
Construction of Personalized Information

Services for Researchers

Viktoria Foteyeva and Michail Panteleyev

St. Petersburg Electrotechnical University “LETI”, Russia
{vnfoteyeva,mpanteleyev}@gmail.com

Abstract. As the amount of information available on the Internet is
growing very rapidly (including Linked Data, in particular Linked Open
Data), creation of customized tools for knowledge management is be-
coming increasingly important. The paper proposes an approach to con-
struction of personalized information services that can be customized
to the needs of different users. The approach is based on two models:
model of user’s information needs and information environment model
(types of data sources). An implementation of the approach is consid-
ered on the example of system which is intended for concrete category
of users: researchers in the area of the Semantic Web. Three basic types
of users queries have been identified: news, general and analytical. De-
signing the personalized service is considered from the standpoint of the
main stages of the queries lifecycle: its construction and execution. Two
types of ontologies are used for initial query constructing: basic ontol-
ogy of research activity and the domain ontology. Query execution al-
gorithms include obtaining data from different types of sources (HTML,
HTML+RDFa, RSS, SPARQL endpoints) and its processing depending
on the features of the query. In addition the design pattern for effective
building of queries management module is proposed. In conclusion future
directions of prototype improvement are discussed.

Keywords: Personalized information services, queries to semantic data
sources, information services for researchers.

1 Introduction

Currently the volumes of information available on the Internet and a variety of
data representation formats preserve the tendency to rise. In this environment
effective knowledge management is possible by means of personalization of in-
formation services. To do this, services should take into account individual user
requests and be able to handle different types of sources, including semantic
ones. It is especially important for researchers, who spend lots of time searching
and processing information to stay up to date in their area of interest.

In [1] the following definition of personalized information service is given:
“A personalized information service is a service towards a customer comprising
(a) filtering of information out of former gathered and qualified information
regarding users textual interest (b) presentation of this information using a user
defined time schedule and media appropriate with recent user environment”.

P. Klinov and D. Mouromtsev (Eds.): KESW 2014, CCIS 468, pp. 44–56, 2014.
c© Springer International Publishing Switzerland 2014

Construction of Personalized Information Services for Researchers 45

2 Related Work

To help researchers to follow the news in their area (new publications, disser-
tations, upcoming conferences,etc.) social networks for researchers are designed,
such as Academia.edu [2], Researchgate [3], Mendeley [4] etc. Since the main
function is communication and search of researchers with similar interests, such
systems have limited options for customizing news notifications and support
a small number of predefined formats (text formats, no support for semantic
sources). Search is focused on internal databases (also available in a fixed num-
ber of external ones), new sources for updates tracking cannot be added.

At present a number of approaches to semantic data aggregation are pro-
posed. In particular, “Sigma” system [5] provides an automatic search for sources
(pages with embedded RDF, RDFa, Microdata and Microformats), an integra-
tion of data from different types of sources, removing repeated data, ranking
results and presenting them to user who may refine the results by adding or
removing sources. ECSSE (Entity Centric Semantic Search Engine) [6] provides
mashups from sources that contain structured data using large scale Semantic
web indexing, logic reasoning, data aggregation heuristics and other methods.
In [7,8] an aggregators of public professional events are described. The first one
utilizes microblogs (e.g. Twitter) as data sources. The second one collects and
integrates data in XML and utilizes RDF data model as a repository.

Some aspects of the research and development of a prototype of personalized
service for researchers (including review of existing systems, the general archi-
tecture, agent-based approach to service construction) have been described in
previous papers of authors [9,10,11]. Compared with other systems, the main
purpose of the construction of described prototype is personalization for a par-
ticular user, the ability to extend the functionality and customization for the
required information environment. This paper discusses aspects of queries prepa-
ration (on the example of news and general queries) and data collection from
different types of sources, including semantic ones.

3 User Information Needs

The first step towards building a personalized service which would help to im-
prove the efficiency of searching and processing information is to find out the
information needs of users. Since different categories of users have different needs
let us consider researchers as an example.

There are several human-centered models of information seeking [12], includ-
ing anomalous states of knowledge model [13] in which the information needed
to solve a problem are not clearly understood by a seeker. In this paper we focus
on professional events to help researchers stay relevant in their area of research
and plan their activities (e.g., upcoming conferences, new publications, projects,
etc.), for this reason searching for answers in some specific domain is omitted. In
that case users realize their information needs which in context of our prototype
may be represented as a set of information queries:

46 V. Foteyeva and M. Panteleyev

IN = {IQj}, (1)

where IN - information needs and IQj - j-th information query.

3.1 Basic Model of User Information Needs

The second step is to identify possible categories of queries and its features.
The initial motivation of our project was to improve the efficiency of scientific
research and educational process at the Department of Computer Engineering
of SPbETU “LETI” within masters’ program “Distributed Intelligent Systems”.
Therefore, the basic set of information needs were identified and structured based
on a survey of graduate and postgraduate students and professors of the depart-
ment, working in the field of Semantic web and multi-agent systems. Based on
the analysis of the survey three basic categories of information queries were
identified:

1. News - report about new events significant for a user. For example, an an-
nouncement of a new conference, new publication, etc;

2. General - find the set of entities with specified properties. For example, “Re-
searchers in the field of descriptive logic”, “Projects related to the Semantic
Web technologies over the last 3 years”, “Conferences on Artificial Intelli-
gence in 2013”;

3. Analytical - related to statistical parameters measurement (“Distribution,
i.e. number of researchers, interested in the Semantic Web in the EU coun-
tries”) or the dynamics (“Increase in the number of publications about the
LOD for the last 5 years”).

Considering selected categories user’s information needs may be presented as:

IN = IQi = {NQj} ∪ {GQk} ∪ {AQl} (2)

where NQ - news query, GQ - general query and AQ - analytical query.
News and general queries are similar, they only differ in a set of contained

entities, in a set of properties (the determining factor in this case is a date) and
a method of determining if the requested data is new for the user. Analytical
queries do not directly contain the required data but it can be obtained by
executing special operations.

3.2 Query Life Cycle

The life cycle (LC) of a user query, in general case, includes three phases:

1. query preparation (construction);
2. query execution (processing);

3. query results presentation to a user.

Construction of Personalized Information Services for Researchers 47

The life cycle phases are important for refinement of requirements to software
and on the design phase.

On the query preparation phase, a user constructs a query in accordance with
the selected category and sets modes of its processing. In details the preparation
of a query includes:

– selection of query category;
– construction of the query;
– choosing and setting a set of external sources of data;
– setting the query processing modes (frequency and method of activation,

methods of extraction / processing of required data, etc.);
– specifying form of results presentation to a user.

When constructing the query a user should specify its attributes. A news
query may be generally characterized by two main attributes:

– type of a new event for user (such as the announcement of a conference, a
competition, publication of a monograph, etc).

– subject (theme, topic) of event (e.g., the Semantic web, multi-agent systems).

Thus, a news query can be presented as:

NQj =< ETj , ESj >, (3)

where ETj - event type and ESj - event subject.
When preparing the general query, the user must specify the basic entity of

the query (e.g. person, project, publication etc.), the topic (descriptive logic,
linked data etc.), and perhaps some additional constraints (time, location, etc.).
Thus, a general query can be formally presented as:

GQj =< BEj , QTj, ACj >, (4)

where BEj - basic entity of general query,QTj - query topic and ACj - additional
constraints.

Furthermore, on the step of query construction user forms a list of sources to
be processed at each cycle of query implementation.

On the query execution step it is processed in accordance with the specified
execution mode. Query processing generally includes:

– collection of information from sources;
– selection of required facts from sources;
– further processing according to the query type.

On the last step the query result is presented to a user.

3.3 Model of the Information Environment for the Personalized
Service

To provide flexible customization of the service to the dynamically updated global
information environment it is necessary todetermine themodel of the environment.

48 V. Foteyeva and M. Panteleyev

This model should describe the properties of the environment, such as types of
sources, protocols to access them, formats of queried data, etc. The Internet
contains a huge number of distributed heterogeneous sources and the way they
may be collected depends on their type. In our project the following types of
sources are selected for consideration:

1. News RSS feeds.
2. SPARQL-endpoints.
3. Pure HTML web pages (without microformats, microdata or RDFa).
4. HTML + RDFa (or with microformats or microdata).

Thus, basic data for general or news query are:

– a query;
– a list of external sources.

A number of popular sources of scientific information, in particular [14,15,16],
provide the opportunity to proactively inform users in accordance with speci-
fied requirements. In our project we are planning in particular provide a single
interface to configure them.

4 Architecture of the Personalized Service and the Used
Ontologies

As shown on Fig. 1 the main modules of the prototype are the web application,
the client and service agents and a knowledge base (containing three types of
ontologies).The prototype that is developing as a Java web application is at
an early stage. Ontologies are stored in PostgreSQL database. To deal with
ontologies Jena framework [17] is used. Agents are built with the help of Jade
framework [18].

Since the service prototype for researchers aims to help them in their everyday
work, types of ontologies were selected based on the analysis of their activities.

Ontology of informational environment (IE). Describes the information envi-
ronment in which the service works: data sources, document formats and access
protocols to them (based on the model of information environment). Due to on-
tology of informational environment and the service architecture user have the
ability to choose and add new types of sources.

Basic ontology of research activities (BRA). Contains information about in-
teresting to user events and describes infrastructure of scientific and educational
activities (based on the categories of information queries for this group of users).
This ontology allows users to customize the types of followed up events and re-
lated data (e.g., for the event “publication of a new paper” data about authors
are related).

Domain ontology (DO). Describes the structure of a particular domain and
provides a flexible configuration of the service. Due to the domain ontology,
service is not tied to a particular domain and may be customized to the user

Construction of Personalized Information Services for Researchers 49

Fig. 1. General architecture of the prototype

interests. To do this during the setup phase of the service ontology mapping is
required that is quite a tedious task, but it may be partially automated.

For each user customized versions of ontologies of three types are created (user
ontologies). Query is constructed using described ontologies: types of events are
selected from the BRA, query themes from the DO, data sources from the IE.
Service agent is an important module of the prototype which is used to construct
queries and collect data from different types of sources.

5 Query Management Module

For efficient processing of user queries a module should be constructed which
main objectives would be:

– to make the process of getting query result transparent for service agent
regardless of data source type;

– to provide an ability to add new types of sources without changing the
architecture of the service.

This module (called “Query Management Module”) is used in several ways:

1. On a query processing step. The input of the module is a query q of appro-
priate type (in the prototype - SPARQL or a string query) and a type of
source or a particular source s (if specified). As a result, the module returns
triples T containing the result data. The module defines the access method
to the source of a particular type: it sends a query to the appropriate source,
receives the response and brings it to a format suitable for storage in the user
ontologies (triples). The module has two work modes: user queries processing
in real time and scheduled data updates collecting (e.g., once a day).

2. On a query construction step to the source of a specified type - for configu-
ration and the query’s initial data retrieve.

50 V. Foteyeva and M. Panteleyev

At the architecture level this module is located in the service agent.
Next, the first two steps of queries life cycle are considered: its construction

and data collection from the selected types of sources, and implementation of
these steps using the queries management module.

6 Query Preparation

6.1 SPARQL Query Preparation

For scientific and educational purposes it is proposed to select a list of typical
SPARQL queries with the possibility of user configuration for a specific endpoint.
Typical queries are constructed in terms of the service ontologies. By configu-
ration we mean the imposition of restrictions on selected by user properties
available in a specific endpoint.

The algorithm of query preparation:

1. User selects a typical SPARQL query and an endpoint. Ontologies used in
the endpoint and the service ontologies should be previously mapped. In this
case it is possible to select an entity class with meaning similar to the ones de-
scribed in a typical query using such properties as sameAs, skos:closeMatch
and skos:exactMatch for a particular endpoint. For this task ontology map-
ping module is used.

2. Queries management module selects all the properties for the requested en-
tity class from the selected endpoint. For each query a binding to a basic
entity is stored (BE for general query or ET for news query, see 3.2).

3. User selects the properties on which he would like to put restrictions.
4. Types of selected by user properties (e.g., string, date) are defined.
5. User is asked to input values of selected properties as restrictions for the

query.
6. Ready to run query is stored in the knowledge base of the service.

Let us notice that ontology mapping is going to be done in semi-automatic
way by the user since nowadays the process cannot be fully automated. Currently
COMA 3.0 [19] is used for mapping in the prototype. Various algorithms may be
used for this purpose and every year Ontology Alignment Evaluation Initiative
presents comparison results of the best ones (e.g., results of 2013 year [20]).

6.2 News Feeds (RSS)

To get updates from the RSS-sources RSS-aggregators are commonly used. Data
collection from this type of source has little scientific interest, but as the format
is very common its support is added to the service prototype. So far RSS has two
most popular versions: 1.0 is based on XML standards and RDF, and the 2.0
has a simpler syntax and is not an RDF-format. Version 2.0 may be converted
to the RDF using XSLT.

To provide the ability to process SPARQL queries for this type of sources an
initial extraction of the RSS-feed should be performed on the step of adding the
source to the service for:

Construction of Personalized Information Services for Researchers 51

– mapping between dictionaries (RSS modules) and services ontologies;
– storing data about feed content in the service (used classes and properties).

The initial extraction is performed by the queries management module. After
that the algorithm of a query creation to the news feeds is similar to the one
described in Section 6.1.

6.3 HTML+RDFa

In order to process SPARQL queries to HTML+RDFa documents an initial
extraction of the RDF-triples from the document should be performed. To do
this various libraries for RDFa extraction may be used in the query management
module (in the prototype Semargl [21] was used). After triples extraction the
information about ontologies used for defining the RDFa will be saved. Next
task is to build a SPARQL query. To do this it is necessary to map the entities
of the typical query and the entities used in RDFa. The algorithm is similar to
one described in Section 6.1.

6.4 HTML Documents

For this source type there are two basic approaches:

– processing using a structure of a particular site, i.e. the specific predefined
HTML markup of the site.

– general processing without considering the peculiarities of a particular site.
In this case the text queries are applicable. Selection of news facts may be
performed using text mining.

In this paper only the first case is considered. In our opinion the optimal way
would be to offer users to add their own markup to pages (e.g., RDFa or micro-
formats). For convenience, an interface to help a user add a markup to elements
of HTML pages containing specific information (such as conference title, start
date, etc.) is required. This approach brings HTML processing to HTML+RDFa
case. The most well-known tool that works in a similar way is Structured Data
Markup Helper [22] from Google (supports schema.org, partially JSON-LD and
microformats).

In the service prototype the following steps should be completed for querying
HTML-pages using the proposed method:

1. At the step of adding HTML page user marks it by adding RDFa properties
using the service interface.

2. Markup for this page is stored in the service.
3. After that user creates queries the same way as he does it for HTML+RDFa.

7 Data Collection Using the Query Management Module

Data collection from sources of different types has its own features considered
below.

52 V. Foteyeva and M. Panteleyev

7.1 Data Collection from SPARQL Endpoints

The module of queries management in order to work with sources of this type
should provide execution of SPARQL queries based on ETj and ESj, taking into
account the features of the specific endpoint. Processing algorithm of this type
of source is the following:

1. execute the query for a given SPARQL-endpoint;

2. get the triple from the SPARQL-endpoint;

3. save results to user ontologies.

To save the triples to the user ontologies a particular query pattern should
be used which universally chooses a subject, object, predicate and a text label
if available. The pattern of the general SPARQL-query for data collection is the
following:

SELECT ?subj ?prop ?obj ?label

WHERE {

?subj a prefix:OntologyClass. #event type

#get property to filter value

[?subj prefix:OntologyProperty ?property.]

?subj ?prop ?obj.

[OPTIONAL { ?objrdfs:label ?label.}

#filter property value

FILTER regex(?property, "propertyValue", "i")]

}

LIMIT N

Optional parts of the query are in square brackets. Values filtering is held in
different ways depending on the type of values in the query (in the example by
string value).

7.2 Data Collection from RSS Feeds, HTML+RDFa Documents
and HTML

Since for a particular RSS-feed and a HTML+RDFa document SPARQL queries
were constructed during the setup step, data collection from these types of
sources is described in 7.1.

In the service prototype the following steps should be performed for the col-
lection of data from HTML documents:

1. the queries management module downloads a page and adds the saved RDFa
markup (see 6.4);

2. the queries management module collects data from HTML+RDFa (with the
help of external libraries integrated into the prototype) using a predefined
user queries.

Construction of Personalized Information Services for Researchers 53

8 Design Patterns for Data Collection

To be effective the implementation of the queries management module should
provide (see Section 4):

– abilities for adding a new type of data source without changing existing
classes in the module;

– separation of service agent class from the specific implementation of source
classes: service agent should receive and forward a query but should not have
the information about how to get data from the source of a particular type.

Analysis of software design patterns showed that it is advisable to adapt the
pattern Command [23] for data collection in real time (Fig. 2). For each operation
(e.g., retrieve data from a source by a query execution, get all properties of an en-
tity class) of a particular source type (SPARQL endpoint, RSS, HTML+RDFa,
HTML, search engine and semantic search engine) classes are created (e.g., the
class for retrieving data from a SPARQL endpoint is “GetFromEndpointCom-
mand”). They contain instances of the corresponding source class (let us call
it a “controller” of the source, Fig. 2 shows “SPARQLController” as an exam-
ple). The “SPARQLController“ class contains all the methods for retrieving data
from a specific source type (a SPARQL-endpoint). A “RequestDistributor” class
is responsible for the distribution of user requests to appropriate controllers.

For scheduled data collection it is important to set a sequence of queries for
update collection and maintain high performance. The command pattern can
be used to handle a situation where there are a number of jobs (commands) to
be executed but only limited resources available to do the computations [23]. In
this case objects that implement the ommand interface are queued and program
threads sequentially extract commands and call their execute() method, and
after that go back for the next command object.

Fig. 2. Class Diagram of “Command” pattern for data collection

9 Preliminary Evaluation

The prototype was tested by a small group (7 people) of postgraduates and
students enrolled in the master’s program “Distributed Intelligent Systems”.

54 V. Foteyeva and M. Panteleyev

Under this program the disciplines “Semantic Web” and “Multi-Agent Systems”
are taught. Students would like to know more about these areas, e.g. about
publications, conferences, ongoing projects, organizations and people who work
in these areas, and get some data analysis (e.g., how many papers were published
over the last few years on some particular topics, what are the dates to apply
for a workshop, etc).

To do this, they should specify a list of data sources that can be set man-
ually or selected from the list proposed by a service. After that the queries to
structured data sources should be formed. As a result, on the main page of the
application user sees aggregated data from predefined sources. The user may
choose how to visualize the data: by informational blocks (publications, confer-
ences, organizations, people, projects) with summaries (e.g. the number of found
conferences) or an adapted RDF-graph. The user may choose the informational

Fig. 3.Main page of the prototype which represents a few latest results of each category
(conferences, publications, workshops, people, organizations and projects)

Construction of Personalized Information Services for Researchers 55

block he wants to know more about and get more detailed information on the
page of the prototype dedicated to it. After aggregating data for the first time
the user may set properties for updates aggregation to stay current.

As part of the test scenario the prototype was preconfigured to aggregate
news about intelligent agents and the Semantic Web. Main page of the pro-
totype, which represents a few latest results of each basic entity (conferences,
publications, workshops, people, organizations and projects) collected using all
predefined queries, is shown in Fig. 3. At the end of evaluation period (two
weeks) the students confirmed that:

– the prototype saves time: all updates from sites without RSS-feeds were
available without the need to visit them one by one;

– it is convenient to access RSS-feeds from the same interface;
– they were offered some publications on the predefined topics from SPARQL-

endpoints which they had not previously considered as in-formation sources
because of usage difficulties.

10 Conclusion and Future Work

To create a personalized service we have structured the information needs of spe-
cific categories of users and the information environment consisting of different
types of sources. The prototype provides the ability to collect information in a
variety of formats for the needs of a particular user and due to the ontological
approach may be customized to the required information environment. However
for now there are some difficulties in customization to the needs of a user. For
that reason further development is needed, in particular in construction an inter-
face for SPAQRL queries, more high level of automation of ontologies mapping,
client agent configuration, etc).

In future we are planning to implement a conflict resolution module, an in-
terface for SPAQRL queries construction for non-expert users and to add the
ability to handle HTML microdata and microformats. The personalized service
should also be tested over a wide range of users and its effectiveness should be
evaluated with more rigorous metrics.

References

1. Ritz, T.: Personalized information services: An electronic information commodity
and its production. In: Proceedings of the ICCC/IFIP Conference, pp. 48–59. IOS
Press, Amsterdam (2001)

2. Academia.edu official site, https://www.academia.edu
3. ResearchGate official site, http://www.researchgate.net

4. Mendeley official site, http://www.mendeley.com
5. Sigma official site, http://sig.ma
6. Cyganiak, R., Catasta, M., Tummarello, G.: Towards ECSSE: live Web of Data

search and integration. In: Semantic Search 2009 Workshop, Madrid (2009)

https://www.academia.edu
http://www.researchgate.net
http://www.mendeley.com
http://sig.ma

56 V. Foteyeva and M. Panteleyev

7. De Vocht, L., Selver, S., Ebner, M., Mhlburger, H.: Semantically driven Social
Data Aggregation Interfaces for Research 2.0. In: 11th International Conference
on Knowledge Management and Knowledge Technologies, pp. 43:1–43:10. ACM,
New York (2011)

8. Al-Safadi, L., Alkhatib, N., Babaier, R., Assum, L.: Semantic Aggregator of Public
Professional Events. J. of Applied Sciences 12(7), 653–660 (2012)

9. Panteleyev, M., Foteyeva, V.: Building aggregator of scientific and educational data
for Semantic Web. In: 3rd Conference on Knowledge Engineering and Semantic
Web, St. Petersburg, pp. 73–79 (2012)

10. Foteyeva, V., Panteleyev, M.: Agent-based semantic data aggregator. In: 4th
Conference on Knowledge Engineering and Semantic Web, Book of abstracts,
St.Petersburg, pp. 22–24 (2013)

11. Foteyeva, V.: Problems of building semantic aggregators. In: Proceeding of In-
ternational Conference on soft Computing and Measurements, St.Petersburg, pp.
110–112 (2012)

12. Marchionini, G.: Information seeking in electronic environments. Cambridge
University Press, Cambridge (1997)

13. Belkin, N.J., Oddy, R.N., Brooks, H.M.: ASK for information retrieval: Part I.
Background and theory. J. of Documentation 38(2), 61–71 (1982)

14. Scopus official site, http://www.scopus.com
15. Google scholar official site, http://scholar.google.ru
16. WikiCFP official site, http://wikicfp.com/cfp
17. Jena framework official site, http://jena.apache.org
18. Jade framework official site, http://jade.tilab.com
19. Coma 3.0 - a schema matching system official site, http://dbs.uni-leipzig.de/

Research/coma.html

20. Grau, B.C., Dragisic, Z., Ecker, K.: Results of the Ontology Alignment Evaluation
Initiative. In: 12th International Semantic Web Conference, pp. 61–100 (2013)

21. Semargl official site, http://semarglproject.org
22. Structured Data Markup Helper, https://www.google.com/webmasters/

markup-helper/

23. Freeman, E., Robson, E., Bates, B., Sierra, K.: Head First Design Patterns. O’Reilly
Media (2004)

http://www.scopus.com
http://scholar.google.ru
http://wikicfp.com/cfp
http://jena.apache.org
http://jade.tilab.com
http://dbs.uni-leipzig.de/Research/coma.html
http://dbs.uni-leipzig.de/Research/coma.html
http://semarglproject.org
https://www.google.com/webmasters/markup-helper/
https://www.google.com/webmasters/markup-helper/

	Construction of Personalized Information
Services for Researchers

	1 Introduction
	2 Related Work
	3 User Information Needs
	3.1 Basic Model of User Information Needs
	3.2 Query Life Cycle
	3.3 Model of the Information Environment for the Personalized Service

	4 Architecture of the Personalized Service and the Used Ontologies
	5 Query Management Module
	6 Query Preparation
	6.1 SPARQL Query Preparation
	6.2 News Feeds (RSS)
	6.3 HTML+RDFa
	6.4 HTML Documents

	7 Data Collection Using the Query Management Module
	7.1 Data Collection from SPARQL Endpoints
	7.2 Data Collection from RSS Feeds, HTML+RDFa Documents and HTML

	8 Design Patterns for Data Collection
	9 Preliminary Evaluation
	10 Conclusion and Future Work
	References

