
Cloud Sensor Ontology and Linked Data

to Support Autonomicity in Cloud Application
Platforms

Rustem Dautov1, Iraklis Paraskakis1, and Mike Stannett2

1 South-East European Research Centre (SEERC),
CITY College — International Faculty of the University of Sheffield,

Thessaloniki, Greece
{rdautov,iparaskakis}@seerc.org

2 Department of Computer Science, University of Sheffield, UK
m.stannett@sheffield.ac.uk

Abstract. Cloud application platforms with their numerous deployed
applications, platform and third-party services are becoming increas-
ingly complex, dynamic and data-intensive, and require novel intelligent
approaches to be applied in order to maintain them at an operational
level. By treating cloud application platforms as distributed networks
of software sensors and utilising techniques from the Semantic Sensor
Web area, we have developed a monitoring framework which allows
us to detect, diagnose and react to emerging critical situations in
complex environments of cloud application platforms in a dynamic
manner. In this paper, we focus on our use of a Sensor Cloud Ontology
to: (i) represent cloud-based logical software sensors; (ii) homogenise
monitored sensor data in the form of RDF streams; and (iii) apply
stream and static reasoning to these monitored values in order to detect
critical situations. We also explain how utilisation of Linked Data
principles can help achieve a more flexible and extensible architecture
to define diagnosis and adaptation policies. We discuss benefits associ-
ated with our approach, as well as potential shortcomings and challenges.

Keywords: Cloud Computing, Autonomic Computing, Semantic Sen-
sor Web, SSN Ontology, Linked Sensor Data.

1 Introduction and Motivation

Since its emergence nearly 15 years ago [3,4], the Semantic Web stack has devel-
oped into a wide range of solutions and technologies whose purpose is no longer
limited to providing computer-readable meaning to the Web, but now encom-
passes a range of problem domains, not necessarily related to the Semantic Web,
where existing challenges dictate a need for novel intelligent approaches.

One such area is the domain of Cloud Application Platforms (CAPs). These
are a group of Platform-as-a-Service (PaaS) cloud offerings, characterised by

P. Klinov and D. Mouromtsev (Eds.): KESW 2014, CCIS 468, pp. 29–43, 2014.
c© Springer International Publishing Switzerland 2014



30 R. Dautov, I. Paraskakis, and M. Stannett

extensive customer support for developing, testing, deploying and maintaining
software. CAPs not only provision their customers with an operating system
and run-time execution environment, but additionally offer a range of generic,
reliable, composable and reusable services, following the principles of Service-
Oriented Computing (SOC) [22,27]. For example, Google App Engine1 currently
offers 41 services (or “features”), Microsoft Windows Azure2 provides 17 built-in
services and 46 add-ons (i.e., third-party services registered with the platform),
and Heroku3 offers over 100 add-on services.

However, such a flexible model for application development, in which com-
plex application systems are assembled from existing components, has its pit-
falls. Cloud platform providers increasingly find themselves in a situation where
the ever-growing complexity of resulting environments poses new challenges as
to how large volumes of actively streaming, heterogeneous and uncertain data
should be dynamically analysed to support situation assessment and run-time
adaptations. Accordingly, our research focuses on how Semantic Web technolo-
gies (specifically, OWL ontologies, SWRL rules, RDF streams and continuous
SPARQL query languages) can be utilised to define semantic streams of mon-
itored data which will then be queried and reasoned over in order to perform
situation assessment and suggest further adaptation strategies. Using these tech-
nologies has allowed us to develop a small-scale prototype self-adaptation frame-
work which enables dynamic monitoring and intelligent analysis of flowing data
within CAPs to support run-time adaptations.

The rest of the paper is organised as follows. Section 2 is dedicated to back-
ground information, outlining both the context of the research presented in this
paper, and some of our earlier findings. It briefs the reader on: (a) our approach
to treating CAPs as distributed networks of software sensors; and (b) the self-
adaptation framework for CAPs. In Section 3 we study existing ontologies for
modelling cloud environments and sensor-enabled domains, and position our
work at the intersection of these two domains. Section 4 describes the Cloud
Sensor Ontology which lies at the core of our self-adaptation framework, and
illustrates its role in the definition of RDF streams, C-SPARQL queries and
SWRL rules using an example based on Heroku add-on services. In Section 5 we
elaborate on the presented semantic approach and explain how it can be further
extended utilising Linked Data principles. Section 6 concludes the paper.

2 Background

2.1 Cloud Application Platforms as Sensor Networks

A fundamental underpinning of our approach is our interpretation of CAPs as
distributed networks of “software sensors” – that is, services, deployed applica-
tions, platform components, etc., which constantly emit raw heterogeneous data

1 https://cloud.google.com/products/app-engine/
2 http://azure.microsoft.com/
3 https://heroku.com

https://cloud.google.com/products/app-engine/
http://azure.microsoft.com/
https://heroku.com


Cloud Sensor Ontology and Linked Data to Support Autonomicity 31

which has to be monitored and analysed to support run-time situation assess-
ment.4 This enables us to apply existing solutions developed by the Semantic
Sensor Web (SSW) community, which address the requirements of Sensor Web
Enablement [8] by combining ideas from two research areas, the Semantic Web
and the Sensor Web; this combination enables situation awareness by providing
enhanced meaning for sensor observations [28]. In particular, we were inspired by
the Semantic Sensor Networks (SSN) approach to express heterogeneous sensor
values in terms of RDF triples using a common ontological vocabulary, and have
created our own Cloud Sensor Ontology (CSO) to act as the core element of a
self-adaptation framework for CAPs.

2.2 Self-adaptation Framework for CAPs

Fig. 1 demonstrates a high-level architecture of the self-adaptation framework,
taking the established MAPE-K model [21] as an underlying model for self-
adaptation. In order to support both self-awareness and context-awareness of
the managed elements (i.e., software sensors within CAPs), we needed to de-
velop certain modeling techniques to define the adaptation-relevant knowledge
of the cloud environment (e.g., platform components, available resources, con-
nections between them, entry-points for monitoring and execution, adaptation
and diagnosis policies, etc.). In particular, we wanted to ensure:

– separation of concerns;
– the ability to make flexible modifications through declarative definitions;
– enhanced reuse capabilities, automation and reliability (as opposed to tra-

ditional hard-coded approaches).

Fig. 1. High-level architecture of the self-adaptation framework

Our solution was to develop a Cloud Sensor Ontology, which also serves as
a common vocabulary of terms, shared across the whole managed system, and

4 For a more detailed overview of our approach we refer interested readers to [12].



32 R. Dautov, I. Paraskakis, and M. Stannett

corresponds to the Knowledge component of the MAPE-K model. Accordingly,
our ontological classes and properties serve as “building blocks” for creating
RDF streams, C-SPARQL [2] queries and SWRL rules. By annotating moni-
tored values with semantic descriptions, we enabled the framework to combine
observation streams with static ontological knowledge and perform run-time for-
mal reasoning. This work in turn opened promising opportunities for performing
run-time analysis, problem diagnosis, and suggesting further adaptation actions
[14]. In this paper we focus on the Semantic Web aspects of our approach.

3 Related Work

There has been a considerable amount of research efforts in the direction of con-
ceptually modelling cloud environments with ontologies and thus benefit from
declarative definitions, human-readability, built-in reasoning capabilities, stan-
dardised languages, interoperability, easy accessibility, etc. [35]. In [1] Androcec
et al. provide a holistic view on the existing works and presents a systematic
review of 24 cloud ontologies. According to this review, the whole body of work
can be classified into four main categories:

– Cloud resources and services description – studies in this category describe
cloud delivery models (i.e., IaaS, PaaS, SaaS), resources and services, pric-
ing models, etc. Examples of ontologies belonging to this category include
[7,15,24,33,37]. However, broadly speaking, all cloud ontologies can be clas-
sified under this categor et al.y, since they all describe cloud resources to
certain extend.

– Cloud security – this category of ontologies looks at clouds from a perspec-
tive of modelling security- and privacy-related aspects. For example, in [32]
Takahashi et al. devised an ontology based on cyber-security operational in-
formation of cloud systems, and developed the Countermeasure Knowledge
Base – a set of assessment rules with scoring methodologies and check-lists.

– Cloud interoperability – studies in this category use ontologies to achieve
interoperability among various cloud providers, their services and APIs (of-
ten based on existing standards and proposals for software interoperability),
and thus minimise the so-called “lock-in” effect. A notable example in this
category is the cloud ontology, which was derived in the frame of the mO-
SAIC project [25] and aims at providing a transparent and simple access
to heterogeneous cloud resources and avoid locked-in proprietary solutions.
Other examples also include [5] and [18].

– Cloud services discovery and selection – this category consists of ontologies
which facilitate the process of discovery and selection of best cloud services.
Typically, an ontology serves as a unified common benchmark against which
the comparison of various heterogeneous services is performed. Examples of
such ontologies include [11,17,19,20,31,38].

Another cluster of related research efforts comprises studies which utilise on-
tologies to formally describe sensor-enabled domains, collectively referred to as



Cloud Sensor Ontology and Linked Data to Support Autonomicity 33

Semantic Sensor Web (SSW) [28]. Compton et al. [9] provide a survey of 12 SSW
ontologies, which provide vocabularies of concepts, relationships between those
concepts and built-in reasoning techniques to facilitate semantic interoperability,
and compare these ontologies with respect to such criteria as main purpose of
use, expressive power, underlying technology, etc.

In this light, a particularly notable and representative example of an ontology
used to model sensor networks of any complexity via a common and standardised
vocabulary is the Semantic Sensor Network (SSN) ontology, developed by the
SSW community. It is a product of careful analysis and comparison of existing
sensor ontologies by a group of established researchers and experts in the field
[36]. The SSN ontology comprises ten modules, and includes 41 concepts and
39 object properties, which describe sensors, the accuracy and capabilities of
such sensors, observations and methods used for sensing, as well as other related
concepts [10]. Despite this coverage, the ontology remains domain-independent,
as it does not describe domain concepts – these are intended to be defined
separately, and included from other linked resources. Such domain independence
allows for potential applications of the ontology to a wide range of sensor-enabled
domains (for example, the emerging area Internet of Things [29]), and is exploited
in the work described in this paper.

Nevertheless, none of the existing cloud ontologies features the sensor-related
dimension, and none of the existing sensor ontologies captures the “logical” sen-
sors of CAPS (albeit they offer ways of extending them with relevant concepts).
Given this situation, we have developed our own Cloud Sensor Ontology5 (CSO),
which combines the two aforementioned domains, and in the next section we ex-
plain how it can be used to express software sensors within CAPs.

4 Cloud Sensor Ontology (CSO)

The principles underpinning the development of the CSO reflected existing in-
sights, best practices, and recommendations as to how sensor-enabled domains
should be modeled using ontologies (apart from the SSN ontology, which was the
main point of reference in our work, other important influences were OntoSensor
[16] and Ontonym [34]). Moreover, when developing the CSO, we tried to follow
established ontology engineering principles [26,30], such as clarity, coherence,
consistency, extensibility and adoption of naming conventions.

Having outlined some of the key structures defined within CSO, we demon-
strate by example how the resulting ontology can be used to define RDF streams,
C-SPARQL queries and SWRL rules, thereby helping to detect excessive num-
bers of client connections to Heroku’s Postgres database add-on service.

4.1 Structure of the CSO

When shifting focus from the conventional physical sensor devices of the Sensor
Web domain to the “logical software sensors” of CAPs, many of the concepts

5 Available at http://seerc.org/ikm/docs/cso.owl.

http://seerc.org/ikm/docs/cso.owl


34 R. Dautov, I. Paraskakis, and M. Stannett

defined in existing sensor ontologies become irrelevant and may be omitted.
Mainly, these are the concepts related to the physical placement and environment
of sensor devices. Additionally, since existing ontologies primarily target sensor
observations, they do not include concepts related to situation assessment and
adaptations, and this was another challenge for us when developing the CSO.

Logically, CSO can be divided into an upper (i.e., platform-independent) and
a lower (i.e., platform-specific) level. The former contains high-level concepts
which are potentially reusable across multiple CAPs, whereas the latter con-
tains domain-specific knowledge, such as actual cloud service names and their
properties. Accordingly, as far as the principle of ontology completeness is con-
cerned, our work on these levels is still ongoing: we are investigating various case
studies (one of which will be demonstrated below) with a view to extending and
optimising both the upper and the lower parts of the ontology, e.g., to capture
concepts relevant to a specific CAP and its services.

The upper ontology includes 5 modules:

– Sensor (Fig. 2) – this is the main class used to describe sensors within
CAPs, and includes such subclasses as Service, PlatformComponent,
Application, User, etc.

– Property (Fig. 3) – this class describes various qualities of soft-
ware sensors to be observed, such as Size (further sub-classed
into DatabaseSize, QueueSize, etc.); Time (further sub-classed into
ExecutionTime, QueuingTime, StartingTime, FinishTime, etc.); and
NumberOfConnections. The Property class is related to Sensor through
the hasProperty object property, which is further sub-classed into hasTime,
hasSize, hasNumberOfConnections, etc. In adopting this structure we have
followed the Sensor-Observes-Property pattern adopted by the SSN, On-
toSensor and Ontonym ontologies. This pattern facilitates conciseness and

Fig. 2. Upper ontology: the Sensor module



Cloud Sensor Ontology and Linked Data to Support Autonomicity 35

Fig. 3. Upper ontology: the Property module

Fig. 4. Upper ontology: the Situation module

enables defining the upper concepts (i.e., Sensor, hasProperty, Property)
first, and then extending them with required subclasses and sub-properties,
thus avoiding redundancy and repetitions.

– Situation (Fig. 4) – this class contains the subclasses CriticalSituation
and OrdinarySituation, which are used to classify observations as either
requiring or not requiring adaptation actions. CriticalSituation includes
such subclasses as Crash, Overload, and ClientConnectionViolation.

– Adaptation (Fig. 5) – this class defines possible adaptation actions in
response to detected critical situations, and includes such subclasses as
ResourceProvisioning, ResourceDeprovisioning, and Substitution.

– Object (Fig. 6) – this is an auxiliary class to model all other entities within
CAPs which should not necessarily be modeled as Sensors.



36 R. Dautov, I. Paraskakis, and M. Stannett

Fig. 5. Upper ontology: the Adaptation module

Fig. 6. Upper ontology: the Object module

4.2 Example: The Role of the CSO in a Sample Adaptation Loop

We now illustrate how the CSO can be used with RDF sensor streams, C-
SPARQL queries and SWRL policies to address existing potential shortcomings
of Heroku and its add-on services. For this example, we focus on the Postgres
database service6, one of several data storage services offered by Heroku.

Heroku’s pricing model offers customers a range of subscription plans, each
offering a different level of service. In particular, a typical metric relating to
data storage services is the number of simultaneous client connections. However,
customers are not currently notified in advance when the number of active con-
nections is reaching ‘danger levels’, and this can result in further connection
requests being unexpectedly rejected. Accordingly, our goal in this case study
was to equip data storage services with sensing capabilities, so that application
providers can be notified in advance whenever a threshold is approaching, allow-
ing them to take appropriate preemptive actions – for example, by closing down
low-priority connections or by automatically upgrading their subscription plan.

Using our framework we manually annotated sensor data (in this case, the
current pool of client connections and the current state of the database backup

6 https://www.heroku.com/postgres

https://www.heroku.com/postgres


Cloud Sensor Ontology and Linked Data to Support Autonomicity 37

process) with semantic descriptions defined in the CSO to generate a homo-
geneous data representation, and then streamed these RDF values to the C-
SPARQL querying engine.7 The following RDF stream captures the situation
when the number of client connections increased from 15 to 18 (the connection
limit is 20 for the initial subscription plan), and no backup process is running –
this is important because the backup process establishes two client connections
to the database, but typically lasts for less than a minute, and therefore should
not be considered as a threat.

cso:postgres-service-10 rdf:type cso:StorageService

cso:postgres-service-10 cso:hasNumberOfConnections

cso:number-of-connections-122

cso:number-of-connections-122 rdf:type cso:NumberOfConnections

cso:number-of-connections-122 cso:hasValue "15"^^xsd:int

cso:postgres-service-10 rdf:type cso:StorageService

cso:postgres-service-10 cso:hasNumberOfConnections

cso:number-of-connections-122

cso:number-of-connections-122 rdf:type cso:NumberOfConnections

cso:number-of-connections-122 cso:hasValue "16"^^xsd:int

cso:backup-service-8 rdf:type cso:BackupService

cso:backup-service-8 cso:accesses cso:postgres-service-10

cso:backup-service-8 rdf:isActive "false"^^xsd:boolean

cso:postgres-service-10 rdf:type cso:StorageService

cso:postgres-service-10 cso:hasNumberOfConnections

cso:number-of-connections-122

cso:number-of-connections-122 rdf:type cso:NumberOfConnections

cso:number-of-connections-122 cso:hasValue "18"^^xsd:int

In order to assess current situation and detect violations we registered a stand-
ing C-SPARQL query, which is evaluated every second and triggered whenever
the number of client connections during the previous minute reaches the thresh-
old of 18, provided there is no backup process running – that is, there are indeed
18 client connections, and there is a potential threat to the application stability.

REGISTER QUERY PostgresClientConnectionViolation

AS PREFIX cso:<http://seerc.org/ontology.owl#>

SELECT ?service1, ?noc

FROM STREAM <http://seerc.org/stream> [RANGE 1m STEP 1s]

WHERE { ?service1 rdf:type cso:HerokuPostgresService .

?service1 cso:hasNumberOfConnections ?noc .

?noc cso:hasValue ?v . FILTER (?v >= 18) .

7 To extract these metrics from the Postgres service we relied on standard mechanisms
offered by this database. See [13].



38 R. Dautov, I. Paraskakis, and M. Stannett

?service2 rdf:type cso:PGBackupService .

?service2 cso:accesses ?service1.

?service2 cso:isActive "false"^^xsd:boolean }

Once the C-SPARQL query is triggered, the corresponding critical values
are instantiated in the CSO as instances of HerokuPostgresService and
CriticalNumberOfConnections, and reasoning over SWRL rules is applied. The
following two rules define that: (a) a situation when a Postgres service has a
critical number of client connections should be classified as critical under the
ClientConnectionViolation class; and (b) such a critical situation requires an
adaptation – in this case a subscription plan upgrade.

HerokuPostgresService(?ser), CriticalNumberOfConnections(?noc),

hasNumberOfConnections(?ser, ?noc), Situation(?sit)

-> ClientConnectionViolation(?sit)

HerokuPostgresService(?ser), ClientConnectionViolation(?sit),

isInSituation(?ser, ?sit)

-> needsSubscriptionPlanUpgrade(?ser, true)

5 Next Steps: Linked Data

Our original motivation to employ the Semantic Web technology stack was to
move away from rigid, hard-coded approaches and introduce a flexible, easily
maintainable, and platform-independent way of expressing diagnosis and adap-
tation policies for the domain of CAPs. Our self-adaptation framework offers
CAP providers an opportunity to define policies in a declarative and human-
readable manner by using the underlying Cloud Sensor Ontology as a common
vocabulary of terms.

However, as illustrated in the Postgres example above, this approach implies
that cloud providers are responsible for maintaining adaptation-related knowl-
edge which concerns not only the internal platform components, but also third-
party services, which are registered with the given CAP. In reality, however, this
is not necessarily the case. Typically, third-party service providers, having de-
ployed their software on a cloud and exposing the API to the users, take on the
responsibility to maintain the software and associated resources, and provide cus-
tomers with required support. This means that CAP providers treat third-party
services as black boxes and need not be aware of their internal architecture and
organisation. Accordingly, this may result in situations where adaptation policies
are incomplete, imprecise, or even invalid, which in turn may lead to incorrect
adaptations, non-optimised resource consumption, and even system failures.

As a potential solution to this problem we are currently investigating how
Linked Data principles can be utilised in this context. The primary goal of Linked
Data is to enable discovery and sharing of semantically-enriched data over the
Web using standardised technologies, such as URIs and RDF [6]. In other words,
Linked Data implies the ubiquitous re-use of existing distributed data, which is



Cloud Sensor Ontology and Linked Data to Support Autonomicity 39

exactly what we need in order to separate various pieces of adaptation policies
between CAP owners and third-party service providers.

Accordingly, we believe that using Linked Data principles will enable us to
create a distributed two-level ontological framework, which would consist of:

– Platform Adaptation Ontology: a core OWL ontology containing all the nec-
essary concepts, relations and default SWRL rules needed to define the de-
fault adaptation-related behaviours of platform components and services.

– Extension Adaptation Ontologies : a set of linked OWL ontologies and SWRL
rules developed by third-party service providers and deployed on the Web,
which specify diagnosis and adaptation policies for respective services reg-
istered with a CAP. These ontologies may either extend or overwrite the
default behaviour specified in the core Platform Adaptation Ontology.8

The main benefits of Linked (Open) Data are that it is sharable, extensible,
and easily re-usable. In the context of a distributed ontological framework for
adaptation policies, we also postulate the following additional benefits:

– Linked extensions are distributed and easily accessible over the Web by
means of URIs and/or SPARQL endpoints. In this sense, software services
become “self-contained” as they inform the autonomic manager about their
diagnosis/adaptation policies by providing a link to the corresponding poli-
cies. The autonomic management system need not know about them in ad-
vance, but can access them at run-time using Linked Data principles.

– Linked extensions are easily modifiable. Since third-party service providers
have full control over their segment of policies, they can seamlessly change
them so as to reflect ongoing changes.

– Linked extensions are potentially re-usable across multiple CAPs. Indeed, it
is quite common for third-party service providers to offer their services on
several CAPs. For example, CloudAMQP9 – a messaging queue service – is
offered on 10 different CAPs (including Amazon Web Services10, Heroku,
Google Cloud Platform11, etc.). Accordingly, under certain assumptions one
and the same policy definition can be re-used across all of those CAPs.

Moreover, there is no need to restrict oneself to exposing as Linked Data
only the schemas. In the future we may consider publishing historical CAP
sensor observations (as homogenised RDF triples) in public repositories. Indeed,
we already record these datasets for the purposes of post-mortem analysis, in

8 It should be perhaps noted that typically the term “Linked Data” refers to published
RDF datasets (or “instance data”), rather than to OWL, RDFS and SWRL vocab-
ularies. Nevertheless, there is ongoing research aimed specifically at linking, sharing
and re-using the underlying schemas, not just the datasets themselves. See, for ex-
ample, Linked Open Vocabularies - LOV (http://lov.okfn.org/dataset/lov/) for
a representative example of this research initiative.

9 http://www.cloudamqp.com/
10 https://aws.amazon.com/
11 https://cloud.google.com/

http://lov.okfn.org/dataset/lov/
http://www.cloudamqp.com/
https://aws.amazon.com/
https://cloud.google.com/


40 R. Dautov, I. Paraskakis, and M. Stannett

order to identify critical failures or suboptimal behaviours. We are also planning
to apply machine learning techniques so as to detect underlying trends and
patterns, which will hopefully lead to more precise and accurate diagnosis, and
more efficient adaptation policies. Exposing this information as Linked Data
will, we believe, provide access to real-world performance measurements, and
will have the potential to facilitate comparison between different CAPs.

6 Summary and Conclusions

In this paper we have presented our Cloud Sensor Ontology (CSO), and illus-
trated how it lies at the core of our semantic self-adaptation framework for cloud
application platforms. Having Despite thoroughly studied studying related on-
tologies in the domains of SSW and cloud computing, we were unable to find
one, which would satisfy our the requirements of sensor-enabled cloud applica-
tion platforms “out of the box”, and therefore opted to define our own. Taking
the established SSN ontology as a reference, we developed this ontology by treat-
ing CAPs as networks of distributed “logical” software sensors. We employed the
CSO as an underlying semantic architecture model of cloud environments as well
as a shared vocabulary of terms for defining RDF sensor streams, C-SPARQL
continuous queries for performing situation assessment, and SWRL rules for the
final diagnosing and adaptation planning. We have argued that this approach
allows us to benefit from an extensible architecture to introduce new software
services, flexible and declarative declaration of adaptation policies, and powerful
reasoning capabilities to analyse critical situations and suggest possible adap-
tation strategies. Accordingly, we believe that the CSO might be of interest to
academic or industrial researchers willing to ontologically model complex soft-
ware environments as networks of distributed logical sensors.

On the other hand, we can also identify potential shortcomings of the ap-
proach. These include the general scalability issue of formal reasoning, which
in presence of large amounts of monitored data within CAPs needs to be prop-
erly addressed [23]. We are planning to perform a more formal evaluation of the
CSO with respect to its scalability and “queriability” – that is, how the shape
of the ontology affects the performance, and whether potential downgrades can
be tolerated in favour of increased analytical and reasoning capabilities of the
described approach.

We are also planning to experiment with another CAP to prove flexibility and
agility of our approach. In these circumstances, another issue to be considered is
the proprietary software standards, which may restrict us from inserting probes
into applications to extract monitoring data.

To address the potential shortcoming associated with CAP providers being
not necessarily in a position to define policies concerning a particular third-
party service registered with the given CAP, we also proposed utilising Linked
Data principles so as to decouple semantic knowledge concerning the CAP per
se from knowledge concerning external services. This approach has the potential
to create an open extensible architecture where a cloud sensor network consists



Cloud Sensor Ontology and Linked Data to Support Autonomicity 41

of independent self-contained sensors (i.e., platform components and services),
described by a two-tier distributed set of interacting ontologies.

References

1. Androcec, D., Vrcek, N., Seva, J.: Cloud Computing Ontologies: A Systematic
Review. In: MOPAS 2012, The Third International Conference on Models and
Ontology-based Design of Protocols, Architectures and Services, pp. 9–14 (2012)

2. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL:
SPARQL for continuous querying. In: Quemada, J., León, G., Maarek, Y.S., Nejdl,
W. (eds.) Proceedings of the 18th International Conference on World Wide Web,
WWW 2009, Madrid, Spain, April 20-24, pp. 1061–1062. ACM, New York (2009)

3. Berners-Lee, T.: Semantic Web on XML (2000),
http://www.w3.org/2000/Talks/1206-xml2k-tbl

4. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific Ameri-
can 284(5), 34–43 (2001)

5. Bernstein, D., Vij, D.: Intercloud Directory and Exchange Protocol Detail Using
XMPP and RDF. In: 2010 6th World Congress on Services (SERVICES-1), pp.
431–438 (July 2010)

6. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data – The Story So Far. Interna-
tional Journal on Semantic Web and Information Systems (IJSWIS) 5(3), 1–22
(2009)

7. Böhm, M., Leimeister, S., Riedl, C., Krcmar, H.: Cloud computing – outsourc-
ing 2.0 or a new business model for it provisioning? In: Keuper, F., Oecking, C.,
Degenhardt, A. (eds.) Application Management, pp. 31–56. Gabler (2011)

8. Botts, M., Percivall, G., Reed, C., Davidson, J.: OGC R© Sensor Web Enablement:
Overview and High Level Architecture. In: Nittel, S., Labrinidis, A., Stefanidis, A.
(eds.) GSN 2006. LNCS, vol. 4540, pp. 175–190. Springer, Heidelberg (2008)

9. Compton, M., Henson, C.A., Neuhaus, H., Lefort, L., Sheth, A.P.: A Survey of the
Semantic Specification of Sensors. In: Proc. Semantic Sensor Networks 2009, pp.
17–32 (2009)

10. Compton, M., Barnaghi, P., Bermudez, L., Garcia-Castro, R., Corcho, O., Cox,
S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K.,
Kelsey, W.D., Phuoc, D.L., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page,
K., Passant, A., Sheth, A., Taylor, K.: The SSN Ontology of the W3C Semantic
Sensor Network Incubator Group. Web Semantics: Science, Services and Agents
on the World Wide Web 17 (2012),
http://www.websemanticsjournal.org/index.php/ps/article/view/312

11. Dastjerdi, A.V., Tabatabaei, S.G.H., Buyya, R.: An Effective Architecture for Au-
tomated Appliance Management System Applying Ontology-Based Cloud Discov-
ery. In: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (CCGrid 2010), pp. 104–112 (May 2010)

12. Dautov, R., Paraskakis, I.: A vision for monitoring cloud application platforms as
sensor networks. In: Proceedings of the 2013 ACM Cloud and Autonomic Com-
puting Conference, pp. 25:1—25:8. ACM, Miami (2013)

13. Dautov, R., Paraskakis, I., Stannett, M.: Towards a Framework for Monitoring
Cloud Application Platforms as Sensor Networks. Cluster Computing Journal
(in press, 2014)

http://www.w3.org/2000/Talks/1206-xml2k-tbl
http://www.websemanticsjournal.org/index.php/ps/article/view/312


42 R. Dautov, I. Paraskakis, and M. Stannett

14. Dautov, R., Kourtesis, D., Paraskakis, I., Stannett, M.: Addressing Self-
management in Cloud Platforms: A Semantic Sensor Web Approach. In: Pro-
ceedings of the 2013 International Workshop on Hot Topics in Cloud Services,
HotTopiCS 2013, pp. 11–18. ACM, New York (2013)

15. Fortis, T.F., Munteanu, V.I., Negru, V.: Towards an ontology for cloud services. In:
2012 Sixth International Conference on Complex, Intelligent and Software Intensive
Systems (CISIS), pp. 787–792 (July 2012)

16. Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. Int. J. Hum.-Comput. Stud. 43(5-6), 907–928 (1995)

17. Han, T., Sim, K.M.: An ontology-enhanced cloud service discovery system. In:
Ao, S.I., Castillo, O., Douglas, C., Feng, D.D., Lee, J.A. (eds.) Proceedings of the
International MultiConference of Engineers and Computer Scientists 2010, IMECS,
Hong Kong, March 17-19, vol. I, pp. 644–649. Newswood Limited/International
Association of Engineers (2010)

18. He, K.Q., Wang, J., Liang, P.: Semantic Interoperability Aggregation in Service
Requirements Refinement. Journal of Computer Science and Technology 25(6),
1103–1117 (2010)

19. Kang, J., Sim, K.M.: Towards Agents and Ontology for Cloud Service Discovery.
In: 2011 International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC), pp. 483–490 (October 2011)

20. Kang, J., Sim, K.M.: Cloudle: An Ontology-Enhanced Cloud Service Search En-
gine. In: Chiu, D.K.W., Bellatreche, L., Sasaki, H., Leung, H.-F., Cheung, S.-C.,
Hu, H., Shao, J. (eds.) WISE Workshops 2010. LNCS, vol. 6724, pp. 416–427.
Springer, Heidelberg (2011)

21. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

22. Kourtesis, D., Bratanis, K., Bibikas, D., Paraskakis, I.: Software Co-development
in the Era of Cloud Application Platforms and Ecosystems: The Case of CAST. In:
Camarinha-Matos, L.M., Xu, L., Afsarmanesh, H. (eds.) Collaborative Networks
in the Internet of Services. IFIP AICT, vol. 380, pp. 196–204. Springer, Heidelberg
(2012)

23. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and
adaptive approach for unified processing of linked streams and linked data. In:
Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.,
Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 370–388. Springer,
Heidelberg (2011)

24. Ma, Y.B., Jang, S.H., Lee, J.S.: Ontology-based resource management for cloud
computing. In: Nguyen, N.T., Kim, C.-G., Janiak, A. (eds.) ACIIDS 2011, Part II.
LNCS, vol. 6592, pp. 343–352. Springer, Heidelberg (2011)

25. Moscato, F., Aversa, R., Di Martino, B., Fortis, T., Munteanu, V.: An analysis of
mOSAIC ontology for Cloud resources annotation. In: 2011 Federated Conference
on Computer Science and Information Systems (FedCSIS), pp. 973–980 (September
2011)

26. Russomanno, D.J., Kothari, C.R., Thomas, O.A.: Building a Sensor Ontology: A
Practical Approach Leveraging ISO and OGC Models. In: The 2005 International
Conference on Artificial Intelligence, Las Vegas, NV, USA, pp. 637–643 (2005)

27. Rymer, J.R., Ried, S., Matzke, P., Magarie, A., Anderson, A., Lisserman, M.: The
Forrester WaveTM: Platform-As-A-Service For Vendor Strategy Professionals, Q2
2011 – A BT Futures Report: Identifying The Best Partner Choices For ISVs And
Service Providers. Business report, Forrester Research (May 19, 2011)



Cloud Sensor Ontology and Linked Data to Support Autonomicity 43

28. Sheth, A., Henson, C., Sahoo, S.S.: Semantic Sensor Web. IEEE Internet Comput-
ing 12(4), 78–83 (2008)

29. Soldatos, J., Serrano, M., Hauswirth, M.: Convergence of Utility Computing with
the Internet-of-Things. In: Sixth International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing (IMIS 2012), pp. 874–879 (2012)

30. Stevenson, G., Knox, S., Dobson, S., Nixon, P.: Ontonym: A Collection of Upper
Ontologies for Developing Pervasive Systems. In: Proceedings of the 1st Workshop
on Context, Information and Ontologies, CIAO 2009, pp. 9:1–9:8. ACM, New York
(2009)

31. Tahamtan, A., Beheshti, S., Anjomshoaa, A., Tjoa, A.: A Cloud Repository and
Discovery Framework Based on a Unified Business and Cloud Service Ontology. In:
IEEE Eighth World Congress on Services (SERVICES 2012), pp. 203–210 (2012)

32. Takahashi, T., Kadobayashi, Y., Fujiwara, H.: Ontological approach toward cyber-
security in cloud computing. In: Proceedings of the 3rd International Conference
on Security of Information and Networks, SIN 2010, pp. 100–109. ACM, New York
(2010)

33. Tsai, W.T., Sun, X., Balasooriya, J.: Service-Oriented Cloud Computing Architec-
ture. In: Proceedings of the 2010 Seventh International Conference on Information
Technology: New Generations, ITNG 2010, pp. 684–689. IEEE Computer Society,
Washington, DC (2010)

34. Uschold, M., Gruninger, M.: Ontologies: Principles, methods and applications.
Knowl. Eng. Rev. 11, 93–136 (1996)

35. Uschold, M., Gruninger, M.: Ontologies and semantics for seamless connectivity.
SIGMOD Rec. 33(4), 58–64 (2004)

36. W3C Semantic Sensor Network Incubator Group: Review of sensor and observa-
tions ontologies (June 17, 2011)

37. Youseff, L., Butrico, M., Da Silva, D.: Toward a Unified Ontology of Cloud Comput-
ing. In: Grid Computing Environments Workshop, GCE 2008, pp. 1–10 (November
2008)

38. Zhang, M., Ranjan, R., Nepal, S., Menzel, M., Haller, A.: A Declarative Rec-
ommender System for Cloud Infrastructure Services Selection. In: Vanmechelen,
K., Altmann, J., Rana, O.F. (eds.) GECON 2012. LNCS, vol. 7714, pp. 102–113.
Springer, Heidelberg (2012)


	Cloud Sensor Ontology and Linked Datato Support Autonomicity in Cloud ApplicationPlatforms
	1 Introduction and Motivation
	2 Background
	2.1 Cloud Application Platforms as Sensor Networks
	2.2 Self-adaptation Framework for CAPs

	3 Related Work
	4 Cloud Sensor Ontology (CSO)
	4.1 Structure of the CSO
	4.2 Example: The Role of the CSO in a Sample Adaptation Loop

	5 Next Steps:Linked Data
	6 Summary and Conclusions
	References




