
Chapter 4
Numerical Results

Abstract We develop a computational scheme for the parabolic renormalization
operator which is based on the asymptotics of the Fatou coordinates at infinity, and
apply it to numerical computations of the basin and the domain of the renormalization
fixed point and of the spectrum of the parabolic renormalization operator at the fixed
point.

Keywords Spectrum of the renormalization operator · Universality

4.1 A Computational Scheme for P

Having mentioned the resurgent properties of the asymptotic expansion of the Fatou
coordinate, we proceed to describe the computational scheme for P (see Fig. 4.1).
We begin with a germ of an analytic mapping

f (z) = z + z2 + O(z3)

defined in a neighborhood of the origin. Applying the change of coordinates w =
κ(z) = −1/z, we obtain

F(w) = w + 1 + A

w
+ O

(
1

w2

)

defined in a neighborhood of ∞. We again use the notation ΦA(w) for the function
that conjugates F with the unit translation

ΦA(F(w)) = ΦA(w) + 1

for Re w � 1. We let ΦR(w) be the solution of the same functional equation for
Re w � −1. These changes of coordinate are well-defined up to an additive constant,
and

φA(z) = κ−1 ◦ ΦA ◦ κ(z), φR(z) = κ−1 ◦ ΦR ◦ κ(z).
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Fig. 4.1 The domain of analyticity of P f0(z) for f0(z) = z + z2, with the immediate parabolic
basin indicated
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As we have seen in Theorem 2.2, the function ΦA(w) has an asymptotic devel-
opment

ΦA(w) ∼ w − A log w + constA +
∞∑

k=1

bkw−k .

The coordinate ΦR(w) has an identical asymptotic development, differing only by
the value of constR . While this may seem surprising at first glance, recall that these
functions are Laplace transforms of different analytic continuations of the Borel
transform of the same divergent series (plus the w − A log w + const term).

We select a large integer M (in practice, M ≈ 100). We will use the asymptotic
expansion to estimate ΦA(w) for w ≥ M and ΦR(w) for w ≤ −M . Consider an
iterate N ≈ 2M such that

Re F N (w) ≥ M for Re w ∈ [−M − 1,−M].

Let v(z) be the function

ν(z) = ixp ◦ ΦA ◦ F N ◦ (ΦR)−1 ◦ ixp−1(z).

It differs from the parabolic renormalization P( f ) only by rescaling the function
and its argument:

P( f )(z) = a1ν(a0z).

Now consider a contour Γ connecting w = −M − 1 + iH with F(w) ≈ −M + iH
which is mapped onto the circle Sρ = {|z| = ρ} for a small value of ρ by ixp ◦ ΦR .
Select n ∈ N and consider the n points in Sρ given by xk = ρ exp(2πk/n), k =
0, . . . , n − 1. We then evaluate the first n coefficients in the Taylor expansion of η

at the origin

η(z) =
∞∑
j=0

r j z
j

using a discrete Fourier transform. Specifically, we calculate

sk = ν(xk) ≈
n−1∑
j=0

r j (xk)
j =

n−1∑
j=0

r jρ
j exp(2πk j/n),

and apply the inverse discrete Fourier transform:

r j ≈ 1

nρ j

n−1∑
k=0

sk exp(−2πk j/n).

http://dx.doi.org/10.1007/978-3-319-11707-2_2
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Since

P( f )(z) =
∞∑
j=1

s j a1a j
0 z j ,

we have
a1a0s1 = 1, and further a0 = s1

s2
.

This step completes the computation of the Taylor expansion of P( f ).

4.1.1 Computing f∗

In computing the fixed point f∗(z) we find it more convenient to work with the
representation of a germ f (z) = z + z2 + · · · in the form

f (z) = z exp( flog(z)),

where flog is a germ of an analytic function at the origin with flog(z) = z + · · · . We
then rewrite the parabolic renormalization operator in terms of its action on flog:

Plog( flog)(z) = (2π i)−1ΦA ◦ F N ◦ (ΦR)−1 ◦ ixp−1(z) − ixp−1(z).

This helps to avoid the round-off error which arises from the growth of f∗ near the
boundary ∂ Dom( f∗).

Modifying the scheme described above for the operator Plog, we calculate the
fixed point by iterating P starting at f0(z) = z + z2:

Empirical Observation 4.1

f∗(z) ≈ z + z2 + 0.(514 − 0.0346i)z3 + · · · .

Our calculations appear reliable up to the size of the round-off error in double-
precision arithmetic (∼10−14) in the disk of radius r = 5 around the origin. As we
will see below, the true radius of convergence for the series for f∗ is approximately
41 (see the Empirical Observation 4.4).

We also estimated the leading eigenvalue of DP| f∗ :

Empirical Observation 4.2 The eigenvalue of DP| f∗ with the largest modulus is

λ ≈ −0.017 + 0.040i, |λ| ≈ 0.044.

The small size of λ explains the rapid convergence of the iterates of P to the fixed
point. To obtain this estimate, we write
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f (z) = z + z2 +
∞∑

k=3

coeffk( f )zk,

and consider the spectrum of the N × N matrix A = (ai j )i, j=3...N+3, with

ai j = coeff j (P( f∗ + εzi )) − coeff j ( f∗)
ε

,

which serves as a finite-dimensional approximation to DP| f∗ .

4.2 Computing the Domain of Analyticity of f∗

4.2.1 Computing the Tail of the Domain Dom( f∗)

Computing the tail using an approximate self-similarity near the tip Let us
denote

t∗ ≡ t f∗ = ∂Dom( f∗) ∩ B f∗
0

the endpoint of the tail of the immediate basin of f∗. Let CR be a repelling funda-
mental crescent of f∗, and let w ∈ CR have the property

t∗ = ixp ◦ φR(w).

Let k ≥ 2 be such that

f k∗ (w) = 0, so that f k−1∗ (w) = t∗.

Denote χ the local branch of f −(k−1)∗ which sends t∗ to w. Then the composition

ν ≡ ixp ◦ φR ◦ χ

is an analytic map defined in a neighborhood of the endpoint t∗, which fixes it:

ν(t∗) = t∗.

This point can be found numerically:

Empirical Observation 4.3

t∗ ≈ −779.306 − 643.282i, and ν′(t∗) ≈ 0.232 + 0.264i.
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Thus, we have identified the endpoint of the largest tail of Dom( f∗). This construction
also gives us the means to compute the tail itself. This can be done by successively
applying ν to the immediate basin B f∗

0 , thus pulling it in towards t∗.
Now let q ∈ CR be any other preimage of 0:

f l∗(q) = t∗ for some q ∈ N.

Then v = ixp ◦ φR(q) is the endpoint of a different tail in ∂Dom( f∗). It can be
computed by first pulling back the tail of B f∗

0 using the inverse branch

f −l∗ : t∗ �→ q,

and then applying ixp ◦ φR .

Computing the tail using the functional equation for an inverse branch A more
careful analysis of the tail can be done as follows (Fig. 4.2). Denote by ξ the local
branch of f −1∗ defined in a slit neighborhood Dr (0) \ [0, r) for some small value
of r, that sends 0 �→ t∗. We can write the renormalization fixed point equation for
this particular branch:

ξ = ψR ◦ ξ ◦ ψ−1
A , (4.1)

where ψR = χ ◦ixp◦φR , and ψ−1
A is the appropriately chosen branch of (ixp◦φA)−1

(thus the “self-similarity” of the tail is exponential, rather than linear). We are going
to use the renormalization equation (4.1) inductively to compute ξ(z) for sufficiently
small values of z, and thus plot the tail.

Representing the numbers in the image of the tail Numerical computations indi-
cate that the value of r = 0.0002 is sufficiently small for our needs, and for |z| < r
the difference between the left and the right sides of (4.1) is of the order of 10−11.
The values of z for which we would like to evaluate ξ(z) become too small to be
represented by the standard double precision numbers (and even too small for their
logarithms to be so represented). We write

s(t) = exp(2π t),

and choose t̂ so that

exp(−2π t̂) = 0.0002, that is t̂ = 1.3555 . . . .

We then represent a small positive number x as

x = 1

sk(t)
,

for the unique choices of t ∈ [t̂, s(t̂)), and an iterate k ∈ N.
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Fig. 4.2 The inverse branches used in computing the tail of Dom( f∗)

We can write any complex number z with |z| < r uniquely as

z = (k, t, θ) ≡ exp(2π iθ)

sk(t)
, 0 ≤ θ < 1.

Note that this representation of small numbers makes it very easy to compute loga-
rithms. In particular,

ixp−1((k, t, θ)) = θ + isk−1(t).

The next step in applying (4.1) is to apply φ−1
A to the right-hand side of the equation.

From the first two terms in the asymptotics of

φA(z) = −1

z
+ O(log |z|) for small z,

it follows that

φ−1
A (y) = − 1

y + O(log |y|) for large |y|.

A numerical estimate shows that for |y| ≥ 1018, the O(log |y|) term dissapears into
the round-off error when added to y. Thus

ψ−1
A ((k, t, θ)) ≈ − 1

θ + isk−1(t)
≈ isk−1(t) = (k − 1, t, 1/4),
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Fig. 4.3 The domain of analyticity of f∗ and the boundary of the immediate parabolic basin B f∗
0 .

In the second figure, a part of the critical level curve of f∗ is also indicated
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Fig. 4.4 A blow-up of the boundary of the immediate basin of f∗ in the vicinity of the parabolic
point

provided sk−1(t) ≥ 1018. A direct estimate shows that for either k ≥ 3, or k = 2
and t > 18 log 10/2π ≈ 6.596, the last inequality will hold.

The size of the domain of analyticity To draw the pictures of the domain of analyt-
icity of the fixed point of f∗ (Figs. 4.3 and 4.4) we employed the following strategy.
First, a periodic orbit of period 2 in ∂ B0 was identified. Its preimages give a rough
outline of ∂ B0, but become sparse near the “tails”, which are not visible in this ini-
tial outline. At the next step, the large “tail” of B0 is computed as described above.
Finally, its preimages are used to fill in the remaining gaps in ∂ B0.
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As the final step, we calculate the boundary of Dom( f∗) as

∂ Dom( f∗) = ixp ◦ φR(∂ B0 ∩ PR).

An empirical estimate of the inner radius of Dom( f∗) around the origin allows us to
formulate the following observation (see Fig. 4.3):

Empirical Observation 4.4 The radius of convergence of the Taylor expansion of
f∗ at the origin is R ≈ 41.
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