior [4]. Given a set of states S, a probabil-
ity distribution (PD) is a function u : S → [0, 1] such that Σs∈Su(s) = 1. The PD can
also be expressed in the vector form as u, and Distr(S) denotes the set of all discrete
probability distributions over S. The formal definition of MDP is introduced as follows.

Definition 1 (Markov Decision Process). A Markov decision process is a tupleM =
(S, init, Act, Pr) where S is a set of states; init ∈ S is the initial state; Act is an
alphabet; and Pr : S ×Act→ Distr(S) is a labeled transition relation. #$

Without loss of generality, in this work, we assume that MDP has an unique initial state
and is always deadlock free. It is known that we can add a self-looping transition with
a probability of 1 to a deadlock state without affecting the calculation result [4]. A state
without any outgoing transitions to other states is called an absorbing state, which has
only a self-loop with a probability of 1. An example of MDP is shown in Fig. 1(a),
where states s4 and s5 are both absorbing states, denoted by circles with double lines,
and state s0 is the initial state. Given a state s, we denote the set of probability distri-
butions of s as Us, s.t., Us = {Pr(s, a)|a ∈ Act}. An infinite or a finite path in M is
defined as a sequence of states π = s0, s1, · · · or π = s0, s1, · · · , sn, respectively, such

174 L. Gui et al.

that ∀i ≥ 0 (for finite paths, i ∈ [0, n− 1]), ∃a ∈ Act, Pr(si, a)(si+1) > 0. An MDP
is nondeterministic if any state has more than one probability distribution. As a special
MDP, a discrete time Markov chain (DTMC) has only one event (and one probability
distribution) at each state, and thus is deterministic.

Similar to [3,2,13], in an MDPM = (S, init, Act, Pr), we define inputs and outputs
of a group of states K ⊆ S as follows.

Inp(K) = {s′ ∈ K | ∃s ∈ S\K, ∃a ∈ Act · Pr(s, a)(s′) > 0},
Out(K) = {s′ ∈ S\K | ∃s ∈ K, ∃a ∈ Act · Pr(s, a)(s′) > 0}.

Here, the set of input states of K, Inp(K), contains the states in K that have incoming
transitions from states outsideK; and the set of output states ofK, Out(K), contains all
the states outside K that have direct incoming transitions from states in K. In addition,
without loss of generality, if a group contains the initial state init, we include init to its
input states (with an imaginary transition leading to init from outside). Furthermore,
given a set K, if a state is not an input state, we call it as an inner state. We can elimi-
nate all the inner states by calculating the direct transition probabilities from Inp(K) to
Out(K). This process is called abstraction. It eliminates all loops inK, and meanwhile,
preserves the maximum and minimum reachability probabilities from inputs to the out-
puts of K. There are known algorithms in [2,13] to perform the abstraction. However,
they are only applicable to DTMCs. In this work, we extend the abstraction to MDPs.

Schedulers. A scheduler is used to resolve the non-determinism in each state. Intu-
itively, given a state s, an action is first selected by a scheduler. Once an action is
selected, the respective PD is also determined; and then one of the successive states is
reached according to the probability distribution. Formally, a memoryless scheduler for
an MDP M is a function σ : S → Act. At each state, a memoryless scheduler always
selects the same action in a given state. This choice is independent of the path that
leads to the current state. In the following, unless otherwise specified, the terms ‘sched-
ulers’ and ‘memoryless schedulers’ are used interchangeably. An induced MDP, Mσ,
is a DTMC defined by an MDP M and a scheduler σ. A non-memoryless scheduler is
the scheduler that can select different action in a given state according to the execution
history.

Strongly Connected Components. A set of states C ⊆ S is called strongly connected
in M iff ∀s, s′ ∈ C, there exists a finite path π = 〈s0, s1, · · · , sn〉 satisfying s0 =
s ∧ sn = s′ ∧ ∀i ∈ [0, n], si ∈ C. Strongly connected components (SCCs) are the
maximal sets of the strongly connected states. All SCCs can be automatically identified
by Tarjan’s approach [16], with a complexity ofO(n+l), where n and l are the numbers
of states and transitions, respectively. In Fig. 1(a), {s0}, {s4}, {s5} and {s1, s2, s3} are
the SCCs in the model. We define SCCs as trivial if they do not have any outgoing
transitions (e.g., {s4}, {s5}) or are not involved in loops (e.g., {s0}, an SCC of one
single state without any loop). As a result, {s1, s2, s3} is the only nontrivial SCC in
Fig. 1(a). An MDP is considered acyclic if it contains only trivial SCCs. An example
of an acyclic MDP is shown in Fig. 1(b). Note that an acyclic MDP may still have
absorbing states, but it does not affect the computation of reachability probabilities.

SCC-Based Improved Reachability Analysis for Markov Decision Processes 175

2.2 Probability Reachability Analysis in MDPs

One fundamental question in quantitative analysis of MDPs is to compute the proba-
bility of reaching target states G from the initial state. Noted that with different sched-
ulers, the result may be different. The measurement of interest is thus the maximum and
minimum reachability probabilities. The maximum probability of reaching any state
in G is denoted as Pmax(M |= ♦G), which is defined as: Pmax(M |= ♦G) =
supσ P (Mσ |= ♦G). Similarly, the minimum is defined as: Pmin(M |= ♦G) =
infσ P (Mσ |= ♦G), which yields the lower bound of the probability of reaching
G. The supremum/infimum ranges over all and potentially infinitely many schedulers.
Rather than considering all schedulers, it suffices to consider only memoryless sched-
ulers, in order to obtain maximum and minimum reachability probabilities [4].

In the following, with the MDP in Fig. 1(a), we demonstrate how to numerically
calculate the maximum probability of reaching any state in G from the initial state.
The minimum probability can be obtained similarly. Here, state s0 is the initial state,
and G contains a single target state s4. Let V be a vector such that, given a state s,
V (s) is the maximum probability of reaching G from a state s. For instance, V (s0) is
the maximum probability of reaching G from the initial state. First of all, V (s) = 1,
for all s ∈ G. Using backward reachability analysis, we can identify the set of states
X = {s0, s1, s2, s3, s4} such that G is reachable from any state in X ; and a set of
states Y = {s5} from where G is unreachable, i.e., V (s) = 0 for ∀s ∈ Y . There-
fore, V (s4) = 1 and V (s5) = 0. There are two main approaches on calculating the
reachability probabilities for states X \G, i.e., {s0, s1, s2, s3}.

Linear Programming. The method encodes each probability distribution (PD) for a
state in X \G into a linear inequality. This is defined as

V (s) �
∑

t∈S
P (s, α)(t) · V (t), for s ∈ X \G (1)

with an additional constraint V (s) ∈ [0, 1], and the goal is to minimize the sum of
V . Taking state s2 for example, there is a unique PD {0.5 �→ s1, 0.1 �→ s3, 0.4 �→ s4},
which can be encoded as: V (s2) � 0.5V (s1) + 0.1V (s3) + 0.4V (s4). Noted that state
s1 has three PDs, thus three inequalities are required. V (s0) is then obtained by solving
such linear programming using standard algorithms.

Value Iteration. This method iteratively builds an approximation of V based on the
previous approximation. Let V i be the i-th approximation. For ∀s ∈ X \ G, we have
V 0(s) = 0; V i+1(s) = max{

∑
t∈S Pr(s, a)(t) · V i(t) | a ∈ Act(s)}. For example, at

the 1st iteration, V 1(s2) = 0.5V 0(s1)+ 0.4+0.1V 0(s3) = 0.4 and the others remains
unchanged; at the 2nd iteration, V 2(s1) = max{0.1V 1(s2) + 0.9V 1(s3), 0.5V

1(s2)
+0.5V 1(s3), 0.9V

1(s2) + 0.1V 1(s3)} = 0.36, V 2(s0) = 0.2; at the 3rd iteration,
V 3(s0) = 0.38 and V 3(s3) = 0.2V 2(s1) = 0.072; at the 4th iteration, since the
value of state s3 has been updated in the previous round, V 4(s1) and V 4(s2) shall be
computed again and the similar iterations repeat. Notice that states s1, s2 and s3 form a
loop, within which an update of any state will trigger the updates of other states in the
next few iterations. After 39 iterations, V 39(s0) is calculated to be 0.74627.

176 L. Gui et al.

It can be shown that for every state s, V i+1(s) � V i(s) and we can obtain V in the
limit, limi→∞ V i = V . In reality, it may take many iterations before V i converges and
thus value iteration is often stopped when the absolute/relative difference between two
successive iterations falls below a certain threshold ε. The number of iterations required
is related to the subdominant eigenvalue of the transition matrix [14]. Each iteration
involves a series of matrix-vector multiplications, with a complexity of O(n2 · m) in
the worst case, where n is the number of states in S and m is the maximum number of
actions/distributions from a state. However, as stressed in [9], value iteration does not
guarantee the resulting values to be within ε of the true answer. Although theoretically
guaranteed precisions are base on the denominators of the (rational) numbers, it is still
unclear if these are practically applicable.

3 SCC Reductions on Markov Decision Processes

As both approaches based on solving linear programming and value iteration have their
own limitations, we propose a new approach to abstract away the loops in each strongly
connected component (SCC) of an MDP based on a divide-and-conquer algorithm, and
then apply value iteration to the resulting acyclic MDP. Without loops, the calculation
of reachability probabilities will be faster, and also will be more accurate than the pure
value iteration case with an unspecified amount of errors.

Reducing SCCs in an MDP while preserving the results of reachability analysis is
highly nontrivial, and may lead to extra schedulers and an exponential increase in the
number of probability distributions (PDs) if not handled properly. In this work, the
proposed divide-and-conquer algorithm works on partitions; hence effectively avoids
the generation of extra PDs. Moreover, we can further reduce the redundant PDs based
on the convex property.

In the following, we will use a running example to illustrate the main idea of the
divide-and-conquer approach, and then present the overall algorithm and detailed
methodologies on performing state abstraction in an MDP, followed by its optimiza-
tion on the reductions of probability distributions.

3.1 A Running Example

To reduce an SCC, our reduction approach starts from adding each state in the SCC into
a new partition. It then divides these partitions into groups. For each group, it eliminates
loops within the group and merges its components into a new partition. We call this
process abstraction. This step repeats until the whole SCC becomes one partition, which
is guaranteed to be free of loops. In this part, we demonstrate our main idea with a
running example that transfers the MDP in Fig. 1(a) to the acyclic MDP in Fig. 1(b).
The execution of each step is demonstrated in Fig. 2.

First, the states {s1, s2, s3} are identified as the only nontrivial SCC in the MDP,
and there are three partitions, i.e., {s1}, {s2}, {s3}, labeled using different grayscale in
Fig. 2(a). LetΛbe the set of all current partitions in the SCC, i.e.,Λ= {{s1}, {s2}, {s3}}.
We then divide Λ into two groups, as enclosed by dashed lines, such that the partitions
{s1} and {s2} form one group, and {s3} alone forms the other.

SCC-Based Improved Reachability Analysis for Markov Decision Processes 177

Fig. 2. A running example of transforming the MDP in Fig. 1(a) to the acyclic MDP in Fig. 1(b)

Subsequently, abstraction is performed on both groups. The main idea of the ab-
straction is to eliminate loops in the group by connecting the inputs and outputs using
equivalent non-redundant probability distributions (PDs). In the first step, we need to
remove the redundant probability distributions in each partition of the group. Recall
that each PD can form a linear constraint according to Eq. (1) in Section 2.2. According
to the PDs in Fig. 2(a), it can be proved that the constraint from PD b of state s1 is
redundant as it can be represented by a linear combination of the constraints from PDs
a and c. As a result, PD b can be removed. The updated MDP is shown in Fig. 2(b).

The second step of the abstraction is to calculate the equivalent PDs. In the present
case, partition {s1} has two actions and partition {s2} has only one action, thus there
are two (2 · 1) schedulers in total. We define σ1 as the scheduler selecting PD a at
partition {s1}, based on which a set of linear equations can be formed as

V (s1) = 0.1V (s2) + 0.9V (s3); V (s2) = 0.5V (s1) + 0.1V (s3) + 0.4V (s4) (2)

Similar definition applies to scheduler σ2 for PD c, we have

V (s1) = 0.9V (s2) + 0.1V (s3); V (s2) = 0.5V (s1) + 0.1V (s3) + 0.4V (s4) (3)

To eliminate the transitions between s1 and s2, we need to first select a particular sched-
uler, and then perform Gauss Jordan elimination. Under the selection of scheduler σ1,
we can have the following new transitions based on Eq. (2),

V (s1) =
4

95
V (s3) +

91

95
V (s4); V (s2) =

11

19
V (s3) +

8

19
V (s4) (4)

Similarly, with the selection of σ2, we have the following based on Eq. (3),

V (s1) =
36

55
V (s3) +

19

55
V (s4); V (s2) =

3

11
V (s3) +

8

11
V (s4) (5)

178 L. Gui et al.

As a result, the updated PDs can be established based on Eq. (4) and Eq. (5). As illus-
trated in Fig. 2(c), a new partition can then be formed by grouping states s1 and s2, and
states s3 and s4 continue to serve as outputs. Each state (s1 or s2) in the new partition
now has two PDs (i.e. a and c), which appears to create a larger number (2 · 2 = 4) of
schedulers. However, it should be noted that the newly generated PDs in s2 are derived
based on the choice of scheduler in s1 and thus not independent. For example, Eq. (4)
and (5) are derived based on Eq. (2) and (3), respectively. That means a scheduler selects
action a in s1 and action c in s2 is equivalent to a non-memoryless scheduler in the orig-
inal MPD (with both selections of a and c at s1). Therefore, two of the four schedulers
in the new partition are equivalently non-memoryless and thus redundant for obtaining
the maximum and minimum reachability probabilities (please refer to Section 2.2). Ef-
fectively, the number of schedulers to be handled in the new partitions remains as two.
To easily allocate these schedulers, we denote the PDs for s1 and s2 obtained from the
same set of equations by the same index or the same action name. Thus, given a parti-
tion, a scheduler only selects an index or an action, which means the PD with that index
or action will be selected at each state. Similarly, we can obtain the abstraction on the
other partition {s3}. The resulting MDP as shown in Fig. 2(c) has only two partitions
(Λ = {{s1, s2}, {s3}}) in the SCC, both of which are free of loops and redundant PDs.

To finally achieve a single partition, another round of grouping and abstraction needs
to be performed. There are now two partitions, and we combine them into one group
as shown in Fig. 2(d). As explained above, during the calculation of the maximum
and minimum reachability probabilities, partition {s1, s2} can be described using two
schedulers, and the other partition {s3} has only one scheduler. Therefore, the total
number of schedulers within the group is two (i.e., 2 ·1). Let σ3 be a scheduler selecting
the PD of action a, i.e., σ3({s1, s2}) = a, and σ4 be the other scheduler selecting the PD
with action c, i.e., σ4({s1, s2}) = c. A set of linear equations can be formed similarly as
Eq. (2) and (3), and the solutions connect the input states s1 and s2 directly to the output
states s4 and s5. With such a new partition, the inner state s3 can be removed from the
MDP. Up to this point, there is only one partition left and our reduction finishes. The
final acyclic MDP is shown in Fig. 2(e).

3.2 Overall Algorithm

The overall algorithm for SCCs reduction is presented in Algorithm 1. It is based on a
divide-and-conquer approach that works on partitions of an MDP. Given a set of states
S, a partition E is a subset of S such that

⋃
i Ei = S; and ∀Ei, Ej, Ei �= Ej , Ei ∩ Ej =

∅. Given an MDP M = (S, Sinit, Act, Pr) and target states G ⊂ S, Algorithm 1
removes all loops inM (i.e., resulting an acyclic MDPM′) and computes reachability
probabilities inM′. We remove loops according to the following steps.
– Line 1 finds all SCCs by Tarjan’s approach [16], and adds all nontrivial SCCs to C.

Lines 2–12 present the divide-and-conquer procedure for each SCC in C. Let Λ be
a set of partitions of an SCC. Initially, each state of SCC forms a partition in Λ, as
shown in lines 3–4.

– Lines 5–12 perform the divide-and-conquer in the partitions of Λ until there is only
one partition left. Within each round, line 6 first divides all the partitions Λ into
several groups, denoted by A. Here, the groups are formed dynamically that each

SCC-Based Improved Reachability Analysis for Markov Decision Processes 179

Algorithm 1. SCC Reduction in an MDP via Divide-and-Conquer
input : An MDPM = (S, sinit, Act, P r), target states G ⊆ S
output: P(M |= ♦G)

1 M′ =M; C := the set of all nontrivial SCCs inM′;
2 for each D ∈ C do
3 Λ := ∅; //to record a set of partitions
4 ∀s ∈ D, Λ := Λ ∪ {{s}}; //each state is a partition initially
5 repeat
6 Divide Λ into a set of groups of partitions denoted as A;
7 Λ′ = ∅;
8 for each J ∈ A do
9 E ′ = Abstraction(J); //J is a set of partitions

10 Λ′ = Λ′ ∪ E ′;
11 Λ = Λ′;
12 until |Λ| == 1;

13 return V alueIteration(M′, G) ;

has relatively small number of output states. Each element J in A is a group of
partitions. There is always a group containing more than one partitions unless there
is only one partition in A. Next, lines 8–10 remove loops and the inner states in each
J through Abstraction() method, which takes a group of partitions as the input and
returns a new acyclic partition that can represent the previous group. As a result,
after each round, the number of partitions decreases and loops inside each partition
are eliminated. Details for the abstraction process will be presented in Section 3.3.

– After the iteration terminates, the resulting MDP becomes acyclic. The standard value
iteration method, detailed in Section 2.2, can then be applied to calculate the proba-
bility from the initial state to the target states efficiently.
As we can see, in order to support the divide-and-conquer algorithm for MDPs, the

overall algorithm incorporates methods like abstraction and PD reduction. In the fol-
lowing parts, we will introduce details of these two methods.

3.3 States Abstraction

Given a set of partitions, denoted byJ , the abstraction process removes the inner states
in each partition, and merges all partitions into a new partition, denoted by E ′. The
detailed algorithm of abstraction is presented in Algorithm 2. It takes J as the input
and returns a new acyclic partition E ′. The procedure works as follows.
– The first step, as shown in lines 1–7, is to reduce redundant PDs in each partition. As

demonstrated in Section 3.1, within a partition, the PDs of the same index are origi-
nated from the same scheduler in the original model. Thus, they are not independent
and can only be removed if they are all redundant. The detailed operations are as fol-
lows. For each partition, we use a Boolean set I to record whether a PD is redundant.
Initially, line 2 sets all elements in I to false. For each state of the partition, line 4
gets all indices of the non-redundant PDs, and line 5 sets the respective elements in

180 L. Gui et al.

Algorithm 2. Abstraction
input : A set of partitions of states J in an MDP
output: A new partition E ′

//step 1: remove redundant PDs in each partition
1 for each E ∈ J do

//I is to record whether a PD is non-redundant
2 Let I be a set of Boolean variables initialized with false;
3 for each s ∈ E do
4 Indices := indices non-redundant PDs of s;
5 for each index ∈ Indices do I′[index] =: true; ;
6 I = I′;
7 for each s ∈ E do Update PDs according to I;;

//step 2: calculate new PDs from inputs to outputs
8 K =

⋃
E∈J E ;

9 ∀s ∈ Inp(K) ·U′
s := ∅;

10 Σ := all the schedulers in J based on partitions;
11 for each σ ∈ Σ do
12 calculate PDs from Inp(K) to Out(K) according to σ;
13 Let us be the calculated PD of a input state s;
14 ∀s ∈ Inp(K) ·U′

s := U′
s ∪ {us};

//step 3: form a new partition
15 E ′ = Inp(K) ;
16 ∀s ∈ E ′, replace PDs of s by U′

s; //re-connect Inp(E ′) to Out(E ′)
17 return E ′;

I to true. Here, the non-redundant PDs can be identified by finding the vertices of
the convex hull, detailed in Section 3.4. After the for loop in lines 3 - 6, a false in
I means the corresponding PD in each state is redundant. As a result, line 7 removes
the respective PDs at the indices for all states.

– Line 8 combines states in all partitions of J into one group K. The second step is
to calculate new PDs from Inp(K) to Out(K) for all schedulers. Line 9 creates an
empty set for each state in Inp(K), which is used to store new PDs. Line 10 finds
all the schedulers in J and assigns them to Σ. As reviewed in Section 2.1, for any
given state, a scheduler is used to select a PD, and the total number of the schedulers
is exponential to the number of states. As mentioned, within a partition, the PDs with
the same index are not independent, we thereby create a scheduler in such a way that
it can only select PDs with the same index at all states in the partition. This can avoid
the generation of extra schedulers by including all the combinations of PDs. Lines 11
–14 calculate the new equivalent PDs by calculating the transition probabilities, from
Inp(K) to Out(K). For each scheduler σ, we calculate the probabilities from any
input to output states in the DTMCKσ , which can be done by the standard algorithm,
e.g., Gaussian Jordan elimination. Line 14 adds the new PDs to each state.

– Since the sets of PDs from Inp(K) to Out(K) have been obtained, the inner states
of K are then redundant for the calculation of reachability probabilities. As a result,

SCC-Based Improved Reachability Analysis for Markov Decision Processes 181

line 15 creates a new partition E ′ by adding only the inputs states of K, and updates
the PDs of each state in E ′ by U′

s. The new partition E ′ is free of loops.

3.4 Reduction of Probability Distributions Based on Convex Hull

Within a set of probability distributions (PDs), if a PD can be represented by a convex
combination of the other PDs, we call it a redundant PD. As demonstrated, PD b in
Fig. 1(a) is redundant as it can be represented by a combination of 50% of PD a and
50% of PD b. It can be proved that the redundant PDs are irrelevant to the maximum
and minimum reachability probabilities [6].

There are two scenarios that might introduce redundant PDs. One is during system
modeling. For instance, PDs could be originated from a set of working profiles (mod-
eling complex system environment) and some of working profiles are indeed redundant
for calculating the maximum or minimum probability. The other is during the removal
of the inner states within a group of states K. The equivalent PDs are created to connect
inputs to outputs of K, the number of those is equal to the total number of schedulers in
K. As a result, there could be redundant PDs, especially when obtained PDs of a state
have only a few successive states. In fact, the number of PDs of a state can be mini-
mized and replaced by a unique and minimal set of PDs. If we consider PDs as a set of
points in a Euclidean space and each successive state in a PD provides a dimension in
the Euclidean space, finding the set of non-redundant PDs is equivalent to the problem
of identifying all the vertices of the convex hull of all the PDs. This has been already
proved in [6]. In the following, we have a brief review on the convex hull property.

The convex hull of a set Q of points, denoted by CH(Q), is the smallest convex
polygon or polytope in the Euclidean plane or Euclidean space that contains Q [8].
Mathematically, the convex hull of a finite point set, e.g., Q = {q1, · · · ,qn}, is a set
of all convex combinations of each point qi assigned with a coefficient ri, in such a
way that the coefficients are all non-negative with a summation of one; i.e., CH(Q) =
{
∑n

i=1 ri · qi|(∀i : ri � 0)∧
∑n

i=1 ri = 1}. We denote the set of vertices of a convex
hull as VCH(Q). Each qi ∈ VCH(Q) is also in Q, but it is not in the convex hull of
the other points (i.e., qi /∈ CH(Q \ {qi})). In other word, the points VCH(Q) are the
essential points that generate all the other points in CH(Q) via a convex combination.
Given a set of n points (Q) in d-dimension, the algorithms to determine the vertices
of the convex hull are also known as the redundancy removal for a point set Q in Rd.
This problem can be reduced to solvingO(n) linear programming problems with many
polynomial time algorithms available [6].

To further accelerate the calculation, we adopt an approximation algorithm proposed
by Bentley et al. [5], who use the convex hull of some subset of given points as an
approximation to the convex hull of all the points. Here, a user-defined parameter β
controls degree of approximation. For instance, in xy-plane, we first divide the area be-
tween the minimum and maximum (i.e., extreme) values in x-dimension into ‘strips’,
with a width of β. We then select the points with the extreme values in y-dimension
within each strip, and the points with x-dimension extreme. Last, we construct the con-
vex hull based on these selected points (in the worst case, there are only 2(1/β + 2)
points). Here, β specifies the relative approximation error; i.e., any point outside the
approximate hull is within β distance of the ‘true’ hull, as proved in [5]. Hence, a larger

182 L. Gui et al.

β implies a faster calculation but a coarser approximation. In terms of reachability anal-
ysis, the schedulers, after approximation, are only a subset of original ones. Ignoring
some of the PDs means the maximum or minimum reachability probability will be a
safe approximation; i.e., the maximum probability is smaller than the ‘true’ maximum,
and the minimum probability is larger than the ‘true’ minimum.

3.5 Termination and Correctness

In this section, we discuss the termination and the correctness of our approach.

Theorem 1. Given a finite states MDP, Algorithm 1 always terminates.

Proof : Given a finite number of states, the for loop in Algorithm 1 always terminates
as the number of SCCs is finite. The theorem can then be proved by showing (1) the
repeat loop can terminate and (2) Abstraction() can also terminate.

For (1), the proof for the one state SCC is trivial. For an SCC having more than one
states, there are at least one group in A that has more than one partition, which can be
merged into one new partition through Abstraction(). The total number of partitions is
guaranteed to decrease after each round of the repeat loop. Thus the termination condi-
tion |Λ| == 1 can always be fulfilled. For (2), the abstraction, as in Algorithm 2, always
terminates because all for loops work on a finite set of elements. As both conditions are
fulfilled, the theorem holds. #$

Theorem 2. Given a finite states MDP, Algorithm 1 always produces an acyclic MDP.

Proof : To prove the theorem, it is equal to show that Algorithm 1 can remove all loops in
each SCC. As proved above, Algorithm 1 always transfers each SCC into one partition,
the theorem can be proved by showing that the abstraction process always returns a
loop-free partition. Assuming a set of partitions J are the input, Algorithm 2 always
creates a new partition by recalculating the probability distributions from Inp(J) to
Out(J). As Inp(J) ∩ Out(J) = ∅, the new partition is guaranteed to be acyclic.
Therefore, the theorem holds. #$

As Algorithm 1 always terminates with an acyclic MDP, our approach can always
provide an accurate result. Recall that loops in each SCC of the MDP are resolved by
solving sets of equations, which is based on an accurate method. Further, we could trade
off a certain level of accuracy for better performance with approximate convex hull.

4 Implementation and Evaluation

We implement the algorithm in our model checking framework PAT [15]. As the only
difference between the ordinary and our proposed value iteration methods is the algo-
rithm of reachability analysis, it is fair to check the effectiveness of the new method
through direct comparison of their performance. Hereafter, we refer the implementa-
tions with and without our approach as PAT(w) and PAT(w/o), respectively. For the
value iteration method, we use the default stopping criterion in PAT, i.e., the maximum
ratio of difference is 1E-6. For the new approach, we set the maximum number of par-
titions in a group to 3, and the parameter for convex hull approximation to 0.001. The

SCC-Based Improved Reachability Analysis for Markov Decision Processes 183

Fig. 3. A reliability model, the states su and sf are copied for a clear demonstration

testbed is an Intel Xeon� CPU at 2.67 GHz with 12 GB RAM. All related materials,
including the tools, models, and evaluation results, are available at [1]. We perform an
analysis on two case studies: one is software reliability assessment model and the other
is tennis tournament prediction model. Both systems have many probability transitions
and loops, thus may encounter slow convergence issue especially when the systems
become large. Thus, we evaluate how our new approach can benefit those cases.

4.1 Case Study on Software Reliability Assessment

Reliability and fault tolerance are central concerns to many software systems. The re-
liability problem can be transferred into a reachability problem in an MDP [10,12]. In
this case study, we model a system that undergoes n tasks and then standbys at the
initial state. Each task is exposed to a certain probability of failure or self-recovering
situation, before successfully transferring to the next task or service. A highly ab-
stracted reliability model is shown in Fig. 3, which consists of n + 2 states, i.e., {sf ,
su, s0, s1, · · · , sn−1}, representing different system status. The failure state sf is the
state that the system fails, and the success state su is the state that the system finishes
a requirement successfully. Each state si transits to sf with a probability of p1; to su
with a probability of p2; to itself with a probability of p3; and otherwise, to the next
state s(i+1)%n. Multiple sets of values for {p1, p2, p3} are considered. We then perform
reachability analysis, e.g., computing the maximum probability of reaching state su,
under different scale by varying the parameters n and m, where n controls the number
of states and m is the number of probability distributions of each state.

The experiments are summarized in Table 1. The number of states being generated
is approximately equal to n; Trans. represents the total number of transitions in the
model; Pmax represents the maximum reachability probability; and T ime represents
the total time spent on the verification. We have the following observations.
– The overall verification time of the new approach (PAT(w)) is much less than that

of the previous approach (PAT(w/o)). Three factors here can affect the rate of value
iteration in this model: (1) the self-loops at each state si; (2) the large SCC formed
by {s0, s1, · · · , sn−1}; and (3) the various probability distributions in the model.
Our approach reduces loops prior to value iteration, as detailed in Section 3. With
PAT(w), the resulting acyclic MDP consists of only three states, s0 (the only input of
the SCC), and sf and su (the outputs of the SCC). Thus, time spent on value iteration
can almost be negligible (less than 0.001s). In addition, due to the PD reductions
based on the convex hull, our reduction approach can work under many probability
distributions without much overhead, as evidenced by the cases with m = 10.

184 L. Gui et al.

Table 1. Comparison between PAT with and without SCC reduction for reliability model

Parameters PAT (w/o) PAT (w)
m n #Trans. Pmax Time(s) Pmax Time(s)

4

40 0.6K 0.499985 0.03 0.500000 0.01
400 6K 0.499999 0.22 0.500000 0.13
20K 320K 0.499999 547.52 0.500000 55.97
40K 640K 0.499999 1389.55 0.500000 314.73

10

40 2K 0.499985 0.04 0.500000 0.11
400 16K 0.499999 0.41 0.500000 0.20
20K 800K 0.499999 894.34 0.500000 111.62
40K 1600K 0.499999 2168.04 0.500000 597.44

States ≈ n

– The result obtained from the new approach is closer to the true value. Through man-
ual analysis, we know that 0.5 is the accurate result. In fact, our reduction approach
removes loops by solving a set of linear equations, which yields accurate results.
As mentioned above, the resulting model is an acyclic MDP of only three states, on
which value iteration stops naturally without using any stopping criterion. On the
other hand, the ordinary value iteration approach keeps iterating over loops until a
stopping criterion is met, thus the result is an approximation.
The experiment above considers only one SCC in the reliability model. However,

often, a system may have a large number of SCCs in its reliability model. Our prelimi-
nary result shows that, with the increase of SCCs, the total time increases exponentially
for the ordinary value iteration approach, while remains at a low level with our ap-
proach [1]. This is because our approach resolves each SCC independently while the
ordinary approach has to iterate over all SCCs until converging to a stable result.

4.2 Case Study on Tennis Tournament Prediction

A tennis match is won when a player wins the majority of prescribed sets. At a score
of 6 - 6 of a set, an additional ‘tiebreaker’ game is played to determine the winner
of the set. In this case study, we model a 7 point tiebreaker. Our model encodes the
outcomes of individual player’s actions (e.g., serve and baseline) according to the past
scoring profiles available at http://www.tennisabstract.com, and predicts
the winning probability for one player against the other. In particular, we predict the
game between two tennis giants Federer and Nadal. A play wins the set if he wins one
tiebreaker, or best of 3 (or 5) tiebreakers. Thus, we analyze all the three situations. For
each situation, we calculate four probabilities: (a) Federer scores the first point in any
tiebreaker; (b) Nadal scores the first point in any tiebreaker; (c) Federer wins the set;
and (d) Nadal wins the set.

The verification results are shown in Table 2. # represents the numbers of tiebreak-
ers; Pro. represents the properties to be verified; #States and #Trans. represent the
total numbers of states and transitions in the system, respectively; Pmin/Pmax records
the minimum/maximum reachability probability; and B and V record the time costs
on building the MDP model (for PAT(w), it includes the additional time spent on SCC

http://www.tennisabstract.com

SCC-Based Improved Reachability Analysis for Markov Decision Processes 185

Table 2. Comparison between PAT with and without SCC reduction for tennis prediction model

Pro. #States #Trans.
PAT (w/o) PAT (w)

Pmin Pmax B (s) V (s) Pmin Pmax B (s) V (s)

1

a 15K 26K 0.4585 0.5077 0.16 0.01 0.4585 0.5077 0.22 0.00
b 15K 26K 0.4923 0.5415 0.14 0.01 0.4923 0.5415 0.24 0.00
c 17K 30K 0.4678 0.4786 0.19 13.44 0.4678 0.4786 0.58 0.33
d 17K 30K 0.5214 0.5322 0.16 13.34 0.5214 0.5322 0.50 0.32

3

a 62K 108K 0.7877 0.8075 0.66 64.72 0.7877 0.8075 1.55 2.94
b 62K 108K 0.8116 0.8303 0.64 65.54 0.8116 0.8303 1.48 2.96
c 71K 123K 0.4576 0.4649 0.74 133.89 0.4576 0.4649 1.95 9.32
d 71K 123K 0.5351 0.5424 0.72 133.03 0.5351 0.5424 1.98 8.45

5

a 141K 278K 0.9194 0.9271 1.42 266.26 0.9194 0.9271 3.66 23.25
b 141K 245K 0.9332 0.9401 1.43 265.80 0.9332 0.9401 3.65 23.35
c 160K 279K 0.4486 0.4554 1.58 434.29 0.4486 0.4554 4.37 41.65
d 160K 278K 0.5446 0.5514 1.53 428.62 0.5446 0.5514 4.32 36.93

reduction) and on value iteration, respectively. Notice that the summation of these two
time costs is the total time spent on the verification. We have the following observations.

Comparing the time costs in B and V columns, for the ordinary approach, though the
time for building an MDP model is very short, the verification time increases quickly
when the size of system becomes large. On the other hand, with slightly longer time
spent on model building, our new approach reduces the value iteration time signifi-
cantly. This is because the new approach removes all SCCs prior to value iteration and
the probability computation is thereby accelerated. In this case study, both approaches
generate the same results up to four decimal points.

5 Related Work and Conclusion

In recent years, some approaches [11,7,3,2,13] have been proposed to improve proba-
bility reachability calculation. The key idea is to reduce iterations on the state space.
[11,7] improve value iteration in MDPs by backward iterating over each SCC in topo-
logical order, i.e., an SCC will not be visited until the reachability probabilities of all
its successive SCCs converge. However, since it requires iterating over each SCC (i.e.,
SCC-based value iteration), this approach only alleviates the slow convergence prob-
lem to a certain degree without completely solving the problem. Compared to their
SCC based value iteration approach, our approach eliminates SCCs and produces an
acyclic MDP where the standard value iteration is applied. Moreover, our reduction on
each SCC is independent to others, so that multi-cores or distributed computers can be
directly applied, which can make the verification even faster.

The approaches [3,2,13] are on SCCs elimination by connecting inputs to outputs of
an SCC with equivalent probability transitions. But they are only applicable to DTMCs.
In particular, the algorithms proposed in [2] and [13] can both work with large SCCs.
[2] iteratively searches for and solves the smallest loops within an SCC. [13] uses a
divide-and-conquer algorithm that iteratively divides an SCC into several smaller parts
and resolves loops in each part. However, eliminating loops in an MDP is particularly
challenging due to the existence of many probability distributions. To the best of our
knowledge, there has been no previous work on SCC reductions for MDP. Instead of a

186 L. Gui et al.

simple extension of the divide-and-conquer for DTMC in [13], our divide-and-conquer
algorithm for MDP is carefully designed to avoid generation of extra schedulers. To
further accelerate the elimination of loops, we actively detect and remove redundant
probability distributions of each state based on the convex hull property.

Conclusion. In this work, we have proposed a divide-and-conquer algorithm to elim-
inate SCCs in MDPs, for achieving an efficient reachability analysis. To cope with
the non-determinism in MDPs, our divide-and-conquer algorithm is designed to work
on partitions. Initially, each state in an SCC is considered as a partition. The parti-
tions are repeatedly merged together until there is only one left. During the abstraction,
loops within a partition are replaced by equivalent probability distributions between in-
puts and outputs. The convex hull property is applied to further reduce the redundant
probability distributions. We have implemented this algorithm in a model checker PAT.
The evaluation results on two practical case studies show that our method can improve
reachability analysis.

References
1. http://www.comp.nus.edu.sg/˜pat/rel/mdpcut
2. Abrahám, E., Jansen, N., Wimmer, R., Katoen, J., Becker, B.: DTMC model checking by

SCC reduction. In: QEST, pp. 37–46. IEEE (2010)
3. Andrés, M.E., D’Argenio, P.R., Rossum, P.V.: Significant diagnostic counterexamples in

probabilistic model checking. In: HCV, pp. 129–148 (2008)
4. Baier, C., Katoen, J.: Principles of model checking. The MIT Press (2008)
5. Bentley, J.L., Preparata, F.P., Faust, M.G.: Approximation algorithms for convex hulls.

Communications of the ACM 25(1), 64–68 (1982)
6. Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation. In: Brim, L.,

Jančar, P., Křetı́nský, M., Kučera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 371–386.
Springer, Heidelberg (2002)

7. Ciesinski, F., Baier, C., Grosser, M., Klein, J.: Reduction techniques for model checking
Markov decision processes. In: QEST, pp. 45–54. IEEE (2008)

8. De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational geometry.
Springer, Heidelberg (2000)

9. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification techniques for
probabilistic systems. In: FMENSS, pp. 53–113. Springer, Heidelberg (2011)

10. Gui, L., Sun, J., Liu, Y., Si, Y.J., Dong, J.S., Wang, X.Y.: Combining model checking and
testing with an application to reliability prediction and distribution. In: ISSTA, pp. 101–111.
ACM (2013)

11. Kwiatkowska, M., Parker, D., Qu, H.: Incremental quantitative verification for Markov deci-
sion processes. In: DSN, pp. 359–370. IEEE (2011)

12. Liu, Y., Gui, L., Liu, Y.: MDP-based reliability analysis of an ambient assisted living system.
In: FM Industry Track, Singapore (May 2014)

13. Song, S., Gui, L., Sun, J., Liu, Y., Dong, J.S.: Improved reachability analysis in DTMC via
divide and conquer. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 162–
176. Springer, Heidelberg (2013)

14. Stewart, W.J.: Introduction to the numerical solution of Markov chains. Princeton University
Press (1994)

15. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards flexible verification under fairness.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer,
Heidelberg (2009)

16. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160
(1972)

http://www.comp.nus.edu.sg/~pat/rel/mdpcut

Comprehension of Spacecraft Telemetry

Using Hierarchical Specifications of Behavior�

Klaus Havelund and Rajeev Joshi

Jet Propulsion Laboratory,
California Institute of Technology,

California, USA

Abstract. A key challenge in operating remote spacecraft is that ground
operators must rely on the limited visibility available through spacecraft
telemetry in order to assess spacecraft health and operational status. We
describe a tool for processing spacecraft telemetry that allows ground
operators to impose structure on received telemetry in order to achieve a
better comprehension of system state. A key element of our approach is
the design of a domain-specific language that allows operators to express
models of expected system behavior using partial specifications. The lan-
guage allows behavior specifications with data fields, similar to other re-
cent runtime verification systems. What is notable about our approach
is the ability to develop hierarchical specifications of behavior. The lan-
guage is implemented as an internal DSL in the Scala programming
language that synthesizes rules from patterns of specification behavior.
The rules are automatically applied to received telemetry and the in-
ferred behaviors are available to ground operators using a visualization
interface that makes it easier to understand and track spacecraft state.
We describe initial results from applying our tool to telemetry received
from the Curiosity rover currently roving the surface of Mars, where the
visualizations are being used to trend subsystem behaviors, in order to
identify potential problems before they happen. However, the technology
is completely general and can be applied to any system that generates
telemetry such as event logs.

1 Introduction

One of the key challenges in operating remote spacecraft is that ground opera-
tors must rely on limited telemetry visible on the ground in order to assess the
health and operational status of the spacecraft. Such telemetry typically consists
of a log of system events and sensor measurements (such as battery voltage or
probe temperature) which, for the purposes of this paper, may be viewed as a
sequence of timestamped records with named fields. Because this telemetry com-
prises essentially all the knowledge that ground operators have about a given

� The work described in this publication was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 187–202, 2014.
c© Springer International Publishing Switzerland 2014

188 K. Havelund and R. Joshi

spacecraft, processing this telemetry in a timely manner is of utmost importance
to any mission. However, as spacecraft have become more autonomous and ca-
pable, and improvements in radio performance have resulted in greater downlink
bandwidth, the resulting volume and complexity of the telemetry requires more
automated processing tools so that any potential problems are diagnosed quickly
and accurately. Unfortunately, currently such tools are developed by ground op-
erators in an ad-hoc manner, typically using libraries developed by various sub-
system teams that mine the telemetry to infer summaries that are of interest to
that subsystem. These summaries are typically presented to ground operators
using various visualization interfaces. While these tools have been overall quite
effective, and the domain knowledge encoded in these libraries has led to many
problems being identified early, the current approach of relying on ad-hoc scripts
also makes the resulting tools fragile, hard for new team members to understand,
and difficult to maintain. The maintainability issue is especially important for
long-running missions that are expected to last many years.

To address this problem, this paper presents a declarative notation for express-
ing domain-specific knowledge about telemetry structure. In our formalism, the
behavior of spacecraft subsystems may be expressed in terms of behaviors, in
a language that resembles regular expressions, but with support for conjunc-
tion and data arguments to nonterminals. A key feature of our notation is that
behaviors may be nested, since in our experience, most subsystems are usu-
ally viewed as a set of (possibly interrelated) hierarchical behaviors, and often
viewed using visualization interfaces that allow behaviors of interest to be ex-
plored interactively. We demonstrate our approach in practice by showing how
it is being applied to telemetry received from the Curiosity rover [3] currently
on Mars. However, although applied to spacecraft operation, the techniques are
fully general, and can be used for analysis of any form of event logs produced
by a software system.

There has been much previous work in processing telemetry event logs in the
field of runtime verification (RV), typically checking logs against user provided
specifications, often expressed in some form of temporal logic. Such analysis may
take place pre-deployment, as the system is being developed, or post-deployment,
during operation. Orthogonally, the monitoring may be done online, processing
telemetry on-board during execution, or offline by analyzing logs. We are con-
cerned with post-deployment offline trace analysis. Most previous work, how-
ever, focuses on checking if a given event log satisfies a given specification or not
(sometimes extending the Boolean domain with extra values to 3 or 4-valued
logics, indicating grade of satisfaction). In our experience, coming up with for-
mally verifiable properties is difficult in practice, especially for complex missions
where design requirements were not in a formal notation to begin with. Thus
our focus is more on providing a framework for performing log comprehension.
This form of log comprehension can often be useful in identifying problems not
easily formalized, but can also serve as a stepping stone to eventually writing
(traditional) formal properties that may be checked for satisfaction.

Comprehension of Spacecraft Telemetry 189

To provide flexibility in expressing varied subsystem models, we have imple-
mented our notation as an internal DSL (Domain-Specific Language), essentially
an API, in the Scala programming language. Scala offers language constructs
that makes definition of such APIs have the appearance of DSLs. Specifically
we use Scala’s implicit functions to define concrete syntax, and case classes to
define abstract syntax. The resulting DSL is largely a so-called deep embedding,
in contrast to a shallow embedding. In a deep embedding a particular program
in the DSL is completely defined by an abstract syntax tree, which can be pro-
cessed as an internal data structure. In contrast, in a shallow embedding host
language constructs are made part of the DSL. A deep embedding makes it eas-
ier to analyze DSL programs. As we shall see, however, we do allow the DSL to
contain arbitrary Scala code in limited positions, hence our approach is a mix
of deep and shallow embedding.

We implement our DSL using the rule-based LogFire system [17], which is
itself an internal Scala DSL. Rule-based systems, which have been extensively
studied within the artificial intelligence (AI) community, allow formulation of
rules of the form:

condition1, . . . , conditionn ⇒ action

The state of a rule-system can abstractly be considered as consisting of a set
of facts, referred to as the fact memory, where a fact is a mapping from field
names to values. A condition in a rule’s left-hand side can check for the presence
or absence of a particular fact. A left-hand side matching against the fact mem-
ory usually requires unification of variables occurring in conditions. In case all
conditions on a rule’s left-hand side match (become true), the right-hand side
action is executed, which can be any Scala code, including adding and deleting
facts, or generating error messages. LogFire is an implementation of the Rete

algorithm [13] used in many AI rule systems.
The rule formalism, although very natural and expressive, turns out to be

slightly verbose for writing log properties. The core problem can be illustrated by
an example. Assume that one wants to monitor that the events E1 and E2 occur
in that order. A rule system would have to explicitly create an intermediate fact
E1Seen representing the fact that E1 has occurred. The issue is similar to that
of state machines where all states must be explicitly defined. Regular expressions
and temporal logics provide a solution to this problem. We here show a regular
expression-like formalism which (i) makes this more convenient, and (ii) which
allows for abstraction as discussed above. The DSL we present is defined as
patterns that are translated to rules, in a similar manner as discussed in [17].

The paper is organized as follows. Section 2 outlines related work. Section
3 introduces briefly the rule-based system LogFire, and outlines the inconve-
niences in using this solution for this problem. Section 4 introduces the new
DSL and its translation to rules. Section 5 presents the application to a space-
craft scenario, illustrating visualization of event abstractions. Finally, Section 6
concludes the paper.

190 K. Havelund and R. Joshi

2 Related Work

Several systems have been developed over the last decade for supporting moni-
toring of parameterized events. These systems support various formalisms, such
as state machines [14,19,11,7,5], regular expressions [4,19], variations over the
μ-calculus [6], temporal logics [6,19,7,15,9,10,12], grammars [19], and rule-based
systems [8,17]. Some of these systems focus on being efficient. However, this
efficiency is typically achieved at the price of some lack of expressiveness, as dis-
cussed in [5]. Our previous research has focused on more expressive formalisms,
including rule-based systems, such as Ruler [8] and more recently LogFire

[17]. Rule-based systems in general provide a rich formalism, which can be used
to encode the kind of abstraction needed for our behavior definitions. LogFire
is based on the Rete algorithm [13], which is the basis for many rule-based
systems developed over time, including for example Drools [2]. Standard rule
systems usually enable processing of facts, which have a life time. In contrast,
LogFire in addition implements events, which are instantaneous, and which
are needed for the kind of application presented in this paper. Drools sup-
ports a notion of events, which are facts with a limited life time. These events,
however, are not as short-lived as possibly desirable in runtime verification. The
event concept in Drools is inspired by the concept of Complex Event Processing
(CEP), described by David Luckham in [18]. This concept is related to our ap-
proach using hierarchical behaviors. CEP is concerned with processing streams
of events in (near) real time, where the main focus is on the correlation and com-
position of atomic events into complex (compound) events. TraceContract

[7] and Daut [16] are internal Scala DSLs for trace analysis based on state
machines. They allow for multi-transitions without explicitly naming the inter-
mediate states, which corresponds to sequential composition of events. MopBox

[11], and its more efficient successor prm4j, are Java APIs for a set of algorithms
implementing Mop’s [19] functionality.

3 The LogFire Rule Engine

As already mentioned, LogFire is a Scala API for writing rule-based programs
in a manner that has the appearance of a DSL. It was originally created as a
study of how the Rete algorithm could be used for runtime verification purposes,
where the main goal is to check event traces against formalized specifications,
and emit verdicts in a Boolean domain, stating whether the event stream satisfies
the specification or not. In the following, we shall first illustrate the originally
intended application, and in the subsequent sub-section we shall illustrate its use
for abstraction, which is the topic of this paper. We then suggest that a more
convenient solution is desirable for this objective.

3.1 LogFire used for Verification

Consider a system that emits two kinds of events: E1(clk → t1) and E2(clk →
t2), each being a named record (names are E1 and E2) with a field clk that is

Comprehension of Spacecraft Telemetry 191

class Verifier extends Monitor {
"v1" −− ’E1(’clk → ’t1) �−→ insert(’E1Seen(’t1))

"v2" −− ’E2(’clk → ’t2) & not(’E1Seen(’t1)) �−→ fail()

"v3" −− ’E2(’clk → ’t2) & ’E1Seen(’t1) �−→ {
if (’ t2−’t1 > 5000) fail ()

}
}

Fig. 1. A LogFire verifier

mapped to a time stamp ti indicating the time when these events were generated.
Suppose we want to enforce that E2 can only occur after E1, and furthermore, if
E2 occurs, it has to occur within 5 seconds of the occurrence of E1. This property
is shown in Figure 1. The main component of LogFire is the trait1 Monitor,
which any user-defined monitor must extend to get access to the constants and
methods provided by the rule DSL. The events E1 and E2 are short-lived in-
stantaneous observations about the system being monitored, those submitted
to the monitor. In contrast, facts, in this case E1Seen, are long-lived pieces of
information stored in the fact memory of the rule system, generated and deleted
explicitly by the rules. In the monitor above the fact E1Seen(t1) is used to rep-
resent the fact that the event E1(clk → t1) has been seen. The monitor contains
three rules, named v1, v2 and v3. Each rule has the form:

name -- condition1 & . . .& conditionn �−→ action

Event and fact names, as well as parameter names are values of the Scala

type Symbol, which contains quoted identifiers. The need for representing user-
defined names as symbols is a consequence of the fact that LogFire is a deep
embedding (we don’t use Scala’s names). Events and facts can have arguments
specified in one of two ways: using positional notation or using map notation.
Positional notation means just listing arguments as a list of patterns (identi-
fiers or literals). In our example facts are represented using positional notation.
The positional notation is convenient if events/facts carry few arguments. Map
notation means considering the events/facts as being maps from field names to
values. In our example event patterns are shown using map notation, assuming
each event has a time stamp named ’clk. When using map notation only fields
relevant for the rule need be mentioned. An action is any Scala statement, that
specifically for example can add or delete facts, or call failure methods.

The rules are to be read as follows. Rule v1 states that when an E1 event is
observed, a fact, E1Seen is created to record this. Rule v2 states that an error is

1 A trait in Scala is a module concept closely related to the notion of an abstract
class, as for example found in Java.

192 K. Havelund and R. Joshi

generated if an E2 event is observed, but no E1 event has been observed before
that. Finally, rule v3 states that in the case an E1 event and subsequently an
E2 event is observed, the time difference must be within 5 seconds. A monitor
can be applied as shown in Figure 2, which also shows an example of an error
trace produced. Each entry in the error trace shows the number of the event,
the event, the fact that it causes to be generated, and the rule that triggers. In
this case the 5 second requirement is violated.

object ApplyMonitor {
def main(args: Array[String]) {
val m = new Verifier
m.addMapEvent(’E1)(’clk → 1023)
m.addMapEvent(’E3)(’clk → 3239)
m.addMapEvent(’E2)(’clk → 7008)
}
}
...

∗∗∗ error :

[1] ’E1(’clk→ 1023) =⇒ ’E1Seen(1023)
rule : "v1" −− ’E1(’clk→ ’t1) �−→ {...}

[3] ’E2(’clk→ 7008) =⇒ ’Fail("ERROR")
rule : "v3" −− ’E2(’clk→ ’t2) & ’E1Seen(’t1) �−→ {...}

Fig. 2. Applying a LogFire verifier

3.2 LogFire Used for Abstraction

In this sub-section we shall illustrate how LogFire may be used to model the
hierarchical behaviors of interest in our application. We consider a scenario with
a top-level behavior (denoted alpha) that consists of an inner behavior (denoted
beta) in parallel with a single event E3. The behavior beta in turn consists of
two events E1 and E2 that must occur in that order. Denoting the three atomic
events as E1(clk → t1), E2(clk → t2), and E3(clk → t3), we want to record two
facts: that E2 occurs after E1 is to be recorded as an occurrence of beta(t1, t2),
and that E3 occurs either before or after (that is: in parallel with) beta(t1, t2)
is to be recorded as an occurrence of alpha(t1, t2, t3). The resulting monitor is
shown in Figure 3.

The monitor contains four rules. The first rule, a1, records when an E1(clk →
t1) event is seen. Rule r2 records a beta(t1, t2) fact when an E2(clk → t2) event

Comprehension of Spacecraft Telemetry 193

class Abstracter extends Monitor {
"a1" −− ’E1(’clk → ’t1) �−→ insert(’E1Seen(’t1))

"a2" −− ’E1Seen(’t1) & ’E2(’clk → ’t2) �−→ {
remove(’E1Seen);
insert (’beta(’ t1 , ’t2))

}

"a3" −− ’E3(’clk → ’t3) �−→ insert(’E3Seen(’t3))

"a4" −− ’beta(’t1, ’ t2) & ’E3Seen(’t3) �−→ {
remove(’E3Seen);
insert (’ alpha(’ t1, ’ t2, ’ t3))

}
}

Fig. 3. A LogFire abstracter

is seen after an E1(clk → t1) event. It also removes the intermediate event
recording that E1 was seen, in order to not clutter the set of facts generated.
Rule a3 records when an E3(clk → t3) event is seen, and finally rule a4 creates the
alpha(t1, t2, t3) fact. When applying the abstracter to the same event sequence
as shown in Figure 2, instead of an error trace, we obtain a set of generated
facts, as shown in Figure 4.

The main observation to be made, about this specification, as well as the
verifier in Figure 1, is that it is inconvenient that we have to add (and delete)
intermediate facts such as E1Seen and E3Seen explicitly, which makes these
rules cumbersome to write and maintain. To avoid this problem, in the next
section, we introduce notation that allows hierarchical events to be described
more directly, in a form similar to the way one writes regular expressions, but
with support for conjunctive composition and event parameters.

4 A DSL for Log Abstraction

We start by presenting our notation first in an idealized form, showing how the
LogFire abstracter presented in the previous section can be written, as well
as an idealized grammar. Subsequently we show how our notation is embedded
as an internal Scala DSL, and we briefly sketch how our DSL implementation
automatically generates LogFire rules from such descriptions.

194 K. Havelund and R. Joshi

object ApplyMonitor {
def main(args: Array[String]) {
val m = new Abstracter
m.addMapEvent(’E1)(’clk → 1023)
m.addMapEvent(’E3)(’clk → 3239)
m.addMapEvent(’E2)(’clk → 7008)
}
}
...

−−− facts: −−−−−−−
’beta(1023,7008)
’alpha(1023,7008,3239)
−−−−−−−−−−−−−−

Fig. 4. Applying a LogFire abstracter

4.1 A More Convenient Notation for Abstraction

Our proposed idealized syntax for the example shown in Figure 3 is shown in
Figure 5. The model contains two so-called behaviors, one generating beta(t1, t2)
facts, and one generating alpha(t1, t2, t3) facts. The first rule shows an example
of sequential composition, and reads as follows: when an E1(clk → t1) event is
observed followed by an E2(clk→ t2) event, a beta(t1, t2) fact is generated. The
second behavior shows an example of parallel composition, and reads: when a
beta(t1, t2) facts has been generated at some point, and a E3(clk → t3) event
has been observed at some point, an alpha(t1, t2, t3) is generated, the ordering
is unimportant. The fact generated, occurring to the left of the symbol |==, is
referred to as the behavior head. The expression occurring on the right of the
symbol |== is referred to as the behavior expression. Such behavior definitions
have some resemblance to Prolog, but differ by being focused on events, and
by supporting sequential composition as well as choice.

beta(t1, t2) |== E1(clk -> t1) >> E2(clk -> t2)

alpha(t1, t2, t3) |== beta(t1, t2) && E3(clk -> t3)

Fig. 5. Abstracter using idealized syntax

The idealized grammar for our language is shown in Figure 6, using a form
of extended BNF, where 〈N〉 denotes a non-terminal, 〈N〉 ::= . . . defines the

Comprehension of Spacecraft Telemetry 195

non-terminal 〈N〉, S∗ denotes zero or more occurrences of S, S∗,∗ denotes zero
or more occurrences of S separated by commas (’,’), S | T denotes the choice be-
tween S and T , and finally an expression in single quotes (such as ‘,’) denotes
a terminal symbol. A 〈behaviorModel〉 is a sequence of definitions, each being
either a 〈variableDef〉 or a 〈behaviorDef〉. We already saw examples of behavior
definitions in Figure 5. Variable definitions allow us to define convenient abbre-
viations for expressions which simplify the definition of a behavior expression
and make it more readable. A 〈behaviorExp〉 can have one of six forms. We have
already seen examples of sequential (,) and parallel (&&) composition. In ad-
dition behavior expressions can be composed with choice (++), meaning: one of
the two sub-behaviors are observed. Behavior expressions can be grouped with
parentheses. At the atomic level we distinguish between events observed and
facts generated. They differ in two ways: event names are in all capital, and the
arguments are given using map notation (see page 191), mapping field identi-
fiers to identifiers representing their value. Fact names cannot be all capital, and
arguments are provided in positional style.

〈behaviorModel〉 ::= (〈variableDef 〉 | 〈behaviorDef 〉)*

〈variableDef 〉 ::= 〈id〉 ‘:=’ 〈expr〉

〈behaviorDef 〉 ::= 〈name〉 ‘(’ 〈id〉*,* ‘)’ ‘|=’ 〈behaviorExp〉

〈behaviorExp〉 ::= 〈behaviorExp〉 ‘ ’ 〈behaviorExp〉
| 〈behaviorExp〉 ‘&&’ 〈behaviorExp〉
| 〈behaviorExp〉 ‘++’ 〈behaviorExp〉
| ‘(’ 〈behaviorExp〉 ‘)’
| 〈event〉
| 〈fact〉

〈fact〉 ::= 〈identifier〉 ‘(’ 〈id〉*,* ‘)’

〈event〉 ::= 〈identifier〉 ‘(’ 〈binding〉*,* ‘)’

〈binding〉 ::= 〈id〉 ‘→’ 〈id〉

Fig. 6. Idealized grammar for abstracter DSL

4.2 Embedding as an Internal DSL in Scala

A variant of the idealized example shown in Figure 5, formalized in our internal
Scala DSL, is shown in Figure 7. We have augmented the example with two
variable definitions, one defining the variable ′min as the minimal value to the
two time stamps t1 and t3, and one defining the variable ′max as the maximal

196 K. Havelund and R. Joshi

value to the two time stamps t2 and t3. These variables will be computed for each
alpha fact generated, representing the time interval within which all important
events occurred.

trait Example extends Abstracter {
’tmin := { Math.min(’t1.toDouble, ’t3.toDouble) }
’tmax := { Math.max(’t2.toDouble, ’t3.toDouble) }

’beta(’ t1 , ’t2) |= ’E1(’clk → ’ t1) ’E2(’clk → ’ t2)

’alpha(’ tmin, ’tmax) |= ’beta(’ t1, ’ t2) && ’E3(’clk → ’ t3)
}

Fig. 7. Abstracter in Scala DSL

As can be observed, the syntax has the same look and feel as the idealized
syntax presented earlier. This is achieved by using some of Scala’s features for
defining domain-specific languages, including implicit functions, possibility to
define methods using non-alphanumeric symbols, and the possibility of leaving
out dots and parentheses in calls of methods on objects. Generally, implicit func-
tions automatically convert values of the argument type into values of the result
type as follows. Whenever a Scala expression fails to type check, the Scala

compiler will consult the implicit functions in scope and determine whether the
application of a such will make the expression type check, and in this case the
compiler will insert an application of the function (there can be no more than one
such implicit conversion function, otherwise the Scala compiler will complain).

This is illustrated with the Abstracter trait in Figure 8, shown in part, that
behavior models extend. Consider the rule for generating ′beta(′t1,

′ t2) in Figure
7. The Scala compiler fails to make meaning out of this definition for a number
of reasons. First of all, symbols like ′beta are being applied as if they were
functions, and methods |= and , are being applied to objects on which they
are not defined. The compiler searches the implicit functions, and finds that
S will lift a symbol to an object that defines an apply method, which when
applied generates a Fact object. Furthermore, the compiler finds that the implicit
function F lifts such a Fact object to an object that defines a |= method, which
as argument takes a behavior expression. The behavior expression itself likewise
is composed by calling the method, on the firstly created behavior expression,
without dot notation. When all implicit function calls and dots and parentheses
have been inserted, the definition is equivalent to the following.

F(S(’beta).apply (’ t1, ’t2)). |=(
(S(’E1).apply (’ clk → ’ t1)).,(S(’E2).apply (’ clk → ’ t2)))

Comprehension of Spacecraft Telemetry 197

trait Abstracter {
...
implicit def S(s: Symbol) = new {
def apply(args : Any∗): Fact = Fact(s, args . toList)
}

implicit def F(lhs : Fact) = new {
def |=(rhs : BehExp) = ruleGen.generate(rhs, lhs)
}
...
trait BehExp {
def (n: BehExp): BehExp = SeqBehExp(this, n)
def &&(n: BehExp): BehExp = ParBehExp(this, n)
def ++(n: BehExp): BehExp = ChoBehExp(this, n)
...

}
...

}

Fig. 8. Definition of a DSL

4.3 Rule Generation with Scala

The synthesized method call creates an abstract syntax tree, upon which a
method is finally called, which generates LogFire rules. We shall not illustrate
this in detail, but only outline the general idea. Figure 9 illustrates the method,
mkParRule, that generates rules from a parallel composition of behavior ex-
pressions. The method takes four parameters: pre, which is a pre-condition, a
fact that has to occur before the sub-behaviors of the parallel composition will
be observed. The two sub-behaviors a and b, being arguments to the, operator,
and finally a post condition: a fact that is generated when the two sub-behaviors
have been observed. Two intermediate facts P1 and P2 are first generated. Note
how the parameters coming from the pre-condition are carried over such that
generated facts accumulate all parameters seen so far. Rules for the two subex-
pressions a and b are subsequently generated, inheriting the pre-condition, and
with respectively P1 and P2 as post-conditions: these facts are generated once
the sub-behaviors have been observed. Finally, the main rule for parallel compo-
sition is generated, using the LogFire DSL. It gets an internal name generated
by newRuleId(), and triggers once P1 and P2 have occurred, with the proper
parameters. As a result the post-condition fact of the parallel composition is
generated and the intermediate facts are removed. The rules generated are very
similar to the rules shown in Figure 3.

198 K. Havelund and R. Joshi

trait BehaviorMonitor extends Monitor {
...
def mkParRule(pre: Fact, a: BehExp, b: BehExp, post: Fact) = {
val P1 = new Fact(mkSym("par"), params(pre) ⊕ params(a))
val P2 = new Fact(mkSym("par"), params(pre) ⊕ params(b))

generate(pre , a, P1)
generate(pre , b, P2)

newRuleId() −− P1.s(params(P1): ∗) & P2.s(params(P2): ∗) �−→ {
insert (post. s(params(post): ∗)
remove(P1.s)
remove(P2.s)
}
}
...

}

Fig. 9. Synthesis of LogFire rules from a parallel behavior expression

5 Application: Mars-Earth Communication Sessions

In this section, we briefly describe how our notation is applied to analyze teleme-
try received from the Curiosity rover on Mars. In particular, we describe how we
process telemetry related to the rover’s direct communication sessions with Earth.
A communication sessionwith Earth consists of two behaviors that happen in par-
allel: a tracking behavior that moves the high-gain antenna to point towards the
Earth and starts tracking to compensate for Mars’s rotation, and a configuration
behavior that turns on and configures the radios to communicate with the deep
space network back on Earth. Since the Mars-Earth distance varies over time, this
requires compensating for variable one-way light time, to ensure that the rover an-
tenna is pointed and the radio ready when the signal from Earth arrives at Mars.
Because communication is a critical behavior for the spacecraft, the operations
team carefullymonitors telemetry received from the rover to ensure adequatemar-
gins are being maintained for the signal arrival at Mars.

Figure 10 shows a sample event log from a typical communication session2.
Each window has an assigned unique identifier and a configuration parameter.
As shown in the figure, our sample log consists of two back-to-back communica-
tion sessions performed on the rover. The first session (with identifier W25211)

2 In the interests of readability, and to comply with guidelines about sharing telemetry
details, we have omitted various technical details about radio configurations, and
modified times and arguments from the original values.

Comprehension of Spacecraft Telemetry 199

09:23:10 WINDOW_BEGINS("W25211", "HGA")
09:23:16 HGA_START_TRACK
09:23:18 XBAND_CONFIG("RECEIVE_ONLY")
09:23:30 HGA_EARTH_ACQUIRE
09:29:59 START_COMM
09:59:11 STOP_COMM
09:59:12 HGA_STOP_TRACK
09:59:27 WINDOW_CLEANUP

10:04:59 WINDOW_BEGINS("W60002", "HGA")
10:05:05 HGA_START_TRACK
10:05:06 XBAND_CONFIG("CARRIER_ONLY_2")
10:05:21 HGA_EARTH_ACQUIRE
10:07:03 START_COMM
10:16:46 STOP_COMM
10:16:48 HGA_STOP_TRACK
10:17:04 WINDOW_CLEANUP

Fig. 10. Sample event log from a communication session

is configured as a RECEIVE ONLY window and is used to uplink commands to
the rover. One of the commands uplinked adds a second comm session (with
identifier W60002) that is configured as CARRIER ONLY and is used to send a
‘beep’ to Earth indicating successful receipt of commands from the first ses-
sion. As shown in the figure, each session is bracketed by two events (named
WINDOW BEGINS and WINDOW CLEANUP), and internally consists of two parallel
behaviors: a configuration behavior that turns on the telecommunication hard-
ware and configures it for communication, and a tracking behavior that points
and tracks the high-gain antenna. The configuration behavior consists of three
events: XBAND CONFIG, indicating the start of radio configuration, START COMM,
indicating that the radio is ready to communicate, and STOP COMM, indicating
that the radio is being turned off. The tracking behavior also consists of three
events: the HGA START TRACK event, indicating that pointing has commenced,
the HGA EARTH ACQUIRE event, indicating that the antenna is pointed towards
Earth, and the HGA STOP TRACK event, indicating that the antenna is ter-
minating the tracking operation. As shown, each log event has an associated
timestamp, along with optional arguments that provide additional information
(such as the exact configuration used for the radio).

Figure 11 shows the behavior model for such a communication session in our
notation. As shown in the figure, we define a Scala trait called CommSession
that extends the Abstracter trait defined in the previous Section 4, Figure 8.
Nested within a CommSession is a parallel composition of the config and track
behaviors, each of which is a sequential composition of the three log events de-
scribed above. To extract event times, we rely on a Scala library that processes
spacecraft event logs and generates primitive LogFire events (named EVR)
that contain a map with a timestamp (denoted by key lmst) and optional event
arguments (denoted by key args), which can be recovered using the getArg library
function.

200 K. Havelund and R. Joshi

trait CommSession extends Abstracter {
’wid := { getArg(’wargs, 0) }
’wtype := { getArg(’wargs, 1) }
’ session (’wid, ’wtype, ’tws, ’twe, ’ tts) |=
(’EVR(’id → "WINDOW_BEGINS", ’lmst → ’tws, ’ args → ’wargs)
 (’ config (’ ckind, ’ tcs , ’ tas , ’ tce) && ’ track (’ tts , ’ tte))
 ’EVR(’id → "WINDOW_CLEANUP", ’lmst → ’twe)
)

’kind := { getArg(’ cargs , 0) }
’ config (’ kind, ’ tcs , ’ tas , ’ tce) |=
(’EVR(’id → "XBAND_CONFIG", ’lmst → ’tcs , ’ args → ’ cargs)
 ’EVR(’id → "START_COMM", ’ lmst → ’ tas)
 ’EVR(’id → "STOP_COMM", ’ lmst → ’ tce)
)

’ track (’ tts , ’tacq, ’ tte) |=
(’EVR(’id → "HGA_START_TRACK", ’lmst → ’tts)
 ’EVR(’id → "HGA_EARTH_ACQUIRE", ’lmst → ’tacq)
 ’EVR(’id → "HGA_STOP_TRACK", ’lmst → ’ tte)
)

}

Fig. 11. The model for a communication session in our notation

Fig. 12. Visualization of the two communication sessions from Figure 10

After the model has been interpreted, the resulting LogFire rules generated
may be used to process the event log shown above. The resulting nested struc-
ture is then saved in a web-readable format and processed by visualization tools,
developed with D3 [1], resulting in the display shown in figure 12, which is inte-
grated into an online dashboard used by the operations team. The figure shows the
two sessions captured, composed sequentially, identified byW25211 andW60002.
Each session in turn contains a configuration behavior and a tracking behavior,

Comprehension of Spacecraft Telemetry 201

shown on top of each other, and each divided into two sections corresponding to
the three events that define them. The visualization capability is crucial for pre-
senting the hierarchical abstractions extracted by the tool from the telemetry. In
addition to communication sessions, we have also applied our notation for writ-
ing models for other rover subsystems, including behaviors describing the boot
timeline, and certain behaviors involving on-board data management.

6 Conclusion and Future Work

We have described a notation for expressing domain-specific knowledge about
subsystem behaviors that can be used for writing hierarchical models of teleme-
try streams (logs). These models are written using a Scala API that provides a
great deal of flexibility. The formalism supports the following concepts: events,
hierarchical abstraction, sequential, conjunctive and disjunctive composition,
and allows users to write partial specifications that ignore events not of interest.
The result of an analysis is a set of facts, rather than a boolean verdict. This al-
lows existing models written in ad-hoc scripting languages to be easily expressed
in our notation. The models are translated into a set of rules that can be used
by the LogFire rule-based engine to automatically process telemetry received
on the ground, allowing higher-level patterns to be matched and presented to
ground operators. We have described how our method is applied to telemetry
being received from the Curiosity rover, as part of an ongoing effort to build a
system-wide dashboard for monitoring and analyzing spacecraft state. We are
currently working on applying our methods to generate behavior models auto-
matically from the hierarchical plans that are used to schedule rover activities
every day. These models will then be applied to highlight discrepancies between
predicted and actual rover activities. An interesting direction of research is to
identify events that do not match any of the planned behaviors, since such events
are often indicative of anomalous or unexpected behavior.

References

1. D3 website, http://d3js.org

2. Drools website, http://www.jboss.org/drools

3. Mars Science Laboratory (MSL) mission website, http://mars.jpl.nasa.gov/msl
4. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O.,

de Moor, O., Sereni, D., Sittamplan, G., Tibble, J.: Adding trace matching with
free variables to AspectJ. In: OOPSLA 2005, ACM Press (2005)

5. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified
event automata: Towards expressive and efficient runtime monitors. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer,
Heidelberg (2012)

6. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004)

http://d3js.org
http://www.jboss.org/drools
http://mars.jpl.nasa.gov/msl

202 K. Havelund and R. Joshi

7. Barringer, H., Havelund, K.: traceContract: A scala DSL for trace analysis.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer,
Heidelberg (2011)

8. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time monitor-
ing: from Eagle to RuleR. J. Log. Comput. 20(3), 675–706 (2010)

9. Basin, D.A., Klaedtke, F., Müller, S.: Policy monitoring in first-order temporal
logic. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 1–18. Springer, Heidelberg (2010)

10. Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer,
Heidelberg (2013)

11. Bodden, E.: MOPBox: A library approach to runtime verification. In: Khurshid,
S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 365–369. Springer, Heidelberg
(2012)

12. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 341–356.
Springer, Heidelberg (2014)

13. Forgy, C.: Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence 19, 17–37 (1982)

14. Goubault-Larrecq, J., Olivain, J.: A smell of orchids. In: Leucker, M. (ed.) RV
2008. LNCS, vol. 5289, pp. 1–20. Springer, Heidelberg (2008)

15. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts
with data. IEEE Transactions on Services Computing 5(2), 192–206 (2012)

16. Havelund, K.: Data automata in Scala. In: Leucker, M., Wang, J. (eds.) 8th Inter-
national Symposium on Theoretical Aspects of Software Engineering, TASE 2014,
Changsha, China, September 1-3. IEEE Computer Society Press, Los Alamitos
(2014)

17. Havelund, K.: Rule-based runtime verification revisited. Software Tools for Tech-
nology Transfer (STTT) (April 2014); Published online

18. Luckham, D. (ed.): The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley (2002)

19. Meredith, P., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP run-
time verification framework. Software Tools for Technology Transfer (STTT) 14(3),
249–289 (2012)

Timed Automata Verification via IC3 with Zones

Tobias Isenberg and Heike Wehrheim

Universität Paderborn,
Institut für Informatik,

33098 Paderborn, Germany
isenberg@mail.upb.de,wehrheim@upb.de

Abstract. Timed automata are a formal method for the modelling of
real-time systems. With a large number of sophisticated tools, ample
support for not only specification but also verification is available to-
day. However, although all these tools are highly optimized, verification
of timed automata, in particular networks of timed automata, remains
challenging. This is due to the large amount of memory needed for storing
automata states.

In this paper, we present a new approach to timed automata verifi-
cation based on the SAT-based induction method IC3. Unlike previous
work on extending IC3 to timed systems, we employ zones, not regions,
for the symbolic representation of timed automata states. While this
complicates a timed IC3 procedure, specifically, necessitates the compu-
tation of a zone from possibly infinitely many counterexamples to in-
duction, it pays off with respect to memory consumption. Experimental
results show that our approach can outperform Uppaal for networks with
large numbers of timed automata.

Keywords: Verification, timed automata, zone abstraction, IC3, SMT.

1 Introduction

The verification of hard- and software systems often addresses the question
whether or not the system of interest (or its model) adheres to a particular
property.

With many of today’s systems relying on real-time behavior, the verification
of timed systems is of special interest. For modelling and verification of timed
systems specified by timed automata, a number of tools (Uppaal [6], Kronos
[10], Red [24], PAT [22]) are available today. They address the specific difficulty
in the verification of timed systems – infinitely many states – by digitization
[20] or appropriate symbolic representations of sets of states, either by regions
or by zones. The latter come with efficient data structures for storage and ma-
nipulation in the form of Difference Bound Matrices (DBMs) [14], as well as
specialized data structures for unions of zones, e.g., Clock Difference Diagrams
[5] or Clock-Restriction Diagrams [23]. Despite such optimizations, verification of
timed automata remains challenging due to the need for examining and storing
all reachable states, which is costly even with these data structures.

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 203–218, 2014.
c© Springer International Publishing Switzerland 2014

204 T. Isenberg and H. Wehrheim

Recently, a new approach for the verification of timed systems based on the
induction-based method IC3 was proposed by Kindermann et al. [18]. IC3 [11],
originally developed for hardware verification, is a technique for incrementally
computing inductive invariants of finite transitions systems and makes heavy
use of SAT solvers for queries about inductiveness. The technique proposed in
[18] extended this to timed systems by (1) using SMT solvers for modelling and
checking constraints on clock or integer variables, and (2) using region abstrac-
tion to cope with the inherent infinity of timed systems. This combination seemed
promising, in particular due to the fact that IC3 constructs over-approximations
of i-step reachability and is rather efficient in this due to several improvements
and extensions, e.g., [16,21,12,3]. However, the experimental results given in [18]
showed that this new approach could not bring improvements over state-of-the-
art timed automata verification as done by Uppaal. The results show once more
a general problem of region abstraction: Larger constants in the model result in
a larger number of regions, which then annihilates the desired effect of IC3 with
respect to memory consumption.

Here, we propose a new approach to the application of IC3-type induction
methods for the verification of timed automata. Instead of using region abstrac-
tion, we employ zones as our technique for representing infinitely many timed
automaton states. With respect to the combination with IC3, this poses two
challenges: (1) we need a technique for computing a zone from a counterexample
to induction as returned from the IC3 algorithm, and (2) this zone has to be
constructed in such a way that it rules out possibly infinitely many counterex-
amples to induction which can occur in a timed system. A third challenge results
from the fact that we allow for integer variables in the timed automata, and their
constraints need to be incorporated into the general algorithm as well.

For the evaluation of our technique, we wrote a verification tool checking
safety properties for given networks of timed automata using our new approach.
The results show our combination of IC3 with zone abstraction to be superior to
the approach of Kindermann et al. Moreover, a comparison with Uppaal reveals
a number of instances in which our approach outperforms Uppaal. Specifically,
for the often employed benchmark of Fischer’s mutual exclusion protocol, our
new approach can handle instances with up to 30 processes whereas Uppaal
already runs out of memory for 14 processes.

2 Background

In the following, we will briefly present some basics about timed automata and
IC3 which are required in order to follow the presentation of our approach.

2.1 Timed Automata

In the early 90’s, timed automata [1] were proposed as a formalism for the
specification of timed systems, i.e., systems with a time-dependent behavior. A
finite state automaton is enriched with real valued variables, called clocks, to

Timed Automata Verification via IC3 with Zones 205

model the elapse of time since their last reset. Clock constraints can be used to
restrict the allowed behavior of the automaton depending on time. Furthermore,
more recent formalisms allow integer variables which are not subject to time
elapse. Several timed automata can be composed into a network in order to
model a distributed system.

In the following, we formally define timed automata as used in the successive
sections. We start with clocks and their valuations plus two operations on clocks,
namely time elapse (the passing of time) and clock reset.

Definition 1. A clock is a non-negative, real valued variable. The set of clocks
is denoted by C. Mapping each clock x ∈ C to a value vc(x) ∈ R≥0 is called a
clock valuation vc (over C).

For a clock valuation vc and some δ ∈ R≥0, the elapse of δ time units, vc+ δ,
is defined as follows: ∀x ∈ C : (vc + δ)(x) = vc(x) + δ.
Resetting of a set R ⊆ C of clocks in vc is defined by

∀x ∈ C : vc[R](x) =

{
0 if x ∈ R

vc(x) else.

We let vc0 be the special initial clock valuation assigning value 0 to all clocks.
Clocks are used to control time-dependent behavior. To this end, clock con-

straints can be used to restrict the allowed actions.

Definition 2. Let C be the set of clocks. Φ(C) is the set of clock constraints φ
defined by φ := x �� n | φ1 ∧ φ2 | true with x ∈ C, n ∈ N1 and �� ∈ {<,≤,=
,≥, >}. If a clock valuation vc satisfies a clock constraint φ ∈ Φ(C), we write
vc |= φ.

In addition to real valued clocks modelling the timed behavior, some classes of
timed automata allow for non-related integer variables. Similar to clocks, we can
however constrain the allowed integer valuations.

Definition 3. Let IV be a set of integer variables. Mapping each integer variable
iv ∈ IV to a value vi(iv) ∈ Z is called an integer valuation vi.
Ψ(IV) is the set of integer constraints ψ defined by ψ := iv �� n|ψ1 ∧ ψ2|true
with iv ∈ IV,n ∈ Z and �� ∈ {<,≤,=,≥, >}. If an integer valuation vi satisfies
an integer constraint ψ ∈ Ψ(IV), we write vi |= ψ.

The initial integer valuation vi0 maps each integer variable iv ∈ IV to its initial
value vi0(iv) ∈ Z. In contrast to clocks, which can only be reset to zero, we allow
more complex assignments for integer variables.

Definition 4. Let IV be the set of integer variables. Ω(IV) is the set of integer
assignments ω defined by

iv := n | iv := iv + n | ω1 ∧ ω2 | true
1 As usual, we restrict these bounds to be integers. This is due to the fact, that
otherwise we could upscale the whole timed automaton in order to obtain clock
constraints that are solely bound by integers.

206 T. Isenberg and H. Wehrheim

with iv ∈ IV and n ∈ Z and the limitation that an integer variable iv must not
occur in more than one of the conjuncts to prevent ambiguity due to undefined
order. The resulting integer valuation vi[ω] after applying integer assignment ω
is defined as:

∀iv ∈ IV : vi[ω](iv) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n if ω = iv := n

vi(iv) + n if ω = iv := iv + n

vi[ω1](iv) if ω = ω1 ∧ ω2 and iv is defined in ω1

vi[ω2](iv) if ω = ω1 ∧ ω2 and iv is defined in ω2

vi(iv) else

Additionally, we need to define synchronization labels including an empty label
(ε) as to allow for communication between automata in a network.

Definition 5. Let Σ be an alphabet. We define the set of synchronization labels
Σsync = {ε} ∪ (Σ × {!, ?}).

Timed automata communicate in a CCS-like fashion, where senders of messages
(m!) synchronize with receivers (m?). Given these definitions, we can next for-
malize timed automata.

Definition 6 (Timed automaton). A timed automaton A is a tuple A =
(L, l0, C, IV , Σ, Invc, Invi, E):

– L is a finite set of locations,
– l0 ∈ L is the initial location,
– C is a finite set of clocks with initial valuation vc0,
– IV is a finite set of integer variables with initial valuation vi0,
– Invc : L→ Φ(C) is a total function of clock-invariants, s.t. vc0 |= Invc(l0),
– Invi : L→ Ψ(IV) is a total function of integer-invariants, s.t. vi0 |= Invi(l0),

and
– E ⊆ L×Σsync × Φ(C) × Ψ(IV)×Ω(IV)× 2C × L is the set of edges.

Example 1. Consider the timed automaton depicted in Fig. 1. It has 4 locations
(l0 to l3) with initial location l0, clock c and two integer variables id and count
(both with initial value 0). Furthermore, it includes clock constraints (c ≤ 1024),
integer constraints (id == 0), integer assignments (id := 0∧count := count−1),
clock resets (c := 0) and one clock invariant at location l1 (c ≤ 1024). All edges
are labeled with the empty synchronization label and labels are thus simply
elided. Serveral of these automata are used to model the Fischer mutual exclusion
algorithm, where each timed automaton models a process trying to enter its
critical section, represented as location l3. The mutual exclusion is ensured by
the processes waiting for some time and setting and checking a shared variable
id. Time constants (e.g. 1024) are key to some of the models and can be large.

Ultimately, we will be interested in proving properties on timed automata, or on
networks of timed automata. To this end, we first need to define the semantics of
timed automata. Informally, this works as follows. The current state of the timed

Timed Automata Verification via IC3 with Zones 207

count := count+1

id:=0 ^
count := count-1

id==0 c<=1024

c:=0

id==0

c<=1024
c:=0
id:=1

c>1024

c:=0
l0

l3

l1

l2

id ==1

Fig. 1. Timed automaton A

automaton consists of a location l, a clock valuation vc with vc |= Invc(l) and

an integer valuation vi with vi |= Invi(l). To allow an edge (l
σ,φ,ψ,ω,R
−−−−−−−→ l′) ∈ E

to be taken, clock and integer valuations have to satisfy the constraints φ and
ψ, i.e., vc |= φ and vi |= ψ, and after applying reset R and assignment ω
satisfy the invariants of the target location l′, i.e., vc[R] |= Invc(l′) and vi[ω] |=
Invi(l′). An edge is taken instantaneously (without time elapse), whilst time
can pass arbitrarily in a location (as long as the location invariant is satisfied).
The synchronization labels are only taken into account when combining several
timed automata into a network, which we define later. This concrete semantics
can be formalized as a transition system, e.g., as was done by Behrmann [4].

Definition 7. Let A = (L, l0, C, IV , Σ, Invc, Invi, E) be given. The transition
system TS = (S, s0,→) defines the concrete semantics:

– S = L× RC
≥0 × ZIV is the set of states,

– s0 = (l0, v
c
0, v

i
0) ∈ S is the initial state,

– →⊆ S × S contains delay transitions →d and edge transition →e:

• (l, vc, vi)→d (l, vc + δ, vi) iff ∀0 ≤ δ′ ≤ δ : (vc + δ′) |= Invc(l)

• (l, vc, vi)→e (l′, vc′, vi
′
) iff ∃(l ε,φ,ψ,ω,R

−−−−−−−→ l′) ∈ E s.t. vc |= φ, vc′ = vc[R],

vc′ |= Invc(l′), vi |= ψ, vi
′
= vi[ω], vi

′ |= Invi(l′).

The transition system as described by the concrete semantics is infinite and thus,
several finite abstractions have been developed, e.g., the region abstraction of
Alur and Dill [1]. Based on the fact that some clock valuations are indistinguish-
able for any clock constraint, equivalence classes (regions) of clock valuations
are built. This is possible because clock constraints use integer bounds only.

Definition 8. Let A = (L, l0, C, IV , Σ, Invc, Invi, E) be a given timed automa-
ton. For every clock x ∈ C let nx be the largest constant with which x is compared
to. Two clock valuations vc and vc′ are in the same region, iff:

– ∀x ∈ C : -vc(x). = -vc′(x). or vc(x) > nx ∧ vc′(x) > nx,

208 T. Isenberg and H. Wehrheim

– ∀x, y ∈ C with vc(x) ≤ nx and vc(y) ≤ ny: fract(vc(x)) ≤ fract(vc(y)) iff
fract(vc′(x)) ≤ fract(vc′(y)),

– ∀x ∈ C with vc(x) ≤ nx: fract(v
c(x)) = 0 iff fract(vc′(x)) = 0.

with fract meaning the fractional part of the value.

Every timed automaton as defined above only has a finite number of regions
[2]. Furthermore, to ensure a finite semantics, we allow only a finite number of
integer valuations, as explained later. The downside of the region abstraction is
its huge size and therefore other abstractions, like zones, are preferred by most
tools and also our own. Zones are convex sets of clock valuations.

Definition 9. A zone Z is a convex set of clock valuations, specified as a con-
junction of clock difference constraints xi − xj �� n with xi, xj ∈ C ∪ {x0 =
0}, �� ∈ {<,≤} and n ∈ Z.

Note that bounds on single clocks are expressed using a special clock x0. Zones
can efficiently be stored using Difference Bound Matrices (DBMs) [14]. Further-
more, DBMs allow for an efficient backwards reachability analysis [7] using the
following operations [9] which we also need for our own approach. Let Z,Z ′ be
two zones:

– Past:
←−
Z = {vc − t|vc ∈ Z and t ∈ R≥0}

– Intersection: Z ∩ Z ′ = {vc|vc ∈ Z and vc ∈ Z ′}
– Inverse reset of clocks in R: Z[R]−1 = {vc|vc[R] ∈ Z}
– Predecessor:

Pree(Z) = (
←−
Z ∩ {vc|vc |= Invc(l′)})[R]−1 ∩ φ ∩ {vc|vc |= Invc(l)}
for e = (l

ε,φ,ψ,ω,R
−−−−−−−→ l′) an edge

A zone is bounded solely by integers and thus, whenever the bounds are constants
obeying the maximal bound as in the definition of regions, it can be seen as
a finite union of regions. The following properties of operations on zones are
important for our own approach and cited from [9]:

Lemma 1. If Z is a zone, Pree(Z) is a zone. Additionally, if it is a finite union
of regions, Pree(Z) is a finite union of regions, too.

Lemma 2. If Z is a zone, the predecessor computation Pree(Z) is exact, i.e.
Pree(Z) contains all clock valuations that enable e with target valuation vc ∈ Z.

Using the zone abstraction, a finite abstract symbolic transition system with
states (l, Z, vi) using zones of valuations can be defined for every timed automata.
The same can be done using the region abstraction. We refer to [4,9] for a more
precise overview.

As stated earlier, several timed automata can be composed with each other
describing a parallel execution of timed systems. This composition of timed
automata A1,...,An is called a network of timed automata.

Timed Automata Verification via IC3 with Zones 209

Definition 10. Let the timed automata A1 to An be given with Aj = (Lj , lj0, C
j,

IV , Σ, Invcj , Invi
j
, Ej) with Σ and IV being equal in all n automata. Further-

more, we require the sets Cj of clocks to be distinct for all timed automata.
The product automaton defining the network NTA = 〈A1, ..., An〉 is defined as
A = (L, l0, C, IV , Σ, Invc, Invi, E) with

– L = L1 × ...× Ln

– l0 = (l10, ..., l
n
0)

– C = C1 ∪ ... ∪ Cn

– Invc(l1, ..., ln) = Invc1(l1) ∧ ... ∧ Invcn(ln)

– Invi(l1, ..., ln) = Invi
1
(l1) ∧ ... ∧ Invi

n
(ln)

– E is defined as

• ∀i ∈ {1, ..., n} : (..., li, ...) σ,φ,ψ,ω,R
−−−−−−−→ (..., li

′
, ...) if li

σ,φ,ψ,ω,R
−−−−−−−→ li

′ ∈ Ei

• ∀i �= j ∈ {1, ..., n} : (..., li, ..., lj, ...) ε,φ,ψ,ω,R
−−−−−−−→ (..., li

′
, ..., lj

′
, ...)

if li
a!,φ1,ψ1,ω1,R1−−−−−−−−−−−→ li

′ ∈ Ei and lj
a?,φ2,ψ2,ω2,R2−−−−−−−−−−−→ lj

′ ∈ Ej

with φ = φ1 ∧ φ2, ψ = ψ1 ∧ ψ2, ω = ω1 ∧ ω2, R = R1 ∪R2.

This composition of several timed automata is also reflected within the definition
of the safety property.

Definition 11 (Safety Property). Let NTA = 〈A1, ..., An〉 be a given net-
work of timed automata. The safety property is defined as P = ¬(li ∧ ... ∧ lj ∧
Z ∧ ψ)|P1 ∧ P2 for some mutually distinct timed automata Ai, ..., Aj ∈ NTA,
their locations li ∈ Li,...,lj ∈ Lj and Z being a Zone over C and ψ ∈ Ψ(IV).

In the definition, arbitrary combinations of locations of the single timed au-
tomata with several clock and integer valuations can be described as li∧ ...∧ lj ∧
Z ∧ ψ. These combinations are used to describe error-states that are excluded
from the safety property, expressed by the negation.

Example 2. As running example of this paper, we consider a model describing
the Fischer mutual exclusion algorithm. This network of timed automata consists
of an arbitrary, but finite, number of timed automata, all similiar to the one in
Fig. 1. Every automaton has its own identifier i and its own clock c (now called
ci). The identifier i replaces the ”1” in the integer assignment id := 1, as well as in
the integer constraint id == 1. We are interested in a safety property stating that
no more than one timed automaton can be in its location l3. Using the integer
variable count this can easily be expressed as P = ¬(

∧
Aj∈NTA cj ≥ 0∧ count >

1). The formula states that any valid clock valuation (
∧

Aj∈NTA cj ≥ 0) with

count > 1 and any combination of locations (since no locations are specified), is
an error-state and thus, does not satisfy the safety property.

2.2 IC3

In the following, we present a brief overview of IC3 [11], the algorithm we intend
to adapt for checking safety properties of timed automata. IC3 is a technique

210 T. Isenberg and H. Wehrheim

for incrementally constructing inductive invariants. It assumes the system to be
specified by two propositional formulae, a formula Init describing the set of ini-
tial states, and a formula Trans describing transitions of the system. Both range
over a set of variables used to define states, where T uses both unprimed and
primed versions of the variables as to refer to a current state and its successor.
We write F ′ to denote the formula F with all variables in primed form. The
objective of the technique is to show that a property P is invariant, i.e., none
of the reachable states invalidates P . Most often, P is not inductive itself. To
prove P to be invariant we thus need a strengthening of P which is inductive.
This is what IC3 is computing.

The basic principle of the algorithm is to incrementally build sets Fi over-
approximating the states reachable in i ∈ {0, ..., k}-steps. These sets are rep-
resented as propositional formulae. The sequence of sets F0, F1, . . . , Fk satisfies
the following conditions:

(1) Init⇒ F0

(2) Fi ⇒ Fi+1

(3) Fi ⇒ P
(4) Fi ∧ Trans⇒ F ′

i+1

The algorithm terminates once we find some i for which Fi = Fi+1. In this case,
the set Fi is an inductive invariant and a strengthening of P .

The incremental construction of the sequence works as follows. IC3 searches
the currently largest set Fk, called frontier, for predecessors s of states violating
the safety property, i.e., checks whether Fk ∧ Trans ∧ ¬P ′ is satisfiable. It then
tries to exclude s, called the counterexample to induction (CTI), from the fron-
tier. For this, the largest set Fn to which the negation of the CTI s is inductive
relative to is found. A negation of a state s is inductive relative to a set Fn if
Fn ∧¬s∧ Trans⇒ ¬s′ holds. Then s is generalized meaning that literals in the
formula denoting s are dropped from the formula while maintaining relative in-
ductiveness to Fn. This generalization is key to IC3. Afterwards, the negation of
the generalized CTI (which is a clause) is conjoined with F1 to Fn+1 to exclude
s from each of these sets.

The CTI s has successfully been excluded from the frontier if n + 1 ≥ k.
Otherwise, as ¬s is not inductive relative to Fn+1 the query Fn+1∧¬s∧Trans∧s′
is satisfiable, i.e. there exists the state t �= s in Fn+1 that hinders the inductive
relativeness of ¬s to Fn+1. Thus, this CTI t must itself be excluded. If this
recursive procedure reaches a state in F0, a counterexample trace has been found
which proves the safety property not to hold. Otherwise, eventually all CTIs are
excluded and a new frontier will be created. The whole process is repeated until
an error-trace is found or two consecutive sets Fi and Fi+1 are equal which means
that the safety property actually is invariant. IC3 gains additional efficiency
by propagating relative inductive clauses of a set Fi to its successor set Fi+1,
resulting in an additional refinement and possibly faster termination.

For more details, we refer to the original paper from Aaron Bradley [11].

Timed Automata Verification via IC3 with Zones 211

3 IC3 for Timed Automata Verification

For using the basic procedure of IC3 for checking safety of timed automata,
we essentially need to solve two tasks: (1) we need a way of representing net-
works of timed automata and their safety properties in terms of logical formulas
Init, T rans and P , and (2) we need a way of extracting counterexamples to
induction when we find the negation of the property to still be reachable from
Fk or the relative inductiveness to be violated. For task (1) we follow [18] in
that we now use first order logic (and consequently SMT solvers for satisfiability
queries) to encode constraints on clocks and integer variables. We do not give
the full encoding here, just an example, as it is rather straightforward.

Example 3. For the single timed automaton in Figure 1 we would for instance
get the following. We use two boolean variables b10 and b11 for encoding the four
locations, and use the names of clocks and integer variables as given in the
automaton. Then the formula for Init is ¬b10 ∧ ¬b11 ∧ c = 0 ∧ id = 0 ∧ count = 0
and Trans =

∨
e∈E enc(e) where the encoding of the edge e from l1 to l2 is

enc(e) = ¬b10 ∧ b11 ∧ c ≤ 1024∧ c′ = 0 ∧ id′ = 1 ∧ b10
′ ∧ ¬b11

′ ∧ count′ = count

In addition, the encoding takes into account invariants and synchronization in a
network of timed automata.

With respect to task (2), we deviate from Kindermann et al’s approach. To
see why a solution to task (2) cannot simply be taken from IC3, we look at
the procedure again. In the original algorithm, the CTIs are extracted using the
satisfying models of the following queries (1) and (2):

Fk ∧ Trans ∧ ¬P ′ (1)

Fn ∧ ¬s ∧ Trans ∧ s′ (2)

This poses a problem when verifying timed systems using IC3 as there are in-
finitely many models. Thus, within this domain the original IC3 algorithm can
no longer guarantee termination. However, by making the algorithm aware of
the used domain during the computation of CTIs the termination problem can
be conquered. In contrast to previous approaches utilizing region abstraction for
the CTI computation [18], we use zone abstraction. This decision in favor of the
zone abstraction promises better performance since zones are insusceptible to
large constants, but is also more challenging. In general, the satisfying models of
queries (1) and (2) are encoding pairs of predecessor (p) and successor (s) state:

((l1p, l
2
p, . . . , l

n
p), v

c
p, v

i
p) , ((l1s , l

2
s , . . . , l

n
s), v

c
s, v

i
s)

This refers to networks of n timed automata. Note that this model describes a
pair of states such that there is (at least) one edge e in the network taking us
from the predecessor to the successor state. One such edge e can (and needs to)
be computed from the model.

212 T. Isenberg and H. Wehrheim

We now cannot simply compute the CTI from such a model and abstract its
concrete clock valuation vcp into a zone like done for regions in [18]. The difficulty
for zones is that there is no uniquely defined zone surrounding a concrete clock
valuation. In general, there are several surrounding zones Z satisfying vcp ∈ Z,
and the one we are interested in is the maximal zone Z that enables the edge e
as represented by the satisfying model plus leads to a target valuation as stated
by the issued query (1) or (2), i.e., either ¬P ′ or s′. We compute this zone Z
using backwards reachability computation Z = Pree(Z2) from a zone Z2. The
question is what Z2 to use for this. A closer look at the involved queries gives
us two cases.

Query (1): The successor state described by the satisfying model is (ls, v
c
s, v

i
s)

with ls = (l1s , l
2
s , . . . , l

n
s), and thus, what is known about the successors’ clock

valuation is vcs. Since we need a zone Z2 for the computation of Z, the trivial
choice would be to compute the region surrounding vcs and use it as Z2. However,
this would be a waste since the safety property often contains more than this one
region reachable via edge e. Thus, we utilize the structure of our safety property
to gain further information about a good candidate zone Z2. All states violating
the safety property P are defined (Def. 11) as ¬P = (li ∧ ... ∧ lj ∧ Ze ∧ ψ) ∨ ...
for some mutually distinct timed automata Ai, ..., Aj ∈ NTA, their locations
li ∈ Li,...,lj ∈ Lj and Ze being a Zone over C and ψ ∈ Ψ(IV). At least one of
the combinations (li ∧ ... ∧ lj ∧ Ze ∧ ψ) within the safety property must include
the found successor (ls, v

c
s, v

i
s). We find this combination by issuing cheap queries

(li ∧ ... ∧ lj ∧ Ze ∧ ψ ∧ ls ∧ vcs ∧ vis) to the solver, obtaining Z2 as some such Ze.

Query (2): The successor state (ls, v
c
s, v

i
s) is a concrete state enclosed in the CTI

s. Since we must have computed s previously in the IC3 algorithm, we know its
zone Z2 and can easily reuse it to compute the predecessors’ zone Z = Pree(Z2).

In order to make this approach work efficiently, we store all zones computed
for the CTIs as DBMs for later use.

Example 4. Consider the example of Fischer’s algorithm as stated before. A sat-
isfiable SMT-query Fk ∧Trans∧¬P ′ might return the following model (written
informally): l1p = l2, l

1
s = l3 and c1 = c′1 = 1025 and count = 1, count′ = 2 and

others. As the successor violates the safety property P , we search through P as
described above. Finding Z2 =

∧
Aj∈NTA cj ≥ 0, we compute the predecessors’

zone Z = Pree(Z2) according to the taken transition e from l1p = l2 to l1s = l3.
The result is Z =

∧
Aj∈NTA,j �=1 cj ≥ 0 ∧ c1 > 1024. This is the zone of the CTI,

which can now be generalized and is used for refinement of the sets Fi.

Using the search within the safety property and the backwards reachability anal-
ysis, we can lift any concrete CTI (lp, v

c
p, v

i
p) to a symbolic one (lp, Z, v

i
p). The

concrete clock valuation vcp, which was described in the model is discarded, as
it is within zone Z due to the exact backwards reachability computation (see
Lemma 2). This computation of zones is where the change from concrete to sym-
bolic CTIs requires the main modification – besides moving to first order logic
– to IC3.

Timed Automata Verification via IC3 with Zones 213

In the description so far, the integer valuations have just been left as they
are. In order to improve performance, we however do not store the single integer
valuation vip extracted from the satisfying model within each CTI, but store
a set of such valuations using integer constraints. To do so, we use the same
methodology as for zones. We obtain the integer constraint ψ2 from the successor
CTI (Query (2)) or find it within the safety property (see above). For the taken

edge e = (lp
ε,φ,ψ,ω,R
−−−−−−−→ ls) we compute wpω(ψ2 ∧ Invi(ls))∧ψ ∧ Invi(lp) using the

weakest precondition [13] operator wpω regarding the integer assignment ω. The
result includes all integer constraints that have to hold in the predecessor CTI
in order to be able to take the edge and reach one of the successor valuations.
These constraints are stored as part of the CTI alongside its zone and location.

In the following, we discuss the termination of our approach.

Lemma 3 (Termination without integer variables). Given a network of
timed automata NTA = 〈A1, ..., An〉 with IV = ∅, our algorithm terminates.

Proof sketch: The number of computable zones using backwards reachability
computation is finite, as all zones used in the safety property and, thus, all
zones computed via backwards reachability analysis are finite unions of regions
(Lemma 1). With only a finite number of zones and locations, the number of
distinct CTIs is finite. Thus, the sets can only be refined a finite number of times,
and eventually two sets have to be equal or a counterexample is found. �

However, ensuring termination requires additional effort when dealing with
integer variables, e.g., by using a widening operator. Thus, our approach then
only terminates under special assumptions.

Lemma 4 (Termination with integer variables). Given the network of
timed automata NTA = 〈A1, ..., An〉, our algorithm terminates, whenever the
network contains no cycle, that increases or decreases the value of an integer
variable as a function of its previous value (iv := iv ± c with c �= 0).

Proof sketch: Taking into account lemma 3, termination with integer variables
is guaranteed, if there exist only a finite number of sets of integer valuations
for the CTIs. Thus, termination holds, since there are only finitely many integer
constraints and invariants within NTA and no cycles to increase or decrease
their integer valuations infinitely many times. �

4 Implementation and Evaluation

We have implemented our approach and have carried out a number of experi-
ments. Our experiments show very promising results. The combination of IC3
with the zone abstraction exhibits the known advantage over the region ap-
proach, namely being insusceptible to large constants, resulting in a better run-
time. Furthermore, a comparison of our tool to the state of the art tool Uppaal
[6], Version 4.0.13, indicates that none is completely superior over the other.

214 T. Isenberg and H. Wehrheim

Some instances were solved faster using Uppaal and others were solved faster
using our tool.

Our tool is implemented in Java using the SMT-solver Z3 [19]. The imple-
mentation of the IC3-algorithm is done following the reference implementation
of IC3 [11] by Aaron Bradley, including the optimizations PDR [15] and better
Generalization [16]. The experiments were done on an Intel i5, M540 @ 2.53GHz
with Windows 7 Professional.

Our experiments employ models of the Fischer Mutual Exclusion algorithm
(Fig. 1), the CSMA/CD protocol and the FDDI token ring protocol and their
respective safety properties as can be found as benchmarks on the Uppaal web-
site. These three models can easily be scaled to include an arbitrary number of
timed automata and, thus, are suitable to examine the scalability of our tool.

Table 1. Using different constants in the Fischer model with 10 processes

used IC3&Regions IC3&Zones Uppaal
Constant Runtime (s) Memory (MB) Runtime (s) Memory (MB) Runtime (s) Memory (MB)

1 237,16 262,5 109,90 137,0 13,65 30,7
4 378,30 281,7 109,48 136,6 13,48 30,7
16 557,19 285,8 108,70 136,8 13,68 30,7

We compare our zone-based approach and the zone-based tool Uppaal with the
region-based technique of Kindermann et al. [18] regarding the scalability of con-
stants within the model. Due to Kindermann’s tool using a different SMT-solver
(Yices), we reimplemented his approach in our tool for a comparison without the
influence of different solvers. Table 1 shows the effect of larger constants used in
the Fischer model to all three examined tools. Both zone-based approaches show
no significant change, whereas the runtime and memory consumption of Kinder-
mann’s approach grows when using larger constants. This growth is due to the
number of regions depending on the largest used constant and, thus, resulting
in heavily increased amounts of CTIs. This fundamentally different behavior of
our tool compared to Kindermann’s was anticipated and has been explained in
several papers before.

Table 2. Scalability experiments using the token ring FDDI protocol

of IC3&Regions IC3&Zones Uppaal
stations Runtime (s) Memory (MB) Runtime (s) Memory (MB) Runtime (s) Memory (MB)

2 62,00 227,2 2,75 62,6 0,02 6,7
3 964,84 1217,9 10,07 71,7 0,02 6,7
4 - OOM 14,56 75,2 0,03 6,8
5 - OOM 58,57 101,9 0,03 6,8

10 - OOM 1527,15 292,9 0,17 7,1

14 - OOM 6030,13 580,6 0,59 7,4
15 - OOM - OOM 0,93 7,4

20 - OOM - OOM 5,68 7,9

In addition to the scalability experiments regarding the size of constants, we
performed several experiments regarding the number of automata in a network

Timed Automata Verification via IC3 with Zones 215

comparing our tool to the state of the art tool Uppaal using the three models
stated above. The results of these experiments were very diverse, as our tool
performed less well in some instances (Table 2) while being superior in others
(Table 4). In these experiments, we limited the runtime of a single instance to
12 hours. Uppaal threw an OutOfMemory-Exception when reaching a memory
consumption of approximately 2 GB, whereas our tool threw it at approximately
1,5 GB due to Z3 being unable to allocate more memory.

Table 2 presents the experiments for the FDDI token ring protocol. Uppaal
scales much better for these instances than our tool. This tremendous advantage
of Uppaal originates from its exploration algorithm that searches all reachable
states in a depth- or breadth-first search, saving already visited states in a clever
data structure. Naturally, if the fraction of reachable state is small, then Uppaal
is finished fast, which is the case here (only 8061 explored states for 20 stations).
Our tool, on the other hand, does not benefit from a small set of reachable states,
as every additional station increases the number of variables and makes the SMT-
formulae more complex. Thus, our experiments using the FDDI protocol show
a definite advantage of Uppaal. However, this is not generally the case.

Table 3. Scalability experiments using the CSMA/CD protocol

of IC3&Regions IC3&Zones Uppaal
senders Runtime (s) Memory (MB) Runtime (s) Memory (MB) Runtime (s) Memory (MB)

2 1,71 82,7 0,68 52,9 0,02 6,7
3 27,85 171,7 1,62 59,9 0,02 6,7
4 260,38 408,5 3,25 69,8 0,02 6,8
5 - OOM 6,18 78,4 0,02 6,9

10 - OOM 80,23 114,3 2,84 19,1

14 - OOM 278,24 205,1 139,65 519,2
15 - OOM 490,14 223,9 365,39 1268,7
16 - OOM 509,17 277,7 - OOM

25 - OOM 5044,73 641,9 - OOM
26 - OOM - OOM - OOM

The next experiments were run using models of the CSMA/CD protocol (Ta-
ble 3) and the Fischer Mutual Exclusion algorithm (Table 4). For the smaller
instances, i.e., small numbers of timed automata in the network, Uppaal is faster.
It, however, loses this advance with growing number of automata until running
out of memory when exploring the model with 16 senders (CSMA/CD) or 14
processes (Fischer), respectively. Although Uppaal has compact datastructures
for storing already explored states, the need for storing all previously seen states
makes Uppaal easily run out of memory. In each of the instances on which Up-
paal runs out of memory, it has to explore and store more than ten million states.
Our technique, on the contrary, does not rely on storing each found state, but
uses generalized states for the refinement of overapproximations. Thus, it can
be more efficient regarding memory. This can for instance be seen in the exper-
iments with more than 16 CSMA/CD senders that can be verified by our tool,
but not by Uppaal. Likewise, for the Fischer model our tool is able to check
instances (of up to 30 Fischer processes), which Uppaal cannot verify with a

216 T. Isenberg and H. Wehrheim

reasonable amount of memory. But in addition, our tool is also competitive re-
garding runtime (see Table 4, 13 processes). Thus, within these experiments our
tool was capable to successfully compete with Uppaal both regarding runtime
and memory.

Table 4. Scalability experiments using the Fischer algorithm

of IC3&Regions IC3&Zones Uppaal
processes Runtime (s) Memory (MB) Runtime (s) Memory (MB) Runtime (s) Memory (MB)

3 4,16 81,8 1,42 61,9 0,02 6,6

5 16,93 111,8 7,20 80,9 0,02 6,7

10 567,00 286,5 107,42 136,7 13,38 30,8

12 1078,81 344,2 246,45 173,7 216,56 273,1
13 1584,50 380,5 395,13 179,6 845,11 875,9
14 6826,73 614,3 495,93 200,7 - OOM

17 32368,94 1010,6 1763,82 320,8 - OOM
18 OOT - 2015,09 344,9 - OOM

20 OOT - 4084,05 466,8 - OOM

25 OOT - 14268,46 858,7 - OOM

30 OOT - 36812,32 1468,9 - OOM

Taking all these experiments into account, we have presented evidence that
neither Uppaal nor our tool is superior to the other in general. In conclusion,
both tools could be used complementary, where Uppaal works best for instances
with a small or medium sized set of reachable states and our tool is efficient for
instances with large state spaces. In addition, we can say that our approach is a
definite improvement over the technique of Kindermann et al., providing a huge
improvement in runtime and also insusceptibility against large constants.

5 Related Work

The verification of timed automata started in the early 90’s, when the region
abstraction [1] laid the foundation for the decidability results. However, the
practical value of that abstraction is small due to its exponential blowup in
terms of clocks and size of the used constants.

In contrast, the zone abstraction is widely used for the verification of timed
systems, e.g., in tools like Uppaal [6], Kronos [10] or Red [24]. Most of these
tools verify a safety property by doing explicit reachability analysis in a DFS- or
BFS-manner. They differ in the data-structures used to store already examined
states, e.g., CDDs [5] or CRDs [23], as well as in their used optimizations.

Other tools use a discretized semantics of timed automata in order to employ
BDDs, e.g., Rabbit [8] or PAT [22], which also offers zone-based analysis.

Furthermore, several SAT-based approaches have been proposed, e.g., [17].
These transfer successful ideas from untimed domains, but even so have to cope
with the specific problems present in a timed domain. To the best of our knowl-
edge, there exists only one approach utilizing IC3 for the verification of timed
systems: Kindermann et al. [18] combine IC3 with the region abstraction. We

Timed Automata Verification via IC3 with Zones 217

pick up their idea, as the use of IC3 is very promising with its clever combi-
nation of over-approximation and refinement. Our technique combines IC3 with
the zone abstraction, resulting in coarser symbolic CTIs and a faster refinement.

6 Conclusion

In this paper, we presented an approach for the verification of safety proper-
ties for timed systems utilizing a combination of IC3 with the zone abstraction.
Concrete clock valuations found by IC3 are abstracted into a zone, s.t. termina-
tion of our approach is guaranteed. This technique provides for a fast refinement
process in IC3 due to the coarse abstraction of time.

We compared our approach with the technique of Kindermann et al. [18] that
combines IC3 with the region abstraction. Our experiments with a prototype
implementation showed promising results. Our zone-based approach seems to be
a definite improvement over the region-based technique of Kindermann, both
regarding runtime and memory consumption. Furthermore, a comparison of our
technique with the state of the art tool Uppaal [6] reveals a number of instances
in which our approach outperforms Uppaal. Specifically, for the often employed
benchmark of Fischer’s mutual exclusion protocol, our new approach can handle
instances with twice as much processes as Uppaal before running out of memory.

As future work, we plan to investigate, how a found inductive strengthening for
a network of timed automata can be reused, if the network changes in different
ways. This reuse could save a lot of time for frequently changing networks of
timed automata.

References

1. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M. (ed.)
ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer
Science 126(2), 183–235 (1994)

3. Baumgartner, J., Ivrii, A., Matsliah, A., Mony, H.: IC3-guided abstraction. In:
Cabodi, G., Singh, S. (eds.) FMCAD, pp. 182–185. IEEE (2012)

4. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds
in zone-based abstractions of timed automata. Int. J. Softw. Tools Technol.
Transf. 8(3), 204–215 (2006)

5. Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reach-
ability analysis using clock difference diagrams. In: Halbwachs, N., Peled, D.A.
(eds.) CAV 1999. LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg (1999)

6. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Uppaal — a
Tool Suite for Automatic Verification of Real–Time Systems. In: Alur, R., Sontag,
E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer,
Heidelberg (1996)

7. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: De-
sel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets.
LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

218 T. Isenberg and H. Wehrheim

8. Beyer, D., Lewerentz, C., Noack, A.: Rabbit: A tool for BDD-based verification
of real-time systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 122–125. Springer, Heidelberg (2003)

9. Bouyer, P.: From Qualitative to Quantitative Analysis of Timed Systems. Mémoire
d’habilitation, Université Paris 7, Paris, France (January 2009)

10. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: A
model-checking tool for real-time systems. In: Vardi, M.Y. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 546–550. Springer, Heidelberg (1998)

11. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt,
D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011)

12. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg
(2012)

13. Dijkstra, E.: Guarded commands, nondeterminacy, and formal derivation of pro-
grams. In: Gries, D. (ed.) Programming Methodology, pp. 166–175. Springer,
New York (1978)

14. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990)

15. Een, N., Mishchenko, A., Brayton, R.: Efficient implementation of property di-
rected reachability. In: Proceedings of the International Conference on Formal
Methods in Computer-Aided Design, FMCAD 2011, pp. 125–134. FMCAD Inc.,
Austin (2011)

16. Hassan, Z., Bradley, A., Somenzi, F.: Better generalization in IC3. In: Formal
Methods in Computer-Aided Design (FMCAD), pp. 157–164 (October 2013)

17. Kindermann, R., Junttila, T., Niemelä, I.: Beyond Lassos: Complete SMT-Based
Bounded Model Checking for Timed Automata. In: Giese, H., Rosu, G. (eds.)
FORTE 2012 and FMOODS 2012. LNCS, vol. 7273, pp. 84–100. Springer,
Heidelberg (2012)

18. Kindermann, R., Junttila, T., Niemelä, I.: SMT-Based Induction Methods for
Timed Systems. In: Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS,
vol. 7595, pp. 171–187. Springer, Heidelberg (2012)

19. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

20. Nguyen, T.K., Sun, J., Liu, Y., Dong, J.S., Liu, Y.: Improved BDD-based discrete
analysis of timed systems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS,
vol. 7436, pp. 326–340. Springer, Heidelberg (2012)

21. Suda, M.: Triggered Clause Pushing for IC3. ArXiv e-prints (July 2013)
22. Sun, J., Liu, Y., Dong, J.S., Pang, J.: Pat: Towards flexible verification un-

der fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 709–714. Springer, Heidelberg (2009)

23. Wang, F.: Symbolic verification of complex real-time systems with clock-restriction
diagram. In: Kim, M., Chin, B., Kang, S., Lee, D. (eds.) FORTE. IFIP Conference
Proceedings, vol. 197, pp. 235–250. Kluwer (2001)

24. Wang, F., Wu, R.S., Huang, G.D.: Verifying timed and linear hybrid rule-systems
with RED. In: Chu, W.C., Juzgado, N.J., Wong, W.E. (eds.) SEKE, pp. 448–454
(2005)

GRL: A Specification Language for Globally

Asynchronous Locally Synchronous Systems�

Fatma Jebali, Frédéric Lang, and Radu Mateescu

Inria,
Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France

CNRS, LIG, F-38000 Grenoble, France

Abstract. A GALS (Globally Asynchronous, Locally Synchronous) sys-
tem consists of several synchronous subsystems that evolve concurrently
and interact with each other asynchronously. Most formalisms and de-
sign tools support either the synchronous paradigm or the asynchronous
paradigm but rarely combine both, which requires an intricate modeling
of GALS systems. In this paper, we present a new language, called GRL
(GALS Representation Language) designed to model GALS systems in
an abstract and versatile manner for the purpose of formal verification.
GRL has formal semantics combining the synchronous reactive model
underlying dataflow languages and the asynchronous concurrent model
underlying process algebras. We present the basic concepts and the main
constructs of the language, together with an illustrative example.

1 Introduction

Computer science has led to new generations of heterogeneous systems called
GALS (Globally Asynchronous, Locally Synchronous). A GALS system is com-
posed of several synchronous subsystems, executing and interacting in asyn-
chronous concurrency: no assumption is made, neither on the relative frequency
of each subsystem, nor on the communication delays between subsystems. Each
subsystem is composed of several components running together synchronously,
all governed by a single clock and encompassing the zero-delay assumption: com-
putations and communications between components are instantaneous (these are
called the synchronous assumptions). As such, GALS systems involve a high de-
gree of synchronous and asynchronous concurrency (introducing nondetermin-
ism), which requires tedious effort to design and debug. Formal modeling and
verification is then a crucial part in the design process of such usually safety-
critical systems.

Many different approaches have been proposed for GALS modeling and verifi-
cation. Some propose to model GALS systems in synchronous frameworks (such
as Signal [26]) directly or to extend synchronous languages with an asynchronous
layer (Multiclock Esterel [4], CRSM [29]). Such representations are well-suited

� This work was partly funded by the French Fonds unique interministériel (FUI),
Pôle Minalogic (project “Bluesky for I-Automation”).

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 219–234, 2014.
c© Springer International Publishing Switzerland 2014

220 F. Jebali, F. Lang, and R. Mateescu

to hardware-based subsystems distributed on one single hardware platform, each
with its own clock.

Other approaches, conversely, extend asynchronous languages to incorporate
synchronous features. The most common approach is to surround each locally
synchronous subsystem by an asynchronous wrapper, which provides an asyn-
chronous interface to other subsystems. This way, GALS systems can be modeled
and verified in asynchronous frameworks. In [9], Signal modules are translated
to Promela, the input language of the SPIN model checker [20]. In [13], Sam syn-
chronous programs are represented by Mealy functions without internal state and
are encapsulated into wrappers modeled in LNT [7], a language of asynchronous
concurrent processes inheriting process algebraic concepts and extended with
data and the control structures of classical algorithmic programming. LNT is
equipped with the CADP verification toolbox [11], which comprises tools for
visual checking, model checking, and equivalence checking. Previously, LNT had
been used successfully for the analysis of other GALS systems [8,12,22].

All the aforementioned approaches adopt specific techniques of a specific
paradigm (synchronous or asynchronous) to accommodate GALS systems. On
the one hand, synchronous frameworks are deterministic by nature, and not
appropriate to model asynchrony. On the other hand, asynchrony and nondeter-
minism are granted for free in asynchronous frameworks, but those lack built-in
constructs dedicated to synchronous components, which guarantee that system
models fulfill the synchronous assumptions.

Moreover, most existing approaches depend strongly on the considered ap-
plication field (e.g., distributed control systems [31], FPGA and ASIC digital
designs [6,28], or networks on chip), the target platform (e.g., software [24],
hardware [9], or heterogeneous), and the preferred specification methods (e.g.,
based on Petri nets [27], automata [16], process algebras [13]). This narrows
down the range of systems that can be addressed. On the other hand, the surge
in complexity of GALS systems forces designers to tackle (among others) design
concepts, synchronous and asynchronous computations, deterministic and non-
deterministic behaviour, and verification approaches, which makes the design of
such systems increasingly challenging.

To circumvent this complexity, an appealing trend has been to design new
languages dedicated to GALS system modeling [3,24,5], which enforce the as-
sumptions of the GALS paradigm. In this paper, we propose GRL (GALS Rep-
resentation Language), a new specification language with textual syntax and
formal semantics, targeting systems consisting of a network of distributed syn-
chronous systems (called blocks) that interact with their environments and ex-
change data asynchronously via communication mediums. The design of GRL
has originally been driven by the need of general-purpose, designer-friendly, and
formal representation of GALS systems suitable for efficient verification.

Our approach draws mainly from two semantic foundations. As regards syn-
chrony, GRL holds a dataflow-oriented model based on the block-diagrammodel,
widely used in industry: synchronous components are modeled by blocks con-
nected together hierarchically to build higher-level blocks. Therefore, the GRL

GRL Language: GALS Representation Language 221

synchronous model inherits from the simplicity and modularity of the block-
diagram model. As regards asynchrony, GRL was inspired by process algebras,
and more particularly by LNT: blocks exchange data by (implicit) rendezvous
synchronization with communication mediums connected to other blocks, and
the interactions between blocks and their environments work similarly. Thereby,
GRL leverages process algebra expressiveness, versatility, and verification effi-
ciency, with a specialization to the GALS paradigm.

GRL was designed with several concerns in mind. First, it provides a suffi-
ciently high abstraction level to fit a wide range of applications, independently
from both the target platform (hardware, software, or heterogeneous), the ar-
chitecture (single or distributed platforms), and the application domain.

Second, GRL is aimed at being a pivot language between industrial design
tools (in particular those based on function block diagrams for the synchronous
part) and verification tools for both synchronous and asynchronous systems,
which guarantee system reliability and correctness. This way, we hope that for-
mal verification methods – claimed traditionally to require high level expertise
in theoretical issues – are easier to learn by industrial users, without requiring
companies to shift from their actual tools and languages to entirely new produc-
tion approaches. Indeed, although some approaches seem efficient [15], the high
cost of such a shift makes it unlikely to happen in the near future.

Last but not least, GRL is intended to have a user-friendly syntax as it does
not require users to have solid background in neither synchronous programming
(e.g., clocks are not modeled explicitly), asynchronous concurrent programming
(e.g., parallel composition and synchronization), nor formal verification meth-
ods. All features are smoothly and tightly integrated to form a language with
homogeneous syntax and semantics.

In this paper, we introduce GRL as a first step towards fully-automated ver-
ification of GALS systems. It is organized as follows. Section 2 presents some
related work. Section 3 presents the language, its formal semantics, and the cur-
rent status of software tools. Section 4 gives an illustrative GRL model of an
aircraft flight control system used in the avionics industry. Finally, Section 5
summarizes the paper and indicates directions for future work.

2 Related Work

In this section, we review the languages combining synchronous and asynchronous
features. CRP [3] combines the Esterel [2] synchronous language and the CSP [19]
asynchronous language. Despite its mathematical elegance, CRP is still rarely
used in industry since it requires the user to have expertise in both Esterel
and CSP. Such expertise is not required for GRL, which was designed to facil-
itate industrial GALS design. A language close to CRP is SystemJ [24], which
extends Java with Esterel-like synchronous model and CSP-like asynchronous
model. SystemJ allows efficient code to be generated automatically. However, it
lacks rigorous support for fully-automated formal verification and is not suit-
able for systems with limited resources because of its reliance on Java virtual

222 F. Jebali, F. Lang, and R. Mateescu

machine as target. To the contrary, GRL is intended to be general-purpose and
verification-oriented. Action Language [5] is a state-based approach, which aims
at bridging the gap between high specification languages (Statecharts [17], SCR
[18], and RSML [23]) and the SPIN model checker. A key difference between this
approach and ours is that Action Language adopts a low-level condition/action
model whereas GRL is equipped with high-level control structures making GRL
models clearer and more structured.

3 The GRL Language

The syntax and semantics of GRL are formally described in a research report
[21] (76 pages). In this section, we present them briefly and informally. Figure 1
is a simplified presentation1 described in EBNF (Extended Backus-Naur Form),
where square brackets denote optional syntactic parts and vertical bars denote
alternatives. The symbols K , X , and E denote respectively literal constants,
variables, and expressions (built upon constants, variables, and function appli-
cations). The symbols S , B , N , M , T , and f denote respectively system, block,
environment, medium, type, and record field identifiers.

3.1 Overview

GRL specifications are structured in modules, called programs. Each program
can import other programs, which promotes code organization and reuse. A GRL
program contains the following constructs:

1. types, ranging from predefined types (such as Booleans and naturals) to
user-defined types (such as arrays and record types),

2. named constants, visible by all other constructs,
3. blocks, representing the synchronous components,
4. mediums and environments, representing respectively communication medi-

ums and physical or logical constraints on block inputs, and
5. systems, representing the composition and interactions of blocks, environ-

ments, and mediums.

In the sequel, these five constructs are called entities, and blocks, environments,
and mediums are called actors.

As regards synchronous behaviours, blocks are the synchronous composition
of one or several subblocks, all governed by the clock of the highest level block.
A block performs a sequence of discrete deterministic steps and preserves an
internal state, hereafter called memory. At each step (each cycle of the clock),
it consumes a set of inputs, computes a reaction instantaneously, produces a
set of outputs, and updates its memory. Within one block (i.e., at actor level),
connections between subblocks are carried out using parameters in modes “in”
(input) and “out” (output). Every output parameter can be connected to several

1 70 EBNF productions were necessary to present the full language in [21].

GRL Language: GALS Representation Language 223

system ::= system S [(X0 :T0 , . . . ,Xm:Tm)] is
allocate actor0, . . . ,actorn [temp X ′

0 :T
′
0, . . . ,X

′
l :T

′
l]

network block call0, . . . ,block callp
[constrainedby env call0, . . . ,env callq]
[connectedby med call0 , . . . ,med callr]

end system
block ::= block B [[const param]][(inout param0; . . . ;inout paramm)]

[{com param0; . . . ; com paramn}] is
[allocate sub block0, . . . ,sub blockp] [local var0, . . . ,local varl]
I

end block
| block B [[const param]][(inout param0; . . . ;inout paramm)] is

!c string | !lnt string
end block

env ::= environment N [[const param]][(inout param0| . . . |inout paramm)] is
[allocate sub block0, . . . ,sub blockn] [local var0 , . . . ,local varl]
I

end environment
med ::= medium M [[const param]][{com param0| . . . |com paramm}] is

[allocate sub block0, . . . ,sub blockn] [local var0 , . . . ,local varl]
I

end medium
const param ::= const X0 :T0 [:= E0], . . . ,Xn:Tn [:= En]
inout param ::= (in | out) X0 :T0 [:= E0], . . . ,Xn:Tn [:= En]
com param ::= (send | receive) X0 :T0 , . . . ,Xn:Tn

local var ::= (perm | temp) X0 :T0 [:= E0], . . . ,Xn:Tn [:= En]
sub block ::= B [[arg0, . . . ,argn]] as Bi

actor ::= B [[arg0, . . . ,argn]] as Bi | N [[arg0, . . . ,argn]] as Ni
| M [[arg0, . . . ,argn]] as Mi

block call ::= Bi [(arg(0,0), . . . ,arg(0,m0); . . . ;arg(n,0), . . . ,arg(n,mn))]
| Bi [(arg(0,0), . . . ,arg(0,m0); . . . ;arg(n,0), . . . ,arg(n,mn))]

[{arg′
(0,0), . . . ,arg

′
(0,p0); . . . ;arg

′
(q,0), . . . ,arg

′
(p,pq)

}]
env call ::= Ni (arg(0,0), . . . ,arg(0,m0)| . . . |arg(n,0), . . . ,arg(n,mn))

med call ::= Mi {arg(0,0), . . . ,arg(0,m0)| . . . |arg(n,0), . . . ,arg(n,mn)}
signal ::= on [?]X0 , . . . ,[?]Xn -> I

I ::= null | X:=E | X[E0]:=E1 | X.f :=E | I0 ;I1 | Bi(arg0, . . . ,argn)
| if E0 then I0 elsif E1 then I1 . . . elsif En then In else In+1 end if
| while E loop I0 end loop | for I0 while E by I1 loop I2 end loop
| case E is K0 -> I0 | . . . | Kn -> In | [any -> In+1] end case
| X := any T [where E] | select I0 [] . . . []In end select | signal

Fig. 1. The syntax of GRL (excerpts)

input parameters of different blocks; however, an input parameter can be con-
nected to only one output parameter of another block. Such connections describe
synchronous communication by instantaneous broadcasting.

As regards asynchronous behaviours, blocks are composed, together with en-
vironments and mediums, within systems to form networks of distributed con-
nected synchronous subsystems. Within a GRL system (i.e., at system level),
the separate blocks execute asynchronously, i.e., each block evolves cyclically at
its own frequency (blocks have independent clocks). Blocks interact with each
other across mediums, which allows separate blocks to be loosely coupled so that
communication is performed asynchronously (i.e., takes an arbitrary amount of
time). Connections between blocks and mediums are carried out using param-
eters in modes “receive” and “send”. Receive parameters of mediums can be
connected to send parameters of blocks, and conversely. Such connections de-
scribe synchronisation and communication by message-passing rendezvous be-
tween blocks and mediums. Mediums may exhibit nondeterministic behaviour,

224 F. Jebali, F. Lang, and R. Mateescu

Fig. 2. Schematic representation of a GRL system

a key feature for asynchronous systems modeling and compositional specifica-
tion; this provides descriptions with accuracy and high abstraction capability.

Blocks behaviour can also be constraint-driven by a collection of user-defined
environments. In essence, environments exhibit a similar behaviour as mediums,
except that their connections to blocks are carried out using modes “in” and
“out”. They have been introduced in GRL to explicitly separate the specification
of communication mediums from external constraints imposed by the environ-
ment; this contributes to provide more comfort and insight about the system
composition. With such a composition, we seek enhanced user-convenience to
smoothly and tightly tailor complex network topologies, environment require-
ments and constraints, as well as communication protocols.

As an example, GRL can be used to model the network topology depicted in
Figure 2: block1 is constrained by env1 and communicates with block2 and block3
respectively across med1 and med2 ; block2 and block3 are both constrained by
env2 ; block2 is the synchronous composition of two subblocks.

3.2 Block

Blocks, defined by the non-terminal block in Figure 1, are the central building
unit of the language. At actor level, a block is defined by the following elements:

– a list “const param” of typed constant parameters (read-only variables).
– a list “inout param0, . . . ,inout paramm” of typed input and output param-

eters preceded by their mode (“in” or “out”).
– a list “local var0, . . . ,local varl” of local variables. Temporary variables are

declared using the keyword “temp”; their values are lost when the cur-
rent block execution terminates. Permanent variables are declared using the
keyword “perm”; their values are kept until the next execution cycle. The
memory of the block is the list of values assigned to its permanent variables.

GRL Language: GALS Representation Language 225

– a list “sub block0, . . . ,sub blockp” of subblock allocations, which enables
subblock instances to be created, each maintaining its own memory. This
concept is inherited from the block-diagram model, which is similar to, but
simpler than, the class-instance paradigm in object-oriented languages.

– a body “I ” expressed as a deterministic statement defined by combination
of high-level control structures (bounded loops, if-then-else, sequential com-
position, etc.) and synchronous subblock invocations. The scheduling of sub-
block executions is inherently specified by the order in which the subblocks
are invoked, using the sequential composition operator “;”. Nondetermin-
istic statements such as “X := any T where E” and “select” (arbitrary
choice of one statement among a set) are forbidden within block bodies.

Alternatively, blocks can be specified in an external language. Their body
consists of a pragma denoting the language in which the external function im-
plementing the block is written, followed by the name of the function in the
external code. So far, the supported external languages are C and LNT: an
external function identifier in C (resp. LNT) is preceded by the pragma “!c”
(resp. “!lnt”). Although C external blocks provide more flexibility for the user,
they should be defined to comply with the GRL block semantics (in particular,
side effects in external C code are prohibited to enable model checking). LNT
external blocks, however, have formal semantics and can thus be used safely.

In a block invocation, actual parameters have different forms according to
their modes. A question mark precedes both output and send actual parameters,
meaning that the parameter will have a value assigned when returning from the
block. An underscore (“ ”) is used for unconnected parameters (i.e., unused in-
puts or outputs). An output parameterXi declared in “outX0:T0, . . . ,Xn:Tn”
of a block Bi and an input parameter Yj declared in “in Y0:T0, . . . ,Ym:Tm”
of a block Bi ′ can thus be connected synchronously using a variable “Z:Ti” by
passing “?Z” to Bi and “Z” to Bi ′ in a subsequent invocation.

Additional elements can be used to define a block that can only be invoked
at system level, namely lists “com param0, . . .,com paramn” of typed receive
and send parameters preceded by their mode “receive” or “send”. They enable
blocks to interact asynchronously within a network of blocks via mediums. Such a
block cannot be allocated nor invoked inside another actor since communication
between blocks within actors is necessarily synchronous. At system level, actual
input parameters of blocks can have the additional form “any T”, meaning that
an arbitrary value of type T is passed as input to the block.

The behaviour of a block is the following. In each cycle of its clock, (1) the
block consumes data received over input and receive parameters, (2) the block
computes by executing its body, then (3) the block produces data sent over
output and send parameters. During computation, its memory is assigned the
updated values of permanent variables so as to keep them stored up to the next
cycle. As usual in the synchronous paradigm, all these steps are performed in
zero-delay, i.e., instantaneously and atomically.

226 F. Jebali, F. Lang, and R. Mateescu

3.3 Medium

Mediums, defined by the non-terminal med in Figure 1, are dedicated to the
modeling of communications and asynchronous interactions within a network of
synchronous blocks. A medium is defined by the following elements:

– a list “const param” of constant parameters.

– a list “com param0, . . . ,com paramm” of send and receive parameters.

– a list “sub block0, . . .,sub blockp” of subblock allocations enabling blocks to
be used in mediums in the same way as functions in programming languages.

– a list “local var0, . . .,local varl” of local (temporary and permanent) vari-
able declarations.

– a body “I ” expressed as a statement (not necessarily deterministic) defined
as a combination of high-level control structures, subblock compositions, and
nondeterministic statements.

A medium sends and receives messages to and from several blocks. When a
block wants to send a message to or receive a message from a medium, it triggers
the execution of the medium, which we call medium activation. Therefore, the
invocation of mediums is demand-driven by different blocks at unpredictable
instants. In this respect, mediums are passive actors, whereas blocks are active
actors. Each medium is activated during a block execution cycle at most once to
send messages to the block, then at most once to receive messages from the block.
Since several messages may have to transit via one medium, those messages are
grouped in tuples, called channels, all messages of a channel being exchanged
within a single block-medium interaction. The channel under consideration is
then called activated. The activations of a given medium are thus guided by the
separate activations of its channels, as is suggested by the pipe symbol (“|”)
used to delimit formal and actual channel parameters, each channel activation
leading to a separate execution of the medium.

To control medium activations, we introduce signal statements, whose syntax
is defined by the non-terminal signal in Figure 1. A signal guards the part of the
medium code that needs to be executed upon the activation of a particular chan-
nel. When a channel of the form “receive X0, . . . ,Xn” is activated, the signal
statement “on X0, . . .,Xn -> I ” can be executed and the values of variables
X0, . . . ,Xn passed to the channel can be read within the statement I . When
a channel of the form “send Y0, . . . ,Ym” is activated, the signal statement
“on ?Y0, . . . ,?Ym -> I ” can be executed and the statement I must assign
values to the variables Y0 , . . . ,Ym . Static semantics prohibit sequential compo-
sition of signals, loop statements containing signals, and nested signals, so that
at most one signal is present on each execution path.

Mediums introduce flexibility in system models since they provide an
accurate design of complex network topologies (e.g., bus, star, ring, mesh),
connection modes (e.g., point-to-point, multi-point), as well as communication
protocols. This way, we address a lack identified in existing languages confined to
rigid topologies and point-to-point communications between separate synchronous

GRL Language: GALS Representation Language 227

subsystems, such as those based on CSP rendezvous [24,3,9]. Limitations of adopt-
ing point-to-point communications in GALS models are considered as drastically
restrictive to design complex networks of arbitrary topologies [30].

3.4 Environment

Since synchronous systems are often recognized to be outside-aware, GRL allows
the user to model explicitly, yet abstractly, the behaviour of the environment.
There are two major roles the environment can play: impose outside physical and
logical requirements that block inputs may undergo, and put constraints on the
scheduling of blocks executing in parallel. Additionally, an environment may be
local, i.e., connected only to one block, or global, i.e., connected to several blocks
at the same time. Environments, defined by the non-terminal env in Figure 1,
are syntactically and semantically very similar to mediums, except that send
and receive parameters are replaced by input and output parameters.

3.5 System

Systems, defined by the non-terminal system in Figure 1, are the top level entities
in GRL programs, within which actors are invoked and connected to each other.
A system is defined by the following elements:

– a list “X0:T0, . . . ,Xm:Tm” of parameters, which can be used in actual
channels to connect blocks to environments and mediums. They are the
visible parameters of the system, observable from the outside world.

– a list “actor0, . . . ,actorn” of actor instance declarations.
– a list “X ′

0:T
′
0, . . .,X

′
l :T

′
l ” of temporary variables, which can be used in

actual channels to connect blocks to environments and mediums. They are
the invisible parameters of the system, not observable from the outside world.

– a list “block call0, . . .,block callp” of block invocations.
– a list “env call0, . . . ,env callq” of environment invocations that constrain

the blocks.
– a list “med call0, . . .,med callr” of medium invocations that ensure the traf-

fic inside the network of blocks.

All interactions between actors within a system are built on message-passing
synchronisations (rendezvous). Since blocks are the active actors of systems,
the scheduling of the whole system is focused around their executions. Blocks
execute cyclically, each at its own frequency, and force environments and medi-
ums to perform some operations by sending messages (requesting or providing
data) through channels. Environments and mediums, consequently, are passive
actors responding to arisen demands from different blocks. At system level, GRL
prohibits blocks to be connected directly to each other in order to preserve an
independent behaviour of each block and an asynchronous behaviour of the net-
work. Thus, blocks communicate only indirectly across mediums.

Each interaction between two actors is performed through exactly one channel.
Namely, an output channel of the form “out X0:T0, . . .,Xn:Tn” of an actor Ai

228 F. Jebali, F. Lang, and R. Mateescu

and an input channel of the form “in Y0:T0, . . . ,Yn:Tn” of another actor Ai ′

can thus be connected using a set of variables “Z0:T0, . . . ,Zn:Tn” by passing
?Z0 , . . . , ?Zn to Ai and Z0 , . . . ,Zn to Ai ′, in their respective invocations within
a system. Send and receive channels can be connected similarly.

The semantics of a system are the following. Blocks execute arbitrarily often
and cyclically. Each time a block begins its execution cycle, all environments
and mediums connected respectively to input and receive channels of the block
are activated to provide the needed input and receive values. Unconnected input
and receive channels are assigned arbitrary values. Then, the block executes its
body, and thus updates its output and send channels as well as its memory.
Finally, all environments and mediums connected to respectively output or send
channels of the block are activated.

The combined execution cycle of a block, and its related environments and
mediums is performed instantaneously according to the synchronous assump-
tions. As a consequence, a block is executed only if all its connected environ-
ments and mediums are able to respond to all input, output, receive, and send
signals of the block.

3.6 Formal Semantics

The semantics of GRL are formally defined in [21]. They consist in 145 rules of
static semantics and 24 rules of Plotkin-style structural operational semantics
for the dynamic part. In this paper, we only sketch briefly the principles of the
dynamic semantics, defined in terms of LTSs (Labelled Transition Systems). An
LTS is a quadruple (S,L,→, s0) where S is a set of states, s0 ∈ S is the initial
state, L is a set of labels, and → ⊆ S ×L× S is the labelled transition relation.

The memory of an actor, denoted by μ, is a partial function mapping all
permanent variables of the actor and its subblocks to their current values. A
state S of the system is the union of memories μi of all actors composing the
system, and the initial state s0 maps all permanent variables to their initializa-
tion values. Each label has the form Bi(a0, . . . , an){a′0, . . . , a′m} with Bi a block
identifier, a0, . . . , an the visible actual parameters of input and output chan-
nels, and a′0, . . . , a

′
m the visible actual parameters of receive and send channels.

A transition μ
Bi(a0,...,an){a′

0,...,a
′
m}−−−−−−−−−−−−−−−→ μ′ expresses the combined execution of one

cycle of the block instance Bi , together with its connected environments and
mediums. The semantics of the system are obtained by interleaving all possible
block executions. Verification (e.g., visual checking, equivalence checking, model
checking) can be done by inspection of the LTS.

3.7 Tools for GRL

There are currently two software tools for handling GRL models. The first one
is a parser for GRL (2000 lines), developed using the SYNTAX and Lotos NT
compiler construction technology [10], which performs lexical and syntax analy-
sis, type checking, binding analysis, and variable initialisation analysis of GRL
programs.

GRL Language: GALS Representation Language 229

The second one, named GRL2LNT (8000 lines), is an automated translator
from GRL to LNT. Each block is mapped to an LNT function that takes inputs
and produces outputs. Its permanent variables are mapped to inout parame-
ters, i.e., parameters whose values are updated during function invocation. Syn-
chronous block composition is mapped to sequential composition. Additionally,
each actor invoked within a system is also mapped to a wrapper process, which
contains communication actions to exchange data with its connected actors. The
whole system is mapped to the LNT parallel composition of the wrapper pro-
cesses with appropriate synchronizations of the communication actions.

GRL and GRL2LNT play the role of an intermediate and appropriate layer of
abstraction and compositionality to provide generated LNT code with accuracy
and conciseness, since scalability of automated model checking is limited. We
can take advantage from the CADP toolbox available for LNT to build state
spaces and apply visual, equivalence, and model checking techniques.

4 Example: Flight Control System

Our aim here is not to present a full case study, but rather to illustrate the
main concepts of GRL via a feature rich example: the aircraft Flight Control
System (FCS)2, whose role is to control the aircraft turning and which is one
of the most critical systems inside new generations of Airbus aircraft designs.
Subsets of FCS have been studied at different levels of abstraction. In [25], the
Flight Guidance System component of the FCS has been studied as a compo-
sition of synchronous systems following a single-platform GALS architecture.
In [1], control systems have been studied as synchronous systems following a
distributed-platforms PALS (Physically Asynchronous, Locally synchronous) ar-
chitecture. For the sake of simplicity, we model the global behaviour, at a very
high level of abstraction, of an FCS containing the following subsystems:

– Flight Control Surfaces adjust and control the aircraft’s flight turning. We
consider only one aileron (a flap attached to the end of a wing) controller.

– Fly-By-Wire Computers command the movement of the Flight Control Sur-
faces. We consider only two Fly-By-Wire Computers commanding the posi-
tion of the aileron, one being used as a backup in case the other fails.

– A Flight Control Data Concentrator schedules the execution of Fly-By-Wire
Computers and allows interaction with pilot displays.

The GRL model. The FCS system depicted in Figure 3 (see the GRL code below)
consists of four block instances, whose cyclic behaviour is as follows:

– The Ail (for aileron) block instance receives movement requirements from
the network, computes the next position of the aileron depending on its
current position, then sends it to the network.

2 http://www.skybrary.aero/index.php/Flight_Control_Laws

http://www.skybrary.aero/index.php/Flight_Control_Laws

230 F. Jebali, F. Lang, and R. Mateescu

Fig. 3. Architecture of the Flight Control System

– The Prim (for primary) and Sec (for secondary) instances of block FBW-
Comp (for fly-by-wire computer) receive: tokens from the environment in-
dicating whether Prim or Sec should control Ail ; an order from the pilot
displays; and the current position of the aileron from the network. They
compare the two latter values, and then send to the network the decision
about whether the aileron should move up, move down, or not move (if the
order matches the position).

– The Alarmer block instance checks whether the system is evolving safely
by receiving from the environment a message indicating whether Ail is still
controlled by either Prim or Sec, then informs the pilot about the safety
state of the system.

Communications within the network of blocks are modeled by the medium
Coord (for coordinator) as follows. Prim provides Ail with move requirements,
then Ail achieves the required computations and sends its new position to Prim.
Sec and Ail communicate similarly.

The environment constraints are modeled by two environments. The first envi-
ronment Conc (for concentrator) ensures that either Prim or Sec, but not both,
can control Ail, the priority being given to Prim by activating its token. Conc
determines whether Prim is in a safety state (i.e., able to control Ail). Once
Prim is not in safety state, it is considered out of order (not alive). Then, Conc
blocks the execution of Prim by inactivating its token and gives the control of
Ail to Sec by activating its token. Once Sec is not in safety state anymore, which
means that neither Prim nor Sec is in safety state, then Ail is considered out of
control and Alarmer warns the pilot.

The second environment Ctrl (for controller) constrains the execution of Ail
as follows. Ail sends cyclically its new position to Ctrl. Ctrl verifies whether
the position is still within a predefined interval, which means that Ail moves
smoothly; if not, the execution of Ail is blocked. The GRL specification of the
system follows.

GRL Language: GALS Representation Language 231

system FlightControlSystem (p ord:nat, s ord:nat, alarm:bool) is
allocate FBWComp as Prim, FBWComp as Sec, Ail as Ail, Alarmer as Alarmer,

Conc as Conc, Ctrl[3] as Ctrl, Coord as Coord
temp p tok:bool, p pos:nat, p lck, p up, p dwn:bool, s tok:bool, s pos:nat,

s lck, s up, s dwn:bool, c pos, pos:nat, lck, up, dwn:bool, safe, ok:bool
network

Prim (p tok;p ord){p pos;?p lck,?p up,?p dwn},
Sec (s tok;s ord){s pos;?s lck,?s up,?s dwn},
Ail (ok;?c pos){lck,up,dwn;?pos}, Alarmer(safe;?alarm)

constrainedby
Conc (?p tok | ?s tok | ?safe), Ctrl (c pos | ?ok)

connectedby
Coord {pos | ?lck, ?up, ?dwn | p lck, p up, p dwn | ?p pos | s lck, s up, s dwn | ?s pos}

end system

block FBWComp (in tok:bool; in ord:nat){receive pos:nat; send lck, up, dwn:bool} is
if tok then

if ord > pos then lck := false; up := true; dwn := false
elsif ord < pos then lck := false; up := false; dwn := true
else lck := true; up := false; dwn := false
end if

else lck := false; up := false; dwn := false
end if

end block

block Ail (in ok:bool; out c pos:nat){receive lck:bool, up, dwn:bool; send pos:nat} is
perm pos buf :nat := 0
if not(lck) and ok then

if up then pos buf := pos buf + 1
elsif dwn then pos buf := pos buf - 1
end if

end if;
c pos := pos buf ; pos := pos buf

end block

block Alarmer (in safe:bool; out alarm:bool) is
if safe then alarm := false else alarm := true end if

end block

environment Ctrl [const threshold:nat] (in pos:nat | out ok:bool) is
perm lastPos:nat := 0
select

on pos -> lastPos := pos
[] on ?ok -> if (((lastPos > threshold) and ((lastPos - threshold) < 5))

or ((lastPos <= threshold) and ((threshold - lastPos) < 5))) then
ok := true

else ok := false
end if

end select
end environment

environment Conc (out p tok:bool | out s tok:bool | out safe:bool) is
perm p alive, s alive:bool := true
if p alive then

select
on ?p tok -> p tok := true -- primary responds

[] p alive := false -- primary fails
end select

elsif s alive then
select

on ?s tok -> s tok := true -- secondary responds
[] s alive := false -- secondary fails
end select

else on ?safe -> safe := false
end if

end environment

medium Coord {receive pos:nat | send lck, up, dwn:bool |
receive p lck, p up, p dwn:bool | send p pos:nat |
receive s lck, s up, s dwn:bool | send s pos:nat} is

232 F. Jebali, F. Lang, and R. Mateescu

perm lckBuff :bool := true, upBuff , dwnBuff :bool := false, posBuff :nat := 0
select

on p lck, p up, p dwn -> lckBuff := p lck; upBuff := p up; dwnBuff := p dwn
[] on s lck, s up, s dwn -> lckBuff := s lck; upBuff := s up; dwnBuff := s dwn
[] on pos -> posBuff := pos
[] on ?p pos -> p pos := posBuff
[] on ?s pos -> s pos := posBuff
[] on ?lck, ?up, ?dwn -> lck := lckBuff ; up := upBuff ; dwn := dwnBuff
end select

end medium

LTS generation. The GRL model has been translated into an LNT specification
using the GRL2LNT tool, yielding a code that is 2.5 times larger than the
input GRL model. Using CADP [11], the LTS of the model has been generated
(2, 653 states, 7, 406 transitions) then reduced modulo branching bisimulation (5
states, 1, 287 transitions), naturals being represented on 8 bits. This apparently
small LTS size can be explained by the following facts. Different states represent
different values of permanent variables whereas inputs and outputs only appear
on transitions (temporary variables are not stored but only used in intermediate
computations). Only variables p ord, s ord, and alarm are visible on the LTS.
Other variables (17 inputs and outputs) are hidden and thus do not occur in
transition labels. Environment Ctrl constraints the range of possible positions
to which Ail can move, thus drastically reducing the LTS. Reduction modulo
branching bisimulation also helps in keeping the LTS small.

5 Conclusion and Future Work

We gave an overview of GRL, a new language with user-friendly syntax and
formal semantics for modeling GALS systems, intended to enhance their
design process. GRL combines synchronous features of dataflow languages and
asynchronous features of process algebras, and makes possible a versatile, modu-
lar description of synchronous subsystems, environment constraints, and
asynchronous communications. We designed GRL initially as a pivot language
intended to facilitate the connection of industrial environments for designing
PLCs (Programmable Logic Controllers) to formal verification tools. However,
the language appears to be sufficiently expressive and general-purpose to model
a wide range of GALS architectures (possibly nondeterministic), implemented
on single or distributed platforms, and involving point-to-point or multi-point
communications. Moreover, its user-friendly syntax and abstraction level, which
is close to the dataflow model used in industry, makes GRL easier to learn and
employ than a full-fledged process algebraic language like LNT.

GRL can independently be connected to verification frameworks based on
either the synchronous or the asynchronous paradigms. The language is cur-
rently equipped with an automated translator to LNT, which makes possible
the analysis of GRL descriptions using the rich functionalities of the CADP
toolbox (e.g., simulation, verification, performance evaluation), focusing on the
asynchronous behaviour of the GALS. GRL and the GRL2LNT translator start
to be used in the Bluesky industrial project3, which addresses the validation of

3 www.minalogic.com

www.minalogic.com

GRL Language: GALS Representation Language 233

PLC networks. After a positive feedback received from our industrial partners,
we are investigating an automated connection between their PLC design software
(based on function block diagrams) and GRL, which would provide a complete
analysis chain having CADP as verification back-end. We also develop reusable
GRL programs describing basic function blocks and mediums corresponding to
communication protocols used in PLC networks.

We plan to continue our work by applying equivalence checking and model
checking techniques to industrial GALS systems described in GRL. Hardware/-
software co-simulation is also possible using the EXEC/CAESAR framework [14]
of CADP, which enables the C code generated from a GRL description to be in-
tegrated with a physical platform. We also plan to investigate the connection of
GRL to verification frameworks based on the synchronous paradigm to analyse
the behaviour of individual blocks corresponding to synchronous subsystems.

References

1. Bae, K., Ölveczky, P.C., Meseguer, J.: Definition, semantics, and analysis of mul-
tirate synchronous aadl. In: Proc. of FM. Springer (2014)

2. Berry, G., Gonthier, G.: The ESTEREL synchronous programming language:
design, semantics, implementation. Science of Computer Programming 19(2), 87–
152 (1992)

3. Berry, G., Ramesh, S., Shyamasundar, R.K.: Communicating reactive processes.
In: Proc. of POPL, pp. 85–98. ACM Press (1993)

4. Berry, G., Sentovich, E.: Multiclock Esterel. In: Margaria, T., Melham, T.F. (eds.)
CHARME 2001. LNCS, vol. 2144, pp. 110–125. Springer, Heidelberg (2001)

5. Bultan, T.: Action language: A specification language for model checking reactive
systems. In: Proc. of ICSE. ACM (2000)

6. Carlsson, J., Palmkvist, K., Wanhammar, L.: Synchronous design flow for Globally
Asynchronous Locally Synchronous systems. In: Proc. of ICC, WSEAS (2006)

7. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., McKinty, C., Powazny, V.,
Lang, F., Serwe, W., Smeding, G.: Reference manual of the LOTOS NT to LOTOS
translator (version 5.4). INRIA/VASY (September 2011)

8. Coste, N., Hermanns, H., Lantreibecq, E., Serwe, W.: Towards Performance Pre-
diction of Compositional Models in Industrial GALS Designs. In: Bouajjani, A.,
Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 204–218. Springer, Heidelberg
(2009)

9. Doucet, F., Menarini, M., Krüger, I.H., Gupta, R.K., Talpin, J.-P.: A verification
approach for GALS integration of synchronous components. Electr. Notes Theor.
Comput. Sci. 146(2), 105–131 (2006)

10. Garavel, H., Lang, F., Mateescu, R.: Compiler Construction Using LOTOS NT.
In: Nigel Horspool, R. (ed.) CC 2002. LNCS, vol. 2304, p. 9. Springer, Heidelberg
(2002)

11. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: A Toolbox for the
Construction and Analysis of Distributed Processes. STTT 15(2), 89–107 (2013)

12. Garavel, H., Salaun, G., Serwe, W.: On the Semantics of Communicating Hardware
Processes and their Translation into LOTOS for the Verification of Asynchronous
Circuits with CADP. In: Science of Computer Programming (2009)

234 F. Jebali, F. Lang, and R. Mateescu

13. Garavel, H., Thivolle, D.: Verification of GALS Systems by Combining Synchronous
Languages and Process Calculi. In: Păsăreanu, C.S. (ed.) Model Checking Software.
LNCS, vol. 5578, pp. 241–260. Springer, Heidelberg (2009)

14. Garavel, H., Viho, C., Zendri, M.: System design of a CC-NUMA multiproces-
sor architecture using formal specification, model-checking, co-simulation, and test
generation. STTT 3(3), 314–331 (2001)

15. Girault, A., Ménier, C.: Automatic Production of Globally Asynchronous Locally
Synchronous Systems. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT
2002. LNCS, vol. 2491, pp. 266–281. Springer, Heidelberg (2002)

16. Günther, H., Milius, S., Möller, O.: On the Formal Verification of Systems of Syn-
chronous Software Components. In: Ortmeier, F., Lipaczewski, M. (eds.) SAFE-
COMP 2012. LNCS, vol. 7612, pp. 291–304. Springer, Heidelberg (2012)

17. Harel, D.: Statecharts: A visual formalism for complex systems. Science of
Computer Programming 8(3), 231–274 (1987)

18. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated consistency checking of
requirements specifications. ACM Trans. on Software Engineering and Methodol-
ogy 5(3), 231–261 (1996)

19. Hoare, C.A.R.: Communicating Sequential Processes. Communications of the
ACM 21(8), 666–677 (1978)

20. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5) (1997)

21. Jebali, F., Lang, F., Mateescu, R.: GRL: A Specification Language for Globally
Asynchronous Locally Synchronous Systems. Research Report 8527, Inria (April
2014), http://hal.inria.fr/hal-00983711

22. Lantreibecq, E., Serwe, W.: Model Checking and Co-simulation of a Dynamic Task
Dispatcher Circuit Using CADP. In: Salaün, G., Schätz, B. (eds.) FMICS 2011.
LNCS, vol. 6959, pp. 180–195. Springer, Heidelberg (2011)

23. Leveson, N.G., Heimdahl, M.P.E., Hildreth, H., Reese, J.D.: Requirements speci-
fication for process-control systems. IEEE Trans. on Software Engineering 20(9),
684–707 (1994)

24. Malik, A., Salcic, Z., Roop, P.S., Girault, A.: SystemJ: A GALS language for system
level design. Comput. Lang. Syst. Struct. 36(4), 317–344 (2010)

25. Miller, S., Anderson, E., Wagner, L., Whalen, M., Heimdahl, M.: Formal verifica-
tion of flight critical software. In: Proc. of the AIAA Guidance, Navigation and
Control Conference and Exhibit (2005)

26. Mousavi, M.R., Le Guernic, P., Talpin, J.-P., Shukla, S.K., Basten, T.: Modeling
and Validating Globally Asynchronous Design in Synchronous Frameworks. In:
Proc. of DATE. IEEE Computer Society (2004)

27. Moutinho, F., Gomes, L.: State space generation for Petri nets-based GALS
systems. In: Proc. of ICIT (2012)

28. Muttersbach, J., Villiger, T., Fichtner, W.: Practical design of globally-
asynchronous locally-synchronous systems. In: Proc. of the International Sympo-
sium on Advanced Research in Asynchronous Circuits and Systems (2000)

29. Ramesh, S.: Communicating reactive state machines: Design, model and imple-
mentation. In: IFAC Workshop on Distributed Computer Control Systems (1998)

30. Singh, M., Theobald, M.: Generalized latency-insensitive systems for single-clock
and multi-clock architectures. In: Proc. of DATE, vol. 2. IEEE (2004)

31. Yoong, L.H., Shaw, G., Roop, P.S., Salcic, Z.: Synthesizing Globally Asynchronous
Locally Synchronous Systems With IEC 61499. IEEE Transactions on Systems,
Man, and Cybernetics, Part C 42(6), 1465–1477 (2012)

http://hal.inria.fr/hal-00983711

A Formal Framework to Prove

the Correctness of Model Driven Engineering
Composition Operators

Mounira Kezadri Hamiaz1, Marc Pantel1, Benoit Combemale2,
and Xavier Thirioux1

1 Université de Toulouse, IRIT, France
2 Université de Rennes 1, IRISA, France

Abstract. Current trends in system engineering combine modeling,
composition and verification technologies in order to harness their ever
growing complexity. Each composition operator dedicated to a different
modeling concern should be proven to be property preserving at assem-
bly time. These proofs are usually burdensome with repetitive aspects.
Our work1 targets the factorisation of these aspects relying on primitive
generic composition operators used to express more sophisticated lan-
guage specific ones. These operators are defined for languages expressed
with OMG MOF metamodeling technologies. The proofs are done with the
Coq proof assistant relying on the Coq4MDE framework defined previ-
ously. These basic operators, Union and Substitution, are illustrated
using the MOF Package Merge as a composition operator and the preser-
vation of model conformance as a verified property.

1 Introduction and Motivation

Safety critical systems are getting more and more complex and software intensive
while the safety rules are more and more stringent (e.g. DO-178 in aeronautics
[41]). Several technologies are playing a key role to tackle these issues.

First, Model-Based Systems Engineering (MBSE) relying on Model Driven
Engineering (MDE) [7] promotes the use of models at the various development
phases, composition operators and model transformations to automate parts
of the development. Models are abstract specifications of the various system
concerns/aspects that are usually purpose oriented and allow early Validation
and Verification (V & V) (e.g. the new DO-331 standard [40]).

Then, formal methods allow the assessment of the completeness and con-
sistency of specification models, and of the correctness of design models and
implementations with respect to specification models. Their mathematical na-
ture provides high level of confidence in their result (e.g. the new DO-333
standard [39]).

1 This work was partly funded by the French ministry of research through the ANR-
12-INSE-0011 grant for the GEMOC project.

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 235–250, 2014.
c© Springer International Publishing Switzerland 2014

236 M. Kezadri Hamiaz et al.

In order to benefit from these technologies and avoid doing all the V & V
activities on the final system, safety standards require the associated process,
methods and tools to be qualified (e.g. the new DO-330 standard: Software Tool
Qualification Considerations that adapts the DO-178C to the development and
the verification tools [42]). These qualification activities are very costly and can
benefit from the use of formal methods relying on the DO-333 standard [39].

To ease the integration of formal specification and verification technologies,
some of the authors proposed in [44] a formal embedding of some key aspects of
MDE in Set Theory. This embedding was then implemented using the Calculus
of Inductive Construction [15] and the Coq

2 proof-assistant. This framework
called Coq4MDE

3 provides sound mathematical foundations for the study and
the validation of MDE technologies. The choice of constructive logic with type
theory as formal specification language allows to extract prototype tools from
the executable specification that can be used to validate the specification itself
with respect to external tools implementing the MDE principles (for example, in
the Eclipse4 Modeling Project).

We proposed in [25] an extension of Coq4MDE to support the Invasive Soft-
ware Composition (ISC) [1] style. We then experimented the design of formalized
primitive operators and their use to ease the implementation, and especially the
proof of correctness of the ISC operators and other high level ones. This contribu-
tion specifies and assesses the properties of the primitive composition operators
Union and Substitution that can be used to specify higher level composition
operators sharing parts of their implementation and associated properties. The
assessed property is the conformance of models to metamodels which is manda-
tory for all model composition operators. Our proposal is illustrated by the use
of these primitive operators to specify and prove the MOF (Meta Object Facility)
[32] Package Merge. Other sophisticated composition operators like ISC (adap-
tation and glueing) [1] [20] and aspect weaving [29] can also be built from these
primitive ones, and their proofs of conformance preservation are also built from
the ones of primitive operators. One key point is the use of property specific
contracts (pre and post conditions) for the composition operators in order to
ensure compositional verification.

This contribution is structured as follows. First, the concepts and an example
for a targeted high level operator and the expected properties are given in Section
2. Then, Section 3 presents the formal support for the Coq4MDE framework
that is extended to handle the definition of the primitive composition operators
associated with the proofs of property preservation. Then, some use cases are
provided in Section 4. Related work are given in Section 5. Finally, conclusion
and perspectives are provided in Section 6.

2 http://coq.inria.fr
3 http://coq4mde.enseeiht.fr/FormalMDE/
4 https://www.eclipse.org/

http://coq.inria.fr
http://coq4mde.enseeiht.fr/FormalMDE/
https://www.eclipse.org/

A Formal Framework to Prove the Correctness 237

2 Use Case : MOF Package Merge

This section introduces our verification proposal applied to the MOF Package
Merge operator.

2.1 Model Driven Engineering

The core principle of MDE is ”everything is a model” [7]. Models are defined using
modeling languages. Metamodels are models of modeling languages defined using
metamodeling languages. A model M is conforming to a metamodel MM if MM
models the language used to define M . Metamodels, like data types, define the
structure common to all its conforming models, but can also give semantics
properties like dependent types. Derived from [23], Coq4MDE separates the
model level (value or object) from the metamodel level (type or class), and
describes them in Coq with different types.

2.2 Meta-Object Facility

The OMG has standardized the MOF, that provides a reflexive metamodeling lan-
guage (i.e. MOF is defined as a model in the MOF language). MOF is used for the
specification of the OMGmodeling language standards like MOF itself, UML [33], OCL
[46], SysML [21] and many others. The relation between MOF and the metamodels
is the same as the one between a metamodel and its conforming models. Based
on these principles, the OMG introduced the MDA (Model Driven Architecture) [6]
view of software modeling illustrated by the pyramid given in Figure 2. Since
the MOF version released in 2006 [31], a kernel named EMOF was extracted from
the complete version of MOF (CMOF). EMOF provides a minimal set of elements
required to model languages. Figure 1 gives the key concepts of EMOF specified
as an UML class diagram. The principal concept is Class to define classes (usually
called metaclasses) that represent concepts in a modeling language. Classes al-
low to create objects in models. The type of an object is the class that was used
to create it. Classes are composed of an arbitrary number of Property (we will
call them reference and attribute in order to avoid ambiguities with the model
property we want to assess) and Operation (not detailled here). References al-
low to create the relations between the objects in the models. Classes can inherit
references and attributes from other classes. Inheritance is expressed using the
superClass reference from Class. Inheritance introduces a subtyping relation
between the types associated to classes. Classes can be abstract (isAbstract):
no object can have the type associated to an abstract class as smallest type ac-
cording to the subtyping relation. Property has a lower and upper attributes
that bound the number of objects contained in a given reference. Two references
can be opposite to build a bidirectional relation between objects in a model.

In MBSE, many models are used to represent the various system’s concerns.
They must be composed to build the global system. We present in the following
subsection the MOF composition operator that is used in the OMG UML specifica-
tion [33] to define and assemble metamodel parts.

238 M. Kezadri Hamiaz et al.

Property
lower: Natural = 1

upper : Natural = 1

isOrdered : Boolean = false
isComposite: Boolean = false
default: String = ""

Class
isAbstract: Boolean = false

{ordered} 0..*
ownedAttribute

0..1
opposite

NamedElement
name: String

0..*
superClass

Type TypedElementtype
1

DataType

Boolean String Natural

owner

Fig. 1. The basic concepts of EMOF

M1

M0

M2

M3

metamodel(UML, SPEM...)

model(UML models...)

"real" world

metametamodel(MOF)

Fig. 2. The OMG Pyramid

2.3 MOF Package Merge

Package Merge is a directed relation from a package (merged) to another package
(receiving) as mentioned in Figure 3. It can be seen as an operation that takes
the content of both packages and produces a new package (resulting) that
merges the contents of the initial packages. In the case where some elements
in these packages represent the same entity, theirs contents must be combined
according to the rules given in [33].

merged package receiving package

resulting package

Package Merge becomes

Fig. 3. Conceptual view of the Package Merge [33]

When there are no conflicts between the two packages, Package Merge is
equivalent to an union for all the packages elements (in fact, a special union that
preserves the references and attributes for classes).

When conflicts occur, two major kinds are considered: a) when the same class
has different attributes and references in the two packages, this conflict is resolved
by keeping all the attributes and references from both classes in the merged and
receivingmodels (this is obviously an application of the previous special union
operator), b) when two corresponding attributes or references have different
values (for example different multiplicity values); the conflicts are resolved by
combining the values according to the semantics of the conflicting attribute or
reference.

2.4 Expected Property

The expected property in this use case is the preservation of the metamodel
conformance during composition. For a model M and a metamodel MM , this

A Formal Framework to Prove the Correctness 239

property checks that: 1) every object o in M was created from a class C in
MM . 2) every relation between two objects in M is such that there exists, in
MM , a reference between the two classes used for creating the two objects. 3)
every semantics property defined in MM is satisfied in M . The semantics prop-
erties from EMOF (see Figure 1) are: Inheritance (subClass), Abstract classes
(isAbstract), Multiplicities (lower, upper), Opposite (isOpposite) and Com-
posite (areComposite) references.

As verifying these properties directly for the MOF Package Merge operator is
complex and contains many common aspects with other high level composition
operators, we target a divide and conquer approach to capture these common-
alities.

2.5 Verification Strategy

We advocate the use of generic primitive composition operators that are then
used to specify and prove more sophisticated ones like MOF Package Merge or
ISC. We target pragmatic compositional verification: minimize the residual ver-
ification that must be conducted on the result of the composition of correct
models. We rely on a simple methodology to design the contract (pre and post
conditions) for the composition operators in that purpose. If Φ is the expected
property for a model built using composition operators, then Φ must be, on the
one hand, the postcondition on the model resulting from the application of each
operator; and, on the other hand, the weakest precondition on each parameter
of each operator. These preconditions are eventually consolidated with an addi-
tional glueing property Ψ depending on the value of all the parameters of the
operator. Ψ is the residual property that must be checked at each composition.

Definition 1 (Correct composition operator). For a set of models m1, . . . ,
mn and an n-ary composition operator f over models, we say f is correct (or
property preserving) with respect to a property Φ and a glueing condition Ψ if:∧

1≤i≤n

Φ(mi) ∧ Ψ(m1, . . . ,mn)⇒ Φ(f(m1, . . . ,mn))

The verification that the composition operators are correct will be conducted
using the Coq proof assistant, the details are presented in the next Section.

3 Formalization Using Coq4MDE

The concepts of Model and Metamodel are formally defined in Coq4MDE in
the following way. Let us consider two sets of labels: Classes, respectively
References, represents the set of all possible classes, respectively reference,
labels. Then, let us consider instances of such classes, the set Objects of ob-
ject labels. References includes a specific inh label used to specify the direct
inheritance relation.

240 M. Kezadri Hamiaz et al.

Definition 2 (Model).
Let C ⊆ Classes be a set of class labels. Let R ⊆ {〈c1, r, c2〉 | c1, c2 ∈ C , r ∈
References}5 be a set of references between classes.

A Model over C and R, written 〈MV,ME〉 ∈ Model(C ,R) is a multigraph
built over a finite set MV of typed object vertices and a finite set ME6 of refer-
ence edges. such that:

MV ⊆ {〈o, c〉 | o ∈ Objects, c ∈ C }
ME ⊆

{
〈〈o1, c1〉, r, 〈o2, c2〉〉 〈o1, c1〉, 〈o2, c2〉 ∈MV, 〈c1, r, c2〉 ∈ R

}
In case of inheritance, the same object label will be used several times in the
same model graph. It will be associated to the different classes in the inheritance
hierarchy going from a root down to the class used to create the object. This label
reuse encodes subtyping. Direct inheritance is represented in the metamodel with
a special reference called inh. The following property states that c2 is a direct
subclass of c1.

subClass(c1, c2 ∈ Classes, 〈MV,ME〉) 	 ∀o ∈ Objects,
〈o, c2〉 ∈MV ⇒ 〈〈o, c2〉, inh, 〈o, c1〉〉 ∈ME

Abstract Classes that are specified in a metamodel using the isAbstract attribute
are not suitable for instantiation. They are often used to represent abstract
concepts that gather common attributes and references.

isAbstract(c1 ∈ Classes, 〈MV,ME〉) 	 ∀o ∈ Objects,
〈o, c1〉 ∈MV ⇒ ∃c2 ∈ Classes, 〈〈o, c2〉, inh, 〈o, c1〉〉 ∈ME

Definition 3 (Metamodel). A MetaModel is a multigraph representing classes
as vertices and references as edges as well as semantics properties over instanti-
ation of classes and references. It is represented as a pair composed of a multi-
graph (MMV,MME) built over a finite set MMV of vertices and a finite set
MME of edges, and as a predicate (conformsTo) over models representing the
semantics properties.

A MetaModel is a pair 〈(MMV,MME), conformsTo〉 such that:

MMV ⊆ Classes

MME ⊆ {〈c1, r, c2〉 | c1, c2 ∈MMV, r ∈ References}
conformsTo : Model(MMV,MME)→ Bool

A minimum and maximum number of values that can be associated to an at-
tribute or reference can be defined using the lower and upper attributes. This
pair is usually named multiplicity. In order to ease the manipulation of this data-
type, we introduce the type Natural� = N ∪ {(}. Using both attributes, it is
used to represent a range of possible numbers of values. Unbounded ranges can
be modelled using the (value for the upper attribute.

lower(c1 ∈ MMV, r1 ∈ MME, n ∈ Natural�, 〈MV, ME〉) 	
∀ o ∈ Objects, 〈o, c1〉 ∈ MV⇒ |{m2 ∈ MV | 〈〈o, c1〉, r1, m2〉 ∈ ME}| ≥ n

5 〈c1, c2, r〉 in the Coq code is denoted here for simplification as: 〈c1, r, c2〉.
6 〈〈o1, c1〉, r, 〈o2, c2〉〉 is denoted in the Coq code as: 〈〈o1, c1〉, 〈o2, c2〉, r〉〉.

A Formal Framework to Prove the Correctness 241

An analogous formalization is defined for the upper property replacing ≥ by ≤.
A reference can be associated to an opposite reference. It means that, in

a model conforming to its metamodel, for each link instance of this reference
between two objects, there must exists a link in the opposite direction between
these two objects.

isOpposite(r1, r2 ∈ MME, 〈MV, ME〉) 	
∀ m1, m2 ∈ MV, 〈m1, r1, m2〉 ∈ ME⇔ 〈m2, r2, m1〉 ∈ ME

A reference can be composite. In this case, instances of the target concept belong
to a single instance of source concepts.

areComposite(c1 ∈ MMV, R ⊆ MME, 〈MV, ME〉) 	
∀ o ∈ Objects⇒ |{m1 ∈ MV | 〈m1, r, 〈o, c1〉〉 ∈ ME, r ∈ R}| ≤ 1

Figure 4 shows a simple example of metamodel on the left and his Coq4MDE

representation on the right.

2

Component PorthasA

MMV = {Component, Port},
MME = {(Component, hasA, Port)},
conformsTo = lower(Component, hasA, 2)

∧ upper(Component, hasA, 2)〉

Fig. 4. A metamodel in the Coq4MDE notation

Given one Model M and one MetaModel MM , we can check conformance
using the conformsTo predicate embedded in MM . This predicate identifies
the set of models conforming to a metamodel.

Figure 5 shows an example of a model that conforms to the metamodel given
in Figure 4. At the right of this figure is theCoq4MDE representation associated
to this model. All the structural (well typedness) and semantics properties of the
metamodel in Figure 4 are respected in this model. Namely, C is an object of the
class Component, In and Out are objects of the class Port, the component C is
linked with the relation hasA to exactly 2 ports (the lower and upper attributes
specified in the metamodel are respected).

CC In: PortOut: Port
MV = {(C, Component), (In, Port), (Out, Port)},
ME = {((C,Component), hasA, (In, Port)),

((C,Component), hasA, (Out, Port))}

Fig. 5. A model in the Coq4MDE notation

For the implementation, a model in Coq4MDE is a multigraph defined as fi-
nite sets of vertices and edges satisfying some properties. Based on this model’s
definition, every new operator in the Coq4MDE framework needs to be ad-
dressed at the three hierarchically related levels (the sets level, the graph level
and the MDE level). The following Union and Substitution operators definitions
follow this three levels schema.

242 M. Kezadri Hamiaz et al.

3.1 The Union Primitive Operator

For the set level, we use the union encoded in the Coq library Uniset7 that we
note ∪. The same notation or symbolic abbreviation ∪ is used in our Coq code.

For the graph’s level, the result is defined with a proof8 by induction that
the union of two graphs is also a graph. The vertices/edges set for the resulting
graph is the union of vertices/edges sets of the two initial graphs.

The union of two models 〈vs1, es1〉 and 〈vs2, es2〉 is the union of their vertices
and edges sets in addition to the proof that the two sets constitute a graph. For
simplification, this can be denoted as follows: 〈vs1 ∪ vs2, es1 ∪ es2〉.

3.2 The Substitution Primitive Operator

As explained in Definition 1, the models are graphs having as nodes typed ob-
jects. For example, (o, c) is a model’s object whose type is c and whose name is o.
The Substitution operator aims to replace the name of an object of a model by
another name. This operator is also defined using the three hierarchical levels.

Substituting a model’s object whose name is src by a model’s object whose
name is dst inside the sets of vertices and edges is implemented using a generic
map operator encoded in Coq using three basic functions: mapv, mapa and
mape that are applied respectively on: the model’s objects, the references and the

edges. The functionmapv is defined as follows:mapv (o, c) =

{
(dst, c) if o = src
(o, c) otherwise.

The function mape replaces the names of the model’s objects in the edges such
as: mape (v1, a, v2) = (mapv v1,mapa a,mapv v2).

The graph’s image9 is then constructed from the initial graph using the images
of the vertices and the edges by mapv, mapa and mape.

The sets and the graph obtained from the previous levels and the associated
proofs constitute the substituted model.

3.3 Proofs of Primitive Operators

We consider the well typedness (instanceOf) and the semantics properties dis-
cussed in Section 2.4. For every property (Φ), we prove the preservation by the
primitive operators. Some properties are fully compositional: no residual verifi-
cation activity (Ψ) needs to be conducted at the composition time. Others will
require additional verification activities (Ψ) that can be modeled as precondi-
tions.

For space reason, we only give the example of the hierarchy property (Φ:
subClass) for the Union operator. Theorem 1 states10 that the hierarchy property
is preserved by Union. So, for any classes c1 and c2, if c1 is a subClass of c2 in
the models M1 and M2, then c1 is also a subClass of c2 in the model resulting
from the Union of M1 and M2.

7 http://coq.inria.fr/stdlib/Coq.Sets.Uniset.html
8 http://coq4mde.enseeiht.fr/FormalMDE/Graph.html#MG.EG
9 http://coq4mde.enseeiht.fr/FormalMDE/Subst_Verif.html#elements

10 http://coq4mde.enseeiht.fr/FormalMDE/Union.html#SCUP

http://coq.inria.fr/stdlib/Coq.Sets.Uniset.html
http://coq4mde.enseeiht.fr/FormalMDE/Graph.html#MG.EG
http://coq4mde.enseeiht.fr/FormalMDE/Subst_Verif.html#elements
http://coq4mde.enseeiht.fr/FormalMDE/Union.html#SCUP

A Formal Framework to Prove the Correctness 243

Theorem 1. (subClassUnionPreserved) ∀ M1 M2 ∈Model, c1 c2 ∈ Classes,
subClass(c1 c2 M1) ∧ subClass(c1 c2 M2)⇒ subClass(c1 c2 (Union M1 M2)).

Table 1 summarizes the pre and postconditions for the verification of the meta-
model conformance for the Union and Substitution operators. The proofs for
the Union, respectively Substitution, operator are accessible at:
http://coq4mde.enseeiht.fr/FormalMDE/Union_Verif.html, respectively
http://coq4mde.enseeiht.fr/FormalMDE/Subst_Verif.html.

Table 1. pre and postconditions for the Union and Substitution operators

Φ Mr=Substitution ((o1, c1), (o2, c2), M) Mr=Union (M1, M2)

instanceOf Ψ(M)=True Ψ(Mi∈{1,2})=True

subClass Ψ(M)=True Ψ(Mi∈{1,2})=True
Φ(Mr) = subClass(c1, c2,M) Φ(Mr) = subClass(c1, c2,Mr)

isAbstract Ψ(M)=True Ψ(Mi∈{1,2})=True

lower Ψ(M) = (c1 = c2) ∧ ((o2, c) /∈ MV) Ψ(M)=lowerCond(c, r, nM1,M2)

upper Ψ(M) = (c1 = c2) ∧ ((o2, c) /∈ MV) upperCond(c, r, n,M1,M2)

isOpposite Ψ(M)=True Ψ(Mi∈{1,2})=True

areComposite Ψ(M) = (c1 = c2) ∧ ((o2, c) /∈ MV) Ψ(M) = 1 >
|{o2 ∈ MV1 | 〈〈o, c〉, r, o2〉 ∈ ME1}|
+|{o2 ∈ MV2 | 〈〈o, c〉, r, o2〉 ∈ ME2}|
−|{o2 ∈ (MV1 ∩ MV2) |
〈〈o, c〉, r, o2〉 ∈ (ME1 ∩ ME2)}|

The basic Coq4MDE framework is about 1107 lines, the actual version con-
taining the primitive composition operators and also the proved implementation
of the Package Merge described in the next section is about 18000 lines with
about 300 Lemmas and Theorems and 200 Definitions. The proofs for the ele-
mentary operators are about 3300 lines. The implementation and proofs of the
Package Merge using the elementary operators is about 7200, this implementa-
tion take advantage from reusing the proofs previously done for the primitive
operators. The alternative is the implementation without elementary operators
and that would require multiple repetitions of the elementary proofs and would
be about 20400 lines. So, our approach enables a reduction with more then 180%
in this case.

4 Validation

The primitive operators have been used for the implementation of higher level
composition operators including MOF Package Merge, ISC (considering the adap-
tation and glueing of components) and aspect weaving. These operators share
parts of their implementation and conformance preservation proof that can be
captured by the use of the primitive operators. For their implementations, other
model operations are required (e.g. extraction of matching between models, ver-
ification of some conditions, . . .) but the only modifications of the models are
primitive substitutions and unions. The verifications of the fully compositional

http://coq4mde.enseeiht.fr/FormalMDE/Union_Verif.html
http://coq4mde.enseeiht.fr/FormalMDE/Subst_Verif.html

244 M. Kezadri Hamiaz et al.

properties reuse directly the proofs of the primitive operators without any addi-
tional parts. The verification of the properties requiring additional preconditions
needs to ensure that the preconditions are satisfied.

We show mainly in this section that our minimal set of primitive operators
is sufficient to formalize a high level operator like the MOF Package Merge. A
mature formalization for the ISC operators based on the elementary ones is also
available, for the details see [24].

The Package Merge implementation as summarized hereafter is accessible at:
http://coq4mde.enseeiht.fr/PackageMergeCoq/.

To illustrate our methodology, we give an example derived from [48].

merged package

worksAs

1..2

Employee

id

Job

title

Fig. 6. BasicEmployee

receiving package

worksAt

1

worksAs

1..3

Building

Employee

name

Job

Fig. 7. EmployeeLocation

The source package (in this case the package BasicEmployee mentioned in
Figure 6) is the package receiving. The package EmployeeLocation shown in
Figure 7 is the package merged. This package contains the additional elements
that must be merged with the package receiving. Two conflicts occur between
the models merged and receiving. The first one is related to the attribute upper
of worksAs (the maximal bound is equal to 2 in the model BasicEmployee
(Figure 6) and is equal to 3 in the model EmployeeLocation (Figure 7)). The
second conflict is related to the class Employee that is abstract (name in italic)
in the merged package and concrete in the receiving package.

The resolution of this kind of conflicts is done according the the UML specifica-
tion [33]. The rule to resolve the conflict for the upper attribute is: upperResulting

= max(upperMerged, upperReceiving). The rule for the isAbstract attribute is:
isAbstractResulting = isAbstractMerged ∧ isAbstractReceiving . The list of all the
possible transformations is available on page 166 of the specification [33].

Concretely in our abstract syntax, we manipulate the metamodels as models
conforming to MOF, so the abstraction property for classes is represented with
attributes isAbstract suffixed with the name of the class (this attribute is equal
to True in the model BasicEmployee (Figure 6) and equal to False in the model
EmployeeLocation (Figure 7)). The same principle is used to represent all the
properties linked to MOF such as lower and upper. We show in Figure 8 the
representation of the package BasicEmployee as a model conforming to MOF.
The EmployeeLocationpackage is represented using the same principle, we don’t
show it here for space reason. The first step is to resolve all the conflicts. For
this, the Substitution operator is applied twice. The first application replaces
2 by 3 for the upperJob attribute in the mergedmodel. The second application of

http://coq4mde.enseeiht.fr/PackageMergeCoq/

A Formal Framework to Prove the Correctness 245

merged package

ownedAttribute

type

ownedAttribute

ownedAttribute

ownedAttribute

ownedAttribute

type

True: isAbstractEmployee Employee: Class

worksAs: Property

1: lowerJob

2: upperJob

id: Property

Job: Class

title: Property

Fig. 8. An excerpt from the BasicEmployee model

resulting package

worksAt

1

worksAs

1..3

Building

Employee

id
name

Job

title

Fig. 9. The resulting metamodel

the Substitution operator replaces True by False for the isAbstractEmployee

attribute in the merged model.
Once the conflicts are resolved, the final step is the Union of the obtained

models merged and receiving (the constraints of the Union operator are sat-
isfied in this case). The result is exactly the merge of the two packages merged
and receiving shown in Figure 9.

In the previous example, the Package Merge is expressed using the primitive
composition operators Union and Substitution. Defining the Package Merge

in this manner ensures that the resulting model is well typed in relation with
the packages merged and receiving and also that it satisfies the semantics
properties of the metamodel when the preconditions are satisfied.

We have also experimented the use of our primitive operators to define: the as-
pect weaving [29], the merge of statecharts specifications [30], the weave of State
and Sequence Diagrams, the attributes composition [43] and also to reimplement
the operators of the Invasive Software Composition (ISC) [1].

5 Related Work

This work targets a formal certified model composition framework. Our notion of
model follows the MDE vision and we are interested in the problems of composition
and compositional verification. This work is related to several issues highlighted
in this Section. First, we take a look at some composition approaches and we
rely on a MOF Package Merge formalization to explain our contribution. Then,
we discuss some formalizations of the MDE to position our proposal. Finally, we
present some work on compositional verification to situate our work.

5.1 Composition Approaches

We previously proposed in [25] [19] the formalization and verification of some
ReuseWare [20] operators. Several composition methods have focused on the
implementation of the merge operators using mappings between models like
Rational Software Architect11, Bernstein et al. data model [6], Atlas Model
Weaver12 [16], Epsilon13, Theme/UML [13] and EMF Facet14. The ReuseWare

11 http://www-306.ibm.com/software/awdtools/architect/swarchitect/
12 http://www.eclipse.org/gmt/amw/
13 http://www.eclipse.org/gmt/epsilon/
14 www.eclipse.org/proposals/emf-facet/

http://www-306.ibm.com/software/awdtools/architect/swarchitect/
http://www.eclipse.org/gmt/amw/
http://www.eclipse.org/gmt/epsilon/
www.eclipse.org/proposals/emf-facet/

246 M. Kezadri Hamiaz et al.

operators and the MOF Package Merge operators as presented in the previous
frameworks and also in [11] and [4] are defined as a composition of the primi-
tive operators. The advantages of these implementation relying are the proof of
termination of the composition operators (ensured by the Coq proof-assistant),
the properties verification for the composition and the support for the extraction
of the validated executable code.

Zito in [48] presented an implementation using Alloy15 [22] of the MOF Package
Merge. As Alloy has a poor performance when analysing models with many sig-
natures (e.g. 20 signatures or higher), the analysis is currently limited to an
interval between 5 and 10. The UML metamodel contains more than 30 classes
which are all modelled with a signature. The authors applies several strategies
to reduce the size of the Alloy model: reduce the depth of inheritance, merge
similar classes, do not model classes that do not contain any information and
do not change by applying the fusion (e.g. PackageImport, PackageMerge, Ele-
mentImport, Comment and Constraint), merge multiple inheritance, eliminate
recursion, and finally do not model derived attributes and associations.

Elaborating a proved development allows specifying generically the proper-
ties and verifying these properties a priori for all the instances. This universal
quantification used in the proofs enables to avoid all the constraints and the
limitation in relation with the models’ size.

5.2 Formalization of MDE

A lot of work was conducted aiming to formalize the concepts of MDE.
First, MoMENT (MOdel manageMENT) [8] is an algebraic model manage-

ment framework that provides a set of generic operators to manipulate models.
The metamodels are represented as algebraic specifications and the operators
are defined independently of the metamodel using the Maude language [14].

Also, A. Vallecillo et al. have designed and implemented a different embedding
of metamodels, models ([38]) and model transformations ([45]) using Maude.
This embedding is shallow, it relies strongly on the object structure proposed
by Maude in order to define model elements as objects, and relies on the object
rewriting semantics in order to implement model transformations.

Furthermore, I. Poernomo has proposed an encoding of metamodels and mod-
els using type theory ([35]) in order to allow correct by construction development
of model transformation using proof-assistants like Coq ([36]). Some simple ex-
periments have been conducted using Coq mainly on tree-shaped models ([37])
using inductive types. General graph model structure can be encoded using co-
inductive types. However, as shown in [34] by C. Picard and R. Matthes, the en-
coding is quite complex as Coq enforces structural constraints when combining
inductive and co-inductive types that forbid the use of the most natural encod-
ings proposed by Poernomo et al. M. Giorgino et al. rely in [18] on a spanning
tree of the graph combined with additional links to overcome that constraint us-
ing the Isabelle proof-assistant. This allows to develop a model transformation

15 http://alloy.mit.edu/alloy/

http://alloy.mit.edu/alloy/

A Formal Framework to Prove the Correctness 247

relying on slightly adapted inductive proofs and then extract classical impera-
tive implementations. Also, another implementation of the MDE is the HOL-OCL
system [9] [10] that constitutes an environment for interactive modelling with
UML and OCL and can be used for example to proof class invariants.

These embeddings are all shallow: they rely on sophisticated similar data
structure to represent model elements and metamodels (e.g. Coq (co-)inductive
data types for model elements and object and (co-)inductive types for metamodel
elements). The work described in this paper is a deep embedding, each concept
from models and metamodels was encoded in [44] using primitive constructs
instead of relying on similar elements in Maude, Coq or Isabelle. The purpose
of this contribution is not only to implement model transformation using correct-
by-construction tools but also to give a kind of denotational semantics for the
MDE concepts that should provide a deeper understanding and allow the formal
validation of the various implemented technologies. Another formalisation in
Coq of the MDE concepts by F.Barbier et al is accessible16 [2], this representation
is attached to the proof of the properties shown in [26] (instantiation relations
and model transformations). Other work aiming to define a semantics for a
modelling language by explicitly and denotationally defining the kind of systems
the language describes and to focus on the variations and variability in the
semantics [12] [28]. Compared to the last work, we are interested in a generic,
complete and unique formalisation of the conformity to metamodels and we are
focused mainly in the proof of the preservation of this conformity relation by
the composition operators.

5.3 Compositional Verification

The compositional verification, in other words to break up the verification of a
system into the verification of its components, is a very old dream. Several work
were conduced in this direction using the model checking technique.

For instance, Nguyen, T.H. proposed in [5] a compositional verification ap-
proach to check safety properties of component-based systems described in the
BIP (Behavior - Interaction - Priority) language [3].

Also, another approach allowing to verify systems by composition from verified
components was proposed in [47] where the temporal properties of a software
component are specified, verified, and packaged with the component.

In this paper, regarding the previous cited methods, we adopted a generic
composition technology that takes into account the EMOF metamodel properties
making it usable with any language that can be described with a metamodel.

6 Conclusions

We have tackled in this paper the problem of model composition formalization
and verification. In this purpose, starting from our formal framework for model

16 http://web.univ-pau.fr/~barbier/Coq/

http://web.univ-pau.fr/~barbier/Coq/

248 M. Kezadri Hamiaz et al.

and metamodel formal specification Coq4MDE, we propose to rely on primitive
composition operators that can then be used to build more sophisticated opera-
tors. We prove the correctness of the expected properties for these primitive ones
introducing mandatory preconditions to reach compositional verification for the
targeted properties. The proofs of property preservation for the high level op-
erators combine the proofs of the primitive ones. Our proposal is validated in
this contribution with the MOF model conformance property and the MOF pack-
age merge operator. All these notions are also currently reflected in the Coq

proof-assistant, following the line of thought of our previous work around model
and metamodel formalization. This embedding provides correct-by-construction
pieces of executable code for the different model operations related to composi-
tion. As we target a general purpose MDE-oriented framework, our work applies
to any model, modelling language, application and is not restricted to some
more-or-less implicit language context.

This proposal is a preliminary mandatory step in the formalization of com-
positional formal verification technologies. We have tackled the formal compo-
sition of models independently of the properties satisfied by the model and the
expected properties for the composite model. The next step in our work is to
improve the notion of model compositional verification relying on several use
cases from simple static constraints such as verification of OCL constraints sat-
isfaction, to more dynamic properties such as deadlock freedom as proposed in
the BIP framework [3].

In this last purpose, we need to model the behavioural part of each language.
We propose to rely on the generic behaviours applicable to several meta-models
sharing some features presented in [27]. This can be applied to families of unre-
lated meta-models. We plan to experiment the behavioural aspect by considering
the merging of Statecharts Specifications [30]. In the long run, we plan to in-
tegrate the work of Garnacho et al. [17] that provide an embedding in Coq of
timed transition systems in order to model the behavioral aspect of languages.

References

1. Aßmann, U.: Invasive software composition. Springer-Verlag New York Inc. (2003)
2. Barbier, F., Castéran, P., Cariou, E., Le Goaer, O., et al.: Adaptive software based

on correct-by-construction metamodels. In: Progressions and Innovations in Model-
Driven Software Engineering, pp. 308–325 (2013)

3. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components
in BIP. In: Fourth IEEE International Conference on Software Engineering and
Formal Methods, SEFM 2006, pp. 3–12. IEEE (2006)

4. Baya, A., Asri, B.E.: Composing specific domains for large scale systems. Journal
of Communication and Computer 10, 844–856 (2013)

5. Bensalem, S., Bozga, M., Nguyen, T., Sifakis, J.: Compositional verification for
component-based systems and application. Software, IET 4(3), 181–193 (2010)

6. Bernstein, P., Halevy, A., Pottinger, R.: A vision for management of complex mod-
els. ACM Sigmod Record 29(4), 55–63 (2000)

7. Bézivin, J.: In search of a basic principle for model driven engineering. Novatica
Journal, Special Issue 5(2), 21–24 (2004)

A Formal Framework to Prove the Correctness 249

8. Boronat, A., Meseguer, J.: An algebraic semantics for MOF. Formal Aspects of
Computing 22(3-4), 269–296 (2010)

9. Brucker, A.D., Wolff, B.: A proposal for a formal OCL semantics in isabelle/HOL.
In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410,
pp. 99–114. Springer, Heidelberg (2002)

10. Brucker, A.D., Wolff, B.: HOL-OCL: A formal proof environment for uml/ocl.
In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 97–100.
Springer, Heidelberg (2008)

11. Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., Sabetzadeh, M.: A
manifesto for model merging. In: Proceedings of the 2006 International Workshop
on Global Integrated Model Management, pp. 5–12. ACM (2006)

12. Cengarle, M.V., Grönniger, H., Rumpe, B., Schindler, M.: System model semantics
of class diagrams. Technische Universitat Braunschweig (2008)

13. Clarke, S.: Extending standard UML with model composition semantics. Science
of Computer Programming 44(1), 71–100 (2002)

14. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Quesada,
J.: Maude: specification and programming in rewriting logic. Theoretical Computer
Science 285(2), 187–243 (2002)

15. Coquand, T., Huet, G., et al.: The calculus of constructions (1986)
16. Del Fabro, M.D., Valduriez, P.: Towards the efficient development of model trans-

formations using model weaving and matching transformations. Software and Sys-
tem Modeling 8(3), 305–324 (2009)

17. Garnacho, M., Bodeveix, J.-P., Filali-Amine, M.: A mechanized semantic frame-
work for real-time systems. In: Braberman, V., Fribourg, L. (eds.) FORMATS
2013. LNCS, vol. 8053, pp. 106–120. Springer, Heidelberg (2013)

18. Giorgino, M., Strecker, M., Matthes, R., Pantel, M.: Verification of the schorr-waite
algorithm – from trees to graphs. In: Alpuente, M. (ed.) LOPSTR 2010. LNCS,
vol. 6564, pp. 67–83. Springer, Heidelberg (2011)

19. Hamiaz, M.K., Pantel, M., Combemale, B., Thirioux, X.: Correct-by-construction
model composition: Application to the invasive software composition method. In:
FESCA, pp. 108–122 (2014)

20. Henriksson, J., Heidenreich, F., Johannes, J., Zschaler, S., Aßmann, U.: Extending
grammars and metamodels for reuse: the Reuseware approach. Software, IET 2(3),
165–184 (2008)

21. Holt, J., Perry, S.: SysML for systems engineering, vol. 7. IET (2008)
22. Jackson, D.: Software abstractions-logic, language, and analysis, revised edition

(2012)
23. Jouault, F., Bézivin, J.: Km3: A dsl for metamodel specification. In: Gorrieri,

R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171–185. Springer,
Heidelberg (2006)

24. Kezadri, M.: Assistance à la validation et vérification de systèmes critiques: on-
tologies et intégration de composants. PhD thesis (2013)

25. Kezadri, M., Combemale, B., Pantel, M., Thirioux, X.: A proof assistant based
formalization of MDE components. In: Arbab, F., Ölveczky, P.C. (eds.) FACS
2011. LNCS, vol. 7253, pp. 223–240. Springer, Heidelberg (2012)

26. Kühne, T.: Matters of (meta-) modeling. Software & Systems Modeling 5(4),
369–385 (2006)

27. Lara, J., Guerra, E.: From types to type requirements: genericity for model-driven
engineering. Software and Systems Modeling 12(3), 453–474 (2013)

28. Maoz, S., Ringert, J.O., Rumpe, B.: Semantically configurable consistency analysis
for class and object diagrams. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS
2011. LNCS, vol. 6981, pp. 153–167. Springer, Heidelberg (2011)

250 M. Kezadri Hamiaz et al.

29. Morin, B., Klein, J., Barais, O., Jézéquel, J.-M.: A generic weaver for support-
ing product lines. In: Proceedings of the 13th International Workshop on Early
Aspects, pp. 11–18. ACM (2008)

30. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and
merging of statecharts specifications. In: Proceedings of the 29th international
conference on Software Engineering, pp. 54–64. IEEE Computer Society (2007)

31. Object Management Group, Inc. Meta Object Facility (MOF) 2.0 Core Specifica-
tion (January 2006); Final Adopted Specification.

32. Object Management Group, Inc. Meta Object Facility (MOF) 2.4.2 Core Specifi-
cation (January 2014)

33. O. OMG. Unified modeling language (omg uml)-infrastructure(v2.4.1) (2011),
http://www.omg.org/spec/UML/2.4.1

34. Picard, C., Matthes, R.: Coinductive graph representation: the problem of em-
bedded lists. In: Electronic Communications of the EASST, Special issue Graph
Computation Models, GCM 2010 (2011)

35. Poernomo, I.: The meta-object facility typed. In: Haddad, H. (ed.) SAC, pp. 1845–
1849. ACM (2006)

36. Poernomo, I.: Proofs-as-model-transformations. In: Vallecillo, A., Gray, J., Pieran-
tonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 214–228. Springer, Heidelberg
(2008)

37. Poernomo, I., Terrell, J.: Correct-by-construction model transformations from par-
tially ordered specifications in coq. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010.
LNCS, vol. 6447, pp. 56–73. Springer, Heidelberg (2010)

38. Romero, J.R., Rivera, J.E., Durán, F., Vallecillo, A.: Formal and tool support for
Model Driven Engineering with Maude. Journal of Object Technology 6(9), 187–
207 (2007)

39. RTCA / EUROCAE. “Formal Methods Supplement to DO-178C [ED-12C]”, DO-
333/ED-218 (2011)

40. RTCA / EUROCAE. “Model-Based Development and Verification Supplement to
DO-178C [ED-12C]”, DO-331/ED-216 (2011)

41. RTCA / EUROCAE. “Software Considerations in Airborne Systems and Equip-
ment Certification”, DO-178C/ED-12C (2011)

42. RTCA / EUROCAE. “DO-330/ED-215: Software Tool Qualification Considera-
tions” - clarifying software tools and avionics tool qualification (2012)

43. Sentilles, S., Štěpán, P., Carlson, J., Crnković, I.: Integration of extra-functional
properties in component models. In: Lewis, G.A., Poernomo, I., Hofmeister, C.
(eds.) CBSE 2009. LNCS, vol. 5582, pp. 173–190. Springer, Heidelberg (2009)

44. Thirioux, X., Combemale, B., Crégut, X., Garoche, P.-L.: A Framework to For-
malise the MDE Foundations. In: Paige, R., Bézivin, J. (eds.) International Work-
shop on Towers of Models (TOWERS), Zurich, pp. 14–30 (June 2007)

45. Troya, J., Vallecillo, A.: Towards a rewriting logic semantics for ATL. In: Tratt, L.,
Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 230–244. Springer, Heidelberg
(2010)

46. Warmer, J.B., Kleppe, A.G.: The object constraint language: getting your models
ready for MDA. Addison-Wesley Professional (2003)

47. Xie, F., Browne, J.: Verified systems by composition from verified components.
ACM SIGSOFT Software Engineering Notes 28(5), 277–286 (2003)

48. Zito, A.: UML’s Package Extension Mechanism: Taking a Closer Look at Package
Merge. Queen’s University (2006)

http://www.omg.org/spec/UML/2.4.1

A Formula-Based Approach for Automatic Fault

Localization of Imperative Programs

Si-Mohamed Lamraoui1,2 and Shin Nakajima1,2

1 The Graduate University for Advanced Studies (SOKENDAI), Japan
2 National Institute of Informatics, Tokyo, Japan

Abstract. Among various automatic fault localization methods, two of
them are specifically noticed, coverage-based and formula-based. While
the coverage-based method relies on statistical measures, the formula-
based approach is an algorithmic method being able to provide fine-
grained information account for identified root causes. The method
combines the SAT-based formal verification techniques with the Reiter’s
model-based diagnosis theory. This paper adapts the formula-based fault
localization method, and improves the efficiency of computing the poten-
tial root causes by using the push & pop mechanism of the Yices solver.
The technique is particularly useful for programs with multiple faults.
We implemented the method in a tool, SNIPER, which was applied to
the TCAS benchmark. All single and multiple faults were successfully
identified and discriminated by using the original test cases of the TCAS.

Keywords: Model-based Diagnosis Theory, Multiple faults, Partial
Maximum Satisfiability, LLVM, Yices.

1 Introduction

Debugging is one of the most expensive tasks of software development. A chal-
lenging activity in debugging is fault localization, which consists of identifying
root cause locations of a program that shows faulty behavior. Automatic fault lo-
calization was introduced to help software engineers tackle this task. Automatic
fault localization of imperative programs is a well-known problem, and has been
studied from various approaches (cf. [6][7][18][21]). Among these, coverage-based
or spectrum-based debugging [8] is considered a promising method. It is an em-
pirical method that calculates ranking orders between the program statements
or spectrums to show that a particular fragment of code is more suspicious than
the others. The method, however, needs a lot of both successful and failing exe-
cutions to calculate the statistical measures. Generating an unbiased input test
data set is a major challenge. In addition, the causal explanation of results is
not clear in regard to program semantics.

The formula-based fault localization method uses only failing executions, and
is more systematic than the coverage-based approach. This is because it has a
logical foundation developed in the model-based diagnosis (MBD) theory [16].

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 251–266, 2014.
c© Springer International Publishing Switzerland 2014

252 S.-M. Lamraoui and S. Nakajima

However, existing tools following the formula-based method, such as BugAssist
[9] or Wotawa’s tool [20], do not guarantee to cover all the root causes. It is partly
because the complete enumeration of root causes requires a high computational
effort. Its complexity grows exponentially with the size of the program, the
number of test cases used and the number of faults in the program.

Furthermore, most of the methods mainly consider single-fault programs.
However, in practice it is common to have more than one fault in a program. Au-
tomatic fault localization of multi-fault programs is not an easy task. DiGiuseppe
et al [4] empirically studied the coverage-based fault localization on multi-fault
programs and concluded that at least one of the faults could be effectively local-
ized. However, the method is not efficient for localizing simultaneously all the
faults. Contrarily, the MBD theory considers the case of artifacts with multiple
faults, but it needs more work for imperative programs.

This paper reports a new formula-based automatic fault localization approach,
which follows the MaxSAT approach as in [9][17]. Our method, as in [2], uses
a full flow-sensitive trace formula in order to consider control-oriented faults. It
is equivalent to the SSA form of the LLVM [11] program intermediate repre-
sentation. We adapt a new enumeration algorithm [14] to ensure obtaining all
the root causes efficiently by using the Yices SMT solver [5] in an incremental
fashion with its push & pop mechanism. Furthermore, our approach uses a fault
localization algorithm that can work on a set of failing test cases in order to deal
with multi-fault programs. It is not enough to use a single failing program path
to identify such multiple faults.

This paper makes two contributions. First, we reformulate systematically the
problem of automatic fault localization for imperative programs from a view
point of formula-based approach. Second, we present an efficient method to cal-
culate and combine diagnosis obtained from different failing test cases. This
method is mandatory for the fault localization of multi-fault programs.

We implemented our method in a tool, called SNIPER (SNIPER is Not an
Imperative Program Errors Repairer). SNIPER was applied to the TCAS bench-
mark. In addition to identifying all single and multiple faults with the given test
cases, the Code Size Reduction (CSR) obtained is almost the same as BugAssist
[9] and Wotawa’s tool [20]. Furthermore, the efficiency could be improved by
using an incremental solving method.

This paper is organized as follows. Section 2 presents the background of the
work. Section 3 provides basic definitions. Section 4 presents our approach for
localizing faults automatically. Section 5 reports experiments made on the TCAS
benchmark. Section 6 compares our approach with related work, which is fol-
lowed by Section 7 for the conclusions.

2 Background

This section introduces technical backgrounds of the formula-based automatic
fault localization method. It essentially combines the SAT-based formal verifi-
cation techniques [15] with the model-based diagnosis (MBD) theory.

Automatic Fault Localization of Imperative Programs 253

The MBD theory establishes a logical formalism of the fault localization prob-
lem [16]. The model is presented as a formula expressed in suitable logic. The
formula is unsatisfiable as it represents an artifact containing faults. The MBD
theory distinguishes conflicts and diagnoses. Conflicts are the erroneous situa-
tions represented by minimal unsatisfiable subsets (MUSes) of the unsatisfiable
formula. Diagnoses are the fault locations to be identified and are minimal cor-
rection subsets (MCSes). The MBD theory states that MUSes and MCSes are
connected by the hitting set relationship. Therefore, the problem is to enumerate
either all MUSes or all MCSes. Such sets can be calculated automatically if the
formula is represented in decidable fragments of first-order theory.

The MBD methods, including the model-based debugging [20], first calculate
MUSes and then obtain MCSes. An early work used graph-based algorithms to
compute a static slice of programs in order to obtain MUSes [19]. Later, MUSes
were obtained by calculating irreducible infeasible subsets of constraints [20].
Both methods resulted in rather large MUSes for the TCAS benchmark.

An alternative approach to obtain MCSes was employed in the fault local-
ization of VLSI circuits [17]. The method reduces the fault localization prob-
lem to maximum satisfiability of the unsatisfiable formula in propositional logic
and calculates maximal satisfiable subsets (MSSes). MCS is the complement of
MSS [12]. This idea was applied to the fault localization problem of imperative
programs [9]. The algorithm of BugAssist, however, does not guarantee the enu-
meration of all the MSSes. It may miss some faults, especially in programs with
multiple-faults.

Dealing with programs with multiple faults is one of the important issues in
automated fault localization methods. The MBD theory [16] generally consid-
ers the multiple fault cases. For simplicity, consider a case where MUSes are
extracted from an unsatisfiable formula and each MUS in MUSes refers to a
particular error, a single fault. Then, MUSes may contain, in principle, multiple
faults because many MUS are included. MCSes, calculated using the minimal
hitting set of MUSes, contain MCS elements with multiple faults.

Further consideration is required for the case of programs with multiple faults.
In the formula-based approach, the unsatisfiable formula is ϕAL, which encodes
failing program paths under a given input data EI ; we write ϕAL(EI) to show
that the formula is dependent on EI . Usually, one test case may identify an
erroneous situation caused by a single fault. Lots of test cases are needed to
show the existence of many faults. It implies that we check the unsatisfiability
of ϕAL(EI) with many different EI . A single counterexample approach does not
work well for a general case of programs with multiple faults.

Example. We illustrate the problem of multi-fault program with an example
shown in Listing 1.1. This program contains two faults. In line 4 the variable y

should be set to 42 and in line 6 it should be set to 0. We can find two failing
paths, one that goes through the line 4 with the value 1 as argument, and the
other that goes through the line 6 with the value 0 as argument. We face two
problems with this kind of program. First, we need to take into account both

254 S.-M. Lamraoui and S. Nakajima

failing paths to localize all the faults. Considering only one path is not sufficient.
Second, the quantity of faults in the program creates noise that may affect the
precise localization of faults. An accurate localization implies an high complexity
of analysis.

1 void foo(int x) {

2 int y;

3 if(x>0) {

4 y = 1;

5 } else {

6 y = 42;

7 }

8 assert((x<=0 && y==0) || (x>0 && y==42));

9 }

Listing 1.1. A multi-fault program

3 Preliminaries

This section provides basic definitions on formula-based automatic localization
method. Definitions of the basic concepts such as MUS, MCS, MSS, and hitting
set, are found in the literature (cf. [12]).

Failing Program Paths. Let ϕAL be a formula EI ∧ TF ∧ AS in conjunctive
normal form (CNF) where EI is a formula that encodes the error-inducing in-
puts, TF is a trace formula that encodes all the possible program paths, and AS
is a formula that encodes the assertion the program must satisfy. AS can be the
post-condition or the test oracle. EI represents the input arguments, which take
some particular values that make TF violate AS . The detailed representation of
TF is irrelevant here, and will be introduced in Section 4.2.

Fault Localization Problem. Since ϕAL encodes failing program paths with
EI , the formula is unsatisfiable; �|= ϕAL. By definition, EI and AS are supposed
to be satisfied. The trace formula TF is responsible for the unsatisfiability. It
is exactly the situation that the program contains faults. The fault localization
problem is to find a set of clauses in TF that are responsible for the unsatisfi-
ability. Such clauses are found in minimal unsatisfiable subsets (MUS) of ϕAL.
Note that it requires some post-processing to extract the root causes in the MUS
since MUS shows an erroneous situation, namely, the conflicts.

In the following definitions C is a set of clauses, which constitutes a CNF
formula.

Definition 1 (Minimal Unsatisfiable Subset). M ⊆ C is a Minimal Un-
satisfiable Subset (MUS) iff M is unsatisfiable and ∀c∈M :M\{c} is satisfiable.

Automatic Fault Localization of Imperative Programs 255

Definition 2 (Minimal Correction Subset). M ⊆ C is a Minimal Cor-
rection Subset (MCS) iff C\M is satisfiable and ∀c ∈ M : (C\M) ∪ {c} is
unsatisfiable.

MCS is a set of clauses such that C can be corrected by removing MCS from C.
Therefore, MCS is considered to contain the root causes.

Definition 3 (Hitting Set). H is a hitting set of Ω iff H ⊆ D and ∀S ∈ Ω :
H ∩ S �= ∅

Let Ω be a collection of sets from some finite domain D, a hitting set of Ω is a
set of elements from D that covers (hits) every set in Ω by having at least one
element in common with it. A minimal hitting set is a hitting set from which no
element can be removed without losing the hitting set property.

Definition 4 (Maximal Satisfiable Subset). M ⊆ C is a Maximal Satisfi-
able Subset (MSS) iff M is satisfiable and ∀c ∈ C\M : M ∪ {c} is unsatisfiable.

By definition, MCS is the complement of MSS (MSS �) [12].

Fault Localization Problem Revisited. The fault localization problem is
to find MCSes of ϕAL. Two approaches are possible. A classical model-based
debugging method first calculates MUSes of ϕAL and then obtains MCSes using
the hitting set of MUSes. The formula-based method adapted in this paper first
calculates MSS of ϕAL and then obtain MCSes by taking the complement of
MSS. In both approaches, enumerating all the MUSes or MCSes is mandatory
to cover all the root causes.

Example. Using the example in Listing 1.2, we explain the above concepts. In
line 6, there is an error in the computation of the absolute value. The absolute
value of x is equal to x*1 (with x negative), which violates the assertion at line
8 which expects abs to be greater or equal to zero.

1 int absValue (int x) {

2 int abs;

3 if(x>=0) {

4 abs = x;

5 } else {

6 abs = x * 1; // should be: abs=x*-1;

7 }

8 assert(abs >=0);

9 return abs;

10 }

Listing 1.2. A function that computes an absolute value

A failing trace can be obtained with an input value equal to -1. The error-
inducing input extracted from the failing trace is encoded in EI and takes the
following form: EI = (x0 = −1). The Static Single Assignment (SSA) form of

256 S.-M. Lamraoui and S. Nakajima

the function body (lines 2 to 7) is encoded in TF , as shown below. For recall,
SSA form is a property of an intermediate representation (IR), which requires
that each variable is assigned exactly once, and every variable is defined before
it is used.

TF = (guard0 = (x0 ≥ 0)) ∧ (abs1 = x0) ∧ (abs2 = x0 × 1) ∧
((guard0 ∧ (abs3 = abs1)) ∨ (¬guard0 ∧ (abs3 = abs2)))

The assertion in line 8 is encoded in AS as follows: AS = (abs3 ≥ 0).
We obtain two MSS and two MCS below. The set elements represent the line

numbers of the program in Listing 1.2. The minimal hitting set of the union of
the MCSes give us the two MUSes, which are the conflicts:

MSS 0 = {6} MCS 0 = MSS�
0 = {3, 4}

MSS 1 = {3, 4} MCS 1 = MSS�
1 = {6}

MCSes = {MCS 0} ∪ {MCS 1} = {{3, 4}, {6}}
MUSes = MCSesMHS = {{4, 6}, {3, 6}}

We here obtained two conflicts; one with the line numbers 4 and 6, another
with 3 and 6. If we only need a set of potential root causes, we may extract the
line numbers from either MCSes or MUSes to have a set, for example, {3, 4, 6}.
The results are the same regardless of using MCSes or MUSes since only the line
numbers are significant. It is what BugAssist [9] does to calculate the CSR. Note
that with such a combination method, relations between root cause candidates
are lost.

Partial Maximum Satisfiability. The maximum satisfiability (MaxSAT)
problem for a CNF formula is to find an assignment that maximizes the number
of satisfied clauses (MSS). In the partial MaxSAT (pMaxSAT) problem for a
CNF formula, some clauses are declared to be soft, or relaxable, and the rest are
declared to be hard, or non-relaxable. The problem is to find an assignment that
satisfies all the hard clauses and the maximum number of soft clauses.

4 Our Approach

4.1 Program Pre-processing

Before the program is encoded into a Trace Formula, it must be pre-processed.
We assume the program to be sequential and deterministic. Pre-processing a
program starts by translating it to an Intermediate Representation (IR) with
LLVM [11]. The resulting IR is then transformed into a loop-free IR that contains
a single function. Most of these operations are standard in the Bounded Model-
Checking (BMC) of imperative programs (cf. [3][13]). First, all function calls are
inline-expanded, meaning that the call instructions are replaced by the callee
function bodies. The second step consists of unrolling all loops to a specified
bound. Finally, the IR is put in Static Single Assignment (SSA) form. At this
point the IR contains a single local function with arithmetic, comparison, φ
(join), and branching instructions only.

Automatic Fault Localization of Imperative Programs 257

4.2 SSA-Based Trace Formula

We describe how we translate a pre-processed LLVM IR to a partial SMT for-
mula. The representation has an important impact on the accuracy of the fault
localization [2]. Our encoding takes into account both the control- and data-flow
of programs. We can produce flow-sensitive trace formulas1.

Data-Flow. The arithmetic and comparison instructions in LLVM take two
arguments and return one result. We restrict the type of variables to integers
and booleans. Let OP be a set of operators. The arithmetic and comparison
instructions are encoded in equality constraints as follows:

r = (x Δ y) Δ ∈ OP

where r is the result of the computation of the variables x and y. In the case
of comparison operators, the result r is a boolean variable, called a guard, that
will be used in the representation of the control-flow.

Control-Flow. A function definition contains a list of basic blocks, forming the
Control Flow Graph (CFG) of the function body. Each basic block consists of a
labeled entry point, a series of φ nodes, a list of instructions, and ends with a
terminator instruction such as a branch or function return.

Let BB be the set of all basic blocks. Let T ⊆ BB × BB be a subset of all
transitions between the basic blocks. For each transition (bbi, bbj) ∈ T with
bbi, bbj ∈ BB , we have a boolean variable tij that is true iff the control-flow
goes from bbi to bbj . The set of predecessors of a basic block bbj is equal to:

pred(bbj) = {bbi ∈ BB | (bbi, bbj) ∈ T }

Let on(bbi) with bbi ∈ BB be the enabling condition that is true iff the basic
block bbi is executed. The value of on(bbi) is computed as:

on(bbi) =
∨

bbj∈pred(bbi)
on(bbj) ∧ tji

Unconditional branches between basic blocks are encoded by setting the transi-
tion variable to the value of the enabling condition of the basic block where the
branch occurs:

on(bbi) = tij

Conditional branches make the control-flow jump from a basic block bbi to either
a basic block bbj if the guard g is true, or to a basic block bbk otherwise:

(tij = g) ∧ (tik = ¬g)
1 For sake of simplicity we omit some details about the IR [11].

258 S.-M. Lamraoui and S. Nakajima

As is usual in SSA representation, φ nodes join together values from a list of
its predecessor basic blocks. Each φ node takes a list of (value, label) pairs to
indicate the value chosen when the control flow transfers from a predecessor
basic block with the associated label. Below, the encoding of a φ node, where
the new symbol xi refers to the variable x in bbi.∨

xj∈pred(bbi)
(xi = xj) ∧ tji

The CFG takes the formula below. The entry basic block in a function is im-
mediately executed on entrance to the function and has no predecessor basic
blocks. Its enabling condition on(entry) is always true. Φon is the formula that
encodes the enabling conditions for all basic blocks, Φuncond is the conjunction
of all constraints on unconditional branches, Φcond is the conjunction of all con-
straints on conditional branches, and Φphi is the conjunction of the constraints
encoding the φ nodes.

ΦCFG ≡ on(entry) ∧ Φon ∧ Φuncond ∧ Φcond ∧ Φphi

The whole Trace Formula for the IR (TF) takes the form below. ΦCFG is the
formula that encodes the control-flow of the program and Φarith/comp is the con-
junction of the constraints encoding the arithmetic and comparison instructions.

TF = ΦCFG︸ ︷︷ ︸
hard

∧Φarith/comp︸ ︷︷ ︸
soft

The clauses that encode the CFG of the program are put as hard because they
represent the skeleton of the program and we do not want the solver to retract
these clauses. The rest of the clauses are set as soft (retractable) because they
contribute to the computations of the program, and are then susceptible to be
root cause candidates. Note that with our encoding we can still identify root
causes related to the CFG. Since a branch occurs depending on the result of a
comparison instruction, which is marked as soft, the solver can still retract this
associated comparison instruction.

4.3 Computing Diagnoses

Algorithm 1 implements by using pMaxSMT the AllMinMCS function, which
finds all the minimum size MCSes (diagnoses) of TF . This algorithm makes use
of the push & pop mechanism of Yices [5]. The push operation saves the current
logical context on the stack. The pop operation restores the context from the
top of the stack, and pops it off the stack. Any changes to the logical context
(adding or retracting predicates) between the matching push and pop operators
are flushed, and the context is completely restored to what it was right before
the push. This mechanism is very useful in our method because we apply many
small modifications (lines 19 and 30) to the context C. It does not need to create
a completely new context between the calls to the solver. We can just flush the
modifications and reuse the same context basis many times.

Automatic Fault Localization of Imperative Programs 259

Algorithm 1. AllDiagnoses

Input: a set of error-inducing inputs E, a trace formula ϕTF and a formula ϕAS that
encodes the assertions the program must satisfy.

Output: D a set of diagnoses (MCSes)
1: ϕW ← ϕTF � ϕW is the working formula
2: AV ← ∅
3: ϕsoft ← ∅
4: � Create a set of unit soft clauses
5: for each w ∈ ϕW , w tagged as soft do
6: AV ← AV ∪ {ai} � ai is a new auxiliary var. created
7: ϕsoft ← ϕsoft ∪ {(¬ai)}
8: wA ← (w ∨ ai)
9: � Remove w and add wA as hard
10: ϕW ← ϕW \ {w} ∪ {(wA)

HARD}
11: end for
12: if AV = ∅ then
13: return ∅ � No MaxSMT solution
14: end if
15: D ← ∅
16: C ← ϕW ∪ ϕsoft ∪ ϕAS � Add the formulas in the context
17: for each ei ∈ E do
18: push(C) � Save the context
19: C ← C ∪ ei � Add the error-inducing input in the context
20: M ← ∅
21: while true do
22: (st, ϕMSS ,A)← pMaxSMT(C) � Solve the context
23: � “ϕMSS” is a MSS if st is true
24: � “A” is a maximal satisfying assignment if st is true
25: if st = true then
26: � The complement of MSS is a MCS
27: ϕMCS ← CoMSS(ϕMSS)
28: M ←M ∪ {ϕMCS}
29: � Add the blocking constraint
30: C ← C ∪ {(

∨
A(ai)=true ¬ai)}

31: else
32: break
33: end if
34: end while
35: if M �= ∅ then
36: D ← D ∪ {M}
37: end if
38: pop(C) � Restore the context (pushed in line 18)
39: end for
40: return D

The MCSes are enumerated for all error-inducing inputs. A set of minimal
MCS (MCSes) can be computed using MaxSAT. Algorithm 1 uses a technique
for blocking MCSes introduced by [14]. This technique has the advantage of not
using relaxation variables to block MCSes. This is particularly suited when using
a MaxSMT solver because the MCSes will remain “blocked” regardless of how
the solver manipulates the relaxation variables. The method consists of initially
transforming each soft clause into a hard clause after adding a new boolean
variable called an auxiliary variable. Additionally, a set of unit soft clauses is
added that corresponds to the negation of each auxiliary variable (line 30).

260 S.-M. Lamraoui and S. Nakajima

Algorithm 2. DiagCombine

Input: D a set of diagnoses (MCSes)
Output: C a set of combined diagnoses (MCSes)
1: n← |D|
2: ai ← 0 ∀i ∈ {0, 1, ..., n− 1}
3: repeat
4: S ← {∅}
5: for i← 0 to i < n do � Union for the current indexes in a
6: j ← ai

7: A← Di � A is a set of MCSes
8: B ← Aj � B is a MCS
9: S ← S ∪B
10: end for
11: C ← C ∪ {S}
12: a0 ← a0 + 1
13: for i← 0 to i < n− 1 do � Update indexes in a
14: if ai ≥ |Di| then
15: ai ← 0
16: ai+1 ← ai+1 + 1
17: end if
18: end for
19: until an−1 ≥ |Dn−1|
20: return C

4.4 Combination of MCSes

Algorithm 1 provides a function that returns MCSes for each error-inducing
inputs given as arguments. Each of these sets are root cause candidates for one
failing execution, which are triggered by the error-inducing inputs associated
to the set. The problem of combining MCSes is to generate sets of root cause
locations that potentially fix all the failing executions induced by the provided
error-inducing inputs. We call such gathering of sets a complete diagnosis.

Definition 5 (Complete Diagnosis). Given a formal representation TF of a
program P , a formula AS that encodes the assertion the program P must satisfy,
and a set of error-inducing inputs E, a complete diagnosis Δ is a set of clauses
of TF such that ∀e ∈ E | ({e}∪(TF \Δ)∪AS) is satisfiable. A minimal complete
diagnosis is a complete diagnosis from which no clauses can be removed without
losing the property of being a complete diagnosis.

In this definition, we assume that we have a set of error-inducing inputs that
trigger all the faults in the program. Algorithm 2 shows how a set of minimal
complete diagnoses is calculated from the MCSes obtained with (D) in Algo-
rithm 1. The algorithm implements a n-ary pair-wise union for combining the
MCSes. It takes as argument a set of set of MCSes (D) and returns a set of
MCSes (C). Each MCS of C is a set of candidate root causes. Below, we have
the following properties of Definition 5 and Algorithm 2.

Property 1. Given a program P , a set of minimal complete diagnoses Δ for P ,
no faults are missed in P after combining the MCSes obtained with Algorithm 1.

Automatic Fault Localization of Imperative Programs 261

Property 2. Given a program P and a set of error-inducing inputs E, we miss
faults in P if the failing executions triggered by E do not cover the faults.

Property 1 is important for our method to be conservative. It assumes that
an appropriate set of test suites to trigger all faults is used. This property holds
because the faults are present in the MCSes obtained with Algorithm 1, and still
present after the combination because Algorithm 2 covers all elements in D for
constructing the resulting set C. Equivalently, as shown in Property 2, if some
faults are missing in the output of Algorithm 1, they will still not be present
after the combination.

Example. When running Algorithm 1 on the program in Listing 1.1 with the
following error-inducing inputs: x=0 and x=1, we obtain a set of MCSes and D
below.

MCSesa = {{3, 4}, {6}}, MCSesb = {{3}, {4}}, D = {MCSesa,MCSesb}

The root cause locations in MCSesa are related to the failing path triggered by
x=0, and those in MCSesb are related to the failing path triggered by x=1. The
combination of MCSes of D gives us the following minimal complete diagnoses :

DiagCombine(D) = {{3, 4} ∪ {3}, {3, 4}∪ {4}, {6} ∪ {3}, {6} ∪ {4}}
= {{3, 4}, {3, 6}, {4, 6}}

A set of fault locations to check is needed to fix all faults in the program. For
example, the set {4, 6} provides information to fix the program since it combines
root cause from both failing paths.

In some cases, multiple faults can lie in one program path. In such situation,
a single error-inducing input is enough to localize all the faults. In other cases, if
two faults are in different paths or triggered by different error-inducing inputs it
requires more than one error-inducing inputs that trigger different failing paths.
For the program in Listing 1.1, we need at least two error-inducing inputs to
trigger both failing paths. In summary, a basic MCS enumeration method that
only uses a single failing test case is not sufficient when dealing with multi-fault
program whose faults are spread in different program paths or execution paths.
The association of Algorithm 1 and the combination method of Definition 5 of
this paper allow the efficient combination of MCSes, each obtained from different
failing paths.

5 Experiments

5.1 SNIPER

We implemented our approach in a tool called SNIPER (SNIPER is Not an
Imperative Program Errors Repairer). Since SNIPER includes in itself the LLVM
and Yices libraries, the tool can be considered as standalone.

262 S.-M. Lamraoui and S. Nakajima

SNIPER takes as input a source program with some specifications (cf. pre-
and post-condition). This source code is first translated to an Intermediate Rep-
resentation (IR) by LLVM and pre-processed as explained in Section 4.1. From
the resultant IR, we construct the TF formula and the AS formula as described
in Section 4.2. Regarding the error-inducing inputs (EIes), the user has two
choices; he can either use some failing test cases to generate a set EIes or he
can let SNIPER compute a single EI using BMC, which is repeated to obtain
enough number of EIes . Then, using the TF formula, the AS formula and the
set of error-inducing inputs EIes we compute a set of diagnoses (see Section 4.3
for details), and combine them as explained in Section 4.4. The diagnoses, which
are source code lines marked with potential root causes, are output to the user.

5.2 Experimental Setup

In this section we show the capabilities of SNIPER with some experiments made
on the Siemens Test Suite. One of the Siemens Test Suite tasks is the TCAS,
which is an aircraft collision avoidance system. The authors of the suite created
41 versions of the program and in each of these versions one or more faults
were injected. The TCAS task comes with a set of 1578 test cases. However, no
specification is given.

We used the same experimental setup as described in [9]. We first ran the
original program on the test cases in order to get the correct output values
for each test case. These values constitute the test oracles for the program. As
explained in Section 4.4 we use many error-inducing inputs (failing test cases)
in order to deal with multi-fault programs. For the purpose of this experiment
on the TCAS benchmark, we ran all test cases on each faulty version to obtain
the failing test cases, which are the test cases that give an output different from
the correct output.

All the experiments were carried out using an Intel Core 2 Duo 2.4 GHz with
4 GB of RAM on the operating system Mac OS X 10.6 Snow Leopard.

5.3 Results for Single and Multiple Faults

Table 1 reports the results of running SNIPER on each version of the TCAS. The
first column of the table shows the version of the program. The column #Err
shows the number of injected fault in this version. The column #FTC shows the
number of failing test cases included in the TCAS benchmark set. The right part
of Table 1 shows the results of SNIPER and BugAssist. The results of BugAssist
were taken from [9]. Each column shows the number of time the tools were able
to detect at least one of the injected fault locations.

In total, BugAssist pin-pointed 1364 times the injected fault location out of
the 1437 runs (73 misses). SNIPER pin-pointed the injected fault location 1435
times out of the 1437 runs (2 misses). The average ACSR (Average Code Size
Reduction), which is the percentage of code given by the tool on average to locate
the faults, of all the versions is 11.00%. For recall, CSR (Code Size Reduction) is
the ratio of fault locations in a MUS (program slice) to the total number of lines

Automatic Fault Localization of Imperative Programs 263

Table 1. Results of SNIPER and BugAssist on the TCAS. Versions no. 33 and no. 38
are omitted from the table in order to compare the results with BugAssist [9], which
does not have entries for them.

Ver #Err #FTC SNIPER BugAssist

v1 1 131 131 131
v2 1 69 69 69
v3 1 23 23 13
v4 1 25 24� 25
v5 1 10 10 10
v6 1 12 12 12
v7 1 36 36 36
v8 1 1 1 1
v9 1 9 9 9
v10 2 14 14 14
v11 2 14 14 14
v12 1 70 70 48
v13 1 4 4 4
v14 1 50 50 50
v15 3 10 10 10
v16 1 70 70 70
v17 1 35 35 35
v18 1 29 29 29
v19 1 19 19 19
v20 1 18 18 18

Ver #Err #FTC SNIPER BugAssist

v21 1 16 16 16
v22 1 11 11 11
v23 1 42 42 41
v24 1 7 7 7
v25 1 3 3 3
v26 1 11 11 11
v27 1 10 10 10
v28 1 76 76 58
v29 1 18 18 14
v30 1 58 58 58
v31 2 14 14 14
v32 2 2 2 2
v34 1 77 77 77
v35 1 76 76 58
v36 1 126 126 126
v37 1 92 92 92
v39 1 3 3 3
v40 2 126 126 126
v41 1 20 19� 20

of code. We obtain a minimum of 2.31% for the version no. 14 and a maximum
of 14.01% for the version no. 10. SNIPER was able to identify the exact bug
location of all the single fault programs.

Concerning the multi-fault programs, all the faults that can be found with
the given test cases were successfully localized. In the version no. 31, the failed
test cases only cover one of the two buggy statements. Thereby, the uncovered
buggy statement cannot be in the root causes. This shows that the coverage of
the test input is an important factor in fault localization.

5.4 Push & Pop Optimization Results

Figure 1 reports the computation times of Algorithm 1 on the TCAS benchmark
with and without the push & pop optimization, which was explained in Section
4.3. The histograms are separated in two parts for readability. The bars in gray
represent the times with the optimization disabled and the bars in black represent
the times with the optimization activated.

We can see that the computation time is reduced when using the optimization.
The percentage decrease of the average computation time is 49%. The large

� A new option of SNIPER that checks the array index overflow/ underflow can detect
the missing one.

264 S.-M. Lamraoui and S. Nakajima

Fig. 1. Results of running SNIPER on the TCAS benchmark with and without
push & pop optimization.

difference can be explained by the fact that the same formula is solved many
times with only some small modifications between the calls to the solver.

6 Related Work

Program slicing [18] was introduced for localizing faults, and was empirically
shown effective [10]. The average code size reduction (CSR) of program slices
is around 30% [1]; such amount of program code needs to be inspected to find
real root causes. Coverage-based or spectrum-based debugging (cf. [8]) calculates
ranking orders between program statements or spectrums to show that a particu-
lar fragment of code is more suspicious than the others. The method needs many
successful and failing executions to calculate the statistical measures. Generating
unbiased input test data set is a major challenge. The formula-based approach is
more systematic than the methods that use program slices or the statistical cov-
erages. It has its logical foundation developed in the MBD theory. DiGiuseppe
et al [4] empirically studied the coverage-based fault localization on multi-fault
programs. They showed that the presence of multiple faults creates interferences,
which inhibits the effectiveness of the method. However, it can still localize at
least one fault. The qualitative effectiveness of our approach is not disturbed by
the number of faults in the program, it only affects the computation time.

BugAssist [9] applied the MaxSAT-based method of Safarpour et al [17] to
fault localization of C programs. It uses an iterative localization algorithm to
obtain the MCS, from which the CSR is calculated. The CSR is much smaller
than the case of program slicing approaches. The algorithm, however, does not
guarantee to cover all the root causes. The Trace Formula used in BugAssist
encodes a counterexample obtained using the bounded model-checking method.
Since this trace formula represents a straight-line program fragment that con-
tains faults, it does not reconstruct information related to the control flow of the
original program. To overcome this limitation, flow-sensitive trace formula was
proposed [2]. A similar representation was also used in [20]. Furthermore, the
approach of BugAssist [9] combines MCSes by taking their union to have a single

Automatic Fault Localization of Imperative Programs 265

set. The fault locations in this set are later ordered by a ranking mechanism. As
opposed to BugAssist’s approach, we generate different sets, each set containing
potential root causes for fixing all the faults in the program. The differences in
major formula-based tools are summarized in the following table.

Trace Formula Completeness of MCS Combination
Type MCS Enumeration Method

BugAssist Flow-insensitive NO union
Wotowa Flow-sensitive YES none
SNIPER Flow-sensitive YES pair-wise union

7 Conclusion

We presented a formula-based method for automatic fault localization, which
combined the SAT-based formal verification techniques with the model-based
diagnosis theory. It has two core algorithms, computing all the diagnoses and
combining them, which enables the localization of root causes of multi-fault
programs. SNIPER adapts partial maximum satisfiability to implement the al-
gorithms efficiently, which made use of the push & pop mechanism of Yices.
Furthermore, the multiple faults in the TCAS benchmark programs could suc-
cessfully be detected by combining a set of the results obtained from multiple
failing program paths.

We have an open question about the generation of adequate test suites for
fault localization. It calls for a new test case generation method particularly
focusing on exercising paths leading to assertion violations. We need only a set
of failing traces, which is different from the coverage-based methods in which
unbiased test suits are needed for both successful and failing traces.

Acknowledgement. This research was partially supported by JSPS KAK-
ENHI Grant Number 24300010.

References

1. Binkley, D., Gold, N., Harman, M.: An Empirical Study of Static Program Slice
Size. ACM TOSEM 16(2), Article 8 (April 2007)

2. Christ, J., Ermis, E., Schäf, M., Wies, T.: Flow-Sensitive Fault Localization. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 189–208. Springer, Heidelberg (2013)

3. Clarke, E., Kroning, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

4. DiGiuseppe, N., Jones, J.A.: On the Influence of Multiple Faults on Coverage-based
Fault Localization. In: Proc. ISSTA 2011, pp. 210–220 (2011)

5. Dutertre, B., de Moura, L.: The Yices SMT Solver, http://yices.csl.sri.com
6. Griesmayer, A., Staber, S., Bloem, R.: Fault Localization using a Model Checker.

In: STVR, pp. 149–173 (2010)

http://yices.csl.sri.com

266 S.-M. Lamraoui and S. Nakajima

7. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error Explanation with Distance
Metrics. STTT 8(3), 229–247 (2006)

8. Jones, J.A., Harrold, M.J.: Empirical Evaluation of the Tarantula Automatic Fault-
Localization Technique. In: Proc. ASE 2005, pp. 273–282 (2005)

9. Jose, M., Majumdar, R.: Cause Clue Clauses: Error Localization using Maximum
Satisfiability. In: Proc. PLDI 2011, pp. 437–446 (2011)

10. Kusumoto, S., Nishimatsu, A., Nishie, K., Inoue, K.: Experimental Evaluation of
Program Slicing for Fault Localization. Empirical Software Engineering 7(1), 49–76
(2002)

11. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proc. CGO, pp. 78–86 (2004)

12. Liffiton, M.H., Sakallah, K.A.: Algorithms for Computing Minimal Unsatisfiable
Subsets of Constraints. Automated Reasoning 40(1), 1–33 (2008)

13. Merz, F., Falke, S., Sinz, C.: LLBMC: Bounded Model Checking of C and C++
Programs Using a Compiler IR. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 146–161. Springer, Heidelberg (2012)

14. Morgado, A., Liffiton, M., Marques-Silva, J.: MaxSAT-Based MCS Enumeration.
In: Biere, A., Nahir, A., Vos, T. (eds.) HVC. LNCS, vol. 7857, pp. 86–101. Springer,
Heidelberg (2013)

15. Prasad, M.R., Biere, A., Gupta, A.: A Survey of Recent Advances in SAT-Based
Formal Verification. STTT 7(2), 156–173 (2005)

16. Reiter, R.: A Theory of Diagnosis from First Principles. Artificial Intelligence 32(1),
57–95 (1987)

17. Safarpour, S., Mangassarian, H., Veneris, A., Liffiton, M.H., Sakallah, K.A.: Im-
proved Design Debugging using Maximum Satisfiability. In: Proc. FMCAD 2007,
pp. 13–19 (2007)

18. Weiser, M.: Programmers Use Slices When Debugging. Comm. ACM 25(7),
446–452 (1982)

19. Wotawa, F.: On the Relationship between Model-based Debugging and Program
Slicing. Artificial Intelligence 135(1), 125–143 (2002)

20. Wotawa, F., Nica, M., Moraru, I.: Automated Debugging based on a Constraint
Model of the Program and a Test Case. Logic and Algebraic Programming 81(4),
390–407 (2012)

21. Zeller, A., Hildebrandt, R.: Simplifying and Isolating Failure-Inducing Input. IEEE
Trans. Softw. Eng. 28(2), 183–200 (2002)

A Resource-Based Logic for Termination
and Non-termination Proofs

Ton Chanh Le1, Cristian Gherghina2, Aquinas Hobor1, and Wei-Ngan Chin1

1 Department of Computer Science, National University of Singapore, Singapore
2 Singapore University of Technology and Design, Singapore

Abstract. We propose a unified logical framework for specifying and proving
both termination and non-termination of various programs. Our framework is
based on a resource logic which captures both upper and lower bounds on re-
sources used by the programs. By an abstraction, we evolve this resource logic
for execution length into a temporal logic with three predicates to reason about
termination, non-termination or unknown. We introduce a new logical entailment
system for temporal constraints and show how Hoare logic can be seamlessly
used to prove termination and non-termination in our unified framework. Though
this paper’s focus is on the formal foundations for a new unified framework, we
also report on the usability and practicality of our approach by specifying and ver-
ifying both termination and non-termination properties for about 300 programs,
collected from a variety of sources. This adds a modest 5-10% verification over-
head when compared to underlying partial-correctness verification system.

1 Introduction

Termination proving is an important part of correctness proofs for software systems as
“so-called partial correctness is inadequate: if a program is intended to terminate, that
fact must be part of its specification.” – Cliff Jones [26]. Thus, total correctness proofs,
denoted by the Hoare triple [P]c[Q], require the code fragment c to be shown terminat-
ing in addition to meeting the postconditionQ after execution. The termination of a loop
or a recursive method is usually proven by a well-founded termination measure given
to the specification. However, such a measure is not a component of the logical formu-
las for pre/post specifications. A reason for this distinction is that specification logic
typically describes program states, while the termination proofs are concerned with the
existence of well-founded measures to bound the execution length of loops/recursions,
as argued by Hehner in [23]. Due to this distinction, we cannot automatically leverage
richer logics that have been developed for safety properties to conduct more intricate
termination and non-termination reasoning.

For illustration, let us use the Shuffle problem proposed in the Java Bytecode Recur-
sive category of the annual Termination Competition [33]. In this problem, an acyclic
linked list is shuffled by the shuffle method together with the auxiliary reverse

method, whose source code is shown in Fig. 1. To prove that shuffle terminates, we
need to firstly show that reverse also terminates. While the termination of reverse
can be easily proved by current approaches, such as [30,7,11], proving shuffle ter-
minates is harder because it requires a functional correctness related fact: the reverse

method does not change the length of the list. Based on this fact, it is possible to show

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 267–283, 2014.
c© Springer International Publishing Switzerland 2014

268 T.C. Le et al.

public static List shuffle(List xs) {
if (xs == null) return null;

else {
List next = xs.next;

return new List(xs.value,

shuffle(reverse(next)));

}
}

public static List reverse(final List l) {
if (l == null || l.next == null)

return l;

final List nextItem = l.next;

final List reverseRest =

reverse(nextItem);

l.next = null; nextItem.next = l;

return reverseRest; }

Fig. 1. The Shuffle problem from the Termination Competition

that the linked list’s length is also decreasing across the recursive method call shuffle;
as a result, the method always terminates.

Therefore, without an integration of termination specification into logics for func-
tional correctness, such as separation logic [36], the termination of shuffle is hardly
specified and proved by verification systems based on the traditional Hoare logic for
total correctness. Note that automated termination provers, such as AProVE [19] and
COSTA [3], are not able to show that shuffle terminates, even after applying a nu-
meric abstraction on the size property to shuffle [32], due to the lack of information
flow between the correctness and the termination arguments. We believe that relatively
complex problems, such as Shuffle, highlight the need of a more expressive logic with
the ability of integration into various safety logics for termination reasoning.

Moreover, if the termination proof fails, e.g., when the input list of shuffle is cyclic,
the program will be implicitly assumed to be possibly non-terminating. That is, definite
non-termination is neither explicitly stated nor proven by Hoare logic. Explicitly prov-
ing non-termination has two benefits. First, it allows more comprehensive specifications
to be developed for better program understanding. Second, it allows a clearer distinction
between expected non-termination (e.g., reactive systems where loops are designed to
be infinite) and failure of termination proofs, paving the way for focusing on real non-
termination bugs that minimize on false positives.

Some specification languages, such as Dafny [31], ACSL [6] and JML [29], allow the
specification of possible non-termination but their corresponding verifiers provide lim-
ited support for this feature. For example, the verifier of Dafny only allows such specifi-
cation on loops or tail-recursive methods1, while Frama-C verifier of ACSL [15] has not
implemented it. On the other hand, we can use the false postcondition, which indicates
that the method’s exit is unreachable, to specify definite non-termination. However, such
postcondition for partial correctness is not preferred as it is logically distinct from ter-
mination proofs. This distinction has been designed into Dafny, Frama-C and KeY with
JML [2], that makes the tools fail to take into account non-terminating behavior when
proving termination. For example, Dafny succeeds in proving the termination of a recur-
sive method2 though this method contains a call to a non-terminating method.3 In fact,
for termination proofs, these tools simply check that there is a finite number of mutually
recursive calls to the analyzed methods, rather than the methods’ termination per se.

1 http://www.rise4fun.com/Dafny/PnRX
2 http://www.rise4fun.com/Dafny/6FuR
3 The examples in ACSL and JML are at
http://loris-7.ddns.comp.nus.edu.sg/˜project/hiptnt/others.zip

http://www.rise4fun.com/Dafny/PnRX
http://www.rise4fun.com/Dafny/6FuR
http://loris-7.ddns.comp.nus.edu.sg/~project/hiptnt/others.zip

A Resource-Based Logic for Termination and Non-termination Proofs 269

Our Proposal. We propose integrating both termination and non-termination require-
ments directly into the specification logic for functional properties. Our work follows
Hoare and He [24] and Hehner [22], in which the termination is reasoned together with
partial correctness proof. In [22], the program is instrumented with a time variable t
and the termination is proven by a finite bound on the exact execution time t′−t, where
t, t′ are the initial, resp. final time. In [24], a special ghost variable ok is used to signify
termination. However, these approaches presently do not handle non-termination.

As a formal foundation to unify termination and non-termination reasoning and
integrate them into functional correctness proofs, we introduce a new resource logic
which captures the concept of resource capacity; tracking both minimum and maximum
amounts of resources used by some given code. Our logic uses a primitive predicate
RC〈l, u〉 with invariant 0≤l≤u to capture a semantic notion of resource capacity (l, u)
with the lower bound l and the upper bound u. Through this resource logic, we can
specify a variety of complexity-related properties, including the notions of termination
and non-termination, by tracking the number of calls (and loop iterations) executed by
the given code. Termination is denoted by the presence of a finite upper bound, while
non-termination is denoted an infinite lower bound on the execution length.

To support a more effective mechanism, we shall derive a simpler temporal logic from
the richer resource logic itself. We define three temporal predicates, TermM , Loop and
MayLoop, where M is a well-founded termination measure, and associate them with
each method in a given program to denote the termination, definite non-termination
and possible non-termination of these methods, respectively. In terms of resource rea-
soning, these predicates represent RC〈0, embed(M)〉, RC〈∞,∞〉 and RC〈0,∞〉, respec-
tively, where embed(M) is a finite bound obtained through an order-embedding of M
into naturals. Using the enriched specification logic, functional correctness, termination
and non-termination of methods can be verified under a single modular framework. With
this unification, the predicate Term M denotes exactly definite termination, instead of
just denoting the bound on the number of loop iterations or method recursions like the
termination measures used in the traditional Hoare logic for total correctness.

Our research contributions can be summarized as follows:

− A new resource logic that can capture lower and upper bounds on resource usage
via the concept of resource capacity, together with an entailment procedure to sup-
port correctness proofs with resource-related properties. (Sec. 3)

− A temporal logic that is abstracted from the resource logic to reason about both
program termination and non-termination. We introduce three new temporal con-
straints, its entailment and Hoare rules lifted from the resource logic. (Sec. 4)

− A successful integration of both resource and temporal logics into a separation
logic based verifier [35]. The new temporal logic is expressive enough to specify
and successfully verify the (non-)termination behaviors for about 300 benchmark
programs collected from a variety of sources, including the SIR/Siemens test suite
[17] and problems from the Termination Competition (Sec. 5). The prototype im-
plementation and benchmark are available for online use and download at:

http://loris-7.ddns.comp.nus.edu.sg/∼project/hiptnt/

http://loris-7.ddns.comp.nus.edu.sg/~project/hiptnt/

270 T.C. Le et al.

pred isEvenNat(int n) ≡ n≥0 ∧ ∃m · n = 2∗m;
int sumE (int n)

requires isEvenNat(n) ∧ Term[n] ∨
¬isEvenNat(n) ∧ Loop

ensures true;
{ if (n==0) return 0;

else return n+ sumE(n−2); }

while (x>y)
requires

x≤y ∧ Term[] ∨
x>y ∧ x<0 ∧ Loop ∨
x>y ∧ x≥0 ∧ MayLoop

ensures x′≤y′;
{ y=x+y; x=x−1; }

(a) (b)

Fig. 2. Examples on numerical programs

2 From Resource to Temporal Logic

We introduce a general resource predicate RC〈l, u〉 where l is a lower bound and u is an
upper bound on resource capacity, with invariant 0≤l≤u. This resource predicate can be
specialized to execution capacity to capture a variety of complexity-related properties,
via lower and upper bounds on the total number of method calls during the execution of
a given piece of code. We shall give an instrumented semantics for this specific resource
logic, and also specialize it for reasoning about termination and non-termination. To
prove termination, we simply use the predicate RC〈0, u〉 where u is some finite value,
namely u<∞. To prove non-termination, we can use the predicate RC〈∞,∞〉 which
signifies an infinite lower bound. Lastly, if we cannot prove either termination or non-
termination, we use the predicate RC〈0,∞〉 which covers all possibilities.

The resource logic we have outlined is quite expressive, and could moreover be spe-
cialized for reasoning on just termination and non-termination with the direct handling
of infinity ∞ value. In order to design a simpler logic, we introduce a temporal logic
with three distinct predicates, as follows: (i) Term M to denote RC〈0, embed(M)〉, (ii)
Loop to denote RC〈∞,∞〉 and (iii) MayLoop to denote RC〈0,∞〉. Such a temporal logic
is considerably simpler than the more expressive resource logic, since we can omit rea-
soning with ∞. We can also use a simpler termination measure M , based on depth of
recursion rather than number of calls, but relate to the latter using embed(M). More-
over, these temporal predicates can be made flow-insensitive, and thus need only appear
in each method’s precondition where they describe execution capacity required for the
method’s execution. This two-level approach simplifies both the design of a formal se-
mantics, and the development of a verification framework for (non-)termination.

For illustration, let us look at some numerical examples, starting with the method
sumE in Fig. 2(a). This method is required to return the sum of all even natural num-
bers that are less than or equal to the input n. However, the implementation satisfies
this requirement only when n is an even natural number, denoted by the predicate
isEvenNat(n); otherwise, the method does not terminate4. In our approach, these dis-
tinct scenarios can be described in a termination-enriched specification by seamlessly
integrating the temporal constraints Term[n] and Loop into a logic with disjunctions.

4 The verification system assumes the use of arbitrary precision integers. When finite integers
are used, we may give a different temporal specification for those prestates.

A Resource-Based Logic for Termination and Non-termination Proofs 271

JML and ACSL also support the specification of several method behaviors. However,
the current ACSL implementation in Frama-C does not allow fine-grained termination
related specification of each behavior and ignores conditional termination clauses. As
a result, it cannot verify all the (non-)terminating behaviors of sumE together. KeY al-
lows the specification of termination for each individual method behavior but it cannot
disprove the termination of sumE when n is an odd positive number, because the variant
n is still valid under this precondition.3 In contrast, our unified termination and non-
termination reasoning does not accept the temporal constraint Term[n] in these prestates
because the execution starting from them will eventually reach a non-terminating exe-
cution when n<0. In terms of resource reasoning, Term[n], denoting a finite resource,
is invalid as it cannot satisfy the infinite resource required by the non-termination.

The next example in Fig. 2(b) illustrates a usage of MayLoop constraint. Starting
from any prestate satisfying x>y ∧ x≥0, the execution of the given loop may reach
either the base case (when x≤y, indicated by Term[]) or the non-terminating case (when
x>y ∧ x<0, indicated by Loop). We observe that this MayLoop precondition can be
strengthened to the non-linear constraint 4x2+4x+8y+9≥0 for non-termination, but this
requires stronger arithmetic solvers.

Though our proposal is independent of the underlying logics on functional proper-
ties, it can leverage infrastructures of richer logics5 to conduct termination and non-
termination reasoning for more complex domains. For example, our proposed temporal
constraints are easily integrated into formulas of separation logic to reason about the
termination and non-termination of heap-based programs. We choose a fragment of sep-
aration logic with the separating conjunction ∗ and the points-to operator �→ to specify
the heap assertions. These operators are used to describe several data structures, such
as linked list and tree. For example, the inductive predicate lseg(root, p, n) declared
in Fig. 3(a) describes a list segment size of n from root to p with an invariant property
stated that the list’s size is non-negative. This predicate can be used to specify either
null-terminating lists (when p = null) or circular lists (when p = root).

data List { int value; List next; }

pred lseg(root, p, n) ≡ root=p ∧ n=0 ∨
∃v, q · root �→List(v, q)∗lseg(q, p, n−1)
inv n ≥ 0;

List reverse (List l)
requires lseg(l, null, n) ∧ Term[n]
ensures lseg(res, null, n);

List shuffle (List xs)
requires lseg(xs, null, n) ∧ Term[n]
ensures lseg(res, null, n);

(a) (b)

Fig. 3. A specification in separation logic to verify the correctness of Shuffle’s methods

We then use the predicate lseg for the pre and postconditions of two methods
reverse and shuffle in the Shuffle problem. The specification of each method in-
dicates that the method’s result res is a linked list with the same size n as the input list.
From these safety specifications, the temporal constraint Term[n] integrated into the
precondition of each method is able to specify that the depth of recursion is bounded by
the size of the input list, thus indicating the method’s termination.

5 In comparison with the first-order logic with linear arithmetic for numerical programs.

272 T.C. Le et al.

From the perspective of resource reasoning, a temporal constraint in the precondi-
tion of a method defines the bounds of available resource allowed for program execu-
tions from prestates satisfying (safety part of) this precondition. This idea is similar to
Atkey’s logic [5], a type-based amortized resource analysis for imperative programs,
which associates a piece of resource with each element of the data structures prior pro-
gram execution. However, Atkey’s approach only tracks the upper bound of resource
usage, so that it cannot reason about non-termination. This shortcoming also applies
to other type-based approaches for termination reasoning, such as [1,38]. In addition,
while the amortized resource analysis accounts for individual time-step (or heap chunk),
we use termination measures, which are much simpler, to facilitate termination proofs.
For example, to analyze shuffle, Atkey’s logic requires the global length property to
present the polynomial resource associated with the input list using the technique of
Hoffmann and Hofmann [25], which is much harder than locally reasoning about each
node of the list as stated in his paper. Finally, this logic is built on top of just separation
logic, rather than being generic as our proposal.

3 A Logic for Resource Reasoning

In proving termination and non-termination, our goal is to use resource reasoning based
on execution capacity to provide a means for quantitatively assessing the execution
length of a program. For this purpose, we introduce a resource logic to formally assess
the minimum and a maximum bounds on a program’s resource consumption. We first
extend the program state model with a mechanism to track resource capacities of the
underlying machine. Since the particular consumed resource is countable and possibly
infinite, we use the set N∞, short for N ∪ {∞}, as its domain.

3.1 Resource Capacity

Definition 1 (Program states). A program state σ is a triple (s, h, r) of stack s ∈ S
(locals), heap h ∈ H (memory) and r ∈ R, resource capacity where r is a pair (rl, ru)
of bounds in N∞, with 0 ≤ rl ≤ ru, denoting the allowed minimum and maximum
resource consumption for executions starting from the current program state.

Intuitively, a program state’s resource capacity (rl, ru) ensures that any execution
starting from this state must consume at least rl and at most ru of the tracked resource.

Definition 2 (Resource Capacity Ordering). Let (≤c) ⊂ N∞ × N∞ be the resource
capacity ordering, such that (bl, bu) ≤c (al, au) iff al ≤ bl and bu ≤ au.

The resource capacity (al, au) is considered larger (or more general) than (bl, bu)
if al≤bl and bu≤au. The intuition is that under this condition, any execution which
guarantees the capacity (bl, bu) also guarantees the capacity (al, au). Based on this
observation, (0,∞) is the largest resource capacity. In fact, it indicates an unconstrained
resource consumption.

In order to properly define an operational semantics in terms of the proposed program
state model, we also need to be able to express resource consumption. To this end
we define a splitting operation over the resource capacity. We will say that a capacity
(al, au) can be split into capacities (bl, bu) and (cl, cu), written (al, au) 0 (bl, bu) =
(cl, cu), if whenever an execution that guarantees the capacity (bl, bu) starts from a state

A Resource-Based Logic for Termination and Non-termination Proofs 273

(s, h, r) |=Ψ1∨ Ψ2 ≡ (s, h, r) |= Ψ1 or (s, h, r) |= Ψ2

(s, h, r) |=Ψ1∧ Ψ2 ≡ (s, h, r) |= Ψ1 and (s, h, r) |= Ψ2

(s, h, r) |=∃x∗i ·Ψ ≡ ∃ν∗
i ·(s[(xi �→νi)

∗], h, r) |= Ψ

(s, h, r) |=μ ≡ (s, h) |= μ

(s, h, r) |= RC〈al, au〉 ≡ (s, h) |= rl = al ∧ ru = au where r=(rl, ru)

(s, h, r) |= ρ1
 ρ2 ≡ ∀r′·if (s, h, r′) |= ρ1 then (s, h, r ! r′) |= ρ2

Fig. 5. Semantics of Assertions in the Resource-Aware Logic

with the capacity (al, au) then the remaining capacity is (cl, cu). In other words, the
executions allowed by (al, au) can be decomposed into executions required by (bl, bu)
followed by executions required by (cl, cu).

Definition 3 (Resource Capacity Splitting). Given resource capacities (al, au),(bl, bu)
with bu ≤ au and al + bu ≤ au + bl then (al, au)0 (bl, bu) = (cl, cu) where

cl = min{xl ∈ N∞ | xl + bl ≥ al} and cu = max{xu ∈ N∞ | xu + bu ≤ au}.
From Defn. 3, (cl, cu) is the largest resource consumption allowed for any execution

following executions satisfying (bl, bu) such that the overall resource consumption is
described by (al, au). Under this interpretation it follows naturally that when bu > au
the splitting operation is undefined as cu does not exist. In addition, when al + bu >
au + bl, the splitting operation is also undefined as it would lead to cl > cu.

3.2 Assertion Language and Semantics for a Resource-Aware Logic

To support resource reasoning, we extend a minimalistic assertion language with two
resource assertions, as shown in Fig. 4. We use v and v∗ for variables and sequences of
variables, f(v∗) for functions from variables to N∞, μ and Φ to represent resource-free
formulas and ρ for resource assertions.

Ψ ::=
∨
(∃v∗ · μ∧ ρ)∗

Φ ::=
∨
(∃v∗ · μ)∗

ρ ::= RC〈al, au〉 | ρ1
 ρ2

a ::= f(v∗)

Fig. 4. The Assertion Language

The resource assertion ρ ranges over (i) atomic re-
source assertions RC〈al, au〉, where al, au are func-
tions from variables to N∞; and (ii) splitting resource
assertions ρ1
 ρ2, which holds for states that allow
executions to be split into two execution fragments,
on which ρ1 and ρ2 hold respectively.

We concisely list in Fig. 5 the semantic model for
the assertion language. We observe that the usual se-

mantics of the logical connectives, e.g., conjunctions and disjunctions, lifts naturally
over resource assertions. The semantics of the resource-free assertions is straightfor-
ward: a resource-free formula μ holds for all states (s, h, r) such that (s, h) |= μ with
respect to the semantics of the corresponding underlying logic.

We point out that we have chosen to model the RC〈al, au〉 assertion as a precise
predicate. That is, a program state σ satisfies a resource constraint ρ if the resource
capacity in σ is equal to the evaluation, in the context of σ, of the upper and lower
functions associated with ρ. This modeling relation ensures that the resource assertion
ρ is precise with regards to the resource capacity, where (s, h, r) |= ρ does not imply

274 T.C. Le et al.

(s, h, r′) |= ρ whenever r′ is larger than r, i.e., r′ ≥c r. Consequently, RC〈al, au〉 �
RC〈bl, bu〉 iff (s, h) |= al=bl ∧ au=bu. Additionally, RC〈al, au〉 ∧ RC〈bl, bu〉 ≡
RC〈al, au〉 iff al=bl ∧ au=bu; otherwise, RC〈al, au〉 ∧ RC〈bl, bu〉 ≡ false.

To provide a precise modular resource reasoning, we lift the semantic split operation
into a resource splitting assertion ρ1
 ρ2. This enables our proof construction to follow
the same style of other resource manipulating logics, such as separation logic. The
intuition behind the splitting resource assertions is that ρ1
 ρ2 holds for any program
state from which it is possible to consume as many resources as ρ1 requires and end
in a state that satisfies ρ2. Or equivalently, ρ1
 ρ2 holds for all states whose resource
capacity can be split into two portions, such that the resulting capacities satisfy ρ1 and
ρ2, respectively. In addition, we can use
 to add a resource capacity ρ1 into the current
available resource capacity ρ, resulting in ρ
 ρ1. The semantics of ρ1
 ρ2 is also
given in Fig. 5.

3.3 Resource-Enhanced Entailment with Frame Inference

Based on the semantics of resource assertions and the standard definition of the logical
entailment relation (i.e., Ψ1 � Ψ2 iff ∀σ · if σ |= Ψ1 then σ |= Ψ2), it is possible to
define an entailment for resource constraints of the form ρ � ρ1
 ρ2 as follows:

Lemma 1 (Resource Entailments). Given resource assertions ρ, ρ1 and ρ2, ρ � ρ1

ρ2 iff ∀s, h, r, r1 · if (s, h, r) |= ρ and (s, h, r1) |= ρ1 then (s, h, r 0 r1) |= ρ2.

Proof. The proofs of all lemmas in this paper can be found in the technical report [28].
It follows that given 0f , a lifting of resource capacity splitting to functions, then:

(ρ2l , ρ
2
u) = (ρl, ρu)0f (ρ1l , ρ

1
u)

RC〈ρl, ρu〉 � RC〈ρ1l , ρ1u〉
 RC〈ρ2l , ρ2u〉
Entailments of the form ρ � ρ1
 ρ2 are of particular interest in the context of

program verification as they naturally encode the restriction imposed at a method call
and the remaining restriction after the execution of this method. For the proposed re-
source logic, we construct a general entailment system with frame inference by merg-
ing the entailment of resource constraints presented earlier with the entailment system
corresponding to the underlying logic. Let the underlying entailment system be of the
general form Ψ � Φ�Φr denoting that Ψ implies Φ with frame Φr. In sub-structural
logics such as separation logic, the frame captures any residual state that is not required
by the entailment. In pure logics where the program states are not changed, the frame
is simply the antecedent of the entailment.

To support logics with disjunctions, the entailment system firstly deconstructs dis-
junctive antecedents (e.g., using the rule [ENT−DISJ−LHS]) and consequents until for-
mulas of the form μ∧ρ with a single resource constraint6 are encountered in both sides
of the sub-entailments. The judgment system then applies the rule [ENT−CONJ] that
is slightly changed to handle resource constraints by splitting an entailment into two
parts, namely logical part and resource part. The logical goal is solved by the entail-
ment system μa � μc �Φr of the underlying logic. The resource goal is solved by using

6 A conjunction of resource constraints can be simplified to either a single resource constraint
or false as discussed in Sec. 3.2.

A Resource-Based Logic for Termination and Non-termination Proofs 275

the resource entailment rules presented above. The solving process for the resource part
leverages the entailment outcome Φr from the underlying logic, which is simply added
to the antecedent of the resource entailment, to check the condition stated in Defn. 3 for
the resource capacity splitting operation to be defined.

[ENT−DISJ−LHS]

Ψ =
∨
∃v∗i · (μi ∧ ρi)

∀i · (μi ∧ ρi) � Φ�Ψ i
r

Ψ � Φ�
∨
∃v∗i · Ψ i

r

[ENT−CONJ]

μa � μc �Φr

μa ∧ Φr ∧ ρa � ρc
 ρr
μa ∧ ρa � μc ∧ ρc � (Φr ∧ ρr)

3.4 Hoare Logic for Resource Verification

Language. We provide a core strict imperative language with usual constructs, such
as type declarations, method declarations, method calls, assignments, etc. to facilitate
the verification for multiple front-end imperative languages. For simplicity, we choose
a core language without while-loop constructs and assume a preprocessing step that
applies an automatic translation into tail-recursive methods with reference-type param-
eters (declared by the keyword ref).

The pre and post conditions of a method are specified by the requires and ensures

keywords, followed by logic formulas in the assertion language in Fig. 4. Resource-
related assertions always appear in the method preconditions to denote resource re-
quirements imposed on the caller for its execution. In contrast, resource assertions in
the postconditions denote unspent/generated fuel returned to the caller, so that these as-
sertions may not appear in the postconditions, depending on the analyzed resource. For
example, as execution length (i.e., a temporal resource) can only be consumed, it is safe
and convenient to assume that the method consumes all the initially required resource;
thus we can avoid the need for execution length related assertions in postconditions.

Hoare Logic. We observe that the resource consumption of each program statement is
dependent on the tracked resource. As a result, the resource-aware Hoare logic needs
to be adapted accordingly for each resource type. In terms of termination and non-
termination reasoning, we are interested in the execution length as the tracked resource
capacity. In the next section, we will construct a specific Hoare logic to reason about
this resource.

4 (Non-)Termination Proofs via Resource Reasoning

For termination and non-termination reasoning, we have proposed three temporal con-
straints to capture: guaranteed termination Term X , guaranteed non-termination Loop

and possible non-termination MayLoop, where X is a ranking function built from pro-
gram variables. First, we define these constraints as resource capacity assertions, using
the more general RC predicate. Next, we leverage the resource logic in Sec. 3, special-
ized in execution capacity, to construct a logic for termination and non-termination rea-
soning. A resource-based definition for the proposed temporal constraints is as follows:

Definition 4 (Temporal Constraints). Temporal constraints are resource assertions
over program execution lengths, such that TermX ≡ RC〈0f , �〉, Loop ≡ RC〈∞f ,∞f〉

276 T.C. Le et al.

and MayLoop ≡ RC〈0f ,∞f 〉 where 0f and ∞f denote the constant functions always
returning 0 respectively∞. � is a function of program variables to naturals, imposing
a finite upper bound on the execution length of a terminating program.

Using the definition of resource entailments in Lemma 1, we formalize the set of
valid entailments for temporal constraints below:

MayLoop � MayLoop
 MayLoop

MayLoop � TermX
 MayLoop

MayLoop � Loop
 MayLoop

Loop � MayLoop
 Loop

Loop � TermX
 Loop

Loop � Loop
 MayLoop

μ =⇒ Y ≤d X
μ∧TermX � Term Y
 Term X−dY

where ≤d and −d are the ordering and the subtraction operation on the domain of the
termination measures X and Y , respectively. All other decomposition attempts, such as
Term X � MayLoop
 and Term X � Loop
 , describe unfeasible splits. Thus in
those cases, the entailment fails and an error is signaled.

4.1 From Termination Measures to Execution Capacity’s Finite Upper Bounds

In Defn. 4, as X denotes a termination measure, a bounded function that decreases
across recursive method calls, the resource upper bound � must also follow. Thus, the
mapping function from X to � must be an order-embedding denoted by embed(X).
In our approach, the termination measure X is a list of arithmetic formulas over nat-
urals since this formulation is simpler to write than a single but more complex ter-
mination measure and it can be used for a wider range of programs. In general, an
order-embedding of lists of unbounded elements requires ordinals. However, transfinite
ordinals are not suitable to model finite computational resources denoted by TermX .

By a co-inductive argument that every execution of a terminating method only com-
putes finitely many different values, it follows that every non-negative element of a
lexicographic termination measure applied to states of the corresponding call tree is
upper-bounded. We then show that there always exists an order-embeddingL from the
codomain of a termination measure (i.e., tuples of bounded naturals) to naturals, such
that embed(X) = L ◦X .

Lemma 2. If the termination of a program can be proven by a given lexicographic
termination measure, then for each call tree τ of the program, every element of the
termination measure applied to the program states corresponding to the nodes in the
call tree τ is bounded.

If every element xi, where 0 ≤ i ≤ n − 1, of a lexicographic termination mea-
sure [xn, xn−1, . . . , x0] corresponding to a given call tree τ is bounded by a constant
k, we can use the base b = k+1 to construct a possible order-embedding function
D([xn, xn−1, . . . , x0]) = xn ∗ bn + xn−1 ∗ bn−1 + . . .+ x0. The functionD preserves
the order of the given measure along every trace of τ , as stated by Lemma 3.

Lemma 3. For all xn, . . . , x0, yn, . . . , y0 ∈ N such that ∀i ∈ {0..n− 1} · xi, yi < b,
[xn, . . . , x0] >l [yn, . . . , y0] iff D([xn, . . . , x0]) > D([yn, . . . , y0]), where >l is the
lexicographic ordering.

A Resource-Based Logic for Termination and Non-termination Proofs 277

CheckMin(Ψ1) CheckMin(Ψ2)

CheckMin(Ψ1 ∨ Ψ2)

μ � ρl = 0

CheckMin(μ ∧ RC〈ρl, ρu〉)

[FV−CALL]

t0 mn((t v)∗) (ΨPre, ΦPost) {code}∈Prog
Ψ � RC〈1, 1〉�Θ Θ � ΨPre �Φ Ψr = Φ ∧ ΦPost

� {Ψ}mn(v∗) {Ψr}

[FV−RET]

CheckMin(Ψ)

� {Ψ} return v {Ψ ∧ res = v′}

Fig. 6. Hoare Verification Rules: Method Call and Return

In general, such a bounded constant k for a call tree τ can be determined by a func-
tion K of initial values of the call tree’s variables. Since the execution of a loop has
only a single trace, the order-embeddingD, constructed from the constant k, would be
enough to ensure the sufficiency of execution capacity for the loop. However, in order
to give a proper estimate of the execution capacity for more complex recursion patterns,
especially when the termination measures are based on the depth of recursion, we pro-

pose using a more refined embedding for a call tree, that is L =

{
D ,N ≤ 1
ND ,N > 1

, where

N is the maximum number of children for each node of the call tree.
Therefore, given the termination measure X of a terminating program, there always

exists an order-embeddingL from the codomain of X to naturals. The functionL can be
constructed from initial values of program variables and the call trees corresponding to
these initial values. As a result, embed(X) = L◦X is a function from program variables
to naturals, which describes an upper bound on the number of method calls taken by
any execution of the program.

4.2 Termination and Non-termination Verification
Here we elaborate on the construction of both termination and non-termination proofs
based on Defn. 4 and the verification framework in Fig. 6 for tracking execution length
as resource. Although execution length can be tracked at various levels of granularities,
we choose to track it only at method calls (i.e., as the total number of method calls) in
order to simplify the verification rules and the operational semantics. In Fig. 6, we only
outline the Hoare logic rules for the method call and the return statements, which are
especially relevant to the verification of execution lengths as they encode the resource
consumption. The Hoare rules for other constructs are standard because they do not
interact with the resource of interest.

As a standard preprocessing step, we check that all predicate invariants are satisfied,
including the invariants of resource constraints: the resource assertion RC〈ρl, ρu〉 in
precondition ΨPre is consistent if 0 ≤ ρl ≤ ρu, that is, for each disjunct μ ∧ RC〈ρl, ρu〉
of ΨPre it follows that μ � ρu ≥ ρl ∧ ρl ≥ 0. We observe that the invariant check
on Term X requires that every element of X be non-negative to ensure a non-negative
upper-boundL◦X , so that the execution capacity satisfies the invariant 0≤0f≤L◦X .

In the method call rule [FV−CALL], the available execution capacity is first de-
creased by one step, denoted by RC〈1, 1〉, to account the cost of method call, followed
by a check that the callee’s requirements are met. This check is translated into an entail-
ment for proving the method precondition. Finally, the poststate after this method call
is computed. With the help of the resource-enhanced entailment system introduced in

278 T.C. Le et al.

Sec. 3.3, both logical and resource proving are combined into one entailment, resulting
in a standard-looking Hoare rule for method call.

In addition, specifically for temporal constraints, two entailments Ψ � RC〈1, 1〉�Θ
and Θ � ΨPre�Φ can be combined into Ψ � ΨPre�Φ by using a new entailment �t
for temporal constraints.
Definition 5 (Unit Reduction Temporal Entailments). Given temporal constraints θ,
θ1 and θ2, θ �t θ1
 θ2 iff ∀s, h, r · if (s, h, r) |= θ then (s, h, r 0 (1, 1)) |= θ1
 θ2.

Therefore, if θ is Loop or MayLoop then θ �t θ1
 θ2 iff θ � θ1
 θ2. If θ is TermX
then μ ∧ TermX �t Term Y
 Term ((X−d1d)−dY) if μ =⇒ Y <d X , where 1d is
the unit of termination measures’ domain. Basically, the check Y <d X is equivalent
to the check that termination measures are decreasing across recursive method calls in
the traditional termination proof. By introducing the temporal entailment �t, we obtain
a resource-based temporal logic which is related to only the temporal constraints and
thus the underlying resource reasoning becomes implicit.

In the method return rule [FV−RET], the CheckMin predicate, which is also defined
in Fig. 6, ensures that the specified minimum computation resource has been completely
consumed when the method returns. Note that if the method does not terminate, the
minimum guaranteed execution length is always satisfied since the actual return point is
never reached. For temporal constraints, CheckMin holds for any TermX and MayLoop

as the lower bounds in their execution capacities are always 0. In non-termination cases,
CheckMin(μ∧Loop) only holds when μ is unsatisfiable. This check ensures that a return
statement cannot be executed/reachable from a state satisfying Loop.

We now state the soundness of this resource-aware Hoare logic as follows:
Theorem 1. The standard Hoare rules (e.g., assignment, conditional, sequential com-
position) and the Hoare rules for method call and return are sound.
Proof. The proof can be found in the technical report [28].

4.3 Flow-Insensitive Temporal Logic

Observe that the current formulation of the temporal logic with temporal constraints
is flow-sensitive since the entailment θ �t θ1
 θ2 might return a residue θ2 distinct
from θ. However, with the following observations, we can formalize a flow-insensitive
version of the temporal logic and provide a further abstraction on the resource-based
framework presented so far.

First, it is possible to refine the granularity of the termination and non-termination
verification by tracking only execution lengths of (mutually) recursive method calls.
Second, using König’s lemma [27], it is sufficient to inspect individual execution traces
in the call tree for deciding just termination or non-termination, instead of tracking the
total execution length of all traces in the call tree. That is, a program terminates iff every
execution trace is finite; otherwise, the program is non-terminating.

Based on these observations, the tracked resource will be abstracted to capture the
execution capacity required for the longest trace in the call tree, instead of the exe-
cution capacity required for the remaining program. With this, the resource (for the
longest trace allowed) remains unchanged after each splitting operation, which deter-
mines the residue resource needed for subsequent method calls. Thus, for every method,
we endeavor to provide a single abstract resource that is sufficient for executing a given
method call and also its remaining code sequences.

A Resource-Based Logic for Termination and Non-termination Proofs 279

Benchmarks Programs Term Loop MayLoop PC(s) TC(s) Overhead (%)

Invel 59 137 81 12 14.88 15.96 6.77
AProVE 124 534 120 8 15.73 17.21 8.60

Pasta 44 219 10 3 4.95 5.79 14.51
Others 48 194 32 22 7.35 8.78 16.29

Totals/(%) 275 1084 (79.0%) 243 (17.7%) 45 (3.3%) 42.91 47.74 10.12%

Fig. 7. Termination Verification for Numerical Programs

By using this abstraction, we can obtain a formulation on temporal entailment that
ensures θ �t θ1
 θ whereby the temporal constraint in residue is always identical to
the one in the antecedent. Hence, the operator−d can be fully circumvented. Moreover,
the finite upper bound � used for the definition of TermX in Defn. 4 can be determined
as � = D ◦ X , instead of the larger L ◦ X . As a result, without any change to the
Hoare rules, during a method’s verification, the same initial resource capacity is used
for the verification of call traces and thus facilitating a simpler verification procedure
for temporal constraint. As a direct outcome of this abstraction, the temporal assertions
Loop, MayLoop and Term X are now flow-insensitive, and therefore closer to the pure
logic form, as opposed to the sub-structural form of resource logics. Note that flow-
insensitive label applies to only the temporal constraints. In general, program states
(e.g., denoted by separation logic as the underlying logic) remain flow-sensitive since
they might be changed due to changes on heap state and program variables.

5 Experiments

We have implemented the proposed termination logic into an automated verification
system, called HipTNT. The integration of the termination logic into an existing system
allows us to utilize the infrastructure that has been developed for some richer specifi-
cation logics, such as separation logic, beyond a simple first-order logic. Consequently,
we are able to specify and verify both termination and non-termination properties, in
addition to correctness properties for a much wider class of programs, including heap-
manipulating programs. In this system, the final proof obligations are automatically
discharged by off-the-shelf provers, such as Z3 [16]. The expressivity of our new inte-
grated logic is shown in the following experimental results, in which the lexicographic
order is needed for about 25% of the considered programs in our experiments.

5.1 Numerical Programs

HipTNT was evaluated using a benchmark of over 200 small numerical programs se-
lected from a variety of sources: (i) from the literature, such as [13,11], (ii) from bench-
marks used by other systems (that are AProVE [19], Invel [37] and Pasta [18]) and
(iii) some realistic programs, such as the Microsoft Zune’s clock driver that has a leap-
year non-termination bug. Most of the methods in these benchmark programs contain
either terminating or non-terminating code fragments, expressed in (mutual) recursive
calls or (nested) loops. To construct these benchmarks we added the novel termina-
tion specifications to the original examples from the analysis tools for termination and
non-termination. We have chosen these benchmarks in order to show the usability and

280 T.C. Le et al.

practicality of our approach. A comparison with these tools would be of less relevance
as our proposal focuses on verifying the given specifications rather than infer them.

Fig. 7 summarizes the characteristics and the verification times for a benchmark
of numerical programs. Columns 3-5 describe the number of preconditions that have
been specified and successfully verified as terminating, non-terminating or unknown,
respectively. As hoped for, the number of preconditions annotated by MayLoop occupies
the smallest fragment (about 3%) of the total number of preconditions. Such MayLoop

constraints were only used in some unavoidable scenarios, such as (non-)termination
depends on unpredictable user input or non-deterministic assignments to variables. In
contrast, the Term constraints (with the given measures) are in the majority because
most of the methods are expected to be terminating, except for the Invel benchmark
which focuses on mostly non-terminating programs.

Our verification system can perform both correctness and termination proofs. Col-
umn 7 (TC) gives the total timings (in seconds) needed to perform both termination
and correctness proofs for all the programs in each row, while column 6 (PC) gives the
timings needed for just correctness proofs. The difference in the two timings represents
the small overhead needed for termination and non-termination reasoning.

5.2 Heap-Manipulating Programs

We have also conducted termination reasoning on our own benchmark of heap-based
programs using various data structures, on problems under Java Bytecode categories
of the Termination Competition [33] and on some medium programs taken from the
SIR/Siemens test suite [17]. Due to the tight integration with the underlying logics,
the task of specifying and verifying the termination properties was easy even though
some of the programs use non-trivial data structures (e.g., Red-Black and AVL-trees),
or non-linear constraints (e.g., the BigNat program, which implements infinite precision
natural numbers (by linked lists) with procedures for some arithmetic operations, in
addition to a fast multiplication method based on the Karatsuba algorithm). We report
that the termination and expected non-termination of all programs in these benchmarks
are verified successfully with a small overhead (< 5%). Due to space limitation, the
detailed experimental results and discussion on these benchmarks are put in [28].

6 Related Work and Conclusion

There exists a rich body of related works on automatic analysis for termination [30,8,14],
non-termination [21,37,10], and both [19]. However, they consider termination and
non-termination reasoning as distinct from functional correctness reasoning. Therefore,
these works cannot leverage the result of functional correctness analysis to conduct
more intricate (non-)termination reasoning. Recently, Brockschmidt et al. [9] propose a
cooperation between safety and termination analysis to find sufficient supporting invari-
ants for the construction of termination arguments but not considering non-termination.
Chen et al. [12] introduce a similar approach for proving only non-termination. Our
proposal complements these works since our aim is to construct a logic where termi-
nation and non-termination properties are directly integrated into specification logics,
and thus utilize the available infrastructure on functional correctness proofs. We have

A Resource-Based Logic for Termination and Non-termination Proofs 281

achieved this, and have also successfully evaluated its applicability on a wide range of
programs, covering both numerical and heap-based programs.

Related to resource verification, [4] introduces a resource logic for a low-level lan-
guage. While this logic avoids the need of auxiliary counters, it redefines the semantic
model of the underlying logic to track the resource consumption via logical assertions,
making the proposal harder to retrofit to other logics. Moreover, this logic only targets
partial correctness, so that it does not take into account infinite resource consumption.

There are some works that are based on the well-foundedness of inductive definitions
of heap predicates [7,11] or user-defined quantitative functions over data structures [20]
to prove termination of heap-manipulating programs. On one hand, they do not require
any explicit ranking function. On the other hand, these approaches might have problems
with programs like the Karatsuba multiplication method, in which the arguments of
the recursive calls are not substructures of the input lists. In addition, the automated
tools, such as AProVE and COSTA, cannot prove the termination of this method. In
contrast, our approach is more flexible as it allows explicit termination measures, that
are possibly non-linear, for proving programs’ termination. These termination measures
can be constructed from not only the heap structures but also the values of the data
structures’ elements. For example, we use the actual value of the natural presented
by a linked list to bound the execution of the Karatsuba method. Moreover, we also
allow non-termination to be specified and verified for these programs. We believe that
relatively complex examples, such as the Karatsuba method, highlight the benefits of
our approach, which trades a lower level of automation but gains additional power.

The comparison of our approach with the other specification languages, i.e.. Dafny
[31], JML [29], etc., has been discussed in Sec. 1. Another closely related work to ours
is that of Nakata and Uustalu [34]. In this work, a Hoare logic for reasoning about non-
termination of simple While programs (without method calls) was introduced. The logic
is based on a trace-based semantics, in which the infiniteness of non-terminating traces
is defined by coinduction. However, induction is still needed to define the finiteness of
traces. In contrast, with resources, we can unify the semantics of the proposed termina-
tion and non-termination temporal constraints and allow the Hoare logic for functional
correctness to be enhanced for termination and non-termination reasoning with minor
changes. Moreover, our logic allows interprocedural verification in a modular fashion.

Conclusion. Termination reasoning has been intensively studied in the past, but it re-
mains a challenge for the technology developed there to keep up with improvements to
specification logic infrastructure, and vice versa. We propose an approach that would
combine the two areas more closely together, through a tightly coupled union. Our
unique contribution is to embed both termination and non-termination reasoning di-
rectly into specification logics, and to do so with the help of temporal entailment. We
also show how its properties can be captured by a resource logic based on execution ca-
pacity, and how it could be abstracted into a flow-insensitive temporal logic. We believe
this approach would have benefits. Its expressiveness is immediately enhanced by any
improvement to the underlying logics. It can also benefit from infrastructures that have
been developed for the underlying logics, including those that are related to program
analysis. In particular we believe that a possible future avenue for investigation is to use
the safety specifications as a basis for termination specification inference. Last, but not

282 T.C. Le et al.

least, it has placed termination and non-termination reasoning as a first-class concept,
much like what was originally envisioned by Hoare’s logic for total correctness.

Acknowledgement. This work was supported by MoE/NUS research project R-252-
000-469-112.

References

1. Abel, A.: Type-based termination of generic programs. SCP 74(8) (2009)
2. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W., Mostowski,

W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool. SSM 4 (2005)
3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: COSTA: Design and Imple-

mentation of a Cost and Termination Analyzer for Java Bytecode. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 113–132.
Springer, Heidelberg (2008)

4. Aspinall, D., Beringer, L., Hofmann, M., Loidl, H.-W., Momigliano, A.: A program logic for
resources. TCS 389(3) (2007)

5. Atkey, R.: Amortised resource analysis with separation logic. LMCS 7(2) (2011)
6. Baudin, P., Cuoq, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:

ANSI/ISO C Specification Language Version 1.8. (2013),
http://frama-c.com/acsl.html

7. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.W.: Automatic termination proofs for pro-
grams with shape-shifting heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 386–400. Springer, Heidelberg (2006)

8. Bradley, A.R., Manna, Z., Sipma, H.B.: The polyranking principle. In: Caires, L., Ital-
iano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 1349–1361. Springer, Heidelberg (2005)

9. Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through cooperation. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 413–429. Springer, Heidel-
berg (2013)

10. Brockschmidt, M., Ströder, T., Otto, C., Giesl, J.: Automated detection of non-termination
and NullPointerExceptions for java bytecode. In: Beckert, B., Damiani, F., Gurov, D. (eds.)
FoVeOOS 2011. LNCS, vol. 7421, pp. 123–141. Springer, Heidelberg (2012)

11. Brotherston, J., Bornat, R., Calcagno, C.: Cyclic proofs of program termination in separation
logic. In: POPL (2008)

12. Chen, H.-Y., Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.: Proving nontermination via safety.
In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 156–171.
Springer, Heidelberg (2014)

13. Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving conditional termi-
nation. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 328–340. Springer,
Heidelberg (2008)

14. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In: PLDI
(2006)

15. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-
C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504,
pp. 233–247. Springer, Heidelberg (2012)

16. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

17. Do, H., Elbaum, S.G., Rothermel, G.: Supporting Controlled Experimentation with Testing
Techniques: An Infrastructure and its Potential Impact. In: ESE, vol. 10 (2005)

http://frama-c.com/acsl.html

A Resource-Based Logic for Termination and Non-termination Proofs 283

18. Falke, S., Kapur, D.: A term rewriting approach to the automated termination analysis of
imperative programs. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 277–293.
Springer, Heidelberg (2009)

19. Giesl, J., Schneider-Kamp, P., Thiemann, R.: aProVE 1.2: automatic termination proofs in
the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

20. Gulwani, S., Mehra, K.K., Chilimbi, T.: Speed: Precise and efficient static estimation of
program computational complexity. In: POPL (2009)

21. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.-G.: Proving non-
termination. In: POPL (2008)

22. Hehner, E.C.R.: Termination is timing. In: van de Snepscheut, J.L.A. (ed.) MPC 1989. LNCS,
vol. 375, pp. 36–47. Springer, Heidelberg (1989)

23. Hehner, E.C.R.: Specifications, programs, and total correctness. SCP 34(3) (1999)
24. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall (1998)
25. Hoffmann, J., Hofmann, M.: Amortized resource analysis with polynomial potential. In: Gor-

don, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 287–306. Springer, Heidelberg (2010)
26. Jones, C.B.: Balancing expressiveness in formal approaches to concurrency (2013)
27. Kleene, S.: Mathematical logic. Wiley (1967)
28. Le, T.C., Gherghina, C., Hobor, A., Chin, W.-N.: A Resource-Based Logic for Termination

and Non-Termination Proofs, Technical Report (2014),
http://loris-7.ddns.comp.nus.edu.sg/˜project/hiptnt/HipTNT.pdf

29. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral interface
specification language for Java. SIGSOFT Softw. Eng. Notes 31(3), 1–38 (2006)

30. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termina-
tion. In: POPL (2001)

31. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370. Springer, Heidel-
berg (2010)

32. Magill, S., Tsai, M.-H., Lee, P., Tsay, Y.-K.: Automatic numeric abstractions for heap-
manipulating programs. In: POPL (2010)

33. Marché, C., Zantema, H.: The termination competition. In: Baader, F. (ed.) RTA 2007. LNCS,
vol. 4533, pp. 303–313. Springer, Heidelberg (2007)

34. Nakata, K., Uustalu, T.: A hoare logic for the coinductive trace-based big-step semantics of
while. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 488–506. Springer, Heidel-
berg (2010)

35. Nguyen, H.H., David, C., Qin, S.C., Chin, W.-N.: Automated Verification of Shape and Size
Properties Via Separation Logic. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS,
vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

36. Reynolds, J.: Separation Logic: A Logic for Shared Mutable Data Structures. In: LICS (2002)
37. Velroyen, H., Rümmer, P.: Non-termination checking for imperative programs. In: Beckert,

B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 154–170. Springer, Heidelberg (2008)
38. Xi, H.: Dependent Types for Program Termination Verification. In: LICS (2001)

http://loris-7.ddns.comp.nus.edu.sg/~project/hiptnt/HipTNT.pdf

Practical Analysis Framework for Software-Based
Attestation Scheme

Li Li1, Hong Hu1, Jun Sun2, Yang Liu3, and Jin Song Dong1

1 National University of Singapore, Singapore
2 Singapore University of Technology and Design, Singapore

3 Nanyang Technological University, Singapore

Abstract. An increasing number of "smart" embedded devices are employed in
our living environment nowadays. Unlike traditional computer systems, these de-
vices are often physically accessible to the attackers. It is therefore almost impos-
sible to guarantee that they are un-compromised, i.e., that indeed the devices are
executing the intended software. In such a context, software-based attestation is
deemed as a promising solution to validate their software integrity. It guarantees
that the software running on the embedded devices are un-compromised without
any hardware support. However, designing software-based attestation protocols
are shown to be error-prone. In this work, we develop a framework for design
and analysis of software-based attestation protocols. We first propose a generic
attestation scheme that captures most existing software-based attestation proto-
cols. After formalizing the security criteria for the generic scheme, we apply our
analysis framework to several well-known software-based attestation protocols
and report various potential vulnerabilities. To the best of our knowledge, this is
the first practical analysis framework for software-based attestation protocols.

1 Introduction

"Smart" sensory embedded devices are getting more and more popular nowadays. They
are frequently used for temperature measurement, fire detection, water saving, etc. In
the near future, they are expected to be ubiquitous. However, their wide adoption poses
threats to our safety and privacy as well. Unlike traditional computer systems, these
devices are often physically accessible to the attackers and it is almost impossible to
guarantee that they are un-compromised, i.e., that indeed the devices are executing the
intended software. Effective techniques for verifying and validating the embedded de-
vices against malicious adversary becomes increasingly important and urgent. Tradi-
tional hardware-based attestation [1,2,3,4] is cost-ineffective in such a context. Thus,
software-based attestation [5,6,7], which aims to function without any dedicated secu-
rity hardware, is deemed as a promising solution for verifying the integrity of these
massive, inexpensive, and resource constrained devices.

Software-based attestation is based on the challenge-response paradigm between the
trusted verifier and the potentially compromised prover (the embedded device). It typ-
ically works as follows. The verifier first sends a random challenge to the prover and
asks the prover to generate a checksum for its memory state based on the challenge.
Since the prover’s computing and memory resources are designed to be fully utilized

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 284–299, 2014.
c© Springer International Publishing Switzerland 2014

Practical Analysis Framework for Software-Based Attestation Scheme 285

in the attestation, if the memory is tampered by the adversary, the prover needs to take
extra time to compute the correct checksum. We further assume that the verifier knows
the expected memory state of the prover. He thus can compute the same checksum and
compare it with the one received from the prover. By exploiting the fact that the prover
is resource constrained, software-based attestation ensures that the prover can return the
correct response in time only if it is genuine. On the other hand, whenever the prover
fails to reply in time or returns an incorrect checksum, it is highly likely compromised.

The software-based attestation protocol design is challenging and error-prone [8,9].
Hence, in this work, we propose an analysis framework for software-based attestation
that can be easily adopted in practice. First, our framework provides a parameterized
generic software-based attestation scheme that captures most existing software-based
attestation protocols. The adversary modeled in this work can not only compromise the
prover before the attestation, but also communicate with the compromised prover dur-
ing the attestation. We then formalize the security criteria for the generic scheme based
on the knowledge of network latency (which is important as timing is essential here)
and adversary model. Since the real software-based attestation protocols are instances
of the generic scheme, these criteria thus naturally should be hold in the real protocols
as well. Hence, we apply our analysis framework to three well-known software-based
attestation schemes, i.e., SWATT [5], SCUBA [7] and VIPER [10], and find four poten-
tial vulnerabilities that have not been reported before. As far as we know, this is the first
framework that can give practical analysis to real software-based attestation protocols.

2 Generic Specification for Software-Based Attestation

We start with defining a generic software-based attestation scheme which captures most
existing software-based attestation protocols. The idea is that analysis results based
on the generic schema can be extended to concrete protocols readily as we show in
later sections. The generic software-based attestation scheme involves three parties,
i.e., the trusted verifier V , the prover (the embedded device) P and the adversary A.
We denote the genuine prover and the compromised prover as Pg and Pc respectively.
In this section, we first present the system model, including the system architecture,
the security property and the threat model. Then we propose a generic software-based
attestation scheme between the trusted verifier V and the genuine prover Pg based on
our system.

2.1 System Overview

Software-based attestation is proposed to verify the resource constrained embedded
devices without using any security hardware (e.g., TPMs [11]). Before presenting the
details of the generic attestation scheme, we first describe the system model employed
in this work. The attestation procedure is conducted between a trusted verifier V and a
prover P over the network. We explicitly consider the network round-trip time (RTT).

The architecture of the verifier V and the prover P considered in this work are de-
picted as follows. P consists of a computing processor, several registers and a memory
M . The data memory Md and the program memory Mp are two different memory

286 L. Li et al.

space that should be attested in M . Specifically, Md stores the runtime data (e.g., stack
information, data collected from the environment) that are unpredictable to V , hence
its content cannot be attested directly in the attestation procedure. Mp stores the pro-
gram code which is known to V . The attestation routine verif on the prover side is
pre-installed in Mp before the attestation starts. In general, the size of Md could be 0
when the attestation for the data memory is not required. Notice that some memory can
be excluded from the attestation in some specific attestation protocols [12,7,10], and
thus Md +Mp may not equal to M . Meanwhile, V is a powerful base station who can
simulate the execution of P . When V has the image of both Md and Mp in P , V can
compute the memory checksum based on the image.

During the attestation, P’s data memory Md will be first overwritten into a state that
is known to V . The attestation then aims at verifying whether P has a genuine state for
both Md and Mp as V expected. Let State(P) be the memory state of Md + Mp in
the prover P . When State(P) is known to V , the attestation can be modeled by a game
between the verifier V and the prover P . In the game, V first sends a random challenge
to P , and then P picks a checksum reply based on the challenge. The prover P wins if
the used time is less than some threshold and the checksum is correct, otherwiseP loses
the game. We denote the percentage of differences between two memory states S and S′

as λ(S, S′) and the winning probability of P as Pw(L,P), where L denotes the system
and its configurations. We define an attestation protocol as correct if Pw(L,Pg) = 1,
which means that the genuine prover Pg can always win. On the other hand, when μ
is the least memory proportion that should be modified in the compromised prover Pc

to perform a meaningful attack, we define an attestation protocol as 〈ε, μ〉-secure if
∀Pc, λ(State(Pc), State(Pg)) ≥ μ > 0 ⇒ Pw(L,Pc) ≤ ε, which means that any
prover who needs to overwrite at least μ percentage of the attested memory has the
winning probability of no more than ε. In the attestation, the adversary wins if and only
if he can keep the malicious code in the attested memory after the attestation. However,
software-based attestation does not guarantee that the device is unmodified before the
attestation.

The adversary A’s capability is specified with two phases. Before the attestation
begins, A can use unlimited resources to reprogram the memory in Pc. However, A
cannot change the physical hardware and the network infrastructure, so Pc’s memory
storage, computing power and network latency are fixed. Once the attestation starts, A
cannot modify Pc’s memory content anymore. Nevertheless, A can communicate with
Pc over the network and compute with unlimited resources.

Notations. The notations used in this paper are listed as follows. We write X,Y, Z
to denote sets and x, y, z to denote elements in the sets. f(x : X, y : Y) → z : Z
represents a function f that maps the tuple of two elements x, y to the element z. Let
n be a natural number. Xn stands for the concatenation of n elements in X . X × Y
is the Cartesian product of X and Y . Let D be a probabilistic distribution over set
X . x ←[D]− X means assigning an element of X to x according to D. [n . . .m]
represents the integers from n to m. [n,m] stands for the real numbers from n to m.
maxx,y{f(x, y)} stands for the maximum value of f(x, y) for any x and y. Pr [x]
denotes the probability of x.

Practical Analysis Framework for Software-Based Attestation Scheme 287

Checksum Computation comp(Sa, g0, r0)
Sa is the memory state of P under attestation.
g0 is the address generator seed.
r0 is the checksum response seed.
for i in [1 . . . n] do
gi = Gen(gi−1);
ai = Addr(gi);
ci = Read(Sa, ai);
ri = Chk(ri−1, ci);

end
return rn;

g0 Gen g1

Addr

a1

Read

c1

Chkr0 r1

Gen g2

Addr

a2

Read

c2

Chk r2

. . .

. . .

Gen gn

Addr

an

Read

cn

Chk rn

Fig. 1. Checksum Computation

2.2 Generic Attestation Scheme

In this section, we propose a generic specification for software-based attestation scheme
that captures most existing software-based attestation protocols. The specification is
described in two parts. First, given a memory state Sa = State(P) of both Md and Mp,
we introduce the checksum computation routine that compute the memory checksum as
shown in Figure 1. Then, we illustrate the generic software-based attestation scheme
which first securely erases the data memory Md and then attests the whole memory
Md +Mp with the checksum computation routine.

The Checksum Computation Routine comp(Sa, g0, r0) aims at computing the un-
forgeable checksum for memory state Sa based on the initial address generator g0 and
initial memory checksum r0. It iteratively computes the address generator gi, the mem-
ory address ai, the memory content ci and the checksum response ri for i ∈ [1 . . . n]
as shown in Figure 1. The four functions used in the generic scheme are illustrated as
follows. In the following paper, lg, la, lc and lr represent lengths of gi, ai, ci and ri
respectively.

– Gen(gi−1 : {0, 1}lg) → gi : {0, 1}lg computes the generator gi of the memory
addresses in a random manner incrementally.

– Addr(gi : {0, 1}lg)→ ai : {0, 1}la converts the random generator gi to the mem-
ory address ai.

– Read(Sa : {0, 1}la × {0, 1}lc , ai : {0, 1}la) → ci : {0, 1}lc reads the memory
content ci located at the address ai in Sa.

– Chk (ri−1 : {0, 1}lr , ci : {0, 1}lc) → ri{0, 1}lr updates the last checksum re-
sponse ri−1 with the memory content ci to the new checksum ri.

The Generic Software-Based Attestation Scheme is shown in Figure 2. The func-
tions used in the figure are illustrated as follows. rand(x) generates a random bit-
string and stores it into x. fill(M,S) fills the memory M with state S. Gen0(o, g0)
and Chk0(o, r0) derive the initial values for the generator and the checksum from the
challenge o and store them into g0 and r0 respectively. comp(Sa, g0, r0) illustrated pre-
viously computes the checksum for memory state Sa with the generator seed g0 and

288 L. Li et al.

VerifierVerifier

Prover Prover

Registers

(2.2)
V : record(t1)

V : o

(1.3)
P : fill(Md, S

′
d)

(2.3)
P : Gen0(o, g0)

P : Chk0(o, r0)

P : comp(Sa, g0, r0)

(2.5)
V : bound(t1, t2)

V : equal(comp(Sa, g0, r0), rn)

V : code update . . .

(2.1)
V : rand(o)

Registers Registers(1.1)
V : rand(S′

d)

V : fill(M ′
d, S

′
d)

(1.2)
V → P : S′

d

(1.4)
P → V : FIN

(2.4)
P → V : rn

V : record(t2)

 M ′
d(0) M ′

d(S
′
d)

 Md(Sd) Md(S
′
d)

 Mp(Sp)

 Verif Verif

Register

 Mp(Sp)

 M ′
p(Sp)

 Sa = S′
d + Sp

 M ′
p(Sp)

Fig. 2. Generic Software-based Attestation Scheme

the response seed r0. record(t) records the current time into t. bound(t1, t2) checks
whether t2 − t1 is smaller than a time bound. equal(x, y) checks if x and y are equiva-
lent. I : op means that I conducts the operation op. I1 → I2 : m means that I1 sends
the message m to I2. The generic software-based attestation scheme proposed in this
work is divided into two phases as shown in Figure 2.

Phase 1. Secure Erasure overwrites the data memoryMd with random noise. Initially,
P’s data memory image M ′

d in V are filled with 0, while Md in P has the memory
state Sd consisting of information generated at runtime. At the end of this phase, P
and P’s image in V have the same memory state S′

d filled with random noise.
1. When V wants to start the attestation, it first overwritesP’s data memory image

M ′
d in V to a random state S′

d, which is generated by the rand(S′
d) function.

2. V sends S′
d to P and asks P to overwrite its Md with S′

d.
3. P accepts V’s requests and updates his Md with S′

d. In fact, the last step (1.2)
and this step (1.3) can be streamlined. WheneverP receives a value from V , he
writes it into the corresponding data memory location.

4. When Md is filled with S′
d, P sends a FIN signal to start the second phase.

Phase 2. Checksum Computation aims at attesting both Md and Mp inP and discov-
ering memory modification with overwhelming probability. When the first phase is
finished, V can run the second phase for multiple times consecutively. Upon the
beginning of the second phase, V knows the memory state Sa = State(P).
1. V first picks a random challenge o.

Practical Analysis Framework for Software-Based Attestation Scheme 289

2. V sends o to P and asks P to compute the checksum for his memory state
Sa = Sp + S′

d. V also records the time t1 when the request is sent.
3. After P derives the initial address generator g0 and the initial checksum re-

sponse r0 from the challenge o, he computes the checksum over the memory
state Sa with comp(Sa, g0, r0) illustrated in Figure 1.

4. As soon as the checksum computation routine is finished, P sends the check-
sum rn back to V . V again records the time t2 when rn is received.

5. Once V receives rn from P , he checks two conditions: (1) whether the check-
sum is received within the timing threshold {bound(t1, t2) = true} and (2)
whether the checksum is correct {equal(comp(Sa, g0, r0), rn) = true}. If
both of the conditions are satisfied, P is trusted as genuine and V will update
P’s unattested memory. Otherwise, P is deemed as compromised.

Assumptions. In order to guarantee the correctness of the protocol, we make the fol-
lowing assumptions. First, P either has the attestation procedure verif pre-deployed
in its program memory Mp or can download it into a pre-allocated memory space in
Mp at runtime before the attestation starts. Second, V knows the exact memory image
of Mp in P . Md and Mp share the same address space. Third, the attestation proce-
dure verif implemented in P is optimal in terms of execution speed. Fourth, S′

d and
o are unpredictable to the prover. Fifth, the cryptographic primitives used in the attes-
tation procedure are perfect. This assumption does not reduce the security offered by
our framework to the real applications. We can update the attestation procedure with
the state-of-the-art cryptographic implementations that are unbreakable at the moment.
For instance, when a hash function is needed in the attestation, we use SHA-2 or SHA-3
that are safe for the time being. Sixth, the adversary cannot personate the prover and
communicate with the verifier directly, which means that the verifier is connected to
the prover via a controllable channel during the attestation, e.g., a bus used in [10].
When the adversary can personate the prover, the software-based attestation protocol is
trivially broken because the adversary can answer the challenge for the prover.

3 Security Criteria Formalization

In this section, we introduce several attack scenarios. Based on the attacks, we formalize
the security criteria for the generic attestation scheme. When the compromised prover
Pc computes the checksum by itself, we need to discuss two cases: (1) the checksum
is computed with the checksum computation routine at runtime, or (2) the checksum is
pre-computed. In the first case, when the memory and the registers are fully utilized as
shown in Section 3.1, we measure the winning probability of Pc who trades computa-
tion power for memory space (memory recovering attack) in Section 3.2. In the second
case, we discuss the scenario where Pc stores the pre-computed challenge-response
pairs in the its memory (challenge buffering attack) in Section 3.3. On the other hand,
when Pc does not compute the checksum by itself, it can ask A to compute the check-
sum (proxy attack) as introduced in Section 3.4. When the memory and the registers
are fully attested, since the above three attack methods are orthogonal, the winning
probability of the compromised prover Pw(L,Pc) then can be calculated by the most
effective attack among them. Some used notations are summarized in Table 1.

290 L. Li et al.

Table 1. Notation Summary

Name Explanation Size
Md(Sd) Data memory Md filled with memory image state Sd md unit
Mp(Sp) Program memory Mp filled with memory image state Sp mp unit
M(S) Overall memory M filled with memory image state S m unit a

o The challenge sent from V to P lo bit
gi Address generators for i ∈ [0 . . . n] lg bit
ai Memory addresses for i ∈ [0 . . . n] la bit
ci Memory contents for i ∈ [0 . . . n] lc bit
ri Checksum responses for i ∈ [0 . . . n] lr bit
Tmin
V , Tmax

V Network RTT between V and Pg varies from dmin
g to dmax

g -
Tmin
A , Tmax

A Network RTT between A and Pc varies from dmin
c to dmax

c -
dGen , dAddr , dRead , dChk Computation time for Gen , Addr , Read and Chk resp. -
dg The time needed by Pg to compute the memory checksum -
dth The timing threshold on the verifier side -
n The number of iterations in a single checksum computation -
k The number of consecutive checksum computation (Phase 2) -
u The number of registers used to store the checksum -

a m may not equal to md +mp when some memory is left unattested.

3.1 Full Utilization of Memory and Registers

In the checksum computation routine, the memory are accessed in a random manner
which is unpredictable for the prover before the attestation. Whenever the attested mem-
ory is tampered, the malicious prover thus need to take extra time to recover the original
memory. In order to prevent the malicious prover from cheating, every memory address
should be accessible in the checksum computation. Additionally, the registers should be
fully occupied as well. In this section, we formalize several design principles to ensure
fully utilization of the memory and registers in the checksum computation routine.

Choosing Random Function. During the checksum computation, Gen is a random
function from lg bits to lg bits, and Addr converts the lg bit generators to the la bit
addresses. Thus, we can take the concatenation of Gen and Addr as a random func-
tion from lg bits to la bits. Since all possible addresses should be accessible when the
generators are traversed, proper configuration of the random function in the attestation
scheme becomes non-trivial. We discuss two kinds of randomization functions in this
work, i.e., the hash oracle and the encryption oracle.

The hash oracle receives a bit-string as input and returns a corresponding random
bit-string as output. Since every hash output is computed independently, according to
the coupon collector’s problem, the expected number of independent runs to cover all
possible output values grows as Θ(t · log(t)) where t is the number of possible output
values. In other words, if the addresses (ai) and the generators (gi) have the same length,
it is very likely that some memory addresses are uncovered. For instance, when the
hash function SHA-2 is used and both of the generator and the memory address have
the same length of 32bit, only 64% of the addresses can be covered on average when
the generators are traversed in our experiments. By enumerating all possible generators

Practical Analysis Framework for Software-Based Attestation Scheme 291

in the preparation phase, the adversary may find sufficient uncovered addresses and
use them to store the malicious code. As a consequence, when hash oracle is used
in the attestation protocols, the number of generators should be much larger than the
number of addresses. By applying the tail estimate to the coupon collector’s problem,
we can calculate the probability lower-bound of covering all addresses under attestation
as 1− (md +mp)

1−2lg /((md+mp)·log(md+mp)).
On the other hand, the encryption oracle can be used to generate random numbers as

well by revealing the encryption key to the public. Since the encryption oracle is bijec-
tive, all of the memory addresses should be covered in the generator traversal when the
generator length is not less than the address length. As a result, the encryption oracle
becomes very suitable for the random number generation in software-based attestation.
Two heavily used implementations of the encryption oracle in the software-based attes-
tation protocols are the stream cipher RC4 and the T-function [13]. RC4 is chosen as
the PRNG in SWATT [5] because of its extreme efficiency and compact implementa-
tion in the embedded devices. Meanwhile, T-function can produce a single cycle, which
ensures the traversal of generators. Thus, it is employed in ICE scheme proposed in
ICUBA [7]. A widely used T-function is x ← x + (x2 ∨ 5) where ∨ is the bitwise or
operator.

Full Address Coverage at Runtime. Even though the addresses can be fully covered
in the generator traversal, the actual address coverage is also related to the number of
addresses generated at the runtime, which is decided by the number n in the check-
sum computation routine (Figure 2) and the repeat time k of the consecutive checksum
computation (Phase 2). According to the coupon collector’s problem, in order to fully
traverse the whole memory space in the attestation procedure, the minimal number of
memory access n · k should satisfy

Pr [n · k > c · (md +mp) · log(md +mp)] ≤ (md +mp)
1−c. (1)

Full Register Occupation. According to several existing works [5,7,10], the registers
in P are frequently used to store the checksum results. During every iteration in the
checksum computation, one of them gets updated to a new value. When any register is
unused in the attestation, the malicious prover can exploit it to conduct attacks. Thus,
all the registers should be occupied. Moreover, the registers should be chosen in a ran-
dom order so the malicious prover cannot predict which one is used next. Let the total
number of registers used for storing the checksum be u. According to the coupon col-
lector’s problem, the probability of covering all registers in the checksum computation
is lower-bounded by 1− u1−n/(u·log(u)).

3.2 Pc Follow Checksum Computation Routine: Memory Recovering Attack

Given a genuine prover Pg with the memory state Sg and a compromised prover Pc

with the memory state Sc, the probability of distinguishing their states with a single
memory access depends on two factors. The first factor is the percentage of the differ-
ences between Sg and Sc, which could be defined as λ(Sg, Sc) = Pr [Read(Sg, a) �=
Read(Sc, a)|a ∈ {0, 1}la]. When λ(Sg, Sc) is sufficiently large, we can easily detect

292 L. Li et al.

the modifications in the memory. The second factor is related to the memory content
bias in Pg. For instance, the program in Pg usually contains a large amount of du-
plicated assembly code such as mov, jmp, call, cmp, nop, etc. These assembly code
can be approximated with high probability. As a consequence, the compromised prover
can overwrite the biased memory content into malicious code and recover the original
content using a recovering algorithm C with high probability. Assume the overwriting
algorithm is W , the minimal overwriting potion is μ, and memory recovering time dC
is no more than δ ·dRead as required, we could calculate the optimal success probability
of the memory recovery as

Pm(S, μ, δ) = maxC,W{Pr [Read(S, a) = C(W(S), a)

| a ∈ {0, 1}la]| δ · dRead ≥ dC ∧ λ(S,W(S)) ≥ μ}

for any recovering algorithm C and overwriting algorithm W . δ is the allowed timing
overhead for the recovering algorithm comparing with the Read operation. We will dis-
cuss more about δ in Section 3.4. When δ ≥ 1, we can always implement the recovering
algorithm C for any S as C(S, a) = Read(S, a), so Pm(S, μ, δ) ≥ 1− μ.

Since Pc needs to recover the memory content for n times in the checksum compu-
tation routine, he can compute the correct checksum if either the memory is recovered
successfully for every iteration or the computed checksum collides with the correct one.
So overall success probability forPc is Pn

m(S, μ, δ)+(1−Pn
m(S, μ, δ))·2−lr . As can be

seen from the formula, the success probability is lower-bounded by 2−lr . So increasing
n becomes less significant when n becomes larger. As a consequence, we can define a
threshold η for the potential probability increase and then give a lower-bound to the n
used in the checksum computation.

Pn
m(S, μ, δ) · (1− 2−lr) ≤ η =⇒ n ≥ log(η)− log(1− 2−lr)

log(Pm(S, μ, δ))
(2)

In this work, we suggest to set η = 2−lr which is the success probability’s lower-bound.
Additionally, we recommend the attestation protocols to set n as the lower-bound given
in formula (2) for efficiency and conduct the checksum computation phase (Phase 2)
for multiple times to give better security guarantee.

Full Randomization of Data Memory. In the first phase of the generic attestation
scheme, V asks P to overwrite its data memory with S′

d filled with noise. The unpre-
dictability of S′

d enforces P to erase its data memory completely. A similar design is
taken in [14], but its S′

d is generated by P using a PRNG seeded by a challenge sent
from V . As we discussed above, the recovering algorithm can use the PRNG to generate
the memory state with the received challenge at runtime, so Pc can trade the computa-
tion time for memory space. As a result, Pc can keep the malicious code in its memory,
but still produce a valid checksum. In Section 3.4, we show that the checksum compu-
tation can have overhead to a degree, so this attack is practical. We thus emphasize that
S′
d should be fully randomized by V .

Practical Analysis Framework for Software-Based Attestation Scheme 293

3.3 Pc Pre-compute Checksum: Challenge Buffering Attack

The attestation scheme is trivially vulnerable to challenge buffering attack that stores the
challenge-response pairs directly in the memory. Upon receiving a particular challenge
from V , Pc looks for the corresponding checksum from its memory without computa-
tion. Since S′

d and o are received in the attestation procedure, the challenge-response
stored in the memory is the tuple 〈S′

d, o, rn〉 which has the length of md · lc + lo + lr.
Thus, the memory can hold m · lc/(md · lc + lo + lr) records at most. Additionally,
we have 2md·lc+lo different receivable values. When Pc cannot find the record, he can
choose a random response from {0, 1}lr . As a consequence, the probability of comput-
ing the correct response with challenge buffering attack method forPc can be expressed
as follows.

Pb(lo, lc, lr,md,m) = b+
1− b

2lr
where b =

m · lc
(md · lc + lo + lr) · 2md·lc+lo

(3)

As can be seen, Pb(lo, lc, lr,md,m) is also lower-bounded by 2−lr . So we make the
similar suggestion for formula (3) as in Section 3.2 that b · (1 − 2−lr) ≤ 2−lr .

3.4 Pc Forward Checksum Computation to A: Proxy Attack

As reported in [10], the software-based attestation is particular vulnerable to the proxy
attack, in which the compromised prover Pc forwards the challenge to the adversary
A (a base station) and asks A to compute the checksum for it. In order to prevent
the proxy attack, the expected checksum computation time should be no larger than a
time bound, so that Pc does not have time to wait for the response from A. However,
one assumption should be made that A cannot personate Pc and communicate with V
directly. Otherwise, the software-based attestation is trivially broken. The assumption
can be hold when V is connected to Pc using special channels (e.g., bus, usb) that A
has no direct access to.

Assume the network RTT between V and Pg varies from Tmin
V to Tmax

V and the
honest prover Pg can finish the checksum computation with time dg = n · (dGen +
dAddr + dRead + dChk), the timing threshold dth on the verifier side thus should be
configured as

dth ≥ dg + Tmax
V (4)

to ensure the correctness of the attestation protocol defined in Section 2.1. Hence,
the maximum usable time for Pc can be defined as dc(T) = dth − T , where T ∈
[Tmin

V , Tmax
V] is the real network latency between Pc and V .

On one hand, Pc could use dc(T) to conduct the proxy attack. If the network RTT
between A and Pc varies from Tmin

A and Tmax
A , in order to prevent the proxy attack

completely, we need to make sure that dc(T
min
V) < Tmin

A , which means the proxy
attack cannot be conducted even under the optimal RTT for Pc. Thus, the attestation
time for the genuine prover should be constrained by

dth < Tmin
A + Tmin

V . (5)

294 L. Li et al.

Table 2. Settings of Software-based Attestation Protocols Studied in Section 4

Parameters SWATT SCUBA VIPER
lo, lg, lr (bit) 2048a , 16, 64 128, 16, 160 -, 32, 832
lc, la (bit) 8, 14 8, 7 8, 13
md,mp,m (unit) 0K, 16K, 17K 0K, 512, 58K 0K, 8K, 4120K
Tmin
A , Tmax

A - ≤ 22ms, 51ms 1152ns(43.34ms)b , 44.10ms
Tmin
V , Tmax

V - ≤ 22ms, 51ms 1375ns, 1375ns
dth , dg -, 1.8s 2.915s, 2.864s 2300ns, 827ns
n, k, u 3.2E+05, 1, 8 4.0E+04, 1, 10 3, 300, 26

a This value is absent in [5] and assigned by us. The justification is made in
Section 4.1.

b The RTT in the parentheses is the real network latency collected in the exper-
iments of [10]. The RTT in front is the theoretical lower-bound used in [10].

On the other hand, Pc could use dc(T) to conduct the memory recovering attack. So
we calculate the δ specified in the memory recovery attack as follows.

dGen + dAddr + δ · dRead + dChk

dGen + dAddr + dRead + dChk
=

dc(T)

dg
=

dth − T

dg
(6)

Since, δ ∝ d−1
g ∝ n−1, in order to keep the δ small, the checksum computation routine

should use the largest n as possible, when formula (4) and (5) are still satisfied.

4 Case Studies

In this section, we analyze three well-known software-based attestation protocols, i.e.,
SWATT [5], SCUBA [7] and VIPER [10]. Since the generic software-based attestation
scheme is configured with the parameters listed in Table 1, we first extract them from
the real protocols as shown in Table 2. As can be seen, our generic attestation scheme
can capture existing software-based attestation protocols readily. Then, we apply the
security criteria described in Section 3 manually to the extracted parameters to find
security flaws. In the following subsections, we briefly introduce the protocols first, and
then give detailed vulnerabilities and justifications grouped by the topics in bold font.
We mark the topics with " " " if they are reported for the first time in the literature.

4.1 SWATT

SWATT [5] randomly traverses the memory to compute the checksum. Its security
is guaranteed by the side channel on time consumed in the checksum computation.
SWATT does not consider network RTT, so we do not discuss time related properties
for SWATT. In addition, SWATT uses RC4 as the PRNG and takes the challenge as the
seed of the RC4. As the length of the challenge chosen in the SWATT is not mentioned
in [5], we assume that the challenge is long enough to fully randomize the initial state
of RC4, which means lo = 256 · 8 bits.

Practical Analysis Framework for Software-Based Attestation Scheme 295

Unattested Data Memory. The micro-controller in SWATT has 16KB program mem-
ory and 1KB data memory. Based on the analysis of the generic attestation scheme,
SWATT is insecure because it neither has Secure Erasure Phase to overwrite the data
memory nor uses any additional complement to secure the data memory. In fact, the
authors of SWATT assumed in [5] that non-executable data memory can do no harm to
the security of software-based attestation by mistake. In [9], Castelluccia et al. point out
that the data memory should be verified in SWATT, otherwise the protocol is vulnerable
to the ROP [15,16] attack. In this work, we suggest to securely erase the data memory
in SWATT by following our generic attestation scheme.

�Too Large Iteration Number for Computing One Checksum. The main loop of
SWATT has only 16 assembly instructions, which takes 23 machine cycles. Inserting
one if statement in the loop will cause additional 13% overhead. As a result, we assume
that the recovering algorithm C only has time to read the memory content as Read does
without doing any extra computation. Hence, the success probability of the memory
recovering of SWATT becomes Pm(S, μ, δ) = 1 − μ, where μ is the percentage of
the modified memory. According to the formula (2), after setting η as suggested, we
have n ≥ −64/log(1 − μ). When μ = 0.001 which left only 16 byte memory for the
adversary, we should set n as 44340, which is much smaller than the iteration number
320000 used in SWATT. In order to increase the difficulty of attacking the attestation
protocol and traverse the memory address in the platform, more rounds of checksum
computation could be conducted. According to formula (1), when μ = 0.001, n =
44340 and c = 2 (the same setting in SWATT), we have k ≥ 11. So we should conduct
the checksum computation for 11 times. By using this new configuration, the overall
memory access time is approximately the same as SWATT while security guarantee
becomes dramatically better.

4.2 SCUBA

SCUBA [7] is a software-based attestation protocol that based on Indisputable Code
Execution (ICE). Rather than attesting the whole memory, the ICE offers security guar-
antee by only verifying a small portion of the code. The Read and Chk implemented
in the ICE scheme are different from those given in Section 2.2. However, they can be
generalized into our framework. In SCUBA, Read not only reads the memory content,
but also returns the Program Pointer (PC), the current address, the current generator,
the loop counter and other registers. The Chk function then computes the checksum
based on all of them. In order to compute the correct checksum for the modified attes-
tation routine, the malicious prover has to simulate the execution for all of them, which
thus lead to large and detectable overhead on the computation time. If the malicious
prover do not change the attested code, the attested code can update the prover’s whole
memory to a genuine state so the malicious code shall be removed from the prover.
�Proxy Attack is Indefensible. In SCUBA, network RTT is explicitly evaluated in the
experiment as summarized in Table 2. The prover in SCUBA communicates with the
verifier over wireless network. Even though the adversary is assumed to be physically
absent during the attestation in SCUBA, this assumption seems to be too strong to be
hold in a wireless network. Thus, we analyze the proxy attack for SCUBA as follows.

296 L. Li et al.

According to [7], the maximum network RTT is 51ms in SCUBA. By observing
the experiment results, the minimum network RTT should be no larger than 22ms. As
the adversary and the verifier share the same wireless network, the network latency
for their communication with the prover should be indifferent. So we have Tmin

A =
Tmin
V ≤ 22ms and Tmax

A = Tmax
V = 51ms. According to formula (4), we have

dth ≥ dg + Tmax
V ≥ 51ms. On the other hand, according to formula (5), we have

dth < Tmin
A + Tmin

V ≤ 44ms. Hence, we cannot find a valid threshold dth from this
network configuration. When the adversary presents in the attestation, the proxy attack
thus cannot be defended by SCUBA without additional assumptions.

Moreover, if the verifier does not communicate with the prover with a secure channel
(e.g., the verifier uses the wireless network to the communicate with the prover in this
case), the adversary can personate the prover and send the checksum to the verifier
directly. Since the adversary can compromise the prover, he can obtain the secret key
stored in the prover as well. So encrypting the wireless channel will not work. We
suggest that the verifier should communicate with the prover in an exclusive method,
such as the usb connection, which is also inexpensive. More importantly, the adversary
cannot use this communication method as it is highly controllable.
Security Claim Justification. Our framework can not only be used to find potential vul-
nerabilities, but also give justifications to the security claims made in existing works. In
SCUBA [7], the malicious prover may exploit the network latency to conduct memory
recovering attack without being detected. However, if the timing overhead of the at-
tack is even larger than the largest network latency, the attack then becomes detectable.
According to this, the authors of SCUBA claim that the checksum computation time
adopted in SCUBA can always detect the memory copy attack, which is the most ef-
ficient memory recovering attack method known to the authors, even if the malicious
prover can communicate without network delay.

In this work, we can justify their security claim with our framework. When the proxy
attack is not considered in SCUBA, increasing the checksum computation time does not
introduce vulnerability. According to formula (6), we have dc(T)/dg = (dth − T)/dg.
The experiment results in [7] show that the memory copy attack is most efficient attack
which introduces 3% overhead to the checksum computation. In order to detect the
memory copy attack, we should ensure that ∀T ∈ [Tmin

V , Tmax
V], dc(T)/dg < 1.03.

As we assume that the malicious prover can communicate without network delay, we
set Tmin

V as 0. By applying formula (4), we have dg > 1700ms. Since dg chosen in
SCUBA is indeed larger than 1700ms, the security claim made by the authors is valid.

4.3 VIPER

VIPER [10] is a software-based attestation scheme designed to verify the integrity of
peripherals’ firmware in a typical x86 computer system. They are proposed to defend
all known software-based attacks, including the proxy attack.
�Absence of Random Function. VIPER uses a similar design as ICE scheme, while
its generators are not produced by a PRNG during the checksum computation, which
does not comply to our generic attestation scheme. The authors implement the check-
sum function into 32 code blocks. One register is updated in every code block with
the memory content and the program counter (PC). Both of the code block and the

Practical Analysis Framework for Software-Based Attestation Scheme 297

memory address are chosen based on the current checksum. Thus, the randomness of
the checksum is purely introduced by the PC and the memory content. However, the PC
is incremented in a deterministic way inside each code block and the memory content
usually is biased as illustrated in Section 3.2. As the randomness could be biased, the
adversary can traverse all challenge values and he may find some memory addresses that
are unreachable for the checksum computation routine, as we discussed in Section 3.1.
Hence, the security provided by VIPER is unclear.
�Insufficient Iteration Number. In VIPER, the number of iterations used in the check-
sum computation routine is only 3, which leads to at least 23 unused registers in the
attestation. Vulnerabilities may be introduced as discussed in Section 3.1. Even if the
registers are chosen in a fully randomized manner and the adversary cannot predict
which register will be used beforehand, the malicious prover still has a high probability
to use some registers without being detected. In fact, two or even one register could be
enough for conducting an attack in practice.

5 Related Works

A large amount of software-based attestation protocols have been designed and
implemented [17,5,18,6,12,7,19,20,21,22,10,23]. Specifically, SWATT [5] is a software-
based attestation scheme that uses the response timing of the memory checksum compu-
tation to identify the compromised embedded devices. In order to prevent replay attack,
the prover’s memory is traversed in SWATT in a random manner based on a challenge
sent from the verifier. Rather than attesting the whole memory content, SCUBA [7] only
checks the protocol implemented in the embedded devices and securely updates the
memory content of the embedded devices after the attestation is finished successfully.
It is based on the ICE (Indisputable Code Execution) checksum computation scheme,
which enables the verifier to obtain an indisputable guarantee that the SCUBA protocol
will be executed as untampered in the embedded devices. VIPER [10] is later proposed
to defense against the adversary who can communicate with the embedded devices dur-
ing the attestation. Network latency is consider in VIPER to prevent the proxy attack.
Perito et al. [22] develop a software-based secure code update protocol. It first over-
writes the target device’s whole memory with random noise and then asks the target
device to generate a checksum based on its memory state. The target device could gen-
erate the correct checksum only if it has erased all its memory content, so the malicious
code should also be removed. Besides the attestation protocol designed for resource
constrained devices, Seshadri et al. [12] develop the software-based attestation protocol
named Pioneer for the Intel Pentium IV Xeon Processor with x86 architecture.

However, the software-based attestation protocol design is challenging and error-
prone [8,9]. Hence, it becomes necessary and urgent to develop an analysis frame-
work for the attestation protocol design. Armknecht et al. [24] recently provide a
security framework for the analysis and design of software attestation. In their work,
they assume the cryptographic primitives such as Pseudo-Random Number Generators
(PRNGs) and hash functions might be insecure and give a upper-bound to the advantage
of the malicious prover in the attestation scheme. They mainly consider six factors: (1)
the memory content could be biased; (2) the memory addresses traversed in the check-
sum computation may not be fully randomized; (3) the memory addresses could be

298 L. Li et al.

computed without using the default method; (4) the correct checksum could be com-
puted without finishing the checksum computation routine; (5) the checksum could be
generated without using the default checksum computation function; (6) the challenge-
response pairs could be pre-computed and stored in the memory. In this work, we do
not consider factor (2-5) based on two reasons. First, the attestation routine used in the
protocol can be updated at runtime, so we can always update the cryptographic func-
tions to meet the higher security standard and requirement. For instance, since the hash
function like MD5 is insecure nowadays, we can replace it with SHA-2 or SHA-3 to
reclaim security. More importantly, the upper-bounds of the factor (2-5) are very hard
to measure in practice. For example, given a well-known weak hash function like MD5,
it is hard to measure the time-bounded pseudo-randomness, corresponding to factor (2),
defined in [24]. Comparing with [24], we additionally consider observable network la-
tency, stronger threat model, unpredictable data memory, several security criteria and
various attack schemes. More importantly, our framework has been successfully applied
to several existing software-based attestation protocols to find vulnerabilities.

6 Discussions and Future Works

In this work, we present a practical analysis framework for software-based attestation
scheme. We explicitly consider the network latency and the data memory in the sys-
tem. Furthermore, the adversary presented in this work can not only reprogram the
compromised provers before the attestation but also communicate with them during the
attestation. We successfully apply our framework to three well-known software-based
attestation protocols manually. The results show that our framework can practically find
security flaws in their protocol design and give justifications to their security claims.

The deployment environment, including device architecture, network environment,
efficiency requirement, etc. usually complicates the correctness of the software-based
attestation protocols. Specifically, identifying the most effective overwriting and recov-
ering algorithms becomes very hard, which limits the application of our framework. For
future works, we believe that fine-grain measurement for the overwriting and recovering
algorithms in the practical application context is useful. Another future work is investi-
gating the impact of timing requirement when the attestation efficiency is concerned. In
this work, we assume that software-based attestation can take as much time as it needs.
Nevertheless, in reality, we may require the attestation protocols to be finished within a
timing threshold. Hence, the probability of identifying the compromised prover will be
affected, and choosing the right configurations becomes more challenging.

Acknowledgements. This project is partially supported by project IGDSi1305012 from
SUTD.

References

1. Arbaugh, W.A., Farber, D.J., Smith, J.M.: A secure and reliable bootstrap architecture. In:
S&P, pp. 65–71. IEEE CS (1997)

2. England, P., Lampson, B.W., Manferdelli, J., Peinado, M., Willman, B.: A trusted open plat-
form. IEEE Computer 36(7), 55–62 (2003)

Practical Analysis Framework for Software-Based Attestation Scheme 299

3. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of a tcg-based
integrity measurement architecture. In: USENIX Security, pp. 223–238. USENIX (2004)

4. Kil, C., Sezer, E.C., Azab, A.M., Ning, P., Zhang, X.: Remote attestation to dynamic system
properties: Towards providing complete system integrity evidence. In: DSN, pp. 115–124.
IEEE (2009)

5. Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.K.: Swatt: Software-based attestation for
embedded devices. In: S&P, pp. 272–282. IEEE CS (2004)

6. Shaneck, M., Mahadevan, K., Kher, V., Kim, Y.-D.: Remote software-based attestation
for wireless sensors. In: Molva, R., Tsudik, G., Westhoff, D. (eds.) ESAS 2005. LNCS,
vol. 3813, pp. 27–41. Springer, Heidelberg (2005)

7. Seshadri, A., Luk, M., Perrig, A., van Doorn, L., Khosla, P.K.: Scuba: Secure code update by
attestation in sensor networks. In: WiSe, pp. 85–94. ACM (2006)

8. Shankar, U., Chew, M., Tygar, J.D.: Side effects are not sufficient to authenticate software.
In: USENIX Security, pp. 89–102. USENIX (2004)

9. Castelluccia, C., Francillon, A., Perito, D., Soriente, C.: On the difficulty of software-based
attestation of embedded devices. In: CCS, pp. 400–409. ACM (2009)

10. Li, Y., McCune, J.M., Perrig, A.: Viper: verifying the integrity of peripherals’ firmware. In:
CCS, pp. 3–16. ACM (2011)

11. “Trusted Platform Module”, http://www.trustedcomputinggroup.org/
developers/trusted_platform_module

12. Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.K.: Pioneer: verifying
code integrity and enforcing untampered code execution on legacy systems. In: SOSP, pp.
1–16. ACM (2005)

13. Klimov, A., Shamir, A.: New cryptographic primitives based on multiword t-functions. In:
Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 1–15. Springer, Heidelberg (2004)

14. Choi, Y.-G., Kang, J., Nyang, D.: Proactive code verification protocol in wireless sensor
network. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part II. LNCS, vol. 4706, pp.
1085–1096. Springer, Heidelberg (2007)

15. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without function
calls (on the x86). In: CCS, pp. 552–561. ACM (2007)

16. Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When good instructions go bad: gener-
alizing return-oriented programming to risc. In: CCS, pp. 27–38. ACM (2008)

17. Kennell, R., Jamieson, L.H.: Establishing the genuinity of remote computer systems. In:
USENIX Security, p. 21. USENIX (2003)

18. Giffin, J.T., Christodorescu, M., Kruger, L.: Strengthening software self-checksumming via
self-modifying code. In: ACSAC, pp. 23–32. IEEE CS (2005)

19. Yang, Y., Wang, X., Zhu, S., Cao, G.: Distributed software-based attestation for node com-
promise detection in sensor networks. In: SRDS, pp. 219–230. IEEE CS (2007)

20. Gardner, R.W., Garera, S., Rubin, A.D.: Detecting code alteration by creating a temporary
memory bottleneck. IEEE Trans. Inf. Forensics Security 4(4) (2009)

21. AbuHmed, T., Nyamaa, N., Nyang, D.: Software-based remote code attestation in wireless
sensor network. In: GLOBECOM, pp. 1–8. IEEE (2009)

22. Perito, D., Tsudik, G.: Secure code update for embedded devices via proofs of secure erasure.
In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp.
643–662. Springer, Heidelberg (2010)

23. Kovah, X., Kallenberg, C., Weathers, C., Herzog, A., Albin, M., Butterworth, J.: New results
for timing-based attestation. In: S&P, pp. 239–253. IEEE CS (2012)

24. Armknecht, F., Sadeghi, A.-R., Schulz, S., Wachsmann, C.: A security framework for the
analysis and design of software attestation. In: CCS, pp. 1–12. ACM (2013)

http://www.trustedcomputinggroup.org/developers/trusted_platform_module
http://www.trustedcomputinggroup.org/developers/trusted_platform_module

TAuth: Verifying Timed Security Protocols

Li Li1, Jun Sun2, Yang Liu3, and Jin Song Dong1

1 National University of Singapore, Singapore
2 Singapore University of Technology and Design, Singapore

3 Nanyang Technological University, Singapore

Abstract. Quantitative timing is often relevant to the security of systems, like
web applications, cyber-physical systems, etc. Verifying timed security protocols
is however challenging as both arbitrary attacking behaviors and quantitative tim-
ing may lead to undecidability. In this work, we develop a service framework to
support intuitive modeling of the timed protocol, as well as automatic verification
with an unbounded number of sessions. The partial soundness and completeness
of our verification algorithms are formally defined and proved. We implement
our method into a tool called TAuth and the experiment results show that our ap-
proach is efficient and effective in both finding security flaws and giving proofs.

1 Introduction

Timed security protocols are used extensively nowadays. Many security applications
[29,9,4] use time to guarantee the freshness of messages received over the network. In
these applications, messages are associated with timing constraints so that they can only
be accepted in a predefined time window. As a result, relaying and replaying messages
are allowed only in a timely fashion. It is known that security protocols and their manual
proofs are error-prone, which has been evidenced by multiple flaws found in existing
proved protocols [30,27,17]. It is therefore important to have automatic tools to formally
verify these protocols.

However, existing methods and tools for security protocol verification often abstract
timestamps away by replacing them with nonces. The main reason is that most of the de-
cidability results are given for untimed protocols [24,28]. Thus, the state-of-the-art se-
curity protocol verifiers, e.g., ProVerif [6], Athena [31], Scyther [13] and Tamarin [25],
are not designed to specify and verify time sensitive cryptographic protocols. Abstract-
ing time away may lead to several problems. First, since the timestamps are abstracted
as nonces, the message freshness checking in the protocol cannot be correctly specified.
As a consequence, attacks found in the verification may be false alarms because they
could be impractical when the timestamps are checked. Second, omitting the timestamp
checking could also result in missing attacks. For instance, the timed authentication
property ensures the satisfaction of the timing constraints in addition to the establish-
ment of the event correspondence. Without considering the timing constraints, even
though the agreement is verified under the untimed configuration correctly, the protocol
may still be vulnerable to timing attacks. Third, with light-weight encryption, which are
often employed in cyber-physical systems, it might be possible to decrypt secret mes-
sages in a brute-force manner given sufficient time. In applications where long network

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 300–315, 2014.
c© Springer International Publishing Switzerland 2014

TAuth: Verifying Timed Security Protocols 301

latency is expected, it is therefore essential to consider timing constraints explicitly and
check the feasibility of attacks.

Contributions. In this work, we provide a fully automatic approach to verify timed se-
curity protocols with an unbounded number of sessions. Our contributions are fourfold.
(1) In order to precisely specify the capabilities of the adversary, we propose a ser-
vice framework in which the adversary’s capabilities are modeled as various services
according to the protocol specification and cryptographic primitives. Thus, when the
protocol is vulnerable, there should exist an attack trace consisting of the services in
a certain sequence. (2) An automatic algorithm is developed in this work to verify the
timed authentication properties with an unbounded number of sessions. Since security
protocol verification is undecidable in general [11], we cannot guarantee the termina-
tion of our algorithm. We thus define partial soundness and completeness in Section 2.3
and prove that our algorithm is partially sound and complete in Section 3. (3) Having
time in security protocol verification adds another dimension of complexity. Thus we
propose the finite symbolic representation for the timing constraints with approxima-
tion. We prove that the protocol is guaranteed to be secure when it is full verified by our
algorithm. Additionally, when the protocol specification is in a specific form, we also
prove that our algorithm does not introduce false alarms. (4) A verifier named TAuth is
developed based on our method. We evaluate TAuth using several timed and untimed
security protocols [8,10,26,19,7,29]. The experiment results show that our approach is
efficient and effective in both finding security flaws and giving proofs.

Related Works. Evans et al. [16] introduced a semi-automated way to analyze timed
security protocols. They modeled the protocols with CSP and checked them with PVS.
In [23], Lowe proposed finite state model checking to verify bounded timed authenti-
cation. In order to avoid the state space explosion problem, protocol instances and time
window are bounded in the verification. Jakubowska et al. [18] and Corin et al. [12] used
Timed Automata to specify the protocols and used Uppaal to give bounded verifications.
Our method is different from theirs as our verification algorithm is fully automatic and
the verification result is given for an unbounded number of sessions.

The work closest to ours was proposed by Delzanno and Ganty [14] which ap-
plies MSR(L) to specify unbounded crypto protocols by combining first order multiset
rewriting rules and linear constraints. According to [14], the protocol specification is
modified by explicitly encoding an additional timestamp, which represents the protocol
initialization time, into some messages. Thus the attack could be found by comparing
that timestamp with the original timestamps in the messages. However, it is not clearly
illustrated in their paper how their approach can be applied to timed security protocol
verification in general. On the other hand, our approach could be directly applied to
crypto protocols without any manual modification to the protocol specification.

We adopt the horn logic which is similar to the one used in ProVerif [6], a very
efficient security protocol verifier designed for untimed cryptographic protocol, and
extend it with timestamps and timing constraints. However, the extension for time is
nontrivial. In ProVerif, the fresh nonces are merged under the same execution trace,
which is one of major reasons for its efficiency. When time is involved in the protocol,
the generation time of the nonces in the protocol becomes important for the verification.
Thus merging the session nonces under the same execution trace often introduces false

302 L. Li et al.

Table 1. Service Syntax Hierarchy

Type Expression
Timestamp(t) t

Message(m) g(m1,m2, ..., mn) (function)
a[] (name)
[n] (nonce)
v (variable)
t (timestamp)

Fact(f) 〈m, t〉 (timed communication)
e(m1, m2, ..., mn) (event)

Constraint(B) C(t1, t2, ..., tn)
Service(S) f1, f2, ..., fn −[B]→ f

Query(Q) accept(. . .)←[B]− init1 (. . .), . . . , initn(. . .)

alarms into the verification results. In order to differentiate the nonces generated in the
sessions, we encode the session nonces into the events engaged in the protocol and
use the events to distinguish them. Additionally, our approach takes care of the infinite
expansion of timing constraints, which is discussed in Section 3.1.

2 Protocol Specification Framework

We introduce the proposed protocol specification framework in this section. In the
framework, the security protocols and the cryptographic primitives are modeled as
various services accessible to the Adversary for conducting attacks. Generally, these
services receive inputs from the adversary and send the results back to the adversary
as output over the network. Timestamps are tagged to the messages to denote when
they are known to the adversary. We assume the adversary model presented in this
framework is an active attacker who can intercept all communications, compute new
messages and send any messages he obtained. For instance, he can use all the publicly
available functions including encryptions, decryptions, concatenations, etc. He can also
ask legal protocol participants to take part in the protocol when he needs. Thanks to the
introduction of time, key expiration and message compromise can also be specified by
adding additional services.

2.1 Service Syntax

In our framework, services are represented by a set of horn logic rules guarded by tim-
ing constraints. We adopt the syntax shown in Table 1 to define the services. Messages
could be defined as functions, names, nonces, variables or timestamps. Functions can
be applied to a sequence of messages; names are globally shared constants; nonces are
freshly generated values in sessions; variables are memory spaces for holding mes-
sages; and timestamps are values extracted from the global clock during the protocol
execution. A fact can be a message tagged by a timestamp denoted as 〈m, t〉, which
means that the message m is known to the adversary at time t. Otherwise, it is an event

TAuth: Verifying Timed Security Protocols 303

in the form of e(m1, . . . ,mn) where e is the event name and m1, . . . ,mn are the event
arguments. The events are used for specifying authentication properties and distinguish-
ing different sessions. B is a set of closed timing constraints assigned on the timestamp
pairs. Each constraint is in the form of t − t′ ∼ d where t and t′ are timestamps, d is
an integer constant (∞ is omitted), and ∼ denotes either < or ≤. We denote the maxi-
mum value of d in a timing constraint set B as max (B). For simplicity, when a timing
constraint t − t′ ∼ d ∈ B, we write d(B, t, t′) to denote the integer constant d, and
c(B, t, t′) to denote the comparator∼1. A service f1, f2, ..., fn −[B]→ f means that if
the facts f1, f2, ..., fn and the constraints B are satisfied, the adversary can invoke this
service and obtain f as the result.

2.2 Service Modeling

In the following, we show how to model the timed authentication protocols in our
framework. We illustrate the service modeling using a simple example called the Wide
Mouthed Frog (WMF) protocol [8] as described below.

A→ S :A, {tA, B, k}kA

S → B :{tS , A, k}kB

In the protocol, A and B are two users Alice and Bob, and S is a trust server who shares
different secret keys with different users. The goal of this protocol is to share a fresh
key k from Alice to Bob. kA is the secret key shared between server and Alice, and kB
is the corresponding secret key for Bob. k is a fresh session key generated by Alice,
which should be different in different sessions. tA is a timestamp generated by Alice.
Similarly, tS is a timestamp generated by the server. In the protocol, we assume that the
clock drift for every participants is negligible, so that the message freshness checking
is valid during the execution.

When the server receives the request from Alice, it checks its freshness by comparing
the tA with the current clock reading tS . If tA and tS satisfy the pre-defined constraint
C1, the server then sends the second message to Bob. Upon receiving the message from
the server, Bob decrypts it and compares tS with his clock reading tB . If the timestamp
checking C2 is passed and the message is properly formed, Bob then believes that k is
a fresh key shared with Alice. In fact, there exists an attack [3] to the protocol which is
resulted from the symmetric structure of the exchanged messages.

A→ S : A, {tA, B, k}kA

S → I(B) : {tS , A, k}kB

I(B)→ S : B, {tS , A, k}kB

S → I(A) : {tS′ , B, k}kA

I(A)→ S : A, {tS′ , B, k}kA

S → B : {tS′′ , A, k}kB

1 If a timing constraint is not specified exactly in this form, it should be possible to change the
constraint into this form. For instance, t− t′ > 3 can be changed into t′ − t < −3.

304 L. Li et al.

In the attack trace, the adversary I personates Bob, hijacks the second message and
sends it back to the server within the timing constraint C1. Then, the server would
treat it as a valid request from Bob and update the tS to its current clock reading. By
doing this repeatedly, the timestamp in the request can be extended to an arbitrary large
value. As a result, when Bob receives a message that passes the timestamp checking, the
request from Alice may not be timely any more. Hereafter, we assume that the server
and Bob check the freshness of the received messages with following timing constraints:
C1 = tS− tA ≤ 2 and C2 = tB− tS ≤ 2. Notice that in general, the constraints should
be set according to the protocol specification, network latency, etc.

Crypto Services. Cryptographic primitives are usually specified as services without
network latency. Generally, we have two types of crypto services, which are construc-
tors and destructors. Constructors are used to generate new messages such as con-
catenation and encryption, whereas destructors are used to extract messages from the
constructed messages. For instance, the constructor and the destructor for symmetric
encryption can be modeled as follows.

〈m, t1〉, 〈k, t2〉 −[t1 ≤ t ∧ t2 ≤ t]→ 〈encs(m, k), t〉 (1)

〈encs(m, k), t1〉, 〈k, t2〉 −[t1 ≤ t ∧ t2 ≤ t]→ 〈m, t〉 (2)

The service (1) means that if the adversary has a message m and a key k, this service
can generate the symmetric encryption for m by k, and the timing t of receiving the
encryption should be later than the timing t1 and t2 when m and k are known to the
adversary. The symmetric decryption service is similarly defined in service 2.

For some cryptographic primitives, additional constraints can be added for special
purposes. For instance, RSA encryption may consume non-negligible time to compute.
If the encryption time has a lower bound d, we could use the following constructor to
model the additional requirement on time.

〈m, t1〉, 〈pk, t2〉 −[t− t1 > d, t− t2 > d]→ 〈RSA(m, pk), t〉

Protocol Services. Protocol services are used to specify the execution of the protocol.
These services are directly derived from the protocol specification. Specifically, for
the WMF protocol, the server S answers queries from all its users. After receiving a
request from a user I , S extracts the message content and checks the timestamp. If the
timestamp is generated within 2 time units, S sends out the encryption of an updated
timestamp tS , the initiator’s name and the session key k under the responder’s shared
key. The service provided by the server can be specified with

〈encs((tI , R, k), key(I)), t〉, 〈I, t′〉 −[0 ≤ tS − tI ≤ 2 ∧ t ≤ tS ∧ t′ ≤ tS]→
〈encs((tS , I, k), key(R)), tS〉 (3)

in which key(U) represents the secret key shared between the server and the user U .
Since the keys are only shared with the user and the server, We do not treat the key
constructor as a public service. Besides, the names of the two participants should be
known to the adversary, so we have services for publishing their names.

−[]→ 〈A[], t〉 (4)

−[]→ 〈B[], t〉 (5)

TAuth: Verifying Timed Security Protocols 305

Event Services. In order to ensure the authenticity between participants, we introduce
two special events init and accept. The init event is explicitly engaged by the adversary
when he wants to start a new protocol session, while the accept event is engaged by the
protocol when the timed authentication is established successfully. According to [22],
the timed authentication is correct if and only if every accept event is emitted with its
corresponding init event engaged before, and the timing constraints should always be
satisfied. For the WMF protocol, the adversary engages an event init when he wants
Alice to start a session with R.

init(A[], R, [k], tA) −[]→ 〈encs((tA, R, [k]), key(A[])), tA〉 (6)

When the user Bob gets the message from the server, he decrypts it with his shared key
key(B[]) and checks its freshness. If the timestamp checking is passed and the initiator
is I , he then believes that he has established a timely authenticated connection under
session key k with I and engages an accept event as follows.

〈encs ((tS , I, k), key(B[])), t〉 −[tB − tS ≤ 2]→ accept(I, B[], k, tB) (7)

Additional Services. Introducing time allows to model systems which are not possible
previously. For instance, some applications require that the passwords are used only if
they are unexpired. One possible scenario is that the token token(s , pw , tk) can only
be opened within the lifetime [tk, tk + d] of the password pw.

〈token(s , pw , tk), t1〉, 〈pw , t2〉 −[tk ≤
{
t1
t2

}
≤

{
tk + d

t

}
]→ 〈s , t〉

If the adversary can obtain both of the token and the password within [tk, tk + d],
the secret s can be extracted from the token. Another possible service that could be
accessible to the adversary is the brute force attack on the encrypted messages, which
allows the adversary to extract the encrypted data without knowing the key. Suppose
the least time of cracking the crypto is d, the attacking behavior can be modeled with

〈Crypto(m, k), t〉 −[t′ − t > d]→ 〈m, t′〉.

For some ciphers like RC4 which is used by WEP, key compromise on a busy network
can be conducted after a short time. Given an application scenario where such attack is
possible and the attacking time has a lower bound d, we can model it as follows.

〈RC4 (m, k), t〉 −[t′ − t > d]→ 〈k, t′〉

Remarks. Even though the services specified in our framework can directly extract
the message from the encryption without the key and so on, a given protocol can still
guarantee correctness as long as proper timing checking is in place, e.g., authentication
should be established before the adversary has the time to finish the brute-force attack.

2.3 Security Properties

In this work, we focus on verifying that the authentication between the two participants
is timely, which means every accept event is preceded by a corresponding init event

306 L. Li et al.

satisfying the timing constraints. Thus we formalize the timed authentication property
by extending the definition in [22] as follows.

Definition 1. Timed Authentication. In a timed security protocol, timed authentication
holds for an accept event f with a set of init events H agreed on arguments encoded in
the events and the timing constraintsB, if and only if for every occurrence of f , all of the
corresponding init events in H should be engaged before, and their timestamps should
always satisfy the timing constraints B. We denote the timed authentication query as
f ←[B]− H . In order to ensure general timed authentication, the arguments encoded
in events should only be different variables and timestamps.

We remark that the timed authentication defined above is the non-injective agreement.
Since injective agreement is usually implemented by duplication checking, which is
unrelated to time, we do not discuss injective timed authentication [22] in this work.
Because the legitimate run of WMF protocols requires that the authentication should be
established within 4 time units, its query is modeled as follows.

accept(I, R, k, t)←[t− t′ ≤ 4]− init(I, R, k, t′) (8)

In Section 3, we present a verification algorithm to check the authentication. Since the
verification for security protocol is generally undecidable [11], our algorithm cannot
guarantee termination. Hence, we claim our attack searching algorithm as partial sound
and partial complete under the condition of termination (partial correctness).

3 Verification Algorithm

Given the specification formalized in Section 2, our verification algorithm is divided
into two phases. The attack searching service basis is constructed in the first phase so
that attacks can be found in a straight forward method in the second phase. Specifically,
every service consists of several inputs, one output and some timing constraints. When a
service’s input can be provided by another service’s output, we could compose these two
services together to form a composite service. In the first phase, our algorithm composes
the services repeatedly until a fixed-point is reached. When such a fixed-point exists, we
call it the guided service basis. However, the above process may not terminate because
of two reasons. The first reason is the infinite knowledge deduction. For example, given
two services m −[]→ h(m) and h(m) −[]→ h(h(m)), we can compose them to obtain
a new service m −[]→ h(h(m)), which could be composed to the second service again.
In this way, infinitely many composite services can be generated. The second reason
is the infinite expansion of timing constraints. For instance, assume we have S0 =
〈enc(t′, k), t1〉 −[t′′−t′ ≤ 2∧t1 ≤ t′′]→ 〈enc(t′′, k), t′′〉 and S1 = init(t, [k]) −[t′−
t ≤ 2∧t ≤ t′]→ 〈enc(t′, [k]), t′〉 in the service basis. When we compose S1 to S0, their
composition S2 = init(t, [k]) −[t′′ − t ≤ 4 ∧ t ≤ t′′]→ 〈enc(t′′, [k]), t′′〉 has a larger
range than S1. Besides, we could compose S2 to S0 again to obtain an even larger range,
so the service composition never ends. Since verification for untimed security protocol
is undecidable, we, same as state-of-the-art tools like ProVerif, cannot handle the first
scenario. We thus focus on solving the second scenario by approximating the timing
constraints into a finite set. The fixed-point is then called the approximated service

TAuth: Verifying Timed Security Protocols 307

basis. When the over-approximation is applied, false alarms may be introduced into
the verification result so that, generally, only partial completeness is preserved by our
attack searching algorithm. Finally, we present our attack searching algorithm in the
end of this section.

3.1 Service Basis Construction

In the first phase, our goal is to construct a set of services that allows us to find security
attacks in the second phase. In order to construct such a service basis, new services
are generated by composing existing services. In this way, the new composite services
can also be treated as services directly accessible to the adversary and the algorithm
continues until the fixed-point is reached, i.e., no new service can be generated. We use
the most general unifier to unify the input and the output.

Definition 2. Most General Unifier. If σ is a substitution for both messages m1 and
m2 so that σm1 = σm2, we say m1 and m2 are unifiable and σ is an unifier for m1

and m2. If m1 and m2 are unifiable, the most general unifier for m1 and m2 is an
unifier σ such that for all unifiers σ′ of m1 and m2 there exists a substitution σ′′ such
that σ′ = σ′′σ.

Since the adversary in our framework has the capability to generate new names and
new timestamps, when a service input is a variable or a timestamp that is unrelated to
other facts in a service, the adversary should be able to generate a random fact and use
it to fulfill that input. In this way, that input can be removed in the composite service.
Hence, we define service composition as follows. For simplicity, we define a singleton
as a fact of the form 〈x, t〉 where x is a variable or a timestamp.

Definition 3. Service Composition. Let S = H −[B]→ f and S′ = H ′ −[B′]→ f ′

be two services. Assume there exists f0 ∈ H ′ such that f and f0 are unifiable, their
most general unifier is σ and σB ∩σB′ �= φ. The service composition of S with S′ on a
fact f0 is defined as S◦f0S′ = clear(σ(H∪(H ′−{f0}))) −[sim(σB∩σB′)]→ σf ′, where
the function clear merges duplicated facts from the inputs and removes any singleton
〈x, t〉 where x does not appear in other facts of the rule, and the function sim removes
timestamps that are no longer used in the composite service.

When new composite services are added into the service basis, redundancies should
be eliminated from the service basis. As the timing constraints can be viewed as a set of
clock valuations which satisfy the constraints, they thus can be naturally applied with
semantic operations of set, e.g., B ⊆ B′, B ∩ B′, etc.

Definition 4. Service Implication. Let S = H −[B]→ f and S′ = H ′ −[B′]→ f ′

be two services. S implies S′ denoted as S ⇒ S′ if and only if ∃σ, σf = f ′ ∧ σH ⊆
H ′ ∧ B′ ⊆ σB.

When services are composed in an unlimited way, infinitely many composite services
could be generated. For instance, composing the symmetric encryption service (1) to
itself on the fact 〈m, k〉 leads to a new service encrypting the message twice, that is
〈m, t〉, 〈k1, t1〉, 〈k2, t2〉 −[. . .]→ 〈encs(encs(m, k1), k2), t

′〉, which can be composed

308 L. Li et al.

to the encryption service again. In order to avoid these service compositions, we adopt
a similar strategy proposed in [6] such that the unified fact in the service composition
should not be singletons. Moreover, the events in our system cannot be unified2, thus
we define V as a set of facts that should not be unified, consisting of all events and
singletons.

We denote β(α,Rinit) as the fixed-point, where Rinit is the initial service set and
α is a service approximation function adopted during the construction. In order to com-
pute β(α,Rinit), we first define Rv based on the following rules, where inputs(S)
represents the inputs of service S.

1. ∀S ∈ Rinit, ∃S′ ∈ Rv, S
′ ⇒ S;

2. ∀S, S′ ∈ Rv, S �⇒ S′;
3. ∀S, S′ ∈ Rv , if ∀fin ∈ inputs(S), fin ∈ V and ∃f �∈ V , S ◦f S′ is defined,
∃S′′ ∈ Rv, S

′′ ⇒ α(S ◦f S′).

The first rule means that every initial service is implied by a service inRv . The second
rule means that no duplicated service exists in Rv . The third rule means that for any
two services in Rv , if the first service’s inputs are in V and their composition exists,
their approximated composition is also implied by a service in Rv . These three rules
meansRv is the minimal closure of the initial service setRinit. Based onRv, we have

β(α,Rinit) = {S | S ∈ Rv ∧ ∀fin ∈ inputs(S) : fin ∈ V}.

In the latter part of this section, α will be instantiated with no-approximation and over-
approximation. (The detailed algorithm is available in the full paper version [1].)

For any service, it is derivable from a service basisR if and only if there is a deriva-
tion tree that represents how the service is composed.

Definition 5. Derivation Tree. Let R be a set of closed services and S be a closed
service, where a closed service is a service with its output initiated by its inputs. Let S
be a service in the form of f1, . . . , fn −[B]→ f . S can be derived from R if and only
if there exists a finite derivation tree defined as

1. edges in the tree are labeled by facts;
2. nodes are labeled by the services in R;
3. if a node labeled by S has incoming edges of fs

1 , . . . , f
s
n, an outgoing edge of

fs, and the timestamps among these facts satisfy the timing constraints Bs, then
S ⇒ fs

1 , . . . , f
s
n −[Bs]→ f s;

4. the outgoing edge of the root is the fact f ;
5. the incoming edges of the leaves are f1, . . . , fn.

Additionally, if all the timing constraints in the derivation tree form B, then the timing
constraints for S is sim(B), where sim removes timestamps that are no longer used.
We name this tree as the derivation tree for S onR.

Guided Service Basis. When no approximation is used in the service basis construction,
the fixed-point is called guided service basis denoted as Rguided = β(αguided,Rinit)
where, for any service S, αguided(S) = S. In such a case, we prove that a service can
be derived fromRguided whenever it can also be derived fromRinit, and vice versa.

2 init events only appear in the inputs and accept events only appear in the output.

TAuth: Verifying Timed Security Protocols 309

Theorem 1. For any service S in the form of H −[B]→ f where ∀fin ∈ H : fin ∈ V ,
S is derivable fromRinit if and only if S is derivable fromRguided.

Proof Sketch. Only if. Given a service, if it is derivable from the initial service set,
its derivation tree should exist. We thus compose the directly connected nodes in its
derivation tree and show that the new composite node is implied by a service in Rv .
When no directly connected nodes can be composed, we then prove that the rest of
the nodes are labeled by services in Rguided, which implies that this service is also
derivable fromRguided. If. On the other hand,Rguided does not introduce extra services
except for services derivable from Rinit, so the theorem is proved. The detailed proof
is available in the full paper version [1].

Approximated Service Basis. New timestamps are often introduced in the service com-
position. When no longer used timestamps are removed from the composite service, the
timing constraints can be deemed as extended for unification. On the other hand, given
two services with the same inputs and output but they have different timing constraints,
they may be indifferent if all of the different constraints have exceeded a ceiling. For in-
stance, if the password has a fixed lifetime, its usefulness for the adversary remains the
same when the password has already expired. Since these services can be deemed as the
same, we remove their exceeded timing constraints to generalize their expressiveness.
In this work, heuristically, we assume that every service is very likely to be used by the
adversary for at least once in the attack trace and the timing constraints in the query also
play important role in the reachability checking, so we set the ceiling as 1+

∑
max (B)

in which B comes from the initial service set and the query. For instance, in the WMF
protocol, the max(B) is 2 for both of the service (3) and (7), 0 for other initial services,
and 4 for the query, so we have the ceiling set as 9. We refer to the set of services with
the ceiling U as approximated service basisRapprox = β(αU

approx,Rinit). The service
approximation function αU

approx is defined as follows.

Definition 6. Service approximation. Let S = H −[B]→ f . We define the service
approximation with ceiling U as αU

approx(S) = H −[B′]→ f . For any two timestamps
t, t′ in the service S, if d(B, t, t′) ≤ U , then d(B′, t, t′) = d(B, t, t′) and c(B′, t, t′) =
c(B, t, t′); else if d(B, t, t′) > U , then d(B′, t, t′) is∞ and c(B′, t, t′) is <.

Since the timing constraints are enlarged after the approximation, false alarms may be
introduced into verification result. However, according to the experiment results shown
in Section 4, the false alarms could be prevented when the ceiling is properly config-
ured. On the other hand, whenever a timed protocol is verified as correct under the
approximation, it is guaranteed to be attack-free, which is the same as ProVerif.

Theorem 2. Let U be the ceiling. For any service S in the form of H −[B]→ f where
∀fin ∈ H : fin ∈ V , if S is derivable fromRinit, S is also derivable fromRapprox.

Proof Sketch. Since the timing constraints are only enlarged in the service basis, ac-
cording to Theorem 1, it is clear that Theorem 2 also holds. Due to the limitation of the
space, the detailed proof is available in the full paper version [1].

310 L. Li et al.

3.2 Query Searching

When the query is violated by a service in the service basis, we call it a contradiction
to the query. A service is a contradiction to the query if and only if its output event can
be unified to the query’s output, while it does not require all the predicate events in the
query or it has a larger timing range than the query constraints.

Definition 7. Contradiction. A service S = H −[B]→ f is a contradiction to the
query Q = f ′ ←[B′]− H ′ if and only if f and f ′ are unifiable with the most general
unifier σ and ∀σ′, σ′σH ′ �⊆ σH ∨ σB �⊆ σ′σB′.

If we rewrite the query Q into a service of Sq = H ′ −[B′]→ f ′, S is a contradiction
to Q if and only if f ′ and f are unifiable with the most general unifier σ and we have
σSq �⇒ σS. According to Definition 1, events in the query only contain variables and
timestamps that are different. Thus the accept event in Sq can be unified with any other
accept event. The contradiction checking could then be simplified to check whether S
outputs an accept event and satisfies Sq �⇒ S. Given the service basisR, we thus search
the attacks as follows. (The detailed algorithm is available in the full paper version [1].)

Rf = {S|S ∈ R, the output of S is an accept event ∧ Sq �⇒ S}

Rf consists of the contradiction instances. We prove its partial correctness as follows.

Theorem 3. Partial Soundness. Assume R is Rguided. Let Q be a query of f ′ ←[
B′]− H ′ and Sq = H ′ −[B′]→ f ′. There exists S derivable fromRinit such that S is
a contradiction to Q if there exists S′ ∈ R such that the output of S′ is an accept event
and Sq �⇒ S′.

Proof Sketch. According to Theorem 1, we have ∀S′ ∈ Rguided , S′ should be derivable
fromRinit, so any contradiction found in Rf is valid whenR is Rguided.

Theorem 4. Partial Completeness. Assume R is eitherRguided or Rapprox. Let Q be
a query of f ′ ←[B′]− H ′ and Sq = H ′ −[B′]→ f ′. There exists S derivable from
Rinit such that S is a contradiction toQ only if there exists S′ ∈ R such that the output
of S′ is an accept event and Sq �⇒ S′.

Proof Sketch. We need to prove that we can find the attack whenever it exists. Since for
any service there exists a derivation tree labeled by services inRguided (Rapprox resp.)
according to Theorem 1 (Theorem 2 resp.), we prove that if the service S is a contra-
diction to the query, the service Sr labeled to the root of the tree is also a contradiction
to the query. The theorem is thus proved. Due to the limitation of the space, the detailed
proofs for the above theorems are available in the full paper version [1].

Partial Soundness for Approximated Service Basis under Restriction. The partial
soundness is not guaranteed for our verification algorithm when approximated service
basis is used. However, when the initial services are specified in some restricted form,
even though the approximated service basis is over-approximated, the partial soundness
of our query searching algorithm can be proved as well. One possible restriction is that
for any two timestamps t and t′ in every initial service with B, d(B′, t, t′) is required

TAuth: Verifying Timed Security Protocols 311

to be no less than 0. If the ceiling is set to be larger than max (Bq) + 1 where Bq is
the timing constraints of the query, we prove the partial soundness of our verification
algorithm as follows. First, we prove that, under this restriction, for any service S in the
approximated service basis, we have a corresponding service S′ in the guided service
basis such that S = αU

approx(S
′). Second, when the contradiction instance setRf is not

empty for the approximated service basis, we prove the existence of a corresponding
attack instance in the guided service basis. According to the Theorem 1, the attack
found in the guided service basis is guaranteed to be valid. So the protocol indeed has
an attack and the following theorem is thus proved.

Lemma 1. Given an initial service set Rinit and a ceiling U . Every service in Rinit

satisfies the restriction that for any two timestamps t and t′ in the service with B,
d(B′, t, t′) is no less than 0. We have ∀S ∈ β(αU

approx,Rinit), ∃S′ ∈ β(αguided,Rinit)

such that S = αU
approx(S

′).

Theorem 5. Partial Soundness under Restriction. Assume R is Rapprox. Every ser-
vice in Rinit satisfies the restriction that for any two timestamps t and t′ in the service
with B, d(B′, t, t′) is no less than 0. If the ceiling U is set to be larger than max (Bq)+1
where Bq is the timing constraints of the query, R = β(αU

approx,Rinit). Let Q be a
query of f ′ ←[B′]− H ′ and Sq = H ′ −[B′]→ f ′. There exists S derivable fromRinit

such that S is a contradiction to Q if there exists S′ ∈ R such that the output of S′ is
an accept event and Sq �⇒ S′.

Due to the limitation of space, the proofs are available in [1]. We also indicate whether
this restriction is applicable to the experiments evaluated in Section 4.

Remarks. Given a protocol with a valid attack, there should exist a derivation tree
for that attack. Since we do not bound the number of events presented in a derivation
tree (a composite service), we effectively deal with an unbounded number of sessions.
The reason why our algorithm could work (i.e., terminate with correct result) is mainly
because of two reasons. First, different from the explicit attack searching, we do not
actively instantiate the variables in the services. So it becomes possible to represent
the infinite adversary behaviors with a finite number of services. Second, we made a
reasonable assumption in this work such that different nonces have different values. If
the same nonce is generated in two sessions, those two sessions should be the same.
Thus we merge them during the verification. As a consequence, even though we do not
abstract the nonces used in the protocol as ProVerif does, this assumption could help us
to find inconsistency in the service and remove the invalid ones from the service basis.

4 Implementation and Experiments

The flexibility and expressiveness of our service framework make it suitable for specify-
ing and verifying timed security protocols, for instance, timed authentication protocols
and distance bound protocols, etc. We have implemented our verifier TAuth in C++ with
about 8K LoC. All the experiments shown in this section are conducted under Mac OS
X 10.9.1 with 2.3 GHz Intel Core i5 and 16G 1333MHz DDR3. The TAuth verifier and
the models shown in this section are available in [1].

312 L. Li et al.

Table 2. Verification results for timed authentication protocols

Protocol
Rguided Rapprox

�Ra Result Time �R Result Restrictionb Time
Wide Mouthed Frog [8] 26 Attack [21] 3ms 26 Attack SAT 4ms
Wide Mouthed Frog c [14] 19 Secure 3ms 19 Secure SAT 3ms
Wide Mouthed Frog Lowe [21] - - - 32 Secure SAT 8ms
CCITT X.509(1) [10] 35 Attack [2] 4ms 35 Attack SAT 3ms
CCITT X.509(1c) [2] 45 Secure 7ms 45 Secure SAT 7ms
CCITT X.509(3) [10] 111 Attack [8] 52ms 111 Attack SAT 51ms
CCITT X.509(3) BAN [8] 106 Secure 74ms 106 Secure SAT 70ms
NS PK [26] 50 Attack [20] 6ms 50 Attack SAT 6ms
NS PK Lowe [20] 51 Secure 8ms 51 Secure SAT 9ms
NS PK Lowe Na Compromise [15] 51 Secure 8ms 51 Secure SAT 8ms
NS PK Lowe Nb Compromise [15] 42 Attack [15] 3ms 42 Attack SAT 3ms
NS PK Lowe NC Time [15] 48 Secure 10ms 48 Secure UNSAT 10ms
SKEME [19] 77 Secure 73m 77 Secure SAT 74ms
Auth Range [7,9] 17 Secure 2ms 17 Secure UNSAT 1ms
Ultrasound Dist Bound [29] 35 Attack [30] 2ms 35 Attack UNSAT 2ms

a Overall service number generated in the verification.
b Whether the restriction is satisfied for the initial service specification.

We summarize some implementation choices in TAuth below. First, the timing con-
straints in the service are represented by Difference Bound Matrices (DBMs) [5]. Since
timestamps are unified and new timestamps are introduced in the service composition,
we use unique identifiers to distinguish the timestamps generated in the system so that
different timestamps have different identifiers among services. Second, events in a ser-
vice are merged when the encoded fresh nonces are evaluated to a same value. The
reason is that the value of nonces generated in the session should be random, so dif-
ferent fresh nonces should have different values. For instance, if the session key k is
initiated in the init event, init(A[], R1, [k]) and init(I, R2, [k]) should be merged and
the substitution {A[]/I,R1/R2} should be applied to the service. If such events cannot
be merged, the service is invalid. Third, we check the query contradiction on the fly
when new services are composed. Whenever we find a contradiction, we stop the veri-
fication process and report the security flaw. This optimization can potentially give the
early termination to the verification process when the protocol has security flaws.

Several different types of security protocols are analyzed in our experiments. In the
experiments, all the protocols are proved or dis-proved in a short time as summarized
in Table 2. For some protocols, the restriction mentioned in the Section 3.2 is appli-
cable, so that the attack is guaranteed to be correct whenever it can be found, which
is indicated in the table. Notice that, even though some protocols do not satisfy the
restriction, all the attacks found in the experiments are valid. First, untimed protocols
such as Needham-Schroeder series and SKEME are analyzed with TAuth. We use these
protocols to show that TAuth can work with untimed protocols. Additionally, timed pro-
tocols like CCITT series are also checked by TAuth. However, the attacks found in these

TAuth: Verifying Timed Security Protocols 313

protocols are untimed. Furthermore, timed authentication protocols like the WMF series
and the NS PK Lowe NC Time are correctly analyzed as well. We use these protocols
to demonstrate that our approach can work with timed protocols and find timed attacks.
Specifically, in the NS PK Lowe Nb Compromise version, the nonces generated by the
responder in the protocol could be compromised [15], so the adversary could perform
attacks to the protocol. Denning and Sacco [15] proposed a way to fix these security
flaws by checking the timestamps. In the NS PK Lowe NC Time version, we assume
that extra time is needed for the nonce compromise, so that freshness checking for the
messages could ensure the authentication is attack-free. Notice that the service approxi-
mation only works for WMF Lowe version [21] in our experiment, because it is the only
protocol that cannot be early terminated by the on-the-fly algorithm (it is attack-free)
and its timing constraints involve infinite expansion.

Moreover, we successfully analyze two distance bounding protocols, that are Auth
Range [7,9] and Ultrasound Dist Bound [29]. In the Auth Range protocol, the prover
wants to convince the verifier that he is within a pre-agreed distance with the verifier.
For instance, in a keyless entry system frequently adopted by cars, the prover is the
remote key and verifier is the car. In the Auth Range protocol, it is assumed that the
prover is honest and nothing can travel faster than light, so they could securely use
the travel time of radio signals to measure the distance. In the Ultrasound Dist Bound
protocol which has the same application scenario as the Auth Range protocol, the ver-
ifier uses radio signals to send requests while the prover uses ultrasound to return the
answers. Since ultrasound travels much slower than radio and other processing time is
negligible, the travel time of ultrasound dominates the whole protocol execution time.
However, this protocol does not require the prover to be honest, so the prover can send
his answer by either radio or ultrasound to others. When the adversary has a cooperator
near the verifier, he can send the answer to the cooperator by radio and ask the cooper-
ator to forward the answer by ultrasound to the verifier. As a consequence, the verifier
can be convinced that the prover is within the distance even though the prover is not.

Table 3. Comparison with other untimed protocol verifiers

Protocol Result TAuth ProVerif Scyther
NS PK Attack 6ms 6ms 200ms
NS PK Lowe Secure 8ms 5ms 177ms
NS PK Lowe Na Compromise Secure 8ms 5ms 170ms
NS PK Lowe Nb Compromise Attack 3ms 5ms 31ms

Finally, we compare our tool TAuth with other successful untimed protocol verifiers,
i.e., ProVerif [6] and Scyther [13]. The Needham Schroeder public key authentication
protocols except for its timed variant are chosen for the comparison as timestamps are
absent in these protocols. The comparison results are summarized in the Table 3. It
can be seen that TAuth is almost as fast as ProVerif. TAuth is slightly slower mainly
due to overhead on handling timing constraints. Thanks to the on-the-fly algorithm,
TAuth is faster than ProVerif in finding the attack for the Lowe Nb Compromise version.
Furthermore, TAuth is much faster than Scyther. Notice that Scyther could only verify

314 L. Li et al.

the Lowe version and Lowe Na Compromise version with a bounded number of sessions
while TAuth proves for infinitely many sessions.

5 Conclusions and Discussions

We present a service framework which can automatically verify the timed authentica-
tion protocols with an unbounded number of sessions. The partial correctness of our
approach have been formally proved in this work. The experiment results for four dif-
ferent types of scenarios show that our framework is efficient and effective to verify
a large range of timed security protocols. Even though we only check timed authen-
tication properties for security protocols in this work, our framework could be easily
extended to secrecy checking with timing constraints.

For future works, a throughout study on the termination of the algorithm would be
very interesting. Since the problem of verifying security protocols is undecidable in
general, we cannot guarantee the termination of our algorithm, but identifying the ter-
minable scenario for practical security protocol could help the general adoption of our
techniques. Our approach is inspired by the method used in ProVerif [6]. As is discussed
in Section 3, TAuth is as terminable as ProVerif when the service approximation is used.
However, the over-approximation also introduces false alarms. In order to remove the
false alarms, as is discussed in Section 3, we can apply some restriction to the spec-
ification so that the found attacks are guaranteed to be valid. However, the restriction
mentioned previously is quite restrictive because network latency, brute force attack,
etc. cannot be specified under that restriction. Hence, how to restrict the specification in
a practical way is another interesting future work direction.

Acknowledgements. The authors are grateful to Jun Pang, Jingyi Wang and the anony-
mous reviewers for valuable comments on earlier versions of this paper. This project is
partially supported by project IGDSi1305012 from SUTD.

References

1. TAuth tool and experiment models,
http://www.comp.nus.edu.sg/˜li-li/r/tauth.html

2. Abadi, M., Needham, R.M.: Prudent engineering practice for cryptographic protocols. IEEE
Trans. Software Eng. 22(1), 6–15 (1996)

3. Anderson, R., Needham, R.: Programming satan’s computer. In: van Leeuwen, J. (ed.)
Computer Science Today. LNCS, vol. 1000, pp. 426–440. Springer, Heidelberg (1995)

4. Basin, D.A., Capkun, S., Schaller, P., Schmidt, B.: Formal reasoning about physical proper-
ties of security protocols. ACM Trans. Inf. Syst. Secur. 14(2), 16 (2011)

5. Bellman, R.: Dynamic Programming. Princeton University Press (1957)
6. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In: CSFW,

pp. 82–96. IEEE CS (2001)
7. Brands, S., Chaum, D.: Distance bounding protocols. In: Helleseth, T. (ed.) EUROCRYPT

1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994)
8. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. ACM Trans. Comput.

Syst. 8(1), 18–36 (1990)

http://www.comp.nus.edu.sg/~li-li/r/tauth.html

TAuth: Verifying Timed Security Protocols 315

9. Capkun, S., Hubaux, J.-P.: Secure positioning in wireless networks. IEEE Journal on Selected
Areas in Communications 24(2), 221–232 (2006)

10. CCITT. The directory authentication framework - Version 7, Draft Recommendation X.509
(1987)

11. Cervesato, I., Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: A meta-notation for
protocol analysis. In: CSFW, pp. 55–69. IEEE Computer Society (1999)

12. Corin, R., Etalle, S., Hartel, P.H., Mader, A.: Timed model checking of security protocols.
In: FMSE, pp. 23–32. ACM (2004)

13. Cremers, C.J.F.: The scyther tool: Verification, falsification, and analysis of security proto-
cols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418. Springer,
Heidelberg (2008)

14. Delzanno, G., Ganty, P.: Automatic verification of time sensitive cryptographic protocols.
In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 342–356. Springer,
Heidelberg (2004)

15. Denning, D.E., Sacco, G.M.: Timestamps in key distribution protocols. Commun.
ACM 24(8), 533–536 (1981)

16. Evans, N., Schneider, S.: Analysing time dependent security properties in csp using pvs.
In: Cuppens, F., Deswarte, Y., Gollmann, D., Waidner, M. (eds.) ESORICS 2000. LNCS,
vol. 1895, pp. 222–237. Springer, Heidelberg (2000)

17. Francillon, A., Danev, B., Capkun, S.: Relay attacks on passive keyless entry and start
systems in modern cars. In: NDSS. The Internet Society (2011)

18. Jakubowska, G., Penczek, W.: Is your security protocol on time? In: Arbab, F., Sirjani, M.
(eds.) FSEN 2007. LNCS, vol. 4767, pp. 65–80. Springer, Heidelberg (2007)

19. Krawczyk, H.: Skeme: a versatile secure key exchange mechanism for internet. In: NDSS,
pp. 114–127. IEEE Computer Society (1996)

20. Lowe, G.: An attack on the needham-schroeder public-key authentication protocol. Informa-
tion Processing Letters 56, 131–133 (1995)

21. Lowe, G.: A family of attacks upon authentication protocols. Technical report, Department
of Mathematics and Computer Science, University of Leicester (1997)

22. Lowe, G.: A hierarchy of authentication specification. In: CSFW, pp. 31–44. IEEE Computer
Society (1997)

23. Lowe, G.: Casper: A compiler for the analysis of security protocols. Journal of Computer
Security 6(1-2), 53–84 (1998)

24. Lowe, G.: Towards a completeness result for model checking of security protocols. Journal
of Computer Security 7(1), 89–146 (1999)

25. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the symbolic anal-
ysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 696–701. Springer, Heidelberg (2013)

26. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large networks of
computers. Commun. ACM 21(12), 993–999 (1978)

27. Rasmussen, K.B., Castelluccia, C., Heydt-Benjamin, T.S., Capkun, S.: Proximity-based
access control for implantable medical devices. In: CCS, pp. 410–419. ACM (2009)

28. Roscoe, A.W., Broadfoot, P.J.: Proving security protocols with model checkers by data inde-
pendence techniques. Journal of Computer Security 7(1), 147–190 (1999)

29. Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In: Workshop on
Wireless Security, pp. 1–10. ACM (2003)

30. Sedighpour, S., Capkun, S., Ganeriwal, S., Srivastava, M.B.: Implementation of attacks on
ultrasonic ranging systems (demo). In: SenSys, p. 312. ACM (2005)

31. Song, D.X., Berezin, S., Perrig, A.: Athena: a novel approach to efficient automatic security
protocol analysis. Journal of Computer Security 9(1-2), 47–74 (2001)

On the Formal Analysis of HMM Using

Theorem Proving

Liya Liu, Vincent Aravantinos, Osman Hasan, and Sofiène Tahar

Dept. of Electrical & Computer Engineering, Concordia University
1455 de Maisonneuve W., Montreal, Quebec, H3G 1M8, Canada
{liy liu,vincent,o hasan,tahar}@ece.concordia.ca

Abstract. Hidden Markov Models (HMMs) have been widely utilized
for modeling time series data in various engineering and biological sys-
tems. The analyses of these models are usually conducted using computer
simulations and paper-and-pencil proof methods and, more recently, us-
ing probabilistic model-checking. However, all these methods either do
not guarantee accurate analysis or are not scalable (for instance, they
can hardly handle the computation when some parameters become very
huge). As an alternative, we propose to use higher-order logic theorem
proving to reason about properties of discrete HMMs by applying au-
tomated verification techniques. This paper presents some foundational
formalizations in this regard, namely an extended-real numbers based
formalization of finite-state Discrete-Time Markov chains and HMMs
along with the verification of some of their fundamental properties. The
distinguishing feature of our work is that it facilitates automatic verifi-
cation of systems involving HMMs. For illustration purposes, we utilize
our results for the formal analysis of a DNA sequence.

Keywords: HMMs, HOL4, Theorem Proving, DNA, Probability
Theory.

1 Introduction

Hidden Markov Models (HMMs) [16] provide a useful statistical method for an-
alyzing random processes based on their observable output samples. As their
name suggests, HMMs assume that the observed samples are generated by a
Markov process [3], for which the states are hidden from the observer. Initially
HMMs were proposed to solve optimal linear filtering problems as the simplest
dynamic Bayesian networks [27]. However, due to their usefulness in effectively
analyzing probability distributions over a sequence of observations, HMMs are
now extensively used in many applications involving speech recognition, crypt-
analysis, molecular biology, data compression, financial market forecasting and
artificial intelligence.

Traditionally, simulation has been the most commonly used computer-based
analysis technique for HMMs. Based on this technique, HMMs are used to solve
three types of problems: 1) evaluating the probability of occurrence of a partic-
ular observed sequence; 2) finding the most probable state sequence to generate

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 316–331, 2014.
c© Springer International Publishing Switzerland 2014

On the Formal Analysis of HMM Using Theorem Proving 317

given observations; and 3) learning parameters in the presumed model. These
problems are typically solved by applying complex algorithms, like Forward-
Backward, Viterbi, or Baum-Welch algorithms [16], whose implementations are
usually not formally verified. This fact, along with the inherent limitations of
computer simulation, like usage of computer arithmetic and pseudo random num-
bers, makes the analysis of HMMs approximate and thus the analysis based on
HMMs becomes unreliable. This problem can have severe consequences when it
comes to analyzing critical applications like Electrocardiogram Signal Processing
[7] or Computational Biology [8], which is mainly used in determining and/or
analyzing cancer, tumor and human genome. The analysis results directly affect
the treatment of patients and their lifetime.

Formal methods allow to overcome the above mentioned limitations. For in-
stance, probabilistic model checking guarantees precise system analysis by mod-
eling the system behavior, including its random components, in a given logic and
reasoning about its probabilistic properties. Some model checking algorithms
have been proposed for analyzing HMMs [26]. However, the state-space explo-
sion problem [2] limits the usage of probabilistic model checking to a very small
subset of HMM applications. In addition, it cannot verify generic mathematical
expressions for probabilistic analysis. Finally, the proposed model checking algo-
rithms for HMMs in [25] are also complex and make use of many optimizations
that are difficult to verify, and thus force the user to trust the developer of a
given model checker.

The other widely used formal method is theorem proving [10], which provides
a conceptually simple formalism with a precise semantics and can express all
classical mathematical theories. Due to the highly expressive nature of higher-
order logic and the inherent soundness of interactive theorem proving tools, this
technique can provide precise analysis of HMMs. Although three chapters of
measure theory were formalized in Isabelle/HOL [13] and the formalization of
probability theory was simplified in Coq [6][1], to the best of our knowledge,
foundational mathematics for HMMs has not been formalized in higher-order
logic. Moreover, the interactive nature of higher-order logic theorem proving
makes it quite unattractive for engineers and scientists involved in analyzing
HMMs. This is one of the main reasons why theorem proving has not been used
for the analysis of HMMs despite its ability to provide exact answers.

In this paper, we address both of the concerns mentioned above to facilitate
the formal analysis of HMMs using theorem proving. Firstly, we present a higher-
order logic formalization of mathematical foundations for HMMs. This includes
the formalization of discrete time Markov chains (DTMCs), HMMs and the for-
mal verification of some of their widely used properties. Our formalization of
DTMCs is an improved version of the formalization of DTMCs presented in [15]
since it is based on a more general probability theory and can handle inhomo-
geneous DTMCs with generic state spaces, which are the foremost prerequisites
for modeling HMMs. Our formalization of HMMs also allows to reduce user in-
tervention in formal modelling and analysis of real-world systems that can be
expressed in terms of HMMs. The main challenge of this work is to express the

318 L. Liu et al.

conditional independency of two stochastic processes in higher-order logic. To
facilitate this process further, we introduce some automatic simplifiers to make
the proposed method a very practical solution for the formal analysis of HMMs.
For illustration purposes, we present a case study about DNA sequence analysis.

2 Related Work

Various simulation-based HMM analysis tools, dedicated to a particular system
domain, have been reported in the literature. Some prominent examples include
HMMTool [12] as part of the NHMMtoolbox [21] to predict daily rainfall se-
quence. ChIP-Seq [4], MArkov MOdeling Tool (MAMOT) [9] and HMMER [11]
are some of the popular simulation software in biological research. As mentioned
in the previous section, due to their approximate nature, all these simulation
techniques are not reliable enough for critical applications.

Probabilistic model checking [22] is the state-of-the-art formal Markov chain
analysis technique. Numerous model checkers, e.g., PRISM [20], VESTA [23],
MRMC [18], Ymer [24], etc., are available and have been used to analyze a vari-
ety of systems. In [25], the author defined probability spaces for modeling HMMs
and presented model checking algorithms using Probabilistic Observation CTL
(POCTL) for specifying properties of parameterized HMMs. The complexity of
these algorithms depends on the size of the model and the number of variables
involved in the property formula. This factor, coupled with the inherent na-
ture of model checking, severely limits the usage of this algorithm for analyzing
real-world examples. In addition, no HMM can be analyzed by model checker
PRISM.

Higher-order-logic theorem proving overcomes the limitations of model check-
ing and has been used to successfully formalize DTMCs [15]. However this for-
malization was not general enough to formalize HMMs. This was due to the fact
that the underlying probability theory did not allow the definition of two distinct
state spaces, which is a requirement in order to model HMMs. Nevertheless, re-
cent developments have yielded a more general probability theory [17], that we
use, in the present work, to develop an improved formalization of DTMCs. This
allows, in particular, to define both time-homogeneous and time-inhomogeneous
DTMCs, and HMMs, which in turn can be used to conduct formal analysis of
HMMs within the sound core of a theorem prover.

3 Formalization of Discrete-Time Markov Chains

A probability space is a measure space (Ω,Σ,Pr) such that Pr(Ω) = 1 [3]. Σ is
a collection of subsets of Ω (these should satisfy some closure axioms that we do
not specify here) which are called measurable sets. In [17], a higher-order logic
probability theory is developed, where given a probability space p, the functions
space and subsets return the corresponding Ω and Σ, respectively. Mathemat-
ically, a random variable is a measurable function between a probability space
and a measurable space, which refers to a pair (S,A), where S is a set and A

On the Formal Analysis of HMM Using Theorem Proving 319

is a σ-algebra, i.e., a collection of subsets of S satisfying some particular prop-
erties [3]. In HOL, we write random variable X p s to state that a function
X is a random variable on a probability space p and the measurable outcome
space s. Meanwhile, the mathematical probability Pr is denoted as P in this
paper. Building on these foundations, measure theoretic formalizations of prob-
ability, Lebesgue integral and information theories are presented in [17]. In this
paper, we build upon these results to first formalize DTMCs and then use this
to formalize HMMs.

3.1 Definition of Discrete-Time Markov Chains

A stochastic process [3] is a function X : T → Ω where T = N (discrete-time
process) or T = R (continuous-time process) and Ω is a measurable set called
the state space of X . A (finite-state) DTMC is a discrete-time stochastic process
that has a finite Ω and satisfies the Markov property [5]: for 0 ≤ t0 ≤ · · · ≤ tn
and f0, · · · , fn+1 in the state space, then: Pr{Xtn+1 = fn+1|Xtn = fn, . . . , Xt0 =
f0} = Pr{Xtn+1 = fn+1|Xtn = fn}.

This allows to formalize the Markov property as follows:

Definition 1. (Markov Property)

� ∀ X p s.

mc property X p s =

(∀ t. random variable (X t) p s) ∧
∀ f t n.

increasing seq t ∧ P(
⋂

k∈ [0,n−1]{x | X tk x = f k}) �= 0 ⇒
(P({x | X tn+1 x = f (n + 1)}|{x | X tn x = f n} ∩⋂

k∈ [0,n−1]{x | X tk x = f k}) =

P({x | X tn+1 x = f (n + 1)}|{x | X tn x = f n}))
where increasing seq t is defined as ∀ i j. i < j ⇒ t i < t j, thus for-
malizing the notion of increasing sequence. The first conjunct indicates that the
Markov property is based on a random process {Xt : Ω → S}. The quantified
variable X represents a function of the random variables associated with time
t which has the type num. This ensures the process is a discrete time random
process. The random variables in this process are the functions built on the
probability space p and a measurable space s. The conjunct P(

⋂
k∈ [0,n−1]{x |

X tk x = f k}) �= 0 ensures that the corresponding conditional probabilities
are well-defined, where f k returns the kth element of the state sequence.

A DTMC is usually expressed by specifying: an initial distribution p0 which
gives the probability of initial occurrence Pr(X0 = s) = p0(s) for every state;
and transition probabilities pij(t) which give the probability of going from i to
j for every pair of states i, j in the state space [19]. For states i, j and a time t,
the transition probability pij(t) is defined as Pr{Xt+1 = j|Xt = i}, which can
be easily generalized to n-step transition probability.

p
(n)
ij =

⎧⎪⎨⎪⎩
{
0 if i �= j

1 if i = j
n = 0

Pr{Xt+n = j|Xt = i} n > 0

320 L. Liu et al.

This is formalized in HOL as follows:

Definition 2. (Transition Probability)

� ∀ X p s t n i j.

Trans X p s t n i j =

if i ∈ space s ∧ j ∈ space s then

if (n = 0) then

if (i = j) then 1 else 0

else P({x | X (t + n) x = j}|{x | X t x = i})
else 0

We will write p
(n)
ij (t) for the n-step transition probability (note that the notations

pij(t) and p
(1)
ij (t) are then equivalent).

Based on the concepts of Markov property and transition probability, the
notion of a DTMC can be formalized as follows:

Definition 3. (DTMC)

� ∀ X p s p0 pij.

dtmc X p s p0 pij =

mc property X p s ∧ (∀ i. i ∈ space s ⇒ {i} ∈ subsets s) ∧
(∀ i. i ∈ space s ⇒ (p0 i = P{x | X 0 x = i})) ∧
(∀ t i j. P{x | X t x = i} �= 0 ⇒ (pij t i j = Trans X p s t 1 i j))

The first conjunct states that a DTMC satisfies Markov property [19]. The second
one ensures that every set containing just one state is measurable. The last two
conjuncts indicate that p0 is the initial distribution and pij are the transition
probabilities, respectively. It is important to note that X is polymorphic, i.e., it
is not constrained to a particular type, which is a very useful advantage of our
definition.

In practice, many applications actually make use of time-homogenous DTMCs,
i.e., DTMCs with finite state-space and time-independent transition probabilities
[2]. This is formalized as follows:

Definition 4. (Time-homogeneous DTMC)

� ∀ X p s p0 pij.

th dtmc X p s p0 pij =

dtmc X p s p0 pij ∧ FINITE (space s) ∧
(∀ t i j. P{x | X t x = i} �= 0 ∧ P{x | X (t + 1) x = i} �= 0 ⇒

(Trans X p s (t + 1) 1 i j = Trans X p s t 1 i j))

where the assumptions P{x | X t x = i} �= 0 and P{x | X (t + 1) x = i}
�= 0 ensure that the conditional probabilities involved in the last conjunct are
well-defined. For time-homogenous DTMCs, pij(t) = pij(t

′) for any t, t′, thus
pij(t) will simply be written pij in this case.

Using these fundamental definitions, we formally verified most of the classical
properties of DTMCs with finite state-space using the HOL theorem prover.
Because of space limitations, we present only the formal verification of the most
important properties in the following subsections and the remaining ones can be
found in our proof script [14].

On the Formal Analysis of HMM Using Theorem Proving 321

3.2 Joint Probability

The joint probability of a DTMC is the probability of a chain of states to occur. It
is very useful, e.g., in analyzing multi-stage experiments. In addition, this concept
is the basis for joint probability generating functions, which are frequently used
in considerable system analysis problems. Mathematically, the joint probability
of n + 1 discrete random variables X0, . . ., Xn in a DTMC can be expressed as:

Pr(Xt = L0, · · · , Xt+n = Ln) =

n−1∏
k=0

Pr(Xt+k+1 = Lk+1|Xt+k = Lk)Pr(Xt = L0)

We verified this property in HOL as the following theorem:

Theorem 1. (Joint Probability)

� ∀ X p s t L p0 pij.

dtmc X p s p0 pij ⇒
(P(

⋂n
k=0{x | X (t + k) x = EL k L}) =

(
∏n−1

k=0P({x | X (t + k + 1) x = EL (k + 1) L}|
{x | X (t + k) x = EL k L}))P{x | X t x = EL 0 L})

3.3 Chapman-Kolmogorov Equation

The Chapman-Kolmogorov equation [3] is a widely used property of time-homo-
geneous Markov chains since it facilitates the use of a matrix theory to analyze
large Markov chains. It basically gives the probability of going from state i to j
in m+n steps. Assuming the first m steps take the system from state i to some
intermediate state k, which is in the state space Ω and the remaining n steps
then take the system from state k to j, we can obtain the desired probability by
adding the probabilities associated with all the intermediate steps:

p
(m+n)
ij =

∑
k∈Ω p

(n)
kj p

(m)
ik (1)

Based on Equation (1) and Definition 4, the Chapman-Kolmogorov equation
is formally verified as follows:

Theorem 2. (Chapman-Kolmogorov Equation)

� ∀ X p s i j t m n p0 pij.

th dtmc X p s p0 pij ⇒
(Trans X p s t (m + n) i j =∑

k∈space s(Trans X p s t n k j * Trans X p s t m i k))

3.4 Absolute Probabilities

The unconditional probabilities associated with a Markov chain are called abso-
lute probabilities which are expressed as follows:

p
(n)
j = Pr(Xn = j) =

∑
k∈Ω Pr(X0 = k)Pr(Xn = j|X0 = k) (2)

This property is formally verified as the following theorem:

322 L. Liu et al.

Theorem 3. (Absolute Probability)

� ∀ X p s j n p0 pij.

dtmc X p s p0 pij ⇒
(P{x | X n x = j} =∑

k∈space s(P{x | X 0 x = k}P({x | X n x = j}|{x | X 0 x = k})))

The formal proof script for the above mentioned properties and many other
useful properties is composed of 1200 lines of HOL code, which is used in the
interactive verification process. The usefulness of this development is that it can
be built upon to formalize HMMs as will be shown in the next section.

4 Formalization of Hidden Markov Models

An HMM [16] is a pair of two stochastic processes {Xk, Yk}k≥0, where {Xk}k≥0

is a Markov chain and {Yk}k≥0 denotes an observable sequence, with the condi-
tional independency property [27]. The observer can visualize the output of the
random process shown in {Yk}k≥0 but not the underlying states in {Xk}k≥0.
That is the reason why the Markov chain involved in this process is called hid-
den Markov chain.

A HMM is defined as a triple λ = (A, B, π(0)) with the following conditions:

1. A Markov chain {Xk}k≥0 with state space S, the initial distribution π(0) =
{Pr{X0 = i}}i∈S and the transition probabilities A = {Pr{Xn+1 = j|Xn =
i}}i∈S,j∈S.

2. A random process {Yk}k≥0 with finite state space O. {Xk}k≥0 and {Yk}k≥0

are associated with the emission probabilities B, which is {Pr{Yn = Ok|Xn =
j}}j∈S,Ok∈O.

3. {Yk}k≥0 is conditional independent of {Xk}k≥0, i.e. Yk depends only on Xk

and not on any Xt, such that t �= k.

In our work, we consider mainly discrete time and finite-state space HMMs,
which is the most frequently used case. Now, HMM is formalized as follows:

Definition 5. (HMM)

� ∀ X Y p sX sY p0 pij pXY.

hmm X Y p sX sY p0 pij pXY =

dtmc X p sX p0 pij ∧ (∀ t. random variable (Y t) p sY) ∧
(∀ i. i ∈ space sY ⇒ {i} ∈ subsets sY) ∧
(∀ t a i. P{x | X t x = i} �= 0 ⇒

(P({x | Y t x = a}|{x | X t x = i}) = pXY t a i)) ∧
∀ t a i tx0 ty0 stsX stsY tsX tsY.

P({x | X t x = i} ∩
⋂

kεtsX
{x | X (tx0 + k) x = EL k stsX} ∩⋂

kεtsY
{x | Y (ty0 + k) x = EL k stsY}) �= 0 ⇒

(P({x | Y t x = a}|{x | X t x = i} ∩⋂
kεtsX
{x | X (tx0 + k) x = EL k stsX} ∩⋂

kεtsY
{x | Y (ty0 + k) x = EL k stsY}) =

P({x | Y t x = a}|{x | X t x = i}))

On the Formal Analysis of HMM Using Theorem Proving 323

The variable X denotes the random variable in the underlying DTMC, Y indi-
cates the random observations, and pXY indicates the emission probabilities. The
following two conditions define a random process {Yt}t≥0 with a discrete state
space. The fourth condition assigns the emission distributions given by pXY. The
last condition ensures the above mentioned conditional independence.

The time-homogenous HMMs can also be formalized in a way similar to time-
homogenous DTMCs:

Definition 6. (Time-homogeneous HMM)

� ∀ X Y p sX sY p0 pij pXY.

thmm X Y p sX sY p0 pij pXY =

hmm X Y p sX sY p0 pij pXY ∧ FINITE (space sX) ∧ FINITE (space sY) ∧
∀ t a i j. P{x | X t x = i} �= 0 ∧ P{x | X (t + 1) x = i} �= 0 ⇒

(Trans X p sX (t + 1) 1 i j = Trans X p sX t 1 i j) ∧
(pxy (t + 1) i j = pxy t i j)

Next, we verify some classical properties of HMMs, which play a vital role in
reducing the user interaction for the formal analysis of systems that can be
represented in terms of HMMs.

4.1 Joint Probability of HMMs

The most important property of time homogeneous HMMs is the expression of
the joint distribution of a sequence of states and its corresponding observation,
which can be expressed using products of its emission probabilities and transi-
tion probabilities. This is frequently used to find the best state path or estimate
model’s parameters. Mathematically, this is expressed as the following equation:

Pr(Y0, · · · , Yt, X0, · · · , Xt) = Pr(X0)Pr(Y0|X0)

t−1∏
k=0

Pr(Xk+1|Xk)Pr(Yk+1|Xk+1)

and has been formally verified using the HOL theorem prover as follows:

Theorem 4. (Joint Probability of HMM)

� ∀ X Y p t sX sY p0 pij pXY stsX stsY.

thmm X Y p sX sY p0 pij pXY ⇒
(P(

⋂t
k=0{x | X k x = EL k stsX} ∩

⋂t
k=0{x | Y k x = EL k stsY}) =

P{x | X 0 x = EL 0 stsX}
P({x | Y 0 x = EL 0 stsY}|{x | X 0 x = EL 0 stsX})
(
∏t−1

k=0P({x | X (k + 1) x = EL (k + 1) stsX}|{x | X k x = EL k stsX})
P({x | Y (k + 1) x = EL (k + 1) stsY}|
{x | X (k + 1) x = EL (k + 1) stsX}))

4.2 Joint Probability of an Observable Path

In addition to the above property, researchers are often interested in the prob-
ability of a particular observation, independently of any underlying state path.

324 L. Liu et al.

This can be mathematically expressed as:

Pr(Y0, · · · , Yt) =
∑

X0,··· ,Xt ∈
space s

Pr(X0)Pr(Y0|X0)

t−1∏
k=0

Pr(Xk+1|Xk)Pr(Yk+1|Xk+1)

Using Theorem 4, we can formally verify this equation as follows.

Theorem 5. (Joint Probability of Observable Path)

� ∀ X Y p s n sX sY p0 pij pXY stsX.

thmm X Y p sX sY p0 pij pXY ⇒
let L = {L | EVERY (λx. x ∈ space sX) L ∧ (|L| = n+ 1)} in

(P(
⋂n

k=0{x | Y k x = EL k stsY}) =∑
stsX∈L(P{x | X 0 x = EL 0 stsX}

P({x | Y 0 x = EL 0 stsY}|{x | X 0 x = EL 0 stsX})
(
∏n−1

k=0P({x | X (k + 1) x = EL (k + 1) stsX}|
{x | X k x = EL k stsX})

P({x | Y (k + 1) x = EL (k + 1) stsY}|
{x | X (k + 1) x = EL (k + 1) stsX})))

where |L| returns the length of the list L and EVERY p L is a predicate which is
true iff the predicate p holds for every element of the list L.

One can note that Theorems 4 and 5 provide ways to compute the probabilities
that are usually desired while analyzing HMMs. Consequently, if the theorems
are instantiated with concrete values for their parameters, then a real number
can be obtained for the corresponding probability. Thus, it seems natural to try
to automatize such computations. Moreover, this is extremely useful since, in
practice, one is always interested in applying the theorems to concrete situations.
In the next subsection, we describe how to automatically acquire interesting
probabilities and find the best state path, for a given HMM, using the results of
Theorems 4 and 5. This makes the accuracy of theorem proving available even
to users with no knowledge about logic or theorem proving, hence making our
technique closer to practical usability.

4.3 Automating the HOL Computations

In order to automate the computation associated with Theorem 4, we define an
SML function hmm joint distribution ini distr trans distr e distr sts

obs which takes as input the initial distributions, the transition probabilities,
the emission distributions, a list of states and a list of observations: When call-
ing this function, these parameters will be automatically substituted to p0, pij,
pXY, stsX and stsY, respectively, of Theorem 4. We then take t to be the length
of sts (which should be the same as obs): this seems to be the most common
case in practice, but could be easily relaxed if needed by adding a parameter
to the function. We can then compute, using HOL4 theorems about lists, real
numbers, etc., the right-hand side of the equation in Theorem 4 in an exact
way (as a fraction). In the end, the function returns the corresponding instan-
tiation of HOL4 theorem stating the equality between the joint probability and

On the Formal Analysis of HMM Using Theorem Proving 325

its value. Note that the result is really a HOL4 theorem: even the operations
between real numbers like multiplication or addition are obtained by deductive
reasoning, thus making every single step of the computation completely reliable
and traceable. An example of this function will be presented in the next sec-
tion. The implementation of the function hmm joint distribution requires the
development of an intermediate lemma and makes heavy but fine-grain use of
rewriting techniques in order to have a reasonable efficiency. We do not go into
implementation details due to the lack of space.

The computations associated with Theorem 5 can also be automated sim-
ilarly, but we can actually go further: A problem which arises very often in
practice is to find the state path which has the best probability of generat-
ing a given observation sequence. To obtain this, we need to compute the set
of all possible state paths, compute the probability of each of these paths as
hmm joint distribution does, and then return the path which has the best
probability. Once again, in order to be the most accurate as possible, all these
computations shall be done inside HOL4. This can be achieved by an SML func-
tion best path ini distr trans distr e distr st ty obswhere ini distr,
trans distr, e distr, and obs denote the same objects as for hmm joint

distribution and st ty denotes the type of terms representing states. This
type should be a non-recursive enumerated type, i.e., defined as C1 | C2 | . . . Ck,
where C1, . . . , Ck are constructors without arguments: this ensures that the state-
space is finite. The function then takes care of computing the list of all pos-
sible paths, then computes the corresponding joint probability as hmm joint

distribution does, and, in the end, returns the state path which has the best
such probability (note that the notion of “best probability” is also defined in-
side HOL4 by using the axiomatic definition of the order on real numbers). This
function is currently very slow (with a 3-state path, it will take around one sec-
ond to obtain the best path; for a 5-state path, it takes around one minute) due
to the computation of the set of all possible state paths, but there is a lot of
room for improvement, in particular by filtering paths which have trivially a null
transition probability or null emission probability. This is a first step, which is
not as fast as other statistical tools, on developing a tool to formally analyze
HMMs.

We now show how to apply these theorems and functions in practice, by
providing the formal analysis of a HMM of DNA model in the next section.

5 Application: Formal Analysis of DNA Sequence

DNA sequence analysis plays a vital role in constructing gene mapping, dis-
covering new species and investigating disease-manifestations in genetic linkage,
parental testing and criminal investigation. Statistical methods are mainly ap-
plied for analyzing DNA sequence. In particular, obtaining the probability of a
state path underlying the DNA fragment is the most critical step in identifying
a particular DNA sequence.

A DNA fragment is a sequence of nucleotides called A (Adenine), T (Thymine),
G (Guanine) and C (Cytosine). However, nucleotide composition of DNA is in

326 L. Liu et al.

Fig. 1. 5’ splice site recognition model

general not uniformly distributed (because every DNA sequence can be synthe-
sised): some regularities can be found among the possible sequences. For instance,
it might be that all four nucleotides can appear with equal probability at the be-
ginning of the sequence, but, after a particular point, only A and G can appear,
and then all four can appear again but with higher probabilities for A and T.
In this application, there are thus three different “states” of the DNA, charac-
terized by the probabilities of occurrence of each base. In this DNA model, the
first state is called exon (E), the second one 5’ splice site (5), and the third one
intron (I) [8]. This model is described and studied very naturally using HMMs
[8]: a DTMC over the states E, 5, and I is used in order to know in which state
the nucleotides are, then another random process is defined which characterizes
the emission of A, G, T or C according to the state which the proteins are in.
This is summarized in Fig. 1.

In order to formalize this HMM, we first define types representing the states
and the bases:

Definition 7. (HOL4 Data Types)

� dna = A | G | T | C

� state = START | E | I | FIVE | END

Note that, in order to characterize the sequence, it is a common practice to add
some fake start and end states, which have no connection with the observable
sequence and thus no emission probability is required. Hence START and END are
contained in the definition of state in Definition 7. As examples, we define the
following state and DNA sequences:

Definition 8. (State Path and DNA Sequence)

� state seq = [START; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; FIVE; I; I; I; I; I; I; I; END]

� dna seq = [C; T; T; C; A; T; G; T; G; A; A; A; G; C; A; G; A; C; G; T; A; A; G; T; C; A]

So as to model the HMM represented in Fig. 1, we need an initial distribution,
the transition probabilities, and the emission probabilities, which we define as
follows:

On the Formal Analysis of HMM Using Theorem Proving 327

Definition 9. (DNA Model Parameters)

� ini distr i = if (i = START) then 1 else 0

� e distr a i =
case (i, a) of
(E,) → 0.25
‖ (FIVE, A) → 0.05
‖ (FIVE, G) → 0.95
‖ (I, A) → 0.4
‖ (I, T) → 0.4
‖ (I, G) → 0.1
‖ (I, C) → 0.1
‖ → 0

� trans distr t i j =
case (i, j) of
(START, E) → 1

‖ (E, E) → 0.9
‖ (E, FIVE) → 0.1
‖ (FIVE, I) → 1

‖ (I, I) → 0.9
‖ (I, END) → 0.1
‖ → 0

Then, in order to work with random variables X and Y denoting the states and
the observations, respectively, on a probability space p, it is sufficient to have
the following predicate:

thmm X Y p sX sY ini distr trans distr e distr

∧ space sX = univ(: state) ∧ space sY = univ(: dna)

where univ(:t) is the set of all possible values of type t, e.g., univ(:dna) =

{A; G; T; C}.
Now, for instance, we can prove the theorem which gives the probability of

obtaining the sequence dna seq if the underlying state path is state seq:

Theorem 6. (Joint Probability of a DNA Segment)

� ∀ X Y p sX sY.

thmm X Y p sX sY ini distr trans distr e distr ∧
space sX = univ(: state) ∧ space sY = univ(: dna) ⇒
P(
⋂|state seq|−1

k=0 {x | X k x = EL k state seq} ∩⋂|dna seq|−1
k=0 {x | Y k x = EL k dna seq}) = 0.2518 ∗ 0.923 ∗ 0.14 ∗ 0.95 ∗ 0.45

To verify this theorem, a lemma of Theorem 4 is proved firstly:

Lemma 1.

� ∀ X Y p t sX sY p0 pij pXY stsX stsY.

thmm X Y p sX sY p0 pij pXY ∧ (|stsx|=t + 3) ∧ (|stsy|=t + 1) ⇒
(P(

⋂t+2
k=0{x | X k x = EL k stsX} ∩

⋂t
k=0{x | Y k x = EL k stsY})=

P{x | X 0 x = EL 0 stsX}
P({x | X (k + 2) x = EL (k + 2) stsX}|
{x | X (k + 1) x = EL (k + 1) stsX})

(
∏t

k=0P({x | X (k + 1) x = EL (k + 1) stsX}|{x | X k x = EL k stsX})
P({x | Y (k + 1) x = EL k stsY}|{x | X k x = EL (k + 1) stsX}))

Actually, a more interesting information than the above number is to find which
among all possible state paths has the highest probability to occur given a par-
ticular DNA sequence. This state path is called the best path in our case. In
our particular context, this problem is called 5’ splice site recognition. This is
verified as follows:

328 L. Liu et al.

Theorem 7. (Best State Path)

� ∀ X Y p sX sY.

thmm X Y p sX sY ini distr trans distr e distr ∧
space sX = univ(: state) ∧ space sY = univ(: dna) ⇒
REAL MAXIMIZE SET

[E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; E; FIVE; I; I; I; I; I; I; I]

(λsts. P(
⋂|sts|−1

k=0 {x | X k x = EL k state seq}
⋂

⋂|dna seq|−1

k=0 {x | Y k x = EL k dna seq})) {sts | |sts| = 26}

where REAL MAXIMIZE SET m f s is a predicate which is true only if f m is the
maximum element of {f x | x ∈ s} (this is defined as a predicate because
there can be several elements of s having this property). Note once again that
this theorem is proved in a purely formal way, i.e., even the comparisons be-
tween probabilities are proved deductively from the axiomatic definition of real
numbers. Consequently, the confidence that we can have in the result is maximal.

While Theorems 6 and 7 have been proved in the classical theorem proving
way, i.e., interactively, there are rare chances that a biologist has the required
knowledge of higher-order logic and HOL4 so as to conduct such a study. How-
ever, we can, by using SML functions that we presented in the previous section,
get the same result in a purely automated way. In order to call the functions
hmm joint distribution and best path, we need to define their arguments as
SML values:

> val dna seq =

"[C;T;T;C;A;T;G;T;G;A;A;A;G;C;A;G;A;C;G;T;A;A;G;T;C;A]";

> val state seq =

"[START;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;FIVE;I;I;I;I;I;I;I;END]";

> val ini distr = "λ i. if (i = START) then 1 else 0";

> val trans distr = "λ t i j. case (i, a) of

(START, E)→ 1 ‖ (E, E)→ 0.9 ‖ (E, FIVE)→ 0.1 ‖ (FIVE, I)→ 1 ‖
(I, FIVE)→ 0.9 ‖ (I, END) → 0.1 ‖ → 0"

> val e distr a i = "λ t a i. case (i, a) of

(E,)→ 0.25 ‖ (FIVE, A)→ 0.05 ‖ (FIVE, G)→ 0.95 ‖ (I, A)→ 0.4 ‖
(I, T)→ 0.4 ‖ (I, G)→ 0.1 ‖ (I, C)→; 0.1 ‖ → 0"

Note that, contrarily to the previous definitions, dna seq, state seq,
ini distr, trans distr and e distr are SML values, whereas the values with
the same names presented in Definitions 8 and 9 are HOL4 values. Of course, in
practice, these need to be defined only once (in SML if using the automated way,
or in HOL4 if using the interactive way). We can then call the SML function

On the Formal Analysis of HMM Using Theorem Proving 329

hmm joint distribution as follows:

> hmm joint distribution ini distr trans distr e distr dna seq state seq;

which gives the following output:

Exact value with the corresponding assumptions (obtained by HOL4):

∀ X Y p sX sY.

thmm X Y p sX sY

(λ i. if i = START then 1 else 0)

(λ t i j. case (i,j) of

(E,)→ 0.25 ‖ (FIVE, A)→ 0.05 ‖ (FIVE, G)→ 0.95 ‖ (I, A)→ 0.4 ‖
(I, T)→ 0.4 ‖ (I, G)→ 0.1 ‖ (I, C)→ 0.1 ‖ → 0.1

(λ t a i. case (i,a) of

(START, E)→ 1 ‖ (E, E)→ 0.9 ‖ (E, FIVE)→ 0.1 ‖
(FIVE, I)→ 1 ‖ (I, I)→ 0.9 ‖ (I, END) → 0.1 ‖ → 0 ∧

(space sX = univ(:state)) ∧ (space sY = univ(:dna)) ⇒
P(
⋂27

k=0{x | X k x =

EL k [START;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E;FIVE;I;I;

I;I;I;I;I;END]} ∩⋂25
k=0{x | Y k x =

EL k [C;T;T;C;A;T;G;T;G;A;A;A;G;C;A;G;A;C;G;T;A;A;G;T;C;A]}})

= 168395824273397520822651
134217728000000000000000000000000000000000

Thus, as we can see, the SML function is able to return a HOL4 theorem giving
the exact value of the desired probability in a purely automated way. For conve-
nience, the approximated value can also be computed by SML from the HOL4
exact value. Similarly, a result corresponding to Theorem 7 can be obtained au-
tomatically by using best path. In [8], the probability of the best path is e−41.22

and that of the second best path is e−41.71. It is quite likely that the path chosen
by numerical algorithm in the simulation tools is not the best one due to the
numerical approximations. On the other hand, theorem proving based approach
provides the best path with unrivaled accuracy.

This concludes our analysis of the 5’ splice site DNA problem. It is, to the
best of our knowledge, the first such formal analysis. In addition, we demon-
strated how useful are our automation functions, since they allow to reduce the
interaction with the user to a minimum, especially in reducing interactive guide
when computing concrete numerical values in applications. All the proof scripts
corresponding to this work are available at [14].

6 Conclusions

HMMs, which are used to model an observable stochastic process with an under-
lying Markov process, are mainly applied to model and analyze time series data

330 L. Liu et al.

in various engineering and scientific systems. This paper presents a formalization
of HMMs based on an enhanced definition of discrete-time Markov chain with fi-
nite state-space in a higher-order logic theorem prover. In particular, we present
a formal definition of time homogeneous DTMC and formally verify some of
their classical properties, such as joint probabilities, Chapman-Kolmogorov Equa-
tion and absolute probabilities, using the HOL4 theorem prover. Furthermore,
some properties of HMMs are verified in HOL4. This work facilitates the formal
analysis of HMMs and provides the foundations for formalizing more advanced
concepts of Markov chain theory, like classified DTMCs and useful properties
of HMMs. In addition, we automatized some of the most common tasks related
to HMMs, thus demonstrating the practical usability of our approach. Due to
the inherent soundness of theorem proving, it is guaranteed to provide accurate
results, which is a very useful feature while analyzing HMMs associated with
safety or mission-critical systems. In order to illustrate the usefulness of the pro-
posed approach, we analyzed an HMM for 5’ splice site DNA recognition using
our formalization and automation. Our results exactly matched the correspond-
ing paper-and-pencil based analysis [8], which ascertains the precise nature of
the proposed approach. Note that our approach is quite general and it can be
applied in DNA models, which usually consist of many states.

As the formal analysis of HMMs cannot be achieved in PRISM , the pre-
sented work opens the door to a new and very promising research direction, i.e.,
integrating HOL theorem proving in the domain of analyzing HMMs. We are
currently working on extending the set of formally verified properties regarding
DTMCs and extending our work to time-inhomogeneous discrete-time Markov
chains, which will enable us to target a wider set of systems. We also plan to for-
mally verify the Forward-Backward, Viterbi and Baum-Welch algorithms [16],
which are widely applied in statistical biology analysis. By improving the effi-
ciency of automation functions and by making their scope broader, we could
also consider the development of a purely automated but formal tool to analyse
HMMs.

References

1. Affeldt, R., Hagiwara, M.: Formalization of shannon’s theorems in sSReflect-coq.
In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 233–249. Springer,
Heidelberg (2012)

2. C. Baier and J. Katoen. Principles of Model Checking. MIT Press (2008)
3. Bhattacharya, R.N., Waymire, E.C.: Stochastic Processes with Applications. John

Wiley & Sons (1990)
4. ChIP-Seq Tool Set (2012),

http://havoc.genomecenter.ucdavis.edu/cgi-bin/chipseq.cgi

5. Chung, K.L.: Markov chains with stationary transition probabilities. Springer,
Heidelberg (1960)

6. Coq (2014), http://coq.inria.fr/
7. Daniel, N.: Electrocardiogram Signal Processing using Hidden Markov Models.

Ph.D. Thesis, Czech Technical University, Czech Republic (2003)

http://havoc.genomecenter.ucdavis.edu/cgi-bin/chipseq.cgi
http://coq.inria.fr/

On the Formal Analysis of HMM Using Theorem Proving 331

8. Eddy, S.R.: What is a Hidden Markov Model? Nature Biotechnology 22(10),
1315–1316 (2004)

9. Frédéric, S., Delorenzi, M.: MAMOT: Hidden Markov Modeling Tool. Bioinfor-
matics 24(11), 1399–1400 (2008)

10. Gordon, M.J.C.: Mechanizing Programming Logics in Higher-0rder Logic. In:
Current Trends in Hardware Verification and Automated Theorem Proving,
pp. 387–439. Springer, Heidelberg (1989)

11. HMMER (2013), http://hmmer.janelia.org/
12. HMMTool (2013),

http://iri.columbia.edu/climate/forecast/stochastictools/

13. Hölzl, J., Heller, A.: Three Chapters of Measure Theory in Isabelle/HOL. In:
van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS,
vol. 6898, pp. 135–151. Springer, Heidelberg (2011)

14. L. Liu (2013), http://hvg.ece.concordia.ca/projects/prob-it/dtmc_hmm.html
15. Liu, L., Hasan, O., Tahar, S.: Formalization of finite-state discrete-time markov

chains in HOL. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996,
pp. 90–104. Springer, Heidelberg (2011)

16. MacDonald, I.L., Zucchini, W.: Hidden Markov and Other Models for Discrete-
valued Time Series. Chapman & Hall, London (1997)

17. Mhamdi, T., Hasan, O., Tahar, S.: On the Formalization of the Lebesgue Integra-
tion Theory in HOL. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS,
vol. 6172, pp. 387–402. Springer, Heidelberg (2010)

18. MRMC (2013), http://www.mrmc-tool.org/trac/
19. Norris, J.R.: Markov Chains. Cambridge University Press (1999)
20. PRISM (2013), http://www.prismmodelchecker.org
21. Robertson, A.W., Kirshner, S., Smyth, P.: Downscaling of Daily Rainfall Occur-

rence over Northeast Brazil using a Hidden Markov Model. Journal of Climate 17,
4407–4424 (2004)

22. Rutten, J., Kwaiatkowska, M., Norman, G., Parker, D.: Mathematical Techniques
for Analyzing Concurrent and Probabilisitc Systems. CRM Monograph Series,
vol. 23. American Mathematical Society (2004)

23. Sen, K., Viswanathan, M., Agha, G.: VESTA: A Statistical Model-Checker and
Analyzer for Probabilistic Systems. In: IEEE International Conference on the
Quantitative Evaluation of Systems, pp. 251–252 (2005)

24. YMER (2013), http://www.tempastic.org/ymer/
25. Zhang, L., Hermanns, H., Jansen, D.N.: Logic and Model Checking for Hidden

Markov Models. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 98–112.
Springer, Heidelberg (2005)

26. Zhang, L.J.: Logic and Model Checking for Hidden Markov Models. Master Thesis,
Universität des Saarlandes, Germany (2004)

27. Zoubin, G.: An Introduction to Hidden Markov Models and Bayesian Networks.
International Journal of Pattern Recognition and Artificial Intelligence 15(1), 9–42
(2001)

http://hmmer.janelia.org/
http://iri.columbia.edu/climate/forecast/stochastictools/
http://hvg.ece.concordia.ca/projects/prob-it/dtmc_hmm.html
http://www.mrmc-tool.org/trac/
http://www.prismmodelchecker.org
http://www.tempastic.org/ymer/

Formal Modeling and Analysis

of Cassandra in Maude

Si Liu, Muntasir Raihan Rahman, Stephen Skeirik,
Indranil Gupta, and José Meseguer

Department of Computer Science,
University of Illinois at Urbana-Champaign, USA

Abstract. Distributed key-value stores are quickly becoming a key com-
ponent of cloud computing systems. In order to improve read/write la-
tency, distributed key-value stores offer weak notions of consistency to
clients by using many complex design decisions. However, it is challenging
to formally analyze consistency behaviors of such systems, both because
there are few formal models, and because different consistency level com-
binations render understanding hard, particularly under communication
latency. This paper presents for the first time a formal executable model
in Maude of Cassandra, a popular key-value store. We formally models
Cassandra’s main components and design strategies. We formally specify
various consistency properties and model check them against our model
under various communication latency and consistency combinations.

1 Introduction

Distributed key-value (e.g., Cassandra [2], RIAK [1]) storage systems are in-
creasingly being used to store and query data in today’s industrial deployments.
Many diverse companies and organizations are moving away from traditional
strongly consistent databases and are instead using key-value/NoSQL stores in
order to store huge data sets and tackle an increasing number of users. According
to DB-Engines Ranking [3] by April 2014, Cassandra advanced into the top 10
most popular database engines among 216 systems, underlining the increasing
popularity of key-value database systems.

Distributed key-value stores typically replicate data on multiple servers for
greater availability in the presence of failures. Since any of such servers can now
respond to client read requests, it becomes costly to always keep all the replicas
synchronized. This creates a tension between consistency (keeping all replicas
synchronized) and availability (replying to clients quickly), especially when the
network is partitioned [7]. Whereas traditional databases favor consistency over
availability, distributed key-value stores risk exposing stale data to clients to
remain highly available. This approach was popularized by the Dynamo [20]
key-value store architecture from Amazon. Cassandra [2] is an open-source dis-
tributed key-value store which closely follows the Dynamo architecture. Many
large scale Internet service companies like Netflix, IBM, HP, Facebook, Spotify,
and PBS Kids rely heavily on the Cassandra key-value storage system.

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 332–347, 2014.
c© Springer International Publishing Switzerland 2014

Formal Modeling and Analysis of Cassandra in Maude 333

Weakly consistent key-value stores like Cassandra typically employ many com-
plex design decisions that can impact the consistency and availability guarantees
offered to the clients. Therefore, there is an urgent need to develop formal mod-
els for specifying these design decisions and for reasoning about the impact of
these design choices on specified consistency (correctness) and availability (per-
formance) guarantees. For distributed key-value stores like Cassandra, at present
the only way to understand the inner workings of such a system is to browse
the huge code base. For example, the latest version of Apache Cassandra has
342, 519 lines of code. An important part of this work has been to study in detail
the Cassandra code for its main components, to incrementally build Maude for-
mal models of such components, and to check that the formal models faithfully
capture the Cassandra design decisions. This is one of our main contributions,
providing a solid basis for the subsequent formal analysis.

Once we have a formal executable model for Cassandra, we can conveniently
model check various important properties about the system. Although we know
Cassandra favors eventual consistency, there is no formal treatment that specifies
when Cassandra satisfies eventual consistency and when it might actually offer
strong consistency. Therefore it is very important to formally specify various
consistency properties and check whether the system satisfies those properties
under various combinations of message delays and consistency levels.

Currently there are two main approaches for verifying consistency models for
distributed key-value stores. First, we can run a given key-value store under a
particular environment, and audit the read/write operation logs to check for
consistency violations [17]. Second, we can analyze the algorithms used by the
key-value store to ensure consistency [15]. However, the former is not guaranteed
to find all violations of the consistency model, and the latter is time-consuming
and needs to be repeated for every system with different implementations of the
underlying algorithms for guaranteeing consistency.

In this paper, we present a formal executable model of Cassandra using Maude
[8], a modeling language based on rewriting logic that has proved suitable for
modeling and analyzing distributed systems. Our Maude model includes main
components of Cassandra such as data partitioning strategies, consistency lev-
els, and timestamp policies for ordering multiple versions of data (the details
of these components are given in Section 2.1). We have also specified Cassan-
dra’s main consistency properties, strong consistency and eventual consistency,
in linear temporal logic (LTL). We have then model checked these properties
using Maude’s built-in LTL model checker. As a result, we can model check
whether the properties hold or not for possibly different delay distributions be-
tween clients and servers, and for various combinations of consistency levels used
by clients. Our analysis results indicate that eventual consistency is always sat-
isfied by our Cassandra model. However, we discovered violations of the strong
consistency property under certain scenarios. Although Cassandra is expected
to violate strong consistency under certain conditions, previously there was no
formal way of discovering under which conditions such violations could occur.
At the software engineering level our formal modeling and analysis compares

334 S. Liu et al.

favorably with previous approaches: our Maude specification is fewer than 1000
lines of code, and consistency verification in our formal approach is faster, more
accurate and provides stronger assurance than existing approaches, which re-
quire analyzing the extremely large code base.

The two main contributions of this paper are:

• We present, to the best of our knowledge for the first time, a formal executable
model for the Cassandra key-value store; this has required a large amount
of effort due to Cassandra’s extremely large code base.

• We formally specify and model check Cassandra’ main consistency prop-
erties, namely, strong consistency and eventual consistency, and explicitly
show when Cassandra satisfies these properties or not.

Due to lack of space we refer to the techincal report [14] for two more contri-
butions: (i) the formal analysis of Cassandra’s read repair mechanism, and (ii)
the extension of our formal model to easily explore other design decisions for
key-value stores.

The rest of the paper is organized as follows. Section 2 gives a brief overview
of Cassandra and Maude. Next, in Section 3 and Section 4, we present our formal
executable model for Cassandra, and the analysis of Cassandra consistency, re-
spectively. Finally, in Section 5 we conclude and discuss related work and future
directions.

2 Preliminaries

2.1 Cassandra Overview

Fig. 1. The architecture of Cassandra deployed
in a single data center with an 8 server ring of
size 16

Apache Cassandra [2] is a high-
performance, extremely scalable,
and distributed NoSQL database
solution. Cassandra dynamically
partitions data across the cluster
servers for scalability, so that data
can be written to or read from any
server in the system. The total
amount of data managed by the
cluster is represented as a ring.
The ring is divided into ranges,
with each server being respon-
sible for one or more ranges of
the data. Cassandra allows several
replica servers to store a particu-
lar key-value pair. To place those
replicas different strategies can be

employed, e.g., the Simple Strategy places replicas clockwise in a single data cen-
ter. For a private cloud, Cassandra is typically deployed in a single data center
with a single ring structure shared by all its servers.

Formal Modeling and Analysis of Cassandra in Maude 335

When a client issues a read/write request to a data center, a coordinator (a
server in the cluster) forwards the request to all the replicas that hold copies of
the same data. However, based on the specified consistency level for a read/write,
the coordinator will reply back to the client after receiving responses from some
of the replicas. This improves operation latency, since the coordinator does not
have to wait for a slow server. Thus, the consistency level is the main dial
to trade between consistency and availability. Cassandra supports three main
consistency levels, ONE, QUORUM and ALL, for single data center settings, meaning
that the coordinator will reply back to the client after hearing from one replica,
a majority of replicas, or all replicas. To ensure that all replicas have the most
recent version of any data item, Cassandra employs a read repair mechanism to
update the out-of-date replicas.

Fig. 1 shows the architecture of Cassandra deployed in a single data center
with an 8 server ring of size 16 (indicated by the tokens), where all servers are
placed clockwise with each responsible for the region of the ring between itself
(inclusive) and its successor (exclusive). An incoming read/write from client 1
will go to all 3 (the replication factor in this case) replicas (indicated by the black
solid arrows). If the read/write consistency level specified by the client is ONE, the
first node to complete the read/write (node 1 in this example) responds back to
the coordinator 7, which then forwards the value or acknowledgement back to the
client (indicated by the black dashed arrows). In the case of a read, later replies
from the remaining replicas, nodes 3 and 4, may report different versions of the
value w.r.t. the key issued by the client (indicated by the grey dashed arrows).
If replica 3 holds an out-of-date value, in the background, 7 then issues a write
(called a read repair) with the most recent value to 3 (indicated by the red arrow).
Note that in a data center different clients may connect to different coordinators,
and all servers maintain the same view on the ring structure. Thus, requests from
any client on the same key will be always forwarded by the associated coordinator
to the same replicas.

2.2 Actors and LTL Model Checking in Maude

Maude [8] is a language and tool that supports the formal specification and anal-
ysis of a wide range of concurrent systems. A Maude module specifies a rewrite
theory (Σ,E∪A,R), where Σ is an algebraic signature declaring sorts, subsorts,
and function symbols ; (Σ,E ∪ A) is a membership equational logic theory [8],
with E a set of possibly conditional equations, and A a set of equational ax-
ioms such as associativity, commutativity, and identity; (Σ,E ∪A) specifies the
system’s state space as an algebraic data type; R is a set of labeled conditional
rewrite rules specifying the system’s local transitions, each of which has the form
[l] : t −→ t′ if

∧m
j=1 cond j , where each cond j is either an equality uj = vj or

a rewrite tj −→ t′j , and l is a label. Such a rule specifies a transition from an
instance of t to the corresponding instance of t′, provided the condition holds.

The Actor Model in Maude. The actor model of computation [4] is a model of
concurrent computation based on asynchronous message passing between objects

336 S. Liu et al.

called actors. Following the ideas of [16] and [10], the distributed state of an
actor system is formalized as a multiset of objects and messages, including a
scheduler object that keeps track of the global time. Multiset union is denoted
by an associative and commutative juxtaposition operator, so that rewriting is
multiset rewriting. An actor of the form < id : class | a1 : v1, a2 : v2,

..., an : vn > is an object instance of the class class that encapsulates the
attributes a1 to an with the current values v1 to vn, respectively, and can be
addressed using a unique name id. Actors communicate with each other using
asynchronous messages. Upon receiving a message, an actor can change its state
and can send messages to other actors. Actors can model a distributed systems
such as Cassandra in a natural way. For example, the rewrite rule

rl [l] : m(O,w) < O : C | a1 : x, a2 : O’ >

=> < O : C | a1 : x + w, a2 : O’ > m’(O’,x) .

defines transitions where a message m, with parameters O and w, is read and
consumed by an object O of class C, the attribute a1 of object O is changed to x

+ w, and a new message m’(O’,x) is generated.

Formal Analysis. In this paper we use Maude’s linear temporal logic model
checker, which analyzes whether each behavior from an initial state satisfies
a temporal logic formula. State propositions are terms of sort Prop. Their se-
mantics is defined by conditional equations of the form: ceq statePattern |=

prop = b if cond ., for b a term of sort Bool, stating that prop evaluates to b in
states that are instances of statePattern when the condition cond holds. These
equations together define prop to hold in all states t where t |= prop evaluates
to true. A temporal logic formula is constructed by state propositions and tem-
poral logic operators such as True, False, ~ (negation), /\, \/, -> (implication),
[] (“always”), <> (“eventually”), and U (“until”). The model checking command
red modelCheck(t , ϕ) . checks whether the temporal logic formula ϕ holds
in all behaviors starting from the initial state t .

3 Formalizing Cassandra

This section presents a formal model of Cassandra. Section 3.1 shows how a
Cassandra ring structure is specified in Maude, Section 3.2 describes the models
of clients and servers, and Section 3.3 shows how we model messages, time and
message delays and formalizes Cassandra’s dynamic behaviors. The entire exe-
cutable Maude specification is available at https://sites.google.com/site/
siliunobi/icfem-cassandra.

3.1 Modeling the Ring Structure

Cassandra partitions data across a ring of cluster servers and allows several
(replication factor) replicas to store a particular key-value pair. For replica place-
ment we specify the Simple Strategy [12], which places replicas clockwise in a
single data center without considering topology.

https://sites.google.com/site/siliunobi/icfem-cassandra
https://sites.google.com/site/siliunobi/icfem-cassandra

Formal Modeling and Analysis of Cassandra in Maude 337

We model the Cassandra ring as a ring structure with natural numbers mod-
ulo the parametric ring size RingSize. Each token on the ring (see Fig. 1) is
modeled as a pair of sort RingPair of Position and Address, referring to the
position locating the token and the server responsible for it respectively. Each
server claims the region of the ring between itself (inclusive) and its succes-
sor (exclusive). As an example, a simple 4 server ring of size 16 is specified as
(([0],1),([4],2),([8],3),([12],4)), where the first server 1 is responsible
for the range [0...3], the server 2 for [4...7], the server 3 for [8...11] and
the server 4 for [12...15].

3.2 Modeling Clients and Servers

Clients. A client in our model generates read or write requests. Our clients
also collect responses for analysis purposes, such as checking consistency viola-
tions. We can have one or multiple clients, depending on the analysis we per-
form (see Section 4.1). We model a client actor with attributes for the address
of the coordinator it recognizes, a store used to save the incoming messages,
two queues of read/write requests that are ready or pending for sending out,
and the corresponding set of locked keys. A key is locked if a client issues a
read/write on it, and will be unlocked upon the client receiving the associated
value/acknowledgement. This ensures that requests from the same client on the
same key are ordered, i.e., the client locks the key until the preceding operation
completes.

Servers. All servers in Cassandra are peers of each other, and a client’s read/write
request can reach any server in the cluster. We do not distinguish a coordinator
from a replica, since the server receiving the client’s request will automatically
serve as the coordinator. In addition, a coordinator can also be one of the replicas
that store a particular key-value pair. We model a server actor with attributes
for a global ring, a table storing data, a buffer (empty if not a coordinator)
caching the requests generated for replicas, and a finite set of message delays
that are chosen nondeterministically for each outgoing message (see Section 3.3).

As an example, an instance of a client/server can be initialized as:

< 100 : Client | coord: 1, store: nil, < 1 : Server | ring: (([0],1),([4],2),([8],3),
requestQueue: (r1 r2), lockedKey: empty, ([12],4)), table: (3 |-> ("tea",10.0),
pendingQueue: nil > 8 |-> ("coffee",5.0), 10 |-> ("water", 0.0),

15 |-> ("coke",2.0)), buffer: empty,
delays: (1.0,2.0,4.0,8.0) >

where client 100 connects to coordinator 1, and intends to send out two requests
r1 and r2; server 1 has a view of the ring structure, a set of four possible delays,
and a local key-value store modeled using the predefined data module MAP in
Maude, with each key of sort Key mapped to a pair of sort TableData consisting
of the data of sort Value and the timestamp of sort Float. For example, key 8

maps to data ("coffee",5.0), indicating "coffee" is written into Server 1 at
global time 5.0s.

338 S. Liu et al.

3.3 Formalizing Reads and Writes in Cassandra

Messages and Delays. Regarding its delivery, a message is either active (ready
for delivery) or inactive (scheduled for delivery), depending on whether the as-
sociated delay has elapsed, which is determined by the system’s global clock [10].
An active or inactive message is of the format {T,MSG} or [D,MSG], respectively,
where D refers to the delay of message MSG, and T refers to the global time when
MSG is ready for delivery. For example, if message [D,MSG] is generated at the
current global time GT, T equals to GT + D.

All messages have associated delays. To simplify the model without losing
generality, we abstract those delays into two kinds: (i) the delay between a
client and a coordinator, and (ii) the delay between a coordinator and a replica.
Since we equip a coordinator with a finite delay set, as shown in Fig. 2, non-
deterministic delays will be added to the messages generated at its side. Fig.
2 shows example delays D4 for a read/write reply from the coordinator to the
client, and D2 for a read/write request from the coordinator to the replica, with
the other two delays, D1 and D3, set to 0.0s.

Fig. 2. Message Delays

To appropriately schedule messages, we
introduce a scheduler object of the form
{GT|MS} which maintains a global clock GT

indicating the current global time, and pro-
vides a deterministic ordering of messages
MS [10]. Inactive messages are inserted into
the scheduler. When the global time in the
scheduler is advanced to the moment when
some delay expires, the associated message

becomes active and is consumed by the target client/server. Therefore, the sched-
uler can be also considered as an object that advances the model’s global time.

In the context of reads/writes, a message in our model can be defined based on
(i) whether it is a read or write; (ii) whether it is a request or a reply; and (iii)
which side it is from/to. For example, RReqCS(...) is a client-to-coordinator
read request; and WRepSS(...) is a replica-to-coordinator write reply.

Reads and Writes. As mentioned in Section 2.1, communication can be between
a client, a coordinator and several replicas. Due to space limitations, we only
illustrate the model dynamics: (i) at the client side for generating requests, and
(ii) at the coordinator side for routing read requests to the replicas.1 We refer
the reader to our longer report [14] for additional details.

(i) Generating requests by clients. In Cassandra, a client always generates strictly
ordered requests w.r.t. a certain key. More precisely, when a client wants to
issue a read/write (triggered by a bootstrap message to itself), it looks up the
associated key in the set of locked keys. If the key is locked, the request will
be added to the pending queue; otherwise, the request will be sent out to the

1 We often omit the type declaration for the mathematical variables in the rules, but
follow the Maude convention that variables are written in capital letters.

Formal Modeling and Analysis of Cassandra in Maude 339

coordinator, and then the key will be locked. To emit all requests that are not
restricted by the locked keys, a client will iteratively send itself a bootstrap

message to trigger the above process until the request queue is empty. Thus,
given a key, an associated read/write will block all subsequent operations with
the same key until accomplished. The following rewrite rule illustrates the case
when a client successfully sends out a request:

crl [CLIENT-REQUEST] :
< A : Client | coord: S, requestQueue: Q, lockedKey: KS, AS > {T, A <- bootstrap}

=> < A : Client | coord: S, requestQueue: tail(Q), lockedKey: add(H,KS), AS >
[d1, S <- request(H,T)] [ds, A <- bootstrap]

if H := head(Q) /\ Q =/= nil /\ not pending(H,KS) .

where the global time T is put into the outgoing request H by function request,
meaning that the timestamp in a client’s request should be the moment when it is
generated [12]. d1 (corresponding to D1 in Fig. 2) and ds refer to the delays for a
client-to-coordinator request and a self-triggered message respectively. Function
pending determines whether a key is locked. Note that requests generated by
different clients are independent of each other, i.e., it is not the case that a
read/write will block all subsequent operations from other clients on the same
key until accomplished.

(ii) Forwarding reads by the coordinator. As shown below, upon receiving the
request on key K with consistency level L from client A, coordinator S updates
the local buffer with the received information for each request ID, and generates
the appropriate number of read requests for the replicas according to replication
factor fa. Function rpl returns a set of replica addresses:

crl [COORD-FORWARD-READ-REQUEST] :
< S : Server | ring: R, buffer: B, delays: DS, AS > {T, S <- RReqCS(ID,K,L,A)}

=> < S : Server | ring: R, buffer: insert(ID,fa,L,K,B), delays: DS,AS > C
if generate(ID,K,DS,rpl(K,R,fa),S,A) => C .

The coordinator nondeterministically selects a message delay D for each out-
going request. The following rewrite rule together with the above one show how
the coordinator will send each replica a read request with a nondeterministically
chosen delay:

rl [GENERATE-READ-REQUEST] : generate(ID,K,(D,DS),(A’,AD’),S,A)
=> [D, A’ <- RReqSS(ID,K,S,A)] generate(ID,K,(D,DS),AD’,S,A) .

where the replica address A’ is iteratively selected from the address set returned
by rpl, and the message delay D (corresponding to D2 in Fig. 2) is nondetermin-
istically selected from the delay set.

4 Formal Analysis of Consistency in the Cassandra
Model

In this section we formally analyze the Cassandra model built in Section 3,
and check for consistency violations under various latency and consistency level

340 S. Liu et al.

combinations. Section 4.1 presents the main consistency properties we want to
check. Sections 4.2 and 4.3 describe the formal analysis of those properties with
one or multiple clients, where the property formalizations, experimental scenarios
and model checking results are shown, respectively.

4.1 Consistency Properties

Strong Consistency. A key-value system satisfies strong consistency if each read
returns the value of the latest write that occurred before that read. More pre-
cisely, let Tr = o1, o2, ..., on denote a trace of n read/write operations issued
by one or more clients in a key-value system S, where any operation oi can be
expressed as oi = (k, v, t), where t denotes the global time when oi was issued,
and v is the value returned from key k if it is a read, or the value written to
key k if it is a write. S satisfies strong consistency if for any read oi = (k, vi, ti),
provided there exists a write oj = (k, vj , tj) with tj < ti, and without any other
write oh = (k, vh, th) such that tj < th < ti, we have vi = vj .

Eventual Consistency. If no new updates are made to a key, a key-value system
is eventually consistent, if eventually all reads to that key will return the last
updated value. More precisely, we again consider a trace Tr = o1, o2, ..., on of
n read/write operations in a key-value system S. Let oi = (k, vi, ti) be a write,
and there is no other write oj = (k, vj , tj) such that ti < tj . S satisfies eventual
consistency if there exists some t > ti, and for all reads oh = (k, vh, th) such
that th > t, vi = vh.

To model check the above properties, we consider strong/eventual consistency
experiment scenarios with one or multiple clients, because:

– from a single client’s perspective, consecutive requests on the same key are
always strictly ordered, i.e., subsequent operations will be pending until a
preceding read/write finishes (see Section 3.3);

– for multiple clients, requests generated by different clients are independent of
each other, i.e., it is not the case that a read/write will block all subsequent
operations from other clients on the same key until accomplished.

The purpose of our experiments is to answer the following questions w.r.t.
whether strong/eventual consistency is satisfied: does strong/eventual consis-
tency depend on:

– with one client, the combination of consistency levels of consecutive requests?
– with multiple clients, additionally the latency between consecutive requests

being issued?

Although a read repair mechanism is not generally used by other key-value
systems, it is essential in Cassandra to guarantee consistency. The definition,
experimental scenarios and model checking results w.r.t. the eventual consistency
properties of the read repair mechanism can be found in our longer report [14].

Formal Modeling and Analysis of Cassandra in Maude 341

4.2 Formal Analysis of Consistency with One Client

Scenarios. We define the following setting for our experimental scenarios with
one client:

(a) We consider a data center with four servers, and a replication factor of 3.
(b) The ring size is 16, and the servers are responsible for the equal range clock-

wise, with the first server responsible for range [0...3].
(c) The read/write consistency levels can be ONE, QUORUM or ALL.
(d) For strong/eventual consistency, the client issues two consecutive requests

on the same key.
(e) The delay set is (1.0,2.0,4.0,8.0).

Moreover, we consider the following scenarios, where, depending on the property
and consistency level, we name each subcase Scenario (1-S/E-O/Q/A O/Q/A),
e.g., Scenario (1-S-QA) refers to the case checking strong consistency with one
client, where two consecutive requests have the consistency levels QUORUM and ALL

respectively; Scenario (1-E-AO) refers to the case checking eventual consistency
with one client, where two consecutive requests have the consistency levels ALL
and ONE, respectively.

In Scenarios (1-S-∗∗) the client issues a write on a key followed by a read on
the same key. The initial state of this scenario is specified as follows:

eq c1 = one . eq c2 = one . --- consistency level: one, quorum or all
eq k = 10 . eq v = "juice" .
eq initState = { 0.0 | nil } [0.0, 100 <- bootstrap]

< 100 : Client | coord: 3, requestQueue: (WriteRequestCS(0,k,v,c1,100)
ReadRequestCS(1,k,c2,100)), ... >

< 1 : Server | table: (3 |-> ("tea",0.0), 8 |-> ("coffee",0.0),
10 |-> ("water", 0.0), 15 |-> ("coke",0.0)), ...>

< 2 : Server | ... > < 4 : Server | ... >
< 3 : Server | ring: (([0],1),([4],2),([8],3),([12],4)), delays: (1.0,2.0,4.0,8.0), ... > .

where client 100 connects to server (coordinator) 3, and servers 1, 2 and 4 serve
as the replicas. {0.0 | nil} refers to the initial state of the scheduler with the
global time 0.0 and the schedule list nil.

In Scenarios (1-E-∗∗) the client issues two consecutive writes on the same key.
The initial state of this scenario is like that of Scenarios (1-S-∗∗), except that
the second operation is a write request.

Formalizing Consistency Properties. Regarding strong consistency, for Scenarios
(1-S-∗∗) we define a parameterized atomic proposition strong(A,K,V) that holds
if we can match the value V returned by the subsequent read on key K in client
A’s local store with that in the preceding write.

op strong : Address Value -> Prop .

eq < A : Client | store: (ID,K,V), ... > REST |= strong(A,K,V) = true .

Since two requests will eventually be consumed with the client receiving the
returned value, the strong consistency property can in this case be formalized
as the LTL formula <> strong(...). Given an initial state initConfig, the
following command returns true if the property eventually holds; otherwise, a
trace showing a counterexample is provided.

342 S. Liu et al.

red modelCheck(initConfig, <> strong(client,key,value)) .

Regarding eventual consistency, we only need to check if eventually all replicas
will be consistent with the last updated value. Obviously, if all replicas agree on
the last updated value, a sufficiently later read (e.g., after all replicas finish the
update with the writes) will return such a value, regardless of the consistency
level (we can also check this using the experiment for the read repair property
[14]). Thus, we check at each replica’s side by defining a parameterized atomic
proposition eventual(R1,R2,R3,K, V) to hold if we can match the value V on
key K in the subsequent (or the last) write with those in the local tables of all
replicas R1, R2 and R3.

op eventual : Address Address Address Key Value -> Prop .
eq < R1 : Server | table: (K |-> (V,T1), ...), ... >

< R2 : Server | table: (K |-> (V,T2), ...), ... >
< R3 : Server | table: (K |-> (V,T3), ...), ... > REST |= eventual(R1,R2,R3,K,V) = true .

The eventual consistency property can then be formalized as the LTL for-
mula <>[] eventual(...). Given an initial state initConfig, the following
command returns true if the property eventually always holds; otherwise, a
trace showing a counterexample is provided.

red modelCheck(initConfig, <>[] eventual(r1,r2,r3,key,value)) .

Analysis Results. The model checking results show that strong consistency holds
in Scenarios (1-S-OA), (1-S-QQ), (1-S-QA), (1-S-AO), (1-S-AQ) and (1-S-AA),
but not in Scenario (1-S-OO), (1-S-OQ) or (1-S-QO), and that eventual consis-
tency holds in all its scenarios.

Fig. 3. Sequence chart for a strong consis-
tency violation regarding a ONE write fol-
lowed by a ONE read issued by one client

For strong consistency, we show
the experimental results in Table 1,
with a cross (×) marking a violation.
Note that three out of nine com-
binations of consistency levels vi-
olate strong consistency, where at
least one of the read and the write
has a consistency level weaker than
QUORUM. Fig. 3 illustrates how a
strong consistency violation happens
w.r.t. a ONE write strictly followed by
a ONE read, where the red dashed ar-
row identifies the violation.

The reason why a strong consis-
tency violation occurs is that some
read forwarded by the coordinator
reaches a certain replica before a

write request does. Thus, it seems fair to say that unless a client uses consistency
level at least QUORUM, strong consistency may not be guaranteed.

Table 1 also shows the results of model checking eventual consistency, where
no violation occurs, regardless of the consistency level combinations. The reason

Formal Modeling and Analysis of Cassandra in Maude 343

why eventual consistency holds is that a replica updates its table only if the
incoming request has a higher timestamp, and therefore, even if the first request
reaches the replica later due to message delay, it will be simply discarded. As a
result, the replica will eventually store the value in the last generated request.

Table 1. Results on Checking Strong (indicated by the left table) and Eventual Con-
sistency (indicated by the right table) with One Client

�������Write1

Read2
ONE QUORUM ALL

ONE × × �
QUORUM × � �
ALL � � �

�������Write1

Write2
ONE QUORUM ALL

ONE � � �
QUORUM � � �
ALL � � �

4.3 Formal Analysis of Consistency with Multiple Clients

When dealing with multiple clients, requests generated by different clients are
independent of each other, i.e., it is not the case that a read/write will block all
subsequent operations from other clients with the same key until accomplished.
Whenever a request is issued by a client, it will be immediately sent out. Thus
it will make no difference which consistency level a preceding request uses. For
example, if client 2 intends to issue a request R′ L seconds after client 1 sends
out its request R at global time T , R′ will be exactly sent out at global time
T + L, despite of the arrival of R at client 1. However, as mentioned in Section
3, a single client’s consecutive requests are always strictly ordered.

Scenarios. We consider scenarios with two clients, where client 1 first issues its
request, and after some time (the latency between two requests) client 2 issues
its own. Regarding consistency levels, we fix it as QUORUM for the first request,
but parameterize it for the second request. We still use three replicas to store
a particular key-value pair. For each replica we have two possibilities about the
second request’s arrival, either before or after the first request. Therefore, there
are eight possible cases (for simplicity we do not consider the case where two
requests arrive at the same time). Thus, we need a delay set with at least two
different delays. Concretely, we define the following setting for our experimental
scenarios with multiple clients:

– (a), (b) and (c) in the Section 4.2 setting for one-client scenarios.
– We consider two clients, each one issuing one request on the same key. Clients

1 and 2 connect to coordinators 1 and 2 respectively.
– The delay set is (2.0,8.0) for coordinator 1, and (0.0) for coordinator 2.
– The latency between two requests can be 1.0s, 5.0s or 10.0s.

Note that, given coordinator 1’s delay set, coordinator 2’s delay set combined
with three different latencies fully covers all possible orders of arrivals of two
requests.

For example, the initial state of model checking strong consistency with two
clients is specified as:

344 S. Liu et al.

...
eq l = 1.0 . --- latency: 1.0, 5.0 or 10.0
eq initState = ... [l, 200 <- bootstrap]

< 100 : Client | coord: 3, requestQueue: (WriteRequestCS(0,k,v,c1,100), ... >
< 200 : Client | coord: 1, requestQueue: (ReadRequestCS(1,k,c2,200)), ... >
< 1 : Server | delays: (0.0), ... > < 3 : Server | delays: (2.0,8.0), ... > .

Table 2. Results on Checking Strong Consistency (indicated by the top table) and
Eventual Consistency (indicated by the bottom table) with Two Clients (The delay set
is {D1,D2} with D1<D2.)

Strong

�����������Latency
Consistency Lv.

ONE QUORUM ALL

L1 (L1<D1) × × ×
L2 (D1<L2<D2) × × ×
L3 (D2<L3) � � �

Eventual

�����������Latency
Consistency Lv.

ONE QUORUM ALL

L1 (L1<D1) � � �
L2 (D1<L2<D2) � � �
L3 (D2<L3) � � �

Table 3. Detailed Results for Latency L2 on Checking Strong Consistency with Two
Clients (R1, R2 and R3 refer to the replicas. “1/2” means that client 1/2’s request
reaches the corresponding replica first. The delay set is {D1,D2} with D1<D2.)

Latency First Arrival Consistency Level
R1 R2 R3 ONE QUORUM ALL

1 1 1 � � �
1 1 2 × � �
1 2 1 × � �

L2 1 2 2 × × �
(D1<L2<D2) 2 1 1 × � �

2 1 2 × × �
2 2 1 × × �
2 2 2 × × ×

Analysis Results. For model checking strong/eventual consistency with two
clients, we use the same formalization of each property as mentioned in Sec-
tion 4.2. The results of model checking strong consistency with two clients is
shown in Table 2. We observe that whether strong consistency is satisfied or
not depends on the latency between requests: if it is so high that all preceding
requests have reached the replicas, strong consistency holds (case L3); otherwise,
strong consistency does not hold, because there is at least one subcase where the
later requests reach the replicas before the preceding requests do. Although both
cases L1 and L2 fail to satisfy strong consistency as shown by the model check-
ing, we can however find some particular execution sequences in case L2 (not in

Formal Modeling and Analysis of Cassandra in Maude 345

case L1, because its latency is extremely low), where client 2’s read returns the
(most recent) value in client 1’s write.2 In Table 3 we list all possbile subcases
for case L2, where we mark “1” if client 1’s request reaches the corresponding
replica first, otherwise “2”, and a case of the form “1/2 1/2 1/2” describes
which requests reach the three replicas R1, R2 and R3 first respectively. For case
L2, except the two extreme subcases “1 1 1” and “2 2 2”, strong consistency
holds, on the one hand, if the subsequent read uses consistency level ALL; on
the other hand, if a majority of replicas receive client 1’s request first. For ex-
ample, in subcase “2 1 1”, even if one forwarded request by client 2 reaches R1
first, by using consistency level at least QUORUM in client 2’s read, strong consis-
tency holds. In subcase “2 2 1”, since two later requests reach the replicas first,
strong consistency holds only if client 2 uses consistency level ALL. Thus with
two clients (we also believe with more than two clients), it is fair to say that:
(i) strong consistency depends on the latency between requests; and (ii) except
extreme latencies (almost simultaneous or extremely high), to maximize strong
consistency we ought to use consistency level ALL for subsequent requests.

Instead, as mentioned in Section 4.2, strong consistency with one client de-
pends on the combination of consistency levels.

For eventual consistency, Table 2 shows the experimental results, where no
violation occurs, regardless of the consistency level and latency between requests.
Eventual consistency holds for two clients for the same reason why it holds for
one client, i.e., a replica updates its table only if the incoming request has a
higher timestamp. That is, eventual consistency is always guaranteed by our
Cassandra model, regardless of whether we have one or multiple clients.

5 Related Work and Concluding Remarks

Models in Key-value/NoSQL Stores. Amazon’s Dynamo [20] was the first sys-
tem that adopted the eventual consistency model [21]. Recent work on consis-
tency benchmarking includes delta consistency metrics [17], which mine logs to
find consistency violations. PBS [5] proposes probabilistic notions of consistency.
Compared to this, our model checking based approach can exhaustively search
for all possible consistency violations. Compared to eventual-consistency based
model, a slightly stronger model is causal+ consistency [15], which maintains
causality of reads across writes which are causally related. Red-blue consistency
[13] modifies transaction operations into blue operations which are commutat-
able at datacenters, and red ones, which are serialized across all datacenters.
Commutative replicated data types (CRDTs) are distributed data structures in-
sensitive to the order of operations on a key [18], which is being incorporated by
RIAK [1].

2 Using Maude’s search command we can explore the reachable state space for a
particular pattern, where the value received by client 2 matches that in client 1’s
write. See the Maude specification available at
https://sites.google.com/site/siliunobi/icfem-cassandra .

https://sites.google.com/site/siliunobi/icfem-cassandra

346 S. Liu et al.

Model Checking Key-value/NoSQL Stores. Despite the importance of such stores,
we are not aware of other work formalizing and verifying them with formal ver-
ification tools. There is however some recent related work on formal analysis of
cloud computing systems, including, e.g., [6], which addresses eventual consis-
tency verification by reducing it to reachability and model checking problems;
[19], which formally models and analyzes availability properties of a ZooKeeper-
based group key management service; [9], which proposes and analyzes DoS re-
silience mechanisms for cloud-based systems; [22], which gives formal semantics
to the KLAIM language and uses it to specify and analyze cloud-based archi-
tectures; and [11], which presents a formal model of Megastore —not really a
key-value store, but a hybrid between a NoSQL store and a relational database—
in Real-Time Maude which has been simulated for QoS estimation and model
checked for functional correctness.

Our main focus in this work has been twofold: (i) to obtain for the first
time a formal model of Cassandra; and (ii) to formally analyze its correctness
properties, focusing on the crucial issue of Cassandra’s consistency properties.
This work presents for the first time a detailed formal analysis of the conditions
under which Cassandra can achieve strong or eventual consistency.

The other side of the coin is availability: weaker consistency is the price paid to
achieve greater availability. Therefore, as future work we plan to explore the var-
ious design choices in the consistency-availability spectrum for key-value stores.
Formal modeling with probabilistic rewrite rules and formal analysis by statis-
tical model checking, like done, e.g., in [9,10,22], seems a natural next step for
studying availability and other QoS properties. Following those ideas, our current
Cassandra model can be naturally extended for further statistical model checking
(though Real-Time Maude already has a notion of time, there is no systematic
support for probabilistic real-time rewrite theories, which is one reason we did
not build our model in Real-Time Maude). More broadly, our long-term goal is
not Cassandra per se, but developing a library of formally specified executable
components embodying the key functionalities of key-value stores. We plan to use
such components and the formal analysis of their correctness and QoS properties
to facilitate the exploration of the design space for such systems.

Acknowledgments. We thank the anonymous reviewers for helpful comments
on a previous version of this paper. This work has been partially supported
by AFOSR Contract FA8750-11-2-0084, NSF Grant CNS 13-19109, NSF CNS
13-19527 and NSF CCF 09-64471.

References

1. Basho Riak, http://basho.com/riak/
2. Cassandra, http://cassandra.apache.org/
3. DB-Engines, http://db-engines.com/en/ranking
4. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge (1986)

http://basho.com/riak/
http://cassandra.apache.org/
http://db-engines.com/en/ranking

Formal Modeling and Analysis of Cassandra in Maude 347

5. Bailis, P., Venkataraman, S., Franklin, M.J., Hellerstein, J.M., Stoica, I.: Prob-
abilistically bounded staleness for practical partial quorums. Proc. VLDB
Endow. 5(8), 776–787

6. Bouajjani, A., Enea, C., Hamza, J.: Verifying eventual consistency of optimistic
replication systems. In: POPL, pp. 285–296 (2014)

7. Brewer, E.A.: Towards robust distributed systems (abstract). In: PODC, p. 7
(2000)

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

9. Eckhardt, J., Mühlbauer, T., AlTurki, M., Meseguer, J., Wirsing, M.: Stable avail-
ability under denial of service attacks through formal patterns. In: de Lara, J., Zis-
man, A. (eds.) Fundamental Approaches to Software Engineering. LNCS, vol. 7212,
pp. 78–93. Springer, Heidelberg (2012)

10. Eckhardt, J., Mühlbauer, T., Meseguer, J., Wirsing, M.: Statistical model checking
for composite actor systems. In: Mart́ı-Oliet, N., Palomino, M. (eds.) WADT 2012.
LNCS, vol. 7841, pp. 143–160. Springer, Heidelberg (2013)

11. Grov, J., Ölveczky, P.C.: Formal Modeling and Analysis of Google’s Megastore
in Real-Time Maude. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification,
Algebra, and Software. LNCS, vol. 8373, pp. 494–519. Springer, Heidelberg (2014)

12. Hewitt, E.: Cassandra: The Definitive Guide. O’Reilly Media, Sebastopol (2010)
13. Li, C., Porto, D., Clement, A., Gehrke, J., Preguiça, N., Rodrigues, R.: Making geo-

replicated systems fast as possible, consistent when necessary. In: Proc. USENIX
Conference on Operating Systems Design and Implementation (OSDI), pp. 265–278
(2012)

14. Liu, S., Rahman, M., Skeirik, S., Gupta, I., Meseguer, J.: Formal modeling and
analysis of Cassandra in Maude (2014),
https://sites.google.com/site/siliunobi/icfem-cassandra

15. Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t settle for even-
tual: Scalable causal consistency for wide-area storage with cops. In: Proc. ACM
Symposium on Operating Systems Principles (SOSP), pp. 401–416 (2011)

16. Meseguer, J., Talcott, C.: Semantic models for distributed object reflection. In:
Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 1–36. Springer, Heidelberg
(2002)

17. Rahman, M.R., Golab, W., AuYoung, A., Keeton, K., Wylie, J.J.: Toward a prin-
cipled framework for benchmarking consistency. In: Proc. USENIX Workshop on
Hot Topics in System Dependability, HotDep (2012)

18. Shapiro, M., Preguiça, N.M., Baquero, C., Zawirski, M.: Convergent and commu-
tative replicated data types. Bulletin of the EATCS 104, 67–88 (2011)

19. Skeirik, S., Bobba, R.B., Meseguer, J.: Formal analysis of fault-tolerant group key
management using ZooKeeper. In: Proc. Symposium on Cluster, Cloud, and Grid
Computing (CCGRID), pp. 636–641 (2013)

20. Vogels, W.: Amazon’s dynamo. All Things Distributed (October 2007),
http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html

21. Vogels, W.: Eventually consistent. ACM Queue 6(6), 14–19 (2008)
22. Wirsing, M., Eckhardt, J., Mühlbauer, T., Meseguer, J.: Design and analysis of

cloud-based architectures with KLAIM and maude. In: Durán, F. (ed.) WRLA
2012. LNCS, vol. 7571, pp. 54–82. Springer, Heidelberg (2012)

https://sites.google.com/site/siliunobi/icfem-cassandra
http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html

Bounded Model Checking High Level Petri Nets

in PIPE+Verifier

Su Liu, Reng Zeng, Zhuo Sun, and Xudong He

Florida International University, Miami, Florida 33199, USA
{sliu002,rzeng001,zsun003,hex}@cis.fiu.edu

Abstract. High level Petri nets (HLPNs) have been widely applied to
model concurrent and distributed systems in computer science and many
other engineering disciplines. However, due to the expressive power of
HLPNs, they are more difficult to analyze. Exhaustive analysis methods
such as traditional model checking based on fixed point calculation of
state space may not work for HLPNs due to the state explosion problem.
Bounded model checking (BMC) using satisfiability solvers is a promis-
ing analysis method that can handle a much larger state space than
traditional model checking method. In this paper, we present an analysis
method for HLPNs by leveraging the BMC technique with a state-of-the-
art satisfiability modulo theories (SMT) solver Z3. A HLPN model and
some safety properties are translated into a first order logic formula that
is checked by Z3. This analysis method has been implemented in a tool
called PIPE+Verifier and is completely automatic. We show our results
of applying PIPE+Verifier to several models from the Model Checking
Contest @ Petri Nets and a few other sources.

Keywords: Formal Methods, Petri Nets, Model Checking, Bounded
Model Checking.

1 Introduction

Petri nets are a graphical formal language to model concurrent and distributed
systems. Low level Petri nets are suitable to model control flows but cannot
effectively model data and functionality in complex systems. High level Petri
nets (HLPNs) [2] are a more expressive formalism developed to handle data and
functionality in addition to control flows.

HLPNs are executable. Tools like CPN Tools [25] and PIPE+ [30] support
the modeling and execution of different forms of HLPNs. However, analysis by
simulation can only explore a finite number of executions and thus cannot assure
safety properties to be satisfied in all possible executions. Traditional model
checking [26] is an automatic and exhaustive analysis method to explore all
possible executions of a model, but suffers from the state explosion problem.
Bounded model checking (BMC) with satisfiability solving [9,13] was proposed as
an alternative approach to address the state explosion problem in the traditional
model checking approach. In BMC, a feasible symbolic execution of a transition

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 348–363, 2014.
c© Springer International Publishing Switzerland 2014

Bounded Model Checking High Level Petri Nets in PIPE+Verifier 349

system and the negation of some safety property are translated into a logic
formula, which is checked by a satisfiability solver. If the formula is satisfiable,
a counter example is found and thus the safety property does not hold. On the
other hand, if the formula is not satisfiable up to a pre-defined upper bound
k , the safety property holds up to k . Although this approach is not a complete
technique for safety property analysis, it has been shown to be very effective in
detecting the violation of safety properties in many real-world applications.

Encoding a low level Petri net model into a propositional logic formula is
straightforward, but encoding a HLPN model is not since HLPNs use structured
data and algebraic expressions to define functionality. In recent years, great
progress has been made on satisfiability modulo theories (SMT) [16,32] solvers
that can check the satisfiability of a subset of first-order logic formulas with a
variety of underlying theories including linear arithmetic, difference arithmetic
and arrays. These SMT solvers are expressive enough to represent the data
and algebraic expressions in HLPNs naturally. Furthermore, SMT solvers are
becoming more efficient according to the annual competitions results from SMT
[7], and have been successfully integrated into verification tools such as CBMC
[3], SLAM2 [5], and VS3 [33].

In this paper, we present a method for using SMT solvers to perform bounded
model checking on HLPNs. We leverage the theory of sets [29] that has been
integrated to some SMT solvers to represent HLPNs, where a place can have zero
or more tokens. Similar to BMC, our method specifies a k value before checking,
which defines the upper bound of transition firing actions (state changes). For
each safety property violated within k steps, a transition firing sequence leading
to an error state is generated. However, this method is incomplete because the
upper bound k is often not given in real applications. Reference [15] discussed
the complexity of finding a complete threshold.

We have implemented a prototype tool called PIPE+Verifier, which integrates
the state of the art SMT solver Z3 [17]. We have applied PIPE+Verifier to
analyze several models from Model Checking Contest @ Petri Net [27], a Mondex
model [43] (an electronic purse system proposed as the first pilot project in the
worldwide formal verification grand challenge) and a model given in [38,37]. We
have provided a comparison of our tool with related Petri nets tools and symbolic
model checking tools.

2 High Level Petri Nets

A HLPN graph [2] comprises: a net graph, place types, place markings, arc
annotations, transition conditions, and declarations. The net graph is a structure
consisting of a finite set of places (drawn as circles), a finite set of transitions
(drawn as bars), and a finite set of directed arcs between places and transitions
(drawn as arrows). A place type is a power set of tokens. A token type can be
a tuple of primitive data types such as integer and string. A place marking is a
collection of tokens (data items) associated with the place. Arc annotations are
inscribed with expressions that may comprise constants, variables, and function

350 S. Liu et al.

images. Transition conditions are Boolean expressions. Declarations comprise
definitions of place types, variable types, and functions.

A HLPN is executable. A transition is enabled if its input places have the right
tokens in the current marking that satisfy the transition condition. An enabled
transition can fire and result in a new marking by subtracting the tokens from
the input places and adding new tokens to the output places according to the
corresponding arc annotations. Multiple enabled non-conflict transitions may
fire simultaneously. An execution of a HLPN is a sequence of transition firings
from the given initial marking. The behavior of a HLPN is the set of all possible
executions.

Figure 1 illustrates a dining philosopher problem modeled in HLPN. The net
consists of three places PPhil Thinking , PChopsticks , PPhil Eating and two transi-
tions TPickup and TRelease . All the places’ token type is 〈int〉. PPhil Thinking and
PChopsticks are both initiated with markings that have five tokens {〈0〉,〈1〉,〈2〉,
〈3〉,〈4〉}. TPickup ’s transition condition is p = c1 ∧ (p + 1)%5 = c2 ∧ e = p.
TRelease ’s transition condition is p = r ∧ c1 = r ∧ c2 = (r + 1)%5.

Fig. 1. 5-Dining Philosophers Problem in High Level Petri Net

3 Satisfiability Modulo Theories Solvers

Satisfiability modulo theories (SMT) [16] support a combination of theories such
as bit-vectors, rational and integer linear arithmetic, arrays, and uninterpreted
functions. SMT solvers are the extensions of satisfiability (SAT) solvers and
directly applicable to the decision problems expressed in first order logic formulas
with respect to the multiple background theories.

For example, an SMT solver can decide whether a formula in the theory of
linear arithmetic is satisfiable:

(x + y ≤ 0) ∧ (�b ∨ a ∧ (y = 0)) ∧ (x ≤ 0)

where x , y are integer variables and a, b are Boolean variables. If the formula is
satisfiable, the SMT solver returns a variable assignment satisfying the formula.

Bounded Model Checking High Level Petri Nets in PIPE+Verifier 351

3.1 Important Theories

Some important high level theories supported by SMT solvers are listed below
as the foundation of our method.

Arrays. The theory of arrays [35,4] in SMT solvers is different from the ones in
standard programming languages. In SMT, an array’s size can be infinite. There
are two built in functions: select : ARRAY × INDEX → ELEM and store :
ARRAY × INDEX × ELEM → ARRAY where ARRAY , INDEX , ELEM are
the sorts of the array, the index of the array and the elements in the array.

Tuples. The theory of tuples [29] supports a data structure with a list of com-
ponents and access to individual components by projection.

Sets. A set is a collection of objects. Reference [29] has defined a set theory,
which has been implemented in several SMT solvers [8]. The theory of sets in
SMT solvers supports a list of set operations including set member ∈, set subset
⊆, set union ∪, set intersect ∩ and set difference \.

3.2 Z3

In recent years, the efficiency of SMT solvers has been greatly improved. An
annual SMT competition is held every year [8] and the participants include
CVC4 [6], Z3 [17], MathSAT [12], Opensmt [10], and Yices [19]. Among them,
Z3 [17], developed by Microsoft Research Institution, is reported to have the
largest number of users and supports almost all the popular SMT background
theories such as rational and integer arithmetic, bit-vectors, array theory, and set
theory. In addition, Z3 has been adopted as the backend verification engine for
a variety of tools, such as VS3 [33], SLAM2 [5] and CBMC [3]. Z3’s developing
team provides api and documentation for different programming languages (C,
C++, .NET, Python). Therefore, we have selected and integrated Z3 into our
tool as the backend satisfiability solving engine.

4 Bounded Model Checking High Level Petri Nets

Given a finite transition system M , a LTL formula f and an integer k , existential
bounded model checking (BMC) [9] tries to determine whether there exists a
computation path in M of at most length k (denoted as Mk) that satisfies f . To
realize BMC, a logic formula φk from M , f and k is constructed and checked
using a constraint solver. φk is satisfiable if and only if there is a path p of
length at most k in Mk that satisfies f . The satisfying assignment for φk is
called a witness for path p. However, BMC is in general not able to determine
the satisfiability of a formula f since k ’s upper bound is unknown in many real-
world applications. [15] shows that finding the upper bound for k is as complex

352 S. Liu et al.

as traditional model checking. To check the validity of a safety property up to k
steps using existential BMC, we use f to represent the negated safety property.
Thus the safety property holds as long as f is not satisfiable. [9] shows BMC can
check all formulas in ACTL* [20].

In the following sections, we present a translation schema of applying bounded
model checking to HLPNs.

4.1 General Idea of BMC using SMT Solver

In BMC, a logic formula φk is constructed from a given Mk , including the initial
state I and unrolled transition relations T , and some negated safety properties
f . Since T in φk is unrolled k times, the length of φk is dependent on k . The
logic formula φk is represented in Equation 1:

φk
.
= I (s0) ∧

k−1∧
i=0

T (si , si+1) ∧
k∨

i=0

f (si) (1)

where I (s0) is the characteristic function of the initial state, T (si , si+1) is
the characteristic function of the transition relation, and f (si) represents the
negated safety property in unrolled state si (0 ≤ i ≤ k). If φk is satisfiable, there
is a firing sequence or a state transition path from the initial state I (s0) to a
state si (0 ≤ i ≤ k) that satisfies f , thus violates the safety property. Otherwise,
the safety property holds in M within k transition firings.

The general SMT logic context for BMC is shown in Figure 2:

DEF

s : STATETUPLE

ASSERT

Initial marking(s0)

∧
k−1∧
i=0

Transition(si , si+1)

∧
k∨

i=0

Negated property(si)

CHECK

Fig. 2. SMT context for bounded model checking

4.2 Represent HLPNs in SMT Context

Our goal is to translate a given HLPN model to a logic formula shown in Figure
2, and then use an SMT solver to check its satisfiability.

Bounded Model Checking High Level Petri Nets in PIPE+Verifier 353

Define States in SMT Context. In HLPNs, a state si is defined by a marking
that is a distribution of tokens in places. Each place can contain 0 or more tokens
(the number may be bounded or unbounded) and tokens can be structured
data. To define a state in SMT context, a hierarchical layered data structure is
constructed.

Fig. 3. An inner view of dining philosophers problem in HLPN model

A state si is defined by a tuple whose elements are places: si
.
= 〈p0, p1, . . . , pn〉.

Each place pj (0 ≤ j ≤ n) is defined by a set containing m ≥ 0 tokens: pj
.
=

{tok0, tok1, . . . , tokm}. Each token tokk (0 ≤ k ≤ m) is defined by a tuple of prim-
itive data elements: tokk

.
= 〈e0, e1, . . . , el 〉. Figure 3 shows an inner view of

a HLPN model. In Figure 3, the tuple of places is 〈PPhil Thinking , PChopsticks ,
PPhil Eating 〉, in which place PPhil Thinking has 5 tokens {〈0〉,〈1〉,〈2〉,〈3〉,〈4〉} and
each token tokk has only one field 〈ID〉 whose type is Integer.

In the SMT context, a state is defined by type STATETUPLE. The hierar-
chical data structure that constitutes STATETUPLE is shown in Table 1.

Table 1. High level Petri net elements mapped to SMT theory

HLPN Elements SMT Theory In PIPE+Verifier

HLPN Model Tuple (Places) STATETUPLE

Place Type Set (Tokens) SETiSORT

Token Type Tuple (Integer or String Values) DTiSORT

Primitive Data Integer or String INTSORT

Define the Initial State. The Inital marking (s0) in Figure 2 is defined from
the initial marking M0 of a HLPN model. The state s0 contains tokens of all the
places marked in M0.

Define Transitions in SMT Context. Transition(si , si+1) in Figure 2 is a
binary relation between the current state si and the next state si+1. In BMC,

354 S. Liu et al.

the upper bound of the transition firing sequence is k , thus the state transition
of φk is unrolled k times, denoted as

∧k−1
i=0 Transition(si , si+1). A HLPN model

consists of n ≥ 0 transitions t0, t1, . . ., tn , and any one of them may fire if enabled,
thus Transition(si , si+1) is represented by a disjunction of the transitions in the
HLPNmodel

∨n
j=0 tj (si , si+1). Transitions in φk are defined as the formula shown

in Equation 2:

k−1∧
i=0

(Transition(si , si+1)) =

k−1∧
i=0

(

n∨
j=0

tj (si , si+1)) (2)

Each transition in the HLPN model tj (si , si+1) with a precondition (captured
by c0) and a post-condition (captured by c1) are defined in an if-then-else struc-
ture if c0 then c1 else c2 , representing (c0 =⇒ c1) ∧ (¬c0 =⇒ c2). The
translation schema is described below:

– If condition c0:

• Use set membership operation to check if each input place in si has at
least one token;

• In state si , each transition condition clause corresponds to a constraint;

– Case True c1:

• Tokens are removed from tj ’s input places of state si using set difference
operation;

• New tokens are added to tj ’s output places of state si+1;

• Tokens in unrelated places in state si remain the same in those places in
si+1;

– Case False c2: tokens in all places in the next state si+1 are the same as in
the current state si .

Define Properties in SMT Context. To check a safety property, we define
Negated property(si) as the negation of the safety property. If there exists a state
si satisfies Negated property(si), the safety property is violated at si . Thus, a
disjunction of Negated property(si) 0 ≤ i ≤ k is asserted in φk .

A Translation Example – Dining Philosophers Problem. From the dining
philosophers HLPN given in Figure 1, we obtain the following translation:

1. State Definition: As shown in Figure 4, a state, consists of three places, are
defined as three sets in STATETUPLE. All of the sets have the same set
type DTSORT , and their element types are INSORT .

2. Initial state: place PPhil Thinking set contains five philosophers whose IDs are
{〈0〉, 〈1〉, 〈2〉, 〈3〉, 〈4〉} and place PChopsticks has five chopsticks whose IDs are
{〈0〉, 〈1〉, 〈2〉, 〈3〉, 〈4〉}. Therefore, as shown in Figure 5, both places at state
s0 contain five tokens.

Bounded Model Checking High Level Petri Nets in PIPE+Verifier 355

DEF.

STATETUPLE ≡ 〈PPhil Thinking : SETSORT ,

PChopsticks : SETSORT ,

PPhil Eating : SETSORT 〉
SETSORT ≡ {set : DTSORT}
DTSORT ≡ {int : INTSORT}

State ≡ {s0 : STATETUPLE

s1 : STATETUPLE

...

sk : STATETUPLE }

Fig. 4. State definitions of 5-dining philosophers in SMT logic

Initial marking(s0) ≡ PPhil Thinking(s0) = {〈0〉, 〈1〉, 〈2〉, 〈3〉, 〈4〉}
∧PChopsticks(s0) = {〈0〉, 〈1〉, 〈2〉, 〈3〉, 〈4〉}
∧PPhil Eating(s0) = ∅

Fig. 5. Initial State of 5-Dining Philosopher in SMT Logic

k−1∧
i=0

Transition(si , si+1) ≡ (TPickup(s0, s1) ∨ TRelease(s0, s1))

∧(TPickup(s1, s2) ∨ TRelease(s1, s2))

...

∧(TPickup(sk−1, sk) ∨ TRelease(sk−1, sk))

TPickup(s, s
′) ≡

IF p ∈ PPhil Thinking

∧ l ∈ PChopsticks

∧ r ∈ PChopsticks

∧ p = l ∧ (p + 1)%5 = r

THEN

P ′
Phil Thinking = PPhil Thinking − {p}
∧ P ′

Chopsticks = PChopsticks − {l} − {r}
∧ P ′

Phil Eating = PPhil Eating ∪ {p}
ELSE

P ′
Phil Thinking = PPhil Thinking

∧ P ′
Chopsticks = PChopsticks

∧ P ′
Ehil Eating = PPhil Eating

TRelease (s, s
′) ≡

IF p ∈ PPhil Eating

THEN

P ′
Phil Thinking = PPhil Thinking + {p}
∧ P ′

Chopsticks = PChopsticks ∪ {p}
∪ {(p + 1)%5}

ELSE

P ′
Phil Thinking = PPhil Thinking

∧ P ′
Chopsticks = PChopsticks

∧ P ′
Phil Eating = PPhil Eating

Fig. 6. State Transition of 5-Dining Philosophers in SMT Logic

356 S. Liu et al.

k∨
i=0

Negated property(si) ≡ (f (s0) ∨ f (s1) ∨ ... ∨ f (sk))

f ≡ PPhil Eating = {〈0〉, 〈1〉}

Fig. 7. Property Definition of 5-Dining Philosophers in SMT Logic

3. State transition: Transition is defined as k−1 transition steps that constrain
pairs of consecutive states. Each transition step is an if-then-else structure
that captures the pre-condition and post-condition of every local transition
in HLPN. In Figure 6, s indicates the current state and s ′ indicates the next
state.

4. Property definition: negated property f (si) is state based, we need to define
k disjunctions of error states. If one of f (si) evaluates true, the whole formula
is satisfiable and an error state si is reached. Figure 7 defines a simple negated
safety property that the neighboring philosophers with ID {〈0〉 , 〈1〉} can eat
at the same time.

5 Evaluation

We have implemented an automated prototype tool called PIPE+Verifier to
support our method and applied it to check relevant safety (reachability) prop-
erties in several benchmark problems modeled in HLPN. All experiments were
conducted on a 32-bit Intel Core Duo CPU @3.0GHz box, with 4GB of RAM,
running 32-bit Ubuntu.

5.1 Selected Benchmark Problems from Model Checking Contest @
Petri Nets

Model Checking Contest @ Petri nets (MCC) [27,28] is held annually to assess
Petri nets based formal verification tools and techniques. Petri net verification
tools are compared with regard to the scaling abilities, efficiency, and property
checking capabilities on selected benchmark problems. The benchmark problems
are modeled in low level Petri nets and Colored Petri nets. However, none of the
participating tools produced any promising results on checking colored Petri net
models. We have translated several Colored Petri net models into PIPE+Verifier
and analyzed their safety (reachability) properties. We have examined the scal-
ability of our tool by changing parameters in the model and varying bound k .
The running results are presented below.

Dining Philosophers Model. In the previous section, we presented the 5-
dining philosophers model. We have selected the following two negated safety
properties to check in PIPE+Verifier.

Bounded Model Checking High Level Petri Nets in PIPE+Verifier 357

�¬ (marking (Phil Eating) = 4 ∧marking (Phil Eating) = 3) (3)

�¬(marking (Phil Eating) �= 4 ∧marking(Phil Eating) = 1

∧marking (Chopsticks) �= 4) (4)

The scaling parameter is the number (up to 20) of philosophers. The exper-
iment results are shown in Table 2. For property 3, the PIPE+Verifier did not
return a result when bound k reached 15 due to the exponential growth of the
search space of Z3.

Table 2. Verifying Dining Philosophers Model

Philosophers Formula Step
Bound

Verdict Property
Hold

Time
(seconds)

Heap Size
(Mb)

5 (3) 5 unsat yes 0.41 1.72

5 (3) 10 unsat yes 79.93 9.97

5 (3) 15 N/A N/A N/A N/A

5 (4) 2 sat no 0.25 1.25

10 (4) 2 sat no 0.76 1.62

20 (4) 2 sat no 3.23 2.63

Shared Memory Model. In [11], a shared memory model involving P pro-
cessors was given. These processors can access their local memories as well as
compete for shared global memory using a shared bus. We have built a HLPN
model based on the above shared memory model and checked the following two
negated safety properties:

�¬(marking (Ext Mem Acc) = 〈1, 5〉 ∧marking (Ext Bus) = 1) (5)

�¬(marking (Ext Mem Acc) = 〈1, 5〉 ∧marking (Memory) �= 4) (6)

The scaling parameter is the number (up to 20) of processors P. The results
are shown in Table 3.

Token Ring. A token ring [18] model shows a system with a set of M machines
connected in a ring topology. Each machine can determine if it has the privilege
(the right) to perform an operation based on its state and its left neighbor.

We have modeled a token ring using HLPN and selected the following two
negated safety properties to check:

�¬(marking (State) = 〈3, 0〉 ∧marking (State) = 〈2, 4〉) (7)

�¬(marking (State) = 〈3, 0〉 ∨marking (State) = 〈2, 4〉) (8)

The scaling parameter is the number of machines M , which is up to 20. The
results are shown in Table 4.

358 S. Liu et al.

Table 3. Verifying Shared Memory Model

Processors Formula Step
Bound

Verdict Property
Hold

Time
(seconds)

Heap Size
(Mb)

5 (5) 5 unsat yes 0.07 0.86

5 (5) 10 unsat yes 0.3 1.54

5 (5) 15 unsat yes 1.49 2.53

5 (6) 3 sat no 0.75 1.80

10 (6) 3 sat no 1.3 2.09

20 (6) 3 sat no 13.05 4.35

Table 4. Verifying Token Ring Model

Machines Formula Step
Bound

Verdict Property
Hold

Time
(seconds)

Heap Size
(Mb)

5 (7) 5 unsat yes 0.32 1.34

5 (7) 10 unsat yes 24.12 5.56

5 (7) 15 N/A N/A N/A N/A

5 (8) 3 sat no 0.09 1.01

10 (8) 3 sat no 0.21 1.34

20 (8) 3 sat no 0.86 2.03

5.2 Mondex

Mondex [43] smart card system is an electronic purse payment system, which
involves a number of electronic purses with values and can exchange the val-
ues through a communication device. Mondex was the first pilot project of the
International Grand Challenge on Verified Software [40], and was awarded the
highest assurance level of secure systems, ITSEC Level E6 [41].

Mondex was first formally specified and proved using Z language [34]. Our pre-
vious work [43,42] formalized Mondex abstract and concrete models using HLPN.
The concrete model depicts a transaction through nine operations {startFrom,
startTo, readExceptionLog, req, ask, val, exceptionLogResult, exceptionLog-
Clear, forged} and four status {idle, epr , epv , epa}. In this work, we have mod-
eled the Mondex using PIPE+ [30] and verified a property “No Value Created”
[42,41].

The HLPN model is initialized with two purses and one transaction proposal
message. The safety property specifies that the sum of all the purses’ balances
does not increase: � purse1.balance + purse2.balance ≤ balance sum. Since nine
transitions may be involved in this transaction process, we set k = 9. Our model-
checking result shows this transaction process is preserved since the negation of
the safety property defined by f is not reachable in k = 9 transition firing steps.
The time and memory consumed for this checking process are 27.85s and 11.42
Mbytes respectively.

Bounded Model Checking High Level Petri Nets in PIPE+Verifier 359

5.3 Abstract State Machine Model

In [38], a method for checking symbolic bounded reachability of abstract state
machines was presented. An abstract state machine written in AsmL was trans-
lated into a logic formula checked by an SMT solver with rich background the-
ories including set comprehensions. The running times of the prototype tool in
[38] and our tool PIPE+ Verifier on property Count(n) are shown in Table 5.

Table 5. Running time of checking Count model

Model program Step
bound

Verdict Time of
M.Veanes’s Tool

Time of
PIPE+Verifier

Count(5) 10 Sat 0.14s 1.43s

Count(5) 9 Unsat 1.5s 0.24s

Count(8) 16 Sat 2.2s 86.1s

Count(8) 15 Unsat 152s 15.26s

6 Related Work

6.1 Petri Nets Tools

Model checking Petri nets continues to be an active research topic. Various tools
for modeling and verifying various forms of Petri nets have been built. Some of
them are no longer maintained due to the evolution of new techniques. A Petri
net model checking contest is held annually for the evaluation of some active
tools. Table 6 lists the most recent participating tools (except for the last two).
In this table, ALPiNA [23], Neco [21], CPN Tools [25] and SAMAT [31] support
different types of high level Petri nets.

Colored Petri Nets Tool. Colored Petri Nets (CPNs) [25] are a kind of high
level Petri nets that use tokens with typed values and functional programming
language Standard ML [36] to define the guards of transitions. CPN Tools [1]
is an industrial strength tool that is widely used to analyze modeled systems
through simulation and model checking. CPN Tools integrates a model checking
engine that explicitly searches the whole state space of a model.

ALPiNA. ALPiNA [23] is a model checker for algebraic Petri nets (APNs),
which use algebraic abstract structured data type (AADTs) to define data and
term equations to define transition guards and arc expressions. To symbolically
model checking APNs, ALPiNA uses extended binary decision diagrams (BDDs)
to represent the state space.

360 S. Liu et al.

Table 6. Analysis Tools for Petri Nets

Name Petri Net Type Model Checking Technique

ALPiNA Algebraic Petri Nets Decision Diagrams

Cunf Contextual Net Net Unfolding, Satisfiability Solving

GreatSPN Stochastic Petri Nets Decision Diagrams

ITS-Tools (Time) Petri Nets, ETF,
DVE, GAL

Decision Diagrams, Structural Reductions

LoLA Place/Transition Nets Explicit Model Checking, State
Compression, Stubborn Sets

Marcie Stochastic Petri Nets Decision Diagrams

Neco High Level Petri Nets Explicit Model Checking

PNXDD Place/Transition Nets Net Unfolding, Decision Diagrams,
Topological

Sara Place/Transition Nets Satisfiability Solving, Stubborn Sets,
Topological

CPN Tools Colored Petri Nets Explicit Model Checking

SAMAT High Level Petri Nets Explicit Model Checking

Neco. Neco [21] is a Unix toolkit that checks the reachability and other proper-
ties of high level Petri nets. Neco supports high level Petri nets annotated with
Python objects and Python expressions. For model checking, Neco explicitly
builds the state space.

SAMAT. SAMAT [31] is a tool for modeling and analyzing software architec-
ture descriptions where component behavior models are expressed in predicate
transition nets. SAMAT leverages an existing on-the-fly model checker SPIN [22]
to check the satisfiability of properties expressed in linear time temporal logic
in predicate transition net models.

6.2 Symbolic Model Checking Tools

Alloy. Alloy analyzer [24] is a software tool for analyzing a system defined in the
Alloy specification language. The analysis in Alloy is based on reducing a model
to a propositional formula and leveraging a SAT solver to solve the formula.

Java Path Finder. JPF [39] is a verification and testing environment for
Java that integrates techniques such as model checking, program analysis and
testing. Despite its state compression technique, JPF still cannot avoid the state
explosion problem especially in terms of memory and time in checking high level
data structures such as array.

CBMC and SMT-CBMC. C Bounded Model Checker (CBMC) [14] is an
SAT based bounded model checker on C programs. SMT-CBMC [3] is an SMT

Bounded Model Checking High Level Petri Nets in PIPE+Verifier 361

based model checker that has significant improvement over the traditional SAT
based model checkers. SMT-CBMC encodes sequential C programs into more
compact first-order logic formulas that can be solved by SMT solvers.

7 Conclusion

In this paper, we have presented a method to analyze safety properties of HLPNs.
Our method translates a HLPN model along with the negation of safety proper-
ties into a first order logic formula and uses the state of the art SMT solver Z3
to solve this formula. Our method is sound but incomplete since it requires a k
value as an upper-bound to limit the length of firing sequences. By leveraging
the theory of set in SMT solvers, our method supports HLPNs with unlimited
number of tokens. However, checking a model with a large number of tokens
may lead to an explosion of checking time. We have implemented this analy-
sis method into a prototype, PIPE+Verifier, and embedded it into PIPE+, a
graphical HLPNs modeling and simulation tool [30]. PIPE+Verifier is capable
of analyzing a system defined in HLPNs automatically. We have applied our
tool to analyze the safety properties of HLPN models of various problems from
Model Checking Contest @ Petri Nets, the Mondex system, and the counter
model. PIPE+Verifier is an open source tool and is available for sharing and
continuous enhancements from worldwide research community.

Acknowledgments. This work was partially supported by NSF grants HRD-
0833093 and IIP-1237818.

References

1. CPN Tools, http://cpntools.org
2. High-level Petri Nets - Concepts, Definitions and Graphical Notation (2000)
3. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software

using smt solvers instead of sat solvers. Int. J. Softw. Tools Technol. Transf. 11(1),
69–83 (2009)

4. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability
procedures. Information and Computation 183(2), 140–164 (2003); 12th Interna-
tional Conference on Rewriting Techniques and Applications (RTA 2001)

5. Ball, T., Bounimova, E., Kumar, R., Levin, V.: Slam2: static driver verification with
under 4. In: Proceedings of the 2010 Conference on Formal Methods in Computer-
Aided Design, FMCAD 2010, Austin, TX, pp. 35–42. FMCAD Inc. (2010)

6. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

7. Barrett, C., De Moura, L., Stump, A.: Design and results of the 1st satisfiability
modulo theories competition (smt-comp.). Journal of Automated Reasoning 35,
2005 (2005)

8. Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library,
SMT-LIB (2010), http://www.SMT-LIB.org

http://cpntools.org
http://www.SMT-LIB.org

362 S. Liu et al.

9. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

10. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT Solver. In:
Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153.
Springer, Heidelberg (2010)

11. Chiola, G., Franceschinis, G.: Colored gspn models and automatic symmetry
detection. In: PNPM, pp. 50–60 (1989)

12. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
Solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 93–107. Springer, Heidelberg (2013)

13. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfi-
ability solving. In: Formal Methods in System Design, p. 2001. Kluwer Academic
Publishers (2001)

14. Clarke, E., Kroning, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

15. Clarke, E., Kroning, D., Ouaknine, J., Strichman, O.: Completeness and complexity
of bounded model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS,
vol. 2937, pp. 85–96. Springer, Heidelberg (2004)

16. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Commun. ACM 54(9), 69–77 (2011)

17. De Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

18. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

19. Dutertre, B., De Moura, L.: The yices smt solver 2, 2 (2006), Tool paper,
http://yices.csl.sri.com/tool-paper.pdf

20. Allen Emerson, E., Lei, C.-L.: Modalities for model checking: branching time logic
strikes back. Sci. Comput. Program. 8(3), 275–306 (1987)

21. Fronc, �L., Duret-Lutz, A.: LTL model checking with neco. In: Van Hung, D.,
Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 451–454. Springer, Heidel-
berg (2013)

22. Holzmann, G.: Spin model checker, the: primer and reference manual, 1st edn.
Addison-Wesley Professional (2003)

23. Hostettler, S., Marechal, A., Linard, A., Risoldi, M., Buchs, D.: High-level petri
net model checking with alpina. Fundam. Inf. 113(3-4), 229–264 (2011)

24. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press
(2006)

25. Jensen, K., Kristensen, L.M., Wells, L.: Coloured petri nets and cpn tools for
modelling and validation of concurrent systems. Int. J. Softw. Tools Technol.
Transf. 9(3), 213–254 (2007)

26. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press
(1999)

27. Kordon, F., Linard, A., Becutti, M., Buchs, D., Fronc, L., Hulin-Hubard, F.,
Legond-Aubry, F., Lohmann, N., Marechal, A., Paviot-Adet, E., Pommereau, F.,
Rodŕıgues, C., Rohr, C., Thierry-Mieg, Y., Wimmel, H., Wolf, K.: Web report on
the model checking contest @ petri net 2013 (June 2013), http://mcc.lip6.fr

http://yices.csl.sri.com/tool-paper.pdf
http://mcc.lip6.fr

Bounded Model Checking High Level Petri Nets in PIPE+Verifier 363

28. Kordon, F., Linard, A., Beccuti, M., Buchs, D., Fronc, L., Hillah, L.-M., Hulin-
Hubard, F., Legond-Aubry, F., Lohmann, N., Marechal, A., Paviot-Adet, E.,
Pommereau, F., Rodŕıguez, C., Rohr, C., Thierry-Mieg, Y., Wimmel, H., Wolf,
K.: Model checking contest @ petri nets, report on the 2013 edition. CoRR,
abs/1309.2485 (2013)

29. Kröning, D., Rümmer, P., Weissenbacher, G.: A proposal for a theory of finite sets,
lists, and maps for the smt-lib standard. In: Informal proceedings, 7th International
Workshop on Satisfiability Modulo Theories at CADE 22 (2009)

30. Liu, S., Zeng, R., He, X.: Pipe+ - a modeling tool for high level petri nets. In:
SEKE, pp. 115–121 (2011)

31. Liu, S., Zeng, R., Sun, Z., He, X.: Samat - a tool for software architecture modeling
and analysis. In: SEKE, pp. 352–358 (2012)

32. de Moura, L., Bjørner, N.: Satisfiability Modulo Theories: An Appetizer. In:
Oliveira, M.V.M., Woodcock, J. (eds.) SBMF 2009. LNCS, vol. 5902, pp. 23–36.
Springer, Heidelberg (2009)

33. Srivastava, S., Gulwani, S., Foster, J.S.: VS3: SMT Solvers for Program Verifica-
tion. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 702–708.
Springer, Heidelberg (2009)

34. Stepney, S.: An Electronic Purse: Specification, Refinement, and Proof. Techni-
cal monograph. Oxford University Computing Laboratory, Programming Research
Group (2000)

35. Stump, A., Barrett, C.W., Dill, D.L.: A decision procedure for an extensional
theory of arrays. In: 16th IEEE Symposium on Logic in Computer Science,
pp. 29–37. IEEE Computer Society (2001)

36. Ullman, J.D.: Elements of ML programming (ML97 ed.). Prentice-Hall, Inc., Upper
Saddle River (1998)

37. Veanes, M., Bjørner, N., Gurevich, Y., Schulte, W.: Symbolic bounded model check-
ing of abstract state machines. Int. J. Software and Informatics 3(2-3), 149–170
(2009)

38. Veanes, M., Bjørner, N.S., Raschke, A.: An SMT approach to bounded reachability
analysis of model programs. In: Suzuki, K., Higashino, T., Yasumoto, K., El-Fakih,
K. (eds.) FORTE 2008. LNCS, vol. 5048, pp. 53–68. Springer, Heidelberg (2008)

39. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Automated Software Engg. 10(2), 203–232 (2003)

40. Woodcock, J.: First steps in the verified software grand challenge. Computer 39(10),
57–64 (2006)

41. Woodcock, J., Stepney, S., Cooper, D., Clark, J.A., Jacob, J.: The certification of
the mondex electronic purse to itsec level e6. Formal Asp. Comput. 20(1), 5–19
(2008)

42. Zeng, R., He, X.: Analyzing a formal specification of mondex using model checking.
In: Cavalcanti, A., Deharbe, D., Gaudel, M.-C., Woodcock, J. (eds.) ICTAC 2010.
LNCS, vol. 6255, pp. 214–229. Springer, Heidelberg (2010)

43. Zeng, R., Liu, J., He, X.: A formal specification of mondex using sam. In: IEEE
International Symposium on Service-Oriented System Engineering, SOSE 2008,
pp. 97–102 (December 2008)

Fast Translation from LTL to Büchi Automata

via Non-transition-based Automata

Shohei Mochizuki, Masaya Shimakawa, Shigeki Hagihara, and Naoki Yonezaki

Department of Computer Science,
Graduate School of Information Science and Engineering,

Tokyo Institute of Technology.
2-12-1-W8-67 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

Abstract. In model checking, properties are typically defined in linear
temporal logic (LTL) and are translated into non-deterministic Büchi
automata (NBA). In this paper, we propose a new, efficient translation
method that is different from those used in LTL2BA, Spot and LTL3BA.
Our method produces non-transition-based generalised Büchi automata
(GBA) as an intermediate object, whereas LTL2BA, Spot, and LTL3BA
use transition-based generalised Büchi automata (TGBA). Our method
enables fast conversion because the data structure representing the ob-
ject is simpler than that used in conversions via TGBA. Furthermore,
we have developed techniques to reduce the number of states, similar
to techniques that have heretofore only been available for conversions
via TGBA. We also propose a technique to suppress the increase in the
number of states that normally occurs while GBA is converted into NBA,
using characteristics of strongly connected components of the GBA. We
implemented our method with these techniques and experimentally com-
pared our method with LTL2BA, Spot, and LTL3BA, which are the
fastest translators to date. Our conversion method was much faster than
LTL2BA and Spot, and was competitive with LTL3BA. In addition, the
number of states in the NBA resulting from our method was comparable
to that produced by LTL2BA, Spot, and LTL3BA.

1 Introduction

Recently, formal methods have become essential tools for developing safety crit-
ical systems, where behavioural correctness of the systems is the main concern.
For instance, model checking [11] is a method for checking whether models of
systems satisfy specifications. Satisfiability checking [14] is a method for check-
ing whether specifications are free of contradictions. Realisability checking [13,1]
is a method for checking whether a program that satisfies specifications exists
and includes synthesis of the program if it does [7,12]. Of these methods, linear
temporal logic (LTL) is often used for describing the specifications of systems.
In this case, algorithms for converting specifications written in LTL into non-
deterministic Büchi automata (NBA) are commonly used. The time complexity
for conversion of LTL formulae into NBA is 2O(n), where n is the number of

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 364–379, 2014.
c© Springer International Publishing Switzerland 2014

Fast Translation from LTL to Büchi Automata 365

formulae. Especially for realisability checking, because a specification includes
all the constraints of behaviour of an intended system, the size of the specifica-
tion can become very large. Therefore, efficient algorithms for converting LTL
formulae into NBA are strongly desirable to expand the applicable range of these
checking methods.

Many translation tools for converting LTL formulae into NBA have been pro-
posed, such as the tool implemented in the model checker SPIN [9] and several
more efficient tools, including LTL2BA [8], Spot [6,5], and LTL3BA[4]. Trans-
lation methods are roughly divided into two kinds: methods for conversion via
generalised Büchi automata (GBA) as an intermediate object, and methods for
conversion via transition-based generalised Büchi automata (TGBA). The meth-
ods via GBA were originally the most popular. However, since 2002, the methods
via TGBA have become more popular and have outpaced the methods via GBA.
The efficient tools LTL2BA, Spot and LTL3BA are classified as methods of con-
version via TGBA. Because TGBA can express a given accepting language by
a fewer number of states than GBA, TGBA are generally smaller than GBA.
This is because an acceptance condition in GBA is defined by the set of final
states that are passed infinitely, while an acceptance condition in TGBA is de-
fined by the set of transitions that are passed infinitely. On the other hand, the
data structure representing GBA is simpler than that representing TGBA be-
cause the number of states is much less than the number of transitions. From
this observation, it follows that if techniques for the reduction of states used for
conversion via TGBA can be implemented for conversion via GBA, the methods
using GBA would be expected to be extremely efficient. In this paper, we adopted
the GBA conversion, imported the reduction techniques into it, implemented it
and evaluated its efficiency.

Unfortunately, the techniques for reducing the number of states in TGBA,
as adopted in Spot and LTL2BA, are not directly applicable to a method of
conversion via GBA. Therefore, we developed comparable reduction techniques
that can be applied to the conversion of GBA to NBA. This enables us to
produce NBA with a comparable number of states as that resulting from TGBA
conversion using reduction techniques.

For converting LTL formulae into GBA, we adopted the algorithm proposed
by Aoshima et al. [2], with some modification. In its original form, this algo-
rithm intentionally does not execute full LTL formulae, but rather executes LTL
formulae without the next operator. This is to prevent introducing uninten-
tional synchronisation by two or more different occurrences of the next opera-
tor. However, because our aim was to make it possible to convert general LTL
formulae, we extended the algorithm to enable its application to LTL formulae
with the next operator. In addition to the reduction techniques mentioned above
for converting GBA into NBA, we also developed a technique to suppress the
increase in number of states as GBA is converted into NBA, using character-
istics of strongly connected components of GBA. We implemented our method
using these techniques and experimentally compared our method to LTL2BA,
Spot and LTL3BA, which are currently the fastest translators. Our conversion

366 S. Mochizuki et al.

method is faster than Spot and LTL2BA, and is competitive with LTL3BA. In
addition, the number of states in the NBA from our method is comparable to
that from the other methods.

The remainder of this paper is organised as follows. In Sect. 2, we give defi-
nitions of LTL and Büchi automata. In Sect. 3, we propose a new method (an
extension of our previous method) to convert LTL formulae into GBA. In Sect. 4,
we explain how to convert GBA into NBA. In Sect. 5, we describe our techniques
for reducing the number of states in the resulting NBA. In Sect. 6, we discuss
the advantages of our method over other approaches. In Sect. 7, we describe the
implementation of our method and compare it to LTL2BA, Spot and LTL3BA.
Finally, we present our conclusions in Sect. 8.

2 Preliminary

In this section, we introduce the syntax and semantics of LTL, NBA and GBA.

2.1 LTL

Let Prop be a finite set of propositions.

Definition 1 (LTL formulae). Formulae f in LTL are inductively defined as
follows:

f ::= p | ¬f | f ∨ f | f ∧ f | Xf | fUf | fRf,

where p ∈ Prop.

The notation Xf states ‘f holds at the next time’, while fUg represents ‘f
always holds until g holds’. fRg is the dual connective of fUg and represents
¬(¬fU¬g). The notation f → g, f ↔ g, (, ⊥, Ff and Gf are abbreviations for
¬f ∨ g, (¬f ∨ g) ∧ (¬g ∨ f), p ∨ ¬p, ¬(, (Uf , and ¬F¬f , respectively.

Definition 2 (Semantics). Let Σ be 2Prop, and let u = u0u1, . . . be an infinite
sequence over Σ. Let f be an LTL formula. When a formula f holds on u, we
write u |= f , and inductively define this relation as follows.

- u |= p iff p ∈ u0

- u |= ¬f1 iff u �|= f1
- u |= f1 ∧ f2 iff u |= f1 and u |= f2
- u |= f1 ∨ f2 iff u |= f1 or u |= f2
- u |= Xf1 iff u1u2 . . . |= f1
- u |= f1Uf2 iff ∃k ≥ 0((ukuk+1 . . . |= f2) and ∀i(0 ≤ i < k. uiui+1 . . . |= f1))
- u |= f1Rf2 iff ∀k ≥ 0((ukuk+1 . . . |= f2) or ∃i(0 ≤ i < k. uiui+1 . . . |= f1))

A formula is in negation normal form (nnf) if the negation symbol (¬) occurs
only immediately above elementary propositions. Every formula can be trans-
formed to an equivalent formula in nnf. We call a formula f a temporal formula
if f is of the form Xf1, f1Uf2, or f1Rf2.

Fast Translation from LTL to Büchi Automata 367

2.2 Automata

In this section, we introduce NBA and GBA. NBA is an automaton that accepts
ω-words if there exists a corresponding run passing a final state infinitely often,
which is defined as follows.

Definition 3 (Büchi automata). Let Prop be a set of propositions. A non-
deterministic Büchi automaton on an alphabet 2Prop is defined by A = 〈Q,Σ,
δ, I, F 〉, where Q is a finite set of states, Σ = 2Prop, δ ⊆ Q × B(Prop) × Q is
a transition relation, I ⊆ Q is a set of initial states, and F ⊆ Q is a set of
final states. B(Prop) is a set of Boolean formulae which consist of propositions
in Prop and connectives ¬, ∨, and ∧. A run r of A on an ω-word u = u0u1 . . .
is an infinite sequence q0q1 . . . of states, where q0 ∈ I, (qi, bi, qi+1) ∈ δ, and
ui |= bi for some bi for all i ≥ 0. If Inf (r) ∩ F �= ∅ holds, a run r is said to be
successful, where Inf (r) is a set of states that occur infinitely often in r. If there
is a successful run of A on u, we say that A accepts u.

On the other hand, GBA is an automaton with multiple sets of final states
(a set of sets of final states). A run is successful if, for each set of final states, it
passes infinitely often some state from the set.

Definition 4 (Generalised Büchi Automata). Let Prop be a set of propo-
sitions. A Generalised non-deterministic Büchi automaton on an alphabet 2Prop

is defined by A = 〈Q,Σ, δ, I,F〉, where Q, Σ, δ and I are defined as above for
NBA. F = {F1, . . . , Fn} is a set of sets of final states, and satisfies Fi ⊆ Q for
all 1 ≤ i ≤ n. A run r is said to be successful if ∀Fi(Inf (r) ∩ Fi �= ∅) holds. If
there is a successful run of A on u, we say that A accepts u.

A set of ω-words that are accepted by NBA (or GBA) A is called the language
accepted by A, which is represented by L(A).

3 Converting LTL Formulae into GBA

In this section, we propose an algorithm for constructing GBA Aϕ from an LTL
formula ϕ, which satisfies L(Aϕ) = {u ∈ (2Prop)ω | u |= ϕ}. This algorithm is an
extended version of a previous algorithm proposed by Aoshima et al. [2], modified
to work with LTL with the next operator. Below, we explain the algorithm, and
for simplicity of explanation, assume that the input LTL formulae are in nnf.

Let ϕ be an input LTL formula. A state of GBA consists of a subset of
cl(ϕ) ∪ {(fUg)unsat | fUg ∈ cl(ϕ)}, which represents the constraints of the
state. Here, cl(ϕ) is the set of subformulae of ϕ. First, an initial state consists of
a singleton {ϕ} of an input formula. Next, we decompose the formulae in a state
and obtain the set of successive states. We take notice if the state involves the
‘until’ formula fUg because its meaning has eventuality. If g holds in the state,
we accept transition to the state involving no constraints on the ‘until’ formula.
If f holds in the state, we accept transition to the state involving (fUg)unsat .
The label unsat represents ‘eventuality (g in this case) is not satisfied’. By setting

368 S. Mochizuki et al.

the transition relation as stated above, if a state does not involve the labelled
formula (fUg)unsat , we can capture that g holds, (i.e., fUg holds.) If r is a run
on an ω-word, such that fUg does not hold and f always holds, then the run r
will stay only in states involving (fUg)unsat . We judge the run to be successful
only if the run infinitely often visits a state that does not involve (fUg)unsat .

The procedure Next, used to obtain the set of transitions, is defined as follows.

Procedure 1 (Next) Procedure Next takes a state q = {ϕ1, . . . , ϕn} as input
and outputs the set of transitions from q. Each transition is of the form (q, b, q′),
which indicates that q′ is a successive state of q by valuation satisfying b.

1. Σ := {q}
2. Repeat the following operations until Σ does not change. For every Si ∈ Σ,

apply one of the following, according to fij ∈ Si.
(a) if fij is of the form f1 ∧ f2, replace Si with (Si − {fij}) ∪ {f1, f2}.
(b) if fij is of the form f1 ∨ f2, replace Si with (Si − {fij}) ∪ {f1}, (Si −

{fij}) ∪ {f2}.
(c) if fij is of the form f1Uf2 or (f1Uf2)

unsat , replace Si with (Si−{fij})∪
{f2}, (Si − {fij}) ∪ {f1, X(f1Uf2)

unsat}.
(d) if fij is of the form f1Rf2, replace Si with (Si − {fij}) ∪ {f1, f2}, (Si −

{fij}) ∪ {f2, X(f1Rf2)}.
3. Output the following δq.

δq = {(q,
∧

l∈P (m)

l, {f | Xf ∈ m}) | m ∈ Σ},

where P (m) = {p | p ∈ m ∧ p ∈ Prop} ∪ {¬p | ¬p ∈ m ∧ p ∈ Prop}.

In step 2, we obtain multiple sets of formulae by decomposing a formula in a
set of formulae according to the semantics of LTL. For instance, because f1Uf2
indicates that f2 holds eventually and f1 always holds until f2 holds, {f1Uf2}
is separated into two cases {f2} and {f1, X(f1Uf2)

unsat}. These cases mean “f2
currently holds” and “f1 currently holds and f1Uf2 holds at the next time”,
respectively. In brief, if a set of formulae is obtained by step 2, the set represents
one of satisfaction of ϕ1 ∧ . . . ∧ ϕn involved by q. Therefore, in step 3, atomic
propositions and their negation in a set of formulae are considered a label of the
transition (i.e., a condition of the transition), and a set of formulae obtained by
eliminating the next operator X is considered a successive state of q.

Example 1. Let ϕ be G(r → Fs). We apply procedure Next to ϕ. The result of
step 2 is as follows.

{{¬r,Xϕ}, {s,Xϕ}, {X(Fs)unsat, Xϕ}}

The result of step 3 is the following transitions.

{({ϕ},¬r, {ϕ}), ({ϕ}, s, {ϕ}), ({ϕ},(, {(Fs)unsat, ϕ})}

These transitions are depicted in Fig.1.

Fast Translation from LTL to Büchi Automata 369

Fig. 1. Transitions generated by Next applied to G(r → Fs)

By procedure Next, we can obtain the set of successive states of a state. Hence,
by setting the initial state as a singleton {ϕ} of an input formula and applying
procedure Next iteratively, we can obtain a transition system that is part of Aϕ.
This procedure is defined as follows.

Procedure 2 (Construct) Input: ϕ: formula
Output: Q, δ
Procedure: Construct
1: Q = {{ϕ}}
2: S = {{ϕ}}
3: δ = {}
4: while S �= ∅ do
5: Pick q from S and S = S − {q}
6: δq = Next(q)
7: δ = δ ∪ δq
8: for all (curstate, b, nextstate) ∈ δq do
9: if nextstate /∈ Q then

10: Q = Q ∪ {nextstate}
11: S = S ∪ {nextstate}
12: end if
13: end for
14: end while

Next, we define a set of sets of final states as follows. Let ϕ1, . . . , ϕn be ‘until’
formulae, which are subformulae of an input formula ϕ. The set of sets of final
states is F = {F1, . . . , Fn}, where Fi is the set of states that does not include
ϕunsat
i .
This method is an extension of our previous method [2], modified to adopt the

label unsat for setting acceptance conditions correctly. Any successive states of
a state involving X(fUg) have fUg. On the other hand, any successive states of
a state involving fUg have a labelled formula (fUg)unsat only if g does not hold
in the state. With the label unsat , we can manage successive states of a state q
involving both X(fUg) and fUg. Even if fUg is contained in a successive state

370 S. Mochizuki et al.

q′ of q, if (fUg)unsat is not contained in q′, it indicates that fUg is satisfied in q.
Without introduction of the label unsat , it is impossible to judge whether fUg
is satisfied in q for such a case.

Example 2. The formula GXFp is translated into GBA, as shown in Fig. 2
(left), by the method proposed in this section. The set of sets of final states is
{{q1, q2}}. Due to the label unsat , we can determine the final states {{q1, q2}}
appropriately. Without introduction of unsat , only the transition system shown
in Fig. 2 (right) can be obtained, and the appropriate set of sets of final states
cannot be determined. This illustrates why it is essential to introduce the label
unsat to know the acceptance conditions of GBA.

Fig. 2. GBA for GXFp, obtained by procedure Construct(left), and an incorrect tran-
sition system (right)

In the previous method proposed by Aoshima et al. in [2], binary decision
diagrams (BDDs) were used to represent transitions from a state, and a BDD-
based version of procedure Next was also used. In this current work, we have
extended the previous method to permit LTL with the next operator, and we
adopted the BDD-based procedure Next.

4 Converting GBA into NBA

An algorithm that converts TGBA into NBA was proposed for the tool LTL2BA
[8]. We modified this algorithm as follows to convert GBA into NBA.

Definition 5 (Translation from GBA to NBA). Let A = (Q,Σ, δ, I,F =
{F1, . . . , Fk}) be a GBA. The following NBA B = (Q′, Σ, δ′, I ′, F ′) satisfies
L(A) = L(B).

– Q′ = Q× {1, . . . , k + 1}, I ′ = I × {1}, F ′ = Q× {k + 1}

Fast Translation from LTL to Büchi Automata 371

– ((s, j), a, (t, i)) ∈ δ′ iff

(s, a, t) ∈ δ ∧
{
i = next(j, t) if j �= k + 1
i = next(1, t) if j = k + 1

,

where next(i, q) =

{
min{j | i ≤ j ∧ q /∈ Fj} if ∃j ≥ i (q /∈ Fj)
k + 1 otherwise

.

States of the resulting NBA B are pairs of a state in GBA A and an integer
between 1 and k + 1 (called a counter). This counter is important to translate
GBA into NBA. Assume that there is transition (s, a, t) in A. Let us consider
the transition from (s, i) of B. If i �= k + 1, B has transition ((s, i), a, (t, i + 3))
for the case of t ∈ Fi ∩ Fi+1 ∩ Fi+2 and t /∈ Fi+3. If i = k + 1, B has transition
((s, k+ 1), a, (t, 3)) for the case of t ∈ F1 ∩F2 and t /∈ F3. The set of final states
of B is the set of states in which the counter equals k + 1. By this definition of
final states of NBA, a run infinitely often passes a final state of B if and only if
for every set of final states of A, there is a final state such that the corresponding
run infinitely often passes it.

5 Reducing States of Automata

For checking verification properties, such as satisfiability and realisability of
specifications written in LTL formulae, automata manipulations such as empti-
ness checking, determinisation, and complementation are required. To do these
kinds of manipulations of NBA efficiently, it is important to reduce the number
of states of NBA, without changing the accepting languages. In our work, we
adopted the formulae rewriting technique proposed in [15]. Furthermore, in this
section, we propose two kinds of reduction techniques. In Sect. 5.1, we propose a
technique for reducing states of NBA based on strongly connected components
of GBA. In Sect. 5.2, we propose another technique for reducing states of NBA
based on equivalence of states in the GBA. Generally, many reduction techniques
based on simulation were proposed. This kind of techniques can be applied after
the entire autotmata were constructed. The techniques we propose in Sect.5.1
and 5.2 are lightweight and can be applied in the middle of construction of the
automata. This reduces time and space required for construction of automata.

5.1 Reduction of NBA Based on SCC of GBA

In the translation method proposed in Sect. 4, k + 1 states will be copied from
a state in the GBA, where k is the number of sets of final states in the GBA.
However, if a state q is not included in any strongly connected components that
include final states of the GBA, then it is not necessary to copy q because it is
not necessary to check the acceptance condition by q.

Formally, let F be a set of sets of final states in GBA, and let S be a strongly
connected component in GBA. We say that S is acceptable if it satisfies the
following condition.

(|S| > 1 ∧ ∀F ∈ F∃q ∈ S(q ∈ F))

∨ (|S| = 1 ∧ ∃q ∈ S(∃a(q, a, q) ∈ δ ∧ ∀F ∈ F(q ∈ F)))

372 S. Mochizuki et al.

If a state q is included in a maximal strongly connected component that is
not acceptable, then we do not copy q when we convert GBA to NBA, and we
do not include q in the set of final states of NBA.

5.2 Reduction of NBA Based on Equivalence of States in the GBA

In GBA, it is possible to identify multiple equivalent states, and to reduce the
number of states in the GBA by combining these equivalent states into one state.

Formally, let F and δ be a set of sets of final states and a transition relation
in the GBA, respectively. We say that states q1 and q2 are equivalent if the
following two conditions hold.

∀b ∈ B(Prop)∀q ∈ Q((q1, b, q) ∈ δ ⇐⇒ (q2, b, q) ∈ δ) (1)

∀F ∈ F(q1 ∈ F ⇐⇒ q2 ∈ F) (2)

If q1 and q2 in the GBA satisfy both conditions (1) and (2), we can combine q1
and q2 into one state.

Furthermore, even if states q1 and q2 in the GBA satisfy condition (1) only,
states (q1, i) and (q2, i) in the NBA converted according to Def. 5 in Sect. 4
satisfies both conditions (1) and (2) by the following theorem.

Theorem 1. Let q1 and q2 be states in GBA A, and (q1, i) and (q2, i) be states
in NBA B, which is obtained according to Def. 5. Then, if q1 and q2 satisfy
condition (1), (q1, i) and (q2, i) satisfy condition (1) and the following (2’):

(q1, i) ∈ F ⇐⇒ (q2, i) ∈ F (2’)

where F is the set of final states in NBA B.

Proof. It is trivial that (q1, i) and (q2, i) satisfy condition (2’), due to the def-
inition of final states of B in Def. 5. We show that (q1, i) and (q2, i) satisfy
condition (1). Assume that there is transition ((q1, i), a, (s, j)) in B. Then, there
is transition (q1, a, s) in A. Since q1 and q2 satisfy condition (1), there is transi-
tion (q2, a, s) in A. According to Def. 5, there exists transition ((q2, i), a, (s, j

′))
in B. Now, if i �= k + 1 holds, then j′ = next(i, s) = j holds, and if i = k + 1
holds, then j′ = next(1, s) = j holds, where k is the number of sets of final states
in A. Hence, j′ = j holds. Therefore if there is a transition ((q1, i), a, (s, j)) in
B, there is also a transition ((q2, i), a, (s, j)) in B. This means (q1, i) and (q2, i)
satisfy condition (1). #$

According to Theorem 1, we can obtain reduced NBA directly, without calcu-
lating large-scale NBA, by producing the reduced NBA while checking whether
states in the GBA satisfy condition (1).

Example 3. We show a GBA converted from the LTL formula GFp1 ∧GFp2 in
Fig. 3 (left). The initial state is q1, and a set of sets of final states is {{q1, q3},
{q1, q2}}. The initial state q1 has four successive states q1, q2, q3, q4. Any two

Fast Translation from LTL to Büchi Automata 373

different states qi, qj ∈ {q1, q2, q3, q4} do not satisfy condition (2), but they
always satisfy condition (1). Unfortunately, because conditions (1) and (2) are
not both satisfied, we cannot reduce the GBA itself directly. However, due to
the fact that condition (1) is satisfied, we can apply our reduction technique to
the conversion of the GBA to an NBA, and all of the states (q1, i), . . . , (q4, i) in
the resulting NBA can be reduced into one state (called i). The resulting NBA
is shown in Fig. 3 (right).

Fig. 3. GBA converted from GFp1 ∧GFp2 (left) and a reduced NBA converted from
the GBA (right)

6 Advantages of Our Method Over a TGBA-Based
Approach

6.1 Features of Our Method

Translation methods are roughly divided into two kinds: those for conversion via
GBA as an intermediate object, and those for conversion via TGBA. Originally,
conversion via GBA was the most widely adopted method. However, since 2002,
most methods are based on conversion via TGBA, (e.g., [10]). This is due to the
development of efficient tools such as LTL2BA, Spot and LTL3BA (presented
in 2012), all of which are based on conversion via TGBA. One advantage of
the TGBA method is that TGBA is smaller than GBA for any given accepting
language.

On the other hand, our method is based on conversion via GBA. Unfortu-
nately, techniques that reduce the number of states of TGBA cannot be applied
to GBA, as GBA itself cannot be reduced. Hence, we introduced a technique
(Sect. 5.2) that has the same effect on the resulting NBA converted from GBA
as reduction techniques have on TGBA. This technique can be applied while
converting GBA into NBA, which means that GBA can be converted directly
into reduced NBA. With this technique, although the number of states of GBA
is larger than the number of states of TGBA, the number of states in the re-
sulting NBA from GBA is comparable to the number in the NBA converted

374 S. Mochizuki et al.

from TGBA. As illustrated in Example 3, even in case of GFp1 ∧ . . . ∧GFpn,
1

the number of states in the resulting NBA are the same. Detailed results are
presented in Sect. 7.

6.2 Our Method vs. the TGBA-Based Approach

About reduction of states As stated above, during conversion via TGBA, ‘strong’
reduction techniques can be applied while constructing TGBA as an interme-
diate object. This ‘strong’ reduction is done by calculating successive states of
each state and checking for state equivalence. Hence, it does not result in a sub-
stantial decrease in the computing cost of constructing the TGBA. On the other
hand, our reduction technique is not applied to GBA but rather to NBA. In our
reduction technique, we do not calculate successive states of NBA, but check
state equivalence only by the labels ((q, i): tuples of states of GBA and counter)
and information in the GBA. This does result in a decrease in computing cost
for constructing the NBA. Because our reduction technique has the same effect
on NBA as the ‘strong’ reductions used in conversions via TGBA, the cost of
constructing NBA by our method is expected to be no higher than the cost of
constructing NBA during conversions via TGBA. For this reason, we conclude
that conversion via TGBA is not always advantageous from the point of view of
reduction, compared to conversion via GBA.

About acceptance conditions We have observed that in TGBA converted from
LTL formulae, before the application of any reduction, there is only two cases: all
the transitions into the same state are included in an acceptance condition, or no
transitions into the state is included in the acceptance condition.2 For instance,
in the translation algorithm proposed in [8], if a formula Xf , where f represents
eventuality (e.g.X(fUg)), does not occur in the input formula, then there is only
two cases: all the transitions into the same state are included in an acceptance
condition, or no transitions into the state is included in the acceptance condition.
Therefore, with respect to efficiency of memory use, the acceptance condition
should be defined by a set of states, not by a set of transitions. Hence, in our
method, we treat formulae of the formX(fUg) as exceptions by using the special
label unsat , as stated in Sect. 3. This has the disadvantage of increasing the
number of states. However, there are few occurrences of formulae of the form
X(fUg) in practical specifications. Therefore, we expect that the advantage of
being able to omit redundant space in the acceptance conditions is greater than
any disadvantage arising from an increase in the number of states.

Necessity of NBA It is evident that TGBA is preferable to GBA for use in
model-checking directly, because the number of states of TGBA is less than the
number of states of GBA or NBA. On the other hand, there are many cases in

1 In the conversion of GFp1 ∧ . . .∧GFpn, the conversion via TGBA works very well.
2 This observation is satisfied only for TGBA before the application of any reduction
techniques including ones based on equivalence of successor states.

Fast Translation from LTL to Büchi Automata 375

which NBA is needed, such as for SPIN or realisability checking. In such cases,
the number of states of TGBA or GBA as intermediate objects is unimportant.
Therefore, we conclude that our method is valuable.

7 Evaluation

We implemented our method in C++. Our implementation is available at http://
www.yonezaki.cs.titech.ac.jp/tools/. In this section, we compare our implementation
to other tools. The comparison environment was OS:Ubuntu 12.04 64bit, CPU:
Corei7-3820 3.60GHz, 32GB memory.

7.1 Comparison with Other Works

Although there are many tools for converting LTL into NBA, we compared our
implementation to LTL2BA (version 1.1, without options), Spot (version 1.1.4,
with the option -r1)3 and LTL3BA (version 1.0.2, without options), because
Rozier et al. in [14] showed that LTL2BA [8] and Spot [6] were the most efficient
tools at that time, and LTL3BA, presented in 2012, is also known as one of the
most efficient tools. These tools are based on conversion via TGBA.

We measured the times for conversion of several LTL formulae. If the tools
could not output the results within 300 s, we aborted the execution; this is de-
noted in the results by na. For our implementation, we measured the conversion
times with and without the reduction techniques proposed in Sect. 5.

First, we generated 100 random formulae of equal size (50 characters), follow-
ing the method of [14], and measured the sum of the conversion times to NBA,
as well as the sum of the number of states in the resulting NBA. These results
are shown in Table 1.

Table 1. The sum of the number of states and the sum of conversion times (s) for 100
random formulae

Our implementation Spot LTL2BA LTL3BA
with reduction without reduction # of # of # of
of states time # of states time states time states time states time

37652 2.58 83492 3.10 29308 14.00 65903 64.15 46303 24.00

Next, we measured the conversion times and number of states for the spec-
ification of n-floor elevator systems [3]. This is a large-scale specification, with
3n+6 propositions and 6n− 1 temporal operators. The size of the specification
is O(n3). These results are shown in Table 2.

Finally, we measured the conversion times and the number of states for the
following four kinds of LTL formulae, which were used as benchmarks in [5].

– E1(n) :
∧

1≤i≤n Fpi

3 In Spot, the option -r1means that formula reduction using basic rewriting is allowed.

376 S. Mochizuki et al.

Table 2. The number of states and conversion times (s) for specifications of n-floor
elevator systems

Our implementation Spot LTL2BA LTL3BA
with reduction without reduction # of # of # of

n # of states time # of states time states time states time states time

2 24 0.01 24 0.01 23 0.05 23 0.04 23 0.01
3 182 0.02 182 0.02 170 0.15 224 5.95 182 0.06
4 1438 0.16 1757 0.17 1333 2.44 na na 1385 1.83
5 10403 2.46 16660 3.01 9585 53.96 na na 9524 118.33
6 69685 43.23 145786 90.62 na na na na na na

– E2(n) : F (p1 ∧ F (p2 ∧ . . . F (pn−1 ∧ Fpn) . . .)) ∧ F (q1 ∧ F (q2 ∧ . . . F (qn−1 ∧
Fqn) . . .))

– U(n) : (. . . (((p1Up2)Up3)Up4) . . .)Upn
– C(n) :

∧
1≤i≤n GFpi

These results are shown in Table 3.4 The formulae C(n) are known to be ef-
ficiently converted by translation methods via TGBA, such as LTL2BA, Spot
and LTL3BA. The number of states of the smallest NBA for the formulae E1(n),
E2(n) and C(n) are 2n, (n+ 1)2 and n+ 1, respectively.

7.2 Discussion

With respect to execution time, our implementation with reduction techniques
was much more efficient than LTL2BA and Spot for all of the benchmarks. The
execution time of our method was about a tenth that of Spot. For all bench-
marks except E2 and C, our implementation was more efficient than LTL3BA.
Furthermore, with respect to the size of the resulting NBA, our implementa-
tion with reduction techniques was about as efficient as the other tools. For the
benchmarks E1(n), E2(n) and C(n), the sizes of the NBAs produced by our
implementation were 2n, (n+1)2 and n+1, respectively, which are the smallest
sizes that can be expected and are the same sizes that Spot produces. Taken
together, these results indicate that with our method one can check the satisfi-
ability of LTL formulae 10 times faster than with Spot, and the NBA obtained
by our implementation is suitable for manipulations such as determinisation,
complementation, and so forth.

A comparison of our implementations with and without reduction techniques
confirmed that the reduction techniques effectively reduced conversion times.
From the results of E1(n), E2(n) and U(n), it is apparent that the number of
states of NBA in our implementation is almost the same with and without the
reduction techniques. Furthermore, the conversion times for our implementations
with and without reduction techniques were approximately equal. These results
indicate that the overhead of our reduction techniques is negligible.

4 In this benchmark, we did not use the technique introduced in Sect.5.1, since au-
tomata from C(n) have too many transitions to be decomposed into SCCs effectively.

Fast Translation from LTL to Büchi Automata 377

Table 3. The number of states and conversion times (s) for E1, E2, C and U

Our implementation Spot LTL2BA LTL3BA
with reduction without reduction # of # of # of

n # of states time # of states time states time states time states time

E1(5) 32 0.00 33 0.00 32 0.02 32 0.00 32 0.00
E1(8) 256 0.01 257 0.01 256 0.15 256 0.03 256 0.02
E1(11) 2048 0.13 2049 0.13 2048 6.75 2048 6.34 2048 1.47
E1(14) 16384 3.49 16385 3.57 na na na na 16384 131.86
E1(17) 131072 113.78 131073 106.47 na na na na na na

E2(11) 144 0.08 145 0.08 144 0.36 345 0.17 144 0.05
E2(18) 361 1.19 362 1.24 361 4.33 940 3.53 361 0.47
E2(25) 676 9.00 677 9.34 676 27.75 1829 40.66 676 2.86
E2(32) 1089 43.30 1090 45.15 1089 116.46 3012 223.90 1089 10.69
E2(39) 1600 299.31 na na na na na na 1600 30.72

U(4) 8 0.01 9 0.01 8 0.06 15 0.00 13 0.01
U(6) 32 0.01 33 0.01 32 0.05 89 0.01 87 0.02
U(8) 128 0.03 129 0.02 128 0.13 481 0.25 479 0.22
U(10) 512 0.20 513 0.21 512 1.27 2433 54.27 2431 49.35
U(12) 2048 3.33 2049 3.33 2048 23.61 na na na na
U(14) 8192 60.41 8193 59.37 na na na na na na

C(3) 4 0.00 17 0.00 4 0.02 4 0.00 4 0.00
C(7) 8 0.00 513 0.04 8 0.17 8 0.27 8 0.01
C(11) 12 0.03 12289 17.58 12 0.07 na na 12 0.02
C(15) 16 0.47 na na 16 0.89 na na 16 0.17
C(19) 20 11.38 na na 20 29.19 na na 20 4.78
C(23) na na na na na na na na 24 180.70

Finally, we discuss the reason why our implementation is more efficient than
the implementation of Spot [5], even though our implementation and Spot both
utilise BDD for representing transitions. Spot converts LTL formulae into NBA
via TGBA, and indicates by BDD whether each transition is included in the
acceptance conditions (a set of sets of final transitions). In contrast, our method
converts LTL formulae into NBA via GBA, and it is not necessary to represent
the acceptance conditions (a set of sets of final states) by BDD. Because the
number of transitions is much larger than the number of states, the size of the
BDD tends to be larger in Spot than in our method. This difference is the
reason why our implementation is more efficient than Spot. LTL3BA also uses
BDD for representing transitions from a state. However, from [4], it is not clear if
LTL3BA indicates by BDD whether each transition is included in the acceptance
conditions.

8 Conclusion

In this paper, we proposed an efficient method for translating LTL formulae into
NBA. We also compared our method to LTL2BA, Spot and LTL3BA, which
are currently the most efficient tools available. We determined that our method

378 S. Mochizuki et al.

executes much faster than LTL2BA and Spot and is competitive with LTL3BA.
Furthermore, the size of the resulting NBA generated by our method is compa-
rable to that generated by the others. These results show that our method of
translation via GBA is competitive with the most efficient currently available
tools.

Our method does not implement several reduction techniques that are imple-
mented in Spot or LTL3BA. Future work will integrate these reduction tech-
niques into our method and will also evaluate the method by applying it to
actual verification processes, such as model-checking, realisability checking, and
so forth.

Methods for converting specifications written in LTL into NBA are commonly
used in verification processes. We believe that our method will be of practical
use for the verification of safety critical systems.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Num-
ber 24500032. We would like to thank the reviewers for their valuable comments
and suggestions to improve the quality of the paper.

References

1. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of
reactive systems. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M.
(eds.) ICALP 1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)

2. Aoshima, T., Sakuma, K., Yonezaki, N.: An efficient verification procedure support-
ing evolution of reactive system specifications. In: Proc. of the 4th International
Workshop on Principles of Software Evolution, pp. 182–185. ACM (2001)

3. Aoshima, T., Yonezaki, N.: Verification of reactive system specification with outer
event conditional formula. In: International Symposium on Principles of Software
Evolution (ISPSE2000), pp. 195–199 (2000)

4. Babiak, T., Křet́ınský, M., Řehák, V., Strejček, J.: LTL to büchi automata transla-
tion: Fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012)

5. Duret-Lutz, A.: LTL translation improvements in Spot. In: Proc. of the Fifth in-
ternational conference on Verification and Evaluation of Computer and Communi-
cation Systems, VECoS 2011, pp. 72–83. British Computer Society (2011)

6. Duret-Lutz, A., Poitrenaud, D.: Spot: An extensible model checking library us-
ing transition-based generalized Büchi automata. In: Proc. of MASCOTS 2004,
pp. 76–83. IEEE Computer Society (2004)

7. Filiot, E., Jin, N., Raskin, J.F.: An antichain algorithm for LTL realizability. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer,
Heidelberg (2009)

8. Gastin, P., Oddoux, D.: Fast LTL to büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

9. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear temporal logic. In: Protocol Specification Testing and Verification,
pp. 3–18. Chapman & Hall (1995)

Fast Translation from LTL to Büchi Automata 379

10. Giannakopoulou, D., Lerda, F.: From states to transitions: Improving translation
of LTL formulae to Büchi automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE
2002. LNCS, vol. 2529, pp. 308–326. Springer, Heidelberg (2002)

11. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997), http://dx.doi.org/10.1109/32.588521

12. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: Formal Methods
in Computer Aided Design, FMCAD 2006, pp. 117–124 (2006)

13. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL 1989,
pp. 179–190 (1989)

14. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. In: Bošnački, D., Edelkamp,
S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007)

15. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emer-
son, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer,
Heidelberg (2000)

http://dx.doi.org/10.1109/32.588521

Complete Model-Based Equivalence Class

Testing for the ETCS Ceiling Speed Monitor

Cécile Braunstein1,�, Anne E. Haxthausen3,†, Wen-ling Huang12,���, Felix
Hübner1,��, Jan Peleska1,���, Uwe Schulze1,� � �, and Linh Vu Hong3,†

1 Department of Mathematics and Computer Science,
University of Bremen, Germany
2 Department of Mathematics,

University of Hamburg, Germany
3 DTU Compute,

Technical University of Denmark

Abstract. In this paper we present a new test model written in SysML
and an associated blackbox test suite for the Ceiling Speed Monitor
(CSM) of the European Train Control System (ETCS). The model is
publicly available and intended to serve as a novel benchmark for inves-
tigating new testing theories and comparing the capabilities of model-
based test automation tools. The CSM application inputs velocity
values from a domain which could not be completely enumerated for
test purposes with reasonable effort. We therefore apply a novel method
for equivalence class testing that – despite the conceptually infinite car-
dinality of the input domains – is capable to produce finite test suites
that are complete (i.e. sound and exhaustive) for a given fault model. In
this paper, an overview of the model and the equivalence class testing
strategy is given, and tool-based evaluation results are presented. For the
technical details we refer to the published model and a technical report
that is also available on the same website.

Keywords: Model-based testing, Equivalence class partition testing,
SysML, European Train Control System ETCS, Ceiling Speed Moni-
toring.

1 Introduction

In 2011 the model-based testing benchmarks website www.mbt-benchmarks.org
has been created. Its objective is to publish test models that may serve as chal-

� The author’s research is funded by ITEA2 project openETCS under grant agree-
ment 11025.

�� The author’s research is funded by Siemens AG in the context of
the SyDE Graduate School on System Design, http://www.informatik.uni-
bremen.de/syde/index.php?home-en

� � � The authors’ research is funded by the EU FP7 COMPASS project under grant
agreement no.287829.

† The authors’ research is funded by the RobustRailS project funded by the Danish
Council for Strategic Research.

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 380–395, 2014.
c© Springer International Publishing Switzerland 2014

Exhaustive Tests for the ETCS Ceiling Speed Monitor 381

lenges or benchmarks for validating testing theories and for comparing the ca-
pabilities of model-based testing (MBT) tools [12]. In the present paper a novel
contribution to this website is presented, a SysML model of the Ceiling Speed
Monitor (CSM) which is part of the European Vital Computer (EVC), the on-
board controller of trains conforming to the European Train Control System
(ETCS) standard [4]. In the first part of this paper (Section 2) we give an intro-
duction into the CSM model.

The CSM represents a specific test-related challenge: its behaviour depends
on actual and allowed speed, and these have conceptually real-valued data do-
mains, so that – even when discretising the input space – it would be infeasible
to exercise all possible combinations of inputs on the system under test (SUT).
Therefore test strategies identifying finitely many representatives from the input
domains have to be applied when testing the CSM, and in this paper we focus on
equivalence class partition (ECP) testing. While ECP testing is well-adopted in
a heuristic manner in today’s industrial test campaigns, practical application of
equivalence class testing still lacks formal justification of the equivalence classes
selected and the sequences of class representatives selected as test cases: stan-
dard text books used in industry, for example [14], only explain the generation
of input equivalence class tests for systems, where the SUT reaction to an input
class representative is independent on the internal state. Moreover, the system-
atic calculation of classes from models, as well as their formal justification with
respect to test strength and coverage achieved, is not yet part of today’s best
practices in industry.

In contrast to this, formal approaches to equivalence class testing have been
studied in the formal methods communities; references to these results are given
in Section 5. In the second part of this paper (Section 3) we therefore describe a
recent formal technique for equivalence class testing and its application to testing
the CSM. The theoretical foundations of this strategy have been published by two
of the authors in [7]. The present paper illustrates its practical application and
presents first evaluation details using a prototype implementation in an existing
MBT tool (Section 4). This ECP strategy introduces test suites depending on
fault models. This well adopted notion has first been introduced in the field of
finite state machine (FSM) testing [13], but is also applicable to other formal
modelling techniques. A fault model consists of a reference model, a conformance
relation and a fault domain. The fault domain is a collection of models whose
behaviour may or may not be consistent with the reference model in the sense
of the conformance relation. The test suites generated by the ECP strategy
described here are complete with respect to the given fault model: each system
of the fault domain which conforms to the reference model will pass all the
generated tests (this means that the test suite is sound), and each system in the
fault domain that violates the conformity to the reference model will at least fail
once when tested according to the test suite (the test suite is exhaustive).

We use state transition systems (STS) for encoding the operational seman-
tics of concrete modelling formalisms like SysML. STS are widely known from
the field of model checking [3], because their extension into Kripke Structures

382 C. Braunstein et al.

allows for effective data abstraction techniques. The latter are also applied for
equivalence class testing. Since state transition systems are a means for semantic
representation, testing theories elaborated for STS are applicable for all concrete
formalisms whose behavioural semantics can be expressed by STS. In [8] it is
shown how the semantics of general SysML models and models of a process al-
gebra are encoded as STS. In this paper we illustrate how this is achieved for
the concrete case of the CSM SysML model.

2 CSM Model Description

Functional Objectives. The European Train Control System ETCS relies on
the existence of an onboard controller in train engines, the European Vital Com-
puter EVC. Its functionality and basic architectural features are described in the
public ETCS system specification [4]. One functional category of the EVC covers
aspects of speed and distance monitoring, to accomplish the “. . . supervision of
the speed of the train versus its position, in order to assure that the train remains
within the given speed and distance limits.” [15, 3.13.1.1]. While displaying actual
and allowed speed to the train engine driver, the monitoring functions automat-
ically trigger the brakes in case of speed limit violations. Speed and distance
monitoring is decomposed into three sub-functions [15, 3.13.10.1.2], where only
one out of these three is active at a point in time: (1) Ceiling speed monitor-
ing (CSM) supervises the observance of the maximal speed allowed according
to the current most restrictive speed profile (MRSP)1. CSM is active while the
train does not approach a target (train station, level crossing, or any other
point that must be reached with predefined speed). (2) Target speed monitoring
(TSM) enforces speed restrictions applicable while the train brakes to a target,
for example, a track section where a significantly lower maximal speed has to be
observed. (3) Release speed monitoring (RSM) applies when the special target
“end of movement authority (EOA)” is approached, where the train must come
to a stop. RSM supervises the observance of the distance-depending so-called
release speed, when the train approaches the EOA and is allowed to drive at a
reduced speed.

The model presented here captures the CSM functionality.

Test Model Semantics. SysML test models are structured using blocks. At
the top-level, the model is decomposed into a block representing the SUT and
another one representing the test environment (TE); Fig. 1 shows this decom-
position for the CSM. Depending on the complexity of the model, blocks can be
further decomposed into lower-level block diagrams, until leaf blocks are reached
that are associated with behaviour. In our test models this behaviour is specified
by sequential hierarchic SysML state machines. Blocks execute concurrently and
in a synchronous way, so that transitions of concurrent state machines that are
enabled in the same model state execute simultaneously.

1 In some situations, more than one speed restriction may apply, and then the most
restrictive one has to be enforced.

Exhaustive Tests for the ETCS Ceiling Speed Monitor 383

The whole model executes according to the run-to-completion semantics de-
fined for state machines. The model is in a quiescent (or stable) state, if no
transition can be executed without an input change.

Fig. 1. System interface of the ceiling speed monitor

In a quiescent model state, inputs may be changed. If these changes enable
a transition, the latter is executed. Since our SUT model is deterministic –
this is typical for sequential safety-critical applications – there is no necessity
to handle situations where several transitions are simultaneously enabled. The
executed transition, however, may lead to a transient state, that is, to a state
where another transition is enabled. In the run-to-completion semantics this
new transition is also executed, and so forth until a quiescent state is reached.

384 C. Braunstein et al.

Conceptually, the consecutive execution of model transitions is executed in zero
time, so that input changes cannot happen until the next quiescent state has
been reached. Moreover, models admitting unbounded sequences of transitions
between transient states are considered as illegal, and this situation is called a
livelock failure.

Interfaces. The interfaces between SUT and its environment are specified in
the internal block diagram displayed in Fig. 1. All interfaces are represented as
flow ports. The environment writes to SUT input ports and reads from SUT
output ports.

Fig. 2. Block diagram with CSM (sequential behaviour)

Ceiling speed monitoring is activated and de-activated by the speed and dis-
tance monitoring (SnD) coordination function that controls CSM, TSM, and
RSM: on input interface SnDMonitorIn, variable csmSwitch specifies whether ceil-
ing speed monitoring should be active (csmSwitch = 1) or passive, since target or
release speed monitoring is being performed (csmSwitch = 0). Furthermore, this
interface carries variable SBAvailable which has value 1, if the train is equipped
with a service brake. This brake is then used for slowing down the train if it
has exceeded the maximal speed allowed, but not yet reached the threshold for
an emergency brake intervention. If SBAvailable = 0, the emergency brake shall
be used for slowing down the train in this situation. Input SBAvailable is to be
considered as a configuration parameter of the train, since it depends on the
availability of the service brake hardware. Therefore this value can be freely
selected at start-of-test, but must remain constant during test execution.

Exhaustive Tests for the ETCS Ceiling Speed Monitor 385

Fig. 3. Ceiling speed monitoring state machine

Input interface OdometryIn provides the current speed value estimated by the
odometer equipment in variable Vest. Input interface SpeedRestrictionIn provides
the current maximal velocity defined by the most restrictive speed profile in
variable VMRSP. Input interface NationalValuesIn provides a control flag for the
ceiling speed monitor: variable allowRevokeEB is 1, if after an emergency brake
intervention the brake may be automatically released as soon as the estimated
velocity of the train is again less or equal to the maximal speed allowed. Oth-
erwise (allowRevokeEB = 0) the emergency brakes must only be released after
the train has come to a standstill (Vest = 0). This input parameter is called a
“national value”, because it may change when a train crosses the boundaries
between European countries, due to their local regulations.

Output interface DMIOut sends data from the SUT to the driver machine
interface (DMI). It carries five variables. DMICmd is used to display the super-
vision status to the train engine driver: Value INDICATION may be initially
present when CSM is activated, but will be immediately overridden by one of
the values NORMAL, OVERSPEED, WARNING, or INTERVENTION, as soon
as ceiling speed monitoring becomes active. Value NORMAL is written by the
SUT to this variable as long as the ceiling speed is not violated by the current
estimated speed. Value OVERSPEED has to be set by the CSM as soon as con-
dition VMRSP < Vest becomes true. If the speed increases further (the detailed
conditions are described below), the indication changes from OVERSPEED to

386 C. Braunstein et al.

WARNING, and from there to INTERVENTION. The latter value indicates that
either the train is slowed down until it is back in the normal speed range, or the
emergency brake has been triggered to stop the train. Furthermore, interface
DMIOut contains several speed-related variables that are displayed on the DMI.

Output interface TIOut specifies the train interface from the CSM to the
brakes, using variable TICmd. If TICmd = NO CMD, both service brakes (if ex-
istent) and emergency brakes are released. If TICmd = SERVICE BRAKE CMD,
the service brake is activated. If TICmd = EMER BRAKE CMD, the emergency
brake is triggered.

SUT Attributes and Operations. The CSM executes sequentially; therefore
the SUT block on the top-level interface diagram (Fig. 1) is refined to a single
block representing the CSM, as shown in Fig. 2. There, the SUT uses a local
attribute sbiCmd which carries value SERVICE BRAKE CMD, if the service brake
should be used for slowing down the train to the admissible speed. If the value
EMER BRAKE CMD is assigned to sbiCmd, the emergency brake will be triggered
in this situation.

Three supervision limits are computed to assist the driver in preventing auto-
mated service or emergency brake intervention by maintaining the speed within
certain limits. These limits depend on the MRSP, and they are calculated ac-
cording to [15] as follows.

dVwarning(VMRSP) =

{
min{ 13 + 1

30 · VMRSP, 5} if VMRSP > 110
4 if VMRSP ≤ 110

(1)

dVsbi(VMRSP) =

{
min{0.55 + 0.045 · VMRSP, 10} if VMRSP > 110
5.5 if VMRSP ≤ 110

(2)

dVebi(VMRSP) =

{
min{−0.75 + 0.075 · VMRSP, 15} if VMRSP > 110
7.5 if VMRSP ≤ 110

(3)

CSM Behavioural Specification. The behaviour of the ceiling speed monitor
is modelled by a hierarchic state machine that is associated with the SUT block
of Fig. 2. The top-level machine specifies the activation and de-activation of the
CSM during the interplay between CSM, TSM, and RSM. Due to the usual
space limitations, we consider here only the lower-level state machine CSM ON
modelling the behaviour of the active CSM, as displayed in Fig. 3.

Its execution starts in basic state NORMAL, where the ‘NORMAL’ indication
is displayed on the DMI and brakes are released (TICmd = NO CMD). When
the speed increases above the maximal speed allowed (Vest > VMRSP), the state
machine transits to basic state OVERSPEED, where the ‘OVERSPEED’ indica-
tion is displayed to the train engine driver. If the train continues overspeeding
until the warning threshold VMRSP + dVwarning(VMRSP) is exceeded, a transition
into the WARNING state is performed, accompanied by an indication change on

Exhaustive Tests for the ETCS Ceiling Speed Monitor 387

the DMI. Accelerating further until Vest > VMRSP+dVsbi(VMRSP) leads to a tran-
sition into basic state SERVICE BRAKE, where either the service brake or the
emergency brake is triggered, depending on the value stored before in variable
sbiCmd. The DMI display changes to ‘INTERVENTION’.

The intervention status is realised by two basic state machine states, SER-
VICE BRAKE and EMER BRAKE. From SERVICE BRAKE it is still possible to
return to NORMAL, as soon as the speed has been decreased below the over-
speeding threshold. When the train, however, continues its acceleration until the
emergency braking threshold has been exceeded (Vest > VMRSP + dVebi(VMRSP)),
basic state EMER BRAKE is entered. From there, a state machine transition to
NORMAL is only possible if the train comes to a standstill, or if the national
regulations (variable allowRevokeEB) allow to release the brakes as soon as over-
speeding has stopped.

Observe that the run-to-completion semantics of state machines also allows for
zero-time transitions from, for example, NORMAL to EMER BRAKE. If, while in
basic state NORMAL, the inputs change such that Vest > VMRSP + dVebi(VMRSP)
becomes true2, the state machine transition from NORMAL to OVERSPEED
leads to a transient model state, because guard condition Vest > VMRSP +
dVwarning(VMRSP) is already fulfilled, and the state machine transits to WARNING.
Similarly, guards Vest > VMRSP + dVsbi(VMRSP) and Vest > VMRSP + dVebi(VMRSP)
also evaluate to true, so that the next quiescent state is reached in basic state
EMER BRAKE.

Full Model Description and Requirements Tracing. The complete SysML
model of the CSM function is publicly available3. A comprehensive description
can be found in the technical report [1] which is also available on this website.
The SysML modelling formalism supports the specification of relationships be-
tween requirements and model elements contributing to their realisation. This
allows for requirements-driven testing: test cases supporting the verification of a
given requirement have to cover the model elements contributing to the require-
ment. In [1] the CSM requirements and the tracing from requirements to model
elements, as well as an extended model description are presented.

3 Equivalence Class Partition Testing Strategy

The theoretical foundations of the equivalence class partition testing method
applied in this paper have been described in [7]. In this section we summarise
the results obtained there and show how they are applied for testing the CSM.

2 This would be an exceptional behaviour situation, caused, for example, by temporary
unavailability of odometry data, so that a “sudden jump” of Vest would be observed
by the CSM.

3 http://www.mbt-benchmarks.org

388 C. Braunstein et al.

System Domain. We consider models and SUT whose true behaviour can be
represented by state transition systems STS (S, s0, R) with state space S, initial
state s0 ∈ S and transition relation R ⊆ S × S. States s ∈ S are valuation
functions s : V → D, where V is a set of variable symbols and D =

⋃
v∈V Dv,

where Dv is the domain of variable v, and s(v) ∈ Dv holds for every v ∈ V
and s ∈ S. The variable space V is finite and can be partitioned into disjoint
sets V = I ∪ M ∪ O called input variables, (internal) model variables, and
output variables, respectively. The domains of input variables can be infinite,
but those of model variables and output variables must be finite. The transition
relationR ⊆ S×S may be infinite, since we allow for infinite input data domains.
Admissible STS allow for partitioning of state spaces into quiescent and transient
states, S = SQ ∪ ST , SQ ∩ ST = ∅. In a quiescent state s1 ∈ SQ only input
changes can occur, leading either to another quiescent, or to a transient post-
state s2. The inputs can then change in an arbitrary way, but the internal and
output variables remain unchanged. Transient states s1 ∈ ST have uniquely
defined quiescent post-states s2 ∈ SQ, and during the transition from s1 to s2
only internal variable states and outputs change. The initial state s0 must be an
element of SQ.

We use initial STS state s0 to model the quiescent state when “the system is
switched off”. From there, some input change will drive the STS into the state s
the system assumes after initialisation. This state may depend on the new input
valuation, so our STS can very well model situations where the initial behaviour
depends on the input that is present on system initialisation.

In the exposition below, variable symbols x,m, y are used with the con-
vention that x ∈ I,m ∈ M, y ∈ O, and the symbols can be enumerated as
I = {x1, . . . , xk}, M = {m1, . . . ,mp}, O = {y1, . . . , yq}. We use notation
x = (x1, . . . , xk), s(x) = (s(x1), . . . , s(xk)), DI = Dx1 × · · · × Dxk

denotes
the cartesian product of the input variable domains. Tuples m,y and DM and
DO are defined over model variables and outputs in an analogous way. By
s ⊕ {x �→ c}, c ∈ DI we denote the state s′ which coincides with s on all
variables from M ∪ O, but returns values s′(xi) = ci, i = 1, . . . , k for the input
symbols.

I/O-Equivalence. Applying a trace ι = c1 . . . cn of input vectors ci ∈ DI to a
STS (S, s0, R) residing in some quiescent state s ∈ S, this stimulates a sequence
of state transitions with associated output changes as triggered by the inputs.
Restricting this sequence to quiescent states, this results in a trace of states τ =
s1.s2 . . . sn such that si(x) = ci, i = 1, . . . , n, and si(y) is the last STS output
resulting from application of c1 . . . ci to state s. This trace τ is generally denoted
by s/ι. The restriction of s/ι to output variables is denoted by (s/ι)|O. Since
transient states have unique quiescent post-states, the restriction to quiescent
states does not result in a loss of information, if the input trace ι is known: the
omitted transient states are some elements of s⊕{x �→ c1}, . . . , sn−1⊕{x �→ cn},
and these states satisfy R(s⊕ {x �→ c1}, s1), . . . , R(sn−1 ⊕ {x �→ cn}, sn).

Exhaustive Tests for the ETCS Ceiling Speed Monitor 389

Two states s, s′ are I/O-equivalent, written s ∼ s′, if every non-empty in-
put trace ι, when applied to s and s′, results in the same outputs, that is,
(s/ι)|O = (s′/ι)|O. Two STS S,S ′ are I/O-equivalent, if their initial states
are I/O-equivalent. Note that for technical reasons, s ∼ s′ still admits that
s|O �= s′|O.

Input Equivalence Class Partitions. Since I/O-equivalence is an equivalence
relation, we can factorise STS state spaces by ∼, and the resulting equivalence
classes A ∈ S/∼ have the property that all s, s′ ∈ A yield the same output traces
(s/ι)|O = (s′/ι)|O for arbitrary non-empty input traces ι. For systems like the
CSM, the number of classesA is finite, so we can enumerate S/∼ = {A1, . . . , Ar}.
For every s ∈ Ai, applying an input c ∈ DI will lead to a quiescent target state
denoted by (s//c) in the unique target class Aj . Index j only depends on (i, c),
since for s, s′ ∈ Ai all corresponding states sk, s

′
k in s/ι = s1.s2sn, s

′/ι =
s′1.s

′
2s

′
n are I/O-equivalent for any ι = c1 . . . cn, k = 1, . . . , n. Therefore

(s//c) ∈ Aj if and only if (s′//c) ∈ Aj . One class Aj , however, may contain
elements s ∼ s′ with different outputs, since I/O-equivalence only states that
all future outputs will be identical, when applying the same non-empty input
trace to s, s′. Since DO = {d1, . . . ,d|DO|} is finite, we can associate the value
index h ∈ {1, . . . , |DO|} with the target class Aj , if (s//c)|O = dh. Again, h only
depends on (i, c), but not on the choice of s ∈ Ai.

Applying c to elements from all classes A1, . . . , Ar, results in (not necessarily
distinct) index pairs j(c, i), h(c, i), i = 1, . . . , r. This induces a factorisation of
the input domain DI : define X(c) ⊆ DI as the maximal set containing c, such
that j(c′, i) = j(c, i) ∧ h(c′, i) = h(c, i), i = 1, . . . , r, holds for all c′ ∈ X(c).

Then the Input Equivalence Class Partitioning (IECP) I = {X(c) | c ∈ DI}
has the following properties: (1) The elements of I are pairwise disjoint, (2) The
union of all X ∈ I equals DI , (3) I is finite, and (4) for all s ∈ Ai, c ∈ X ,
target states (s//c) are contained in the same target class Aj(i,c) and have the
unique output value dh(i,c). Furthermore, each pair of input traces ι = c1 . . . cn,
ι′ = c′1 . . . c

′
n, when applied to the same state s, lead to the same output traces

(s/ι)|O = (s/ι′)|O, if c′i ∈ X(ci) for each i = 1, . . . , n.
A given IECP I can be refined by selecting input sets I2 = {X1, X2, . . . }

such that I2 also fulfils the above properties (1), (2), (3), and such that every
Xi is a subset of some X ∈ I. If these conditions hold, I2 inherits property (4).
Refinement is obviously reflexive, transitive and anti-symmetric.

Fault Model. As reference models we use the STS representations S of mod-
els elaborated in concrete formalisms – like the CSM model presented in this
paper – such that the expected behaviour of the SUT is specified by S up to
I/O-equivalence. We use I/O-equivalence as conformance relation. The fault do-
main D specifies the set of potential systems under test, whose true behaviour
can be represented by an STS S ′ ∈ D. For the equivalence class testing strategy,

390 C. Braunstein et al.

the fault domain depends on the reference model S and two additional parame-
ters m ∈ N and a refinement I2 of I, the IECP associated with S. D(S,m, I2)
contains all S ′ satisfying

1. The states of S ′ are defined over the same variable space V = I ∪M ∪O as
defined for the model S.

2. Initial state s′0 of S ′ coincides with initial state s0 of S on I ∪O.
3. S ′ generates only finitely many different output values and internal state

values.
4. The number of I/O-equivalence classes of S ′ is less or equal m.
5. Let I ′ be the IECP of S ′ as defined above. Then

∀X ∈ I, X ′ ∈ I ′ :
(
X ∩X ′ �= ∅⇒ ∃X2 ∈ I2 : X2 ⊆ X ∩X ′)

6. S ′ has a well-defined reset operation allowing to re-start the system, in order
to perform another test from its initial state.

Requirement 2 is reasonable, since initial states correspond to the system’s
switched-off state. Therefore we can assume that the implementation produces
the same outputs as the reference model as long as it is switched off – otherwise
we would not start testing, because S and S ′ differed already in the off-state.

The intuition behind requirement 5 is as follows: for every X ∈ I the model S
exhibits equivalent behaviour for every input from X . Non-conforming members
S ′ of the fault domain may have a different partitioning I ′ �= I. Then there will
be some non-empty intersections X ∩ X ′ �= ∅, X ′ ∈ I ′ that contain inputs for
which S and S ′ exhibit different behaviour. It is ensured by requirement 5 that
our refined partitioning I2 has a member X2 contained in this intersection. This
guarantees that an input from X∩X ′ will be applied in the test suite introduced
below.

The fault domain D(S,m, I2) is obviously increased by increasing m ∈ N,
and/or further refining I2: m′ ≥ m∧I3 refines I2 ⇒ D(S,m, I2) ⊆ D(S,m′, I3).

Complete Test Strategy. The main result of the paper [7] states that, given
reference model S and fixing (m, I2), it is possible to generate a finite test suite
from S, such that (a) this suite accepts every member of D(S,m, I2) which is
I/O-equivalent to S, and (b) at least one test of this suite fails for every non-
conforming member of D(S,m, I2) which violates the I/O-equivalence condition.
Test suites satisfying (a) are called sound, and those satisfying (b) are called
exhaustive. Soundness and exhaustiveness together is called complete. The test
suite is generated as follows.

1. Select one representative input vector cX ∈ X from each X ∈ I2.
2. Abstract S to a finite deterministic state machine M with I/O-equivalence

classes A1, . . . , Ar as states, input alphabet {cX | X ∈ I2} and output
alphabet DO (recall that DO is finite). This DFSM is well-defined due to
the properties of the A ∈ S/∼ and the X ∈ I2.

Exhaustive Tests for the ETCS Ceiling Speed Monitor 391

3. SinceM is a DFSM, the well known W-Method [16,2] can be used to create
a test suite that is complete with respect to reference model M, confor-
mance relation DFSM-equivalence, and the set of all DFSM over the same
input/output alphabets as fault domain, whose numbers of states do not
exceed m.

4. A STS S ′ is I/O-equivalent to S if and only if its DFSM M′ passes these
tests, so that M′ is DFSM-equivalent to M.

4 Evaluation

The coarsest IECP I for the CSM model has 6 IECs X1, . . . , X6; their defining
conditions over the input variables are displayed in Table 1. This table also shows
the input alphabet, consisting of one input vector selected from each class. It
can be easily checked that in a given CSM model state, all inputs from a given
Xi lead to the same outputs and into I/O-equivalent quiescent target states.

Table 1. Input Alphabet AI

ci Vest VMRSP allowRevokeEB Xi specified by

c1 60 90 0 X1 0 < Vest ≤ VMRSP ∧ allowRevokeEB = 0

c2 60 90 1 X2 Vest = 0 ∨ (Vest ≤ VMRSP ∧ allowRevokeEB = 1)

c3 152 150 0 X3 VMRSP < Vest ≤ VMRSP + dVwarning(VMRSP)

c4 125 120 1 X4 VMRSP + dVwarning(VMRSP) < Vest ≤ VMRSP + dVsbi(VMRSP)

c5 66 60 0 X5 VMRSP + dVsbi(VMRSP) < Vest ≤ VMRSP + dVebi(VMRSP)

c6 260 230 0 X6 VMRSP + dVebi(VMRSP) < Vest

The DFSM used for test suite generation according to the W-method is shown
in Fig. 4. The complete test suites for the fault domain D(S,m = 6, I2 = I)
derived by application of the W-method are shown in Table 2. The specification
of m = 6 implies that the domain contains all models whose minimised DFSM
representation contains at most two more states than that of the reference model,
as shown in Fig. 4.

The tool-based evaluation has been performed with RT-Tester, an industrial
strength MBT tool [11] which has been enhanced by a prototype extension sup-
porting IECP test generation as described above. This tool encodes test objec-
tives as propositional formulas, and an SMT solver calculates solutions from
which the concrete test data, i.e., the input vectors to the SUT, can be ex-
tracted. RT-Tester has been used to generate various test suites from the CSM
model, following different coverage criteria: (1) basic state coverage, (2) tran-
sition coverage, (3) MC/DC coverage, (4) hierarchic transition coverage for an
extended CSM model version including the activation and deactivation of the
CSM, (5) requirements-driven test cases, constructed from the links from ETCS

392 C. Braunstein et al.

Normal or
Overspeed

Warning
Service Brake
Intervention

Emergency
Brake

Intervention

$c3/(2, 0)$c1,$c2/(0, 0)

$c4/(3, 0)
$c1,$c2/(0, 0) $c1,$c2/(0, 0)

$c2/(0, 0)

$c5/(4, 2− sb0)

$c6/(4, 2)

$c6/(4, 2)

$c6/(4, 2)$c5/(4, 2− sb0)

$c1,$c3,$c4,$c5,$c6/(4, 2)
$c3,$c4/(3, 0)

$c3,$c4,$c5/(4, 2− sb0)

Fig. 4. DFSM abstraction of the CSM. Output assignment actions
(DMICmd,TICmd) = (α, β) are written as (α, β). The DMICmd are written as 0
for no indication, 2 for overspeed indication, 3 for warning, and 4 for intervention
indication. The TICmd are written as 0 for brakes released, 1 for service brake
triggered, and 2 for emergency brake triggered.

requirements to model elements, (6) the IECP test suites shown in Table 2,
and (7) a more detailed IECP test suite based on a refinement I2 of I with
69 input equivalence classes, leading to 273 test cases: Usage of the coarsest
IECP I2 = I specified in Table 1 is adequate if a fault domain is applicable,
where all representatives use the same guard conditions as the reference model.
Then conformity violations can only occur in output calculations, but never in
control decisions. Refined IECPs are necessary, as soon as potential errors in
guard conditions have to be taken into account.

Test strategies (1) — (5) uncover at most 2 out of three mutants by “acciden-
tally” using input data revealing the deviations from the reference models: the
nature of the mutants was such that none of these strategies can guarantee to
find the mutations used. None of these strategies are able to uncover the third
mutation, not even the test suite (5) which yields 100% requirements coverage
(see [1, Table 17] for a more detailed specification of the mutants). As expected,
test suites (6) and (7) kill all three mutants. For all test suites (1) — (7) the
automated test suite generation time is below 60 seconds. These results are sum-
marised in Table 3.

Exhaustive Tests for the ETCS Ceiling Speed Monitor 393

Table 2. Complete test suite for D(S ,m = 6, I2 = I). TEST SUITEsb0=1 applies to
the case where trains are equipped with a separate service brake. TEST SUITEsb0=0

applies to train configurations where no separate service brake is available, so that only
the emergency brake is used.

TEST SUITEsb0=1 = {ci.cj .ck.c3 | i, j, k = 1, . . . , 6} ∪
{cj .ci.ck.ch.c3 | h, i, k = 1, . . . , 6, j = 4, . . . , 6}

TEST SUITEsb0=0 = {ci.cj .ch.cg | h, i, j = 1, . . . , 6, g = 1, 3} ∪
{cj .ci.ck.ch.cg | h, i, k = 1, . . . , 6, j = 4, . . . , 6, g = 1, 3}

Table 3. Experimental results (see www.mbt-benchmarks.org for more details)

Test-Procedure Mutant 1 Mutant 2 Mutant 3 Generation Time [s]

Strategy (1) not detected not detected not detected ≤ 60

Strategy (2) KILLED KILLED not detected ≤ 60

Strategy (3) not detected not detected not detected ≤ 60

Strategy (4) KILLED KILLED not detected ≤ 60

Strategy (5) KILLED KILLED not detected ≤ 60

IECP Strategy (6) KILLED KILLED KILLED ≤ 60

IECP Strategy (7) KILLED KILLED KILLED ≤ 60

5 Related Work

The test method described and illustrated in this paper is a specific instance of
partition testing approaches, where the input domains of the SUT are divided
into subsets, and small numbers of candidates are chosen from each of these
sets [9]. The formalisation of equivalence classes is typically based on a uniformity
hypothesis as introduced in [5]. The idea to use data abstraction for the purpose
of equivalence class definition has been originally introduced in [6], where the
classes are denoted as hyperstates, and the concept is applied to testing against
abstract state machine models. Complete test suites have been suggested there
for grey box scenarios, while our approach considers black-box tests.

Applications of model-based testing in the railway domain are currently inves-
tigated by numerous research groups and enterprises. In [1, Section 12] several ref-
erences are given, and also alternative approaches to tool support are discussed.

The detailed formal behavioural semantics of general SysML test models has
been described in [8, pp. 88]. This semantics is consistent with the standard [10],
but fixes certain semantic variation points in ways that are admissible according
to the standards. In [1, Section 4], the formal semantics of the CSM is presented
by specifying the model’s transition relation in propositional form. Furthermore,
additional details are presented for the IECP I introduced above [1, Section 5],
and IECP refinement alternatives I2 are discussed [1, Section 6, 10].

394 C. Braunstein et al.

6 Conclusion and Ongoing Work

In this paper, a SysML model for the Ceiling Speed Monitor of the ETCS on-
board controller has been presented and made publicly available on the website
www.mbt-benchmarks.org, for the purpose of testing theory evaluation and MBT
tool comparisons. A novel equivalence class testing strategy has been applied to
derive tests from the CSM model in an automated way. This strategy allows
test suite creation depending on a given fault model and guarantees complete-
ness of the generated suites for all members of the associated fault domain. The
evaluation shows that for certain types of mutants, the equivalence class testing
strategy is significantly stronger than that of other test strategies, such as model
transition coverage or MC/DC coverage.

The usage of SysML was motivated by the fact that this modelling language is
very well accepted in industrial applications. It is therefore one of the main mod-
elling formalisms used in the ITEA2 project openETCS4 and the FP7 project
COMPASS5.

The mutations used for the evaluation in this paper were mainly constructed
for illustration purposes. Currently, we are evaluating the test strength of IECP
test suites in comparison with other model coverage criteria with large numbers
of mutants created by a random generator that mutates models and creates
executable “SUT” code from each mutation. These results will also be published
on www.mbt-benchmarks.org.

References

1. Braunstein, C., Huang, W.-L., Peleska, J., Schulze, U., Hübner, F., Haxthausen,
A.E., vu Hong, L.: A SysML test model and test suite for the ETCS ceiling speed
monitor. Technical report, Embedded Systems Testing Benchmarks Site (April 30,
2014), http://www.mbt-benchmarks.org

2. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans-
actions on Software Engineering SE-4(3), 178–186 (1978)

3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,
Cambridge (1999)

4. European Railway Agency. ERTMS – System Requirements Specification –
UNISIG SUBSET-026 (February 2012), http://www.era.europa.eu/
Document-Register/Pages/Set-2-System-Requirements-Specification.aspx

5. Gaudel, M.-C.: Testing can be formal, too. In: Mosses, P.D., Nielsen, M. (eds.)
CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 82–96. Springer,
Heidelberg (1995)

6. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state
machines from abstract state machines. ACM SIGSOFT Software Engineering
Notes 27(4), 112–122 (2002)

7. Huang, W.-l., Peleska, J.: Exhaustive model-based equivalence class testing.
In: Yenigün, H., Yilmaz, C., Ulrich, A. (eds.) ICTSS 2013. LNCS, vol. 8254,
pp. 49–64. Springer, Heidelberg (2013)

4 http://openetcs.org
5 http://www.compass-research.eu

http://www.mbt-benchmarks.org
http://www.era.europa.eu/Document-Register/Pages/Set-2-System-Requirements-Specification.aspx
http://www.era.europa.eu/Document-Register/Pages/Set-2-System-Requirements-Specification.aspx

Exhaustive Tests for the ETCS Ceiling Speed Monitor 395

8. W.-l. Huang, J., Peleska, U.: Schulze. Test automation support. Technical Report
D34.1, COMPASS Comprehensive Modelling for Advanced Systems of Systems
(2013), http://www.compass-research.eu/deliverables.html

9. De Nicola, G., di Tommaso, P., Rosaria, E., Francesco, F., Pietro, M., Antonio,
O.: A Grey-Box Approach to the Functional Testing of Complex Automatic Train
Protection Systems. In: Dal Cin, M., Kaâniche, M., Pataricza, A. (eds.) EDCC
2005. LNCS, vol. 3463, pp. 305–317. Springer, Heidelberg (2005)

10. Object Management Group. OMG Systems Modeling Language (OMG SysMLTM).
Technical report, Object Management Group, OMG Document Number:
formal/2010-06-02 (2010)

11. Peleska, J.: Industrial-strength model-based testing - state of the art and current
challenges. In: Petrenko, A.K., Schlingloff, H. (eds.) Proceedings Eighth Workshop
on Model-Based Testing, Rome, Italy, March 17. Electronic Proceedings in Theo-
retical Computer Science, vol. 111, pp. 3–28. Open Publishing Association (2013)

12. Peleska, J., Honisch, A., Lapschies, F., Löding, H., Schmid, H., Smuda, P., Vorobev,
E., Zahlten, C.: A real-world benchmark model for testing concurrent real-time
systems in the automotive domain. In: Wolff, B., Zäıdi, F. (eds.) ICTSS 2011.
LNCS, vol. 7019, pp. 146–161. Springer, Heidelberg (2011)

13. Petrenko, A., Yevtushenko, N., van Bochmann, G.: Fault Models for Testing in
Context, pp. 163–177. Chapman & Hall (1996)

14. Spillner, A., Linz, T., Schaefer, H.: Software Testing Foundations. dpunkt.verlag,
Heidelberg (2006)

15. U.N.I.S.I.G.: ERTMS/ETCS SystemRequirements Specification, Chapter 3,
Principles, volume Subset-026-3, Issue 3.3.0 (2012)

16. Vasilevskii, M.P.: Failure diagnosis of automata. Kibernetika (Transl.) 4, 98–108
(1973)

http://www.compass-research.eu/deliverables.html

Contract-Based Verification of MATLAB
and Simulink Matrix-Manipulating Code�

Jonatan Wiik and Pontus Boström

Dept. of Information Technologies, Åbo Akademi University, Finland
{jonatan.wiik,pontus.bostrom}@abo.fi

Abstract. This paper presents an approach to automatic, modular,
contract-based verification of programs written in a subset of the MAT-
LAB programming language, with focus on efficiently handling the pro-
vided matrix manipulation functions. We statically infer types and
shapes for matrices in the language and use this information in the verifi-
cation. We consider two approaches for verification: direct axiomatisation
of the built-in matrix functions and expansion of the functions. We eval-
uate our approaches on a number of examples and discuss challenges for
automatic verification in this setting.

1 Introduction

MATLAB/Simulink1 has become a widely popular toolset for development of
control systems. Simulink has even become de facto standard for model-based
design in many domains. MATLAB includes toolboxes for generating embedded
C/C++ code for different platforms directly from Simulink models or from code
written in a subset of the MATLAB programming language, which we refer to as
Embedded MATLAB (EML). MATLAB and Simulink are languages aimed at
numerical computing, with matrix computations as a core feature. The languages
inherently supports such computations through convenient built-in functions.

In this paper we present a modular approach to automatic contract-based
verification of MATLAB style programs. Contracts here refer to functional
specifications, given as pre- and postconditions, of functions. We use standard
contract-based reasoning as found in many other verifiers [2,3,7], extended with
efficient handling of matrix computations. Verification conditions are generated
from the programs and contracts, which are then discharged by an automatic
SMT solver. The work described in this paper also acts as an extension to an
approach for contract-based verification of Simulink models [4,5], by adding sup-
port for matrix computations. There Simulink models are automatically verified
with respect to contracts by first generating sequential code.

MATLAB is an implicitly and dynamically typed imperative language. How-
ever, in EML and Simulink the type and shape of all matrices are determined
� Work done in the EFFIMA program coordinated by Fimecc and the EDiHy project

funded by the Academy of Finland.
1 http://www.mathworks.com/products/simulink/

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 396–412, 2014.
c© Springer International Publishing Switzerland 2014

http://www.mathworks.com/products/simulink/

Contract-Based Verification of MATLAB 397

statically at compile-time, which enables generation of efficient code for embed-
ded software. We focus on EML, since static types and shapes significantly aid
verification, while the language is still flexible and convenient to use. Further-
more, embedded systems, which is the target of EML, often have high reliability
requirements, justifying the use of rigorous verification methods. We build on ex-
isting work on MATLAB type inference [1,16] to obtain matrix types and shapes,
but our system is more strict in order to aid verification. We present and evalu-
ate two approaches to encoding verification conditions for matrix-manipulating
programs in an SMT solver. In the first approach, matrix functions are viewed
as a library and given pre- and postconditions, as in traditional program verifi-
cation. In the second approach, the inferred information about matrix shapes is
used to automatically expand the matrix functions. As we will show, expansion
can be very effective when matrix sizes are relatively small, which is common in
many embedded applications.

The challenges addressed in this paper relate to efficient handling of built-in
matrix functions in MATLAB, as well as inference of information that is not
given explicitly, but needed for efficient verification. The main contributions of
this paper are: 1) Definition of an expressive language similar to EML that can be
effectively encoded into verifiers. 2) A type inference and two automated verifica-
tion approaches for the language. 3) Evaluation of the approaches on examples,
as well as discussion on advantages and drawbacks of the approaches. We have
also implemented the verification approaches in the prototype verification tool
VerSÅA2.

The paper begins with a description of the MATLAB programming language
and the contract format in section 2. In section 3 we define the grammar of the
language. Section 4 describes the type system and the type inference framework.
In section 5 we describe the verification approaches and evaluate them on a few
examples in section 6. Section 7 discusses related work and section 8 concludes.

2 MATLAB and Contract-Based Verification

The programming language targeted in this paper is EML. EML is essentially a
subset of the complete MATLAB language suitable for code generation. It is an
implicitly typed imperative programming language. Contrary to the complete
MATLAB language, EML is statically typed. All data in the language is ulti-
mately a matrix3. A MATLAB matrix type consists of an intrinsic type, such as
double, int32, boolean etc., and a shape. We use 〈m,n〉 to denote a matrix
shape with m rows and n columns. We use the term column vector for matrices
of shape 〈m, 1〉 and row vector for matrices of shape 〈1, n〉. In MATLAB also
scalars are considered matrices, we thus use the term scalar to mean a matrix of
shape 〈1, 1〉. In this work we restrict ourselves to two-dimensional matrix shapes,
although the MATLAB language in general supports an arbitrary number of di-
mensions. There should, however, not be any fundamental problem in extending
2 http://users.abo.fi/pbostrom/slverificationtool/
3 MATLAB supports other types too, but we do not consider them here.

http://users.abo.fi/pbostrom/slverificationtool/

398 J. Wiik and P. Boström

the approach to support more dimensions. We also require that matrices are
non-empty, i.e. that the size along both dimensions is ≥ 1.

The MATLAB language has a large library of built-in functions that directly
manipulate matrices. There are both functions and operators (infix functions)
and we treat these uniformly in this paper and usually refer to them as functions.
As an example, consider the matrices a and b of shape 〈2, 2〉:

a =

[
a11 a12

a21 a22

]
b =

[
b11 b12
b21 b22

]

Then we have the following results for max(a, b) and 2 + a:

max(a, b) =

[
max(a11, b11) max(a12, b12)
max(a21, b21) max(a22, b22)

]
2 + a =

[
2 + a11 2 + a12

2 + a21 2 + a22

]

Both the function max and the operator + thus work element-wise on matrices.
An element-wise MATLAB function f(a, b) is defined if a and b have the same
intrinsic type and m1 = n1 and m2 = n2 or either a or b is scalar, i.e. m1 =
m2 = 1 or n1 = n2 = 1. The resulting matrix will then have the same shape
as a and b, or the larger shape if either a or b is scalar. We will later see that
many of the built-in MATLAB functions are element-wise. MATLAB also has,
e.g., functions that collapse matrices. Consider, for instance, the sum function:

sum(a) =
[
a11 + a21 a12 + a22

]
sum(sum(a)) = (a11 + a21) + (a12 + a22)

Collapsing functions collapse (row and column) vectors to scalars and other
matrices to row vectors. Hence, the behaviour of the function depends on the
input shape.

MATLAB functions are typically polymorphic, which is also the case for the
built-in functions max and sum above. They accept arguments of any intrinsic
type t and any shape 〈m,n〉 and return a matrix of the same intrinsic type and
a shape determined as a function of the input shapes.

A MATLAB program consists of a set of functions, of which one is the entry-
point for the program. The aim of this paper is to enable automatic contract-
based verification of such programs. We use a standard modular verification
technique, checking every function with respect to its contract in isolation. For
each function body analysed, we check that the postcondition holds if the pre-
condition is satisfied. The contracts are written inside special comments, as in
e.g. JML [7]. An example function that computes the maximum element of a
column vector is given in Fig. 14. This functionality is also implemented by the
built-in function max with one argument, however, the goal here is to demon-
strate language features. The specification of the function, i.e. its contract, is
written in comments starting with “%@”. In addition to traditional precondi-
tions and postconditions, we also annotate functions with types for the inputs
and the output.

We first consider the type annotations. Types for all inputs and the output
are given in the types field. The syntax matrix(t, n,m) denotes a matrix with

4 For clarity we use := for assignment in this paper, although = is used in MATLAB.

Contract-Based Verification of MATLAB 399

1 function m = max_f(a)
2 %@ typeparameters: t<:numtype, n
3 %@ types: m:t, a:matrix(t,n,1)
4 %@ ensures: all(a <= m)
5 %@ ensures: any(a == m)
6 m := a(1);
7 i := int32(2);
8 while (i <= length(a))
9 %@ invariant: 1 <= i && i <= n+1

10 %@ invariant: \forall j:int32 . (1 <= j && j < i ==> m >= a(j))
11 %@ invariant: \exists j:int32 . (1 <= j && j < i && m == a(j))
12 if (m < a(i))
13 m := a(i);
14 end
15 i := i+1;
16 end
17 end

Fig. 1. A MATLAB function for finding the index of the minimum element in a column
vector, annotated with contracts

intrinsic type t and shape 〈n,m〉. The short-hand form t is used to denote a
scalar of intrinsic type t, i.e. matrix(t, 1, 1). The typeparameters field declares
universally quantified type parameters over which the types declared in the types
field can be parametrised. A type parameter can parametrise over either intrinsic
type or shape. For instance, the max_f function in Fig. 1 is parametrised to take
as input a matrix of any numeric intrinsic type t and a shape 〈n, 1〉 and outputs a
scalar of the same intrinsic type t. The type annotations are actually not needed
here for type inference, but they are important from a specification point-of-
view. Without the type annotations there would exist incorrect implementations
satisfying the postconditions of the max_f function, e.g. the implementation
m := a. The type annotations thus provide a form of pre- and postconditions
constraining the inputs and outputs on the level of types (and shapes).

We use the standard annotations requires and ensures for function precon-
ditions and postconditions, as well as invariant annotations for loops. For the
max_f function we have the postcondition all(a ≤ m), stating that the output
m should be greater than or equal to each element in a. We also have the post-
condition any(a = m), stating that there exists an element in a that is equal to
m. Note that all and any are built-in MATLAB functions. They correspond to
universal and existential quantifiers over matrices and provide a compact and
intuitive way to write contracts for matrix code. The invariants used for the
while-loop in max_f are needed to prove that the loop establishes the postcon-
dition of the function. Note also that the all and any functions are not used
in the invariants on lines 10-11. In MATLAB these conditions could be written
using all and any, e.g. all(a(1:i) ≤ m). However, we want to infer matrix shapes
statically. This is not possible for this expression as i is not constant, which
means that the shape of a(1:i) is not static.

400 J. Wiik and P. Boström

3 Language Definition

In this section we define the subset of MATLAB considered throughout this
paper. In addition to the MATLAB constructs supported, the language is also
extended with some specification-oriented constructs not part of pure MATLAB.
These constructs can, however, be written inside special comments.

The MATLAB programming language is an imperative language where ma-
trices are immutable objects presumably implemented via copy-on-write. Every
function or matrix update can thus be considered to return a new matrix. A
MATLAB program consists of a set of function declarations. The grammar of
our programs is given in (1).

FuncDecl ::= function Id = f(Id∗)
TypeParams? Types Spec∗ Stmt?

end

TypeParams ::= typeparameters (Id ($t t)
?)∗

Types ::= types (Id : t)∗

Spec ::= requires Exp | ensures Exp

(1)

In this grammar, x∗ and x? denote zero or more and zero or one occurrences
of an element x, respectively. We thus extend MATLAB’s function declarations
with type annotations for the input and output parameters, as well as pre- and
postcondition annotations.

The expression language (2) essentially constitutes a subset of the MATLAB
expression language. Additionally, it also includes constructs, such as universal
and existential quantifiers and conditional expressions, which are not part of the
MATLAB language, but often are convenient when writing specifications. The
same expression language is used both in statements and in contracts.

Exp ::=
Exp1 ⊕ Exp2 | Binary expression
(∀ | ∃) (x : t)∗ · Exp | Quantified expression
¬Exp | −Exp | Unary operators
Exp1 ? Exp2 : Exp3 | Conditional expression
Exp1 (Exp2 | :) (Exp3 | :)? | Matrix accessor
Id Exp1 , . . . ,Expn | Function call
[Exp11 , . . . ,Exp1n ; . . . ;Expm1 , . . . ,Expmn] | Matrix literal
CExp1 :CExp2 | CExp1 :CExp2 :CExp3 | Range
Id | Identifier
Num | true | false Number/boolean literal

(2)

In (2) we have ⊕ ∈ {+, −, ∗, /, .∗, ./, ∧, ∨, =⇒, ⇐⇒, =, �=, <, >, ≥, ≤}.
As in MATLAB, we do not separate expressions from predicates, as this is done
later in the type checking. Note also that matrix accessors and function calls
partially share the same syntax. This is also consistent with MATLAB, and we
solve this by requiring that variables do not have the same name as any built-
in function or function declared by the user. See [16] for a discussion on the
complete mechanism used in MATLAB.

In MATLAB there are also expressions with data-dependent shape, e.g. the
Range expression in (2). The shape of a range expression a:b, where a and b are

Contract-Based Verification of MATLAB 401

integers, is 〈1, b − a + 1〉. For these cases we define a separate language, CExp
(3), for constant expressions. This language is a subset of (2), which can be
evaluated by the type checker and hence used in expressions with data-dependent
shape. Thus, the type checker does not need to support the complete expression
language in order to support static shape inference of such expressions.

CExp ::= Id | Num | int32 (CExp) | int16 (CExp) | int8 (CExp) |
uint32 (CExp) | uint16 (CExp) | uint8 (CExp) | length(Exp) (3)

Since the expressions in CExp are only used for shape information, only numeric
scalars are included in the language. Support for a limited set of functions is
also included. The supported functions are typecast functions for supported in-
teger types and the length function. The typecast functions are used to declare
constants of different types. The length function is convenient to support in the
type checker since it enables obtaning new matrices using size information from
another matrix, for instance using zeros(length(x), 1) to create a column vector
of zeros with the same length as x. Note that the argument to length can be
any expression in Exp, since only the shape of the argument is used and not its
value. While CExp is currently very limited, it is straightforward to extend it to
support more complex data-dependent expressions.

In the MATLAB language, it is possible to assign variables (complete matri-
ces) or elements in matrices. To reflect this, we define a separate language for
the left-hand side of assignments (4). The special colon operator here denotes
assignment to an entire row or column. The complete grammar of the statement
language, in which function implementations are written, is given in (5).

Asgn ::= Id (Exp1 | :) (Exp2 | :)? | Id (4)

Stmt ::= Asgn := Exp | Assigment
constant Id := CExp | Constant declaration
if Exp Stmt1 else Stmt2 end | If-statement
Stmt1 ;Stmt2 | Sequential composition
while Exp Inv∗ Stmt end | While loop

(5)

The language allows declaration of constants, which are not needed in pure
MATLAB. Constants are assigned using the constant expression language CExp
defined in (3), and they can thus be evaluated by the type checker and used as
shape information in the type inference. To maintain MATLAB compatibility,
the constant keyword of constant declarations is written in a comment on the
line above the assignment. EML does not have explicit constants, but for clarity
we have opted to use explicit declaration of constants here. Although the subset
of MATLAB considered here is fairly small, it can be easily extended to handle
more features.

4 Type System

Our aim is to have statically determined types and shapes for functions written
in the language described in the previous section. This information can be used
in the verification and thus the verifier does not need to quantify over types

402 J. Wiik and P. Boström

and shapes, which significantly simplifies the verification task. Since the lan-
guage is implicitly typed, we determine types and shapes of local variables and
expressions through inference, to avoid extra annotations.

The approach to type and shape inference we use is inspired by the work
of Almási, Padua and de Rose in the context of the MaJIC [1] and FALCON
[16] MATLAB compilers. We have, however, made several modifications to their
type system, to enable efficient encoding of the programs in a verifier. The type
inference we use is also more strict compared to MATLAB’s type inference, in
order to aid verification. For instance, we do not allow implicit typecasts as is
commonly done in MATLAB. In MATLAB it is, for instance, legal to add an
integer with a double, since the double will automatically be cast to an integer.
Since we do not allow typecasts like these, we also require that matrix indices are
integers. We also have a stricter separation between booleans and numeric types,
in order to obtain efficient verification conditions. MATLAB does, for instance,
accept numeric types as operands to logical operators and also allows booleans
to be used in arithmetic expressions, which we do not allow.

In our language all data is of matrix type. Since we only consider matrices
with up to two dimensions, a matrix type consists of an intrinsic type t and
a shape 〈n,m〉, where n and m denotes the number of rows and columns, re-
spectively. The intrinsic type is an element in a finite lattice Lt, formed by
the elements I = {boolean, int8, int16, int32,uint8,uint16,uint32,double,
numtype, toptype} and the comparison operator:

Lt = {I,$t}, where:
boolean $t toptype,
int8 $t int16 $t int32 $t numtype,
uint8 $t uint16 $t uint32 $t numtype,
double $t numtype,
numtype $t toptype

(6)

As in MATLAB, we have several different sizes of integers. A matrix shape
consists of two dimensions n1, n2 ∈ D, where D is the set of dimensions: D =
Z+ ∪ {∞}. Matrix shapes can then be defined as a lattice Ls, which consists
of pairs of dimensions, one for the number of rows and one for the number of
columns:

Ls = {D × D,$s} where:
s1 $s s2 =̂ (s1 = s2 ∨ s2 = 〈∗,∞〉 ∨ s2 = 〈∞, ∗〉) (7)

where ∗ denotes any dimension d ∈ D. Here ∞ denotes an invalid dimension,
which indicates an inference error. Programs can only be verified if every node
in the abstract syntax tree has been assigned a valid (finite) shape.

In [1,16] an unknown shape only means fallback to dynamic memory alloca-
tion. Also EML has an option for generation of code with variable-size data. Here
we require that exact types and shapes are determined statically. Variable-size
data should anyway be avoided in safety-critical embedded code.

The type system for our language is given by the Cartesian product of the intrin-
sic type lattice and the shape lattice: T = Lt ×Ls. We here use matrix(t, 〈n,m〉)

Contract-Based Verification of MATLAB 403

to denote a type (t, 〈n,m〉) ∈ T in the language. We can then define the language
of types as follows:

t ::= x | boolean | int8 | . . .
d ::= x | n
δ ::= 〈d1, d2〉 | maxs(〈d1, d2〉, 〈d3, d4〉) | muls(〈d1, d2〉, 〈d3, d4〉) | cols(〈d1, d2〉)
τ ::= matrix(t, δ) | d
α ::= τ | α1 × α2 | α→ τ
θ ::= α | ∀ x $t t · θ | Π x · θ | unit

(8)

Here x denotes a type parameter identifier and x denotes a list of such identi-
fiers. We use n to denote a positive integer. As explained in section 2, we have
universally quantified polymorphic functions, which can be quantified over both
intrinsic type and shape. We use ∀ to denote quantification over intrinsic type
and Π to denote quantification over shape.

Functions are typed based on given type signatures. As an example, consider
the type signature for an element-wise function such as addition:

∀ t $t numtype ·Π m1,m2, n1, n2 ·
matrix(t, 〈m1, m2〉)×matrix(t, 〈n1, n2〉)→ matrix(t,maxs(〈m1,m2〉, 〈n1, n2〉))

The quantification over intrinsic type is bounded, denoted by t �t u, meaning
that t is a subtype of u. Bounds for quantification over shape is currently not
supported, but we have not come across any built-in MATLAB function of in-
terest for embedded applications, where such a declaration would be useful. The
kind of polymorphism supported is similar to Let-polymorphism found in ML
and related languages, i.e. type parameters cannot be instantiated with poly-
morphic types. A consequence is that all valid types can be written in a form in
which quantifiers only appear in the outermost position of types [15].

The shape function maxs used in the type signature above is defined in the
following way:

maxs(〈m1,m2〉, 〈n1, n2〉) =

⎧⎪⎪⎨
⎪⎪⎩

〈m1,m2〉 if m1 = n1 and m2 = n2

〈m1,m2〉 if n1 = n2 = 1
〈n1, n2〉 if m1 = m2 = 1
〈∞,∞〉 otherwise

(9)

The output shape for all binary element-wise functions are defined in the same
way. Not all MATLAB functions are, however, element-wise. The type signature
for matrix multiplication, for instance, is the following:

∀ t $t numtype ·Π m1,m2, n1, n2 ·
matrix(t, 〈m1,m2〉)×matrix(t, 〈n1, n2〉)→ matrix(t,muls(〈m1,m2〉, 〈n1, n2〉))

where the shape function muls is defined in the following way:

muls(〈m1,m2〉, 〈n1, n2〉) =

⎧⎪⎪⎨
⎪⎪⎩

〈m1, n2〉 if m2 = n1

〈m1,m2〉 if n1 = n2 = 1
〈n1, n2〉 if m1 = m2 = 1
〈∞,∞〉 otherwise

(10)

404 J. Wiik and P. Boström

f : ∀ x $t y ·Π s · τi → τo dom(σt) = {x} dom(σs) = {s}
V, C � E : τi[σt, σs] forall (E, τi) ∈ (E, τi)

V, C � f(E) : τo[σt, σs]
(fun-call)

V, C � E : boolean Æ ∈ {∀,∃}
V, C � Æ x : τ · E : boolean

(quant-exp)

V, C � E1 : t, . . . Em : t

V, C � [E1, . . . , Em] : matrix(t, 〈1, m〉) (mat-cons-row)

V, C � E1 : matrix(t, 〈1,m〉), . . . En : matrix(t, 〈1,m〉)
V, C � [E1; . . . ;En] : matrix(t, 〈n,m〉) (mat-cons-col)

V, C � C : t t $t int32 C > 0

V, C � #C ∈ D (shp-1)
V, C � C : t t $t uint32 C > 0

V, C � #C ∈ D (shp-2)

Fig. 2. Typing rules for expressions

Additionally, there are collapsing functions, such as all, any and sum, which
collapses matrices. Consider, for instance, the type signature of the sum function:

∀ t $t numtype ·Π n1, n2 ·matrix(t, 〈n1, n2〉)→ matrix(t, cols(〈n1, n2〉))

where cols is given by:

cols(〈n1, n2〉) =
{
〈1, n2〉 if n1 > 1 and n2 > 1
〈1, 1〉 if n1 = 1 or n2 = 1

(11)

Note that for MATLAB compatibility, numeric constants can also be type pa-
rameterised. E.g. 0 can be a scalar of any type, including boolean, 0 : ∀ t ·
matrix(t, 〈1, 1〉).

There are also built-in functions with data-dependent output shape. Exam-
ples of such functions are zeros(a, b) and ones(a, b), which return a matrix of
shape 〈a, b〉 in which each element is 0 and 1, respectively. These functions are
typically used to initialise matrices in EML and supporting them is thus essen-
tial. However, the shape of the output of these functions cannot, in general, be
determined at compile-time. We have opted to solve this issue by introducing
constants in our language and restricting these functions to only accept constant
expressions as input. Constant expressions can be evaluated during type infer-
ence and coerced to shape information, which can be used in the inference. As
an example, consider the type signature for the functions zeros and ones:

#a×#b→ matrix(double, 〈#a,#b〉)

where #a denotes coercion of the constant value a to shape information. The
coercion is only defined for constant integer expressions, defined in (3). The
arguments a and b are thus also integer scalars.

Inference rules for typing expressions are listed in Fig. 2. Here V maps variables
to types and C maps constants to types. Typing of statements is straightforward
and only presented in our technical report [17]. The typing rules describes typing
of both intrinsic type and shape. As operators and function calls are treated

Contract-Based Verification of MATLAB 405

uniformly, there is only one typing rule, (fun-call), for function applications.
Even matrix accesses are treated as function calls. The function calls are typed
based on the type signature of the function: Let σt be a mapping from type
parameters to intrinsic types and let σs be a mapping from type parameters
to shapes. The notation τ [σt, σs] then denotes the type τ instantiated with the
mappings σt and σs. Thus, if the types of all inputs are instantiations of the
inputs τi of the function type signature under the type parameter mappings
σt and σs, the output type of the function call will be τo instantiated with σt

and σs. Other noteworthy rules are (shp-1) and (shp-2), which are used for
coercion of constant expressions to shape information. The coerced expression
must be an integer constant.

The type inference for expressions is done using a traditional unification algo-
rithm [13] where the constraints are derived directly from the typing rules, while
statements are handled using forward propagation of the type information. This
is similar to the approach in [1,16], where a combination of forward and back-
ward propagation of shape and type information is used. Intrinsic type and shape
are orthogonal aspects, meaning that inference can be done independently for
intrinsic type and shape. Inference of intrinsic type is standard. For shape in-
ference we use the shape functions (9), (10) and (11) to build constraints. The
inference is successful if all nodes in the AST are assigned an intrinsic type and
a valid (positive and finite) shape.

5 Verification

Our verification approach is based on standard modular assume-guarantee rea-
soning. The preconditions of the function are turned into assumptions and the
postconditions into assertions when verifying function bodies, while the precon-
ditions are asserted and postconditions are assumed in function calls. In the type
inference, we have inferred exact intrinsic type and shape (i.e. instantiation of
type parameters) for each function call. All invoked user-implemented functions
are verified independently for each type instantiation occurring in the program.
Thus, we do not verify that a function satisfies its contract for every valid in-
stantiation of type parameters, but only for the instantiations actually used.
Hence, the inference of types and shapes is non-modular, while function bodies
are verified modularly based on the inferred type and shape information. This
eliminates the need to quantify over intrinsic types and shapes in the verification
of functions.

The statement language, given in (5), has standard weakest precondition se-
mantics. Loops are verified based on the classical Hoare logic in the same way as
e.g. Spec# [3] and Boogie [2]. In addition to verifying conformance to contracts,
the verifier checks the absence of runtime errors in the function implementations.
The runtime errors checked for are bounds on matrix accesses, integer overflow
and preconditions of functions, e.g., absence of division by zero. The verifier only
checks partial correctness, as termination is not checked for neither iteration nor
recursion. Termination checks could be added analogously to how it has been

406 J. Wiik and P. Boström

done in other verifiers [8]. However, we have chosen to focus on verification of
properties regarding matrix computations.

To verify MATLAB code that involves matrices and vectors, matrix functions
need to be efficiently encoded in a verifier. We have used the SMT solver Z3 [9]
by Microsoft Research as a verification backend. Z3 includes a theory for arrays
[14], which we use to represent our matrices. We encode matrices as arrays of
arrays. Each subarray is thus a matrix row. In the representation of a row vector
there is only one subarray. For column vectors all subarrays are of size 1. Scalars,
i.e. matrices of shape 〈1, 1〉, are not encoded as arrays.

In the first approach, which we call axiomatisation, we view the functions as
a library and provide pre- and postconditions, as in traditional program veri-
fication. It is thus possible to axiomatise the functions directly. In the second
approach we use the information about matrix shapes to expand the matrix
functions. The approaches are evaluated on a number of examples in section 6.

5.1 Axiomatisation

In the axiomatisation approach, matrix functions are axiomatised to have their
desired meanings. We list axioms for a number of common functions. In these
formulas we have the matrices a : matrix(t, 〈n1, n2〉) and b : matrix(t, 〈n1, n2〉).
Note also that all the axioms are actually quantified over the function inputs,
which we have left out here for brevity. The complete axiom for a function f(a, b)
is thus ∀ a : τ1, b : τ2 ·A, where A is an axiom in the format presented below.

f(a, b) : ∀ i1 : int32, i2 : int32 · 1 ≤ i1 ≤ n1 ∧ 1 ≤ i2 ≤ n2

=⇒ f(a, b)(i1, i2) = fs(a(i1, i2), b(i1, i2))
a ∗ b : ∀ i1 : int32, i2 : int32 · 1 ≤ i1 ≤ n1 ∧ 1 ≤ i2 ≤ n2

=⇒ (a ∗ b)(i1, i2) =
∑k=n2

k=1 (a(i1, :) .∗ b(:, i2))(k)
length(a) : length(a) = max(n1, n2)

(12)

Here fs denotes the corresponding scalar function for an element-wise function f .
The meaning of a function can depend on the input types and shapes. Element-
wise functions such as f , for instance, have two additional cases for when either
of the inputs is scalar. Since types and shapes are determined statically, the
correct axioms can be chosen. The axioms are separated by renaming functions
based on input types and shapes. We also handle polymorphism by generating
separate axioms for each type instantiation occurring in the program. Note also
that the operator .∗ used in (12) denotes element-wise multiplication.

In (13) we show the axiomatisations of the collapsing functions sum and all.
Here we have a matrix a:matrix(t, 〈n1, n2〉) and a row vector b:matrix(t, 〈1, n2〉),
where the transpose bT is the corresponding column vector:

sum(a) : ∀ i2 : int32 · 1 ≤ i2 ≤ n2 =⇒ sum(a)(1, i2) =
∑k=n1

k=1 a(k, i2)

sum(b) : sum(b) =
∑k=n2

k=1 b(1, k)

sum(bT) : sum(bT) = sum(b)
all(a) : ∀ i2 : int32 · 1 ≤ i2 ≤ n2

=⇒ all(a)(1, i2) = ∀ k : int32 · 1 ≤ k ≤ n1 · a(k, i2)
all(b) : all(b) = ∀ k : int32 · 1 ≤ k ≤ n2 =⇒ b(1, k)

(13)

Contract-Based Verification of MATLAB 407

Collapsing functions such as Σ here, must be defined recursively in SMT solvers.
The functions all and any are, however, exceptions, as these functions can be
directly encoded using universal and existential quantifiers.

The axioms for element-wise functions, such as f in (12), can be directly and
efficiently encoded in SMT solvers. Efficient encoding of collapsing functions
and other recursively defined functions, on the other hand, is hard [12]. The
reason is that proofs of properties regarding these functions are typically done
by induction, which typically cannot be done automatically by an SMT solver.
The needed specifications for induction proofs for these functions would thus
have to be provided manually, which is not feasible in practice.

5.2 Expansion

We now present another approach to encoding the verification conditions. Here
we utilise the inferred shapes of matrices to expand the matrix functions. We
will see that this approach is very efficient for matrices of relatively small size.

We have the matrices a : matrix(t, 〈n1, n2〉), b : matrix(t, 〈n1, n2〉) and c :
matrix(t, 〈1, n2〉). Then �a� denotes the syntactically expanded matrix:

�a� =

⎡
⎢⎣

�a(1, 1)� · · · �a(1, n2)�
...

. . .
...

�a(n1, 1)� · · · �a(n1, n2)�

⎤
⎥⎦ (14)

where matrix accesses are also expanded, �a(i1, i2)� = �a�(i1, i2). If a is an ex-
panded matrix and the indices are constant, the correct element can be directly
chosen. However, we still need to use arrays in the SMT encoding as indices in
matrix accesses are not always constant. If a is an identifier then the expan-
sion �a� does nothing. This is actually important in order to handle many cases
efficiently. This means that we can use quantified expressions to write down ex-
pressions that are effectively scalar and hence not expanded. This is particularly
useful for verification of loops, such as in Fig. 1, where no matrix functions other
than matrix accessors are used in the invariants.

The expanded definition of an element-wise function f applied to the expanded
matrices �a� and �b� is given as follows:

�f(a, b)� =

⎡
⎢⎣

fs(�a(1, 1)�, �b(1, 1)�) · · · fs(�a(1, n2)�, �b(1, n2)�)
...

. . .
...

fs(�a(n1, 1)�, �b(n1, 1)�) · · · fs(�a(n1, n2)�, �b(n1, n2)�)

⎤
⎥⎦ (15)

Again, the function fs here denotes the corresponding scalar version of the func-
tion f . The expansions of all other element-wise functions follow the same pat-
tern. Collapsing functions, such as sum, all and any are also expanded. The
expansions for sum are given in (16).

�sum(c)� = �c(1)� + . . .+ �c(n1)� �sum(cT)� = �c(1)� + . . .+ �c(n1)�

�sum(a)� =
[
�a(1, 1)� + . . .+ �a(n1, 1)� . . . �a(1, n2)� + . . .+ �a(n1, n2)�

] (16)

408 J. Wiik and P. Boström

Table 1. Verification benchmarks for different sizes of matrices

Addition
〈n,n〉 50 100 200 400
Ax (s) 1.1 1.1 1.1 1.1
Exp (s) 3.7 10.2 35.3 151.0

Multiplication
〈n,n〉 3 4 10 20
Ax (s) 1.1 n/a n/a n/a
Exp (s) 1.2 1.3 6.2 81.0

max_f

n 1000 2000 3000
Ax (s) n/a n/a n/a
Exp (s) 4.5 16.5 61.3

fibonacci

n 250 500 1000
Ax (s) 1.3 1.3 1.3
Exp (s) 4.5 13.7 50.5

gauss

n 2 3 4
Ax (s) n/a n/a n/a
Exp (s) 3.3 10.3 n/a

There is also a special case for expansion of matrix multiplication. Here we have
the matrices a : matrix(t, 〈n1, n2〉) and b : matrix(t, 〈n2, n3〉):

�a ∗ b� =

⎡
⎢⎣

�sum(a(1, :) .∗ b(:, 1))� · · · �sum(a(1, :) .∗ b(:, n3))�
...

. . .
...

�sum(a(n1, :) .∗ b(:, 1))� · · · �sum(a(n1, :) .∗ b(:, n3))�

⎤
⎥⎦ (17)

All other functions are encoded in a similar way as the functions presented above.

6 Benchmarks

We have evaluated the two approaches to encoding verification conditions, de-
scribed in the previous section, on a number of small examples. We have used
Z3 version 4.3.0 on a modern laptop in the evaluation.

We start with proving associativity of matrix addition and associativity of
matrix multiplication using our encoding in the SMT solver. The execution times
for different sizes of matrices are listed in Table 1. For the element-wise matrix
addition, the axiom encoding is very efficient and the execution time is invariant
with respect to the size of the matrix. For the matrix multiplication, whose
definition involves recursive functions, axiomatisation is not a feasible approach,
since inductive proofs regarding the properties of the function would be needed.
The SMT solver is only able to unfold the definition for matrices up to the
size 〈3, 3〉. Expansion, on the other hand, is an efficient approach as long as the
matrices are kept fairly small.

We would like to point out that the most interesting part of these benchmarks
is the growth rate of the execution times rather than the actual execution time.
This is because the current implementation of the expansion in the tool generates
a new AST from the unexpanded AST. Copying of subtrees in this step currently
amounts to the vast majority of the execution time. This step could be optimised
by doing the expansion and SMT encoding in one step.

Verification benchmarks for three example programs are given in Table 1. The
programs are the max_f function listed in Fig. 1, a program returning a vector
containing the n first Fibonacci numbers and an implementation of the Gaussian
elimination method for solving systems of linear equations. Source code for these

Contract-Based Verification of MATLAB 409

programs, along with more examples, are available in our technical report [17].
The benchmarks list execution times for verification of the programs with differ-
ent input sizes. Again, expansion works well for matrices of relatively small size.
The axiomatisation approach is only efficient for the fibonacci example. The
reason is that that all contract conditions are expressed directly using universal
and existential quantifiers and no recursively defined functions are used. In the
max_f case, the postcondition on line 4, which uses the all collapsing function,
is proved by the verifier. The verifier is, however, not able to prove the post-
condition on line 5, which uses the any function. The problem seems to be the
combination of universal and existential quantifiers used in the axiom for the any
function: ∀ a : matrix(boolean, 〈n, 1〉) · (any(a) = ∃ j : int32 · 1 ≤ j ≤ n∧ a(j)).
It seems that the SMT solver is not able to instantiate these quantifiers suc-
cessfully. In general, we noted that the SMT solver seems to quickly run into
problems with the axioms for the all and any functions. For the Gaussian elimi-
nation example, Z3 is only successful on inputs up to size 3, even when expansion
is used, possibly due to complex expressions in the invariants with many array
updates in the encoding, caused by a combination of matrix multiplication and
row update.

The results indicate that expansion can be a robust and efficient approach,
while the performance of axiomatisation heavily depends on how well the verifier
does quantifier instantiation in a given situation. We have here only evaluated
the axiomatisation and expansion approaches separately. The results, however,
suggests that a hybrid approach, where only functions that are problematic to
axiomatise effectively are expanded, could be efficient. We have here used Z3
with the default settings. It might be possible to tune it for better performance
for these kind of problems.

7 Related Work

Contract-based static verification has been implemented for many different pro-
gramming languages e.g., Java [7], C# [3] and .NET [10]. (Multi-dimensional)
arrays are supported in all these verifiers. It would be possible to implement
the matrix functions as a library in any of these frameworks. However, there are
three challenges: 1) The languages are statically and explicitly typed and ma-
trix shapes are not part of the type systems. 2) Only axiomatisation is directly
supported. 3) Arrays are there mutable objects.

In [12] they discuss axiomatisations of comprehension functions, which are
similar to our recursive functions, suitable for use in SMT solvers. Their focus
is on verification of loops that computes results involving these comprehensions,
not programs that use functions specified by them. This means that the recursive
definitions typically have to be unfolded only a few times. Their work focuses
on bounding the unfolding.

Simulink Design Verifier5 (SLDV) can handle a large subset of the built-in
functions in EML. How matrix calculations are handled cannot be found in the
5 http://www.mathworks.com/products/sldesignverifier/

http://www.mathworks.com/products/sldesignverifier/

410 J. Wiik and P. Boström

documentation. The performance is not always good, e.g. proving associativity
of matrix multiplication fails (in MATLAB 2014a, SLDV 2.6), since non-linear
arithmetic is not supported for rational numbers. Loops are unfolded, which
means static bounds on loops are needed.

Type and shape inference for MATLAB programs have been studied before
in the context of program optimisation [16,1,11], with the goal of pre-allocating
matrices and avoid bounds checks at runtime. There, an unknown type or shape
means fallback to dynamic allocation. Here we need exact shapes. We require
that matrices do not change their shape, which is handled in their frameworks.
This is not a necessary restriction in our case either. However, we can only
handle matrix shapes that depend on constants, i.e., data-dependent shapes in
loops and recursion is not allowed. In [16,1] they use a combination of forward
propagation and backward propagation of type information. This is very simi-
lar to our constraint-based type inference. In [11] they use algebraic properties
regarding shapes of the matrix functions in MATLAB to perform shape anal-
ysis. They allow matrices with arbitrary many dimensions. They can also infer
other relationships between data than concrete values obtained by forward and
backward propagation in [16,1]. MATLAB also performs static type and shape
analysis for data in EML. It appears that forward propagation of matrix shapes
is performed. Use of variable-sized data can be enabled through an option. As
function parameters can be declared to be constants, we can use these parameters
in matrix shapes, which cannot be done for fixed-sized data in EML. However,
currently they can use more complex expressions in matrix creation expressions.
These limitations can be remedied in our tool also, by increasing the subset of
the language handled by the type checker.

Languages that are designed to be aware of the shape of the data exist. The
language FiSH [6] allows type annotations involving matrix and vector shapes.
Also an inference algorithm is discussed. However, they do not allow converting
values to matrix shapes, as we do e.g. for the function zeros. A dependent
type system in ML [18] has also been studied. One goal with this type system
is analysis of array bounds. The index language used for array shapes can be
arbitrarily complex only limited by the choice of constraint solver. This approach
is potentially more general than ours, but it is aimed at a functional language.

8 Conclusions

In this paper we have described an approach to automatically verify that pro-
grams written in Embedded MATLAB satisfy specifications given as contracts.
The most important goal is efficient handling of the built-in functions for matrix
manipulation. This is achieved by using inference of shapes and types of matrices
to make the verification process efficient. We evaluate two approaches: direct ax-
iomatisation of matrix functions and expansion of all matrix functions. We found
expansion to be efficient for relatively small matrices commonly found in embed-
ded control and signal processing applications. This allows complete automation
with relatively small annotation overhead. In the axiomatisation approach we

Contract-Based Verification of MATLAB 411

need to either manually provide the needed specifications for recursively defined
functions or have the verifier unfold the function definition, neither of which
are desirable. We demonstrated the usefulness of our approach on a number of
examples.

There are many directions for future work. Matrix accesses are now limited to
one element or a complete row or column. EML allows more flexibility and allows
choosing any sub-matrix. This should not present any fundamental problem for
our approach. Complete support for the control flow constructs in EML should
also be provided. Currently, only if-statements and while-loops are supported.
The verifier only checks partial correctness. The plan is to implement checks
for termination of both iteration and recursion. Techniques based on abstract
interpretation, e.g. [10], could perhaps also be used to infer the needed properties
of recursively defined functions, which would allow for more automation when
axiomatisation of functions are used. However, we believe that our approach is
a good start towards fully automated efficient verification of EML programs.

References

1. Almási, G., Padua, D.: MaJIC: Compiling MATLAB for speed and responsiveness.
SIGPLAN Not. 37(5) (2002)

2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R. M.: Boogie: A
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 364–387. Springer, Heidelberg (2006)

3. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: The Spec# experience. Commun. ACM 54(6) (2011)

4. Boström, P.: Contract-based verification of simulink models. In: Qin, S., Qiu, Z.
(eds.) ICFEM 2011. LNCS, vol. 6991, pp. 291–306. Springer, Heidelberg (2011)

5. Boström, P., Morel, L., Waldén, M.: Stepwise development of simulink models using
the refinement calculus framework. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.)
ICTAC 2007. LNCS, vol. 4711, pp. 79–93. Springer, Heidelberg (2007)

6. Jay, C.B., Steckler, P.A.: The functional imperative: Shape! In: Hankin, C. (ed.)
ESOP 1998. LNCS, vol. 1381, p. 139. Springer, Heidelberg (1998)

7. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced spec-
ification and verification with JML and ESC/Java2. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363.
Springer, Heidelberg (2006)

8. Cook, B., Podelski, A., Rybalchenko, A.: Proving program termination. Commun.
ACM 54 (2011)

9. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

10. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation.
In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 10–30.
Springer, Heidelberg (2011)

11. Joisha, P.G., Banerjee, P.: An algebraic array shape inference system for MATLAB.
ACM TOPLAS 28(5) (2006)

412 J. Wiik and P. Boström

12. Leino, K.R.M., Monahan, R.: Reasoning about comprehensions with first-order
SMT-solvers. In: SAC 2009. ACM (2009)

13. Milner, R.: A theory of type polymorphism in programming. J. Comput. System
Sci. 17 (1978)

14. de Moura, L., Bjorner, N.: Generalized, efficient array decision procedures. In:
FMCAD 2009. IEEE (2009)

15. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
16. de Rose, L., Padua, D.: Techniques for the translation of MATLAB programs into

Fortran 90. ACM TOPLAS 21(2) (1999)
17. Wiik, J., Boström, P.: Contract-based verification of MATLAB and Simulink

matrix-manipulating code. Tech. Rep. 1107, TUCS (2014)
18. Xi, H.: Dependent ML: An approach to practical programming with dependent

types. J. Funct. Programming 17(2) (2007)

GPU Accelerated Counterexample Generation in LTL
Model Checking

Zhimin Wu1, Yang Liu1, Yun Liang2, and Jun Sun3

1 Nanyang Technological University, Singapore
2 Peking University, China

3 Singapore University of Technology and Design, Singapore

Abstract. Strongly Connected Component (SCC) based searching is one of the
most popular LTL model checking algorithms. When the SCCs are huge, the
counterexample generation process can be time-consuming, especially when
dealing with fairness assumptions. In this work, we propose a GPU accelerated
counterexample generation algorithm, which improves the performance by par-
allelizing the Breadth First Search (BFS) used in the counterexample generation.
BFS work is irregular, which means it is hard to allocate resources and may suf-
fer from imbalanced load. We make use of the features of latest CUDA Com-
pute Architecture-NVIDIA Kepler GK110 to achieve the dynamic parallelism
and memory hierarchy so as to handle the irregular searching pattern in BFS. We
build dynamic queue management, task scheduler and path recording such that
the counterexample generation process can be completely finished by GPU with-
out involving CPU. We have implemented the proposed approach in PAT model
checker. Our experiments show that our approach is effective and scalable.

1 Introduction

The LTL model checking problem is known as the emptiness checking of the product
between M and A¬ϕ, where M represents the model and A¬ϕ represents the Büchi
automaton that expresses the negation of an LTL property ϕ. The emptiness checking
is to detect if there exists an execution path in the product that can be accepted by
the Büchi automaton. There are two main streams of LTL model checking approaches:
nested Depth First Search (NDFS) and Strongly Connected Component (SCC) search,
where the latter one is more suitable to handle fairness assumptions.

SCC based verification algorithms aim to find an SCC with at least one accepting
state. If such SCC exists, it means that there is a run that can be accepted by the A¬ϕ,
i.e., the violation of the LTL property ϕ. To generate a counterexample in such case
is to produce an infinite path π = ρ1ρ2ρ3, which consists of three parts: a path ρ1
from the initial state to a state s in the SCC, a path ρ2 from the s to an accepting
state a in the SCC and a loop ρ3 that starts and ends at a. To generate such a path,
currently, some algorithms [12,6] work on DFS-related solution with high complexity.
Some work on BFS-related solution, such as in [5], which focus on building the minimal
size counterexample to deal with the memory constraint.

In this paper, we propose an approach that has the potential to accelerate the coun-
terexample generation process using GPU. The problem here is equivalent to building a

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 413–429, 2014.
c© Springer International Publishing Switzerland 2014

414 Z. Wu et al.

solution to improve the performance of BFS with path recording. Compared with multi-
core CPU architecture, GPU typically has a lot more cores and high memory bandwidth,
which potentially provides high parallelism. Because the number of nodes in each layer
of BFS is changing, it makes the resource allocation and the load balancing a challeng-
ing task in in GPU-based BFS searching. In the CUDA programming model, CPU will
launch the kernel in GPU with static grid and block structures, which result in the lack
or waste of compute resources. In previous research such as CUDA IIIT-BFS [7], it is
necessary to launch the kernel each time when the BFS starts a new layer. It is costly and
even slower than CPU-BFS in some cases. To deal with this problem, CUDA UIUC-
BFS [9] has been proposed based on a hierarchical memory management solution. It
builds a three-level queue for BFS to avoid consequent kernel launching, which offers
certain speedup. But it is still a static method that cannot adjust according to the task
size. Furthermore, there is no load balance approach in it.

In this work, we propose an almost CPU-free BFS based path generation process
by leveraging on the new dynamic parallelism feature of CUDA. The key problem
addressed is the number of tasks during BFS based path generation is dynamically
changing. In this paper we propose four contributions. (1) Compared to related works
of parallelizing BFS for model checking problems, our approach is totally CPU-Free.
Existing related works allocate GPU resources in a static way. The resources can be re-
allocated only by CPU when the execution of a kernel ends and launches a new kernel.
For irregular graphs, it is costly and not flexible. Our approach presents a runtime re-
source adjustment approach for BFS and can be tailored for model checking problems.
(2) We propose an approach to build dynamic parent-child relationship and a dynamic
hierarchical task scheduler for dynamic load balancing. (3) We develop a three-level
queue management to fit the dynamic parallelism and dynamic BFS layer expanding.
Based on it, we propose a dynamic path recording approach, which helps duplicate
elimination in BFS at the same time. Hierarchical memory structure of GPU is fully
utilized for data accessing. (4) We implement our approach in PAT model checker and
evaluate them to show the effectiveness of our approach.

Related Works. In the area of model checking, as the verification problem can be
transformed to a graph search problem, there have been many works on accelerating
model checking algorithms with CUDA. [3] focuses on the duplicate detection in exter-
nal memory model checking. It utilizes GPU to accelerate sorting process in duplicate
detection in BFS and builds a delayed duplicated detection on GPU. In [1], the authors
propose a design of maximal accepting predecessors algorithm for accelerating LTL
model checking in GPU. [4] accelerates the state space exploration for explicit-state
model checking by utilizing GPU to do the breadth-first layered construction. [2] shows
how the LTL model checking algorithms can be redesigned to fit on many-core GPU
platforms so as to accelerate LTL model checking. [13] focuses on the on-the-fly state
space exploration in GPU and proposes several options to implement this. All these
research has proved CUDA compute architecture can be well utilized in solving model
checking problems. In this paper, different from previous research in which most are
based on a static way to allocate computing resource in advance and involve CPU fre-
quently, we build an approach for counterexample generation which can completely put

GPU Accelerated Counterexample Generation in LTL Model Checking 415

Algorithm 1. Counterexample Generation Algorithm
Input: init, SCC , →
Output: πce

1 πce ← Init2SCCBFS(init, SCC,→);
2 πce ← πce

� Path2AccBFS(πce, SCC,→);
3 πce ← πce

� SelfLoopBFS(πce, SCC,→);

the work to execute in GPU and dynamically fit the feature of BFS. Then the dynamic
parallelism and memory hierarchy from latest CUDA Architecture-Kepler GK110 and
its corresponding GPU device serve as the basis of our design.

2 Background

LTL Model Checking and Counterexample Generation. LTL model checking is to
verify that a model satisfies a property expressed in LTL, which has been shown to be
equivalent to checking the non-emptiness of the product between a Büchi automaton
(which is the negation of the LTL property) and a system model. A Büchi automaton
can be defined as a tuple A = (B, T , bi,F) where B represents a finite set of states;
T ⊆ B×B represents the set of transition between states; bi ∈ B represents the initial
state, and F ⊂ B is a set of accept states. An infinite input sequence can be accepted
by a Büchi Automaton if there exists an execution path that will visit an accept state
infinitely often. Let AP be a set of atomic propositions. The system model can be
represented with a Kripke StructureM = (S, I,R,L) where S is a finite set of states;
I ⊂ S is the set of initial states, R ⊆ S × S is the transition set and L is a labeling
function: L : S → 2AP . Given a Büchi automaton A and a Kripke StructureM, their
product is defined as P = (B×S,→, {bi}×I), where→⊆ (B×S)× (B×S) is the
product of T andR.

Based on the definitions above, the non-emptiness checking is to search whether
there exists an infinite run π such that π reaches a state (b, s) infinitely often and b ∈ F .
This is equivalent to detecting if a run contains a loop and (b, s) is included in the
loop. For SCC based LTL model checking, the process is to detect an SCC containing
an accepting state. When such an SCC is detected, it can be concluded that the model
violates the LTL property. Counterexample generation process then start to produce a
trace to reflect the errors in the model.

There are many counterexample generation algorithms [12,6,5], mostly using BFS
searching to find the shortest counterexamples. Therefore, a way to accelerate BFS,
combined with counterexample generation requirement, will work for these solutions.
In this paper, we choose the counterexample generation algorithm (Algorithm 1) as
the basis for our design. There are three inputs, init is an initial state in P ; SCC is a
list that contains all nodes belong to the SCC; → is the outgoing transition relation of
each node in P . Strictly speaking, this transition relation is made up of the current ex-
plored transitions during the SCC searching process. Algorithm 1 contains three steps.
(1) Init2SCCBFS is to find the path from init to any state in the SCC using BFS. (2)
Path2AccBFS is to find the path from the SCC state found with Init2SCCBFS to the
nearest accepting state. (3) SelfLoopBFS is to find a loop that starts from the accepting

416 Z. Wu et al.

...
SMX15

SMX2
SMX1

64KB Shared Memory/L1 Cache
48KB Read-Only Data Cache

Warp Scheduler

Disp Disp

CC C

CC C
CC C

DP Unit

DP Unit

DP Unit

... 16

... 16

Register File
L/S SFU

L/S SFU

L/S SFU

... 16

CC C

CC C
CC C

DP Unit

DP Unit

DP Unit

... 16

... 16

CC C

CC C
CC C

DP Unit

DP Unit

DP Unit

... 16

... 16

L/S SFU

L/S SFU

L/S SFU

... 16

Warp Scheduler

Disp Disp

Warp Scheduler

Disp Disp

Warp Scheduler

Disp Disp

Fig. 1. Kepler-CUDA Hardware Model

state. πce is the returned counterexample run, which is the concatenation of the three
path during the process. All these three steps are BFS based. In this paper, we will
deal with accelerating these three steps in GPU with CUDA and merging them into one
algorithm.

GPU and CUDA Architecture-Kepler. With its high parallel computational capability
and wide memory bandwidth, GPU can speedup large scale data processing. CUDA is a
parallel computing platform and programming model [11] designed for NVIDIA GPUs.
As shown in Fig. 1, NVIDIA Kepler GK110 is the new GPU Computing Architecture.

On the hardware level, a GPU consists of tens of streamed multiprocessors (SMX),
each of which contains a lot of streamed processors (CUDA cores, marked as C in
Fig. 1), instruction units and hierarchical memory. Streamed processor is the most basic
processing unit in GPU. The hierarchical memory design is common in CUDA architec-
ture, which contains Global Memory (GM), Constant Memory (CM), Texture Memory
(TM), Shared Memory (SM) and Local Memory (LM) (i.e., registers). The access rates
of these memories are in the descending order: GM<CM/TM<SM<LM. SM can be
used to exchange data within an SMX, and GM is used to exchange data among SMXs.
For the use of the other memories, readers can refer to [11]. The hierarchical memory
is critical for GPU programming as it determines the data access cost.

On the software level, applications developed with CUDA are launched by CPU and
running on GPU. The running application is called kernel. Each kernel runs the same
program in many independent data-parallel light weight threads [10]. In CUDA runtime
environment, threads are organized into three levels:warp, block and grid. Warp is the
most basic execution and scheduling unit in CUDA. A warp usually contains 32 threads.
A streamed processor only handles one warp at a time. A block contains several warps,
which must be executed in the same SMX. Grid is the combination of blocks. The block
size and the grid size are configured when launching the grid from CPU.

Compared with previous versions, Kepler GK110 comes with four significant up-
dates. (1) The new multiprocessor architecture. Kepler GK110 owns 15 SMX units
in general. Each SMX contains 192 CUDA cores. The number of warp schedulers in-
creases to 4, which means 4 warp threads can be started together. (2) The Hyper-Q,
which is to enable multiple parallel CPU tasks to launch work in a single GPU simul-
taneously. Hyper-Q can dramatically increase GPU utilization and reduce CPU idle

GPU Accelerated Counterexample Generation in LTL Model Checking 417

Outgoing
SCC

StartID
Init2SCCBFS SelfLoopBFS

Outgoing
ACC

SCCStartID
Reach SCC Path2AccBFS

Outgoing
ACC

ACCID
Reach An Acc

Input

Input

Input
GPU-Based

BFS

Replace

Parent
Kernel

Launch

BFS until
overload

ReturnDetect Terminate State:
END

LaunchGlobal Path
Record

Host(CPU) Counterexample
Generation

CUDA(GPU) Path Generation

Child
Kernel

Partial
Overload

Global
OverloadTask Steal

New
Child

Path
Record

Fig. 2. Overall Design

time [10]. (3) Dynamic parallelism, which is the key feature we utilize in this paper,
enables the kernel running in GPU to launch a new kernel to finish other works with-
out involving CPU. Its presentation can be referred to page 143 in [11]. The kernel
launched from CPU is called parent kernel. One thread in parent grid can launch a
Child Kernel. When the execution of the child kernel completes, it will stop and return
to its parent. With this feature, the application running on GPU can make full use of the
resource by dynamically launching new kernels. It can help developers to put the whole
application to GPU for execution, which is efficient and cost effective. (4) The updated
memory hierarchy. It introduces a 48KB cache for data known to be read-only during
the execution.

3 CUDA Accelerated Counterexample Generation

The overall design of our approach is presented in Fig. 2. Host (CPU) counterexample
generation represents the process in Algorithm 1. We build a general path generation
approach to reach the target of function Init2SCCBFS, Path2AccBFS and SelfLoopBFS
in Algorithm 1 based on different input. Our approach for handling the BFS based path
generation is presented as CUDA (GPU) Path Generation. The complete counterexam-
ple generation process in Algorithm 1 can be replaced by executing GPU-based BFS
for three times.

Our approach consists of two parts: Parent Kernel and Child Kernel. The overall
process is described as follows. CPU launches the Parent Grid to execute Parent Kernel.
Parent Kernel starts the BFS based path generation to generate one or more new layers
of tasks. When the task size exceeds the thread number in Parent Grid, it launches Child
Grid to execute Child Kernel. Child Kernel starts to do path generation and records path
data. After generating a layer, the task scheduler will check whether any warp or block
being overload. We define overload as the number of tasks exceeds the thread number in
the GPU or no more tasks can be added to the BFS queue. Tasks rescheduling will start
to do load balancing within the Child Kernel. If the whole Child Grid is overloaded, it
will return to Parent. Child Kernel stops running. Resources of Child Grid are released.
Parent Kernel reallocates tasks, launches a new Child Grid to execute Child Kernel

418 Z. Wu et al.

and distributes tasks to it. The process continues until the “goal” being reached. The
“goal” means terminating condition. The relationship between Parent Grid and Child
Grid is dynamically adjusted according to the number of tasks. In order to maximize
the parallelization, in default, each thread is asked to do the BFS and path recording
for one state in BFS queue. It means that the number of tasks in each layer of BFS will
decide the number of threads needed, so as to decide the structure of Child Grid. This
dynamic relation ends at the time the process of our approach ends.

The dynamic parallelism is used to deal with the dynamic task size so as to make the
execution flexible. Other features of CUDA programming model and Kepler GK110,
such as the hierarchy memory, are integrated into each part. Our solution utilizes the
latest GPU features to provide a novel counterexample generation solution.

3.1 Detailed Approach

We present Algorithm 2 and Algorithm 3 in this section for Parent Kernel and Child
Kernel based on the process in Fig. 2. They follow the CUDA dynamic parallelism
programming model presented in pages 141 to 159 in [11]. Note that in CUDA, there
are build-in objects blockIdx and threadIdx to record the ID of block and the ID of

Algorithm 2. CudaParentCounterexampleGeneration Algorithm
Input: init, TerminatingCondition,→

1 inblocktid = threadIdx.x; inwarptid = inblocktid%32;
2 Define: WarpQueue,WarpPathQueue in SM;
3 if inblocktid = 0 then
4 WarpQueue[0].enqueue(init); WarpPathQueue[0].enqueue((−1, init));

5 CUDA-API: synthreads();
6 while TRUE do
7 if WarpQueue[inwarptid] �= ∅ then
8 S ← WarpQueue[inwarptid].Dequeue();
9 Shared Code with MemoryOption = SM

10 if inwarptid = 0 then
11 if |WarpQueue| > WARPQUEUE SIZE then
12 Intra Warp task transfer;

13 if inblocktid = 0 then
14 if |TasksInBlock| > InitialT then
15 break;

16 else
17 Inter Warps task transfer;

18 CUDA-API: synthreads();
19 if ¬TerminatingCondition(anyState) then
20 if inblocktid = 0 then
21 ChildSizeCalculation(EXPAND LEVEL);
22 write WarpPathQueue to GM;
23 write WarpQueue to GM with Duplicate Elimination;

24 while ¬TerminatingCondition(anyState) do
25 if inblocktid = 0 then
26 Generate Tasks Distribution Offset;
27 Launch ChildKernel, Transfer tasks in GM to Child Grid;
28 CUDA-API:cudaDeviceSynchronize(): //If Child returns to Parent;

29 CUDA-API: synthreads();

GPU Accelerated Counterexample Generation in LTL Model Checking 419

thread in each block. But there is no object to represent the ID of threads in warp. It can
be calculated directly as the warp is built in sequence, means that threads with index
0 ∼ 31 will be warp 1.

To simplify the presentations of the two algorithms, we abstract the common part in
both of two algorithms in List. 1.1. It corresponds to lines 9 in Algorithm 2 and lines 8.
The details will be introduced together with the algorithms.

Algorithm 2 corresponds to the Parent Kernel executed in Parent Grid, named by Cu-
daParentCounterexampleGeneration. It focuses on the task schedule and parent-child
relation management. In Algorithm 2, the input variable init means the initial state.
TerminatingCondition is a Boolean function which decides whether the algorithm
should terminate at the current state. The condition in our approach means that the
path generation process reaches any target state in the target states set, which can be
be an SCC or an accept state list based on the input of each process in Algorithm 1.
Line 1 presents two types of thread ID mentioned above. Line 2 presents the two types
of queues used in the algorithm. WarpQueue is an array of queues that represents
the task queue for each thread. WarpPathQueue has the same structure, which is to
record the path to the target state. They are all allocated dynamically in SM. The details
structure and operation rules can be referred to Sec. 3.2 and 3.4. Lines 3 and 4 are the
first step of path generation. The initial state and initial path record are added to the
queue of the first thread in the block. Here the path record is a tuple with two compo-
nents: (Predecessor, StateID). The function shown in lines 5, 18 and 29 is CUDA
build-in API for intra-block synchronization [11]. The loop from line 6 to line 17 is
the major path generation process in Parent Kernel. The condition to break the loop is
that Parent Grid being overloaded. Line 7 means that the thread works when its queue
is not empty. In line 8, the thread will get task S from its queue, then line 9 mentions
the Shared Code, which is the abstraction of the BFS and counterexample generation
related work. The Shared Code is presented in List. 1.1.

Listing 1.1. Shared Code

1 if(TerminatingCondition(anyState)){
2 write WarpPathQueue[inwarptid] to GM;
3 broadcast to other threads through MemoryOption;
4 Iterativebacktracking → FullPath;
5 break;
6 }
7 Snew = NewLayerTaskGeneration(S);
8 if (|WarpPathQueue[inwarptid]| = WARPPATHQUEUE SIZE){
9 write WarpPathQueue to GM;

10 WarpPathQueue[inwarptid].enqueue({S, Snew});
11 }
12 WarpQueue[inwarptid].enqueue(Snew);
13 if(inwarptid = 0){
14 Transfer tasks among queues in WarpQueue;
15 }

In List. 1.1, line 1 is the target state detection. When the path generation of any
thread reaches any state in the target states set, path records stored in WarpPathQueue
in SM will be copied back to GM (using atomic operation atomicAdd) in line 2
and this information will be broadcasted through MemoryOption in line 3. For Al-
gorithm 2, MemoryOption is set to SM. Then other threads will stop running and
the thread which detects the terminating condition will deal with backtracking to

420 Z. Wu et al.

generate the full path in line 4. Successors generation in line 7 is based on S and →.
In line 12, new successors Snew will be added to the queue of corresponding thread in
WarpQueue. Lines 8 to 10 are to record path information. Path records will be stored
in WarpPathQueue in SM firstly, when the element number in the queue exceeds
the constant WARPPATHQUEUE SIZE, it will be copied back to GM (using atomic
operation atomicAdd). The record in GM can also work as the preparation for future
duplicate elimination, which will be detailed in Sec. 3.4. At the beginning, only thread
0 has tasks in its queue. So lines 13 and 14 are to involve other threads in the same warp
by transferring tasks to threads with empty queue, which is done in central mode by the
first thread in a warp.

Back to Algorithm 2, lines 10 to 12 perform load balancing within a warp. The
constant WARPQUEUE SIZE means the configured size of each queue in the array
WarpQueue. Lines 13 to 17 are the inter-warps load balancing and the checking of
Parent Grid being overload. The constant INITIAL T means the thread number in Par-
ent Grid. Lines 20 to 23 work on the calculation of Child Grid size and transfer data
from SM to GM so as to transfer data from Parent Kernel to Child Kernel. Note that
line 23 shows that a duplicate elimination approach takes action when copying back
the content in task queue from SM to GM, which utilizes the path record information
in GM. Details are also shown in Sec. 3.4. Line 26 shows that Parent Kernel needs to
calculate the task distribution offset, which records the tasks storage index in GM for
each block in Child Grid. Constant EXPAND LEVEL means the times of INITIAL T
threads for Child Grid. Finally, lines 27 and 28 are the process to launch Child Grid.
The loop from lines 24 to 28 is the loop in which Parent Kernel working as a scheduler
to reallocate Child Grid to execute Child Kernel iteratively. This loop breaks only when
the path generation detects any target state.

Algorithm 3 corresponds to the Child Kernel executed in Child Grid in Fig. 2.
Functionally, it works on the path generation and the task schedule approach is also
implemented in it. In Algorithm 3, variables or functions with the same name as in
Algorithm 2 have the same meaning. The tasks in GM and the Distributionoffset
generated in Algorithm 2 are the inputs. In line 1, globaltid represents the first thread
among all blocks. Line 2 defines two variables in GM for communication among threads
in different blocks. A loop from lines 3 to 32 is the major executing process. The break
conditions of the loop are that path generation detects any terminal states or the whole
Child Grid being overloaded. Lines 4 and 5 are for each warp to get its own tasks and
push to the queue of each thread in balance. This is based on the Distributionoffset.
Lines 6 to 8 are shared code with MemoryOption being SM+GM. The full path gen-
erated will be “returned” to Parent Kernel through GM. Lines 10 to 22 are the intra
warp and inter-warps load balancing. Lines 23 to 32 are the process to check if the
whole Child Grid being overloaded and whether inter-blocks load balancing is needed.
These three load balancing approaches make up the complete hierarchical task schedul-
ing. And they can be regarded as three levels schedule: Warp level, means task adjust-
ment among threads in a warp; Block level, means task adjustment among blocks of
Child Grid ; Grid level means returning the control to parent. Block level and Grid level
need to copy the content in task queue to GM with the duplicate elimination approach.
It decides at which level task scheduling will be taken dynamically. Lines 24 and 32

GPU Accelerated Counterexample Generation in LTL Model Checking 421

Algorithm 3. CudaChildCounterexampleGeneration Algorithm
Input: Tasks, DistributionOffset, TerminatingCondition,→

1 globaltid = blockDim.x ∗ blockIdx.x+ threadIdx.x;
2 Define WarpQueue,WarpPathQueue in SM Child return2Parent, ChildSynNeed in GM;
3 while ¬TerminatingCondition(anyState) or Child return2Parent do
4 if inwarptid = 0 and interblockstaskschedulehappens then
5 WarpQueue[0...31].enqueue(GetTasks(Tasks, DistributionOffset));

6 while WarpQueue[inwarptid] �= ∅ do
7 S = WarpQueue[inwarptid].dequeue();
8 Shared Code with MemoryOption = SM + GM

9 CUDA-API: synthreads();
10 if inwarptid = 0 then
11 if |WarpQueue[0...31]| > WarpQueueSize then
12 InWarpadjustment = true;

13 if TasksInWarp > 32 then
14 InBlockadjustment = true;
15 Ats = AvailableTaskSize;

16 if inblocktid = 0 then
17 if TasksInBlock > ThreadNumInBlock then
18 ChildSynNeed = TRUE;

19 else if TasksInBlock ≤ ThreadNumInBlock and InWarpadjustment = true then
20 Intra Warp task transfer;

21 else
22 Inter Warps task transfer⇐ Ats;

23 CudaInterBlocksSyn();
24 if ChildSynNeed = TRUE then
25 if globaltid = 0 then
26 if TasksInChild > ThreadNumInChild then
27 Child return2Parent = TRUE;
28 write WarpQueue to GM;

29 else
30 write WarpQueue to GM;
31 Inter Blocks Task Scheduler;

32 CudaInterblocksSyn();

represent the invocation of the inter blocks synchronization interface. It is not CUDA
built-in API. This will be described in following parts.

Specifically, Algorithm 2 is designed to be executed among threads in a block, while
Algorithm 3 is to be executed among threads in multi blocks. This is because Parent
Kernel focuses on task rescheduling while Child Kernel focuses on the path generation.

Some other functions are cited for Algorithm 2 and 3: function CudaQuicksort uti-
lizes the dynamic parallelism feature of CUDA [11] to do quick sort for preprocessing
the target states set. CudaInterBlocksSyn refers to the algorithm mentioned in [14]. It is
for inter-blocks synchronization as CUDA does not supply API for this.

Synchronization and Atomic Operation. In our algorithm, synchronization happens
in each layer expanding by default as the algorithm need to do load balancing. After any
task scheduling, synchronization is needed to make sure that each thread gets its own
tasks correctly. In previous algorithms, the atomic operation can be used to work as the

422 Z. Wu et al.

Global M
em

ory
Shared M

em
ory

WarpQueue

Parent

GQueue

VGQueue

Map

Warp-level parallel Write

Read&Write

Build

ChildBlock

Warp
Queue

Warp
Queue

Warp
Queue

Warp Warp Warp... ...

ChildBlock
...

Read
Central
Build

Fig. 3. Dynamic Three-level Queue Management

a lock. When some threads want to write the same memory address at the same time,
only the first one which calls the lock will get the access right and others will discard
their write operations and continue their executing.

3.2 Dynamic Three-Level Queue Management

As discussed in Sec. 2, GM can be read or written by all blocks running in different
SMX, and SM is just available to blocks running in the same SMX. Read or write
operations in SM cost much less than operations in GM. But the size of SM is much
smaller than GM. Since our algorithm refers to huge data size, we cannot avoid access-
ing GM. However, as our tasks are distributed to the parallel threads, we can utilize SM
to accelerate local data accessing. Considering that our algorithm is building dynamic
Parent-Child relationship, we need a dynamic task distribution. We build a dynamic
hierarchical queue to utilize the hierarchical memory. In order to fit our dynamic paral-
lelism design, we build a three-level queue management approach, shown in Fig. 3. The
first level queue is stored in SM, i.e., WarpQueue in Algorithm 2 and 3. The second
level queue is stored in GM, denoted as GQueue. The third level queue is also stored
in GM, named Virtual Global Queue, denoted as V GQueue. For simplicity, we denote
GQueue and VGQueue as GM in Algorithm 2 and 3.

Here, as there are many threads working together, the problem of read-write conflict
when parallel threads write or read at the same time is necessary to be considered in
the queue structure and the design of task schedule approach. One potential solution is
to use lock or atomic operation to prevent conflict, which will lead to a huge cost with
frequently write requests at the same time. Another potential solution is to use lock-
free structure is preferred. We take two types of lock-free structures into consideration:
first, as mentioned, the Kepler GK110 contains four warp schedulers in a single SMX,
i.e., 4 warps can run in parallel. We build a lock-free queue with 4 sub-queues so as to
avoid the conflict. However, it is hardly feasible because the warp scheduling in GPU
is not visible to us. Therefore we adopt the design as showed in Fig. 3. In each block,
no matter in Parent Grid or Child Grid, we make the first-level queue in SM a dynamic
sub-queue set based on the warp number in one block. As shown in Fig. 4 part A, each
WarpQueue consists of 32 queues, which is due to the size of warp so as to make it
lock-free. As we want to guarantee one thread holds only one expanding task, if the
task size in a block exceeds the number of threads, the tasks will be re-scheduled and
transferred to GQueue in GM.

GPU Accelerated Counterexample Generation in LTL Model Checking 423

D4 D5 D6 D7 D8 D9

VGQueueD1 D2 D3 D4 D5 D6 D7 D8 D9

Child Block Child Block

D10

D10

OFFSET OFFSET

GQueue PART B

...

Q1
Q2

Q30
Q31
Q32

W1T1
W1T2

W1T30
W1T31
W1T32

...

Q1
Q2

Q30
Q31
Q32

W1T1
W1T2

W1T30
W1T31
W1T32

...

PART A

...

Q1
Q2

Q30
Q31
Q32

W1T1
W1T2

W1T30
W1T31
W1T32

Fig. 4. Structure of WarpQueue, GQueue and VGQueue

In Fig. 3, GQueue is built at the first time when Parent Grid launches a Child Grid,
it is also a group of array shown in Fig. 4, part B. As the Parent Grid communicates
with Child Grid via GM, which is also the way blocks communicate with each other,
it is used to transfer tasks to Child Grid and used by Child Kernel to execute. In fol-
lowing execution, GQueue stores the tasks when blocks being overloaded or the task
reschedule among the blocks in Child Grid is needed. As in the global view, the tasks
stored in the GQueue is not continuous, V GQueue, shown in Fig. 4, is dynamically
built as the third level and it is used for sequential accessing tasks data. This three-level
queue follows the rules of dynamic parallelism, aiming at building a flexible way of
data accessing and improving the performance. It works for the task schedule and can
completely match the Parent-Child structure.

3.3 Dynamic Hierarchical Task Schedule

As the task size during the execution dynamically changes, unbalanced load or overload
will happen frequently, especially for an irregular graph. Launching kernel is an expen-
sive work. So we cannot rearrange the structure of Child Grid at each time that the
unbalanced load happens. Flexible task scheduling methods are necessary. Combined
with our path generation problem, there are several conditions that the program needs
to do task scheduling in hierarchical level. Algorithm 2 lines 10 to 17 and Algorithm 3
lines 10 to 32 are related to these:

– The first time to launch Child Grid from Parent Grid. When Parent Kernel finishes
some layers of BFS-related path generation and makes that Parent Grid cannot hold
more tasks, the Parent Grid needs to launch Child Grid and schedules initial tasks
to Child Grid and used by Child Kernel.

– The inside warp task transfer to make each thread has tasks in its queue. When each
warp begins the execution after getting tasks, it needs to guarantee that each thread
is involved in the path generation procedure.

– When the whole tasks in a warp make a warp overload, it needs to do inter warps
task transfer. This is similar to the inside warp data transfer.

– When the tasks in a block make it overload, inter blocks task rescheduling will
occur.

424 Z. Wu et al.

Parent Level
Child Level

Parent

Child
Block 0

Child Block

Warp

Warp

Warp

...

Global Memory-G_Queue

Initial
Allocate Task

Overload

Overload Mark
Tasks data

Central Inter-blocks
task reschedule

Tasks Data
New Arrangement

Shared Memory-task queue

Global Memory-V_G_Queue
If Child Overload Mark

Parent Central Task
reschedule

Launch New
Child

Fig. 5. Dynamic Hierarchical Task Schedule-block and grid level

– When the whole tasks in the Child Grid make it overloaded, Child Kernel will
stop executing and the control will return to Parent Grid to rearrange the Child grid
so as to reschedule the tasks. This and the inter blocks one are shown in Fig. 5.
Both the inter blocks schedule and the Parent Grid schedule utilize GQueue and
V GQueue GM to redistribute tasks. While inter warps or inside warp schedule is
based on SM.

These make up a hierarchical fine-grained task scheduling. As many steps are in
SM, it can make full use of the fast access feature. And only Child Grid being over-
loaded will cause the structure of Child Grid to be rearranged. In common, we will
arrange the grid size of child bigger than needed at the beginning, to set the constant
EXPAND LEVEL so as to make the size of grid and block bigger than required, i.e.,
INITIAL T×EXPAND LEVEL in Algorithm 3. The EXPAND LEVEL will based on
the restriction of GPU architecture, which will be mentioned in Sec. 4. It is to make a
compromise between resource cost and rescheduling cost. As the decision to do which
level task rescheduling is due to the runtime task size, our design is a Dynamic Hierar-
chical Task Schedule method.

Note that after each layer of path generation, the overload detection will occur. This,
together with the terminating condition detection, are in a central mode. This is to get
rid of frequent communication among threads. When the whole block is overloaded
and needs to copy tasks in each WarpQueue back to GQueue, each warp will do its
own transfer, makes it a parallel data transfer. Here, the targets of task scheduling are
to balance workload in each warp/block and to allocate enough resources for future
execution.

3.4 Dynamic Duplicate Eliminated Path Recording

Our algorithm is to deal with the counterexample generation, where path recording is
necessary. Path recording should also be parallelized. As our approach performs BFS,
the counterexample path is updated in each layer. Note that our path recording is to
record the visited state ID and its first Predecessor. The “first Predecessor” means the
firstly recorded predecessor. In fact, our algorithm is to find a path to reach the target
set, So one predecessor for one state is enough to generate a complete path. Take Fig. 6

GPU Accelerated Counterexample Generation in LTL Model Checking 425

as example, record (2, 4) and record (3, 4) will not be recorded together, just (3, 4) is
recorded as it is reached earlier.

Combined with our previous design, the path recording is happening in two lev-
els: (1) warp level in SM, each warp owns a WarpPathQueue, which is mentioned
in Sec. 3.1. (2) block level in GM, path recording will be taken under three con-
ditions: When the number of records in WarpPathQueue exceeds the configured
WARPPATHQUEUE SIZE, it is executed independently in each warp and mentioned
in line 9 in List. 1.1. Another two conditions are that path recording is taken be-
fore the task being copied back to GM or after the terminating condition being de-
tected, mentioned in lines 22 in Algorithm 2 and line 9 in List. 1.1. The structure for
path recording in this level is two arrays. One is the path recording array, the in-
dex of array represents the ID of state and the value represents the predecessor. The
other is the predecessor visited array, different from the first array, its value rep-
resents if the corresponding state is visited. The example of this procedure can be
shown in Fig. 6. When the record (1, 2) is copied back to GM, it will be recorded as
path recording array[2] = 1 then predecessor visited array[1] = true. And for
record (n, 3), as predecessor visited array[3] = true, this record will be discarded.
But predecessor visited array[n] will be marked true. Atomic operations are used
for writing these two arrays.

We call this approach Dynamic Duplicate Eliminated Path Recording. The duplicate
elimination here does not mean duplicate path record elimination. It is for duplicate
BFS tasks elimination. When the tasks being copied back to GQueue, it should first
detect if the corresponding value of task state in predecessor visited array is true. If
so, this state will not be copied back to GM for following task reschedule. So it reaches
the duplicate elimination target to some extent. It is mentioned in Algorithm 2 and 3
when the algorithms proceed to write WarpQueue to GM.

When the terminal states being detected, we need to generate the full path, which
is mentioned in line 4 in List. 1.1. The process start from the target state reached by
path generation process, marked as s. The iteration is started to find predecessor of
s by getting value prec(s) = predecessor visited array[s]. This terminates when
predecessor visited array[s] = Init. We generate the full path by recording each
prec(s) during the iteration. Atomic operation is also needed in getting the full path
as we only need one path. Overall, our path recording also fits the idea of dynamic
parallelism.

WarpPathQueue WarpPathQueue

...

Path Recording Array

Predecessor visited array

1 2 3 n-1

1

2

n

3

2

3

3

4

2

4

n-1

n

PrecID

NodeID

...

True True True TrueTrue...
1 3

1

nn-1

4

2

2 3 n-1 n

x X

G
lobal M

em
ory

Shared M
em

ory

Fig. 6. Block-level Path Recording

426 Z. Wu et al.

Table 1. Parameters in the Algorithms

Parameter Meaning Default Value
INITIAL T The thread number of parent 32

WARPQUEUE SIZE The length of queue in WarpQueue 32
WARPPATHQUEUE SIZE The length of queue in WarpPathQueue 32

EXPAND LEVEL The times of thread number to expand compared to statistic requirement 2

4 Experiments and Evaluation

We evaluate our algorithms in two aspects. Firstly, we test the performance of our dy-
namic CUDA counterexample generation with models in different size and structures.
Secondly, we analyze the effects of GPU parameters to our algorithms and discuss
the limitation of the algorithms. We also propose two optimization options. The ba-
sic implementation of our algorithm uses C++. The system model is from PAT model
checker [8]. Our experiments are conducted using a PC with Intel(R) Xeon(R) CPU
E5-2620 @ 2.00GHz and a Tesla K20c GPU @ 2.6 GHz with 5GB global memory, 13
SMXs and totally 2496 CUDA cores.
Performance Analysis. To analyze the performance, we choose the classic dinning
philosophers problem (DP) as the input model. We use different process number to get
different SCC size. The four GPU parameters used in the algorithms and their default
value are shown in Table 1. The value of the parameters should be controlled in a fixed
range based on hardware specifications. Their influence on our task schedule and their
restrictions will be discussed in next section.

Based on the default configuration, our algorithms succeed in generating the coun-
terexample for the verification of DP model in sizes from 5 to 8. We record the execution
time for each process in Parent Kernel (Algorithm. 2), as well as the execution time of
Child Kernel (Algorithm. 3). Firstly, Fig. 7 shows the distribution of the execution time
for each BFS work in Algorithm. 1. Init2SCCBFS, Path2AccBFS and SelfLoopBFS are
the three steps mentioned in Sec. 2. We can see that the first path generation costs
more than the other two. This is because the → (outgoing transition table) for the first
path generation is bigger as it contains all transitions generated during the model ver-
ification. So schedule, dynamic expanding and data transfer cost more. When doing
scc → acc → accloop, the → is much smaller as we are preprocessing to eliminate
non-SCC states in the→.

We choose the data from the Parent Kernel execution of Init2SCCBFS path gen-
eration, as well as the total cost of Child Kernel execution. We get the results of the
execution time percentage of each part, as shown in Table 2: Schedule means the task
schedule; Search means the BFS with path recording; Prepare means the queue build-
up for launching Child Grid ; And Child means the execution time of Child Kernel. we
can see Child Kernel will take charge of the highest percentage during the counterex-
ample generation. In Parent, its major cost is on the initial schedule and the preparation
for the child expanding. We can see the costs of each part are balanced among different
size of tasks. The experimental results match the design of our algorithms.

Evaluation and Limitation. As shown in Table 1, there are four constants which af-
fect the performance. We mentioned their meaning in Sec. 3.1. Firstly, The value of

GPU Accelerated Counterexample Generation in LTL Model Checking 427

0

5

10

15

20

25

30

35

40

45

DP S=8 DP S=7 DP S=6 DP S=5

Pe
rc

en
ta

ge

processes number of model

Cost distribution

SelfLoopBFS

Path2AccBFS

Init2SCCBFS

Fig. 7. Distribute of cost in three path generation

Table 2. Performance Analysis

Processes TotalSize SCCSize AccSize Schedule Search Prepare Child DataTrans Total
5 348 120 36 20.7% 20.6% 20.5% 34.8% 0.57 9.3
6 1013 508 112 21.9% 22% 23.3% 30.8% 0.6 8.3
7 3420 2047 365 20.7% 20.6% 22.6% 35.5% 0.64 16.2
8 12339 7980 1195 24.4% 24.2% 25.4% 26.8% 1.01 19.7

INITIAL T is due to the structure of the state space of the model. If the model’s width
is always short, setting a large INITIAL T can reduce the chance to launch Child Grid.
Too large value will waste a lot of resources when the Child is working on the ma-
jor process. Secondly, based on our algorithm design, the hierarchical task scheduler is
based on the grid size, means the number of threads. However, as the task size of each
layer during the path generation of an irregular graph is unknown, if the size of one
layer is larger than the remaining space of the WarpQueue, the task reschedule may oc-
cur, which is costly. So for the models with irregular state space, WARPQUEUE SIZE
will affect the performance. Thirdly, as the path records in warp level need to be copied
back to GM when the |WarpPathQueue| exceeds the WARPPATHQUEUE SIZE. So
set a large value to WARPPATHQUEUE SIZE will definitely reduce the cost. At last,
EXPAND LEVEL, as we mentioned, if we just set the exact size of Child Grid accord-
ing to the realistic requirement, it may cause the Child being overloaded soon and the
Parent do rescheduling again. EXPAND LEVEL is to make the compromise. It decides
how much more resources to be allocated to the Child.

However, the size of the queue needs to be bounded. All above are restricted by the
size of SM in each SMX. As described in Sec. 2, the size of chip memory in each SMX
is 64KB. According to max SM per multiprocessor, only 48KB are available for SM.
Before we launch the kernel, we need to decide how many SMs a block can use. In our
algorithms, each item in the queue is an int. We represent the total shared memory cost
as MemC, as defined below:

MemC =sizeof(int)× (|WarpQueue|+ |WarpPathQueue|)
× PG(INITIAL T)× EXPAND LEVEL

(1)

It requires MemC < 48KB. PG(INITIAL T) denotes the statistic required size of
resources (thread number), which starts from INITIAL T. This is a dynamic variable
so we combine the (PG(INITIAL T)× EXPAND LEVEL) to be MaxWarpsize.
We can learn from equation (1) that these parameters are conditioned by each other.

428 Z. Wu et al.

Considering the restriction of CUDA architecture, the available size of SM is set before
launching the kernel. If queue size described above is too large, the number of threads in
one block will be restricted. During the execution, data in WarpQueue is flushed in each
layer as old data being visited, and the size of data in WarpPathQueue is increasing all
the time. so the constants WARPPATHQUEUE SIZE and WARPQUEUE SIZE will
decide the extra GM accessing times. In fact, the value of all these parameters should
be decided based on the structure of model.

The values of these parameters are also related to the grid level task schedule (Parent
Grid launch Child Grid) in our design. We take the default setting in Table. 1 as an
example. Suppose the total task size currently is Ttotal. The structure of Child Grid,
means blocks number in grid, is marked as Bc. In default, we guarantee each block
in Child Grid starts with tasks Ts = 32, equals to the thread number in a warp. Then
Bc = Ttotal÷Ts(+1). With the setting, each block will owns ExpandLevel×Ts = 64
threads, means 2 warps. With these, total shared memory cost in a block T CB will
be: T CB = 64 × (WarpQueueSize + WarpPathQueueSize) × sizeof(int) =
16384bytes. Compared with MemC, it means two more warps can be added in a single
block. and Bc ≤ 13(SMX number). So the max threads number available under this
setting will be 1664, means if any layer in a graph contains more than 1664 states, the
schedule cannot work.

In summary, due to the restriction of SM size in CUDA, our approach does not work
well for graph with large branching nodes. A solution to this problem can be using more
global memory, or building united memory space with host memory, which has been
proposed in the new CUDA 6.0.

Optimization Options. The experiments show that our approach is scalable in dealing
with the counterexample generation problem. In our CUDA Dynamic Path Generation
algorithm, the task schedule, as well as the queue building, take a substantial on the
total cost. Based on this, we present two optimization options as follows. (1) According
to [4], GPU works fast on short data. So building a compact graph representation to
represent the model can improve the performance significantly. (2) Reduce the times
of scheduling and global memory accessing. These can be done by applying latency
task schedule, making each thread hold more tasks and performing the load balance
after several layer expanding. The low cost intra block and warp level task schedule
should take majority parts, means to increase the threshold to do inter-blocks or parent
level schedule. These potential optimizations are important in the improvement of our
algorithm and can be easily supported based on current design.

5 Conclusion

In this work, we proposed a CUDA Dynamic Counterexample Generation approach
for SCC-based LTL model checking. We designed the dynamic queue management,
hierarchical task scheduler and the dynamic parent-relation, path recording scheme by
adopting the new features of dynamic parallelism of CUDA. The experiments show
that our algorithm can be scalable in solving the counterexample generation problem.

GPU Accelerated Counterexample Generation in LTL Model Checking 429

In future work, we plan to optimize this algorithm to build a space-efficient encoding
for the task data and path record data in order to save resources.

Acknowledgement. This work is supported by “Formal Verification on Cloud” project
under Grant No: M4081155.020 and “Verification of Security Protocol Implementa-
tions” project under Grant No: M4080996.020.

References

1. Barnat, J., Brim, L., Ceska, M., Lamr, T.: CUDA Accelerated LTL Model Checking. In:
ICPADS, pp. 34–41. IEEE (2009)

2. Barnat, J., Bauch, P., Brim, L., Češka, M.: Designing Fast LTL Model Checking Algorithms
for Many-core GPUs. In: JPDC, pp. 1083–1097 (2012)

3. Edelkamp, S., Sulewski, D. Model Checking via Delayed Duplicatedetection on The GPU.
In Technical Report 821. Dekanat Informatik, Univ. (2008)

4. Edelkamp, S., Sulewski, D.: Efficient Explicit-State Model Checking on General Purpose
Graphics Processors. In: van de Pol, J., Weber, M. (eds.) Model Checking Software. LNCS,
vol. 6349, pp. 106–123. Springer, Heidelberg (2010)

5. Gastin, P., Moro, P.: Minimal Counterexample Generation for SPIN. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 24–38. Springer, Heidelberg (2007)

6. Gastin, P., Moro, P., Zeitoun, M.: Minimization of Counterexamples in SPIN. In: Graf, S.,
Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 92–108. Springer, Heidelberg (2004)

7. Harish, P., Narayanan, P.J.: Accelerating Large Graph Algorithms on the GPU Using CUDA.
In: Aluru, S., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2007. LNCS, vol. 4873,
pp. 197–208. Springer, Heidelberg (2007)

8. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards flexible verification under fairness. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer, Heidel-
berg (2009)

9. Luo, L., Wong, M., Hwu, W.-M.: An Effective GPU Implementation of Breadth-first Search.
In: DAC, pp. 52–55. ACM (2010)

10. Nvidia Corporation. Whitepaper: NVIDIA’s Next Generation CUDA Compute Architecture:
Kepler GK110 (2012)

11. Nvidia Corporation. Nvidia CUDA C Programming Guide 5.5 (2013)
12. Schwoon, S., Esparza, J.: A Note on On-the-Fly Verification Algorithms. In: Halbwachs, N.,

Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190. Springer, Heidelberg (2005)
13. Wijs, A., Bošnački, D.: GPUexplore: Many-core on-the-fly state space exploration using

gPUs. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413,
pp. 233–247. Springer, Heidelberg (2014)

14. Xiao, S., Feng, W. Inter-block GPU Communication via Fast Barrier Synchronization. In:
IPDPS, pp. 1–12. IEEE (2010)

Formal Throughput and Response Time

Analysis of MARTE Models�

Gaogao Yan, Xue-Yang Zhu, Rongjie Yan, and Guangyuan Li

State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, China

{yangg,zxy,yrj,ligy}@ios.ac.cn

Abstract. UML Profile for MARTE is an extension of UML in the do-
main of real-time and embedded systems. In this paper, we present a
method to evaluate throughput and response time of systems described
in MARTE models. A MARTE model we consider includes a use case
diagram, a deployment diagram and a set of activity diagrams. We trans-
form a MARTE model into a network of timed automata in UPPAAL
and use UPPAAL to find the possible best throughput and response
time of a system, and the best solution in the worst cases for both of
them. The two case studies demonstrate our support of decision makings
for designers in analyzing models with different parameters, such as the
number of concurrent activities and the number of resources. In the first
case study, we analyze the throughput of a system deploying on multi-
processor platforms. The second analyzes the response time of an order
processing system.

Keywords: MARTE Models, Timed Automata in UPPAAL, Through-
put, Response Time.

1 Introduction

Real-time and embedded systems are usually associated with limited resources
and strict real-time requirements. They are widely used in aerospace, communi-
cations and industrial control. In this paper, we focus on the model-based timing
analysis of such systems.

MARTE (Modeling and Analysis of Real Time and Embedded systems) [1]
is a UML (Unified Modeling Language) profile for modeling real-time and em-
bedded systems. It can be used to model not only system behaviors but also
other concepts such as time and resource constraints. Intuitively, MARTE mod-
els encapsulate required information for performance analysis of a given system.
However, the lack of precise semantics makes it difficult to analyze exact sys-
tem behaviors. Fortunately, formal methods can be applied to make up for the
shortage.

� This work is partially supported by National Key Basic Research Program of China
(973 program) (No. 2014CB340701), the Open Project of Shanghai Key Laboratory
of Trustworthy Computing (No. 07dz22304201302), and the National Natural Science
Foundation of China (No. 61361136002 and No. 61100074).

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 430–445, 2014.
c© Springer International Publishing Switzerland 2014

Formal Throughput and Response Time Analysis of MARTE Models 431

Many works have been done for analyzing UML models using formal meth-
ods. Bernardi et al. analyze the correctness and performance of UML sequence
diagrams and state machine diagrams using Petri net based techniques [2]. Holz-
mann et al. use model checking tool SPIN [3] to analyze UML activity dia-
grams [4]. In [5], Piel et al. convert the platform-independent MPSoC model in
MARTE into a SystemC code and then validate the SystemC code via simula-
tion. Merseguer et al. propose a method to transform UML state machines with
MARTE profile into Deterministic and Stochastic Petri nets and to formalize
the dependability analysis [6]. Suryadevara et al. propose a technique to trans-
form MARTE/CCSL mode behaviors described in state machines into timed
automata [7], and verify logical and chronometric properties [8].

In this paper, we use real-time model checking tool UPPAAL [9] to analyze
throughput and response time of MARTE models. UPPAAL is a model checker
based on the theory of timed automata, which is a well-established formal model
for modeling behaviors of real-time systems. It can be used to verify various
timing properties, and has been successfully applied to many industrial case
studies [10,11].

A MARTE model we consider includes a use case diagram, a deployment
diagram and a set of activity diagrams. We transform a MARTE model into
a network of timed automata in UPPAAL and formalize the throughput and
response time properties as temporal logic formulae. The network of timed au-
tomata and the formulae are then used as the input of UPPAAL. Based on the
results returned by the tool, we can find the possible best throughput and re-
sponse time of a MARTE model, and the best solution in the worst cases for
both of them. For the best of our knowledge, this is the first work on throughput
analysis and response time analysis of such MARTE models.

Our methods can analyze models with different parameters, such as the num-
ber of concurrent activities allowed and the number of resources. We can derive
important influence factors for system performance from the obtained results,
which can assist decision making for designers during system development. We
present two case studies to demonstrate the effectiveness of our methods. In the
first one, we analyze the throughput of a system deploying on multiprocessor
platforms. The second analyzes the response time of an order processing system.

The remainder of this paper is organized as follows. In Section 2, we introduce
the concepts on MARTE models and timed automata in UPPAAL. Section 3
provides the mapping rules from the subset of concerned MARTE models and
Section 4 explains the timing properties in UPPAAL on throughput and response
time and how they are analyzed. Implementation and case studies are presented
in Section 5. Section 6 concludes the paper and discusses the future work.

2 MARTE Models and Timed Automata in UPPAAL

2.1 MARTE Models

MARTE extends UML by means of stereotypes, which allow designers to extend
the vocabulary of UML in order to create new model elements that have specific

432 G. Yan et al.

properties that are suitable for a particular domain, and tagged values of stereo-
types. We present a running example in MARTE model in Fig. 1, describing the
starting procedure of a pulse oximeter. Fig. 1 (a) is the use case diagram, which
contains an actor named “user”, a use case named “startOximeter” and an as-
sociation between them. Fig. 1 (b) is the deployment diagram, which declares a
kind of resource named “microprocessor”. The activity diagram describing the
behavior of use case “startOximeter” is given in Fig. 1 (c). The tagged values in
annotations in the figures are the constraints added according to the MARTE
stereotype. For example, in Fig. 1 (c), action node “SetLEDInfra” is stereotyped
<<PaStep>>, which has two tags, “host” and “hostDemand”. The tagged value
“host=microprocessor” means that action “SetLEDinfra” will be executed on re-
source “microprocessor”, and “hostDemand=[(1469,max),(1411,min)]” defines
the execution time of “SetLEDinfra” within [1411, 1469].

(a) (b)

(c)

Fig. 1. A MARTE model for the starting procedure of a pulse oximeter. (a) The
use case diagram; (b) the deployment diagram; (c) the activity diagram of use case
“startOximeter”.

2.2 Timed Automata in UPPAAL

UPPAAL is a tool for modeling, validation and verification of real-time systems
modeled with networks of timed automata. A timed automaton (TA) is a finite
state automaton equipped with a finite set of real-valued clock variables, called
clocks. The timed automata in UPPAAL is an extension of the standard syntax
of timed automata. We first review the definition of timed automata [7].

Definition 1 (Syntax of Timed Automata). A timed automaton is a tuple
A =< L,Σ,X,E, l0, Inv > where L is a finite set of locations, Σ is a finite set

Formal Throughput and Response Time Analysis of MARTE Models 433

of actions, X is a finite set of clocks, E ⊆ L×C(X)×Σ×2X×L is a transition
relation, l0 ∈ L is an initial location and Inv : L → C(X) is an invariant-
assignment function. C(X) denotes the set of clock constraints over X, where a
clock constraint over X is in the form of:

g ::= true | x < c | x ≤ c | x > c | x ≥ c | g ∧ g,

where c ∈ N, N is the set of non-negative integers, and x ∈ X.

The paths in TA are discrete representations of continuous-time“behavior” of
TA. A path consists of a set of transitions. Fig. 2 shows the timed automaton
for a simple light switch example. At location off, the light may be turned on at
any time by executing the action switch on, and at the same time clock x is reset
to 0 to record the delay since the last time the light has been switched on. The
user may switch off (by executing the action switch off) the light at least one
time unit (required by the guard x ≥ 1) later after the latest switch on action.
The light can not be on for more than two time units, which is constrained by
the invariant x ≤ 2 of location on.

x 1
switch_off

x=0
switch_on

off on
x 2

Fig. 2. The timed automaton of a simple light switch

The components in the network of timed automata (NTA) in UPPAAL and
their relation are shown in Fig. 3. An NTA consists of three parts: ntadeclara-
tion, automata templates and system definition. The ntadeclaration is global and
may contain declarations of clocks, channels and other variables. The automata
template defines a set of templates in the form of the extended TA, and a tem-
plate includes a local declaration, parameters and a set of locations and edges.
A location has four attributes: name, the mark for an initial location (isIni-
tial), the mark for an urgent location (isUrgent), and invariant. An edge may

Fig. 3. The main components of NTA in UPPAAL

434 G. Yan et al.

be annotated with assignment expressions, guard expressions and synchronisa-
tion expressions. The concurrent processes of a system are described in system
definition. A path in an NTA is similar with that in TA except that the state in
the path of the NTA is defined by the locations of all TAs in the NTA.

Compared with the standard timed automata, the TA in UPPAAL have some
additional features such as urgent channels and urgent locations to facilitate the
modeling and validation process (please refer to [12] for more details). In UP-
PAAL, the types of synchronization include rendezvous and broadcast. Addi-
tional to the regular channels to define the types of synchronization, there are
two kinds of special channels, i.e., urgent and commit channels, to restrict the
trigger condition of the corresponding synchronization. The pairs of synchro-
nization are labeled on edges, where the sender is in the form of e!, the receiver
is in the form of e?, and e is the name of the channel. Moreover, urgent locations
are supported in UPPAAL to forbid time delay in such kind of locations.

3 Model Transformation

In this section, we illustrate the transformation rules from MARTE models to
NTAs in UPPAAL for throughput analysis. The rules for response time analysis,
a slight variant of that of throughput analysis, is introduced in Section 4.2.

MARTE specification provides rich elements for system modeling and analy-
sis. We use only a subset of the specification. The main components of a MARTE
model we consider, as shown in Fig. 4, include a use case diagram (UCD), a de-
ployment diagram (DD) and a set of activity diagrams (AD). A MARTE model is
stereotyped <<GaAnalysisContext>>, in which tagged value “concurrent=N”
specifies that the maximum concurrent activities allowed in the system is N .
The behavior of each use case of a UCD is described by an AD, which we denote
as the AD of the use case.

Fig. 4. The components of a MARTE model

At the top level, a MARTE model, M , is mapped to an NTA of UPPAAL
with a global clock glbClk, named Mnta. The tagged value “concurrent=N” is
translated into a global variable sys conc of the NTA, initialized as N . The
detailed mapping rules for components of a MARTE model are shown in the
following sections.

Formal Throughput and Response Time Analysis of MARTE Models 435

3.1 Use Case Diagrams to TAs

A use case diagram contains a set of actors, use cases and associations between
them. A use case specifies a required function of the system, whose behavior is
modeled by an activity diagram, which we denote as the AD of the use case. An
actor is an external entity interacting with the system. An instance of an actor
represents a request for the system, activating the AD of a use case connected to
the actor by an association. When there are n requests being processed, there are
n concurrent active ADs, where n is limited by tagged value “concurrent=N”. An
actor is stereotyped<<GaWorkloadEvent>>, which has two tags, “population”,
specifying the number of the instances of the actor, and “extDelay”, specifying
the interval between the arriving time of each instance of the actor.

A UCD with n actors and m use cases is transformed to m + n global vari-
ables, m channels and n TA templates in Mnta. In Mnta, there is an integer
variable A num initialized as p for each actor A to model its tagged value “pop-
ulation=p”; there is an integer variable U num and a channel trigger U for each
use case U , the former for counting the number of the requests for U and the
latter modeling the activation of the AD of U . For actor A with k associated
use cases, U1, ..., and Uk, there is a TA template, Ata, with a local clock x, a
location and 2k + 1 edges. For each Ata, there is a process in Mnta. In Ata,
there is a unique edge to keep the TA deadlock-free, denoted by liveE. For each
Ui, there are two edges, one for receiving a request from actor A, denoted by
recE Ui, and another for triggering a TA process of the AD of Ui, denoted by
triE Ui. Tagged value “extDelay=d” of A is mapped to an invariant x ≤ d on
the location and clock guards x ≥ d on edges.

The transformation from the UCD in Fig. 1(a) is shown in Fig. 5. Edges liveE,
recE startOximeter and triE startOximeter are upper, below left and below
right edges, respectively.

NTA.ntadeclaration:
{int User_num=1;
int startOximeter_num=0;
urgent chan
trigger_startOximeter;}

User_num--,
startOximeter_num++,
x=0

x=0

startOximeter_num--
trigger_startOximeter!

User

x<=1

startOximeter_num>0&&
sys_conc>0

User_num==0&&x>=1

User_num>0&&x>=1

Fig. 5. The TA template transformed from the UCD in Fig. 1(a)

3.2 Deployment Diagrams to TAs

A deployment diagram includes a set of nodes, representing different resources.
A node is stereotyped <<GaExecHost>> with tagged value “resMult=n” indi-
cating that the available number of instances of the resource is n.

A DD with m nodes is transformed to 3m global variables and m TA tem-
plates in Mnta. For node R with “resMult=n”, there are a global integer variable

436 G. Yan et al.

R num initialized as n to count the remained number of available instances of
R, a pair of channels get R and rel R to model the request and the release of
an instance of R respectively, and a TA template, named Rta, with one location
and two edges. For each Rta, there is a process in Mnta. The transformation
from the DD in Fig. 1(b) is shown in Fig. 6.

NTA.ntadeclaration:
{int microprocessor_num=1;
urgent chan get_microprocessor;
chan rel_microprocessor;}

get_microprocessor?

microprocessor_num++
rel_microprocessor?

microprocessor

microprocessor_num--

microprocessor_num>0

Fig. 6. The TA template transformed from the DD in Fig. 1(b)

3.3 Activity Diagrams to TAs

Each use case in the UCD employs an activity diagram to describe its behav-
ior. An activity diagram consists of a set of activity nodes and control flows.
The activity nodes we consider includes: initial node, action node, decision
node, merge node, fork node, join node, and final node. An AD is stereotyped
<<TimedProcessing>>. An action node is stereotyped <<PaStep>> with two
tagged values, “host=R”, indicating the resource it requires is R in the DD, and
“hostDemand”, recording the execution time of the action on R.

The AD of use case U in the UCD is mapped to a TA template, Uta, with a
local clock x. Let A.p be the population of actor A and A be the set of actors
associated with U . Then there are

∑
A∈A A.p processes of Uta in Mnta. Fig. 7

presents the transformation rules. The initial node is the start point of the AD.
The node and its outgoing control flow are translated into the initial location
and an outgoing edge of Uta, as shown in Fig. 7(a). Channel trigger U is used to
synchronize with Atas which are transformed by the actors associated with U .

As the final node defines the end of an AD and takes no time, we map it
to an urgent location, as shown in Fig. 7(b). We add an outgoing edge from
the location to the initial location, to model the termination of an execution of
the AD.

The decision node and merge node are used in pairs. A pair of decision and
merge nodes are mapped to a pair of urgent locations, as shown in Fig. 7(c).
The guards on the outgoing edges of decision node are abstracted as non-
determination.

An action node requiring resource R keeps waiting until the number of re-
mained R is larger than one. The action node and its outgoing edge are mapped
to two locations to express the waiting and executing states, respectively, as
shown in Fig. 7(d). The execution time of the action on R, represented as tagged
value “hostDemand=[a,b]” is mapped to an invariant of the location for execut-
ing the action and a guard on its outgoing edge. Channels get R and rel R are
used to synchronize with Rta.

Formal Throughput and Response Time Analysis of MARTE Models 437

trigger_U?
x=0,sys_conc--

(a)

U sys_conc++
x=0

(b)

U U

(c)

<<paStep>>
Action

host=R
hostDemand=[a,b] U U

Action_waitingres
get_R!
x=0

Action

x<=b x=0

x>=a
rel_R!

(d)

name:ForkN name:JoinN

U U

U

U

main template:

subtemplate1:

subtemplate2:

ForkN ForkN_waiting1 ForkN_waiting2 JoinN
x=0

x=0 x=0

x=0x=0

UC_ForkN_start! UC_ForkN_end?

UC_ForkN_start?

UC_ForkN_end?

ForkN_p1Init

UC_ForkN_start?

ForkN_p2Init

JoinN_p1

JoinN_p2

UC_ForkN_end?

UC_ForkN_end?

(e)

Fig. 7. The transformation rules from AD to TA. (a) The initial node; (b) the final
node; (c) the decision and merge nodes; (d) the action node; (e) the fork and join
nodes.

The fork node and join node are also used in pairs. A pair of fork and join
nodes with n concurrent subprocesses are mapped to n+ 2 locations and n TA
templates, as shown in Fig. 7(e). The broadcast channel UC ForkN start and
the regular channel UC ForkN end are used to synchronize between the original
TA and the new TAs for subprocesses.

The TA template transformed from the AD in Fig. 1 (c) is shown in Fig. 8.
The number of concurrently active processes of Utas in Mnta is limited by the
value of tag “concurrent” in M . Here, an active process of Uta means that the
process currently is not at the initial location.

4 Model Analysis

Throughput and response time are two important timing properties of real-
time systems. The throughput defines the number of requests that the system
can process per time unit. The response time is the time the system responds
to a user’s request. In this section, we describe how to formalize them as the
properties of UPPAAL.

Given a MARTE model M , in this section, we explain how to use UPPAAL,
which deals with Mnta, to analyze throughput and response time of M .

438 G. Yan et al.

get_microprocessor! get_microprocessor!

get_microprocessor!get_microprocessor!

rel_microprocessor!

rel_microprocessor!

rel_microprocessor!

rel_microprocessor!

rel_microprocessor!

x=0 x=0

x=0

get_microprocessor!

get_microprocessor!
x=0

x=0,sys_conc--

x=0x=0

l_NotRunCalibration

l_NotRunCalibration_waitingres

l_SetLEDGuard_waitingres l_SetLEDGuard

l_MergeNode1

l_RunCalibration

l_DecisionNode1

l_RunCalibration_waitingres

rel_microprocessor!

Ini_InitialNode1l_Timer

trigger_startOximeter?

l_SetLEDRed_waitingres l_SetLEDRed

l_Timer_waitingres

l_SetLEDInfra_waitingres

l_SetLEDInfra

l_ActivityFinalNode1
x<=0 x=0,sys_conc++

x>=745

x>=1411

x>=1411

x>=186

x<=194

x>=0

x<=187

x<=1469

x=0

x=0

x=0

x>=179

x=0

x=0

x=0

x<=1469

x<=775

Fig. 8. The TA template transformed from the AD in Fig. 1(c)

4.1 Throughput Analysis

Let A and U be the sets of actors and use cases of the UCD in M , respectively.
Let A.p represents the value of “population” of actor A. The number of service
requests is k =

∑
A∈A A.p. Assume T is the processing time for all the k requests,

the throughput of M is defined as TP = k/T .
Recall that sys conc of Mnta is initialized as N , the value of “concurrent”.

It records the remained number of allowed concurrently active TA processes.
sys conc = N means no process is running in the system, that is to say, there is
no active processes. For an actor A in M , global variable A num in Mnta repre-
sents the number of remained requests of A, initialized as A.p. It is decreased by
1 when an instance of A arrives. A num = 0 means that all the requests from
A have arrived. For a use case U in M , U num in Mnta is used for counting the
number of the requests of U . U num is increased by 1 when an instance of actor
associated with U arrives and is decreased by 1 when it triggers its AD once.
U num = 0 means that there is no request from actors. Then the fact that, at
some time points, all the requests of M have been processed, can be formulated
as f using variables in Mnta.

f ≡def sys conc = N ∧ ∀A ∈ A : A num = 0 ∧ ∀U ∈ U : U num = 0

CTL (Computation Tree Logic) formula AFf is true when f is eventually
true on all the paths of Mnta, denoted by Mnta |= AFf . Then the question
whether all the requests of M have been processed in time t, no matter how to
schedule M to run, can be formulated as:

f∀(t) ≡def AF(f ∧ glbClk ≤ t),

where glbClk is a global clock of Mnta.

Formal Throughput and Response Time Analysis of MARTE Models 439

Similarly, CTL formula EFf is true when f is eventually true on some path
of Mnta. Then the question whether there are schedules of M to make sure that
all the requests have been processed in time t, can be formulated as:

f∃(t) ≡def EF(f ∧ glbClk ≤ t)

Two lower bounds of the processing times of M can be formulated as follows.

T∀ = min {t | t ∈ N and Mnta |= f∀(t)}

T∃ = min {t | t ∈ N and Mnta |= f∃(t)}

A throughput larger than k
T∃

can never be reached and the throughput no larger

than k
T∀

can always be achieved. Therefore, the possible maximal throughput

of M is k
T∃

, denoted by TPmax. In the worst case, M can at least achieve the

throughput k
T∀

, denoted by TPmin.

Using Mnta and f∀(t) (or f∃(t)) as the input of UPPAAL, we can get TPmin

(or TPmax).
The procedure to find TPmin is as follows: estimate the upper bound of t,

T1, as the execution time when only one resource is available; perform a binary
search on [1, T1], and assuming t is the time considered, use UPPAAL to check
whether Mnta |= f∀(t) is satisfied.

To find TPmax, we can use the similar procedure as that of TPmin. A better,
we can ask UPPAAL to return the fastest trace, and T∃ is the value of glbClk
in the last state of the trace.

4.2 Response Time Analysis

Response time is a criterion about how fast a use case reacts to a request of an
actor. Denote the actor and the use case under analysis as A and U , respectively.
The set of instances of A is denoted by {A1, ..., AP }, where P is the value of
“population” of A. Tag “extDelay” defines the arriving interval of each instance.

The time when Ai arrives is denoted by Ai.Ta and the time when Ai gets
the required return is denoted by Ai.Tf . The response time of Ai is defined as
Ai.rt = Ai.Tf −Ai.Ta.

Suppose the required response time of A is D, i.e., ∀i ∈ [1, P] : Ai.rt ≤ D.
Next, we explain the way to answer whether the requirement is satisfied.

In Section 3, We have illustrated the transformation from MARTE models to
NTAs mainly for the throughput analysis. A slight variant is necessary for the
response time analysis. The difference is introduced below and shown in Fig. 9.
In M , one more stereotype <<SaStep>> is added to A, with a tagged value
“deadline=D”, specifying the required response time of A.

Suppose the TA templates of A and the AD of U are Ata and Uta, respectively.
We add a global channel arrive to Mnta. A constant integer variable dl with the
value of “deadline”, a boolean variable finished and a local clock y are added to
Uta. Channel arrive is used to synchronize betweenAta and Uta. A sender arrive!

440 G. Yan et al.

<<SaStep>>
deadline=D

UC

<<gaWorkloadEvent>>
...

(a)

U

start waitingstartarrive?

trigger_UC?
sys_conc--,x=0

finished=false,
y=0

...

...
...

arrive!

NTA.ntadeclaration:
{ ;chan arrive;}

UC.declaration:
{ ;clock y; bool finished;

const int dl=D;}

y<=dl
finished=true

(b)

Fig. 9. The difference of models and transformation for response time analysis. (a) The
difference in actor A of M ; (b) the difference in TA templates Ata and Uta in Mnta.

is added to the edge recE U of Ata. To facilitate the analysis process, an edge
and a location are inserted between the initial location and its original successor,
and a guard y ≤ dl and an update of finished are added to the incoming edge of
the initial location. Each actor instance Ai will trigger a process of Uta, named
Uta i. Local clock y of Uta i is used to measure the response time of Ai. The
guard y ≤ dl is used to model constraint Ai.rt ≤ D. Only when the guard is
true, can finished become true. Then whether all the requests from A can be
responded in time D, no matter how to schedule M to run, is formulated as
formula r∀.

r∀(dl) ≡def AF(∀i ∈ [1, P] : Uta i.f inished = true)

The question whether there are schedules of M to make sure that all the
requests from A can be responded in time D is formulated as formula r∃.

r∃(dl) ≡def EF(∀i ∈ [1, P] : Uta i.f inished = true)

With Mnta and r∀(dl) (or r∃(dl)) as the input of UPPAAL, we can answer
above-mentioned questions.

A possible minimal response time RTmin can be found by a procedure similar
to that of TPmax, using r∃. In the worst case, the response time is at most
RTmax, which can be computed by a procedure like that of TPmin, using r∀.

5 Case Studies

We implement our approaches in the toolkit FMPAer (Formal Models based
Performance Analyzer) [13]. Modeling tool Papyrus [14] is used for creating a
MARTE model. The transformation rules from MARTE models to NTAs in UP-
PAAL are written by model transformation language ATL (Atlas Transformation
Language) [15]. The CTL formulae are generated according to the formulae in-
troduced in Section 4 by searching the NTAs. The generated NTA and formulae
are then checked by UPPAAL.

Formal Throughput and Response Time Analysis of MARTE Models 441

In this section, we present two case studies to demonstrate the effectiveness
of our methods. In the first case study, we analyze the throughput of a system
deploying on a platform with heterogeneous processors. The second case study
analyzes the response time of an order processing system.

5.1 Throughput of a System Mapping on Multiprocessor

Consider a multiprocessor mapping problem from [1], as shown in Fig. 10. There
are two different kinds of processors, P1 and P2. The task includes 5 subtasks,
which may be mapped on P1 or P2. Subtasks inpC and oper2 can use either
one; oper1 and outW can use only P1 and outZ only P2. oper1 and outW can
run in parallel with oper2 and outZ, as shown in Fig. 10(a). The time consump-
tions when they are assigned to different processors are shown in Fig. 10(b).
Since the execution time may be different when a subtask is assigned to dif-
ferent processors, different assignment will affect the throughput of the system.
It is interesting to ask what is the maximal reachable throughput and what a
throughput we can get even in the worst situation. That is, what are the values
of TPmax and TPmin of the system. We answer these questions below.

inpC
oper1

oper2

outW

outZ

P1

P2

(a)

P1 P2
inpC 4ms 6ms
oper1 10ms
oper2 10ms 8ms
outW 4ms
outZ 6ms

(b)

Fig. 10. A System Mapping on Multiprocessor. (a) The task and processors; (b) the
execution time of each action on different processors.

Suppose there are two processors, one of P1 and one of P2. Totally there are 5
users arriving one by one in an interval of 1 millisecond, and 2 concurrent active
tasks are allowed. The MARTE model of this system is shown in Fig. 11. The
number of processors are represented by the tagged value “resMult=1” in DD,
shown in Fig. 11 (b); the number of users and their arrival pattern are represented
by the tagged values “population=5” and “extDelay=(1,ms)” in UCD, shown
in Fig. 11 (a); and the number of allowed concurrent active tasks is represented
by the tagged value “concurrent=2” of the model. In the AD shown in Fig. 11
(c), the parallel subtasks are modeled by fork and join nodes; and an alternative
assignment of a subtask is modeled by decision and merge nodes.

The NTA transformed from Fig. 11 is shown in Fig. 12. By checking the NTA
and formulae f∀(t) and f∃(t) using UPPAAL, we get TPmax = 5/69 = 0.0549
and TPmin = 5/141 = 0.0355.

Furthermore, with the change of the parameters of a MARTE model, e.g., the
number of processors, the throughput of a system may be different. In Fig. 13,
we show the impacts of the number of processors and the number of allowed

442 G. Yan et al.

(a) (b)

(c)

Fig. 11. The MARTE model for deploying different operations on multiprocessor issue.
(a) The use case diagram; (b) the deployment diagram; (c) the activity diagram that
describes the task in Fig. 10(a).

User_num--,Res_alloc_num++,x=0

x=0

Res_alloc_num--
trigger_Res_alloc!

User

x<=1

Res_alloc_num>0&&sys_conc>0

User_num==0&&
x>=1

User_num>0&&x>=1

(a)

rel_P1?

get_P1?

P2_num++

P1

get_P2?

rel_P2?

P2

P1_num>0

P2_num--

P1_num++

P2_num>0

P1_num--

(b)

rel_P1!

Res_alloc_fork1_end?

rel_P2!

trigger_Res_alloc?
Ini_InitialNode1

get_P1!

sys_conc--,x=0

Res_alloc_fork1_end?

get_P2!

Res_alloc_fork1_start!

x=0

l_JoinNode1

l_ForkNode1_waiting2

l_DecisionNode1

l_MergeNode1

l_inpC_p1 l_inpC_p2

l_inpC_p1_waitingres

l_ForkNode1_waiting1

l_inpC_p2_waitingres

l_ForkNode1

l_ActivityFinalNode1

x=0

x>=4 x>=6

x<=6x<=4

sys_conc++,x=0

x=0

x=0

x=0

(c)

Res_alloc_fork1_end!

get_P2!
rel_P1! rel_P2!

Res_alloc_fork1_start?

x=0

get_P2!

x=0

get_P1!

x=0

l_outZ_p2

l_oper2_p2_waitingres

l_outZ_p2_waitingres

l_MergeNode2

rel_P2!

l_DecisionNode2ForkNode1_p1Init

l_oper2_p2l_oper2_p1

l_oper2_p1_waitingres

JoinNode1_p1

x=0

x>=8
x>=6

x>=10

x<=6

x<=8

x=0

x=0

x=0

x=0

x<=10

(d)

Res_alloc_fork1_end! rel_P1!

Res_alloc_fork1_start?

x=0

get_P1!

get_P1!
x=0

l_outW_p1 l_outW_p1_waitingres

rel_P1!

ForkNode1_p2Init l_oper1_p1_waitingres l_oper1_p1

JoinNode1_p2

x=0

x=0

x>=4

x>=10

x=0

x=0

x<=10

x<=4

(e)

Fig. 12. The NTA transformed from Fig. 11. (a) TA template of the actor; (b) TA
template of the resource; (c) TA template of the activity; (d) and (e) the forked TA
templates of (c).

Formal Throughput and Response Time Analysis of MARTE Models 443

concurrent activities on throughput. In Fig. 13 (a), the throughput improves
when the number of P1 is increased to 2, and then it keeps the same when
further increasing the number of P1. The case for P2 is similar. These attempts
show that when 5 users and 2 concurrent activities are allowed, 2 P1s and 2
P2s are sufficient for the best throughput performance. We show the impact of
concurrent numbers in Fig. 13 (b), which has more distinct effect on TPmax

than on TPmin.

(a) (b)

Fig. 13. The impact of different parameters on throughput. (a) The impact of the
number of processors; (b) the impact of the number of allowed concurrent activities.

5.2 Response Time of an Order Processing System

In an order processing system [16], when a request of a user arrives, the system
first sets up an order for the user, then carries out different operations according
to whether the user is a VIP or not and sends a message to the user after the
whole procedure is finished. We present the AD of the MARTE model describing
this system in Fig. 14. It is interesting to know whether the user’s request can
be processed in time.

Fig. 14. The activity diagram of an order processing system

The transformed NTA of this system is shown in Fig. 15. Let the response time
requirements be Ds. The transformed NTAs for different Ds are different only

444 G. Yan et al.

Order_proc_num--

User_num--,Order_proc_num++,x=0

x=0

arrive!

trigger_Order_proc!

User

x<=1

Order_proc_num>0&&sys_conc>0

User_num==0&&x>=1

User_num>0&&x>=1

PC_num++

PC_num--
get_PC?

rel_PC?

PC_num>0

PC

Order_proc_fork1_end?

rel_PC!

Order_proc_fork1_end?

Order_proc_fork1_start!

rel_PC!

rel_PC!

rel_PC!

trigger_Order_proc?

x=0

sys_conc--,
finished=false,x=0

x=0get_PC!

get_PC!

arrive?

get_PC!

get_PC!

x=0

l_ForkNode1_waiting1

l_ForkNode1_waiting2

l_ForkNode1

l_mailpacket_waitingres l_MergeNode1

l_JoinNode1

l_DecisionNode1

Ini_InitialNode1
l_assignseats2

l_assignseats2_waitingres

waitingstart

l_mailpacket

l_setuporder_waitingres

l_chargecreditcard

l_setuporder

l_chargecreditcard_waitingres

l_ActivityFinalNode1

x=0
x>=2

y<=dl x>=1

x>=5

x<=11

x<=4

x<=3

x<=3

x=0

x=0

sys_conc++,finished=true,x=0

x>=2

y=0

x=0

x=0

x=0

Fig. 15. The NTA of the order processing system

on values of constant variable dl = D according to the requirements. Suppose
the number of users is 3, the number of resource “PC” is 2 and the number of
allowed concurrent activities is 3. The values of D are 13s, 14s, 20s, 45s and 46s,
respectively. The results returned by checking the NTAs and formulae r∀(dl)
and r∃(dl) using UPPAAL are shown in Table 1, from which we can conclude
that all the 3 requests can be responded in 46s, no matter how to schedule the
system to run. There are no schedulers of the system to make all the 3 requests
being responded in 13s. Table 1 also reveals that RTmin = 14 and RTmax = 46.

Table 1. Response time analysis of the order processing system

dl 13 14 20 45 46

r∀ false false false false true
r∃ false true true true true

6 Conclusions and Future Work

In this paper, we have presented methods to analyze the throughput and response
time of systems described in MARTE models, which include a use case diagram,
a deployment diagram and a set of activity diagrams. We transform a MARTE
model into an NTA and compile the concerned properties into CTL formulae,
then use UPPAAL to check whether the NTA satisfies the formulae. According
to the results returned by UPPAAL, we find the possible best throughput and
response time of MARTE models, and the best solution in the worst cases for

Formal Throughput and Response Time Analysis of MARTE Models 445

both of them. Two case studies we have conducted to demonstrate our support
of decision makings for designers in analyzing models with different parameters,
such as the number of concurrent activities and the number of resources.

The MARTE models we use in this paper only involve a small subset of
elements of the MARTE specification. As the future work, we will consider more
elements, such as sequence diagrams and state machines, to make our models
more expressive. We will also integrate more valuable and verifiable properties
into our method.

References

1. OMG. UML Profile for MARTE, Beta 2,
http://www.omg.org/cgi-bin/doc?ptc/2008-06-08

2. Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence diagrams and stat-
echarts to analysable petri net models. In: WOSP 2002, pp. 35–45 (2002)

3. Holzmann, G.J.: The model checker SPIN. J. TSE 23(5), 279–295 (1997)
4. Guelfi, N., Mammar, A.: A formal semantics of timed activity diagrams and its

PROMELA translation. In: APSEC 2005, pp. 283–290 (2005)
5. Piel, E., Atitallah, R.B., Marquet, P., et al.: Gaspard2: from MARTE to SystemC

simulation. In: DATE 2008, pp. 23–28 (2008)
6. Merseguer, J., Bernardi, S.: Dependability analysis of DES based on MARTE and

UML state machines models. J. DEDS 22(2), 163–178 (2012)
7. Alur, R., Dill, D.L.: A theory of timed automata. J. TCS 126(2), 183–235 (1994)
8. Suryadevara, J., Seceleanu, C., Mallet, F., Pettersson, P.: Verifying MARTE/CCSL

mode behaviors using UPPAAL. In: Hierons, R.M., Merayo, M.G., Bravetti, M.
(eds.) SEFM 2013. LNCS, vol. 8137, pp. 1–15. Springer, Heidelberg (2013)

9. Bengtsson, J., Larsen, K., Larsson, F., et al.: UPPAAL-a tool suite for automatic
verification of real-time systems. J. Hybrid Systems III. 1066, 232–243 (1996)

10. Ravn, A.P., Srba, J., Vighio, S.: A formal analysis of the web services atomic
transaction protocol with UPPAAL. In: Margaria, T., Steffen, B. (eds.) ISoLA
2010, Part I. LNCS, vol. 6415, pp. 579–593. Springer, Heidelberg (2010)

11. Ravn, A.P., Srba, J., Vighio, S.: Modelling and verification of web services business
activity protocol. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS,
vol. 6605, pp. 357–371. Springer, Heidelberg (2011)

12. Larsen, K.G., Pettersson, P., Wang, Y.: UPPAAL in a nutshell. J. STTT 1(1),
134–152 (1997)

13. FMPAer, http://lcs.ios.ac.cn/~zxy/tools/fmpaer.htm
14. Papyrus, http://www.papyrusuml.org
15. Jouault, F., Allilaire, F., Bzivin, J., et al.: ATL: A model transformation tool. J.

SCP 72(1), 31–39 (2008)
16. Xuandong, L., Meng, C., Yu, P., Jianhua, Z., Guoliang, Z.: Timing analysis of UML

activity diagrams. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185,
p. 62. Springer, Heidelberg (2001)

http://www.omg.org/cgi-bin/doc?ptc/2008-06-08
http://lcs.ios.ac.cn/~zxy/tools/fmpaer.htm
http://www.papyrusuml.org

Extending MSVL with Function Calls�

Nan Zhang, Zhenhua Duan��, and Cong Tian

Institute of Computing Theory and Technology,
and ISN Laboratory Xidian University, Xi’an 710071, China

zhhduan@mail.xidian.edu.cn, nanzhang@xidian.edu.cn

Abstract. Modeling, Simulation and Verification Language (MSVL) is a use-
ful formalism for specification and verification of concurrent systems. To make
it more practical and easier to use, we extend MSVL with function calls in this
paper. To do so, an approach for function calls similar as in imperative program-
ming languages is presented. Further, the semantics of expressions is redefined
and the semantics of new added function call statements is formalized. Moreover,
an example is given to illustrate how to use function calls in practice with MSVL.

Keywords: Temporal Logic Programming, Projection, Function Call, Modeling,
Simulation, Verification.

1 Introduction

Modeling, Simulation and Verification Language (MSVL) [1] is a useful formalism for
specification and verification of concurrent and real time systems [2,4,6,7,11]. It con-
tains common statements used in most of imperative programming languages (e.g. C,
Java) such as assignment, sequential (ϕ1;ϕ2), branch (if b then ϕ1 else ϕ2) and
iteration (while b do ϕ) statements but also parallel and concurrent statements such
as conjunct (ϕ1 and ϕ2), parallel (ϕ1‖ϕ2) and projection ((ϕ1, . . . , ϕm) prj ϕ) state-
ments. The projection construct enables us to model a system in two time scales: with
the fine-grained time interval, ϕ1, . . . , ϕm are sequentially executed whereas with the
coarse-grained interval called projected interval consisting of the executing end points
of each program ϕi, ϕ is paralleled executed to monitor or control all or some of ϕi.
This construct is particularly useful for modeling and simulating scheduling and real
time systems [3,9,11]. Further, a Cylinder Computation Model (CCM) is proposed and
included into MSVL [10,11], which can be used to describe and reason about multi-core
parallel programs. Moreover, asynchronous communication mechanism has also been
implemented in MSVL [5] which can be employed to model and verify distributed sys-
tems. To make MSVL more practical and useful, multi-types such as integer, float,
char, string, pointer and struct etc. [8] have been recently formalized and im-
plemented. Therefore, multi-typed values, functions and predicates concerning the ex-
tended data domain can be defined. However, functions calls as a kind of useful building

� The research is supported by the National Program on Key Basic Research Project of China
(973 Program) Grant No.2010CB328102, National Natural Science Foundation of China under
Grant No. 61133001, 61202038, 61272117, 61272118, 61322202 and 91218301.

�� Corresponding author.

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 446–458, 2014.
c© Springer International Publishing Switzerland 2014

Extending MSVL with Function Calls 447

block have not been formalized and implemented in MSVL yet so far. So, we are moti-
vated to formalize a scheme to realize function calls based on multi-types.

The contributions of the paper are twofold: (1) Function definitions are formalized.
With our scheme, a programmer is allowed not only to define new functions themselves
but also to directly employ C library functions. Function definitions can be classified
into four categories in terms of arguments and return value: with arguments and return
value, with arguments but no return value, without arguments but with return value,
with no arguments or return value. (2) Two kinds of function calls, black-box calling
(short for b-call or ext-call) and white-box calling (short for w-call), are formalized.
If we concern only the return value of a function but do not care about the interval
over which the function is executed, a function ext-call should be employed. Most of
function ext-calls are used in expressions. On the other hand, if we concern both the
return value and the executed interval of a function, a function w-call should be used.

The rest of the paper is organized as follows: PTL and MSVL are briefly reviewed
in the next section. Then, functions calls scheme is introduced in section 3, including
the formalization of function definitions and function calls. In section 4, an example is
given to illustrate how to program and call functions in MSVL. Finally, conclusions are
drawn in section 5.

2 Preliminaries

2.1 PTL

In this section, the syntax and semantics of the underlying logic, Projection Temporal
Logic (PTL), are briefly introduced. For more detail, please refer to paper [1].

SYNTAX Let P be a countable set of propositions, and V a countable set of typed
variables consisting of static and dynamic variables. It is assumed that the value of
a static variable remains the same over an interval (defined later) whereas a dynamic
variable can have different values at different states. B represents the boolean domain
{tt,ff }, D denotes all data needed by us including integers, lists, sets etc. Z denotes all
integers, N0 stands for non-negative integers and N denotes positive integers. Terms e
and formulas φ are inductively defined as follows:

e ::= u | © e | -©e | f(e1, . . . , en)
φ ::= q | e1 = e2 | P (e1, . . . , en) | ¬φ | φ1 ∧ φ2 | ∃x : φ | © φ | (φ1, . . . , φm) prj φ

where u, x ∈ V and q ∈ P. A formula (term) is called a state formula (term) if
it contains no temporal operators, i.e. ©, -©, prj, otherwise it is a temporal formula
(term).

SEMANTICS A state s over V∪P is defined to be a pair (Iv, Ip) of state interpretations
Iv and Ip. Iv assigns each variable u ∈ V a value in D or nil (undefined) and the total
domain is denoted by D′ = D ∪ {nil}, whereas Ip assigns each proposition q ∈ P a
truth value in B. s[u] denotes the value of u at state s.

448 N. Zhang, Z. Duan, and C. Tian

An interval σ is a non-empty sequence of states, which can be finite or infinite. The
length, |σ|, of σ is ω if σ is infinite, and the number of states minus 1 if σ is finite. We
extend the set N0 of non-negative integers to include ω, denoted by Nω = N0 ∪ {ω}
and extend the comparison operators, =, <, ≤, to Nω by considering ω = ω, and
for all i ∈ N0, i < ω. Furthermore, we define 5 as ≤ −{(ω, ω)}. For conciseness
of presentation, 〈s0, . . . , s|σ|〉 is denoted by σ, where s|σ| is undefined if σ is infi-

nite. The concatenation of a finite σ with another interval (or empty string) σ
′

is de-
noted by σ · σ′

(not sharing any states). Let σ = 〈s0, s1, . . . , s|σ|〉 be an interval and
r1, . . . , rh be integers (h ≥ 1) such that 0 ≤ r1 ≤ r2 ≤ . . . ≤ rh 5 |σ|. The projec-
tion of σ onto r1, . . . , rh is the interval (called projected interval) σ ↓ (r1, . . . , rh) =
〈st1 , st2 , . . . , stl〉 where t1, . . . , tl are obtained from r1, . . . , rh by deleting all dupli-
cates. That is, t1, . . . , tl is the longest strictly increasing subsequence of r1, . . . , rh.
For instance, 〈s0, s1, s2, s3, s4〉 ↓ (0, 0, 2, 2, 2, 3) = 〈s0, s2, s3〉. We also need to gen-
eralize the notation of σ ↓ (r1, . . . , rh) to allow ri to be ω. For an interval σ =
〈s0, s1, . . . , s|σ|〉 and 0 ≤ r1 ≤ r2 ≤ . . . ≤ rh ≤ |σ| (ri ∈ Nω), we define
σ ↓ (r1, . . . , rh, ω) = σ ↓ (r1, . . . , rh). To evaluate the existential quantification, an
equivalence relation is required and given below. We use Ikv and Ikp to denote the state
interpretations at state sk.

Definition 1 (x- equivalence) Two intervals, σ and σ′, are x-equivalent, denoted by
σ′ x

= σ, if |σ| = |σ′|, Ihv [y] = I
′h
v [y] for all y ∈ V − {x}, and Ihp [q] = I

′h
p [q] for all

q ∈ P (0 ≤ h 5 |σ|).

An interpretation is a quadruple I = (σ, i, k, j), where σ is an interval, i, k ∈ N0, and
j ∈ Nω such that 0 ≤ i ≤ k 5 j ≤ |σ|. We use the notation (σ, i, k, j) to indicate
that some formula φ or term e is interpreted over the subinterval 〈si, . . . , sj〉 of σ with
the current state being sk. For every term e, the evaluation of e relative to interpretation
I = (σ, i, k, j), denoted by I[e], is defined by induction on terms as follows:

1. I[u] =

{
sk[u] = Ikv [u] = Iiv[u] if u is a static variable.
sk[u] = Ikv [u] if u is a dynamic variable.

2. I[©e] =

{
(σ, i, k + 1, j)[e] if k < j
nil otherwise

3. I[-©e] =

{
(σ, i, k − 1, j)[e] if i < k
nil otherwise

4. I[f(e1, . . . , en)] =
{
nil if I[eh] = nil, for some h ∈ {1, . . . , n}
I[f](I[e1], . . . , I[en]) otherwise

The meaning of formulas is given by the satisfaction relation, |=, which is inductively
defined as follows:

1. I |= q iff Ikp [q] = tt , for any given proposition q.
2. I |= P (e1, . . . , en) iff P is a primitive predicate other than = and, for all h,

1 ≤ h ≤ n, I[eh] �= nil and P (I[e1], . . . , I[en]) = tt .
3. I |= e1 = e2 iff e1 and e2 are terms and I[e1] = I[e2].

Extending MSVL with Function Calls 449

4. I |= ¬φ iff I � φ.
5. I |= ©φ iff k < j and (σ, i, k + 1, j) |= φ.
6. I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2.
7. I |= ∃x : φ iff there exists an interval σ′ such that σ′

(i..j)
x
= σ(i..j) and

(σ′, i, k, j) |= φ.
8. I |= (φ1, . . . , φm) prj φ iff there exist integers k = r0 ≤ · · · ≤ rm−1 & rm ≤ j such

that for all 1 ≤ l ≤ m, (σ, i, rl−1, rl) |= φl, and (σ
′
, 0, 0, |σ′|) |= φ for one of the

following σ
′
:

(a) rm < j and σ′ = σ ↓ (r0, . . . , rm) · σ(rm+1..j), or
(b) rm = j and σ′ = σ ↓ (r0, . . . , rh) for some 0 ≤ h ≤ m.

ABBREVIATION The abbreviations true, false , ∧, → and ↔ are defined as usual. In

particular, true
def
= φ∨¬φ and false

def
= φ∧¬φ for any formula φ. The derived formulas

are given as follows, where n ∈ N0.

A1 more
def
= ©true A2 ε

def
= ¬© true

A3 ©0φ
def
= φ A4 ©n+1φ

def
= ©(©nφ)

A5 φ1;φ2
def
= (φ1, φ2) prj ε A6 �φ

def
= true ;φ

A7 �φ
def
= ¬�¬φ A8

⊙
φ

def
= ε ∨©φ

A9 φ0 def
= ε A10 φn+1 def

= φn;φ

A11 len(n)
def
= ©nε A12 skip

def
= len(1)

A13 fin(p)
def
= �(ε→ p) A14 inf

def
= ¬�ε

A15 keep(p)
def
= �(more → p) A16 halt(p)

def
= �(ε↔ p)

2.2 MSVL

Modeling, Simulation and Verification Language (MSVL) is an executable subset of
PTL. The following is a snapshot of the simple kernel of MSVL. For more detail, please
refer to paper [1]. With MSVL, expressions can be treated as terms and statements can
be treated as formulas in PTL. The arithmetic and boolean expressions of MSVL can
be inductively defined as follows:

e ::= n | x | © x | -© x | e0 + e1 | e0 − e1 | e0 ∗ e1 | e0 % e1
b ::= tt | ff | ¬b | b0 ∧ b1 | e0 = e1 | e0 < e1

where n is an integer and x is a static or dynamic variable. One may refer to the value
of a variable at the previous state or the next state. The statements of MSVL can be
inductively defined in the following table:

Name Symbol ϕ PTL Definition F(ϕ)

1 Termination empty ε

2 Assignment x := e ©x = e ∧©px ∧ skip

3 Positive Immediate Assignment x <== e x = e ∧ px

4 State Frame lbf(x) ¬af(x) → ∃ b : (-©x = b ∧ x = b)

450 N. Zhang, Z. Duan, and C. Tian

5 Interval Frame frame(x) �(more → ©F(lbf(x)))

6 Next next ϕ ©F(ϕ)

7 Always always ϕ �F(ϕ)

8 Conditional if b then ϕ0 else ϕ1 (b → F(ϕ0)) ∧ (¬b → F(ϕ1))

9 Existential Quantification exist x : ϕ ∃ x : F(ϕ)

10 Sequential ϕ0;ϕ1 F(ϕ0);F(ϕ1)

11 Conjunction ϕ0 and ϕ1 F(ϕ0) ∧ F(ϕ1)

12 While while b do ϕ (b ∧ F(ϕ))∗ ∧ �(ε → ¬b)

13 Selection ϕ0 or ϕ1 F(ϕ0) ∨ F(ϕ1)

14 Parallel ϕ0‖ ϕ1 F(ϕ0) ∧ (F(ϕ1); tt) ∨ (F(ϕ0); tt) ∧ F(ϕ1)

15 Projection (ϕ1, . . . , ϕm) prj ϕ (F(ϕ1), . . . ,F(ϕm)) prj F(ϕ)

16 Interval Length len(n) ©nε

17 Synchronous Communication await(c) F(frame(x1, . . . , xn)) ∧ �(ε ↔ c)

MSVL supports structured programming and covers some basic control flow state-
ments such as sequential statement, conditional statement, while-loop statement and so
on. Further, MSVL also supports non-determinism and concurrent programming by in-
cluding selection, conjunction and parallel statements. Moreover, a framing technique
is introduced to improve the efficiency of programs and synchronize communication
for parallel processes. In addition, MSVL has been extended in a variety of ways. For
instance, multi-types have been recently formalized and implemented [8]. Hence, typed
variables, typed functions and predicates over the extended data domain can be defined.

3 Introducing Function Calls into MSVL

We extend MSVL in this section by introducing and formalizing function definitions
and calls, including the syntax and semantics. Since we permit the appearance of func-
tion calls with return values in expressions, the form and interpretation of MSVL ex-
pressions also need to be reconsidered.

3.1 Data Types

Like C programming language, MSVL provides a variety of data types. The fundamen-
tal types are unsigned characters (char), unsigned integers (int) and floating point
numbers (float). In addition, there is a hierarchy of derived data types built with
strings (string), lists (list), pointers (pointer), arrays (array), structures (struct)
and unions (union). For more detail, please refer to paper [8].

3.2 Function Calls

There are two kinds of functions in MSVL: one is external functions, written in other
programming languages such as C and Java and the other is user-defined functions
written in MSVL.

Extending MSVL with Function Calls 451

General Principles. MSVL can only define functions and predicates. The so called
functions in C are mixed cases of functions and predicates. Generally speaking, the
following statements can be used to define state functions and predicates:

define type f(type1 x1, ..., typen xn)
def
= e

define P (type1 x1, ..., typen xn)
def
= ϕ

where x1, ..., xn are typed state variables and e a typed expression while ϕ is a state-
ment. Thus, f is defined as a typed n arity function while P is defined as an n arity
predicate. A state function can be called by substituting arguments e1, ..., en for param-
eters x1, ..., xn respectively within an expression while a predicate can be invocated in
a similar way but as a statement. For example,

define float max(float x, float y)
def
= if (x > y) then x else y

defines a state function max which can be used in an expression such as
9.5 + max(7.5, 8.5).

define max(int a[], int lim, int x)
def
= frame(temp, i) and (

int temp := a[0];
int i := 1;
while (i ≤ lim− 1) do
{(if a[i] > temp then temp := a[i]); i := i+ 1};

x := temp;
)

The above defines a predicate max which chooses a maximum element from an ar-
ray with length lim. To call it, we only need to replace all parameters by arguments
and make a statement: max(x[9, 8, 7, 1, 9, 2, 3, 6, 5], 9, y), which chooses the maximum
from the array x and stores the result into the variable y.

(1) External function calls
If we permit an MSVL program to call an external functions written in C or Java

such as C standard library functions, the situation turns to be complicated since we do
not know the interval of the execution of an external function. Nevertheless if we do
not care about the executed interval of an external function but concern only with its
return value and output results, we could simplify the calling process. In fact, a standard
definition of C functions is of the following form:

return type g(in type1 x1, ..., in typen xn, out type1 y1, ..., out typem ym)

where g is a function with x1, ..., xn as its typed input parameters while y1, ..., ym as
its typed output parameters and return type as the type of its return value. For example,

int getline(int lim, char s[])

452 N. Zhang, Z. Duan, and C. Tian

is a C function which reads a character line into array s[] with length limited by input
parameter lim and returns the actual length of the string. In some circumstances, input
or output parameters or return value or all of them can be omitted (denoted by void). In
order to call this type of functions as a statement in an MSVL program, the C functions
need to be slightly modified in C as shown below:

void g(in type1 x1, ..., in typen xn, out type1 y1, ..., out typem ym, return type RV [])

where we add an extra typed return parameter to the function. Note that the last
“return val” statement in a C function now needs to be replaced by an assignment
“RV [0] = val” statement in the function without changing other statements.

To call this kind of functions as a statement in an MSVL program without concerning
the interval on which the function is executed, we make a new statement below:

ext g(e1, ..., en, z1, ..., zm, R)

For example, getline function written in C can be re-written as follows:

void getline(int lim, char s[], int rv[])

This new function can be directly called in an MSVL program as a statement:

ext getline(10, x, l);

Of course, a C function without a return value can be directly called using the above
form.

If an external function without output parameters but with a return value, since we
only concern the return value of an external function, it can directly be called in an
expression. For example, C function int strlen(char s[]), returning the length of a
string s, can be employed in an expression in MSVL program:

ext strlen(“hello world!”) + ext strlen(“Good morning!”) ≥ 10

(2) User-defined function calls
If an external function modifies memory units or program variables, it is required to

redefine in MSVL and cannot be directly called from an MSVL program. For example,
void ∗ memcpy(s, ct, n) is a standard C function which copies n characters from ct to
s and returns s. When this function is used, a pointer pointing memory address could
be returned. Therefore, it is not permitted to be called in an MSVL program. To use
this kind of external functions, the only way is to redefine them in MSVL. User de-
fined functions can be classified into four categories: (a) functions with arguments and
return value; (b) functions with return value but without arguments; (c) functions with
arguments but without return value; (d) functions with no arguments or return value.
Generally, a user defined function is of the following form in MSVL:

define g(in type1 x1, ..., in typen xn, out type1 y1, ..., out typem ym, return type RV [])

where we add an extra typed return parameter to the function as output parameter.
Note that the last “return val” statement in a C function now needs to be replaced by
an assignment “RV [0] := val” statement in an MSVL function if we try to redefine

Extending MSVL with Function Calls 453

the C function. In fact, it is really a predicate with two kinds of parameters: input and
output parameters. To call this kind of functions in an MSVL program, it is simply
to write the following statement with input arguments e1, ..., en and output arguments
z1, ..., zm and R:

g(e1, ..., en, z1, ..., zm, R);

For example, getline function written in C can be re-written as follows:

getline(int lim, char s[], int rv[])
def
= Q

where Q is defined in the MSVL program below:

/* getline: get line into s, store length into rv */
define getline(int lim, char s[], int rv[])
{

frame(s[], lim, c,RValue)
and int RValue <== 0
and char c <== ext getchar()
and (

while (lim− 1 > 0 and c! = EOF and c! = ’\n’)
{
s[RValue] <== c and

RValue := RValue + 1 and

lim := lim− 1 and

c := ext getchar()
};
if (c = ’\n’) then s[RValue] <== c and RValue := RValue + 1;
s[RValue] <== ’\0’;
rv[0] := RValue

)
}

Now getline function can now be called as follows:

ext getline(10, x, l);

3.3 Interpretation of Function Calls

There are two kinds of function calls in MSVL: (1) Black-box call or external call
(short for b-calls or ext-calls): the interval over which the called function is executed is
ignored. If a function neither changes any memory units nor uses any external variables
whose scopes are not limited to the function, it can be called using black-box manner by
the calling function. Such kind of function calls often appears in expressions. In other

454 N. Zhang, Z. Duan, and C. Tian

words, all the function calls appearing in expressions are external calls. (2) White-box
call: the interval over which the called function is executed is inserted and concate-
nated with the main interval over which the calling function is executed. If a function
uses some external variables, it should be called using white-box manner by the calling
function.

(1) Interpretation of function calls in expressions
With expressions, function calls with black-box manner are only allowed. Since more

data types have been included into MSVL, expressions should also be extended to cover
more types. Thus expressions are inductively redefined as follows:

• Individual typed constants are basic expressions: a, b, c, . . . ∈ D possibly with
subscripts.

• Individual typed variables (static or dynamic) are basic expressions: u, v, x, y, z,
. . . ∈ V possibly with subscripts.

• Temporal operators: if e is an expression, then©e and -©e are expressions.
• Non-temporal operators: if op is an operator of arity n (n > 0) in MSVL and

e1, . . . , en are expressions of types compatible with types of parameters of op, then
op(e1, . . . , en) is an expression. The operators allowed in MSVL are given in the
following list.

Multiplicative operators: *, /, %
Unary additive operators: +, −
Binary additive operators: +, −
Relational operators: =, ! =, <, <=, >, >=
Bitwise operators: &, |, ,̂ <<, >>
Logical operators: ¬, ∧, ∨

• if h is a user defined state function of arity n (n > 0) and e1, . . . , en are expres-
sions of types compatible with types of parameters of h, then h(e1, . . . , en) is an
expression;

• if f is a user defined function of arity n (n > 0) and e1, . . . , en are expressions
of types compatible with types of parameters of f, then ext f (e1, . . . , en) is an
expression;

• if g is an external function of arity n (n > 0) and e1, . . . , en are expressions of types
compatible with types of parameters of g, then ext g(e1, . . . , en) is an expression;

For each expression e, the evaluation of e related to interpretation I = (σ, i, k, j),
denoted by I[e], is redefined based on the semantics of PTL.

1. I[a] = a for each typed constant a ∈ D.

2. I[u] =
{

sk[u] = Ikv [u] = Iiv[u] if u is a static variable.
sk[u] = Ikv [u] if u is a dynamic variable.

3. I[©e] =

{
(σ, i, k + 1, j)[e] if k < j.
nil otherwise.

Extending MSVL with Function Calls 455

4. I[-©e] =

{
(σ, i, k − 1, j)[e] if i < k.
nil otherwise.

5. I[op(e1, . . . , en)] =
{
nil if I[ei] = nil for some i ∈ {1, . . . , n}.
I[op](I[e1], . . . , I[en]) otherwise.

op is an operator.

6. I[h(e1, . . . , en)] =
{
nil if I[ei] = nil for some i ∈ {1, . . . , n}.
I[h](I[e1], . . . , I[en]) otherwise.

h is a state function.

7. I[ext f (e1, . . . , en)] =

{
nil if I[ei] = nil for some i ∈ {1, . . . , n}.
I[f](I[e1], . . . , I[en]) otherwise.

f is a non-state function.

8. I[ext g(e1, . . . , en)] =

{
nil if I[ei] = nil for some i ∈ {1, . . . , n}.
I[g](I[e1], . . . , I[en]) otherwise.

g is an external function.

(2) Interpretation of function calls in statements
For the new statement ext g(e1, ..., en, z1, ..., zm, R), its interpretation is given as

follows: Let σ =< s0, ..., sk, ..., s|σ| > be an interval, and I = (σ, i, k, j) be the

interpretation, Q
def
= (g(e1, ..., en, z1, ..., zm, R) ∧ ∃b1 · · · ∃bn∃r :

∧m
i=1 fin(zi =

bi) ∧ fin(R = r)) prj (zi := bi ∧ R := r). Thus,

I |= ext g(e1, ..., en, z1, ..., zm, R) iff j = k + 1 and there exists an interval
σ′′ =< sk, s

′′
1 , ..., sk+1 > such that σ′ =

σ(0..k) · σ′′ and (σ′, i, k, |σ′|) |= Q.

The model of Q is illustrated in Fig.1.

sk sk+1

Q

σ

σ′

si

si s′′1 s′′2 · · ·

Fig. 1. Interpretation of external function calls

456 N. Zhang, Z. Duan, and C. Tian

4 Example

In this section, we write a MSVL program to print each line of its input that contains
a particular “pattern” of characters. For example, searching for the pattern of letters
“ould” in the set of lines

Ah Love! could you and I with Fate conspire
To grasp this sorry Scheme of Things entire,
Would not we shatter it to bits – and then
Re-mould it nearer to the Heart’s Desire!

will produce the output

Ah Love! could you and I with Fate conspire
Would not we shatter it to bits – and then
Re-mould it nearer to the Heart’s Desire!

The MSVL program calls two functions: getline and strindex, which are defined in
C before the main program. The getline function fetches the next line of input, stores
it into s and stores the length of the line into RV . The strindex function records the
position or index in the string s where the string t begins, or −1 if s doesn’t contain t,
and stores the result into RV .

C Program

/* getline: get line into s, store length into RV*/
void getline(int lim, char s[], int RV[])
{

int c, i;
i=0;
while(−−lim>0 && (c=getchar())!=EOF && c!=’\n’)

s[i++]=c;
if(c==’\n’)

s[i++]=c;
s[i]=’\0’;
RV[0]=i;

}

/* strindex: store index of t in s into RV, -1 if none */
void strindex(char s[], char t[], int RV[])
{

int i, j, k, r=0;
for (i=0; s[i]!=’\0’&& r=0;i++) {

for (j=i, k=0; t[k]!=’\0’ && s[j]==t[k]; j++, k++)
;

Extending MSVL with Function Calls 457

if (k>0 && t[k]==’\0’)
{ r=1; RV[0]=i};

}
RV=-1;

}

MSVL Program

/* main program: find all lines matching pattern */
frame(MAX, pattern[], line[MAX], l[], in[], found, length, index)
and int MAX <== 1000 and char pattern[] <== "ould"
and int found <== 0 and int length and int index
and (

ext getline(MAX, line, l);
length := l[0];
while (length > 0)
{
ext strindex(line, pattern, in);
index := in[0];
if (index >= 0) then (printf ("%s", line); found := found+ 1);
ext getline(MAX, line, l);
length := l[0];
}

)

5 Conclusion

In this paper, MSVL is extended by means of formalizing function definitions and func-
tion calls. Functions with return value and no external variables are used to extend
expressions. The function calls appear in expressions are called black-box (or external)
calls. Functions with external variables can be called with the white-box manner as indi-
vidual statement. With black-box calling, the intermediate execution detail of functions
is ignored and only the return value is concerned. In white-box calling, the interval over
which the function is interpreted makes up a part of the interval over which the whole
program is interpreted. The function calls approach presented in this paper has been
implemented in the interpreter of MSVL. In the future, we will apply MSVL to model,
simulate and verify more practical applications.

458 N. Zhang, Z. Duan, and C. Tian

References

1. Duan, Z.: Temporal logic and temporal logic programming. Science Press, Beijing (2005)
2. Han, M., Duan, Z., Wang, X.: Time constraints with temporal logic programming. In: Aoki,

T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 266–282. Springer, Heidelberg
(2012)

3. Liu, C., Layland, J.: Scheduling algorithm for multiprogramming in a hard real-time envi-
ronment. Journal of the ACM 20(1), 46–61 (1973)

4. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent system. Springer, New
York (1992)

5. Mo, D., Wang, X., Duan, Z.: Asynchronous communication in MSVL. In: Qin, S., Qiu, Z.
(eds.) ICFEM 2011. LNCS, vol. 6991, pp. 82–97. Springer, Heidelberg (2011)

6. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium
on the Foundations of Computer Science, pp. 46–57. IEEE Computer Society, Providence
(1977)

7. Queille, J., Sifakis, J.: Specification and verification of concurrent systems in cesar. In:
Dezani-Ciancaglini, M., Montanari, U. (eds.) Proceedings of the 5th Colloquium on Interna-
tional Symposium in Programming. LNCS, vol. 137, pp. 337–351. Springer, Springer (1982)

8. Wang, X., Duan, Z., Zhao, L.: Formalizing and implementing types in msvl, pp. 62–75 (2013)
9. Zhan, N.: An intuitive formal proof for deadline driven scheduler. Journal of Computer

Science and Technology 16(2), 146–158 (2001)
10. Zhang, N., Duan, Z., Tian, C.: A cylinder computation model for many-core parallel com-

puting. Theoretical Computer Science 497, 68–83 (2013)
11. Zhang, N., Duan, Z., Tian, C., Du, D.: A formal proof of the deadline driven scheduler in

pptl axiomatic system. Theoretical Computer Science (2014)

Author Index

Aravantinos, Vincent 316

Ballarini, Paolo 155
Boström, Pontus 396
Boulgakov, Alexandre 11
Braunstein, Cécile 380
Busard, Simon 27

Carvalho, Ana 43
Carvalho, Gustavo 43
Cavalcanti, Ana 43
Chen, Xiaohong 59
Chin, Wei-Ngan 267
Ciobâcă, Ştefan 75
Ciobanu, Gabriel 91
Combemale, Benoit 235

Danos, Vincent 1
De Angelis, Francesco 107
Deng, Yuxin 123
Di Berardini, Maria Rita 107
Dong, Jin Song 171, 284, 300
Duan, Zhenhua 446
Dufourd, Jean-François 139

Gallet, Emmanuelle 155
Gherghina, Cristian 267
Gibson-Robinson, Thomas 11
Gui, Lin 171
Gupta, Indranil 332

Hagihara, Shigeki 364
Hasan, Osman 316
Havelund, Klaus 187
Haxthausen, Anne E. 380
He, Xudong 348
Heindel, Tobias 1
Hobor, Aquinas 267
Honorato-Zimmer, Ricardo 1
Hu, Hong 284
Huang, Wen-ling 380
Hübner, Felix 380

Isenberg, Tobias 203

Jebali, Fatma 219
Joshi, Rajeev 187

Kezadri Hamiaz, Mounira 235

Lamraoui, Si-Mohamed 251
Lang, Frédéric 219
Le, Ton Chanh 267
Le Gall, Pascale 155
Li, Guangyuan 430
Li, Li 284, 300
Liang, Yun 413
Liu, Liya 316
Liu, Si 332
Liu, Su 348
Liu, Yang 171, 284, 300, 413
Lucanu, Dorel 75

Manceny, Matthieu 155
Mateescu, Radu 219
Meseguer, José 332
Mochizuki, Shohei 364
Muccini, Henry 107

Nakajima, Shin 251

Pantel, Marc 235
Pecheur, Charles 27
Peleska, Jan 380
Polini, Andrea 107

Qu, Hongyang 27

Rahman, Muntasir Raihan 332
Raimondi, Franco 27
Rocha, Eduardo 43
Roscoe, A.W. 11
Roşu, Grigore 75
Rotaru, Armand Stefan 91
Rusu, Vlad 75

Sampaio, Augusto 43
Schulze, Uwe 380
Shimakawa, Masaya 364
Skeirik, Stephen 332

460 Author Index

Song, Songzheng 171

Stucki, Sandro 1

Sun, Jun 59, 171, 284, 300, 413
Sun, Meng 59

Sun, Zhuo 348

Tahar, Sofiène 316

Thirioux, Xavier 235
Tian, Cong 446

Vu Hong, Linh 380

Wehrheim, Heike 203
Wiik, Jonatan 396
Wu, Hengyang 123
Wu, Zhimin 413

Yan, Gaogao 430
Yan, Rongjie 430
Yonezaki, Naoki 364

Zeng, Reng 348
Zhang, Nan 446
Zhu, Xue-Yang 430

	Preface
	Organization
	SecGuru: Azure Network Verification Using Z3
	Scalable Software Testing and Verification through Heuristic Search and Optimization
	References

	Approximations for Stochastic Graph Rewriting
	Table of Contents
	Approximations for Stochastic Graph Rewriting
	References

	Computing Maximal Bisimulations
	1 Introduction
	2 Strong Bisimulation
	2.1 Na¨ıve Iterative Refinement
	2.2 Change-Tracking Iterative Refinement
	2.3 Paige-Tarjan Algorithm
	2.4 Performance

	3 Divergence-Respecting Delay Bisimulation
	3.1 Reduction to Strong Bisimulation
	3.2 Dynamic Programming Approach

	4 Divergence-Respecting Weak Bisimulation
	4.1 Algorithm

	5 Performance
	5.1 Diamond Elimination
	5.2 Timing
	5.3 Amount of Compression

	6 Conclusions
	References

	Improving the Model Checking of Strategiesunder Partial Observabilityand Fairness Constraints
	1 Introduction
	2 Background
	3 Generating Partial Strategies
	4 Model Checking ATLKirF with Partial Strategies
	5 Further Optimisations
	6 Experiments
	7 Conclusion
	References

	A Formal Model for Natural-Language TimedRequirements of Reactive Systems
	1 Introduction
	2 Definition and Properties of a DFRS
	2.1 Inputs, Outpus and Timers
	2.2 States
	2.3 Transitions
	2.4 Complete Definition

	3 Theoretical Validation: Mapping DFRSs to TIOTSs
	3.1 Definition and Properties of a TIOTS
	3.2 From DFRSs to TIOTSs

	4 Formalising Natural Language Requirements
	5 Practical Validation: Test Cases from NL Requirements
	6 Conclusions
	References

	A Hybrid Model of Connectors in Cyber-Physical Systems
	1 Introduction
	2 A ReoPrimer
	3 Hybrid Constraint Automata
	3.1 Syntax of HCA
	3.2 The State-Transition Graph of an HCA

	4 Hybrid Reo Circuits
	4.1 Hybrid Primitive Channels
	4.2 Join on HCA

	5 Conclusion
	References

	A Language-Independent Proof Systemfor Mutual Program Equivalence
	1 Introduction
	2 Preliminaries
	2.1 Many-Sorted First Order Logic
	2.2 The Amalgamation Theorem

	3 Matching Logic Syntax and Semantics
	4 Aggregation of Matching Logic Semantic Domains
	5 Specifying Equivalent Programs
	6 Proving Mutual Program Equivalence
	6.1 Proof System
	6.2 Example

	7 Discussion, Related Work and Conclusion
	References

	PHASE: A Stochastic Formalismfor Phase-Type Distributions
	1 Introduction
	2 Phase-Type Distributions and Process Calculi
	2.1 Step 1: Bringing the Model to a Simpler Form
	2.2 Step 2: Representing the States and the Transitions of the Model
	2.3 Step 3: Implementing the Sequential and Choice Operators
	2.4 Step 4: Implementing the Parallel Operator and Generating the Final Model

	3 PHASE Example of a Non-Markovian System
	4 Conclusion
	References

	CASSANDRA: An Online Failure PredictionStrategy for Dynamically Evolving Systems
	1 Introduction
	2 Background
	3 Approach Overview
	4 Cassandra – Approach Details
	4.1 A Model for Dynamic Composition and Compatibility
	4.2 The Online Failure Prediction Algorithm

	5 General Remarks
	5.1 Time Complexity
	5.2 Implementing Cassandra

	6 Related Work
	7 Conclusions and Future Work
	References

	Modal Characterisations of Probabilistic and Fuzzy Bisimulations
	1 Introduction
	2 Preliminaries
	3 Probabilistic Bisimulation and Simulation Equivalence
	4 Modal Characterisation of Probabilistic Bisimulation
	5 Fuzzy Simulation and Bisimulation
	6 Modal Characterisation of Fuzzy Bisimulation
	7 Conclusions and Future Work
	References

	Pointer Program Derivation Using Coq:Graphs and Schorr-Waite Algorithm
	1 Introduction
	2 Bi-functional Graphs
	3 Specification of Depth-First Marking
	4 Succession Function, Orbits, Internal Stack
	5 Depth-First Marking Using an Internal Stack
	6 Memory Model
	7 Memory to Graph, Graph to Memory
	8 Depth-First Marking in Memory
	9 Towards Concrete Programming
	10 Back to the Specification
	11 Work Related to Schorr-Waite Algorithm
	12 Conclusion
	References

	An LTL Model Checking Approachfor Biological Parameter Inference
	1 Introduction
	2 Genetic Regulatory Networks
	3 Modeling Dynamics with Parametric GRN
	4 Adapting LTL Model-Checking to PGRN
	5 Assessment
	6 Conclusion
	References

	SCC-Based Improved Reachability Analysis for Markov Decision Processes
	1 Introduction
	2 Preliminaries
	2.1 Markov Decision Processes
	2.2 Probability Reachability Analysis in MDPs

	3 SCC Reductions on Markov Decision Processes
	3.1 A Running Example
	3.2 Overall Algorithm
	3.3 States Abstraction
	3.4 Reduction of Probability Distributions Based on Convex Hull
	3.5 Termination and Correctness

	4 Implementation and Evaluation
	4.1 Case Study on Software Reliability Assessment
	4.2 Case Study on Tennis Tournament Prediction

	5 Related Work and Conclusion
	References

	Comprehension of Spacecraft TelemetryUsing Hierarchical Specifications of Behavior
	1 Introduction
	2 Related Work
	3 TheLogFire Rule Engine
	3.1 LogFireused for Verification
	3.2 LogFireUsed for Abstraction

	4 A DSL for Log Abstraction
	4.1 A More Convenient Notation for Abstraction
	4.2 Embedding as an Internal DSL in Scala
	4.3 Rule Generation with Scala

	5 Application: Mars-Earth Communication Sessions
	6 Conclusion and Future Work
	References

	Timed Automata Verification via IC3 with Zones
	1 Introduction
	2 Background
	2.1 Timed Automata
	2.2 IC3

	3 IC3 for Timed Automata Verification
	4 Implementation and Evaluation
	5 Related Work
	6 Conclusion
	References

	GRL: A Specification Language for GloballyAsynchronous Locally Synchronous Systems
	1 Introduction
	2 Related Work
	3 The GRL Language
	3.1 Overview
	3.2 Block
	3.3 Medium
	3.4 Environment
	3.5 System
	3.6 Formal Semantics
	3.7 Tools for GRL

	4 Example: Flight Control System
	5 Conclusion and Future Work
	References

	A Formal Framework to Provethe Correctness of Model Driven EngineeringComposition Operators
	1 Introduction and Motivation
	2 Use Case : MOF Package Merge
	2.1 Model Driven Engineering
	2.2 Meta-Object Facility
	2.3 MOF Package Merge
	2.4 Expected Property
	2.5 Verification Strategy

	3 Formalization Using Coq4MDE
	3.1 The Union Primitive Operator
	3.2 The Substitution Primitive Operator
	3.3 Proofs of Primitive Operators

	4 Validation
	5 Related Work
	5.1 Composition Approaches
	5.2 Formalization of MDE
	5.3 Compositional Verification

	6 Conclusions
	References

	A Formula-Based Approach for Automatic FaultLocalization of Imperative Programs
	1 Introduction
	2 Background
	3 Preliminaries
	4 Our Approach
	4.1 Program Pre-processing
	4.2 SSA-Based Trace Formula
	4.3 Computing Diagnoses
	4.4 Combination of MCSes

	5 Experiments
	5.1 SNIPER
	5.2 Experimental Setup
	5.3 Results for Single and Multiple Faults
	5.4 Push & Pop Optimization Results

	6 Related Work
	7 Conclusion
	References

	A Resource-Based Logic for Termination and Non-termination Proofs
	1 Introduction
	2 From Resource to Temporal Logic
	3 A Logic for Resource Reasoning
	3.1 Resource Capacity
	3.2 Assertion Language and Semantics for a Resource-Aware Logic
	3.3 Resource-Enhanced Entailment with Frame Inference
	3.4 Hoare Logic for Resource Verification

	4 (Non-)Termination Proofs via Resource Reasoning
	4.1 From Termination Measures to Execution Capacity’s Finite Upper Bounds
	4.2 Termination and Non-termination Verification
	4.3 Flow-Insensitive Temporal Logic

	5 Experiments
	5.1 Numerical Programs
	5.2 Heap-Manipulating Programs

	6 Related Work and Conclusion
	References

	Practical Analysis Framework for Software-Based Attestation Scheme
	1 Introduction
	2 Generic Specification for Software-Based Attestation
	2.1 System Overview
	2.2 Generic Attestation Scheme

	3 Security Criteria Formalization
	3.1 Full Utilization of Memory and Registers
	3.2 Pc Follow Checksum Computation Routine: Memory Recovering Attack
	3.3 Pc Pre-compute Checksum: Challenge Buffering Attack
	3.4 Pc Forward Checksum Computation to A: Proxy Attack

	4 Case Studies
	4.1 SWATT
	4.2 SCUBA
	4.3 VIPER

	5 Related Works
	6 Discussions and Future Works
	References

	TAuth: Verifying Timed Security Protocols
	1 Introduction
	2 Protocol Specification Framework
	2.1 Service Syntax
	2.2 Service Modeling
	2.3 Security Properties

	3 Verification Algorithm
	3.1 Service Basis Construction
	3.2 Query Searching

	4 Implementation and Experiments
	5 Conclusions and Discussions
	References

	On the Formal Analysis of HMM UsingTheorem Proving
	1 Introduction
	2 Related Work
	3 Formalization of Discrete-Time Markov Chains
	3.1 Definition of Discrete-Time Markov Chains
	3.2 Joint Probability
	3.3 Chapman-Kolmogorov Equation
	3.4 Absolute Probabilities

	4 Formalization of Hidden Markov Models
	4.1 Joint Probability of HMMs
	4.2 Joint Probability of an Observable Path
	4.3 Automating the HOL Computations

	5 Application: Formal Analysis of DNA Sequence
	6 Conclusions
	References

	Formal Modeling and Analysisof Cassandra in Maude
	1 Introduction
	2 Preliminaries
	2.1 Cassandra Overview
	2.2 Actors and LTL Model Checking in Maude

	3 Formalizing Cassandra
	3.1 Modeling the Ring Structure
	3.2 Modeling Clients and Servers
	3.3 Formalizing Reads and Writes in Cassandra

	4 Formal Analysis of Consistency in the Cassandra Model
	4.1 Consistency Properties
	4.2 Formal Analysis of Consistency with One Client
	4.3 Formal Analysis of Consistency with Multiple Clients

	5 Related Work and Concluding Remarks
	References

	Bounded Model Checking High Level Petri Netsin PIPE+Verifier
	1 Introduction
	2 High Level Petri Nets
	3 Satisfiability Modulo Theories Solvers
	3.1 Important Theories
	3.2 Z3

	4 Bounded Model Checking High Level Petri Nets
	4.1 General Idea of BMC using SMT Solver
	4.2 Represent HLPNs in SMT Context

	5 Evaluation
	5.1 Selected Benchmark Problems from Model Checking Contest @ Petri Nets
	5.2 Mondex
	5.3 Abstract State Machine Model

	6 Related Work
	6.1 Petri Nets Tools
	6.2 Symbolic Model Checking Tools

	7 Conclusion
	References

	Fast Translation from LTL to B¨uchi Automatavia Non-transition-based Automata
	1 Introduction
	2 Preliminary
	2.1 LTL
	2.2 Automata

	3 Converting LTL Formulae into GBA
	4 Converting GBA into NBA
	5 Reducing States of Automata
	5.1 Reduction of NBA Based on SCC of GBA
	5.2 Reduction of NBA Based on Equivalence of States in the GBA

	6 Advantages of Our Method Over a TGBA-Based Approach
	6.1 Features of Our Method
	6.2 Our Method vs. the TGBA-Based Approach

	7 Evaluation
	7.1 Comparison with Other Works
	7.2 Discussion

	8 Conclusion
	References

	Complete Model-Based Equivalence ClassTesting for the ETCS Ceiling Speed Monitor
	1 Introduction
	2 CSM Model Description
	3 Equivalence Class Partition Testing Strategy
	4 Evaluation
	5 Related Work
	6 Conclusion and Ongoing Work
	References

	Contract-Based Verification of MATLAB and Simulink Matrix-Manipulating Code
	1 Introduction
	2 MATLAB and Contract-Based Verification
	3 Language Definition
	4 Type System
	5 Verification
	5.1 Axiomatisation
	5.2 Expansion

	6 Benchmarks
	7 Related Work
	8 Conclusions
	References

	GPU Accelerated Counterexample Generation in LTL Model Checking
	1 Introduction
	2 Background
	3 CUDA Accelerated Counterexample Generation
	3.1 Detailed Approach
	3.2 Dynamic Three-Level Queue Management
	3.3 Dynamic Hierarchical Task Schedule
	3.4 Dynamic Duplicate Eliminated Path Recording

	4 Experiments and Evaluation
	5 Conclusion
	References

	Formal Throughput and Response TimeAnalysis of MARTE Models
	1 Introduction
	2 MARTE Models and Timed Automata in UPPAAL
	2.1 MARTE Models
	2.2 Timed Automata in UPPAAL

	3 Model Transformation
	3.1 Use Case Diagrams to TAs
	3.2 Deployment Diagrams to TAs
	3.3 Activity Diagrams to TAs

	4 Model Analysis
	4.1 Throughput Analysis
	4.2 Response Time Analysis

	5 Case Studies
	5.1 Throughput of a System Mapping on Multiprocessor
	5.2 Response Time of an Order Processing System

	6 Conclusions and Future Work
	References

	Extending MSVL with Function Calls
	1 Introduction
	2 Preliminaries
	2.1 PTL
	2.2 MSVL

	3 Introducing Function Calls into MSVL
	3.1 Data Types
	3.2 Function Calls
	3.3 Interpretation of Function Calls

	4 Example
	5 Conclusion
	References

	Author Index

