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Abstract Hsp90 functionally interacts with a broad array of client proteins, but 
in every case examined Hsp90 is accompanied by one or more co-chaperones. 
One class of co-chaperone contains a tetratricopeptide repeat domain that targets 
the co-chaperone to the C-terminal region of Hsp90. Within this class are Hsp90-
binding peptidylprolyl isomerases, most of which belong to the FK506-binding 
protein (FKBP) family. Despite the common association of FKBP co-chaperones 
with Hsp90, it is now clear that the client protein influences, and is influenced by, 
the particular FKBP bound to Hsp90. Examples include Xap2 in aryl hydrocarbon 
receptor complexes and FKBP52 in steroid receptor complexes. In this chapter, we 
discuss the known functional roles played by FKBP co-chaperones and, where pos-
sible, relate distinctive functions to structural differences between FKBP members.
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Introduction

Immunophilins are a large, functionally diverse group of proteins that are defined 
by their ability to bind immunosuppressive ligands. The immunophilins minimally 
contain a peptidyl-prolyl cis-trans isomerase (PPIase; also termed rotamase) do-
main to which the immunosuppressive drugs bind. Early investigations into the 
PPIase enzymatic activity led to the belief that the immunosuppressive drugs 
elicited their effects by inhibiting the PPIase activity. However, some compounds 
binding the PPIase active site efficiently inhibit PPIase activity without inducing 
immunosuppression, so PPIase activity is not critical for immune responses. It is 
now known that effector domains on the immunosuppressive drugs project from 
the PPIase pocket. This allows the immunophilin-drug complex to bind tightly 
to and inhibit calcineurin or target of rapamycin, signal transduction proteins re-
quired for immune responses (see Hamilton and Steiner 1998 for a detailed review 
on the mechanisms by which immunophilins and their ligands suppress immune 
responses).

Since the initial identification of the immunophilin proteins, multiple family 
members have been identified in all major branches of life. Some immunophilins 
are small proteins containing only a single PPIase domain while others are large 
multidomain proteins that contain one or more PPIase domains, as well as addi-
tional functional domains. The immunophilins are divided into two groups based 
on their ability to bind different immunosuppressive ligands: the FK506 binding 
proteins (FKBP), which also bind rapamycin, and the cyclosporin-A binding pro-
teins or cyclophilins (CyP). The PPIase domains of FKBP and cyclophilins are 
structurally distinct and likely evolved independently. On the other hand, some 
members of either the FKBP or cyclophilin families contain a structurally similar 
tetratricopeptide repeat (TPR) domain that targets binding to heat shock protein 
90 (Hsp90).

Hsp90 is an abundant molecular chaperone that interacts with a broad array of 
protein clients that regulate numerous important cellular pathways. Among the 
known Hsp90 clients are transcription factors (e.g., steroid hormone receptors, heat 
shock transcription factor 1, aryl hydrocarbon receptor), both serine/threonine and 
tyrosine kinases (e.g., Raf and Src-related kinases), and key regulatory enzymes 
(e.g., nitric oxide synthase and telomerase). A compilation of known Hsp90 clients 
maintained by Didier Picard at Univ. of Geneva can be accessed at: http://www.
picard.ch/downloads/Hsp90interactors.pdf.

In concert with other chaperone proteins, Hsp90 facilitates client folding and 
proteolytic stability but can also promote client degradation. In the case of steroid 
receptors, Hsp90 and its associated co-chaperones also regulate receptor activity. 
Hsp90 binding to steroid receptors must be preceded by transient receptor interac-
tions with Hsp40, Hsp70, and associated co-chaperones. Hsp90, which is recruited 
as a dimer in the latter stages of complex assembly, binds directly to the receptor 
ligand binding domain and stabilizes a receptor conformation that is competent for 
hormone binding. Proteins that are associated with Hsp90 in the functionally mature 

http://www.picard.ch/downloads/Hsp90interactors.pdf
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receptor complex are p23, a co-chaperone that stabilizes Hsp90 binding to receptor, 
and any one of several TPR co-chaperones, including the immunophilin/PPIases 
FKBP52 (also termed p59, Hsp56, p50, HBI, FKBP59, and FKBP4), FKBP51 (also 
termed p54, FKBP54, and FKBP5), and CyP40, or the protein phosphatase PP5. 
As discussed below, receptor activity can vary depending on the particular TPR co-
chaperone in mature receptor heterocomplexes.

The domain organization for several TPR co-chaperones is compared in Fig. 2.1. 
These co-chaperones compete for a common binding site in the C-terminal region 
of Hsp90 that includes the highly conserved -MEEVD sequence that terminates 
Hsp90. Co-crystallographic structures have shown how an MEEVD pentapeptide 
associates with the TPR binding pocket (Scheufler et al. 2000; Wu et al. 2004). 
Although the TPR domains for each of these co-chaperones are structurally similar 
and interact in a similar manner with Hsp90, the client protein bound by Hsp90 can 
influence the rank order of co-chaperone recruitment to Hsp90-client complexes 
(reviewed in Riggs et al. 2004). For instance, PP5 and FKBP51 are preferred com-
ponents in glucocorticoid receptor (GR) complexes, FKBP51 is preferred in pro-
gesterone receptor (PR) complexes, and CyP40 is relatively enhanced in estrogen 
receptor (ER) complexes (Silverstein et al. 1997; Barent et al. 1998). On the other 

Fig. 2.1  Domain organization of representative Hsp90-binding TPR-containing FKBPs from ver-
tebrate, insect, and plant sources were selected for comparison of domain organizations. The pro-
teins are human FKBP52 (acc. # NP_002005), human FKBP51 (acc. # Q13451), human FKBPL 
(acc. # NP_071393.2), human Xap2 (acc. # O00170), human FKBP36 (acc. # NP_003593), 
human FKBP38 (acc. # NP_036313.3), Drosophila melanogaster FKBP59 (acc. # AAF18387), 
Arabadopsis thaliana FKBP42 (acc. # CAC00654), and Arabadopsis thaliana FKBP62 (acc. # 
AAB82062). The percent amino acid identity of each compared to human FKBP52 was deter-
mined from ClustalW2 alignments (http://www.ebi.ac.uk/clustalw). Each protein shown has at 
least one FKBP12-like domain (FK), which in some cases has peptidylprolyl isomerase activity 
and is the binding site for the immunosuppressant drug FK506, and one tetratricopeptide repeat 
domain (TPR), which is typically an Hsp90 binding site. The black box in the C-terminus of 
AtFKBP42 is a transmembrane domain used for anchoring the protein to the plasma and vacuolar 
membranes
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hand, another TPR-containing FKBP, the hepatitis B virus protein X associated 
protein 2 (Xap2; also termed AIP, ARA9, and FKBP37) shows little interaction 
with steroid receptors but is strongly associated with the aryl hydrocarbon receptor-
Hsp90 complex (Ma and Whitlock 1997; Meyer et al. 1998). The distinctive pat-
terns of preference for co-chaperone association in client complexes is one line of 
evidence that the co-chaperones bound to Hsp90 can also interact with the Hsp90-
bound client.

In addition to FKBP52, FKBP51, and XAP2, several other FKBP family mem-
bers contain TPR domains that are known or likely to bind Hsp90. FKBP36 is 
structurally similar to XAP2 but is required for male fertility and homologous 
chromosome pairing in meiosis (Crackower et al. 2003). FKBP38 is a unique fam-
ily member that is anchored to the mitochondrial and endoplasmic reticulum mem-
branes, and is involved in a variety of processes including protein folding and 
trafficking, apoptosis, neural tube formation, cystic fibrosis transmembrane con-
ductance regulator (CFTR) trafficking, and viral replication (reviewed in Edlich 
and Lucke 2011). FK506-binding protein like (FKBPL) protein is a divergent 
member of the FKBP family that can associate and functionally regulate steroid 
hormone receptors, has antiangiogenic properties, has a role in the DNA dam-
age response, and controls tumor growth (reviewed in Robson and James 2012). 
Drosophila melanogaster express a TPR-containing immunophilin (DmFKBP59) 
that has high similarity to FKBP52/51 in vertebrates (Goel et al. 2001; Zaffran 
2000). Plants have several FKBP genes that encode TPR domains; for example, in 
Arabidopsis thaliana there are 4 such genes: AtFKBP42, AtFKBP62, AtFKBP65 
and AtFKBP72 (Romano et al. 2005; He et al. 2004). Although prokaryotic and 
Archaeal genomes also contain FKBP family members (Maruyama et al. 2004), 
none of these genes encode a TPR domain.

Structure/Function Relationships of Steroid  
Receptor-Associated FKBPs

X-ray crystallographic structures have been resolved for full-length FKBP51 and 
for overlapping fragments of FKBP52 (Fig. 2.2). FKBP51 and FKBP52 share 
greater than 60 % amino acid sequence similarity, and individual domains do not 
differ markedly between FKBP51 and FKBP52. Both share a similar TPR domain 
composed of three tandem repeats of the degenerate 34-amino acid motif, which is a 
typical characteristic of TPR proteins (Blatch and Lassle 1999). Each repeat adopts 
a helix-turn-helix conformation and adjacent units stack in parallel to form a saddle-
shaped domain with a concave binding pocket for Hsp90. In addition to the TPR 
domain, both FKBP51 and FKBP52 have two N-terminal domains, each of which 
is structurally similar to FKBP12. FK506-binding and PPIase activities reside in the 
most N-terminal domain (FK1), which has a pocket and active site residues similar 
to FKBP12. Due to several amino acid differences, the second domain (FK2) lacks 
drug binding and PPIase activity (Sinars et al. 2003).
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The most striking difference in crystal structures relates to apparent 
domain:domain orientations. The FKBP52 structure shown in Fig. 2.2 is a compos-
ite model derived from merging the separate FK1-FK2 and FK2-TPR structures. 
The composite model suggests that the FKBP52 TPR domain is aligned in a more 
linear fashion with the FK domains rather than in the kinked conformation seen 
with FKBP51 (Fig. 2.2). In fact, the static orientations shown in crystal structures 
are likely more dynamic in solution, but the different crystal orientations are per-
haps telling. Amino acid side chains unique to FKBP51 form a salt bridge between 
FK2 and TPR that would stabilize the domain:domain interaction in FKBP51 rela-
tive to FKBP52, which lacks this salt bridge. The apparently more malleable struc-
ture of FKBP52 might allow interactions within the receptor heterocomplex that are 
strained in FKBP51.

Significant progress has been made in understanding functionally important do-
mains and residues on FKBP52 that contribute to the distinct ability to regulate 
steroid hormone receptor activity. Random mutagenesis studies in S. cerevisiae 

Fig. 2.2  Structural and functional characteristics of FKBP51 and FKBP52. Both ribbon and 
molecular surface depictions of the X-ray crystallographic structures for human FKBP51 (A; pro-
tein data bank number 1KT0) and a composite of two partial structures for human FKBP52 (B; 
protein data bank numbers 1Q1C and 1P5Q) are shown. In either protein the two FKBP12-like 
domains (FK1 and FK2, green and blue respectively) are indicated, the first of which has FK506 
binding and PPIase activities. PPIase activity is not required for receptor regulation. The proline-
rich loop ( orange) that overhangs the PPIase catalytic pocket is critical for FKBP52 function 
and is responsible for the functional difference between FKBP51 and FKBP52. Two functionally 
critical residues (A116 and L119 in FKBP51 and A116 and P119 in FKBP52) within this loop 
are highlighted. The FK1 domain, the proline-rich loop in particular, is hypothesized to serve 
as an interaction surface within the Hsp90-receptor heterocomplex. A loop structure containing 
a CKII phosphorylation site in the hinge region between FK1 and FK2 is pointed out ( yellow). 
The C-terminal TPR domain ( red) consists of three helix-loop-helix motifs that form the Hsp90 
binding pocket. Structures of the individual domains are highly similar between the two proteins, 
but the angle between FK2 and TPR domains of FKBP51 is more acute and probably more con-
strained than in FKBP52. The FKBP51 and FKBP52 structure models shown were constructed 
using UCSF Chimera version 1.5
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demonstrated that two point mutations (A116V and L119P) in the FKBP51 FK1 
domain, which does not potentiate steroid hormone receptor activity under normal 
conditions, confer full receptor potentiating ability to FKBP51, similar to that of 
FKBP52 (Riggs et al. 2007). This suggests that FKBP51 and FKBP52 functionally 
diverged at some point in evolution by only a few residues. A recent study sug-
gests that there are differences in conformational dynamics between FKBP51 and 
FKBP52 within the proline-rich loop (Mustafi et al. 2014). 15N NMR relaxation 
measurements demonstrated that only the proline-rich loop in FKBP51 displays sig-
nificantly larger line broadening, which is completely suppressed in the presence of 
the L11P mutation. These data suggest not only that differences in the proline-rich 
loop confer distinct functions to FKBP51 and FKBP52, but also that the proline-
rich loop is functionally important for FKBP52 regulation of receptor activity. The 
current hypothesis holds that the FKBP52 proline-rich loop serves as an interaction 
surface, and the interaction partner is likely the receptor hormone binding domain 
(Sivils et al. 2011; De Leon et al. 2011).

Recent evidence by Bracher et al. demonstrate that the FK1-FK2 domains por-
tray a flexible hinge that may account for regulatory differences between FKBP51 
and FKBP52 (Bracher et al. 2013). It is hypothesized that the FK2 domain of 
FKBP52 contains an activation mechanism based on the calmodulin-binding mo-
tif at the C-terminus, yet this region is unable to bind FK506 and rapamycin, and 
lacks PPIase activity (Chambraud et al. 1993; Pirkl and Buchner 2001; Rouviere 
et al. 1997).

FKBP51 and FKBP52 also differ in the hinge region connecting FK1 and FK2 
domains (FK loop). The FK loop of FKBP52 contains a -TEEED- sequence that 
has been identified as an in vitro substrate for casein kinase II; the corresponding 
sequence in FKBP51, -FED-, lacks the threonine phosphorylation site. Phosphory-
lation of FKBP52 is potentially important since the phospho-protein is reported 
to lose Hsp90 binding (Miyata et al. 1997). This difference was further tested us-
ing comparative analysis of FKBP51 and FKBP52 FK linker sequences (Cox et al. 
2007). While the phosphomimetic mutation T143E had no effect on FKBP52 bind-
ing to Hsp90 in this study, the mutation did abrogate FKBP52 regulation of receptor 
activity. It is predicted that phosphorylation of residue T143 in the FKBP52 FK 
linker reorients the entire FK1 conformation, thereby eliminating FK1 interactions 
with the receptor hormone binding domain.

Cellular and Physiological Functions of Hsp90-Associated 
FKBPs

FKBP52

FKBP52 is expressed in most vertebrate tissues and cell lines, although its expres-
sion can be up-regulated by heat stress (Sanchez 1990), by estrogen in MCF-7 breast 
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cancer cells (Kumar et al. 2001), and by the homeobox transcription factor HoxA-
10 in the peri-implantation mouse uterus (Daikoku et al. 2005). FKBP52 associates 
with steroid receptor complexes in an Hsp90-dependent manner, but FKBP52 is 
not required in a defined cell-free assembly system for receptor to reach the mature 
conformation that is competent for hormone binding (Dittmar et al. 1996; Kosano 
et al. 1998). Nonetheless, FKBP52 in cells potentiates hormone-dependent reporter 
gene activation by GR (Riggs et al. 2003), AR (Cheung-Flynn et al. 2005), and 
PR (Tranguch et al. 2005). Potentiation of hormone signaling can be related to an 
increase in receptor affinity for hormone (Riggs et al. 2003; Davies et al. 2005), but 
there may be additional mechanisms by which FKBP52 enhances receptor activity.

In concordance with hormone binding affinity changes, domain-swapping ex-
periments between GR and ER, which is not potentiated by FKBP52, demonstrated 
that FKBP52 potentiation is localized to the ligand binding domain of GR (Riggs 
et al. 2003). FKBP52-dependent potentiation of receptor activity is abrogated in 
point mutants that are defective for Hsp90 binding, and potentiation is blocked by 
the PPIase inhibitor FK506 (Riggs et al. 2003; Cheung-Flynn et al. 2005). One 
model to explain these findings is that Hsp90 recruits FKBP52 to the receptor het-
erocomplex such that the FK1 PPIase can effectively catalyze isomerization of one 
or more proline substrates in the receptor ligand binding domain. However, studies 
have shown that point mutations within the FKBP52 PPIase pocket that eliminate 
PPIase activity have no effect on FKBP52 potentiation of receptor activity (Riggs 
et al. 2007). Thus, FK506-mediated inhibition of FKBP52 function likely occurs 
through the inhibition of FK1 interactions as opposed to inhibition of PPIase enzy-
matic activity. As discussed above, the FKBP52 FK1 domain as a whole is func-
tionally important and the proline-rich loop that overhangs the PPIase pocket could 
serve as a functionally important interaction surface that contacts the receptor hor-
mone binding domain within the receptor-chaperone heterocomplex. A structure-
based screen for small molecules targeting an alternative surface of the androgen 
receptor hormone binding domain identified a series of fenamic acid molecules 
that allosterically affect coactivator binding at the activation function 2 (AF2) site 
through interaction with a surface cleft termed binding function 3 (BF3) (Estebanez-
Perpina et al. 2007). Steroid hormone receptor structural comparisons identified this 
region to be a highly conserved regulatory surface that could serve as a therapeutic 
target for hormone-dependent diseases (Buzon et al. 2012). Interestingly, mutations 
within the AR BF3 surface (F673P, P723S, and C806Y) result in increased depen-
dence on FKBP52 for function. In addition, a drug termed MJC13 that specifically 
inhibits FKBP52-regulated AR activity is predicted to target the BF3 surface (De 
Leon et al. 2011). Thus, the BF3 surface is a putative FKBP52 interaction and/or 
regulatory surface, and FKBP52 interaction with the receptor BF3 surface could 
allosterically affect receptor interactions at the AF2 site. In addition to the AR BF3 
surface, recent studies suggest that the Helix 1–3 (H1-H3) loop in the GR LBD is 
an important site of FKBP regulation. Glucocorticoid insensitivity in guinea pig 
has been linked to sequence differences in the H1-H3 loop and substitution of the 
guinea pig H1-H3 loop into rat GR resulted in increased FKBP51-mediated repres-
sion of receptor activity. It is hypothesized that changes in the H1-H3 loop result in 
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changes within the GR-Hsp90 heterocomplex that favor FKBP51 repression over 
FKBP52 potentiation (Cluning et al. 2013).

FKBP52 has been shown by in vitro studies to have a chaperone activity that 
is independent of Hsp90 binding or PPIase (Bose et al. 1996; Pirkl and Buchner 
2001). Like Hsp90 and numerous other chaperone components, FKBP52 can hold 
misfolded proteins in a non-aggregated state that is amenable to refolding. The pos-
sibility that chaperone holding activity displayed by FKBP52 plays some role in al-
tering receptor activity cannot be dismissed, but this appears unlikely since holding 
activity is highly redundant among chaperone components. Furthermore, holding 
activity, unlike FKBP52-dependent potentiation of receptor activity, is neither PPI-
ase- nor Hsp90-dependent. Unfortunately, no one has identified an FKBP52 muta-
tion that disrupts holding activity in a discrete manner.

In an effort to extend biochemical and cellular data to the physiological level 
FKBP52 gene knockout (52KO) mice were generated, independently, by two 
groups (Cheung-Flynn et al. 2005; Yong et al. 2007). The mutant mice have 
striking reproductive phenotypes that can be attributed, at least in part, to loss 
of steroid receptor activity. Male 52KO mice are infertile and display abnormal 
virilization with persistent nipples, ambiguous external genitalia, and dysgenic 
seminal vesicles and prostate (Cheung-Flynn et al. 2005; Yong et al. 2007). These 
developmental defects are consistent with androgen insensitivity in these tissues. 
Testicular morphology, descent, histology, and spermatogenesis are normal and 
androgen production and release from testes is unimpaired; these developmental 
features are not highly androgen-dependent. On the other hand, sperm isolated 
from the epididymis have abnormal tail morphology and reduced motility sug-
gestive of a defect in sperm maturation within the epididymis, a process that is 
androgen-dependent. Cellular studies confirm that FKBP52 is required for full 
AR function, which provides a rational explanation for androgen insensitivity in 
tissues of 52KO males.

52KO females have no gross morphological abnormalities, yet are completely 
infertile (Tranguch et al. 2005). Oocyte formation and release are not markedly 
impaired, and oocytes are competent for in vitro and in vivo fertilization. Infertil-
ity is due, at least in part, to a maternal failure of embryonic implantation and 
uterine decidualization. During the early stages of pregnancy, the 52KO uterus 
does not display the usual molecular or physiological markers for implantation. 
These events are largely dependent on progesterone actions, and both molecular 
and cellular studies confirm that FKBP52 is required for full PR activity. Ad-
ditionally, FKBP52 is related to the etiology of endometriosis given that 52KO 
mice display increased endometrial lesions, inflammation, cell proliferation, and 
angiogenesis, and FKBP52 protein levels are reduced in human endometrial tis-
sues (Hirota et al. 2008).

FKBP52 is critical for reproductive development and success in both male and 
female mice and its role can be traced to support of AR and PR function. Although 
GR-related phenotypes are not readily apparent, cellular and biochemical studies 
suggest that 52KO animals should display phenotypes related to reduced GR activi-
ty. Given that abnormal Mendelian ratios are not observed for heterozygous crosses, 
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the 52KO phenotype does include partial embryonic lethality. This combined with 
the reproductive defects leads to difficulty in obtaining sufficient numbers of 52KO 
animals for experiments. Thus, heterozygous fkbp52-deficient mice (52+/–) were 
generated to determine the in vivo roles for FKBP52 in GR-mediated physiology. 
52+/– mice displayed phenotypes associated with reduced GR signaling including 
increased susceptibility to high-fat diet-induced hepatic steatosis, hyperglycemia, 
hyperinsulinemia, and behavioral alterations under basal and chronic stress condi-
tions (Wadekar et al. 2004; Warrier et al. 2010).

Although FKBP52 does not alter ER function in cellular studies and 52KO mice 
show no signs of estrogen insensitivity, FKBP52 expression is upregulated by es-
trogens and FKBP52 is over-expressed in breast tumors (Ward et al. 1999). In addi-
tion, the FKBP52 gene is methylated in ER-negative, but not in ER-positive breast 
cancer cells (Ostrow et al. 2009). Thus, a few studies have identified FKBP52 as a 
potential regulator of at least ER expression in breast cancer.

Despite the fact that FKBP52 was initially discovered in the immune system, 
it is ubiquitously expressed and particularly abundant in the central nervous sys-
tem. Thus, it is not surprising that FKBP52 is involved in neurodegenerative 
tauopathies including Alzheimer’s (AD) and Pick’s disease, fronto-temporal 
dementia and Parkinsonism linked to chromosome 17 (FTDP), and progressive 
supranuclear palsy (Haelens et al. 2007; Hernandez and Avila 2007). The defin-
ing neuropathological characteristic of tauopathies is the aberrant aggregation of 
insoluble hyperphosphorylated microtubule-associated protein (MAP) tau within 
the neurons, which is termed neurofibrillary tangles (NFTs) and is also referred to 
as paired helical filaments (PHF) (Cao and Konsolaki 2011). Recent studies have 
shown FKBP52’s direct interaction with tau, particularly with its hyperphosphor-
ylated form, has antagonistic effects on tubulin polymerization and microtubule 
assembly (Chambraud et al. 2007; Chambraud et al. 2010). In addition, FKBP52 
was recently shown to induce Tau-P301L oligimerization and assembly into fila-
ments (Giustiniani et al. 2014). More importantly, knockdown of FKBP52 was 
shown to restore axonal outgrowth and branching caused by Tau-P301L expres-
sion, thereby validating FKBP52 as an attractive therapeutic target in tauopathies. 
FKBP52 is known to be involved in subcellular rearrangement. Studies by Quintá 
et al. demonstrated that the overexpression of FKBP52 can induce neuronal dif-
ferentiation and neurite outgrowth (Quintá et al. 2010).

Recent reports have shown that copper (Cu) contributes to the neuropathology 
of AD by interacting with copper binding domains of amyloid precursor proteins 
(APPs) and beta-amyloid (Aβ) peptides causing the formation of amyloid plaques 
and disrupting metal ion homeostasis (Barnham and Bush 2008; Drago et al. 2008; 
Kong et al. 2007). FKBP52 is involved in the regulation of cellular Cu homeostasis 
by interacting directly with the copper transport protein Atox1 (Sanokawa-Akakura 
et al. 2004), which is part of the Cu efflux machinery in neurons. In addition, both 
genetic and cellular data in Drosophila suggest a novel role for FKBP52 in the 
regulation of intracellular Cu homeostasis via binding to APP, thus, modulating the 
toxicity level of Aβ peptides (Sanokawa-Akakura et al. 2010).
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S100A proteins belong to the EF-hand type calcium (Ca2+) sensing protein fam-
ily that are linked to regulation of various intracellular processes and are often ex-
pressed in a cell- and tissue-specific fashion (Santamaria-Kisiel et al. 2006; Wright 
et al. 2009). Based on biochemical evidence, it has been demonstrated that S100A1 
and S100A6 interact with FKBP52 by competing with Hsp90 for the TPR domain 
in a Ca2+-dependent manner (Shimamoto et al. 2010). Cellular data has linked 
S100A1s involvement in the neuronal cell dysfunction/death that occurs in AD by 
reducing APP expression and stabilizing the intracellular Ca2+ homeostasis (Zimmer 
et al. 2005). It seems that the function of FKBP52 can be regulated by Ca2+ homeo-
stasis within the cell leading to effects on the phosphorylation of tau and pathol-
ogy in AD. Interestingly, a Drosophila orthologue of FKBP52 termed FKBP59 was 
found to interact with the Ca2+ channel protein TRPL in photoreceptor cells and to 
influence Ca2+ influx (Goel et al. 2001). Subsequent studies revealed that FKBP52 
similarly interacts with a subset of rat transient receptor potential channel (TRPC) 
proteins that form Ca2+ channels in the mammalian brain (Sinkins et al. 2004). The 
C-terminus of FKBP52 contains a predicted calmodulin binding domain, which en-
ables the protein to bind to calmodulin-Sepharose in a Ca2+-dependent manner, the 
biological function of which is still unknown (Silverstein et al. 1999).

Apart from the well-established roles of FKBP52 in steroid hormone receptor 
function, FKBP52, as with other Hsp90 co-chaperones, has been identified in a 
variety of client-Hsp90 heterocomplexes such as those containing kinases, aryl 
hydrocarbon receptor, and heat shock transcription factor; however, many of these 
interactions might reflect passive, transient association of the protein with Hsp90 
and have no functional impact on client activity. FKBP52 is also linked to various 
Hsp90-independent interactions. Aside from the aforementioned Hsp90-indepen-
dent interactors, FKBP52 has been found to interact directly with the interferon 
regulatory factor 4 (Mamane et al. 2000), which regulates gene expression in B 
and T lymphocytes, forms a complex with tyrosine kinase receptor RET51, which 
is involved in the development and maintenance of the nervous system (Fusco 
et al. 2010) and FKBP associated protein 48 (Chambraud et al. 1996), which in-
fluences proliferation of Jurkat T cells (Krummrei et al. 2003). Each of these in-
teractions was found to be disrupted by FK506 and to target the FKBP52 PPIase 
domain to specific proline sites in each partner protein. Phenotypes potentially 
related to these interactions have not yet been assessed in 52KO mice. Not only 
does FKBP52 interact with proteins, but also FKBP52 is capable of directly bind-
ing adeno-associated virus DNA and regulating replication of the viral genome 
(Qing et al. 2001; Zhong et al. 2004). The relevant DNA binding site in FKBP52 
has not been identified.

FKBP51

FKBP51/p54/FKBP54 was originally identified as a component of chicken PR 
complexes (Smith et al. 1990; Smith et al. 1993a; Smith et al. 1993b) and is now 
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known to assemble as an Hsp90 co-chaperone with all steroid receptors and other 
Hsp90-client complexes. FKBP51 is functionally similar in some ways to FKBP52; 
both have similar PPIase activity in the presence of model peptide substrates, both 
hold misfolded proteins in a folding competent state, and they compete for binding 
a common site on Hsp90 (Nair et al. 1997; Pirkl et al. 2001). As noted above, the 
overall structural similarity of these FKBPs is consistent with these shared function-
al properties, yet their distinct effects on steroid receptor activity belie these simi-
larities. In addition to the aforementioned structural differences between FKBP51 
and FKBP52, another distinction is that the FKBP51 gene is highly inducible by 
glucocorticoids, androgens, and progesterone (Baughman et al. 1995; Kester et al. 
1997; Zhu et al. 2001; Yoshida et al. 2002; Vermeer et al. 2003; Hubler et al. 2003; 
Febbo et al. 2005).

FKBP51 acts as an inhibitor of GR, PR, and MR function excluding AR. The 
first indication of its inhibitory role came from studies by Scammell and colleagues 
of glucocorticoid resistance in New World primates (Reynolds et al. 1999; Denny 
et al. 2000). In squirrel monkeys, GR has a relatively low affinity for hormone yet 
the cloned monkey GR has an affinity similar to human GR in vitro. This observa-
tion led to a search for cellular factors in monkey cells that reduced GR binding 
affinity. A key factor identified was FKBP51, which is constitutively overexpressed 
in squirrel monkey cells as well as cells of other New World primates, all of which 
display some degree of glucocorticoid resistance. Human FKBP51 was also found 
to inhibit GR function but not to the degree of squirrel monkey FKBP51, which dif-
fers in amino acid sequence from its human counterpart at 15 of 457 amino acids. 
These differences are scattered fair evenly along the sequence, and mapping stud-
ies have shown that amino acid changes in several domains contribute to the more 
potent inhibitory actions of squirrel monkey FKBP51 (Denny et al. 2005). Crystal 
structures for both human and squirrel monkey FKBP51 have been solved (Sinars 
et al. 2003); although functionally relevant structural changes are not yet apparent, 
comparison of these structures should ultimately help to understand why inhibitory 
potencies differ. The function of FKBP51 is dichotomous with respect to regulation 
of the steroid hormone receptors. In vitro experiments have shown that overex-
pression of human FKBP51 reduces glucocorticoid binding affinity and nuclear 
translocation of GR which forms an ultra-short negative feedback loop for receptor 
activity (Wochnik et al. 2005). This model is in agreement with the aforementioned 
data from squirrel monkeys that have a general resistance to glucocorticoids even 
though they express GR that has the full potential to bind cortisol with high affinity. 
Another interesting possibility by which FKBP51 decreases overall GR signaling 
is by promoting nuclear translocation of the transcriptionally inactive β isoform of 
GR (Zhang et al. 2008). Interestingly, FKBP51 has an opposing effect on AR; it 
increases the receptor signaling in prostate cancer cells. Using both recombinant 
protein- and cell-based assays, Ni et al. demonstrated that FKBP51 stimulates chap-
erone complex association with AR, which further enhances AR ligand binding and 
androgen-dependent transcription and cell growth, resulting in an ultra-short posi-
tive feedback loop (Ni et al. 2010).
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In a yeast model for studying functional interactions between steroid receptors 
and human FKBPs, FKBP51 does not inhibit the activity of GR; however, FKBP51 
can effectively reverse the potentiation of GR activity conferred by FKBP52 (Riggs 
et al. 2003). Therefore, FKBP51 acts as an antagonist of FKBP52. FKBP51 has 
also been shown to inhibit PR function (Hubler et al. 2003), presumably through 
a similar inhibition of FKBP52-mediated potentiation. The mechanism by which 
FKBP51 antagonizes FKBP52’s ability to enhance steroid receptor function is not 
understood. Other Hsp90-binding TPR proteins do not block FKBP52 actions, so 
it does not appear that competitive displacement of FKBP52 from receptor com-
plexes by FKBP51 can fully account for antagonism. On the other hand, FKBP51 
is known to preferentially associate with PR and GR complexes (Nair et al. 1997; 
Barent et al. 1998). Domain swapping studies indicate that the FK1 PPIase domain 
partially contributes to antagonism but sequences in the FK2 and TPR domain also 
play a role (Riggs et al. 2003; Denny et al. 2005).

Given that FKBP51 gene expression is inducible by some steroid hormones and 
FKBP51 can both activate and inhibit receptor function, one can reasonably specu-
late that FKBP51 serves as a cellular modulator of hormone responsiveness. In 
cells unexposed to hormone, FKBP52 actions would predominate and promote a 
robust response to hormone. As a consequence, FKBP51 levels would rise and par-
tially desensitize cells to a secondary hormone exposure in most systems excluding 
AR-mediated prostate cancer cells. These effects can be demonstrated in cellular 
models, but the physiological importance of this mechanism must be established 
with animal models. Toward this goal, FKBP51 gene knockout (51KO) mice were 
generated. Homozygous mutant animals are grossly normal and reproductively vi-
able, so FKBP51 does not appear to be critical in the same physiological processes 
as FKBP52. Nonetheless, modulatory actions of FKBP51 are relevant but subject 
to compensatory physiological mechanisms. Interestingly, double knockout of both 
FKBP51 and FKBP52 genes is embryonic lethal in mice, suggesting either that 
FKBP51 and FKBP52 have a critical, mutually redundant function or that FKBP51 
and FKBP52 function in a common developmental pathway that requires the dis-
tinct actions of both immunophilins.

The hypothalamic-pituitary-adrenal (HPA) axis controls stress response and is 
associated with susceptibility to depression as well as antidepressant efficacy (Tou-
ma et al. 2011; O’Leary et al. 2011). The HPA axis is regulated via negative feed-
back of GR activity and FKBP51. GR resistance is conferred by the overexpression 
of FKBP51, which is associated with an impaired negative feedback mechanism 
(Denny et al. 2005). Polymorphisms in the FKBP5 gene are associated with an 
increased susceptibility for depression, an increased response to antidepressants, 
and an increased risk of posttraumatic stress disorder in response to adverse early 
life events (Binder et al. 2008; Binder et al. 2004). In addition, genotype-directed 
environment-induced gene programming through FKBP5 gene methylation was re-
cently shown to mediate gene-childhood trauma interactions (Klengel et al. 2013). 
Recent studies have shown that FKBP51 is a modulator of the cortisol-HPA axis 
response to chronic stress and related psychiatric disorders (Hartmann et al. 2012; 
O’Leary et al. 2011; Tatro et al. 2009; Touma et al. 2011). Indeed, 51KO mice 
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displayed diminished physiological and neuroendocrine response to the adverse ef-
fects of chronic stress with fast recovery from acute stress episodes. The null mice 
also showed reduced adrenal gland weight and lower levels of basal corticosterone 
suggesting an enhanced sensitivity of GR due to the loss of FKBP51.

As aforementioned, aggregation of MAP tau into neurofibrillary tangles in neu-
rons is the hallmark of tauopathies. In vitro studies demonstrated that PPIase activity 
of FKBP51 regulates and balances the phosphorylation state of tau for microtubule 
stabilization (Jinwal et al. 2010; Koren et al. 2011). Interestingly, knockdown of 
FKBP51 dramatically reduced tau levels while inhibiting its PPIase activity led to 
increased stability and accumulation of phosphorylated tau (Jinwal et al. 2010). In 
addition, overexpression of FKBP51 prevented tau clearance and produced oligo-
meric tau in the brain, facilitating its neurotoxicity (Blair et al. 2013; Jinwal et al. 
2010). Studies by Blair et al. demonstrated that upregulation of FKBP51 expression 
is attributed to a decrease in FKBP5 methylation in which the process appears to be 
inversely proportional over time (Blair et al. 2013). This provides an explanation 
for the detection of increased FKBP51 protein levels in aged murine brains, and the 
manifestation of depression and cognitive deficits in AD patients.

Aside from its role in steroid receptor function, FKBP51 has been identified in 
a wide array of Hsp90-independent complexes. Biochemical and cellular studies 
have demonstrated that FKBP51 inhibits apoptosis in irradiated melanoma cells 
(Romano et al. 2010), promotes dephosphorylation of Akt and downregulation of 
the Akt pathway (Pei et al. 2009), and is associated with polymorphisms in fkbp5 
as seen in affective and anxiety disorders (Binder 2009). Furthermore, FKBP51 has 
been shown to regulate NFκB pathways. FKBP51 was identified (Bouwmeester 
et al. 2004) by a proteomic approach in complex with IKKα, one of the serine/
threonine kinases that stimulates phosphorylation and degradation of the NFκB 
inhibitor IκB. Knockdown of FKBP51 expression was shown to inhibit IKKα ac-
tivation and thereby block TNFα-induced activation of NFκB, which confirmed 
the functional significance of FKBP51 in IKKα complexes. Perhaps related to 
FKBP51-dependent regulation of NFκB pathways, overexpression of FKBP51 has 
been correlated (Giraudier et al. 2002) with idiopathic myelofibrosis, a rare clon-
al stem cell disorder. Experimental overexpression of FKBP51 was subsequently 
shown to stimulate NFκB activity and, as a consequence, to increase secretion of 
pro-fibrotic TGF-β1 (Komura et al. 2005). IKKα had previously been shown to be 
an Hsp90 client (Broemer et al. 2004), so it is possible that, analogous to steroid re-
ceptor complexes, FKBP51 assembles with IKKα as a heterocomplex with Hsp90. 
Whether FKBP51 Hsp90 binding or PPIase is required for regulation of IKKα has 
not been determined.

Cytoplasmic Transport

There is strong evidence that Hsp90-binding immunophilins play a key role in the 
subcellular relocalization of some transcription factors, the pioneer studies having 
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been performed with steroid receptors. In the absence of ligand, some members of 
the steroid-receptor family such as GR or MR reside primarily in the cytoplasm, 
whereas others such as ER or PR are mostly nuclear in a constitutive manner even 
in the absence of hormone. Regardless of their primary localization, receptors are 
constantly shuttling in a highly dynamic manner between the nucleus and the cyto-
plasm (Elbi et al. 2004; Galigniana et al. 2010a; Madan and DeFranco 1993). There-
fore, the final localization of a given receptor under a certain biological condition is 
the resultant of the proper displacement of that dynamic equilibrium between both 
cellular compartments. Accordingly, the presence of hormone favors the import 
driven mechanism that results in the nuclear concentration of GR. Although some 
molecules can escape to the cytoplasm, they are transported back to the nucleus and 
vice versa, the opposite situation is also true when receptors are primarily cytoplas-
mic. In summary, the degree of cytoplasmic or nuclear localization reflects both the 
rate of nuclear import and the rate of nuclear export in a given moment (Galigniana 
et al. 2010a).

It has always been assumed that simple diffusion is the driving force for ste-
roid hormone receptor movement. The classic model for receptor trafficking was 
posited several years ago (Dahmer et al. 1984) and supported the heuristic notion 
that the receptor-chaperone heterocomplex is dissociated immediately after steroid 
binding (a process usually referred to as ‘transformation’). Therefore, transforma-
tion was originally thought to be a key cytoplasmic requirement to favor the release 
of the receptor from the cytoplasmic anchoring sites and to permit its consequent 
nuclear translocation. Today, the experimental evidence shows that rather than an 
early event in the molecular mechanism of activation of steroid receptors, trans-
formation is a nuclear process (Galigniana et al. 2010a; Grossmann et al. 2012; 
Presman et al. 2014).

The original finding that some TPR-domain proteins such as FKBP52, CyP40 
and the PPIase-like protein phosphatase PP5 are able to interact with the motor 
protein dynein (Galigniana et al. 2002), led to the idea that they may be involved in 
the retrotransport of the receptors. It was demonstrated that dynein is also present 
in the native GR/Hsp90/FKBP52 heterocomplex (Galigniana et al. 2001), and that 
such association is FKBP52-dependent via the peptidyl-prolyl isomerase domain 
of the immunophilin (Galigniana et al. 2001; Galigniana et al. 2010b). The enzy-
matic activity, however, is related neither to the protein-protein interaction nor to 
the molecular mechanism of transport. The disruption of such complex or the lack 
of expression of FKBP52 impairs (but not totally abolishes) the cytoplasmic trans-
port of GR to the nucleus (Galigniana et al. 2001; Galigniana et al. 2010b; Tatro 
et al. 2009), such that the half-life for nuclear translocation is increased one order 
of magnitude under this abnormal situation (from 5 min to 40–50 min for GR). 
This means that the cytoplasmic retention of the receptor when the transportosome 
is inactivated is indeed a temporal event. Thus, it can be predicted that incubation 
times with steroid longer than 40–60 min will show the receptor in the nucleus 
anyway. A retrotransport delay may have physiological consequences when the 
biological response should be fast, for example, in stressing situations, and can be 
envisaged when travelling distances are long, such as in axons. In this case, GR 
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does not reach the nucleus because it is targeted to proteosomal degradation along 
its pathway (Galigniana et al. 2004a).

On the other hand, FKBP51, the highly homologous partner that shows low af-
finity for dynein motors (Wochnik et al. 2005; Galigniana et al. 2010b), acts as a 
competitive inhibitor of FKBP52. Therefore, it is not surprising that upon ligand 
binding FKBP51 is released from steroid receptor complexes and replaced by 
FKBP52 (Davies et al. 2002), which in turn recruits the dynein/dynactin motor 
complex (Fig. 2.3). In line with this fact, it has been proposed that the FKBP52/
FKBP51 expression ratio may be one of the key regulatory factors for the nuclear 
retention of steroid receptors (Galigniana et al. 2010b; Tatro et al. 2009; Gallo et al. 
2007).

It is possible that other TPR-domain immunophilins that are also able to interact 
with dynein, such as CyP40 and PP5, may replace FKBP52 in the transport machin-
ery, although this has not been demonstrated. Nonetheless, recent evidence showed 

Fig. 2.3  Model of glucocorticoid receptor activation. In the absence of hormone (H), the GR 
exists in the cytoplasm associated with the Hsp90-based heterocomplex formed by a dimer of 
Hsp90, and one molecule of Hsp70, p23 and FKBP51. Upon steroid binding, FKBP51 is replaced 
by FKBP52, an immunophilin able to recruit the dynein/dynactin motor complex. The whole GR 
heterocomplex is retrotransported on microtubules tracks and translocates through the nuclear 
pore complex (NPC) to the nucleoplasm still associated to the heterocomplex. Transformation 
(i.e., Hsp90-complex dissociation) occurs in the nuclear compartment followed by receptor dimer-
ization. The receptor is targeted to the promoter binding-sites to trigger the proper biological 
response and the heterocomplex is recycled
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that the Hsp90-binding immunophilin FKBPL/WISp39 also favors GR retrotrans-
port in a similar fashion as FKBP52 (McKeen et al. 2008).

Importantly, the active Hsp90-, FKBP52-dependent mechanism for cytoplasmic 
transport first described for GR has also been found for other factors such as MR 
(Galigniana et al. 2010b), AR (Thomas et al. 2006), ecdysone receptor (Vafopou-
lou and Steel 2012), p53 (Galigniana et al. 2004b), RAC3 (Colo et al. 2008), and 
adeno-associated virus-2 (AAV) (Zhao et al. 2006). This immunophilin-dependent 
model for soluble protein trafficking implies that the proteins of the heterocomplex 
should remain associated to the client cargo during the passage through the nuclear 
pore complex. In line with this speculation, it was demonstrated that the whole 
Hsp90-FKBP52 heterocomplex cross-linked to corticosteroid receptors (Galigni-
ana et al. 2010b; Echeverria et al. 2009) is able to translocate intact in a hormone-
dependent manner through the nuclear pore of digitonin-permeabilized cells, sug-
gesting that steroid-receptor transformation and its subsequent dimerization must 
be a nuclear event. This was recently confirmed by using different methodologies 
(Galigniana et al. 2010b; Grossmann et al. 2012; Presman et al. 2014; Presman 
et al. 2010).

Studies of reconstitution of the Hsp90-FKBP52 heterocomplex with purified 
proteins or reticulocyte lysate as a source of chaperones (Echeverria et al. 2009), 
demonstrated that the interaction of GR with structures of the nuclear pore such 
as nucleoporins (NUPs) is strengthened when both factors, GR and NUPs, are 
chaperoned. On the other hand, the discovery that NUPs are Hsp90- and FKBP52-
interacting proteins also suggests a potential regulatory role of these chaperones 
for the nuclear import process. In this regard, it has always been very difficult to 
explain how single factors such as importins could shield the multitude of differ-
ent protein-, RNA- and DNA-binding domains in transport cargoes that are import 
substrates. It could be speculated that these chaperones associated to importins, 
NUPs, and the cargo itself may act as a cooperative system to prevent aggregation 
of cargoes when a hydrophobic domain is exposed during the translocation step. 
This may justify why there is a more efficient interaction between NUPs and GR 
when both proteins are associated to the Hsp90-FKBP52 complex compared to 
both ‘naked’ proteins (Echeverria et al. 2009).

The association of FKBP52 and PP5 with Nup62 seems to be Hsp90-depen-
dent, as was suggested by the almost-complete dissociation of these immunophil-
ins from Nup62 in the presence of the Hsp90-disrupting agent radicicol (Echever-
ria et al. 2009). However, indirect immunofluorescence assays performed with 
intact cells treated with radicicol still show the presence of the immunophilins in 
the perinuclear ring, suggesting that they may also bind in an Hsp90-independent 
manner to other perinuclear structures. Nonetheless, competition experiments 
with the TPR domain overexpressed in intact cells showed that the perinuclear 
signal of FKBP52 was totally abolished, indicating that most, if not all, types 
of association of the immunophilin with any structure of the nuclear envelope 
require the TPR domain.
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Xap2

Apart from the highly characterized steroid hormone receptor-associated FKBPs, 
several other TPR-containing FKBPs are present in higher vertebrates. As men-
tioned in earlier sections of this chapter, Xap2 is a TPR-containing immunophilin 
that is found almost extensively in AhR complexes. As the name implies, Xap2 
also functionally interacts with the hepatitis B virus protein X (Kuzhandaivelu 
et al. 1996). Recently, Xap2 was shown to exert an inhibitory effect on both GR 
and ERα, but not ERβ activity, and may inhibit AR and PR as well (Cai et al. 2011; 
Laenger et al. 2009; Schulke et al. 2010). In addition, Xap2 is known to have 
functional interactions with peroxisome proliferator activated receptor α (PPARα) 
(Sumanasekera et al. 2003) and thyroid hormone receptor β, however, these in-
teractions have not been extensively characterized. AhR is a ligand-dependent 
transcription factor that mediates the physiological response to specific environ-
mental contaminants termed polycyclic aromatic hydrocarbons, the most notori-
ous of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin. Similar to steroid receptors, 
AhR requires assembly with Hsp90 and p23 to achieve a mature ligand-binding 
conformation (reviewed in Petrulis and Perdew 2002), although the AhR ligand 
binding domain is unrelated to steroid receptor ligand binding domains. AhR com-
plexes also contain an FKBP component, but in this case it is Xap2 rather FKBP52 
or FKBP51.

As with FKBP51 and FKBP52, Xap2 has a C-terminal TPR domain that is 
known to facilitate binding to the MEEVD motif on Hsp90 (Carver et al. 1998) 
(Fig. 2.1). In addition Xap2 contains one N-terminal FK domain that lacks drug 
binding and also likely lacks PPIase activity. Although the FK domain is not re-
quired for Hsp90 binding, it is required for an interaction with the AhR-Hsp90 
complex that functionally influences receptor activity (Carver et al. 1998; Kazlaus-
kas et al. 2002). In a cell-free assembly system that lacks Xap2, AhR is capable 
of assembling with Hsp90 and binding ligand, and upon ligand binding AhR is 
capable of binding AhR response elements on DNA (Meyer et al. 1998). Again, 
similar to FKBP52 or FKBP51 in steroid receptor complexes, Xap2 is not required 
for basal maturation of AhR activity, but in both yeast and mammalian systems, 
Xap2 can modulate AhR-mediated reporter gene expression (Miller 2002; Ma and 
Whitlock 1997; Meyer et al. 1998; Carver et al. 1998). By titrating the relative level 
of Xap2 protein in cells, AhR activity can be enhanced or decreased. For example, 
when Xap2 is expressed at a level 2- to 3-fold higher than normal, binding of p23 
in the AhR-Hsp90 complex is reduced (Hollingshead et al. 2004). Displacement 
of p23 by high levels of Xap2 would destabilize binding of Hsp90 to AhR and 
reduce the proportion of AhR in functionally mature complexes. Conversely, there 
is also evidence that at elevated Xap2 levels, AhR is protected from ubiquitination 
and proteosomal degradation which would increase total AhR levels (Lees et al. 
2003; LaPres et al. 2000; Meyer et al. 2000; Meyer and Perdew 1999; Kazlauskas 
et al. 2000). Finally, several studies suggest that Xap2 facilitates nucleocytoplasmic 
shuttling of AhR following ligand binding (Berg and Pongratz 2002; Petrulis et al. 
2000; Kazlauskas et al. 2000; Kazlauskas et al. 2001; Petrulis et al. 2003).
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The physiological relevance of Xap2 interactions with AhR complexes has 
not been examined in a whole animal model, but Xap2 could potentially influ-
ence any of several physiological and pathological pathways mediated by AhR. 
Mice that are homozygous for a disrupted AhR gene have many physiological 
and developmental defects; among these are immune system impairment, hepatic 
fibrosis, cardiac hypertrophy, impaired insulin regulation, and defects in ovarian 
and vascular development (Fernandez-Salguero et al. 1995; Lahvis et al. 2005; 
Thackaberry et al. 2003; Benedict et al. 2000). In addition, many of the toxic 
and teratogenic effects produced by AhR ligands require an intact AhR signaling 
pathway (Mimura and Fujii-Kuriyama 2003; Fernandez-Salguero et al. 1996). 
For example, dioxin induced defects in prostate development are absent in AhR 
knockout mice (Lin et al. 2002). In a conditional Xap2 hepatic knockout mouse 
model, AhR and Cyp1b1 levels were significantly reduced, however Cyp1a1 and 
Cyp1a2 were induced to levels seen in wild type mice in response to dioxin chal-
lenge (Nukaya et al. 2010). Development of a mouse strain lacking Xap2 would 
aid in determining the role Xap2 plays in these processes and might validate 
Xap2 as a potential target for therapeutic intervention. In addition to the above 
functional interactions, Xap2 has several other interacting partners including, but 
not limited to, PDE4A5 and 2A3, HSC70, TIF-2, TRβ1, RET, and TOMM20; 
thereby modulating a host of physiological functions (Reviewed in Trivellin and 
Korbonits 2011).

FKBP36

FKBP36 (gene name FKBP6 in humans) is another TPR-containing FKBP that 
is structurally similar to Xap2, yet functionally distinct. FKBP36 has a single 
N-terminal FK domain and a C-terminal TPR domain. In vitro studies show that 
FKBP36 binds Hsp90 and can assemble with steroid receptor complexes (un-
published observation), but there is currently no evidence that FKBP36 alters 
receptor activity. FKBP36 mRNA is broadly expressed in vertebrate tissues with 
an exceptionally high level observed in the testis; male FKBP6 knockout mice 
lack sperm and FKBP36 was shown to be a critical component in meiotic synap-
tonemal complexes (Crackower et al. 2003). FKBP36 interacts with and inhibits 
GAPDH activity and expression (Jarczowski et al. 2009). FKBP36 forms a com-
plex with Hsp90 and GAPDH and this complex may regulate GAPDH activity 
in a manner akin to FKBP/Hsp90/ steroid receptor complexes (Jarczowski et al. 
2009). FKBP36 can exert an effect on GAPDH in an Hsp90 independent manner 
by either directly inhibiting NAD+ binding to GAPDH or by decreasing GAPDH 
expression (Jarczowski et al. 2009). Patients with Williams syndrome, which is 
characterized by congenital cardiovascular defects, dysmorphic facial features, 
mental retardation, growth defects, azoospermia, and hypercalcemia, are typical-
ly haploinsufficient for FKBP6 (Meng et al. 1998); however, the contribution of 
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FKBP6 deletion in this syndrome is not clear since several contiguous genes on 
chromosome 11, including genes for elastin and LIM-Kinase 1, are also deleted 
in these patients and clearly contribute to some phenotypic aspects.

FKBP38

FKBP38 (gene name FKBP8) contains a glutamate-rich domain, FK domain, three 
TPR domains, and a calmodulin-binding motif. FKBP38 is ubiquitously expressed 
in all tissues, with high expression in neuronal tissues. Among the FKBP family, 
FKBP38 is novel in several respects, including a unique C-terminal transmembrane 
anchor domain, used to localize FKBP38 to both the mitochondrial and ER mem-
branes. Although FKBP38 contains a PPIase domain, PPIase activity is regulated. 
The structure of the PPIase domain is similar to the prototypical family member, 
FKBP12; however, there are important differences in the three-dimensional struc-
ture of the loop and the binding pocket of the active site (Maestre-Martinez et al. 
2006; Kay 1996). The loss of several aromatic residues in the active site leads to 
lower PPIase activity, even upon activation, and low affinity for FK506 (Maestre-
Martinez et al. 2006; Edlich et al. 2006). FKBP38 PPIase activation is dependent 
on the calmodulin-binding domain and calmodulin/Ca2+ binding stimulates PPIase 
activity (Edlich et al. 2005; Edlich et al. 2007b; Maestre-Martinez et al. 2010).

FKBP38 participates in a number of cellular processes involving protein folding 
and trafficking, apoptosis, neural tube formation, CFTR trafficking, and viral repli-
cation (Edlich and Lucke 2011; Banasavadi-Siddegowda et al. 2011). FKBP38 in-
teracts with the anti-apoptotic proteins Bcl-2 in regulating apoptosis and appears to 
have both pro- and anti-apoptotic activity that is likely tissue specific (Shirane and 
Nakayama 2004). In general, FKBP38 anti-apoptotic activity appears to regulate 
apoptosis by transporting Bcl-2 to the mitochondrial membrane stabilizing Bcl-2 
and inhibiting apoptosis (Shirane and Nakayama 2004). Two mechanisms on how 
FKBP38 protects Bcl-2 from degradation have been explored. One involves the 
interaction between FKBP38 and a caspase cleavage site located within Bcl-2 (Choi 
et al. 2010). When FKBP38 is associated with Bcl-2 access to the caspase cleavage 
site may be blocked, preventing caspase-mediated Bcl-2 degradation (Choi et al. 
2010). The second mechanism is through an interaction between the S4 subunit of 
the 19S proteasome complex, thereby regulating proteasome activity. However, in 
neuroblastoma cells the active FKBP38/calmodulin/Ca2+ complex has a pro-apop-
totic affect by interfering with the ability of Bcl-2 to interact with and block pro-
apoptotic proteins (Edlich et al. 2005). In this case, an interaction between Hsp90 
and the FKB38/calmodulin/Ca2+ complex interferes with FKP38 pro-apoptotic ac-
tivity, which could impede apoptosis (Edlich et al. 2007a).

FKBP38 is also implicated in the regulation of mTOR signaling through an in-
teraction with Rheb (Rosner et al. 2003). mTOR regulates a wide range of cellular 
processes, including cell cycle and cell growth, in response to various conditions, 
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including fluctuations in nutrient and energy levels, and growth factors (Yang and 
Guan 2007). The FKBP12/rapamycin complex interacts with and inhibits mTOR 
activity (Brown et al. 1994). However, FKBP38 interacts with and antagonizes 
mTOR in a rapamycin-independent manner (Bai et al. 2007). Overexpression of 
FKBP38 decreases the induction of mTOR-regulated genes, and siRNA-induced 
reduction of FKBP38 increased mTOR activity (Bai et al. 2007). Rheb disrupts the 
mTOR/FKBP38 complex by binding to FKBP38 in a nutrient-dependent manner 
leading to an induction of mTOR-responsive genes (Bai et al. 2007).

FKBP38 is also involved in neural tube formation as the loss of FKBP38 leads to 
gross abnormalities during embryonic formation of the nervous system (Wong et al. 
2008). It has been speculated that this is due to deregulation of the Sonic hedgehog 
(SHH) pathway during neural tube formation, where FKBP38 is a SHH antagonist, 
and the loss of FKBP38 function leads to over activity of SHH during development 
resulting in neuronal malformation (Cho et al. 2008).

In addition to the regulatory role in response to nutritional conditions, FKBP38 
is also involved in the cellular response to hypoxia. Hypoxia-inducible transcription 
factors (HIFs) are involved in the cellular response to low oxygen levels, and, under 
normal conditions, are quickly degraded by prolyl-4-hydroxylase (PDH) enzymes 
(Wenger et al. 2005). FKBP38 interacts with PHD2 at the endoplasmic reticulum 
and mitochondrial membranes, and regulates PDH2 activity through proteasomal 
degradation, thereby regulating HIF stability and downstream gene expression in 
response to hypoxic conditions (Barth et al. 2009).

FKBP38 is involved in CFTR synthesis and folding by negatively regulating 
CFTR synthesis and positively regulating folding (Banasavadi-Siddegowda et al. 
2011). Knockdown of FKBP38 increased CFTR production, but reduced post-trans-
lational modification, resulting in a lower expression of functional CFTR (Banasa-
vadi-Siddegowda et al. 2011). Interestingly, FKBP38 PPIase activity is required for 
the regulation of CFTR folding.

Finally, FKBP38 is required for replication of the hepatitis C virus (HCV). In 
HCV infection the viral nonstructural protein 5A (NS5A) has been shown to form 
a complex with FKBP38 and Hsp90 at the mitochondrial and endoplasmic reticu-
lum membranes (Wang et al. 2006). Either knockdown of FKBP38 with siRNA 
or inhibition of Hsp90 activity with geldanamycin results in decreased HCV RNA 
replication (Okada et al. 2004).

FKBPL

FKBPL shares the same general structure as other members of the FKBP family, 
including a TPR domain that facilitates Hsp90 binding and a PPIase domain, which 
lacks catalytic activity (Robson et al. 1999; Sunnotel et al. 2010). FKBPL was ini-
tially discovered while screening for genes that were protective against ionizing 
radiation (Robson et al. 1997; Robson et al. 1999). FKBPL is most closely related 
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to the larger FKBP52 (26 % identity) (Robson and James 2012). However, the 
PPIase domain only shares 17 % identity with the FKBP52 PPIase region (Robson 
and James 2012). The FKBPL TPR domain shares 33 % amino acid identity with 
FKBP52 and has the ability to interact with Hsp90 stabilizing steroid hormone 
receptor conformations as well as stabilizing newly synthesized p21 preventing its 
degradation (Robson and James 2012; Jascur et al. 2005). There is conflicting data 
on FKBPL and its role in conferring radiation resistance. Jascur et al. originally 
showed that, in response to high-dose radiation, the FKBPL/Hsp90/p21 complex 
stabilized p21 leading to G2 cell cycle arrest, which conferred a pro-survival ef-
fect. However, more recent data has demonstrated that there is a down-regulation 
of p21 in response to radiation exposure and decreased p21 was involved in pro-
survival after radiation exposer (Chu et al. 2004; Robson et al. 1999; Robson et al. 
2000). In addition to radiation resistance, FKBPL plays a significant role in tumor 
progression (Robson et al. 1997; Robson et al. 1999; Robson et al. 2000; Jascur 
et al. 2005). In tumor cells, FKBPL appears to participate in not only growth of the 
tumor, but also in the sensitivity of the tumor to various chemotherapeutic agents 
(Bublik et al. 2010). For example, high levels of GSTE-1 interact with the FKBPL/
Hsp90/p21 complex, which leads to p21 stabilization leading to resistance to the 
chemotherapeutic agent Taxane (Bublik et al. 2010). Although the exact radio- and 
chemo-protective role of FKBPL needs to be elucidated, the data clearly show that 
FKBPL is an important factor in cell-cycle progression, cell survival, and tumor 
progression.

Like other Hsp90-associated FKBP proteins, FKBPL also forms complexes 
with various steroid hormone receptors (reviewed in Erlejman et al. 2014). FK-
BPL and Hsp90 appear to stabilize AR, ER, and GR/Hsp90 complexes (Sunnotel 
et al. 2010; McKeen et al. 2008; McKeen et al. 2010). Similar to FKBP52, FKBPL 
affects the AR-dependent expression of prostate-specific antigen (Sunnotel et al. 
2010). Sunnotel et al. demonstrated that two populations of azoospermic males 
had alterations in their FKBPL gene, which may alter FKBPL interaction with 
AR and contribute to infertility in the two populations. FKBPL was also shown 
to colocalize with the GR/Hsp90 complex (McKeen et al. 2008). Dexamethasone 
treatment resulted in the colocalization of FKBPL and GR in the nucleus and the 
up-regulation of GR-response genes in a prostate cancer cell line (McKeen et al. 
2008). Translocation of the FKBPL/GR complex appears to be mediated by an 
interaction with dynamitin motor proteins, similar to the mechanism described for 
FKBP52 (McKeen et al. 2008).

FKBPL expression is regulated by estrogen and FKBPL functionally interacts 
with the ER/Hsp90 complex (McKeen et al. 2010). In addition, FKBPL expres-
sion correlates with breast cancer tumor growth as FKBPL and ER expression 
are inversely related; increased FKBPL levels lead to decreased ER expression 
(McKeen et al. 2010; Abukhdeir et al. 2008). Overexpression of FKBPL is as-
sociated with increased survival of untreated breast cancer patients and sensi-
tizes cancer cells to the anti-proliferative effect of both tamoxifen and fulves-
trant, which promotes increased recurrence-free survival (McKeen et al. 2011; 
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Han et al. 2006). Interestingly, overexpression of related FKBP proteins in tu-
mors is associated with a poor treatment outcome and prognosis (Romano et al. 
2010; Solassol et al. 2011). Conversely, increased levels of FKBPL correlate to 
a more positive response to treatment and a more favorable prognosis (McKeen 
et al. 2010; McKeen et al. 2011; Han et al. 2006). FKBPL stability is regulated 
by RBCK1, and as with FKBPL, RBCK1 is up-regulated by estrogen and can 
interact with the FKBPL/ER/Hsp90 complex (Donley et al. 2013). Increased ex-
pression of both FKBPL and RBCK1 appear to correlate with increased survival; 
however, elevated RBCK1 levels reduce the efficacy of tamoxifen (Donley et al. 
2013). The interactions leading to tumor survival and progression still need to be 
explored further.

Finally, FKBPL possesses anti-angiogenic properties (Yakkundi et al. 2013). In 
a mouse xenograft tumor model overexpression of FKBPL resulted in decreased 
tumor growth and tumor necrosis (Crabb et al. 2009). The anti-angiogenic effects 
of FKBPL are mediated through the N-terminal portion of the protein comprised of 
amino acids 34–58, termed peptide AD-01, which is currently being explored as a 
novel anti-angiogenic drug (Valentine et al. 2011; Yakkundi et al. 2013).

Plant FKBPs

Hsp90-binding TPR immunophilins have been identified in all eukaryotes exam-
ined. A few examples of plant TPR-containing FKBPs are shown in Fig. 2.1. The 
TPR domain of each FKBP is very similar in amino acid sequence to that of verte-
brate proteins; these are presumed to bind Hsp90, but that has not been determined 
in all cases. The plant and insect FKBPs contain one or more PPIase-related domain 
and can contain other functional domains. For example, AtFKBP42 contains a C-
terminal transmembrane domain that localizes the protein to the inner plasma mem-
brane and the vacuolar membrane (Kamphausen et al. 2002; Geisler et al. 2003; 
Geisler et al. 2004).

There is ample evidence to suggest that the plant and insect FKBPs are physi-
ologically important. Mutations in AtFKBP42 cause the severe developmental 
phenotypes termed twisted dwarf 1 (TWD) (Geisler et al. 2003) and ultracurvata 
(UCU2) (Perez-Perez et al. 2004). The mechanism by which these phenotypes 
occur likely involves impairment of membrane transport of the growth hormone 
auxin, as AtFKBP42 is known to interact with several ATP-binding cassette 
transporters on the plasma and vacuolar membranes (Geisler et al. 2004; Geisler 
et al. 2003; Liu et al. 2001). Mutations in AtFKBP72 result in a class of mutants 
termed pasticcino or pas mutants, which are characterized by a wide variety of 
developmental defects (Vittorioso et al. 1998). Two Hsp90-binding TPR FKBPs 
in wheat, wFKBP72 and the heat shock-inducible wFKBP77, have been shown 
in transgenic plants to distinctively influence developmental patterns (Kurek 
et al. 2002).
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Summary

In addressing the physiological importance of PPIases, Heitman and colleagues 
(Dolinski et al. 1997) generated an S. cerevisiae strain that lacked all 12 PPIase 
genes in the FKBP and cyclophilin families; the pluri-mutant strain displayed some 
growth abnormalities but was viable, thus demonstrating that these genes collec-
tively are non-essential in yeast. Nonetheless, it has become increasingly clear that 
the Hsp90-binding FKBP immunophilins, through interactions with steroid recep-
tors, kinases, and other cellular factors, play important physiological and patho-
logical roles in mammals. Significant progress has been made on the elucidation of 
these roles and the definition of underlying molecular mechanisms. The identifica-
tion of specific inhibitors will likely quicken in the coming few years and lead to 
therapeutic targeting of individual Hsp90-associated FKBP immunophilins for the 
treatment of a variety of human diseases.
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