
Giancarlo Fortino Giuseppe Di Fatta
Wenfeng Li Sergio Ochoa
Alfredo Cuzzocrea Mukaddim Pathan (Eds.)

 123

LN
CS

 8
72

9

7th International Conference, IDCS 2014
Calabria, Italy, September 22–24, 2014
Proceedings

Internet and Distributed
Computing Systems

Lecture Notes in Computer Science 8729
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Giancarlo Fortino Giuseppe Di Fatta
Wenfeng Li Sergio Ochoa
Alfredo Cuzzocrea Mukaddim Pathan (Eds.)

Internet and Distributed
Computing Systems

7th International Conference, IDCS 2014
Calabria, Italy, September 22-24, 2014
Proceedings

13

Volume Editors

Giancarlo Fortino
DIMES - University of Calabria (UNICAL), Rende, Italy
E-mail: g.fortino@unical.it

Giuseppe Di Fatta
University of Reading, UK
E-mail: g.difatta@reading.ac.uk

Wenfeng Li
Wuhan University of Technology, Wuhan, P.R. China
E-mail: liwf@whut.edu.cn

Sergio Ochoa
University of Chile, Santiago, Chile
E-mail: sochoa@dcc.uchile.cl

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Rende, Italy
E-mail: cuzzocrea@si.deis.unical.it

Mukaddim Pathan
CSIRO ICT Center, Acton, ACT, Australia
E-mail: ak_mukaddim@yahoo.com.au

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-11691-4 e-ISBN 978-3-319-11692-1
DOI 10.1007/978-3-319-11692-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014948784

LNCS Sublibrary: SL 3 – Information Systems and Application,
incl. Internet/Web and HCI

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Following the previous six successful events of IDCS – IDCS 2008 in Khulna,
Bangladesh, IDCS 2009 in Jeju Island, Korea, IDCS 2010 and IDCS 2011 in Mel-
bourne, Australia, IDCS 2012 in Wu Yi Shan, China, IDCS 2013 in Hangzhou,
China - IDCS 2014 was the seventh in the series to promote research in diverse
fields related to the Internet and distributed computing systems.

The emergence of the Web as a ubiquitous platform for innovations has laid
the foundation for the rapid growth of the Internet. Side-by-side, the use of
mobile and wireless devices such as PDAs, laptops, and cell phones for accessing
the Internet has paved the ways for related technologies to flourish through
recent developments. In addition, the popularity of sensor networks is promoting
a better integration of the digital world with the physical environment towards
the future Internet of Things.

IDCS 2014 received innovative papers on emerging technologies related to
the Internet and distributed systems to support the effective design and efficient
implementation of high-performance networked systems. The audience included
researchers and industry practitioners who were interested in different aspects
of the Internet and distributed systems, with a particular focus on practical
experiences with the design and implementation of related technologies as well
as their theoretical perspectives.

IDCS 2014 received a large number of submissions (from 24 different coun-
tries), from which 23 regular papers and 15 short papers were accepted after
a careful review and selection process. This year’s conference also featured one
invited talk, entitled “Seamless Data Communications in Space Networks”, from
Prof. Mohammed Atiquzzaman, Edith J. Kinney Gaylord Presidential Professor,
School of Computer Science University of Oklahoma. Prof. Atiquzzaman is also
editor-in-chief of the Journal of Network and Computer Applications, Elsevier.

The contributions to IDCS 2014 covered the topics of ad-hoc and sensor
networks; Internet and Web technologies; network operations and management;
multi-agent systems; cloud-based information infrastructures.

IDCS 2014 was held on the wonderful Tyrrenian coast of the Calabria region,
Italy.

The conference organization was supported by Sensyscal S.r.l. (a spin-off of
the University of Calabria whose research and development mission is directed
to the development of innovative sensor-based and IoT systems in different ap-
plication domains ranging from m-Health to building automation and environ-
mental/ambient smart control) and the DIMES (Department of Informatics,
Modeling, Electronics and Systems) of the University of Calabria.

Further technical co-sponsorship was provided by the Commonwealth Scien-
tific and Industrial Research Organization (CSIRO), the national government

VI Preface

body of scientific research in Australia, and Daily Positive (D+), a non-profit
media initiative.

The successful organization of IDCS 2014 was possible thanks to the dedica-
tion and hard work of a number of individuals.

Specifically, we would like to thank Antonio Guerrieri (web chair) and Raf-
faele Gravina for their commendable work with the proceedings preparation and
conference organization. We also express our gratitude to the general chair Gi-
ancarlo Fortino, University of Calabria, Italy, and the program chairs (Giuseppe
Di Fatta, Wenfeng Li, Sergio Ochoa, Alfredo Cuzzocrea) and industry chair
(Mukaddim Pathan) for their support of the conference. Last but not the least,
we are thankful to all the volunteers, specifically Claudio Savaglio and Stefano
Galzarano for their efforts in the conference organization during 22–24 Septem-
ber 2014.

September 2014 Giancarlo Fortino
Giuseppe Di Fatta

Wenfeng Li
Sergio Ochoa

Alfredo Cuzzocrea
Mukaddim Pathan

Organization

General Chair

Giancarlo Fortino University of Calabria, Italy

Program Chairs

Giuseppe Di Fatta University of Reading, UK
Wenfeng Li Wuhan University of Technology, China
Sergio Ochoa Universidad de Chile, Chile

Local Program Chair

Alfredo Cuzzocrea ICAR-CNR, Italy

Web Chair

Antonio Guerrieri University of Calabria, Italy

Publicity and Industry Chair

Mukaddim Pathan Telstra Corporation Limited, Australia

Steering Committee - IDCS Series

Jemal Abawajy Deakin University, Australia
Rajkumar Buyya University of Melbourne, Australia
Giancarlo Fortino University of Calabria, Italy
Dimitrios Georgakopolous RMIT University, Australia
Mukaddim Pathan Telstra Corporation Limited, Australia
Yang Xiang Deakin University, Australia

Program Committee

Jemal Abawajy Deakin University, Australia
Tarem Ahmed BRAC University, Bangladesh

VIII Organization

Gianluca Aloi University of Calabria, Italy
Hani Alzaid King Abdulaziz City for Science and

Technology, Saudi Arabia
Ioannis Andreopoulos University College London, UK
Doina Bein The Pennsylvania State University, USA
Rajkumar Buyya The University of Melbourne, Australia
Massimo Cossentino National Research Council of Italy, Italy
Maria De Souza The University of Sheffield, UK
Declan Delaney Clarity Research Centre, UCD, Ireland
Marcos Dias De Assuncao IBM Research Brazil, Brazil
Marios Dikaiakos University of Cyprus, Cyprus
Beniamino Di Martino Second University of Naples, Italy
Abdelkarim Erradi Qatar University, Qatar
Zongming Fei University of Kentucky, USA
Stefano Galzarano University of Calabria, Italy
Maria Ganzha University of Gdansk, Poland
Joaquin Garcia-Alfaro Telecom SudParis, France
Saurabh Kumar Garg University of Melbourne, Australia
Chryssis Georgiou University of Cyprus, Cyprus
Luca Geretti University of Udine - DIEGM, Italy
Hassan Ghasemzadeh UCLA, USA
Soumya Ghosh Indian Institute of Technology, India
Raffaele Gravina University of Calabria, Italy
Ragib Hasan University of Alabama at Birmingham, USA
Mohammad Mehedi Hassan King Saud University, Saudi Arabia
Mick Hobbs Deakin University, Australia
Jaehoon Paul Jeong Sungkyunkwan University, South Korea
Dimitrios Katsaros University of Thessaly, Greece
Ram Krishnan University of Texas at San Antonio, USA
Hae Young Lee Seoul Women’s University, South Korea
Antonio Liotta Eindhoven University of Technology,

The Netherlands
Jaime Lloret Polytechnic University of Valencia, Spain
Valeria Loscri Inria Lille Nord-Europe, France
Michele Malgeri Università degli Studi di Catania, Italy
Carlo Mastroianni ICAR-CNR, Italy
Mustafa Mat Deris UTHM, Malaysia
Claudio Miceli de Farias Universidade Federal do Rio de Janeiro, Brazil
Muhammad Mostafa Monowar Kyung Hee University, South Korea
Kashif Munir KFUPM, Saudi Arabia
Enrico Natalizio Université de Technologie de Compiègne,

France

Organization IX

Surya Nepal CSIRO, Australia
Marco Netto IBM Research, Brazil
Andrea Omicini Alma Mater Studiorum–Università di Bologna,

Italy
Ekow Otoo COMS, University of the Witwatersrand,

South Africa
Pasquale Pace University of Calabria, Italy
Carlos Palau UPV, Spain
George Pallis University of Cyprus, Cyprus
Marcin Paprzycki IBS PAN and WSM, Poland
Manish Parashar Rutgers University, USA
Omer Rana Cardiff University, UK
Thomas Repantis University of California at Riverside, USA
Domenico Rosaci University Mediterranea

of Reggio Calabria, Italy
Wilma Russo University of Calabria, Italy
Riaz Ahmed Shaikh King Abdul Aziz University, Saudi Arabia
Weiming Shen NRC, Canada
Weisong Shi Wayne State University, USA
Ramesh Sitaraman University of Massachusetts at Amherst, USA
Giandomenico Spezzano CNR-ICAR, Italy
Jun Suzuki University of Massachusetts at Boston, USA
Kerry Taylor CSIRO & Australian National University,

Australia
Giorgio Terracina University of Calabria, Italy
Ruppa Thulasiram University of Manitoba, Canada
Parimala Thulasiram University of Manitoba, Canada
Paolo Trunfio University of Calabria, Italy
Rainer Unland University of Duisburg-Essen, ICB, Germany
Athanasios Vasilakos NTUA, Greece
Salvatore Venticinque Seconda Università di Napoli, Italy
Bin Xie InfoBeyond Technology, USA
Norihiko Yoshida Saitama University, Japan

Table of Contents

Agent-Oriented Algorithms and Systems

Inserting “Brains” into Software Agents – Preliminary
Considerations . 3

Maria Ganzha, Mariusz Marek Mesjasz, Marcin Paprzycki, and
Moussa Ouedraogo

A Multi-agent Algorithm to Improve Content Management in CDN
Networks . 15

Agostino Forestiero and Carlo Mastroianni

An Actor Based Software Framework for Scalable Applications 26
Federico Bergenti, Agostino Poggi, and Michele Tomaiuolo

Cloud Computing

Semantic Representation of Cloud Services: A Case Study for
Openstack . 39

Beniamino Di Martino, Giuseppina Cretella, Antonio Esposito, and
Graziella Carta

Efficient Resource Scheduling for Big Data Processing in Cloud
Platform . 51

Mohammad Mehedi Hassan, Biao Song, M. Shamim Hossain, and
Atif Alamri

High Performance Cloud: A MapReduce and GPGPU Based Hybrid
Approach . 64

Beniamino Di Martino, Antonio Esposito, and Andrea Barbato

A Trust-Based, Multi-agent Architecture Supporting Inter-Cloud VM
Migration in IaaS Federations . 74

Fabrizio Messina, Giuseppe Pappalardo, Domenico Rosaci, and
Giuseppe M.L. Sarné

Cyberphysical Systems and IoT

A Cyber-Physical System for Distributed Real-Time Control of Urban
Drainage Networks in Smart Cities . 87

Andrea Giordano, Giandomenico Spezzano, Andrea Vinci,
Giuseppina Garofalo, and Patrizia Piro

XII Table of Contents

Coordination in Situated Systems: Engineering MAS Environment in
TuCSoN . 99

Stefano Mariani and Andrea Omicini

Experimental Evaluation of the CoAP, HTTP and SPDY Transport
Services for Internet of Things . 111

Laila Daniel, Markku Kojo, and Mikael Latvala

An Effective and Efficient Middleware for Supporting Distributed
Query Processing in Large-Scale Cyber-Physical Systems 124

Alfredo Cuzzocrea, Jose Cecilio, and Pedro Furtado

A Framework of Adaptive Interaction Support in Cloud-Based Internet
of Things (IoT) Environment . 136

Noura Alhakbani, Mohammed Mehedi Hassan,
M. Anwar Hossain, and Mohammed Alnuem

Including Cyberphysical Smart Objects into Digital Libraries 147
Giancarlo Fortino, Anna Rovella, Wilma Russo, and
Claudio Savaglio

Parallel and Distributed Computing

Static Data Race Detection for Java Programs with Dynamic Class
Loading . 161

Noriaki Yoshiura and Wei Wei

Rule Based Classification on a Multi Node Scalable Hadoop Cluster 174
Shashank Gugnani, Devavrat Khanolkar, Tushar Bihany, and
Nikhil Khadilkar

Consistent Management of Context Information in Ubiquitous
Systems . 184

Gabriel Guerrero-Contreras, José Luis Garrido,
Sara Balderas-Dı́az, and Carlos Rodŕıguez-Domı́nguez

Dynamic Deployment of Software Components for Self-adaptive
Distributed Systems . 194

Jingtao Sun and Ichiro Satoh

Modelling and Analysis of Parallel/Distributed Time-dependent
Systems: An Approach Based on JADE . 204

Franco Cicirelli and Libero Nigro

Table of Contents XIII

Advanced Networking

A Basic Study on High Bandwidth Streaming in Realtime over
Multipath Using LDPC-IRA Codes . 217

Masahiko Kitamura, Hiroyuki Kimiyama, Tsuyoshi Ogura, and
Tatsuya Fujii

Resolving Fallback and Path MTU Problems Caused by Denying ICMP
Packets in IPv6 . 227

Noriaki Yoshiura and Keita Omi

Using a History-Based Approach to Predict Topology Control
Information in Mobile Ad Hoc Networks . 237

Pere Millán, Carlos Molina, Roc Meseguer, Sergio F. Ochoa, and
Rodrigo Santos

Testing AMQP Protocol on Unstable and Mobile Networks 250
Jorge E. Luzuriaga, Miguel Perez, Pablo Boronat,
Juan Carlos Cano, Carlos Calafate, and Pietro Manzoni

Security Methods and Systems

Modelling and Simulation of a Defense Strategy to Face Indirect DDoS
Flooding Attacks . 263

Angelo Furfaro, Pasquale Pace, Andrea Parise, and
Lorena Molina Valdiviezo

Towards a Reference Architecture for Service-Oriented Cross Domain
Security Infrastructures . 275

Wen Zhu, Lowell Vizenor, and Avinash Srinivasan

Interoperability of Security-Aware Web Service Business Processes:
Case Studies and Empirical Evaluation . 285

Alfredo Cuzzocrea and Vincenzo Rodinò

Sensor Networks

A Fatigue Detect System Based on Activity Recognition 303
Congcong Ma, Wenfeng Li, Jingjing Cao, Shuwu Wang, and Lei Wu

Modelling the Performance of a WSN with Regard to the Physical
Features Exhibited by the Network . 312

Declan T. Delaney and Gregory M.P. O’Hare

EMCR: Routing in WSN Using Multi Criteria Decision Analysis and
Entropy Weights . 325

Suman Sankar Bhunia, Bijoy Das, and Nandini Mukherjee

XIV Table of Contents

Towards a Model-Driven Approach for Sensor Management in Wireless
Body Area Networks . 335

Ángel Ruiz-Zafra, Manuel Noguera, and Kawtar Benghazi

DISSN: A Dynamic Intrusion Detection System for Shared Sensor
Networks . 348

Claudio M. de Farias, Renato Pinheiro, Rafael O. Costa, and
Igor Leão dos Santos

On the Analysis of Expected Distance between Sensor Nodes and the
Base Station in Randomly Deployed WSNs . 358

Cüneyt Sevgi and Syed Amjad Ali

Performability Modelling and Analysis of Clustered Wireless Sensor
Networks with Limited Storage Capacities . 369

Fredrick A. Omondi, Enver Ever, Purav Shah,
Orhan Gemikonakli, and Leonardo Mostarda

Discovery of Hidden Correlations between Heterogeneous Wireless
Sensor Data Streams . 383

Francesco Cauteruccio, Giancarlo Fortino, Antonio Guerrieri, and
Giorgio Terracina

A Learning-Based MAC for Energy Efficient Wireless Sensor
Networks . 396

Stefano Galzarano, Giancarlo Fortino, and Antonio Liotta

Smart Energy Systems

Equilibria in Concave Non-cooperative Games and Their Applications
in Smart Energy Allocation . 409

Maciej Drwal, Weronika Radziszewska, Maria Ganzha, and
Marcin Paprzycki

A Distributed System for Smart Energy Negotiation 422
Alba Amato, Beniamino Di Martino, Marco Scialdone,
Salvatore Venticinque, Svein Hallsteinsen, and Shanshan Jiang

Social Networks and Applications

Recommending Users in Social Networks by Integrating Local and
Global Reputation . 437

Pasquale De Meo, Fabrizio Messina, Domenico Rosaci, and
Giuseppe M.L. Sarné

Table of Contents XV

A Carpooling Open Application with Social Oriented Reward
Mechanism . 447

Simone Bonarrigo, Vincenza Carchiolo, Alessandro Longheu,
Mark Loria, Michele Malgeri, and Giuseppe Mangioni

Author Index . 457

Agent-Oriented Algorithms
and Systems

Inserting “Brains” into Software Agents –

Preliminary Considerations

Maria Ganzha1,3, Mariusz Marek Mesjasz1, Marcin Paprzycki1,
and Moussa Ouedraogo2

1 Systems Research Institute Polish Academy of Sciences, Warsaw, Poland
<firstname>.<lastname>@ibspan.waw.pl

2 CRP Henri Tudor, Luxembourg
<firstname>.<lastname>@tudor.lu

3 Institute of Informatics, University of Gdansk, Gdansk, Poland

Abstract. Software agents are often seen as “intelligent, autonomous
software components.” Interestingly, the question of efficient implemen-
tation of “intelligence” remains open. In this paper we discuss, in some
details, the process of implementing software agents with “brains.” In
the context of an agent system supporting decisions of glider pilots, we
consider native implementation of “intelligent” behaviors, rule based en-
gines, and semantic data processing. Based on the analysis of the state-
of-the-art in these areas, we present a novel approach combining rule
based engines, semantic data processing and software agents.

1 Introduction

One of the interesting issues in design and implementation of agent systems
is: how to make agents “intelligent.” Note that, very often, software agents are
conceptualized as “intelligent, autonomous software components, which interact
with each other in order to achieve goals for benefits of their users” [29, 31].
However, as illustrated below, it is not easy to find an agent platform, where a
robust (and flexible) method for making agents intelligent is available.

Separately, a number of rule-based expert systems have been developed. Typ-
ically, they are based on the RETE pattern matching algorithm [24]. Implemen-
tation of RETE has been completed, among others, in C, C++ and Java, and
provide user interfaces and/or definition of the API.

Finally, since the 1980’s (see, [22, 30]) an explosion of research in ontologies
and semantic technologies ensued. This has culminated, over the last 10 years,
in rapid sprawl of ontology management tools (e.g. Protege [17]) and reasoners
(with Hermit [8], Pellet [16] and Fact++ [7] being the most popular).

Let us now consider an agent-based support system for glider pilots (for more
details, see [23,27]). The idea is to aid the glider pilot in events that may occur
during a flight. For instance, to detect life-threatening situations, warn the pilot
and, autonomously, inform the ground station. The pilot-supporting agent runs
on a tablet or a smart-phone. For the system we have selected the Android OS [1]
and the JadeAndroid add-on [12] (which allows running full Jade agent container

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 3–14, 2014.
c© Springer International Publishing Switzerland 2014

4 M. Ganzha et al.

on Android devices). The next step to be undertaken is to introduce “reasoning
capabilities” to the GliderAgent agents. This provides the conceptual backdrop
for the explorations reported below.

Note that we are interested in practical aspects of implementing agent systems
(see, also, [26, 28]). Furthermore, we believe in open source solutions and reuse
of state-of-the-art software. This gives the methodological foundation of our
work. Therefore, in the next section, we summarize approaches to implement-
ing “brains” of software agents. Specifically, we consider “native” approaches
(within agent platforms), rule-based expert systems, and semantic technologies.
We follow with details of the implementation of the selected approach.

2 Introducing Intelligence into Software Agents

2.1 Native Approaches

Large number of agent platforms have been written in different languages. Since
we are interested in agent systems running on Android devices, we discuss those
written in the Java. However, to the best of our knowledge, discussion presented
here applies to majority of agent platforms in use today.

Jade [12] (Java Agent DEvelopment Framework; version 4.3.2; 2014-03-28)
is written entirely in Java, with the lead developer being Telecom Italia. Jade
developers provided add-ons to run it on mobile devices. JadeAndroid is an
official add-on that allows to run Jade agents on Android OS. Jade agents store
their knowledge in a form of Java classes. As a result, after Java classes are
compiled, they cannot be changed without altering the entire application. Thus,
an agent has to be recompiled, each time when a change is introduced into
its “knowledge.” Therefore, it is not trivial to introduce changes to a running
Jade agent system (without taking the system down and restarting it; see [25]).
Obviously, in the GliderAgent system (as well as majority of real-world multi-
agent systems), a more flexible approach is desired. Namely, an intelligent agent
should be able to add, modify or delete a “behavior” (related to a “knowledge
fragment”) on-demand (or, at least, without the need of restarting the system).

JASON [11] (version 1.4.0a; 2013-12-17) is an interpreter for an extended ver-
sion of the AgentSpeak (based on the Belief Desire Intention (BDI) paradigm).
It is available as an Open Source software (GNU LGPL license). JASON agents
are written in AgentSpeak. Since no official version of JASON for mobile devices
exists, it is unclear how easy it would be to run it on smart-phones. Furthermore,
JASON requires additional infrastructure (e.g., Jade) to run it distributed over
a network. Thus, one may assume that JASON and an additional agent platform
have both to be ported to the Android API. This doubles the amount of required
programming work, and may also result in “doubling” resource consumption.

In the JadeX agent platform [10], “intelligence” is facilitated in the form of
XML-based BDI rules. However, in our context, JadeX has three disadvantages.
(1) It has somewhat irregular development cycle. (2) It is evolving from a high-
level BDI-agent platform to the agent-as-component model, which has much
smaller granularity and, as a result, it is not clear what, if any, will be the role

Inserting “Brains” into Software Agents – Preliminary Considerations 5

of the XML-demarcated BDI rules in its future releases. (3) It remains unclear
how easy / difficult it would be to run JadeX on mobile devices.

JACK agents (developed by the AOS Group; [9]) use the JACK Agent Lan-
guage, a super-set of Java. JACK compiler converts source code of JACK agents
into pure Java. Therefore, JACK agent platform has the same limitations as
Jade. Namely, agent code has to be recompiled each time when an update is
required. Furthermore, as of now, JACK does not provide official support for
the Android OS (or any other mobile device). Note that it may be quite difficult
to port JACK to Android because JACK agents have to be translated twice:
(1) from the JACK Agent Language to the Java programming language, and
(2) from the Java programming language to the Android API. Since (1) is done
by the JACK compiler, developers have limited control over this process. Con-
sequently, there is a substantial risk that the resulting Java code will not work
with the Android OS. Furthermore, any change in the agent system (e.g. change
in agent “knowledge”) would have to be done within the JACK subsystem first,
and then moved to the actual system. Therefore, perspective of using JACK on
mobile devices (or in a mixed mobile-non-mobile environment) is not appealing.

2.2 Rule-Based Expert Systems for Agent Systems

Let us now consider the possibility of combining a Rule-based Expert System
(RES) with Jade agents running on the Android OS (however, this discussion
generalizes also to other agent systems and other mobile devices). First, note
that Java is not natively compatible with Android. While having the same syntax
and similar interfaces, there are key differences between the Java API and the
Android API. (1) Android does not use the Java Virtual Machine. Instead, it uses
the Dalvik or the ART (starting from Android 4.4); two runtime environments
written and maintained by Google. (2) Not all Java packages were included in the
Android API; e.g. the javax package (Swing, XML libraries, etc.) is missing, and
has to be replaced by the Android’s native classes. Therefore, the RES should:

– Be an open source project (with license that permits modifications). Due to
the differences between the Java API and the Android API, the RES (and
its dependencies) will have to be ported (and possibly modified). Moreover,
parts of the RES may need to be replaced by the Android native libraries to
work and/or to achieve better performance.

– Be an “active project.” Note that many open source projects are being de-
veloped by “independent” / academic teams. Therefore, the risk of selecting
an unfinished or obsoleted project is high, and should be avoided. Moreover,
dealing with older versions of Java may increase the amount of work needed
to make the project operational.

Finally, an ideal RES should have a small number of dependencies and a sim-
ple structure. This should minimize rewriting the required libraries. Moreover,
complex projects are difficult to understand and modify, without introducing
errors. However, these considerations are secondary.

6 M. Ganzha et al.

To compare the existing RESs, we used data found at [13]. After refreshing
the information, and selecting RES’s written in Java, we have summarized it
in Table 2.2. For each RES (row in the table) we include: name, latest stable
version (and release date), license type and website.

It is easy to notice that only three RESs (Roolie, Drools, OpenL Tablets) are
of interest in the current context. The remaining ones either are significantly
outdated, or have multiple licenses (depending on the type of the project / the
character of the licensee), which unnecessarily complicates their use “across the
board.” Therefore, we provide more information about these three.

– Roolie [18] (version 1.1, 2013-12-13) is an extremely simple RES. It chains
user-defined rules (stored in XML files) to create more complex rules. Due to
its size (only few kilobytes) and lack of dependencies, it seems that it could
be adapted to the Android API. Unfortunately, it does not include a pattern
matching algorithm. Thus, an additional algorithm (e.g. RETE) would have
to be implemented. Moreover, Roolie is poorly documented.

– Drools [5] (version 6.0.0, 2013-12-20) is a forward and backward chaining
rule engine. From the current version, it provides its own, enhanced, imple-
mentations of the RETE algorithm, called PHREAKY. Rules are stored in a
Drools native language. The entire project is very well documented. Unfor-
tunately, while very robust, it has many external dependencies. This would
make Drools difficult to port to the Android API. Furthermore, its size and
scope poses question about its usability on resource-limited mobile devices.

– OpenL Tablets [14] (version 5.12, 2014-04-21) is a full-blown expert system.
Its rules and policies exist as an unstructured set of Excel and Word docu-
ments. This makes rules easier to understand and change by non-technical
users. Unfortunately, proprietary data formats (Excel and Word) are not
well-suited for an open source type system. Furthermore, the Android API
may require extra libraries to open / manage them.

2.3 Semantic Technologies for Agent Systems

Finally, to implement “brains” of software agents one could use semantic tech-
nologies. Here, facts are stored inside ontologies in a form of triples (subject,
predicate, object), applications can use a reasoner to infer logical consequences
from them. Statements within an ontology can be divided into: (i) a set of facts
(A-box), and (ii) conceptualization associated with them (T-box). T-box defines
a schema in terms of controlled vocabularies (for example, a set of classes, prop-
erties and axioms), while A-box contains T-box-compliant facts. Combination of
the A-box and the T-box makes up a knowledge base. Interestingly, the Drools
developers officially stated that, in the future, they will try to bring OWL Lite to
Drools. This shows growing interest in combining these two technologies. Since,
we are interested in open source solutions, we have considered Apache Jena and
the OWL API.

Apache Jena [3] (Jena, version 2.11.1, 2013-09-18) is a, well-documented,
open source framework for building semantic web and Linked Data applications.

Inserting “Brains” into Software Agents – Preliminary Considerations 7

R
u
le
-b

a
se

d
E
n
g
in
e

D
e
v
e
lo
p
e
r(
s)

S
ta

b
le

re
le
a
se

L
ic
e
n
se

W
e
b
si
te

D
ro
o
ls

R
ed

H
a
t

6
.0
.0

/
2
0
1
3
-1
2
-2
0
A
S
L
2

h
t
t
p
:
/
/
d
r
o
o
l
s
.
j
b
o
s
s
.
o
r
g
/

D
T
R
u
le
s

A
n
d
re
a
s
V
ik
lu
n
d

4
.3

/
2
0
1
1
-0
7
-0
5

A
S
L

h
t
t
p
:
/
/
d
t
r
u
l
e
s
.
c
o
m
/

H
a
m
m
u
ra
p
i
R
u
le
s

H
a
m
m
u
ra
p
i
G
ro
u
p

5
.7
.0

/
2
0
0
9
-0
1
-1
1
L
G
P
L

h
t
t
p
:
/
/
w
w
w
.
h
a
m
m
u
r
a
p
i
.
b
i
z
/

J
en

a
ru
le
-b
a
se
d
re
a
so
n
er

A
p
a
ch

e
S
o
ft
w
a
re

F
o
u
n
d
a
ti
o
n

2
.1
1
.1
,
2
0
1
3
-0
9
-1
8
A
S
L
2

h
t
t
p
:
/
/
j
e
n
a
.
a
p
a
c
h
e
.
o
r
g
/

J
E
O
P
S

R
av

i
T
a
n
g
ir
a
la
,

B
o
b

S
ch

li
ch

er
,
J
eff

C
a
rt
er

2
.2

/
2
0
0
3
-0
9
-2
9

L
G
P
L

h
t
t
p
:
/
/
s
o
u
r
c
e
f
o
r
g
e
.
n
e
t
/

p
r
o
j
e
c
t
s
/
j
e
o
p
s
/

J
L
is
a

M
ik
e
B
ee
d
le

0
.0
4
/
2
0
0
3
-1
1
-2
0

G
P
L

h
t
t
p
:
/
/
j
l
i
s
a
.
s
o
u
r
c
e
f
o
r
g
e
.

n
e
t
/

J
R
u
le
E
n
g
in
e

M
a
u
ro

C
a
rn
ie
l

1
.3

/
2
0
0
8
-0
4
-1
6

L
G
P
L

h
t
t
p
:
/
/
j
r
u
l
e
e
n
g
i
n
e
.

s
o
u
r
c
e
f
o
r
g
e
.
n
e
t
/

M
a
n
d
a
ra
x

J
en

s
D
ie
tr
ic
h
,
J
o
ch

en
H
il
le
r,

A
le
x
K
o
zl
en

k
ov

1
.1
.0

/
2
0
1
1
-0
1
-2
6
L
G
P
L

h
t
t
p
s
:
/
/
c
o
d
e
.
g
o
o
g
l
e
.
c
o
m
/

p
/
m
a
n
d
a
r
a
x
/

O
p
en

L
ex
ic
o
n

O
p
en

L
ex

ic
o
n
.o
rg

1
.0
.4

/
2
0
0
7
-0
1
-1
2
A
S
L

h
t
t
p
:
/
/
o
p
e
n
l
e
x
i
c
o
n
.
o
r
g

O
p
en

L
T
a
b
le
ts

O
p
en

L
T
a
b
le
ts

5
.1
2
/
2
0
1
4
-0
4
-2
1

L
G
P
L

h
t
t
p
:
/
/
o
p
e
n
l
-
t
a
b
l
e
t
s
.

s
o
u
r
c
e
f
o
r
g
e
.
n
e
t
/

O
p
en

R
u
le
s

O
p
en

R
u
le
s,

In
c.

6
.3
.1

/
2
0
1
4
-0
5
-1
8
G
P
L

/
N
o
n
-G

P
L
L
ic
en

se
s
fo
r

C
o
m
m
er
ci
a
l
P
ro
je
ct
s

h
t
t
p
:
/
/
o
p
e
n
r
u
l
e
s
.
c
o
m

R
o
o
li
e

R
y
a
n
K
en

n
ed

y
1
.1
,
2
0
1
3
-1
2
-1
3

L
G
P
L

h
t
t
p
:
/
/
r
o
o
l
i
e
.

s
o
u
r
c
e
f
o
r
g
e
.
n
e
t
/

S
w
ee
tR

u
le
s

M
IT

S
lo
a
n
a
n
d
D
A
M
L

2
.1

/
2
0
0
5
-0
4
-2
5

L
G
P
L

h
t
t
p
:
/
/
s
w
e
e
t
r
u
l
e
s
.

p
r
o
j
e
c
t
s
.
s
e
m
w
e
b
c
e
n
t
r
a
l
.

o
r
g
/

T
er
m
W
a
re

G
ra
d
S
o
ft

2
.3
.3

/
2
0
1
1
-0
6
-1
6
O
th
er

h
t
t
p
:
/
/
w
w
w
.
g
r
a
d
s
o
f
t
.
u
a
/

p
r
o
d
u
c
t
s
/
t
e
r
m
w
a
r
e
_
e
n
g
.

h
t
m
l

http://drools.jboss.org/
http://dtrules.com/
http://www.hammurapi.biz/
http://jena.apache.org/
http://sourceforge.net/projects/jeops/
http://sourceforge.net/projects/jeops/
http://jlisa.sourceforge.net/
http://jlisa.sourceforge.net/
http://jruleengine.sourceforge.net/
http://jruleengine.sourceforge.net/
https://code.google.com/p/mandarax/
https://code.google.com/p/mandarax/
http://openlexicon.org
http://openl-tablets.sourceforge.net/
http://openl-tablets.sourceforge.net/
http://openrules.com
http://roolie.sourceforge.net/
http://roolie.sourceforge.net/
http://sweetrules.projects.semwebcentral.org/
http://sweetrules.projects.semwebcentral.org/
http://sweetrules.projects.semwebcentral.org/
http://www.gradsoft.ua/products/termware_eng.html
http://www.gradsoft.ua/products/termware_eng.html
http://www.gradsoft.ua/products/termware_eng.html

8 M. Ganzha et al.

It provides an API to extract data from and write to RDF, RDFS and OWL
graphs. Graphs are loaded from: (i) file system, (ii) database, or (iii) the web
(via URLs) and represented as abstract structures called “models.” The Jena
works with a) RDF, b) OWL, and c) triple store. It includes popular semantic
reasoners: Fact++ [7], Pellet [16] and HermiT [8]. Furthermore, it provides its
own implementation of the SPARQL 1.1 engine (the AQR). Note that, even
though Jena was not designed as a rule-based engine, it implements the RETE
algorithm in a general purpose rule-based reasoner. This reasoner is used for
updating the loaded ontologies, when a certain rule is met. There existed two
community projects aiming at running Jena on Android. (1) The Androjena [2]
project supported only a subset of the Jena features and was discontinued in
2010. (2) The Apache Jena on Android [4] project tried to fully integrate Jena
(with all its features) with the Android OS. Unfortunately, the latest, stable ver-
sion of Apache Jena on Android was released for the outdated Jena, in version
2.7.3 released on August 7, 2012.

The OWL API [15] (version 3.50, 2014-04-07) is a Java API (and reference
implementation) for creating, manipulating and serialising OWL Ontologies. It
supports OWL 2.0 and offers an API to inference engines and ontology valida-
tion. Similarly to Jena, the OWL API provides interfaces for FaCT++, HermiT,
Pellet and Racer (but they are not build-in). Furthermore, it features: (1) an API
for OWL 2.0, (2) parsers and writers for RDF/XML, OWL/XML, OWL Func-
tional Syntax, Turtle, KRSS, and OBO Flat. To the best of our knowledge, are
no (“official” or community-driven) projects intended to port the OWL API to
the Android OS (or other mobile OS).

3 Implementing Agents with “Brains” on Mobile Devices
– Proposed Approach

We have considered different approaches to infuse software agents with intel-
ligence. Despite the fact that native methods provided by agent platforms are
sufficient for many scenarios, they lack flexibility. For instance, systems like the
GliderAgent that operate in constantly changing environment (e.g. cockpit of a
glider), should not relay on compiled Java classes.

Next, we have considered rule-based expert systems found at [13]. While we
report only those written in Java, neither of them satisfied our requirements.
The primary concern was related to need to re-implement the RETE (e.g. in
Roolie), or porting the RES to mobile devices (e.g. Drools, OpenL Tablets).

Finally, we considered two semantic frameworks – Apache Jena and the OWL
API (in Section 2.3). Here, we decided to use Jena. First, it already did run
on the Android OS. Moreover, the Jena on Android creators summarized the
porting process, helping us to bring the newest version of Jena (2.11.1) to the
Android OS. Moreover, because Jena implements the RETE algorithm, we can
take advantages of two different frameworks – RES and semantic data processing.
Specifically, the system knowledge can be represented and stored in the form of
an RDF / OWL ontology, while the decision making process can utilize rule-
based processing.

Inserting “Brains” into Software Agents – Preliminary Considerations 9

Porting Jena to Android proceeded in two stages: (1) creating a fully func-
tional prototype, and (2) rewriting the Java code to run on the Android OS.
Note that since the prototype was created first, we were able to remove unused
dependencies and, in this way, reduce the amount of work in the second stage.

Fig. 1. The component diagram of the system

The component diagram is presented in Figure 1. There, we can see two
software components: (1) Jena and (2) a Jade agent. During the initialization,
a pair – an ontology and a set of rules – is loaded into Jena. They represent
the knowledge base of the system. The ontology is stored as an instance of the
InfModel class. Jade agent receives this information from the environment and
analyzes it (extracts facts). Next, these facts are transformed into triples (object,
predicate, subject) compliant with the loaded ontology. All triples are sent to
Jena, in order to update the InfModel. Note that the InfModel is a hybrid of
two different instances of the Model class: (i) the Ontology Model, and (ii) the
Deduction Model. The Ontology Model stores all initial facts (loaded with the
ontology) and the inserted triples (added by the Jade agent). On the other
hand, the Deduction Model stores all facts inferred by matching rules against
the ontology. When a new triple is added to the Ontology Model, Jena runs its
implementation of the RETE algorithm. During this process, new inferred facts
are added to the Deduction Model. Since a Jade agent is not “interested” in what
it already knows (facts added to the Ontology Model), Jena returns new triples
from the Deduction Model. In order to improve the system performance, these
triples are combined into batches. A batch is sent when the algorithm completes

10 M. Ganzha et al.

the execution (all fulfilled rules were fired). Finally, the Jade agent analyses the
batch and executes the appropriate behavior.

In the second stage, the system was rewritten to work with the Android API.
First, it requires only a part of Jena functionality – for interacting with an on-
tology and executing the RETE algorithm. Thus, it was easy to empirically ver-
ify, that Jena requires the following libraries: i) jena-core, ii) jena-iri, iii) slf4j-api,
iv) xercesImpl and v) xml-apis. These libraries can be roughly divided into three
subsets: 1) Jena, 2) SLF4J, 3) Xerces. Here, SLF4J [19] and Xerces [20] are ex-
ternal projects. SLF4J (Simple Logging Facade for Java) serves as a simple ab-
straction for various logging frameworks. It allows the user to plug in the desired
logging framework at the deployment time. According to the SLF4J website, there
exists a wrapped implementation for the Android OS. Unfortunately, currently,
the SLF4J is not available for download (the download site returns the 404 error).
Since the Android API provides its own logger classes, it is not a crucial part of
the application. Thus, during the implementation, we used the repacked SLF4J
libraries from the Jade on Android project (which, however, may be outdated).

The Xerces (licensed to the Apache Software Foundation) is intended for
creation and maintenance of XML parsers. It is a very important dependence
in Jena and, thus, had to be rewritten. There exists Xerces for Android. This
community-driven project is based on the latest version of Xerces (2.11.0) and
is available for download at [21]. Unfortunately, Xerces for Android uses the
javax.* namespace to provide the missing dependencies. The javax.* namespace
is interpreted by the Dalvik (or ART) cross-compiler (as the “core” Java library),
thus it is “safe” to cross-compile. To overcome this limitation, one can either
compile the project with the “–core-library” flag (this suppresses the error in
the compiler), or rename the javax.* namespace to javax2.* (as the developer of
Jena on Android suggests). Overall, when SLF4J and Xerces are replaced, Jena
can be repacked to be supported on the Android OS.

3.1 Testing the Solution

To test our system we proposed two scenarios. In the first scenario, an agent
system runs on a device with the latest stable version of the Android OS – 4.4.4.
In the first step, initial facts and rules (presented in listing 1.1) are inserted
into the system. These rules were written based on the theory on psychosocial
development of human beings, articulated by Erik Erikson [6]. Then, we modify
the system knowledge by interacting with the Android application. Specifically,
we can increase or decrease the age by one. As a result, new triples (facts about
our current age) are inserted to the system. In response to user actions, the agent
display short information in the form of a “toast” notification (see Figure 2).
After the last triple is delivered (the number is greater than 65), the system
prints out the outcome in the debug console. Each part of the result contains
the following information: the current age, the current Erikson’s stage of human
life and two triples (one inserted into the Ontology Model and one inserted into
Deduction Model). Finally, we can observe that all stages were reached by the
application. Specifically, the agent properly responded to all facts and the system
knowledge was correctly updated by the algorithm.

Inserting “Brains” into Software Agents – Preliminary Considerations 11

Listing 1.1. Facts and rules used in the first scenario

<!-- FACTS -->

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22 -rdf-syntax-ns#"

xmlns:eg="urn:x-hp:eg/" >

<rdf:Description rdf:about="urn:x-hp:eg/Person">

<eg:age rdf:datatype ="http://www.w3.org/2001/ XMLSchema#int" >0</eg:age >

<eg:stage rdf:resource ="urn:x-hp:eg/Infancy "/>

</rdf:Description >

</rdf:RDF>

<!-- RULES -->

[infancy : (?d eg:age ?a) ge(?a,0) lessThan (?a,2)

-> (?d eg:stage eg:Infancy)]

[childhood: (?d eg:age ?a) ge(?a,2) lessThan (?a,3)

-> (?d eg:stage eg:Childhood)]

[preschool: (?d eg:age ?a) ge(?a,3) lessThan (?a,6)

-> (?d eg:stage eg:Preschool)]

[school: (?d eg:age ?a) ge(?a,6) lessThan (?a,12)

-> (?d eg:stage eg:School)]

[adolescence : (?d eg:age ?a) ge(?a,12) lessThan (?a,19)

-> (?d eg:stage eg:Adolescence)]

[young_adulthood: (?d eg:age ?a) ge(?a,19) lessThan (?a,40)

-> (?d eg:stage eg:Young_Adulthood)]

[middle_adulthood: (?d eg:age ?a) ge(?a,40) lessThan (?a,65)

-> (?d eg:stage eg:Middle_Adulthood)]

[maturity : (?d eg:age ?a) ge(?a,65)

-> (?d eg:stage eg:Maturity)]

Fig. 2. The outcome of the first scenario – the application properly notify the user

12 M. Ganzha et al.

In the second scenario, the rule-based decision making system is integrated
with the GliderAgent agent. Here, the system receives feeds from different sen-
sors (altitude, temperature, blood pressure etc.) and, based on such information,
triggers appropriate GliderAgent agent behaviors. Specifically, the rules and cor-
responding behaviors are listed in listing 1.2. Unlike the first scenario, the system
takes autonomous actions. Specifically, for the test purposes, we used the oxygen
scenario from the initial version of the system [23]. In this scenario, we model
two types of warnings: (1) low oxygen level generated at 9842.52 ft (3000 m
above the sea level), and (2) critical oxygen level generated at 13123.36 ft (4000
m above the sea level). At the beginning of the scenario, the glider stays on the
ground at the altitude of 0 m. The position of the glider and its altitude start to
change when the scenario is executed. It is assumed that the glider is conducting
a lee-wave flight, and its altitude is increasing fast. Each time, when an agent
receives data from sensors, the Ontology Model is modified accordingly. Namely,
the position of the glider changes with respect to the GPS feed. Figure 3 presents
the situation when the glider reaches the altitude of 4000 m. We can see that the
XCSoar program (which observes the altitude greater than 13123.36 ft) displays
warning “Critical oxygen level”. Overall, we can observe that the agent properly
identified a life-threatening situation and informed the pilot about the danger.
Thus it can be said that the new GliderAgent agent “has its brain in place.”
This will also allow us to start building its knowledge base in form of rules and
ontologies.

Listing 1.2. Facts and rules used in the second scenario

<!-- FACTS -->

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22 -rdf-syntax -ns#"

xmlns:eg="urn:x-hp:eg/" >

<rdf:Description rdf:about="urn:x-hp:eg/Glider">

<eg:altitude rdf:datatype ="http ://www.w3.org/2001/ XMLSchema#double" >0</eg

:altitude >

<eg:latitude rdf:datatype ="http ://www.w3.org/2001/ XMLSchema#double" >0</eg

:latitude >

<eg:altitude rdf:datatype ="http://www.w3.org/2001/ XMLSchema#int" >0</eg:

altitude >

(...)

<eg:sensor_delay rdf:datatype ="http ://www.w3.org/2001/ XMLSchema#int" >300</

eg:sensor_delay >

<eg:state rdf:resource ="urn:x-hp:eg/Normal"/>

(...)

</rdf:Description >

</rdf:RDF>

<!-- RULES -->

(...)

[low_oxygen: (?g eg:altitude ?a) ge(?a,3000) lessThan (?a,4000)

-> (?g eg:sensor_delay 120) (?g eg:state eg:Cautious)]

[critical_oxygen: (?g eg:altitude ?a) ge(?a,4000)

-> (?g eg:sensor_delay 60) (?g eg:state eg:Critical)]

(...)

Inserting “Brains” into Software Agents – Preliminary Considerations 13

Fig. 3. The outcome of the second scenario – the GliderAgent system is running on
the Android device

4 Concluding Remarks

In this paper, we considered implementation of “intelligent” software agents.
Based on a analysis of possible approaches (native methods in agent platforms,
rule-based expert systems and semantic frameworks), we have realized that none
of them is sufficient alone, when developing agent systems for mobile devices and
when agent knowledge has to be often updated. Therefore, we have combined
Jade and Jena to develop a solution, which supports both rule-based and se-
mantic technologies and tested the proposed approach on two simple scenarios.
While the implemented solution is restricted to Java-based agents running on
the Android OS, we believe that the presented results naturally generalize to
other programming languages and operating systems.

References

1. Android os, http://www.android.com/
2. Androjena, https://code.google.com/p/androjena/
3. Apache jena, http://openl-tablets.sourceforge.net/
4. Apache jena on android, http://elite.polito.it/jena-on-android/
5. Drools, http://drools.jboss.org/
6. Erikson’s psychosocial stages summary chart,

http://psychology.about.com/library/bl_psychosocial_summary.htm

http://www.android.com/
https://code.google.com/p/androjena/
http://openl-tablets.sourceforge.net/
http://elite.polito.it/jena-on-android/
http://drools.jboss.org/
http://psychology.about.com/library/bl_psychosocial_summary.htm

14 M. Ganzha et al.

7. Fact++, http://aosgrp.com/products/jack/
8. Hermit, http://hermit-reasoner.com/
9. Jack, http://aosgrp.com/products/jack/

10. Jadex, http://sourceforge.net/projects/jadex/
11. Jason, http://jade.tilab.com/
12. Java agent development framework, http://jade.tilab.com/
13. Open source rule engines in java,

http://java-source.net/open-source/rule-engines

14. Openl tables, http://openl-tablets.sourceforge.net/
15. Owl api, http://owlapi.sourceforge.net/
16. Pellet, http://clarkparsia.com/pellet/
17. Protege, http://protege.stanford.edu/
18. Roolie, http://roolie.sourceforge.net/
19. Simple logging facade for java, http://www.slf4j.org/
20. Xerces, http://xerces.apache.org/
21. Xerces for android, https://code.google.com/p/xerces-for-android/
22. Brodie, M.L., Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management

and Electronic Commerce. Springer (2003)
23. Domanski, J.J., Dziadkiewicz, R., Ganzha, M., Gab, A., Mesjasz, M.M., Paprzycki,

M.: Implementing glideragent—an agent-based decision support system for glider
pilots. In: Software Agents, Agent Systems and Their Applications, pp. 222–244
(2012)

24. Forgy, C.: On the efficient implementation of production systems. PhD thesis,
Thesis, Carnegie-Mellon University (1979)

25. Fra̧ckowiak, G., Ganzha, M., Paprzycki, M., Szymczak, M., Han, Y.-S., Park, M.-
W.: Adaptability in an agent-based virtual organization – towards implementa-
tion. In: Cordeiro, J., Hammoudi, S., Filipe, J. (eds.) Web Information Systems and
Technologies. Lecture Notes in Business Information Processing, vol. 18, pp. 27–39.
Springer, Heidelberg (2009)

26. Ganzha, M., Lakhmi, J.C.: Multiagent Systems and Applicatins. A John Wiley
and Sons, Ltd (2009)

27. Mesjasz, M., Cimadoro, D., Galzarano, S., Ganzha, M., Fortino, G., Paprzycki, M.:
Integrating Jade and MAPS for the Development of Agent-Based WSN Applica-
tions. In: Fortino, G., Badica, C., Malgeri, M., Unland, R. (eds.) IDC 2012. Studies
in Computational Intelligence, vol. 446, pp. 211–220. Springer, Heidelberg (2012)

28. Nwana, H.S., Ndumu, D.T.: A perspective on software agents research. Knowl.
Eng. Rev. 14(2), 125–142 (1999)

29. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.
Pearson Education (2003)

30. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks / Cole (1999)

31. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. Knowl-
edge Engineering Review 10(2), 115–152 (1995)

http://aosgrp.com/products/jack/
http://hermit-reasoner.com/
http://aosgrp.com/products/jack/
http://sourceforge.net/projects/jadex/
http://jade.tilab.com/
http://jade.tilab.com/
http://java-source.net/open-source/rule-engines
http://openl-tablets.sourceforge.net/
http://owlapi.sourceforge.net/
http://clarkparsia.com/pellet/
http://protege.stanford.edu/
http://roolie.sourceforge.net/
http://www.slf4j.org/
http://xerces.apache.org/
https://code.google.com/p/xerces-for-android/

A Multi-agent Algorithm to Improve Content

Management in CDN Networks

Agostino Forestiero and Carlo Mastroianni

CNR - ICAR
Via Pietro Bucci, 41C

87036 Rende (CS), Italy
{forestiero,mastroianni}@icar.cnr.it

Abstract. An effective solution to delivery static contents are the Con-
tent Delivery Networks (CDNs). However, when the network size in-
creases, they show limits and weaknesses related to their size, dynamic
nature, and due to the centralized/heirarchical algorithms used for their
management. Decentralized algorithms and protocols can be usefully em-
ployed to improve their efficiency. A bio-inspired algorithm that improves
the performance of CDNs by means of a logical organization of contents
is presented in this paper. Self-organizing ant-inspired agents move and
organize the metadata describing the content among the CDN servers,
which are interconnected in a peer-to-peer fashion, so as to improve dis-
covery operations. Experimental results confirm the effectiveness of the
adopted approach.

Keywords: Content Delivery Networks, Bio-inspired, Peer to Peer.

1 Introduction

Content Delivery Networks are an efficient alternative to centralized storage
for the delivery of static and dynamic content, such as video on-demand, TV
broadcasts, media streaming services, pay-per-use software, pay-per-download
music, etc. Content replication and distribution is adopted by CDNs to improve
the performance of Internet-based content delivery in terms of response time
and accessibility. Clusters of surrogate servers, located at the network edge, are
maintained and geographically distributed in order to put content as close as
possible to the users.

Nowadays, many aspects of Content Networks have been improved in aspects
such as the available content, the number of hosts and servers, the kind and the
number of the users and the efficiency of real time services. The best surrogate
servers - that store copies of the content - are chosen to satisfy user requests.
Hence, a system and a set of mechanisms able to provide contents and services
in a scalable manner need to be offered. With the explosion of social networks
and P2P technologies, the amount of content has increased hugely, as well as
the exploitation of the Cloud Computing paradigm, in which numerous servers
located in the “Clouds” manage the content and the services. However, to per-
form retrieval or access operations, current applications that create, modify and

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 15–25, 2014.
c© Springer International Publishing Switzerland 2014

16 A. Forestiero and C. Mastroianni

manage the content, and actively place it at appropriate locations, are often
insufficient. Small- or medium-sized networks can be acceptably tackled with a
centralized approach. However, the CDN paradigm shows its limits in large-scale
and dynamic systems. Decentralized algorithms and protocols, such as peer-to-
peer (P2P) and multi agent systems, can be useful to deal with new technologies
and complex paradigms [7][9].

In this paper an algorithm that exploits nature-inspired agents to organize
the content in Content Delivery Networks, is presented. This approach was first
introduced in [4], where a high-level description was given. Here the approach is
described in more details, specifically regarding the content discovery procedure,
and performance results are presented and discussed. Metadata documents that
describe the content are moved and logically organized by the agents to im-
prove information retrieval operations. In our approach, metadata documents
are indexed by binary strings, obtained as the result of the application of a lo-
cality preserving hash function, which maps similar resources into similar binary
strings. For example, each bit of the string may represent the absence or pres-
ence of a given characteristic of an offered service. Agents move across the CDN
network through the peer-to-peer interconnections moving the metadata doc-
uments. Similar metadata, representing similar resources, are located into the
same or in neighbor hosts/servers. The assignment of metadata documents to
CDN servers is self-organizing and driven by probabilistic operations, and easily
adapts to the dynamic conditions of the network.

The logical reorganization induced by the operations of mobile agents allows
to exploit the benefits of structured and unstructured approaches adopted in peer
to peer systems. The logical reorganization of the metadata documents improves
the rapidity and effectiveness of discovery operations, and enables the execution
of range queries, i.e., requests of content that matches some specified features.
In fact, thanks to the features of the hash function, the metadata strings that
differ only by a few bits will be located in neighboring regions. To measure the
similarity between two binary strings the Hamming distance or the cosine of the
angle between the related vectors is used.

The rest of the paper is organized as follows: Section 2 discusses related work,
Section 3 describes how the bio-inspired agents replicate and logically reorganize
metadata documents on the CDN network and Section 4 describes the discov-
ery algorithm that exploits the metadata reorganization to perform simple and
range queries. Finally, in Section 5 the performance analysis of the algorithm is
reported.

2 Related Works

Approaches that combine CDNs and P2P methodologies have been analyzed by
several studies: [12] [11] proposed the use of P2P to deliver multimedia content;
[14] [10] exploit P2P overlays for surrogate cooperation while leaving the clients
as regular non-cooperative entities; in [16], a collaboration between clients is
proposed, but clients cannot receive data at the same time from different sources,

A Multi-agent Algorithm to Improve Content Management 17

such as from the peering community and CDN entities. Some interesting works
that propose the adoption of P2P and multi agent systems in Content Delivery
Networks, are collected in [7] and [8].

The dynamic nature of today’s networks and the large variety of the resources
make management and discovery operations very complex. Administrative bot-
tlenecks and low scalability of centralized systems are becoming unbearable.
Innovative approaches need to have properties such as self-organization, decen-
tralization and adaptivity. Erdil et al. in [3] outline the requirements and prop-
erties of self organizing grids, where reorganization of resources and adaptive
dissemination of information are applied to facilitate discovery operations. A
class of agent systems which aim to solve very complex problems by imitating
the behavior of some species of ants was introduced in [1]. In [6] and [5], the
performance of discovery operations is improved through the creation of Grid
regions specialized in specific classes of resources, and [15] proposes a decentral-
ized scheme to tune the activity of a single agent. These systems are positioned
along a research avenue whose objective is to devise possible applications of
ant algorithms [1] [2]. In [13], a tree-based ant colony algorithm was proposed
to support large-scale Internet-based live video streaming broadcast in CDNs.
Here, differently from the traditional solutions adopted to find a path towards a
target resource, an algorithm is introduced to integrate and optimize multicast
trees into the CDN network.

3 Algorithm for Metadata Reorganization

The approach presented here is composed by two main algorithms, an algorithm
for metadata reorganization and another for the discovery of metadata docu-
ments. The main purpose of the first algorithm is to disseminate metadata over
the CDN network and at the same time achieve a logical organization of content
by spatially sorting the metadata in accordance to the corresponding indexes, or
binary strings. Operations of nature-inspired agents are profitably exploited to
reallocate the metadata. Agents move among CDN servers, or hosts, performing
simple operations. When an agent arrives to a host and it does not carry any
metadata document, it decides whether or not to pick one or more documents
stored in the current host. When a loaded agent arrives to a new host, it decides
whether or not to leave one or more metadata documents in the local host. Prob-
ability functions drive agents’ decisions. The probability functions are based on
a similarity function, that is:

sim(m̄, R) =
1

Nm

∑
mεR

1− Ham(m, m̄)

dim
(1)

This function measures the similarity of a metadata binary string m̄ with all
the other strings located in the local region. The length of string is assumed
to be equal to dim. The local region R for each server s includes s and all the
host reachable from s in a number of hops h. The value of h is set to 1 unless
otherwise stated. Nm is the overall number of metadata documents located in R,

18 A. Forestiero and C. Mastroianni

while Ham(m, m̄) is the Hamming distance between a metadata document m
and m̄. The value of the function sim ranges between 0 and 1. The probability of
picking a metadata document from a server must be inversely proportional to the
similarity function sim. On the other hand, the probability function of dropping
a metadata must be directly proportional to the similarity function sim. In this
way, an agent tends to pick metadata documents that are dissimilar to the other
documents stored locally, and will move and drop them to other regions where
more similar documents are stored, so improving the spatial reorganization of
metadata.

According to these considerations, the probability functions of picking a meta-
data P1 and the probability function of dropping a metadata P2, are:

P1 =

(
k1

k1 + sim(m̄, R)

)2

(2)

P2 =

(
sim(m̄, R)

k2 + sim(m̄, R)

)2

(3)

The degree of similarity among metadata documents can be tuned through
the parameters k1 and k2, which have values comprised between 0 and 1, and
in this work have been set, respectively, to 0.1 and 0.3, as in [1]. The flowchart
showed in Figure 1 gives a high-level description of the algorithm performed by
mobile agents. Cyclically, the agents perform a given number of hops among
servers and, when they get to a server, they decide which probability function
they must use, based on their state. If the agent does not carry metadata it
computes P1, otherwise it computes P2.

The effectiveness of the algorithm has been evaluated by defining the spatial
uniformity function, i.e. the average homogeneity of metadata documents stored
in neighbor servers. The uniformity Us of the documents stored in a local region
centered in the server s is defined as:

Us = dim−Avgm1,m2εRHam(m1,m2) (4)

where m1 and m2 are two metadata documents stored in the local region R. The
value of the global uniformity U is obtained by averaging the values of Us over
all the servers of the network.

Simulation tests showed that the uniformity function is better increased if
each agent works in two operational modes, copy and move. In the first phase
of its life, an agent is required to copy the metadata that it picks from a server,
but when it realizes from its own activeness that the reorganization process is at
an advanced stage, it begins simply to move metadata from one host to another,
without creating new replicas. In fact, the copy mode cannot be maintained
for a long time, since eventually every host would store a very large number of
metadata of all types, thus weakening the efficacy of spatial reorganization. The
algorithm is effective only if each agent, after replicating a number of metadata,
switches from copy to move.

A Multi-agent Algorithm to Improve Content Management 19

Fig. 1. The algorithm for metadata reorganization performed by agents

A self-organization approach, in some sense similar to that used in [15], en-
ables each agent to tune its activeness, in our case to perform a mode switch,
only on the basis of local information. Our approach is inspired by the obser-
vation that agents perform more operations when the system disorder is high,
because metadata are distributed randomly, but operation frequency gradually
decreases as metadata documents are properly reorganized. The reason for this
is that the values of the functions P1 and P2, defined in expressions (2) and (3),
decrease as metadata documents are correctly replaced and reorganized on the
network.

With a mechanism inspired by ants and other insects, each agent maintains
a pheromone base (a real value) and increases it when its activeness tends to
decrease, which means that the disorder level has significantly decreased: the
agent switches to the move mode as soon as the pheromone level exceeds a
defined threshold Th. In particular, precisely each 500 time units, each agent
counts the number of times that it has evaluated the P1 and P2 probability
functions, Nattempts, and the number of times that it has actually performed
pick and drop operations, Noperations. At the end of each time interval, the
agent makes a deposit into its pheromone base, which is inversely proportional
to the fraction of performed operations. An evaporation mechanism is used to
give a greater weight to the recent behavior of the agent. Specifically, at the end

20 A. Forestiero and C. Mastroianni

of the i-th time interval, the pheromone level Φi is computed with the following
expression:

Φi = Ev · Φi−1 +

(
1− Noperations

Nattempts

)
(5)

The evaporation rate Ev is set to 0.9 [15], whereas φi is the amount of
pheromone deposited in the last time interval. The pheromone level can as-
sume values comprised between 0 and 10: the superior limit can be obtained by
equalizing Φi to Φi−1 and setting φi to 1. As soon as the pheromone level exceeds
the threshold Th (whose value is set to 9 in this work), the agent switches its
mode from copy to move.

4 Algorithm for Metadata Discovery

The reorganization and sorting of metadata can be exploited by a discovery al-
gorithm that allows users to find the resources or services that they need for
their applications. In a CDN, users often need to locate resources with given
characteristics and, after retrieving a number of them, they can choose the re-
sources that best fit their needs. Accordingly, a query message is issued by a user
to search for “target metadata”, that is, for metadata documents having a given
value of their binary index. The query is forwarded through the CDN network,
hop by hop, so as to discover as many target metadata documents as possible.
Thanks to the spatial sorting of metadata achieved by ant-based agents, the dis-
covery procedure can be simply managed by forwarding the query, at each step,
towards the “best neighbor”, that is, the neighbor that maximizes the similarity
between the metadata stored locally and the target metadata.

Each CDN server computes a “centroid” metadata. This metadata is a vector
of dim real numbers comprised between 0 and 1, and is obtained by averaging
all the local metadata indexes. Specifically, the value of each centroid element
is calculated by averaging the values of the bits, in the same position, of all the
metadata stored in the local peer. For example, the centroid metadata of a server
that maintains the three metadata [1,0,0], [1,0,0] and [0,1,0] is a metadata having
an index [0.67,0.33,0]. Before forwarding a query, the cosine of the angle between
the query target metadata, and the centroids of all the neighbors, is computed.
This value gives a hint about how much the metadata of the neighbors are similar
to the target metadata. Thereafter, the query is forwarded to the neighbor that
maximizes this cosine similarity index. At the next step, the target server will
do the same so that, step by step, the query approaches a region of the network
where it is more and more likely to discover several useful results, that is, target
metadata. The search is terminated whenever it is no longer advantageous to
forward the query, that is, when the best neighbor is not better than the server
where the query has arrived so far. At this point, a queryHit message is issued
and returns to the requesting host by following the same path, and collecting on
its way all the results that it finds.

A Multi-agent Algorithm to Improve Content Management 21

The efficient resolution of range queries is a fundamental requirement of CDN
systems. A range query is defined as a query in which the bit vector of the target
metadata contains one or more wildcard bits, that can assume either the 0 or
the 1 value. This means that a range query can return descriptors having 2W

possible values, if W is the number of wildcard bits. Of course, the assignment
of indexes to metadata must assure that the bit vectors that correspond to
similar resources are also similar to one another. This can be done without
losing generality by using the binary Gray code, in which two successive indexes
always differ by only one bit. To select the best neighbor, the cosine similarity is
still computed between the target metadata and the centroid metadata of all the
neighbors, but this time these indexes are preprocessed by discarding the bits
that are defined as wildcards in the target metadata. Therefore, only the centroid
bits that correspond to valued bits in the target metadata are useful to drive
the query message. As for simple queries, a range query terminates its journey
when it is no more possible to find a better neighbor. The queryHit message
will come back and collect all the metadata that match the range query. Range
queries are not able to discover all the resources that would be found with the
corresponding number of simple queries, but provide an efficient way to discover
– in just one shot – much more results than a simple query. It can be concluded
that the resource management of the algorithm actually facilitates this objective,
as showed in Section 5.

5 Experimental Results

An event-based simulator, written in Java, was implemented to evaluate the
performance of the algorithm. Prior to the numerical analysis, a graphical de-
scription of the behavior of the algorithm, for the case in which dim is set to 3,
is given in Figure 2. Here, 2,500 CDN servers are arranged in a grid and each
metadata is associated to a RGB color.

Fig. 2. Snapshots of the system showing the reorganization of metadata documents
indexed by 3 bits, represented by RGB colors. The snapshots are taken when the
process starts, in an intermediate state and in a steady state.

22 A. Forestiero and C. Mastroianni

 1

 2

 3

 4

 0 20,000 40,000 60,000 80,000 100,000

U
ni

fo
rm

ity
, U

Time units

dim = 3
dim = 4
dim = 5
dim = 6

Fig. 3. Uniformity of the whole network when the number of bits of the binary string
representing the content ranges from 3 to 6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 20000 40000 60000 80000 100000

U
ni

fo
rm

ity
, U

Time units

Ns = 500
Ns = 1000
Ns = 2000
Ns = 4000
Ns = 8000

Fig. 4. Uniformity, vs. time, for different values of the number of servers

Each server is visualized by means of the RGB color of the metadata with
the highest number of elements placed in it. Three snapshots of the network are
depicted: the first is taken when the process is initiated (time units = 0), the
second is taken 10,000 time units later, and the third snapshot is taken in a quite
steady situation, 100,000 time units after the process start. Notice that similar
metadata are located in the same region and that the color changes gradually,
which proves the spatial sorting of metadata on the network. Figure 3 shows the
value of the overall uniformity — defined in Section 3 – when the number of
bits of the metadata describing the content,dim, is varied. We can see that the
logical reorganization is obtained independently of the number of bits.

To confirm the scalability nature of the algorithm, which derives from its de-
centralized and self-organizing characteristics, its behavior with different num-
bers of servers Ns, between 500 and 8000, was analyzed and reported in Figure
4. It is noticed that the size of the network has no detectable effect on the overall
uniformity index.

A Multi-agent Algorithm to Improve Content Management 23

 0

 10

 20

 30

 40

 50

 60

 70

 0 20,000 40,000 60,000 80,000 100,000

M
ea

n
nu

m
be

r
of

 m
et

ad
at

a
pe

r
se

rv
er

Time units

dim = 3
dim = 4
dim = 5
dim = 6

Fig. 5. Mean number of metadata documents handled by a server when the length of
binary strings ranges from 3 to 6 bits

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20,000 40,000 60,000 80,000 100,000

M
ea

n
nu

m
be

r
of

 r
es

ul
ts

Time units

overlapping bits = 4
overlapping bits = 3
overlapping bits = 2
overlapping bits = 1

Fig. 6. Mean number of results collected by a range query when the length of the
binary string representing the content is set to 4 and the number of overlapping bits
ranges from 1 to 4

Figure 5 reports the average number of metadata documents that are main-
tained by a server at a given time. Indeed, one of the main objectives of the
algorithm is the replication and dissemination of metadata. This objective is
achieved: the number of metadata documents maintained by a server increases
from an initial value of about 15 (equal to the average number of resources pub-
lished by a server) to much higher values; the trend of this value undergoes a
transient phase, then it becomes stabilized, even if with some fluctuations.

To evaluate the effectiveness of range queries, the length of binary string –
dim – was set to 4, and queries are issued in which some bits of the target
binary string are wildcard bits, while other bits are specified. The latter are
called overlapping bits in the following. The average number of results collected
by a range query, when the number of overlapping bits ranges between 1 and 4, is
shown in Figure 6. It appears that, in a steady situation, the number of results
increases with the number of overlapping bits, as each additional overlapping

24 A. Forestiero and C. Mastroianni

bit doubles the number of admissible results. Range queries are not able to
discover all the results that would be obtained by issuing a simple query for
each admissible value of the target binary index. However, range queries provide
an efficient way to discover – in just one shot – much many results than a single
query.

6 Conclusions

This paper presents a nature-inspired approach to build a P2P information sys-
tem for CDNs. Thanks to its swarm intelligence characteristics, the proposed
algorithm features fully decentralization, adaptivity and self-organization. Ant-
inspired agents move and logically reorganize the metadata documents
representing the content or the services. Agent operations are driven by simple
probability functions that are evaluated when agents get to a new server. In this
way, similar metadata documents representing similar contents are placed in the
same region, that is on neighbor CDN servers. Performance analysis, achieved
through event-based simulation, confirms the effectiveness of the approach and
the increased efficiency of discovery operations – specifically of range queries –
obtained thanks to the logical reorganization of metadata documents.

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to
artificial systems, vol. 4. Oxford university press, New York (1999)

2. Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant algorithms and stigmergy. Future
Generation Computer Systems 16(8), 851–871 (2000)

3. Erdil, D.C., Lewis, M.J., Abu-Ghazaleh, N.B.: Adaptive approach to information
dissemination in self-organizing grids. In: 2006 International Conference on Auto-
nomic and Autonomous Systems, ICAS 2006, p. 55. IEEE (2006)

4. Forestiero, A.: Self organization in content delivery networks. In: 2012 IEEE 10th
International Symposium on Parallel and Distributed Processing with Applications
(ISPA), pp. 851–852 (July 2012)

5. Forestiero, A., Mastroianni, C., Spezzano, G.: Reorganization and discovery of grid
information with epidemic tuning. Future Generation Computer Systems 24(8),
788–797 (2008)

6. Forestiero, A., Mastroianni, C., Spezzano, G.: So-grid: A self-organizing grid fea-
turing bio-inspired algorithms. ACM Transactions on Autonomous and Adaptive
Systems (TAAS) 3(2), 5 (2008)

7. Fortino, G., Mastroianni, C.: Enhancing content networks with p2p, grid and agent
technologies. Future Generation Computer Systems 24(3), 177–179 (2008)

8. Fortino, G., Mastroianni, C.: Next generation content networks. Journal on Net-
work and Computing Applications 32(5), 941–942 (2009)

9. Fortino, G., Russo,W.: Using p2p, grid and agent technologies for the development of
content distribution networks. FutureGeneration Computer Systems 24(3), 180–190
(2008)

10. Guomin, Z., Changyou, X., Ming, C.: A distributed multimedia cdn model with p2p
architecture. In: International Symposium on Communications and Information
Technologies, ISCIT 2006, pp. 152–156. IEEE (2006)

A Multi-agent Algorithm to Improve Content Management 25

11. Huang, C., Wang, A., Li, J., Ross, K.W.: Understanding hybrid cdn-p2p: why lime-
light needs its own red swoosh. In: Proceedings of the 18th International Work-
shop on Network and Operating Systems Support for Digital Audio and Video,
pp. 75–80. ACM (2008)

12. Kang, S., Yin, H.: A hybrid cdn-p2p system for video-on-demand. In: Second In-
ternational Conference on Future Networks, ICFN 2010, pp. 309–313. IEEE (2010)

13. Liu, G., Wang, H., Zhang, H.: An ant colony optimization algorithm for over-
lay backbone multicast routing in content delivery networks. In: 2012 IEEE 11th
International Conference on Trust, Security and Privacy in Computing and Com-
munications (TrustCom), pp. 1878–1882. IEEE (2012)

14. Mulerikkal, J.P., Khalil, I.: An architecture for distributed content delivery network.
In: 15th IEEE International Conference onNetworks, ICON2007, pp. 359–364. IEEE
(2007)

15. Van Dyke Parunak, H., Brueckner, S.A., Matthews, R., Sauter, J.: Pheromone
learning for self-organizing agents. IEEE Transactions on Systems, Man and Cy-
bernetics, Part A: Systems and Humans 35(3), 316–326 (2005)

16. Xu, D., Kulkarni, S.S., Rosenberg, C., Chai, H.K.: Analysis of a cdn–p2p hy-
brid architecture for cost-effective streaming media distribution. Multimedia Sys-
tems 11(4), 383–399 (2006)

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 26–35, 2014.
© Springer International Publishing Switzerland 2014

An Actor Based Software Framework
for Scalable Applications

Federico Bergenti1, Agostino Poggi2, and Michele Tomaiuolo2

1 DMI, University of Parma, Parma, Italy
federico.bergenti@unipr.it
2 DII, University of Parma, Parma, Italy

{agostino.poggi,michele.tomaiuolo}@unipr.it

Abstract. The development of scalable and efficient applications requires the
use of appropriate models and software infrastructures. This paper presents a
software framework that enables the development of scalable and efficient
actor-based applications. Each application can be configured with different im-
plementations of the components that drive the execution of its actors. In par-
ticular, the paper describes the experimentation of such a software framework
for the development of agent-based modelling and simulation applications that
involve a massive number of individuals.

Keywords: Actor model, software framework, concurrent systems, distributed
systems, scalable applications, Java.

1 Introduction

Concurrency and parallelism are becoming the most important ingredients for develop-
ing applications running on nowadays computing platforms. However, one of the main
obstacles that may prevent the efficient usage of such platforms is the fact that tradition-
al (sequential) software is not the most appropriate means for their programming.

Message passing models and technologies seem be one of the most attractive solu-
tion for the programming of current computing platforms because they are defined on
a concurrent model that is not based on the sharing of data and so its techniques can
be used in distributed computation, too. One of the well-known theoretical and practi-
cal models of message passing is the actor model [1]. Using such a model, programs
become collections of independent active objects (actors) that do not have shared state
and communicate only through the exchange of messages. Actors can help developers
to avoid issues such as deadlock, live-lock and starvation, which are common prob-
lems for shared memory approaches. There are a multitude of actor oriented libraries
and languages, and each of them implements some variants of actor semantics. How-
ever, such libraries and languages use either thread-based programming, which facili-
tates the development of programs, or event-based programming, which is far more
practical to develop large and efficient concurrent systems, but is also more difficult
to use.

 An Actor Based Software Framework for Scalable Applications 27

This paper presents an actor based software framework, called CoDE (Concurrent
Development Environment), that has the suitable features for both simplifying the
development of large and distributed complex systems and guarantying scalable and
efficient applications. The next section describes the software framework. Section 3
presents its initial experimentation in the agent-based modelling and simulation of
Web and social networks. Section 4 introduces related work. Finally, section 5 con-
cludes the paper by discussing the main features of the software framework and the
directions for future work.

2 CoDE

CoDE (Concurrent Development Environment), is an actor based software framework
that has the goal of both simplifying the development of large and distributed
complex systems and guarantying an efficient execution of applications.

CoDE is implemented by using the Java language and takes advantage of preexist-
ent Java software libraries and solutions for supporting concurrency and distribution.
CoDE has a layered architecture composed of a runtime and an application layer. The
runtime layer provides the software components that implement the CoDE middle-
ware infrastructures to support the development of standalone and distributed applica-
tions. The application layer provides the software components that an application
developer needs to extend or directly use for implementing the specific actors of an
application. In particular, the development of an application usually consists in the
development of the actor behaviors implementing the functionalities of the applica-
tion and in the definition of the configuration (i.e., the selection of the most appropri-
ate implementations) of the components the drive the execution of such behaviors.

2.1 Actors

In CoDE an application is based on a set of interacting actors that perform tasks con-
currently. Actors are autonomous concurrent objects, which interact with each other
by exchanging asynchronous messages. Moreover, they can create new actors, update
their local state, change their behavior and kill themselves. Finally, they can set a
timeout for waiting for a new message and receive a timeout message if it fires.

An actor can be viewed as a logical thread that implements an event loop [2,3].
This event loop perpetually processes events that represent: the reception of messages
and the behavior exchanges. CoDE provides two types of implementation of an actor,
that allow it either to have its own thread (from here named active actor), or to share a
single thread with the other actors of the actor space (from here named passive actor).
Moreover, the implementation of an actor takes advantage of other four main compo-
nents: a reference, a mailer, a behavior, and a state. Fig. 1 shows a graphical represen-
tation of the architecture of an actor.

A reference acts as address and proxy of an actor. Therefore, an actor needs to
have the reference of another actor for sending it a message. In particular, an actor has
the reference of another actor if either it created such an actor (in fact, the creation

28 F. Bergenti, A. Pogg

method returns the referenc
sent by such an actor or wh
object that contains a set of
sender and the receiver refe

A mailer provides a mail
cesses them, and delivers it
duced above, a behavior can
the messages that is not able
new behavior is able to pro
into the queue for all the li
number of messages that i
deposit of a large number o
performances of application

The original actor mod
cessing. In CoDE, a behavi
processing of messages. In
but it delegates the task to
messages that match a spec

A message pattern is an
on the value of all the fiel
straints, but new ones can
lows the application of a pa
tion of field patterns will a
all the message fields and in

Often, the behaviors of
may work on the results o
object. Of course, the kind
depends on the type of task
of an actor must be speciali

gi, and M. Tomaiuolo

ce of the new actor), or it received a message that eithe
hose content enclosed its reference. In fact, a message is
f fields maintaining the typical header information (e.g.,
erences) and the message content.
lbox, maintaining the messages sent to its actor until it p
ts messages to the other actors of the application. As in
n process a set of specific messages, leaving in the mailb
e to process. Such messages remain into the mailbox unt

ocess them and, if there is not such a behavior, they rem
ife of the actor. A mailbox has not an explicit limit on
it can maintain. However, it is clear that the (permane
of messages in the mailboxes of the actors may reduce

ns and, in some circumstances, cause their failure.

Fig. 1. Actor architecture

del associates a behavior with the task of message p
ior can perform two kinds of tasks: its initialization and

particular, a behavior does not directly process messag
o some case objects, that have the goal of processing
ific (and unreplaceable) message pattern.

n object that can apply a combination of constraint obje
ds of a message. CoDE provides a set of predefines c
be easily added. In particular, one of such constraints
attern to the value of a message field. Therefore, the ad
llow the definition of sophisticated filters on the values
n particular on the content of the message.
an actor need to share some information (e.g., a behav

of the previous behaviors). It is possible thanks to a s
of information that the behaviors of an actor need to sh

ks they must perform in an application. Therefore, the s
ized for the task it will perform.

er is
s an
the

pro-
ntro-
box
til a

main
the

ent)
the

pro-
the

ges,
the

ects
con-
s al-
ddi-
s of

vior
tate

hare
tate

 An Actor Based Software Framework for Scalable Applications 29

An actor has not direct access to the local state of the other actors and can share da-
ta with them only through the exchange of messages and through the creation of ac-
tors. Therefore, to avoid the problems due to the concurrent access to mutable data,
both message passing and actor creation should have call-by-value semantics. This
may require making a copy of the data even on shared memory platforms, but, as the
large part of the actors libraries implemented in Java do, CoDE does not make data
copies because such operations would be the source of an important overhead. How-
ever, it encourages the programmers to use immutable objects (by all the predefined
message content objects implementing as immutable) and delegates the appropriate
use of mutable object to them.

2.2 Actor Spaces

Depending on the complexity of the application and on the availability of computing
and communication resources, one or more actor spaces can manage the actors of the
application. An actor space acts as “container” for a set of actors and provides them
the services necessary for their execution. To do it, an actor space takes advantage of
two main runtime components (i.e., the registry and the dispatcher) and two special
actors (i.e., the scheduler and the service provider).

The dispatcher has the duty of supporting the communication with the other actor
spaces of the application. In particular, it creates connections to/from the other actor
spaces, maps remote addresses to the appropriate output connections, manages the
reception of messages from the input connections, and delivers messages through the
output connections. CoDE allows the use of different implementations of such a
communication component. In particular, the current implementation of the software
framework supports the communication among the actor spaces using ActiveMQ [4],
Java RMI [5], MINA [6] and ZeroMQ [7].

 The registry supports the creation of actors and the reception of the messages com-
ing from remote actors. In fact, it has the duties of creating new references and of
providing the reference of the destination actor to the dispatcher, which manages a
message coming from a remote actor. In fact, as introduced in the previous section, an
actor can send a message to another actor only if it has its reference. However, while
the reference of a local actor allows the direct delivery of messages, the reference of a
remote actor delegates the delivery to the dispatchers of the two actor spaces involved
in the communication.

The scheduler is a special actor that manages the execution of the actors of an actor
space. CoDE provides different implementations of such a special actor, and the use
of one or another implementation represents another factor that have big influence on
the attributes of the execution of an application. Of course, the duties of a scheduler
depend on the type of actor implementation and, in particular, on the type of threading
solutions associated with the actors of the actor space. In fact, while the Java runtime
environment mainly manages the execution of active actors, CoDE schedulers com-
pletely manage the execution of passive actors.

The service provider is a special actor that offers a set of services for enabling the
actors of an application to perform new kinds of actions. Of course, the actors of the

30 F. Bergenti, A. Poggi, and M. Tomaiuolo

application can require the execution of such services by sending a message to the
service provider. In particular, the current implementation of the software framework
offers services for supporting the broadcast of messages, the exchange of messages
through the “publish and subscribe” pattern, the binding between names and refer-
ences, the mobility, the interaction with users through emails and the creation of new
actors (useful for creating actors in empty actor spaces).

2.3 Actor and Scheduler Implementations

The quality of the execution of a CoDE application mainly depends on the implemen-
tation of the actors and schedulers of its actor spaces. However, a combination of such
implementations, that maximizes the quality of execution of an application, could be a
bad combination for another application. Moreover, different instances of the same
application can work in different conditions (e.g., different number of users to serve,
different amount of data to process) and so they may require different combinations.

As introduced above, from an implementation point of view, actors are divided in
active and passive actors. The use of active actors delegates their scheduling to the
JVM, with the advantage of guaranteeing them a fair access to the computational
resources of the actor space. However, this solution suffers from high memory con-
sumption and context-switching overhead and so it is suitable only for applications
whose actor spaces have a limited number of actors. Therefore, when the number of
actors in an actor space is high, the best solution is the use of passive actors and
schedulers. In this case, the scheduler implements a simple not preemptive round-
robin scheduling algorithm for the execution of various actors. On the other hand,
each actor provides a method that allows it to perform a piece (from here called step)
of the work (i.e., the processing of some messages) in each scheduling cycle. This last
solution is suitable when it is possible to distribute the tasks in equal parts among the
actors. If it does not happen, heavy actors should have a priority on the access to the
computational resources of the actor space. In this situation, a good solution is to
provide a hybrid scheduler able to manage together active and passive actors and
delegating to the active actors the heavy tasks.

However, guaranteeing a good quality of execution in different application scenar-
ios often requires the satisfaction of some constraints that cannot be achieved by the
same actor and scheduler implementations. For example, applications where actors
act as proxy of real users should guarantee a fair access to the computational re-
sources of the actor space, by limiting the number of messages that an actor can pro-
cess in a single step. Heavy applications should try both to reduce the overhead of the
scheduler and to offer an acceptable fair execution of the actors, for example, by ex-
tending the processing of a single step to all the messages received before the sched-
uling of the actor. Applications where actors mainly communicate through the ex-
change of broadcast messages should try to reduce the overhead of the delivery of
such messages. Finally, applications that involve a massive number of actors should
try to reduce the overhead of managing the inactive actors.

CoDE provides some actor and scheduler implementations that allow the im-
provement of the quality of execution for different types of applications, including the

 An Actor Based Software Framework for Scalable Applications 31

ones described in the previous paragraph. A large part of the implementations has few
differences among them. The most particular implementations are the ones that cope
with the overhead of the delivery of broadcast messages and with the overhead of the
management of inactive actors.

For reducing the overhead of the delivery of broadcast messages, an actor imple-
mentation (called shared actor) uses a mailbox that transparently extracts the messag-
es from a single queue, shared with all the other actors of the actor space, and a
scheduler implementation (called shared scheduler) that has the duty of the manage-
ment of such a queue. To simplify the management of the queue, the shared actors can
only get the messages sent in the previous scheduling cycle and, at the end of each
scheduling cycle, the shared scheduler must add an “end cycle” message at the end of
the queue and then remove the messages before the previous “end-cycle” that are
already processed by the actors.

For reducing the overhead of the management of inactive actors, an actor imple-
mentation (called measurable actor) offers a method providing the number of schedul-
ing cycles from which it does not perform actions. Two scheduler implementations
(called temporary and persistent schedulers) use such an information for removing
actors from their scheduling list. After removing an actor, the temporary scheduler
maintains the actor in the JVM memory and the persistent scheduler moves it in a
persistent storage. This solution requires two different implementations of the registry
component (called temporary and persistent registries) whose duty is to reload an
actor, either from the JVM memory or from the persistence storage, when another
actor sends a new message to it.

3 Experimentation

We experimented and are experimenting CoDE in different application domains and,
in particular, in the agent-based modelling and simulation (i.e., the game of life, the
prey-predators pursuit game, the flocking behavior of birds, the movement of crowds
in indoor and outdoor environments, and the analysis of social networks) [8].

Our work on the modeling and simulation of social networks started some years
ago when we used agent-based techniques for generating and analyzing different
types of social network of limited size [9,10,11]. Now we can take advantage of the
CoDE software framework for coping with very large social networks. Therefore, in a
CoDE system, actors represent the individuals of the social network and maintain
their information. Moreover, such actors can exhibit different behaviors, allowing
both to cooperate in the measurements of the social network and to simulate the be-
havior of the represented individuals by performing the actions that they can perform
in the social network. Of course, some additional actors are necessary, in particular,
for generating the social network and for driving its measurements.

The architecture we defined for agent-based modelling and simulation is a distrib-
uted architecture based on a variable number of actor spaces (Fig. 2 shows its graph-
ical representation). Each actor space maintains a set of measurable actors that are
managed by a persistent scheduler. Moreover, the service provider takes advantage of
a naming service.

32 F. Bergenti, A. Pogg

Fig. 2. Massive age

An important factor that
the availability of a univer
work. Such an identifier pe
individual in different acto
the naming service allows t

- maintain the binding betw
of the corresponding indi

- use the individual identif
- cooperate with the nami

must be created.

We started the experime
works with a number of ind
of individuals. We built su
Large Network Dataset Co
forming some simple meas
The first tests we did comp
different number of compu
showed that a single actor
individuals, but the use of a
important improvement in
of the partitioning of the mo
relevant for both the creat
move a smaller number of a
versa. Of course, our exper
qualitative level. However,
with new functionalities an
measures of the performanc

gi, and M. Tomaiuolo

ent-based modelling and simulation system architecture

t simplifies the parallel construction of a social network
rsal unique identifier for each individual of the social n
ermits to avoid the creation of actors representing the sa
or spaces, thanks to the use of the naming service. In f
to:

ween the references of the active actors with the identif
ividual;
fier to find an actor in the persistent storage;
ing services of the actor spaces to decide if a new ac

entation of such a system by modelling some social n
dividuals that vary from some thousands to some milli

uch models by using the data maintained in the “Stanf
ollection” [12] and up to now, we are using them for p
sures (i.e., diameter, clustering coefficient and centrali
are the performances of the system with a deployment o
uting nodes (from one to four). The results of the te
space can manage social networks with some millions

additional actor spaces on more computing nodes gives
the performances. In fact, the advantages on performa
odel of large social networks on some computing nodes
tion and measurement phases, because it is necessary
actors from the scheduler to the persistent storage and v
rimentation is at the beginning and the results are only
we are working hard for enriching the measurement ph
d for preparing a set of tests for acquiring a set of accur

ce of the system in its different configurations.

k is
net-
ame
fact,

fiers

ctor

net-
ions
ford
per-
ity).
on a
ests
s of
s an
ance

are
y to
vice
y of
hase
rate

 An Actor Based Software Framework for Scalable Applications 33

4 Related Work

Several actor-oriented libraries and languages have been proposed in last decades and
a large part of them uses Java as implementation language. The rest of the section
presents some of the most interesting works.

Salsa [13] is an actor-based language for mobile and Internet computing that pro-
vides three significant mechanisms based on the actor model: token-passing continua-
tions, join continuations, and first-class continuations. In Salsa each actor has its own
thread, and so scalability is limited. Moreover, message-passing performance suffers
from the overhead of reflective method calls.

Kilim [14] is a framework used to create robust and massively concurrent actor
systems in Java. It takes advantage of code annotations and a byte-code post-
processor to simplify the writing of the code. However, it provides only a very simpli-
fied implementation of the actor model where each actor (called task in Kilim) has a
mailbox and a method defining its behavior. Moreover, it does not provide remote
messaging capabilities.

Scala [15] is an object-oriented and functional programming language that pro-
vides an implementation of the actor model unifying thread based and event based
programming models. In fact, in Scala an actor can suspend with a full thread stack
(receive), or can suspend with just a continuation closure (react). Therefore, scalabil-
ity can be obtained by sacrificing program simplicity. Akka [16] is an alternative
toolkit and runtime system for developing event-based actors in Scala, but also
providing APIs for developing actor-based systems in Java. One of its distinguishing
features is the hierarchical organization of actors, so that a parent actor that creates
some children actors is responsible for handling their failures.

Jetlang [17] provides a high performance Java threading library that should be used
for message based concurrency. The library is designed specifically for high perfor-
mance in-memory messaging and does not provide remote messaging capabilities.

AmbientTalk [2] is a distributed object-oriented programming language that is im-
plemented on an actor-based and event driven concurrency model, which makes it
highly suitable for composing service objects across a mobile network. It provides an
actor implementation based on communicating event loops [3]. However, each actor
is always associated with its own JVM thread and this limits the scalability of applica-
tions with respect to the number of actors for JVM.

5 Conclusions

This paper presented an actor-based software framework, called CoDE, that enables
the development of scalable and efficient applications by configuring them with dif-
ferent implementations of its components. Moreover, such a software framework is
based on a simple actor model that simplifies the development of applications. In fact,
the development of application consists in the development of the actor behaviors that
implement its functionalities and the definition of a configuration that choose the
most suitable implementations for the components that drive the execution of the
actors of the application.

34 F. Bergenti, A. Poggi, and M. Tomaiuolo

CoDE is implemented by using the Java language and is an evolution of HDS [18]
and ASIDE [19] from which it derives the concise actor model. CoDE shares with
Kilim [14], Scala [15] and Jetlang [17] the possibility to build applications that scale
to a massive number of actors, but without the need of introducing new constructs that
complicate the writing of actor based programs. Moreover, CoDE has been designed
for the development of distributed applications, while the previous three actor based
software were designed for applications running inside multi-core computers. In fact,
the use of structured messages and message patterns enables the implementation of
complex interactions in a distributed application, because a message contains all the
information for its delivery to the destination and then for building and sending a
reply. Moreover, a message pattern filters the input messages not only with respect to
their content, but also with respect to all the information they contain.

CoDE has been mainly experimented in the agent-based modelling and simulation.
Such an experimentation involved the development of systems with different features
(number of actors, types of communication, ratio between active and inactive actors,
etc.) and demonstrated that different configurations are necessary to obtain the best
performance for different types and setup of systems.

Current research activities are dedicated to extend the software framework to offer
it as means for the development of multi-agent systems taking advantages of some
design and implementation solutions used in JADE [20]. Future research activities
will be dedicated to the extension of the functionalities provided by the software
framework and to its experimentation in different application fields. Regarding the
extension of the software framework, current activities have the goal of: i) providing a
passive threading solution that fully take advantage of the features of multi-core pro-
cessors, ii) enabling the interoperability with Web services and legacy systems [21],
and iii) enhancing the definition of the content exchanged by actors with semantic
Web technologies [22]. Moreover, future activities will be dedicated to the provision
of a trust management infrastructure to support the interaction between actor spaces
of different organizations [23], [24]. Experimentation of the software framework will
be extended to the development of: i) collaborative work services [25] and ii) agent-
based systems for the management of information in pervasive environments [26].

References

1. Agha, G.A.: Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, Cambridge (1986)

2. Dedecker, J., Van Cutsem, T., Mostinckx, S., D’Hondt, T., De Meuter, W.: Ambient-
oriented programming in ambienttalk. In: Thomas, D. (ed.) ECOOP 2006. LNCS,
vol. 4067, pp. 230–254. Springer, Heidelberg (2006)

3. Miller, M.S., Tribble, E.D., Shapiro, J.S.: Concurrency among strangers. In: De Nicola, R.,
Sangiorgi, D. (eds.) TGC 2005. LNCS, vol. 3705, pp. 195–229. Springer, Heidelberg
(2005)

4. Snyder, B., Bosnanac, D., Davies, R.: ActiveMQ in action, Manning, Westampton, NJ,
USA (2001)

 An Actor Based Software Framework for Scalable Applications 35

5. Pitt, E., McNiff, K.: Java.rmi: the Remote Method Invocation Guide. Addison-Wesley,
Boston (2001)

6. Apache Software Foundation: Apache Mina Framework. HYPERLINK,
http://mina.apache.org

7. Hintjens, P.: ZeroMQ: Messaging for Many Applications. O’Reilly, Sebastopol (2013)
8. Poggi, A.: CoDE - A Software Framework for Agent-based Simulation. In: 17th WSEAS

International Conference on Computers, Rhodes, Greece, pp. 50–55 (2013)
9. Bergenti, F., Franchi, E., Poggi, A.: Selected models for agent-based simulation of social

networks. In: 3rd Symposium on Social Networks and Multiagent Systems (SNAMAS
2011), pp. 27–32. Society for the Study of Artificial Intelligence and the Simulation of
Behaviour, York, UK (2011)

10. Franchi, E.: A Domain Specific Language Approach for Agent-Based Social Network
Modeling. In: IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM), pp. 607–612. IEEE (2012)

11. Bergenti, F., Franchi, E., Poggi, A.: Agent-based interpretations of classic network models.
Computational and Mathematical Organization Theory 19(2), 105–127 (2013)

12. SNAP: Stanford Large Network Dataset Collection,
http://snap.stanford.edu/data/index.html

13. Varela, C., Agha, G.A.: Programming dynamically reconfigurable open systems with
SALSA. SIGPLAN Notices 36(12), 20–34 (2001)

14. Srinivasan, S., Mycroft, A.: Kilim: Isolation-typed actors for Java. In: Vitek, J. (ed.)
ECOOP 2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008)

15. Haller, P., Odersky, M.: Scala Actors: unifying thread-based and event-based
programming. Theoretical Computer Science 410(2-3), 202–220 (2009)

16. Typesafe: Akka software Web site, http://akka.io
17. Rettig, M.: Jetlang software Web site, http://code.google.com/p/jetlang
18. Poggi, A.: HDS: a Software Framework for the Realization of Pervasive Applications.

WSEAS Trans. on Computers 10(9), 1149–1159 (2010)
19. Poggi, A.: ASiDE - A Software Framework for Complex and Distributed Systems. In: 16th

WSEAS International Conference on Computers, Kos, Greece, pp. 353–358 (2012)
20. Poggi, A., Tomaiuolo, M., Turci, P.: Extending JADE for agent grid applications. In: 13th

IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WET ICE 2004), Modena, Italy, pp. 352–357 (2004)

21. Poggi, A., Tomaiuolo, M., Turci, P.: An Agent-Based Service Oriented Architecture. In:
WOA 2007, Genova, Italy, pp. 157–165 (2007)

22. Poggi, A.: Developing ontology based applications with O3L. WSEAS Trans. on
Computers 8(8), 1286–1295 (2009)

23. Poggi, A., Tomaiuolo, M., Vitaglione, G.: A Security Infrastructure for Trust Management
in Multi-agent Systems. In: Falcone, R., Barber, S.K., Sabater-Mir, J., Singh, M.P. (eds.)
Trusting Agents for Trusting Electronic Societies. LNCS (LNAI), vol. 3577, pp. 162–179.
Springer, Heidelberg (2005)

24. Tomaiuolo, M.: dDelega: Trust Management for Web Services. International Journal of
Information Security and Privacy 7(3), 53–67 (2013)

25. Bergenti, F., Poggi, A., Somacher, M.: A collaborative platform for fixed and mobile
networks. Communications of the ACM 45(11), 39–44 (2002)

26. Bergenti, F., Poggi, A.: Ubiquitous Information Agents. International Journal on
Cooperative Information Systems 11(3-4), 231–244 (2002)

Cloud Computing

Semantic Representation of Cloud Services:

A Case Study for Openstack

Beniamino Di Martino, Giuseppina Cretella,
Antonio Esposito, and Graziella Carta

Department of Industrial and Information Engineering,
Second University of Naples, Aversa, Italy

{beniamino.dimartino,giuseppina.cretella,antonio.esposito}@unina2.it,
graziellacarta88@gmail.com

Abstract. Thanks to its high flexibility, cost-effectiveness and avail-
ability, Cloud Computing has quickly imposed itself on the IT scenery,
rapidly flooding the market with new appealing services and offers. How-
ever, the current lack of a shared standard for the description of such
services can represent an obstacle to the development of interoperable
and portable Cloud solutions. The approach we investigate consists in
the creation of a set of interrelated OWL ontologies, which describe both
Cloud Services and APIs/methods used to invoke them, together with
their relative parameters. Furthermore, OWL-S is exploited to describe
the internal workflow of the described services. Our representation also
offers means to describe Resources Configurations, which can be com-
pared by means of SPARQL queries, enabling users to easily choose
among the different offers proposed by competing vendors. In this paper
we apply the proposed semantic based representation to the description
of the Openstack offer, which represents an optimal case study to test
and prove its effectiveness.

Keywords: Cloud Computing, Semantic Web, Cloud Services, Cloud
Resources, Ontology, OWL, Openstack, SPARQL.

1 Introduction

Cloud Computing is an emerging paradigm which is strongly conditioning the
development of the IT market, overflowing it with new offers and services which
are steadily updated, improved, dismissed. The scenario can be quite confusing
for both standard users and more expert developers, who need to navigate in
a sea of always new and changing Cloud proposals, platforms and capabilities.
Furthermore, each provider tends to use its own service representation (if any)
in order to differentiate from others and try to gain new pieces of the market.
Such a behaviour can bring further distress to Cloud users, who fear the vendor
lock-in phenomenon. Furthermore, creating new applications based on multiple
Cloud platforms’ services, or just making such services communicate, can be
quite difficult (when not impossible) due to interoperability issues.

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 39–50, 2014.
c© Springer International Publishing Switzerland 2014

40 B. Di Martino et al.

In this scenario, the possibility to have a machine-readable formalism describ-
ing the different Cloud services and offers, which could be easily queried in order
to automatically retrieve the best resources’ configuration, on the basis of the
users’ needing, is quite appealing. In particular, the possibility to automatically
compare different Cloud services and solutions, which have been previously ad-
equately described and annotated, can be very useful for users who need to
quickly build-up their personal Cloud solution from scratch. In this paper we
present a semantic based representation of a Cloud provider offer, represented
by Openstack’s services [3], which are used as a case study to demonstrate the
effectiveness of semantic technologies in describing different Cloud services and
resources, making them automatically query-able and comparable. In particu-
lar, we focus on OWL [4] based descriptions of the different services offered
by the target provider, with particular attention to the resources required by
each service and to default resources’ configurations. This paper is organized
as follows: in section 2 we provide a brief introduction to relevant works in the
context of Cloud Services description and categorization; section 3 introduces
the main services offered by the Openstack platform, in order to gain famil-
iarity with the target’s offering; section 4 shows how a platform’s services can
be semantically described through an OWL ontology, using Openstack’s Neu-
tron as an example; section 5 focuses on the semantic description of parameters
used by the platform’s APIs to invoke services, again referring to Neutron as a
case study; subsection 5.1 offers a focus on the description of default Resources
Configurations provided by vendors; an example of OWL-S description of the
Openstack Neutron service is presented in section 6; section 7 reports some final
considerations on the present work.

2 Related Works

In order to somehow put order in the chaos of Cloud Computing offers currently
existing, many attempts have been made to categorize Cloud Services and ca-
pabilities. Remarkable is the effort made by the Opencrowd consortium, which
has built an interesting Cloud Taxonomy [2] currently comprehending a good
number of Cloud Platforms and Services, belonging to the different Cloud layers
(IaaS, PaaS and SaaS [10]). The taxonomy also addresses a particular category
called Cloud Software, which describes commercial and open source software sup-
porting the development and management of Cloud Computing environments.
While the resulting taxonomy is quite interesting, it lacks a machine readable
version which could be automatically queried.

On the other hand, semantic based representations have proved to be partic-
ularly useful in describing Cloud resources and services, especially since they en-
able the use of query-able, machine readable formats. In [7] the authors present a
remarkable example of Cloud services discovery system based on ontologies and
matchmaking rules. In the developed system, users can identify the required
Cloud services by means of three kinds of requirements: functional requirements
(like programming languages for PaaS services), technical requirements (like

Semantic Representation of Cloud Services and Resources Configuration 41

CPU clock or RAM for the IaaS service type) and cost requirements (like max
price) as input parameters.

Another outstanding example is represented by the mOSAIC cloud ontology
[11], developed for the mOSAIC [6] platform. The ontology has been built to
improve interoperability among existing Cloud solutions, platforms and services,
both from end-user and developer side. The ontology, developed in OWL, can be
used for semantic retrieval and composition of Cloud services in the mOSAIC
project and also maintains compatibility with previous works,since it is built
upon existing standards.

Our research is strongly inspired by these works, in particular the mOSAIC
ontology, which we have re-used and extended in order to better categorize Cloud
Services and Virtual Appliances (not considered in existent efforts) and to rep-
resent API calls and relative parameters used to invoke them.

2.1 Semantic Based Representations

In the following we provide some details on the Semantic based languages we
use to describe Cloud services, namely OWL and OWL-S.

The Web Ontology Language (OWL) [5] is a Semantic Web language
designed to represent knowledge about things, groups of entities and relations
between them. OWL can be reasoned with by computer programs to check the
consistency of a knowledge base, or to infer new knowledge. OWL documents,
also known as ontologies, can be published in the World Wide Web and may
refer to or be referred from other OWL ontologies. In this way it is possible
to represent complex knowledge about one or more related topics, making this
representation available through the Net. OWL-S [8] is an ontology, within the
OWL based framework for the Semantic Web, born essentially to describe Se-
mantic Web Services. It enables users to automatically discover, invoke, compose,
and monitor Web resources offering different kinds of services, under specified
constraints. It can be easily used to describe work-flow of services, arranging
their order of execution, using flow and decision control structures, and mak-
ing it possible to annotate them against an OWL ontology. The OWL-S model
defines three classes:

– Service: emphasizes interaction between client and service, specifying in-
put, output, pre-conditions and results of a service. It is extended by three
classes: SimpleProcess, used to define abstract processes;AtomicProcess
used to describe concrete processes which cannot be split into sub-processes;
CompositeProcess, describing processes consisting in the composition of
Atomic Processes.

– ServiceProfile: describes what the service does in a human readable format.
– ServiceGrounding: specifies communication protocols and messages for-

mat users should use to interact with the service.

42 B. Di Martino et al.

3 OpenStack Services Overview

Openstack is an open source Cloud operating system which provides compute,
storage and networking resources together with virtualization technologies, fully
accessible and manageable through a set of powerful APIs, Command Line Inter-
faces (CLIs) tools or Software Development Kits (SDKs) provided for different
programming languages. It is also possible to leverage a graphical dashboard,
which allows users to manage and monitor resources provided by the platform.
Services are offered at an IaaS level. The current stable OpenStack release is
named IceHouse and it has been released on April 2014. A set of Core services
is accessible through RESTful APIs or Command Line Interfaces and they’re
representeb by:

– Compute. (Nova) offers on-demand computing resources, by provisioning
and managing large networks of virtual machines. The architecture is de-
signed to scale horizontally on standard hardware.

– Object Storage. (Swift) provides a fully distributed storage platform for
data backup and archiving; it is fully integrated with applications running
in the Openstack environment and expands external storage of compute
instances.

– Block Storage. (Cinder) allows availability of persistent block level storage
devices, directly connected with OpenStack compute instances.

– Networking. (Neutron) provides flexible networking models to support
IP addresses management and traffic control. Networking allows additional
functionalities such as load balancing, virtual private networks (VPN) cre-
ation and firewall configuration.

Together with Core services, Openstack also offers a set of juxtaposed Shared
Services which extends the core functionalities and contribute to their integra-
tion. Such a set of services comprehends:

– Image Service. (Glance) providing discovery, registration and delivery ser-
vices for disk and server images.

– Identity Service. (Keystone) offers an authentication mechanism within
the Openstack operating system.

– Telemetry Service. (Ceilometer) allows cloud operators to consult global
or individual resource relative metrics.

– Orchestration Service. (Heat) enables application developers to describe
and automate the deployment of their Cloud infrastructure, thanks to a
template language which allows users to specify both resources configurations
and their workflow.

– Database Service. (Trove) quickly and easily provides relational database
functionalities and capabilities, avoiding complex management issues.

4 The Cloud Services Ontology

In order to define a homogeneous machine readable description of Cloud Ser-
vices, a classification of services offered by different Cloud providers has been

Semantic Representation of Cloud Services and Resources Configuration 43

Fig. 1. The Cloud Services Ontology

realized through an OWL ontology, which identifies the most common service
categories currently provided. Figure 1 offers a view of such an ontology, for-
mally named Cloud Services Ontology. The structure of the Cloud Services
ontology consists of different OWL classes, among which the following ones are
particularly interesting:

– The Service Category class, used to specify the typology of the described
services and better categorize them.

– The Cloud Service class, whose individuals represent specific Cloud ser-
vices.

– The Virtual Appliance class, representing ready-to-use software solutions,
offered by a specific company, which can be also classified alongside the
described Cloud Services in this same ontology.

The most considerable object property presented in Cloud Services ontology is
represented by the aKindOf property, whose objective is to connect Cloud Ser-
vice individuals with Service Category instances. Other object properties also
allow to specify, for each Cloud Service individual, the API language supported,
the provider offering that specific service and the reference service model, in
terms of Infrastructure, Platform or Software as a Service layers. Particularly
relevant are data properties which expose Virtual Appliances architectural as-
pects, specifying the minimum resources necessary to instantiate a particular
appliance. These properties can be exploited to match a Virtual Appliance and
its minimum requirements with the default resource configurations (see section
5.1) offered by a single or multiple Cloud providers.

Further information about the Cloud Service ontology can be found in [9],
where all of its classes, individuals and properties have been discussed in de-
tails. A formal, OWL based representation of this domain of interest constitutes
the knowledge base from which interesting information can be inferred and ex-
tracted. By executing a SPARQL query on such an ontology it is possible to
easily compare Cloud Services and/or Virtual Appliances, in order to recognize

44 B. Di Martino et al.

Fig. 2. Example of Cloud Service instance

the ones that may offer the very same or similar functionalities. Within the
Cloud Service ontology all of Openstack services have been described and the
most important service features have been annotated. Figure 2 shows an exam-
ple of Openstack Neutron service as it is described in the ontology. In particular,
the object properties which have been asserted to link the Openstack Neutron
individual to the correct Service categories (notice the use of the aKindOf prop-
erty) and model have been portrayed. According to our representation, Neutron
belongs to different service categories, which have been all previously defined in
the Cloud Service ontology, since it offers different functionalities.

5 The Cloud Provider Ontology

In order to semantically represent Cloud services, it is necessary to conceptually
describe input and output parameters of each method and functionality such
services leverage. This goal has been reached through the Cloud Provider
ontology. For each service, the Cloud Provider ontology provides two classes:

– The first one, denoted with the suffix Parameter, collects individuals which
define all the parameters required by each method exposed by a service.

– The second one, denoted with the suffix Method, defines the different meth-
ods exposed by a service.

In particular, the Method class instantiates, for each method, two individu-
als respectively representing the input and output parameters of the described

Fig. 3. Classes in Cloud Provider ontology for conceptual representation of input and
output parameters

Semantic Representation of Cloud Services and Resources Configuration 45

method, linked through a object property consistsIn to the parameters’ class.
In this way, the input and output data of a method are represented as two
entities, differentiated by the suffices Input and Output, which are in turn
composed by a set of sub-parameters defined as individuals of the Parameter
class. The Cloud Provider ontology we have built for Openstack actually covers
four services, represented through the following classes:

– ClientParameter describes general parameters, exploited by all services
and API provided by Openstack, to identify the user invoking a particular
service (like a personal ID).

– NovaParameter/NovaMethod represent all the methods and parameters
which can be specifically used to invoke Openstack Nova services.

– NeutronParameter/Nova describe methods and parameters customers
can use when invoking Openstack Neutron services.

– CeilometerParameter/Method collect parameters and methods used
when user invoke Ceilometer services.

– HeatParameter/Method collect the parameters and methods needed to
invoke the Heat services’ APIs.

– ResourceConfiguration describes default Openstack resource configura-
tions, which can be used to automatically instantiate a Virtual Machine with
specific characteristics. Further information is provided in section 5.1.

Because of the high number of methods and parameters represented through
individuals of the OWL classes listed above, for brevity we take in consideration
the Neutron service only.

Fig. 4. Instances in NeutronParameter class for load balancing operations

Instances of the NeutronParameter class are shown in figure 5 and they refer
to information relative to Load Balancer, Health Monitor configurable prop-
erties and Policy. The Openstack services’ methods represented in the Cloud

46 B. Di Martino et al.

Fig. 5. Instances in NeutronMethod class

Provider ontology own a consistent number of input and output parameters:
this is also true for the Neutron service and its methods. That’s the main rea-
son we preferred, in our representation, to group all these parameters through
meaningful OWL individuals, instances of class NeutronMethod, in the form
MethodName Input and MethodName Output. In this way, by exploiting the al-
ready mentioned object property consistsIn, it is possible to retrieve the set of
input and output parameters of a method separately by using a simple SPARQL
query. The salient methods of OpenStack Neutron service enable the creation of
a Load Balancer, the setting of Policies configuration, the checking of an Open-
stack instance health or the association of an Health Monitor to a Load Balancer.
The global parameters used by the available method are represented by:

– LoadBalancerCreateInput/Output, referring to the input parameters needed
to create a new Load Balancer and the output returned after the creation
procedure has been started.

– PolicyCreateInput/Output and ApplyPolicyInput which refer to input/out-
put parameters needed/returned by methods called to create and apply poli-
cies.

– HealthMonitorCreateInput/Output and HealthMonitorAssociateInput, refer-
ring to parameters used to call methods which create Health Monitors and
associate them to a specific Load Balancer.

A graphical representation of such individuals is shown in figure 5

5.1 Description of Resources Configurations

In our representation we dedicated particular attention to the description of pre-
defined resources configurations offered by vendors, also referred to as “flavours”in
Openstack, which can be considered as virtual machine templates. This aspect has
been incorporated in the Cloud Provider ontology through the definition of the
ResourceConfiguration class: in our example, we describe all the virtual machine

Semantic Representation of Cloud Services and Resources Configuration 47

Fig. 6. Flavors available in OpenStack Nova service

sizes offered by the Openstack platform: Tiny,Small,Medium,Large and Xlarge.
For each of these individuals, the configuration in terms of memory, disk and
ephemeral storage size and virtual CPUs is defined by four data properties as
represented in table 1. All these concepts are linked to the Flavor parameter,
required by the Nova boot API and thus represented through an individual of
class NovaParameters, thanks to the object property “hasValue”. Figure
5.1 graphically shows how such concepts are related in our representation. Rep-
resenting these proprietary concepts might be useful to automatically compare
resources configuration as they are defined by different providers. In particular,
having a machine readable and easily query-able data format, such as OWL, rep-
resents a major advantage. For an instance, let’s consider the Microsoft Azure
Virtual Machine service [1], which also defines predefined sizes for virtual ma-
chines instances, much similarly to Openstack but using different semantics. Ta-
ble 2 reports Azure’s sizes and their characteristics. Clearly, having represented
both these default resources configurations through our ontology, it is easy to
automatically compare Openstack’s and Azure’s offers though a SPARQL query.
As an example, consider the simple SPARQL query reported in listing 1.1.

Table 1. Virtual machine size in Openstack

MEMORY(MB) DISK EPHEMERAL STORAGE vCPUs

Tiny 512 1 0 1

Small 2048 10 20 1

Medium 4096 10 40 2

Large 8192 10 80 4

Xlarge 16384 10 160 8

48 B. Di Martino et al.

Table 2. Virtual machine size in Microsoft Azure

MEMORY DISK vCPUs

A0 (extrasmall) 768 MB 20 shared

A1 (small) 1.75 GB 40 1

A2 (medium) 3.5 GB 60 2

A3 (large) 7 GB 120 4

A4 (xlarge) 14 GB 240 8

1 SELECT ? r e s ou r c e ? vendor ?CPU ?Memory
2 WHERE { ? r e s ou r c e rd f : type prov iderOntology :

ResourceConf igurat ion .
3 ? r e s ou r c e prov iderOntology : hasVendor ? vendor .
4 ? r e s ou r c e prov iderOntology : vCPUs ?CPU.
5 ? r e s ou r c e prov iderOntology :Memory ?Memory .
6 FILTER (?CPU >=3)}

Listing 1.1. SPARQL query

The query researches for default resources configurations which offer a minimum
number of virtual CPUs (set to three). The Cloud vendor and other info about
the configuration (in this case the available Memory) can be retrieved though
the query. Results of the query, based on the configurations showed in tables 1
and 2 are reported in table 3.

Table 3. Results of the SPARQL query in listing 1.1

Resource Configuration Vendor vCPUs Memory

xlarge Openstack 8 16384

large Openstack 4 8192

A3 Azure 4 7

A4 Azure 8 14

6 OWL-S Annotation of the Openstack Neutron Service

The conceptual representation of methods’ parameters only represents the first
step to realize a machine-readable Cloud Service description. Here we propose
an OWL-S representation of the Openstack Neutron service. Neutron is here
represented as an abstract Simple Process, which can be realized through one
of five Atomic Processes, each corresponding to a method of the service. In this
way, each method is mapped to a process expecting and returning complex mes-
sages, which can contain a variable umber of Inpout and Output parameters.
Such parameters, thanks to the OWL-S properties hasInput and hasOutput,
can be bound with concepts expressed in section 5. Bindings between atomic

Semantic Representation of Cloud Services and Resources Configuration 49

Fig. 7. Realization of a Neutron simple process starting from atomic processes

and simple processes descriptions and their relative profile and service presenta-
tions are obtained through properties defined in the OWL-S standard (here not
investigated). Instead, ServiceProfile instances are linked to services described
in the Cloud Service ontology through the property presents and its inverse
presentedBy.

7 Conclusion

In this paper we have presented a semantic based approach to the description
of both Cloud Services and the parameters needed to invoke them though APIs,
together with default Resources Configurations offered by Cloud vendors. The
objective is to provide a query-able machine readable formalism to support users
in the comparison of different Cloud offers. Thanks to ontologies, resource config-
urations provided by different vendors can be easily compared, despite eventual
differences in their semantics, as long as they refer to a common shared represen-
tation, here embodied by the Cloud Provider and Cloud Service ontologies. The
reference query language is represented by SPARQL, which is a quite common
choice when it comes to interrogate RDF and OWL representations.

Acknowledgments. This research has been supported by the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agree-
ment n 256910 (mOSAIC Project), by PRIST 2009, “Fruizione assistita e context
aware di siti archeologici complessi mediante dispositivi mobili”and CoSSMic
(Collaborating Smart Solar-powered Micro-grids - FP7-SMARTCITIES-2013).

References

1. Microsoft azure virtual machine service,
http://azure.microsoft.com/en-us/services/virtual-machines

2. Opencrowd: Cloud computing vendors taxonomy,
http://cloudtaxonomy.opencrowd.com/

http://azure.microsoft.com/en-us/services/virtual-machines
http://cloudtaxonomy.opencrowd.com/

50 B. Di Martino et al.

3. Openstack services, http://www.openstack.org/software
4. Bechhofer, S.: Owl: Web ontology language. In: Encyclopedia of Database Systems,

pp. 2008–2009. Springer (2009)
5. Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L.,

Patel-Schneider, P.F., Stein, L.A.: et al. Owl web ontology language reference.
W3C recommendation 10, 2001–2006 (2004)

6. Di Martino, B., Petcu, D., Cossu, R., Goncalves, P., Máhr, T., Loichate, M.: Build-
ing a mosaic of clouds. In: Guarracino, M.R., et al. (eds.) Euro-Par-Workshop 2010.
LNCS, vol. 6586, pp. 571–578. Springer, Heidelberg (2011)

7. Han, T., Sim, K.M.: An ontology-enhanced cloud service discovery system. In:
Proceedings of the International MultiConference of Engineers and Computer Sci-
entists, vol. 1, pp. 17–19 (2010)

8. Mark, B., Jerry, H., Ora, L., Drew, M., Sheila, M., Srini, N., Massimo, P., Bijan,
P., Terry, P., Evren, S., Naveen, S., Katia, S.: OWL-s: Semantic markup for web
services, http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

9. Martino, B.D., Cretella, G., Esposito, A.: Towards an unified owl ontology of cloud
vendors appliances and services at paas and saas level. In: workshop on Manuscript
submitted and accepted for publication at the Semantic Web/Cloud Information
and Services Discovery and Management (SWISM 2014) (2014)

10. Mell, P., Grance, T.: The nist definition of cloud computing (2011)
11. Moscato, F., Aversa, R., Di Martino, B., Fortis, T., Munteanu, V.: An analysis of

mosaic ontology for cloud resources annotation. In: 2011 Federated Conference on
Computer Science and Information Systems (FedCSIS), pp. 973–980. IEEE (2011)

http://www.openstack.org/software
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

Efficient Resource Scheduling for Big Data

Processing in Cloud Platform

Mohammad Mehedi Hassan, Biao Song, M. Shamim Hossain, and Atif Alamri

College of Computer and Information Sciences
Chair of Pervasive and Mobile Computing

King Saud University, Riyadh, Saudi Arabia
{mmhassan,bsong,mshossain,atif}@ksu.edu.sa

Abstract. Nowadays, Big data processing in cloud is becoming an in-
evitable trend. For Big data processing, a specially designed cloud re-
source allocation approach is required. However, it is challenging how
to efficiently allocate resources dynamically based on Big data applica-
tions’ QoS demands and support energy and cost savings by optimizing
the number of servers in use. In order to solve this problem, a gen-
eral problem formulation is established in this paper. By giving certain
assumptions, we prove that the reduction of resource waste has a di-
rect relation with cost minimization. Based on that, we develop efficient
heuristic algorithms with tuning parameters to find cost minimized dy-
namic resource allocation solutions for the above-mentioned problem. In
paper, we study and test the workload of Big data by running a group of
typical Big data jobs, i.e., video surveillance services, on Amazon Cloud
EC2. Then we create a large simulation scenario and compare our pro-
posed method with other approaches.

Keywords: Big data, resource allocation, cloud computing, optimiza-
tion.

1 Introduction

In recent time, Big data has attracted a lot of attention from academia, industry
as well as government [1] as it offers substantial value to them. However, at the
same time it poses a considerable number of challenges on existing infrastructure.
One of the most challenging issue is how to process the huge amount of data
for analysis, since it is a time-consuming and labour-intensive task and hence,
stretches existing infrastructure to its limits. Many studies [2], [1], [3], [4], [5],
[6], [7], [8] and [9] are emerging now-a-days to explore the possibility of using
cloud computing paradigm for Big data processing. Those works are driven by
a fact that the Big data processing requires scalable and parallel computing
resources rather than using on-hand database management tools or traditional
data processing applications [2].

However, for large scale BIg data analytic processing applications, conven-
tional cloud resource management approaches are not suitable [2]. Unlike con-
ventional applications, Big data processing applications are data or computation

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 51–63, 2014.
c© Springer International Publishing Switzerland 2014

52 M.M. Hassan et al.

intensive and the activities in the processing tasks have data or control depen-
dencies among them. In addition, the amount of data to be transferred from
one task to another is also very large. As a result, the data processing/transfer
time and storage cost are higher for these type of applications. Therefore, ef-
fective resource scheduling strategies are required to efficiently manage the cost
of operation or execution, and at the same time, improve the turn-around time
of real-time Big data analytic services, considering the shear dynamism and
heterogeneity persisted in Cloud environment [10].

Most of the existing resource management solutions [2], [1], [3], [4], [5], [6], [7],
[11], [3] and [9] for cloud systems, concentrates on the efficiency of computational
resource usage. They hardly consider the multiple VM resource dimensions (i.e.
CPU, memory, disk I/O and network bandwidth) and overall resource utilization
in the resource allocation problem which are very important for handling Big
data tasks. Besides, most of these approaches focus on how the VMs are allocated
over time rather than finish time based on SLA which is also very important for
Big data analytic systems. In addition, few of them differentiate tasks based on
their importance/priority. Hence, a cloud provider may lose the opportunity to
increase profits by prioritizing Big data tasks with strict SLA, improve utilization
by running low priority taks at night, or both [12].

In this paper, we tackle the aforementioned challenging allocation problem
in cloud based Big data system. Specifically, we develop a cost effective and
dynamic VM allocation model to handle Big data tasks. We suggest and prove
that the overall resource utilization of cloud resources directly indicates the long-
term service cost. Several experiments are conducted to validate the efficiency
of our proposed allocation model in cloud based Big data processing platform.
These experiments were conducted for different request patterns of Big data
tasks in various environments. We compare our proposed algorithm with other
algorithms, and present results as well as explanations in this paper.

The rest of the paper is organized as follows: Section 2 presents the detailed
description of the problem formulation for resource allocation. Section 3 presents
the online allocation and dynamic control situation. Section 4 shows the perfor-
mance evaluation of the proposed allocation and finally section 5 concludes the
paper.

2 Problem Formulation

In this paper, we consider the cloud-based resource management for big data
tasks as a time-slotted task allocation problem with time slots of equal length
indexed by t = 0, 1, The actual duration of a time slot is related to the
specific application (e.g., every few seconds or minutes for big data application).
The major challenges regarding resource management in the proposed system
are briefly described as follows.

– Regular allocation: We use A(t), t = 0, 1, ... to denote the task allocation
results by the end of each time slot. We consider that each task has its own

Resource Scheduling for Big Data Processing in Cloud Platform 53

QoS requirements regarding resources and time. The resource requirement
of a task is fulfilled by assigning it to a virtual machine having enough CPU,
memory, disk I/O and bandwidth capacity. Meanwhile, each VM holding a
specific task must be allocated before the task allocation deadline specified
in the QoS requirement of that task.

– Emergent task arrival: If any emergent task arrives, the allocation de-
cision for that task will be made immediately to handle real-time big data
processing. Same as regular task, a virtual machine having enough CPU,
memory, disk I/O and bandwidth resources will be created for each emer-
gent task. Since there is no waiting time for emergent task allocation, only
long-term cost reduction is considered while allocating a VM holding emer-
gent task.

– Loop feedback control: As the regular allocation algorithm pursues long-
term optimization goals in a dynamic environment, we propose to use a
threshold variable in our on-line allocation process. Meanwhile, we define
long time slots T = 0, 1, ... of equal length where the threshold value is
adjusted by the end of every long time slot using a proportional-integral-
derivative controller (PID controller).

– VM migration: VM migration can be triggered by two types of events:
server overloaded event and server underloaded event. We also consider long-
term cost reduction as the optimization goal for VM migration.

In the following, the modeling details of the servers and tasks are provided. We
summarize the key notations in 1.

Table 1. List of notations

Parameters

P set of physical servers

T (t) set of arrived big data tasks at time t

V (t) set of VMs at time t

prj(t) service waiting time of task tj/VM vj at time t

A(t) allocation results at time t

C long term cost

RW long term resource waste

fci(t) percentage of free CPU capacity on physical server pi at time t

fmi(t) percentage of free memory capacity on physical server pi at time t

fsi(t) percentage of free disk I/O capacity on physical server pi at time t

fbi(t) percentage of free bandwidth capacity on physical server pi at time t

cvi(t) overall resource situation on physical server pi at time t

rcij percentage of task tj/VM vj ’s CPU requirement on physical server pi
rmij percentage of task tj/VM vj ’s memory requirement on physical server pi
rsij percentage of task tj/VM vj ’s disk I/O requirement on physical server pi
rbij percentage of task tj/VM vj ’s bandwidth requirement on physical server pi

54 M.M. Hassan et al.

2.1 Physical Servers and Tasks

The cloud resources consists of np physical servers defined as P = {p1, p2, ..., pnp}.
In order to describe a physical server pi(1 ≤ i ≤ np) in general, we use ci, mi,
si and bi to represent its CPU processing capability (expressed in millions of
instructions per second- MIPS), memory space (expressed in MB), disk I/O (ex-
pressed in MB/s) and network bandwidth (expressed in KB/s), respectively. At
time t, let fci(t), fmi(t), fsi(t), and fbi(t) be the percentage of free CPU pro-
cessing capability, memory space, disk I/O and network bandwidth, respectively.
If a physical server pi joins a server group G where the memory or disk I/O is
shared in a distributed way among the servers in G, the definitions of mi, si,
fmi(t) and fsi(t) are changed to represent the total resources and free resources
of the server group rather than those of the individual server.

At time t, denote the set of arrived big data tasks by T (t) =
{
t1, t2, ..., tnt(t)

}
where nt(t) is the total number of arrived tasks from time 0 to time t. For a task
tj(1 ≤ j ≤ nt(t)), let wtj , adj and stj be the waiting time, allocation deadline
and service time of that task, respectively. The waiting time is counted when the
task arrives and finally fixed when it is allocated on a physical machine. For any
emergent task, it’s allocation deadline should be specified as a distinguished value
so that the allocation decision on this task will be made immediately. Meanwhile,
the waiting time of any emergent task must be 0. In some cases, stj may not
be known or predictable before the processing of tj is accomplished. Since each
task may require a heterogeneous running environment, a corresponding virtual
machine need to be created and deployed on a physical machine for processing.
Let vj be the virtual machine for task tj .

As we mentioned before, we use a np-by-nt(t) matrix A(t) to represent the
allocation results at time t where the elements are binary. For any aij(t), aij(t) =
1 means that the virtual machine vj has been allocated on the physical machine
pi, and vice versa. Let rcij , rmij , rsij and rbij be vj ’s resource requirements on
pi regarding CPU capability, memory space, disk I/O and network bandwidth,
respectively and all in percentage form. We assume that the overhead of VM
creation and maintainance is also included in the resource requirements, which
means rcij , rmij , rsij and rbij are the overall resource requirements for running
vj on pi. In pratical design, the values of rcij , rmij , rsij and rbij are acquired
from user-supplied information, experimental data, benchmarking, application
profiling or other techniques. The following conditions must be satisfied before
allocating vj to pi.

rcij ≤ fci(t− 1)
rmij ≤ fmi(t− 1)
rsij ≤ fsi(t− 1)
rbij ≤ fbi(t− 1)

(1)

The above conditions are crucial for the QoS guarantees in big data since the
lack of processing capability, memory space, disk I/O or network bandwidth may
cause severe QoS degradation. After allcating vj to pi, the free resources of pi
are calculated by using (2).

Resource Scheduling for Big Data Processing in Cloud Platform 55

fci(t− 1) ⇐ fci(t− 1)− rcij
fmi(t− 1) ⇐ fmi(t− 1)− rmij

fsi(t− 1) ⇐ fsi(t− 1)− rsij
fbi(t− 1) ⇐ fbi(t− 1)− rbij

(2)

When all allocation decisions have been made by the end of time slot t, the
following updates are performed.

fci(t) ⇐ fci(t− 1)
fmi(t) ⇐ fmi(t− 1)
fsi(t) ⇐ fsi(t− 1)
fbi(t) ⇐ fbi(t− 1)

∀i (3)

2.2 Optimization Goal

The cost reduction is a major concern while operating a cloud-based big data
system. In cloud environment, the cost is commonly associated with the number
of active physical servers [11]. To be more specific, the long-term cost can be
defined as the cumulative running time of all active physical servers if we assume
the servers’ energy consumption is homogeneous. Let yi(t) be the binary variable
indicating whether a physical server pi is active at time t (yi(t) = 1) or not
(yi(t) = 0). The long term cost C is then expressed as

C̄ = lim
t→∞

1

t

np∑
i=1

t−1∑
τ=0

yi(τ) (4)

Intuitively, the waste of resource causes the increase of long-term cost C.
Thus, we investigate the impacts of overall resource waste on the long-term cost
reduction in Proposition 1.

Proposition 1: Assume the physical servers are homogeneous where

cα = cβ
mα = mβ

sα = sβ
bα = bβ

&

rcαj = rcβj
rmαj = rmβj

rsαj = rsβj
rsαj = rsβj

∀ Phsical Server pα, pβ
∀ VM vj

(5)

We define the long-term resource waste function RW as

RW = lim
t→∞

1

t

np∑
i=1

t−1∑
τ=0

(fci(τ) + fmi(τ) + fsi(τ) + fbi(τ))× yi(τ) (6)

For any task set T (t), there always exists a positive correlation between RW
and C.

Based on the above definitions, we set up the optimization goal as to find an
on-line allocation method that solves the following problem:

min
A(t),t=0,1,2,...

C =
1

t

np∑
i=1

t−1∑
τ=0

yi(τ) (7)

56 M.M. Hassan et al.

s.t., fci(t), fmi(t), fsi(t), fbi(t) ≥ 0 ∀t, i (8)

∃pi :

fci(t) ≥ rcij
fmi(t) ≥ rmij

fsi(t) ≥ rsij
fbi(t) ≥ rbij

∀t, j (9)

t ≤ adj |j,
np∑
i=1

aij(t) = 0 ∀t (10)

where the constraints (8) and (9) guarantee the resource sufficiency of single
server and entire cloud, respectively. (10) shows that all tasks must be allo-
cated before their allocation deadline. If (5) is satisfied, we can use the following
optimization goal to replace (7) according to Proposition 1.

min
A(t),t=0,1,2,...

RW (11)

We assume that throughout this paper the problem (5), (7)-(11) is feasible
unless otherwise stated.

2.3 Problem Analysis

The optimization problem we proposed above should be solved by using an on-
line allocation approach without knowing and perfectly predicting the workload
parameters. The cloud-based big data system is a complex dynamical system
because of the following reasons. At any time t, future task set T (t+ ε), ε > 0
is not able to be obtained. For the allocated tasks, the stj may not be known
or perfectly predictable before the processing of tj is accomplished. It is also
possible that the resource requirements rcij , rmij , rsij and rbij may differ from
their original settings during running time. Therefore, the possible solutions can
only achieve near-optimal results for this allocation problem.

The computational complexity of the online allocation algorithm is another
important issue that need to be analyzed. To this end, we consider a possible
workload pattern where the allocation decision made at any time t is independent
with the previous allocation status. Then we are able to analyze the complexity
of the problem in Proposition 2.

Proposition 2: Assume the allocation deadline and service time of any task sat-
isfies

adj = t, stj = 1|tj ∈ T (t)− T (t− 1) ∀t (12)

meaning all tasks must be allocated in the same time slots when they arrive,
and the processing of any task can be finished within next time slot. By taking
this assumption, we can prove that the allocation problem at any time t is a
NP-complete problem.

Resource Scheduling for Big Data Processing in Cloud Platform 57

Proof: The optimization goal of the allocation is

min
A(t),t=0,1,2,...

C̄ = lim
t→∞

1

t

np∑
i=1

t−1∑
τ=0

yi(τ) (13)

Furthermore, the allocation decision made at time t is independent with pre-
vious and future decisions. Thus, the allocation problem at time t can be again
simplified as

min

np∑
i=1

yi(t) (14)

The above problem can be mapped to the multi-dimensional bin-packing prob-
lem [13]. The goal of this problem is to map several items, where each item
represents a tuple containing its dimensions, into the smallest number of bins
as possible. As the multi-dimensional bin-packing problem is a well-known NP-
complete problem, it is proved that the allocation problem in our senario is also
a NP-complete problem at any time t. More specifically, the size of this NP-
complete problem depends on the number of arrived tasks during t − 1 to t,
which can be expressed as nt(t)− nt(t− 1).

3 Online Allocation and Dynamic Control

In this section, we first describe the key parameters used in our online alloca-
tion process. After that, the entire online allocation process are presented. The
updating method for dynamic controller is explained at the end of this section.

3.1 Key Parameters

As we proved in Proposition 1, the long-term service cost of cloud is related to
the overall resource usage. By taking this as the starting point, we define the
following parameters to represent the overall resource utilization condition of
physical server. Given a physical server pi, The first parameter is the mean of
resource usage μi(t) at time t.

μi(t) =
fci(t) + fmi(t) + fsi(t) + fbi(t)

4
(15)

μi(t) provides a direct view showing how efficiently the resources of pi are
utilized at time t. However, there is another parameter which indicates the overall
resource utilization condition implicitly. We use σi(t) to denote the situation of
resource balance.

temp1 = (μi(t)− fci(t))
2

temp2 = (μi(t)− fmi(t))
2

temp3 = (μi(t)− fsi(t))
2

temp4 = (μi(t)− fbi(t))
2

σi(t) =
√
temp1+temp2+temp3+temp4

2

(16)

58 M.M. Hassan et al.

It can be seen intuitively that a better overall resource utilization will occur
when μi(t) increases and σi(t) increases. Thus, we combine these two parameters
into a single parameter cvi(t). The definition of cvi(t) is

cvi(t) =σi(t)× νi(t) (17)

Since the actual value of the cvi(t) is independent of the unit in which the
measurement has been taken, it also has the potential to be applied on hetero-
geneous or inconsistent physical servers where (5) is not fully satisfied.

3.2 Online Allocation

We first introduce Min-Min heuristic algorithm [13] and modify it by changing
the metric and adding a threshold. Based on Min-Min heuristic, we explain our
proposed online allocation process step-by-step.

The metric in Min-Min heuristics are defined as cvi(t). We also introduce
a dynamic threshold value ξ(t). If a candidate allocation aij(t) = 1 satisfies
cvi(t) ≤ ξ(t), it is considered as an approved allocation. At time t, a regular task
tj can not be allocated when there does not exist any physical server pi satisfies
cvi(t) ≤ ξ(t).

The original Min-Min attempts to map as many VMs as possible to the first
choice resource. Among all VM/server pairs, the modified Min-Min heuristic se-
lects the one that produces the overall minimummetric value. If the VM/resource
pair is approved according to the threshold value, the VM in that pair will be
allocated to the corresponding server. This process continuously repeats until all
of the VMs have been allocated or until no VM/server pair has a value below
the threshold. If any VM cannot be allocated, the corresponding task will be
put into the waiting list for future allocation.

We provide the detailed steps of allocation process as follows.

Step 1: The allocation process starts at time t = 0. The initial threshold value
is defined as ξ(0) = +∞, which means the threshold is not adopted. For any
physical machine pi, we have fci(0) = fmi(0) = fsi(0) = fbi(0) = 100%. The
task set is an empty set, i.e., T (0) = ∅. The initial selected heuristic is Min-Min.
In fact, the initial selection of threshold value is not an important issue. It will
be changed at the end of first long-period T = 1.

Step 2: During a short time slot t, the urgent allocation requests may arrive.
To handle them, we use the modified Min-Min and remove the constraint of
threshold from it. As each urgent request is executed individually and immedi-
ately, the actual metric is cvi(t).

Step 3: At the end of a short time slot t, the regular allocation requests need
to be handled. The modified Min-Min heuristic with threshold value is used.

Step 4: Repeat Step 2 and Step 3 until the end of a long-period T . If the time is
also the end of a short time slot, finish Step 3 before starting this step. According
to the pre-defined conditions, choose the VMs that need to be migrated first.
Try to allocate the VMs use modified Min-Min heuristic, and check whether the
condition is eliminated or not. If so, then execute the allocation.

Resource Scheduling for Big Data Processing in Cloud Platform 59

Step 5: At this step, the threshold value for next long-period are determined.
The method is to adopt different threshold values in each heuristic to find the
offline allocation results for the past period. We use (11) to judge which is the
optimal threshold value The optimal threshold value passes PID controller which
generates the threshold value that can be used in next long-period.

4 Performance Evaluation

In this section, we first explain the simulation setup and then illustrate the
results from the simulations in details.

4.1 Setup

To generate the big data workload, we focus on four typical video surveillance
paradigms: video streaming and monitoring, face detection, video encoding/
transcoding and video storage. Video streaming and monitoring tasks represents
the basic functionality of cloud-based video surveillance system. To understand
the characteristics of our video surveillance workloads, we analyze their runtime
statistics collected while running the applications on AMAZON cloud EC2. We
rent a M1 Small VM having 1 Intel(R) Xeon(R) E5430 @2.66GHz CPU unit, 1
CPU core, 1.7GiB memory, 1Gbps bandwidth and 30G hard drive with Microsoft
Server 2008 Base 64-bit. We use the performance monitor of Windows to record
the resource utilization of CPU, memory, storage and network bandwidth. We
download videos from PETS (Performance Evaluation of Tracking and Surveil-
lance) where each video consists 1000-5000 frames taken at 1000-5000 time in-
stants. Each frame is a 720 by 576 JPEG photo. We use open-source software for
face detection and video encoding. The following are the observed results of our
workload test in cloud environment. Table 2 clearly illustrates the inter-workload
diversity of workload.

Table 2. Summary of workload

Workload CPU/Memory CPU/Disk I/O CPU/Net

Face detection 72.13% 184.57% 37.63%

Monitoring 59.89% 136.06% 24.42%

Storage 4.76% 1.37% 9.22%

Transcoding 250.06% 765.97% 564.29%

To create static and dynamic workload, we generate the aforementioned four
groups of tasks with different arrival rates. The arrival rate of each service request
is fixed in the static workload. For dynamic workolad, the task arrival rate of
each service request is changed every 100 time-slots. The Total duration of task
arrival is between time-slot 0 and 1000. 30% of service request has be allocated
immediately, and the allocation deadline of the remaining tasks is randomly

60 M.M. Hassan et al.

generated from 0 to 1000 time-slots after arriving to the system. The service
time of each task is randomly generated from 50 to 1000. The physical servers
are homogeneous and sufficient. The exact resource requirements of each task is
generated based on Table 2

4.2 Simulation Results

In our simulation, we implemented five approaches: Fisrt Come First Serve
(FCFS), single-resouce-Min-Min heuristic (CPU), multi-resource-Min-Min
heuristic (CPU+memory+disk I/O+bandwidth), Min-Min heuristic with
proposed metric, and Min-Min heuristic with proposed metric plus dynamic
threshold. We first present the results of total cost in terms of cumulative machine
hours in Figures 1 and 2. As we can see from these figures, FCFS has the
worst performance among five approaches. Single-resource-Min-Min heuristic
is slightly better than FCFS in static environment, but also has the worst
performance in dynamic environment. The multi-resource-Min-Min heuristic,
since it considers overall resource utilization, performs better than FCFS and
single-resource-Min-Min heuristic. With proposed metric, the efficiency of
Min-Min heuristic again increases. However, the improvement is not magnificent
without applying dynamic threshold. The best approach is the Min-Min with
proposed metric plus dynamic threshold, which saves more than 20% cost
comparing with other approaches. Now we provide the resource utilization of
CPU, memory, disk I/O and bandwidth while running the dynamic workload.
The percentage value in each sub-figure represents how much resource on the
physical machines have been reserved by the VMs averagely. As we can see from
Figure 3, our proposed appraoch can fully utilize all resources from time-slot 100
to 900 while other approaches only maintain high utilization from time-slot 100
to 400. Thus, this figure clearly indicates the efficiency of proposed approach.

Fig. 1. Total cost of running static workload

Resource Scheduling for Big Data Processing in Cloud Platform 61

Fig. 2. Total cost of running dynamic workload

Fig. 3. Realtime resource utilizations of running dynamic workload. (a) CPU. (b) mem-
ory. (c) disk I/O. (d) bandwidth.

5 Conclusion

In this paper, we provide a dynamic cloud resource provisioning method to han-
dle QoS-aware big data processing. We address the challenging issue of incorpo-
rating the comprehensive QoS demand of big data with cloud while minimizing

62 M.M. Hassan et al.

the total cost. We prove that the reduction of resoure waste has a direct rela-
tion with cost minimization. Thus, we propose an efficient metric with modified
Min-Min heuristic algorithm by adding threshold value. Our approach can find
cost minimized dynamic resource allocation solutions for the above mentioned
problem. Our simulation results verify the efficiency of our proposed approach
in both static and dynamic workload environment.

Acknowledgment. This work was supported by the Research Center of Col-
lege of Computer and Information Sciences, King Saud University, Project No:
RC1303109. The authors are grateful for this support

References

1. Demchenko, Y., Zhao, Z., Grosso, P., Wibisono, A., de Laat, C.: Addressing big data
challenges for scientific data infrastructure. In: 2012 IEEE 4th International Confer-
ence on Cloud Computing Technology and Science (CloudCom), pp. 614–617. IEEE
(2012)

2. Ji, C., Li, Y., Qiu, W., Awada, U., Li, K.: Big data processing in cloud comput-
ing environments. In: 2012 12th International Symposium on Pervasive Systems,
Algorithms and Networks (ISPAN), pp. 17–23. IEEE (2012)

3. Guo, S., Xiong, J., Wang, W., Lee, R.: Mastiff: A mapreduce-based system for
time-based big data analytics. In: 2012 IEEE International Conference on Cluster
Computing (CLUSTER), pp. 72–80. IEEE (2012)

4. Zhang, G., Li, C., Zhang, Y., Xing, C., Yang, J.: An efficient massive data process-
ing model in the cloud – a preliminary report. In: 2012 Seventh ChinaGrid Annual
Conference (ChinaGrid), pp. 148–155 (2012)

5. Speitkamp, B., Bichler, M.: A mathematical programming approach for server
consolidation problems in virtualized data centers. IEEE Transactions on Services
Computing 3(4), 266–278 (2010)

6. Guo, J., Zhu, Z.-M., Zhou, X.-M., Zhang, G.-X.: An instances placement algo-
rithm based on disk i/o load for big data in private cloud. In: 2012 Interna-
tional Conference on Wavelet Active Media Technology and Information Processing
(ICWAMTIP), pp. 287–290 (2012)

7. Kaushik, R.T., Nahrstedt, K.: T: a data-centric cooling energy costs reduction ap-
proach for big data analytics cloud. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, p. 52. IEEE
Computer Society Press (2012)

8. Mo, X., Wang, H.: Asynchronous index strategy for high performance real-time
big data stream storage. In: 2012 3rd IEEE International Conference on Network
Infrastructure and Digital Content (IC-NIDC), pp. 232–236. IEEE (2012)

9. Jung, N.G., Gnanasambandam, Mukherjee, T.: Synchronous parallel processing of
big-data analytics services to optimize performance in federated clouds. In: 2012
IEEE 5th International Conference on Cloud Computing (CLOUD), pp. 811–818
(2012)

Resource Scheduling for Big Data Processing in Cloud Platform 63

10. Rahman, M., Li, X., Palit, H.: Hybrid heuristic for scheduling data analytics
workflow applications in hybrid cloud environment. In: 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), pp. 966–974. IEEE (2011)

11. Ferreto, T.C., Netto, M.A.S., Calheiros, R.N., De Rose, C.A.F.: Server consolida-
tion with migration control for virtualized data centers. Future Gener. Comput.
Syst. 27, 1027–1034 (2011)

12. Jain, N., Menache, I., Naor, J., Yaniv, J.: Near-optimal scheduling mechanisms
for deadline-sensitive jobs in large computing clusters. In: Proceedings of the 24th
ACM Symposium on Parallelism in Algorithms and Architectures, pp. 255–266.
ACM (2012)

13. Kou, L.T., Markowsky, G.: Multidimensional bin packing algorithms. IBM J. Res.
Dev. 21, 443–448 (1977)

High Performance Cloud: A MapReduce

and GPGPU Based Hybrid Approach

Beniamino Di Martino, Antonio Esposito, and Andrea Barbato

Department of Industrial and Information Engineering,
Second University of Naples,

Via Roma 29, Aversa
beniamino.dimartino@unina.it, antonio.esposito@unina2.it,

and.barbato@gmail.com

Abstract. High Performance Computing systems typically require per-
formant hardware infrastructures, in most cases managed and operated
on-premises by single organizations. However, the computing power de-
mand often fluctuates in time, resulting into periods where allocated re-
sources can be underused. The pay-as-you-go and resources-on-demand
approach provided by Cloud Computing can surely ease such problem,
consequently reducing the upfront investment on enterprise infrastruc-
tures. However, a common approach to support software migration to the
Cloud is still missing. Here we propose a methodology to recognize de-
sign and algorithmic characteristics in sequential source code and, thanks
parallel Compilers and Skeletons, to support the parallelization and mi-
gration of existing software to the Cloud, guided in the process by the
parallel programming paradigm represented by MapReduce. In addition,
by leveraging the virtualization capabilities of the Cloud, it is possible
to further parallelize specific sections of code by means of virtual GPUs,
which can take advantage of the parallel data transmission capabilities
offered by multiple Cloud nodes.

1 Introduction

Cloud Computing allows users to exploit a virtually unlimited pool of resources
in an on-demand and pay-as-you-go fashion, attracting organizations strongly
interested in reducing their investment in ICT infrastructures. This is even more
true if we consider High Performance Computing, where powerful (and expen-
sive) computing infrastructures are needed. However, migrating an application
from an on-premises enterprise server to a cloud environment can be rather com-
plicated because of the differences between the original and target environments.
The lack of standards in programming models and interfaces provided by Cloud
vendors surely worse the problem. According to the approach we propose, it is
possible to identify algorithmic and design features of an application by exam-
ining its sequential source code and to use such characteristics to determine a
mapping between application elements and Cloud Platforms’ components. The
necessary code re-factoring is obtained by means of Parallel Skeletons, which can

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 64–73, 2014.
c© Springer International Publishing Switzerland 2014

High Performance Cloud: A MapReduce and GPGPU 65

be used as a template to create a parallel version of the input program. In par-
ticular in this paper we show how, considering a specific parallel programming
paradigm, represented by the MapReduce framework, and having recognized pe-
culiar algorithmic characteristics in source code, it is possible to automatically
refactor an application to make it work in a Cloud environment. Also, we pro-
pose to leverage the Clouds virtualization capabilities to provide a second level
of parallelization through virtual GPUs. In this work we present a prototype im-
plementation of such approach, obtained through a tool which receives a source
code, let the programmer select portions of sequential code through a graphical
interface and then automatically performs a parallel transformation. The paper
is organized as follows: in section 2 we provide an inside of the technologies in-
volved in our approach; in section 3 we present a prototype of the proposed tool;
sections 3.2 and 3.1 describe the Skeleton based approach and the code analysis
method we use; section 4 describes an application of the MapReduce paradigm,
using matrix multiplication as an example; section 4.1 shows the application of
GPU parallelization to the same matrix multiplication example; section 5 reports
some final consideration and provides hints for future work.

2 State of Art

2.1 Parallel Skeletons

Algorithmic Skeleton, also referred to as Parallel Patterns, are a high-level par-
allel programming model which can be used to support applications design and
implementation for parallel and distributed computing. Skeletons allow the dec-
laration of high order functions as a program or procedure ‘template’, which
specifies the overall structure of a computation, with gaps left for the definition
of problem specific procedures and declarations [1]. One of the main advantages
deriving from the use of Skeletons is that orchestration and synchronization of
the parallel activities are implicitly defined and hidden to the programmer. This
implies that communication models are known in advance and cannot be mod-
ified by programmers who, in turn, are less prone to introduce errors and bugs
since they are ‘guided’ in writing their code. Different frameworks and libraries
have been defined to assist programmers through Skeletons: a survey of these
tools is provided in [2].

2.2 MapReduce

The processing of large amounts of data is a central topic for industries work-
ing in the IT field: the main reason lies in a phenomenon commonly known as
Data Deluge (or Data Flood) or Big Data revolution. Huge volumes of data
are continually being produced, analysed, transformed and transmitted, often
iteratively and with time limits. Since dealing with such data requires intensive
computation, the application of parallelization techniques and the use of Clus-
ters, Grids or Cloud architectures seems the best solution. Nevertheless, this im-
plies a logical separation of computational and storage resources, together with

66 B. Di Martino, A. Esposito, and A. Barbato

the necessity to create communication channels to share data among computing
nodes. The MapReduce framework, originally introduced by Google developers
[3], represents a good solution to this problem, since it promotes data local-
ity and reduces communication overheads. MapReduce organizes computation
tasks according to data distribution among computing nodes so that storage, not
computational resources, lead the analysis. Data are processes in parallel byMap
procedures, performing filtering, sorting and distribution tasks, while results are
summarized by Reduce procedures. Since data locality limits the parallelization
in order to reduce communications among nodes, the framework gives best re-
sults when working with huge data sets. In particular, a MapReduce round can
be divided into three phases:

– The Map phase works on the input data directly. A map function is invoked
on the data-set and it produces key/value pairs which are used to mark the
distributed data and make it possible to recollect the results of the single
computation.

– During the shuffle phase all the key/value pairs are grouped by key, obtaining
multiple sub-sets of data.

– Every sub-set is then reduced during the Reduce phase, which produces the
partial results of the computation: the output of the computation is obtained
by recombining these partial results.

2.3 GPU and CUDA

CUDA is a parallel computing platform and programming model created by
NVIDIA and implemented by the graphics processing units (GPUs) that they
produce. Using CUDA, the GPUs can be used for general purpose processing,
an approach known as GPGPU [4]. Cloud platforms can virtualize one or more
GPU nodes [5], therefore CUDA may be introduced into applications produced
for Cloud environments. The NVIDIA CUDA programming model, shown in
figure 1, is composed of a host (traditionally a CPU) and one or more compute
devices, generally massive data parallel coprocessors. All CUDA device proces-
sors support the Single-ProgramMultiple Data (SPMD) model, in which a set of
parallel threads executes the same program on different data. CUDA program-
ming use keywords provided as extensions to high-level programming languages
like C/C++, that designate data-parallel functions, called Kernels, and their as-
sociated data structures. A kernel is organized as a hierarchy structure in which
threads are grouped into blocks, and blocks into a grid. Threads in the same
block are executed on a single multiprocessor, share their data and synchronize
their actions through built-in primitives. Instead, threads in different blocks may
be assigned to concurrent multiprocessors. When the CUDA developer calls a
kernel function, he must specify the size of the grid and blocks in the hierarchy.
Efficient CUDA programs isolate components that are rich in data parallelism,
in order to launch many threads and blocks to keep the GPU full and amortize
memory-transfer costs.

High Performance Cloud: A MapReduce and GPGPU 67

Fig. 1. CUDA programming model

3 Overview of the Prototype Tool

Our main objective is to develop a tool which, once a parallelizable portion of
code has been identified and selected, either by a human operator through the
provided GUI or automatically, is able to produce a parallel Cloud deployable
version of the input source. In order to reduce the users involvement in the
selection phase it could be possible to use parallel compilers which, during the
compilation process, would analyse the program and determine which parts of
it are eligible for parallelization. However, leaving the selection of parallelizable
portions of code to automatic procedures only is not always possible and, in some
cases, could also be inefficient, due to the impossibility to detect all control and
data dependences during compile time. What we propose is to support the user
by suggesting her which parts should be executed in parallel. In this way the
programmer is only responsible of the validation of the code selections made by
the tool, still being free to modify and correct the automatic guesses.

3.1 Analysis of the Source Code

In order to suggest the user which parts should be selected for parallelization,
we need to analyse the source code. This can be done through a source to source
compiler which parses the source code through a front-end and then realizes a
representation of it using an Abstract Syntax Tree (AST). This intermediate
representation can be used to automatically analyse control dependencies in
source code for parallelization purposes. All code selections are automatically
reflected in code transformations which alter the AST produced from the source
code. An unparser will generate the new source code directly from the AST,
regardess pf the chosen target language. As of now, the automatic analysis and
selection of the code has not been realized yet in our prototype tool, but we let
the user determine the portions of code to parallelize. In order to better support
the user in his decisions, the tool doesnt show a graphical representation of the
AST: we prefer to use a Program Dependence Graph (PDG) which can be used

68 B. Di Martino, A. Esposito, and A. Barbato

to describe both control and data dependency in a program. Figure 2 shows an
example of a PDG produced for a C code representing a matrix multiplication.
Each node reports an ID which can be used to trace the code line and the relative
control or data structure corresponding to it.

Fig. 2. Example of Program Dependence Graph

3.2 A Skeleton Based Approach

Using Skeletons can greatly reduce the users responsibilities, but this approach
implies that it is possible to parallelize only sequential algorithms which present
themselves in a specific form. The parallel structure of most programs can be
classified in a limited number of categories, representing the basic models of or-
ganization for parallel computing. However, even when the algorithm belongs to
a well specified category, the Skeleton choice can depend on minor aspects re-
lated to data distribution or algorithm structure, which become relevant in terms
of performance. In our tool a set of Skeletons is presented to the user according
to the target programming framework, here represented by MapReduce. Such
Skeletons differ in the distribution and communication models they implement,
which can be chosen according to the target distributed platforms characteris-
tics, requirements or limitations (maximum number of computing nodes, storage
services, networking capabilities and so on). When the user selects one of the
available Skeletons, the tool shows a preview of how data will be distributed
among reducer nodes by the mapping procedure. Figure 3 shows the panel that
a user can use to select a Skeleton, set some optional configuration parameters,
and have a preview of the data-set distribution. The user can also choose to fur-
ther parallelize reducers code through GPUs. In our example, matrices involved
in a multiplication are divided in blocks: the user can set the blocks dimensions
each reducer will receive, or let the Skeleton choose the configuration based on
the matrices dimensions. If a GPU parallelization is chosen, other parameters
are needed to correctly set-up data distribution to the GPUs grids and blocks.
After clicking on the Transform Code button, the AST of the code is modified

High Performance Cloud: A MapReduce and GPGPU 69

Fig. 3. Skeleton choosing and distribution preview

according to the chosen Skeleton and parameters, then it is unparsed to generate
the target code written in a preselected programming language.

4 Application of MapReduce

In our work we focus on algorithms involving operations on mono-dimensional
and bidimensional arrays, which can be represented by linear algebraic expres-
sions involving an undefined number of arrays elements or matrix products.
Being the matrix multiplication the most complex operation we considered, we
report here an example of code transformation operated by means of Skeletons.
In particular, here we consider the product of two matrices A and B, having
dimensions NxM and MxP, resulting in a matrix C of dimensions NxP, as ex-
ecuted through the pseudo-code in figure 4. The Skeleton we propose for the
matrix product is based on the Hadoop MapReduce model [6], which is quite
common in Big Data analysis. Such Skeleton maps the matrix multiplication
algorithm into two MapReduce rounds. During the first round, matrices are de-
composed in blocks (Map phase) and key/value pairs are produced to keep trace
of the elements each node works on and to determine how the Reduce phase
has to be executed: using such pairs, reducers operate by multiplying the sub-
matrices they have been assigned to (Reduce phase). Once all multiplications
have been executed, the second round begins: matrix blocks are re-assigned to

Fig. 4. Pseudo-code for matrix multiplication

70 B. Di Martino, A. Esposito, and A. Barbato

Fig. 5. Example of key/value pairs generation for round 1

reducers, using new key/value pairs, and the final sum operation of the partial
results is executed. Key/value production for the two MapReduce rounds can
be quite complex, as shown in figure 5 for step 1 (step 2 is simpler and not
shown here for brevity). The code relative to round one is shown in figure 6.
Two classes are created: The MyMapper class, which is an instance of Mapper,
is used to generate the key/value pairs needed to correctly execute the reduce
procedure. Since the Skeleton used is based on a Hadoop based implementation
of MapReduce, theres no explicit communication since all accesses will happen
on a shared, distributed file system. The two loops present in the code gen-
erate the key/value pairs needed for the matrices to multiply. The MyReducer
class, instance of Reducer, executes a partial matrix multiplication on the blocks

Fig. 6. Matrix Multiplication: first MapReduce round

Fig. 7. Matrix Multiplication: second MapReduce round

High Performance Cloud: A MapReduce and GPGPU 71

identified in the Map phase. Two arrays are used, together with the keys gener-
ated by the Mapper procedure, to determine which elements of the input matrices
the Reducer procedure needs to process. The recollection of partial results from
Reducers is not explicitly shown, since the Hadoop implementation hides such
details. The code produced for round 2 is much simpler, as shown in figure 7. As
before, two classes are produced: A MyMapper class, instance of Mapper, gen-
erates the key/value pairs to distribute data among reducers. The MyReducer
class, instance of Reducer, executes the sum operations needed to complete the
Matrix Multiplication task. The resulting product matrix is automatically re-
constructed through the shared file system and no communications are needed.

4.1 Applying GPU Parallelization

The computation of each Reducer in the first round consists again in a matrix
product, row by column, between sub-matrices of small dimension. However,
depending on the size of the original matrices and on the number of nodes at
disposal, the sub-matrices can be wide enough to require a consistent process-
ing time: in this scenario it is possible to reduce processing time by moving the
computation on a GPU, according with the CUDA model. This way a second
level of parallelization is achieved, in which each thread on the GPU calculates
a single element of the resulting matrix as shown in figure 8. This approach al-
lows each reducer to run thousands of concurrent threads on the GPU, being it

Fig. 8. Second level of parallelization through GPGPUs

Fig. 9. Cuda code generated for the Reducer

72 B. Di Martino, A. Esposito, and A. Barbato

a many-core machine with multiple SIMD multiprocessors, and simultaneously
reduces the cost of data transfers to GPU, because all the reducers concurrently
move their own data sub-set on GPU. For this purpose we developed a Skeleton
that includes the CUDA functions allowing each reducer to allocate and trans-
fer their sub-matrices on the GPU memory, run the kernel, recover the results
and deallocate the memory of the GPU. The remaining computational parts of
the two rounds follow the previous Skeleton plan. Figure 9 shows the CUDA
instructions used to allocate memory on the GPU, create blocks and grids and
transfer data back and forth from the it. The kernel code multiply matrix just
executes the sub-matrix multiplication on the GPU and is not shown here.

5 Conclusion and Future Work

In this paper we presented a prototype tool which implements a Skeleton based
approach for the parallelization of sequential code and its deployment to the
Cloud. In particular we showed our results in the application of a Skeleton for
the refactoring of serial code executing a matrix multiplication, based on the
Hadoop MapReduce reference model, and we also showed a further level of par-
allelization by means of GPGPUs. The users contribution is needed to determine
which parts of the source program have to be parallelized. The user also chooses
the Skeletons to apply and provides further information to support data dis-
tribution among computing nodes when needed. Being our main objective the
automatic refactoring of sequential code, we need to define means to accurately
recognize algorithmic characteristic in source code or attached documentation to
automatically annotate programs or to efficiently suggest users which portions
of code can be executed on parallel computing nodes. Existing studies made on
algorithmic Pattern recognition in source code, like those presented in [7] and [8],
or Design Pattern recognition in UML documentation, like the ones presented
in [9] and [10], can be considered as a starting point to determine the necessary
methodology and a relative implementation. New Skeletons need to be defined
in order to support different transformations. Also, an approach to exploit Cloud
Patterns descriptions [11] [12] [13] [14] could be very useful to define mappings
to different Cloud Platforms and to better support applications migration.

Acknowledgment. The research leading to these results has received funding
from the European Communitys Seventh Framework Programme (FP7/2007-
2013) under grant agreement n 256910 (mOSAIC Project), and has been sup-
ported by PRIST 2009, Fruizione assistita e context aware di siti archeologici
complessi mediante dispositivi mobili and CoSSMic (Collaborating Smart Solar-
powered Micro-grids FP7-SMARTCITIES-2013).

High Performance Cloud: A MapReduce and GPGPU 73

References

1. Cole, M.I.: Algorithmic skeletons: structured management of parallel computation.
Pitman London (1989)

2. González-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks:
high-level structured parallel programming enablers. Software: Practice and Ex-
perience 40(12), 1135–1160 (2010)

3. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

4. Nvidia cuda parallel programming and computing platform,
http://www.nvidia.com/object/cuda_home_new.html

5. Aws gpu instances, http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
using cluster computing.html

6. Borthakur, D.: The hadoop distributed file system: Architecture and design.
Hadoop Project Website 11, 21 (2007)

7. Di Martino, B.: Algorithmic concept recognition support for skeleton based parallel
programming. In: Proceedings International Parallel and Distributed Processing
Symposium, p. 10. IEEE (2003)

8. Di Martino, B., Cretella, G.: Semantic and algorithmic recognition support to
porting software applications to cloud. In: Joint Workshop on Intelligent Methods
for Software System Engineering (JIMSE 2012), pp. 24–30 (2012)

9. Di Martino, B., Esposito, A.: Automatic recognition of design patterns from uml-
based software documentation. In: Proceedings of International Conference on In-
formation Integration and Web-based Applications & Services, p. 280. ACM (2013)

10. Zhu, H., Bayley, I., Shan, L., Amphlett, R.: Tool support for design pattern recog-
nition at model level. In: 33rd Annual IEEE International Computer Software and
Applications Conference, COMPSAC 2009, vol. 1, pp. 228–233. IEEE (2009)

11. Cloud computing patterns, http://cloudcomputingpatterns.org
12. Cloud patterns, http://cloudpatterns.org
13. Windows azure application patterns, http://blogs.msdn.com/b/jmeier/archive/

2010/09/11/windows-azure-application-patterns.aspx

14. Aws cloud design patterns, http://en.clouddesignpattern.org

http://www.nvidia.com/object/cuda_home_new.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cluster_computing.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cluster_computing.html
http://cloudcomputingpatterns.org
http://cloudpatterns.org
http://blogs.msdn.com/b/jmeier/archive/2010/09/11/windows-azure-application-patterns.aspx
http://blogs.msdn.com/b/jmeier/archive/2010/09/11/windows-azure-application-patterns.aspx
http://en.clouddesignpattern.org

A Trust-Based, Multi-agent Architecture

Supporting Inter-Cloud VM Migration
in IaaS Federations

Fabrizio Messina1, Giuseppe Pappalardo1, Domenico Rosaci2,
and Giuseppe M.L. Sarné3

1 DMI, University of Catania, Italy
{messina,pappalardo}@dmi.unict.it

2 DIIES, University Mediterranea of Reggio Calabria, Italy
domenico.rosaci@unirc.it

3 DICEAM, University Mediterranea of Reggio Calabria, Italy
sarne@unirc.it

Abstract. The success of inter-cloud VM migration depends on several
different factors for which a good estimate should be made in advance
by Cloud providers. In this context, the ability of the counterparts in
performing related measures and appropriate evaluations will affect the
success of the migration to be performed. We argue that the risks due
to errors made in the evaluations above can be classified into two dif-
ferent classes: i) a direct (negative) consequence on the reputation built
towards the client customer, and ii) additional costs due to waste of re-
sources. In this work we propose a trust-based, multi-agent architecture
on which software agents assist providers in taking decisions about VM
migration, by performing an evaluation of the different risks discussed
above. We envision a first class of software agents that computes trust
information by means of a model that considers the critical concerns
to take into account in advance for the VM migration process. A second
class of software agents is employed to assist the decisional agents in per-
forming measures about VMs and measuring errors in front of previous
VMs migrations. Moreover, they are also employed to disseminate trust
information by means of a gossip-based protocol, in order to provide fault
tolerance, efficiency and redundancy.

1 Introduction

As pointed out in [26], virtualization technology for mainframe was developed
in the late 1960s in order to provide the necessary functionalities to manage
resources efficiently, since hardware was expensive. Today consolidation tech-
niques are based on virtualization technologies [2,8] which in turn are man-
aged by cloud middlewares [1,9]. Such software stack is allowed to run on com-
modity hardware and provides several benefits as isolation, security, efficiency.
As a consequence there is not anymore a one-to-one relationship for the tuple
{applications, OS, hardware}, as companies run multiple isolated applications

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 74–83, 2014.
c© Springer International Publishing Switzerland 2014

A Trust-Based, Multi-agent Architecture 75

on a single shared resource. Furthermore, as Cloud Data Centers are becoming
increasingly larger, VM migration [5] has allowed Cloud Providers to consoli-
date physical servers [22,24], therefore costs can be reduced and customers can
acquire more resources and/or obtain a higher level of QoS at the same cost. A
further interesting step is the development of Cloud Federations [4,14,16] which
enables cloud providers to address the complex requirements of the recent appli-
cations [18]. Indeed federated providers can rent resources from other providers
in response to demand variation and complex application requirements. In the
context above performing inter-Cloud VM migrations, i.e. moving customers’
virtual machines from a data center to another one, represents an opportunity
to get more efficiency, and, possibly, consolidate servers.

Given the premises above, in this paper we propose a trust model specifically
designed to assist Cloud providers in taking decisions about inter-Cloud VM
migration, i.e. in order to select a suitable “partner”, such that risks can be
evaluated in advance. We also present a multi-agent [3] architecture in order to
assist Cloud providers in evaluating factors to be considered for a VM migration,
and eventually take decisions about inter-Cloud VM migration. In the proposed
architecture a second class of agents, which reside on each physical machine,
helps the former class of agents to get measures and estimate errors in the
physical infrastructure.

The paper is structured as follows. In Section 2 we discuss the scenario on
which this work is based, a well as some detailed motivations, while in Section 3
we present the trust model to support the selection of appropriate partners to
perform inter-cloud VM migrations. Section 4 describes the decentralised solu-
tion we designed to employ the trust model discussed in Section 3 and some de-
tails about the different responsibilities of the software agents. Section 5 presents
some related work and, finally, in section 6 we draw our conclusions and present
future work.

2 Motivating Scenario and Basic Architecture

When a Cloud provider negotiates with a customer for IaaS resources, it might
not have all the resources needed to satisfy the requests. Therefore, to guaran-
tee the negotiated SLA [15], it might be forced to (i) give up the negotiation
or (ii) to cancel some of the services already running. In either way it will
lose a revenue and, possibly, part of the reputation with the customer. More-
over, an IaaS provider may have unused resources which could be used by other
providers. The cases discussed above can be addressed by means of Cloud Fed-
erations [4]. By joining a Cloud Federation a provider may assign unused re-
sources to other providers for a fee, so that the cost of the infrastructures could
be better sustained, helping the counterparts to address the under-provisioning
problem stated above. In the scenario above, inter-Cloud VM migration may
help provider in dealing with the issues above: some VMs are moved from a data
center of a provider to another one. We remark that the opportunity to migrate
one or more VMs has to be evaluated by the parties and the migration process
must be properly managed.

76 F. Messina et al.

Multi-agent Architecture for Inter-Cloud VM Migration. In this work
we assume that software agents [3] assist providers in activities related to VM
migration process.

VMY

aik jka
VMx

dci

A i

dcj

A j

PM

PM PM

PM

2 - Negotiate migration

3 - Manage
migration

3 - Manage
migration

1 - Retrieve
information

1 - Retrieve
infomation

Fig. 1. Inter Cloud VM migration managed by Software Agents

As shown in Figure 1, we envision two different classes of software agents,
the former (e.g. Ai in Fig. 1) is responsible of the whole data center (dci), it
maintains trust information (see Section 3) in order to take decision about a
VM migration. It has also the responsibility of retrieving and evaluating the
information needed to take such decision (point 1), negotiating VM migrations
with its own counterparts (point 2) and eventually manage VMmigrations (point
3). As shown in Figure 1, a second class of software agents (e.g. aik) will reside on
a each physical machine (PM), in order to retrieve information (measures, errors,
state of physical machines, etc) from the VMM (Virtual Machine Monitor) and
the Cloud middleware [9], to make them available to agents Ai. We discuss the
complete list of tasks performed by agents Ai and aik in Section 4.

Factors Affecting Inter-Cloud VM Migration. We report in Table 1 a
sample of the factors (column 1) to be evaluated by the generic agent Ai in
order to take decisions about VM migrations, and the potential impacts (see
columns 2 and 3, e.g. resource expenses, SLA violations, etc.) of the errors made
when evaluating them. We argue that the success of the second and third phases
shown into Fig. 1, i.e. negotiation and management of VM migration, strongly
depends on the reliability of the information collected by software agents into
their own Cloud infrastructure (cf. Table 1), and their ability in performing
correct evaluations basing on these information. Basically, through Table 1, we

A Trust-Based, Multi-agent Architecture 77

want remark that making errors in such evaluations may impact in different
manners: i) additional costs sustained by the provider, and/or ii) SLA violations
which may also involve in additional costs but, more important, can also affect
the provider reputation (loss of reputation with the customer).

In order to provide a concrete example, we would mention the case on which
some errors have been made in the evaluation of VM hosting requirements (see
Table 1). This will cause some faults during the preparation of the customer’s
VM in the destination, without affecting the performance of the customer VM
which is still running services into the source physical machine. I.e. it causes
additional costs but, as the SLA of the customer will not be violated, there will
not be loss of reputation with him. In order to provide a different example, we
would mention the case on which some errors on VM workload characterisations
are made by agent Ai or Aj or both. In this case the performance of the customer
VM(s) may be affected; therefore, once the VMs have migrated, a violation of
the SLA might occur for the migrated VMs and for the VMs already running
into the physical hosts of the data center dcj . As indicated in the third column
of Table 1, this will affect the reputation that the provider has built towards the
customers.

Table 1. VM migration factors. Effects and impact.

Factor Potential effects of Potential
evaluation errors impact

VM Hosting requirements Time/resource expenses Add. Cost

VM(s) workload characterisation SLA violation Reputation
VM(s) bandwidth consumption SLA violation Reputation

VM(s) transfer requirements Time/bandwidth expense Add.Cost
Expected downtime SLA violation Reputation
Expected slowdown SLA violation Reputation

VM Consolidation model/algorithm SLA violation, faults, resource
expenses

Reputation,
Add. cost

3 The Trust Model for Inter-Cloud VM Migration

In order to deal with the issues discussed in the last part of previous Section
(see table 1), we present a trust model designed to support software agents
assisting their providers in taking decision about VM migration. Our proposal
is based on the concept of trustworthiness [7] on which the truster will compute
the final trust by means of two different measures: reliability, that is a direct
measure derived by the direct experience of the truster with the trustee, and the
reputation, which is an indirect measure based on the opinions that the other
agents have about the trustee.

Given the generic Cloud IaaS Federation, as depicted in Figure 1, i.e. a set
of data centers dci assisted by software agents Ai, let Ej,fk be the error made
by agent Aj in the evaluation of the factor fk (see Table 1), and C(Ej,fk) a real

78 F. Messina et al.

and positive number representing the cost sustained by the provider i due to the
error Ej,fk . Let also Rij(Ej,fk) be a mapping assuming real values in [0 . . . 1],
that quantifies the (negative) impact, due to the error Ej,fk , on the reputation
built towards Ai customers. Note that, in the notation above, agent Aj , i.e. the
agents which made the error Ej,fk , may represent the origin data center (dci in
Figure 1), or the destination (dcj in Figure 1).

Reliability. In order to compute the reliability of an agent we consider the
agent’s ability to perform reliable evaluations and accurate measurements with
respect to the critical factors such as those sampled in the Table 1. We assume
that each agent Ai will compute a degree of reliability of another agent Aj by
calculating two different values, Γij (additional cost) and Θij (loss of reputation),
as follows:

Γij =
1

l

l∑
k=1

F (i)
c (Cijk) Cijk = 1− Cij(Ej,fk)

Θij =
1

l

l∑
k=1

Rijk Rijk = 1−Rij(Ej,fk)

where F
(i)
c (·) is a suitable function selected by the agent Ai, that maps the cost

Cijk in a real number in [0...1]. The reliability RLij is defined as:

RL
(t)
ij = α{ωΓΓij + (1− ωΓ)Θijk}+ (1− α)RL

(t−1)
ij (1)

with α, ωΓ ∈ R, 0 ≤ γ, ωΓ ≤ 1. The real parameter α is used to weight the
new value of reliability (left part of the sum in equation 1) and the old one

(RL
(t−1)
ij), while parameter ωΓ is used to weight the additional cost Γ with the

loss of reputation Θ. Finally, since the impact of additional costs (Cijk) is highly
dependent on several factors which may have subjective nature, we used the

generic function F
(i)
c which must be freely chosen by the agent Ai.

Reputation and Overall Trust. The reputation of an agent Aj is an indirect
measure of reliability, and it is based on the opinion of some other agents. As
our choice has been to take into account the different impact of costs (Γ and
Θ) separately, we also suppose that when an agent Ak is requested to send its
opinion to an agent Ai about another agent Aj , it will send a vector [Γ ∗

kj , Θ
∗
kj],

where Γ ∗
kj and Θ∗

kj respectively represent the opinion of agent Ak about agent
Aj concerning its ability to not incur into additional costs and loss of reputation.
The agent Ai, once received Γ ∗

kj and Θ∗
kj , combines them as follows:

RP
(t)
ij = β

{
ωΓRP

(t)
Γ,ij + (1− ωΓ)RP

(t)
Θ,ij

}
+ (1− β) · RP

(t−1)
ij

RP
(t)
Γ,ij =

1

l

l∑
k=1

(cs
(t)
Γ,i,kj · Γ ∗

kj) RP
(t)
Θ,ij =

1

l

l∑
k=1

(cs
(t)
Θ,i,kj · Θ∗

kj)

A Trust-Based, Multi-agent Architecture 79

where parameter β ∈ R, 0 ≤ β ≤ 1 gives a similar contribution of parameter α in

Equation 1. Factor cs
(Γ)
i,kj (cs

(Θ)
i,kj) measures how similar is the computation made

by agents Aj and agent Ak of additional cost Γ (vs Γ ∗) and loss of reputation
Θ (vs Θ∗):

cs
(t)
Γ,i,kj = 1− E

(t)
Γ,i,kj E

(t)
Γ,i,kj =

1

l

l∑
k=1

∣∣∣Γ (t−1)
i,kj − Γ

∗(t−1)
i,kj

∣∣∣

cs
(t)
Θ,i,kj = 1− E

(t)
Θ,i,kj E

(t)
Θ,i,kj =

1

l

l∑
k=1

∣∣∣Θ(t−1)
i,kj −Θ

∗(t−1)
i,kj

∣∣∣
Finally, the overall trust is computed as:

τ
(t)
ij = γ · RL

(t)
ij + (1− γ) · RP

(t)
ij (γ ∈ R, 0 ≤ γ ≤ 1)

4 Maintaining and Disseminating Trust Information

As discussed into Section 2, we envision a layered multi-agent architecture to
assist Cloud provider in VM migration. Software agents Ai reside on each data
center dci, while agents aik reside on each physical machine and collaborate with
agents Ai as specified below:

– collect, from their own physical machines, all the runtime information needed
to evaluate the factors listed in Table 1;

– as a consequence of VM migrations concerning their own physical machines,
compute the errors Ej,fk made in the evaluation of the factors fk as those
mentioned in Table 1;

– periodically send the errors Ej,fk to agents Ai;

– disseminates the measures [Γ ∗
kj , Θ

∗
kj] received by its own peers alm, as we

will discuss in section 4.1.

Each agent Ai is involved in the following activities:

– collects the errors Ej,fk computed by the agents aik and updates Γij , Θij as
specified into Section 3.

– each time a vector [Γ ∗
kj , Θ

∗
kj] (i.e. reputation) is received from the trust net-

work, it updates the trust index τij associated to the agent Aj , as detailed
in section 3;

– each time trust information about one or more agent Aj changes, it sends
the correspondent reputation vector [Γ ∗

kj , Θ
∗
kj] to one of the agents alm in

order to spread these information to its own peers Ak. As we discuss in
Section 4.1, these information are spread into its own data center (agents
aik) and the others (agents alm not belonging to the Data Center dci) of the
Cloud Federation.

80 F. Messina et al.

4.1 The Trust Network

In the proposed model, trust information are spread within the Cloud federation
by agents aik. In order to perform this task, a simple gossip protocol can be used,
such that the information can be spread in a way similar to those used in online
social networks [21,12,13]. Gossip-based protocols are used for a wide range of
problems, and provides several benefits [27]:

– fault tolerance: a communication failure of the agent Ai will not affect the
transmission of trust information, once it has been transmitted to the net-
work of agents aik;

– redundancy: trust information are stored by agents aik until a fresh version
will overwrite the old one;

– efficiency: agent Ai does not have to send trust information to all its own
peers Ak, it only has to send it to an agent aik of its own data center.

The gossip-based protocol we propose in this section is reported in listing 2.
Its behavior is based on the “probability” that any message is forwarded from an
agent aik to another agent alm. The aspect above is tuned by the threshold v ∈
R, 0 ≤ v ≤ 1. When v is closest to 1, the message will propagate approximately
to the whole neighborhood. As a consequence, the “hubs” of the network will
generate, in average, too many messages. Conversely, in order to reach most of
the nodes, the threshold v should not be too low. Moreover, a TTL (Time-To-
Live) and a cache storing the most recent messages are used to stop the process
in a few steps.

int gossipTrust(msg, v){ /∗ msg is the received message; v is a threshold ∗/
if !(gossip msg(msg))
return 0;

if (in cache(msg) || msg.ttl == 0) /∗ dissemination stops here ∗/
return 0;

else{ /∗ disseminate the information ∗/
put in cache(msg);
M=new msg(msg);

}
for(i=1; i<l; i++) /∗ neighbours are agents of other physical servers ∗/

if (random uniform(0,1)) < v /∗ threshold will limit the number ∗/
send msg(M, neighbour(i)); /∗ of generated messages ∗/

return 1;
}

Fig. 2. Gossip protocol to disseminate trust (reputation) information

5 Related Work

VM migration has been mainly addressed by considering technical aspects [5]
and those related to energy consumption, especially by means of server consol-
idation, which is based on VM migration and represents a critical issue when

A Trust-Based, Multi-agent Architecture 81

managing Data Center. Server consolidation is one of the main reason driving
Cloud providers to negotiate inter-cloud VM migration. In particular, VM mi-
gration for server consolidation has been studied even before the massive advent
of virtualization for commodity hardware [26], and there are a lot of studies in
the literature focusing on server consolidation, especially for energy saving on
data center. For instance, in [25] the authors present a detailed analysis of an
enterprise server workload aiming at finding characteristics for server consolida-
tion and designed two novel consolidation methods to achieve significant power
savings and to contain the risks of consolidation in terms of performance.

In another study presented in [24], the problem of energy-aware consolidation
has been addressed by studying the relationships between energy consumption,
resource utilisation, and performances of consolidated workloads. As a conse-
quence, some trade-offs were found and optimal operating points revealed. The
authors modelled the consolidation problem as a modified bin packing prob-
lem [6]. A recent work [23] contains an analytical approach on which the authors
describe a decision model, based on a set of real-world constraints, to assist the
allocation of virtual servers. As in the approach described above, the problem is
established to be NP-hard, therefore the author introduce a heuristic to address
server consolidation. Experiments were conducted on large set of server real load
data have shown that a saving of about 30 percent can be achieved by means of
the described heuristics. Authors of [10] focused on the problem of energy-aware
task consolidation by means of task migration which is supported by the virtu-
alization technology. The proposal is based on the fact that energy consumption
scales linearly with CPUs utilisation, therefore the authors designed two energy-
aware task consolidation practices aiming at maximising resource utilisation by
taking into account both active and idle energy consumption. By means of these
heuristics each task is assigned to the resource on which the energy consumption
can be minimised without degrading the performance. Another interesting ap-
proach is presented in [11], on which the authors proposed a fully decentralised
algorithm for VMs consolidating in large Cloud data centers. The central part of
the solution is that the initial allocation of VMs is “random”, but the subsequent
allocations are performed by a simple gossip protocol which is well known to hold
desired characteristics as efficiency and scalability, eventually reaching the one
which maximises the number of idle hosts, i.e. that minimise the consumption.

6 Conclusions and Future Work

In this paper we presented a trust-based, multi-agent architecture to assist Cloud
providers in taking decisions about VM migration. The trust model allows the
software agents assisting their providers to separate the evaluation of the differ-
ent impacts, i.e. additional cost or loss of reputation with the customer, which
are caused by the errors made by the counterparts when evaluating factors af-
fecting VM migration. The multi-agent architecture is layered, i.e. composed by
two classes of software agents. The former is composed by those agents whose
responsibility is of computing trust information and negotiating VM migration

82 F. Messina et al.

with their own peers, while the latter is composed by a set of software agents
which reside into the physical machines of the data centers. The second class of
software agents assist those of the former class in taking measures about VMs and
measuring errors derived from previous VM migrations. They also disseminate
trust information by a gossip-based protocol that can provide fault tolerance,
efficiency and redundancy of trust information. As future work we will perform
a wide set of experiments by simulating a typical and detailed scenario by means
of a general purpose, parallel simulator[17,19,20].

Acknowledgements. This work is a part of the research project PRISMA,
code PON04a2 A/F, funded by the Italian Ministry of University within the
PON 2007-2013 framework program.

References

1. Armbrust, M., et al.: A view of cloud computing. Communications of the
ACM 53(4), 50–58 (2010)

2. Barham, P., et al.: Xen and the art of virtualization. ACM SIGOPS Operating
Systems Review 37(5), 164–177 (2003)

3. Bradshaw, J.M.: Software agents. MIT Press (1997)
4. Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: Utility-oriented federation of

cloud computing environments for scaling of application services. In: Hsu, C.-H.,
Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010, Part I. LNCS, vol. 6081,
pp. 13–31. Springer, Heidelberg (2010)

5. Clark, C.: et al. Live migration of virtual machines. In: Proceedings of the 2nd
conference on Symposium on Networked Systems Design & Implementation, vol. 2,
pp. 273–286. USENIX Association (2005)

6. Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin
packing: A survey. In: Approximation Algorithms for NP-Hard Problems, pp. 46–93.
PWS Publishing Co. (1996)

7. Grandison, T., Sloman, M.: Trust Management Tools for Internet Applications.
In: Nixon, P., Terzis, S. (eds.) iTrust 2003. LNCS, vol. 2692, pp. 91–107. Springer,
Heidelberg (2003)

8. Hirt, T.: Kvm-the kernel-based virtual machine. Red Hat Inc. (2010)
9. Jackson, K.: OpenStack Cloud Computing Cookbook. Packt Publishing Ltd (2012)

10. Lee, Y.C., Zomaya, A.Y.: Energy efficient utilization of resources in cloud comput-
ing systems. The Journal of Supercomputing 60(2), 268–280 (2012)

11. Marzolla, M., et al.: Server consolidation in clouds through gossiping. In: WoW-
MoM, International Symposium, pp. 1–6. IEEE (2011)

12. Messina, F., Pappalardo, G., Rosaci, D., Santoro, C., Sarné, G.M.L.: A distributed
agent-based approach for supporting group formation in P2P e-learning. In: Bal-
doni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS, vol. 8249,
pp. 312–323. Springer, Heidelberg (2013)

13. Messina, F., Pappalardo, G., Rosaci, D., Santoro, C., Sarné, G.M.L.: HySoN: A
distributed agent-based protocol for group formation in online social networks.
In: Klusch, M., Thimm, M., Paprzycki, M. (eds.) MATES 2013. LNCS, vol. 8076,
pp. 320–333. Springer, Heidelberg (2013)

A Trust-Based, Multi-agent Architecture 83

14. Messina, F., Pappalardo, G., Rosaci, D., Santoro, C., Sarné, G.M.L.: A trust model
for competitive cloud federations. In: Complex, Intelligent, and Software Intensive
Systems (CISIS), pp. 469–474. IEEE (2014), doi:11.1109/CISIS.2014.67

15. Messina, F., Pappalardo, G., Rosaci, D., Santoro, C., Sarné, G.M.L.: An agent
based negotiation protocol for cloud service level agreements. In: 23th IEEE In-
ternational Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprise, pp. 161–166. IEEE (2014), doi:10.1109/WETICE.2014.12

16. Messina, F., Pappalardo, G., Rosaci, D., Sarné, G.M.L.: An agent based architec-
ture for vm software tracking in cloud federations. In: Complex, Intelligent, and
Software Intensive Systems (CISIS), pp. 463–468. IEEE (2014)

17. Messina, F., Pappalardo, G., Santoro, C.: Complexsim: An smp-aware complex net-
work simulation framework. In: 2012 Sixth International Conference on Complex,
Intelligent and Software Intensive Systems (CISIS), pp. 861–866. IEEE (2012),
doi:10.1109/CISIS.2012.102

18. Messina, F., Pappalardo, G., Santoro, C.: Integrating cloud services in behaviour
programming for autonomous robots. In: Aversa, R., Ko�lodziej, J., Zhang, J., Am-
ato, F., Fortino, G. (eds.) ICA3PP 2013, Part II. LNCS, vol. 8286, pp. 295–302.
Springer, Heidelberg (2013)

19. Messina, F., Pappalardo, G., Santoro, C.: Exploiting gpus to simulate com-
plex systems. In: 2013 Seventh International Conference on Complex, Intel-
ligent, and Software Intensive Systems (CISIS), pp. 535–540. IEEE (2013),
doi:10.1109/CISIS.2013.97

20. Messina, F., Pappalardo, G., Santoro, C.: Complexsim: a flexible simulation plat-
form for complex systems. International Journal of Simulation and Process Mod-
elling 8(4), 202–211 (2013), doi:10.1504/IJSPM.2013.059417

21. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Mea-
surement and analysis of online social networks. In: Proceedings of the 7th ACM
SIGCOMM Conference on Internet Measurement, pp. 29–42. ACM (2007)

22. Murtazaev, A., Oh, S., et al.: Sercon: Server consolidation algorithm using live
migration of virtual machines for green computing. IETE-Technical Review 28(3),
212 (2011)

23. Speitkamp, B., Bichler, M.: A mathematical programming approach for server
consolidation problems in virtualized data centers. IEEE Transactions on Services
Computing 3(4), 266–278 (2010)

24. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud com-
puting. In: Proceedings of the 2008 Conference on Power Aware Computing and
Systems, San Diego, California, vol. 10 (2008)

25. Verma, A., et al.: Server workload analysis for power minimization using consol-
idation. In: USENIX Annual Technical Conference, p. 28. USENIX Association
(2009)

26. Vogels, W.: Beyond server consolidation. Queue 6(1), 20–26 (2008)
27. Wuhib, F., Stadler, R., Spreitzer, M.: A gossip protocol for dynamic resource man-

agement in large cloud environments. IEEE Transactions on Network and Service
Management 9(2), 213–225 (2012)

Cyberphysical Systems and IoT

A Cyber-Physical System for Distributed
Real-Time Control of Urban Drainage Networks

in Smart Cities

Andrea Giordano1, Giandomenico Spezzano1, Andrea Vinci1,
Giuseppina Garofalo2, and Patrizia Piro2

1 CNR – National Research Council of Italy
Institute for High Performance Computing and Networking (ICAR)

Via P. Bucci 41C - 87036 Rende (CS), Italy
{giordano,spezzano,vinci}@icar.cnr.it

2 Department of Civil Engineering of the University of Calabria
Via P. Bucci - 87036 Rende (CS), Italy

{garofalo,piro}@unical.it

Abstract. This paper focuses on a distributed real time control ap-
proach applied to drainage networks. The increasing of urbanization and
climate change heightens the challenge for new technologies to be de-
veloped for drainage networks. Higher runoff volume, produced by the
increase in impervious surfaces and intense rain events, overwhelms the
existing urban drainage systems. Recent technical improvements have
enabled the exploitation of real-time control on drainage networks. The
novelty in this paper regards the use of a totally decentralized approach
based on a proper combination of a Gossip-based algorithm, which en-
sures a global correct behaviour even if local faults occur, and a classic
controlling technique (PID) used for local actuations.

1 Introduction

The magnitude and the frequency of sewer flooding are likely to increase due to
climate change (causing higher intensity of rainfall) and expanding urbanization
(which results in an increase of impermeable areas and hence, in an increase of
surface runoff) [13]. As a consequence, existing urban drainage systems become
drastically overloaded during rainy events, especially when the presence of ob-
structions and blockages in conduits and catch basins, often caused by infrequent
maintenance, strongly reduces their hydraulic capacity. Given the potential risk
to human life, economic assets and the environment, measures need to be adopted
to cope with stormwater volumes and prevent urban areas from sewer flooding.

In recent years, research on embedded systems has been moving towards the
integration of computational resources within the physical system under moni-
toring and control, leading to the so-called Cyber-Physical systems (CPS) [12],
i.e., complex networks of interconnected embedded devices tightly integrated
with the physical process under control. Examples of CPS use are found in such
fields as energy systems, traffic control, medical systems, smart buildings and so
on.

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 87–98, 2014.
c© Springer International Publishing Switzerland 2014

88 A. Giordano et al.

CPS vision can be even applied effectively in the drainage network scenario.
In this context, the network of interconnected devices can be properly exploited
to realize a real time control (RTC), where the devices monitor and regulate
the functionality of the water network in real-time according to the maintenance
conditions and the rainfall events. This approach can be a valuable solution for
dynamically and effectively managing urban flood risks [4].

The employment of an RTC, though, raises several issues due to the large
amount of data to be read, managed and processed. Using a typical centralized
monolithic approach (see SCADA model [11]), all sensed data are sent to a cen-
tral unit that elaborates a suitable strategy based on a comprehensive network
model thus producing commands for the actuation part. This approach has cer-
tain drawbacks: it requires a complex mathematical model of the network and
results in execution and communication times too long to correctly capture dy-
namic changes on the physical part. In addition, a centralized strategy requires
all physical parts (sensors and actuators) to be connected with and reachable by
the central unit.

In this study, an RTC based on a distributed system of sensors and actua-
tors is set up on an urban drainage system. In particular, we instrument the
urban drainage system with a series of moveable gates, functioning as actuators,
and sensors which monitor water level and, hence, the degree of filling in each
conduit. Using the information acquired by the sensors, the gates are dynam-
ically regulated in order to utilize the full storage capacity of the pipeline by
accumulating the excess stormwater volume in the less overloaded conduits thus
preventing water from overflowing from the sewer systems to the sidewalks and
street paving.

A certain number of computing nodes are spread throughout the drainage
network and connected to sensors and gate actuators. Each computing node can
communicate only with its neighbourhood, i.e. sensors, actuators and other nodes
it can reach through wired or wireless connection. An optimization algorithm,
executed on computing nodes in a distributed fashion, aims to distribute equally
the degree of filling of the conduits thus preventing overcharge phenomena as
far as possible. The algorithm exploits Gossip-based aggregation for dealing with
the global aspect of the drainage network while a PID controller is locally used
in each gate.

Preliminary experiments were carried out using SWMM software [5] which
emulates the behaviour of a typical urban drainage network regulated by move-
able gates during severe rainy events. The Real Time Control was added by
means of customizing SWMM software permitting it to real-time communicate
with a separate multi-agent Java controller implemented using Rainbow archi-
tecture [6]. The results have demonstrated that our proposal provides positive
effects on the overall hydraulic performance of the network as it is able to prevent
(or delay) flooding events that would occur in the original (not instrumented)
network.

The rest of this paper is structured as follows: Section 2 discusses prob-
lems about drainage network control and describes the ideas underlying the
proposed approach; Section 3 supplies details about algorithm implementation
and running. Section 4 demonstrates the benefits of the approach where some

A Cyber-Physical System for Distributed Real-Time Control 89

experimental results are given; finally, conclusions are discussed with an indica-
tion of ongoing and future work.

2 Drainage Network Optimization

At first, a drainage network can be formally seen as a graph (V,E) of nodes v ∈ V
connected by edges e ∈ E. More specifically V comprises Junctions j ∈ J , Inlets
l ∈ L and Outlets o ∈ O. E is made up of Conduits c ∈ C. Junctions are just
intersection points for conduits. Inlets are nodes where runoff enters into the
system. Outlets are the points of the network where water is discharged into a
river, lake, reservoir and so forth. Conduits are pipes of different cross-sectional
shapes where the storm water flows [7]. Actually, there are some other features
inherent to drainage networks that allow us to further refine the model so as
to simplify achieving the proposed goal. Firstly, in a typical urban scenario,
the whole drainage watershed can be broken down into several, not connected,
networks in which each network comprises only one outfall. In addition, each
network is likely to be modelled by a tree structure. Indeed, we can see a network
as a main channel, ended by the only outlet, into which recursively defined sub-
networks discharge. Finally, it can be assumed that inlets are located in the
“leaves” of the tree. A very simple drainage network is outlined in Figure 1(a).

Cunduit
Junction

Inlet

Outlet

(a) A simple drainage net-
work schema

Sub-network

Sub-network

Sub-network

(b) recursive
definition of
drainage net-
work

Fig. 1. Sub-networks in a realistic case

On the basis of the previous considerations we formally define a drainage
network as follows. Firstly, we define Most Simple Drainage Network (MSDN =
(c, l)) as a network only made up of one conduit c ending with inlet node l. Then,
we define a drainage network DN as either just an MSDN or a couple (M,S)
where M represents the main channel and S a set of DNs. A main channel
M is an ordered set of conduits in which each conduit is linked with the next
one through a junction. The last conduit optionally ends with an outlet node.
Figure 1(b) shows graphically this recursive definition. Figure 2(a) and 2(b)

90 A. Giordano et al.

show respectively: a case of realistic network and the sub-networks, surrounded
by dashed lines, as results from the above definition. We also define Degree of a
DN as a natural number D that is 0 for an MSDN and 1 +max(Deg(s)) for
a DN = (M,S) where s ∈ S and Deg(s) is the degree of s.

(a) Network

MSDN

dn1

dn2

dn3
dn4

dn5

dn6

dn0

(b) Sub-network

gn0

gn1

gn6

gn3

gn2

gn5 gn4

l1 l2

l3

l4

l5

l6

o1

o2

o6
o3

o4

o5

(c) networks generated

Fig. 2. Sub-networks in a realistic case

The recursive definition of a drainage network permits us to exploit an opti-
mization strategy, conceived for simple networks (such as the one shown in Figure
1(a)), even in more complex scenarios. Basically, we split the complex network
in a set of more simple networks. Given a DN , we firstly define nets(DN) as
the set of all networks of DN as follows:

A Cyber-Physical System for Distributed Real-Time Control 91

nets(DN) =

{
∅, if DN is a MSDN

{DN} ∪
⋃

si∈S nets(si), if DN = (M,S)

Then, starting from a generic drainage networkDN , withDN∗ = nets(DN) =
{dni} and dni = (Mi, Si), we generate a set GN = {gni}, with Degree(gni) = 1
in which each gni = (M ′

i , S
′
i), is given by the following formulas:

M ′
i =

{
Mi, if i = 0

Mi ∪ oi, elsewhere

S′
i = {msdnk = (ck, lk) : ∃dnk ∈ Si} ∪ {msdnx : msdnx ∈ Si}

The intuitive idea concerns replacing all the sub-networks dnk ∈ Si with an
MSDNmsdnk = (ck, lk) in S′

i.M
′
i isMi plus oi outlet node except for i = 0, since

the top level sub-network already hosts an outlet node. The idea underlying this
decomposition consists in running the optimization algorithm detailed below for
all generated sub-networks at the same time so as to achieve a global optimum
for the original network. The incoming flow of the generated inlet nodes lk shall
be the outcoming flow of the corresponding outlet nodes oi=k, i.e. the outlet
nodes of the “replaced” sub-networks gnk, while the generated conduits ck are
just “dummy” conduits that link the inlet nodes lk to the main channels. Figure
2(c) show the networks generated starting from the network of figure 2(a).

Basically, the idea consists in balancing water level throughout the conduits
of the network so as to reduce water level in the more overloaded conduits. In
order to achieve the proposed goal, the network needs to be instrumented by: (i)
sensors, (ii) computational nodes, (iii) “smart” gates as detailed in the following.

– Sensors measure the level of water in each conduit;
– computational nodes are made from single-board computers such as Rasp-

berry pi [10] or Beagleboard which can be effectively spread inside the net-
work because they have low energy consumption and small size;

– smart gates are electronically adjustable gates made up of mobile plates
rotating around a horizontal hinge. The gate is completely closed when the
plate rotates in a perpendicular position with respect to the flow direction.
Conversely, the gate is fully open when the plate is parallel to the flow.

The computational nodes read data from sensors and collectively elaborate
the acquired information in order to trigger suitable actuations on the gates.
The collective computation of the network of nodes supplies the gates with an
“intelligent” behaviour.

Smart gates are located at the points of the network where sub-networks are
connected to a main channel. Figure 3(a) shows the logical places for inserting
the gates, while figure 3(b) shows the gates insertion in a case of a realistic
network.

Each computational node has a partial view of the network as it reads only
from sensors located in its spatial neighbourhood, i.e. the sensors it can physically
reach. In the same way, it can actuate only on its neighbour gates. On the basis

92 A. Giordano et al.

Sub-network

Sub-network

Sub-network

 Gate

(a) Logical (b) Realistic case

Fig. 3. Gates positions

of the previous considerations our proposal lies in using a distributed agent-based
architecture [8]. The agent paradigm has several important characteristics:

Autonomy. Each agent is self-aware and has a self-behaviour. It perceives the
environment, interacts with others and plans its execution autonomously.

Local views. No agent has a full global view of the whole environment but it
behaves solely on the basis of local information.

Decentralization. There is no “master” agent controlling the others, but the
system is made up of interacting “peer” agents.

Through these basic features, multi-agent systems make it possible to obtain
complex emergent behaviours based on the interactions among agents that have
a simple behaviour. Examples of emergent behaviour could refer to the properties
of adaptivity, fault tolerance, self-reconfiguration, etcetera. In general, we could
talk about swarm-intelligence [1] when an “intelligent” behaviour emerges from
interactions among simple entities.

In the case of drainage networks, the property of fault tolerance is particularly
useful since the system needs to continue to operate properly even if unexpected
conditions occur, such as obstructions and blockages, which may reduce the
hydraulic capacity of the system.

Regarding hardware, computational nodes are spread throughout the network
in order to cover all the points of interest, i.e. the sensors and the gates. Regard-
ing software, our proposal considers one agent per gate. Each gate-agent runs
on one of the computational nodes covering the specific gate, it can perceive the
local water level and communicate with the neighbouring gate-agents in order
to elaborate a proper actuation strategy for its gate. Another agent is logically
associated with the outlet node, it behaves the same as other agents except for
the actuation part, indeed, it is not associated with any gate. Figure 4 gives an
intuitive idea of the agents’ role in the generated networks. For each generated
network, the algorithm consists in real-time balancing the water level perceived
by the agents.

A Cyber-Physical System for Distributed Real-Time Control 93

AA

AA

AA

AA

AA

AAAA

AA

AA

AA

AA

AA

AA

AA

AA
AA

AA
AA

AA AA

AA

AA
AA

AAAA

AA
AA

Fig. 4. Agents in generated networks

This water balance is achieved by means of agents continuously executing two
tasks:

Task 1. figuring out the average of the water level in the network.
Task 2. triggering specific gates in order to bring the water level closer to that

average.

Given that an agent has no global knowledge of the water level throughout
the network, the Task 1 is accomplished by exploiting a gossip-based algorithm
summarized in 2.1. This kind of algorithm also supplies the previously mentioned
fault-tolerance. As regards Task 2, even if we knew the optimal water level to
set, we would not know how to tune the gate so as to achieve it. Indeed, the
relationship between the actuation upon the gate and the actual change of water
level depends on the structure of the entire network and the dynamics of the
water flowing through the system, so it is very hard or even impossible to deduce
a tractable mathematical model for it. For this reason a PID controller is used
as explained in 2.2.

2.1 Task 1: Gossip-Based Aggregation

In a Gossip-Based Algorithm [2] there are many nodes interconnected through
a network. Each node possesses some numerical values and can exchange infor-
mation only with a limited set of peer nodes (i.e. its neighbourhood). The goal
of this kind of algorithm concerns estimating global aggregate values such as av-
erage, variance, maximum and so forth, despite only local communication being
possible.

Basically, in the case of average aggregated value, each agent maintains its
current measured value and its local average (initially set to the measured value).
The algorithm consists in continuously exchanging local averages among neigh-
bour nodes. Each time a node receives the average of a neighbour node, it updates
its local average (just applying average operator). Values exchanges and local
computations are done continuously for enough steps so as to ensure that each

94 A. Giordano et al.

local average, computed at every node, converges to the actual global average
(the algorithm convergence is proved in [2]).

When the algorithm converges, the average value is exploited by each gate-
agent for tuning its gate so as to bring water levels closer to that average.
Whenever the convergence is reached, the algorithm is executed taking as input
the new measured values at node level thus reaching the convergence again.
Running this process continuously ensures adaptivity properties as the algorithm
dynamically converges to the new global average even if an unforeseen event
dramatically changes some node values.

2.2 Task 2: Tuning Gates through PID Controllers

Once an agent knows the global water level through the previously described
“gossip-based aggregation”, there remains the problem of appropriately tuning
its gate so as to reach that “desired” level.

This issue is addressed using the well-known controlling technique called Pro-
portional Integral and Derivative (PID) control [9] which, indeed, is particularly
suitable when you do not know an exact mathematical model of the system you
want to control.

A PID controller is a control loop feedback mechanism where an error value
is computed as the difference between a measured output of a process and the
desired value (setpoint) (see figure 5). The controller tries to minimize this error,
appropriately tuning the actuator device.

P

I

D

Process

Fig. 5. PID controller

The setting of the actuator device depends on three effects, suitably tuned by
three parameter: the proportional one (P), the integral one (I) and the derivative
one (D). P depend on present error, i.e. the absolute error computed at the
current evaluation. D measures the foreseen error, i.e. the expected error in the
next step, computed deriving the error signal, while the I represent the integral
effect, a measures of the historical behaviour of the error signal. The following
equation defines a general time-continuous PID controller.

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
d

dt
e(t)

Where e(t) = setpoint(t)− output(t); u(t) is the controller output at time t, i.e.
the actuation signal;Kp, Ki, Kd, three constants which refer at the proportional,
integral and derivative effects.

A Cyber-Physical System for Distributed Real-Time Control 95

In the case of this study, each gate of the drainage network is controlled by a
PID, thus u represents the degree of opening of a gate, while output is the actual
water level of its related conduit and setpoint is the “desired” water level, that
is the average computed by Task 1.

3 Implementation

To validate the approach, we have exploited the Storm Water Management
Model (SWMM) software [5] which is a dynamic rainfall-runoff simulation model
for predicting hydrological and hydraulic behaviour of urban drainage systems
and watersheds. Developed by the United States Environment Protection Agency,
the SWMM sofware is widely used by the scientific community and engineers
for planning, analysis and design related to stormwater runoff, combined and
separated sewers, and other drainage systems in urban areas.

SWMM simulates any kind of rainfall event. It also includes a routing module
that simulates the transport of rainfall water through a system of pipes, channels,
storage/treatment devices, pumps, regulators and so on.

SWMM relies on a time stepped simulation, where the model advancement
is carried out step by step by numerically solving the flow routing equations
(dynamic wave).

SWMM software also allows setting some simple rules to emulate some kind
of control upon the network, anyway, this feature is not enough to develop com-
plex/collective behaviour such as the one proposed in this work. For this reason
we have customized SWMM in order to make it able to exchange information
with an external controlling part, i.e. which runs in a different process with
respect to SWMM.

More specifically, the software has been extended with a module that uses a
tcp/ip connection for real-time sending and receiving information to/from the
controlling part during the advancement of the simulation.

This module also permits to choose where the sensors are located inside the
network, i.e. the physical quantities of interest for the controlling part. At each
pre-defined time interval all values of interest are gathered and sent to the con-
trolling part which, in turn, replies with the collectively computed actuations.
An actuation is an update in a network parameter (e.g. the opening degree of a
gate).

The controlling part is the multi-agent software which implements the ap-
proach described above.

4 Experimental Results

The experiments were carried out using a network which consists in a main
channel of 1 m diameter and a total of 35 pipes inside the sub-networks. The
network delivers the stormwater flow to a final reach, represented by a receiving
water body or a treatment plant. All pipes have circular shape section with a
slope of 2%. In the drainage system the connections between the main channel
and the secondary pipes (junction nodes) are made of 1.5 m tall catch basins,

96 A. Giordano et al.

closed on top. The inlets, i.e. the connections between the urban watershed
surfaces (roads and street paving) with the pipes, are made of open catch basins
which collect surface runoff and deliver it into the sewer system.

In the following two kinds of experiment are shown . The first has the pur-
pose to graphically show how the proposed technique affects the behaviour of a
drainage network in terms of conduits water load.

The second kind of experiment shows the effectiveness of our approach using
the reduction of the overload time as quantitative index of performance.

Experiment 1. For this experiment, we use a 40 minute-rainfall/runoff event
with a fixed flow rate of 0.20m3/s for each inlet node.

The results are shown in Figures 6(a) and 6(b), where the degree of filling
of conduits, represented by values between 0 and 1, are plotted versus time. In
the uncontrolled case (a), the degrees of filling of the less charged conduits are
much lower than the degree of filling of the most charged one. As a consequence
a conduit results overcharged while the other ones result undercharged. This
means that the network does not properly exploit the residual water capacity of
the undercharged conduits.

When the proposed technique is applied (b) the behaviour is completely dif-
ferent. The load curves are much closer to each other as the load on the entire

 0

 0.5

 1

 1.5

 2

 0 600 1200 1800 2400 3000

D
eg

re
e

of
 F

ill
in

g

Time (sec)

(a) uncontrolled network

 0

 0.5

 1

 1.5

 2

 0 600 1200 1800 2400 3000

D
eg

re
e

of
 F

ill
in

g

Time (sec)

(b) controlled network

Fig. 6. Degree of filling of conduits versus time. Overflowed water level is shown using
a dashed line.

A Cyber-Physical System for Distributed Real-Time Control 97

network is more balanced. The latter implies an improvement in the behaviour
of the critical conduit that reaches the overcharge condition later.

Experiment 2. As previously mentioned, the reduction of overload time (the
duration of the overcharge phenomena observed at the most charged conduit)
between the controlled/uncontrolled scenarios is used as quantitative index of
the effectiveness of the approach. It is easy to see that this index is related to the
delay in reaching the maximum value as shown in the previous section. Indeed,
the more time is needed to reach the maximum level the less time the network
is full of charge. Also, even in the case of a heavy rain event, if the duration is
short enough, i.e. delay time is greater than this duration, the system can be
able to ensure no overcharge at all.

The experiment consists in running the algorithm using 40 minute-rainfall/
runoff events with a flow rate spanning from 0.16m3/s to 0.20m3/s for each inlet
node. Each rainfall event is characterized by having a constant flow rate value
during all the event duration.

Figures 7(a) and 7(b) show, respectively, (i) a comparison of the delays in
reaching the maximum level in controlled/uncontrolled scenarios and (ii) the
ratio between these delay times. It can be noted that the delay times in the
controlled network are almost ever double with respect to the uncontrolled one
thus demonstrating the effectiveness of our methodology.

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0.16 0.17 0.18 0.19 0.2

Ti
m

e
To

 R
ea

ch
 M

ax
 D

eg
re

e
O

f F
ill

in
g

 (s
ec

)

Rain Events Flow Rate (CMS)

Uncontrolled
Controlled

(a) absolute value

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.16 0.17 0.18 0.19 0.2

Ti
m

e
To

 R
ea

ch
 M

ax
 D

eg
re

e
of

 F
ill

in
g

 R
at

io

Rain Events Flow Rate (CMS)

Uncontrolled/Controlled

(b) uncontrolled/controlled ratio

Fig. 7. Time to reachmaximum degree of filling. Controlled vs uncontrolled comparison.

5 Conclusions

This paper presents amethodology to control an urbandrainage networkby adopt-
ing a fully distributed and decentralized real-time approach. Each gate of the
instrumented drainage network is represented by a software agent that commu-
nicates only with a limited number of “peer” agents, i.e. its neighbours. The entire
network is broken down into a set of more simple sub-networks where a Gossip-
based algorithm runs continuously to balancewater levels. Each gate is locally con-
trolled by a classic PID controller so as to maintain its related water level as close
as possible to the “suggested” value computed by the Gossip-based algorithm.

98 A. Giordano et al.

Preliminary experiments were carried out using the SWMM simulation soft-
ware which was properly customized in order to allow an external module to
real-time control the simulated network. The experimental results witness a sig-
nificant reduction of the overload times hence demonstrating the effectiveness of
the approach.

Future works will focus on extending the algorithm and validating the ap-
proach in real drainage networks.

Acknowledgments. This work has been partially supported by RES-NOVAE
- “Buildings, roads, networks, new virtuous targets for the Environment and
Energy” project, funded by the Italian Government (PON 04a2 E).

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999); Santa Fe Institute
Studies in the Sciences of Complexity, Paper: ISBN 0-19-513159-2

2. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dy-
namic networks. ACM Transactions on Computer Systems 23(3), 219–252 (2005)

3. Piro, P., Carbone, M., Garofalo, G.: Distributed vs. concentrated storage options
for controlling CSO volumes and pollutant loads. Water Practice & Technology 5,
3 (2010)

4. Campisano, A., Cabot Ple, J., Muschalla, D., Pleau, M., Vanrolleghem, P.A.: Po-
tential and limitations of modern equipment for real time control of urban wastew-
ater systems. Urban Water Journal 10(5), 300–311 (2013)

5. Rossman, L.A.: Storm water management model user’s manual, version 5.0. Na-
tional Risk Management Research Laboratory, Office of Research and Develop-
ment, US Environmental Protection Agency (2010)

6. Giordano, A., Spezzano, G., Vinci, A.: Rainbow: An Intelligent Platform for Large-
Scale Networked Cyber-Physical Systems. In: Proceedings of 5th International
Workshop on Networks of Cooperating Objects for Smart Cities (UBICITEC),
Berlin, pp. 70–85 (2014)

7. Dotsch, F., Denzinger, J., Kasinger, H., Bauer, B.: Decentralized Real-Time Con-
trol of Water Distribution Networks Using Self-Organizing Multi-agent Systems.
In: Proceedings of the 2010 Fourth IEEE International Conference on Self-Adaptive
and Self-Organizing Systems, pp. 223–232 (2010)

8. Wooldridge, M.: An introduction to multi-agent systems. John Wiley & Sons, Ltd.
(2002)

9. Åström, K.J., Hägglund, T.: PID Controllers: Theory, Design, and Tuning. ISA:
The Instrumentation, Systems, and Automation Society (1995)

10. RaspBerry online, http://www.raspberrypi.org/
11. Daneels, A., Salter, W.: What is SCADA. In: International Conference on Accel-

erator and Large Experimental Physics Control Systems, pp. 339–343 (1999)
12. Lee, A.: Cyber Physical Systems: Design Challenges. In: Proceedings of the 2008

11th IEEE Symposium on Object Oriented Real-Time Distributed Computing.
IEEE Computer Society, Washington, DC (2008)

13. Carbone, M., Garofalo, G., Tomei, G., Piro, P.: Storm tracking based on rain gauges
for flooding control in urban areas. Procedia Engineering, 256–265 (2014)

http://www.raspberrypi.org/

Coordination in Situated Systems:

Engineering MAS Environment in TuCSoN

Stefano Mariani and Andrea Omicini

Alma Mater Studiorum–Università di Bologna
via Sacchi 3, 47521 Cesena, FC, Italy

{s.mariani,andrea.omicini}@unibo.it

Abstract. Multi-agent systems (MAS) provide a well-founded approach
to the engineering of situated systems, where governing the interaction
of a multiplicity of autonomous, distributed components with the envi-
ronment represents one of the most critical issues. By interpreting situ-
atedness as a coordination issue, in this paper we describe the TuCSoN
coordination architecture for situated MAS, and show how the corre-
sponding TuCSoN coordination technology can be effectively used for
engineering MAS environment.

1 Coordination and Situatedness in MAS

Agents are not the only fundamental bricks for multi-agent systems (MAS):
since MAS provide a well-founded approach to situated systems [1] – such as
sensor networks [2] –, environment is an essential abstraction for MAS mod-
elling and engineering [3], which needs to be suitably represented and related
to agents. This is the core of the notion of situated action [4], as the realisation
that coordinated, social, intelligent action arises from strict interaction with the
environment.

Essentially, this means that in a MAS things happen not just as a result of
agent actions, but also because of environment change—and, these are the two
sources of events for a MAS. Following [5], dependencies – here, both agent-agent
and agent-environment ones – are one of the main sources of system complexity:
so, both social and situated interactions make MAS complex. Since coordination
is essentially managing dependencies [5], it could be used to deal with both social
and situated dependencies in a uniform way—so that coordination artefacts
could be exploited to handle both social and situated interaction [6].

In this paper, we focus on the TuCSoN coordination middleware [7], and show
how it supports environment engineering in MAS, by providing coordination
artefacts [8] to handle situated interactions. After an overview of the TuCSoN
event-driven architecture (Section 2), we focus on situatedness by describing
the steps a MAS designer should follow to effectively engineer computational
environments supporting agents situated action in TuCSoN (Section 3).

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 99–110, 2014.
c© Springer International Publishing Switzerland 2014

100 S. Mariani and A. Omicini

Fig. 1. In TuCSoN, both social (agent-agent) and situated (agent-environment) interac-
tions are mediated by ReSpecT tuple centres. The unifying abstractions in TuCSoN are
ACC and transducers (as boundary artefacts), the TuCSoN event model, and ReSpecT
tuple centres (as coordination artefacts).

2 TuCSoN Architecture

TuCSoN [7] is a tuple-based coordination model for open, distributed MAS,
providing tuple centres [9] as its coordination artefacts. Tuple centres are pro-
grammable coordination abstractions, which can encapsulate the law of MAS
coordination expressed in the ReSpecT first-order logic language [9].

TuCSoN is available as a Java-based middleware1, and is shaped upon an
event-based architecture handling both social and situated interaction in a uni-
form way. Inspired by the A&A meta-model [10], the TuCSoN architecture pro-
vides two sorts of abstractions: boundary artefacts, to handle both agent activity
and environment change within the MAS; and social artefacts, to govern both
agent-agent and agent-environment interaction. While TuCSoN social artefacts
are ReSpecT tuple centres, boundary artefacts have a twofold nature, account-
ing for the diverse nature of agent actions and environment change: TuCSoN
individual agent interactions are handled by agent coordination contexts (ACC)
[11], whereas transducers [12] deal with individual environmental resources.

The overall architecture of the TuCSoN coordination middleware is depicted
in Fig. 1. Its main components are the following:

1 http://tucson.unibo.it

http://tucson.unibo.it

Coordination in Situated Systems: Engineering MAS Environment 101

agents — Any computational entity willing to exploit TuCSoN coordination
services is a TuCSoN agent. In order to do so, an agent should request and
obtain an ACC (see below) from the TuCSoN node it is willing to interact
with. Any action from any agent towards the MAS – either social or situated
– is then mediated by its associated ACC. Since TuCSoN deals with agent
observable behaviour only, the inner structure and dynamics of individual
agents is of no concern for the TuCSoN coordination model and middleware.

ACC — Agent coordination contexts [11] are TuCSoN boundary artefacts de-
voted to agents. ACC both enable and constrain agents interactions through
an API including only the admissible operations : in particular, ACC map
every agent operation into events, dispatching them to the target tuple cen-
tre. As depicted in Fig. 1, the implementation of ACC is actually split in
two:
– the agent side is responsible for filtering admissible operations then gen-

erate events accordingly, dispatching them to its node side sibling;
– the node side of the ACC listens for its sibling requests, dispatching

them to the target tuple centre then waiting for the outcome of the
coordination process to send the reply back to the agent side.

The resulting bi-directional communication channel decouples agents from
MAS in control, reference, space, and time.

probes —Environmental resources in TuCSoN are called probes. They are dealt
with either as sources of perceptions (aka sensors) or makers of actions (aka
actuators), or even both, in a uniform way. In fact, actions over probes are
called situation operations, and are operated by transducers (see below): in
the same way as agents, probes do not directly interact with the MAS, but
through their associated transducer mediation.

transducers — Analogously to ACC for agents, TuCSoN transducers [12] are
the boundary artefacts devoted to probes. Each probe is assigned to a trans-

Table 1. ReSpecT situated event model

〈Event〉 ::= 〈StartCause〉 , 〈Cause〉 , 〈Evaluation〉
〈StartCause〉 , 〈Cause〉 ::= 〈Activity〉 | 〈Change〉 , 〈Source〉 , 〈Target〉 , 〈Time〉 , 〈Space:Place〉

〈Source〉 , 〈Target〉 ::= 〈AgentId〉 | 〈CoordArtefactId〉 | 〈EnvResId〉 | ⊥
〈Evaluation〉 ::= ⊥ | {〈Result〉}

Table 2. ReSpecT triggering events

〈Activity〉 ::= 〈Operation〉 | 〈Situation〉
〈Operation〉 ::= out(〈Tuple〉) | (in | rd | no | inp | rdp | nop) (〈Template〉 [, 〈Term〉])
〈Situation〉 ::= getEnv(〈Key〉 , 〈Value〉) | setEnv(〈Key〉 , 〈Value〉)
〈Change〉 ::= env(〈Key〉 , 〈Value〉) | time(〈Time〉) |

from(〈Space〉 , 〈Place〉) | to(〈Space〉 , 〈Place〉)

102 S. Mariani and A. Omicini

ducer, which is specialised to handle events from that probe, and to act on
probes through situation operations. Like ACC, transducers are split in two
run-time components: the probe side monitors resources for changes – to be
mapped into events, then dispatched (sensor mode) – and listens to its node
side counterpart for action requests—to be actually carried out on the probe
(actuator mode); the node side of the transducer listens for its sibling noti-
fications – dispatching them to the target tuple centre (sensor mode) – and
monitors the tuple centre for action requests—dispatching them to the probe
side for execution (actuator mode). Hence, another bi-directional communi-
cation channel is established, decoupling in control, reference, space, and
time probes from tuple centres.

events — TuCSoN adopts and generalises the ReSpecT [9] event model, depicted
in Table 1: events are the run-time data structure represent both agent- and
environment-related in a uniform way—as depicted in Table 2. In particular,
TuCSoN events record: the immediate and primary cause of the event, its
outcome, who is the source of the event, who is its target, when and where
the event was generated. As depicted in Fig. 1, ACC and transducers trans-
late external events into TuCSoN events that tuple centres can handle to
implement the policies required for MAS coordination.

tuple centres — ReSpecT tuple centres [9] are the TuCSoN architectural com-
ponent implementing coordination artefacts, thus in charge of managing de-
pendencies. As such, they are meant to govern interactions – thus enacting
coordination – while decoupling (in control, reference, space, and time) de-
pendencies between agent actions and environment changes—in other words,
both social and situated interactions [6]. By adopting ReSpecT tuple centres,
TuCSoN relies on (i) the ReSpecT language to program coordination laws,
and (ii) the ReSpecT situated event model to implement events.
In particular, ReSpecT tuple centres are programmable (first-order) logic tu-
ple spaces [9] based on the tuProlog2 engine for logic-based reasoning and
knowledge representation. As such, they allow MAS designers to program
custom coordination laws, by associating events generated by agent actions
as well as by environment changes to (logic-based) computations. The as-
sociation is implemented by means of reaction specification tuples, a special
kind of first-order logic tuples whose structure is reaction(E,G,R), where:
E is the triggering event causing reaction scheduling, G is the conjunction
of guard predicates to fine-select reactions for execution, R is the reaction
to execute, that is, the computations to be carried out in response to the
selected event.

Summing up, TuCSoN tackles the issue of coordination in situated system with
a uniform and coherent set of components: ACC and transducers represent coor-
dinated entities (agents as well as the environment) in the MAS, then translate
activities and changes coming from them in a common event model (ReSpecT
situated event model); tuple centres coordinate both social and situated depen-
dencies by allowing the management of such events to be programmed.

2 http://tuprolog.unibo.it

http://tuprolog.unibo.it

Coordination in Situated Systems: Engineering MAS Environment 103

3 Environment Engineering in TuCSoN: A Case Study

By adopting the designers standpoint to focus on TuCSoN architectural compo-
nents providing support to environment engineering, in the following we show
how to deal with situated systems using TuCSoN. Thus, in the remainder of this
section we discuss how to implement probes and transducers, how to make the
TuCSoN middleware aware of them, and how to program TuCSoN tuple centres
to inspect and manipulate TuCSoN situatedness-related events.

Generally speaking, designing a situated MAS with TuCSoN would amount
at dealing with the following tasks:

1. Implementing the probes—sensor probes and actuator probes. Typically, this
does not require implementing, e.g., the software drivers for the resources: de-
signers can simply wrap existing drivers in a Java class interacting with TuC-
SoN transducers, implementing the ISimpleProbe Java interface (Fig. 2).

2. Implementing the transducers associated to the sensor and actuator probes
by extending the TuCSoN AbstractTransducer Java class (Fig. 4).

3. Interacting with the transducer manager singleton entity (Fig. 1) to request
its services, which is responsible for probes and transducers association in
TuCSoN. The transducer manager listens to incoming requests for probes
(de)registration and transducers (de)association, booting and setting up the
two sibling sides of the transducer—the node and probe sides.

4. Programming TuCSoN tuple centres with ReSpecT in order to implement the
coordination policies that, along with TuCSoN agents, represent the logic of
the application.

As a running example, we refer to the simple scenario implemented in package
alice.tucson.examples.situatednesswithin TuCSoN latest distribution3: its
simplicity allows us to clearly describe design and implementation issues without
losing in completeness.

There, a situated, “intelligent” thermostat (Thermostat.java) is in charge of
keeping a room temperature between 18 and 22 degrees. To this end, it interacts
with a sensor (ActualSensor.java) and an actuator (ActualActuator.java):
the former is queried by the thermostat to perceive the temperature, whereas
the latter is prompted to change the temperature upon need. Both the sensor
and the actuator, as probes, interface with the MAS (which, in this simple case,
is represented by the thermostat TuCSoN agent alone) through one transducer
each (respectively, SensorTransducer.java and ActuatorTransducer.java).

According to the TuCSoN architecture depicted in Fig. 1, in order to pro-
mote distribution of the application logic the transducers and the thermostat
are associated each with their own tuple centre (tempTc for the thermostat
agent, sensorTc for the sensor transducer and actuatorTc for the actuator
transducer), suitably programmed through ReSpecT reactions (sensorSpec.rsp
for the sensor transducer and actuatorSpec.rsp for the actuator transducer)
that handle the specific interaction with the MAS. Finally, the core logic of

3 TuCSoN-1.10.5.0208, available at http://tucson.unibo.it.

http://tucson.unibo.it

104 S. Mariani and A. Omicini

Fig. 2. Interface to be implemented by probes

1 @Override
public boolean readValue(final String key) {

3 // field ’tid’ stores transducer’s id
if (this.tid == null) {

5 // no transducer associated yet!
return false;

7 }
// field ’transducer’ stores transducer’s reference

9 if (this.transducer == null) {
this.transducer = TransducersManager.INSTANCE .getTransducer(

11 this.tid.getAgentName()
);

13 }
try {

15 // probe’s interaction logic
...

17 this.transducer.notifyEnvEvent(
key, value , AbstractTransducer.GET_MODE // sensor

19);
...

21 return true;
} catch (...) {

23 return false;
}

25 }

Fig. 3. Stripped-down version of the code from ActualSensor.java. Method
writeValue in ActualActuator class is similar, thus not reported here.

the application is implemented through the Thermostat Java class in package
alice.tucson.examples.situatedness.

More specifically, task 1 just requires MAS designers to implement the five
methods of the ISimpleProbe interface (Fig. 2) as a non-abstract Java class—in
our example, classes ActualSensor.java and ActualActuator.java:

getIdentifier — retrieving this probe ID
getTransducer — retrieving this probe associated transducer—if any
setTransducer — to associate an existing transducer to this probe
readValue — to perceive the resource—mandatory for sensors
writeValue — to act on the resource—mandatory for actuators

Whereas the probe ID is assigned by the programmer at construction time,
its association with the transducer occurs dynamically at run-time—hence the

Coordination in Situated Systems: Engineering MAS Environment 105

Fig. 4. Class to be extended by custom transducers and its interface

setTransducer method is usually called by the TuCSoN middleware. To oper-
ate on the probe, the methods readValue and/or writeValue (depending on
whether the probe can behave as a sensor, an actuator, or both) should imple-
ment the logic required to interact with the actual probe—either a simulated
environmental resource, or a real-world object. By completing task 1, the probe
side of the transducer is partially implemented, as depicted in Fig. 1.

Since the transducer logic is fixed – in particular, capturing events from
both probes and tuple centres – an abstract Java class is provided for exten-
sion by the TuCSoN middleware for task 2: AbstractTransducer implement-
ing TransducerStandardInterface—as depicted in Fig. 4. Therefore, only two
methods have to be implemented:

getEnv — to sense an environmental property change—usually, implemented
by transducers assigned to sensors

setEnv — to effect an environmental property change—usually, implemented
by transducers assigned to actuators

Both methods are automatically called by the TuCSoN middleware whenever an
event generated by an environmental property change is raised either by the asso-
ciated probe (the notifyEnvEventmethod in TransducerStandardInterface—
see Fig. 3) or by the associated tuple centre (the notifyOutput method in
TransducerStandardInterfaceautomatically called by theTuCSoNmiddleware
in response toReSpecT primitives such as getEnv—seeFig. 9). Such methods have

106 S. Mariani and A. Omicini

1 @Override
public boolean setEnv(final String key , final int value) {

3 boolean success = true;
// field ’probes ’ stores this transducer’s probes

5 final Object [] keySet = this.probes.keySet ().toArray ();
ISimpleProbe p;

7 for (final Object element : keySet) {
p = (ISimpleProbe) this.probes .get(element);

9 // try to effect the property change
if (!p.writeValue(key, value)) {

11 success = false;
break;

13 }
}

15 return success ;
}

Fig. 5. Stripped-down version of the code from ActuatorTransducer.java. Method
getEnv in SensorTransducer class is similar, thus not reported here.

Fig. 6. Dependencies among transducers and probes. Transducers dispatch to probes
the requests to undertake the situation actions issued by agents (AbstractTransducer
methods in red font), whereas probes rely on transducers to notify the outcome of a
situation operation back to agents (ISimpleProbe methods in red font).

to be implemented so as to actually dispatch to the probes the command to ei-
ther sense an environmental property (method getEnv) or change it (method
setEnv)—the simplest possible implementation is shown in Fig. 5 in the actu-
ator case. Fig. 6 sums up the dependencies existing between transducers and
probes.

Tasks 1, 2 complete the implementation of the transducer probe side, also
automatically achieving part of the transducer node side (see Fig. 1). Once both
probes and transducers are implemented, MAS designers should exploit TuCSoN
services in order to register such components and to associate them through the
transducer manager, which exposes the following API (Fig. 7):

createTransducer — to create a new transducer associated to the given probe
and bound to the given tuple centre

Coordination in Situated Systems: Engineering MAS Environment 107

Fig. 7. The transducer manager

addProbe — to attach a probe to a given transducer
removeProbe — to detach a probe from its transducer
getTransducer — to retrieve a transducer reference given its id
stopTransducer — to destroy a given transducer

Such methods are usually exploited by the agent in charge of configuring the
MAS—in our case, the Thermostat class. It is worth to notice that in order
to enable dynamic and distributed addition/removal of transducers and probes,
as well as dynamic change of their associations, all the services are also avail-
able via TuCSoN coordination operations. In particular, TuCSoN agents may
benefit from transducer manager services also by emitting special tuples in the
built-in ’$ENV’ tuple centre, available in any TuCSoN node—the syntax of such
tuples can be found in TuCSoN official guide4. This is, e.g., the choice of the
Thermostat class as shown in Fig. 8, which establishes the communication chan-
nel depicted in Fig. 1 between the transducer probe side and its node side sibling.
Furthermore, a tuple centre is chosen as the coordination medium programmed
to effectively enable situated interactions between agents and the tuple centre
associated transducer.

The last development task MAS designers have to undertake so as to correctly
exploit TuCSoN situated coordination services is to connect the agents and the
environment – technically, the probes – by means of the TuCSoN tuple centres,
programmed via the ReSpecT language. In fact, as described in Section 2, agents
and probes – or better, ACC and transducers – do not directly interact: all the
interactions happen through coordination operations provided by the TuCSoN
middleware—in particular, by TuCSoN tuple centres. Therefore, focussing on sit-
uation operations, whenever agents need to interact with a probe, they perform
a coordination operation on the tuple centre bound to the transducer responsi-
ble for that probe. This is what makes it possible to reify situation operations
into ReSpecT events, which are to be managed by ReSpecT reactions—and thus
govern the overall event-driven MAS [6].

In the case of our thermostat scenario, taking into account the situated inter-
action with the sensor (ActualSensor.java), the ReSpecT specification tuples

4 http://www.slideshare.net/andreaomicini/

the-tucson-coordination-model-technology-a-guide.

http://www.slideshare.net/andreaomicini/the-tucson-coordination-model-technology-a-guide
http://www.slideshare.net/andreaomicini/the-tucson-coordination-model-technology-a-guide

108 S. Mariani and A. Omicini

public s tat i c void main(f ina l St r ing [] args) {
2 . . .

f ina l TucsonTupleCentreId configTc =
4 new TucsonTupleCentreId (” ’$ENV ’ ” , Thermostat .DEFAULT HOST,

Thermostat .DEFAULT PORT) ;
6 . . .

// tupl e r e i f y i n g createTransducer method c a l l
8 f ina l LogicTuple sensorTuple = new LogicTuple (

” createTransducerSensor ” ,
10 new TupleArgument(sensorTc . toTerm ()) , // the t ransducer ’ s tup l e cen tr e

new Value (// the c l a s s implementing i t
12 ” a l i c e . tucson . examples . s i tua t e dne s s . SensorTransducer ”) ,

new Value (” sensorTransducer ”) ,
14 new Value (// the c l a s s implementing i t s probe

” a l i c e . tucson . examples . s i tua t e dne s s . ActualSensor ”) ,
16 new Value (” sensor ”)) ;

acc . out (configTc , sensorTuple , null) ;
18 . . .

Fig. 8. Stripped-down version of the code from Thermostat.java. Insertion in
’$ENV’ tuple centre of the tuple built in lines 9 − 17 is equivalent to call method
crateTransducer on the transducer manager. Nevertheless, this allows the exploita-
tion of the services of a given TuCSoN node from a remote location—in fact, configTc
may store the id of a remote tuple centre, deployed on another node of the network
w.r.t. the caller.

reaction (
2 in(sense(temp(T))), // agent request

(operation, invocation),
4 sensor@localhost:20504 ? getEnv(temp, T) // perception ‘‘request ’’

).
6 reaction (

getEnv(temp, T), // perception ‘‘reply ’’
8 (from_env , completion), // environment filter

out(sense(temp(T)))
10).

Fig. 9. Stripped-down version of the code from sensorSpec.rsp in pack-
age alice.tucson.examples.situatedness within current TuCSoN distribution
(TuCSoN-1.10.5.0207). ’sensor’ is the probe ID of the probe target of the situa-
tion operation request: the id of its transducers is automatically retrieved by TuCSoN
middleware at run-time, hence transducer mediation is transparent to the ReSpecT
programmer.

in Fig. 9 have to be put in the tuple centre associated to the sensor trans-
ducer (’sensorTc’, bound to TransducerSensor.java which is responsible for
’sensor’ probe).

Although the code shown in Fig. 9 is taken from our specific example, the
ReSpecT program is quite general, since it implements a pattern that is basically
valid for any situated interaction:

– reaction 1−5 maps agents coordination operations requests (external events)
into situation operations commands (internal events)

– reaction 6−10 maps situation operation replies (from probes, external events)
into coordination operations outcomes (internal events)

Coordination in Situated Systems: Engineering MAS Environment 109

/∗ Star t percept ion−reason−act i on loop ∗/
2 LogicTuple template ;

ITucsonOperation op ;
4 int temp ;

LogicTuple ac t i on = null ;
6 for (int i = 0 ; i < Thermostat . ITERS ; i++) {

/∗ Percept ion ∗/
8 template = LogicTuple . parse (” sen se (temp ()) ”) ;

op = acc . in (sensorTc , template , null) ; // see l i n e 2 in Fig. 9
10 i f (op . i sRe su l t Suc c e s s ()) {

temp = op . getLogicTupleResu l t () . getArg (0) . getArg (0) . intValue () ;
12 /∗ Reason ∗/

i f ((temp >= Thermostat .LOW) && (temp <= Thermostat .HIGH)) {
14 continue ;

} else i f (temp < Thermostat .LOW) {
16 act i on = LogicTuple . parse (” act (temp (” + ++temp + ”)) ”) ;

} else i f (temp > Thermostat .HIGH) {
18 act i on = LogicTuple . parse (” act (temp (” + −−temp + ”)) ”) ;

}
20 /∗ Action ∗/

// ’ act ’ ReSpecT r e a c t i on s are s im i l a r to those in Fig. 9
22 acc . out (actuatorTc , act ion , null) ;

}
24 }

Fig. 10. Stripped-down version of the code from Thermostat.java. Notice the ther-
mostat interacts solely with TuCSoN tuple centres, being transducers (thus probes) in-
teractions transparently delegated to the TuCSoN middleware—through the ReSpecT
reactions in Fig. 9.

By completing task 4 through ReSpecT reactions programming, MAS design-
ers explicitly exploit the ReSpecT event model – in particular its triggering events
listed in Table 2 – to support situatedness, binding together events coming from
the agent through its ACC with events going toward the environment through
its transducer (Fig. 9, reaction 1−5)—and, dually, from the environment toward
the agents (Fig. 9, reaction 6 − 10). Technically, this last step in MAS design
using TuCSoN links the node side of ACC with the node side of transducers,
enacting the very notion of situatedness.

The last code snippet in Fig. 10 is meant to show how the application logic –
the thermostat aimed at keeping temperature between LOW and HIGH thresholds
– is linked to the “situatedness machinery”—sensor and actuator probes as well
as their transducers. In particular, line 10 shows TuCSoN coordination operation
invocation causing ReSpecT reactions in Fig. 9 to trigger, leading to stimulate
ActualSensor through its transducer SensorTransducer—transparently to the
designer of the application logic. Conversely, line 27 shows how Thermostat in-
teracts with ActualActuator (through its transducer ActuatorTransducer) to
properly command the needed temperature adjustments—again, transparently.

The same sort of transparency is provided to ReSpecT programmers – as they
have no need to know the internal machinery of probes, but just transducer API
– as well as to probes programmers—since they only deal with ISimpleProbe

and TransducerStandardInterface API. This promotes and supports a clear
separation of concerns : application logic (agent) programmers, coordination (Re-
SpecT) programmers, and environment (probes and transducers) programmers
each may focus on their task, just relying on others adhering to TuCSoN API.

110 S. Mariani and A. Omicini

4 Conclusion

In this paper we describe how the TuCSoN coordination middleware can be
effectively used to handle environment interaction in situated systems modelled
and engineered as MAS [1]. In particular, we first present the TuCSoN event-
driven architecture, overviewing TuCSoN main architectural abstractions, then
we discuss how to exploit them for engineering MAS environment, by illustrating
a simple example of situated MAS based on the TuCSoN middleware.

References

1. Fortino, G., Garro, A., Mascillaro, S., Russo, W.: Using event-driven lightweight
DSC-based agents for MAS modelling. International Journal of Agent-Oriented
Software Engineering 4(2), 113–140 (2010)

2. Aiello, F., Bellifemine, F.L., Fortino, G., Galzarano, S., Gravina, R.: An agent-
based signal processing in-node environment for real-time human activity monitor-
ing based on wireless body sensor networks. Engineering Applications of Artificial
Intelligence 24(7), 1147–1161 (2011)

3. Weyns, D., Omicini, A., Odell, J.J.: Environment as a first-class abstraction in
multi-agent systems. Autonomous Agents and Multi-Agent Systems 14(1), 5–30
(2007)

4. Suchman, L.A.: Situated actions. In: Plans and Situated Actions: The Problem
of Human-Machine Communication, pp. 49–67. Cambridge University Press, New
York (1987)

5. Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM
Computing Surveys 26(1), 87–119 (1994)

6. Omicini, A., Mariani, S.: Coordination for situated MAS: Towards an event-driven
architecture. In: Moldt, D., Rölke, H. (eds.) International Workshop on Petri Nets
and Software Engineering (PNSE 2013). CEUR Workshop Proceedings, vol. 989,
pp. 17–22. Sun SITE Central Europe, RWTH Aachen University (August 6, 2013)

7. Omicini, A., Zambonelli, F.: Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems 2(3), 251–269 (1999)

8. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: Environment-based coordination for intelligent agents. In: Jennings, N.R.,
Sierra, C., Sonenberg, L., Tambe, M. (eds.) 3rd international Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004), vol. 1, pp. 286–293.
ACM, New York (2004)

9. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer
Programming 41(3), 277–294 (2001)

10. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17(3), 432–456 (2008)

11. Omicini, A.: Towards a notion of agent coordination context. In: Marinescu, D.C.,
Lee, C. (eds.) Process Coordination and Ubiquitous Computing, pp. 187–200. CRC
Press, Boca Raton (2002)

12. Casadei, M., Omicini, A.: Situated tuple centres in ReSpecT. In: Shin, S.Y., Os-
sowski, S., Menezes, R., Viroli, M. (eds.) 24th Annual ACM Symposium on Applied
Computing (SAC 2009), vol. III, pp. 1361–1368. ACM, Honolulu (2009)

Experimental Evaluation of the CoAP, HTTP and SPDY
Transport Services for Internet of Things

Laila Daniel1, Markku Kojo1 and Mikael Latvala2

1 Department of Computer Science, University of Helsinki, Finland
2 Mosa Consulting, Finland

{ldaniel,kojo}@cs.helsinki.fi,
mikael.latvala@mosa-consulting.com

Abstract. Internet of Things (IoT) seeks to broaden the scope of the Internet by
connecting a variety of devices that can communicate with the Internet. Transport
services for IoT are crucial in enabling the applications to communicate reliably
and in a timely manner while making efficient and fair use of the potentially
scarce network resources. The communication with IoT devices is often imple-
mented using HyperText Transfer Protocol (HTTP) or a specifically designed
protocol such as Constrained Application Protocol (CoAP) that is a specialized
web transfer protocol for constrained nodes and networks. In this paper we dis-
cuss various options for modifying or adapting HTTP to offer better transport
service for IoT environments. We consider HTTP, SPDY that has been developed
to speed up HTTP in general, IoT-HTTP and IoT-SPDY that are adaptations of
HTTP and SPDY for IoT, and CoAP as transport services for IoT and experi-
mentally evaluate their performance. The results of our experiments show that
CoAP has the lowest object download times and the least number of bytes trans-
ferred compared to the other four transport services. IoT-HTTP and IoT-SPDY
have around 50% shorter object download times and smaller number of bytes
transferred compared to HTTP and SPDY.

1 Introduction

Internet of Things (IoT) refers to an emerging scenario in which a variety of Things (de-
vices, appliances, sensors) equipped with Internet connectivity are embedded in various
settings such as automobiles, buildings, homes, forests, etc. and can be used to collect
data, communicate and make decisions with or without human intervention [1]. This
scenario is interesting and has a wide range of applications in a variety of fields includ-
ing environment monitoring, surveillance, emergency and rescue, and health care.

To extend the Internet services to IoT devices, a suitable transport service is needed.
As the IoT devices have limited resources in terms of computation, communication,
radio and battery life, the transport services should be simple, scalable, robust, effi-
cient in making near-optimal use of resources, easy to maintain and deploy and also
customisable to the need of the applications.

HyperText Transfer Protocol (HTTP) [12] is the de facto standard for information
transfer in the Internet. It operates in a request-reply mode in a client-server environ-
ment on top of the Transmission Control Protocol (TCP) [19]. HTTP is often used to

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 111–123, 2014.
c© Springer International Publishing Switzerland 2014

112 L. Daniel, M. Kojo, and M. Latvala

implement the communication with IoT devices as it enables the IoT devices to connect
to the Internet easily and directly. The main problems in using HTTP in an IoT environ-
ment are the lengthy HTTP headers and the need to establish TCP/IP sessions for each
request-reply data transfer.

SPDY [5, 9] is a transport service developed by Google to speed up HTTP. It mul-
tiplexes several HTTP transactions with priorities over a single TCP connection and
employs header compression to reduce data volume of the HTTP headers. Even though
SPDY uses header compression, SPDY has the ’verbose’ headers of HTTP in addition
to the need to establish a TCP connection for data transfer.

Constrained Application Protocol (CoAP) [22] is a transport service designed spe-
cially considering the requirement of constrained devices such as sensors and IoT de-
vices. As CoAP has a short binary header, the header overhead in transferring data can
be kept at very low level. On the other hand, a CoAP-HTTP proxy is needed to connect
a CoAP client to an HTTP server or vice-versa. The IETF RFC on CoAP [22] defines
a basic mapping between HTTP and CoAP. In addition, deploying proxies can have
scalability issues.

In this paper we examine whether HTTP and SPDY can be adapted to favourably
compare with CoAP as they can directly connect the IoT devices to the Internet without
the need for proxies. In order to have comparable performance with CoAP in terms of
object download time and total bytes transferred to fetch an object, we propose min-
imizing the HTTP and SPDY headers along with TCP enhancements. We use an ex-
tension to TCP known as TCP Fast Open [10, 20] to reduce the object download time.
We refer to the enhanced HTTP and SPDY proposed here as IoT-HTTP and IoT-SPDY.
The results of our experiments show that by using IoT-HTTP and IoT-SPDY there is at
least 50% reduction in object download time and bytes transferred compared to HTTP
and SPDY. However, we note that CoAP still has at least 50% lower download time and
needs fewer bytes to fetch an object compared to IoT-HTTP and IoT-SPDY respectively.

The organisation of the rest of the paper is as follows. Section 2 describes the related
work and Section 3 describes the proposed transport services IoT-HTTP and IoT-SPDY
in detail. Section 4 presents an experimental evaluation of different transport services in
an IoT environment. Section 5 discusses some additional enhancements to IoT-HTTP
and IoT-SPDY that need further evaluation and study. Section 6 concludes the paper.

2 Related Work

Relatively few studies are available in the literature on the comparison with CoAP and
HTTP in wireless sensor networks. A comparative study of CoAP and HTTP in terms
of mote’s (wireless sensor node) energy consumption and response time carried out
using simulations and experiments in real sensor networks is given in [11]. The simu-
lation results on energy consumption by motes show that energy consumed by CoAP
is about half that of HTTP in processing packets while in transmitting packets CoAP
consumes only one fourth. The experiments in real sensor networks show that CoAP’s
response time is nine times lower than the response time of HTTP. CoAP and HTTP
are evaluated in a use case of an intelligent cargo container that transmits information
such as temperature, humidity of fruits and meat inside a container during land or sea

Experimental Evaluation of the CoAP, HTTP and SPDY Transport Services 113

IoT devices

Internet

uplink

downlink

Fig. 1. Typical IoT Topology

Client ServerNetem

Fig. 2. Experimental Setup

transportation [16]. The results show that CoAP transfers smaller number of bytes and
that it features shorter retrieval times compared to HTTP. The authors also compare
CoAP/UDP with HTTP/TCP and HTTP/UDP and the results show that HTTP/TCP has
longer retrieval times compared to UDP based protocols due to the initial TCP con-
nection establishment. Paper [18] evaluates HTTP/TCP, HTTP/UDP with TinyCoAP,
a CoAP implementation in TinyOS [6]. It shows that for transferring small objects,
HTTP/UDP is a better choice than TinyCoAP while for transferring large payloads
TinyCoAP has the best performance in terms of latency and energy. Analysis of CoAP
and HTTP in IoT environments using the total cost of ownership (TCO) model is given
in [17]. The paper shows that CoAP is more cost-efficient than HTTP when smart de-
vices communicate frequently with each other. Also CoAP is found to be economically
preferable when the charging of the communication is based on the volume of trans-
ferred data. The survey paper [14] gives a detailed description on the IETF Standard-
ization in the field of the Internet of Things (IoT) and also compares HTTP and CoAP
as the transport services in IoT environments.

In presenting our work, we are not aware of any previous studies that evaluate CoAP,
HTTP and SPDY in a comparative manner.

3 Transport Services for IoT

In this section we describe briefly the requirements for an IoT transport service and
discuss the five transport services we consider in this paper.

The IoT transport service should provide easy connectivity to the Internet. In this
study we are focusing on the IoT topology as shown in Figure 1 where the IoT devices
are directly connected to the Internet. The IoT devices may also be connected to a
gateway or to a base station that has a connectivity to the Internet. To connect the
IoT devices to the Internet, the transport service should be compatible with TCP/IP
protocol suite, should be an open standard and proven to be scalable. So in our study
we only consider transport services based on HTTP, SPDY or CoAP that are Internet
Engineering Task Force (IETF) specified.

The transport services should provide congestion control to regulate the data flow
that applications may send to the network and achieve some sort of fairness in sharing
the scarce network resources. Even though reliable data transfer is not always a require-
ment, the transport service should provide reliable data delivery if the application needs
it. Congestion control and reliable data delivery may be the functions of the underlying
transport protocols. If these functions are not provided by the underlying transport pro-
tocol, they may need to be implemented at the upper layers. The congestion control and

114 L. Daniel, M. Kojo, and M. Latvala

the reliability mechanisms needed depend on the mode of data transfer between the IoT
devices and the Internet. In push data and request-reply modes of data transfer where
a small amount of data from the IoT devices are to be transferred, simple congestion
control and reliability mechanisms are needed. On the other hand as data volume in-
creases as in continuous data transfer like imaging data from a habitat, more advanced
mechanisms to enforce congestion control and reliability are called for.

As HTTP [12] is the de facto standard of information transfer in the Internet, the main
advantage of using HTTP as a transport service is that any device with HTTP can be
directly connected to the Internet. Another advantage of using HTTP is that TCP which
is the transport protocol for HTTP provides congestion control and reliability. HTTP
operates in a request-reply mode in a client-server environment. The client request is
called the GET request and the reply for the GET request from the server is known
as the ACCEPT message. The header overhead associated with GET and ACCEPT
messages is quite large for transferring data in push data and request-reply modes, when
only a small amount of payload bytes are to be transferred from the IoT devices to the
Internet. As HTTP uses TCP, the connection establishment takes at least one round-trip
time(RTT) before the actual data transfer can take place. So for short transfers like in
push data and request-reply modes, the connection establishment time may be longer
than the time taken for actual data transfer.

SPDY [5, 9] is a transport service developed by Google to make HTTP faster i.e., to
reduce the latency of applications that use HTTP. SPDY can be placed at the session
layer in the OSI model where the application layer protocol is HTTP. To speed up
the HTTP requests and responses, SPDY allows many concurrent HTTP requests in
a single SPDY session over a single TCP connection. These concurrent requests are
called streams that are bi-directional flows of bytes across a virtual channel in a SPDY
session. Using a SYN_STREAM control frame, a stream can be created and a stream
ID is associated with each stream. In the SYN_STREAM frame, additional information
such as upload bandwidth, download bandwidth, round-trip time, initial window size
can be sent through the HEADER block’s name/value pairs. The name/value pairs, also
known as ID/value pairs in the header block are usually compressed. After the SYN
exchange, client and server send a SETTINGS frame that contains the configuration
data and this data can be used for future connections from the same IP address and
from the same TCP port. SPDY compresses HTTP headers resulting in fewer packets
and fewer bytes to be transmitted thereby reducing the bandwidth used by HTTP. SPDY
enables the server to initiate the communications with the client and push data to the
client whenever possible. SPDY also uses the SSL protocol for security. Google claims
that with SPDY around 50% reduction in pageload time can be achieved [5].

CoAP [22] is a transport service for use with constrained devices (devices with low
power, small memory and lossy links) and constrained networks. CoAP operates in a
request-response mode and its transport layer protocol is UDP. As CoAP has a short bi-
nary header of four bytes, the small header overhead in transferring a request-response
type of messages suits well for IoT environments. There is no connection establishment
phase as CoAP operates over UDP which is a connectionless datagram protocol. CoAP
supports optional reliability with exponential backoff for messages. Many issues are
associated with using CoAP as a transport service for IoT devices. To directly connect

Experimental Evaluation of the CoAP, HTTP and SPDY Transport Services 115

the IoT devices to the Internet, a CoAP-HTTP proxy is needed and the scalability of
proxies is always a concern. The IETF RFC on CoAP [22] defines a basic mapping be-
tween CoAP and HTTP. As this RFC is very recent, future changes in CoAP may pose
challenges to the mapping between CoAP and HTTP. CoAP supports optional reliabil-
ity with exponential retransmission timeout backoff to implement a simple congestion
control mechanism.

In this paper we propose IoT-HTTP and IoT-SPDY in which we seek for adapting
HTTP and SPDY, respectively, to make them better suit as transport services for IoT.
In IoT-HTTP and IoT-SPDY, we minimize the headers associated with HTTP GET re-
quest and ACCEPT message and also enhance TCP with TCP Fast Open [10, 20], a
mechanism that reduces the connection establishment time for successive TCP connec-
tions between two end points. In IoT-HTTP and IoT-SPDY, TCP SACK option and TCP
timestamps option are disabled. By disabling TCP timestamps option, 12 bytes can be
saved with every TCP segment.

For IoT-HTTP, we have implemented a simple web server and client to minimize
the HTTP headers associated with GET request and ACCEPT message. When a legacy
browser is used as the Web client for HTTP and SPDY, the GET request includes the
GET method itself, and the details of the operating system, date and time, accepted data
types, encoding schemes, encryption schemes, etc., whereas IoT-HTTP GET request
adds only the protocol name as HTTP and the IP address of the server. In IoT-HTTP,
the ACCEPT message contains only the protocol name HTTP with version, a short
server name and the content type. Thus in IoT-HTTP, the Web client has thinned down
the headers significantly. In IoT-SPDY, to minimize the headers, spdy-python [13] is
used as the SPDY client and spdyd [23] is used as the SPDY server. In addition to
reducing header data volume for IoT-HTTP and IoT-SPDY, we employ TCP Fast Open
(TFO) [10, 20] with IoT-HTTP and IoT-SPDY.

TCP Fast Open (TFO) [10, 20] is an enhancement to TCP in which data transfer is
allowed during TCP’s initial handshake, i.e., during the SYN exchange so as to decrease
the delay experienced by short TCP transfers. Usually data exchange is allowed after
the SYN exchange, i.e., after one Round-trip time (RTT) and this latency is a signifi-
cant portion of the latency of a short flow. TFO protocol proposes secure data transfer
during SYN exchange thereby reducing the latency for HTTP transfers considerably.
The security issues that arise due to the data transfer with the SYN is mitigated by a
server-generated Fast Open cookie.

Figure 3 gives the TFO protocol overview. The client sends a request to the server
for a Fast Open cookie with a regular SYN packet. The cookie generated by the server
authenticates the client’s IP address. The server sends the Fast Open cookie to the client
in the SYN-ACK. The client caches this cookie and uses it for future TCP connections.
Both the cookie request from the client and the issue of the cookie by the server are
implemented using TCP options. Once the client gets a cookie from the server, it can
use this cookie for opening new TCP connections. For new TCP connections, the client
sends the SYN with TFO cookie and data. If the server finds that this is a valid cookie
it sends SYN-ACK acknowledging both SYN and data, then it delivers the data to the
application. The TFO Internet draft [10] states that the server may also send data with
the SYN-ACK before the handshake completes if the TCP congestion control allows.

116 L. Daniel, M. Kojo, and M. Latvala

Requesting Fast open cookie in connection 1

TCP Client A TCP Server B

Closed Listen

SYN-SENT
SYN+TFO-cookie request

Generating cookie by
encrypting client IP

SYN-ACK+TFO-Cookie C
SYN-RCVD

ESTABLISHED
Caches Cookie

Performing TCP Fast open in connection 2
TCP Client A

Closed TCP Server B
Listen

ESTABLISHED

ESTABLISHED

SYN =x, Cookie C+ Data A

SYN =y, ACK=x+len(Data A)+1
Server validates the Cookie C
Sends the DATA A to applicatio
and acknowledges the data

More data packets send to clien
while handshake is in progress

Continues as regular TCP connection

Continues as regular TCP connection

Fig. 3. TCP Fast Open protocol [10, 20]

Typically the server sends the SYN-ACK without any data and starts sending the data
in subsequent packets even before the acknowledgement for SYN-ACK from the client
arrives at the server. If the cookie is not valid the server drops the data and sends back
a SYN-ACK, thus following the usual TCP 3-way handshake (3WHS).

In IoT scenarios where the devices have a small amount of data to be transferred
reliably and quite frequently, TFO allows data transfer during the TCP SYN exchange
thereby saving up to one RTT compared to standard TCP that requires a 3-way hand-
shake which takes one RTT to complete before the data transfer.

4 Experimental Evaluation of CoAP, HTTP, SPDY, IoT-HTTP and
IoT-SPDY

In this section we evaluate the transport services CoAP, HTTP, SPDY, IoT-HTTP and
IoT-SPDY that are described in Section 3.

4.1 Experimental Setup

The experiments are carried out over an emulated IoT environment. The initial set of
experiments are of request-response type between a client and server that communicate
over an emulated link of data rate 20 Kbps, one-way link-delay of 20 ms and Max-
imum Transmission Unit (MTU) of 128 bytes. The above data rate, delay and MTU
size roughly correspond to the data rate, latency and packet size of Zigbee [7] and is

Experimental Evaluation of the CoAP, HTTP and SPDY Transport Services 117

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4
O

bj
ec

t d
ow

nl
oa

d
tim

e
(s

ec
on

ds
)

Object size (bytes)

10 50 100 200 500 1000

HTTP
SPDY

IoT-SPDY
IoT-HTTP

CoAP

Fig. 4. Object download times for different ob-
ject sizes and transport services CoAP, HTTP,
SPDY, IoT-HTTP and IoT-SPDY

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

T
ot

al
 B

yt
es

 T
ra

ns
fe

rr
ed

Object size (bytes)

10 50 100 200 500 1000

HTTP
SPDY

IoT-SPDY
IoT-HTTP

CoAP

Fig. 5. Total bytes transferred to download ob-
jects of different sizes (includes all headers)

emulated using the network emulator, Netem [4]. Netem is a network emulator func-
tionality in Linux that enables to emulate links of different delays, data rates, packet
loss and reordering, etc. Netem is controlled by the command line tool ’tc’ that allows
to show/manipulate traffic control settings. In our experimental set up, shown in Fig-
ure 2, the client, server and the network emulator are hosted by x86_64 GNU/Linux
machines. The client runs Ubuntu 3.8.0 and the server and emulator run Debian 3.12.2.

In our experiments, Google Chrome and Apache server are used as the client and
the server with HTTP and SPDY. As the SPDY server, Apache server enabled with
the module mod-spdy [3] is used. As explained in Section 3, we use a simple Web
client and Web server, and we enable TCP TFO in the Linux TCP/IP stack. The IoT-
SPDY client is spdy-python [13] and the IoT-SPDY server is spdyd [23]. For both IoT-
SPDY client and server, TCP is enabled with TFO. Linux kernels (versions from 3.6
onwards) now support TFO. Some small modifications are needed to the client and the
server to employ TFO [15]. We use the standard TCP implementation in Linux with the
SACK and the timestamp options disabled. The libcoap implementation which is a C
implementation of CoAP [2] is used as the CoAP server and the client.

In our test environment, the client fetches from the server a single object of size that
varies from 10 bytes to 1000 bytes over an error free channel. The metrics used in the
experiments are the object download time and the total bytes transferred in the request-
response communication. The object download time is the duration between the time
the client initiates the request for the object to the time the last byte of the object arrives
at the client. In the cases of HTTP, SPDY, IoT-HTTP and IoT-SPDY, we take the time
difference between the SYN request from the client to the arrival of the final byte of
the object requested. We calculate these times from the tcpdumps collected at the client
while running the experiments.

4.2 Results

Figure 4 shows the object download times for different object sizes when using the
different transport services CoAP, HTTP, SPDY, IoT-HTTP, and IoT-SPDY. We ob-
serve from Figure 4 that the object download times increase with the size of the object

118 L. Daniel, M. Kojo, and M. Latvala

requested in all the five cases. CoAP has the lowest object download times as the pro-
tocol overhead for CoAP is quite small. It can be clearly seen that TFO decreases the
object download times for IoT-HTTP and IoT-SPDY. The object download time is de-
creased also due to the minimized headers for IoT-HTTP and IoT-SPDY. There is at
least 50% reduction in object download time for IoT-HTTP and IoT-SPDY compared
to HTTP and SPDY. It can be noticed from the Figure 4 that the reduction with smaller
object sizes is substantially more. For example, in downloading a 10-byte object, IoT-
HTTP achieves around 75 % reduction in object download time compared to HTTP.

Figure 5 shows the total bytes transferred including all headers when objects of dif-
ferent sizes are requested by the client from the server when using the different transport
services CoAP, HTTP, SPDY, IoT-HTTP and IoT-SPDY. The amount of total bytes are
calculated at the client summing up all IP packets from the first packet sent to the ar-
rival of the last packet carrying the last byte of the object requested. As the protocol
overhead is minimum for CoAP it transfers the lowest number of bytes for each object
compared to that of HTTP and SPDY. SPDY’s header compression accounts for the
slight reduction in object download time compared to HTTP. The minimized headers
and TFO are responsible for the reduction in total bytes transferred for IoT-HTTP and
IoT-SPDY compared to SPDY and HTTP.

4.3 Detailed Analysis of the Results

Next we present a detailed analysis of object download time and bytes transferred for
fetching an object of size 10 bytes by describing the message sequence chart (MSC)
that shows the different phases of the data transfer. The message sequence chart also
shows the packet types and the bytes transferred in this process.

Figure 6 shows the message sequence for HTTP when fetching an object of size 10
bytes from the server. The object download time is 790 ms. The SYN exchange phase
takes about 99 ms. The size of SYN segment is 48 bytes that includes the negotiation
for maximum segment size (MSS). The GET request of size 588 bytes is sent in four
128 bytes packets plus one 76 bytes packet as the MTU of the link is 128 bytes. The
ACCEPT message together with the data is 502 bytes in size and is sent as four packets
from the server to the client. A total number of 20 packets including the ACK packets

HTTP-Client HTTP-Server

SYNStart

48 B

SYN-ACK 48 B

0.08s

GET

588 B

ACCEPT+Data 502 B

0.79s

Fig. 6. Message Sequence Chart (MSC) for ob-
ject download with HTTP

SPDY-Client SPDY-Server

SYNStart

48 B

SYN-ACK 48 B

0.08s

SETTINGS

60 B

GET

453 B

SETTINGS

60 B

ACCEPT+Data 353 B

0.68s

Fig. 7. Message Sequence Chart (MSC) for ob-
ject download with SPDY

Experimental Evaluation of the CoAP, HTTP and SPDY Transport Services 119

CoAP-Client CoAP-Server

RequestStart

39 B

Reply 47 B

0.08 s

Fig. 8. MSC for object down-
load with CoAP

HTTP-Client HTTP-Server

SYN+GETStart

98 B

SYN-ACK 48 B

0.099s

ACK

40 B

ACCEPT 57 B

ACK

40 B

DATA 101 B

0.16s

Fig. 9. MSC for object down-
load with IoT-HTTP

SPDY-Client SPDY-Server

SYNStart

108 B

SYN-ACK 48 B

0.10s

GET

87 B

SETTINGS

60 B

ACK

40 B

ACK

40 B

ACCEPT 78 B

ACK

40 B

DATA 66 B

0.25s

Fig. 10. MSC for object
download with IoT-SPDY

are used and 1546 bytes including IP and TCP protocol headers are transferred to fetch
an object of size 10 bytes.

Figure 7 shows the message sequence for SPDY when fetching an object of size 10
bytes from the server. It takes 680 ms to fetch an object of size 10 bytes from the server.
There are two SETTINGS frames, each 60 bytes in length, transferred both from client
to server and from server to client. The GET request is of size 453 bytes and is sent
as four packets, while the ACCEPT message together with the data is of 353 bytes and
is sent as three packets. The total number of packets transferred in this process is 20
including the ACK packets and a total of 1382 bytes are transferred including IP and
TCP protocol headers. SPDY header compression accounts for the reduction of 164
bytes compared to that of HTTP transfer.

Figure 8 shows the message sequence when an object of size 10 bytes is downloaded
using CoAP. CoAP takes 80 ms to download the object. CoAP uses only two packets,
one request packet sent from the client to the server and one response packet from the
server to the client. CoAP transfers 86 bytes including IP and UDP protocol headers.

Figure 9 shows the message sequence for IOT-HTTP to fetch an object of size 10
bytes. The object download time is 160 ms and for this process 384 bytes are transferred
in six packets. Compared to the time taken when HTTP or SPDY is used to fetch an
object of 10 bytes, this shorter object download time for IoT-HTTP is due to two factors,
namely, the use of TFO and the reduced size of the HTTP GET request. With the use of
TFO, the GET request is transferred with the SYN segment causing a reduction of one
RTT. Google Chrome GET request is of size 588 bytes while in the case of IoT-HTTP,
the client sends a single packet of only 98 bytes in size carrying both TCP SYN and
HTTP GET request.

Figure 10 shows message sequence for IoT-SPDY taking 250 ms to fetch an object of
size 10 bytes. The SYN packet contains SYN, TFO cookie and part of GET request and
it has a length of 108 bytes. One SETTINGS frame of 60 bytes in length is transferred
from the server to the client. The packet carrying the second part of the GET request
is 87 bytes in size and the ACCEPT message with object data is carried in two packets

120 L. Daniel, M. Kojo, and M. Latvala

Table 1. Summary of the analysis of downloading a 10-byte object

Metrics CoAP IoT-HTTP IoT-SPDY SPDY HTTP

Object download time 0.08s 0.16s 0.25s 0.68s 0.79s

#Packets 2 6 9 20 20

TotalBytes 86 384 567 1382 1546

being 78 and 66 bytes in size. The total number of packets transferred in this process is
9 and a total of 567 bytes are transferred including IP and TCP protocol headers.

Table 1 summarises the analysis of downloading a 10-byte object using the five trans-
port services. From the above table, we observe that IoT-HTTP and IoT-SPDY have ob-
ject download times closer to that of CoAP than HTTP and SPDY. With IoT-HTTP and
IoT-SPDY, the object download time reduces from 50% up to 75% compared to that of
HTTP and SPDY.

5 Analysis of Protocol Overhead and Discussions on Additional
Enhancements

In our experiments reported in Section 4, IoT-HTTP and IoT-SPDY use TFO and min-
imized HTTP headers. TCP header compression and a reduced set of TCP congestion
control may further improve IoT-HTTP and IoT-SPDY in IoT environments. In this sec-
tion we carry out in detail the analysis of the protocol overhead involved and discuss
additional enhancements to improve the performance of IoT-HTTP and IoT-SPDY.

Figure 11 shows another way to compare CoAP, IoT-HTTP and IoT-SPDY based on
the protocol overhead associated with them when fetching objects of sizes 10 bytes and

 0

 500

 1000

 1500

 2000

CoAP10

CoAP1000

HTTP10

HTTP1000

SPDY10

SPDY1000

Pr
ot

oc
ol

 o
ve

rh
ea

d
(b

yt
es

)

IP
UDP
CoAP
TCP
HTTP
SPDY

Transport Protocol overhead
Services

IP UDP TCP CoAP HTTP SPDY
10-byte CoAP 40 16 20
object HTTP 120 148 106

SPDY 180 208 169
1000-byte CoAP 220 16 22

object HTTP 560 588 108
SPDY 640 668 170

Fig. 11. Protocol overhead for downloading objects of sizes 10 bytes and 1000 bytes with CoAP,
IoT-HTTP and IoT-SPDY

Experimental Evaluation of the CoAP, HTTP and SPDY Transport Services 121

1000 bytes. The x-axis labels CoAP10 and CoAP1000 refer to COAP that downloads
10-byte and 1000-byte objects. Similarly, HTTP10 and HTTP1000 refer to IoT-HTTP
and SPDY10 and SPDY1000 refer to IoT-SPDY that download a 10-byte and a 1000-
byte objects. In the case of CoAP, out of the total 86 byes transferred to fetch a 10-byte
object, IP uses 40 bytes, where UDP and CoAP use 16 bytes and 20 bytes, respectively.
The TCP/IP overhead for IoT-HTTP and IoT-SPDY are 268 bytes and 388 bytes, re-
spectively. The HTTP overhead in IoT-HTTP and the SPDY overhead in IoT-SPDY are
106 and 169 bytes, respectively.

When it comes to fetching a 1000-byte object, the object has to be divided into 11
TCP segments for IoT-HTTP and IoT-SPDY as the MTU of the emulated link is 128
bytes. For downloading the 1000-byte object, 28 IP packets are needed for IoT-HTTP
including the SYN, SYN-ACK, data and acknowledgements whereas for IoT-SPDY, 32
IP packets are needed. The TCP/IP header overhead for IoT-HTTP and IoT-SPDY are
1148 bytes and 1308 bytes respectively. The HTTP and the SPDY overheads are 108
bytes and 170 bytes for IoT-HTTP and IoT-SPDY respectively. In the case of fetching
the 1000-byte object using CoAP, the object is fragmented into 10 fragments and a
total of 11 packets are transferred including one CoAP request and 10 CoAP reply data
packets. The protocol overhead in this transfer consists of 22 bytes for CoAP, 16 bytes
for UDP and 220 bytes for IP. The above analysis shows that HTTP protocol overhead
in IoT-HTTP and SPDY protocol overhead in IoT-SPDY are quite large compared to
CoAP. It can also be seen that TCP/IP overhead in IoT-HTTP and IoT-SPDY is much
larger than UDP/IP overhead in CoAP.

Even though, SPDY has built-in header compression, the above analysis suggests
that it is worth investigating the possibility to further reduce the overhead associated
with SPDY. The TCP/IP overhead can be reduced significantly by using TCP header
compression schemes like RObust Header Compression protocol (ROHC) [21] and
thereby reducing the total bytes transferred in fetching an object.

TCP uses a sliding window mechanism that allows to send a number of TCP seg-
ments in succession without getting an acknowledgement for each segment. TCP’s
sliding window mechanism uses 32-bit sequence numbers and 32-bit arithmetic to im-
plement this. In IoT scenarios where data transfer is either push mode or request-reply
mode, a small number of TCP segments are sent. So instead of using the TCP sliding
window mechanism, we can use TCP as a stop and wait protocol where a new seg-
ment is sent only after the sender gets the acknowledgement for the previous segment.
This eliminates the processing time and the memory requirements for implementing the
sliding window mechanism.

In IoT scenarios where the data transfer is either push mode or request-reply mode,
we can go for the simplest congestion control mechanism of retransmission timeout
(RTO). The simplified reliability and congestion control mechanisms allow a small foot-
print for TCP. However in bulk transfer or in continuous data flow mode of data transfer
between IoT devices and base station, TCP sliding window mechanisms and congestion
control mechanism based on duplicate acknowledgements (dupack) and retransmission
timeout [8] can be used.

122 L. Daniel, M. Kojo, and M. Latvala

6 Summary and Future Work

In this paper we evaluated the performance of transport services HTTP, SPDY, CoAP,
IoT-HTTP, and IoT-SPDY in an emulated IoT environment. HTTP, SPDY and CoAP
are well-known transport services in the Internet whereas IoT-HTTP and IoT-SPDY are
adaptations of HTTP and SPDY to make them better suited for IoT environments. The
adaptations include minimization of the HTTP/SPDY headers, using TCP Fast Open to
lower latency by reducing the TCP connection establishment time, and disabling TCP
SACK and timestamps options.

The transport services are compared on the basis of object download time, the total
amount of transferred bytes, and the introduced overhead. The experiments are per-
formed in an emulated setup using Netem emulator with Zigbee-like settings and in the
context of a simple request-response scenario.

As expected, our experiments show that CoAP has the lowest object download times
and the least number of bytes transferred compared to that of HTTP and SPDY due
to the header overhead in HTTP and the TCP connection establishment. With our pro-
posed schemes, IoT-HTTP and IoT-SPDY, we observe that IoT-HTTP and IoT-SPDY
have around 50% shorter object download times and smaller number of bytes trans-
ferred compared to HTTP and SPDY. As SPDY has built-in header compression, we
suggest IoT-SPDY as a good candidate for IoT transport service. In addition, we intend
to investigate the possibility to further reduce the overhead associated with SPDY and
TCP. Possible targets for additional enhancements include improving SPDY’s header
compression scheme and RObust Header Compression (ROHC) scheme with TCP.

Acknowledgements. This work was supported by TEKES as part of the Internet of
Things DIGILE (Finnish Strategic Centre for Science, Technology and Innovation in
the field of ICT and digital business). We thank the anonymous reviewers for their
constructive comments on our paper.

References

[1] ICT SHOK IoT programme, http://www.internetofthings.fi/
[2] libcoap: C-Implementation of CoAP,

http://sourceforge.net/projects/libcoap
[3] mod_spdy: Apache spdy module, http://code.google.com/p/mod-spdy
[4] Netem: Network Emulator, http://manpages.ubuntu.com/

manpages/raring/en/man8/tc-netem.8.html
[5] SPDY: An Experimental Protocol for a Faster Web,

http://www.chromium.org/spdy/spdy-whitepaper
[6] TinyOS, http://www.tinyos.net/
[7] Zigbee, http://en.wikipedia.org/wiki/ZigBee
[8] Allman, M., Paxson, V., Blanton, E.: TCP Congestion Control. Internet RFCs, RFC 5681

(September 2009) ISSN 2070-1721
[9] Belshe, M., Peon, R.: SPDY Protocol. Internet draft “draft-mbelshe-httpbis-spdy-00”, Work

in progress (February 2012)
[10] Cheng, Y., Chu, J., Radhakrishnan, S., Jain, A.: TCP Fast Open. Internet draft “draft-cheng-

tcpm-fastopen-09.txt”, Work in progress (June 2014)

http://www.internetofthings.fi/
http://sourceforge.net/projects/libcoap
http://code.google.com/p/mod-spdy
http://manpages.ubuntu.com/manpages/raring/en/man8/tc-netem.8.html
http://manpages.ubuntu.com/manpages/raring/en/man8/tc-netem.8.html
http://www.chromium.org/spdy/spdy-whitepaper
http://www.tinyos.net/
http://en.wikipedia.org/wiki/ZigBee

Experimental Evaluation of the CoAP, HTTP and SPDY Transport Services 123

[11] Colitti, W., Steenhaut, K., De Caro, N., Buta, B., Dobrota, V.: Evaluation of Constrained
Application Protocol for Wireless Sensor Networks. In: Proceedings of the 18th IEEE
Workshop on Local and Metropolitan Area Networks (LANMAN), pp. 1–6 (2011)

[12] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.: Hy-
perText Transfer Protocol - HTTP/1.1. Internet RFCs, RFC 2616 (June 1999) ISSN 2070-
1721

[13] Gupta, A.: spdy-python: A SPDY Library in Python,
https://github.com/ashish-gupta-/spdy-python/

[14] Ishaq, I., Carels, D., Teklemariam, G.K., Hoebeke, J., Abeele, F., Poorter, E., Moerman, I.,
Demeester, P.: IETF Standardization in the Field of the Internet of Things (IoT): A Survey.
Journal of Sensor and Actuator Networks 2(2), 235–287 (2013)

[15] Kerrisk, M.: TCP Fast Open: Expediting Web Services,
http://lwn.net/Articles/508865/

[16] Kuladinithi, K., Bergmann, O., Pötsch, T., Becker, M., Görg, C.: Implementation of CoAP
and its Application in Transport Logistics. In: Proceedings of the workshop on Extending
the Internet to Low power and Lossy Networks (IP+SN) (2011)

[17] Levä, T., Mazhelis, O., Suomi, H.: Comparing the cost-efficiency of CoAP and HTTP in
Web of Things applications. Decision Support Systems 63, 23–38 (2014)

[18] Ludovici, A., Moreno, P., Calveras, A.: TinyCoAP: A Novel Constrained Application Proto-
col (CoAP) Implementation for Embedding RESTful Web Services in Wireless Sensor Net-
works Based on TinyOS. Journal of Sensor and Actuator Networks 2(2), 288–315 (2013)

[19] Postel, J.: Transmission Control Protocol. Internet RFCs, RFC 793 (September 1981) ISSN
2070-1721

[20] Radhakrishnan, S., Cheng, Y., Jerry Chu, H.K., Jain, A., Raghavan, B.: TCP Fast Open. In:
Proceedings of the Seventh Conference on Emerging Networking EXperiments and Tech-
nologies, CoNEXT 2011, pp. 20:1–20:12 (2011)

[21] Sandlund, K., Pelletier, G., Jonsson, L.-E.: RObust Header Compression (ROHC) Frame-
work. Internet RFCs, RFC 5795 (March 2010) ISSN 2070-1721

[22] Shelby, Z., Hartke, K., Bormann, C.: The Constrained Application Protocol (CoAP). Inter-
net RFCs, RFC 7252 (June 2014) ISSN 2070-1721

[23] Tsujikawa, T.: spdylay:The experimental SPDY protocol version 2, 3 and 3.1 implementa-
tion in C, http://tatsuhiro-t.github.io/spdylay/

https://github.com/ashish-gupta-/spdy-python/
http://lwn.net/Articles/508865/
http://tatsuhiro-t.github.io/spdylay/

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 124–135, 2014.
© Springer International Publishing Switzerland 2014

An Effective and Efficient Middleware
for Supporting Distributed Query Processing

in Large-Scale Cyber-Physical Systems

Alfredo Cuzzocrea1, Jose Cecilio2, and Pedro Furtado2

1 ICAR-CNR and University of Calabria, Italy
2 CISUC/DEI, University of Coimbra, Portugal

cuzzocrea@si.deis.unical.it, {jcecilio,pnf}@dei.uc.pt

Abstract. Large-scale Cyber-Physical Systems (CPS) represent the new frontier
for distributed computing and, in particular, Cloud computing. In such systems,
there is a tight need for effective and efficient distributed query processing
tasks, which may be implemented within the core layer of conventional
middleware. In particular, autonomous embedded devices (also known as
motes) and wireless sensor networks appear to be the most convenient
computational infrastructures to implement and deploy CPS effectively and
efficiently. Within this so-delineated research context, in this paper we propose
architecture and functionalities of StreamOperation (StreamOp), a middleware
for supporting distributed query processing via a novel paradigm that lies on the
autonomous database management metaphor to be implemented on each mote
of the system. We also provide experimental analysis and assessment which
clearly validate our research even from a performance-oriented point of view,
beyond the conceptual point of view ensured by our main contributions.

1 Introduction

Large-scale Cyber-Physical Systems (CPS) (e.g., [26,27,28]) represent the new
frontier for distributed computing and, in particular, Cloud computing (e.g., [29,30]).
In such systems, there is a tight need for effective and efficient distributed query
processing tasks, which may be implemented within the core layer of conventional
middleware. During the last decade, a lot of progress has happened in the field of
autonomous embedded devices (also known as motes) and wireless sensor networks.
In this context, we envision next-generation systems to have autonomous database
management functionalities on each mote, for supporting easy management of data on
flash disks, adequate querying capabilities, and ubiquitous computing with no-effort.
Following this major vision, in this paper we describe application scenarios,
middleware approach and data management algorithms of a novel system, called
StreamOperation (StreamOp), which effectively and efficiently realizes the depicted
challenges. In particular, StreamOp supports heterogeneity, i.e. it works on top of
different platforms, efficiency, i.e. it returns responses quickly, and autonomy, i.e. it
saves battery power. We show how StreamOp provides these features, along with
some experimental results that clearly validate our main assumptions.

 An Effective and Efficient Middleware for Supporting Distributed Query Processing 125

Motes are embedded devices that are small, compact and are characterized by a set
of features that make them autonomous. Examples include TelosB, Arduino and
Raspberry-PI. Motes can (i) interact with the physical world through their
incorporated ADC/DAC interfaces, (ii) compute tasks, (iii) communicate via wireless
connections, (iv) store large amounts of data in their flash disks, and (v) work
autonomously over extended periods of time thanks to battery power. These special
features allow motes to be capable of collecting data autonomously over extended
time periods, while later-on the data are aggregated and processed for query
processing purposes. Some of those devices are also quite limited in computational
capabilities (e.g., TelosB exposes a 48 KB code memory and a 10 KB data memory).
Wireless sensor networks (WSN) can be built in an ad-hoc manner by placing a
bunch of motes anywhere (or, alternatively, they can even be thrown!), being just
after these motes collecting data and talking to each-other automatically. Also, in
order to globally collect data from motes for analysis purposes, one or more sink
nodes interface with a computer, e.g. via USB or WIFI, and route collected data into
its storage layer. Individual nodes or a whole WSN may stay autonomous collecting
data that are requested later-on.

For many common sensing and processing (and possibly actuation) applications
over those devices, coding in low-level languages can be replaced by declarative
configurations over a middleware. The advantage is for application domain experts to
deploy and run such systems without specific programming skills, beyond to defining
scalable environments. Nevertheless, since platform and application requirements
vary over time, a good configuration system should have a set of characteristics to be
set. Among those, it should handle heterogeneous subsystems, node-wise operation,
offer operation expressive power, and support data exchanges. Even more
importantly, if we install appropriate data management functionalities in motes and a
middleware to query them, the resulting system can be used in the most diverse
application scenarios easily. On the other hand, the system should also fit into
constrained devices, be efficient and save battery power. Inspired by this evident
trade-off need, in this paper we focus on supporting data management and query
functionalities over sensor network streams efficiently, and describe application
scenarios of this context, a middleware approach and the data management
algorithms that convey in the proposal StreamOperation (StreamOp), a novel system
supporting the described features.

2 Data Management Within the Node

The data management system is defined by a set of mechanisms: organization of data
storage, stream relational algebra and corresponding algorithms, time-ordered Group-
by for aggregating over time intervals, and the generic Group-by for grouping by an
attribute that is not pre-sorted. Finally, we also provide an algorithm for joining
arbitrary datasets, although we did not test it. It is developed as part of the Stream
Management Engine (SME) that is installed into each node for the system to work.

SME is installed in nodes and implements a query processor over ram and flash,
and data exchanges between nodes. A stream has a metadata structure that is stored in
flash or ram memory and defines attributes. Streams stored in memory are arrays of

126 A. Cuzzocrea, J. Cec

tuples, while flash-resident
file). One typical use scena
it later using queries. Ano
memory and to send the dat

Physical storage on fla
variable-sized tuples. Fig.
alternatives. Although SME
tuples for our implementati

Fig. 1. Me

If desired, it is possible t
streams representing period
pair (starting timestamp, ac
from those. If the stream s
added. This timestamp info
called the timestamp index.
over the timestamp.

The sensor network is a
and a SME with catalog
maintains all information o
through the console. The qu
query and return the result
the window fills-up the qu
(other streams). The constr
code and data memory, we

The base query-processi
retrieving one tuple at a tim
and outputting the results
clause select contains a
constants, function calls su
or simple expressions). T
bytecode that represents th
node parameters that can b
Where conditions are eith
operand operator express
operators are a set of possi
where conditions can be an

ilio, and P. Furtado

t streams are stored in files (each stream is stored in
ario is to log a stream of sensor data into flash and retri
other scenario is to acquire sensor data into a window
ta to the PC when the window fills-up.
ash has two main possible organizations: constant-

1 shows the metadata and data corresponding to b
E can handle both, we focus on the simpler constant-si
ons on motes with small code and data memory.

etadata and Data: Constant and Variable-Sized

to store one timestamp value per stream row. However,
dic acquisitions (e.g., every minute) it is enough to store
cquisition rate). The timestamp of every tuple is determi
stops execution and restarts later, a new pair needs to
ormation of a stream is stored in a companion file tha
. In the case of variable-sized tuples, a b-tree index is u

distributed system with at least one SME in a sensor n
and a Java console application in one PC. The cata
on node configurations and status. Queries are submit
uery is pre-parsed into a query bytecode and nodes run
to the caller. In the case of a stream with a window, w

uery is ran and results forwarded to registered consum
rained SME version should occupy very small amounts
will describe its query processing algorithms.
ing algorithm of Fig. 2 works on a row-by-row fashi

me, applying selection and projection restrictions on the r
if the row is not excluded by evaluated conditions. T
set of expressions (e.g., stream attributes, paramet

uch as todate(), aggregation functions applied to attribu
These are pre-parsed in the console application into
he select fields to be interpreted by the mote. Examples
e included in queries include nodeID or sensor identifi
her operand operator operand expressions (binary)
sions (unary). Operands are (simple) expressions,
ible operators (e.g. “>”,”<”,”=”,”!=”,”>=”,”<=”). Multi
ded or ored.

one
ieve
w in

and
both
ized

 for
 the
ned

o be
at is
used

node
alog
tted
the

when
mers
s of

ion,
row
The
ters,
utes,
o a
s of
iers.
 or
and
iple

 An Effective and Efficient Middleware for Supporting Distributed Query Processing 127

In Fig. 1, the temporary aggregation structure A maintains additive quantities (sum
s, square sum ss, maximum, minimum and number of tuples processed n) that allow
aggregations to be computed after all the tuples were processed. For instance, the
maximum and minimum are given directly from the current maximum and minimum
in the structure, the average is a sum divided by the number of tuples, and the
variance can be derived according to: (ss-(s*s)/n)/n.

The query processing algorithm shown in the figure requires only a minimal
amount of memory. It needs one tuple for input stream data, about 100 B for keeping
metadata for each stream, few bytes for local variables used during query processing,
space for the aggregation structure A (less than 50 B), and space for the output buffer
O that holds result tuples. This buffer is flushed into network messages as soon as
there are enough tuples to fill a packet payload, to be sent to the destination computer.
This way, O needs only a packet payload size (about 100 B in TelosB). We show
results on the memory space that was consumed in the experimental section.

O= temporary tuple space for output tuples;
A=Aggregation structure, a temporary structure for computing
aggregations;

1. Scan stream, tuple-by-tuple:
For each tuple,
 Apply selection operations (early-select) (where clause conditions)
 If selection operations evaluate to false (tuple will not contribute
to output),
 go to step 2 with next tuple
For each select clause field,
 If field is a constant, output it to a temporary output tuple space
O;
 If the field is attribute, copy its value in current tuple to O;
 If the field is a function applied to an attribute, call the
function with the attribute value of current tuple, output the result to
O;
 If the field is an aggregation (e.g. sum, count, avg, max, min),
the attribute value of the current tuple updates A, a temporary
aggregation computation structure for that attribute (an aggregation
hashmap);
 If (0 already fills a network packet), fill the packet and send the
results, emptying O)

2. End of query:
If the query is an aggregation, compose final output from aggregation
structure.

Fig. 2. Base Query Processing Algorithm

The objective concerning Constrained group aims at devise efficient solutions that
may be run entirely in very small amounts of data memory (e.g., [24]), and the code
should fit into the code memory of motes.

Sensor data is stored in stream format in monotonically increasing timestamp
order, and it is very frequent to aggregate by time units. Therefore, we take advantage
of the timestamp-order to define a simple Group-By Time approach with minimal
memory requirements that is based on ordered aggregation. Only for the more generic

128 A. Cuzzocrea, J. Cecilio, and P. Furtado

case when the group-by attributes are not ordered we apply an external sort prior to
using the same ordered aggregation algorithm. In this section we describe the
algorithms, which are evaluated in the experimental section.

How to efficiently retrieve time-interval files? Consider a query retrieving logged
data for a time interval. Since the stream data is time-ordered and the stream has a
timestamp index, the appropriate offset in the stream is calculated from the index and
the query timestamp interval start. Tuples are then read until the timestamp interval
end is reached. In our proposal, this is implemented by the so-called file seek index.

The objective of algorithm Group-By Time together with the time-interval file seek
is to run fast, save battery and to use the minimum possible amount of data memory,
so that the algorithm can run efficiently in 2KB or less of data memory. The
algorithm keeps a single aggregation computation structure (A) in data memory and is
useful for grouping into time-intervals and to aggregate all the dataset. It is also used
as the second step of the all-purpose group-by algorithm given in the next sub-section.

Consider an acquisition stream, that is, a stream that results from acquiring sensor
data periodically. The time granularity of the stream is given by the sensor-sampling
rate (or the rate at which it receives data from another stream), and time-aggregated
queries aggregate into some other time granularity. The Group-By Time algorithm of
Fig. 3 executes when a time argument is used in the group by clause. If the where

timeF: the time format string used in the query groups
(‘DD-MON-YY,HH’ in the above example);
timeG: the current group identified as a string;
aggregationStructure: A(timeG, s=0,ss=0,max=-1,min=MAXVAL,n=0);
 (sum s, square sum ss, maximum max, minimum min,
 and number of tuples processed n)
GBTime Algorithm:
0. timeG=””;

1. If a time interval specified in the where clause restricts the
interval that must be considered,
 Seek the position on flash corresponding to the start of the time
interval specified in the where clause.

2. Scan the tuples one-by-one while the tuple timestamp is lower than
the upper bound on time interval or the end of the dataset is met.
Evaluate where conditions on the tuple, if tuple is excluded continue
(2.) with next tuple;
 if todate(timestamp, timeF) for the tuple equals timeG
 update aggregation structure variables by adding the value(s) from
the tuple;
 else // ended computing group aggregation for timeG
 compute select aggregations and expressions from A and output to
O;
 if O fills packet, send packet and empty O;
 reset A structure for next group;
 timeG= new timeF;

3. Send O;

4. End.

Fig. 3. Group-By-Time Algorithm

 An Effective and Efficient Middleware for Supporting Distributed Query Processing 129

clause contains a time interval condition (alone or anded with other conditions), the
file seek index is used to avoid full table scans. Then the algorithm simply scans the
dataset tuples within the time interval specified in the where condition, while updating
the aggregation computation for the current group. When the group changes (group
time boundary is passed), the group aggregation is computed and it switches to
compute the next group.

Group-By Time is evaluated in the experimental section and its performance and
energy consumption is compared with alternatives. Resources used are: (i) I/O (flash):
n = number of tuples in dataset, nI in time interval; (ii) Constant-sized = nI (Variable-
sized = logn + nI); (iii) Minimum data memory: sizeOf(A) + sizeOf(Tuple) +
sizeOf(O), where O is the temporary output buffer that can be flushed whenever
needed.

An all-purpose Group-By is given for processing aggregations over generic non-
stream-ordered attributes. A Sort-Group By algorithm is so-determined. Similarly, an
all-purpose Join is given with the Sort-Merge-Join algorithm. These will be slower
when temporary flash-space is needed, but will handle generic aggregation and join
operations. Fig. 4 shows the Sort-Group By algorithm that was implemented. In Step
1 (external sort), the data set is sorted by the group-by attributes using an external sort
(flash memory). Step 2 (re-)uses the Group-By Time algorithm, replacing time
attribute values by the group-by attribute values in the algorithm. This way, the
grouping of the sorted data can be done with small amounts of data memory, and re-
utilizes the aggregation algorithm of Group-By Time.

We denote as GB-fts the Group-By Time algorithm doing a full-table scan and GB-
idx a version using the timestamp index when one exists and a where clause restricts
retrieval over a time interval.

GB-fts and GB-idx Algorithms:

Step 1. External Sort (simplified for the sake of brevity):

S= Sort buffer, should fit in memory, S=empty initially

For all tuples of dataset

 Apply where conditions, if tuple excluded by where conditions,

continue (1.) with next tuple;

 Project attributes and add remaining tuple values to S;

 If S full, apply in-mem sort algorithm, store as runfile and empty S;

For each input tuple from all runfiles

 Output next tuple in sort order and read next tuple from the runfile

of the chosen tuple;

 Output tuples are flushed to flash when output buffer fills up,

emptying the buffer;

Fig. 4. Sort-Group By Algorithm

In the case of the Join algorithm shown in Fig. 5, for the sort-merge join both
datasets need to be sorted. The same external sort algorithm is used, then the
algorithm reads sequentially tuples from both datasets simultaneously, outputting
matches.

130 A. Cuzzocrea, J. Cecilio, and P. Furtado

Sort-Merge-Join of datasets A and B

Run External Sort on A and on B to order by join attribute(s), resulting

in sortedA and sortedB (external sort Algorithm given above)

While there are input tuples from sortedA or sortedB

 If join attribute values for sortedA and sortedB match,

 Compose output tuple to O, from the sortedA and sortedB tuples;

 If O fills a packet, compose the packet and send it, then empty O.

 Retrieve next sortedA and sortedB tuples;

 Else

 Retrieve next tuple from either sortedA or sorted, by getting the

smallest of the two based on the sort order. Replace the corresponding

input tuple;

Fig. 5. Sort-Group By Algorithm

Resources used are: (i) IO (flash): n = number of tuples in dataset, σ is where
selectivity; (ii) IO(sort A) + IO(sort B) + σAnA+ σBnB; (iii) Minimum data memory:
sizeOf(S) for sorts, then sizeOf(A) + sizeOf(B) + sizeOf(O).

3 StreamOp Architecture

StreamOp is an application-level middleware that views one or more networks as a
distributed system, where every computing device is a stream engine with a common
set of computation, storage and data exchange functionalities, and the whole
distributed system is a distributed stream processing system. Fig. 6 is an example of a
distributed system, where the same operating component exists in a computer, an
Arduino with a WiFly communications shield and in TelosB nodes running Contiki
operating system and proprietary (Rime) communications stack. The stream engine
handles acquisition, computation, storage and data exchange. Since the computer, any
node within the TelosB network and the Arduino all have the same component and
that component defines uniform computation, storage and exchange primitives, all
nodes are made to process and talk to each-other easily through easy remote
configurations. In the system of Fig. 6, another relevant component is the Remote
Config Component, a Java application. The Operating Component is the proper
StreamOp. As long as that component already exists for each of the platforms where
it is supposed to run, and the gateway also exists for non-IP sub-systems, all that is
needed to setup a system is to install the StreamOp in each platform and to start
configuring the system to operate.

Interaction with the distributed system is through the following components: a
Remote Configuration Component offers both an application programming interface
(API) and an SQL console for SQL commands. Nodes are configured to run using this
interface. External applications receive streamed data from the system by subscribing
published streams and insert data into the system through the API or SQL interface.

 An Effective and Efficient M

Fi

The node Operating Co
Network messages arriving
are parsed and executed, w
commands, the componen
operating on the data or acq

Fi

Fig. 7 shows the compo
system only needs to ins
component is written for th
common operations model.
(JVM) simply installs the S
PC and the OS-X nodes r
RaspBerry platform runnin
protocols and no JVM, inst
running Contiki and Rime in

All nodes are automatic
network. Nodes running pr

Middleware for Supporting Distributed Query Processing

ig. 6. Heterogeneous Sensor Network

omponent – StreamOp – organizes the data as strea
g at the node may either be commands or data. Comma
while data is stored in streams. According to configurat
nt also arms timers and responds when they fire,
quiring new sensor values, depending on the command.

ig. 7. Components of the Middleware

onents of the middleware. Every node that is to run in
stall a StreamOp component and be turned on. T
he node platform and abstracts the platform details int
. Every device capable of running a Java Virtual Mach

StreamOp-J version for Java on the JVM. In Fig. 7 both
run a JVM and StreamOp-J (e.g., OS-X node can b

ng Linux). Nodes running different OSs, different netw
all a platform-specific StreamOp component (e.g., Telo
nstall a StreamOp-Contiki component).
cally assigned IP addresses as soon as they plug into
rotocols other than IP must be in a sub-network unde

131

ams.
ands
tion

by

the
This
to a
hine
the

be a
work

osB

the
er a

132 A. Cuzzocrea, J. Cecilio, and P. Furtado

gateway and have protocol-specific addresses. For instance, a whole wireless sensor
network is built with TelosB nodes running Contiki and Rime, which is then interfaced
with the rest of the network through a gateway. The gateway is plugged-in to the main
network first, then the sub-network nodes automatically attach to the gateway. The
catalog shown in the figure maintains information on sub-networks (nodes under each
gateway) and address translations for nodes with protocol-specific addresses. The
gateway translates addresses and forwards messages. For a node to send a message to
a node in some sub-network, it sends the message to the appropriate gateway, which
retrieves the protocol specific address for the node and forwards the message to that
node.

The RConfig component runs in a PC and controls queries, stream creation, stream
dropping and other configuration commands for nodes. An API (web-service
interface) is used by a console application and other clients to submit requests through
RConfig. RConfig is linked to a StreamOp that handles RConfig requests to target
nodes. Each node has a StreamOp component, which configures the node, handles
communication and handles all details of operation.

4 Experimental Results

In this section, we assess the approach and show results from testing it
experimentally. We start by evaluating code size, testing whether the code fits even in
constrained devices. Then we compare aggregation algorithms in terms of runtime.
Finally we test other operation timings. The code size and operation timings are taken
for different platforms, while the algorithms are compared in TelosB running Contiki.

The testbed that we used to evaluate these metrics included one wireless sensor
network with 16 TelosB nodes running StreamOp-Contiki. One of the TelosB was a
sink node connected to a PC running the Gateway component for Contiki. Each
TelosB device has 48KB of ROM, 10 KB of data memory, 1024 B of flash and 2 AA
800 mAh batteries; the setup also included an Arduino Mega device for which we
developed StreamOp-Arduino. This Arduino had a WiFly shield, so that it talked
directly with RConfig and all other nodes (CPU ATmega1280, Flash Memory 128 KB
of which 4 KB used by boot-loader, SRAM 8 KB, EEPROM 4 KB, Clock Speed 16
MHz). The setup also included a Raspberry-PI device running Debian Linux ARM
distribution and a JVM over which we deployed StreamOp-Java. This device was
connected directly to the Ethernet cable. (CPU ARM1176JZF-S (armv6k) 700 MHz,
memory 512 MB). Finally, there were two PCs (2.53 GHz Intel Core 2 Duo, 4 GB
1067 MHz DD33 memory) running Windows 7 and a JVM with StreamOp running
on it. One of the PCs was running RConfig and a console, to allow us to submit
commands. The other one, which we denote as “control station” was receiving and
displaying the data from the embedded devices.

Fig. 8 shows the time spent for aggregating 100 tuples over a memory-resident
stream and a flash-resident stream in milliseconds. Aggregation operations such as
avg(), max(), min() are computed by visiting all the tuples in the stream window once,
computing corresponding aggregations additively. That is the reason why all

 An Effective and Efficient M

aggregation operations take
figure corresponds to jus
computations on them. Fina
since it needs to order the d
Fig. 9 shows the time take
window, both in memory an

Fig. 8. T

Fig. 9. Tim

5 Conclusions and

In this paper we descri
heterogeneous distributed c
programmable nodes. The
without a single line of cod
distributed systems environ
different modes, as describe
query or configure streams
streams to send data to c
stations or indeed any othe
means of experimental e
constrained devices, is abl

Middleware for Supporting Distributed Query Processing

e the same time. The operation denoted as VALUE in
st retrieving the values, without the need to do
ally, the percentile operation is a bit more time consumi
data that it gathers in order to return the desired percent
en to compute an average operation versus the size of
nd in flash storage.

Times for Flash vs Memory Operation (ms)

me vs Window Size for AVG Operation (ms)

d Future Work

bed a system developed to help configure and
control systems that include wireless sensor networks w
approach allows very different configurations to be d

de, and operates perfectly within a complex heterogene
nment. It includes capabilities to allow it to work in m
ed in the use cases section. Users can define what to do
of acquired or exchanged data, as they can also config
onsumer streams elsewhere, including consumer con
er node outside the sensor network. We have shown,

evaluation, that the approach results in code that
e to run heterogeneous devices (we tested a system w

133

the
any
ing,
tile.
the

run
with
done
eous

many
and

gure
ntrol
, by
fits

with

134 A. Cuzzocrea, J. Cecilio, and P. Furtado

TelosB, PCs, Arduino, Raspberry-PI) and evaluated performance of the approach. In
the future, this kind of models and programming approaches will ease the job of
deploying sensor networks in real applications, resulting in more widespread
applications.

As future work, we plan (1) to enhance our framework by means of data
compression paradigms (e.g., [22,23]) as to further magnify the efficiency of
StreamOp routines, and (2) to integrate our framework with analysis and
visualization tools (e.g., [25]), in order to support decision making processes on top of
which our framework may run. Both perspectives are relevant for emerging Big Data
paradigms.

References

1. Bonnet, P., Gehrke, J., Seshadri, P.: Towards sensor database systems. In: Tan, K.-L.,
Franklin, M.J., Lui, J.C.-S. (eds.) MDM 2001. LNCS, vol. 1987, pp. 3–14. Springer,
Heidelberg (2000)

2. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: TinyDB: an acquisitional query
processing system for sensor networks. ACM Transactions on Database Systems 30(1),
122–173 (2005)

3. Yoneki, E., Bacon, J.: A survey of wireless sensor network technologies: research trends
and middleware’s role. Technical report UCAM-CL-TR-646, University of Cambridge
(2005)

4. Wang, M.-M., Cao, J.-N., Li, J., Dasi, S.K.: Middleware for wireless sensor networks: a
survey. Journal of Computer Science and Technology 23(3), 305–326 (2008)

5. Mottola, L.: Programming wireless sensor networks: from physical to logical
neighborhoods. PhD Thesis, Politecnico di Milano, Italy (2008)

6. Aberer, K., Hauswirth, M., Salehi, A.: Infrastructure for data processing in large-scale
interconnected sensor networks. In: Proceedings of MDM, pp. 198–205 (2007)

7. Shneidman, J., Pietzuch, P., Ledlie, J., Roussopoulos, M., Seltzer, M., et al.: An
infrastructure for connecting sensor networks and applications. Technical Report TR-21-
04, Harvard University (2004)

8. Franklin, M., Jeffery, S., Krishnamurthy, S., Reiss, F., Rizvi, S., et al.: Design considerations for
high fan-in systems: the HiFi approach. In: Proceedings of CIDR, pp. 290–304 (2005)

9. Gibbons, P.B., Karp, B., Ke, Y., Nath, S., Seshan, S.: IrisNet: an architecture for a world-
wide sensor web. IEEE Pervasive Computing 2(4), 22–33 (2003)

10. Gummadi, R., Gnawali, O., Govindan, R.: Macro-programming wireless sensor networks
using Kairos. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS
2005. LNCS, vol. 3560, pp. 126–140. Springer, Heidelberg (2005)

11. Bakshi, A., Prasanna, V.K., Reich, J., Larner, D.: The abstract task graph: a methodology
for architecture-independent programming of networked sensor systems. In: Proceedings
of EESR, pp. 19–24 (2005)

12. Levis, P., Culler, D.: Maté: a tiny virtual machine for sensor networks. In: Proceedings of
ACM ASPLOS X, pp. 85–95 (2002)

13. Levis, P., Gay, D., Culler, D.: Active sensor networks. In: Proceedings of ACM NSDI,
vol. 2, pp. 343–356 (2005)

14. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood abstraction for
sensor networks. In: Proceedings of MobiSys, pp. 99–110 (2004)

 An Effective and Efficient Middleware for Supporting Distributed Query Processing 135

15. Shen, C.-C., Srisathapornphat, C., Jaikaeo, C.: Sensor information networking architecture
and applications. IEEE Personal Communications Magazine 8(4), 52–59 (2001)

16. Srisathapornphat, C., Jaikaeo, C., Shen, C.-C.: Sensor information networking architecture.
In: Proceedings of International Workshop on Parallel Processing, pp. 23–30 (2000)

17. Li, S., Son, S.H., Stankovic, J.A.: Event detection services using data service middleware
in distributed sensor networks. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS,
vol. 2634, pp. 502–517. Springer, Heidelberg (2003)

18. Boulis, A., Han, C.-C., Srivastava, M.B.: Design and implementation of a framework for
efficient and programmable sensor networks. In: Proceedings of MobiSys, pp. 187–200
(2003)

19. Tsiftes, N., Dunkels, A.: A database in every sensor. In: Proceedings of ACM SenSys,
pp. 316–332 (2011)

20. Furtado, P., Cecilio, J.: Sensor streams middleware for easy configuration and processing
in hybrid sensor network. In: Proceedings of ACM SAC, pp. 1499–1504 (2013)

21. Furtado, P.: TinyStream sensors. In: Quirchmayr, G., Basl, J., You, I., Xu, L., Weippl, E.
(eds.) CD-ARES 2012. LNCS, vol. 7465, pp. 218–232. Springer, Heidelberg (2012)

22. Cuzzocrea, A., Serafino, P.: LCS-Hist: taming massive high-dimensional data cube
compression. In: Proceedings of EDBT, pp. 768–779 (2009)

23. Cuzzocrea, A.: Providing probabilistically-bounded approximate answers to non-holistic
aggregate range queries in OLAP. In: Proceedings of DOLAP, pp. 97–106 (2005)

24. Cuzzocrea, A., Furfaro, F., Masciari, E., Saccà, D., Sirangelo, C.: Approximate Query
Answering on Sensor Network Data Streams. In: Stefanidis, A., Nittel, S. (eds.) GeoSensor
Networks, pp. 53–72. CRC Press (2004)

25. Cuzzocrea, A., Mansmann, S.: OLAP Visualization: Models, Issues, and Techniques. In:
Wang, J. (ed.) Encyclopedia of Data Warehousing and Mining, 2nd edn., pp. 1439–1446.
IGI Global (2009)

26. Munir, S., Stankovic, J.A.: DepSys: Dependency aware integration of cyber-physical
systems for smart homes. In: Proceedings of ACM ICCPS, pp. 127–138 (2014)

27. Medhat, R., Kumar, D., Bonakdarpour, B., Fischmeister, S.: Sacrificing a little space can
significantly improve monitoring of time-sensitive cyber-physical systems. In: Proceedings
of ACM ICCPS, pp. 115–126 (2014)

28. Hunter, T., Das, T., Zaharia, M., Abbeel, P., Bayen, A.M.: Large-Scale Estimation in
Cyberphysical Systems Using Streaming Data: A Case Study with Arterial Traffic
Estimation. IEEE Transactions on Automation Science and Engineering 10(4), 884–898
(2013)

29. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
Communications of the ACM 51(1), 107–113 (2008)

30. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G.,
Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: A View of Cloud Computing.
Communications of the ACM 53(4), 50–58 (2010)

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 136–146, 2014.
© Springer International Publishing Switzerland 2014

A Framework of Adaptive Interaction Support
in Cloud-Based Internet of Things (IoT) Environment

Noura Alhakbani, Mohammed Mehedi Hassan, M. Anwar Hossain,
and Mohammed Alnuem

College of Computer and Information Sciences,
King Saud University, Riyadh, 11543, Saudi Arabia

{nhakbani,mmhassan,mahossain,malnuem}@ksu.edu.sa

Abstract. This paper discusses the Internet of Things (IoT) within the cloud
computing concepts and architectures. We review different frameworks of
combined IoT architecture with cloud being in the center. Then we investigate
adaptive interaction support concept. Finally, we propose a novel framework
that incorporates and supports adaptive interaction of the user with the IoT
cloud architecture based on the quality of context information and quality of
services. The propsed framework increases user satisfaction and reduces user
annoyance towards the IoT cloud environment.

Keywords: Internet of Things (IoT), Cloud Computing, Adaptive Interaction
Support, Context Awareness.

1 Introduction

These days many of the devices we use and encounter daily are smart devices starting
from our phones, and T.V.s to our cars and even ovens. With the advancement and
widespread use of the internet and specifically wireless technologies all of the smart
devices are wirelessly and seamlessly connected to the internet. This leads us to the
Internet of Things concept which is semantically defined as ‘‘a world-wide network
of interconnected objects uniquely addressable, based on standard communication
protocols” [1]. The idea of Internet of Things (IoT) stems from the pervasive and
ubiquitous nature of internet connected things or objects around us in everyday life.
Nowadays these smart things use the cloud to communicate amongst each other to
provide the user with smarter environments. The IoT uses the cloud to leverage its
processing powers due to its need to greater processing than that provided by the min-
iature sensors and things. Yet there are some challenges to the IoT cloud such as
interoperability amongst different smart things which are created by different manu-
facturers. Communication errors and security threats are also valid concerns. Our
concern is adaptive interaction with the IoT cloud architecture. Many studies have
presented frameworks and architectures that combine the internet of things with the
cloud [2], [3]. But little has been done to support the user interaction with such smart
environments.

 A Framework of Adaptive Interaction Support in Cloud-Based Internet 137

The following scenario shows the need to adaptive interaction within the IoT cloud
framework. Let’s say Sarah is living in a house where she has her smart things -
Television, coffee machine, air condition, lights, car, blinds, and towel heater - set up
and connected to the cloud all the time. Sarah has her smart things work automatically
according to her daily schedule and awareness of her location and status. The smart
things communicate her status amongst each other. She wakes up every weekday at
6:00 am by her alarm and the blinds are set to be fully opened at the same time as
well. When Sarah starts exercising at her home gym, the towel heater rack turns on to
heat the towels for her to use after shower. When she is done with exercising her bath-
room lights are automatically turned on. When she starts her shower the coffee ma-
chine starts preparing her coffee to be ready at 7:00 am. At 7:30 am she leaves to
work and the air conditioning will automatically turn off. At 5:00 pm the air condi-
tioning checks her calendar to see if she has any appointments after work, and then
communicates with her car navigator to find her destination. If the destination is
home, the air conditioning will switch on to cool the house. The light turn on automat-
ically when it senses that her car is parked in the garage. And this can go on to turn
the television to her favorite channel and lights are turned on and off according to her
location in the house. This is a perfect scenario of sensing Sarah’s status and acting
accordingly. But in reality our lives don’t follow precise schedules, communication of
the smart things amongst each other allows for such flexibility, yet these things are
not always accurate and error free due to many reasons such as their small processing
powers, errors in perceiving or understanding the status or communication failures.
That’s why we need these smart things to adapt their communication with the users
especially if they are not able to get the accurate status. The system should give the
user more control on these things without turning things on and off automatically
which might cause user annoyance. So, our main goal is to design the architecture of
the adaptive interaction support in IoT cloud environment. There are some adaptive
interaction support architectures [4] provided, but not specifically designed for, the
IoT cloud environment. The IoT cloud framework has its own architectures, frame-
work and limitations that need to be addressed specifically when designing adaptive
interaction support.

In our proposed approach, the interaction is adapted based on the quality of context
and quality of services provided to the user. This dynamic adaptation gives the user
more control at times of less quality of information communicated. This reduces irrel-
evant or annoying actions taken by the system [5].

The remainder of the paper is organized as the following: First, within the literature
review, we review Internet of Things and cloud computing. Then, we review Internet
of Things and cloud architectures, and then we review interaction support within the
IoT cloud environment. Next, we propose our framework where we incorporate the
IoT cloud architecture with the adaptive interaction capability. Finally, we present our
conclusion.

138 N. Alhakbani et al.

2 Literature Review

2.1 Internet of Things (IoT) and Cloud Computing

Recent research proposed the cloud as a unifying framework for the IoT to achieve
smart environment. In terms of this view IoT is defined as “Interconnection of sensing
and actuating devices providing the ability to share information across platforms
through a unified framework, developing a common operating picture for enabling in-
novative applications. This is achieved by seamless ubiquitous sensing, data analytics
and information representation with cloud computing as the unifying framework” [6].

Cloud computing definition provided by the National Institute of Standards and Tech-
nology (NIST) [7] states that, “cloud computing is a model for enabling ubiquitous, con-
venient, on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications and services) that can be rapidly provisioned
and released with minimal management effort or service provider interaction."

The aforementioned definition demonstrates how cloud computing and internet of
things when mentioned, configurable computing resources, lend themselves naturally
to be merged and then utilized with minimal effort. The traditional view on cloud
computing structure consists of four layers the hardware-datacenter layer, which is
responsible for managing the physical resources of the cloud; the infrastructure layer
as a service (IaaS) known as the virtualization layer which is responsible for partition-
ing the physical resources using virtualization technologies; the platform layer as
Service (PaaS) its purpose minimize the burden of deploying applications directly into
VM containers, and the application layer also known as software as a service (SaaS)
which consists of the actual cloud applications [8].

On the other hand, cloud computing is defined as “both the applications delivered
as services over the Internet and the hardware and systems software in the data cen-
ters that provide those services. The services themselves have long been referred to as
Software as a Service (SaaS).” This definition aggregates IaaS and PaaS and adds
them to the software as a service layer (SaaS), since they believe that the differences
between IaaS and PaaS are not well established [9].

2.2 IoT Cloud Architecture

With regard to the Internet of Things architecture, there is no clear or well established
effort. Borrowing the internet architecture which was designed in the 70s is not the
optimal solution for the current Internet of Things applications. The nature of the
internet has shifted from its early vision - where the internet was basically connected
to personal computers. The internet now is connected to all sorts of things starting
from mobile phones to watches and cars. A well-tailored architecture to the new vi-
sion of the internet is much needed to support the Internet of Things concept.

One of the first architectures proposed for the Internet of Things was composed of
4 layers starting from the bottom with RFID/Sensor Network, then Access Gateway
through different Access Networks such as the internet, then the middleware where
different services are offered such as directory services, context modelling and man-
agement, and content management. In this proposal the RFID and Sensor Network

 A Framework of Adaptive Interaction Support in Cloud-Based Internet 139

were explicitly mentioned technologies, since the definition at that time had these
technologies as hard wired to the concept [10].

Interoperability issues appeared between different applications in the proposed ar-
chitectures so a coordination layer is added to facilitate communication between dif-
ferent applications. The proposed architecture constitutes of five layers: The first one
consists of Edge technology layer, access Layer, and existed application systems. The
second layer is backbone network layer, then they added the coordination layer, mid-
dleware layer and finally the application layer [1].

Internet of things could be viewed from different perspectives or visions. “Things”
oriented visions, “Internet” oriented Visions, and “Semantic” oriented visions [11]. Or
alternatively, could be classified into two categories the first having the internet as the
center part or the second having the data as the center part. A framework was pro-
posed adopting the first category, where the internet is at the center, but here they
substituted the internet with the cloud and presented cloud centric internet of things
framework. The benefits from such frameworks are the scalability and cost effective-
ness. The cloud will offer its services to all connected parties where they can benefit
and utilize them as needed [6]

Integrating the cloud computing and internet of things has been presented in many
researches. One proposed framework is under the name CloudThings architecture.
They studied a Things-enabled scenario, and designed a Cloud-based Internet of
Things platform – the CloudThings architecture, which accommodates IaaS, PaaS,
and SaaS for developing, deploying, running, and composing Things applications.
The implemented prototypes establish the fundamental developments for approaching
CloudThings architecture [3].

Another proposal that adopted the cloud things concept as well and proposed ge-
neric architecture that enables objects to exchange information through the internet to
achieve nonintrusive behavior and Service Level Agreement (SLA) on an open source
cloud platform. And noted the key components to interoperable cloud based systems
are the open APIs. [12].

Different architectures for the IoT cloud are presented, and some modifications
suggested overcoming some challenges such as interoperability. In the next section
we will present adaptive interaction depending on different quality attributes.

2.3 Interaction Support in IoT Cloud Platform

One of the IoT cloud architecture framework challenges is the interaction support. In
the following section, adaptive interaction support within context aware systems are
presented. To explain the context interaction concept, we first define context as any
information which is relevant to the interaction between the user and the application
and modeled using ontologies. Time and date, location, temperature, light, noise and
activity can be considered as contextual information [13].

Contextual information can be modeled, as well using semantic language, describ-
ing the environment information and connections residing between the concepts [14].

Context is divided into set of elements context provider such as sensors, context
consumer or context aware services, and context broker. These elements are added to
a context provisioning framework, where the interaction amongst these elements fol-
lows a specified pattern as shown below in Fig. 1, where the context consumer asks

140 N. Alhakbani et al.

for information from a context provider through context broker. The context broker
requests context information from different services on the cloud. The context infor-
mation has varying levels of Quality of Context (QoC) and Quality of Service (QoS).
QoC refers to information and not the process nor the hardware component. Examples
of QoC parameters are location, probability of correctness and freshness [15] . While
QoS indicators may be availability, response–time, and perceived quality [16]. The
context broker delivers appropriate context information in terms of desired quality
levels to context consumers. This context provisioning model is best suited to be im-
plemented in the SaaS and it could be accessed through API [17], [18].

Fig. 1. Context Interaction

Interaction between the system and the user is classified into

• Explicit interaction mode - where the user initiates the interaction.
• Implicit interaction mode - where actions are performed automatically by the

environment, based on the knowledge of the user’s situation or the context.
• Mixed-initiative interaction - which combines explicit interaction with im-

plicit interaction to facilitate joint interaction between user and environment.

Different modes of interaction are suggested based on the quality of information
(QoI) of the context. The suggested modes are full automation, action suggestion,
simple notification or null action. More automation is selected with higher (QoI) and
more user control is provided as the (QoI) decreases. [4].

The aforementioned proposed framework [18] studied context provisioning but did
not study adaptive interaction in terms of such context aware systems. The later [4]
studied adaptive interaction support. In the proposed framework we would like to
study adaptive interaction in the IoT cloud framework taking context provisioning
into account.

3 Proposed Interaction Support Framework

As we can see from the literature the framework of cloud centric IoT has been pro-
posed and used as a base in many central papers [3], [6], [12]. Then again adaptive

 A Framework of Adaptive Interaction Support in Cloud-Based Internet 141

interaction in context aware systems has been discussed in the literature [4]. Our pro-
posal incorporates both concepts into one framework and uses the quality of context
and quality of service levels to base the adaptive interaction mode with the user.

3.1 Inceptions

The IoT cloud centric architecture elements communicate through the cloud. The
basic adopted architecture has the cloud in the center between the IoT smart environ-
ment and the user as presented in Fig. 2 below. The sensors are set in smart IoT

Fig. 2. IoT cloud Centric Architecture

142 N. Alhakbani et al.

environments within different application areas, environmental sensors are set for
environmental monitoring purposes, sensor enabled home appliances are fixed in
smart home environments, and health monitoring devices are set for health monitor-
ing purposes, etc... These sensor enabled devices from different application areas send
the gathered data to the cloud where it is processed then the reaction or feedback is
sent to the concerned users through the sensors interfaces’. Such smart environments
require intensive information processing which is done in the cloud rather than ex-
hausting the miniature sensors’ processors.

3.2 Quality of Context Information and Services

Within the IoT cloud centric environment context or users’ situation uncertainty is
unavoidable [13]. Therefore our proposal supports the adaptive interaction of the user
with the IoT cloud centric environment depending on the Quality of Context (QoC)
and Quality of Services (QoS) provided. QoC is any information that describes the
quality of information that is used as context information. Thus, QoC refers to infor-
mation and neither to the process nor the hardware component that possibly provide
the information. Examples of QoC attributes are precision, probability of correctness,
trust-worthiness, resolution, and up to date information [15]. While QoC describes
the quality of information, QoS refers to the quality of a service. QoS is defined
by the nonfunctional characteristics of a system, affecting the perceived quality
of the results. Examples of QoS attributes are timeliness, reliability, and perceived
quality [16].

In Fig. 3 below we have the context analyzer which analyses the context infor-
mation combined with its quality that is received from the raw context processing and
aggregation unit. The context analyzer role is similar to the context broker’s role pre-
sented in Fig. 1 above. The context information accompanied with quality information
is passed on to the context analyzer where the context could be categorized according
to the values of the quality attributes and then assigned a level in terms of QoS and
QoC. The difference from the context broker is that it forwards the context infor-
mation categorized according to the various quality levels rather than filtering the
context information according to quality. It forwards the context information and
rating to the adaptive interaction handler which maps both QoS and QoC attribute
levels to the appropriate mode in terms of interaction.

If the QoS and QoC have high values for their attributes the adaptive interaction
handler will map the interaction mode to the full automation mode. On the other hand
if the levels are low and considered to be unreliable or erratic it will select to display
information to the user and leave the user with the freedom to select whatever action
seems appropriate. If the levels are considered to be acceptable but not totally trust-
worthy it will suggests to the user appropriate action to be taken but again the user is
able to override the suggestion.

 A Framework of Adaptive Interaction Support in Cloud-Based Internet 143

Fig. 3. Context Interaction in the IoT cloud Centric Environment

3.3 Motivation for Interaction Support

Our novel contribution is designing an IoT cloud centric framework that supports
adaptive interaction with the user according to the level of quality in terms of context
and service. Our framework indicates that the better the quality of both the context
and the service (QoS) and (QoC) the more automation the system provides and the
less the quality or certainty of context information the more control is given to the
user. Therefore adaptive interaction enables more automation with better quality of
context information and services provided and on the other hand give the user more
control with decreased quality levels which reduces the annoyance with wrong auto-
mation [5]. This adaptive interaction mode take into consideration the unavoidable
uncertainty [13] instead of ignoring it and pretending to have a perfect scenario
which is far from realistic at the time being with the current technological capabilities.

3.4 The Proposed Framework for Adaptive Interaction in the IoT Cloud
Centric Environment

The IoT cloud framework incorporates adaptive interaction as presented in Fig. 4
below. The context information is aggregated from the sensors distributed in the envi-
ronment and connected to the cloud/ SaaS. We specify SaaS in particular since it is
the most suitable for such processing as mentioned by [9]. Their quality attributes are
gathered as well. The context information, accompanied with quality information, is
passed on to the context analyzer, where the context could be later categorized ac-
cording to the values of the quality attributes, and then assigned a level in terms of
QoS and QoC. According to the calculated levels of both QoS and QoC, the interac-
tion handler will decide to interact with the user and IoT smart environment, choosing
from different interaction modes. The modes are full automation, which is chosen
when high level of QoC and QoS are provided or action suggestion mode, where the
smart environment will suggest action to be taken according to the context infor-
mation provided where the associated level of QoS or QoC are not ideal. Finally, a
message or information would be displayed on the user interface for the user, and the
user needs to take explicit interaction with reduced level of QoS or QoC or both of
them.

144 N. Alhakbani et al.

Fig. 4. Adaptive Interaction Support in IoT cloud Centric Environment

The process of selecting a suitable interaction mode according to varying levels of
QoC and QoS is presented in mathematical notation as the following. This process is
carried out in the cloud. Let us assume, Cx is a context of a certain situation x.

 ∀ Cx → ∃ {QoCj (Cx), QoSk (Cx)} (1)

For every context situation there exist quality of context attributes QoCj (Cx) and
quality of service attributes QoSk (Cx) for such context such that j and k are
j ∈{1,2,…,m} and k ∈{1,2,…,h} where m and h are the numbers of quality of con-
text or quality of service attributes respectively.

 ∀ QoCj (Cx) → ∃LQc (2)

 ∀ QoSk (Cx) → ∃LQs (3)

For every quality of context or service attribute there is associated level LQc and LQs.

LQc ∈ {good, acceptable, poor} and LQs ∈ {good, acceptable, poor}

∀ Cx → ∃ Ai (Cx) (4)

For every context there is list of possible actions represented as Ai, where Ai (Cx) ⊆
{A1, A2, . . . , An}, 1 ≤ i ≤ n is the subset of actions to be performed in any context
Cx and n is the total number of listed actions permitted in the environment. ∀Ai(Cx) ∧ ∃{QoSj (Cx) ∧ QoCj (Cx)} → ∃Y (5)

For every context and permissible associated actions to be taken compound with the
level of quality of context and quality of service associated with such context there ex-
ists Y where Y ∈{full automation, action suggestion, message display}.Y is calculated

 A Framework of Adaptive Interaction Support in Cloud-Based Internet 145

by mapping the QoSj and QoCj levels for each context Cx and then finding the appropri-
ate automation level. Then the appropriate action is chosen from Ai(Cx) depending on
the level of Y.

Below the process of choosing a particular interaction mode is presented in a high
level algorithm.

Algorithm Adaptive Interaction
Input: {Context Information Cx, QoC(Cx), QoS(Cx)}
BEGIN
1: Identify context Cx
2: Determine quality attributes QoC(Cx) and QoS(Cx)
3: Assign values LQc and LQs for each QoC(Cx) and QoS(Cx)
4: Map Cx, QoC(Cx), QoS(Cx) and their respective LQc and LQs
to the appropriate automation level {full automation, ac-
tion suggestion, message display}
5: Invoke the actions (Ai) for a given context Cxbased on
the selected automation level
END

3.5 Limitations of the Proposed Framework

Our proposed framework focuses on the idea of providing dynamic or adaptive inter-
action framework for the IoT cloud Integration according to (QoS) and (QoC) rather
than identifying exact actions to be performed with certain quality levels. The choice
of specific action or action mode criteria is left to the system designer. Our framework
aggregates context information and gathers quality information according to each
system’s requirement in terms of different quality context and services attributes.
More or less number of attributes and acceptable levels to each attribute is modified
according to different systems’ requirements. The degree of confidence in QoS or
QoC are not decided in our framework, it is left to each system designer to adjust it to
the specific level of quality requirements.

4 Conclusions

The purpose of the proposed framework is to include adaptive interaction support to
the IoT cloud framework. The quality of context and services determines the level of
automation or user control. A high level algorithm is presented to show how the map-
ping between the QoS and QoC attribute values for each context and automation level
is performed. Further research should be done to investigate the appropriate metrics
or attributes to be included in the framework and what the quality threshold levels that
affect the interaction are and decreases the automation level with respect to different
fields. An important benefit to this study is to give the user more control when context
information is unreliable - which will decrease the level of annoyance with the smart
environment.

146 N. Alhakbani et al.

References

1. Internet of Things in 2020, Roadmap for the future (2008)
2. Distefano, S., Milano, P., Merlino, G., Puliafito, A.: Towards the Cloud of Things Sensing

and Actuation as a Service, a key enabler for a new Cloud paradigm (2013)
3. Zhou, J., Leppänen, T., Harjula, E., Yu, C., Jin, H., Yang, L.T.: CloudThings: a Common

Architecture for Integrating the Internet of Things with Cloud Computing, pp. 651–657
(2013)

4. Hossain, M.A., Shirehjini, A.A.N., Alghamdi, A.S., Saddik, A.: Adaptive interaction sup-
port in ambient-aware environments based on quality of context information. Multimed.
Tools Appl. 67(2), 409–432 (2013)

5. de Vries, P., Midden, C., Bouwhuis, D.: The effects of errors on system trust, self-
confidence, and the allocation of control in route planning. Int. J. Hum. Comput.
Stud. 58(6), 719–735 (2003)

6. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): A vision, ar-
chitectural elements, and future directions. Futur. Gener. Comput. Syst. 29(7), 1645–1660
(2013)

7. Computer, N., Division, S.: The NIST Definition of Cloud Computing Recommendations
of the National Institute of Standards and Technology (2011)

8. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research chal-
lenges. J. Internet Serv. Appl. 1(1), 7–18 (2010)

9. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R.H.: Above the clouds: A Berkeley
view of cloud computing. Univ. California, Berkeley. Tech. Rep. UCB, pp. 07–013 (2009)

10. Furness, P.A.: A Framework Model for The Internet of Things. In: A Framework Model
for The Internet of Things (2008)

11. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: A survey. Comput. Net-
works 54(15), 2787–2805 (2010)

12. Suciu, G., Halunga, S., Vulpe, A., Suciu, V.: Generic platform for IoT and cloud compu-
ting interoperability study. In: Int. Symp. Signals, Circuits Syst., ISSCS 2013, pp. 1–4 (Ju-
ly 2013)

13. Truong, B.A., Lee, Y.-K., Lee, S.-Y.: Modeling Uncertainty in Context-Aware Computing,
pp. 676–681 (2005)

14. Gouin-vallerand, C., Abdulrazak, B., Giroux, S., Dey, A.K.: A Context-Aware Service
Provision System for Smart Environments Based on the User Interaction Modalities 5,
47–64 (2013)

15. Buchholz, T., Axel, K., Schiffers, M.: Quality of Context: What It Is And Why We Need
It, pp. 1–14 (2003)

16. Rveys, I.S.U.: A Survey of Quality of Service in Mobile Computing Environments, pp. 2–10
(1999)

17. Klein, A., Mannweiler, C., Schneider, J., Schotten, H.D.: Access Schemes for Mobile
Cloud Computing. In: 2010 Eleventh International Conference on Mobile Data Manage-
ment, pp. 387–392 (2010)

18. Badidi, E.: A Cloud-based Approach for Context Information Provisioning 1(3), 63–70
(2011)

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 147–158, 2014.
© Springer International Publishing Switzerland 2014

Including Cyberphysical Smart Objects
into Digital Libraries

Giancarlo Fortino1, Anna Rovella2, Wilma Russo1, and Claudio Savaglio1

1 DIMES, Università della Calabria
Via P. Bucci, cubo 41C, 87036 Rende (CS), Italy

{g.fortino,w.russo}@unical.it, csavaglio@si.dimes.unical.it
2 DLISE, Università della Calabria

Via P. Bucci, cubo 20B, 87036 Rende (CS), Italy
anna.rovella@unical.it

Abstract. Digital libraries are distributed software infrastructures that aim at
collecting, managing, preserving, and using digital objects (or resources) for the
long term, and providing specialized services on such resources to its users.
Service provision should be of measurable quality and performed according to
codified policies. Currently, modern digital libraries include a wide range of
conventional digital objects: text document, image, audio, video, software, etc.
In the emerging domain of the Internet of Things (IoT), cyberphysical smart ob-
jects (or simply smart objects) will play a central role in providing new (smart)
services to both humans and machines. It is therefore challenging to include
smart objects, the newest type of digital objects, into digital libraries as novel
first-class objects to be collected, managed, and preserved. However, their in-
clusion poses critical issues to address and many research challenges to deal
with. This paper aims at paving the way towards such a novel inclusion that will
enable effective discovery, management and querying of smart objects. In
particular, our approach is based on a metadata model purposely defined to de-
scribe all the cyberphysical characteristics (geophysical, functional, and non-
functional) of smart objects. The metadata model is then used for a seamless
integration of smart objects into digital libraries compliant with the digital
library reference model proposed by the DL.org community. The proposed
approach is also exemplified through a simple yet effective case study.

Keywords: Internet of Things, Cyberphysical Smart Objects, Digital Libraries,
Metadata.

1 Introduction

Digital Libraries (DLs) have undergone a considerable evolution, becoming complex
entities, able of managing and preserving different types of digital material [1]. They
offer a variety of services that can be pervasive and ubiquitous and can be heteroge-
neous in characteristics, objectives and functions. Since the 1990s librarians first and
researchers belonging to different fields later have elaborated different theories and

148 G. Fortino et al.

applications and for this reason the definition of DL presents a polysemy of meanings
that reflects different visions and approaches. The concept of DL has therefore
evolved, moving from a system for the retrieval of static information (primarily books
and digitalized textual documents) to a tool useful for the collaboration and interac-
tion between researchers and users, regarding domain-specific topics. Currently, DLs
include a wide range of digital objects: text document, image, audio, video, software,
etc.

In the emerging domain of the Internet of Things (IoT) [2], a novel type of digital
resource is the cyberphysical smart object (SO). An SO is a daily life physical object
augmented with sensing/actuation, processing, storing, and networking capabilities, in
order to provide a set of physical and digital services to its users (both humans, ma-
chines, or digital systems) [3, 4]. During their lifecycle, SOs can produce continuous
streams of geolocalized and contextual data also related to their use and their sur-
rounding environment. Moreover, SOs may evolve to provide new/different cyber-
physical services to their users.

The aim of this paper is to propose an approach for the inclusion of SOs into DLs
which would enable effective discovery, querying and management of SOs based on
typical DL tools and facilities. To the best of our knowledge, this approach represents
the first research effort towards the integration of SOs into DLs.

In particular, the approach is based on a well-defined metadata model for SOs able
to describe all the cyberphysical characteristics (geophysical, functional, and non-
functional) of SOs. The SO metadata model is used for the inclusion of SOs into DLs
compliant with the digital library reference model [5] proposed by the DL.org com-
munity [6].

The remainder of this paper is organized as follows. Section 2 discusses work re-
lated to operational and non-operational metadata models for SOs. In Section 3, we
define the proposed SO metadata model in detail whereas in Section 4, a case study is
presented to exemplify all concepts of the SO metadata model. Section 5 provides an
articulated discussion about the inclusion of SOs into DLs. Finally, conclusions are
drawn and future research efforts are anticipated.

2 Related Work

SOs will represent the basic intelligent entities constituting the future IoT and its re-
lated IoT applications [2]. There is therefore a need to define a reference metadata
model for SOs that can facilitate their management from different perspectives (e.g.
internal status, provided services, distributed discovery, and interaction with the phys-
ical world, the user and other systems) and their inclusion in highly dynamic and
complex ecosystems (e.g. IoT, Internet of the Future, and next-generation DLs).

In the literature, many works are available, in which the SO definition and the con-
sequent inclusion in existing architectures is very differently argued. Among these, it
is possible to recognize operational and non-operational SO metadata models.

Models proposed in [7] and [2] belong to the non-operational models. In [7], an SO
classification according to the concepts of creator and purpose is defined. In particular,

 Including Cyberphysical Smart Objects into Digital Libraries 149

the creator can be either an individual creating SOs for a personal purpose (e.g. per-
sonal use) or an industrial company that creates SOs for business. The former SOs are
called self-made whereas the latter ones are named ready-made. The purpose of an SO
may be to play a role in a specific application/system or to be reused in a wide range of
different applications. The former is defined specific, while the latter open-ended.
However, such a classification considers only two dimensions (creator and purpose)
that are not related to the cyberphysical characteristics of the SOs. Thus, such classifi-
cation cannot be used in an operational way within an IoT system. In [2] authors classi-
fy SOs in activity-aware, policy-aware, and process-aware. Each SO type is character-
ized by three design dimensions: (i) awareness, which is the ability of SOs to under-
stand (environmental or human) events of the SO surrounding context; (ii) representa-
tion, which refers to the programming model of the SO; and (iii) interaction, which
defines the communication with users. Such classification is oriented to the design of
SOs within an application domain and can be usefully exploited during IoT systems
development. However, such contribution is not operational as it can only be used to
classify SOs according to design dimensions.

We are indeed interested in operational classifications that are the base to build up
SO discovery services and management systems. In [8] the operational SO classifica-
tion is based on two documents: Smart Object Description Document (SODD) and
Profile Description Document (PDD). SODD contains the meta-information of the
SO: name, vendor, and list of profiles. PDD specifies a profile that can be either a
detector or an actuator. A detector contains information about a specific sensing de-
vice according to the Sensor Modeling Language (SML), whereas an actuator is mod-
eled through the Actuator Modeling Language (AML). The proposed classification is
specific to the SO implementation and management supported by the FedNet middle-
ware [8]. In [9] two main concerns are addressed through a conceptual technological
agnostic model: (i) the interactions between the User (human or not) and the SO, (ii)
the synergy between the Physical Entity and the Digital counterpart. In this direction
the Digital Proxy - which is the representation of a given set of aspects (or properties)
of the Physical Entity - plays the crucial roles of SO identifier and bridge between the
real and the virtual world. In fact, the functionalities of sensing and actuation are del-
egated to the Devices, which therefore realize the effective interaction with the physi-
cal reality. Concepts such as aggregation between SOs (which can be logically
grouped in a structured, often hierarchical way) and the relationship between Services
and Resources provide flexible guidelines for an SO modeling that ensures interoper-
ability with and openness to functional and technological developments not entirely
predictable. In [10] and [11], a metadata model to represent functional and non-
functional characteristics of SOs in a structured way is proposed. The metadata model
is divided into four main categories: type, device, services, and location. The type is
the SO type (e.g. smart pen, smart table, etc.). The device defines the hw/sw charac-
teristics of the SO device. Services contain the list of services provided by the SO; in
particular, a service can have one or more operations implementing it. The location
represents the position of the SO. This metadata model, which is more general than
the one proposed in [9], is currently implemented in a discovery framework (named
SmartSearch) for SO indexing, discovery and dynamic selection [10, 11].

150 G. Fortino et al.

3 A Metadata Model for CyberPhysical Smart Objects

The proposed metadata model is an extension of the model proposed in [10, 11] and
also borrows some concepts from the other models discussed in Section 2. The
metadata model is portrayed in Figure 1 according to the UML class diagram formal-
ism. In particular, the proposed model defines a set of metadata categories that can
characterize an SO in any application domain of interest (e.g. Smart Cities, Smart
Factories, Smart Home, Smart Grid, Smart Building, etc.). The metadata represent the
SOs static parameters, while the related dynamic parameters can be retrieved through
operations associated to the available services or from the smart object status (usually
through basic SO status services). In our metadata model, an SO, which could aggre-
gate other SOs according to the aggregation relationship, is a composition of the fol-
lowing main metadata categories:

• Status: is characterized by a list of variables, given as pairs <name, value>, that
capture the SO state.

• FingerPrint: contains the following basic and immutable SO information:
─ Identifier: represents the identifier (or Id) of the SO, which allows its unique

identification within the IoT or an IoT subsystem;
─ Creator: represents the SO creator, which can be either an individual creating

the SO for personal use, an industrial company that creates it for business, or an
academic research laboratory implementing it for research purposes;

─ Type: represents a primary type of SO (e.g. a smart pen, a smart chair, a smart
office). Moreover, secondary SO types can also be given that contain, for in-
stance, information about the SO design classification as proposed in [2];

─ QoSParameter: defines a QoS parameter associated to the SO. Different QoS
parameters may be defined such as trustness, reliability, availability, etc.

• PhysicalProperty: represents a physical property of the original object without
any hardware augmentation and embedded smartness.

• Service: models a digital service provided by the SO. A service has a name, a de-
scription, the type (sensing, actuation, SO status), input parameters, and the return
(primitive or complex) parameter type. Each Service is characterized by one or
more Operations that implement the service itself and by zero or more
QoSIndicators whose associated values are provided. In particular, an Operation,
which defines the individual operation that may be invoked on a service, is
equipped with a set of input parameters necessary for its invocation, the return
(primitive or complex) parameter type and a description.

• Device: defines the hardware and software characteristics of a device that allows to
augment the physical object and make it smart. Device can be specialized into one
of the following three categories:
─ Computer: represents the features of a processing unit of the SO (e.g. PC, em-

bedded computer, plug computer, smart-phone);
─ Sensor: models the characteristics of a sensor node belonging to the SO;
─ Actuator: models the characteristics of an actuator node of the SO.

 Including Cyberphysical Smart Objects into Digital Libraries 151

• Location: represents the geophysical position of the SO. It can be set in absolute
terms, specifying the coordinates (latitude and longitude), and/or in relative terms
through the use of location tags.

• User: identifies the entity using the services provided by the SO. In particular,
users of an SO can be of three types:
─ Human: represents the classical man-object usage relationship;
─ SmartObject: represents a less conventional use relationship, in which the SOs

take advantage of services exposed by other ones and vice versa;
─ DigitalSystem: represents a generic digital entity, like a Web Server, a software

agent, a robot or even more complex systems.

Fig. 1. The SO Metadata Model

4 A Case Study: Smart Office

The objective of this section is to show the instantiation of the SO metadata model
introduced in Section 3 with respect to a case study referring to the SO "SmartOffice"
defined in [10]. The SmartOffice, on the basis of the information gathered and a set of
inference rules, supports office users during their daily working activity by providing
suggestions (e.g. warnings that it would be appropriate to take a break after a long
session of work by sitting, or indicating how to adjust the screen brightness based on
the room luminosity showing such information on the screen closest to the user) and
performing smart actuations (e.g. turning the lights and/or the projector off while not
used in order to avoid energy wastage). In particular, the SmartOffice provides ser-
vices obtained by the cooperation of multiple heterogeneous (but at same time inde-
pendent) SOs located in the office area. The SmartOffice model, which is obtained by
instantiating the SO metadata model, can be partitioned into six parts (see Figure 2):

152 G. Fortino et al.

• Smart Object Core: SmartOffice contains the current status information about the
SmartOffice itself (temperature, humidity, presence, and light variables). Moreo-
ver, the UML aggregation and uses relationships underline respectively that Smart
Office aggregates and uses three SOs and interacts with different users (see below).

• Basic Features: information related to the categories FingerPrint, Location, and
PhysicalProperty (see Figure 1), finds place here. In particular, the Smart Office is
a room of dimensions 500x700x230 (cm), located at DIMES-Unical, Cube 41 c,
4th floor. Its fingerprint shows that the Smart Office was created by the
“SenSysCal” company, is identified with the name “Office1” and has a trustness
score of 0.95.

• Devices: the laptop Host1, provided with a monitor that acts as actuator, supports
the SmartOffice application logic and also shows messages sent by the aggregated
SOs. The monitor Actuator1, instead, is a monitor only used as message visualizer.
Moreover, a presence sensor (identified as Sensor1) and a
light/humidity/temperature sensor (identified as Sensor2) gather simple but useful
in-office environmental information.

• Users: SmartOffice supports the office user Antonio in his daily working activity,
and the SO SmartBody [12]. In particular, SmartBody worn by Antonio allows to
recognize user activities like standing, sitting, walking, laying down, and to deliver
such information to the SmartOffice.

• Services: SmartOffice provides different services: (i) the PresenceService, which
detects the presence of people inside the office, and provides such information
through the GetPresence operation; (ii) the LightService, which informs if the
lights are switched on/off through the GetLightStatus operation; (iii) the
VisualizationService, which shows notifications on the display through the
SetDisplay operation.

• Aggregated SOs: SmartOffice aggregates the following SOs: (i) SmartDesk, which
provides a presence service able to detect whether or not the user is at desk; (ii)
SmartProjector, which provides services to query the projector status and to control
it; (iii) SmartWhiteboard, which provides a detection service able to recognize its
exploitation by a user. Such SOs are used to implement the SmartOffice services.

5 SO Inclusion According to the Digital Library Reference
Model

The inclusion of SOs into DLs is carried out according to the Digital Library Refer-
ence Model (DLRM) [5], which is currently the main reference model for architecting
DLs. As the DLRM is structured into six domains (Content, User, Functionality, Poli-
cy, Quality, and Architecture), the SO is contextualized in each of such domains by
discussing matching and implications of its inclusion with respect to the adopted SO
metadata model, and providing meaningful examples related to the case study pro-
posed in Section 4. In the following, we reuse the specific terminology of the DLRM
[5]; in particular, the DLRM terms are reported in italics.

 Including Cyberphysical Smart Objects into Digital Libraries 153

Fig. 2. The SmartOffice Model

An SO, as compliant with the definition (and also rationale) provided in the DLRM
[5], can be straightly included as Resource in a DL and uniquely identifiable through
the Resource ID. It could be easily accessed, queried and managed by the DL entities
as long as it complies with the Resource Format defined in the proposed SO metadata
model. Moreover, SOs play both the roles of Actors and Information Objects, as dis-
cussed in the following subsections.

5.1 Content

The Content Domain represents the various aspects related to the modeling of infor-
mation managed in the DL universe to serve the information needs of the Actors. The

154 G. Fortino et al.

main Resource of Content Domain is the Information Object, which is an information
item that seamlessly provides data to the DL Actors. Specifically, the SO is a novel
Information Object that contributes to the production and consumption of content that
will be handled by the DL Actors through the SO Services and the related (possible)
SO annotations. Information Objects can be grouped into Collections concept, a spe-
cialization of the Resource Set, for some management or application purpose. The
proposed SO metadata model allows a logical grouping of this kind, in order to con-
vey different SOs within an aggregated entity which complements and enhances the
Services of the various components SO. The content requested to the SO could be
monitored by the Action Log over time so allowing the Actor profiling. Moreover,
such content is suitable for being contextualized or displayed in different Views.

With reference to the case study, the SmartOffice fingerprint includes its creator
(SenSysCal), its unique id (Office1), type (Smart Office) and other useful immutable
information. Dynamic information about current SmartOffice status (e.g. current tem-
perature) can be retrieved by using basic accessory services hiding the status field.
The SmartOffice is a composite entity, because it aggregates other SOs
(SmartWhiteboard, SmartDesk, SmartProjector) which interact with each other and
with the SmartOffice itself, without losing their independence or alter their nature.
Every service exposed by the SmartOffice presents useful annotations to describe the
expected content output (service id, requested parameters, return type, description)
and the list of operations implementing the service itself. Moreover, taking the exam-
ple of the PresenceService, the SmartOffice could maintain the list of the users,
who requested such service, and display such information in an aggregate weekly
view or in a monthly average view.

5.2 User

The User Domain represents the various aspects related to the modeling of entities,
either human or machines, interacting with any DL system. The SOs play a dual role
within the DL reference model, and specifically in the end-user domain: in fact, SOs
are both content creators, because they produce or update data and information, and
content consumers, as it often happens that they are themselves users of other SOs or
Resources in general. The proposed SO metadata model contemplates both of these
occurrences, together with the possibility that other Actors, humans or in a broader
sense digital systems (such as web server, robot, etc.), can play the role of consumer
of SO-generated content. Other Roles envisaged in the DL reference model (DL Man-
agers and DL Software Developers) fall outside the proposed SO metadata model.

Regarding the case study, the SmartOffice plays both the role of: (i) content crea-
tor, in order to provide services like the LightService to the human user (e.g. the
employee in the Smart Office) or even to general digital systems (e.g. a remote web
service or software agent); (ii) content consumer, even exploiting data generated by
other SOs like the SmartDesk through the PresenceService.

 Including Cyberphysical Smart Objects into Digital Libraries 155

5.3 Functionality

The Functionality Domain represents the various aspects related to the modeling of
facilities/services provided in the DL universe to serve Actor needs. A Function is a
particular operation that can be realized on a Resource upon an Actor request. With
reference to the SO, for which the main operations pertain the discovery, querying
and configuration, functions can be specialized in two classes: the Access Resource
Function and the Manage Function. The first family of functions aims at finding Re-
sources compliant to certain (static or dynamic) features (Discovery), querying them
(Search-Browse), retaining the content retrieved through specific mechanisms (Ac-
quire) and finally displaying it (Visualize). The Manage Function, instead, supports
the production (Create), publication (Publish), updating (Update), configuration (Per-
sonalize) and other basic operations related to the Resource lifecycle. It should be
noted that these functionalities are not provided directly by the SO but by the DL, on
the basis of information structured in the proposed SO metadata model.

Considering the case study, when a User of the DL searches for a specific service
(e.g. the LightService) through the Discovery Function, this will query the metada-
ta generated by the Resources contained in the DL, among which the SmartOffice. The
SmartOffice matches the search criteria, so the User will fulfill a list of parameters con-
tained in the Personalize Function (e.g. which View to be adopted) before proceeding to
the query. Based on such information, the DL will interact with the SmartOffice
LightService to carry out the requests through the Visualize Function.

5.4 Policy

The Policy Domain represents a set of guiding principles designed to organize actions
in a coherent way and to help in decision making. The proposed SO metadata model
is neutral with respect to the concept of Policy. Few changes to the SO metadata
model could be carried out to regulate the interactions between the SO user and the
SO services, according to what is present in the reference DL model respectively with
the User Policy and Content Policy. In particular, one could implement the concept of
Policy by directly associating it to the SO User or SO Service entity, or binding it
outside of the SO metadata model, at the level of the DL.

As an example related to the case study, referring to the User Policy, it could be
stated that the LightService could be accessed only by a few trusted users (the
ability to close the lights remotely can have undesirable consequences in case of
abuse from malicious users) while the VisualizationService could be used by
everyone present in the SmartOffice. In this direction, the definition of a user's level
of reliability could be a facility for the implementation of the User Policy (see subsec-
tion 5.5 next entry, User Quality Parameter).

5.5 Quality

The Quality Domain captures the aspects that permit considering DL systems from a
quality point of view, with the goal of judging and evaluating them with respect to

156 G. Fortino et al.

specific facets. It represents the various aspects related to features and attributes of
Resources with respect to their degree of excellence. The proposed SO metadata
model already contains two elements that refer to the SO quality (QoS Parameter) and
the quality of the SO Services (QoS Indicator), in full agreement with the DL refer-
ence model that provides Quality Parameters on the Resources (Generic Quality Pa-
rameter) and on the Information Object (Content Quality Parameter). Regarding the
User, the DLRM presents a User Quality Parameter that could be easily imported
into the SO metadata model, for example by assigning each SO User a reliability val-
ue, on the basis of which it is possible to define Policy and granting special rights or
access privileges to the SO Services.

For instance, the SmartOffice has a high trustness value (Generic Quality Parame-
ter) because it exploits carefully designed and maintained hardware and software
components; the PresenceService, in turn, has a high accuracy (Content Quality
Parameter) because the percentage of false positives and false negatives is extremely
low.

5.6 Architecture

The Architecture Domain represents the various aspects related to the software sys-
tems that concretely realize the DL universe. The inclusion of a SO within the DL
architecture presented in the DLRM may involve (i) the insertion of an architectural
Running Component, which represents a running instance of a Software Component
active on a Hosting Node, suitably designed, based on the SO characteristics and
equipped with specific interfaces, or (ii) the creation of a new component, currently
not present in the reference architecture, delegated to the SO virtualization [13].

As opposed to traditional Resources that can be acquired and placed directly into
DLs (such as documents, videos, etc.), the SmartOffice belongs stably to an external
system and is associated to other SOs (SmartDesk, SmartProjector,
SmartWhiteBoard) that are also part of the same external system. Therefore, there is
the need for a proxy that virtualizes the SmartOffice [13] and makes it look "physical-
ly" integrated into the DL as other more traditional Resources.

6 Conclusion and Future Work

In this paper we have proposed an approach for the inclusion of SOs into DLs com-
pliant with the DLRM defined by DL.org [6]. The inclusion is based on a metadata
model for SOs purposely defined to fully characterize all SO properties (both physical
and cyber) as well as their interactions with other human, digital and cyberphysical
actors. The approach has also been exemplified through a case study concerning a
smart office environment. In particular, the SO metadata model has been instantiated
with respect to the case study, and the resulting SmartOffice model has been used to
exemplify the main SO inclusion concepts.

 Including Cyberphysical Smart Objects into Digital Libraries 157

Such an inclusion would enable, from one perspective, to effectively support dis-
covery, querying and management of SOs through tools and facilities provided by
modern DLs and, from another perspective, to extend currently available DLs with a
new type of object to collect, manage and preserve. To the best of our knowledge, our
proposal is the first research aiming at this inclusion that would pave the way towards
the development of cyberphysical DLs.

Future work will be mainly twofold: (i) addressing interoperability and trust issues
of cyberphysical DLs [14]; (ii) implementing the proposed approach in a real DL
management system such as Fedora [15] and/or DSpace [16].

Acknowledgement. This work has been partially supported by DICET INMOTO
Organization of Cultural Heritage for Smart Tourism and REal Time Accessibility
(OR.C.HE.S.T.R.A.) project funded by the Italian Government (PON04a2 D).

References

1. Ross, S.: Digital library development review: Final report. National Library of New Zea-
land (2003)

2. Kortuem, G., Kawsar, F., Fitton, D., Sundramoorthy, V.: Smart objects as buildingblocks
for the internet of things. IEEE Internet Computing 14(1), 44–51 (2010)

3. Fortino, G., Guerrieri, A., Russo, W., Savaglio, C.: Middlewares for Smart Objects and
Smart Environments: Overview and Comparison. In: Internet of Things Based on Smart
Objects: Technology, Middleware and Applications. Internet of Things: Technology,
Communications and Computing, pp. 1–27. Springer (2014)

4. Fortino, G., Guerrieri, A., Russo, W.: Agent-oriented Smart Objects Development. In: IoT
and Logistics Workshop jointly held with 16th IEEE International Conference on Comput-
er Supported Cooperative Work in Design (CSCWD 2012), pp. 907–912. IEEE, Wuhan
(2012)

5. Candela, L., et al.: The Digital Library Reference Model. Report (2010),
http://www.dlorg.eu/index.php/outcomes/
reference-modeloutcomes/reference-model

6. Dl.org - Digital Library Interoperability, Best Practices and Modelling Foundations,
http://www.dlorg.eu/

7. Uckelmann, D., Harrison, M., Michahelles, F. (eds.): Architecting the Internet of Things.
Springer (2011)

8. Kawsar, F., Nakajima, T., Park, J.H., Yeo, S.S.: Design and implementation of
aframework for building distributed smart object systems. J. Supercomput. 54(1), 4–28
(2010)

9. Serbanati, A., Medaglia, C.M., Ceipidor, U.B.: Building blocks of the internet of things:
State of the art and beyond. In: Turcu, C. (ed.) Deploying RFID-Challenges, Solutions, and
Open Issues. InTech (2011)

10. Fortino, G., Lackovic, M., Russo, W., Trunfio, P.: A discovery service for smart objects
over an agent-based middleware. In: Pathan, M., Wei, G., Fortino, G. (eds.) IDCS 2013.
LNCS, vol. 8223, pp. 281–293. Springer, Heidelberg (2013)

158 G. Fortino et al.

11. Fortino, G., Russo, W., Rovella, A., Savaglio, C.: On the Classification of Cyberphysical
Smart Objects in Internet of Things. In: In:International Workshop on Networks of Coop-
erating Objects for Smart Cities 2014 (UBICITEC 2014), vol. 1156, pp. 76–84 (2014)

12. Fortino, G., Guerrieri, A., Lacopo, M., Lucia, M., Russo, W.: An agent-based middleware
for cooperating smart objects. In: Corchado, J.M., Bajo, J., Kozlak, J., Pawlewski, P., Mo-
lina, J.M., Julian, V., Silveira, R.A., Unland, R., Giroux, S. (eds.) PAAMS 2013. CCIS,
vol. 365, pp. 387–398. Springer, Heidelberg (2013)

13. Fortino, G., Guerrieri, A., Russo, W., Savaglio, C.: Integration of Agent-based and Cloud
Computing for the Smart Objects-oriented IoT. In: IEEE Computer Supported Cooperative
Work in Design (CSCWD 2014), Taiwan (2014)

14. Innocenti, P., Vullo, G., Ross, S.: Towards a digital library policy and quality interopera-
bility framework: the DL.org project. New Review of Information Networking 15(1),
29–53 (2010)

15. Fedora Project, http://www.fedora-commons.org/about
16. DSpace, http://www.dspace.org

Parallel and Distributed Computing

Static Data Race Detection for Java Programs

with Dynamic Class Loading

Noriaki Yoshiura and Wei Wei�

Department of Information and Computer Sciences, Saitama University,
255, Shimo-ookubo, Sakura-ku, Saitama, Japan
{yoshiura,weiwei}@fmx.ics.saitama-u.ac.jp

Abstract. Multi-thread programs are likely to have bugs in mutual ex-
clusion among threads. Data race is one of the problems that occur in
wrong mutual exclusion. There are two kinds of methods of data race
detection: dynamic analysis detection and static analysis detection. Dy-
namic analysis detection is to detect data race by analyzing the results
or processes of program executions. Static analysis detection is to detect
data race by analyzing source codes of programs. A method of static
analysis detection of data race for Java programs has been proposed,
but this method cannot handle dynamic class loading. This paper pro-
poses a method of static analysis detection of data race for dynamic class
loading and implements this method. This paper also evaluates the imple-
mentation by experiments using Java programs that have dynamic class
loading. This experiment shows that the proposed method detects data
races that cannot be found by the previous data race detection method.
The result of experiment shows advantages of the proposed method.

1 Introduction

In multi-thread programs, mutual exclusion among threads is one of the impor-
tant things. Failure of mutual exclusion would bring troubles in execution of the
programs. One of the problems of mutual exclusion is data race. Data race is
a trouble that occurs when two threads access the same data and at least one
of them writes the data. In multi-thread programs, the access order of data is
not decided and depends on the schedule of thread execution. Some access or-
ders of the same data would bring program behaviors that the program creators
do not desire. However, detection of data race in programs is difficult[7]. There
are two kinds of methods of detection of data race: static analysis method and
dynamic analysis method. Dynamic analysis method detects data race by ana-
lyzing information that is obtained in program executions[12,11,1,9,10]. Static
analysis method detects data race by analyzing program codes without execut-
ing programs[7,3]. Naik et al. proposed static data race detection method for
Java programs[7]. The experiment in [7] shows that the method is more effec-
tive than other methods, but the method ignores dynamic class loading in Java

� Now, Wei Wei works at a company in China.

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 161–173, 2014.
c© Springer International Publishing Switzerland 2014

162 N. Yoshiura and W. Wei

programs[5]. Dynamic class loading is that Java programs start loading class
files at the first time when the class files are required. In dynamic class loading,
Java programs can load class files via the Internet. Because many Java programs
use dynamic class loading, static data race detection method with ignorance of
dynamic class loading fails to find critical data races.

This paper proposes static data race detection method that can handle dy-
namic class loading. The locations of class files that Java programs load are
expressed by URLs. The proposed static data race detection method requires
to obtain the location URLs of class files without executing Java programs, but
all the URLs are not found without executing Java programs and the URLs
may change according to executions of programs. Thus the detection method
proposed in this paper computes the candidates of URLs of class files, loads
all class files from the candidates of URLs, decompiles all class files and obtains
source files of the class files. Next, the proposed method combines Java programs
with the source files of class files and analyzes the combined Java programs to
detect data race by the method in [7]. This paper also implements the proposed
method and evaluates the implementation by experiments. In the experiments,
the implemented method detects several data races in Java programs. These
data races cannot be found by the method in [7].

There are several researches that are related with this paper. The paper of
[14] focuses on wrong using of dynamic class loading and reports that many
Java programs do not use dynamic class loading rightly; the paper proposes the
method of resolving the wrong usages of dynamic class loading. The method pro-
posed in this paper uses dataflow analysis to compute the location URLs of class
files. There are several researches that are related with dataflow analysis[15,16].
The method proposed in this paper is related with several researches that have
already been published, but dataflow analysis has not been used for static data
race detection for dynamic class loading.

This paper is organized as follows: Section 2 explains static data race detec-
tion. Section 3 explains Java dynamic class loading. Section 4 proposes a static
data race detection method for dynamic class loading. Section 5 shows the exper-
iment of implementation of the proposed detection method. Section 6 concludes
this paper.

2 Static Data Race Detection

The static data race detection method in [7] consists of five steps as shown in
Figure 1. The five steps are OriginalPairs computation, ReachablePairs computa-
tion, AliasingPairs computation, EscapingPairs computation and UnlockedPairs
computation. The method is incomplete; all of the data race that the method
detects in Java programs are not true data races. The method detects the can-
didates of data races and cannot detect data races accurately. The features of
this detection method are as follows:

– Apache commons-pool is a component of object pool implementations. The
static data race detection method in [7] found 17 data races in the compo-

Static Data Race Detection for Java Programs with Dynamic Class Loading 163

Fig. 1. Overview of static detection of data race

nent. Five data races among the 17 data races are really data races. Prob-
ability of wrong detection of the method is lower than that of the other
methods of data race detection.

– The method can handle Java programs of about 650,000 lines. It follows that
the method can handle large scale projects.

– The method can handle synchronized, wait and notify methods in Java pro-
grams.

– The method does not handles libraries.
– The method can output the examples of Java program behaviors that take

data race.

2.1 Algorithm of Static Data Race Detection

The method in [7] consists of the following steps.

– OriginalPairs computation
By Soot tool[13], OriginalPairs computation picks up all memory access pairs
that have possibilities of accessing the same memory places simultaneously.
The set of all the memory access pairs is called OriginalPairs. OriginalPairs
includes the pairs in which one element writes a variable and the other ele-
ment reads or writes the same variable. Soot tool[13] analyzes Java programs:
analyzing class files, null pointer, control flow and dataflow. OriginalPairs
also includes the memory access pairs that do not take data race. The fol-
lowing steps remove, from OriginalPairs, the memory access pairs that do
not take data race.

– ReachablePairs computation
The first step of ReachablePairs computation creates call graph[4], which is
a directed graph expressing call relations among subroutines in Java pro-
grams. The call graph is used to remove, from OriginalPairs, memory access
pairs whose element is not reached from the main methods in Java pro-
grams because memory access pairs that take data race must be reached
from the main methods. The result of ReachablePairs computation is called
ReachablePairs.

164 N. Yoshiura and W. Wei

– AliasingPairs computation

Let x and y be local variables and f be an instance variable. Suppose that
ReachablePairs contains (x.f,y.f), which means that x in f and y in f may
be accessed simultaneously. If x=y in Java programs is executed, the two
memory accesses may take data race. AliasingPairs computation uses alias
analysis[6]. Given Java programs and variable x.f, alias analysis returns the
set of variables to which the variable x may point in the Java programs. Alias
analysis enables to find different variables that may access the same memory
place by substitution, call by reference and so on. This computation removes,
from ReachablePairs, the memory access pairs that are not included in the
result of alias analysis because the memory access pairs never access the
same memory place simultaneously. The result of AliasingPairs computation
is called AliasingPairs.

– EscapingPairs computation
EscapingPairs computation uses thread-escape analysis to remove, from
AliasingPairs, memory access pairs whose both elements are not executed by
several threads simultaneously. Thread-escape analysis finds the objects that
are shared by several threads. In Java programs an object may be shared if it
is reachable from arguments of methods starting threads or if it is reachable
from some static fields in objects.

Figure 2 shows an example of shared objects. In the figure, x and y are
arguments of the method starting threads and may be shared by several
threads that are started by Thread1(x,y).start() and Thread2(x,y).start().

Main() {

Object x,y;

Thread1(x,y).start();

.......

Thread2(x,y).start();

.......

}

Fig. 2. Thread-escape analysis

In addition to thread-escape analysis, EscapingPairs computation uses
aliasing analysis again to find the memory that may be shared by several
threads. As a result, EscapingPairs computation obtains a set of memory ac-
cess pairs that may be shared by several threads. Finally, the EscapingPairs
computation removes, from AliasingPairs, the memory accesses that are not
in a set of memory access pairs that may be shared by several threads. The
result of EscapingPairs computation is called EscapingPairs.

– UnlockedPairs computation
UnlockedPairs computation uses lock analysis to remove the memory access
pairs that have the same lock. In Java programs, lock is used for mutual

Static Data Race Detection for Java Programs with Dynamic Class Loading 165

Fig. 3. UnlockPairs Computation

exclusion; the memory access pairs that have the same lock do not take data
race.

By searching all path in the call graph and checking whether each memory
access pair has the same lock, lock analysis finds memory access pairs whose
elements do not have the same lock. In Figure 3, suppose that call site1 and
call site2 are the methods starting threads, O is an object and e1 and e2
are memory accesses. In the call graph, the path call site1, O.a method(),
synchronized O.c method() and the path call site2, O.d method(), synchro-
nized O.f method() have the same lock. UnlockPairs computation removes,
from EscapingPairs, the memory access pairs that have locks. The result of
UnlockPairs computation is called UnlockedPairs.

Figure 4 shows the relation among the sets of pairs. The static data race detec-
tion method in [7] supposes that UnlockedPairs is a set of candidate memory
access pairs that take data race. However, all elements of UnlockedPairs do not
take data race. Manual check is necessary to decide whether each element of
UnlockedPairs really takes data race.

2.2 Problems of Static Data Race Detection Method

There are several problems in the static data race detection method[7].

1. The alias analysis that is used in AliasingPairs computation is may-alias
analysis but not must-alias analysis. This fact decreases the correctness of
data race detection.

2. Analysis of data race in class libraries requires to prepare methods of calling
the class libraries. There is a possibility of failure of detecting data race
in class libraries because how to call the class libraries depends on Java
programs that use the class libraries and because all kinds of calling the
class libraries cannot be considered in static data race detection.

3. The method cannot detect data races that occur in initializers, constructors
and finalizers that typically lack synchronization and seldom contain data
races but cause many false alarms without a method-escape analysis.

4. The method ignores the effects of reflection and dynamic class loading.

Many Java programs use dynamic class loading. Especially, in distributed
systems, dynamic class loading loads class files in a lot of places via the Internet

166 N. Yoshiura and W. Wei

Fig. 4. Relations of several sets of pairs

or local area networks. Thus, it is important to deal with dynamic class loading
in data race detection. This paper proposes static data race detection method
for dynamic class loading.

3 Java Dynamic Class Loading

In Java programs, three class loaders that are used in Java virtual machine[5]:
bootstrap class loader, extended class loader and system class loader.

Bootstrap class loader loads standard libraries (java.* packages and javax.*
packages), extended class loader loads the class files in the extended directory
(<JRE HOME>/lib/ext), and the system class loader loads class files from JAR
files or the directories that are specified by the variable ”CLASSPATH”. Extend-
ing and using system class loader enables to load class files from the Internet.

Dynamic class loading is that Java programs load class files at the first time
when they are required to be executed. In executing Java programs Java virtual
machine can load class files from servers via the Internet by class loader that is
defined by program users.

The locations of the class files are expressed by URLs in user defined class
loaders; HTTP protocol, FTP protocol and local file name can be used. The lo-
cation URLs depend on user inputs, the configuration file of Java, property files,
or the computation in the processes of Java program executions. The static data
race detection method in [7] analyzes source codes of Java programs to detect
data race without executions. Thus, the method ignores dynamic class loading
because some locations of the class files can be found only in Java program
executions.

Static Data Race Detection for Java Programs with Dynamic Class Loading 167

4 Method for Dynamic Class Loading

4.1 Conversion of Programs

Detection of data race in Java programs for dynamic class loading requires to
compute location URLs of class files. There are four patterns of computing lo-
cation URLs in execution of programs; URLs depend on user inputs, variables,
profiles or configurations. The method that is proposed in this paper constructs
dataflow graphs of variables and computes the candidate values of location URLs
as many as possible. To ease constructing dataflow graphs, the proposed method
converts repetition statements, exception handling, method calling and arrays.

– Conversion of repetition statements
The proposed method removes repetition statements in Java programs before
computing location URLs of class files; the method handles for-statement,
while-statement and do-while-statement. For-statements are converted into
several statements that are repeated in for-statements. If the number of
repetition is a constant, repetition statements are converted into the constant
time repeated statements. If the number of repetition depends on variables
whose values are computed in the processes of the program executions, the
number of repetition is set up as a prepared number. The prepared number
can be defined by users of the data race detection method. In the experiment
of this paper, the prepared number is one to five.
Regarding while-statement, as shown in Figure 5, while-statements are con-
verted into several if-then-else statements. The condition of if-then-else state-
ment is that of while-statement. The number of repetition is set up as a pre-
pared number. The prepared number can be defined by users of the data race
detection method. In the experiment of this paper, the prepared number is
one to five. Do-while statements are handled similarly to while-statements.

while (Cond)

Body;
=⇒

if (Cond) {

Body;

if (Cond) {

Body;

if (Cond) {

......

}

}

}

Fig. 5. Conversion of while sentence

– Conversion of exception handling
Errors in execution of Java programs are handled as exception; try-catch
statements are used for exception handling. If computation of location URLs
requires analysis of try-catch, try-catch statements are converted into if-then-
else-statements.

168 N. Yoshiura and W. Wei

– Conversion of method call
If computation of location URLs requires analysis of method call, caller
places are replaced by copied callee methods. If callee methods return val-
ues, caller places are converted into substitution statement of copied callee
methods. This conversion increases source codes of programs, but it becomes
easy to compute location URLs. Because methods may be called recursively,
the proposed method limits the number of copying callee methods.

– Conversion of arrays
If computation of location URLs requires to handle arrays, the proposed
method converts arrays. In the case that the index of an array is fixed, the
array is replaced by the value of array of the fixed index. In the case that the
index of an array is not fixed, the array is replaced by each element of array.
The proposed method checks source codes of programs for each replaced
element of array.

4.2 Data Race Detection Method

The proposed data race detection method consists of two steps: computation
of location URLs of class files and static data race detection for Java programs
with class files that may be loaded dynamically in executions of the programs.

Fig. 6. Dependency relation of variables for URL

Computation of Location URLs. The proposed method requires location
URLs that may be fixed in the processes of program executions. If location URLs
are constants, it is easy to load class files by the constant URLs and combine Java
program source codes with the source codes of class files. If location URLs are
not constants, the following procedure computes the candidate values of location
URLs by using converted program source codes.

The procedure that computes the candidate values of location URLs con-
structs dataflow graphs from converted program source codes. Figure 6 shows

Static Data Race Detection for Java Programs with Dynamic Class Loading 169

the example of dataflow graphs. In this graph, & means that all elements are
necessary to compute the dependent element, and + means that each one of
elements is sufficient to compute the dependent element. The dataflow graphs
are constructed as follows;

– Find variables expressing location URLs
– Repeatedly search other variables that the variables depend on
– Stop searching variables until the values of the variables are user inputs or

fixed, or depend on configuration files or profiles

Some variables may depend on the same variables because some methods are
called recursively. Thus, the procedure limits the number of tracing variables in
constructing dataflow graphs. This limitation may make dataflow graphs incom-
plete and dataflow graphs do not find all candidate values of location URLs. Even
if dataflow graphs are constructed completely, the procedure do not always find
all candidate values of location URLs because the variables that depend on user
inputs cannot be found without program executions. However, the procedure
finds many candidate values of location URLs without executing programs.

Data Race Detection. After finding the candidate values of location URLs,
the method that is proposed in this paper downloads all class files whose location
URLs are found and decompiles the class files because class files are in JAR file
format. It is possible to decompile JAR files into Java source codes except opti-
mization of operation of constants. The method combines Java program source
codes with Java source codes of class files and applies the detection method in
[7]. Because one location URL has several candidate values, the method that
is proposed in this paper applies the detection method in [7] to Java program
source codes for each candidate value of location URLs.

4.3 Implementation

This paper implements the static data race detection method that is proposed
in this paper. This implementation is written in Java and uses Chord[2] that is
implementation of the method in [7].

5 Experiment

The experiment of this paper applies the implementation to three Java programs
that use dynamic class loading. In the environment of the experiment, CPU is
AMD Athlon(tm)64 Dual Core Processor 2.0GHz, memory size is 2GB and OS
is Windows XP. The three Java programs are ”fileStream”, ”weatherService”
and ”examSystem”.

”fileStream” is file transfer software. In this software, the class files that are
dynamically loaded check types and sizes of transferred files. ”weatherService” is
software that checks weekly weather of date and location that the users input. In

170 N. Yoshiura and W. Wei

Table 1. Target Software

Software class
dynamic class
loading files

line

fileStream 5 1 638

weatherService 18 2 1598

examSystem 35 2 6653

Table 2. Data race detection without dynamic class loading

Project Time
Original
Pairs

Reachable
Pairs

Aliasing
Pairs

Escaping
Pairs

Unlocked
Pairs

Datarace
Pairs

file Stream 5s 456 28 15 15 4 0

weather Service 19s 1762 117 87 74 19 1

exam System 52s 3725 220 106 104 8 1

this software, the class files that are dynamically loaded display weekly weather
clearly. ”examSystem” is software for examinations. The users of this software
input ID and password to this software, select and answer examination questions,
and check their answers. In this software, the class files that are dynamically
loaded tell each user the subjects that the user is good or bad at and the subjects
that the user should study to improve examination scores. The class files display
a line chart of each subject score. This line chart enables to compare average
scores and user’s own scores. Table 1 shows the features of the three kinds of
software.

5.1 Result of Experiment

The experiment applies the method in [7] to the three Java programs to compare
the methods in this paper and in [7]. Table 2 is the result of the method in [7]
and Table 3 is the result of the method proposed in this paper.

Each table shows the time it takes for the methods to construct UnlockPairs,
the number of elements for OriginalPairs, ReachablePairs, AliasingPairs, Escap-
ingPairs and UnlockedPairs, and the number of memory access pairs (Datara-
cePairs) that really take data race. Notice that all elements of UnlockedPairs
do not take data race. To construct DataracePairs requires to check manually
whether each element in UnlockedPairs takes data race. DataracePairs enables
to compare the correctness or detection ability between the method in [7] and
the method in this paper. Comparison of two tables shows that the proposed
method detects new memory access pairs that take data race. The new memory
access pairs in ”weatherService” and ”examSystem” are related with class files
of dynamic class loading. This result shows efficacy of the proposed method.

Static Data Race Detection for Java Programs with Dynamic Class Loading 171

Table 3. Data race detection with dynamic class loading

Project Time
Original
Pairs

Reachable
Pairs

Aliasing
Pairs

Escaping
Pairs

Unlocked
Pairs

Datarace
Pairs

file Stream 17s 526 46 32 29 9 0

weather Service 47s 2062 185 137 122 23 3

exam System 157s 4465 323 253 247 12 2

5.2 Discussion

The method proposed in this paper detects new memory access pairs that take
data race. The memory access pairs cannot be detected by the method in [7].
However, the execution time of data race detection method increases. In ”ex-
amSystem”, the execution time of the proposed method is three times as much
as that of the method in [7]. The 80% of increased time of execution in weath-
erService or examSystem is used for computation of location URLs. To compute
location URLs takes more time than to analyze program source codes to detect
data race. It is inferred that the larger source codes are, the more time it takes to
compute location URLs. It follows that the fast computation of location URLs
is necessary for improvement of the proposed data race detection method.

Let us discuss the number of elements of OriginalPairs, ReachablePairs, Alias-
ingPairs, EscapingPairs, UnlockedPairs and DataracePairs. In weatherService,
the element number of UnlockedPairs changes from 19 to 23, but the element
number of DataracePairs increases only two. In examSystem, the element num-
ber of UnlockedPairs changes from 8 to 12, but the element number of Datarace-
Pairs increases only one. As compared with increase of the elements of Unlocked-
Pairs, the memory access pairs that take data race are not detected effectively.

In weatherService, the proposed method increases OriginalPairs by 1.17 times,
ReachablePairs by 1.58 times, AliasingPairs by 1.54 times, EscapingPairs by 1.65
times and UnlockedPairs by 1.2 times. In examSystem, the proposed method
increases OriginalPairs by 1.2 times, ReachablePairs by 1.46 times, AliasingPairs
by 2.39 times, EscapingPairs by 2.38 times and UnlockedPairs by 1.5 times.
In fileStream, the proposed method also increases the element number of each
pairs. Increasing ratio of AliasingPairs and EscapingPairs are more than that
of UnlockPairs. The element numbers of AliasingPairs and EscapingPairs are
not so different both in weatherService and in examSystem; the EscapingPairs
computation do not remove, from Aliasing pairs, many memory access pairs that
do not take data race. It follows that omitting EscapingPairs computation is one
of the ways of reducing execution time of the data race detection method.

6 Conclusion

This paper proposed static data race detection method for Java programs and
implemented the method in Java. The proposed method handles dynamic class
loading. This paper also evaluated the proposed method by experiment and

172 N. Yoshiura and W. Wei

showed that the proposed method detected the new memory access pairs that
take data race. The pairs cannot be detected the method in [7], which the pro-
posed method is based on.

There are several future works; one of them is to improve computation of
location URLs of class files. Another is to construct algorithm of removing, from
UnlockedPairs, the elements that do not take data race.

References

1. Agarwal, R., Sasturkar, A., Wang, L., Stoller, S.: Optimized run-time race detection
and atomicity checking using partial discovered types. In: Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineering (ASE
2005), pp. 233–242 (2005)

2. Chord: A Versatile Program Analysis Plathome for Java,
http://pag.gatech.edu/chord/ (October 01, 2011)

3. Engler, D., Ashcraft, K.: RacerX: Effective, static detection of race conditions and
deadlocks. In: Proceedings of the 19th ACM Symposium on Operating Systems
Principles, pp. 237–252 (2003)

4. Grove, D., DeFouw, G., Dean, J., Chambers, C.: Call graph construction in object-
oriented languages. In: Proceedings of the ACM Conference on Object-oriented
Programming, Systems, Languages, and Applications, pp. 108–124 (1997)

5. Liang, S., Bracha, G.: Dynamic Class Loading in the Java Virtual Machine. In:
Proceedings of the 13th ACM SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications, pp. 36–44 (1998)

6. Milanova, A., Rountev, A., Ryder, B.: Parameterized object sensitivity for points-to
analysis for Java. ACM Transactions on Software Engineering Methodology 14(1),
1–41 (2005)

7. Naik, M., Aiken, A., Whaley, J.: Effective Static Race Detection for Java. In:
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2006), pp. 20–29 (2006)

8. Pratikakis, P., Foster, J., Hicks, M.: LOCKSMITH: Context-sensitive correlation
analysis for race detection. In: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2006), pp. 320–331
(2006)

9. Praun, C., Gross, T.: Static conflict analysis for multi-threaded object-oriented
programs. In: Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2003), pp. 115–128 (2003)

10. Praun, C., Gross, T.: Object race detection. In: Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages and Applica-
tions, pp. 70–82 (2003)

11. Ronsse, M., Bosschere, K.: RecPlay: A fully integrated practical record/replay
system. ACM Transactions on Computer Systems 17(2), 133–152 (1999)

12. Schonberg, E.: On-the-fly detection of access anomalies. In: Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI 1989), pp. 285–297 (1989)

http://pag.gatech.edu/chord/

Static Data Race Detection for Java Programs with Dynamic Class Loading 173

13. Vallee-Rai, R., Co, P., Gargnon, E., Hendren, L., Lam, P., Sundaresan, Y.: Soot
- a Java optimization framework. In: Proceedings of the 1999 Conference of the
Centre for Advanced Studies on Collaboratives Research, pp. 125–135 (1999)

14. Sawin, J., Rountev, A.: Improved Static Resolution of Dynamic Class Loading in
Java. Automated Software Engineering 16(2), 357–381 (2009)

15. Christensen, A.S., Moller, A., Schwartzbach, M.: Precise Analysis of String Ex-
pressions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer,
Heidelberg (2003)

16. Chugh, R., Voung, W.J., Jhala, R., Lerner, S.: Dataflow analysis for concurrent
programs using datarace detection. In: Proceedings of the 2008 ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 316–326
(2008)

Rule Based Classification on a Multi Node

Scalable Hadoop Cluster

Shashank Gugnani, Devavrat Khanolkar, Tushar Bihany, and Nikhil Khadilkar

BITS Pilani K.K. Birla Goa Campus,
Goa - 403726, India

shashankgugnani@gmail.com

Abstract. Hadoop framework is one of the reliable, scalable framework
for the big data analytics. In this paper we investigate the Hadoop frame-
work for distributed data mining to reduce the computational cost for
the exponentially growing scientific data. We use the RIPPER (Repeated
Incremental Pruning for Error Reduction) algorithm [5] to develop a rule
based classifier. We propose a parallel implementation of RIPPER based
on the Hadoop MapReduce framework. The data is horizontally parti-
tioned so that each node operates on a portion of the dataset and finally
the results are aggregated to develop the classifier. We tested our algo-
rithm on two large datasets and results showed that we can achieve a
speed up of as high as 3.7 on 4 nodes.

Keywords: Hadoop, Distributed Data Mining, Data-intensive
computing.

1 Introduction

Computational power is increasing with time. However, the requirements to pro-
cess the everyday generated data are still challenging. Moreover, the data is dis-
tributed all over the globe. Silicon based architectures have almost reached upper
limits in terms of processing capabilities (clock speed). Significant technologi-
cal advancements have paved way for cost-effective parallel computing systems.
Hence, there is a sudden increase in the importance of parallel and distributed
computing.

Apache Hadoop [1] is an open-source framework which allows users to store
and process huge datasets in a distributed environment. Today, it is used by
most of the top corporates viz. Yahoo, Facebook, etc. The framework of Apache
Hadoop is composed of the following modules:

1. Hadoop Common - contains libraries and utilities needed by other Hadoop
modules.

2. Hadoop Distributed File System (HDFS) [4] - a distributed file-system that
stores data on the commodity machines, providing very high aggregate band-
width across the cluster.

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 174–183, 2014.
c© Springer International Publishing Switzerland 2014

Rule Based Classification on a Multi Node Scalable Hadoop Cluster 175

3. Hadoop YARN - a resource-management platform responsible for manag-
ing compute resources in clusters and using them for scheduling of user’s
applications.

4. Hadoop MapReduce - a programming model for large scale data processing.

Apache Hadoop uses MapReduce to process large datasets in parallel and
on thousands of nodes in a reliable, fault-tolerant manner. Initially, Hadoop
MapReduce job divides the input data into chunks (default size is 64MB). These
independent chunks are then processed by the Map tasks on different nodes in
a completely parallel manner. The outputs are passed on after sorting to the
reduce tasks which does the job of collating the work and combining the results
into a single value. Monitoring, scheduling and re-executing the failed tasks are
the responsibility of MapReduce.

Fig. 1. Map-Reduce Framework

In this paper we present the parallel implementation of Rule-Based Classifier
on Hadoop. We use RIPPER (Repeated Incremental Pruning for Error Re-
duction) algorithm for rule generation. Proposed by William Cohen, RIPPER
employs a general-to-specific strategy to grow rules and FOILs (First Order In-
ductive Learning) information measure to choose the next conjunct to be added
into the rule. In this paper we propose an implementation of RIPPER on Hadoop
by using a data parallel model and then give the results of our experiments.

The rest of the paper is organized as follows. In Section 2 we discuss related
work, Section 3 presents the standard RIPPER algorithm and its parallel imple-
mentation on Hadoop. Section 4 gives the complexity analysis of our algorithm,
Section 5 shows the experimental results and finally in Section 6 we conclude
our paper.

2 Related Work

Classification in data mining is a kind of mapping that maps items in a collec-
tion to target categories. But for this mapping one needs to process datasets

176 S. Gugnani et al.

which can be very large. To handle the problem of processing large datasets,
the processing model of MapReduce is taken into consideration. The embedded
features like parallelization across large scale clusters, handling node failures and
effective communication among machines have made this model pretty demand-
ing. Dean and Ghemawat [6] have expressed their ideas towards this model and
have designed simple pseudo codes for mapper and reducer functions. Another
illustration was given by Mackey et al. [9] on Hadoop MapReduce implemen-
tation and they also broadcasted their ideas about Hadoop Distributed File
System (HDFS). Dean and Ghemawat [7] hailed MapReduce as a flexible data
processing tool in their publication concerning the advantages of MapReduce
over other parallel databases. Nguyen et al. [10] implemented the complex com-
putation problem called the N-body problem using map reduce. The N-body
problem simulates the movement of particles under gravitational or electrostatic
forces. Zhou et al. [12] have used the Hadoop MapReduce framework to show how
parallel implementing Nave Bayes algorithm is much faster than the standard
algorithm.

A rule based classification is a technique used for classification using a col-
lection of conditional rules. A general idea of rule based classification algorithm
was shared by Qin et al. [11] in their URULE algorithm which also includes the
criterion for growing and pruning the rules. More specifically the ripper algo-
rithm is most widely used rule induction algorithm and works well with even
noisy datasets as it uses validation set to prevent over fitting. Further ideas
on RIPPER were elaborated by Basu and Kumaravel [3] and they implemented
RIPPER algorithm (JRIP). The model for fast and effective rule algorithm using
RIPPER was formulated and implemented by Cohen [5] in his IREP (Incremen-
tal Reduced Error Pruning) algorithm.

Ishibuchi et al. [8] have proposed an island model to build a fuzzy rule based
classifier. They divide the data equally among each island (node) and regularly
shift the data to the adjacent node. For each set of data, a classifier is built. The
classifier which performs the best out of all the sets, is selected as a member of
the final ensemble classifier. Even though the accuracy of the ensemble classifier
is better than the individual classifiers, the total accuracy never reaches beyond
90%. Also, the classifiers built on each island only represent a locally optimum
solution and may not be the best solution of the problem.

3 Rule Based Classification Using RIPPER

3.1 The RIPPER Algorithm

RIPPER is a widely used rule induction algorithm. It scales linearly with the
number of training records used and is suited for building models with imbal-
anced class distribution. In addition, it uses a validation set to prevent model
over-fitting.

RIPPER orders the classes according to their frequencies. If (y1, y2, ,
yc) are the class labels and y1 is the least frequent and yc the most frequent,
then, RIPPER first builds rules for y1 taking remaining class records as negative

Rule Based Classification on a Multi Node Scalable Hadoop Cluster 177

records. Next, RIPPER extracts rules for y2. This process is repeated until yc is
left, which is labeled as the default class.

For rule growing, RIPPER uses a general to specific strategy, where initially
each rule is empty and then it is built by adding conjuncts to it serially. It uses
FOIL’s information gain to add conjuncts to the rule. Suppose we have a rule
R : A → class that covers p0 positive records and n0 negative records. After
adding a new conjunct B, the rule R′ : A∧B → class covers p1 positive records
and n1 negative records. Then, the FOIL’s information gain can be calculated
as

FOIL’s information gain = p1 ×
(
log

p1
p1 + n1

− log
p0

p0 + n0

)
(1)

Conjuncts are added until the rule starts covering negative examples. The rule
is then pruned based on its performance on the validation set using the following
metric (p−n)/(p+n), where p is the number of positive records covered by the
rule in the validation set and n is the number of negative records covered by the
rule in the validation set. If the value of the above mentioned metric increases
after removing a conjunct, then the rule is pruned.

Upon generating a rule, all records covered by the rule are eliminated. The
algorithm then continues with building a new rule. Rules are built as long as the
rule set doesn’t violate the Minimum Description Length (MDL) principle and
the error on the validation set is less than 50%.

3.2 Why Is Parallelizing RIPPER Important?

RIPPER is an iterative algorithm, and in each iteration it has to go over the
complete dataset. Thus, for datasets of order 106 − 108, it would take forever to
complete even one iteration of the algorithm. It is important to parallelize the
work done in an iteration, and develop an algorithm to distribute work among
the parallel cluster nodes.

3.3 RIPPER Implementation on Hadoop

We implemented RIPPER in Java using Hadoop Java libraries. The dataset
was partitioned horizontally to support the Hadoop MapReduce framework and
ensure parallel execution of the code. Three sets of mapper-reducer functions
were used, one each for rule building, rule pruning and calculating accuracy.
Hence, each mapper executes its code on a portion of the dataset and the reducer
aggregates over the output of mapper to produce one common output.

For rule building, the mapper-reducer functions calculate the value of p1 and n1

values for computing the FOIL’s information gain (the p0 and n0 values are the p1
and n1 values for the old rule respectively). For adding a conjunct, every possible
value for all attributes are considered as conjuncts to be added to the rule. The
FOIL’s information gain for each of these values is calculated, and the value for
which the information gain is maximum is added as a conjunct to the rule.

178 S. Gugnani et al.

The rule pruning is done using the validation set as reference. The mapper-
reducer functions for pruning calculate the p and n values for the metric (p −
n)/(p+ n). Depending on the value of the metric, the rule is pruned and added
to the rule set.

After all rules have been built the rule set needs to be validated on the test
records. The accuracy mapper-reducer functions calculate the number of positive
and negative records covered by each rule and the whole rule set. These values
are then used to calculate the accuracy of each rule and the overall accuracy as
well.

The algorithm is briefly described below and the pseudo code is given in Figure
2:

1. Rule Growing Stage
The rule is initialized as an empty rule, i.e., it covers all records. After that,
conjuncts are added one by one to the rule. The conjunct to be added is
selected by the value of FOIL’s information gain measure. The parameters
of the measure are calculated using a MapReduce function and the <key,
value> pairs have the values of p0, p1, n0 & n1. Conjuncts are added to the
rule as long as it does not cover negative records.

2. Rule Pruning Stage
The rule generated in 1. is then pruned using the (p − n)/(p + n) metric.
To calculate the parameters p & n of this metric a Map-Reduce function is
called in which the <key, value> pairs have the values of p & n.
Stage 1. and 2. are repeated until adding a new rule violates the Minimum
Description Length (MDL) principle.

3. Model Evaluation Stage
After the rule set has been generated, the rules are used to classify the test
records. A Map-Reduce function is called to classify the records and calculate
the accuracy of the model. The <key, value> pairs in the function contain
the value of the total positive and negative records covered by the model.

The code returns the pruned rule set and the accuracy of the rules and the
rule set on the test records.

4 Complexity Analysis

We now calculate the time complexity for the sequential as well as the parallel
implementation of RIPPER. Let the total number of training records be N , the
total number of attributes in a record be A, the average of the number of possible
values for each attribute be V and the number of nodes in the Hadoop cluster
be K. Since the data is partitioned among each node, the total records in each
node will be N/K.

4.1 Sequential Implementation

For adding each conjunct to the rule, we calculate the FOIL’s information gain
for all values of all attributes. For calculating gain we must iterate over all

Rule Based Classification on a Multi Node Scalable Hadoop Cluster 179

Algorithm 1: RIPPER(Dataset D)

Input: Labeled Dataset D

Output: Rule Set R

1. NR = New Rule

2. R = Rule Set

3. FIG: FOIL’s Information Gain

4. Max FIG: Maximum FIG among all conjuncts

5. A = Accuracy

6. Max Rules: Maximum Possible Rules (MDL)

7. P: Pruning Metric

8. While loop number < Max Rules do

9. Initialize new Rule NR to empty

10. While Max FIG != 0 do

11. MapReduce 1(Train): Calc. FIG for all possible conjuncts

12. compute Max FIG

13. Add conjunct having Max FIG to NR

14. End While

15. While Old P < New P do

16. MapReduce 2(Pruning): Calculate P

17. if Old P < New P then

18. Prune last conjunct in NR

19. End if

20. End While

21. Add NR to R

22. End While

23. MapReduce 3(Accuracy): Calculate A

24. Return R, A

Fig. 2. Algorithm 1

records in the dataset. The total conjuncts that can be added overall is limited
by the Minimum Description Length (MDL). Hence, the time complexity of the
sequential implementation is O(A · V ·N ·MDL).

4.2 Parallel Implementation

The runtime of the Mapper and Reducer functions are as follows:

1. Mapper: In each mapper we calculate the FOIL’s information gain for all
possible values for all attributes. Each Mapper runs for N/K records. Hence,
time taken for each mapper to execute is A · V ·N/K.

2. Reducer: In each reduce task, we simply shuffle the <key, value> pairs to the
appropriate nodes and aggregate the results. Each node has N/K records.
Hence, each node may send out at most N/K records to other nodes. Assum-
ing a completely connected network, the time to shuffle the <key, value>
pairs is N/K. We generate one key-value pair per record, hence the time

180 S. Gugnani et al.

taken for aggregating the key values is N/K. The total time taken for the
reducer is O(N/K).

Since RIPPER uses a Minimum Description Length (MDL) as a stopping
condition, the number of conjuncts added are limited to constant. Each time
MapReduce is called, a conjunct is added to the Rule. Hence, the MapReduce
function will only be called a maximum of MDL times. Hence, the total time
complexity of the algorithm is O(A · V ·N ·MDL/K +MDL ·N/K). We now
know that the execution time of the algorithm is proportional to 1/K. Hence,
by increasing the number of nodes in the Hadoop cluster, the execution time
decreases.

4.3 Speed Up

We define the speed up factor of the Hadoop cluster as the ratio of time taken
for the sequential algorithm and the time taken to execute the parallel algo-
rithm on K nodes. We represent this factor as S@K. Using the time complexity
calculated above, we can calculate the speed up as

S@K =
A · V ·N ·MDL

A·V ·N ·MDL
K + MDL·N

K

=
A · V

A · V + 1
×K = CK, (2)

where C is a constant.
We now see that the speed up we achieve on a Hadoop cluster is linear in the

number of nodes in the cluster (K).

4.4 Cost Optimality

The cost of a parallel algorithm is the number of processors used times the
time taken to execute the parallel algorithm (Tp). A parallel algorithm is cost
optimal if the cost of the parallel algorithm is equal to the time taken by the
sequential algorithm (Ts).

Cost = K · Tp = O((A · V + 1) ·N ·MDL) = O(A · V ·N ·MDL) = Ts

[Assuming A · V >> 1]
Since Cost = Ts, our parallel RIPPER algorithm is cost optimal.

5 Experimental Results

5.1 Experimental Environment

We setup a Hadoop Cluster with four nodes to test the algorithm. Tables 1 and
2 show the configuration of the cluster.

Rule Based Classification on a Multi Node Scalable Hadoop Cluster 181

Table 1. Configuration of each node

SNo. Software/Package

1 Ubuntu 13.04
2 Hadoop 1.1.2
3 sun java6-jdk
4 100 Mbps Ethernet

Table 2. Configuration of cluster

Node No of cores RAM Clock Speed

Master 2 4GB 2.1GHz
Slave1 2 8GB 2.1GHz
Slave2 2 4GB 2.2GHz
Slave3 2 4GB 1.8GHz

5.2 Datasets Used

To test the accuracy of our algorithm on Hadoop we used two datsets; one
randomly generated dataset of 100 million records with 22 categorical attributes,
each attribute having an average of 6 values, the other dataset was extracted
from the SDSS (Sloan Digital Sky Survey) Server [2]. We used only a subset (6)
of the attributes from the SDSS dataset and considered records for two classes
only (’STAR’ and ’GALAXY’). The total records extracted amounted to about
2.5 million. Table 3 gives the description of the datasets used.

Table 3. Description of datasets

Dataset No of records No of attributes

Randomly generated 100 million 22
SDSS 2.5 million 6

5.3 Speed Up

To evaluate the performance of our algorithm, we calculated the speed up (S@K)
by varying the number of nodes for both the datasets. The results are shown in
Figures 3 and 4. For the randomized dataset we achieve a speed up of almost
3.7 on 4 nodes.

One can see that the speed up of the algorithm increases almost linearly with
the number of nodes as predicted by the complexity analysis. This shows that

182 S. Gugnani et al.

Fig. 3. Change in Speed Up Factor by varying number of nodes in the Cluster for
randomly generated dataset

Fig. 4. Change in Speed Up Factor by varying number of nodes in the Cluster for
SDSS dataset

Rule Based Classification on a Multi Node Scalable Hadoop Cluster 183

our parallel implementation of RIPPER is very efficient and scalable. Also, the
final classifier built is a globally optimum solution and the model is independent
of number of nodes and distribution of data.

6 Conclusion and Future Work

We studied the Hadoop framework for reducing the computational cost of the ex-
ponential growing scientific data using a rule based classifier. The results shows
that the efficiency of the parallel execution algorithm of RIPPER is higher than
the standard implementation of the algorithm. Experimental results shows that
by using the MapReduce framework on multiple nodes the computation time is
reduced. In future we will implement our algorithm in General-Purpose compu-
tation on Graphics Processing Units and will compare the result with the CPU
implementation.

References

1. Apache hadoop, http://hadoop.apache.org/
2. Sloan Digital Sky Survey Data Release 10,

http://skyserver.sdss3.org/dr10/en/home.aspx

3. Basu, S., Kumaravel, A.: Classification by rules mining model with map- reduce
framework in cloud. International Journal of Advanced and Innovative Research 2,
403–409 (2013)

4. Borthakur, D.: The hadoop distributed file system: Architecture and design.
Hadoop Project Website (2007)

5. Cohen, W.W.: Fast effective rule induction. In: Proceedings of the 12th Interna-
tional Conference on Machine Learning (ICML 1995), pp. 115–123 (1995)

6. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51, 107–113 (2008)

7. Dean, J., Ghemawat, S.: MapReduce: A flexible data processing tool. Communi-
cations of the ACM 53(1), 72–77 (2010)

8. Ishibuchi, H., Yamane, M., Nojima, Y.: Ensemble fuzzy rule-based classifier design
by parallel distributed fuzzy gbml algorithms. In: Bui, L.T., Ong, Y.S., Hoai, N.X.,
Ishibuchi, H., Suganthan, P.N. (eds.) SEAL 2012. LNCS, vol. 7673, pp. 93–103.
Springer, Heidelberg (2012)

9. Mackey, G., Sehrish, S., Bent, J., Lopez, J., Habib, S., Wang, J.: Introducing map-
reduce to high end computing. In: 3rd Petascale Data Storage Workshop, PDSW
2008. 3rd, pp. 1–6 (2008)

10. Nguyen, T.-C., Shen, W.-F., Chai, Y.-H., Xu, W.-M.: Research and implementation
of scalable parallel computing based on map-reduce. Journal of Shanghai University
(English Edition) 15(5), 426–429 (2011)

11. Qin, B., Xia, Y., Prabhakar, S., Tu, Y.-C.: A rule-based classification algo-
rithm for uncertain data. In: Ioannidis, Y.E., Lee, D.L., Ng, R.T. (eds.) ICDE,
pp. 1633–1640. IEEE (2009)

12. Zhou, L., Wang, H., Wang, W.: Parallel implementation of classification algorithms
based on cloud computing environment. Indonesian Journal of Electrical Engineer-
ing 10(5), 1087–1092 (2012)

http://hadoop.apache.org/
http://skyserver.sdss3.org/dr10/en/home.aspx

Consistent Management of Context Information

in Ubiquitous Systems

Gabriel Guerrero-Contreras, José Luis Garrido, Sara Balderas-Dı́az,
and Carlos Rodŕıguez-Domı́nguez

University of Granada
Software Engineering Department, E.T.S.I.I.T.

C/ Periodista Daniel Saucedo Aranda s/n, Granada, Spain
{gjguerrero,jgarrido,carlosrodriguez}@ugr.es, sarabd@correo.ugr.es

Abstract. In context-aware systems, where the context information
tends to be distributed and/or replicated, can be decisive to maintain the
correctness of this information, owing to the decisions in context-aware
systems are taken on the basis of it. In ubiquitous environments, new
challenges are emerging, which can affect to the consistent management
of the distributed context information. For instance, the dynamism is a
feature that directly affects the availability of the resources deployed in
the network, among other quality features, and it implies additional de-
sign and development efforts from software engineers. Service Oriented
Architecture (SOA), together with replication techniques may help to
improve resource availability and strengthen the system against node
disconnections, nevertheless, additional techniques must be applied to
ensure the consistency of the distributed/replicated resources. In this
paper, an approach to support, from the software design stage, the syn-
chronization and consistency management of context information is in-
troduced. This approach follows the SOA model, and provides a common
basis for the synchronization of distributed/replicated resources. A case
study, related with an ubiquitous system deployed in a hospital where
context-aware services can be found, will be described in order to show
the feasibility of the proposal.

Keywords: Distributed resources, context-awareness systems, ubiqui-
tous and pervasive computing, Service Oriented Architecture (SOA).

1 Introduction

Context-aware systems are defined as those which “use context to provide rel-
evant information and/or services to the user” [2]. These provides a new ap-
proach in Human Computer Interaction (HCI), where the system adapts to the
user and his/her environment. Ubiquitous environments, which are conceived
as a distributed computing power in the environment, make use of the tech-
niques and methods adopted by context-aware systems to provide a natural and
unconscious interaction with the computational system to the user.

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 184–193, 2014.
c© Springer International Publishing Switzerland 2014

Consistent Management of Context Information in Ubiquitous Systems 185

In context-aware systems is decisive to maintain the correctness and the qual-
ity of context information [1], owing to the decisions of the system is based on
this information and, therefore, if it is incorrect, the behaviour of the system
will be incorrect. However, along with ubiquitous computing, new challenges are
emerging, which can affect to the consistent management of the context informa-
tion, such as [11]: (1) uneven conditioning, caused by the heterogeneous nature
of the environment, where different devices with different capabilities exist, and
also, some resources or features may not be always available; (2) localized scala-
bility, related with certain limitations in the use of resources, e.g., to prevent to
send information beyond the local environment where it makes sense, in order
to avoid communication network overload; and (3) a dynamic network topology,
caused by users’ mobility, which could imply unstable connections producing
disconnections and network partitions.

The Service Oriented Architecture (SOA) model [8], together with replication
techniques, may help to address some of these challenges. SOA provides the
basis to obtain a reusable, scalable and interoperable system, through the service
encapsulation and the use of standards, while replication is recommendable to
obtain high-availability and good performance in distributed systems. However,
in dynamic environments additional techniques must be applied to ensure the
consistency of the distributed/replicated resources. For instance, if a user changes
his/her availability to busy for a certain hours, by a meeting, through his/her
smartphone, and in that moment there is no connection available, this change
will not be reflected in the copy of the agenda of the office. If meanwhile, in the
office, another meeting is concerted for the same hours, an inconsistency will be
generated, as a consequence of it the user will not able to attend to the two
meetings at the same time.

In this paper, an approach to support, from the software design stage, the
synchronization and consistency management of distributed context information
is introduced. This approach is based on the SOA model and provides two main
services (Monitoring and Synchronization) for the synchronization of replicated
resources [5]. In turn, a Context Manager service will turn out to be built from
the specialization of the Synchronization service. This service will be able to
work in a dynamic environment under a distributed setting, thus facilitating the
development of context-aware systems.

The rest of this paper is structured as follows. Section 2 presents related work
which have tried to provide several proposal at architectural level to facilitate
the development of context-aware systems; Section 3 proposes an approach for
a consistent management of replicated context information; Section 4 shows the
feasibility of the proposal through a case study in an ubiquitous environment;
and finally, conclusions and future work are summarized in Section 5.

2 Related Work

Several research works have addressed main challenges on context management in
distributed environments. CASS [3] and SOCAM [4] propose middleware-based

186 G. Guerrero-Contreras et al.

technologies. These technologies provide an architecture specifically designed in
order to facilitate the development of context-aware mobile applications. Both of
them propose a similar architecture, in which a centralized context manager is
provided. This manager will receive context data from several distributed context
providers, such as sensors. Additionally, the CASSmiddleware allows caching con-
text information in mobile devices, in order to overcome device disconnections.

Korpipää et al. [7] propose an architecture for the context management in
mobile devices. Its architecture is based in a hierarchical infrastructure, which
consists of the following main services/components at system level: the Resource
server, the Security component, the Context Recognition and Change Detection
services. These entities are grouped into the context manager, which provides
context information to the client applications. While the resource servers and
the context recognition services are distributed, the context manager is actually
a centralized entity managing all the context information.

The Hydrogen project [6] is a framework to context acquisition in mobile envi-
ronments. This framework distinguishes between local and remote context infor-
mation. The local information is about the device, while the remote information
relates to the information which has been obtained from the communication with
nearby devices, under a peer-to-peer communication scheme. Its architecture is
divided into three layers: the lower layer, which collects the information from the
device’s sensors; the intermediate layer, which manages, and allows the access
to, the information collected; and the upper layer, in which the context-aware
applications are developed.

The work presented in [12] is based on a SOA approach to manage the data
consistency in heterogeneous systems. In that context, there are several applica-
tions with different local data models. The models are different, however, they
refer to the same data. The main objective of the work is that the modifica-
tions in a local model are automatically disseminated to the other local models.
The proposed architecture is based on two specific services: the Directory ser-
vice serves to link between local data models and the Synchronization service in
intended to solve possible inconsistencies.

However, these works follow a centralized approach (at least partially). This
makes the system weakest against device disconnections and network partitions
(which are frequent in dynamic environments), although it facilitates the syn-
chronization of the context information.

3 Consistent Management of Context Information

In this section, an approach for a consistent management of distributed and/or
replicated context information is presented. The Figure 1 shows the model in
which the approach is based. This model provides a common basis for the man-
agement of shared resources (which may be replicated or distributed) in a dy-
namic environment. As mentioned, in this kind of environments, the shared re-
sources are susceptible to the emergence of inconsistencies between their different
copies. The following subsections describe in detail the proposal. For the sake

Consistent Management of Context Information in Ubiquitous Systems 187

Fig. 1. A model for a consistent management of distributed/replicated context
information

of a more structured description of the model, the main entities are grouped as
follow: (1) the Service Entity and the Replica Manager ; (2) the Synchronization
and Monitoring services ; and (3) the Context Manager.

3.1 The Service Entity and Replica Manager

The Service entity is an abstract class which brings together the common re-
lations for all the system services. A service may be being accessed by one or
more applications (which interact with the user), and by one or more services
(i.e., service composition). By definition [8], a service should enable access to one
or more capabilities, a service which is not accessed for any customer becomes
meaningless. Therefore, in the diagram of the Figure 1 a restriction is introduced:
a service must be accessed at least by an application or a service. Both the ser-
vice and the application are Software Entities, which are deployed on a hardware
device (server or personal computer, sensor, mobile device, among others). Also,
the service can manage a kind of shared resources (e.g., a document repository
service manages a set of text documents).

Moreover, the approach aims to support the deployment of software in dis-
tributed systems with dynamic network topology, therefore, each service is com-
posed by a Replica Manager (RM) entity. The objective of this decision is to
avoid central controls and strengthen the system against node disconnections
and network partitions. Note that this is a model addressing a logical architec-
ture viewpoint for services and, consequently, the entity Service is represented

188 G. Guerrero-Contreras et al.

as an service, irrespective of its real implementation, which it may be carried
out through a set of service replicas (in this case, each replica will have a replica
of the RM entity).

The RM is responsible of the synchronization of the operations performed on
the different service replicas in the system. However, in this model, the RM will
also encapsulate the adaptation logic, regarding the deployment of this replica,
in order to provide a self-adaptive and distributed solution to the dynamic de-
ployment of the services and thus improving its availability in run-time. To this
end, the RM entity will need the information provided by the Context Manager
service (for instance, it will need to know when the mobile device’s battery is
running low) to know when and how to change the current deployment of the
service.

3.2 The Synchronization and Monitoring Services

Nowadays, in the absence of standardized methods for the synchronization of the
shared resources replicas, most of the proposed solutions are planned in an ad-
hoc manner. By taking into account an increasing number of users and resources
to be managed, this entails a higher complexity in the correct synchronization of
these resources. Thus, this approach is intended to provide a common basis for
the consistent management of the shared resources in context-aware systems. To
this end, the Synchronization and Monitoring services are provided (Figure 1).

It is not possible to provide a general service for the synchronization, owing
to the synchronization algorithms are dependent of the resource type and its
specific nature and usage. For this reason, and regarding the goal of providing a
reusable service, the Synchronization service is an abstract service, which must
be specialized according to each particular resource to be synchronized. This
abstract service uses the Monitoring Service. It is a basic service which stores
all kind of information about changes on the different replicas of the shared re-
sources. This information seeks to serve several purposes, e.g., version control.
In the synchronization case, this information is required by the specific synchro-
nization algorithm to be applied.

In this way, the common part related to manage the resource synchronization
is identified and assigned to the abstract service and its composition with the
Monitoring Service. The Synchronization service, according to the information
received from the Monitoring service, can detect the actions that have been
applied to other replicas of the resource but not in its associated replica, that is,
the information would be in an inconsistent state. Once the inconsistencies are
detected, they should be resolved in the specialization of this service, and it will
depend on the particular requirements of the resource.

3.3 The Context Manager

The importance of maintaining the consistency of context information in context-
aware systems needs to be emphasized, as the decisions in context-aware sys-
tems are taken on the basis of this information. The context information can be

Consistent Management of Context Information in Ubiquitous Systems 189

considered a shared resource, which is constantly modified by the user actions
(e.g., a user enters in a room), changes in the environment (e.g., the tempera-
ture in the room has changed) and explicit information provides by a user (e.g.,
changing a meeting in an electronic agenda). This context information can be
distributed and/or replicated, e.g., information about user’s agenda may be lo-
cated in his/her personal smartphone and the public information of the agenda
can be replicated also in a server in his/her office building.

Fig. 2. The Context Manager service as a result of the specialization of the Synchro-
nization service

In this approach, through of the specialization of the Synchronization service,
a Context Manager which can address these context inconsistencies at the service
level is provided (Figure 2). The Context Manager will implement the ‘synchro-
nize’ abstract method, where it will should add the specific synchronization
algorithms for manage the context data resource. Also, the Context Manager
will implement the specific methods to provide functionality to its customers.
Note that this implementation follows a Event-Driven Approach (EDA), where
the actions performed on the shared data are represented through events. In this
way, through the events dissemination, a low coupling between components of
the system is achieved.

4 Case Study

In this section, a case study is described in order to try to show the usefulness
of the approach. We assume a hospital and its emergency service, which form
part of an ubiquitous environment. In this system different context information
need to be managed, such as the location of the medical staff, the availability of
the medical resources, the profile of the patients, etc. Certain of this information

190 G. Guerrero-Contreras et al.

can be partially replicated. For instance, a doctor’s mobile device may host
information about his/her patients, but not about the work routine of the nurse
staff. The Emergency service, just in case of an emergency, will look for the
the most appropriate specialist doctor to attend the emergency. It will take
into account information such as: who is the family doctor of the patient, the
type of emergency and if the doctor can be immediately available, i.e., it is an
context-aware service. Therefore, it is important to know where is the doctor.
The location of the staff is obtained through the use of RFID readers, which are
placed in the doors of the doctor’s offices, patient rooms, and in other different
areas of the building.

However, the following specific scenario depicted in Figure 3 can arise. The
doctor has left the hospital to examine a patient at home as consequence of
a emergency call, however, he/she has forgotten his/her identification card in
his/her office. Therefore, the Context Manager replica service deployed at the
hospital assumes that the doctor is still in his/her office. This is caused because
(at time T) the Context Manager service received an event from the Positioning
service which indicated that the doctor became to his/her office, but the doc-
tor forgot his/her identification card, and the Positioning service cannot inform
about the event of leaving the office/building.

While the doctor goes to the patient’s house, he/she interacts with his/her
mobile device, in order to consult the patient profile (at the time T+1). This
device hosts another replica of the Context Manager service, and it manages
replicated context information, such as the medical history of the patient and
another information about the activities that the doctor is performed, such as
‘inquiry of the medical history of the patient’ or ‘request for an operating room’.
Through this interaction, the Context Manager updates the location of the doc-
tor, he/she is not longer in the hospital, he/she is now out of the hospital,
particularly traveling by an ambulance.

At this point, the replicated context information (the information about cur-
rent location of the doctor) is in an inconsistent state. The doctor can be located
in two places at the same time. This has a negative impact on the functioning of
the Emergency service, which has been mentioned previously, owing to it cannot
find the correct information about the real doctor location. However, thanks to
the approach provided, the Context Manager service is based in the Synchroniza-
tion and Monitoring services (Figure 2), and therefore, these inconsistencies can
be detected and resolved at the service level, preventing its propagation to the
upper layers of the architecture. The inconsistency will be resolved through the
implementation of the abstract method ‘synchronize’, which is shown partially
below. In this case, the synchronization of the Event 2 (Figure 3) may be con-
sidered relatively straightforward, as the timestamp of this event is upper than
the last modification performed in the location of the doctor. However, more
complex inconsistencies can be found, in which may be involved several events.
For example, if a doctor requests for a specific operating room while he/her is in
an emergency and his/her local context information is not updated, this operat-
ing room will may be already busy. Therefore, when the Context Manager starts

Consistent Management of Context Information in Ubiquitous Systems 191

Fig. 3. Example scenario of the case study. A doctor has left the hospital to examine
a patient at home owing to an emergency, however, he/she has forgotten his/her iden-
tification card in his/her office and therefore the system assumes that the doctor still
is in his/her office.

192 G. Guerrero-Contreras et al.

the synchronization and detects this inconsistency, it can decide to automatically
make a request for a similar operating room.

/**

* @param list: a list of events obtained from the

* ‘disjointSet’ method

*/

void synchronize(List<Events> list){

foreach(Event evt in list){

evtName = evt.getMemberValue("object").GetString();

evtValue = evt.getMemberValue("value").GetString();

evtTime = evt.getMemberValue("timestamp").GetInt64();

[...]

if(this.getContextObject(evtName).getTimestamp() < evtTime){

this.setContextValue(evtName, evtValue);

}

[...]

}

}

(Example of a C# implementation of the ‘synchronization’ method of the Context

Manager.)

5 Conclusions and Future Work

The presented approach in this paper stems from the application of a distributed
computation techniques to service-based architectural design. The devised model
provides to the software engineers the basis for a correct and consistent manage-
ment of replicated/distributed resources. This is achieved through the Synchro-
nization and Monitoring services. This model also contemplates the adaptation
logic of the replication of services in run-time, through the Replica Manager
entity. In this model a Context Manager service has been also provided. It has
been build from the Synchronization service, which facilitates the detection of
inconsistencies in the context information owing to the inconsistencies can be
detected and resolved in design time. In this way, this service will be able to
work in a dynamic environment, such as context-aware system, thus facilitating
their development.

Regarding future work an implementation of the model in a real scenarios
similar to the presented in this paper, together with an analysis of the more
convenient technologies to implement the context information models will be
performed. Additionally, an analysis about the different configuration parame-
ters and the behavior of different service replication techniques will be carried
out. Finally, we plan to study the composition between the herein presented
services and other high level self-adaptive services [10], all of them will be de-
ployed on a middleware [9] for ubiquitous systems, in order to provide a full
implementation in real scenarios.

Consistent Management of Context Information in Ubiquitous Systems 193

Acknowledgment. This research work has been funded by the Ministry of
Economy and Competitiveness of the Spanish Government with European Re-
gional Development Funds (FEDER), and by the Andalusian Regional Govern-
ment, through the research projects TIN2012-38600 and P10-TIC-6600,
respectively.

References

1. Buchholz, T., Küpper, A., Schiffers, M.: Quality of context: What it is and why
we need it. In: Proceedings of the Workshop of the HP OpenView University As-
sociation, vol. 2003 (2003)

2. Dey, A.K.: Understanding and using context. Personal and Ubiquitous Comput-
ing 5(1), 4–7 (2001)

3. Fahy, P., Clarke, S.: Cass–a middleware for mobile context-aware applications. In:
Workshop on Context Awareness, MobiSys. Citeseer (2004)

4. Gu, T., Pung, H.K., Zhang, D.Q.: A middleware for building context-aware mobile
services. In: 2004 IEEE 59th Vehicular Technology Conference, VTC 2004-Sprin,
pp. 2656–2660. IEEE (2004)

5. Guerrero-Contreras, G., Garrido, J.L., Rodŕıguez-Domı́nguez, C., Noguera, M.,
Benghazi, K.: Designing a service platform for sharing internet resources in manets.
In: Canal, C., Villari, M. (eds.) ESOCC 2013. CCIS, vol. 393, pp. 331–345. Springer,
Heidelberg (2013)

6. Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., Altmann, J., Rets-
chitzegger, W.: Context-awareness on mobile devices-the hydrogen approach. In:
Proceedings of the 36th Annual Hawaii International Conference on System Sci-
ences, 2003, p. 10. IEEE (2003)

7. Jani, M., Kela, J., Malm, E.J., et al.: Managing context information in mobile
devices. IEEE Pervasive Computing 2(3), 42–51 (2003)

8. MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz, R., Hamilton, B.A.:
Reference model for service oriented architecture 1.0. OASIS Standard 12 (2006)

9. Rodŕıguez-Domı́nguez, C., Benghazi, K., Noguera, M., Garrido, J.L., Rodŕıguez,
M.L., Ruiz-López, T.: A communication model to integrate the request-response
and the publish-subscribe paradigms into ubiquitous systems. Sensors 12(6),
7648–7668 (2012)

10. Ruiz-López, T., Rodŕıguez-Domı́nguez, C., Ochoa, S., Garrido, J.L.: Mdubi: A
model-driven approach to the development of self-adaptive services for ubiquitous
systems. Sensors, 1–25 (in press, 2014)

11. Satyanarayanan, M.: Pervasive computing: Vision and challenges. IEEE Personal
Communications 8(4), 10–17 (2001)

12. Svensson, E., Vetter, C., Werner, T.: Data consistency in a heterogeneous it land-
scape: a service oriented architecture approach. In: Proceedings of the Eighth IEEE
International Enterprise Distributed Object Computing Conference, EDOC 2004,
pp. 3–8. IEEE (2004)

Dynamic Deployment of Software Components
for Self-adaptive Distributed Systems

Jingtao Sun and Ichiro Satoh

National Institute of Informatics,
The Graduate University for Advanced Studies,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

{sun,ichiro}@nii.ac.jp

Abstract. This paper proposes a novel approach to adapting applications, which
are running on one or more computers. The key idea behind the proposed
approach is to introduce the policy-based relocation of components to define
functions between computers as a basic mechanism for adaptation on distributed
systems. It is constructed as a middleware system for Java-based general-purposed
software components. This paper describes the proposed approach and the design
and implementation of the approach with several applications, e.g., adaptive data
replication between primary backup and chain replication approaches.

1 Introduction

Distributed systems are complicated and dynamic by nature because their structures
and applications tend to dynamically change. Computers and software components of
which an application consists may be added to or removed from them, and networks
between computers may be connected or disconnected. The complexity and dynamism
of distributed systems are beyond our ability to build and manage systems through
conventional approaches, such as those that are centralized and top-down. Distributed
systems should adapt themselves to such changes to solve these problems.

Distributed systems, on the other hand, need to support availability, dependability,
and reliability, because they are often used for mission-critical purposes. Neverthe-
less, several existing approaches to dynamic adaptation, e.g., genetic algorithm and
programming and swarm intelligence, assume random or speculative adaptation, which
may seriously affect the targets of distributed systems and consume their computational
resources. Therefore, we believe that our adaptation should be predictable and save
computational resources as much as possible.

This paper proposes an approach to adapting distributed systems to such changes.
The key idea behind the approach is to introduce the policy-based relocation of software
components as a basic adaptation mechanism. We assumed that a distributed application
would consist of one or more software components, which might have been running on
different computers through a network. When changes in a distributed system occurred,
e.g., in the requirements of the application and the structures of the system, its software
components would automatically be relocated to different computers according to their
policies to adapt it to the changes.

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 194–203, 2014.
c© Springer International Publishing Switzerland 2014

Dynamic Deployment of Software Components for Self-adaptive Distributed Systems 195

The relocation of software components may seem to be simple but it makes their
applications resilient. In fact, there have been many different approaches to solve the
same problems. For example, primary-backup and chain replication, which are widely
used in distributed systems, including cloud computing, consistently support replication
mechanisms with consistency on distributed systems. Nevertheless, the latter has been
designed to improve throughput rather than latency in comparison with the former. They
should be dynamically selected according to the requirements of applications, which
may often change. The main purpose of our approach was to enable distributed systems
to adapt themselves to various changes. We are constructing a middleware system that
will be used for building and operating adaptive distributed systems.

2 Approach

As the requirements of applications and the structures of systems may often change
in distributed systems, the applications need to adapt themselves to such changes. Our
approach introduces the relocation of software components to define functions at other
computers as a basic adaptation mechanism.

2.1 Requirements

Distributed systems are used for multiple purposes and need abilities to adapt them to
various changes results from their dynamic properties. Our adaptation has five require-
ments.

– Resiliency: Distributed systems cannot avoid network connection/partitioning in
addition to system failures. Even when nodes may meet or separate other agents,
software running on the nodes should continue to provide their applications as
much as possible. Centralized management may be simple but can become a sin-
gle point of failures. Therefore, our adaptation should be managed without any
centralized management for reasons of avoiding any single points of failures and
supporting scalability.

– Self-adaptation: Distributed systems essentially lack no global view due to commu-
nication latency between computers. Software components, which may be running
on different computers, need to coordinate them to support their applications with
partial knowledge about other computers. They should be managed in a manner of
self-adaptation.

– General-purpose and adaptation-independency: There are various applications
running on distributed systems are various. Therefore, the approach should be im-
plemented as a practical middleware to support general-purpose applications. All
software components should be defined independently of our adaptation mecha-
nism as much as possible. As a result, developers should be able to concentrate on
their own application-specific processing.

– Reusable adaptation: There have been many attempts to provide adaptive dis-
tributed systems. However, the approaches and parameters in most of them these
strictly and statically depended on their target systems, so that they would need
to be re-defined overall to be reused in other distributed systems. Our adaptation
should be abstracted away from the underlying systems for reasons of reusability.

196 J. Sun and I. Satoh

– Limited resources and networks: Computers on distributed systems may have lim-
ited resources, e.g., processing, storage resources, and networks. Our approach
should be available with such limited resource, whereas many existing adaptation
approaches explicitly or implicitly assume that their target distributed systems have
enriched resources. The bandwidth of networks on several distributed systems tend
to be narrow and their latency cannot be neglected. The approach should support
such networks.

2.2 Policy-Based Adaptation

Our approach separates software components from their policies for adaptation, al-
though components have their own policies.

Deployable Software Component: This approach assumes that an application consists
of one or more software components, which may be running on different computers.
Each component is general-purpose and is a programmable entity. It can be deployed
at another computer according to its deployment policy, while it have started to run.
It is defined as a collection of Java objects like JavaBeans component in the current
implementation.

Deployment Policy for Adaptation: Each component can have one or more policies,
where each policy is basically defined as a pair of information on where and when
the component is deployed. Before explaining deployment policies in the proposed ap-
proach, we need to discuss policies for adaptation in distributed systems. Our approach
introduces the these concepts:

– The approach does not support any adaptation inside software components. Instead,
it introduces the dynamic deployment of components as a basic mechanism in its
adaptation. When more than one dimension must be considered for adaptation, rep-
resenting the policies and choices between policies tends to be too complicated to
define and select policies. Therefore, we intend to support at most one dimension,
i.e., the dynamic deployment of components.

– Each component has one or more policies, where a policy specifies the relocation
of its components and instructs them to migrate to the destination according to
conditions specified in the policy. The validation of every policy can be explic-
itly configure to be one-time, within specified computers, or permanent within its
component.

– Each policy is specified as a pair of a condition part and at the most one destination
part. The former is written in a first-order predicate logic-like notation, where pred-
icates reflect information about the system and applications. The destination part
refers to another components instead of the computer itself. This is because such
policies should be abstracted away from the underlying systems, e.g., network ad-
dresses, so that they can be reused on other distributed systems. The policy deploys
its target component (or a copy of the component) at the current computer of the
component specified as the destination, if the condition is satisfied.

Dynamic Deployment of Software Components for Self-adaptive Distributed Systems 197

Since components for which other components have policies can be statically or dy-
namically deployed at computers, the destinations of policies can easily be changed for
reuse by other distributed systems.

3 Design

The proposed approach dynamically deploys components to define application-specific
functions at computers according to the policies of the components to adapt distributed
applications to changes in distributed systems.

Our middleware system consists of two parts: a component runtime system and
an adaptation manager, where each of the systems are coordinated with one another
through a network. The first part is responsible for executing and duplicating compo-
nents at computers and also exchanging components and messages in runtime systems
on other computers through a network. The second part is responsible for managing
policies for adaptation. It consists of an interpreter for policies written in our proposed
language and a database system to maintain the policies.

3.1 Component Runtime System

Each runtime system allows each component to have at most one activity through the
Java thread library. When the life-cycle state of a component changes, e.g., when it
is created, terminates, duplicate, or migrates to another computer, the runtime system
issues specific events to the component. To capture such events, each component can
have more than one listener object that implements a specific listener interface to hook
certain events issued before or after changes have been made in its life-cycle state.
The current implementation uses the notion of dynamic method invocation studied in
CORBA so that it can easily hide differences between the interfaces of objects at the
original and other computers.

Each runtime system can exchange components with other runtime systems through
a TCP channel using mobile-agent technology. When an component is transferred over
the network, not only the code of the component but also its state is transformed into a
bitstream by using Java’s object serialization package and then the bit stream is trans-
ferred to the destination. The component runtime system on the receiving side receives
and unmarshals the bit stream.

Even after components have been deployed at destinations, their methods should still
be able to be invoked from other components, which are running at local or remote com-
puters. The runtime systems exchanges information about components that visit them
with one another in a peer-to-peer manner to trace the locations of components. The
runtime system can forward messages to co-partner components after it has migrated to
another computer through a network.

3.2 Adaptation Manager

The policy-based deployment of components is managed by adaptation managers, where
each manager is running with a component runtime system on each computer, without

198 J. Sun and I. Satoh

a centralized management server. Each component runtime system periodically adver-
tises its address to the others through UDP multicasting, and these computers then re-
turn their addresses and capabilities to the computer through a TCP channel.1

Each policy is specified as a pair of conditions and actions. The former is written
in a first-order predicate logic-like notation and its predicates reflect various system
and network properties, e.g., the utility rates and processing capabilities of processors,
network connections, and application-specific conditions. The latter is specified as a
relocation of components. Our adaptation was intended to be specified in a rule-style
notation. However, existing general-purpose rule-based systems tend to be unwieldy
because they cannot express necessary adaptation expertise or subtleties of adaptation
in distributed systems.

name { (Name of policy)
predicate1, · · ·, predicaten (Condition of policy)
relocation(componentid) (The destination of relocation)
validation (Validation of policy)

}

where relocation in the syntax is provided with built-in or user-defined policies. Our
adaptation has three built-in policies:

– When a component has a pushing policy for another component, if the condition
specified in the policy is satisfied, the policy instructs the the former to migrate to
the current computer of the latter.

– When a component has a duplicating policy with another component, if the condi-
tion specified in the policy is satisfied, the policy makes a clone of the former and
instructs the clone to migrate to the current computer of the latter.

– When a component has an extinct policy, if the condition specified in the policy is
satisfied, it terminates.

For example, when the condition of the pushing policy is the movement of the
co-partner component, the target component follows the movement of the co-partner
(Figure 1). This is useful when the two components need to interact frequently and/or
require heavy data-transfer on each interaction yet they cannot be programmed inside
a single component. When the condition of the extinct policy is that the target com-
ponent and specified component are at the same computer, it reduces the number of
components. Excess components result in overloads. The same functions must be dis-
tributively processed to reduce the amount of load and information.

4 Implementation

This section describes the current implementation of a middleware system based on the
proposed approach.

1 We assumed that the components that comprised an application would initially be deployed at
computers within a localized space smaller than the domain of a sub-network.

Dynamic Deployment of Software Components for Self-adaptive Distributed Systems 199

Computer 1 Computer 2

Condition

Relocation
policy

Computer 1 Computer 2

Step 1

Step 2

Component

Component Destination
component

Destination
component

Component
migration

(Relocation)

Component is relocated
when condidtion is satisfied

A copy of component can
be remained at source side

The location of destination
component can be changed to
support different distributed systems

Fig. 1. Conditional relocation for adaptation

Each component is a general-purpose programmable entity defined as a collection of
Java objects and packaged in the standard JAR file format like JavaBeans. It can migrate
and duplicate itself between computers. Our runtime system is similar to a mobile agent
platform, but it has been constructed independently of any existing middleware systems.
This is because existing middleware systems, including mobile agents and distributed
objects, have not supported the policy-based relocation of software components. The
system is built on the Java virtual machine (JVM), which can abstract away differences
between operating systems.

The current implementation basically uses the Java object serialization package to
marshal or duplicate components. The package does not support the capture of stack
frames of threads. Instead, when a component is duplicated, the runtime system is-
sues events to it to invoke their specified methods, which should be executed before
the component is duplicated or migrated, and it then suspends their active threads. We
also introduce our original remote method invocation between computers instead of
Java remote method invocation (RMI), because Java RMI does not support message
forwarding to moving objects.

The adaptation manager is running on each computer and consists of three parts: an
interpreter, a database for policies, and an event manager. The first is responsible for
evaluating policies, the second maintains the policies that components are running on
the computer, and the third receives events from the external systems to notify changes
in the underlying system and applications and then forwards them to the first.

We describe a process of the relocation of a component according to one of its poli-
cies. (1) When a component creates or arrives at a computer, it automatically registers
its deployment policies with the database of the current adaptation manager, where the
database maintains the policies of components running on its runtime system. (2) The
manager periodically evaluates the conditions of the policies maintained in its database.
(3) When it detects the policies whose conditions are satisfied, it deploys components
according to the selected policies at the computer that the destination component is
running on.

Two or more policies may specify different destinations under the same condition
that drive them. The current implementation provides no mechanism to solve conflict
between policies. We assumed that policies would be defined without any conflicts be-
tween policies. The destination of the component may enter divergence or vibration
modes due to conflicts between some of a component’s policies, if it has multiple

200 J. Sun and I. Satoh

deployment policies. However, the current implementation does not exclude such di-
vergence or vibration.

5 Application

This application is for adaptive management in data replication on multiple computers.
Although there have been many data replication approaches on distributed systems,
the primary-backup approach is one of the most typical [1]. A client only sends an
update request to one designated primary server. The server updates its replica and then
forwards the request to one or more backup servers to update the replica and waits for
responses from the backup servers before responding to the client. The chain replication
approach is a replication protocol to support large-scale storage services, e.g., key-value
stores, to achieve high throughput and availability while providing strong consistency
guarantees [11]. A client sends update requests to the backup server with the maximum
number (head) to update its replica, while forward the request to update the replica of
the server with the next lowest number until it reaches the server with the minimum
number (tail). The tail server responds to the client.

Both the approaches have advantages and disadvantages. For example, the primary
backup approach must wait for acknowledgements from the backups for prior updates,
whereas the chain replication approach can execute sequencing requests before prior
updates have not been completed. Chain replication is at a disadvantage for reply la-
tency to update requests since it disseminates updates serially, compared to primary-
backup, which disseminates updates in parallel. Therefore, the approaches should be
selected according to the requirements of applications.

The proposed approach enables the two approaches to be easily transformed into
each other. As shown in Fig. 2, the application consists of three kinds of components:
a client, a server, and a replica manager. The first receives update requests from the
external system. The second has polices for one of either the primary backup or chain
replication approaches. The third component is statically deployed at a computer that
keeps the replica, is assigned with its own number, and is responsible for updating the
replica on behalf of server components.

– In the primary backup approach, the client component first creates a server compo-
nent after receiving a update request and then deploys at computers with the min-
imum number and block itself until the server returns to it. The server component
creates its clones and deploys them at computers that have the other replica com-
ponents. Each server component asks the replica component to update the replica
at its destination and then it returns to the computer that has the parent server com-
ponent. The parent waits for all its clone components to arrive and then migrates to
the computer that has the client component.

– In the chain replication, the client component first creates a server component after
receiving a update request and waits for the next update request. Next, the server
component migrates to the computer that has the replica component with the max-
imum number. After asking the replica component at the destination, it migrates
to the computer that has the replica component with the next lowest number until

Dynamic Deployment of Software Components for Self-adaptive Distributed Systems 201

it reaches the computer that has the replica with the minimum number. The server
component migrates to the computer that has the client component.

The server component in the former follows the duplicating policy and the pushing
policy, in the latter as was discussed in Section 3. By changing policies of the server
component, the whole system can adapt itself to one of either of the primary-backup
or chain replication approaches. This application means that our approach can enable
a distributed system to be adapted in its architecture level between primary-backup
and chain replication. It has no centralized management system so that it is useful in
providing scalable and dependable distributed systems, as was discussed in Section 2.

Step 2:
Relocation to 1st
replica component

Step 1:
Creation of
server
component

Step 3:
Creation of clones of
server component

Primary-backup approach

Step 4:
Relocation to 2nd & 3rd
replica components

Step 5:
Return to 1str Replica
components

Step 6:
Relocation to
client component

Step 1:
Creation of
server
component

Step 2:
Relocation to 1st
replica component

Step 3:
Relocation to 2nd
replica component

Step 4:
Relocation to 3rd
replica component

Step 5:
Relocation to client
components

Client component Server component Replica component Updating replica Policy for primary-backup
approach

Policy for chain replication
approach

Chain-replication approach

Fig. 2. Adaptive consistency for data replication

6 Related Work

The notion of adaptation is rapidly attracting attention in the area of distributed systems.
There have been several attempts to develop adaptive distributed systems. Most of them
have aimed at managing balance computational loads or network traffic.

The most typical self-organization approaches have included genetic computation,
genetic programming [9], and swarm intelligence [2,4]. Although there is no central-
ized control structure dictating how individual agents should behave, interactions be-
tween simple agents with static rules often lead to the emergence of intelligent global
behavior. Most existing approaches have only focused on their target problems or appli-
cations but they are not general purpose, whereas distributed systems are. Our software
adaptation approach should be independent of applications. Furthermore, most exist-
ing self-organization approaches explicitly or implicitly assume a large population of
agents or boids. However, real distributed systems have no room to execute such large
numbers of agents.

There have been several attempts to support software adaptation in the literature on
adaptive computing and evolution computing. Jaeger et al. [8] introduced the notion

202 J. Sun and I. Satoh

of self-organization to an object request broker and a publish/subscribe system. Geor-
giadis et al. [5] presented connection-based architecture for self-organizing software
components on a distributed system. Like other software component architectures, they
intended to customize their systems by changing the connections between components
instead of the internal behaviors inside them. Like ours, Cheng at al. [3] presented an
adaptive selection mechanism for servers by enabling selection policies, but they did not
customize the servers themselves. They also needed to execute different servers simul-
taneously. Herrman et al. proposed the bio-inspired deployment of services on sensor
networks [6]. Unlike ours, their work focused on the deployment and coordination of
services, instead of the adaptation of software itself to provide services. Nakano and
Suda [10,14] proposed bio-inspired middleware, called Bio-Networking, for dissemi-
nating network services in dynamic and large-scale networks where there were large
numbers of decentralized data and services. As most of their parameters, e.g., energy,
tended to depend on a particular distributed system, so that they may not have been
available in another system. Our approach was designed independently of the capabili-
ties of distributed systems because adaptive policies should be able to be reused in other
distributed systems.

Separation of concerns enables the separate development of an applications func-
tional behavior and its adaptive behavior involving crosscutting concerns. A widely
used technique is aspect-oriented programming (AOP), where the code implementing a
crosscutting concern, called an aspect, is developed separately from other parts of the
system and woven with the business logic at compile- or run-time. Reflective and AOP
approaches are primitive so that they do not directly support adaptation for distributed
systems.

Existing mobile agent platforms have been designed for solving problems in dis-
tributed systems, e.g., the reduction of network latency and fault tolerance, instead of
adaptation. There have been a few attempts to introduce the policy-based relocation of
software components or agents. The FarGo system introduced a mechanism for dis-
tributed applications dynamically laid out in a decentralized manner [7]. This was simi-
lar to our relocation policy in the sense that it allowed all components to have their own
policies, but it only supports a simple relocation corresponding to our pushing policy,
and could not specify any conditions for their policies, unlike ours. Satoh [12] proposed
other relocation policies for relocating components based on policies that other com-
ponents moved to. However, these policies did not have the conditions that select and
execute them unlike the approach proposed in this paper. One of the authors proposed
an adaptation mechanism for distributed systems [13]. However, the mechanism was
aimed at adapting functions of software components, which are statically located at
computers, by using the notion of differentiation instead of their locations.

7 Conclusion

This paper proposed an approach to adapting distributed applications. It introduced
the relocation of software components between computers as a basic mechanism for
adaptation. It separated software components from their adaptations in addition to un-
derlying systems by specifying policies outside the components. It was simple but

Dynamic Deployment of Software Components for Self-adaptive Distributed Systems 203

provided various adaptations to support resilient distributed systems without any cen-
tralized management. It was available with limited resources because it had no spec-
ulative approaches, which tended to spend computational resources. The relocation
of components between computers was useful to avoid network latency. It was con-
structed as a general-purpose middleware system on distributed systems instead of any
simulation-based systems. Components could be composed from Java objects like Jav-
aBean modules. We described several the approaches with practical applications.

References

1. Alsberg, P.A., Day, J.D.: A principle for resilient sharing of distributed resources. In: Pro-
ceedings of 2nd International Conference on Software Engineering (ICSE 1976), pp. 627–644
(1976)

2. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press (1999)

3. Cheng, S., Garlan, D., Schmerl, B.: Architecture-based self-adaptation in the presence of
multiple objectives. In: Proceedings of International Workshop on Self-adaptation and Self-
managing Systems (SEAMS 2006), pp. 2–8. ACM Press (2006)

4. Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press (2004)
5. Georgiadis, I., Magee, J., Kramer, J.: Self-Organising Software Architectures for Dis-

tributed Systems. In: Proceedings of 1st Workshop on Self-healing Systems (WOSS 2002),
pp. 33–38. ACM Press (2002)

6. Herrman, K.: Self-organizing Ambient Intelligence. In: VDM (2008)
7. Holder, O., Ben-Shaul, I., Gazit, H.: System Support for Dynamic Layout of Distributed Ap-

plications. In: Proceedings of International Conference on Distributed Computing Systems
(ICDCS 1999), pp. 403–411. IEEE Computer Society (1999)

8. Jaeger, M.A., Parzyjegla, H., Muhl, G., Herrmann, K.: Self-organizing broker topologies
for publish/subscribe systems. In: Proceedings of ACM symposium on Applied Computing
(SAC 2007), pp. 543–550. ACM (2007)

9. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press (1992)

10. Nakano, T., Suda, T.: Self-Organizing Network Services With Evolutionary Adaptation.
IEEE Transactions on Neural Networks 16(5), 1269–1278 (2005)

11. van Renesse, R., Schneider, F.B.: Chain replication for supporting high throughput and avail-
ability. In: Proceedings of 6th Conference on Symposium on Opearting Systems Design &
Implementation, OSDI 2004 (2004)

12. Satoh, I.: Self-organizing Software Components in Distributed Systems. In: Lukowicz,
P., Thiele, L., Tröster, G. (eds.) ARCS 2007. LNCS, vol. 4415, pp. 185–198. Springer,
Heidelberg (2007)

13. Satoh, I.: Evolutionary Mechanism for Disaggregated Computing. In: Proceedings of 6th
International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS
2012), pp. 343–350. IEEE Computer Society (2012)

14. Suda, T., Suzuki, J.: A Middleware Platform for a Biologically-inspired Network Architec-
ture Supporting Autonomous and Adaptive Applications. IEEE Journal on Selected Areas in
Communications 23(2), 249–260 (2005)

Modelling and Analysis of Parallel/Distributed

Time-dependent Systems:
An Approach Based on JADE

Franco Cicirelli and Libero Nigro

Laboratorio di Ingegneria del Software
Dipartimento di Ingegneria Informatica Modellistica Elettronica e Sistemistica

Universitá della Calabria
87036 Rende (CS) - Italy

f.cicirelli@dimes.unical.it, l.nigro@unical.it

Abstract. The work described in this paper develops a control frame-
work for modelling and analysis of parallel/distributed time-dependent
multi-agent systems. The approach centres on a minimal computational
model which separates agent behaviours from schedulable actions which
model activities which have a time duration and require specific pro-
cessing units. Different control strategies ranging from pure concurrent
to time sensitive (real-time or simulated-time) can be considered and
applied as a plug-in to a multi-agent system. The control framework is
tailored to the JADE distributed agent infrastructure, which lacks of
any built-in solution for developing time-dependent applications. This
paper focusses on the achievement of control strategies for schedulability
analysis of embedded real-time systems designed to execute on a mul-
ticore/distributed context. As a case study, a real-time tasking set is
modelled and analyzed through simulation, which requires flexible com-
putational resources.

Keywords: multi-agent systems, control framework, real-time constraints,
schedulability analysis, parallel/distributed simulation, actors, JADE.

1 Introduction

JADE [1, 2] is a representative agent framework which permits the development
of general, untimed, distributed multi-agent systems [3]. JADE is widely used
and open source, it adheres to FIPA communication standards [4] which favour
application interoperability, it is based on Java. JADE rests on a multi-threaded
agent model and on asynchronous message-passing. An agent encapsulates a
behaviour and a data status. The behaviour specifies in which way the data
status gets modified by the arrival of messages. Messages are buffered into a
mailbox owned by the recipient agent from which they are extracted, one at a
time, by the control thread of the agent, and eventually processed. When the
mailbox is empty, the agent goes into sleep waiting for new incoming messages.

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 204–214, 2014.
c© Springer International Publishing Switzerland 2014

Modelling and Analysis of Parallel/Distributed Time-dependent Systems 205

The multi-threaded control structure of a multi-agent system is felt sufficient
to ensure the basic agent abilities [5], namely autonomy, proactivity, adaptivity
to the surrounding environment, sociality, mobility, and so forth.

This work argues that in order to widen/tailor the applicability of multi-
agent systems to specific application domains, it is important to adapt the basic
control structure of agents so as to ensure, e.g., a time-sensitive behaviour, the
fulfilment of dependency/precedence constraints, and so on. This paper proposes
an original and flexible control framework for distributed multi-agent systems.
The approach is prototyped in JADE and makes it possible to transparently
aggregate a specific control module to a multi-agent system, so as to regulate its
evolution, e.g. according to a chosen time notion (real-time or simulated-time)
and to the availability of processing units.

Whereas some JADE based simulation tools are described in the literature
(e.g. [6–9]), the proposed control framework purposely depends on a minimal
computational actor model [10–13] which simplifies the use of JADE built-in
agent behavioural structure, and permits the design of application specific con-
trol structures. The actor model actually used in this paper is novel with respect
to the preliminary version described in [13] in that it now hosts a notion of
actions [14]. Actions are well suited to model activities whose execution con-
sumes time and requires computational resources not owned by actors in an
exclusive way (e.g. shared CPUs in a computing system). Actions can abstract
operations which need to be reified when switching from model analysis to real
execution. They do not affect/trigger actor behavior, i.e. the business logic of a
model remains expressed in terms of message processing only. The framework
hides and makes orthogonal all the aspects related to action scheduling and their
dispatching on the available computational resources thus simplifying modelling
activities.

This paper focusses on modelling and analysis, through simulation, of em-
bedded real-time systems with timing constraints, executed on top of a paral-
lel/distributed context [15]. The modelling phase, similarly to Preemptive Time
Petri Nets (PTPN) [16, 17], allows one to specify the control flow of each real-
time task, e.g. to be activated periodically or sporadically, competing for the ac-
cess to shared data guarded by locks, and composed of computational steps which
have timing constraints, e.g. non deterministic execution time, and scheduling
parameters, e.g. a fixed priority, deadline, and specific processing unit to ex-
ecute. Exhaustive verification of such systems is known to be undecidable in
the general case and it is unfeasible for large models. In the Oris tool [18],
which supports PTPN and Fixed Priority (FP) scheduling only, the analysis of
a model is assisted by a posteriori phase of cancellation of false behaviours in
the enumerated state classes of a model. In [19] PTPN were mapped onto Up-
paal [20, 21] for model checking. As in [21], the approach permits either FP
or Earliest Deadline First (EDF) scheduling. However, the use of stopwatches,
necessary to properly implement task preemptions, forces model checking to de-
pend on over-approximation [21] in the generation of the state graph zones. As
a consequence, some properties can be checked but only with some uncertainty.

206 F. Cicirelli and L. Nigro

In this paper, a control strategy is presented which is based on simulation,
therefore it can show a deadline miss in a multicore based model, but obviously
cannot guarantee deadlines are always met. Nevertheless, the approach is of
practical value in that it allows to flexibly adapt the scheduling algorithm, and to
check system behaviour under general conditions. The use of the achieved control
framework is demonstrated by a case study concerned with the schedulability
analysis of a preemptive multiprocessor real-time tasking set.

The remainder of this paper is organized as follows. Section 2 describes the
assumed computational model. Section 3 proposes the control framework design
in JADE. Section 4 summarizes a library of achieved control strategies. Section
5 reports about the chosen case study. Finally, conclusions are drawn in section
6 together with an indication of on-going and future work.

2 A Computational Model Based on Actors and Actions

A minimal computational model easily hosted by JADE is adopted, which makes
it possible to introduce control aspects modularly separated from the applica-
tion logic but reflectively governing the evolution of the application itself. Main
concepts are communicating actors and schedulable actions. Actors [10–12] hide
some internal data variables and have a behaviour (finite state automaton) for re-
sponding to messages. The communication model relies on asynchronous message
passing. An actor is a reactive entity which answers to an incoming message on
the basis of its current state and received message. Message processing is carried
out in the handler(msg) method of the actor, which implements actor behaviour
and makes data/state transitions. During a message processing, one or multiple
actions can be activated. An action encapsulates a basic timing consuming activ-
ity of the actor. Action execution requires a computational resource (processing
unit) for it to be carried out. Actors are mapped onto JADE agents (see also
Fig. 1). Basic mechanisms like naming, setup, message-passing, migration etc.
are borrowed from JADE. Basic operations of actors are the following:

– newActor, for creating a new actor
– become, for changing the behaviour (state) of the actor
– (non-blocking) send for transmitting messages to acquaintance actors (in-

cluding itself for proactive behaviour). The send operation carries a message
with a timestamp which specifies when the message has to be delivered to
its recipient

– do action, for scheduling the execution of a given action. The do operation
can specify also if the requesting actor wants to receive a completion message
when the action terminates

– abort action, for aborting a previously scheduled action.

An action is a black box mainly characterized by a set of input parameters, a
set of output parameters and an execution body. Actions have no visibility to
the actor internal data variables. At action termination, the informed actor can
retrieve the output parameters from the action object and update its internal

Modelling and Analysis of Parallel/Distributed Time-dependent Systems 207

ProcessingUnit

ActionScheduler

Fig. 1. Basic classes of the control framework in JADE

data variables. It is useful to point out the different roles played by messages and
actions. Messages mainly serve to maintain sociality relationships among actors
(communication), and to trigger actor behaviour. Actions, on the other hand,
express execution concerns, i.e. tasks to be accomplished and which affect the
temporal evolution of actors. Message processing is atomic. Action execution,
instead, can be suspended and subsequently resumed.

A subsystem of actors (Logical Process or LP) is assigned to an execution
locus (i.e., a JADE container) and it is regulated by a control machine (CM). The
control machine hides a specific control strategy for administering sent messages
and submitted actions. Action execution ultimately depends on a collection of
parallel processing units (PUs), hosted by the CM and administered by an action
scheduler (AS) (see Fig. 1). A control machine can be in charge of managing a
time notion (real-time or simulated-time) regulating actor behaviour.

3 A Control Framework in JADE

The actor model described in the previous section was embedded into JADE as
shown in Fig. 1. As one can see in Fig. 1 control machines too are mapped onto
JADE agents. Both actors and control machines communicate to one another
by exchanging ACLMessages. Basic roles of the control framework are assigned
to the following abstract classes:

– Message, which owns the involved sender/receiver actors and a timestamp
information. This is the base class from which all the applicative messages
derive. A message is designed to be embodied as a serialized object content
in an ACLMessage.

– Action, which contains the submission time, two free slots for hosting re-
spectively the input and output parameters (array of serializable Objects),
the deadline, the action priority and an indication about the PU to use for
its execution. In the case no information is provided, the action can be exe-
cuted on any PU. For an action it is possible also to express if the indicated

208 F. Cicirelli and L. Nigro

PU is the preferred one or if it is the mandatory one. On the base of the
above rules, a PU is said to be exploitable if it could be potentially used
to execute an action. A specific flag can be set to indicate also if an action
is pre-emptable or not during its execution. The abstract method execute()
must be redefined in a concrete action class. An action object is created by
an actor and (transparently) submitted to a control machine as a serialized
content object of an ACLMessage.

– ControlMachine, which is the base class for application-specific control strate-
gies. A control machine repeats a basic loop: at each iteration one message is
selected in the set of pending messages, and delivered to its target actor for it
to be processed. At each message processing termination, the activated actor
replies the control machine by an explicit ACLMessage containing the set of
the messages and the set of actions generated by the activated actor. On re-
ceiving such a reply, the new messages are added to the pending set whereas
the submitted actions are delivered to the action scheduler. The behaviour
of a time-sensitive control machine can require, before a pending message
can actually be delivered, a synchronization phase with a time server (see
Fig. 2) for achieving the necessary grant to proceed with the message.

– ActionScheduler, which imposes the application-specific execution policy for
the actions. An action scheduler governs a set of processing units. On the
basis of the adopted execution policy, a scheduler can (i) assign the action
to a free processing unit, (ii) assign the action to a busy processing unit
by firstly preempting the ongoing action and saving its execution status or
(iii) add the action to a pending set for its subsequent execution. Preempted
actions are added to the pending set too and marked as suspended.

– ProcessingUnit, which abstracts an actual action executor able to process one
action at time. It could be, in a case, an instance of a thread in a pool, which
maps onto a physical core of the underlying hardware. The use of PUs allows
naturally to take into account the computational capabilities of a multi-core
architecture both during analysis (i.e. simulations) and real execution. Basic
methods offered by a PU are start, preempt and stop. An ActionCompletion
message is used to state that an action has terminated its execution.

– Actor, which serves as a common ancestor for applicative actors and provides
all the basic operations. The JADE behaviour hidden in the Actor class re-
ceives an ACLMessage from a control machine, extracts from it the Message
content (deserialized) object, and starts the message processing by invoking
the handler() method. At the handler termination, all the newly generated
messages and actions get collected and sent back to the control machine as
a part of an ACLMessage. An actor is bound to the control machine of the
hosting JADE container. Actor migration is supported by a redefinition of
the afterMove() method which is in charge of adjusting the binding to the
local control machine according to the destination container.

Modelling and Analysis of Parallel/Distributed Time-dependent Systems 209

TimeServer

Fig. 2. The hierarchy of developed control machines

4 A Library of Control Forms

A library of reusable control structures was prototyped as depicted in Fig. 2.
Other control mechanisms can be added as well. A common design principle of
all the control machines in Fig. 2 concerns the handler methods of actors which
are always executed one at time in an interleaved way (co-operative concurrency)
in a given container. Actions are instead executed in parallel according to the
configured number of processing units which in turn mirrors the assumed parallel
degree of the model. The way actions are ultimately executed is determined
by the adopted implementation of the action scheduler. A library of reusable
schedulers, along with the implemented kinds of processing units, was prototyped
as reported in Fig. 3. Other schedulers can be added too. A description of the
available control forms is provided in the following.

4.1 Prototyped Control Machines

Three families of control machines can be identified in Fig. 2. The UntimedCM

family groups control structures which do not manage an explicit time notion.
This kind on control machines can be naturally used both in a centralized or
in a parallel/distributed scenario where an actor model is partitioned among
multiple JADE containers. The TimeAwareCM collects control machines which
manage time but in a not distributed context, that is the actor model cannot be
partitioned into multiple JADE containers. The DTimeAwareCM control machines,
on the other hand, can be used in the case a time-sensitive model requires to
be handled in a parallel/distributed scenario. In particular, a TimeServer is
required in order to ensure a coherent time notion gets used in the participating
control machines. Concurrent implements an untimed parallel control structure
which rests on a FIFO message queue as the message pending set. Simulation
manages a virtual time notion of a classical discrete-event simulation schema,
and processes messages in timestamp order.

An actor model can be split into multiple JADE containers each equipped
with a control machine. Containers can run on different cores of a same CPU

210 F. Cicirelli and L. Nigro

FirstComeFirstServedAS

Fig. 3. The hierarchy of developed schedulers

or they can be assigned to distinct processors of a distributed system. In the
case the application is time sensitive, it can be necessary a time server to ensure
a global time notion (simulated-time or real-time). DSimulation in Fig. 2 dif-
fers from Simulation only because time advancement is now negotiated (i.e., a
conservative control structure is adopted) among the various control machines,
through the use of a specialization of the TimeServer. Before processing the
next timed message whose timestamp is greater than current simulation time,
a control machine asks the time server a grant to advance to the next time.
The time server collects all the proposals of time advancement and the mini-
mum of those proposals is furnished as grant to relevant control machines. Of
course, the time server can generate the grant provided no in-transit messages
exist in the system. Towards this a distinct counter for the sent and received
messages [22] related to each actor/agent, are kept by the control machines and
furnished as accompanying information to proposal messages to the time server.
These fine-grain counters are necessary for taking into account actor migration
and then the fact that a same actor can be handled, dynamically, by different
control machines.

Realtime is useful for applications based on real-time execution. It rests on
a real time notion achieved on top of Java System.currentTimeMillis() ser-
vice. DRealTime control machine is analogous to RealTime but it is suited for
parallel/distributed execution. A description of the control machines based on a
real-time notion is beyond the scope of this paper.

4.2 Action Schedulers

Prototyped schedulers (see Fig. 3) immediately put into execution a newly sched-
uled action on a idle exploitable PU (if there are any), otherwise, different
scheduling strategies can be adopted. In the case no such idle PUs exist, the
FirstComeFirstServerAS scheduler organizes actions in a pending list. The list
is ordered by using the time an action is scheduled. Each time a PU becomes idle,
the pending list is iterated and the first action for which the PU is exploitable is
removed from the list and assigned to the PU. The PU remains idle in the case
it is not exploitable by any of the actions in the list.

The FixedPriorityAS scheduler uses action priority to keep ordered the pend-
ing list. Action execution is priority driven and preemptive. The duration of a

Modelling and Analysis of Parallel/Distributed Time-dependent Systems 211

preempted action is shortened by the time the action was running. It is worth
noticing that switching from simulation to real execution, implies only a redefi-
nition of PUs. For simulation purposes, the SPreemptivePUs can be used which
are passive objects without internal threads. When an action is assigned to a PU,
an action completion message is scheduled to occur at the time obtained by sum-
ming the current virtual time to the action duration. This provision (i) permits
the virtual time to grow accordingly to the time needed to simulate the execu-
tion of the action, (ii) allows the scheduler to be informed that a previously busy
processing unit is now ready to be used again, (iii) notifies action completion
to the originator actor in the case it expressed the willingness of receiving such
notification. In the case an action is preempted, the related action completion
message is simply descheduled (see the association between ProcessingUnit

and ControlMachine in Fig. 2).

5 A Case Study

The control framework was put into practice in a case by studying the schedula-
bility analysis of a tasking set (see Fig. 4) designed, for demonstration purposes,
to run under static priority preemptive scheduling over a multi-processor archi-
tecture. The example is made up of two periodic processes (P1 and P2 with
period TP1 and TP2 respectively) and a sporadic one (P3s with minimal inter-
distance between two consecutive occurrences of the triggering event being TP3s)
all having non-deterministic execution times. Task durations are supposed to in-
clude the scheduling algorithm costs. The three tasks are supposed to be ready
at time 0, i.e. the first task instances (jobs) arrive at time 0. In addition, the
relative deadlines coincide with task periods. Process P1 has the highest pri-
ority (i.e. 3) whereas process P3s has the lowest one (i.e. 1). An intermediate
priority is assigned to process P2 (i.e. 2). Mutual exclusion, based on a mutex
semaphore, is required between processes P1 and P2 to regulate access to some
shared data. Each process task is split in two sub-tasks txy each allocated to a
different CPU. The computation time of a sub-task is denoted in Fig. 4 by Ctxy.
Three CPUs, namely cpu1, cpu2 and cpu3, are assumed for task execution. The
cpu1 and cpu2 in particular are supposed to be hosted by a same multi-core
machine MA whereas cpu3 resides on a dedicated computer MB.

It is worth noting that the analysis of one such tasking model is not covered by
the classical scheduling theory. In addition, the use of a multi-processor context
opens, in general, to possible scheduling anomalies [23, 16, 19]. The case study,
though, is intended to address basic problems and to highlight the achieved
programming style.

The following kinds of agents were developed. A Generator agent is in charge
of generation of task instances on the basis of task periods. A SubTask agent
models sub-tasks. The acquaintance relationship among sub-task agents mirrors
the precedence schema of the task model. Coordination among sub-task execu-
tions is achieved by exchanging Next messages. One such a message informs a
SubTask agent that the previous sub-task completed thence its sub-task can be

212 F. Cicirelli and L. Nigro

P1

TP1= 10

t11
Ct11= [1;2]

{cpu1}MA:3mutex.P
t12

Ct12= [1;2]

{cpu2}MA:3 mutex.V

P2

TP2= 15

t21
Ct21= [2;3]

{cpu1}MA:1mutex.P
t22

Ct22= [2;3]

{cpu3}MB:1 mutex.V

P3s

TP3s= [20,]

t31
Ct31= [5;6]

{cpu2}MA:2
t32

Ct32= [5;6]

{cpu3}MB:2

Fig. 4. A task set model

scheduled. Each SubTask agent models its assigned sub-task as an activity. A
Semaphore agent is introduced to manage mutual exclusion. The Acquire and
Release messages are used to negotiate semaphore acquisition and its subse-
quent release. Two specializations of sub-task agents are implemented, namely
the SubTaskWithAcquire and SubTaskWithRelease, which model respectively the
case a sub-task requires to acquire/release the semaphore. Finally, an Oberver
agent in used to gather data about the start-time and completion-time of any
task instance in order to evaluate the maximum and minimum response times of
tasks. When a job of a given task begins before the completion of the previous
one, the observer notifies the task model is not schedulable.

The following reports the handler method (behaviour) of the SubTaskWith-
Release agent, which confirms simplicity of the resultant programming style. As
one can see, the code completely hides all the issues related to the scheduling
policy, execution, preemption etc. of actions.

public void handler(Message m) {

if (m instanceof Next) {

double subTaskDuration = random.nextSample(minDuration,maxDuration);

MyAction subTask = new MyAction(subTaskDuration, cpu, priority);

do(subTask, true);

} else if (m instanceof ActionCompletion) {

Observer.End end = new Observer.End(observerAID, subTaskName);

end.setTimestamp(now()); send(end);

Mutex.Release release = new Mutex.Release(semaphoreAID);

release.setTimestamp(now()); send(release);

if (nextAgentExists){

Next next = new Next(nextAgentAID);

next.setTimestamp(now()); send(next);

}

}

}//handler

The model was partitioned in two JADE containers, one simulating the ma-
chine MA and the other simulating MB. The model was configured by using

Modelling and Analysis of Parallel/Distributed Time-dependent Systems 213

DSimulation for the control machines, FixedPriorityAS for the action sched-
ulers and SPreemptivePU for the processing units. Two PUs were assigned to
the container simulating MA and one PU to the container simulating MB.

Simulation experiments were carried out using a time limit of 106, on a Win 7,
12GB, Intel Core i7, 3.50GHz, 4 cores workstation. It emerged that the original
model in Fig. 4 is not schedulable due to a priority inversion problem occurring
for the task P1 which misses its deadline in the case the sub-task t22 is executing
but gets preempted by the sporadic task P3s. By raising the priority of t22 to 3
(which is the priority of P1), i.e. by (partly) emulating a priority ceiling protocol,
the task model appears to be schedulable and the estimated response times
(after five runs) of P1, P2 and P3s were found to be respectively [2.002; 9.907],
[4.006; 9.875] and [10.014; 16.815].

6 Conclusions

This paper proposes a control framework in JADE which makes it possible to
develop time-dependent multi-agent systems. In particular, the achievement of
a distributed simulation control strategy is presented for the schedulability anal-
ysis of real-time embedded systems designed to run on top of a multiprocessor
architecture.

Prosecution of the research is aimed to:

– extending the library with other real-time schedulers, e.g. based on Earliest
Deadline First (EDF);

– supporting adversary simulators [24] for large sporadic task models, to eval-
uate global fixed-priority over multiprocessors;

– specializing the approach so as to support a different scheduling algorithm
[19] for each distinct CPU;

– experimenting with the use of the control structures in the analysis and im-
plementation of complex agent-based models, e.g. time-constrained workflow
modelling, analysis and enactment, virtual environments etc.

References

1. Bellifemine, F., Caire, G., Greenwood, D.: Developing multi-agent systems with
JADE. John Wiley & Sons (2007)

2. Jade, http://jade.tilab.com (accessed on June 2014)

3. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge (1986)

4. Fipa, foundation for intelligent physical agents, http://www.fipa.org (accessed
on June 2014)

5. Wooldridge, M.: An introduction to multi-agent systems, 2nd edn. John Wiley &
Sons (2009)

6. Carzaniga, A., Picco, G.P., Vigna, G.: Agent.gui: A multi-agent based simulation
framework. In: Proc. of FedCSIS 2011, pp. 623–630 (2011)

http://jade.tilab.com
http://www.fipa.org

214 F. Cicirelli and L. Nigro

7. Gianni, D., Loukas, G., Gelenbe, E.: A simulation framework for the investigation
of adaptive behaviours in largely populated building evacuation scenarios. In: Proc.
of OAMAS, pp. 1–15 (2008)

8. Wang, F., Turner, S.J., Wang, L.: Agent communication in distributed simulations.
In: Davidsson, P., Logan, B., Takadama, K. (eds.) MABS 2004. LNCS (LNAI),
vol. 3415, pp. 11–24. Springer, Heidelberg (2005)

9. Pawlaszyk, D., Strassburger, S.: A synchronization protocol for distributed agent-
based simulations with constrained optimism. In: Proc. of ESM 2009, pp. 337–341
(2009)

10. Cicirelli, F., Furfaro, A., Nigro, L.: An agent infrastructure over HLA for dis-
tributed simulation of reconfigurable systems and its application to UAV coordi-
nation. Trans. of SCS SIMULATION 85(1), 17–32 (2009)

11. Cicirelli, F., Giordano, A., Nigro, L.: Efficient environment management for dis-
tributed simulation of large-scale situated multi-agent systems. In: Concurrency
and Computation: Practice and Experience (2014), doi:10.1002/cpe.3254

12. Cicirelli, F., Furfaro, A., Nigro, L.: Modelling and simulation of complex manufac-
turing systems using statechart-based actors. Simulation Modelling Practice and
Theory 19(2), 685–703 (2011)

13. Cicirelli, F., Nigro, L., Pupo, F.: Agent-based control framework in JADE. In: 28st
European Conf. on Modelling and Simulation, Brescia, pp. 25–31 (May 2014)

14. Cicirelli, F., Nigro, L.: A control framework for model continuity in JADE. In:
Proc. of the IEEE/ACM 18th Intl. Symp. DS-RT (to appear, 2014)

15. Brekling, A.W., Hansen, M.R., Madsen, J.: Models and formal verifications of mul-
tiprocessor system-on-chips. The J. of Logic and Algebraic Prog. 77, 1–19 (2008)

16. Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Timed state space analysis of real-time
preemptive systems. IEEE Trans. on Soft. Eng. 30(2), 97–111 (2004)

17. Carnevali, L., Ridi, L., Vicario, E.: Putting preemptive time petri nets to work in
a v-model sw lifecycle. IEEE Trans. on Soft. Eng. 37(6), 826–844 (2011)

18. Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, verifica-
tion and evaluation of real-time systems. Int’l J. Software Tools for Technology
Transfer 12(5), 391–403 (2010)

19. Cicirelli, F., Angelo, F., Nigro, L., Pupo, F.: Development of a schedulability anal-
ysis framework based on PTPN and Uppaal with stopwatches. In: Proc. of 16th
IEEE/ACM Intl. Symp. DS-RT 2012, pp. 57–64 (2012)

20. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-
delberg (2004)

21. David, A., Illum, J., Larsen, K.G., Skou, A.: Model-based framework for schedula-
bility analysis using Uppaal 4.1. In: Model-Based Design for Embedded Systems,
ch. 3, pp. 93–120. CRC Press (2009)

22. Fujimoto, R.M.: Parallel and distributed simulation systems. John Wiley (2000)
23. Andersson, B., Jonsson, J.: Preemptive multiprocessor scheduling anomalies. In:

Proc. of the 16th IEEE Int. Parallel and Dist. Proc. Symp., pp. 12–19 (2002)
24. Silva de Oliveria, R., Carminati, A., Starke, R.A.: On using adversary simulators to

evaluate global fixed-priority and FPZL scheduling of multiprocessors. The Journal
of Systems and Software 86, 403–411 (2013)

Advanced Networking

A Basic Study on High Bandwidth Streaming

in Realtime over Multipath Using
LDPC-IRA Codes

Masahiko Kitamura, Hiroyuki Kimiyama,
Tsuyoshi Ogura, and Tatsuya Fujii

NTT Network Innovation Laboratories, Yokosuka, Kanagawa 239-0847, Japan

Abstract. This paper describes a distributed video streaming system
using widely disparsed storages, in which each storage hosts send chunked
video packets to single receiver through multipath network. By adding
parity packets by forward error correction (FEC) along with source video
data in each storage hosts, this system enables realtime video streamings
even if there are unbalance between those hosts. In this paper, we intro-
duce a model of this unbalance and its effect to the amount of needed
packet sending, then discuss how to design redundancy rate in FEC. The
result are shown to have a trade off among the range of balancing and the
additional amount of sending packet needed for stable video streaming.

Keywords: network virtualization, multipath routing, realtime stream-
ing, forward error correction, IRA codes.

1 Introduction

Networking Innovations of Software Defined Network(SDN) [1] and network vir-
tualization [2] have been making networks more flexible and extensible for ap-
plication such as video streamings and big size data handlings. Along with such
advanced networking architectures, one can control network behavior as a gen-
eralized programmings, e.g. a flow controller on OpenFlow switches, while it’s
basically impossible to do so on conventional network switches.

Thanks to these emerging network structures, huge-bandwidth applications
like video production that needs high bandwidth networking are emigrating to
cloud from locally deployed computing resources [3]. Apart from comercial video
on-demand services, high definition and quality are highly required in video pro-
duction, so that these services have to arrange equivalent bandwidth on network,
e.g. uncompressed video streaming in High Definition is equal to 1.5 Gbit/s.
Keeping such a huge bandwidth is substantially too difficult, which results in a
limit of these applications.

On the other hand, from an aspect of data storage in cloud, data redundancy
framework such as the redundant arrays of inexpensive disks (RAID) is widely
applied for fault tolerance and load balancing. However, these simple duplication
approach for huge sized data comes at a cost. For instance, content delivery

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 217–226, 2014.
c© Springer International Publishing Switzerland 2014

218 M. Kitamura et al.

network services are one of current solution for load balancing to the access
request. This approach incurs linear increase of storage size to a content to be
delivered although it can be implemented in a simple structure. Therefore, huge
sized data such as video materials in movie production cannot be handled in this
conventional framework.

From these perspective, some distributed streaming systems over multipath
from distributed storage are proposed. These systems bring a high fault toler-
ance, efficient networking usage and load dispersion on storage hosts. In [4], a
streaming system from two distributed sender is proposed for video delivery in
realtime. This system focuses on how to control the sending rate so as to avoid
the player’s stall caused by the lack of receiving packets to be played back. In
[5], this streaming system introduces Reed-Solomon codes (RS coes) of forward
error correction to avoid packet loss in network. However, with this system still
difficult to handle huge sized data because deciding process takes much time in
RS codes as the code length, which is proportion to data size, grows because RS
codes exploit Galois field in its calculation. In addition, RS codes is not flexi-
ble for data size and pakcet size on network in general because of Galois field’s
calculation.

In this paper, we propose a distributed streaming system using low-density
parity-check irregular repeat-accumulate (LDPC-IRA) codes, which is also one
of the forward error correction scheme, for high bandwidth video handling on
networks that aggregate the bandwidth in multipath to make virtual high band-
width for video streaming. As well as the fault tolerance and load balancing
to user request, proposed system provides this virtual aggregation by sending
parity packet in paths with high available bandwidth to compensate the packets
that cannot be sent because of lack of bandwidth in a path. The LDPC codes,
in particular IRA codes, provides not only the high performance decoding at a
receiver side, but also the load balancing in sending rate in each sender to match
their available bandwidth. This paper focuses on how to control and distribute
the sending rate for each host so as to perform a streaming system for high
bandwidth data streaming in realtime as a whole.

The rest of this paper consists of following sections. In Section 2 we discuss
the feature of distributed streaming system on multipath with forward error cor-
rection codes so as to clarify the advantages against the conventional streaming
approaches. In Secrion 3 we review the forward error correction code, in par-
ticular IRA codes, and extend the codes to construct the multipath streaming
from distributed storage host. By constructing models for the load balancing
of bandwidth between multipath, we finally introduces a principle to determine
the main parameters of IRA codes for the system. Section 4 concludes these
discussion.

2 Distributed Streaming System with IRA Codes

This section goes through a distributed streaming system on multipath using
IRA codes, a family of error correcting codes, to make unbalanced bandwidth

A Basic Study on High Bandwidth Streaming in Realtime 219

src data
parity packets

(a) FEC encoding
 (Systematic codes)

src packets

Receiver

(a)FEC decoding

(c)Multipath sending

(b) Distribueted storing

src data (Restored)

Fig. 1. The overview of distributed streaming system on multipath using forward error
correction codes

aggregation. This system consists of three component — a) forward error correc-
tion, FEC, b) widely distributed storage, and c) distributed streaming over mul-
tipath of unbalanced bandwidth(see Figure 1). The FEC component generates
redundancy data packets, parity packets, from source data packet by systematic
error correction codes. Then, these source and parity packets are put on the
distributed storages. At the distributed streaming component, each storage host
starts streaming of packets as soon as user’s request is received. Finally, FEC
decoding process restores the original source data from received packet that is
not lost in network. In this restoring process, original source data can be restored
by only re-ordering if all sent packet are received. If some packets are lost and
doesn’t reach, the original source data is to be recovering by FEC decoding.

These components brings some advantages to the distributed streaming sys-
tem. First, the distributed data storing exploiting forward error correction ben-
efits fault tolerance to the failure of storage media ranging from disk media to
disaster in a data center. In addition to the tolerance to storage media troubles,
forward error correction makes streaming system more robust if sent packets
are lost caused by network traffic congestion. In this system, the forward error
correction is applied as a single framework from distributed storing to multipath
streaming, so that it is unnecessary to encode twice at the time of sending on
each storage hosts.

Second, dispersibility of usage rate of bandwidth in network is an another
benefit that comes from structure of distributed storing and multipath streaming.
In the single path streaming of high bandwidth video in a conventional system,

220 M. Kitamura et al.

network resources are largely occupied by a single use, which causes the local
burst in network usage and imposes a limitation on other network services. This
dispersibility attribution makes high efficient network on bandwidth where such
a video streaming service can be provided along with other network services. In
the distributed system, it’s easy to send packets separately by multipath because
these packets are already deployed in wide region in network.

Finally, the another feature of this distributed streaming system is sending
rate balancing among the multipath. Because each sending host, namely storage
host, has a part of parity packets as well as a part of source data packets, sending
some of parity packets in addition to source packets on the wide band path helps
to make up for the lack of sending data in poor band path. If there is variance
of bandwidth between each path, it is possible to balance the bandwidth in this
manner by forward error correction.

This bandwidth balancing feature, however, requires extra packet sending as
a whole system due to the structure of forward error correction. In fact, as de-
scribed later in this paper, the bigger bandwidth gap among each path becomes,
the more redundant packets are required to be send out. For the design of the
distributed streaming system discussed above, the relation between bandwidth
gap and the amount of parity packets required is a key component if the paths
and its bandwidth are given. This paper shows this relation from the aspect of
forward error correction codes by evaluating actually IRA codes.

3 Multipath Realtime Streaming with IRA Codes

This section describes on the IRA codes, a family of Low-density Parity-cehck
(LDPC) codes, then discuss its extension to the distributed multipath streaming.

3.1 LDPC and IRA Codes

LDPC codes is one of forward error correcting codes in block code form whose
parity check matrix is very sparse [6]. The approaches to construct LDPC codes
are proposed in several ways. In particular, the irregular repeat-accumurate
(IRA) codes [7] take an approach of coupling sparse matrix and staircase ma-
trix to generate a parity check matrix. Because of this simple construction, IRA
codes can encode and decode in linear time, and can obtain the generator matrix
immediately from parity check matrix. The IRA codes are a family of systematic
codes, where source data are included in a encoded data, so that it is easier to
handle data on actual implementation since source data can be stored separately
from parity data.

In our system, source data was chopped and packetized into source packets
s = (s1, s2, ..., sk), then IRA encoder generates relevant parity packets p =
(p1, p2, ..., pm) from source packets. These two types of packets act as coding
symbols in the forward error correcting codes. An IRA code of code length
n = k+m has sparse matrix S of (m×m) and staricase matrix T of (m× k) in
its parity check matrix. By the definition of forward error correcting codes,

H(s p)T = (S|T)(s p)T = SsT + TpT = 0. (1)

A Basic Study on High Bandwidth Streaming in Realtime 221

An example of parity check matrix of IRA code is as follows.

H = (S|T) =

⎛
⎜⎜⎝

1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

⎞
⎟⎟⎠ . (2)

In this example, the size of matrix is too small to have sparse matrix. In general,
because parity check matrix with very large size, at least n > 10000, should be
taken, the matrix S become sparse. The degree of column, which is the number
of ‘1’s in a column, is uniformly 2 in this matrix.

In the discussion of forward error correction codes, coding rate r = k/n is
widely used to measure redundancy degree. However, this paper adopts redun-
dancy rate R = n/k = 1/r because the size of parity packet to that of data
packet is more intuitive in terms of system design. In the example above, it is
found that the number of source packet is k = 4, the number of parity packet
is m = 4, and redundancy date is R = 2. With IRA codes, decoding process
should be done in linear time for code length n by using message passing al-
gorithm (MPA). In our system, decoding process takes MPA approach for high
bandwidth streaming in real-time.

3.2 Design of IRA Codes for Multipath Streaming

In our system, source packets and parity packets are divided into N blocks
respectively, then they are placed on distributed storage hosts Si(i = 1, 2, .., N).
Let the data size of source packets and parity packets be lsrci and lprtyi, the
original data size of source data and parity data can be described by Lsrc =∑

i lsrci and Lprty =
∑

i lprtyi.
The target of our system focus on the real-time streaming of stored content

in advance, in which the data size to be sent in a unit of time, denoted by
streaming rate, is determined by streaming content. In this paper, for simplicity,
we define the source data size Lsrc as the streaming rate. Additionally, available
bandwidth from a storage host Si to a receiver R is denoted by bi, while the
actual sending rate is denoted by xi(0 ≤ xi ≤ bi).Although detecting actual
available bandwidth is another issue in general, we assume the network is closed
and managed such as that in a data center in which it is possible to obtain
available bandwidth in each path.

The design of multipath streaming system from distributed storage with IRA
codes can be divided into two types of problem — data size distribution problem
and streaming rate distribution problem. The data size distribution problem is
on how to make group of source packets and parity packets to meet the condition
of storage capacity in each host. The streaming rate distribution problem is on
how to assign the sending rate to meet the condition for restoring original source
data at a receiver. Although these two problem are mutually related in general,
it is difficult to determine the data size distribution because available bandwidth
could be variable each time. Consequently, our system divides source packets and

222 M. Kitamura et al.

parity packets equally and distributes to each storage host. In this case, the data
size of source packets and parity packets on host Si should be lsrci = Lsrc/N and
lprtyi = Lprty/N .

On the other hand, in streaming rate distribution problem, it should be con-
sidered by feature of IRA codes. In systematic codes including IRA codes, the
more source packets are received, the higher success probability in decoding be-
come, thus source packet should be sent out prior to parity packets. Therefore,
when the path has an enough bandwidth to send determined sending rate of
source packets lsrci, bi > lsrci, corresponding storage host should send out all
source packets, whereas it should send as many source packets as possible in the
other case. In the latter case, where the path doesn’t have enough capability
to send source packets, some source packets not sent out due to lack of band-
width are repaired by the parity packets sent by another paths with redundant
bandwidth in our system.

For the whole system, the amount of source packets L̄src is given as

L̄src =
∑
i′

(lsrci′ − bi′) , (i′ = i|bi < lsrci). (3)

Then, the amount of parity packets to be sent is equivalent to the number of
parity packet that can restores the lack of source packets L̄src. From aspect of
forward error correction codes, considering the error probability of source packets
and parity packets, denoted by P src

e and P prty
e , the streaming rate distribution

problem comes down to a problem to determine the maximum error probability
of parity packet P̂ prty

e = maxP prty
e that can afford to recover the source packets

with error probability P src
e = L̄src/Lsrc.

As a consequence, the packets sent out in this system consists of the source
packets excluding not sent packet because of inadequate bandwidth and the
parity packet sent out additionally for compensating the lack of source packet.
The amount of this sent packet Lsent can be obtained as

Lsent = (Lsrc − L̄src) + Lprty(1 − P prty
e). (4)

Note that the packet sending increase is invoked by only the set of hosts
with inadequate bandwidth path. To avoid the redundant packet sending system
should be designed to make the sending rate distribution on each path not to
exceed the data sets on each storage host Si. The rest of this paper discusses
the correlation between the set of path with inadequate bandwidth path S′

i and
the increase of packet to be sent out L̄src.

Figure 3 illustrates an example of load balancing on bandwidth between paths
with abundant bandwidth and paths with inadequate bandwidth. In this exam-
ple, the size of each source packet are 5 Mbit each, and there are three paths
of abundant bandwidth and two paths of inadequate bandwidth to the source
packets to be sent. From this model, we obtain the lack of source packet sending
caused by inadequate bandwidth P src

e = L̄src/Lsrc = 4 / 25 = 0.16. Recall that
packet sending increase depends on only L̄src, this multipath streaming model
can be transformed to an equivalent form as shown in Figrue 3-b.

A Basic Study on High Bandwidth Streaming in Realtime 223

Receiver

b1 bi

source packets

parity packets

Distributed
Storage Hosts

x1 xi

lsrci lprty i

SNSiS1 S2 S3

Fig. 2. Network model of multipath streaming from distributed storage hosts

Receiver

source packets parity packets

Distributed
Storage Hosts

lsrci
lprty i

S5S1 S3S2 S4

(A) abundant paths group (B)poor paths group

SA SB

Receiver

5 Mbit each 15 Mbit 10 Mbit

bi 15M 10M 10M 4M 2M 35M 6M

(a) an example of multipath distribution (b) the equivalent model

available
bandwidth

Fig. 3. Model of bandwidth load balancing between multipath

3.3 Evaluation of Redundant Packet Sending and System Design

In this section, we evaluate redundant packet increase required for balancing
bandwidth over multipath by introducing actual IRA codes and its parity check
matrices. Before the generating actual parity check matrices, it is required to
specify the number of source packet k in IRA codes, redundancy rate R and
packet size lpkt to match actual data size to be sent. In terms of implementation
of system, packet size lpkt should be match the maximum transmission unit
(MTU) that is about 1500 bytes in conventional Ethernet/IP network. If the
size of data Lsrc, i.e. the bitrate of content data to be sent, is 560 Mbit/sec, IRA
codes with k = 5·104 and lpkt = 1400 bytes are acceptable. As to redundancy rate
R depends on how the system should cover the range of unbalanced bandwidth
between multipath. High redundancy rate R is needed to cover wide range of
unbalancing bandwidth because the system needs to send more parity packets as
the lack of source packet increases. We use R =2, 1.5 and 1.25 here to compare
the efficiency in this system.

224 M. Kitamura et al.

P src
e = L̄src/Lsrc

0.1

0.2

0.3
0.4

0.8

(k,m)=(5 · 104, 5 · 104)
R = 2

P src
e = L̄src/Lsrc

0.1

0.3

0.4

(k,m)=(5 · 104, 2.5 · 104)

R = 1.5

B
lo

ck
 e

rr
or

 r
at

e
in

 F
E

C
-d

ec
od

in
g

(Ratio of sent data size to original data size)Lsent/Lsrc

P src
e = L̄src/Lsrc

0.1

0.2

(k,m)=(5 · 104, 1.25 ·104)
R = 1.25

(A) R = 2 (B) R = 1.5

(C) R = 1.25 (D) P src
e = L̄src/Lsrc = 0.2

R = 2

R = 1.25
R = 1.5

B
lo

ck
 e

rr
or

 r
at

e
in

 F
E

C
-d

ec
od

in
g

(Ratio of sent data size to original data size)Lsent/Lsrc

B
lo

ck
 e

rr
or

 r
at

e
in

 F
E

C
-d

ec
od

in
g

(Ratio of sent data size to original data size)Lsent/Lsrc

B
lo

ck
 e

rr
or

 r
at

e
in

 F
E

C
-d

ec
od

in
g

(Ratio of sent data size to original data size)Lsent/Lsrc

Fig. 4. The capability and redundant efficiency with H of random raw choice approach

In terms of construction of actual parity check matrix H , firstly we take ran-
dom raw choice approach for simplicity. In this approach, the sparse matrix S
in H is generated by placing ’1’s of Dc randomly in each column. This construc-
tion may make loops of ’1’ in the matrix that degrades the recovering capability
because the position of ’1’ in a column is determined independently to other
columns. The capability and redundant efficiency with this H are shown in Fig-
ure 4. Figure 4 - A–C shows the error probability of decoding to the redundant
efficiency on sending packet for each redundancy rate of IRA codes R. It is in-
dicated that more parity packet sending are needed as the lack of source packet
sending due to inadequate bandwidth, denoted as P src

e = L̄src/Lsrc, grows. In-
deed, under the IRA code of R = 2 and k = 5 · 104, 10% extra packet sending to
original source data size is required to satisfy the error probability P prty

e = 10−3

at P src
e = 0.1 as shown in Figure 4-A. This additional packet sending can be

considered as an overhead for virtual bandwidth aggregation.
As to coverage of bandwidth unbalance, P src

e becomes limited as redundancy
rate R decreases. In fact, in case of R = 1.25, the system supports up to P src

e
0.2 as illustrated in Figure 4-C.

On the other hand, Figure 4-D illustrates the difference between redundancy
rate R at the same P src

e . The maltipath streaming with lower R is lean in the

A Basic Study on High Bandwidth Streaming in Realtime 225

B
lo

ck
 e

rr
or

 r
at

e
in

 F
E

C
-d

ec
od

in
g

(Ratio of sent data size to original data size)Lsent/Lsrc

Fig. 5. The capability and redundant efficiency with H of IRA-PEG approach

sense that sending fewer extra packets satisfy the lower error probability in
decoding, whereas its coverage become limited. This denotes a tradeoff between
coverage of unbalanced bandwidth and efficiency of sending packet to original
source data size exists.

In some cases in the figure, there is a region that the error probability in decod-
ing is not improved if extra packets are sent. This is referred as the error floor that
caused by stopping set in the MPA decoding process. In order to avoid this degra-
tion, another approach to generate sparse matrix S in parity check matrix H of
IRA codes should be introduced. To this end, we exploit progressive edge growth
(PEG) [[8]] approach to construct parity check matrix. For IRA codes construc-
tion, PEG should be applied after placing staircase matrix T in H .

Figure 5 shows the equivalent performance with parity check matrix H gen-
erated by IRA-PEG approach with Dc = 3, 7 and R = 2, 1.5, and 1.25. As a
result, the error floor is improved n all cases, while there are still error floor
degration in R =2 and 1.5. Moreover, the amount of required sending packet
is also improved. In the case of R = 2, required extra sending packet ratio to
original source data is improved from 1.068 to 1.043 at decoding error rate of
10−3.

For the design of multipath streaming system with distributed storage using
IRA codes, as we discussed above, it is necessary to determine a range of lack of
source packet sending L̄src =

∑
i′ (lsrci′ − bi′) first, then determine the minimum

redundancy rate R so that can recover the source packets under this condition.
With the higher R, the system is able to cover range of load balancing on trans-
mission rate between multipath, whereas the required additional packet sending
increases that results in degration of transmission efficiency.

226 M. Kitamura et al.

4 Conclusion

In this paper, we discussed a multipath streaming system with distributed stor-
age that supports the load balancing of trasmission rate between each path by
using forward error correction. In this system, the original transmission source
data are split and placed in distributed storage hosts along with parity packets
generated by IRA codes. By sending parity packets from hosts with abundant
path, the streaming system compensates the lack of source packet sending caused
by inadequate bandwidth at the receiver. We also discussed on how to design
IRA codes for this streaming system by modeling of these load balancing of
bandwidth with IRA codes.

Acknowledgment. The research resutls have been achieved by “Robust data
transmission over multi-sliced virtual networks: ROMSNET”, the Commissioned
Research of National Institute of Information and Communications Technology
(NICT).

References

1. McKeown, N., et al.: OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review 38(2), 69–74 (2008)

2. Nakao, A.: Network virtualization as foundation for enabling new network archi-
tectures and applications. IEICE Transactions on Communications 93(3), 454–457
(2010)

3. Sony Media Cloud Services, https://www.sonymcs.com
4. Nguyen, T., Zakhor, A.: Distributed video streaming over Internet. In: Proc. of

Multimedia Computing and Networking (MMCN 2002) (2002)
5. Nguyen, T., Zakhor, A.: Distributed video streaming with forward error correction.

In: Packet Video Workshop, vol. 2002 (2002)
6. Gallager, R.: Low-density parity-check codes. IRE Transactions on Information The-

ory 8(1), 21–28 (1962)
7. Jin, H., Khandekar, A., McEliece, R.: Irregular repeat-accumulate codes. In: Proc.

2nd Int. Symp. Turbo Codes and Related Topics (2000)
8. Hu, X.-Y., Eleftheriou, E., Arnold, D.-M.: Progressive edge-growth Tanner graphs.

In: IEEE Global Telecommunications Conference, GLOBECOM 2001, vol. 2. IEEE
(2001)

https://www.sonymcs.com

Resolving Fallback and Path MTU Problems

Caused by Denying ICMP Packets in IPv6

Noriaki Yoshiura and Keita Omi�

Department of Information and Computer Sciences, Saitama University
255, Shimo-ookubo, Sakura-ku, Saitama, Japan
{yoshiura,komi}@fmx.ics.saitama-u.ac.jp

Abstract. Denying ICMP packets in IPv6 causes two problems. One is a
problem of fallback in IPv4/IPv6 Dual-Stack environment and the other
is that of Path MTU Discovery. Each of the problems delays communi-
cations. This paper creates a system that shortens this communication
delay. The system runs on the gateway of a network and chapters the
IPv6 traffic of the nodes in the network and checks IPv6 communica-
tions between the nodes in the network and outside of the network. If
the system notices failure of the IPv6 communication, the system sends
ICMP packets to the node of IPv6 communications to prompt fallback of
IPv6/IPv4 or adjustment of packet length for path MTU problem. This
paper evaluates the performance of the system by experiment, which
shows that the system can shorten communication delay that is caused
by the fallback problem.

1 Introduction

On the Internet, IPv4 addresses are exhausted and change from IPv4 to IPv6
or using IPv6[13] address starts. The goal of IPv6 is that the Internet uses
IPv6 addresses and remove IPv4 addresses. Now, IPv6 addresses increase[6] in
the Internet because IPv4 addresses are short and some countries recommend
usage of IPv6[1]. Several surveys also show that IPv6 users increase and IPv6
infrastructure has been deployed[2,5,3,7] However, change from IPv4 to IPv6
and using IPv6 instead of IPv4 are uneasy because of technical problems and
cost. All the IPv4 addresses cannot be changed to IPv6 addresses in the Internet
at one time and it is necessary to change IPv4 to IPv6 with using IPv4 and IPv6
addresses concurrently.

IPv6 uses ICMP (Internet Control Message Protocol), which complements
TCP/IP communications by sending and receiving error or control messages.
However, in some networks, ICMP packets are blocked by firewall because of
security reason; ICMP packets can be used for detection of PCs, portscan and
DoS attacks. ICMP packets are used when some troubles happen in networks.
For example, if packets do not arrive at the destinations, then routers in the
routes of packets send ICMP packets to the sources of the packets to let the

� Now, Keita Omi works at Internet Initiative Japan.

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 227–236, 2014.
c© Springer International Publishing Switzerland 2014

228 N. Yoshiura and K. Omi

sources know that packets do not arrive at the destinations. The sources of the
packets can take countermeasures after they receive ICMP packets.

In IPv6, blocking ICMP packets causes fallback problem and Path MTU prob-
lem. This paper proposes a system that resolves the two problems. If blocking
ICMP packets causes these problems, the system creates and sends ICMP pack-
ets instead of blocked ICMP packets to resolve the problems.

Fujisaki pointed out fallback problem and proposed a solution[8]. Fujisaki also
discussed the relation between fallback problem and blocking ICMP packets.
However, Fujisaki do not use ICMP packets to resolve fallback problem because
some operating systems do not occur fallback even if they receive ICMP packets.
This paper resolves fallback problems by using ICMP packets and implements a
system that resolves fallback problem and Path MTU problem. This paper also
evaluates the system by experiment.

2 Problems in IPv6 by Blocking ICMP Packets

2.1 Fallback Problem

Blocking ICMP packets in IPv6 causes fallback problem and Path MTU problem.
Fallback problem occurs in dual stack of IPv4 and IPv6. Changing IPv4 to IPv6
requires concurrent usage of IPv4 and IPv6 because it is impossible to change
IPv4 to IPv6 at one time. On the Internet, PCs use DNS (Domain Name Service)
to obtain IP addresses of destinations before they try to communicate with other
PCs, servers or so on. Dual stack of IPv4 and IPv6 enables PCs to use both IP
addresses. Fig.1 shows fallback in dual stack of IPv4 and IPv6. If the leftside PC
in Fig.1 tries to send packets to the rightside PC, the leftside PC can send packets
by IPv4 or IPv6. Whether PCs select IPv4 or IPv6 depends on PCs. In Fig.1,
the leftside PC select IPv6 first. If IPv6 communications fails, the leftside PC
sends packets by IPv4. This mechanism is called fallback. In this mechanism,
PCs must notice whether IPv4 or IPv6 communications fails. PCs use ICMP
packets to find that IPv4 or IPv6 communications fails; if a router on the way
from a source PC to a destination PC cannot send packets to a destination
because the router does not have routing information for the destination, the
router cannot deal with IPv6 packets or so on, the router sends ICMP message
“destination unreachable” to the source PC to notify the source PC of failure of
communications. Thus, blocking ICMP packets prevents this notification. If the
source PC cannot receive ICMP packets, the source PC does not have occasion
to run fallback and the source PC waits for timeout of receiving the reply packets
from the destination PC.

2.2 Path MTU Problem

MTU (Maximum Transmission Unit) is a maximum packet size that can be
transmitted to next network equipment[9]. Path MTU is a minimum packet
size between a source and a destination of communication. In IPv4, packets can

Resolving Fallback and Path MTU Problems 229

Fig. 1. Path MTU Discovery

be fragmented in network equipment on the way of a route. However, in IPv6,
packets cannot be fragmented and the source PC must know Path MTU of a
route to a destination because if the source PC sends packets whose size is more
than Path MTU, the packets are dropped in network equipment on the route.
PCs can use Path MTU Discovery[12], which is a method of finding Path MTU.
Path MTU Discovery is based on ICMPmessage “Packet to Big”[11]. Fig.2 shows
Path MTU Discovery; first, the source PC sends the destination PC a packet
whose size is MTU of the source PC. If the size of the packet exceeds the MTU
of some network on the route to the destination PC, the network equipment of
the network sends ICMP message “Packet to Big” to the source PC. This ICMP
message includes MTU of the network equipment that sends the ICMP message
and the source PC sends a packet whose size is the MTU that is included in
the ICMP message. The source PC repeats this procedure until the source PC
receives a reply packet from the destination.

If ICMP packets are blocked on the way between the source PC and the
destination PC, Path MTU Discovery is unavailable. The source PC cannot
find Path MTU of the way between the source PC and the destination PC and
transmission of packets is delayed.

3 Overview of the Proposed System

Blocking ICMP packets is reasonable because ICMP packets are used for cyber
attack. However, blocking ICMP packets causes troubles in IPv6 and it is difficult
to compel all networks to permit ICMP packets. This paper proposes a system
that resolves fallback and Path MTU problems that are due to blocking ICMP
packets.

The proposed system runs on gateway routers and can also run on network
stubs such as PCs. The system had better run on gateway routers because the
system collects information on blocking IPv6 ICMP packets and the PCs under
the gateway router share the information. Sharing the information improve delay

230 N. Yoshiura and K. Omi

MTU 1500 MTU 1500 MTU 800

1500 byte

ICMP packet

Destination PCSource PC

:a router that blocks ICMP packets

Fig. 2. Fallback

that occurs because of blocking IPv6 ICMP. Moreover, the system does not
require to be installed on each PC if the system runs on the gateway router.

The system always checks packets that pass on the gateway router. The system
works for fallback problem as follows; if some packets for IPv6 or IPv4 pass on
the gateway router, which does not find reply packets, the gateway router notice
that it is impossible to send packets for IPv6 or IPv4 to the destination. If the
gateway router finds some packets of IPv6 or IPv4 to the same destination,
the gateway router drops the packets and sends ICMP message “destination
unreachable message”. the source PC of the packets takes fallback and sends
packets to the destination by IPv4 or IPv6 respectively. The proposed system
works for Path MTU problem similarly; the proposed system checks packets of
IPv6 on the gateway router. If the gateway router does not find reply packets,
the gateway router sends ICMP message “Packet too big” to the source PC.

3.1 Work Flow of System

The proposed system has the following functions.

– Capture of packets
– Analysis of communications
– Construction and Transmission of ICMP packets
– Storage of processing information for destination IP addresses

Fig.3 shows a flowchart of the system. First, the system captures packets on
the gateway router and saves information such as source IP address, destination
IP address and so on. The behavior of the system depends on information of
packets. Fig.4 shows that the system on the gateway router analyzes packets
between source PC and destination PC and checks whether communications
between them succeed or not. If the system notices that communications between
source PC and destination PC fails, the system sends ICMP packets to the
source PC. After that, the system analyzes packets between source PC and

Resolving Fallback and Path MTU Problems 231

Fig. 3. System flowchart

destination PC again. By repeating analyses, the system obtains many results
for communications between many source PCs and many destination PCs. The
system makes and saves the best processing for each pair of source PC and
destination PC from the results.

3.2 Capture of Packets

The system always captures packets and obtains information from the packets.
Table 1 is an example of saved data. The system obtains source and destination
IP addresses and packet size from a packet and save them.

232 N. Yoshiura and K. Omi

IPv6/IPv4 network

Source PC

The system analyzes packets
between source PC and

destination PC

GW

The system runs on GW
Destination PC

Fig. 4. Analysis of communications

Table 1. Example of saved data

Source IP address Destination IP address Path MTU Processing flag

ABCD YYYY 1280 Path MTU
EFGH XXXX 78 Fallback
IJKL ZZZZ 400 Reanalysis
MNOP WWWW 1440 Pass

3.3 Processing Flag

If source and destination IP addresses of a captured packet are in the list in
Table 1, the system deals with the packet based on processing flag. There are
four kinds of processing flags as follows;

– Pass
The system passes the packets whose processing flags are “Pass”.

– Reanalysis
The system analyzes the packets whose processing flags are “Reanalysis”.

– Fallback
The system sends ICMP message “destination unreachable” to the source
PC if the processing flag of the packet is “Fallback”.

– Path MTU
The system sends ICMP message “Packet too big” to the source PC if the
processing flag of the packet is “Path MTU”.

3.4 Analysis of Communications

The system analyzes communications and checks whether communications suc-
ceeds or not. In order to find whether communications between a source PC
and a destination PC succeeds or not, the system captures packets from out-
side networks in specified time. If the system finds packets from the destination
PC among the captured packets, the system decides that communications be-
tween the source PC and the destination PC succeeds. Otherwise, the system
decides that communications between the source PC and the destination PC
fails because of fallback problem or Path MTU problem.

Resolving Fallback and Path MTU Problems 233

The system deals with fallback problem and Path MTU problem. The coun-
termeasures for fallback problem and Path MTU problem are different. Thus,
the system must find which the troubles of communications are based on fallback
problem or Path MTU problem. Regarding TCP communications, the system
checks three way handshake and if three way handshake fails, the system de-
cides which the troubles of three way handshake are based on fallback problem
or Path MTU problem.

Detection of Fallback Problem. When fallback problem occurs, a source PC
and a destination PC cannot communicate by IPv6. In three way handshake, the
source PC sends SYN packet to the destination PC. If IPv6 cannot work between
the source and destination PCs, SYN packet does not arrive at the destination
PC and SYN+ACK packet does not arrive at the source PC from the destination
PC. The proposed system uses this feature; after the system detects SYN packets,
the system checks whether SYN+ACK packets arrive at the source PCs of SYN
packets. The system decides that fallback problem occurs if SYN+ACK packets
do not arrive at the source PCs of SYN packets.

Detection of Path MTU Problem. Path MTU problem occurs when too
big packets are used in communications. The packets in three way handshake
are small and Path MTU problem does not occur in three way handshake. Thus,
Path MTU problem occurs after three way handshake finishes and TCP con-
nection is established. It is a different point between fallback problem and Path
MTU problem. The proposed system checks a reply packet from the destination
PC after the source PC sends a big packet. If the proposed system cannot find a
reply packet for the big packet from the source PC, the proposed system decides
that Path MTU problem occurs. The system creates and sends ICMP message
“Packet too big” to the source PC. This message should have a possible size of
packet. The proposed system decides the possible size of packet based on analysis
of the previous communications.

3.5 Creating and Sending ICMP Packets

There are two kinds of ICMP: ICMPv4 and ICMPv6. The proposed system cre-
ates and sends ICMPv6 packets to source PCs. The packet of ICMPv6 includes
“Type”, “Code” and “Message Body”. “Type” presents the type of ICMP mes-
sage, “Code” presents presents additional information in ICMP message and
“Message Body” is different according to Type and Code. The proposed system
creates the same ICMPv6 packets that are created on the routers on the way
to destination PCs. The created packets obey RFC documents that are related
with ICMP[10,11].

To let source PCs process fallback, ICMP message for fallback problems must
be “Destination unreachable”. To create the ICMPmessage, the proposed system
obtains IP headers and TCP headers on packets that are sent from the source
PCs. The ICMP messages that are created by the proposed system include these

234 N. Yoshiura and K. Omi

IP headers and TCP headers. To deal with Path MTU problem, ICMP message
must be “Packet too big”. The ICMP messages that are created by the proposed
system must include a size of packet. First this size is set to 1280 byte, which
is a minimum size of MTU in IPv6. If the proposed system finds that over 1280
byte packets can be transmitted to the destination PC, the proposed system sets
over 1280 byte in ICMP message as a minimum size of MTU.

3.6 Decision of Success of Fallback

The system analyzes communications and finds which each communication suc-
ceeds or not. As Subsection 3.4 describes, The system checks all packets and
obtains destination IP addresses. If the system finds reply packets from the des-
tination PC, the system decides that communications succeeds. In the case of
Path MTU problem, after the system sends ICMP message to source PCs, IPv6
is used between source and destination PCs. Thus, the system checks only IP
addresses in reply packets to find that communications succeeds. However, in
the case of fallback problem, a protocol that is used in communications changes
from IPv6 to IPv4. Finding whether communications succeeds requires obtain-
ing IPv4 addresses of source and destination PCs after fallback. Moreover, the
systems must know IPv6 addresses and IPv4 addresses of the source and desti-
nation PCs and correspondence between IPv6 and IPv4 addresses for each PC.
The proposed system obtains IPv4 addresses and correspondence between IPv4
and IPv6 addresses by using DNS data; the system finds PTR records from IPv6
addresses to obtain host names and obtains IPv4 addresses of the host names.

4 Implementation and Experiment

This paper implements the proposed system on the Linux PC router, which has
Intel Core 2 Duo 1.06GHz as CPU and 2Gbyte memory. The implementation uses
raw socket to obtain all packets and is described in C programming language. For
experiment, this paper prepares network environment where fallback problems
and Path MTU problems occur. The experiment in this paper compares the
cases with and without the proposed system. In the experiment, a PC tries to
access web pages by IPv6 and 60 web pages are accessed.

To cause fallback problem, the experiment prepares obstacles on the exper-
iment network. These obstacles can deal with IPv4 but not IPv6 and do not
send ICMP packets. To cause Path MTU problem, the experiment prepares the
network obstacles that have small MTUs.

4.1 Result of Experiment

Table 2 shows the result of experiment for fallback problem. In some cases, the
system cannot find that fallback succeeds because the system cannot have all cor-
respondences between IPv4 and IPv6. The system obtains the correspondences

Resolving Fallback and Path MTU Problems 235

Table 2. Results of experiment for fallback

Without the system With the system

Average 205.29 sec 3.96 sec

by using DNS PTR records, but PTR records of all IPv6 addresses are not reg-
istered on DNS and the system does not work well in all cases. The proposed
system does not obtain PTR records of 36 web pages in 60 web pages.

Table 3 shows the result of experiment for Path MTU problem. This paper
cannot find the web pages whose access causes Path MTU problems. Thus, the
experiment prepares the network where Path MTU problems occur.

Table 3. Results of experiment for Path MTU

Without the system With the system

Average 52.94 sec 3.52 sec

5 Discussion

The result of experiment shows that the proposed system is useful for fallback
problems and Path MTU problems that are caused by blocking ICMP. In the
result of the experiment, it takes 3.96 second to perform fallback in the proposed
system because the proposed system waits for 3 second to check whether the
communications succeeds and sends ICMP packets to source PCs. Efficiency
of resolving fallback problems in the proposed system depends on waiting time.
This paper does not confirm that 3 second waiting is optimum and therefore it is
a future work to find optimum time to check whether communications succeeds.

The experiment also shows that the proposed system does not detect com-
pletely whether communications succeeds. The reason of this incompleteness is
that PTR records of many IPv6 addresses are not registered. Some researches
focus on IPv6 of DNS[4], but this paper does not hope that PTR records of all
IPv6 addresses are registered on DNS. Thus, this paper requires another method
of obtaining correspondences between IPv4 and IPv6 addresses.

6 Conclusion

This paper proposed the implemented system that resolves fallback problems
and Path MTU problems in IPv6. The cause of these problems is blocking ICMP
packets. As a future work, this paper plans to construct new method of obtaining
correspondences between IPv4 and IPv6 addresses that are used in one PC.
Another future work is to decide optimum time for which the system waits for
reply packets to decide whether communications succeeds or not.

236 N. Yoshiura and K. Omi

References

1. Claffy, K.: Tracking IPv6 evolution: data we have and data we need. SIGCOMM
Computer Communication Review 41(3), 43–48 (2011)

2. Colitti, L., Gunderson, S.H., Kline, E., Refice, T.: Evaluating IPv6 adoption in the
internet. In: Krishnamurthy, A., Plattner, B. (eds.) PAM 2010. LNCS, vol. 6032,
pp. 141–150. Springer, Heidelberg (2010)

3. Zander, S., Andrew, L.L.H., Armitage, G., Huston, G., Michaelson, G.: Mitigating
Sampling Error with Measuring Internet Client IPv6 Capabilities. In: Proceedings
of the Intenet Measurement Conference, pp. 87–100 (2012)

4. Arthur, B., Nicholas, W., Robert, B., Larry, C.: Internet Nameserver IPv4 and
IPv6 Address Relationships. In: Proceedings of the 2013 Conference on Internet
Measurement Conference, pp. 91–104 (2013)

5. RIPE NCC, World IPv6 Day Measurements, http://v6day.ripe.net (last access
June 14, 2014)

6. Huston, G.: IPv6 BGP Statistics (2013), http://bgp.potaroo.net/v6/as2.0/

(last access June 14, 2014)
7. ISOC, World IPv6 Day (2012), http://www.worldipv6launch.org
8. NTT Information Sharing Platform Laboratories, Deploying IPv6: Problems and

Solutions (2011),
http://wiki.nttv6.net/cgi-bin/wiki.cgi?page=FrontPage&file=

pub v6fix-en-v1.2.1.pdf&action=ATTACH (last access June 14, 2014)
9. RFC 791, Internet Protocol Darpa Internet Program Protocol Specification,

http://tools.ietf.org/html/rfc791

10. RFC 792, Internet Control Message Protocol,
http://tools.ietf.org/html/rfc792

11. RFC 4443, Internet Control Message Protocol (ICMPv6) for the Internet Protocol
Version 6 (IPv6) Specification,
http://tools.ietf.org/html/rfc4443

12. RFC1981, Path MTU Discovery for IP version 6,
http://tools.ietf.org/html/rfc1981

13. RFC2460, Internet Protocol, Version 6 (IPv6) Specification,
http://tools.ietf.org/html/rfc2460

14. RFC2923, TCP Problems with Path MTU Discovery,
http://tools.ietf.org/html/rfc2923

http://v6day.ripe.net
http://bgp.potaroo.net/v6/as2.0/
http://www.worldipv6launch.org
http://wiki.nttv6.net/cgi-bin/wiki.cgi?page=FrontPage&file=pub_v6fix-en-v1.2.1.pdf&action=ATTACH
http://wiki.nttv6.net/cgi-bin/wiki.cgi?page=FrontPage&file=pub_v6fix-en-v1.2.1.pdf&action=ATTACH
http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc792
http://tools.ietf.org/html/rfc4443
http://tools.ietf.org/html/rfc1981
http://tools.ietf.org/html/rfc2460
http://tools.ietf.org/html/rfc2923

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 237–249, 2014.
© Springer International Publishing Switzerland 2014

Using a History-Based Approach to Predict Topology
Control Information in Mobile Ad Hoc Networks

Pere Millán1, Carlos Molina1, Roc Meseguer2, Sergio F. Ochoa3, and Rodrigo Santos4

1 Department of Computer Engineering, Universitat Rovira i Virgili, Tarragona, Spain
2 Department of Computer Architecture, Universitat Politècnica de Catalunya, Barcelona, Spain

3 Department of Computer Science, Universidad de Chile, Santiago, Chile
4 Department of Electrical Engineering, Universidad Nacional del Sur, Bahia Blanca, Argentina

{pere.millan,carlos.molina}@urv.net, meseguer@ac.upc.edu,
sochoa@dcc.uchile.cl, ierms@uns.edu.ar

Abstract. Several social computing participation strategies, such as
crowdsensing and crowdsourcing, use mobile ad hoc or opportunistic networks
to support the users activities. The unreliability and dynamism of these commu-
nication links make routing protocols a key component to achieve efficient and
reliable data communication in physical environments. Often these routing ca-
pabilities come at expenses of flooding the network with a huge amount of to-
pology control information (TCI), which can overload the communication links
and dramatically increase the energy consumption of the participating devices.
In previous works the authors have shown that predicting the network topology
in these work scenarios helps reduce the number of control packets delivered
through the network. This saves energy and increases the available bandwidth.
This paper presents a study that extends the authors’ previous works, by identi-
fying the impact of predicting the TCI generated by routing protocols in these
networks. The prediction process is done following a history-based approach
that uses information of the nodes past behavior. The paper also determines the
predictability limits of this strategy, assuming that a TCI message can be cor-
rectly predicted if it appeared at least once in the past. The results show that the
upper-bound limit of the history-based prediction approach is high, and that re-
alistic prediction mechanisms can achieve significant ratios of accuracy. Mobile
collaborative applications and routing protocols using mobile ad hoc or oppor-
tunistic networks can take advantage of this prediction approach to reduce net-
work traffic, and consequently, the energy consumption of their devices.

Keywords: Network Topology Prediction, History-Based Prediction, Routing
Protocols, Mobile Ad Hoc Networks, Mobile Collaboration.

1 Introduction

Mobile computing and wireless networks are part of our life. Everyday more and
more people are becoming a part of collaborative networks to share several infor-
mation, such as the status of the vehicular traffic in an area, the security level of a city
zone, or the location of interesting places to visit while performing touristic activities.

238 P. Millán et al.

In many scenarios, the networks of these applications are wireless and ad hoc, and
the provision of the applications’ services makes sense only if the consumer (i.e. the
end-user) is localized near to the service provider. For instance, during lunch time the
restaurants located in a promenade area can deliver special offers to the smartphone of
the passers-by, motivating them to take lunch in those places. If the service providers
(i.e. the restaurants) use WiFi to irradiate these messages to the people, then this pro-
cess will need to use message routing to reach the devices of potential clients that are
located to more than one-hop of distance from the provider. This means more than 80-
100 meters in open areas or more than 30-25 meters in build areas.

The routing protocols used in these mobile collaboration scenarios must be simple,
efficient, reliable and they have to quickly adapt themselves to changes in the network
topology [1, 2, 3, 4]. Moreover, these protocols should minimize the delivery of to-
pology control information (TCI) to avoid consuming too much energy of the passers-
by’ devices. Link-state proactive-routing protocols could be used in these scenarios to
support interaction among devices, since they have low latency when sending data
through ad hoc networks. The latency is low because these protocols utilize an opti-
mized and known data-path for delivering messages to the destination nodes [5].
However, this advantage comes at the cost of periodically flooding the network with
TCI that negatively impacts the energy consumption of the nodes.

Medina et al. [6] and Meseguer et al. [7] show that the traffic generated by OLSR
(Optimized Link State Routing protocol [5]) for different nodes densities, grows al-
most exponentially with the number of nodes. Therefore, for a large number of nodes,
a huge amount of TCI should be delivered through the network. This not only over-
loads the communication links, but also increases the energy consumption of the
nodes. The authors have also shown that the problem of delivering much control in-
formation through the network can be addressed using predictions [6, 8]. Particularly,
the OLSRp (OLSR with prediction) protocol was proposed to eliminate redundant
control information, and thus, to reduce CPU and energy consumption in mobile ad-
hoc networks. This prediction mechanism is based on the assumption that the last TCI
send by a node will probably be repeated during the next round of information deliv-
ery. The results of this prediction strategy show that this simple algorithm can reduce
considerably the number of control packets (CP) transmitted through the network,
saving computational processing and energy consumption, without affecting the rout-
ing capability of the protocol.

However, this prediction process sometimes introduces additional complexity to
routing protocols, because additional hardware, software, or both of them, must be
devoted to make a prediction, and possibly to validate it. Moreover, the prediction can
also introduce additional time-penalties to the system, mainly when the rate of
mispredictions is high. On average, if the percentage of right predictions is high
enough, the overall performance of the routing protocols can be significantly im-
proved at a reasonable hardware/software cost. The same concerns can be extended to
computer networks, as they also have been aware of prediction techniques in several
ways, such as energy-efficient routing [9, 10], nodes sleeping-state scheduling
[11, 12], reliability [13, 14], link-quality tracking [15, 16] and routing-traffic
reduction [6, 7, 8].

 Using a History-Based Approach to Predict Topology Control Information 239

This paper extends the proposal described in [2, 4], by presenting and evaluating a
new strategy for predicting TCI in mobile ad hoc and opportunistic networks. This
new prediction approach uses a time window, in which the historical TCI of a node is
considered to predict the next TCI. By using simulations, this proposal determines the
performance of the history-based prediction in several mobile scenarios. The scenari-
os used in these simulations are representative of some everyday life activities, where
people freely move around a certain area, and eventually interact with other people in
these places. The obtained results help designers of both, routing protocols and mo-
bile collaborative systems, to conceive more efficient ways to manage the TCI in
these scenarios.

2 Predicting TCI Using Past Information

Although it seems to be a good idea to use historical TCI to make predictions of the
next control packets [8], it is important to determine the performance and limits of
this approach. Only after that, it would be possible to determine in which mobile
computing scenarios this proposal can provide a real benefit.

The history-based prediction (HBP) approach considers that each node keeps up-
dated locally (in a table) the recent history of the TCI received from its neighbors.
The prediction process performed in such a node takes this information as input, and
produces a prediction of TCI for each neighbor. Thus, it tries to guess the network
topology without delivering control information. The prediction that a node makes for
a TCI of a neighbor can be done whenever the recently TCI received from such a
neighbor, matches with the previously TCI stored by that node. It is important to no-
tice that the HBP approach is focused on predicting a state that has already appeared
in the past.

In order to understand the performance of the HBP approach, we performed several
simulations using unbounded tables with historical information. These unbounded
tables give more flexibility to identify patterns in the nodes’ movements, and thus to
try guess the next topology of the network. This pattern identification can be done
analyzing the tables with historical information that each node keeps for such a pur-
pose. Each movement pattern corresponds just to a sequence of TCI packets (one or
more), that the node making the prediction has seen in the past (and it has registered
in its local table). Attached to every pattern stored in the table there is a list of all the
packets that appeared after such a pattern. These packets could be predicted depend-
ing on the prediction strategy used by the node.

The table with historical information also records some statistical information that
helps the prediction process to select one option among several candidate node mobil-
ity patterns; i.e., to determine which is the most suitable candidate (pattern) to match
with the next TCI packet in the current prediction scenario. In short, an entry of the
table will be composed by an input (TCI packets representing the pattern), an output
(a list of control packets that appeared after each particular pattern) and statistical
information (related to every output, which helps predict the next control packet). For
every entry, it is maintained a list of all CPs that appeared after the pattern that is

240 P. Millán et al.

under consideration by the prediction process. The statistics attached to the table es-
tablish both, the most frequent and the last packet of the pattern.

In order to analyze properly the usefulness of this historical information for the
prediction process, we have defined the history depth (HD) metric. This metric can be
calculated as the number of TCI packets that compose a movement pattern. In our
study, the HD can assume values from 0 to 5. If we consider for instance a table with
HD=1, this means that the number of packets that identify each pattern is one. There-
fore, there will be one entry in the table for every control packet (CP) that appeared in
the past. We believe that high HD means more accurate predictions, but few opportu-
nities for predicting, because the packets sequences are long. Contrarily, low HD
means more opportunities for predicting, but less accuracy in the predictions.

Based on the information stored in this table, we use and analyze the performance
of three different flavors of the HBP approach: last value (it uses the last packet of the
pattern to make the predictions), most-frequent value (it uses the most-frequent packet
for predicting the next TCI) and random value (it uses any packet from the list, which
is randomly selected). For instance, the OLSRp mechanism [6] assumes a last-value
policy and HD=0 for predicting the next control packet with TCI. Probably, this is the
most simple prediction mechanism, as just one control packet has to be stored and no
statistics have to be maintained. Even this simple strategy has shown to be useful for
reducing the traffic of TCI and energy consumption in mobile ad hoc networks [7, 8].

The different flavors of the HBP approach must not only succeed in their predic-
tions, but also not predict when this success is not guaranteed. In our scenario, success
reduces the network traffic and saves energy consumption, but incorrect predictions
can skew the network topology map, and therefore decrease the reliability of the pro-
cess. In this paper, we include a confidence mechanism to determine the likelihood
that a prediction done using the HBP approach is correct. This could help both, max-
imize right and minimize wrong predictions. We assume a simple confidence mecha-
nism, which determines if every packet of the output data list of a pattern was already
predicted. If so, a counter is incremented by 1. Otherwise, it is decremented by 1. The
counter is initialized as 1, and it can assume values in the range from 0 to 3. We con-
sider that a prediction is confident, if the counter is equal or higher than 2.

Although this confidence mechanism can helps us improve the prediction accura-
cy, if we assume a fixed HD, the opportunities for predicting TCI packets remain
fixed. Therefore, in this article we analyze an additional flavor of the HBP approach,
in which the HD is not initially fixed. We call this strategy as prediction tree. This
strategy predicts the TCI assuming the maximum HD. Every time that it is not possi-
ble to do such an assumption (e.g. because there is not an entry or enough confi-
dence), the HD will be decreased by 1. After that, the prediction tree attempts to make
a new prediction, but using a shorter pattern. This will be repeated until the HD metric
reaches 0. We analyze this approach with and without a confidence mechanism.

Finally, we quantify the repetition of TCI over time, in order to help understand
predictability and prediction opportunity limits of this proposal. In one side, we de-
termine the maximum prediction accuracy that these flavors of the HBP approach can
reach, by counting if a certain TCI packet has ever appeared in the past. If it has
appeared once, we assume that it could be correctly predicted. Moreover, we also

 Using a History-Based Approach to Predict Topology Control Information 241

quantify the incorrect prediction of a pattern for each particular HD that could be
correctly predicted as the correct prediction was in the list of control packets related
to that pattern. Therefore, this information can help us identify the limits of the HBP
approach, and also determine how far a particular prediction approach is from the best
prediction performance. On the other side, this article also analyzes the representa-
tiveness of the most-frequent packets, respect to whole set of packets received by a
node over time. This will give us a first understanding about how difficult is to make
right predictions, and which is the amount of data (historical information) that must
be tracked to make these predictions.

3 Experimental Framework

In order to determine the performance of the HBP approach, we designed and simu-
lated several interaction scenarios using the NS-3 simulator [17]. This tool allowed us
to model these scenarios, collect statistics, define initial network topologies, configure
wireless network interfaces, and set the mobility-patterns of the nodes. Every simula-
tion performed in this study lasted 14,400 seconds (4 hours).

In these simulations we used the Optimized Link State Routing (OLSR) protocol,
which is a well-known protocol for routing messages in ad-hoc networks [5]. The
nodes of these networks periodically exchange control information to maintain a local
map of the network topology. In order to do that, OLSR uses two types of control
messages: HELLO and Topology Control (TC). HELLO messages allow a node to
discover its neighbors, and determine the quality of the links between them. TC
messages allow a node to disseminate topology information with its neighbors. The
simulations considered the delivery of a HELLO message every 2 seconds, and a TC
message every 3 seconds.

The physical place available for interactions was a square open area of 300×300
meters, that could represent a beach or a park, where people are free to move
throughout the whole space, and eventually interact with other people (e.g., friends,
relatives, or service providers). In these scenarios, the people can remain stationary
(e.g. during a picnic), or walking with or without a clear direction. A mobile collabo-
rative application, that detects the presence of related people in a physical area, can be
eventually used to promote face-to-face encounters among them, as proposed in [18].

The simulations considered devices using Wi-Fi to detect other nodes, and ex-
change control information among them. Using these interfaces, mobile networks
composed of 10, 20, 30, and 40 nodes were simulated. The nodes were randomly
deployed in the open area, and their behavior alternate between some stationary peri-
ods, and others in which they move up to 1 m/s (walking), 2 m/s (trotting), 4 m/s
(running), and 6 m/s (bicycling).

The node movements can follow one of the following mobility models: Random
Walk, Nomadic, or Self-similar Least Action Walk (SLAW) [19, 20]. These mobility
models are quite representative of the movement patterns of a person or a group that
performs outdoor activities. The node mobility was implemented using the
BonnMotion simulator [21]. The Random Walk model considers people moving

242 P. Millán et al.

randomly in terms of direction and speed within a certain area; e.g. people in a park,
where each person can move via walking, running, or riding a bicycle without using
formal paths. The Nomadic model considers people moving in groups, from one loca-
tion to another. This is representative of guided tours, e.g. at a city downtown. This
model considers a particular node per group (i.e., a reference node) that determines
the next target point to be visited, and also a reference path and speed to reach such a
place. This role can be played by the tour guide. Finally, in the SLAW model people
move quite randomly, but they consider their previous movements (speed and direc-
tion) to determine the new ones. This is similar to the movements of people that use
the walking paths in a park. This model is also effective to model casual encounters
among community members; e.g., students at the university campus, or friends in a
theme park. Unlike other models, the speed in this model cannot be parameterized,
and it assumes a default value of 1 m/s (walking speed).

Finally, we have assumed that all nodes are similar, and their capabilities are
equivalent to an iPhone 4. These devices have an effective WiFi range of approxi-
mately 80 meters in open areas. In such range, we can expect quite stable ad-hoc
communication among devices, and a bandwidth of at least of 50 Kbps, which is ap-
propriate to support reliable interactions among mobile nodes.

4 Analysis of Obtained Results

4.1 Predictability Limits

In order to determine the upper-bound limit achievable by the HBP approach, we
have assumed unbounded memory for the nodes, and also tracking if a TCI packet has
ever appeared in the past. Figure 1 shows how the three mobility models behave when
considering several nodes densities (from 10 to 40 nodes) and a similar average mo-
bility speed (1 m/s) for the nodes in every model. Notice that for the scenario with 10
nodes, about 80% of the times the control packet to be predicted has already appeared
in the past. This upper-bound limit is extremely high; therefore, the potential of pre-
dicting correctly the TCI is also high.

Fig. 1. Predictability limits

 Using a History-Based Approach to Predict Topology Control Information 243

Besides that, we can see that there are no significant differences among the predic-
tion capability in the three mobility models. This would indicate that the prediction
capability of the HBP approach does not depend on the mobility model being used by
the nodes. In fact, we could expect similar results even in scenarios where the nodes
use several mobility patterns.

The results also show that the prediction limits decreases when increases the node
density. This is a result that can be expected, since a high-density network has many
communication links that need to be correctly predicted; therefore, an important
amount of control packets must delivered through the network, and a fewer number of
patterns (in percentage) are identifiable by the nodes.

In order to determine the role that the speed of nodes is playing in the obtained re-
sults, we established maximum speeds to the nodes. The nodes can randomly assume
a certain speed (1 m/s, 2 m/s, 4 m/s, or 6 m/s) for a short time period, and then make a
new assumption for the next period. The obtained results have shown that the nodes’
speed does not affect the prediction upper-bound limit of the HBP approach. There-
fore, we can say that this limit always ranges between 50% and 80%. Moreover, the
predictability limit decreases when the node density increases, and there is not a sig-
nificant difference among the mobility models used by the nodes.

4.2 Frequency of the Observed Control Packets

Concerning the control packets that appear most frequently in the history kept by the
nodes, Figure 2 shows a curve illustrating the results. The curve considers, from left
to right, the most frequent packets. The X-axis indicates (in percentage) the number of
different packets that appear more frequently, respect to the total number of observed
packets (i.e. packets that were recorded in the historical information of the nodes). For
instance, in the scenario with 30 nodes, there are a 30% of different the control pack-
ets that represent 70% of the (total) observed packets. Notice that Y-axis and X-axis
are both normalized.

Fig. 2. Frequency of the observed control packets

244 P. Millán et al.

The most important result shown in Figure 2 is that there is a small subset of pack-
ets that are representative of most packets delivered by the nodes through the net-
work. In other words, the control packets belonging to this small subset traverse the
network many times, therefore they have high representativeness. Although it seems
that the combination of multiple nodes will produce a huge number of possibilities, in
reality only with a few number of packets we can obtain most of the packets that a
network produces. Notice that this result does not depend on the node density in the
network.

Although the values shown in Figure 2 were obtained considering a SLAW mobili-
ty model, and a speed of 1 m/s, the simulations done using the other mobility models
have shown the same distribution for the results. Summarizing, these results and the
predictability limits shown by the HBP approach are highly encouraging, as it pro-
vides many opportunities for predicting TCI packets, and these predictions would be
focused on a small subset of the total packets delivered through the network.

4.3 History-Based Prediction

In order to perform a more comprehensive evaluation of the prediction performance,
we have used several flavors of the HBP prediction approach. Moreover, we have
identified four typical cases to analyze when making a prediction: (1) nopred, (2) hit,
(3) missNoPred, and (4) missPred. In the first case (nopred), there is no prediction
because there was no table entry that matches the current pattern. This would be the
case with the lowest occurrence probably, as it only occurs the first time that a pattern
appears. The second case (hit) means that there is a prediction (i.e., the pattern is in
the table) and it is correct (i.e., the packet associated to that entry is the next expected
packet). The third case (missNoPred) means that there is a prediction, and it is not
correct, but it is impossible to do a correct prediction, as the next expected packet
never appeared in the past with that pattern. Finally, the fourth case (missPred) means
that there is a prediction, and it is not correct, however the packet could be correctly
predicted, as the next expected packet appeared with that pattern at least once in the
past.

Fig. 3. History-based prediction using a SLAW mobility model and last value policy

 Using a History-Based Approach to Predict Topology Control Information 245

Figure 3 shows the HBP performance considering these prediction cases in a sce-
nario with a SLAW mobility, and node density ranging from 10 to 40 nodes. The
HBP approach assumes the last-value policy as the selected prediction mechanism,
and a HD in the range from 0 to 3.

These results indicate that the largest percentages of hits are achieved with HD=0,
but these cases also present important percentages of misses (i.e. missPred and
missNoPred). The results also show the effects of the predictability limits (already
seen in Figure 1), which reduces the number of hits and misses when the node density
increases. The equivalence of missNoPred (HD=0) and noPred (HD=1) can be ex-
plained because for HD=1 the mechanism cannot predict the first time that a packet
appears; i.e., this is missNoPred for HD=0.

Figure 4 shows the effect of using different prediction policies with a SLAW mo-
bility model, for a network with 10 nodes. For this analysis we have considered three
different sizes of history windows, corresponding to 1, 2, and 3 rounds of TCI deliv-
ery (X-axis). These windows sizes establish the amount of historical information used
to identify the patterns.

Fig. 4. History-based prediction using different prediction policies

When using pure Random policy it is always possible to make a prediction (even
without history information), but most predictions are missPred. The use of historical
information clearly allows achieving better results, even using a history-based Random
strategy. This can be considered as the baseline, and demonstrates the importance of
utilizing the historical information to make more and accurate predictions.

Finally, Figure 5 shows the effect of using different mobility models with a speed
of 1 m/s, for a network with 10 nodes. For this analysis we have considered three
different sizes of history windows (1, 2, and 3). We can observe that the behavior of
the 3 mobility models is quite similar (less than a 10% of difference), with a signifi-
cant increase in noPred cases for large history values. These results confirm that there
are no significant differences among the prediction capability in the three mobility
models, as outlined in the analysis of predictability limits.

246 P. Millán et al.

Fig. 5. History-based prediction using different mobility-models

4.4 History-Based Prediction Using a Confidence Mechanism

Notice also that in all the analyzed approaches a prediction is always done (besides
the noPred case), and this prediction can be a hit or a miss. In the case of a hit, the
direct benefit is a reduction of the network traffic and energy consumption, due to the
producer will not send the control packet through the network, and the consumer will
assume that its predicted control packet is correct. However, every miss prediction
has a cost for the nodes, since the producer will detect that the prediction is not cor-
rect (due it has the current packet, and this packet does not correspond to the one that
returns the predictor). Therefore, this node will send the correct packet through the
network. Meanwhile, the consumer will assume an incorrect prediction, as long as the
correct packet does not arrive to the consumer node. This elapsed time would not be
long, but it could be long enough to route some data packets, assuming a low accura-
cy of the network topology map. Therefore, the challenge to address is to always pre-
dict in certainty scenarios, and do not predict in other cases.

This strategy can be implemented by including a mechanism that adds two more
cases to the previous four. Now a prediction is made if the predictor has enough con-
fidence. In other case, the prediction would be a hit (noConfidence/hit) or a miss
(noConfidence/miss). Our aim is to maximize noConfidence/miss with a minimum
noConfidence/hit. Figure 6 shows the behavior of this confidence mechanism, consid-
ering the 6 cases (four of them consider no confidence). The results were obtained
using a Nomadic mobility model, in a network with 10 nodes, which had a maximum
speed of 1 m/s. A last-value strategy was chosen to perform the predictions.

The results indicate that there are few predictions when using confidence; however,
most of them are hits, and there are few misses (the miss ratio is minimized). On the
other hand, the most of the predictions were not made because there were not enough
confidence (noConfidence/miss with little noConfidence/hit). This indicates that using
a confidence mechanism we can minimize prediction errors.

 Using a History-Based Approach to Predict Topology Control Information 247

Fig. 6. History-based prediction using a 2-bit confidence-mechanism

4.5 Dynamic History-Depth

With the aim of improving the total number of hits, we relaxed the condition of fixed
history-depth patterns, in order to have more opportunities to correctly predict the
next TCI packet. When a pattern has no previous history and/or not enough confi-
dence, we decrease in 1 the history depth, and we check again if a prediction can be
made (with the same selection policy), as a way to minimize noPred cases. We call
this method Dynamic History-Depth (or Tree).

Fig. 7. Fixed History-Depth versus Dynamic History-Depth (Tree)

Figure 7 shows the results of using Fixed versus Dynamic History-Depth with and
without confidence (using SLAW mobility, 10 nodes, 5 as maximum HD, maximum
speed 1 m/s, and the last-value policy). We can see that the Tree method minimizes
noPred. Therefore, for the same percentage of hits, the total number of hits increases
significantly. When we include a confidence mechanism (right side of Figure 7),
Fixed History-Depth shows a decrease in number of hits and misses. However, Tree
with Confidence achieves better results, maximizing hits and minimizing misses.

248 P. Millán et al.

5 Conclusions and Future Work

In this work, we have analyzed the performance of a history-based strategy for pre-
dicting the topology control information generated by routing protocols for mobile ad
hoc and opportunistic networks. This analysis was done simulating several mobile
collaboration scenarios. The obtained results indicate that the history-based prediction
(HBP) strategy contributes to reduce the traffic on these networks, and saves energy
in the mobile devices supporting mobile collaborative activities.

First, we have observed that around 80% of the times, for low densities of nodes, a
packet has already appeared in the past. This percentage falls to 50% when consider-
ing a network with a higher node density. This demonstrates that the upper bound
limits of the HBP strategy remain high for an ample variety of interaction scenarios,
which make us expecting important benefits for mobile collaborative applications that
use these networks as communication support. Second, the results also show that few
packets contribute significantly to the total percentage of packets delivered through
the network. This means that there is a high opportunity for predicting the TCI, and
this prediction can be just focused on a small subset of packets. Finally, we have iden-
tified the role played by different history-depth patterns, prediction policies, confi-
dence mechanisms, and the combination of several approaches at the same time after
analyzing the behavior of history-based prediction mechanisms under several scenari-
os. Considering all these issues and a worst-case scenario (with high density of
nodes), we can correctly predict at least 30% of the control packets, minimizing the
percentage of errors and getting an upper-bound limit of predictions that is close to
50% in such an scenario.

As a future work, we plan to analyze in detail all combinations of work scenarios,
considering node density, speed, and mobility patterns. We also want to develop more
complex confidence mechanisms, and combine the prediction approaches to see if
their benefits can be accumulated. Moreover, it would also be interesting to analyze in
a next step the prediction performance in opportunistic networks involving heteroge-
neous environments, like those presented by Li et al. [22]. Addressing these scenarios
will allow developers to address IoT-based solutions.

Acknowledgments. This work has been partially supported by the Spanish Ministry
of Science and Innovation (MCI) and FEDER funds of the EU under the contracts
TIN2013-44375-R, TIN2013-47245-C2-1-R, TIN2013-47245-C2-2-R and TIN2012-
37171-C02-02, and also the Community Networks Testbed for the Future Internet
(CONFINE) Large-scale Integrating Project: FP7-288535, and also by the Generalitat
de Catalunya as a Consolidated Research Group 2014-SGR-881, and also by
Fondecyt (Chile), Grant No 1120207.

References

1. Spyropoulos, T., et al.: Routing for Disruption Tolerant Networks: Taxonomy and Design.
Wireless Networks 16(8) (2010)

2. Zeng, Y., et al.: Directional Routing and Scheduling for Green Vehicular Delay Tolerant
Networks. Wireless Networks 19(2) (2013)

 Using a History-Based Approach to Predict Topology Control Information 249

3. Vasilakos, A., et al.: Delay Tolerant Networks: Protocols and Applications. CRC Press
(2012)

4. Youssef, M., et al.: Routing Metrics of Cognitive Radio Networks: A Survey. IEEE Com-
munications Surveys and Tutorials 16(1) (2014)

5. Clausen, T., Jacquet, P.: Optimized Link State Routing Protocol (OLSR). IETF RFC 3626
(October 2003)

6. Medina, E., Meseguer, R., Molina, C., Royo, D.: OLSRp: Predicting Control Information
to Achieve Scalability in OLSR Ad Hoc Networks. In: Pentikousis, K., Agüero, R.,
García-Arranz, M., Papavassiliou, S. (eds.) MONAMI 2010. LNICST, vol. 68, pp. 225–236.
Springer, Heidelberg (2011)

7. Meseguer, R., et al.: Reducing Energy Consumption in Human-Centric Wireless Sensor
Networks. In: Procs. IEEE Int. Conf. on Systems, Man, & Cybernetics (October 2012)

8. Meseguer, R., et al.: Energy-Aware Topology Control Strategy for Human-Centric Wire-
less Sensor Networks. Sensors Journal 14 (February 2014)

9. Maleki, M., Dantu, K., Pedram, M.: Lifetime Prediction Routing in Mobile Ad Hoc Net-
works. In: Wireless Communication& Networking, pp. 1185–1190. IEEE Press (2003)

10. Kim, D., et al.: Routing Mechanisms for Mobile Ad Hoc Networks Based on the Energy
Drain Rate. IEEE Trans. on Mobile Computing (April 2003)

11. Chen, B., et al.: Span: An Energy-Efficient Coordination Algorithm for Topology Mainte-
nance in Ad Hoc Wireless Networks. Journal of Wireless Networks 5 (2002)

12. Ye, F., et al.: Peas: A Robust Energy Conserving Protocol for Long-Lived Sensor Net-
works. In: Proc. of the 23rd Int. Conf. on Distributed Computing Systems (May 2003)

13. De Rosa, F., et al.: Disconnection Prediction in Mobile Ad Hoc Networks for Supporting
Cooperative Work. IEEE Pervasive Computing (2005)

14. Su, W., Lee, S.J., Gerla, M.: Mobility Prediction and Routing in Ad Hoc Wireless Net-
works. International Journal of Network Management 11 (2001)

15. Millan, P., et al.: Tracking and Predicting Link Quality in Wireless Community Networks.
Tech. Report UPC-DAC-RR-2014-10. DAC-UPC, Spain (June 2014)

16. Koksal, C.E., Balakrishnan, H.: Quality-Aware Routing Metrics for Time-Varying Wire-
less Mesh Networks. J. Selected Areas in Communications (2006)

17. NS-3, A Discrete-Event Network Simulator for Internet Systems,
http://www.nsnam.org/

18. Vergara, C., Ochoa, S.F., Gutierrez, F., Rodriguez-Covili, J.: Extending social networking
services toward a physical interaction scenario. In: Bravo, J., López-de-Ipiña, D., Moya, F.
(eds.) UCAmI 2012. LNCS, vol. 7656, pp. 208–215. Springer, Heidelberg (2012)

19. Camp, T., Boleng, J., Davies, V.: A Survey of Mobility Models for Ad Hoc Network Re-
search. Wirel. Commun. Mob. Comput. (2002)

20. Lee, K., Hong, S., Kim, S.J., Rhee, I., Chong, S.: Slaw: A New Mobility Model for Human
Walks. In: Proceedings of INFOCOM 2009 (April 2009)

21. Aschenbruck, N., et al.: BonnMotion: A Mobility Scenario Generation and Analysis Tool.
In: Procs. 3rd Int. ICST Conf. Simulation Tools & Techniques (March 2010)

22. Fu, X., Li, W., Fortino, G.: A utility-oriented routing algorithm for community based op-
portunistic networks. In: Proc. of the 2013 IEEE 17th International Conference on Com-
puter Supported Cooperative Work in Design (CSCWD 2013), June 27-29, pp. 675–680
(2013)

Testing AMQP Protocol on Unstable

and Mobile Networks

Jorge E. Luzuriaga1, Miguel Perez2, Pablo Boronat2,
Juan Carlos Cano1, Carlos Calafate1, and Pietro Manzoni1

1 Department of Computer Engineering
Universitat Politècnica de València, Valencia, Spain

jorlu@upv.es,{jucano,calafate,pmanzoni}@disca.upv.es
2 Universitat Jaume I, Castelló de la Plana, Spain

mperez@icc.uji.es,boronat@uji.es

Abstract. AMQP is a middleware protocol extensively used for ex-
changing messages in distributed applications. It provides an abstrac-
tion of the different participating parts and simplifies communication
programming details. AMQP provides reliability features and alleviates
the coordination of different entities of an application.

However, implementations of this protocol have not been well tested in
the context of mobile or unstable networks. This paper is the starting point
of an experimental evaluation of AMQP protocol in such kind of scenar-
ios. Our goal is to identify the limits of applicability of this middleware,
assessing its the capacity in terms of message losses, latencies or jitter,
when wireless devices are interrupted and reconnected. This evaluation is
of interest for the upcoming applications in which personal devices and
vehicles will collaborate, forming part of large complex systems.

Keywords: client-server systems, performance evaluation, AMQP, ad-
vanced message queuing protocol, Mobile communication, Mobile
Computing.

1 Introduction

With current expectations around the Internet of Things (IoT) there is a need
to build and extend what is known as intelligent spaces. The idea behind these
spaces is to connect computing elements such as sensors and actuators through
a distributed network. The computing elements interact cooperatively in order
to offer services to users. The network is usually a MANET or the mobile phone
system (i.e. 3G, 4G) due to easy deployment. The massive use of smartphones or
even On Board Units (OBU) in vehicles are favouring the development of these
kinds of systems and applications.

The cooperation of the computing elements makes it easier to identify situa-
tions and then to provide data or to react when confronted with a set of stimulus.
Intelligent spaces are highly dynamic due to the spontaneity with which elements

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 250–260, 2014.
c© Springer International Publishing Switzerland 2014

Testing AMQP Protocol on Unstable and Mobile Networks 251

connect or disconnect to the network. A flexible way to communicate the com-
puting elements are message queuing middlewares such as the Java Message
Service (JMS) or the emerging Advanced Message Queuing Protocol (AMQP).

AMQP is an application layer protocol which takes into account Message-
oriented middleware (MOM) standards [1]. AMQP has been used in challenging
applications, including Autonomous Computing [2], Cloud computing [3] or in
security aspects related to the Internet of Things [4].

AMQP is designed to facilitate the dialogue among the components of a sys-
tem, by making easy the exchange of messages independently of their underlying
platforms. There are libraries available for most popular programming languages,
and there are implementations for most of common operating systems. In ad-
dition, AMQP cares about security and confidentiality issues without affecting
significantly the communication’s performance.

In AMQP the messages are self-contained and data content in a message is
opaque and immutable. The size of a messages in not limited. It can either
support a 4 GByte message or a 4 KByte one. For message delivering, several
possibilities are possible, as it can be point-to-point, store-and-forward or publish-
and-subscribe. For instance, when a message is sent to an AMQP broker, actually
it is sent to a queue, and after it is delivered to all subscribed customers to
this queue as a push notification [1]. With AMQP the number of subscribers is
unbounded.

This work is a starting point to test the behaviour of AMQP protocol over un-
stable networks. We call unstable networks those in which links can be frequently
modified or broken without control. Examples of unstable networks could be mo-
bile networks or wireless networks in urban environments, which suffer channel
interferences, as occurs in community networks. Our goal is to determine whether
AMQP provides satisfactory service, depending of the applications’ load needs,
in terms message size and communication rates. We detect the extreme working
values at which message losses starts, as well as the effect of network changes on
the messages’ jitter.

In the present paper we introduce the first results in which we test the effect
of a mobile producer which changes from one WiFi access point (AP) to another
in the same IP network. We have developed a synthetic load generator which we
call amqperf. This program sends messages with a sequence number to detect
losses or messages delivered in different sending order. The size of messages and
the frequency in which they are send by the producer can be modified. In the
results we use a simple scenario with just one producer and one consumer.

The rest of the article is organized as follows: Section 2 presents a literature
review related to the topic. In Section 3 there is a description of the methodology
used in this work, showing how measurements have been done in order to be
reproducible. The Section 4 presents the results and, finally, Section 5 provides
some conclusions and the next steps to follow in this research line.

252 J.E. Luzuriaga et al.

2 Related Work

There are several works in which the AMQP protocol is evaluated. In [5] the per-
formance of AMQP is assessed using Infiniband and Gigabit Ethernet networks
with Qpid as AMQP middleware. Five simple synthetic benchmarks modeled af-
ter the OSU Micro-benchmarks for MPI were used. They exercise the number of
Publishers, the number of Consumers, and the Exchange type. Each benchmark
measures performance for data capacity (the amount of raw data in MegaBytes
per second), message rate (the number of discrete messages transmitted), and
speed (average time one message takes to travel from the publisher to the
consumer).

In [6] it is shown a way to evaluate the performance of AMQP by using an
adapted version of the well-known SPECjms2007 and jms2009-PS benchmarks.
This would allow to compare AMQP with other messaging systems such as JMS
(Java Message Service), in terms of performance, stability and scalability.

In [7] a performance comparison between AMQP and RESTful web services
is presented. Three different tests are performed, which consist of several client
applications sending messages during 30 minutes to the broker or the web server
respectively; once the messages arrive to the server they are stored in a database.
Then, the average number of messages per second that have been sent is com-
pared to the total number of messages stored in the database. They conclude
that, when the AMQP protocol is used to exchange messages, a larger number
of messages per second is supported.

A study about MQTT, a “light weight” publish-subscribe based messaging
protocol, is presented in [8]. The correlation between the end-to-end latency and
loss of system messages is studied. Three different QoS levels with different sizes
of payload (from 1 to 16 Kbytes) are tested on a real world scenario with both
wired and wireless clients using 3G. They prove that there is a strong correlation
between these two variables.

However, few studies are focused on the effectiveness of AMQP over unstable
networks.

3 Methodology of the Experiments

In the set of experiments we present in this paper we use a producer which,
at a given frequency, sends messages of a prefixed size to an AMQP broker.
The AMQP broker automatically creates a queue to the exchange of fanout
type. Finally, a consumer, connected to the same broker is always ready to get
messages. The producer is connected to a WiFi access point to reach the broker.
The broker and the consumer are executed in the same computer. This scenario
can be seen in Figure 1 and a picture can be seen in Figure 2.

The consumer records the sending (timestamped by the producer in each
message) and reception time and the sequence number in a log file. There is not
a strict synchronization between the producer and consumer clocks. When there
are changes in the producer link, the regularity in the reception of messages is

Testing AMQP Protocol on Unstable and Mobile Networks 253

Fig. 1. Schema of the network

Fig. 2. A picture of the scenario

affected. The inter-message times is modified, bursts of messages can be delivered
to the consumer and even the sending order can be changed.

Message losses are produced when the hand-off time is too important with
respect the load parameters of the test. Current implementations of AMQP use
TCP connections to the broker in order to enhance reliability. If the producer
connection is interrupted, the producer’s AMQP client has to stock the messages
until it can send it to the broker. If the sending buffer is full, messages will be lost.
But this is not the only reason for losing sequence numbers. In the producer part,
we create a thread to produce and send each message. Thus, in some extreme
tests, the amount of threads exceeded the operating system limit. We have not
tuned this parameter given that the workload in these circumstances is far from
reasonable; for instance, bigger than high definition video streaming.

A testing application, which we call amqperf has been developed to generate
a workload for the message queuing system in the part of the producer. Amqperf
uses the RabbitMQ library [9], which is an AMQP implementation. An schema
of amqperf can be seen in Figure 3.

In the experiments, we perform tests of 20 seconds because we are interested
in the AP migration of the producer. We checked whether there were message

254 J.E. Luzuriaga et al.

Fig. 3. Schema of amqperf

Fig. 4. Times involved in the experiments

losses or if messages arrive out of order. The nth message jitter of inter-arrival
times is computed with the following equation:

Jn = t′n− t′n−1−T , where t′n is the arrival time of message n to the consumer
and T is the (fixed) period between messages produced by the producer. T is one
of the variables fixed for each experiment. Note that with this formula we are
not concerned by a possible asynchrony between the producer and the consumer,
which are executed in different computers. A simplification of the times involved
in the experiments can be seen in Figure 4.

The values we used in the test were decided considering the bandwidth needed
by high definition video streaming, which is about 5 Mbps. We obtain this value

Testing AMQP Protocol on Unstable and Mobile Networks 255

by transmitting 12500 byte messages every 0.02 seconds or 625000 byte messages
each second. In any case, we have made some tests to detect the point at which
messages start being lost in both cases: if there is a migration of access point is
produced or without interruption in the WiFi network. These values are detailed
in the following section.

The AMQP broker was created on a server with an AMD 8-core processor
and 16Gb of RAM memory. The client had an Atom N450 processor and 1Gb
of RAM memory. Both of them were running Ubuntu 12.04 operating system.
For the wireless network we have used the OpenWRT operative system with
Attitude Adjustment version on a Alix PC-Enginees (alix2d2) and a Tplink
(TL-WDR3600) routers. And the test were run on a dedicated LAN with no
other traffic.

4 Results

In this section we present the results of the first set of experiments in which a
wireless producer migrates from access point but remaining in the same IP net-
work. In these tests, the TCP connection between the producer and the AMQP
broker is maintained. Each combination of message production frequency and
message size is repeated 100 times and we analyse the distribution function of
the maximum jitter for each one of the tests.

4.1 Behaviour during Access Point Transition

For the experiments, we have used a completely dedicated network without ex-
ternal traffic. If there is not any interruption in the wireless link of the producer,
a very limited jitter is observed for reasonable workloads, for instance, less than
5 Mbps.

In order to see a typical behaviour with an AP migration, we provide Figures 5
and 6. These figures shows the jitter for each message received by the consumer.
In these figures, the positive peak corresponds to the hand-off, and the negative
values are due to the reception of a burst of messages which the producer have
retained during this communication’s interruption.

In 5, the small oscillations after the handoff peak are produced because the
messages in the interruption burst are delivered in the inverted order (like in a
LIFO queue).

As expected, the number of messages with negative jitter can be approximated
by the peak positive jitter divided by the message producing period. For instance,
in figure 6b, it is 4000/500 ≈ 8 messages.

4.2 Workload Boundary

Without performing an exhaustive delimitation of the workloads producing mes-
sage losses, we have made some tests to provide hints about the applicability of
AMQP. Note that these “extreme” workloads can be dependent on the platform

256 J.E. Luzuriaga et al.

(a) 512 Bytes (b) 6 KBytes

Fig. 5. Behaviour of jitter with migration of access point. Both tests producing a
message each 10 ms and with messages sizes: a) 512 Bytes and b) 6 KBytes.

(a) 512 Bytes (b) 6 KBytes

Fig. 6. Behaviour of jitter with migration of access point. Both tests producing a
message each 500 ms and with messages sizes:a) 512 Bytes and b) 6 KBytes.

used, and even the configuration of these platforms. These experiments have
been conducted without access point migration, in order to know the capacity
of the system.

Figure 7 shows an approximation of the capacity of the system in terms of
message size and production frequency. For loads above the red line, the system
is saturated and not all produced messages arrive to consumers. The limits are
around to 20 Mbps. This bandwidth is close to that we obtain with the iperf
tool using the TCP test.

4.3 Jitter Analysis

We analyse the jitter of the messages arriving to the consumer when the pro-
ducer makes an AP migration using the maximum jitter’s distribution function
after repeating 100 times the same scenario (the same combination of messages
production frequency and size). We know that the maximum jitter in our tests is

Testing AMQP Protocol on Unstable and Mobile Networks 257

Fig. 7. Threshold limit of message losses for different message production frequency
and message size

(a) 512 Bytes (b) 1024 Bytes

Fig. 8. Distribution function of the maximum jitter using a period of 10 ms for the
production of messages and two message sizes: a) 512 Bytes and b) 1024 Bytes

due to access point migration given that the network has not external traffic and
that the workloads used in these tests do not saturate the system (no message
losses are observed).

In Figure 8 it can be seen the distribution function of the maximum jitter
using a period of 10 ms for message production and two message sizes: a) 512
Bytes and b) 1024 Bytes. In both cases, the jitter is concentrated around 3 s.

258 J.E. Luzuriaga et al.

Table 1. Statistical values of maximum jitter distribution for messages sent with
different size and period

message size (Bytes) period (ms) max mean sta. dev.

512

10 6594 3132 587
100 7361 1879 950
500 7043 1660 1006
1000 3367 1363 1010

1024

10 6711 3285 876
100 4104 1931 818
500 6346 1576 809
1000 3404 1375 875

3072

10 6552 4437 1714
100 3105 1599 587
500 4045 1672 823
1000 3701 1441 934

6144

10 6579 4708 1854
100 6402 1739 786
500 6426 1696 949
1000 3915 1272 949

(a) (b)

Fig. 9. Evolution of maximum jitter as function of (a) message’s size, or (b) message
production period

In Table 1 it is shown the maximum, mean and standard deviation of the
maximum jitter in 100 tests for different combinations of message size (from 0.5
KByte to 6 KByte) and message production periods (10, 100, 500 and 1000 ms).

To see the jitter evolution depending on each of the two parameters we use in
the workload, we present the mean values in Table 1 in two ways: as a function of
the message size (Figure 9a) or as function of the message production frequency
(Figure 9b).

Testing AMQP Protocol on Unstable and Mobile Networks 259

In Figure 9 it can be seen that, concerning the jitter, the sending period is
more relevant than the size of messages. This is clearly shown in Figure 9(a) for
the line corresponding to 10 ms.

Also the combination of both parameters seems to have an important and
non linear influence, as it can be seen by the proximity of lines corresponding to
message sizes 3 and 6 KBytes and the difference between the 1 and 3 KBytes in
Figure 9 (b).

5 Conclusions and Future Work

In this paper we presented our first results concerning how jitter is affected when
using AMQP in unstable networks. AMQP is a middleware protocol which facil-
itates the development of applications based on producer-consumer or publish-
subscribe models and make them platform independent. We have checked a
simple workload model of one producer and one consumer in the presence of ac-
cess point migration in an extended wireless network (i.e. several access points
conforming a same Service Set). We have observed that the messaging system is
robust and guarantees message delivery without losses. The occurrences of mes-
sage losses are found when the load is higher than the system buffer capacity
in the producer side; but the transfer rate requirement for what is considered a
heavy traffic load, such as high quality video streaming across wireless networks,
is below the covered area under the curve of the threshold limit of message loss.

We can conclude that, in a simple and controlled scenario with roaming be-
tween two access points, we observe jitters between 3 and 4.7 seconds, with peaks
of 7 seconds appearing only for high transmission rates (e.g., 100 messages per
second) which is a considerable rate for monitoring systems running on a general
purpose network. Also, using off-the-self inexpensive hardware, we have tested
extreme workloads from which message losses are detected.

As a follow-up of this work, we are planning more complex scenarios in which a
roaming producer switches between different IP networks and not only between
access point, thereby causing the TCP connection to be reset. Also, a deeper
analysis about the relation between jitter, message size and message produc-
tion rate is needed in order to provide a good characterization which will help
developers to decide whether protocols such as AMQP fit their requirements.

References

1. O’Hara, J.: Toward a Commodity Enterprise Middleware. Communications Maga-
zine (2007)

2. Gusmeroli, S., Piccione, S., Rotondi, D.: IoT@Work automation middleware system
design and architecture. In: IEEE International Conference on Emerging Technolo-
gies and Factory Automation, ETFA (2012)

3. Foundation OpenStack. AMQP and Nova (2014)

4. Corporation IMatix. Security and Robustness (2014)

260 J.E. Luzuriaga et al.

5. Subramoni, H., Marsh, G., Narravula, S., Lai, P., Panda, D.K.: Design and eval-
uation of benchmarks for financial applications using advanced message queuing
protocol (AMQP) over infiniband. In: 2008 Workshop on High Performance Com-
putational Finance, WHPCF 2008 (2008)

6. Appel, S., Sachs, K., Buchmann, A.: Towards benchmarking of amqp. In: Proceed-
ings of the Fourth ACM International Conference on Distributed Event-Based Sys-
tems, pp. 99–100. ACM (2010)

7. Fernandes, J.L., Lopes, I.C., Rodrigues, J.J.P.C., Ullah, S.: Performance evaluation
of RESTful web services and AMQP protocol. In: IEEE ICUFN, pp. 810–815 (2013)

8. Lee, S., Kim, H., Hong, D.K., Ju, H.: Correlation analysis of MQTT loss and delay
according to QoS level. In: International Conference on Information Networking,
pp. 714–717 (2013)

9. Inc. Pivotal Software. Messaging that just works (2014)

Security Methods and Systems

Modelling and Simulation of a Defense Strategy
to Face Indirect DDoS Flooding Attacks

Angelo Furfaro1, Pasquale Pace1, Andrea Parise2, and Lorena Molina Valdiviezo1,3

1 Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica
Università della Calabria,

Via P. Bucci 41C, 87036 Rende (CS), Italy
{a.furfaro,ppace,l.molina}@dimes.unical.it

2 Open Knowledge Technologies s.r.l.
Piazza Vermicelli

I-87036, Rende (CS) – Italy
andrea.parise@okt-srl.com

3 Faculty of Engineering
National University of Chimborazo

Riobamba – Ecuador
lmolina@unach.edu.ec

Abstract. Distributed Denial of Service (DDoS) flooding attack is one of the
most diffused and effective threat against services and applications running over
the Internet. Its distributed and cooperative nature makes it complicated to prevent
and/or to counteract. StopIt is a robust, filter-based defence mechanism which is
able to deal with various types of massive DDoS flooding attacks but which fails
when the DDoS is achieved indirectly, i.e. by congestion of a link shared with
the victim. This paper introduces an extension of StopIt which makes it able to
cooperate with capability-based mechanisms for defeating indirect attacks. The
enhanced version of the protocol has been implemented into the ns-3 simulator
and its effectiveness has been evaluated under different scenarios.

1 Introduction

In recent years, issues related to Cyber Security aspects, mainly focused on the
security of computer systems and the services they offer, have gained considerable im-
portance. Many aspects of the daily people lives, companies and even national govern-
ments, are incessantly affected by these issues to ensure the integrity of information
systems and data managed and transmitted through communication networks [16,2]. In
addition, open and accessible networks such as the Internet, are particularly suitable to
the widespread of malwares able to exploit vulnerabilities in connected systems with
the aim of launching targeted attacks to undermine security. For these reasons, a careful
and accurate analysis of the most common attacks in both wired and wireless commu-
nication networks, is crucial to design more effective defence mechanisms.

Among all possible security attack types, one of the most interesting and sophisti-
cated attack technique that is still not easily be contained, is represented by the DDoS
(Distributed Denial of Service) which is very difficult to detect and to deal with because

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 263–274, 2014.
c© Springer International Publishing Switzerland 2014

264 A. Furfaro et al.

of its distributed nature. Usually, DDoS attacks are carried out by a Botnet consisting
of widely scattered and remotely controlled computers called zombies, able to send a
big amount of service requests and data traffic to the target victim in constant and si-
multaneous fashion. In particular, the attack can be launched both to network/transport
(i.e. by exhausting bandwidth, router processing capacity or network resources) or ap-
plication level (i.e. by exhausting the server resources such as memory, CPU, sockets)
thus causing a considerable slowdown of responses from the target system or even a
complete crash.

Starting from this challenging and modern communication scenario, the paper shows
how to configure and extend the well known ns-3 network simulator [14,4] for test-
ing different network communication scenarios during DDoS attacks; moreover, a new
strategy to improve the performance of a standard hybrid defence mechanism, is also
proposed and validated. The main contribution can be summarized as follow:

1. we recall the operation of the standard StopIt mechanism to face DDoS security
attacks and we show its performances and limitations by implementing a specific
simulation model;

2. we propose an extension of that technique by taking advantage from the integration
of the DiffServ architecture, typically used to guarantee specific quality of service
levels within a communication network;

3. we have implemented our proposal and we have tested it throughout simulations
in order to demonstrate the extreme reactivity and adaptability to different network
traffic conditions.

The rest of the paper is organized as follows. Section 2 introduces related works on
different types of DDoS security attacks. Section 3 describes the main features of the
reference StopIt mechanism by also discussing few limitations of this technique. A
novel solution, to overcome some of those limitations, is presented in Section 4. Section
5 validates the goodness of our proposal by showing results obtained throughout several
simulation campaigns in different network conditions. Finally, section 6 concludes the
paper by offering few future research directions.

2 Related Work

In the last few years DDoS attacks have been the subject of various surveys that analize
them from different viewpoints [21,8,15,19]. In particular, the authors of [21] discussed
about the growing need of a comprehensive, collaborative and distributed defence ap-
proach after they categorized the different DDoS flooding attacks and classified existing
countermeasures according to the ability to prevent, detect, and respond to DDoS flood-
ing attacks. In [8], the coordinated nature of the DDoS attack is explained by recalling
that an effective defence strategy for these attacks should also be designed in a collab-
orative fashion; thus, all the routers need to work collaboratively by exchanging their
caveat messages with their neighbours. For this reason, hybrid defence mechanisms
are more effective than centralized ones because their components are distributed over
multiple locations such as source, destination or intermediate networks by implement-
ing cooperative behaviours among the deployment points.

Modelling and Simulation of a Defense Strategy 265

ASs ASd

ASiRs Rd

Hs

Hd

SSs

SSi

SSd

(1)

(2)

(3)

(4)

(5)

Hu

Fig. 1. StopIt operation

Few famous hybrid DDoS defence strategies are based on the following mechanisms:

– Throttling / filtering and Hybrid packet marking [12,5] consisting into the installa-
tion, by the victims side, of a router throttle at upstream routers several hops away
with the aim of limiting the forwarding packets data rate; nevertheless, these de-
fence strategies only limit the rate of malicious packets.

– Capability-based [1] consisting into a short-term authorization from the receivers
by adding specific stamps on their packets. In this way, the recipients explicitly
authorize the traffic it would like to receive.

– Active Internet Traffic Filtering (AITF) [3] consisting into the default acceptance
of all the traffic and the explicit refusal of that traffic identified as undesirable.
According to this filtering scheme, the main limitation is the need of a bounded
amount of filtering resources from participating ISPs.

– StopIt [11] which will be extensively detailed in the next section to address its main
limitation with respect to an indirect DDoS attack.

3 The StopIt Mechanism

Since the main contribution of this paper is the proposal of a new strategy to improve
the performance of a widely used hybrid filter-based mechanism named StopIt [11], this
section summarises the features of this reference defence technique also highlighting
few limitations to be addressed in our study. In particular, the StopIt technique consists
in the installation of a specific network filter able to block the received undesirable
traffic by using Passport [10] as secure source authentication system to prevent source
address spoofing. It is worth to note that, this technique does not aim at the detection of
an attack, but it implements an effective mechanism to face the problem in a quick and
completely automatic way.

Figure 1 shows the operation of the StopIt mechanism applied to a general communi-
cation architecture consisting of more Autonomous Systems (AS) connected through-
out secure connections in order to avoid the address spoofing; moreover, each specific
server who wants to activate the StopIt has to be equipped with an algorithm to detect
an attack. Each AS owns a StopIt server within its domain and all the StopIt servers
use IGP [18] to exchange data with their AS and BGP [13] to learn the presence of
other StopIt servers in the neighbourhood. Going into more details, we briefly recall the
operation of the StopIt scheme as described in the following steps:

266 A. Furfaro et al.

1. The victim host Hd detects the attack and send a request of source blocking toward
its access router Rd

2. The access router Rd verifies that the source Hs is really sending data to the server to
avoid the situation in which an attacked server uses the StopIt mechanism to block
legal users; then, it installs a local filter and it sends a request of flow blocking
< source− server > to the StopIt server SSd within its own AS

3. Once the StopIt server SSd authenticated the received request, it forwards the re-
quest toward the StopIt server belonging to the sourcing AS by using the BGP
protocol.

4. The StopIt server SSs within the sourcing AS, once received the request, notifies
the blocking request to its access router Rs

5. Finally, the access router within the sourcing AS installs the filter to block the flow
< source− server > for a certain period and it sends a request to the attacking
source. After receiving this request, a compliant host Hs installs a local filter to
stop sending to Hd . If Hs does not stop, it will be punished by its own access router
Rs.

More details about the operation of the StopIt mechanism can be found in [11].

3.1 Security Aspects

The StopIt mechanism previously described supports different security features by
addressing the following security issues:

– Spoofing - The StopIt architecture does not allow to use spoofed addresses because
it is coupled with the Passport [10] system to implement a robust inter and intra
domain security support.

– Compromised Server - To avoid the activation of the StopIt mechanism by a com-
promised server to block a legal use, the access router within the victim’s AS has
to verify that the source to be blocked is really sending data traffic; thus, the access
router first checks the actual sending of data toward the server in a recent time in-
terval; then, it sends a traffic interruption request to the server by using a specific
request message called End-To-End StopIt request.

– Filter exhaustion - An attacker who attempts to bypass the defence system could
aim at saturating the filters available to a router. To limit this strategic attack, the
routers have to follow few strategies such as Filter Aggregation and Random Filter
Replacement, to wisely install the filters.

3.2 Limitations

In the last years, the StopIt mechanism has been validated and tested in different com-
munication scenarios demonstrating its effectiveness respect to various types of massive
DDoS flooding attacks; however, it fails when the DDoS attack is achieved in an indi-
rect way by congesting a link shared with the victim. With reference to Figure 1, if the
DDoS attack is conducted against a host Hu belonging to ASd , the server Hd within the
same AS, experiences a high performance decrease because it shares the same link with
the victim.

Modelling and Simulation of a Defense Strategy 267

4 The Proposal

Starting from the analysis conducted [11], we can argue that StopIt overcomes filter-
based mechanisms such as AITF, and it provides non-interrupted communication under
a wide range of DDoS attacks; however, StopIt does not always outperforms capability-
based mechanisms if the malicious traffic congests a link shared by the victim instead
of directly reaching the victim. In such situations, a standard capability-based mecha-
nism (e.g. TVA [20], TVA+[11]) is more effective but it has few drawbacks mainly due
to i) the accuracy and reliability of the attack detection strategy implemented by the re-
ceiver, ii) the high processing and memory costs due to the notable amount of per flow
state information to be maintained at each router. In particular, in case of indirect attack,
the behaviours of TVA+ and StopIt are opposite: StopIt experiences an increase of the
data transfer time with the growth of data traffic and TVA+ does not complete the data
transfer if the bandwidth is not high enough. The best solution, to get the advantages of
both defence mechanisms, would consist into the merge of the two hybrid techniques
so as to obtain the benefits of both. However, the merging of those two techniques is not
trivial because it would consist into the creation, from scratch, of a new hybrid mech-
anism having an high complexity with consequent impacts on the actual feasibility of
the system; thus we propose to make the StopIt system able to activate a priority-based
strategy, already available within the AS routers, with the aim of offering privileges
to traffic with destination towards the server that is experiencing a degradation of its
performance.

Starting from this intuition, we propose an “uncommon” use of the DiffServ [7]
model for IP traffic differentiation as a simple, but effective, technique to make the Sto-
pIt more robust against the indirect flooding attacks. In this way, the StopIt mechanism
will face an indirect DDoS attack by using a technology already supported by the access
routes and designed to provide a specific QoS level within the network.

DiffServ has been already used against DDoS attacks. In particular, it was employed
to attenuate the effect of DDoS flooding attacks [9] by adopting a bandwidth allocation
policy which assigns to the normal traffic a priority higher than the one assigned to sus-
picious traffic. Incoming packets are analysed and classified through a suitable anomaly
detection module. On the contrary, the solution proposed in this paper does not extend
the DiffServ model but simply exploits it as a standard tool to implement an effective
capability-based mechanism.

In the next subsections first, we briefly recall the main features of the DiffServ model,
then we explain the dynamic integration of that model with the StopIt mechanism.

4.1 DiffServ for Traffic Management

The DiffServ is a coarse-grained, class-based mechanism for traffic management and
QoS differentiation. It has been designed to make a differentiation among IP traffic
in order to determine traffic relative priorities on a per-hop basis. Thanks to the Diff-
Serv model, traffic is first classified by taking into account a specific priority; then, it
is forwarded according to one of three per-hop behaviour (PHB) mechanisms defined
by IETF and referring to different priority queues. By following this approach, the traf-
fic with similar service characteristics can be handled with similar guarantees across

268 A. Furfaro et al.

multiple networks, even if the presence of multiple networks does not ensure the same
service at the same way. The DiffServ model replaces the first bits in the standard ToS
(Type of Service) byte with a differentiated services code point (DSCP) that is then
mapped to the PHB. This specific technique allows service providers to control how the
DSCP code points are mapped to PHBs, and each time a packet enters a network do-
main it may be re-marked. Most common networks use the following generally defined
PHBs:

– Assured Forwarding (AF) that gives assurance of delivery under prescribed and
stringent conditions (Premium Service)

– Expedited Forwarding (EF) dedicated to low-loss, low-latency traffic
– Default Behaviour (BE) typically used for best-effort traffic

4.2 StopIt-DiffServ Cooperation

In case of an indirect DDoS attack where the flooding traffic is sent to a normal host
Hu sharing a link with a DNS Server Hd , the dynamic activation of the DiffServ support
by the server Hd , experiencing a performance degradation, is implemented according to
the following assumptions within the communication network:

2

2

2

2

Hd port

Hd port

Hd port

Hd port

Legend

Type: packet type
Tb: time
Hs: source address
Hd: destination address
Hd port: destination UDP port
Hop: distance
SLA id: SLA number
Rspec e Tspec: SLA specification
Auth: portion devoted to information
 needed for authentication and
 integrity

Type Auth

nd.

Rspec e Tspec

nd.431

HdTb

Type Auth

nd.

Rspec e Tspec

1

SLA id

nd.1431

HopHdTb

nd.

nd.

AuthRspec e Tspec

Auth

1

SLA id

nd.

Rspec e Tspec

nd.

1

1

1

43

31

1

2

2

2

2

Hd port

Hd port

Hd port

Hd port

Type Auth

nd.

Rspec e Tspec

nd.431

HdTb

Type Auth

nd.

Rspec e Tspec

1

SLA id

nd.1431

HopHdTb

nd.

nd.

AuthRspec e Tspec

Auth

1

SLA id

nd.

Rspec e Tspec

nd.

1

1

1

43

31

1

StopIt+DiffServ extended packet format

<StopIt-AccessRouter>

<StopIt-StopIt>

<AccessRouter-StopIt>

<Destination-AccessRouter> SLA idHopTbType

HopHdTbType

nd.

nd.

nd.

nd.

nd.

4

4

4

4

4

4

4

43

3

3

3

3

1

1

1

1

1

nd.

nd.

nd.

nd.

nd.

4

4

4

4

4

4

4

43

3

3

3

3

1

1

1

1

1

StopIt packet format

<AccessRouter-Source> AuthHdTbType

<StopIt-AccessRouter> AuthHdHsTbType

<StopIt-StopIt> AuthHdHsTbType

<AccessRouter-StopIt>

<Destination-AccessRouter> AuthHsTbType

AuthHdHsTbType

Fig. 2. StopIt packet format for DiffServ activation

- At least one StopIt server is present within each AS;
- Each AS corresponds to a DiffServ domain;
- In each DiffServ domain, the packets coming from the StopIt server are managed

throughout the highest priority Assured Forwarding (AF) queue;
- The DiffServ system is able to install new Service Level Agreements (SLAs) at run

time;
- The server Hd experiencing a performance degradation is able to detect anomalous

traffic conditions by using a specific detection algorithm that is out of the scope of
this work.

Modelling and Simulation of a Defense Strategy 269

To support the integration between StopIt and DiffServ, we extended the standard
packet format exchanged among different network entities by adding specific fields
such as the Hop counter, the SLA identifier, the Rspec and Tspec representing traffic
and request specifications respectively. Figure 2 shows the comparison between the
standard StopIt packet format and the extended version.

Once the server Hd detects a decrease in its performance, mostly due to traffic anoma-
lies, it starts the activation of the jointly StopIt-DiffServ defence mechanism by execut-
ing the following steps:

1. Hd sends a temporary DiffServ activation request toward the access router Rd within
its AS by respecting the packet format defined in Figure 2;

2. Rd forwards the request to the StopIt server after filling the packet with the infor-
mation about all the interfaces connected to the AS;

3. The StopIt server installs the specific SLA for a certain time Tb, then it decreases
by one the hop limit field and forwards the request to all the neighbour ASs

4. The other StopIt servers, once received the request packet, repeat the actions from
point 2 until the hop limit field reaches zero.

At the end of this procedure, the ASs in which the SLA has been installed, will
give priority to traffic destined to Hd so that it is not affected by the attack any more.
It is worth to note that, the proposed technique for packet diffusion is similar to the
selective flooding strategy used by the OSPF [6] routing protocol; thus it can be easily
implemented as well.

5 Simulation Analysis and Results

In this section we describe the modelling and simulation of the StopIt mechanism and of
the proposed enhancements by using the ns-3 discrete-event network simulator specif-
ically designed to test and validate the performances of wireless and wired IP network
systems. In particular, ns-3 is one of the fastest and efficient network simulators freely
available on the web in which the simulation time discretely moves from one event to
another. Events are scheduled at a specific simulation time and they will wait until that
time to be executed. To perform a simulation, the network topology is first setup and
configured with the desired attributes such as link bandwidths, propagation delays and
traffic sources. We developed the proposed strategy by integrating a freely download-
able DiffServ model for ns-3 simulator [17] with the standard operation offered by the
StopIt mechanism in order to generate a unified simulation framework. In particular the
StopIt implementation has been made under the following assumptions:

– IP addresses cannot be spoofed because StopIt deployment in a real network sub-
sumes the use of Passport;

– The only network elements corrupted are the hosts belonging to the botnet;
– Strategic attacks directed to filter exhaustion are not taken into account;
– Only IPv4 networks are considered;
– StopIt servers are already aware of their peers at start-up;
– Access routers play also the role of edge routers and are able to install/remove

DiffServ SLAs at runtime.

270 A. Furfaro et al.

Fig. 3. StopIt class hierarchy

Available Busy

DNSRequest [av==1] /
av--; process(request)

DNSRequest [av>1] /
av--; process(request)

DNSRequest[!bufferFull] /
enqueue(request)

endProcess / av++

endProcess [bufferEmpty] /
 av++

endProcess [!bufferEmpty] /
 process(dequeue())

DNSRequest[bufferFull] /
drop(request)av=RN

Fig. 4. DNS server behaviour

5.1 Modelling with ns-3

In order to simulate in ns-3 a DDoS attack scenario in presence of the StopIt defense
mechanism, we implemented the needed components by introducing suitable classes,
that inherit from the ns-3 Application base class, which respectively reproduce the
behaviour of a DNS server (the victim), StopIt servers, routers supporting packet fil-
tering and DNS clients (see Fig. 3). The DNS server, whose behaviour is specified by
the finite state automaton shown in Fig. 4, is modelled by the DNSServer class as a
multithreaded application which is able to process up to n requests in parallel. In par-
ticular, if the DNS server is in the Available state, it handles incoming requests as soon
as they arrive; on the contrary, when there are no more available processing resources,
the server switches to the Busy state and stores the incoming requests into a limited
buffer. If the buffer gets filled, incoming requests are dropped. Service time is assumed
to follow an exponential distribution with mean 5 ms.

As stated before, StopIt needs the support of an attack detection algorithm. For sim-
ulation purposes, we model the presence of such an algorithm by using a detection
function which is parametrized with respect to the probability of detecting a malicious
address and the time employed to recognize an attack since the arrival of the first mali-
cious packet. A StopIt server is modelled by the StopItServer class which reproduces
the behaviour described in Sections 3 and 4. The AccessRouter class implements the
router application which is in charge of packet filtering, dispatching of StopIt requests
and DiffServ policy enforcement.

Modelling and Simulation of a Defense Strategy 271

ASs0

Rs0

Hd

ASsj

Rsj

ASsk

Rsk

ASsn

Rsn

ASd

...
...

...

...
... ...

Rd

SSd

SS0

SSj

SSk

SSn

Hu

Ld

Fig. 5. Network topology

5.2 Simulation Scenario

In order to evaluate the effectiveness of the proposed mechanism we simulated both
direct and indirect DDoS attacks against a DNS server. The network topology that has
been considered is represented in Figure 5. The network is split up into three zones
as in [8]. The first zone contains ten ASs, each made up of 50 hosts, where the traffic
sources are located in. The 50% of such ASs is corrupted and belongs to the botnet.
The second zone represents the intermediate network and the third zone contains only
the victim’s AS. To evaluate the behaviours of the defence mechanisms in a realistic
scenario we introduced different types of traffic sources. We included 24 VoIP sources
(using the ilbc mode 30 codec at 13.33kbps), 230 HTTP sources and 230 DNS sources.
During normal network operation, DiffServ handles both DNS and HTTP sources as
Best Effort traffic and VoIP sources as Assured Forwarding. To face an indirect DDoS
attack, DNS traffic is handled as coming from high priority sources. Since the simu-
lated attacks aimed at exhausting the available capacity of the link Ld , we measured its
bandwidth occupation.

Table 1. Simulation parameters

Links DNS Service Legal DNS traffic Malicious traffic
Bandwidth 10 Mbps Resources 8 Packet size 26 bytes Packet size 78 bytes
Delay 1 ms Buffer size 200 Packet rate 1 pkt/s Packet rate 100 pkt/s

Mean service time 5 ms

Direct Flooding Attack. Figure 6(a) shows the effectiveness of StopIt in the case of
direct attack. The black curve is the total used bandwidth, the purple line represents
the HTTP traffic, the blue line is the VoIP traffic and the green one the DNS traffic
(both legal and illegal). In the simulated scenario, the attack begins at t = 20 s and it is
detected after 3 s.

During the time interval between the begin of the attack and the StopIt response, the
DNS traffic increases and saturates the available bandwidth at expense of the HTTP
packets. As can be seen in the details reported in Figure 6(b), during this period the
DNS traffic is almost totally made of malicious packets. After the filters are success-
fully installed, the botnet traffic is blocked (100% of malicious sources identified) and

272 A. Furfaro et al.

DNS VoIPHTTPtotal traffic DDoS trafficlegal requests

(a) (b)

Fig. 6. (a) Direct DNS DDoS attack (b) Detail of legal and malicious DNS traffic

the normal situation is restored. It is worth noting that the VoIP traffic remains almost
unaffected due to the priority ensured by the DiffServ policy.

Shared Link Flooding Attack. Figure 7(a) depicts a scenario where the attack is
achieved indirectly by flooding a host that belongs to the same AS of the victim with
the aim of exhaust the available bandwidth of a shared link. In this case, the victim does
not known the IP addresses of the zombies, so it can only become aware of the attack
because its incoming traffic falls under the expected value for a long time. It can be seen
that StopIt is not able to face the attack while the VoIP traffic remains unaffected as in
the previous scenario.

DNS VoIPHTTPtotal traffic DDoS

(a) StopIt

DNS VoIPHTTPtotal traffic DDoS

(b) StopIt + DiffServ

Fig. 7. Indirect DDos attack

Figure 7(b) shows how the proposed defence strategy, by exploiting the cooperation
of StopIt and DiffServ, re-insures the necessary bandwidth to the DNS server after the
time needed to detect the anomalous behaviour and to dispatch the StopIt requests.

Of course, the data traffic generated by the DDoS attack (orange curve) is still present
in the network causing a decrease in terms of performances to the HTTP connections
that experience a very low throughput. This issue is out of the scope of this work and it
will be investigated in a future research.

Modelling and Simulation of a Defense Strategy 273

6 Conclusion

This paper proposed and validated the integration of the DiffServ model within the Sto-
pIt mechanism to overcome the main limitation of this standard filter-based technique
with the aim of facing both direct and indirect DDoS attacks. The cooperation between
DiffServ and StopIt has the great advantage to be easily implemented in common routers
since it is based on widely available technologies. The results, obtained throughout a
self developed extension of the ns-3 simulator, have confirmed this initial intuition.
However, the proposed solution cannot be considered as final because, even if the main
services are guaranteed, the illegal sources still continue to overload the network. As fu-
ture work we plan to extend our research by designing suitable detection algorithms that
may directly run on edge network devices and exploit StopIt features to block illegal
sources also in the case of indirect attacks.

Acknowledgements. This work has been partially funded by the project “Cybersecu-
rity –P2” (PON03PE 00032 2/06), financed by the Italian Ministry of Education, Uni-
versity and Research (MIUR) within the PON Project - Research and Competitiveness
2007-2013.

References

1. Anderson, T., Roscoe, T., Wetherall, D.: Preventing internet denial-of-service with capabili-
ties. SIGCOMM Comput. Commun. Rev. 34(1), 39–44 (2004)

2. Angelini, M., Arcuri, M.C., Baldoni, R., Ciccotelli, C., Di Luna, G.A., Montanari, L.,
Panetta, I.C., Querzoni, L., Verde, N.V.: Italian cyber security report: Critical infrastructure
and other sensitive sectors readiness. Technical report, Research Center of Cyber Intelligence
and Information Security, University of Rome Sapienza (December 2013)

3. Argyraki, K., Cheriton, D.R.: Scalable network-layer defense against internet bandwidth-
flooding attacks. IEEE/ACM Trans. Netw. 17(4), 1284–1297 (2009)

4. Carneiro, G., Fontes, H., Ricardo, M.: Fast prototyping of network protocols through ns-3
simulation model reuse. Simulation Modelling Practice and Theory 19(9), 2063–2075 (2011)

5. Chen, R., Park, J.-M., Marchany, R.: Track: A novel approach for defending against dis-
tributed denial-of-service attacks. Technical report, Technical Report TR-ECE-06-02, Dept.
of Electrical and Computer Engineering, Virginia Tech. (2006)

6. IETF. Rfc 2328: Ospf - open shortest path first. Technical report (1998),
https://www.ietf.org/rfc/rfc2328.txt

7. IETF. Rfc 2475: An architecture for differentiated services. Technical report (1998),
http://www.ietf.org/rfc/rfc2475.txt

8. Kumar, P.A.R., Selvakumar, S.: Distributed denial-of-service (DDoS) threat in collaborative
environment - A survey on DDoS attack tools and traceback mechanisms. In: IEEE Interna-
tional Advance Computing Conference, IACC 2009, pp. 1275–1280 (March 2009)

9. Lai, W.-S., Lin, C.-H., Liu, J.-C., Huang, H.-C., Yang, T.-C.: Using adaptive bandwidth al-
location approach to defend ddos attacks. International Journal of Software Engineering and
Its Applications 2(4), 61–72 (2008)

10. Liu, X., Li, A., Yang, X., Wetherall, D.: Passport: Secure and adoptable source authentica-
tion. In: Proceedings of the 5th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2008, pp. 365–378. USENIX Association, Berkeley (2008)

https://www.ietf.org/rfc/rfc2328.txt
http://www.ietf.org/rfc/rfc2475.txt

274 A. Furfaro et al.

11. Liu, X., Yang, X., Lu, Y.: To filter or to authorize: Network-layer DoS defense against
multimillion-node botnets. In: Proceedings of the ACM SIGCOMM 2008 Conference on
Data Communication, pp. 195–206. ACM, New York (2008)

12. Mahajan, R., Bellovin, S.M., Floyd, S., Ioannidis, J., Paxson, V., Shenker, S.: Controlling
high bandwidth aggregates in the network. SIGCOMM Comput. Commun. Rev. 32(3), 62–
73 (2002)

13. Medhi, D., Ramasamy, K.: Network Routing: algorithms, protocols and architectures. Mor-
gan Kaufmann (2007)

14. nsnam. Ns-3 documentation, http://www.nsnam.org/ns-3-19/documentation/
15. Peng, T., Leckie, C., Ramamohanarao, K.: Survey of network-based defense mechanisms

countering the DoS and DDoS problems. ACM Comput. Surv. 39(1) (April 2007)
16. PwC. UK cyber security standards research. Technical report, Department for Business, In-

novation & Skills Cabinet Office (2013)
17. Ramroop, S.: A diffserv model for the ns-3 simulator (2011),

http://www.eng.uwi.tt/depts/elec/staff/rvadams/sramroop/index.htm

18. Sendra, S., Fernández, P.A., Quilez, M.A., Lloret, J.: Study and performance of interior gate-
way ip routing protocols. Network Protocols and Algorithms 2(4), 88–117 (2010)

19. Thing, V.L., Sloman, M., Dulay, N.: A survey of bots used for distributed denial of service at-
tacks. In: Venter, H., Eloff, M., Labuschagne, L., Eloff, J., Solms, R. (eds.) New Approaches
for Security, Privacy and Trust in Complex Environments. IFIP International Federation for
Information Processing, vol. 232, pp. 229–240. Springer, Boston (2007)

20. Yang, X., Wetherall, D., Anderson, T.: A dos-limiting network architecture, vol. 35, pp. 241–
252. ACM, New York (2005)

21. Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against distributed denial
of service (DDoS) flooding attacks. IEEE Communications Surveys & Tutorials 15(4), 2046–
2069 (2013)

http://www.nsnam.org/ns-3-19/documentation/
http://www.eng.uwi.tt/depts/elec/staff/rvadams/sramroop/index.htm

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 275–284, 2014.
© Springer International Publishing Switzerland 2014

Towards a Reference Architecture for Service-Oriented
Cross Domain Security Infrastructures

Wen Zhu1, Lowell Vizenor2, and Avinash Srinivasan3

1 Alion Science and Technology, Vienna, VA, USA
wzhu@alionscience.com

2 National Center for Ontological Research, Reston, VA, USA
3 George Mason University, Fairfax, VA, USA

asriniv5@gmu.edu

Abstract. Today’s Cross Domain Communication (CDC) infrastructure largely
consists of guards built to vendor specifications. Such an infrastructure often
fails to provide adequate protections for CDC workflows involving Service
Oriented Architectures. Focusing on the transport layer and oblivious to the
context of the information exchanges, the guards often rely on rudimentary fil-
tering techniques that require frequent human intervention to adjudicate mes-
sages. In this paper, we present a set of key requirements and design principles
for a Service Oriented Cross Domain Security Infrastructure in form of a CDC
Reference Architecture, featuring domain-associated guards as active workflow
participants. This reference architecture will provide the foundation for the
development of protocols and ontologies enabling runtime coordination among
CDC elements, leading to more secure, effective, and interoperable CDC
solutions.

Keywords: Cross Domain Communications, Security Guard, Workflow,
Service Oriented Architecture, Reference Architecture, Ontology, Protocol.

1 Introduction

A common network security practice is to separate computer systems into secure
domains or enclaves based on the classification and sensitivity of data stored and
processed by these systems. Within each domain, a certain level of trust among
systems is assumed. The domains are protected by Cross Domain Communication
(CDC) infrastructures, which largely consist of security guards placed at the network
links between two domains. These guards are responsible for enforcing security
policies by inspecting and filtering information that flows between domains. However,
information needed to support a mission often cut across two or more security do-
mains. Currently, CDC flows are impeded by time-consuming release procedures that
require frequent human intervention. While there have been research efforts in this
area, most of them address particular aspects of CDC [1][2][3]. The lack of a compre-
hensive CDC framework to provide a systematic examination of CDC issues, a neces-
sary step toward standardization, contributes to issues mentioned above.

276 W. Zhu, L. Vizenor, and A. Srinivasan

The wide adaption of Service Oriented Architectures (SOA), and web service tech-
nologies in particular, has presented both new challenges and new opportunities in the
area of CDC. It is now possible to accomplish complex workflows, carried out at the
application layer across organizational boundaries with security implications. At the
same time, service description metadata [4] could be used to understand the context
and semantics of service interactions, and automate the enforcement of policies.

The alignment of CDC infrastructures with SOA will help extend SOA across the
boundaries of security domains. In this paper, we propose a reference architecture to
delineate responsibilities among various CDC participants, and describe how they
interact with one another. It addresses the many facets of CDC:

1. From a workflow perspective, what role does the CDC infrastructure play in an ap-
plication workflow and business process management (BPM) in particular?

2. From an information perspective, how does the CDC infrastructure interpret and
act upon the information carried in CDC messages and web services in particular?

3. From a network perspective, how does the CDC infrastructure fit into the transport
protocols’ stack and the web services technology stack in particular?

The rest of this paper is organized as follows. We will start with a survey of current
CDC solutions and highlight the key issues we seek to resolve. Then in sections 3 and
4, we introduce the reference architecture and discuss how a security ontology based
on such an architecture enables coordination among CDC participants and between
security domains. Section 5 identifies opportunities for standardizing CDC interactions
in the forms of protocol candidates. Finally, we conclude our discussion and evaluation
of an implementation approach.

2 Background and Issues

2.1 Cross Domain Solutions Today

A survey of current cross-domain security solutions revealed a number of critical
issues related to application design and network infrastructure. From the perspective of
mission applications design [5], current CDC solutions require mission application
programs to design and implement their own individual solutions around particular
guard designs, resulting in vendor lock-ins. Even then, the solutions are limited to
simple cases without full-duplex architectures. Current CDC offerings include email
integration, file transfer, chat, and browse down capabilities. Yet, an application
workflow is likely to involve more complex interactions and different transport
mechanisms, which are difficult to implement with current, inflexible CDC solutions.

From the perspective of enterprise security infrastructure, existing CDC solutions
use a Transport-Oriented Guard (TOG), associated with the links between domains.
TOGs monitor traffic on the links rather than at nodes. While most guards today un-
derstand XML formats and HTTP protocol, they make security decisions solely based
on the bytes over the wire, without the benefit of application context. TOG creates
several issues. First, the guard is required to have the highest security privilege to
inspect the information flow and prevent confidentiality breach. Consequently, the
guard may have to be (pre-)loaded with cryptographic keys and other sensitive infor-

 Towards a Reference Architecture for Service-Oriented Cross Domain Security 277

mation. Contrary to the best security practices, such models of CDC make the guard a
target for attack. Furthermore, this design implies that the same security terminology
is required at both domains connected by the guard. For example, the same set of
security labels have to be used. Such an assumption is not always true, especially
when the information exchange is across organizational boundaries. Second, associat-
ing the guards with the links often fails to scale as the network grows in size. The
number of guards required grows exponentially as the number of interconnected secu-
rity domains increases, commonly known as the “n-squared” problem. Finally, CDC
guards often have limited configurability and vendor-specific API, resulting in
locked-in stacks, increased development cost and the lack of flexibility to support
mission requirements.

2.2 CDC in the Context of SOA

The need for aligning CDC with services and their supporting infrastructure has be-
come increasingly evident as organizations adopt SOA. For example, the US Intelli-
gence Community has developed a set of service specifications, including XML
schemas and REST [6] API, for content discovery and retrieval across multiple repos-
itories and potential different security domains[7]. While these specifications identify
required services, CDC concerns are notably absent. Leaving the alignment of CDC
infrastructure to service infrastructure to the interpretation of their perspective devel-
opers could result in inconsistent and potentially non-interoperable implementations.

We should note that the industry has developed innovative CDC solutions for specif-
ic service implementations despite of the lack of a CDC reference architecture. For ex-
ample, XDDS [3] is a cross domain service discovery solution designed to work with
existing guards. In this solution, a Local Discovery Agent (LDA) is deployed in a do-
main to intercept service discovery requests using Universal Description Discovery and
Integration protocol (UDDI) [8]. It coordinates with LDA instances in other domains to
locate appropriate services for the request. When the security policy requires the service
provider’s identity be masked, the solution uses a Global Discovery Service (GDS) for
anonymization. Since the GDS is aware of all LDAs across all domains, the GDS will
need the highest security privilege. There are several interesting obversations. First, this
solution introduces a new infrastructure component (LDA) to address a particular CDC
need (service discovery). Add-hoc components like LDA will be needed for other CDC
usecases without an overall framework to address CDC concerns. Second, even though
the security guards are considered transparent to the mission applications, the LDAs are
not. The mission applications need to address UDDI requests to the LDA for local do-
main. This inconsistency calls for a convention on CDC infrastructure’s role in applica-
tion workflows. Finally, UDDI is an application layer protocol. There is clearly a need
for the guards to understand the context of application-level interactions in order to
make more intelligent security decisions.

2.3 Relevant Security Ontology Work

Current CDC solutions also require excessive amounts of human intervention, mainly
due to the lack of a standard and flexible framework for describing information ex-
changed. Many guards use a dirty word list or some rudimentary rules expressed in

278 W. Zhu, L. Vizenor, and A. Srinivasan

eXtensible Stylesheet Language Transformations (XSLT) to filter information passing
through them. These techniques often fail to take into account the context of messages
and the meaning of the words, leading to high error rates, i.e., false positives and
negatives. Human review is often required to adjudicate ambiguities.

In order to build applications that can more precisely analyze information flows
across domains, we argue that the security community should adopt a standard securi-
ty ontology. A standard security ontology would provide the community with a com-
mon set of concepts around which they could form a shared understanding to advance
the theory and practice of security, privacy, and trust of Web-based applications. A
number of security ontologies have been developed and are currently in use. Some
notable examples are the DAML Services Security and Privacy ontology1, the Navy
Research Lab (NRL) Security ontology[9] and SecOnt2,3, which is based on the secu-
rity relationship model described in the National Institute of Standards and Technolo-
gy (NIST) Special Publication 800-12. These security ontologies focus on the areas of
assets, threats, vulnerabilities, and countermeasures. Examples of how security ontol-
ogies are being applied include: the use of formal representations of policies in ontol-
ogy and algorithms in order to support machine-aided reason about the policies [10]
and the use of ontologies to annotate generic resources from simple documents to
interactive services with security-related metadata and not just Web services.

Our review identified a number of relevant security ontology work but they are not
specific to CDC [11]. We believe more ontology work needs to be done in this area.

3 Cross Domain Security Reference Architecture (CDC-RA)

3.1 Overview

CDC-RA is a key to CDC standardization. It provides: 1) a common framework and
vocabulary to describe CDC mechanisms; 2) the abstract interaction patterns among
CDC participants (basis for standardization through protocols); and 3) CDC infra-
structure design patterns in the form of protocol constraints and assumptions.

We are primarily concerned with standardized interfaces for products whose pri-
mary responsibility is to facilitate secure cross-domain communications. A security
guard is one such product, and perhaps the most important. However, CDC is a shared
responsibility between the CDC infrastructure and the mission application taking
advantage of such an infrastructure. We should not lose sight of the critical role that
mission applications play. As illustrated in Fig. 1, we separate the CDC concerns into
two categories: Application Aspects and Infrastructure Aspects.

The Application Aspects of CDC address the following:

• Architecture Concerns: We believe it is reasonable to assume that mission applica-
tions are aware of the fact that they interact with systems in other security domains,
and therefore presence of the security guards. Application is responsible for
properly handling the cases where a message is rejected by the guard.

1 http://www.daml.org/services/owl-s/security.html
2 http://www.securityontology.com
3 http://www.ida.liu.se/~iislab/projects/secont/

 Towards a Reference Architecture for Service-Oriented Cross Domain Security 279

Fig. 1. Cross Domain Security Concerns

• Policy Concerns: Security attributes for application messages need to be defined so
that proper security policies can be enforced by the infrastructure. We consider this
an application specific concern since the security attributes associated with indi-
vidual data elements are processed by that application.

The Infrastructure Aspects of CDC address the following:

• Network Concerns: We would like to address the concerns of how a guard interacts
with the network, including how the CDC-specific communications are carried in
the network protocols, for instance, in a SOAP message for web services-based
communications or in the HTTP header for web traffic. Doing so may require ex-
tensions to existing protocols such that security-specific information could be add-
ed to the messages. A particular aspect of integrating guard with network protocol
is a mechanism to handle end-to-end encryption and authentication. For example,
if a mission application encrypts payload using WS-Security [12], the guard would
not be able to inspect the message content unless the message is addressed to the
guard (instead of the target system) and encrypted using the guard’s key(s).

• Information Concerns: We would like to address how guards interact with the in-
formation flowing through them as part of the information concerns. There needs
to be a convention for determining how application-specific messages are inter-
preted and acted upon by the guards, to enable automation and interoperability.

• Workflow Concerns: We would like to address how guards interact with other
participants of the workflow, i.e. mission application and other guards. Compared
to others, there hasn’t been an extensive research on this aspect of CDC. Much less
discussion exists about how existing standards such as Business Process Modeling
Notation (BPMN) [13] and WS-BPEL [14] languages can be leveraged for CDC.
One important workflow consideration is whether or not the guard is an active par-
ticipant in the workflow, and if so, how the guard acts as a service intermediary.

Standards like BPMN and WS-BEPL allow complex workflows to be defined, but
their use in CDC has been limited because guards have been largely absent in work-
flow definitions. As an active workflow participant, the guards will be able to enforce
policies based on models expressed in BPMN and WS-BEPL. Guard vendors may
even include BPMS functionality in their products to manage cross-domain workflows.

280 W. Zhu, L. Vizenor, and A. Srinivasan

3.2 CDC Participants

With the CDC concerns cataloged, we need to discuss how CDC participants address
these concerns collaboratively in order to determine their roles and responsibilities. As
illustrated in Fig. 2, cross-domain solutions include the following four key participants:

i. Security Domain: We assume that, for a single security domain, there is a
consistent security vocabulary for all actors, activities, and information. Ex-
amples include a single information classification hierarchy (Top Secret, Se-
cret, FOUO). Furthermore, a security domain may have one or more Security
Guards to enforce policies, described using the domain’s security vocabulary.

ii. Mission Application: For the purpose of CDC, mission applications associate
mission-specific concepts with the security vocabulary.

iii. Security Monitor (Optional): A domain may utilize a centralized security
management and monitoring system. With the Security Monitor, the domain
security administrator can define consistent security policies for communica-
tion with other domains using the domain’s security vocabulary. A Security
Monitor may communicate with the Security Guard at runtime.

iv. Security Guard: A security guard enforces security policy defined by the mis-
sion application, and may act as a policy enforcement point for the domain. A
guard may coordinate with other guards, in the same or different domains, to
enforce the security policies.

Security Domain

Security Domain

Security Domain
Mission

Application

Mission
Application

Mission
Application

Mission
Application

Mission
ApplicationMission

Application

Mission
Application

Mission
Application

Mission
Application

Inter-guard
Security

Coordination

Security
Monitor

Security
GuardSecurity

Guard

Security
Guard

Security
Administrator

Security
Monitor

Enterprise Security
System

Fig. 2. CDC Participants

Deviating from the existing TOG approach of CDC security, we advocate associating
security guards with domains instead of the links. Domain-Oriented Guards (DOG)
would operate at the same security level as the associated domain, without unneces-
sary privilege. In addition, the same security monitor will be able to manage both the
domain and the guard, avoiding policy conflicts and duplication. The number of
guards required for securing inter-connected domains increases linearly with the
number of domains unlike TOG where the increase is exponential in nature. The im-
plication is that, for any communication path, there will be at least two guards, hence
the need for inter-guard coordination. Because the guards need to trust each other
without necessarily revealing mission information, the issues of identity and trust
must be addressed in the context of inter-guard coordination/ synchronization. We
envision a CDC protocol could require mutual authentication between guards through
a mechanism such as Public Key Infrastructure (PKI) while assuming mutual trust to
be established out of band, e.g. through a white list distributed among the guards.

 Towards a Reference Architecture for Service-Oriented Cross Domain Security 281

3.3 Guards as Active Workflow Participants

In many CDC solutions, guards are considered transparent to the mission applications.
In reality, a well-designed application must be aware of the fact that certain commu-
nications involve systems in other domains in order to handle the unique nature of
CDC. For example, CDC communications may be blocked by the guards or delayed
due to pending human review. Without the knowledge of the guards’ existence along
with a feedback mechanism, an application could siliently fail in the background.

Our reference architecture assumes mission applications are aware of the guards.
As such, we see security guards as active paticipants in CDC workflows. By having
the guard as an active participant in the workflow, it becomes possible to define a
notification mechanism. The notification mechanism enables the mission application
to be informed in case the guard blocks an application message, for security reasons,
thereby allowing the mission application to take appropriate remedial actions. Having
a guard as an active participant in the workflow also solves another otherwise difficult
issue: end-to-end encryption. Without a message being explicitly addressed to the
guard, encryption will prevent the guard from inspecting the message due to lack of
cryptographic keys at the guard. It is now possible for the guards to encrypt the mes-
sage on behalf of the application after taking appropriate security actions (redaction
for example) and forward the message on to its ultimate destination.

For separation of business and security concerns, it may be possible to design an
application workflow in a CDC-independent way using BPMN. When the process is
deployed in a CDC environment, security guards are injected into a business process
through such approaches as Object Management Group’s (OMG) Model Driven Ar-
chitecture® (MDA) [15], as shown in Fig. 3.

A guard-aware workflow opens up other possibilities as well. For example, the guard
could also act as brokers for cross domain service discovery. It could also proxy the
service provider and consumer to avoid unnecessary disclosure of system identity, while
eliminating the needs for ad-hoc CDC infrastructure components as described in [3]. An
implication of this approach is that the guard may have to expose the same interface as
the invocation target, an issue that CDC protocol design needs to take into account.
For example, to proxy web service, the guard may have to implement the same service
interface as defined in Web Service Description Language (WSDL) [16].

Ap
pl

ic
at

io
n

A
Ap

pl
ic

at
io

n
B

Send Request

Receive Request

Ap
pl

ic
at

io
n

A
Ap

pl
ic

at
io

n
B

Send Request

Receive RequestGu
ar

d
fo

r
Do

m
ai

n
A

Gu
ar

d
fo

r
Do

m
ai

n
B

Allowed?

Receive Request

Allowed?

Receive Request

Notify
Security
Decision

Notify
Security
Decision

Receive Security
Notification

No

Yes

No

Yes

Fig. 3. Transformation of CDC Workflow

282 W. Zhu, L. Vizenor, and A. Srinivasan

4 Security Ontology

The security community has begun to recognize the need for controlled vocabularies,
taxonomies, and ontologies to make progress toward a science of (cyber) security
[17]. In 2010, DOD sponsored a study to examine the theory and practice of security,
and evaluate whether it is possible to adopt a more scientific approach [18]. In the
context of CDC, the use of a security ontology would reduce the need for humans to
adjudicate CDC messages, a problem exacerbated by the use of user-defined labels
and keywords without precise meanings. These labels and keywords make it difficult
for computer agents to analyze information flows without human intervention.

We envision a number of distinct, yet related ontologies to mediate the vocabular-
ies and policies among different security domains. This will reduce the need to
standardize on a single set of security policies across all domains. In addition, these
ontologies will enable machine-to-machine communication, minimizing the need for
human review. A community supported security ontology can be used to support the
semantic annotation of generic resources such as documents, enterprise architectures,
business process models and web service with security-related metadata. Semantic
annotation is the act of associating an ontology term with a resource or some part of
resource. More precisely, this means embedding a Uniform Resource Identifier (URI)
within an information resource. Semantic annotation differs from user-generated tags
in that the meaning of the metadata is defined in an external ontology that can be used
disambiguate the metadata and supports the automatic discovery of resources.

The security ontology would also provide the capability to use reasoning to match
mission requirements with service capabilities. Different domains may use different
security vocabularies, making the discovery of services across domains difficult. The
security ontology would help to harmonize the differences in security terminology and
make it possible for agents to use a domain specific vocabulary and discover resources
described using a different vocabulary. In [19], we described a semantic mediation in-
frastructure that uses ontologies to mediate the data model difference between SOA
services. Similarly, semantic-aware guards could translate security vocabularies be-
tween domains based on these ontologies and enforce security policies accordingly.

We recommend that the security community should start from existing efforts to cre-
ate security ontologies and, in order to ensure that others can share and reuse the ontolo-
gy. We recognized the fact that it is both unlikely and undesirable that there be a single
security ontology. Instead, we recommend that a suite of modular ontologies be devel-
oped, with a single core security ontology at the center. This makes it possible for dif-
ferent groups to extend the core security ontology to address their respective needs.

5 CDC Protocol Candidates

We see opportunities to define protocols that specify the interaction among CDC
participants. These protocols will ensure interoperability among CDC participants and
guards, and allow organizations to tailor security configurations based on mission
needs. CDC protocol candidates include:

• CDC Application Interface: Enables interactions between mission applications
and the security guard within a security domain. This interface can be specified in
two levels: 1) an abstract protocol for communication with the guards that is

 Towards a Reference Architecture for Service-Oriented Cross Domain Security 283

transport-independent and 2) protocol bindings for realizing the abstract protocol
with a particular transport mechanism. For web services, the mission application
could potentially use WS-Addressing [20] to indicate to the security guard the ul-
timate destination of the message. Business processes carried out collectively by
mission applications in different domains can be best understood by analyzing the
interactions between applications. As such, we recommend that the security do-
mains be configured to allow only specific application level protocols and accord-
ingly, the guards be implemented at the application layer.

• Inter-Guard Coordination Protocol: Enables interactions among the security
guards. Leveraging the security ontology, a mechanism can be defined for guards
to authenticate among themselves, correlate security attributes of the source and
the target applications, the activities, and the information carried in the payload.
Using annotations, we can associate the application-specific metadata with the
concepts in the ontology, and further associate ontology concepts with the security
attributes that will be used by the guard to make runtime decisions.

• Security Monitor Interface: Defines an interface to manage CDC infrastructure,
perhaps by extending the Simple Network Management Protocol (SNMP) [21].

With Inter-Guard Coordination Protocol, we are envisioning a more peer-to-peer co-
ordination among the guards, avoiding the need a single global security system to
manage multiple domains. Such system is often not practical in an inter-
organizational environment and it introduces the potential of a single point of failure.

6 Road to Implementation

The CDC reference architecture can be used to guide the development of solutions
that compliments and enhances existing CDC guard products to secure SOA interac-
tions. As the first step, we see software components developed to compliment existing
TOG. This component, Cross Domain Service Proxy, is associated with a particular
domain and works with the domain’s SOA infrastructure such as an Enterprise Ser-
vice Bus (ESB) and Identify and Access Management (IdAM). Because the Proxy is
an active participant of CDC workflows, applications or services always address cross
domain messages to the Proxy, which can then filter the messages based on policies
and inspect the content using ontologies. Through the Guard Application Interface
described earlier, the Proxy can inform mission applications security decisions it takes
so that the application can respond properly. Only compliant messages are then sent
out via communication link protected by the traditional guard.

This solution does introduce redundant message inspections – at the Proxy and
again at the traditional cross domain guard, mainly to alleviate concerns with the new
architecture. We expect that, as organizations gain confidence in the architecture, the
Proxy can be either integrated into the guard products or replace the current guards.

7 Conclusion

Standardization of interactions among these CDC participants is a pre-requisite for
achieving the interoperability and flexibility required by business. Due to the complex
and multi-faceted nature of CDC security, standardization is only possible within a
framework where interactions can be abstracted and discussed in a structured manner.

284 W. Zhu, L. Vizenor, and A. Srinivasan

This paper represents our attempt at establishing such a framework, and we hope it will
encourage further discussions within the community, resulting in more interoperable,
flexible and efficient CDC solutions to serve the needs of the business.

References

[1] Swamy, N., Hicks, M.: Verified Enforcement of Security Policies for Cross-Domain Infor-
mation Flows, http://www.cs.umd.edu/~mwh/papers/selinks-cpa.pdf

[2] Irvine, C.E., et al.: MYSEA: the Monterey security architecture. In: Proc. of the Workshop
on Scalable Trusted Computing (ACM STC), Conference on Computer and Communica-
tions Security (CCS), pp. 39–48. Association for Computing Machinery (ACM), Chicago
(2009)

[3] Atighetchi, M., et al.: XDDS: A Salable Guard-Agnostic Cross Domain Discovery Ser-
vice, http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA532504

[4] W3C, Web Services Architecture, W3C Working Group Note (February 11, 2004)
[5] Shader, M.: Cross-Domain Application Architecture: The Need for an End-to-End

Approach (2012), http://yellowhouseassociates.net/download/YHA_
CDAA_WP.pdf

[6] Fielding, R.: Architectural styles and the design of network-based software architectures.
Diss. University of California, Irvine (2000)

[7] Intelligence Community and Department of Defense Content Discovery and Retrieval In-
tegrated Project Team. IC/DoD Content Discovery and Retrieval Reference Architecture
(February 2011)

[8] OASIS, Universal Description, Discovery and Integration v3.0.2, OASIS Standard
(February 2005)

[9] Kim, A., Luo, J., Kang, M.: Security ontology for annotating resources. In: Meersman, R.
(ed.) OTM 2005. LNCS, vol. 3761, pp. 1483–1499. Springer, Heidelberg (2005)

[10] Denker, G., Kagal, L., Finin, T.: Security in the Semantic Web using OWL. Information
Security Technical Report 10(1), 51–58 (2005)

[11] Blanco, C., et al.: A Systematic Review and Comparison of Security Ontologies, ares. In:
2008 Third International Conference on Availability, Reliability and Security, pp. 813–820
(2008)

[12] OASIS, Web Services Security: SOAP Message Security 1.1, OASIS Standard (February
2006)

[13] Object Management Group (OMG), Business Process Model and Notation (BPMN)
Version 2.0, OMG Standard (January 2011)

[14] OASIS, Web Services Business Process Execution Language 2.0, OASIS Standard (April 2007)
[15] Object Management Group (OMG), Model Driven Architecture ®,

http://www.omg.org/mda/
[16] W3C, Web Services Description Language (WSDL) 1.1, W3C Note (March 15, 2001)
[17] Mundie, D.A., McIntire, D.M.: The MAL: A Malware Analysis Lexicon. CERT® Pro-

gram - Carnegie Mellon University. Technical (2013)
[18] The MITRE Corporation, Science of Cyber-Security, The MITRE Corporation. Technical

(2010)
[19] Zhu, W.: Semantic Mediation Bus: An Ontology-based Runtime Infrastructure for Ser-

vice Interoperability. In: 2012 IEEE 16th International Enterprise Distributed Object
Computing Conference Workshops (EDOCW), September 10-14, pp. 140–145 (2012)

[20] W3C, Web Services Addressing 1.0 – Core, W3C Recommendation (May 9, 2006)
[21] Harrington, D., Presuhn, R., Wijnen, B.: An Architecture for Describing Simple Network

Management Protocol (SNMP) Management Frameworks. Internet Engineering Task
Force RFC (December 2002)

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 285–299, 2014.
© Springer International Publishing Switzerland 2014

Interoperability of Security-Aware Web Service Business
Processes: Case Studies and Empirical Evaluation

Alfredo Cuzzocrea1 and Vincenzo Rodinò2

1 ICAR-CNR and University of Calabria, Italy
2 ICAR-CNR, Italy

cuzzocrea@si.deis.unical.it, vrodino.icar@gmail.com

Abstract. In this paper, we provide significant contributions on top of a recent
successful framework for supporting the interoperability of so-called security-
aware Web Service Business Processes, i.e. Web Service Business Processes
that incorporate Access Control Policies (ACP), via assessing and verifying its
reliability on the basis of some well-suited case studies. Our evidence fully
demonstrates the effectiveness as well as the robustness of the investigated
framework. We complete our analytical contributions by means of a critical
discussion on the advantages and possible extensions of this framework.

1 Introduction

The Service Mosaic project [1,2,3,4,5] identifies a model-driven CASE platform that
aims at facilitating the development of service-oriented applications and the
management of Web Service lifecycle. Service Mosaic allows us to model Web
Service Business Processes via a special formalism that extends Finite State Automata
(FSA) (e.g., [6]), augmented with time constraints, hence originating so-called Timed
FSA [7], which represent a well-known and extensively-used formalism in the area of
real-time model checking (e.g., [8]). Despite this, embedding time constraints into
Web Service Business Processes puts severe theoretical restrictions, due to the fact
that Business Processes do not originally incorporate temporal reasoning (e.g., [9]).

Service Mosaic focuses on so-called Web Service Business Process Protocols, i.e.
graphical models that describe how a Web Service Business Process inter-operates
(e.g., based on message exchanging) with another Web Service Business Process in
distributed (Web) environments (this problem has been also investigated in [20,21]).
In more details, Service Mosaic studies some nice properties that allow us to better
support the Web Services life-cycle management, which we summarize in the
following: (i) compatibility, which refers to verify if two Web Service Business
Processes are fully inter-operable; (ii) replaceability, which refers to verify if two
Web Service Business Processes are fully inter-changeable; (iii) consistency, which
refers to verify if the implementation of a Web Service Business Process is fully
compliant with its declarative section. In particular, checking the first two properties
(i.e., compatibility and replaceability) shares a common step called conversion,
which, briefly, transforms a Web Service Business Process into another one,

286 A. Cuzzocrea and V. Rodinò

according to a given criterion. It would be clear enough that compatibility and
replaceability are the most important properties to be studied when Web Service
Business Processes are considered immersed into a reference distributed (Web)
scenario. Following this main consideration, in this paper we focus on these
properties, and leave the yet-relevant consistency property to further studies.

The whole paradigm proposed by Service Mosaic is highly flexible and prone to be
extended with emerging functionalities, even not foreseen by original authors. For
instance, a fortunate line of research proposes to extend Web Service Business
Processes by means of security and privacy primitives (e.g., [10]), given the evidence
stating that such processes usually inter-operate in “open” distributed environments
(e.g., the Web) that naturally incur in the risk of possible security and privacy
breaches (e.g., [11]). Within this family of processes, security issues and, in
particular, Access Control Policies (ACP) (e.g., [12]) play a critical role, as they
formalize the security policy under which two Web Service Business Processes are
allowed to interact (this is also relevant in modern Clouds – e.g., [18,19]). As a
consequence, in [13,14] authors apply the Service Mosaic’s paradigms to so-called
security-aware Web Service Business Process Protocols, by deriving useful and
theoretically-sound results for the protocols describing this class of processes.

In this paper, we provide significant contributions on top of the framework [13,14],
via assessing and verifying its reliability on the basis of some well-suited case studies.
In more details, as underlying software development tool on top of which evolving
our proposed case studies, we make use of Service Mosaic Protocol [15], which
encompasses Service Mosaic components and offers a complete Java-based software
suite for modeling, checking and executing Web Service Business Processes. We
complete our analytical contributions by means of a critical discussion on the
advantages and possible extensions of this framework, given through the paper.

The remaining part of the paper is organized as follows. In Section 2, we provide
an overview of the framework [13,14] via some illustrative examples that highlight
the compatibility and replaceability properties supported by this framework. In
Section 3, we provide our case study on the conversion phase. Section 4 contains our
case study on the compatibility property. In Section 5, we describe our case study on
the replaceability property. Finally, in Section 6, we derive conclusions and future
work of our research.

2 A State-of-the-Art Framework for Checking the
Compatibility and Replaceability of Security-Aware
Web Service Business Processes

In order to illustrate main results of [13,14], here we provide some examples showing the
compatibility and replaceability properties of security-aware Web Service Business
Process Protocols. Consider Figure 1, where a Web Service Business Process Protocol
is depicted. We make use of this synthetic protocol as baseline instance on top of which
the compatibility and replaceability properties (and their checking) are illustrated. A
common step for the checking of these properties is represented by the so-called
conversion of a protocol into a protocol . Basically, given a protocol , conversion
makes explicit all the implicit transitions in . The main goal of the conversion phase is

 Interoperabi

that of preserving the time su
access control policy aspect
achieved by adding to the ex
hence achieving the definiti
Process Protocols assigned w

Fig. 1. Example sec

In more details, an imp
expires, whereas an explic
received, without the time c
models the source state (o
constraint, denotes an impl
from the time in which th
reaching the state . , , ,

 an ACP, which may be r
or policies if is a receiv
states that , , , occurs aft
credentials or policies.

As shown in Figure 1,
transitions, e.g. , ,
constraints, whereas e, , , , , , , being,
are labeled with message s
transitions could make the
described by incompat
introduced, and the explicit

As shown in Figure 2, in
transitions of are remove
explicit transitions of , ac

• for each state in s
from it exists, update

, by means of a
new explicit transition

ility of Security-Aware Web Service Business Processes

upport of the target protocol (to be converted), while leav
ts out, being these latter useless at this stage. This is fin
xplicit (converted) protocol suitable, ad-hoc time constrai
ion of the so-called Explicitly Timed Web Service Busin
with ACP [13,14].

curity-aware Web Service Business Process Protocol

plicit transition occurs after that a given time constr
it transition occurs after that a message has been sent
constraint above. As notation, , , , , , such tha
of the protocol), the destination state, and a ti
licit transition and states that , , occurs after a time
he protocol reaches the state , by making the proto, , , , instead, such that models a message
represented in terms of credentials if is a sent messa
ved message ([13,14]), denotes an explicit transition
ter has been sent or received, being the applied AC

 contains both implicit and explicit transitions. Impl, , and , , , , , are labeled with ti
explicit transitions, e.g. , , , , , ,
, in particular, policies and credentials, respectiv
specifications and an ACP. Since the presence of expl
Web Service Business Process whose inter-operability

tible with other processes, the conversion operation
t protocol is finally obtained (see Figure 2).
n order to obtain an explicit version of , i.e. , impl
ed and ad-hoc time constraints have been applied to all
ccording to the following rules:

such that an implicit transition , , , , originat
all the explicit transitions , , , , , , , such t
time constraint of the form 0, , hence originating , , , , , , , , , such that = 0, ;

287

ving
nally
ints,
ness

aint
t or

at
ime
e
ocol
and
age,
and

CP’s

licit
ime
and
ely,
licit
y is
n is

licit
the

ting
that
the

288 A. Cuzzocrea and V.

Fig. 2. Explic

• for each state in
update all the explic
constraint of the form, , , , , , , , ,

• for each explicit transit
transition , , ,

, , , , to
“cumulative” time con
constraints of implicit , , , , , , , ,

Now, focus the attenti

towards verifying whether
introduce our running exam
synthetic protocol, namely
is already in the explicit
compatibility between an

Fig. 3. Example sec

 Rodinò

cit version of the protocol depicted in Figure 1

 such that no implicit transitions originating from it ex
it transitions , , , , , , by means of a ti

m 0, ∞ , hence originating the new explicit transit
, such that = 0, ∞ ;
tion , , , , , , in such that a preceding impl, or a path of implicit/explicit transiti

 exist [13,14], such that = ∑| , , |
 models

nstraint associated to the path (note that only the ti
transitions contribute to), add a new explicit transit
 such that = 0, .

ion on the compatibility checking. Compatibility le
r two protocols can properly interact or not. Before
mple on compatibility checking, here we introduce anot

, which is shown in Figure 3. It should be noted that
version. In our actual running example, we study

nd .

curity-aware Web Service Business Process Protocol

xist,
ime
tion

licit
ions

the
ime
tion

eans
e to
ther
t
the

 Interoperabi

According to [13,14],
checking, it is convenient t
Ontologies turn-out to be p
the fact that they allow an
from sensitive information
with this critical finding, F
where policies and credenti

Fig. 4. Ontology on p

Given two protocols
out by means of the so-cal
following two steps.

• Checking the compatibi
can be performed by c
protocols and [10
exist two associated st
outgoing messages fro
corresponds to , or,
received by the other pr
and in terms of mess
the second step, otherwi

• Checking the compatib
performed by computin, , , of the prod
credentials associated t

 to , and checkin
two arbitrary transition
which is globally ca
representative of , ,

 and in ,
in . The consistenc
in the associated Ontolo
consistent with but,

ility of Security-Aware Web Service Business Processes

with regards to both compatibility and replaceabi
to express ACP in terms of Ontologies (e.g., [16]). In f
particularly suitable as policy specification models, due
n easier policy management and an augmented protect
leaking by avoiding malicious requests (e.g., [17]). In l
igure 4 shows the Ontology used by the running examp

ials represent the Ontology concepts. example scenario.

policies and credentials associated to the running example

and , the compatibility checking of and is carr
lled compatibility algorithm [13,14], which comprises

ility of the two protocols in terms of message exchange –
constructing the so-called product automata of the
0], and checking whether (1), for each state in , th
tates and in and , respectively, and (2) all
om in or in , depending on the fact that

alternatively, corresponds to , respectively, can
rotocol (and , respectively). If this is the case, then
sage exchange, and the compatibility algorithm can mov
ise the algorithm ends since and are not compatible.
bility of the two protocols in terms of ACP – this can
ng the so-called cumulative credentials for each transit
duct automata , denoted by , which contains all
to transitions of all the paths from the source state
ng the following property. If, for any interaction betw
ns , , , and , , , of and , respectiv
aptured by , , , in (hence, , , ,, and , , ,), the related ACP policies
respectively, are consistent with the respective credent
y here is checked by also inspecting hierarchical relati
ogy (for instance, focus on the Ontology of Figure 4:
 due to the Ontology structure, even with , and .

289

ility
fact,
e to
tion
line

mple,

ried
the

this
two
here
the

t
n be
n
e to

n be
tion
the
 of

ween
ely,
 is
 in

tials
ions is
.)

290 A. Cuzzocrea and V.

To give an example, Fig
 and of the running ex

Fig. 5. Product aut

Now, focus the attentio
towards verifying whether o

Given two protocols
out by means of the so-c
follows. First, the so-called
for each transition , , ,
denoted by , , are com
product automata in the cas
If, for any interaction betw

 and , respectively, w, , , is representative
credentials
consistent with the respecti
scheme given for the compa

To give an example, Fi
Figure 7 shows the intersec

3 Conversion of Im
Process Protoco
Business Proces

In this Section, we provid
software architecture Serv
protocol adapted from th
both implicit and explicit tr

 Rodinò

ure 5 shows the product automata for the two protoc
ample (see Figure 1 and Figure 3, respectively).

tomata of protocols of Figure 1 and of Figure 3

on on the replaceability checking. Replaceability le
one protocol can be replaced by the other one.
and , the replaceability checking of and is carr

called replaceability algorithm [13,14], which works
d intersection automata of and is built [10]. Th

 of , the so-called cumulative policies and credenti
mputed, by measn of the same method provided for
se of credentials. Finally, the following property is verif

ween two arbitrary transitions , , , and , , ,
which is globally captured by , , , in (hen
of , , , and , , ,), the related ACP policies

 in and in , respectively,
ive credentials or policies in , , according to a sim
atibility checking.
gure 6 shows two example protocols and , wher
tion automata for such protocols.

mplicit Security-Aware Web Service Busine
ols into Explicit Security-Aware Web Service
s Protocols

e our case study on the conversion phase, on top of
vice Mosaic Protocol [15]. Figure 8 shows an exam
he main on described in [13,14], which is characterized
ansitions.

cols

eans

ried
s as
hen,
ials,
the

fied.
 of

nce,
s or
are

milar

reas

ess
e

the
mple
d by

 Interoperabi

Fig. 6. Two example secur

Fig. 7. Intersec

Time constraints associa
labels, but they are shown
Mosaic Protocol, as follows

 : 2;

Figure 9 shows the wiza

named as Web service b
whereas Figure 10 shows
algorithm over the target pr
implicit transitions have b
transitions, whose temporal

and the final time constrain
(note that, for some ’s i_ have been ontain

ility of Security-Aware Web Service Business Processes

rity-aware Web Service Business Process Protocols and

ction automata of protocols and of Figure 6

ated to transitions are not shown in Figure 8 in terms
n in the Properties Tab of the Eclipse plug-in of Serv
s:

; : = 3; : = 1; : ; : = 2; :

ard user-interface that implements the conversion proc
usiness converted protocol file, available to end-us
the final result obtained from executing the convers

rotocol , hence obtaining the converted protocol . H
been converted into ad-hoc time constraints on expl
l intervals adhere to the following pattern: T‐Interval 0, ∞

nts obtained from the conversion process are the follow
implicit transitions, more ’s explicit transitions of k
ned):

291

s of
vice

ess,
sers,
sion
ere,
licit

wing
kind

292 A. Cuzzocrea and V. Rodinò

:T‐Interval 0, 2 ; :T‐Interval 0, 2 ; :T‐Interval 0, ∞ ; _ 1:T‐Interval 4, 6 ; _ 3:T‐Interval 4, 6 ; _ 2:T‐Interval 3, ∞); _ 4:T‐Interval 6, ∞ ; _ 5:T‐Interval 2, ∞

Fig. 8. The example protocol with implicit and explicit transitions for the conversion case
study

4 Checking the Compatibility of Security-Aware Web Service
Business Process Protocols

In this Section, we provide the second case study of our research on the
compatibility checking of two protocols, which we assume to be in their explicit
versions, called b1forProduct.wsprotocol (see Figure 11) and b2forProduct.wsprotocol
(see Figure 12).

Time constraints and ACP constraints (which represent credential or policies
constraints – see Section 1) associated to transitions of b1forProduct.wsprotocol are the
following:

 : P‐C , T‐Interval 0, 5 ; : P‐C ; : T‐Interval 0, 3 ; : P‐C , T‐Interval 0, ∞

where, in particular, ACP rules adhere to the following pattern:
 P‐C ⋀

such that: (i) P‐C stands for policy-credential; (ii) and model basic credential or
policy constraints; (iii) ⋀ is the AND Boolean conjunction operator.

 Interoperability of Security-Aware Web Service Business Processes 293

Fig. 9. Wizard user-interface for the conversion case study

Fig. 10. The explicit version of the protocol of Figure 8,

For what instead regards b2forProduct.wsprotocol, the set of time constrains and
ACP constraints for each of the model’s transitions are the following:

 : T‐Interval 0, 6 ; : P‐C && ; : P‐C , T‐Interval 0, 3 ; : P‐C ; : T‐Interval 0, ∞

294 A. Cuzzocrea and V. Rodinò

Fig. 11. The example protocol b1forProduct.wsprotocol

Figure 13 shows the graphical representation of the Ontology taken as reference for
the actual case study, which derives from [13,14]. In more details, in Figure 13
credentials among Ontology concepts are shown as well.

Fig. 12. The example protocol b2forProduct.wsprotocol

A wizard user-interface, similar to the one shown in Figure 9, allows the protocol
file storing the product automata of the two protocols to be generated, named as Web
service business product protocol file. Finally, results obtained from executing the
compatibility algorithm over the two protocols, i.e. their product automata, are
depicted in Figure 14. In more details, time constrains and ACP constraints obtained
from the execution of the compatibility algorithm over b1forProduct.wsprotocol and
b2forProduct.wsprotocol (i.e., the constraints associated to the product automata) are the
following:

 : P‐C , T‐Interval 0, 5 ; : P‐C , P‐C && ; : P‐C , T‐Interval 0, 3 ; : P‐C ; : P‐C , T‐Interval 0, ∞

 Interoperability of Security-Aware Web Service Business Processes 295

Fig. 13. Ontology adopted for the compatibility checking case study [13,14]

The provided case study clearly demonstrates that the conversion algorithm works
as expected, and it also confirms the central role played by the so-called cumulative
ACP (see Section 2) in the context of compatibility checking of security-aware Web
Service Business Process Protocols. From Section 2, remind that, without loss of
generality, given a transition , cumulative ACP for can be defined as the set of
security rules obtained from the union of the current ACP and the set of previously-
provided credentials (i.e., credentials associated to transitions preceding).

Looking into details, from the provided case study, it follows that
b1forProduct.wsprotocol requires credential on transition , but
b2forProduct.wsprotocol provides credentials and on the corresponding
transition . This is clearly showed by ACP rules on transition of the product
automata (see Figure 14). It should be noted that, if the two example protocols would
be compared without the notion of cumulative ACP, then these protocols would have
erroneously be considered as not compatible. Hence, the relevance of the cumulative
ACP notion emerges undoubtedly.

5 Checking the Replaceability of Security-Aware Web Service
Business Process Protocols

In this Section, we provide the last case study of our research on the replaceability
checking of protocols, which properly refers to check whether a protocol can
support the same “conversations” of another protocol . In more details, we
investigate the case of security-aware full replaceability or replaceability in terms of
intersection automata assigned with ACP [13,14], which adhere to the class of
replaceability termed as protocol subsumption w.r.t. replaceability, according to the
classification defined by [1,2,3,4,5].

Within this conceptual framework, we introduce two example protocols, namely
b1forIntersection.wsprotocol (see Figure 15) and b2forIntersection.wsprotocol (see Figure
16), respectively.

296 A. Cuzzocrea and V. Rodinò

Fig. 14. Product automata obtained from the example protocols b1ForProduct.wsprotocol
(Figure 11) and b2ForProduct.wsprotocol (Figure 12)

Fig. 15. The example protocol b1forIntersection.wsprotocol

For what regards time constraints and ACP constraints associated to transitions of
b1forIntersection.wsprotocol, they are defined as follows:

 : P‐C , T‐Interval 0, 5 ; : P‐C , T‐Interval 0, 3 ; : P‐C

whereas for the case of b2forIntersection.wsprotocol:
 : P‐C , T‐Interval 0, 5 ; : T‐Interval 0, 5 ; : P‐C , T‐Interval 0, 2 ; : P‐C ; : P‐C

 Interoperability of Security-Aware Web Service Business Processes 297

Fig. 16. The example protocol b2forIntersection.wsprotocol

Similarly to the case of conversion phase (see Section 3) and compatibility
checking (see Section 4), we designed a suitable wizard user-interface supporting the
easy construction of the intersection automata (see Section 2), which is similar to the
one shown in Figure 9. Finally, Figure 17 shows the intersection automata obtained
from the two example protocols. For a better understanding, here we report time
constrains and ACP constraints associated to transitions of such automata:

 : P‐C ; : P‐C , T‐Interval 0, 5 ; : P‐C , T‐Interval 0, 2 ; : P‐C ; : P‐C

As it follows from the results of replaceability algorithm (see Section 2),

b1forIntersection.wsprotocol and b2forIntersection.wsprotocol are not compatible. Indeed,
looking at the definitions of such protocols (see Figure 15 and Figure 16), they are not
replaceable due to time restrictions. In fact, the time constraint associated to transition

 of b1forIntersection.wsprotocol is T‐Interval 0, 3 , whereas the one associated
to transition of b1forIntersection.wsprotocol is T‐Interval 0, 2 . Therefore,
transition ’s time constraint is not contained neither equal to transition ’s time
constraint, so that one of the requirements of the replaceability checking is not
satisfied. From this analysis, it emerges the central role of the intersection automata in
the context of replaceability checking of security-aware Web Service Business
Processes.

6 Conclusions and Future Work

Starting from the results of the Service Mosaic project [1,2,3,4,5], in this paper we
have provided and critically discussed some relevant case studies on top of a
successful extension of Service Mosaic focusing on the interoperability of so-called
security-aware Web Service Business Processes, which deal with security and
privacy-preserving aspects of Web Service Business Processes whose structure and
functionalities have been dictated by Service Mosaic. In particular, our analysis has
focused on three critical properties of protocols that describe how such processes

298 A. Cuzzocrea and V. Rodinò

Fig. 17. Intersection automata obtained from the example protocol b1ForIntersection.wsprotocol
(Figure 15) and b2ForIntersection.wsprotocol (Figure 16)

interoperate, namely conversion, compatibility and replaceability. Our results clearly
show the effectiveness and the reliability of the framework [13,14]. Future work is
actually oriented towards setting an experimental real-life campaign on top of which
developing new case studies that aim at further corroborating the promising results
obtained with this research experience mainly focusing on synthetic case studies.

References

1. Benatallah, B., Nezhad, H.R.M., Casati, F., Toumani, F., Ponge, J.: Service Mosaic: A
Model-Driven Framework for Web Services Life-Cycle Management. IEEE Internet
Computing 10(4), 55–63 (2006)

2. Benatallah, B., Hamid, R., Nezhad, H.R.M.: Service Mosaic Project: Modeling, Analysis
and Management of Web Services Interactions. In: Proceedings of APCCM, pp. 7–9
(2006)

3. Benatallah, B., Casati, F., Toumani, F.: Representing, Analyzing and Managing Web
Service Protocols. Data & Knowledge Engineering 58(3), 327–357 (2006)

4. Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-Automated
Adaptation of Service Interactions. In: Proceedings of WWW, pp. 993–1002 (2007)

5. Nezhad, H.R.M., Saint-Paul, R., Benatallah, B., Casati, F., Ponge, J., Toumani, F.: Service
Mosaic: Interactive Analysis and Manipulation of Service Conversations. In: Proceedings
of ICDE, pp. 1497–1498 (2007)

6. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing (1997)
7. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science 126(2),

183–235 (1994)
8. Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.B.: On Expressiveness and Complexity in

Real-Time Model Checking. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
124–135. Springer, Heidelberg (2008)

 Interoperability of Security-Aware Web Service Business Processes 299

9. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Analysis and Applications of Timed
Service Protocols. ACM Transactions on Software Engineering and Methodology 19(4),
art. no. 11 (2010)

10. Mokhtari-Aslaoui, K., Benbernou, S., Sahri, S., Andrikopoulos, V., Leymann, F., Hacid,
M.-S.: Timed Privacy-Aware Business Protocols. International Journal of Cooperative
Information Systems 21(2), 85–110 (2012)

11. Hamadi, R., Paik, H.-Y., Benatallah, B.: Conceptual Modeling of Privacy-Aware Web
Service Protocols. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007. LNCS,
vol. 4495, pp. 233–248. Springer, Heidelberg (2007)

12. Samarati, P., de Vimercati, S.C.: Access Control: Policies, Models, and Mechanisms. In:
Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 137–196. Springer,
Heidelberg (2001)

13. Elabd, E., Coquery, E., Hacid, M.-S.: Checking Compatibility and Replaceability in Web
Services Business Protocols with Access Control. In: Proceedings of ICWS, pp. 409–416
(2010)

14. Elabd, E., Coquery, E., Hacid, M.-S.: From Implicit to Explicit Transitions in Business
Protocols: A Semantic-Based Transformation. International Journal of Web Service
Research 9(4), 69–95 (2012)

15. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Fine-Grained Compatibility and
Replaceability Analysis of Timed Web Service Protocols. In: Parent, C., Schewe, K.-D.,
Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 599–614. Springer,
Heidelberg (2007)

16. Fensel, D.: Ontologies: Silver Bullet for Knowledge Management and Electronic
Commerce. Springer (2003)

17. Nejdl, W., Olmedilla, D., Winslett, M., Zhang, C.C.: Ontology-Based Policy Specification
and Management. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532,
pp. 290–302. Springer, Heidelberg (2005)

18. Wei, L., et al.: Security and Privacy for Storage and Computation in Cloud Computing.
Information Sciences 258, 371–386 (2014)

19. Wei, L., et al.: SecCloud: Bridging Secure Storage and Computation in Cloud. In:
Proceedings of ICDCS Workshops, pp. 52–61 (2010)

20. Reza Rahimi, M., et al.: MuSIC: Mobility-Aware Optimal Service Allocation in Mobile
Cloud Computing. In: Proceedings of IEEE CLOUD, pp. 75–82 (2013)

21. Sheng, Q.Z., et al.: Web Services Composition: A Decade’s Overview. Information
Sciences 280, 218–238 (2014)

22. Duan, Q., et al.: A Survey on Service-Oriented Network Virtualization Toward
Convergence of Networking and Cloud Computing. IEEE Transactions on Network and
Service Management 9(4), 373–392 (2012)

Sensor Networks

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 303–311, 2014.
© Springer International Publishing Switzerland 2014

A Fatigue Detect System Based on Activity Recognition

Congcong Ma, Wenfeng Li, Jingjing Cao, Shuwu Wang, and Lei Wu

School of Logistics and Engineer, Wuhan University of Technology,
Wuhan, 430077, China

macong01@126.com, {liwf,caojingjing,wangsw,wulei}@whut.edu.cn

Abstract. Fatigue is considered a key factor to accidents and illnesses in our
daily life. Detecting fatigue is therefore useful to prevent accidents and keep our
body healthy. It is useful to the people who usually sit many hours a day per-
forming office jobs, it can remind people to have a rest and do some exercises,
so to help them developing good working habits.

In this paper, we propose a non-invasive way to monitor people’s activity.
By applying Activity Recognition using Body Sensor Network technologies, we
made a smart cushion to monitor people’s activities; we acquire pressure data
and analyze it in MATLAB to infer whether a subject is suffering fatigue. With
the proposed method, we learnt that subjects are getting tired after about an
hour only. Experimental results show that pressure data for left-right orientation
can clearly judge whether a sitting subject is suffering fatigue.

Keywords: Activity Recognition, Body Sensor Networks, Fatigue Detection,
Smart Cushion.

1 Introduction

Fatigue detection is becoming a hot topic in the smart-health domain. Increasing
number of people is working in front of visual display terminals (VDTs), such as
computer, smartphone or other display terminals, and, in many cases such workers
feel fatigue without realizing it or properly addressing it. Fatigue is indeed often
wrongly overlooked, because it can lead to mental and physical problems and nega-
tively impact study/work efficiency and safety.

Detecting fatigue of people who always sit in front of VDTs is useful, e.g. to pre-
vent various related illnesses.

It is possible to distinguish two kinds of fatigue: physical fatigue and mental fa-
tigue [1]. The former is due to muscle activity when people perform manual works,
the latter is caused by a variety of psychological stressors. In this paper we focused on
mental fatigue.

Caused by excessively prolonged labor tasks, mental tension can negatively affect
efficiency state. Mental fatigue is the origin of many diseases; if a person perform
excessive or heavy overloaded mental work, he/she will undergo long-term fatigue,
compromising the correct operation of physiological functions and causing a variety
of diseases, and eventually leading to decreased immune system, endocrine disorders,

304 C. Ma et al.

etc. In this case, people easily get diseases such as colds, but also seriously exposed to
cardiovascular diseases [2], diabetes, etc. Therefore, fatigue prediction and early de-
tection is of key importance to prevent various medical situations.

According to an U.S. epidemiological survey, among the adult population, about
14% of males and 20% of females suffers symptoms of fatigue performance [3]. Be-
cause of work intensity, fatigue illness and even deaths are increasing year by year.
Fatigue is the main factor causing adults’ body condition decline and chronic illnesses
appearance.

Prolonged workload, mental stress, short time resting periods and poor physical ac-
tivity cause many illnesses even suffer the dangers of karoshi. According to another
survey by World Health Organization, about 35% of the world population has suf-
fered fatigue. Since fatigue is usually not associated with other significant sympto-
matology it is difficult to be properly assessed using traditional clinical examination.

Body Sensor Networks (BSNs) enable to measure many important human physio-
logical characteristics, including physical activity status [4], body temperature [5],
muscle activity, heart rate, and brain activity. Based on BSN technology, we can de-
velop many kinds of human-centered applications in diversified domains such as mo-
bile entertainment, health care and fitness [6, 7, 8].

In this paper we formed the assumption that if a person is tired, he/she may become
very quiet, or he/she might feel anxiety and conversely become unsettled. Based on
this assumption, we analyzed subjects during daily working activities to investigate
the difference between the condition of non-fatigue and fatigue. Specifically, we ac-
quired data from a device with pressure sensors to monitor user posture; these data are
analyzed to judge whether the user is feeling fatigue. Experimental result confirmed
that if a person is tired, he/she often acts as our assumption. With this method, we can
predict fatigue earlier and remind people to have a rest or perform proper stretching
exercises.

2 Methodology

Activity recognition can be used to recognize basic postures such as standing, sitting,
lying and squatting [9]. It can also be used in the field of fatigue detection by analyz-
ing the data of physiological phenomena and activity behavior. Automatic fatigue
detection has gained much relevance in the field of car driving; however, researches
have not yet been focused on fatigue detection of office workers. The technique to
detect driving attention level is essentially the same, so the methods that used in the
field of monitor people’s status of car driving can also be used to monitor the fatigue
condition of office workers.

2.1 Related Work

Hiroshi and Masayuki developed a system to detect fatigue [10] using a camera to
monitor people’s activity and image processing to analyze driver’s facial expressions,
to observe the extent of driver’s eyes closed and wide open as an alarm of fatigue. Li

 A Fatigue Detect System Based on Activity Recognition 305

also proposed an image processing method to classify fatigue-related facial expres-
sions [11]. These approaches have, however, the disadvantage to be influenced by
ambient light.

Iampetch S. proposed the use of EEG signal to detect whether people was suffering
fatigue [12]. This approach, however, is quite invasive as the user has to wear a de-
vice on his/her head to measure the signal of the brain activity.

Patterson used a method based on a three-axis accelerometer sensor to quantity
people’s activities with the aim of detecting fatigue symptoms [13]. This approach
requires the user to wear smart objects too.

2.2 Proposed Method

In this paper, we propose a non-invasive way to monitor people’s activity while seat-
ed. This method has advantages because it just need to place on the chair a cushion
with a suit of embedded pressure sensors.

We use a FSR (Force Sensing Resistor) pressure sensor produced by Interlink
Electronics [14]. It is ultra-thin, weight light, and highly accurate. Its’ size is
1.75x1.5" (approximately 45x38mm).

As force is applied on the sensing areas, the resistance value of the FSR will be
correspondingly altered. The more the forcing power, the smaller the resistance is.
This sensor can detect a pressure power from 0 to 20kg. This pressure sensor can be
easily fixed and embedded into the cushion textile or foam filling.

As the sitting pressure distribution is closely related to the person sitting posture, in
this paper we design a model to distinguish fatigue and non-fatigue based on the sit-
ting posture.

More precisely, we designed a pressure chair cushion based on four FSRs as shown
in Fig. 1.

Fig. 1. FSR pressure sensor (left) and cushion equipped with FSR sensors (right)

When a person is sitting on the cushion, the FSR sensors on the cushion can de-
tected the pressure data. If he/she slants to the right, the pressure value of the right
sensor will greater than the left sensor. Use the smart cushion, we can measure the
value of pressure that caused by our body weight. According to the pressure distribu-
tion, we can calculate the center of gravity of body that deviate from the center of the
cushion. It can infer that people is sitting upright or swing to an orientation. The sit-
ting posture images can be exampled as in Fig. 2.

306 C. Ma et al.

Fig. 2. Sitting posture images with the four directions: Left, Right, Forward, Backward

As our system model indicated in Fig. 3(a), four pressure sensors was fixed on the
cushion and marked as fsr1, fsr2, fsr3, fsr4. The four sensors was evenly placed on the
cushion, they have the same distance to the center of the cushion. Pressure sensors’
data are marked as , , , , in the coordinate system we use Z axis to represent
the pressure value as shown in Fig. 3(b). Here we use the sensors on X axis to explain
our method, as we can indicated that the sensors on the X axis can represent the body
posture lean left and right.

Fig. 3. (a) System model of the sensors in the chair cushion, (b) Propose Method

The minus of and can represent the body center of gravity deviate from the
Y axis. When people sit on the center of the cushion, the body center of gravity is on
the point of zero point. Fig. 3(b) is an example that people lean to the right side, the
lean angle is a, and it can be described by the value of . = −

To the same case, the minus of and can represent the body center of gravity
deviate from the X axis. = −

 A Fatigue Detect System Based on Activity Recognition 307

2.3 System Architecture

In this section, we propose our system architecture of the posture recognition system
based on Body Sensor Networks, the system architecture is depicted in Fig .4. The
system is composed of several cushions with pressure sensors, the raw data was col-
lected to the central coordinator for processing.

Fig. 4. Fatigue Detection System Architecture Based on BSNs

Each sensor node is composed of three modules: cushion module (we use the FSR
sensors to acquire the raw data), processing module (we use Arduino board to process
the data from the FSR) and transmitting module (we use CC2530 to send the signals
to the coordinator).

The processing module of each sensor node is an Arduino MEGA 2560 MCU, it
has the function of low energy consumption, high sampling rate and high processing
speed, so it can be widely used in the field of sensor data acquisition and industrial
automation. The sensor data is collected and sent to the coordinator node (i.e. a com-
puter or smart phone acting as the BSNs coordinator) through the wireless communi-
cation use CC2530. The coordinator is in charge of further data processing and giving
the results of the human posture recognition.

3 Experiments

In this paper, we mainly focused on two directions: Fx (the pressure force between left
and right), Fy (the pressure force between front and back).

There is an important point of educational psychology "the adolescent can continue
focus the attention about 10 to 30 minutes, adult can continue focus attention about 30
to 50 minutes", that’s why there is only 45 minutes of a lesson, even the adult’s class-
room is not exceed an hour.

In our experiments, we found out the subject gets tired after about an hour of work-
ing activity. The experiment were carried out on 4 subjects working at computers. The
average age is 24. To avoid any bias, we requested subjects to refrain from caffeine
for 4 hours before taking the experiment and alcohol for 24 hours.

As the participant sits on the chair, he/she work just as usual for a whole duration
of two hours. The smart cushion was placed at the center of the chair, people was

308 C. Ma et al.

sitting on it to cover every sensor, in order to make each sensor can detect the value of
the pressure.

The smart cushion acquires pressure sensory data, and the sampling frequency is
20Hz. We eventually analyzed the data in MATLAB.

We have collected 66 thousand samples for analyzing. Since the cushion pressure
data produced by people didn't make great changes in one second, we calculate the
mean value of every 20 data, i.e., every second. In Fig. 5-Fig. 6, the axis-X utilize one
second as a unit, and the axis-Y represents the force value of the pressure on the cush-
ion, it was measured by voltage. The compared results are shown in Fig.5-Fig.6.

Fig. 5. Fluctuations of Fx (a) in the first hour, (b) in the second hour

Fig. 6. Fluctuations of Fy (a) in the first hour, (b) in the second hour

Fig. 5(a) shows the lateral pressure data of every second in the first hour, we can
see that at the beginning of nearly 15 minutes, people do not work in the state. Later
people is working in the state, the pressure data is steady. Fig. 5(b) shows the pressure
data of the second hour. After about an hour later, people has suffering a short period
of fatigue. Then people still working as normal, after about 90 minutes people will
suffering a bit long period of fatigue.

Fig. 6 shows the frontal pressure data of the cushion. Comparing the two figures,
there are no clear signal to infer whether people is suffering fatigue.

For the sake of graphical clearness, in the following we choose data of a time
segment of 5 minutes (thus containing about 6000 samples) about one person. The

 A Fatigue Detect System Based on Activity Recognition 309

axis-X represent the sample data we have collected, and the axis-Y represent the val-
ue of the pressure on the cushion, it was measured by voltage.

We have interview the subject after two hours of work, he said he has great effi-
cient at the beginning of working, after worked for an hour, he’s suffering fatigue. So
in the following pictures, we choose two segments of period to analyze. In each of the
following figures, plots on the left are referred to the beginning of the experiment
(working period from 10th minute to the 15th), while plots on the right corresponds to
a working period from 70th minute to the 75th.

Fig. 7. Fluctuations of Fx (a) at the beginning, (b) an hour later

Fig. 8. Fluctuations of Fy (a) at the beginning, (b) an hour later

Specifically, Fig. 7(a) shows lateral pressure data of the cushion. Compared with
Fig. 7(a), Fig. 7(b) shows the activity level after over an hour: we can see that the
activity level is lower with respect to the beginning; we can infer that people is suffer-
ing fatigue.

Fig. 8 depicts frontal pressure of the cushion: in this case there are not clear chang-
es in the signal.

Through the analysis of the two sets of data we know that the subject is initially ac-
tive on the chair (pressure data fluctuates) while starts gradually to move less on the
chair (pressure data are more stable to a constant value) as the fatigue appears and
he/she might stay still or rely on the back of the chair.

310 C. Ma et al.

4 Conclusion

On the basis of our results, we know that pressure data on front-back chair direction is
not useful in determining user fatigue, but the pressure data from the sides of the chair
can be effectively used to detect fatigue condition. The experimental results describe
that when users are suffering fatigue their posture is stable and with lower activity.

In this paper, firstly, the mental fatigue experiment was designed and the hardware
of smart cushion was introduced. Secondly, the proposed method was used to acquire
pressure sensor data from the instrumented cushion and the system architecture based
on BSNs was introduced. Furthermore, data were analyzed in MATLAB and experi-
ment results have been discussed. Results prove that a kind of fatigue can actually be
detected by a chair equipped with a smart cushion such as the proposed one.

Future research will be devoted to acquire more data to quantify people’s normal
activities; in addition we plan to use Cloud technologies [15, 16] to perform online
data processing, in order to get a precise real-time estimation of fatigue condition.

Acknowledgments. This paper is supported by National "Twelfth Five-Year" Plan
for R&D Technology (No.2012BAJ05B07).

References

1. Lal, S., Craig, A.: A critical review of the psychophysiology of driver fatigue. Biological
Psychology 55(3), 173–194 (2001)

2. Nakane, H., Toyama, J., Kudo, M.: Fatigue detection using a pressure sensor chair. In:
2011 IEEE International Conference on Granular Computing, pp. 490–495 (2011)

3. Holmes, G.P., Kaplan, J.E., Gantz, N.M., et al.: Chronic fatigue syndrome: a working case
definition. Ann Intern. Med., 387–389 (1988)

4. Lo, B., Yang, G.: Body Sensor Networks – Research Challenges and Opportunities. In:
2007 IET Seminar on Antennas and Propagation for Body-Centric Wireless Communica-
tions, pp. 26–32 (2007)

5. Kuroda, M., Tamura, Y., Kohno, R., Tochikubo, O.: Empirical evaluation of zero-admin
authentication for vital sensors in body area networks. In: 30th Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society, pp. 2349–2352 (2008)

6. Chulsung, P., Chou, P.H.: Eco: ultra-wearable and expandable wireless sensor platform.
In: International Workshop on Wearable and Implantable Body Sensor Networks, pp. 165–
168 (2006)

7. Bellifemine, F., Fortino, G., Giannantonio, R., Gravina, R., Guerrieri, A., Sgroi, M.:
SPINE: A domain-specific framework for rapid prototyping of WBSN applications. Soft-
ware Practice and Experience 41(3), 237–265 (2011)

8. Fortino, G., Giannantonio, R., Gravina, R., Kuryloski, P., Jafari, R.: Enabling Effective
Programming and Flexible Management of Efficient Body Sensor Network Applications.
IEEE Transactions on Human-Machine Systems 43(1), 115–133 (2013)

9. Li, W., Bao, J., Fu, X., Fortino, G., Galzarano, S.: Human Postures Recognition Based on
D-S Evidence Theory and Multi-sensor Data Fusion. In: 2012 12th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGrid), May 13-16, pp. 912–
917 (2012)

 A Fatigue Detect System Based on Activity Recognition 311

10. Ito, T., Mita, S., Kozuka, K., Nakano, T., Yamamoto, S.: Driver blink measurement by the
motion picture processing and its application to drowsiness detection. In: 5th IEEE Inter-
national Conference on Intelligent Transportation Systems, pp. 168–173 (2002)

11. Xing, L., Guang, H., Guangteng, M., Yanshan, C.: A new method for detecting fatigue
driving with camera based on OpenCV. In: International Conference on Wireless Commu-
nications and Signal Processing, pp. 1–5 (2011)

12. Iampetch, S., Punsawad, Y., Wongsawat, Y.: EEG-based mental fatigue prediction for
driving application. In: Biomedical Engineering International Conference, pp. 1–5 (2012)

13. Patterson, M., McGrath, D., Caulfield, B.: Using a tri-axial accelerometer to detect tech-
nique breakdown due to fatigue in distance runners: A preliminary perspective. In: Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, pp.
6511–6514 (2011)

14. http://www.interlinkelectronics.com/FSR406.php
15. Fortino, G., Di Fatta, G., Pathan, M., Vasilakos, A.V.: Cloud-Assisted Body Area Net-

works: State-of-the-Art and Future Challenges. ACM Wireless Networks, 1–20 (to appear,
2014)

16. Fortino, G., Parisi, D., Pirrone, V., Di Fatta, G.: BodyCloud: A SaaS Approach for Com-
munity Body Sensor Networks. Future Generation Computer Systems 35(6), 62–79 (2014)

Modelling the Performance of a WSN

with Regard to the Physical Features Exhibited
by the Network�

Declan T. Delaney and Gregory M.P. O’Hare

Clarity: Center for Sensor Web Technologies,
School of Computer Science and Informatics

University College Dublin,
Dublin, Ireland

{declan.delaney,gregory.ohare}@ucd.ie

Abstract. Wireless Sensor Networks(WSNs) have matured to a point
where they present a realistic technology for monitoring non critical sys-
tems in industrial, office and domestic environments. This in turn will
lead to an increased number of applications using WSN technology, each
requiring a unique response from the underlying network. Due to the na-
ture of WSN communications these different network requirements are
achieved using a variety of communication tools. With ever increasing
number and complexity of tools available it becomes difficult to choose
which tool is best suited for an application in a given deployment.

In this paper we introduce a procedure to model the WSN network
based on its physical features with the aim to give insight into the best
solution for a particular deployment. We determine how each physical
feature effects the ability of a communication solution to provide a qual-
ity of service for an application. We build a model of the network based
on these physical features. The model is then tested to determine if it
can be effectively used to compare communication solutions. We examine
the model, built on simulation data, using three network solutions each
based on the RPL routing protocol. Each solution differs in choice of
routing metric with ETX, ETX-NH and ETT used in the comparisons.
Each solution is tested over a range of physical characteristics which
describe a network.

1 Introduction

WSNs presents both a cost benefit over wired solutions and a platform to develop
new services for many application spaces [5,11]. This presents a technology ripe
for increased industry adoption. With increasing industry attention a host of
WSN applications are expected to enter the market.

However, introducing large numbers of new applications over a wide range
of deployments presents a challenge using currently used processes. Due to the

� This work is supported by Science Foundation Ireland under grant 07/CE/I1147.
The authors would like to thank the reviwers for their insightful comments.

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 312–324, 2014.
c© Springer International Publishing Switzerland 2014

Modelling the Performance of a WSN with Regard to the Physical Features 313

complex nature of WSN dynamics, selecting the network tools which best facil-
itate the necessary requirements for the application is a difficult task. Current
practices deal with this in one of three ways: (i) implementing a communication
solution for the application based on previous experience but with no guaran-
tee it will fulfil requirements for a particular deployment, (ii) testing each net-
work deployment with a number of possible solutions and selecting the solution
which best fits the set of requirements, or (iii) design of the network based on
a communication solution with supervision necessary throughout the networks
lifetime [18]. Most or all of these solutions require two aspects which introduce
difficulties for production at scale:

– Expert network knowledge is needed to develop applications. The developer
must understand the mechanisms involved in the communication solution
and what network response they might induce for a given deployment. This
need for expert knowledge is a concern expressed in [17].

– Each deployment requires extensive testing or setup and monitoring. Testing
or monitoring each deployment introduces additional cost which may prove
prohibitive for home and office applications in particular.

This paper suggests that WSN communications can be modelled using key
physical characteristics of the network which define the response a communi-
cation technique elicits from the network. Basing a model on the physical fea-
tures that are easily obtained from a network deployment is key to reducing the
amount of testing required to characterise a deployment. The model can then be
used to advise on the best communication solution for a given set of requirements
in a particular deployment. The goal of this is to reduce the need for extensive
knowledge for application developers and to greatly reduce the amount of testing
required on individual networks before deployment. The paper presents a pro-
cess for testing and evaluating WSN communication solutions in order to build
a model which can be used for useful comparison. The process consists of three
phases:

1. Testing solution set.
2. Response modelling.
3. Response matching.

The process results in a system described in figure 1, whereby the most suitable
solution is obtained by simply entering a number of variables into the system.

This system is highly dependant on how well a network can be modelled. A
number of challenges arise, however, when attempting to perform experiments
which model a WSN for this process.

– Many physical features exist which may effect the response of a solution. We
wish to build the simplest model, with the fewest features. This set should
also consist of the physical features which effect the greatest influence over
the response. Determining this set is in itself challenging for two reasons:
(i) Each communication solution reacts uniquely to the physical features
of the network. Defining a set that incorporates the main influences for all

314 D.T. Delaney and G.M.P. O’Hare

Response Modeling

Fig. 1. The resultant system deriving from the testing process. The system requires
two inputs: the network requirements(Latency, Energy efficiency, Stability, Reliability),
and the physical features of the deployment we wish to find a communication solution
for.

solutions becomes more difficult. (ii) Removing features from the set may
leave certain response types not covered by the model.

– Even with extensive testing on a given deployment it remains difficult to
guarantee a level of QoS for a WSN. Determining in absolute terms how a
solution will perform on a particular deployment remains difficult even with
effective modelling.

– The chosen features must be those which are easily obtained from the net-
work in order to minimise the required testing on each network before
deployment.

The physical features used for testing are carefully chosen to ensure they en-
capsulate the main proponents determining the network response for each com-
munication solution. In order to do this we test a number of different solutions,
based on the RPL protocol, over a wide range of physical features. We evaluate
the extent of the effect each feature plays in shaping the response, determining
which features are most prominent.

Using linear regression techniques over experimental data we build a model
that represents the response of a network. The eventual model will present heuris-
tics which inform the developer. The heuristics can be used in the form: Solution
A shows effect on metric B for physical scenario C, eg. ETX shows superior
packet reliability for networks with network radius greater than 5 hops. In sum-
mary we make the following contributions in this paper:

– Define a set of features of a physical network that are best disposed to
characterise a response from the network over a number of communication
solutions.

– build a model for each communication solution which presents the trends
seen in the network response, in terms of latency, reliability, energy efficiency
and stability, as each physical feature changes.

– Test the model and compare communication solutions so that the findings
can be used to direct decision making in future deployments.

Modelling the Performance of a WSN with Regard to the Physical Features 315

The remainder of the paper is structured with the following section detailing
the work in the field relating to both WSN systems and modelling techniques.
Section 3 discusses the set of physical features used to characterise the network
with section 4 detailing the process involved in testing the feature set. Section 5
introduces the techniques used to model the network using physical feature data
set and provides an evaluation of the models accuracy. The final section presents
a conclusion to the work and furnishes possible future work for the method.

2 Related Work

Two related fields of WSN research coalesce within this paper. The first pertains
to an overall system that introduces another layer of abstraction away from the
network for the benefit of an application developer. The second pertains to the
modelling of a WSN network. As both research fields exhibit a rich body of work
the previous and related work for each are discussed separately.

WSN Systems. A huge body of work is available with regard to WSN sys-
tems. We will describe a few of the major contributions that lead us to the work
presented in this paper. The advent of modular OSs such as contiki and TinyOS
allowed application developers to “plug in” different network solutions based on
their applications needs. Various additional layers such as chameleon [10] were
introduced so that MAC layer protocol could be easily interchangeable with rout-
ing layer protocol to create highly tailored communication solutions. Despite the
mechanism for implementing a highly tailored solutions becoming more feasible,
the ability to choose the most appropriate solution remained difficult. Com-
munication solutions are tested and evaluated using disparate processes leaving
results that require extensive WSN knowledge to interpret and are unsuitable
for comparison.

Some solutions exist that require little or no WSN knowledge. The Wire-
lessHart [18] system however is not self organised and requires extensive network
setup and network management which is only suitable for industrial applications.
The Routing Protocol for Low power and lossy networks(RPL) [20] represents
an industry standard solution that can be highly tailored for an applications
needs. Many of RPLs capabilities as a protocol are untested leaving little scope
for extensive comparison.

Network Modelling. A survey of modelling techniques is undertaken by
Jacaub et. al. [13] detailing the type and scope of modelling available for WSNs.
The models range from modelling node components [8,3,14], to channel mod-
elling [19], to whole system modelling [7]. The node based techniques aim to
model all components to present a layer of abstraction from particular architec-
ture or operating systems upon which applications can be designed. The mod-
elling approach for the entire system presented in the survey focuses again on
component analysis and how each component works together without eluding to
how different components can effect the overall network performance.

A number of techniques use Markov chains to model the link and route be-
haviour within a network [12,1] with a focus on network performance. Kamthe

316 D.T. Delaney and G.M.P. O’Hare

et. al. [12] present a fine grained model of WSN links using a multi level approach
to model both long and short term dynamics on the links. Empirical data is used
when building the model and the approach proves effective for modelling packet
reception rates over a range of link factors including channel fading and packet
frequency. Chiasserini and Garetto [1] present a network model based on Markov
chains. The approach is agnostic of routing protocol used but assumes a consis-
tent protocol throughout. The system consists of three individual components:
the sensor model, the network model and the interference model. The network
model is based on a queueing network where each sensor holds a buffer of packets
to be forwarded. The model does not consider the possibility of dropped packets
focusing solely on energy cost and time delay through each queue. The model
proves effective at determining time delay of packets through the network. How-
ever, as reliability is considered a vital evaluation metric, the proposed model
cannot be used for direct comparison of communication solutions.

A fundamental difference exists between the modelling suggested in the lit-
erature and the modelling undertaken in this paper. The literature describes a
number of techniques to determine a generic model of a WSN usually based on
component or link characteristics. The models presented are useful for higher
level application development or even improving simulation precision for WSN.
This paper describes a method to determine a performance model of specific
communication solutions based on physical characteristics of a network. The
benefit of which is to directly compare solutions without the need for extensive
testing or WSN specific knowledge. With the exception of [12], all models pre-
sented in the literature are based on theoretical reasoning where as the models
presented in this paper are derived explicitly from empirical testing data.

3 Physical Features

A key proponent to the success of the proposed system lies in the physical fea-
tures chosen to model the network response. A large limiting factor applies to
any feature which may be used. This states that any feature must be easily har-
vested from the network to minimise the amount of testing on each deployment.
We refine this further to state that features must be available to simple packet
probing contained within the networks own infrastructure negating the need for
additional debugging tools. This allows the possibility of a fully functional fea-
ture set to be garnered from a connected remote location, further reducing the
cost of testing a deployment. With this constraint in mind we define a feature
set consisting of:

– Primary
1. Size of network (number of nodes in the network).
2. Network density (average over node densities).
3. Network scale (average over individual node diameters).
4. Channel quality.

Modelling the Performance of a WSN with Regard to the Physical Features 317

– Secondary

1. Network density (standard deviation).
2. Network scale (standard deviation).

While this does not constitute an exhaustive set of features, it does satisfy our
main constraint and provides results which validate the suggested system. Fig-
ure 2 illustrates these features with further discussion on each provided.

Subject node Node Root node Engaged node

Node radio range Radio link

(a) Size is 22: Total num-
ber of nodes that consti-
tute the network.

(b) Node density, 6: Num-
ber of nodes within com-
munication range.

(c) Node diameter, 4: Min-
imum number of hops nec-
essary to reach the root.

Low Density

High Density

(d) Illustrating a high standard de-
viation in terms of network density.
This scenario can occur when a num-
ber of highly sensed environments ex-
ist with sparsely sensed environments
within the same network.

High Diameter

Low Diameter

(e) Illustrating a high standard de-
viation with regard to network scale.
This occurs commonly within buildings
when nodes in geographically spaced
rooms exist on the same network.

Fig. 2. Illustration of the manifestation of the physical features in the network

The size, density and scale are linked, with each feature dependant on the
other two. Eg., if density and network scale are both high, the network size must
be large or, high density with low number of nodes would indicate a low scale.
The dependency is defined in table 1 outlying the Pearson correlation [15] be-
tween each variable. These facets also represent the main aspects of the network

Table 1. Pearson correlation between dependent variables

Variable pair ρ

Density - Scale -0.5493
Size - Density 8.9518e-04
Scale - Size 0.5843

318 D.T. Delaney and G.M.P. O’Hare

topology. Depending on the application the size can greatly effect the amount of
packets sent in the network. Density effects the channel contention with scale ef-
fecting hop count in the network greatly affecting latency, reliability and energy
efficiency in the network. Taking the average density and scale over the whole
network gives a good insight into the network topology but does not present a
full picture. The scenarios shown in Figures 2d and 2e are common and cannot
be expressed using node averages. The standard deviation then becomes im-
portant to determine these features. A taxonomy of the network composing of
these features is easily obtained by each node sending its list of neighbours to a
centralised point.

The channel quality is of importance to the packet reception ratio(PRR) on
each link. Increasing the average channel quality across the network will increase
PRR dramatically affecting the evaluation metrics. Taking an average of the
channel quality of all links to a node may not fully represent the quality of
the channels that actually get used within the network and as a result may
not fully represent performance. This can occur when many “fringe” neighbours
appear to a node, none of which are chosen for communication. A more accurate
description of the used channel can be achieved by also using the best quality
channel available to each node. A number of measurements are used to assess
channel quality including LQI and RSSI. Such measurements are available using
the CC2420 chipset synonymous with WSN communications.

4 Testing

In order to validate the proposed system and determine if physical features are fit
for the purpose of modelling the response of a network a number of experiments
were undertaken. The purpose of the experiments was to provide data to build a
network response model for a number of different communication solutions. The
goal was to present an easy form for compassion between the communication
solutions. We measured the response of the network in terms of four evaluation
metrics: reliability, latency, efficiency and stability. Reliability is the measure
of how many sent packets get received at the root as a percentage. Latency is
an average over each node in the network. The nodes latency is the average
time a packet, originating from that node, takes to reach the root. Efficiency
is measured in packets sent. This includes all application packets forwarded
through the network. Stability is measured as the number of route changes to
occur in the network during the experiment.

Experiments were conducted on the TOSSIM simulator with TinyOS used
as the sensor platform for each. Each experiment was run in simulation for a
network time of one hour with each node in the network sends a packet to the
root each minute. The RPL routing protocol was used as the routing protocol
for all experiments. RPL is fast becoming a new standard for WSN protocol and
represents the state of the art for industry deployment. Three distinct solutions
were implemented using RPL by using three different metrics to calculate routes:
Expected Transmissions(ETX) [2], Expected Transmissions with Neighbourhood

Modelling the Performance of a WSN with Regard to the Physical Features 319

Heuristics(ETX-NH) [4][6] and Expected Transmission Time(ETT) [9]. As nei-
ther RSSI or LQI is available in simulation to measure the channel quality across
the network two different noise traces were used to vary the quality of the chan-
nel. The traces are a set of real noise traces taken from the Meyer library at
Stanford University. The “Meyer light” trace represents minimal interference
noise while the “Meyer heavy” trace represents a more difficult communication
scenario.

Figures 3, 4, 5 and 6 display the raw data collected from the experiments.
Figures 3, 4 and 5 show the network response for each solution as the density,
scale and size of the network vary under the light trace. Figure 6 shows how the
network response changes when the heavy trace is used. Data for the standard
deviation while used in modelling is not shown for brevity.

50 100 150 200 250
50

55

60

65

70

75

80

85

90

95

100

50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

50 100 150 200 250
0

2

4

6

8

10

12
x104

50 100 150 200 250
0

200

400

600

800

1000

1200

1400

1600

Re
lia
bi
lit
y

La
te
nc
y

St
ab
ili
ty

Ef
fic
ie
nc
y

Size

TT
NH
ETX

E

Fig. 3. Network response from each solution as size varies. Tests examined the response
of the network with size 50, 100, 150, 200 and 250 nodes in the network.

Figure 3 shows all evaluation metrics following a general trend towards poorer
results as size increases. Reliability and stability for both ETX and ETX-NH are
well defined as size varies with latency and efficiency showing poor correlation.

Figure 4 shows a large impact on both reliability and latency effected by
the change in density for all communication solutions. Neither efficiency nor
stability are affected greatly by a change in density, however, density still proves a
important tool for comparing each solution with regard to efficiency and stability.
Each solution presents significant performance difference in terms of stability
using density to compare solutions with NH presenting marked improvements
over the other solutions. Both NH and ETX present an improvement over ETT
with regard to network efficiency.

High correlation between scale and each metric performance is seen from
figure 5. This presents scale as a good indicator of how well a solution might
perform in the network. It remains difficult to distinguish between solutions at
small scales however higher contrast emerges as scale increases. A particular
nuance with reliability is noticed for ETT over increasing scale. ETT shows

320 D.T. Delaney and G.M.P. O’Hare

5 01 05 21 25 61
51

55

71

75

81

85

91

95

. 1

. 5

011

5 01 05 21 25 61
1

1315

130

1305

132

1325

136

1365

134

5 01 05 21 25 61
1

2

4

7

9

01

02
x014

5 01 05 21 25 61
1

211

411

711

911

0111

0211

0411

0711

Density
Re
lia
bi
lit
y

La
te
nc
y

St
ab
ili
ty

Ef
fic
ie
nc
y

TT
NH
ETX

E

Fig. 4. The average network density is used for plotting. The density experienced
during testing range from 5 to 29 nodes.

1 2 3 4 5 6 7 8 9
50

60

70

80

90

100

110

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9
−2

0

2

4

6

8

10

12
x104

1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

1400

1600

Scale

Re
lia
bi
lit
y

La
te
nc
y

St
ab
ili
ty

Ef
fic
ie
nc
y

TT
NH
ETX

E

Fig. 5. Scale is measured as the average diameter for each node. The scale ranges from
1.2 to 8 hops.

improved reliability over both competitors for scale less than 4.5 hops. Over this
threshold however ETT performs poorly in comparison. This may result from
an error in implementation rather than a fault inherent in the metric itself. ETX
handles increasing scale more gracefully with regard to reliability.

Figure 6 presents each solutions performance under light and heavy channel
interference. As expected, degraded channel quality has a significant effect on
network reliability. Stability and latency are also heavily effected. It is clear that
there are many insights to be garnered from the data presented. Certainly, the
physical features chosen present a strong case for network performance character-
isation visually. It is important that the performance can be modelled efficiently
using the physical features for the purpose of solution comparison.

Modelling the Performance of a WSN with Regard to the Physical Features 321

5 501 502 506 507 508 509 50. 503 504 1
5

855

1555

1855

2555

2855

6555

5 501 502 506 507 508 509 50. 503 504 1
25

65

75

85

95

. 5

35

45

155

5 501 502 506 507 508 509 50. 503 504 1
5

501

502

506

507

508

509

50.

5 501 502 506 507 508 509 50. 503 504 1
5

2

7

9

3

15

12
x157

Re
lia
bi
lit
y

La
te
nc
y

St
ab
ili
ty

Ef
fic
ie
nc
y

Channel
quality

TT
NH
ETX

E

Fig. 6. The quality of the channel is determined via the noise trace used in the simu-
lation. The noise trace represents light or heavy noise interference.

5 Modelling

The model is built with the statistical package R [16] using the data taken
from simulation. We use multiple linear regression to build each facet of the
model. For each solution we use least squares linear regression to model how
each metric responds over the set of physical features. Each physical feature
is deemed an individual predictor variable with each of the evaluation metrics
acting as response variable. Performing a T-test we determine the features that
constitute a significant role in shaping the response for each metric. Table 2
highlights these significant features.

Table 2. Showing the significant predictor variables for modelling the response of each
evaluation metric as determined by a T-test

Predictor variables
Communication
solution

Evaluation
metric

Density Scale Size Density (sd) Scale (sd)
Channel
quality

NH

reliability * *** ***
Latency *** ** * ***
Efficiency *** *** * *
Stability * ** ***

ETX

Reliability ** ** *** ***
Latency ** *** ** ***
Efficiency *** *** ** * ***
Stability ** *** ***

ETT

Reliability *** *** *** ***
Latency ** ** ***
Efficiency *** *** ***
Stability * *** ***

* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001

322 D.T. Delaney and G.M.P. O’Hare

The table shows the importance of scale, size and the communication channel
in determining the response for nearly all cases. These individual models are
used to determine whether the proposed approach can reliably determine the
correct solution to use in a network given a set of requirements. In order to
achieve this we break the problem down into a set of smaller problems, asking
whether we can determine an ordered list of performance capabilities per metric
for each solution, i.e. for any given set of physical features the model determines
the order of the solution performance from best to worst for each evaluation
metric. Table 3 shows how accurate the model is at determining the placement
for each metric on test data obtained from the TOSSIM simulator.

Table 3. Model accuracy over a test data set. The table shows the accuracy at deter-
mining the top (1), middle (2), and worst(3) performing solutions for each metric.

Reliability Latency Efficiency Stability

1 76.68% 85.7% 50.43% 78.25%
2 71.8% 61.92% 55.7% 63.25 %
3 81.39% 77.95% 59.81% 67.88%

Despite using simple regression tools to build our model, we achieve up to
85% accuracy at predicting a solutions performance with regard to the other
two tested solutions. The prediction accuracy is not uniform over all metrics
however, with accurately predicting efficiency proving most difficult. The results
present a positive outlook for the prospect of using the physical features of the
network to compare communication solutions to find the best fit for a set of
requirements.

6 Conclusion and Future Work

This paper presents a case for using the physical features of a network as a
basis to model the response of a communication solution in terms of reliability,
latency, efficiency and stability. The purpose of the model is to provide a tool
for application developers to help choose the most appropriate communication
solution for a deployment without the need for extensive WSN knowledge or
prior testing of the network deployment. The model uses linear regression over a
set of easily extracted physical features to predict the response of the network. A
linear regression model is built for each response metric desired in the network
per communication solution. Using these models, direct comparison between so-
lutions is achievable. Training and testing the model is performed on simulation
data using three distinct solutions each using the RPL routing protocol. Evalua-
tion on a test set demonstrates an accuracy of up to 85% when comparing these
solutions to determine the best performance for a given evaluation metric when
using the model. This research shows some promise for using physical features
to model a network response. As the list of physical features used for modelling

Modelling the Performance of a WSN with Regard to the Physical Features 323

can not be considered exhaustive, future work will include testing a wider set
of physical features to determine their significance on network response. Testing
and evaluation on real network nodes is also necessary to provide data to build
increasingly more sophisticated models for more accurate prediction.

With additional testing and increasingly more effective models in place, this
method may be fit for use within a larger system aimed at realising the automatic
network. The automatic network aims to adopt a suitable communication solu-
tion for a deployment without the need for extensive testing or expert knowledge
with the method described in this paper providing a critical role in the system.

References

1. Chiasserini, C.F., Garetto, M.: Modeling the performance of wireless sensor net-
works. In: INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE
Computer and Communications Societies, vol. 1, p. 231 (March 2004)

2. De Couto, D.S.J., Aguayo, D., Bicket, J., Morris, R.: A high-throughput path met-
ric for multi-hop wireless routing. In: Proceedings of the 9th Annual International
Conference on Mobile Computing and Networking, MobiCom 2003, pp. 134–146.
ACM, New York (2003)

3. Dearle, A., Balasubramaniam, D., Lewis, J., Morrison, R.: A component-based
model and language for wireless sensor network applications. In: 32nd Annual
IEEE International Computer Software and Applications, COMPSAC 2008, pp.
1303–1308 (July 2008)

4. Delaney, D.T., Higgs, R., O’Hare, G.M.P.: A stable routing framework for tree-
based routing structures in wsns. IEEE Sensors Journal PP(99), 1–15 (2014)

5. Delaney, D.T., O’Hare, G.M.P., Ruzzelli, A.G.: Evaluation of energy-efficiency in
lighting systems using sensor networks. In: BuildSys 2009, pp. 61–66. ACM, New
York (2009)

6. Delaney, D.T., Xu, L., O’Hare, G.M.P.: Spreading the load in a tree type routing
structure. In: Proceedings of the IEEE 22nd International Conference on Computer
Communications and Networks (ICCCN 2013). IEEE (2013)

7. Diaz, M., Garrido, D., Llopis, L., Rubio, B., Troya, J.: A component framework for
wireless sensor and actor networks. In: IEEE Conference on Emerging Technologies
and Factory Automation, ETFA 2006, pp. 300–307 (September 2006)

8. Dietterle, D., Ryman, J., Dombrowski, K., Kraemer, R.: Mapping of high-level
sdl models to efficient implementations for tinyos. In: Euromicro Symposium on
Digital System Design, DSD 2004, pp. 402–406 (August 2004)

9. Draves, R., Padhye, J., Zill, B.: Routing in multi-radio, multi-hop wireless mesh
networks. In: Proceedings of the 10th Annual International Conference on Mobile
Computing and Networking, MobiCom 2004, pp. 114–128. ACM, New York (2004),
http://doi.acm.org/10.1145/1023720.1023732

10. Dunkels, A., Österlind, F., He, Z.: An adaptive communication architecture for
wireless sensor networks. In: Proceedings of the 5th International Conference on
Embedded Networked Sensor Systems, SenSys 2007, pp. 335–349. ACM Press, New
York (2007), http://doi.acm.org/10.1145/1322263.1322295

11. Furtado, H., Trobec, R.: Applications of wireless sensors in medicine. In: MIPRO,
2011 Proceedings of the 34th International Convention, pp. 257–261 (May 2011)

http://doi.acm.org/10.1145/1023720.1023732
http://doi.acm.org/10.1145/1322263.1322295

324 D.T. Delaney and G.M.P. O’Hare

12. Kamthe, A., Carreira-Perpiñán, M.A., Cerpa, A.E.: M&M: multi-level Markov
model for wireless link simulations. In: Proceedings of the 7th ACM Conference on
Embedded Networked Sensor Systems, SenSys 2009, pp. 57–70. ACM, New York
(2009)

13. Khalil Jacoub, J., Liscano, R., Bradbury, J.: A survey of modeling techniques
for wireless sensor networks. In: SENSORCOMM 2011, The Fifth International
Conference on Sensor Technologies and Applications, pp. 103–109 (2011)

14. Mozumdar, M.M.R., Gregoretti, F., Lavagno, L., Vanzago, L., Olivieri, S.: A frame-
work for modeling, simulation and automatic code generation of sensor network
application. In: 5th Annual IEEE Communications Society Conference on Sen-
sor, Mesh and Ad Hoc Communications and Networks, SECON 2008, pp. 515–522
(June 2008)

15. Pearson, K.: Mathematical contributions to the theory of evolution. iii. regression,
heredity, and panmixia. Philosophical Transactions of the Royal Society of London.
Series A, Containing Papers of a Mathematical or Physical Character 187, 253–318
(1896), http://www.jstor.org/stable/90707

16. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2013),
http://www.R-project.org/, ISBN 3-900051-07-0

17. Rubio, B., Diaz, M., Troya, J.M.: Programming approaches and challenges for
wireless sensor networks. In: International Conference on Systems and Networks
Communication, p. 36 (2007)

18. Song, J., Han, S., Mok, A., Chen, D., Lucas, M., Nixon, M.: Wirelesshart: Applying
wireless technology in real-time industrial process control. In: Real-Time and Em-
bedded Technology and Applications Symposium, RTAS 2008, pp. 377–386. IEEE
(2008)

19. Vasilevski, M., Beilleau, N., Aboushady, H., Pecheux, F.: Efficient and refined
modeling of wireless sensor network nodes using systemc-ams. In: Research in Mi-
croelectronics and Electronics, PRIME 2008. Ph.D, pp. 81–84 (June 2008)

20. Winter, et al.: RPL: Ipv6 routing protocol for low power and lossy networks. Tech.
rep., IETF-ROLL (2012)

http://www.jstor.org/stable/90707
http://www.R-project.org/

EMCR : Routing in WSN Using Multi Criteria

Decision Analysis and Entropy Weights

Suman Sankar Bhunia1, Bijoy Das1, and Nandini Mukherjee2

1 School of Mobile Computing & Communication,
2 Department of Computer Science & Engineering,

Jadavpur University, Kolkata, India
{bhunia.suman,mantunsec}@gmail.com, nmukherjee@cse.jdvu.ac.in

Abstract. Nowadays wireless sensor networks (WSN) are widely used
in diffrent applications. In any network (traditional network or WSNs),
route finding is the key support for network transmission technology. In
WSN, efficient routing algorithm is very important. But the realization
of efficient algorithm is not so easy because of many routing parameters
of the network and resource constrained nature of the sensor nodes. This
paper proposes an efficient and multi-hoping routing algorithm which is
able to choose an efficient route between available routes while consid-
ering multiple important criteria for taking routing decisions and at the
same time providing balance in energy consumption across all the sensor
nodes. This proposed scheme is based on multi-criteria decision analysis,
where multiple criteria, such as residual energy, frequency (number of
packets received) and hop count are taken into account. Entropy weight
method is used to assign the weighted values on each criterion. The best
alternative route is selected using Weighted Product Model (WPM). The
scheme has been implemented using TinyOS, an event-driven operating
system designed for wireless sensor network.

Keywords: WSN, Routing, Multi criteria decision analysis, Entropy.

1 Introduction

Wireless sensor network is a self-organizing wireless network system which en-
ables densely deployment of low cost, low power nodes. These nodes collect and
process data and cooperatively report them using ad-hoc network protocols and
algorithms. The collected data are routed to the destination via other intermedi-
ate nodes. The features of the WSN are dynamic because of unreliable commu-
nication through wireless network, and frequent changes in topology. Hence it is
required to adopt a routing algorithm which creates the routing path on-demand.
Basically on-demand routing algorithm follows the following steps: starting from
the source node, the next hop node is selected from the neighbours and finally
the data reaches the destination.

The various constraints of the WSNs lead to set optimization problem in
designing energy-efficient routing algorithms. Besides energy efficiency of the

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 325–334, 2014.
c© Springer International Publishing Switzerland 2014

326 S.S. Bhunia, B. Das, and N. Mukherjee

network, there are other application goals which need to be achieved while trans-
mitting data through the network. An example of these goals may be fast data
delivery which requires using the minimum distance path from source node to
the sink node. But most existing routing protocols in WSNs are proposed to
solve only one of these goals. For example, EAGR [1] and GEAR [2] routing
algorithms are designed to aim at finding only the shortest distance. Directed
diffusion [3] routing algorithm is a fault tolerant algorithm which is suitable to
handle unstable communication. There are also some routing protocols in WSN
which select the next hop by considering only one criterion i.e. either energy
[4][5] or distance [6]. But they cannot balance the energy consumption.

Thus, for most of the exisiting routing algorithms, next hop is selected ran-
domly or based on residual energy, node density or distance from the sink node.
If next hop is selected based on residual energy, other important performance
metrics may be overlooked. For example, this node may be located far away from
the sink node compared to other neighboring nodes. In this case end-to-end de-
lay will increase as the path length (i.e. hop count) increases. Similarly, if next
hop node is selected based on the shortest path (i.e. minimum hop count), then
similar type of problem arises. A node near to sink node, but with low residual
energy may get selected as the next hop. Hence single criterion does not always
provide efficient routing decisions. So an ideal next hop selection is made based
on the multiple criteria. Handling of multiple criteria to select the next hop is
solved by multi-criteria decision analysis method [7].

In this paper, an algorithm is proposed which maintains balanced energy
consumption among the nodes with consideration of minimum hop count using
multiple criteria together. Multi criteria decision analysis (MCDA) method is
used to solve decision problems with multiple criteria. MCDA method compares
multiple alternatives where each alternative consists of multiple criteria and each
criterion is assigned with a weighted value. There are different methods in MCDA
to solve the decision problems. In our proposed scheme, Weighted Product Model
(WPM) is applied for solving the decision making problem. Basically WPM
method consists of m number of alternatives and n number of criterion for each
alternative. To dynamically assign the weight on every criterion, this proposed
scheme consider entropy weight method [8].

Remainder of the paper is organized as follows. In Section 2, multi criteria
decision analysis is discussed. Subsequently, routing scheme using a multi criteria
decision model is proposed in Section 3 and calculation of weights using entropy
is discussed in 4. The implementation effort on TinyOS is briefed in Section
5 and evaluation of the scheme is presented in Section 6. Section 7 presents
related work. Finally, we conclude the paper with a direction for future work in
Section 8.

2 Multi-criteria Decision Analysis

Multi criteria decision analysis (MCDA) is a set of techniques as well an approach
of Operations Research [9]. It is also referred as multi-criteria decision making

MCDA Entropy 327

(MCDM). Instead of considering only a single criterion, here the decisions are
made by considering multiple criteria. Criteria may be classified into (i) benefit
criteria and (ii) cost criteria. A criterion is assumed to be benefit criterion when
higher the values are, the better it is. But a cost criterion is one which is better
when its values are lower. The decisionmaker takes logical and consistent decisions
that do not contradict each other. Its main aim is to provide an overall ordering of
options. The options are ordered from the most preferred to the least preferred. No
one option is there which achieves the entire objective. So the options are ordered
from the best to the worst based on the number of achieving objectives.

2.1 Weighted Product Model (WPM)

The weighted product model (WPM) is a popular multi-criteria decision analysis
(MCDA) method [10]. In the proposed routing scheme, this method is used for
solving the decision problem. Instead of addition, this method uses multiplication
to rank the alternatives. Each alternative is compared with others by multiplying
a number of ratios, one for each criterion. Each ratio is raised to the power
equivalent to the relative weight of the corresponding criterion. Basically in
order to compare two alternatives by using WPM, following calculation has to
be done.

Suppose there are n number of criteria and m number of alternatives or
options. Each alternative is denoted by A1, A2 and so on. Furthermore, let us
assume that all the criteria are benefit criteria. Next suppose that wj denotes the
relative weight of importance of the criterion Cj and aij is the performance value
of alternative Ai when it is evaluated in terms of criterion Cj . For cost criteria,
relative weight is denoted by (-wj). Thus we calculate the following ratio:

P (AK/AL) = Πn
j=1(aKj/aLj)

wj , where K �= L and K,L = 1, 2, 3....m (1)

If the ratio P (AK/AL) is greater than or equal to the value 1, then it is concluded
that AK is more desirable than AL .

The WPM may be illustrated in the following decision matrix in Figure 1. In
this matrix, there are three alternatives (A1,A2,A3) and three criteria (C1, C2,
C3). These criteria are assigned with three different weights (w1, w2, w3). x11 to
x33 are different values.
For example, if using the above decision matrix P (A1/A2) and P (A2/A3) are
calculated as follows:

P (A1/A2) = (x11/x21)
w1 × (x12/x22)

w2 × (x13/x23)
w3 > 1 (2)

C1 C2 C3

Alts. w1 w2 w3

A1 x11 x12 x13

A2 x21 x22 x23

A3 x31 x32 x33

Fig. 1. Decision Matrix Fig. 2. A scenario for routing

328 S.S. Bhunia, B. Das, and N. Mukherjee

P (A2/A3) = (x21/x31)
w1 × (x22/x32)

w2 × (x23/x33)
w3 > 1 (3)

then the ranking index is: A1 > A2 > A3

3 Proposed Routing Scheme

In this section, a routing scheme is proposed and discussed. The routing scheme
is named as : Entropy weighted Multi Criteria Routing (EMCR). In EMCR, it is
assumed that all the sensor nodes are deployed randomly and are not movable.
The position of the sink node is known. Every node is capable of receiving and
then forwarding the data to the next hop node until the data reaches its desired
destination. Selection of the next hop node from amongst the neighboring nodes
is an important issue for performance of the network. In Figure 2, Node N needs
to select one of its neighbor nodes x, y, z to forward the packet towards sink
node.

In this section, we present a scheme which implements WPM model of MCDA
based on three different criteria i.e. residual energy, frequency of packet trans-
mission and hop count.

Residual Energy: In WSNs, energy (i.e. battery power) is most important
feature for every node. Network lifetime is fully dependent on residual energy
across the nodes. More energy in nodes is always preferable.

Frequency: Here frequency means number of packets transmitted or forwarded
by a node. Higher the frequency, depletion of battery power is faster. Also,
chances of delay may escalate due to queuing in a busy node (ie. node with
higher packet transmission frequency). It means lower frequency is desired
for enhancing lifetime and faster delivery of data packets.

Hop count: A packet has to go through few intermediate nodes before reaching
destination or sink node. It is denoted as number of hops. Distance from
sink node may be described by number of hops. More distance implies more
energy consumption to transmit a packet. Minimum hop distance must be
considered to make the routing algorithm, energy efficient.

So, one benefit criterion and two cost criteria are considered in this routing
algorithm. The proposed algorithm uses these three criteria to determine the
product value applying WPM. One particular node cannot always remain the
next hop node. Next hop node is changed dynamically based on this product
value. It implies that dissipation of battery power is balanced across various
nodes. Thus, network lifetime is enhanced in this proposed algorithm.

Each node maintains a neighbor table containing the four fields :(i) Neighbor
node, (ii) Residual energy, (iii) Frequency, (iv) Hop count. The routing decision
is taken based on the neighbor table information. Here, the above mentioned
multiple parameters or criteria are used for making routing decisions. Routing
decision is made through the following few steps.

MCDA Entropy 329

Step 1: Node N applies WPM for each neighbor available in the neighbor table.
Index value or product value P (Ai) for each neighbor node is calculated
using WPM. The calculation is done taking the three parameters or criteria
for each of the neighbor nodes. The three criteria are residual energy (E),
frequency of packet transmission (F) and hop count from sink node (H). w1,
w2 and w3 are the weights assigned to these three criteria respectively. So,
the product value will be :

P (Ai) = (E)w1 × (F)w2 × (H)w3 (4)

Step 2: Now compare the product value of each neighbor node and select the
next hop node which has the highest product value P (A∗

i).
Step 3: After selecting the next hop node, source node sends the data packet

to this node.

Weights for different criteria (w1, w2 and w3) are calculated following the method
as mentioned in Section 4.

4 Calculation of Weights

Instead of assigning weights arbitarily, Entropy method of information theory,
is applied to calculate the weights in this proposed routing algorithm.

4.1 Information Theory

It is the mathematical theory which is based on statistics, concerned with the
transmission, storage, methods of coding, retrieval of information, in the form
of message or data. Basically, this theory defines the measure of information in
terms of probability. Information can be represented by the following equation
[8]:

I(p) = −logb(p) (5)

where p = probability of the event happening and b = base
There are many methods which are used to measure the information uncertainty.
Entropy method is one such method which is used in information theory.

4.2 Entropy in Information Theory

The theory of entropy was founded by Clausius in 1865. Entropy is used as a
useful tool in information theory as it measures the expected information con-
tent of a certain message. Entropy in information theory represents the amount
of uncertainty by using the discrete probability distribution. It is concluded by
using the probability distribution function that the more uncertainty is repre-
sented by broad distribution. Entropy also helps to compare various types of
risk and the sources of risk [11]. Entropy is generally credited to Shannon as it

330 S.S. Bhunia, B. Das, and N. Mukherjee

is the fundamental measure in information theory. Entropy is often defined by
the following equation [8].

H(X) = E[I(P)] = −E[logbP (X)] = −ΣP (X = x)logbP (X = x) (6)

where H = entropy of a discrete random variable X with possible values from
x1 to xn,
E = expected value operator,
b = base,
P (X) = probability mass function,

So from Equation 6, it is clear that entropy H(X) is directly proportional to
the degree of uncertainty or randomness of the measured variable. Smaller the
entropy implies smaller the uncertainty.

4.3 Entropy Based Weight Calculation

In the proposed routing scheme, this entropy is used to calculate the weight of
each criterion. The advantage of using this method is that it reduces the risk
and increases the performance. The procedure of calculating the weight of each
criterion is given below.

Step 1: We assume that there are m number of alternatives and n number of
criterion. Then the entropy of each criterion is calculated from the decision
matrix in Figure 1. Let, Ec is the entropy of criterion C. So Ec may be
derived from above-mentioned Equation 6.

H(X) = Ec =

n∑
i=1

(Pi)log(1/Pi) (7)

Step 2: Higher the entropy, weight of the particular criterion is lesser and vice
versa. Degree of unreliability (dc) of a particular criterion may be calculated
as:

dc = 1− Ec, ∀c (8)

Step 3: In order to calculate the weight(wc) of each criterion C:

wc =
dc∑n
j=1 dc

, ∀c (9)

So from the above calculation it may be concluded that weight is inversely
proportional to entropy.

It is also observed that the weight is a function of entropy. As entropy measures
the uncertainty and the weight of the criterion is inversely proportional to the
entropy, the highest index value will have lowest risk and vice-versa.

MCDA Entropy 331

5 Implementation

In order to test applicability and study the proposed EMCR routing scheme,
we have used open-source TinyOS [12] and Crossbow’s TelosB [13] motes as a
hardware platform. Wireshark is installed on Ubuntu as packet sniffing tool. All
the nodes are installed with the routing scheme and deployed in such a manner
that multi-hop communication may occur. Apart from the sink node, 10 nodes
are deployed.

In this proposed scheme, we have calculated the residual energy real-time. We
have not followed any static mathematical derivation for this calculation. Every
time to calculate the residual energy, we have called an event, voltage.readDone()
in nesC language. To keep track of the packet frequency, a counter value is
incremented after each packet transmission. Hop count is retrieved from the
HopsLeft field during the neighbor discovery.

Goal of this implementation is studying efficiency of the routing scheme. So, we
kept sending data packets through multiple hops to help in the observations later
on. Data flow remains towards the sink node. Energy consumption is tracked
throughout the experimentation in regular interval. Also, delay in sending a
packet is measured.

6 Results and Discussion

In this section, evaluation of the proposed EMCR routing algorithm is presented.
Results in terms of residual energy and delay, are discussed.

6.1 Residual Energy

Residual energy is fetched from the nodes in real time. Every node contains 3000
mV intially. We have performed 11 observations for each node starting from
node initiation. In each observation, the residual energy value is measured after
transmitting 10 packets because for each packet transmission, very small amount
of energy is consumed. In Figure 3, it can be seen that during packet transmission
the residual energy in each node is gradually decreasing. But more importantly it
may be observed that consumption of energy across all the nodes is almost equal.
It implies that packet loads are distributed among all the nodes. Therefore, it
can be concluded that this method ensures balanced energy consumption which
increases network lifetime.

6.2 Delay

We also measured end-to-end delay from the source node to the destination
node. The delay is determined by considering the difference between timestamps.
Timestamps are appended on the packets by the source node as well as the desti-
nation node. Also,Wireshark may be used to calculate the delay. 15 observations
are performed to measure the delay. In each observation, a packet is transmitted

332 S.S. Bhunia, B. Das, and N. Mukherjee

Fig. 3. Residual energy of intermediate nodes

Fig. 4. Delay from source to destination through multiple hops

through multiple hops. Figure 4 represents the delay from the source to the sink
node through multiple hops. In all the observations, delay is around 1 second
which is minimal.

7 Related Work

This section presents some of the research works which have been carried out
earlier in similar areas. In [14], the next hop node is selected in every hop based
on the hop count. In [15], the next hop node is selected based on the three
parameters i.e. distance, angle between two nodes and residual energy. In [16],
the next node is selected based on the three parameters serially. All these papers
use conventional methods for proposing routing algorithms.

Although many applications of MCDA are found in various other areas, to the
best of our knowledge little application of this method has been made in the area
of WSN routing. In [17], MCDA is applied in Geographical Information System
(GIS) to overcome the limitation of GIS. Also, MCDA has found its application
in content delivery networks [18]. Furthermore, lot of literatures are found where

MCDA Entropy 333

entropy weights are used in various MCDA applications. An entropy-based deci-
sion support system called e-FDSS is proposed in [19]. In [20], an application to
the determination of weights is given when interacting criteria are considered in
economics. Investment decisions are made using a MCDA method and weights
are assigned using entropy in [21].

In [22], an attempt is made for a routing scheme using multiple criteria but the
various weights are set static and reasons behind selection of particular weights
remains unexplained. In the present paper, we explored the implementation of a
multiple criteria-based routing using entropy weights in weighted product model.

8 Conclusion

In this paper, a WSN routing algorithm, EMCR, is proposed using multi criteria
decision analysis. The next hop is selected based on weighted product model and
the weights are calculated using entropy method of information theory. The multi
criteria includes residual energy, packet transmission frequency and hop count.
The main goal of this algorithm is to provide balanced energy consumption
accross all the sensor nodes with minimum delay.

In future, this algorithm may be improved to provide security, recovery of
faulty node in case of node failure etc. Also, we may try to involve more crite-
ria for making the routing decisions. The algorithm may be modified incorpo-
rating node mobility. Currently, the algorithm does not take into account the
application goal. A subjective MCDA method may be used to focus of specific
application goals.

Acknowledgment. Research of first author is supported by TCS Research
Scholarship Program. This work is partially supported by funding received from
DST-NRDMS for carrying out the research project entitled “Development of
an Integrated Web portal for Healthcare management based on Sensor-Grid
technologies”.

References

1. Zeng, K., Ren, K., Lou, W., Moran, P.J.: Energy-Aware Geographic Routing in
Lossy Wireless Sensor Networks with Environmental Energy Supply. In: Interna-
tional Conference on Quality of Service in Heterogeneous Wired/Wireless Net-
works, Waterloo, Canada, August 7-9 (2006)

2. Yu, Y., Estrin, D., Govindan, R.: Geographical and energy aware routing: A re-
cursive data dissemination protocol for wireless sensor networks. Technical report
ucla/csd-tr-01-0023, UCLA Computer Science Department (2001)

3. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed
Diffusion for wireless sensor networking. Networking 11(1), 2–16 (2003)

4. Gan, L., Liu, J., Jin, X.: Agent Based, Energy Efficient Routing in Sensor Net-
works. In: Third IEEE International Joint Conference on Autonomous Agents and
Multiagent Systems, pp. 472–479 (2004)

334 S.S. Bhunia, B. Das, and N. Mukherjee

5. Shah, R.C., Rabeay, J.: Energy Aware Routing for Low Energy Ad Hoc Sensor Net-
works. In: IEEE Wireless Communications and Networking Conference (WCNC),
Orlando, USA, March 17-21 (2002)

6. Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless net-
works. In: 6th Annual International Conference on Mobile Computing and Net-
working, Boston, USA, pp. 243–254 (2000)

7. Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making, Methods and Appli-
cations. Springer, Berlin (1981)

8. Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical
Journal 27, 379–423, 623-656 (1948)

9. Triantaphyllou, E.: Multi-criteria decision making methods. Springer, US (2000)
10. Fishburn, P.C.: Additive Utilities with Incomplete Product Set: Applications to

Priorities and Assignments. Operations Research Society of America (ORSA), Bal-
timore (1967)

11. Bushuyey, S.D., Sochney, S.V.: Entropy Measurement as a Project Control Tool.
International Journal of Project management 17(6), 343–350 (1999)

12. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay,
D., Hill, J., Welsh, M., Brewer, E., Culler, D.: TinyOS: An Operating System for
Wireless Sensor Networks. In: Ambient Intelligence. Springer (2005)

13. TelosB-Wireless measurement system datasheet. Crossbow Inc.
14. Boukerche, A., Pazzi, R., Araujo, R.: A fast and reliable protocol for wireless sensor

networks in critical conditions monitoring applications. In: 7th ACM International
Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
Venice, Italy, pp. 157–164 (2004)

15. Huang, C.J., Wang, Y.W., Shen, H.Y., Hu, K.W.: A direction-sensitive routing
protocol for underwater. Journal of Internet Technology 11, 721–729 (2010)

16. Yuanyuan, Z., Cormac, J., Sreenan, L., Sitanayah, N., Xiong, J., Park, H., Zheng,
G.: An emergency-adaptive routing scheme for wireless sensor networks for building
fire hazard monitoring. Sensors 11, 2899–2919 (2011)

17. Malczewski, J.: Multiple criteria decision analysis and geographic information sys-
tems. In: Trends in Multiple Criteria Decision Analysis, pp. 369–395. Springer, US
(2010)

18. Bben, A., et al.: Multi-criteria decision algorithms for efficient content delivery in
content networks. Annals of Telecommunications, 153–165 (2013)

19. Tang, L.C.M., Leung, A.Y.T., Wong, C.W.Y.: Entropic risk analysis by a high
level decision support system for construction smes. Journal of Computing in Civil
Engineering 24(1), 81–94 (2009)

20. Marichal, J.L., Roubens, M.: On the entropy of non-additive weights (2000)
21. Hsu, L.C.: Investment decision making using a combined factor analysis and

entropy-based topsis model. Journal of Business Economics and Manage-
ment 14(3), 448–466 (2013)

22. Rehena, Z., Roy, S., Mukherjee, N.: Efficient data forwarding techniques in Wire-
less Sensor Networks. In: IEEE 3rd International Advance Computing Conference
(IACC), pp. 449–457 (2013)

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 335–347, 2014.
© Springer International Publishing Switzerland 2014

Towards a Model-Driven Approach for Sensor
Management in Wireless Body Area Networks

Ángel Ruiz-Zafra, Manuel Noguera, and Kawtar Benghazi

Departamento de Lenguajes y Sistemas Informáticos, Granada, Spain
{angelr,mnoguera,benghazi}@ugr.es

Abstract. Nowadays, new portable devices are constantly being launched with
their ever greater application to an ever growing number of domains. These de-
vices or wearables (from wearable computing) are present in many different ar-
eas ranging from healthcare to entertainment, and provide a series of features to
enhance the quality of everyday life. When used in conjunction with other
wearables, they give rise to wireless body area networks (WBAN) or body area
networks (BAN). The large variety of devices along with the lack of standard-
ized services, which means that each designer or engineer must customize the
API design, forces developers to implement source code mostly from scratch in
order to cope with the heterogeneity of wearables and support their integration
on a wider system. The result of these drawbacks is that new device integration
is hampered and the time spent on the software development process is in-
creased and these problems are addressed in this paper. We propose a model-
driven approach based on a meta-model which has been designed to define and
specify interaction with sensors. Our main aim is to distance developers from
specific implementation and to cope with heterogeneous designs. The resulting
models, which are instances of the proposed meta-model, are specified in a cus-
tom language which we call the wearable markup language (WML). We also
introduce the coordinator, i.e. component-based software for handling sensor
models and improving the integration of new sensors.

Keywords: model driven, wearable computing, wireless body area network,
component software.

1 Introduction

In recent years, progress in areas such as electronics, wireless communications and
computing/software has led to the creation of portable devices which provide new
functionalities. High tech devices of this type or wearables (from wearable compu-
ting) [1] are launched on an almost weekly basis [2]. From a simple wristwatch or
GPS to state-of-the-art smart glasses, wearables are to be found in a variety of areas
ranging from healthcare to entertainment or simply as service providers [15]. These
new devices are becoming increasingly popular because of their potential for enhanc-
ing the quality of everyday life [3,4].

336 Á. Ruiz-Zafra, M. Noguera, and K. Benghazi

The use of certain devices has led to what is known as a wireless body area net-
work (WBAN), offering numerous advantages such as a large-scale, flexible architec-
ture and comprising sensor functionalities in order to achieve common goals. Tech-
nologists from a variety of different disciplines are involved in the creation process of
such devices: e.g. electronics engineers, mathematicians, telecommunication engi-
neers and computer engineers. Furthermore, the heterogeneity resulting from the large
number and variety of devices and the lack of any standardized interface design to
interact with sensors (through a customized API) results in a wide range of software
components for handling each one. This lack of any standardized interface to work
with the sensors restricts not only device integration and interoperability but also
development efforts. Since it is necessary to develop specific source code for each
sensor and for each platform, there is a resulting increase in development time.

Factors such as the dynamic nature of technology, whereby new communication
protocols (e.g. Bluetooth, Wifi, ZigBee) or software solutions appear from time to
time, are also involved in the device creation process. Nowadays, although most new
wearables launched are wireless and are able to transmit data in real time (Bluetooth,
Wifi, ZigBee), the older ones are only capable of saving information onto an internal
storage medium (MMC, SDCard, Hard Drive, etc.). As a result, even two identical
devices which have been designed by the same company, the same engineers and for
the same purpose may very well differ significantly in terms of software development.

This paper introduces a proposal to mitigate the problems of heterogeneity and lack
of any standardized interface for working with the sensors. The approach addresses
the integration of wearables regardless of their characteristics (purpose, API interface,
supported communication protocol, etc.) and is based on three main proposals: (1) a
meta-model to define the different features to be considered in the interaction with
wearables; (2) a “coordinator” which uses the instances of the meta-model (sensor
models) to handle the devices (interaction, API use, integration); and (3) the integra-
tion process using this meta-model and coordinator. Sensor models are represented in
a custom dynamic language, which we call the wearable markup language (WML), to
specify the necessary elements and features to ensure interaction with the device. In
this way, each wearable has a single model, as an instance of the meta-model pro-
posed. Furthermore, the coordinator proposed has been designed and developed to
handle such sensor models (meta-model instances) in an automatic and seamless way,
thereby enabling interaction through a useful and easy-to-use API defined in the sen-
sor model by the designer or engineer.

This paper is organized as follows: Section 2 describes related work; Section 3 pre-
sents a brief background on sensor development and integration; Section 4 explores
our proposed approach; and finally, Section 5 summarizes our conclusions and out-
lines our future work.

2 Related Work

Wearable computing is an emerging field because of the increase of new technologi-
cal solutions and devices. Several projects are based in the concept of WBAN, which
has been applied in several areas such as healthcare or entertainment [5-7].

 Towards a Model-Driven Approach for Sensor Management 337

Other projects considered the wearables integration in a WBAN an important chal-
lenge to address, proposing design solutions based on approaches such as middleware,
to improve the integration of wearables devices.

An example can be the research presented in [8], an approach to improve the ingra-
tiation of Bluetooth based devices. Other projects such as the projects presented in
[9][11] formalize a middleware oriented to e-Health environment or other research
papers as the presented in [10] which makes a revision about different middleware’s,
exposing its features, strengths and weakness.

The main cons of these projects, which propose a software solution layer (middle-
ware) to improve the integration of wearable devices, are that are focused in a specific
scope such as to provide an approach for a specific communication protocol [9] or for
a specific area as e-Health [11] (focusing on a specific functionality). Furthermore,
other relevant projects presented in the review [10] intend to accomplish with certain
requirements such as openness, scalability, mobility and heterogeneity, but none
meets with all requirements. Also, the main cons of all of them are the non-automatic
integration, the non-heterogeneity and the need to write some code to complete the
integration process.

Other researches have proposed several solutions based on a model-driven ap-
proach. The projects presented in [13-14] presented an approach, in order to model a
WBAN or enhance the data acquisition process from a WBAN [13-14]. The projects
presented in [16-17] research about the integration process, lack of standardization
and heterogeneity of WBAN, proposing a model-driven approach in order to address
these challenges.

The research presented in this paper intends to solve the integration, addressing
problems such as the large number of devices (heterogeneity) to integrate and the lack
of the standardization in the access way to consume sensor services. To achieve this, a
meta-model and a software component are proposed in this paper.

3 Background

Wearable devices are independent hardware elements which have been designed or
created for a specific purpose [14]. Such devices are able to provide one or more
functions from a simple global location (latitude, longitude) to simultaneously provide
location, temperature and heart rate. Other devices must use all of these functions,
which could even be other wearable devices such as smartphones or wristwatches.

At the present time, smartphones are extremely important in wearable computing.
Thanks to their capabilities, usability and wireless support, they are gaining ac-
ceptance among wearable device users and even with central management bodies (see
left-hand side of Figure 1).

Wearable devices are based on different technologies to exchange information such
as wire-based communication protocol (USB) or a wireless communication protocol
(Bluetooth, Wifi). Regardless of their communication protocol and whether the in

338 Á. Ruiz-Zafra, M. Noguera, and K. Benghazi

formation is sent by request (packets) or stream, wearable devices are designed to
serialize the information and provide the result as an array of bytes with a static or
dynamic length and structure.

A custom device design might mean that the serialized result is different from oth-
er devices with the same purpose since it has been designed by other designers
according to other criteria or requirements. Correspondingly, the packet length, the
information provided or even the order of the information may well be different. The
right-hand side of Figure 1 shows various sensors from the developer’s point of view:
a GPS that provides the latitude and longitude, a heart rate sensor that provides the
heart rate and the RR interval and a second heart rate sensor that only provides the
heart rate of the user. All of the information is sent by a sensor starting with a header
(H) to identify the start of the information packet.

Fig. 1. Smartphone as coordinator (left) and different packets of information (right)

4 Towards a Model-Driven Approach for Sensor Management

In order to address the problem of wearable device integration, our proposed approach
not only considers a meta-model to define the different wearable device features and
generate the sensor models but also a coordinator as the software component to use
these sensor models (meta-model instances) to interact with the devices and the prop-
er integration process using the meta-model and the coordinator. In the following
sections, we shall describe the solution in further detail.

 Towards a Model-Driven Approach for Sensor Management 339

4.1 Wearable Specification Meta-Model

The meta-model proposed in this paper has been designed to be dynamic by incor-
porating new features and elements so as to ensure that any wearable device can
be modeled (heterogeneity) and to improve integration and ease of use for devel-
opers. The meta-model is intended to support the design interface of any wearable
device.

The models generated from the meta-model (instances) are represented in a custom
markup language called the wearable markup language (WML). These models con-
tain all the required information to interact with the sensor: communication protocol
used, which values and functions are provided by the sensor, marshaling information,
etc.

In the design process of the meta-model, certain key features have been identified
as important concerns related to wearable devices. The need to identify these concerns
is crucial when proposing a meta-model which is able to cover any wearable device.
The identified concerns are:

• Communication protocol is indicated in the meta-model but since the way this is
handled is platform dependent, it is designed and supported by the coordinator.
Wifi, Bluetooth, ZigBee or other kinds of communication protocols are standard
IEEE-defined communication protocols but how these are used is also platform
dependent: while BluetoothSocket and BluetoothDevice are the API proposed on
the Android Platform to work with Bluetooth Protocol, CoreBluetooth is the one
proposed by iOS. Both of these work with the same protocol but not in the same
way from the developer’s point of view.

• Wearable devices provide the information in a serialized array of bytes in two
different ways: by request (synchronous packet) or by stream (asynchronous).

• Information provided by a specific wearable device could be static or dynamic
(static or dynamic buffer).

• The dynamic information provided by a wearable device is specified in the same
packet/stream in a static or dynamic position.

• The information provided by a wearable device, regardless of whether it is asyn-
chronous or synchronous or not, starts with a customized header which we call
the pivot.

• The information provided by a wearable device has a cyclic redundancy check
(CRC) or other mechanism to check that the packet is valid.

• The information provided by a wearable device is divided into groups of bytes.
The length and position of these groups may be static or dynamic.

The meta-model is represented in a UML diagram in Figure 2. The key features
considered in the meta-model are a unique identifier that enables direct access to the
model sensor (WUI) and an API comprising various services, which correspond to a
specific function provided by the sensor.

340 Á. Ruiz-Zafra, M. Noguera, and K. Benghazi

Fig. 2. Wearable specification Meta-model

According to how the information provided through a communication protocol is
managed, various features have been considered and included in the meta-model in
order to model a wearable device:

• Type of operation: input (stream), output or both (request)
• Pivot element: the element which indicates where the information starts
• Payload information: relevant information
• Fields which include the information from the sensor
• CRC or check method: a set of operations to validate the packet/information
• Type of buffer for each functionality: static or dynamic

One of the objectives when designing the meta-model was to make it customizable
so that it would meet the present and future requirements of new sensors as they are
released. In this way, it might be possible to create new customized models to cover
new technologies and functions simply by defining new concepts in the meta-model
to support these new features and their implementation in the coordinator.

4.2 Coordinator

The meta-model proposed in this approach has been designed to generate sensor
models in order to improve the integration of wearable devices. Although these mod-
els contain the necessary information to interact with the sensors, it is also necessary
for these models to represent real device use.

 Towards a Model-Driven Approach for Sensor Management 341

The software approach presented in this paper is responsible for integration models
and works as a bridge between the model and developers by automating integration
and making the sensors easier for the developers to use.

Fig. 3. Coordinator components diagram

Figure 3 shows a diagram to represent coordinator design and its different ele-
ments. There are four main elements comprising the coordinator, each with a specific
purpose:

1. Wearable repository: this component is responsible for interacting with the wear-
able repository hosted on an external server or in the cloud where all the sensor
models are. The component uses a service specifying the WUI to obtain the sen-
sor model. Using this model, the component incorporates the new sensor into the
coordinator as an internal software element.

2. Communication Protocols: in order to handle the different wearable devices, it is
necessary to interact with them through different communication protocols such
as Bluetooth, Wifi, ZigBee, and Serial. In order to ensure easy access to the in-
formation provided by the devices (byte arrays), a component is necessary to
handle each specific communication protocol. In this part of the system (2),
there are sets of components, one per communication protocol, which are used to
interact with the devices. Furthermore, all the wearable devices with the same
communication protocol are handled through the same component.

3. Algorithm Process: once a wearable device has sent the information, it is neces-
sary to process this information to ensure that it is correct and to obtain the
relevant information. This component is responsible for transforming the relevant
information represented in arrays of bytes into understandable information using
the specifications of the sensor model and ensuring the Quality of Service (QoS).
The algorithm process is represented in the flowchart in Figure 4.

342 Á. Ruiz-Zafra, M. Noguera, and K. Benghazi

Fig. 4. Algorithm to process sensor information

4. Orchestrator: this component is responsible for consuming the different services
provided by the other components and orchestrating these services to provide the
proper information to developers through its API. Through the API, developers
can interact with the coordinator to, for example, define which sensor to use and
which values are needed, turn any device on or off, enable or disable notifica-
tions, and enable or disable automatic integration of new devices.

In order to handle the asynchronous interaction with sensors, the coordinator em-
ploys a custom software component called a pipe. A pipe is an event-driven software
element responsible for transmitting the information from the sensors (serialized array
of bits) to the developers (heart rate, RR, latitude and longitude, contextual infor-
mation). In this way, when a developer uses the coordinator to handle a sensor, the
coordinator returns a pipe (one pipe per sensor) to the developer. When the sensor
sends the information, which is processed by the coordinator using different orches-
trated services, an event/callback is sent to the developer notifying them of the rele-
vant information related to a specific API (defined in the model).

4.3 Integration Process

The approach proposed in this paper focuses on solving the problem discussed above:
the integration of any device regardless of its features (heterogeneity) and the lack of
standardized access to sensor information. This approach has been designed to
improve the integration of new wearable devices in wearable computing contexts,
facilitate and support or automate part of the development tasks, thereby reducing
implementation effort and time. In order to achieve this goal, the meta-model and the
coordinator presented above are used in the integration process.

The integration process of a new wearable device supported by this approach con-
sists of three stages and is represented in Figure 5:

 Towards a Model-Driven Approach for Sensor Management 343

Fig. 5. Integration Process

1. Design. The designer uses the design tool to design the sensor model API accord-
ing to its features or datasheet. During this stage, the designer uses different sen-
sor documentation to model sensor interaction and defines a custom API to inter-
act with the sensor to obtain the information provided by the device. The design
tool uses the meta-model and the transformation rules to generate the sensor-
model and this is stored in a repository.

2. API release. Once the design is finished, the design tool provides the designer-
defined API and a unique identifier for the sensor model called the wearable
unique identifier (WUI). Developers are able to access this API.

3. Use the sensor. With the API, the WUI and using the coordinator’s, the develop-
ers are able to easily handle the device simply by using the API to obtain the in-
formation in an easy-to-understand way without the need to know about the sen-
sor’s internal workings.

This approach entails the following advantages:

• The developer can use any wearable device (heterogeneity) with no knowledge of
communication protocols or how the sensor works.

• The possibility of defining a unique customized API for each sensor standardizes
access to the information.

• If there is a mistake in the sensor model, the designer can redefine the model. If
this redesign does not involve modifying the API, the software coordinator uses
this new model transparently without affecting the developer.

• The sensor models are platform-independent and can be used by any coordinator,
irrespective of platform (e.g. iOS, Android, Windows).

• Each wearable device model is designed only once.

344 Á. Ruiz-Zafra, M. Noguera, and K. Benghazi

• The meta-model and coordinator are designed to be dynamic. The meta-model is
dynamic to ensure that it adapts to new technologies or requirements. Changes in
the meta-model entail changes in the new wearable model and, usually, in the co-
ordinator. For example, although a new communication protocol could be sup-
ported in the model, it should also be implemented in the coordinator.

• This approach ensures integration: firstly, any developer with no expert
knowledge can quickly use any sensor (simply by using the API) and secondly,
the coordinator should be able to detect new devices, access the repository to find
its model and incorporate it automatically.

4.4 Case Study

In order to show the integration process, Figure 6 shows a sequence diagram that
represents an example of the integration process and use of a sensor from the design
stage to the usage stage. The example device proposed is a Bluetooth Heart Rate sen-
sor with the specified API “getHR” to obtain the heart rate value in request mode.

The designer uses the design tool to model the sensor’s API and generate the sen-
sor model, providing the WUI and the API. The developer, meanwhile, uses the WUI
to request the WML through the coordinator. The coordinator, in turn, uses the WR
component to obtain the WML and manages this model as an internal software ele-
ment to handle the sensor and a pipe is returned.

Once the device has been detected, connected and synchronized, the coordinator
starts interacting with the sensor by means of the components (Figure 3) and process-
es the information according to the algorithm process (Figure 4). When the coordina-
tor has a correct and understandable value, it launches an event in the corresponding
pipe with the sensor information in an understandable way, returning this information
to the developer who handles it in the proper way (show on the display, store in a
database, process it).

Fig. 6. Sequence diagram of integration process

 Towards a Model-Driven Approach for Sensor Management 345

Furthermore, the sensor model represented in wearable markup language (WML) and
generated from the meta-model is shown in Figure 7. This sensor model contains the
relevant sensor features and the customized API (getHR and getRR) and the WUI (id).

Fig. 7. Sensor model of the case of study represented in WML

5 Conclusions and Future Work

New wearable devices are constantly being launched. These devices are designed by a
custom group of technologists (mathematicians, physicians, computer engineers). In
the design process, the designers are responsible for defining the way sensor infor-
mation is accessed (custom and well-defined API). This heterogeneity and lack of
API standardization for using sensor services hampers the integration of these devices
in already developed systems, and this in turn increases development time.

The aim of this research is to address the following main disadvantages presented
in a wearable integration process in a WBAN: heterogeneity (various devices with
several purposes and features) and lack of standardization in the way data from the
sensors is accessed.

In order to overcome this issue, we have been working on a dynamic meta-model
that is able to define the specification of any wearable device (heterogeneity), regard-
less of its features and also to define a custom API to access sensor information. This
meta-model has been dynamically designed in order to cover the requirements and
features of future-released devices. Furthermore, a software component to handle
sensor models has been presented in order to facilitate the integration of new wearable
devices by developers and to use the sensors in a seamless and transparent manner.
We have also presented a case study to represent an example of the integration pro-
cess using a meta-model instance and the coordinator.

346 Á. Ruiz-Zafra, M. Noguera, and K. Benghazi

In the future, we have a lot of hard work ahead of us: our main objective is to de-
ploy the proposal as an open software solution so that it may be used by the developer
community. Although the design phase (meta-model, wearable markup language,
coordinator design) has been completed, the software solutions presented are still
being developed.

We are currently working on developing and improving the usability of the design
tool: an easy-to-use web platform with a user-friendly interface; and the design and
implementation of transformation rules for generating sensor models from the meta-
model. We are also working on the development of the coordinator to complete the
implementation of the different components.

Although the coordinator has almost been developed for Android, we must conduct
a hard test phase to ensure not only that it works correctly (failure monitoring, Quality
of Services, efficiency) but also that it may be ported to other platforms (iOS, Win-
dows, Linux, Windows Phone, etc.).

Acknowledgments. This research work has been partially funded by the Spanish
Ministry of Economy and Competitiveness with European Regional Development
Funds (FEDER), through the research project TIN2012-38600 and by the Granada
Excellence Network of Innovation Laboratories (GENIL) under project PYR-2014-5.
The authors would also like to acknowledge input from COST Action AAPELE
(IC1303).

References

1. Mann, S.: Smart clothing: The shift to wearable computing. Communications of the
ACM 39(8), 23–24 (1996)

2. Roggen, D., Perez, D.G., Fukumoto, M., Van Laerhoven, K.: ISWC 2013–Wearables Are
Here to Stay. IEEE Pervasive Computing 13(1), 14–18 (2014)

3. Kleinberger, T., Becker, M., Ras, E., Holzinger, A., Müller, P.: Ambient intelligence in as-
sisted living: enable elderly people to handle future interfaces. In: Stephanidis, C. (ed.)
Universal access in HCI, HCII 2007, Part II. LNCS, vol. 4555, pp. 103–112. Springer,
Heidelberg (2007)

4. Jara, A.J., Zamora, M.A., Skarmeta, A.F.: An internet of things—based personal device for
diabetes therapy management in ambient assisted living (AAL). Personal and Ubiquitous
Computing 15(4), 431–440 (2011)

5. Lee, Y.D., Chung, W.Y.: Wireless sensor network based wearable smart shirt for ubiqui-
tous health and activity monitoring. Sensors and Actuators B: Chemical 140(2), 390–395
(2009)

6. Chen, C., Knoll, A., Wichmann, H.E., Horsch, A.: A review of three-layer wireless body
sensor network systems in healthcare for continuous monitoring. Journal of Modern Inter-
net of Things 2(3) (2013)

7. Zhang, Q., Su, Y., Yu, P.: Assisting an Elderly with Early Dementia Using Wireless Sen-
sors Data in Smarter Safer Home. In: Liu, K., Gulliver, S.R., Li, W., Yu, C. (eds.) ICISO
2014. IFIP AICT, vol. 426, pp. 398–404. Springer, Heidelberg (2014)

 Towards a Model-Driven Approach for Sensor Management 347

8. Jo, T.W., You, Y.D., Choi, H., Kim, H.S.: A bluetooth-UPnP bridge for the wearable
computing environment. IEEE Transactions on Consumer Electronics 54(3), 1200–1205
(2008)

9. Carr, D., O’Grady, M.J., O’Hare, G.M.P., Collier, R.: SIXTH: A Middleware for Support-
ing Ubiquitous Sensing in Personal Health Monitoring. In: Godara, B., Nikita, K.S. (eds.)
MobiHealth. LNICST, vol. 61, pp. 421–428. Springer, Heidelberg (2013)

10. Hadim, S., Mohamed, N.: Middleware: Middleware challenges and approaches for wire-
less sensor networks. IEEE Distributed Systems Online 7(3), 1 (2006)

11. Castillejo, P., Martinez, J.F., Rodriguez-Molina, J., Cuerva, A.: Integration of wearable
devices in a wireless sensor network for an E-health application. IEEE Wireless Commu-
nications 20(4) (2013)

12. Akbal-Delibas, B., Boonma, P., Suzuki, J.: Extensible and precise modeling for wireless
sensor networks. In: Yang, J., Ginige, A., Mayr, H.C., Kutsche, R.-D. (eds.) Information
Systems: Modeling, Development, and Integration. LNBIP, vol. 20, pp. 551–562. Spring-
er, Heidelberg (2009)

13. Losilla, F., Vicente-Chicote, C., Álvarez, B., Iborra, A., Sánchez, P.: Wireless sensor net-
work application development: An architecture-centric mde approach. In: Oquendo, F.
(ed.) ECSA 2007. LNCS, vol. 4758, pp. 179–194. Springer, Heidelberg (2007)

14. Mann, S.: Wearable computing: A first step toward personal imaging. Computer 30(2),
25–32 (1997)

15. Gatzoulis, L., Iakovidis, I.: Wearable and portable eHealth systems. IEEE Engineering in
Medicine and Biology Magazine 26(5), 51–56 (2007)

16. Bellifemine, F., Fortino, G., Giannantonio, R., Gravina, R., Guerrieri, A., Sgroi, M.:
SPINE: a domain-specific framework for rapid prototyping of WBSN applications. Soft-
ware: Practice and Experience 41(3), 237–265 (2011)

17. Fortino, G., Giannantonio, R., Gravina, R., Kuryloski, P., Jafari, R.: Enabling effective
programming and flexible management of efficient body sensor network applications.
IEEE Transactions on Human-Machine Systems 43(1), 115–133 (2013)

DISSN: A Dynamic Intrusion Detection System

for Shared Sensor Networks

Claudio M. de Farias, Renato Pinheiro,
Rafael O. Costa, and Igor Leão dos Santos

Programa de Pós-Graduação em Informática,
Instituto Tércio Paccitti/Instituto de Matemática,

Universidade Federal do Rio de Janeiro
21941-901, Rio de Janeiro, RJ, Brasil
{cmicelifarias,renato.pinheiro,

rafaeldeoliveiracosta,igorlsantos}@gmail.com
http://www.labnet.nce.ufrj.br/

Abstract. Recent years we have witnessed the emergence of Shared
Sensor Networks (SSNs) as a core component of cyber-physical sys-
tems for diverse applications. As Wireless Sensor and Actuator Networks
(WSANs) design starts shifting from application-specific platforms to
shared system infrastructures, a new but pressing research challenge is
security. In scenarios involving unprotected hostile outdoor areas, SSNs
are prone to different types of attack which can compromise reliability,
integrity and availability of the sensor data traffic and sensor lifetime as
well. In this work we propose a dynamic resilient security framework to
be applied in the shared sensor network context. Its basic feature is the
nodes neighborhood monitoring and collaboration (through the use of
the byzantine algorithm) to identify an attack and enhance security. The
work was experimentally evaluated in order to demonstrate the efficiency
of the proposed solution.

Keywords: Intrusion detection System, security, wireless sensor net-
works, shared sensor networks.

1 Introduction

Recent advances in micro-electromechanical systems and wireless communica-
tion technologies have enabled the building of low-cost and small-sized sensors
nodes, which are capable of sensing, processing and communicating through wire-
less links. Wireless Sensor Networks (WSNs) are composed of tens, hundreds or
even thousands of sensor nodes. In the last few years the field of WSNs has
experienced several changes, which have impacted the design and operation of
such networks. One of the most noteworthy signs of these changes is the emer-
gence of Shared Sensor and Actuator Networks (SSANs) [12], which, instead of
assuming a traditional approach of application-specific network design, allow the
sensing infrastructure to be shared among multiple applications, potentially be-
longing to different users/owners. The SSAN scenario may encompass multiple

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 348–357, 2014.
c© Springer International Publishing Switzerland 2014

http://www.labnet.nce.ufrj.br/

DISSN: A Dynamic Intrusion Detection System for Shared Sensor Networks 349

networks with different users/owners resulting in a totally shared infrastructure,
where the resources (nodes in the SSAN) are used by multiple applications,
crossing the frontier of the traditional concept of specific networks/domains.
Therefore, SSANs can be seen as integrated cyber-physical system infrastruc-
tures [13], which can serve a multitude of applications [5]. One of the suitable
contexts to employ SSANs includes the smart spaces [14], which encompasses
smart grids, smart buildings and smart cities [5]. The potential advantage of a
shared WSAN design is the significant reduction in the costs of deploying the
network by allowing the multiple applications to share the same nodes and net-
working infrastructure, thus improving the resources utilization. However, the
adoption of such shared design poses new research challenges. In this paper we
aim at tackling some of these challenges.

The security of SSN is a challenge that must be explored due to the limited
resources of sensors (processing, memory, energy) and vulnerabilities associated
with wireless communication, ad-hoc organization and the fact that the sensors
are deployed in open, unprotected and often hostile areas. With that, SSNs
can become targets of a large number of attacks in order to compromise the
confidentiality, integrity and availability of its data or to decrease the network
lifetime [9]. According to [4], a possible attack to this kind of network is a
replica attack. In this attack, an adulterated sensor assumes the identity of
another sensor in the network, in order to perform malicious activities, such as
injecting false data capable of changing network behavior for disabling security
mechanisms or shortening network lifetime. Often the target of such attack is the
system responsible for ensuring application security, because, once compromised,
an attacker can freely operate [7]. Thus it is necessary the system to be resilient,
i.e. able to ensure the security of applications even in the presence of attacks or
malfunctions [8].

One way to provide security for SSN and, consequently, for the applications
running on the SSN is making use of a dynamic security system, such as a dy-
namic intrusion detection system (IDS). Such IDS must be able to manage the
availability, integrity and confidentiality of multiple applications according to
the context information collected by sensors, which by being in a highly dy-
namic and heterogeneous environment makes security controls to be modified in
runtime. According to [6], context is any information about the execution of an
application that can be used to enhance its behavior to operate in a personal,
autonomous and flexible way. Therefore a system is context aware when it is
able to consider environmental information to provide information or services
to users. Thus, in this work we consider context information as the following
information: (i) security requirements of the running applications; (ii) intruder
indicator and/or attack in WSN, information provided by the IDS or other sys-
tem capable of detecting an attack on the network; (iii) the amount of resources
available sensors, such as available memory or residual energy. From the point of
view of SSNs, it is important to note that depending on the application that is
being executed, the security requirements may differ. For example, military ap-
plications require strict procedures to ensure the protection of confidential data,

350 C.M. de Farias et al.

while other applications may not have the same kind of concern. Therefore the
level of security, i.e. information that defines the security controls that should
be used to meet the security requirements, should be modified as the context
information change.

To overcome the challenges related to security, safety levels should be changed
dynamically to mitigate vulnerabilities and extend the lifetime of the network
preventing successful attacks and saving energy, because the security controls
are activated only when required.

In this context, the aim of this work is to provide an efficient dynamic and
resilient intrusion detection system for SSNs, called DISSN, in order to ensure the
safety of the sensors, while not increasing the energy consumption. The provided
IDS is dynamic and efficient because it modifies the levels of security while
running according to the context, consuming less energy from the sensors. In
this work, resilience is achieved through the use of the Byzantine fault algorithm,
which relies on the cooperation among sensors to ensure that the security level
is changed disregarding the context information sent by unreliable sensors.

The remainder of this paper is organized as follows: Related work (Section 2),
description of DISSN (Section 3), tests and analysis of results (Section 4) and
conclusions (Section 5).

2 Related Works

The SSAN approach has gained momentum only recently. In Efstratiou et al. [5]
an extension to the traditional concept of WSANs (which aims at supporting a
single application and a single user), is proposed. The proposed approach is based
on decoupling the infrastructure from application ownerships. A framework is
created which allows WSAN infrastructures to be shared among multiple ap-
plications, which can potentially be owned by different users. By achieving this
level of decoupling, WSAN infrastructures can be viewed as an accessible re-
source, which can be dynamically re-purposed and re-programmed by different
authorities, in order to support multiple applications.

To the best of our knowledge, no solutions were found in literature which
proposed an IDS in the context of SSANs, what is a differential between our
work and all the related works cited in this section. However, previous research on
detection of security failures and compromising of nodes in distributed systems
in general, beyond SSANs, can be grouped into two categories: resilient solutions
[1,2] and non-resilient solutions [4,3].

The work of Jiang et al. [1] presents a detection system capable of iden-
tifying jamming attacks (denial of service attacks) specifically aimed against
WSNs based on the IEEE 802.15.4 standard, which allows jumping between
different frequencies for avoiding interference. In the work of Jiang et al. the
non-compromised sensors use a resilient algorithm for key distribution, in order
to establish the communication channel and maintain communication among the
non-compromised sensors, even if the network jammers (sensors compromised by
the jamming attack) exist. The proposal of Jiang et al. is resilient, as well as our

DISSN: A Dynamic Intrusion Detection System for Shared Sensor Networks 351

proposal, because both are capable of supporting the continuous network oper-
ation in the presence of malicious sensors. However, unlike the proposal of Jiang
et al., the resilience of our work is related to the security level of the sensors.

The work of Sundaram et al. [2] presents a solution based on iterative linear
systems to counter replica attacks. In the context of WSNs, the values of the
linear systems are represented by messages to be transmitted. Before sending a
new message, each sensor performs a linear combination among this message to
be sent and the messages received from its neighbors. As a result of this combi-
nation, if the total number neighbors of a sensor node exceeds 2f+1, where f is
the number of unreliable neighbor sensors, the value received through the mes-
sage is assumed to be reliable. Unlike the work of Sundaram et al., the resilience
algorithm of our work is based on cooperation among the sensors through the
algorithm of Byzantine failures. Thus, our resiliency solution determines if the
neighbors are reliable considering the context information dynamically. Another
difference is that our work is able to be resilient against different types of at-
tacks, since context information is provided for helping to detect the malicious
sensor.

The work of Conti et al. [4] proposed an algorithm that detects replica attacks
in WSNs, i.e. it detects when a malicious sensor attempts to use the identity of
another sensor in the network. In the work of Conti et al. the context information
is the data transmitted by neighboring sensors, and each sensor uses this data
in order to determine if its neighbors are malicious sensors or not. For instance,
when the data collected by a neighbor about a particular phenomenon are not
similar to the data collected by a given sensor, evidence that this neighbor sensor
is malicious emerges. A similarity between the work of Conti et al. and our work
is that both solutions proposed are aware of the context. However, unlike the
work of Conti et al., our solution uses the context information for dynamically
ensuring the security level of the sensors and the resilience of the IDS, while the
solution of Conti et al. uses the context information only for detecting replicas,
i.e. no action is taken for preventing the replica attacks.

Finally, the work of Lima and Greve [3] presents a fault detection system
for distributed systems. The system of Lima and Greve uses the algorithm of
Byzantine failures in order to detect failures in the communication system. As
the work of Lima and Greve, our work also uses the algorithm of Byzantine
failures. However, unlike the work of Lima and Greve, which uses this algorithm
for discovering failures in the communication system, our work uses the algorithm
of Byzantine failures for ensuring the resilience of the IDS.

3 DISSN: A Dynamic Intrusion Detection System
for Shared Sensor Networks

The aim of this work is to propose a resilient dynamic intrusion detection system
(IDS) for SSNs, called DISSN, capable to provide a protected environment for
WSN applications, without wasting resources inappropriately, especially energy.

352 C.M. de Farias et al.

For this, the DISSN dynamically adjusts the WSN security controls in order to
satisfy the requirements of its applications, at runtime, according to the changes
in the context.

3.1 Logical Architecture

Figure 1 presents the architecture of DISSN. This architecture is composed by
two subsystems: (i) Security Environment and (ii) Decision Core.

The Security Environment subsystem is formed by one or more Intrusion
Detection System components, which provide information about the presence
of compromised nodes or if the WSN is under attack in order to detect intru-
sions in the WSN or specific attacks, such as jamming attacks. The Decision
Core subsystem consists of the following components: Context Manager, Dy-
namic Security Manager, Security Rules Manager, Resilience Manager, Adjust-
ment Manager and Network Manager. In addition, this subsystem comprises
two databases: Context Information and Security Rules. The Dynamic Security
Manager component is responsible for conduct the action performed by DISSN
to satisfy the security requirements of the applications according to the current
context. The Context Manager component is responsible for updating the Con-
text Information database and notify the Dynamic Security Manager when the
context changes. For this, the Context Manager gathers both internal context
information (such as the residual energy from the sensor) and external informa-
tion (i.e. from the network, such as an intrusion warning). The Security Rules
Manager component is responsible for processing the security rules in order to
setting the sensor with the suitable security level for the current context. The
Resilience Manager is the component responsible for the resilience of DISSN. For
this, it uses the Byzantine fault algorithm in order to ensure consensus when a
decision to modify the security level is taken. The Network Manager component
is responsible for exchange messages between all sensors running DISSN. This
component is used specifically for transmitting messages used to perform the
Byzantine consensus. The Adjustment Manager is the component that sends
the order for activate and deactivate the security controls in order to change the
security level.

As previously mentioned, the DISSN has two databases: Context Information
and Security Rules. The Context Information database stores the most recent
information about the context. This is organized in the following fields: (i) The
security requirement of the application (represented by an 8-bit integer); (ii) a
value that identify the existence of intrusion or attacks; (iii) the residual bat-
tery power of sensors. The Security Rules database stores the rules that defines
how the security level must be changed. This rules are arranged in the following
format: IF <condition> THEN <security level>, allowing evaluate the current
context under some predetermined threshold before taking a decision. For in-
stance, IF Certain Security Requirement <= 7 AND no intrusion AND residual
battery power > 90% THEN change the security level to 3.

DISSN: A Dynamic Intrusion Detection System for Shared Sensor Networks 353

Fig. 1. DISSN Logical Architecture

3.2 DISSN Operation

Initially, the Intrusion Detection System activates the Context Manager to up-
date the context information. Thereafter, the Context Manager waits for infor-
mation from the Security Environment subsystem (external context) and peri-
odically checks the information from the sensor (internal context). When any
change occurs in the context, the Context Manager updates the Context Infor-
mation database and notifies the Dynamic Security Manager that the context
has changed in order to activate the other operations of the DISSN. Then the
Dynamic Security Manager sends the new context information for the Security
Rules Manager to determine what actions should be taken. Upon receiving the
new context information, the Security Rule Manager processes it together with
information from Security Rules database in order to decide what the appro-
priate security level for a given application. If the new recommended security
level is different from current security level, the Dynamic Security Manager ac-
tivates the Resilience Manager to validate the decision and changes the security
controls. After receiving a decision to change the security level, the Resilience
Manager request to the Network Manager to send a message to the other sensors
and waits for a certain number of messages to check whether there is consensus
to change the security level. If there is consensus, the Resilience Manager trig-
gers the Adjustment Manager in order to make necessary modifications in the
security controls to contemplate the new security level, which was accepted by
the most sensors running DISSN.

354 C.M. de Farias et al.

4 Experiments

In all experiments performed with DISSN, the SSN is composed by Sun Small
Programmable Object Technology (SUN Spot) sensors. The SUN Spot platform
features an ARM 32-bit processor operating at a frequency of 400 MHz; 1 MB of
RAM; 4 or 8 MB of Flash memory; and Chipcon 2420 radio for communication
in adhering to the IEEE 802.15.4 protocol featuring 11 channels of 2.4 GHz
[10]. The DISSN has been implemented using the programming language Java
2 Micro Edition (J2ME) with the SUN Spot development kit. The simulation
scenarios were performed using the Solarium simulator [10].

The SUN Spot development kit provides several software components, in-
cluding those that implement the stack of communication protocols. DISSN was
implemented by defining new components capable to receiving context informa-
tion and making the decision that changes the security controls in order to adjust
(increase/decrease) the security level. Two interfaces (UpdateContext.java and
SecurityListener.java) were respectively implemented by the Intrusion Detec-
tion System, i.e. the component that sends context information and the WSN
applications to receive messages setting security controls.

4.1 Experiment Environment and Metrics

In our simulations, we adopted a flat network topology whose nodes are fixed.
The number of sensors using DISSN was varied from 1 to 6 sensors and the
number of sensors in the WSN was ranging from 6 to 12 nodes, having been
arranged in the same rows equidistant from each other. During the simulation,
one node was configured to act as if it was compromised at different periods in
order to provide inaccurate context information. All Intrusion Detection Systems
were defined to send messages every 10 seconds. Finally, we consider the con-
fidence interval of 95% with satisfactorily strict limits after repeating 30 times
each simulation.

The efficiency of DISSN was measured using the following metrics: energy
consumption (measured using the number of messages due to restrictions of sim-
ulation environment), memory consumption (in Kbytes) and increased number
of messages. The efficacy of DISSN was evaluated in relation to the resilience,
which was measured by the consensus, showing if DISSN was able to correctly
decide on the security level.

4.2 Efficiency

The efficiency of the DISSN was evaluated in three different scenarios: (i) without
using DISSN and with disabled security controls, (ii) without using the DISSN
and all the security controls enabled and (iii) using the DISSN to enable and dis-
able security controls dynamically. Thus, in the first two scenarios we measured
the number of messages transmitted without considering the context informa-
tion, and in the third we measured the number of messages transmitted using
DISSN to set appropriate levels of security according to the context information.

DISSN: A Dynamic Intrusion Detection System for Shared Sensor Networks 355

Regarding the quantity of messages sent/received, we can notice from that
the overhead of the DISSN showed advantageous, because (i) less messages were
consumed than when simply using the maximum level of security (18 messages
while without using DISSN we had 50 messages) and (ii) more security is ob-
tained than when not using any security level.

It is noteworthy that the discrepancy between the messages sent and received
is due to the fact that the context information were sent using the transmission
in broadcast mode, in which for every single sensor node transmission, all the
other sensors account a new message reception. However we can consider that
the additional overhead of our DISSN, in terms of the number of messages trans-
mitted (sent/received), and in comparison to the scenario of disabled security
controls, is negligible when compared to the advantages of using our DISSN.

With respect to memory consumption the DISSN proposed in this work con-
sumed 26 Kbytes in size, consuming additional 50 Kbytes during its execution.

4.3 Efficacy

Two simulation experiments were conducted to evaluate if our proposed DISSN
is able to properly ensure the safety of the network even in the presence of an
attack. In the first experiment the resilience manager component is disabled,
while in the second the component is enabled.

In both experiments one of the sensor nodes was configured as a compromised
sensor node. In both experiments, during part of the nodes lifetime, this compro-
mised node was sending incorrect information about the existence of an attack
to other nodes of the SSN. Such time period (while the compromised node was
sending incorrect information during the experiments) varied from 0% to 100%
of the total time period of the experiment.

Table 1 shows the values of True Positives (TP), True Negatives (TN), False
Positive (FP) and False Negatives (FN) in percentage, compared to the variation
in the percentage of incorrect information provided by the compromised sensor
node. We observe that the increasing percentage of inaccurate information makes
the system less accurate inmaking security decisions (TP andTNare equal to 0%).

% of correct messages sent by a comproised sensor

100% 80% 60% 40% 20% 0%

VP 48 30 37 13 3 0

VN 52 50 23 27 7 0

FP 0 13 12 28 51 32

FN 0 7 28 32 39 68

With the use of system resiliency, even in the worst case (the compromised
node sending incorrect information during 100% of the time), our DISSN was
able to ensure a resilient and secure system operation, due to the Byzantine
failure algorithm [8]. This fact can be seen from the results in Figure 2. DISSN
counted with six sensors within the network.

356 C.M. de Farias et al.

Fig. 2. Efficacy after consensus

5 Conclusion

This paper presented a resilient dynamic IDS called DISSN, whose main objec-
tive was to dynamically meet the security requirements of applications according
to the execution context. With DISSN it is possible to ensure the security re-
quirements in a dynamic and heterogeneous environment, where security controls
are different depending on the current context. The use of the proposed DISSN
brings the following benefits: (i) allows the security to be adjusted according to
the current context where applications are executed, thereby allowing the limited
resources of sensor nodes to be used efficiently, and (ii) ensures, through the con-
sensus among the nodes in the SSN, that even in the occurrence of compromised
nodes the decision of security adjustments is carried out correctly.

In future work other IDS options will be investigated, in order to analyze
the relationship between energy expenditure and efficiency of the IDS resilience.
We also intend to conduct tests to determine the computational impact of the
IDS on the resource consumption of sensors. Finally, a comparison of the results
obtained in our work to other works in literature will be performed.

References

1. Jiang, X., et al.: Compromise-resilient anti-jamming communication in wireless
sensor networks. Wireless Networks 17(6), 1513–1527 (2011),
http://dx.doi.org/10.1007/s11276-011-0361-8

2. Sundaram, S., Revzen, S., Pappas, G.: A control-theoretic approach to disseminat-
ing values and overcoming malicious links in wireless networks. Automatica 48(11),
2894–2901 (2012), http://dx.doi.org/10.1016/j.automatica.2012.06.072

3. de Lima, M., Greve, F.G.P.: Detectando Falhas Bizantinas em Sistemas Distribudos
Dinmicos. Revista Brasileira de Redes de Computadores e Sistemas Distribudos,
9–21 (2009), http://www.lbd.dcc.ufmg.br/colecoes/rb-resd/2/1/004.pdf

http://dx.doi.org/10.1007/s11276-011-0361-8
http://dx.doi.org/10.1016/j.automatica.2012.06.072
http://www.lbd.dcc.ufmg.br/colecoes/rb-resd/2/1/004.pdf

DISSN: A Dynamic Intrusion Detection System for Shared Sensor Networks 357

4. Conti, M., Di Pietro, R., Spognardi, A.: Wireless Sensor Replica Detection in
Mobile Environments. In: Bononi, L., Datta, A.K., Devismes, S., Misra, A.
(eds.) ICDCN 2012. LNCS, vol. 7129, pp. 249–264. Springer, Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-25959-3_19

5. Efstratiou, C., Leontiadis, I., Mascolo, C., Crowcroft, J.: A shared sensor network
infrastructure. In: Proceedings of the 8th ACM Conference on Embedded Net-
worked Sensor Systems (SenSys 2010), pp. 367–368. ACM, New York (2010),
http://dx.doi.org/10.1145/1869983.1870026

6. Hoh, S., Tan, J.S., Hartley, M.: Context-aware systems a primer for user-centred
services. BT Technology Journal 24(2), 186–194 (2006),
http://www.springerlink.com/content/y81x131125mr63n1/ (accessed October
5, 2012)

7. Kaur, P., Rattan, D., Bhardwaj, A.: An Analysis of Mechanisms for Making IDS
Fault Tolerant. International Journal of Computer 1(24), 31–35 (2010),
http://www.ijcaonline.org/journal/number24/pxc387745.pdf (accessed
September 28, 2012)

8. Laprie, J.: From dependability to resilience. In: IFIP Int. Conf. on Dependable
Systems and Network (2008)

9. Salmon, H.M., Farias, C.M., Loureiro, P., Pirmez, L., Rossetto, S., Rodrigues,
P.H., Pirmez, R., Delicato, F.C., Carmo, L.F.R.C.: Intrusion Detection System
for Wireless Sensor Networks Using Danger Theory Immune-Inspired Techniques.
International Journal of Wireless Information Networks 20, 39–66 (2013)

10. SunSpotWorld, Sun SPOT World (2012), http://www.sunspotworld.com/
11. Tsai, K.-C., Sung, J.-T., Jin, M.-H.: An Environment Sensor Fusion Application on

Smart Building Skins. In: 2008 IEEE International Conference on Sensor Networks
Ubiquitous and Trustworthy Computing, Sutc 2008, vol. 078(2), pp. 291–295 (2008)

12. Leontiadis, I., Efstratiou, C., Mascolo, C., Crowcroft, J.: SenShare: transform-
ing sensor networks into multi-application sensing infrastructures. In: Picco, G.P.,
Heinzelman, W. (eds.) EWSN 2012. LNCS, vol. 7158, pp. 65–81. Springer, Heidel-
berg (2012)

13. Wu, F., Kao, Y., Tseng, Y.: From wireless sensor networks towards cyber physical
systems. Pervasive and Mobile Computing 7(4), 397–413 (2011) ISSN 1574-11

14. Jacobs, I.S., Bean, C.P.: Fine particles, thin films and exchange anisotropy. In:
Rado, G.T., Suhl, H. (eds.) Magnetism, vol. III, pp. 271–350. Academic, New York
(1963)

http://dx.doi.org/10.1007/978-3-642-25959-3_19
http://dx.doi.org/10.1145/1869983.1870026
http://www.springerlink.com/content/y81x131125mr63n1/
http://www.ijcaonline.org/journal/number24/pxc387745.pdf
http://www.sunspotworld.com/

On the Analysis of Expected Distance

between Sensor Nodes and the Base Station
in Randomly Deployed WSNs

Cüneyt Sevgi1 and Syed Amjad Ali2

1 Department of Information Technologies, Işık University, Istanbul, Turkey
csevgi@isikun.edu.tr

2 Department of Computer Technologies and Information Systems, Bilkent
University, Ankara, Turkey
syedali@bilkent.edu.tr

Abstract. In this study, we focus on the analytical derivation of the
expected distance between all sensor nodes and the base station (i.e.,
E[dtoBS]) in a randomly deployed WSN. Although similar derivations
appear in the related literature, to the best of our knowledge, our deriva-
tion, which assumes a particular scenario, has not been formulated be-
fore. In this specific scenario, the sensing field is a square-shaped region
and the base station is located at some arbitrary distance to one of the
edges of the square. Having the knowledge of E[dtoBS] value is important
because E[dtoBS] provides a network designer with the opportunity to
make a decision on whether it is energy-efficient to perform clustering for
WSN applications that aim to pursue the clustered architectures. Simi-
larly, a network designer might make use of this expected value during
the process of deciding on the modes of communications (i.e., multi-hop
or direct communication) after comparing it with the maximum trans-
mission ranges of devices. Last but not least, the use of our derivation
is not limited to WSN domain. It can be also exploited in any domain
when there is a need for a probabilistic approach to find the average
distance between any given number of points which are all assumed to
be randomly and uniformly located in any square-shaped region and at
a specific point outside this region.

Keywords: Wireless sensor networks, Optimal cluster numbers, Energy
efficiency, Random deployment, Base station location.

1 Introduction

A Wireless Sensor Network (WSN) is composed of a sheer number of battery-
powered sensor nodes that communicate with each other through a wireless chan-
nel. Moreover, these nodes have moderate storage and application specific sens-
ing capabilities in addition to their limited on-board processing power. Although
WSNs suffer from scarcity of these resources, they offer promising potential to
operate in unattended and harsh environments where the human-interacted or

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 358–368, 2014.
c© Springer International Publishing Switzerland 2014

On the Analysis of Expected Distance 359

the human-controlled monitoring schemes are risky, inefficient and sometimes
infeasible.

In a typical WSN application, the main objective is to deploy a multitude
sensor nodes working collaboratively in order to cover a given sensing field and
to transfer (i.e., connectivity) the sensed data to the base station (BS). As such,
coverage and connectivity are considered as two primary performance metrics
and dominating factors that achieve the optimal use of an application’s scarce
resources for a given deployment scenario. The sensor nodes are deployed ac-
cording to either scenario: the deterministic or the random deployment. In the
deterministic deployment, the locations of the sensor nodes are known in pri-
ori. Conversely, in the random deployment, the locations of the sensor nodes
are not deterministic as the term also indicates. The random deployment sce-
narios are used more frequently than their deterministic counterparts because
the randomly deployed WSNs (RDWSNs) have higher potential to be devised
in real-life scenarios especially when there is a need to monitor a physical phe-
nomenon taking place in hostile and inaccessible environments.

Since there is a lack of prior knowledge about the locations of nodes in RD-
WSNs, the connectivity analysis is more stringent than the WSNs that adopt
the deterministic deployment. In a deterministic scenario, the average distance
between each node and its neighbors and similarly the average distance between
each node and the BS are known in advance. However, in the random deploy-
ment scenarios, the above mentioned distances, which indeed affect the energy
consumption and thus the lifetime of an application, are not known before the
deployment. Therefore, it is really crucial for a network designer to estimate these
distances as s/he needs to find out the modes of communication adopted by the
network. These modes can be categorized as the multi-hop communication and
the direct communication (a.k.a., single-hop). In a number of RDWSN applica-
tions, each sensor node is assumed to reach the BS within a single-hop. However,
in those applications that adopt the direct communication, it is observed that
a set of sensor nodes, which is far away from the BS, consumes a considerable
amount of energy because it needs to perform long-haul transmissions. There-
fore, those nodes, which are far from the BS, tend to die early and thus shorten
the lifetime of the network. This is known as the energy-hole problem. To tackle
the effects of this problem, the multi-hop communication is usually considered
as more energy efficient than the direct communication. As such, in the process
of making a decision on the communication modes, the network designer should
need to compare the maximum transmission range with the expected value of
the distance between each node and the BS (E[dtoBS]).

More importantly, E[dtoBS] value also has an important role particularly for
the clustered RDWSNs. In a clustering scheme, sensor nodes are basically grouped
into clusters based on the proximity of the neighbouring nodes, the average
distance to the BS, and energy levels, etc. to overcome some of the inherent
challenges of WSNs. Clustering has been used as the most common technique
due to its direct impact on the energy efficiency, network scalability and, more
importantly, on the overall network lifetime. This is the reason why there are

360 C. Sevgi and S.A. Ali

numerous studies on this subject in the related literature. The reader is encour-
aged to refer to a recent and comprehensive survey [1] for an overview of different
clustering schemes. In the studies analysing clustering schemes [2] and [3], it is
revealed that E[dtoBS] value is the key determinant to find out the optimum
number of clusters (kopt) that maximizes the lifetime in the clustered RDWSNs.
A notable work in [3] proposes a number of closed-form expressions to identify
kopt. Amini et. al. provide a complete theoretical framework for characterization
of kopt with respect to a set of parameters of the system scenario listed as fol-
lows: the number of nodes to be deployed (N), the area of sensing field (A), and
E[dtoBS]. The values for N and A are definitely known before the deployment.
And the only thing the network designer needs to derive the E[dtoBS] value to
find kopt value which maximizes the network lifetime. As such, the derivation of
E[dtoBS] becomes one of the central concerns in the clustered RDWSNs. In [3],
the authors derive various expected values for the distance with numerous pow-
ers analytically and validate them through simulations. They mainly assume two
symmetric sensing fields: a disc (with radius R) and a square (with side length
M). By considering both a disc-shaped and a square-shaped sensing fields and a
single BS, they find various E[dtoBS] values for different powers (i.e., E[dtoBS],
E[d2toBS], and E[d4toBS]). Amini et. al. analyze the E[dtoBS] formulations by the
varying locations of the BS as follows:

– The BS is located in the center
– The BS is located on the perimeter
– The BS is located outside the (on the axis of) sensing field

However, the case that gives E[dtoBS] (n = 1) when the sensing field is square
and the BS is located outside the field, is missing and therefore there is a gap
to be filled. Herein, our main contribution is to articulate this gap by deriving
E[dtoBS] for this special case.

After outlining the main motivations of this study, we introduce a review
of literature devoted to this topic to identify the reasons of clustering and the
importance of optimum number of clusters in a clustered architecture. Following
this review, Section 3 introduces the network model employed and the pertinent
assumptions used throughout the paper. Section 4 illustrates our derivation of
E[dtoBS]. Section 4 also includes the validation of our formulations. And the last
section presents the conclusion of our study.

2 Related Work

Lifetime maximization is usually considered as one of the most important objec-
tives in WSN applications. Lifetime maximization objective is mainly affected
by the energy-hole problem. This problem is experienced when the nodes closer
to the BS are usually required to forward a large amount of traffic for devices
farther from the BS. The similar problem is also observed when a set of sensor
nodes, which is far away from the BS, consumes a considerable amount of energy
as it needs to perform long-haul transmissions. Therefore, these nodes tend to

On the Analysis of Expected Distance 361

die early which further results in energy holes. As far as the random deploy-
ment is concerned, the effects of energy-hole problem become even more serious.
To minimize these effects, there are various studies which attack this problem.
The most common technique to maximize lifetime in RDWSNs is to devise one
clustering scheme or another. A clustering scheme typically groups sensor nodes
into clusters to optimize the transmission distance for energy-efficiency and ro-
tates the clusterheads for the evenly distribution of power loads. And the most
widely-used and influential clustering scheme proposed is LEACH (Low-Energy
Adaptive Clustering Hierarchy) [4].

LEACH mainly integrates the concept of energy-efficient cluster-based rout-
ing and medium access to prolong the system lifetime. It addresses the energy
consumption minimization problems by making use of a distributed round-based
algorithm. In each round of this distributed algorithm, it is expected that there
are initially chosen number of clusters. And, after the competition of each round,
clusterheads can be reelected periodically to balance the energy consumption.
Thus, LEACH highly relies on the optimal number of clusters (kopt) and in each
round it is assumed that WSN consists of kopt number of clusters. In [4], the
authors describe whether there is an optimal tradeoff between the inter-cluster
communication and the intra-cluster communication that balances energy con-
sumption and they derive analytical expressions from simplifying and sound
approximations. Analytical and simulation results are given to demonstrate the
high performance of LEACH when compared with minimum transmission en-
ergy and static clustering. Thus, most of the studies dealing with clustering in
WSN domain have been inspired by the study of LEACH. Thus, many variants
of LEACH and the protocols that take the core idea from LEACH are system-
atically reviewed in [1].

HEED (Hybrid Energy-Efficient Distributed clustering) [5] is another protocol
that aims to improve LEACH by periodically selecting clusterheads according
to a hybrid of the node residual energy and a secondary parameter, such as node
proximity to its neighbors or node degree.

Regardless of which clustering technique is employed or similarly which com-
munication mode (i.e., multi-hop or single-hop) is exploited, a WSN applica-
tion can only take the advantage of clustering if and only if the application is
grouped with the optimum number of clusters. [3] analytically provides the op-
timal cluster size that minimizes the total energy expenditure in such networks,
where all sensors communicate data through their elected clusterheads to the
BS in a decentralized fashion. The analytical outcomes are given in the form of
closed-form expressions for various widely-used network configurations. Exten-
sive simulations are performed for the validation purposes when three cluster-
based architectures namely LEACH, LEACH-Coverage, and DBS, are used.

One of the important concerns in the cluster-based architectures is the iden-
tification of kopt. When portioning the WSN into clusters different from kopt,
the energy consumption of the WSN may become inefficient and it may degrade
the network fast. Since the energy consumption of inter-cluster and intra-cluster
transmissions of sensor nodes is a function of distance, kopt depends on the

362 C. Sevgi and S.A. Ali

expected distance (E[dntoBS]) between the sensor nodes and the BS. There can
be several scenarios where the BS will be positioned relative to the sending field.
A majority of these scenarios have been studied by [3] and E[dntoBS] and thus
k values are derived for n=1, n=2, and n=4 when the sensing field is a disc or
a square. Authors addressed the problem of determining the kopt of randomly
deployed sensor nodes when the BS is located inside the field, on the perimeter
and outside (on the axis of) the sensing field. It is observed that the deriva-
tion regarding one specific scenario is missing. Our contribution at this point is
proposing the derivation of E[dtoBS] of the missing scenario: when the sensing
field is square and the BS is located outside the field.

3 Network Model

In this section, to facilitate the derivation of E[dtoBS] expression, we describe the
general system model and the pertinent assumptions used throughout the paper.
As E[dtoBS] value is mainly used to cluster a RDWSN with optimum number
of clusters, herein we illustrate a sample RDWSN with the reduced number
of devices before clustering in Figure 1(a) and after clustering in Figure 1(b).
However, it should be noted once again that our derivations can also be exploited
in any domain when there is a need for a probabilistic approach to find the
average distance between any given number of points which are all assumed to
be randomly and uniformly located in any square-shaped region and at a specific
point outside this region.

For a RDWSN before clustering, let a square-shaped sensing field, with a
surface area ofM2, to be covered byN sensor nodes which are deployed randomly
and uniformly over this field. Figure 1(a) simply illustrates this sample network
with 22 devices before the cluster formation phase. After the calculation of kopt
value, suppose that 6 (say kopt = 6) of the nodes switch to clusterhead role and
16 of the nodes keep on playing the ordinary sensor node role as can be seen in
Figure 1(b).

gk

M

fgg

Base Station

M

k

y

xO

Clusterhead

Ordinary Sensor Node

gk

M

fgg

Base Station

M

k

y

xO

Ordinary Sensor Node

(a) (b)

Fig. 1. A Sample Network Model (a) before clustering (b) after clustering

On the Analysis of Expected Distance 363

3.1 Assumptions

In this paper, all subsequent discussions are based on the following assumptions:

– The BS is assumed to be located at the origin. And the origin point is k
units far away from the edge (on the axis symmetry) of the square-shaped
sensing field as shown in Figure 1. The relative location of the BS is known
in advance before the deployment.

– The BS is also assumed to have unlimited energy and thus there is no en-
ergy constraint associated with it. Moreover, all devices are assumed to be
stationary and unattended.

4 Expected Distance between the Nodes and the BS

To deriveE[dtoBS] formulation, one should integrate the product of two functions
over the entire sensing field. The first function determines the distance between a
point and the BS. And the second function identifies the probability of a sensor
node being at that specific point. First, we attempt to solve the problem by
looking at double integrals in Cartesian Coordinates as shown in Figure 2(a).
Recall that the infinitesimal area in the Cartesian Coordinates is dA = dxdy.

gk
M

fgg

Base Station

M

k

y

xO

2+y2

dx
dy

gk

M

fgg

Base Station

M

k

y

xO

r

d

dr

dA

(a) (b)

Fig. 2. Integration in the (a) Cartesian (b) Polar Coordinates

This is a rectangle with sides dx and dy. And, suppose that the probability of a
sensor node being at point (x,y), which is

√
x2 + y2 units away from the BS, is

p(x, y). Then, the integration to find E[dtoBS] can be written as:

E[dtoBS] =

∫ ∫
p(x, y)

√
x2 + y2dxdy (1)

Since, the probability of having a sensor node at each point inside the sensing
field is identical1, p(x, y) is independent of x and y and is equal to 1/M2. By
substituting 1/M2 value with p(x, y) in Eqn. 1, we have:

1 Due to the fact that the nodes are randomly and uniformly deployed and the sum
of these probabilities is 1.

364 C. Sevgi and S.A. Ali

E[dtoBS] = 1/M2

∫ ∫ √
x2 + y2dxdy (2)

However, it is not trivial to find the integration in Eqn. 2 in the Cartesian
Coordinates. Thus, we attempt to solve the same problem by using the Polar Co-
ordinates and by integrating an infinitesimal ring-shaped element (dA = rdrdφ).
Before starting to integrate in the Polar Coordinates, recall that the probability
of a sensor node being in the ring-shaped segment which is r radial distance from
the BS is p(r) as shown in Figure 2(b). Then, the integration to find E[dtoBS]
can be written in the Polar Coordinates as:

E[dtoBS] =

∫ ∫
p(r)r2drdθ (3)

Similar to the probability value in the Cartesian Coordinates, p(r) is equal to
1/M2. Therefore, we have:

E[dtoBS] = 1/M2

∫ ∫
r2drdθ (4)

To be able to integrate r2drdθ over the square-shaped sensing field, we need to
consider two different regions with two different geometries. Thus, the sensing
field is analyzed by dividing it into two separate regions as a triangle and a
trapezoid as is shown in Figure 3(a) and (b) respectively.

4.1 Derivation of E[dtoBS−tri] in a Triangle

Herein, we focus on the integration of E[dtoBS−tri] over only the triangular
region depicted in Figure 3(a). Boundary values for the integration are plugged
in the Eqn. 4 when using the following trigonometric substitutions: r1 = A/cosθ
and r2 = M/cosθ

E[dtoBS−tri] =
1

M2

∫ α2

α1

∫ M/cosθ

A/cosθ

r2drdθ (5)

gk

M

fgg

Base Station

M

k

1

2

y

xO

450

A

gk

M

fgg

Base Station

M

k

1

2

y

xO

450

A

(b)(a)

Fig. 3. (a) Shaded Triangular Region (b) Shaded Trapezoid Region

On the Analysis of Expected Distance 365

By using the similar triangles in Figure 3(a), we can denote the value of A in
terms of k and M as:

k +M

M
=

k

A
⇒ A =

k.M

k +M
(6)

Moreover, α1 and α2 can be expressed in terms of trigonometric identities as
given in Eqn. 7 and 8 respectively.

tanα1 =
k

M
and secα1 =

√
k2 +M2

M
(7)

tanα2 =
k +M

M
and secα2 =

√
(k +M)2 +M2

M
(8)

Therefore, E[dtoBS−tri] can be found as:

E[dtoBS−tri] =
1

M2

∫ α2

α1

r3

3

∣∣∣∣
M/cosθ

A/cosθ

dθ =
M3 −A3

3M2

∫ α2

α1

1

cos3 θ
dθ (9)

We replace the term A in Eqn. 9 with the substitute of A in Eqn. 6. Therefore,
we have:

E[dtoBS−tri] =
M

3

(
(k +M)3 − k3

(k +M)3

)∫ α2

α1

1

cos3 θ
dθ (10)

In order to find the last term in Eqn. 10, we use Eqn. 11 which is from the table
of integrals in [6]:

∫ α2

α1

1

cos3 θ
dθ =

1

2
[tanα2 secα2 + ln(secα2 + tanα2)]−

1

2
[tanα1 secα1 + ln(secα1 + tanα1)] (11)

By replacing the trigonometric identities in Eqn. 7 and 8 with their substitute in
Eqn. 11, we can find Eqn. 12. And finally, E[dtoBS−tri] value for the triangular
region is given in Eqn. 13.

∫ α2

α1

1

cos3 θ
dθ =

1

2

[
(k +M)

√
(k +M)2 +M2

M2
+ ln

(√
(k +M)2 +M2

M
+

k +M

M

)]
−

1

2

[
k
√
k2 +M2

M2
+ ln

(√
k2 +M2

M
+

k

M

)]
(12)

366 C. Sevgi and S.A. Ali

E[dtoBS−tri] =
M

6

(
(k +M)3 − k3

(k +M)3

)

{
[
(k +M)

√
(k +M)2 +M2

M2
+ ln

(√
(k +M)2 +M2

M
+

k +M

M

)]
−

[
k
√
k2 +M2

M2
+ ln

(√
k2 +M2

M
+

k

M

)]
} (13)

4.2 Derivation of E[dtoBS−trap] in a Trapezoid

Herein, we concentrate on the integration of E[dtoBS−trap] over the trapezoidal
region depicted in Figure 2(b). A trapezoidal region can be typically expressed
by subtracting an area of a larger triangle from a smaller one. While the first
term in the Eqn. 14 represents the larger triangle, the second one represents the
smaller triangle.

E[dtoBS−trap] =
1

M2

[∫ π
2

α2

∫ M+k/sinθ

0

r2drdθ −
∫ π

2

α2

∫ A/sinθ

0

r2drdθ

]
(14)

E[dtoBS−trap] =
1

M2

[∫ π
2

α2

r3

3

∣∣∣∣
M+k/sinθ

0

dθ −
∫ π

2

α2

r3

3

∣∣∣∣
A/sinθ

0

dθ

]
(15)

E[dtoBS−trap] =
1

M2

[
(M + k)3

3
− A3

3

] [∫ π
2

α2

1

sin3 θ
dθ

]
(16)

Again by using the table of integrals in [6], the last term (B) in Eqn. 16 can be
rewritten as:∫ π

2

α2

1

sin3 θ
dθ =

1

2
[− cot θ csc θ + ln | csc θ − cot θ|] |

π
2
α2 = B (17)

From Figure 3, we can easily find the following trigonometric identities:

cot
π

2
= 0 and csc

π

2
= 1 (18)

After B = B
′ −B

′′
substitution, we have:

B
′
=

1

2

[
− cot

π

2
csc

π

2
+ ln | csc π

2
− cot

π

2
|
]
= 0 (19)

B
′′
=

1

2
[− cotα2 cscα2 + ln | cscα2 − cotα2|] (20)

On the Analysis of Expected Distance 367

B =
1

2

[
M

k +M

√
(k +M)2 +M2

k +M

]
− 1

2
ln

∣∣∣∣∣
√
(k +M)2 +M2

k +M
− M

k +M

∣∣∣∣∣(21)

E[dtoBS−trap] =
1

M2

[
(M + k)3

3
− A3

3

]
B (22)

By replacing the terms A and B in Eqn. 22 with their substitutes in Eqn. 6 and
21 respectively, we have the following:

E[dtoBS−trap] =
1

2M2

[
(M + k)3

3
−

(k.M
k+M)3

3

]
[

M

k +M

√
(k +M)2 +M2

k +M
− ln

∣∣∣∣∣
√
(k +M)2 +M2

k +M
− M

k +M

∣∣∣∣∣
]

(23)

4.3 Derivation of E[dtoBS] in a Square

Finally, to find E[dtoBS], we add E[dtoBS−tri] and E[dtoBS−trap] expressions
both for the triangle (Eqn. 13) and for the trapezoid (Eqn. 23). And, the formu-
lation for our research problem is given in Eqn. 24

E[dtoBS] =
M

6

(
(k +M)3 − k3

(k +M)3

)

{
[
(k +M)

√
(k +M)2 +M2

M2
+ ln

(√
(k +M)2 +M2

M
+

k +M

M

)]
−

[
k
√
k2 +M2

M2
+ ln

(√
k2 +M2

M
+

k

M

)]
}+

1

2M2

[
(M + k)3

3
−

(k.M
k+M)3

3

]
[

M

k +M

√
(k +M)2 +M2

k +M
− ln

∣∣∣∣∣
√
(k +M)2 +M2

k +M
− M

k +M

∣∣∣∣∣
]

(24)

4.4 Validation

In order to validate our E[dtoBS] formulation given in Eqn. 24, we compared
it with Eqn. 42 in [3]. While the latter one assumes that the BS is located on
the edge of the square-shaped sensing field, our derivation in Eqn. 24 assumes
that the BS in arbitrarily located units outside the field. To adapt Eqn. 24 in
this study to the one in [3], in other words, to move the BS from k units outside

368 C. Sevgi and S.A. Ali

the field to the edge of the sensing field, we assign k = 0 into Eqn. 24. After
substituting 0 for k in Eqn. 24, we have the following expressions:

E[dtoBS] =
M

6
{
[√

2 + ln
(√

2 + 1)
)]

− [0 + ln (1 + 0)]}+

1

2M2

[
(M)3

3

] [√
2− ln

∣∣∣√2− 1
∣∣∣] (25)

E[dtoBS] =
M

3

[√
2 + ln

(√
2 + 1)

)]
(26)

The fact that Eqn. 26 is exactly the same as the Eqn. 42 in [3] validates our
finding.

5 Conclusion

We have formulated E[dtoBS] when sensor nodes are deployed randomly and
uniformly over a square-shaped sensing field and the BS is located outside the
field. This expected value is required not only for the calculation of the optimum
number of clusters in the clustered RDWSNs but also for the decision whether
multi-hop or direct communication should be devised. One of the limitations
of our derivation in this paper is that the BS is assumed to be located on the
axis of (outside) the sensing field. Our future work will focus on this limitation
and explore E[dtoBS] when the BS is located at any arbitrary point outside the
sensing field rather than at a specific point on the axis of the sensing field.

References

1. Tyagi, S., Kumar, N.: A systematic review on clustering and routing techniques
based upon LEACH protocol for wireless sensor networks. Journal of Network and
Computer Applications 36(2), 623–645 (2013)

2. Amini, N., Vahdatpour, A., Dabiri, F., Noshadi, H., Sarrafzadeh, M.: Joint con-
sideration of energy-efficiency and coverage-preservation in microsensor networks.
Wireless Communications and Mobile Computing 11(6), 707–722 (2011)

3. Amini, N., Vahdatpour, A., Xu, W., Gerla, M., Sarrafzadeh, M.: Cluster size opti-
mization in sensor networks with decentralized cluster-based protocols. Computer
Communications 35(2), 207–220 (2012)

4. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: An application-specific pro-
tocol architecture for wireless microsensor networks. IEEE Transactions on Wireless
Communications 1(4), 660–670 (2002)

5. Younis, O., Fahmy, S.: HEED: a hybrid, energy-efficient, distributed clustering ap-
proach for ad hoc sensor networks. IEEE Transactions on Mobile Computing 3(4),
366–379 (2004)

6. Dwight, H.B., Hedrick, E.R.: Tables of Integrals and Other Mathematical Data, 3rd
edn. The Macmillan Company (1956)

Performability Modelling and Analysis

of Clustered Wireless Sensor Networks
with Limited Storage Capacities

Fredrick A. Omondi1, Enver Ever2, Purav Shah1, Orhan Gemikonakli1,
and Leonardo Mostarda1

1 Middlesex University, The Burroughs, NW4 4BT, London, United Kingdom
{f.adero,p.shah,o.gemikonakli,l.mostarda}@mdx.ac.uk

2 Middle East Tech. University, North Cyprus Campus, Guzelyurt, Mersin 10, Turkey
eever@metu.edu.tr

Abstract. Wireless Sensor Network (WSN) technology has seen an in-
creasing demand for use in various application areas including multime-
dia sensor networks, smart agriculture and industrial automation. The
applications demand for optimum results are dictated by the complexity of
their deployment environment, hence the need for improved performance,
availability and reliability. Packet loss due to limited memory capacity has
become a major drawback in some areas of WSN applications like Multi-
media Wireless Sensor Networks (WMSN). Most of the existing studies
consider performance and availability evaluation separately. Considering
systems for pure performance evaluation may cause overestimation of sys-
tems ability to perform. On the other hand focussing only on the avail-
ability may be too conservative since various levels of performance are not
considered. In this paper, we propose an analytical modelling approach for
boundedWSNqueues where cluster-tree architecture is considered and in-
tegrated performance and availability measures analysed in the presence
of failures, repairs/replacement and restoration. Open queuing network is
used to model the behaviour of the cluster head as an M/M/1/L queuing
system and using spectral expansion method, the system is solved and val-
idated against simulation results. Both analytical and simulation results
presented are in good agreement and are further used to analyse the trade-
off between the arrival rate and buffer size for optimum performance and
availability.

Keywords: Wireless Sensor Networks, Modelling, Performance, Avail-
ability, Reliability, Performability, Queue Capacity.

1 Introduction

The use of WSN technology has become promising and interesting with applica-
tion areas including seismic, acoustic, chemical and physiological sensing as well
as ambient assisted living. For applications involving large number of nodes, the
deployment strategy for sensor nodes play a vital role in extending the overall

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 369–382, 2014.
c© Springer International Publishing Switzerland 2014

370 F.A. Omondi et al.

network lifetime whilst providing good quality of service and reliable perfor-
mance. Performance of WSNs is continuously hindered by limited sensor node
resources and failures categorised as node, cluster and network failures [1].

Significant independent studies have been reported on performance and avail-
ability/reliability of WSNs to address issues hindering WSN quality of service
(QoS). The concerns of independent performance and availability studies have re-
mained unresolved and require attention in order to improveWSNs QoS. Another
concern in WSNs is limited storage memory (buffer) both for operating systems
and temporary data storage. This means sensor nodes can only offer limited buffer
space for temporary storage of data being processed.Any packets arriving when
the buffer is full are lost. The constraint is worsened when a node is used as clus-
ter head (CH) processing and transmitting all internally and externally generated
data towards the sink. Studies have also indicated use of cluster tree as a preferred
topology for deployment of WSNs in many application areas following implemen-
tation of mechanisms like use of back-up CH (BCH) or secondary CH (SCH) and
CH rotation which prevent central point of failure at the cluster head [2] . This
increases traffic to the CH and may result to more packet loss.

WSN designers ought to consider fault tolerance, scalability, operating envi-
ronment, energy efficiency, network topology as well as complying with the lim-
ited sensor node resources. Much work has been done to improve the lifetime of
sensor nodes by using mechanisms for extending the battery life, replacement of
failed/dead nodes and use of clustering algorithm to improve WSN lifetime [3].
Proposals for saving node energy include altering operations between active and
sleep modes are presented in [4],[5]. Even though independent work on perfor-
mance and availability/reliability has also been reported [4], [6], to the best of our
knowledge there is no previous integrated performance and availability studies for
clustered wireless sensor network that also considers CH limited buffer capacity.

The novelty of this study is therefore to develop a mathematical model inte-
grating performance and availability studies while at the same time considering
the effects caused by restricting node buffer sizes. The study also incorporates the
possibility of cluster head failures, repairs/replacement and restoration during
operations. The model is then used to analyse cluster and CH performance and
availability related issues. The rest of the paper is organised as follows: Section
2 reviews related works, Section 3 describes the system under study, Sections 4
presents the queuing model for the system, section 5 presents a two dimensional
representation of the proposed model, Section 6 presents numerical results and
finally section 7 concludes the current work and provides future directions.

2 Related Work

Performance modelling and analysis is important in supporting research as well
as design, development and optimization of computer and communication sys-
tems and applications. The use of WSNs in various application areas has also
brought with it the need for performance and availability modelling for opti-
mization of WSN networks. In [4], a Markov model for WSNs whose nodes may

WSN Cluster Heads with Limited Memory Capacity 371

enter sleep mode was presented and investigated against the system performance
in terms of energy consumption, network capacity, data delivery and delay. This
model presented a trade-off which exists between performance metrics and sensor
dynamics in sleep/active modes. In [7], a new evaluation method for optimising
packet buffer capacity of nodes using queuing network model was presented to
improve the transmission QoS. However, the effects of node failures on network
performance were not considered.

In order to improve WSNs availability, use of BCH and SCH has been pro-
posed in [2] as a form of redundancy when a cluster head fails. However perfor-
mance degradation due to replacement and transfer delays between failing CH
and BCH in the event of failure is not considered. Performance of star topology
has also been enhanced by cluster-tree deployment which provide redundancy
through use of BCH, SCH and CH rotation thereby alleviating central point of
failure at the CH, improve performance, and prolong WSN lifetime [2]. Robots
have also been proposed in [9],[10] for repair of nodes and broken network connec-
tions. It is therefore evident that failing nodes can be repaired through software
reconfigurations and replacement using mobile nodes in cases of complete failure.

Originally, WSNs were meant for low to medium rate applications hence mem-
ory was not a major concern. However, the introduction of video and image
sensors in addition to bursty high data rate applications has caused additional
challenges [11]. Data intensive applications that send results to a central server
are particularly constrained due to the large buffer size required to queue sensed
data [12]. This becomes more challenging in clustered networks where the clus-
ter head has to queue lots of data from internal and external sources for onward
transmission to the sink.

In summary, it is evident there is need for a planning and deployment tool
that takes into account the limited storage capacity of sensor nodes acting as
CHs. In addition, it should incorporate an integrated performance and avail-
ability modelling and evaluation in order to reduce any effects that may result
from independent studies. For clustered WSNs, this tool may also be used for
performance tuning and upgrades once the network is operational.

3 System Description

A cluster system with one CH coordinating cluster operations is considered based
on earlier work in [4] and [13]. The cluster is assumed to be part of a wider
network with K clusters. In this arrangement, the cluster head operation is
rotated among strategically deployed full function nodes. The choice of the CH
is based on node energy levels and other metrics deemed appropriate [2], [4], and
[5]. To conserve energy, CHs rotationally go to sleep after transferring operations
to the next CH. For this purpose, use of the best energy saving protocols like
UHEED [3] is assumed. The system is assumed to have redundant sensor nodes
deployed at inception but kept inactive until the need to replace a failing node
arises [6]. It is further assumed that all nodes are equipped with omnidirectional
antennas with same radius (d) and can communicate directly with the CH based

372 F.A. Omondi et al.

on the Zigbee 802.15.4 standards. Reduced Function (RF) nodes far away from
the CH may transmit their data through Full Function (FF) nodes to the CH. To
reduce the energy consumption further, the nodes are able to choose an arbitrary
transmission power level as long as the radius does not exceed d.

Information sensed and aggregated at the nodes (FF and RF) are forwarded
to the CH which finalises cluster data aggregation. The CHs also generate data
packets based on their observations. The total information is then transmitted
by the CH to the sink directly or through intermediary CHs. It is assumed
that at least one path exists towards the sink[4]. Like other communication
networks, this system is subject to failures which may result from hardware,
software and channel link errors of failures. Figure 1 shows the system scenario
in consideration.

Fig. 1. Topology of the reference scenario Fig. 2. Single CH Queueing Model

4 System Modelling

4.1 Choosing Preferred Model

In a cluster based WSN topology, the CH is the central point of communication
between the cluster nodes and the sink. All cluster nodes are assumed connected
directly to the CH. The CH connects either directly or through other CHs to the
sink forming an overall cluster tree network. The nodes independently monitor
their habitat and contend with others for channel availability to relay their
observed data to the cluster head. It is assumed that the CH is not aware of
the next arrival source until the arrival actually occurs. Due to limited memory
capacity of the CH, it is assumed that any data arriving when the CH buffer is
full is not allowed in the system and automatically dropped. Packets arrival at
the CH is assumed to follow Poisson distribution with mean rate λ and service
time assumed exponentially distributed with rate μ [14]. Service priority is based
on first come first served (FCFS).

In this model, the total arriving data at the CH originate from within the clus-
ter (internal sources) and externally from other cluster heads (external sources)
forwarding their data to the sink. From IEEE 802.15.4/Zigbee standards, a max-
imum of 36 nodes is recommended per cluster for better performance. This is

WSN Cluster Heads with Limited Memory Capacity 373

confirmed in [9] where performance measure were analysed by varying arrival
rates and sensor node density per cluster. In this scenario, more than 30 nodes
inclusive of the CH are considered. Since we have relatively large number of
independent Poisson streams, the resulting superposition of all the arriving jobs
at the CH from both internal and external sources follow Poisson distribution
[15] with rate λk where k stands for the CH (node k).

From the preceding discussions, the CHs operation is similar to an open queu-
ing network with input and output entries. When operating at steady state, av-
erage flows entering the CH queue is same us the flow leaving the queue. The
behaviour and operations at each cluster head is similar and may be indepen-
dently modelled using an M/M/1/L queuing system following Jacksons theorem
that treats each node in an open queue network as a single server.

4.2 Queueing Model for the System

The resulting job arrivals at the cluster head is a collection of jobs from the
cluster nodes, the sensed information by the cluster head itself and the forwarded
data from other cluster heads. The jobs are assumed to be independent and
identically distributed random variables with rate λ. The operation is assumed
similar at all other CHs. For this study, it is assumed there are K CHs (k =
1, 2, . . .K) through which the sink may be reached. The behaviour of a single
CH, node k is modelled as an open queue network using M/M/1/L queueing
system. The CH is assumed to have a total of N nodes, (n = 1, 2, . . .N). Since
the number of cluster nodes plus CHs are taken to be more than 30, it is possible
to assume that the resulting superposition of all the job arrivals at node k from
internal (N) and external (K) sources (where N + K ≥ 30) follow Poisson
distribution with mean arrival rate λk [21]

Figure 2 shows the proposed queuing model for analysing the single CH be-
haviour. λnqn,k and λrqr,k represent the internal and external arrivals at node k
(CH) respectively. Once the jobs are processed at node k, they are transmitted
directly or forwarded upward to the sink through node r. Here node r represents
the next CH towards the sink. The operation at the forwarding node r is similar
to that at node k. Since the nodes are prone to failures, it is assumed that when
a node fails it is taken into repair process immediately [2], [9]. This could be
through software reconfiguration or replacement of failing nodes. Service times,
failure times, and repair times are all assumed to be exponentially distributed
with rates μk , ξk and ηk respectively. A finite queue length (L) is introduced
and jobs arriving when the queue is full are blocked and assumed lost. The in-
terruption policy is such that service is resumed from the point of interruption
or repeat with re-sample.

Jobs leaving node k are rerouted to node r with the probability qk,r for service
at node r. If jobs are not routed to node r then qk,r = 0. It is assumed without
loss of generality that as far as the queue length distributions are concerned
qk,k = 0, (k = 1, 2, . . . ,K). Also qk,K+1 = 1 −

∑K
r=1 qk,r is the exit probability

from the system after a job is serviced at node k. The exit probability qk,K+1, is
assumed to be non zero for at least one value of k. Q is the routing probability

374 F.A. Omondi et al.

matrix of size K × K, such that, Qk,r = qk,r; (1 ≤ k, r ≤ K). To analyse the
performability of this system, steady state conditions are considered. The total
arrival rate (λk) at CH node k as the sum of external and internal traffic rates
can then be expressed as:

λk = σk +

K∑
r=1

λrqr,k; k = 1, 2, . . . ,K (1)

Here σk is the sum of all internal arrivals and may be expressed as;

σk =
∑N

n=1 λnqn,k n = 1, 2, . . . , N

The term
∑K

r=1 λrqr,k represents the externally arriving jobs from other CHs
as mentioned earlier. The blocking probability when the queue is full, the effec-
tive arrival rate (λk,e) at the CH (node k) and the rate at which the jobs are lost
(λk,l) due to blocking can be calculated using equations 2 3 and 4 respectively.

PB =

N∑
i=0

Pi,L (2)

Where: Pi,L is the probability of being in the operative state i when the buffer
if full and L is the maximum buffer capacity.

λk,e = λk(1− PB) (3)

λk,l = λkPB (4)

In order to define the total arrival rates for each node, the row vectors λ =
(λ1, λ2, . . . , λN) and σ = (σ1, σ2, . . . , σN) can be employed. Let also Ek be the
unit matrix of size K ×K then;

λ(Ek −Q) = σ (5)

Letting the effective average service rate at the CH be μ̂k, and taking into
account the losses resulting from failures and repairs it can be shown that μ̂k is
given by equation 6,[18], [19].

μ̂k = μk.ηk/(ηk + ξk) (6)

For steady state, the effective service rate must be greater than the effective
arrival rate at the CH. Thus μ̂k > λk,e; k = 1, 2, . . .K is the condition for steady
state analysis.

5 Two Dimensional Markov Representation of the
Proposed Model

In this system since all the sensor nodes forward their information to the CH,
the matrix Q has a special form and the total amount of arrivals to CH can
be calculated as λk = C × λ, where C is the number of sensor nodes in the
WSN cluster and λ is the average packet generation rate of the sensor nodes [8].

WSN Cluster Heads with Limited Memory Capacity 375

Similar studies using M/M/1/L have been conducted before [20], [15] though no
records of the same is known for WSN systems. The state transition diagram
for the cluster head is given in figure 3. The operative states F and R represent
failed and fully active states respectively.

The model treats sleep and breakdown states as short and long breakdown
periods respectively since data will continue to arrive in both of the states.
However, service is only possible when the server is fully operational. The system
state at time t may be described using a pair of integer valued random variable
I(t) and J(t) specifying the cluster head operative states and the number of
jobs in the system respectively. The operative states I(t) in this case represents
the assumed failed and working periods of the CH. Z = [I(t), J(t)]; t ≥ 0 is
an irreducible Markov process on a lattice strip (QBD process), that models
the system. Its state space is (0, 1)x (0, 1, . . . , L). Similar models [20], [21] are
analysed for exact performability evaluation of various Multi sever systems with
single repairman and for both finite and infinite L for some repair strategies. It is
possible to extend the exact solution methodology for performability evaluation
of WSNs. Since the possible operative states of the CH and the number of data

Fig. 3. State transition diagram for CH performability

arrivals are represented in the horizontal and vertical directions of the lattice
respectively, the transition matrices can be derived as:

i A is the matrix of instantaneous transition rates from (i, j) to state (l, j),(i =
0, 1; l = 0, 1; i �= l; j = 0, 1, . . . , L), with zeros in the leading diagonal, caused
by a change in the state [21]. These are the purely lateral transitions of the
model Z. A clearly depends on parameters ξ and η. The state transition
matrices A and Aj are of size (2)× (2) and can be given as shown below.

ii Matrices B and C are transition matrices for one step upward and one step
downward transitions respectively [21]. When there is no job in the system,
the elements of matrix C are zero. The transition rate matrices do not depend
on j for j ≥ M , where M is a threshold having an integer value [21]. The
respective transition matrices are shown below:

376 F.A. Omondi et al.

A = Aj =

[
0 η
ξ 0

]
and B = Bj =

[
λ 0
0 λ

]
and C = Cj =

[
0 0
0 μ

]

Elements of matrix B are dependent on the data arrival rate (λ) at the CH
while elements of matrix C depend on the CH service rate (μ).

Once the state transition matrices are established, spectral expansion solution
technique is then employed to derive steady state probabilities for the model.
The details of how Spectral Solution technique works may be found in [20], [18].
From the state probabilities, a number of steady-state availability, reliability,
performability measures can be computed quite easily. For illustration, we have
concentrated on the blocking probability described by 2, the mean queue length
(MQL), throughput (γ), utilization (u), and response time (RT) which may be
computed using equations 7 through 10 respectively. From the model service is
only possible when there are jobs in the system.

MQL =

L∑
j=0

j

N∑
i=0

Pi,j (7)

γ =

L∑
j=1

N∑
i=1

μPi,j (8)

u = 1−
N∑
i=0

Pi,0 (9)

RT = MQL/γ (10)

where, L and N are queue length and system states respectively as shown in
figure 3.

6 Numerical Results and Discussions

In this section, numerical results for the model obtained using Spectral Expan-
sion solution approach are presented. The results are verified using a dedicated
event driven simulation software for the actual system developed in C++ lan-
guage and validated using well known mathematical solutions. The simulation
software has also been verified to exactly match the M/M/1/L system perfor-
mance as presented in [23], [20]. Finally, the steady state results are compared
with results obtained from a similar study but with an infinite queue [13] in order
to understand the effects of limited memory capacity in sensor nodes acting as
CHs. Table 1 bellow lists a summary of steady state performance metrics used
in this study.

6.1 Parameter Choice

In this section, parameter choices are discussed and a summary of simulation
parameters used are presented in Table 2. The parameters shown in Table 2 are
considered throughout the evaluation of the system, unless otherwise stated. In

WSN Cluster Heads with Limited Memory Capacity 377

Table 1. Performance Metrics Explained

Performance Metrics Brief Description

Effective arrival rate (λk,e) Rate of packets arrival at CH excluding blocked packets

Rate of jobs lost (λk,l) Rate data packets are lost due to blocking

Mean Queue Length (MQL) Average number of packets in the queue at steady state

Throughput (γ) Departing packets from CH per unit time after service

Utilization (u) The fraction of time the server is busy during operation

Response time (RT) Total time data packet take in the system

Blocking Probability (PB) Probability arriving packet finds buffer is full

choosing the input parameters, a generic system was considered. From IEEE
802.15.4/Zigbee standards, a maximum number of 36 nodes is recommended
for for optimal CH operation. Though in most research work, arrival rates of 1
packet/second is used, variation of arrival rates between 1 to 10 packets/second
has also been recorded [24]. In other areas, mean arrival rates have been varied
between λ = 1− 15 packets/hr [25].

Assuming a full capacity cluster operation for monitoring moisture content
in an agricultural farmhouse. Configured with the same mean arrival rate of
λ = 8 packets/hr from each cluster node (λ1 = λ2 = λ3 =, . . . ,= λC), the
effective arrival at the CH becomes λk = C × λ = 288 packets/hr. For stability,
the CH requires a slightly higher mean service rate per hour. Considering that
the CH has in addition, internal data and control processes, a service rate of
μk = 300 packets/hr was arbitrarily chosen in order to ensure steady state
condition is reached when the CH is operating in full capacity. Arrival rates
following Poisson distribution are varied between 1 − 8 packets/hr from each
node to ensure the system remains stable. An arbitrary queue length of L = 50
packets was also chosen for this study throughout the experiments.

Sensors are usually attached with a 2×AA battery pack of 2.7 − 3.3 volts
capable of continuous operation for 3.25 days as given in the CC2420 transceiver
data sheet. In this study, it is assumed that good mechanism for availability are
put in place and battery depletion is not the cause of failures. Use of backup
for CHs and solar charging systems [6], [25] are just but a few example of such
mechanisms. In order to model these systems, mean failure (ξ) and repairs (η)
rates were assumed to be ξ = 0.001/hr and η = 0.5/hr translating to mean
failure and repair occurring after every 1000hrs and 2hrs respectively. These
values are maintained during the experiment except where specified.

6.2 Results and Discussions

In figure 4, the MQL is presented as a function of arrival rate λ. For every
run, a fixed number of nodes is chosen and the arrival rate λ is varied between
0 to 14 packets/hr. It is observed that for steady state operations the MQL

378 F.A. Omondi et al.

Table 2. Simulation parameters and values

No. Parameter Type Parameter Values

1. Arrival rate λ 0 - 14
2. Service rate μ 300
3. Failure rate ξ 0.001 - 0.01
4. Repair rate η 0.5
5. Queue capacity L 10, 30, 50, 100, 500, 1000

is kept below 5 jobs after which the system becomes unstable and the MQL
shoots up. This is contrary to the infinite system studied in [13] which indicate
a slightly higher MQL value (10 jobs) before the system becomes unstable. The
results indicate that when the CH is configured for low arrival rates, in this case
λ = 5packets/hr then many cluster nodes (20− 36) may be accommodated. On
the other hand, setting high arrival rates of λ = 10packets/hr results into the
system getting saturated with fewer nodes between 20− 28.

Fig. 4. MQL vs Arrival rate
Fig. 5. MQL vs Arrival Rates

Assuming an infinite buffer for WSN CH may therefore impact negatively on
system performance hence the need to optimise operations using the available
resources. In both finite and infinite scenarios, it is confirmed that fewer nodes
are able to accommodate higher arrival rates as opposed to many nodes which
saturate the system at lower arrival rates. This confirms a trade off when coverage
and optimum performance are of concern as highlighted in [13].

In figure 5, the effects of varying queue capacity is compared. The number
of nodes is maintained at 30 throughout the experiment. The following buffer
sizes were used; L = 10, 30, 50, 100, 500, 1000. During each run, the arrival rate
is varied from 1 to 9 packets/hr and the MQL is recorded appropriately. It is
observed that when queue capacity is low, then MQL is very low resulting into
more jobs being lost. However, as the queue capacity (L) is increased, a limit is
approached beyond which further increases do not cause any meaningful change
to MQL.

WSN Cluster Heads with Limited Memory Capacity 379

In figure 6, the average response time for a finite system is noted to be much
less compared to the infinite systems [13] since only a few packets may wait in
the queue at any given time, while the rest of the packets are blocked. Though
these results are generic, the response times may easily be customised for par-
ticular WSN application requirements for purposes of deployment planning and
operation management.

Fig. 6. Varying Nodes vs Response Time Fig. 7. Failure Rate Vs Response Time

In figure 7, the response time is given as a function of number of nodes for
various failure rates. For this experiment queue length value of L = 10 is used.
Arrival rate (λ) is constant but overall arrivals to the cluster head is increasing
due to increasing number of nodes. It can be observed that response time is
higher when the system exhibits high failure rates. As the nodes are increased,
the arrival rate also increases followed by gradual increase in response time. As
the nodes are increased, a level of arrival rate is reached after which any addi-
tional nodes results into rapid increase in response time. For optimum operation
at higher failure rates it is preferable to maintain above 20 active nodes per
cluster but not more than desired maximum of 36 nodes. From figures 6 and
7 it can be deduced that preferable response time for better performance falls
below 0.025hrs. Systems configured for much lower response times are mostly
preferable for WSNs.

Figure 8 shows system blocking probability increasing with increase in arrival
rates. It is noted that blocking probability is minimal at low failure rates but
shoots up at higher failure rates. Also worth acknowledging is the exponential
growth of blocking probability until a steady state is reached after which further
increase of arrival rate only results to system oscillating around the steady state.
From the observation, it is noted that high failure rates may result into system
being highly unreliable hence more data losses. This can be used as a WSN sys-
tem calibration tool for setting acceptable failure limits, continuous monitoring
and prediction of future system behaviour.

From figure 9, it is observed that for L = 10, the blocking probability is higher
at low arrival rates but remains steady and sharply increases as the arrival rate
increases past 6 to 9 packets/hr. For a queue length of L = 500, the blocking

380 F.A. Omondi et al.

Fig. 8. PB vs Arrival Rate Fig. 9. PB vs. Arrival rate

probability approaches zero, thus confirming that as the queue length tends
to infinity, blocking probability approaches zero. The results shown in figure 9
shows the performance of realistic WSN systems which do not have infinite buffer
length. From figures 5 and 9, it is possible to recommend buffer sizes for various
applications which are dependent on the volume of data generated and whether
they are mission critical. In table 3, generalised buffer size recommendations for
various applications are given. To maximise the performance of the system, the
system utilisation was maintained between 0.1 to a maximum of 0.9, which is
below the maximum possible 0.998 required for system stability.

Table 3. Proposed Buffer sizes for various application categories

Application Categories Buffer Sizes Application Types

Low data intensive 10− 30 Smart Agriculture
Medium data intensive 30− 50 Body Area Networks (BANs)

Data intensive 50− 100 Volcanic eruption, wild forest fire
High data intensive 100 − 500 Video & Data; e.g. Intelligent Transport Syst.

Very high data intensive 500 Real time multi-media applications

7 Conclusions and Future Directions

In this paper, a solution technique is presented for modelling and performability
analysis of clustered WSNs with bounded queues. The study is focused around
the behaviour of the CH as it receives and processes internal and external job ar-
rivals while at the same time, prone to possible breakdowns, repairs/replacement,
and restoration during operations. The CH is successfully modelled using an
M/M/1/L open queuing network and its steady state probabilities derived us-
ing spectral expansion solution technique. To the best of our knowledge, this is
the first attempt to model and analyse integrated performance and availability
measures for clustered WSNs under bounded queues.

WSN Cluster Heads with Limited Memory Capacity 381

Numerical results are presented comparatively with results obtained from sim-
ulation runs for various performability measures. The results which are in good
agreement with discrepancies under 2% clearly show the effects of bounded CH
queues and confirm the importance of performability modelling for wireless net-
works [13]. From the result, it is deduced that finite queues limit acceptable data
packets at the CH at any given time and results to loss of packets arriving when
the queue is full. Variations in required buffer capacities are application depen-
dent with data intensive (multimedia) applications demanding more storage as
highlighted in table 3.

This study can be further extended to model intra and inter cluster traffic
with consideration to priority queues for mission critical applications in a mixed
application environment. An example of this may be monitoring the spread of
pests in the agricultural farm where other applications like temperature, humid-
ity, fire and intrusion detection are also of interest. It is also possible to classify
and include in the model, other CH operative states like sleep mode, channel fail-
ure, reduced operation state and others. Furthermore, the effects of performance
and availability measures on energy consumption can also be incorporated in
optimisation studies.

References

1. Dong, S.K., Ghosh, R., Trivedi, K.S.: A Hierarchical Model for Reliability Analysis
of Sensor Networks. In: 2010 IEEE 16th Pacific Rim International Symposium on
Dependable Computing (PRDC), pp. 247–248 (December 2010)

2. Hashmi, S.U., Rahman, S.M.M., Mouftah, H.T., Georganas, N.D.: Reliability
Model for Extending Cluster Lifetime using Backup Cluster Heads in Cluster-
Based Wireless Sensor Networks. In: 2010 IEEE 6th International Conference
on Wireless and Mobile Computing, Networking and Communications (WiMob),
pp. 479–485 (October 2010)

3. Enver, E., Luchmun, R., Leonardo, M., Alfredo, N., Purav, S.: UHEED - An Un-
equal Clustering Algorithm for Wireless Sensor Networks. In: SENSORNETS, pp.
185–193 (2012)

4. Chiasserini, C.-F., Garetto, M.: Modeling the performance of wireless sensor net-
works. In: 2004 INFOCOM 23rd Annual Joint Conference of the IEEE Computer
and Communications Societies, vol. 1 (March 2004)

5. Li, W.W.: Several characteristics of active/sleep model in wireless sensor networks.
In: 2011 4th IFIP International Conference on New Technologies, Mobility and
Security (NTMS), pp. 1–5 (February 2011)

6. Munir, A., Gordon-Ross, A.: Markov modeling of fault-tolerant wireless sensor net-
works. In: 2011 Proceedings of 20th International Conference on Computer Com-
munications and Networks (ICCCN), July 31-August 4, pp. 1–6 (2011)

7. Qiu, T., Feng, L., Xia, F., Wu, G., Zhou, Y.: A Packet Buffer Evaluation Method
Exploiting Queueing Theory for Wireless Sensor Networks. Journal of Computer
Science and Information Systems 8(4), 1028–1049 (2011)

8. Wang, Z., Yang, K., Hunter, D.: Modelling and Analysis of Convergence of Wire-
less Sensor Network and Passive Optical Network using Queueing Theory. In: 2011
IEEE 7th International Conference on Wireless and Mobile Computing, Network-
ing and Communications (WiMob), pp. 37–42 (October 2011)

382 F.A. Omondi et al.

9. Liu, X., Feng, Y., Lv, Q., Zhao, T.: Cascaded movement strategy for repairing
coverage holes in wireless sensor networks. In: 2011 International Conference on
Information Technology, Computer Engineering and Management Sciences (ICM),
vol. 2, pp. 108–111 (September 2011)

10. Zhang, J., Song, G., Qiao, G., Li, Z., Wang, A.: A Wireless Ssensor Nnetwork
System with a Jumping Node for Unfriendly Environments. International Journal
of Distributed Sensor Networks 2012 (2012)

11. Akkaya, K., Younis, M.: An Energy-Aware QoS Routing Protocol for Wireless
Sensor Networks. In: 2003 IEEE Proceedings of the 23rd International Conference
on Distributed Computing Systems Workshops, pp. 710–715 (2003)

12. Chang, S., Kirsch, A., Lyons, M.: Energy and storage reduction in data intensive
wireless sensor network applications. Technical report, Harvard University (2007)

13. Omondi, F.A., Ever, E., Shah, P., Gemikonakli, O.: Modelling wireless sensor net-
works for performability evaluation. In: Cichoń, J., Gȩbala, M., Klonowski, M.
(eds.) ADHOC-NOW 2013. LNCS, vol. 7960, pp. 172–184. Springer, Heidelberg
(2013)

14. Zhang, Y., Li, W.: Modeling and Energy Cconsumption Evaluation of a Stochastic
Wireless Sensor Network. EUROSIP Journal on Wireless Communications and
Networking, 1–11 (2012)

15. Chakka, R., Ever, E., Gemikonakli, O.: Joint-State Modeling for Open Queuing
Networks with Breakdowns, Repairs and Finite Buffers. In: MASCOTS 2007. 15th
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, pp. 260–266 (October 2007)

16. Wang, Y., Vuran, M.C., Goddard, S.: Cross-layer analysis of the end-to-end delay
distribution in wireless sensor networks. IEEE/ACM Transactions on Networking
(TON) 20(1), 305–318 (2012)

17. Chiasserini, C., Garetto, M.: An analytical model for wireless sensor networks with
sleeping nodes. IEEE Transactions on Mobile Computing 5(12), 1706–1718

18. Thomas, N., Mitrani, I.: Routing among different nodes where servers break down
without losing jobs. In: Proceedings of the International Computer Performance
and Dependability Symposium, pp. 246–255 (April 1995)

19. Sheng-li, L., Jing-bo, L., De-quan, Y.: The M/M/1 repairable queueing system with
variable breakdown rates. In: Chinese Control and Decision Conference (CCDC),
pp. 2635–2637 (June 2009)

20. Chakka, R.: Spectral Expansion Solution for some Finite capacity Queues. Annals
of Operations Research 79, 27–44 (1998)

21. Ever, E., Kirsal, Y., Gemikonakli, O.: Performability modelling of handoff in wire-
less cellular networks and the exact solution of system models with service rates
dependent on numbers of originating and handoffr calls. In: International Con-
ference on Computational Intelligence, Modelling and Simulation, CSSim 2009,
pp. 282–287 (September 2009)

22. Mitrany, I.L., Avi-Itzhak, B.: A many-server queue with service interruptions. Jour-
nal of Operations Research 16(3), 628–638 (1968)

23. Cassandras, C.G.: Introduction to Discrete Event Systems, 2nd edn. Springer
24. Zhou, H., Luo, D., Gao, Y., Zuo, D.C.: Modeling of node energy consumption for

wireless sensor networks. Wireless Sensor Network 3(1), 18–23 (2011)
25. Li, Z., Peng, Y., Zhang, W., Qiao, D.: J-roc: A Joint Routing and Charging Scheme

to Prolong Sensor Network Lifetime. In: 2011 IEEE 19th International Conference
on Network Protocols (ICNP), pp. 373–382 (2011)

Discovery of Hidden Correlations between

Heterogeneous Wireless Sensor Data Streams

Francesco Cauteruccio1, Giancarlo Fortino2,
Antonio Guerrieri2, and Giorgio Terracina1

1 Dipartimento di Matematica e Informatica,
2 Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica,

Università della Calabria, I87036 - Rende (CS) - Italy
f.cauteruccio@gmail.com, g.fortino@unical.it,

aguerrieri@deis.unical.it, terracina@mat.unical.it

Abstract. This paper proposes a novel approach for monitoring het-
erogeneous wireless sensor networks and to identify hidden correlations
between sensors. The technique is tested in an experimental environment
based on the Building Management Framework. Results show that the
proposed approach is actually capable of identifying hidden correlations,
is robust to environment variations and is sensitive to sensors faults.

1 Introduction

Recent technological and software improvements allowed a widespread diffusion
of Wireless Sensor Networks and related applications [1,2]. This led to a signif-
icant increase in the amount of produced sensor data and in the complexity of
sensor networks. Significant effort has been spent in the last few years on the def-
inition of frameworks for a flexible and efficient management of Wireless Sensor
andActuator Networks (WSANs) [3,4]; this includes intelligent sensing/actuation
techniques, as well as data abstractions for improved data analysis.

The complexity of WSANs is constantly growing. In fact, a growing number
of networks include heterogeneous sensors, i.e. devices producing different kinds
of signals/measures/messages. As an example, sensors in the network may pro-
duce not only differently scaled real value data, but also text messages, discrete
signals, symbolic alerts, etc.

While sensors network management and the development of robust data ac-
quisition layers received much attention in the literature, one big open challenge
in WSANs is anomaly detection [5,6], i.e. the detection of unexpected behavior
in incoming data. Anomalies can be generated either by malfunctioning in the
sensors or by deviations in the environment. In most cases, it is a challenging
task being able to distinguish between the two.

Most of the approaches for anomaly detection concentrate on the analysis of
data produced by each single device [7]. This is mainly done by fairly complex
mathematical analysis of data streams; however, these approaches can be usu-
ally applied on numerical data only. Other approaches compare incoming data

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 383–395, 2014.
c© Springer International Publishing Switzerland 2014

384 F. Cauteruccio et al.

packets to fixed patterns identifying known behavioral models [8]; typical ap-
plications of this kind of techniques are fraud detection for credit cards [9] and
intrusion detection in security [10]. Neural networks are often applied also in this
setting [6]. However, all these techniques are not well suited for heterogeneous
sensor networks.

In this paper, we propose a novel approach specifically conceived for mon-
itoring heterogeneous WSANs. In particular, we propose to identify (hidden)
correlations between sensors and to exploit such knowledge to monitor the be-
haviour of sensors during their working life. As an example, assume we are able
to identify that the behavior of two different and heterogeneous sensors is, for
some not necessarily obvious reason, correlated. The observation of significant
variations of this correlation during time may allow us to suspect that some
anomaly is occurring. In fact, it may happen that for two sensors measuring
light and temperature, values of temperature are actually influenced by (e.g.,
sun) light or vice versa (think for example to sensors near incandescent objects).

Obviously, this correlation measure should be robust enough to endorse rea-
sonable variations like time shifts and value drifts, but to identify spikes and
noises in the signals.

In order to find correlations between heterogeneous sequences of data, we
resort to a solution that stems from classical sequence alignment techniques
[11]. Here, the optimal alignment between two sequences defined over the same
alphabet of symbols provides a measure of the edit distance, indicating their
similarity/dissimilarity1. Observe that the best alignment may shift elements to
best fit symbol correspondences.

Example 1. Let s1 = AAABCCDCAC and s2 = AADBCBBDCC be two sequences. The
best alignment is shown next, where the minimum edit distance is 4.

s1 : AAABCCDDCAC→ AAABCCDDCAC

s2 : AADBCBBDCC → AADBCBBDC-C

** ** ** *

However, as previously pointed out, when dealing with heterogeneous data
streams, generated sequences may come from very different contexts and may
be represented with different symbols/metrics. In this context, if the mapping
from one symbol set to the other is not known a-priori, a “blind” alignment must
be carried out; this means that finding the best mapping between symbols in
order to compute the optimal alignment becomes part of the problem. Moreover,
in order to accommodate possible drifts, it is necessary to provide the flexibility
of mapping some symbol of the first sequence into more than one symbol of the
second sequence (and vice versa) so that many-to-many mappings can be consid-
ered. This is also needed, for example, to accommodate different discretization
metrics of numerical sequences.

1 In the classical definition of edit distance, allowed transformations are insertions,
deletions and substitutions of symbols, which are the ones we consider in this paper.

Discovery of Hidden Correlations 385

In this paper we provide an algorithm to derive “blind” alignments, where
insertions, deletions, and substitutions of symbols are allowed and where the best
many-to-many mappings between symbols are automatically inferred. The best
alignment is then used to derive a correlation index between the two sequences.

The technique is tested in an experimental environment based on the Building
Management Framework (BMF) [12]. Results show that the proposed approach
is actually capable of identifying hidden correlations, is robust enough to accept-
able environment variations and is capable to identify potential sensors faults.

To the best of our knowledge there is no approach in the literature facing all
the problems outlined above.

A seminal work on a related topic has been introduced by Baker [13], which
computes similarities over parameterized strings, i.e. strings where some of the
symbols act as parameters which can be properly substituted at no cost. The
work considers bijective global transformation functions allowing exact p-matches
only. Thus, the two strings to be matched must have the same length n: no
substitutions or insertions are allowed. Mismatches are allowed in [14] where
it has been considered the problem of finding all locations in a string t for
which there exists a global bijection π mapping a pattern p into the appropriate
substring of t minimizing the Hamming distance. Injective functions instead
of bijective ones are considered in [15]. In [16], the notion of p-edit distance
has been introduced where allowed edit operations are insertions, deletions, and
exact p-matches. Note that mismatches are not allowed. Moreover, two substrings
that participate in two distinct exact p-matches are independent of each other,
so that mappings have local validity over substrings not broken by insertions
and deletions. In particular, within each such substring, the associated mapping
function is required to be bijective. [17] extends the approach in [16] requiring
the transformation function to have global validity, but still limits the set of
allowed edit operations (substitutions are not allowed).

The plan of the paper is as follows. Section 2 formally introduces the statement
of the problem and proposes a solution; Section 3 describes the case study we
exploited in the experiments, which are presented in Section 4, where obtained
results are also discussed. Finally, in Section 5 we draw our conclusions.

2 Problem Statement and Solution

In this section we first formally introduce the Multi-Parameterized Edit Dis-
tance, which is used in this paper to discover hidden correlations between het-
erogeneous wireless sensor data streams. Then we provide an efficient heuristic
for computing the correlation.

2.1 Problem Statement

Let each stream of data be represented as an ordered sequence of symbols (a
string), where some of the symbols may play the role of parameters, i.e. their
matching with other symbols is not regulated by symbol identity. Let then Σ,

386 F. Cauteruccio et al.

Π1, and Π2 be disjoint alphabets of symbols (Σ) and parameters (Π1, and Π2).
Throughout the following sections, we assume that two strings s1 over Σ ∪Π1

and s2 over Σ ∪ Π2 are given. The length of the string si (i ∈ {1, 2}), i.e., the
number of symbols in it, will be denoted by len(si). Moreover, for each position
1 ≤ j ≤ len(si), the j-th symbol of si will be identified by si[j].

Let − be a symbol not included in Σ ∪ Π1 ∪ Π2. Then, a string s̄i over
Σ ∪Πi ∪{−} is a transposition of si if this latter string can be obtained from si
by deleting all the occurrences of −. The set of all the possible transpositions of
si is denoted by T R(si). An alignment for the strings s1 and s2 is a pair 〈s̄1, s̄2〉
where s̄1 ∈ T R(s1) and s̄2 ∈ T R(s2) and where len(s̄1) = len(s̄2). Here, − is
meant to denote an insertion/deletion operation performed on s1 or s2.

Definition 1 (π-partition). Given an alphabet Π and an integer π such that
0 < π ≤ |Π |, a π-partition is a partition Φπ of Π such that 0 < |φv| ≤ π, for all
φv ∈ Φπ.

Definition 2 (Matching Schema). Given two alphabets Π1 and Π2, and two
integers π1 and π2, a 〈π1, π2〉-matching schema is a function M〈π1,π2〉 : Φπ1

1 ×
Φπ2
2 → {true, false}, where Φπi

i (i ∈ {1, 2}) is a πi-partition of Πi and, for each
φv ∈ Φπ1

1 there is at most one φw ∈ Φπ2
2 (and respectively, for each φw ∈ Φπ2

2

there is at most one φv ∈ Φπ1
1) such that M(φv, φw) = true; this means that all

symbols in φv match with all symbols in φw. M(φv, φw) = false indicates that all
symbols in φv mismatch with all symbols in φw.

Definition 3 (Match and distance). Let 〈s̄1, s̄2〉 be an alignment for s1 and
s2, let M〈π1,π2〉 be a 〈π1, π2〉-matching schema over π-partitions Φπ1

1 and Φπ2
2 ,

and let j be a position with 1 ≤ j ≤ len(s̄1) = len(s̄2). We say that 〈s̄1, s̄2〉 has
a match at j if either:

– s1[j], s2[j] ∈ Σ and s1[j] = s2[j], or
– s1[j] ∈ φv, s2[j] ∈ φw, φv ∈ Φπ1

1 , φw ∈ Φπ2
2 and M〈π1,π2〉(φv, φw) = true.

The distance between s̄1 and s̄2 under M〈π1,π2〉 is the number of positions at
which 〈s̄1, s̄2〉 does not have a match.

Given the previous definitions, we introduce the notion of multi-parameterized
edit distance between two strings s1 and s2 which will be the formal basis for
the computation of our correlation factor.

Definition 4 (Multi-Parameterized Edit Distance). Given two integers
π1 and π2 such that 0 < π1 ≤ |Π2| and 0 < π2 ≤ |Π1| the 〈π1, π2〉-multi-
parameterized edit distance between s1 and s2 (L〈π1,π2〉(s1, s2) for short) is the
minimum distance that can be obtained with any 〈π1, π2〉-matching schema and
any alignment 〈s̄1, s̄2〉.

Observe that, in order to properly compute L〈π1,π2〉(s1, s2) several components
play a crucial role: (i) π1 and π2, which determine the (maximum) size of each
partition; (ii) π-partitions Φπ1

1 and Φπ2
2 , in fact there can be many π-partitions

Discovery of Hidden Correlations 387

for the same set of π1, π2, Π1, and Π2; (iii) matching schemas M〈π1,π2〉, which
determine the way partitions of different sets can be combined via matching; (iv)
alignments, in fact there can be many possible alignments between two strings.

Example 2. Let Σ = ∅, Π1 = {A,B,C,D} and Π2 = {E,F,G,H}. Let s1 =
AAABCCDCAA and s2 = EEFGHGGFHH. For π1 = π2 = 1, the best alignment 〈s̄1, s̄2〉
is the following (obtained matching {A}-{E}, {B}-{G}, {C}-{H}, and {D}-{F}):

s1 : AAABCCDDCAA→ AAABCCDDCAA

s2 : EEFGHGGFHH → EEFGHGGFH-H

** ** **

which gives L〈1,1〉(s1, s2) = 5. For π1 = π2 = 2, the best alignment is the
following (obtained with the matching {B,A}-{E,H}, and {C,D}-{G,F}):

s1 : AAABCCDDCAA→ AAABCCDDCAA

s2 : EEFGHGGFHH → -EEFGHGGFHH

** * *****

which gives L〈2,2〉(s1, s2) = 3.

Definition 5 (Multi-Parameterized Correlation Index I〈π1,π2〉(s1, s2)).
Given two integers π1 and π2 such that 0 < π1 ≤ |Π2| and 0 < π2 ≤ |Π1|
the Multi-Parameterized Correlation Index (I〈π1,π2〉(s1, s2) for short) is defined
as:

I〈π1,π2〉(s1, s2) =
|s̄1| − L〈π1,π2〉(s1, s2)

|s̄1|
where s̄1 (or equivalently s̄2) is the length of the optimal alignment computed for
L〈π1,π2〉(s1, s2).

Observe that I〈π1,π2〉(s1, s2) ∈ [0..1] and can be expressed as a percentage of
similarity.

2.2 Heuristic Solution

A Näıve approach to the computation of L〈π1,π2〉(s1, s2) may simply consist
in the generation of all the valid matching schemas M〈π1,π2〉 and, for each of
them, in the computation of the standard edit distance between s1 and s2. This
approach is clearly unfeasible; in fact, while the computation of the edit distance,
given a matching schema, can be carried out in O(|s1| × |s2|), the number of
possible matching schemas is exponential in Π1 and Π2. In fact, it is possible
to prove that the overall problem is NP-Complete. Therefore, the definition of a
heuristic solution is necessary.

Since computing the edit distance, given amatching schema, is an easy task, the
heuristic proposed in this paper concentrates on the identification of an optimal

388 F. Cauteruccio et al.

matching schema. In what follows, in order to simplify the presentation, we will
refer to the computation of the standard edit distance with classic algorithms,
based on dynamic programming. However, the approach is modular in such a way
that more efficient algorithms for the standard edit distance computation can be
applied.

The approach is based on a random-restart steepest ascent hill climbing algo-
rithm, which works by iterative refinements of the matching schema. Intuitively,
at step 0, a valid matching schema M0 is first chosen, and a global edit distance
computed. At each iteration i, neighbors of the current matching schema M i

are considered, and the edit distance obtainable with it is computed. The one
allowing to obtain the lowest edit distance is set as the matching schema M i+1

for the next step. This phase stops when the edit distance cannot be further
improved in the current step and the edit distance obtained with the current
matching schema is returned as the result. A neighbor of a matching schema is
a perturbation exchanging only one pair of symbols in the same partition.

In order to increase the chances of finding the optimal alignment, a certain
number of random restarts, with a new randomly selected matching schema, are
subsequently carried out.

The algorithm BlindAlignment shows how to compute L〈π1,π2〉(s1, s2)
where, for the sake of presentation, we assume that Σ is empty. I〈π1,π2〉(s1, s2)
can then be computed straightforwardly.

3 Case Study

As a case study, ambient data have been sensed from a set of wireless sensor nodes
deployed in an indoor building environment, specifically at DIMES, Department
of Informatics, Modelling, Electronics and Systems, University of Calabria, as
shown in Figure 1. In particular, the node tagged as (a) has been positioned
in an air conditioned and artificially illuminated laboratory; node (b) has been
located in a corridor without windows and with air conditioning system; node
(c) has been placed in an office room far from the direct sunlight; nodes (d) and
(e) have been placed both in the same room as node c, but with their sensors
leant against a window.

Nodes organized in a multi-hop wireless sensor network have been effec-
tively and efficiently managed through the Building Management Framework
(BMF) [4]. The BMF is a domain-specific framework designed for the flexible
and efficient management of WSANs deployed in buildings. It offers features
such as fast prototyping of WSAN applications, intelligent sensing/actuation
techniques, and abstractions for capturing the floor plan of a building.

BMF enables the use of heterogeneous WSANs managed by a basestation,
which acts both as a network configurator and a data collector. Basestation
and nodes communicate through the BMF Communication Protocol, an ap-
plication level protocol built on top of multi-hop networks protocols (Dissem-
ination and Collection Tree Protocols [18,19]) An example of BMF network is

Discovery of Hidden Correlations 389

Input : String s1 and s2 over Π1 and Π2 and three integers π1, π2 and T
Output: L〈π1,π2〉(s1, s2)

Data : M,M
′
: two Π1 ×Π2 boolean matrices representing matching

schemas; improved : boolean; t,mindist , globaldist : integer
begin

t = 0;
initialize(M);
mindist = editdistance(s1, s2,M);
globaldist = mindist ;
improved = TRUE;
while improved do

improved = FALSE;
n = neighbors(M);

foreach M
′
in n do

if editdistance(s1, s2,M
′
) <mindist then

mindist = editdistance(s1, s2,M
′
);

improved = TRUE;

M = M
′
;

end

end
if not improved then

if mindist < globaldist then
globaldist = mindist ;
improved = TRUE;
t = 0;

else if t < T then
t = t+ 1;
improved = TRUE;
M = randomSelect(M);
mindist = editdistance(s1, s2,M);

end

end
return globaldist

end

Algorithm 1. BlindAlignment

shown in Figure 2, where the BMF high-level layered architecture for both the
BMF basestation and node sides is shown. In particular, on the basestation-
side, the BMF architecture is split in layers comprehending: (i) support for het-
erogeneous sensor platforms (e.g. TelosB, Tyndall, Shimmer, SunSPOT), (ii) a
network management layer that allows to flexibly manage the BMF network
through configuration packets sent over the air, (iii) a Basestation Core provid-
ing a set of functionalities to manage/configure the network (e.g. group nodes,

390 F. Cauteruccio et al.

WSAN Nodes
Basestation

a

b c d
e

Fig. 1. Wireless sensor nodes deployed at DIMES

create periodic sensing or actuation requests to the network), and (iv) a set of
applications that can be run on top of the Basestation Core; on the node-side
the BMF layers comprehend: (i) a set of platform-specific components to allow
the use of different type of nodes in a BMF network, (ii) a network management
layer to allow communication among nodes and with the basestation, and (iii) a
platform-independent core to implement the node specific functionalities, such
as signal processing and multi-request scheduling on the nodes functionalities.

For the case study, BMF nodes have been configured to send to the basestation
synthetic data every minute. In particular, every node in the deployment collects
data from light and temperature sensors every second and every minute sends
to the basestation the mean computed over the samples read. To provide the
algorithm (explained in Section 2) with a complete input, the BMF basestation
has been improved with a filter that removes redundant packets received from
the network and purposely masks data losses.

Discovery of Hidden Correlations 391

Heterogeneous WSAN Nodes

Basestation Node

WSAN Multi-hop Routing Path BMF Communication Protocol

Applications
Basestation Core

Network Management
Heterogeneous Platform Support

Platform Independent Core
Network Management

Platform Specific Components

Fig. 2. A BMF Network

4 Experiments and Result Analysis

In this section, we report results for a number of tests carried out to assess the
effectiveness of our technique. Tests have been carried out collecting one whole
day data from different wireless sensor nodes (see Section 3).

Collected numerical data have been discretized in order to produce one string
for each pair node-sensor; for each string si, len(si) = 500 and Πi = 20. We then
concentrated on comparing light and temperature data coming from each node.
The BlindAlignment algorithm has been executed on a server equipped with
an Intel Xeon X3430 processor and 4 GB of RAM running the Ubuntu Linux
kernel 2.6.26-2-686-bigmem SMP i686 GNU/Linux operating system.

We carried out three kinds of tests, which are detailed next.

4.1 Hidden Correlation for Different Positioning of the Sensors
Nodes

In this test, we considered only the nodes a-d. Figure 3 plots the raw data
collected from considered nodes; observe that it is hard to state, from the figures
only, some degree of correlation between measured temperature and light.

We first measured I〈π1,π2〉 for the four sensors nodes and using different con-
figurations, namely I〈1,1〉, I〈2,2〉, and I〈3,3〉; moreover, we computed the same
measures on randomly generated string pairs (having the same lengths and al-
phabets as the test ones) and averaged obtained values. Results are shown in
Table 1. From the analysis of this table, it is possible to observe that the most
correlated measures are those obtained from nodes (a) and (d). Obtained results
confirmed our intuition for (d) since intuitively temperature is significantly de-
pendent on sunlight; however results for (a) where not so obvious but they can

392 F. Cauteruccio et al.

Fig. 3. Plot of (T)emperature and (L)ight collected from nodes a,b,c,d

Table 1. BlindAlignment and Std Correlation

Node I〈1,1〉(T,L) I〈2,2〉(T, L) I〈3,3〉(T,L) Std Corr.

a 62.00% 75.00% 81.80% 0.49
b 30.40% 45.80% 54.40% 0.22
c 41.40% 52.60% 69.60% 0.54
d 55.50% 72.00% 80.80% 0.61

expected random 27,57% 41,80% 49,90% 0.016

be motivated by the fact that temperature and light are kept almost constant
by artificial illumination and conditioning (see Figure 3).

In order to have a comparison meter for these results, we also computed the
standard mathematical correlation degree between numerical sequences (see Ta-
ble 1), which basically confirmed the trends measured with BlindAlignment.
Observe, however, that computing this measure is possible only between pairs
of numerical data; as an example, we could have not computed it if one of the
sensors produced labelled messages; on the contrary, I〈π1,π2〉 is a more general
measure which may compare heterogeneous sequences, and can take into account
both temporal and amplitude shifts.

Discovery of Hidden Correlations 393

Table 2. Day span

Node I〈1,1〉(T,L) I〈2,2〉(T,L) I〈3,3〉(T,L)

Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

d 51.72% 51.01% 64.94% 67.20% 72.77% 75.85%
e 49.04% 43.17% 63.54% 66.91% 71.67% 75.46%

4.2 Robustness of the Measure

In a second series of experiments, we verified the robustness of the approach
to natural and artificial variations in the measurement context. Specifically, we
considered nodes d-e from which we collected the stream of Temperature and
Light for two consecutive days. Moreover, the second day of observation, one of
the nodes has been covered with an opaque sheet in order to simulate a “cloudy”
day. Obtained results for I〈π1,π2〉 are shown in Table 2. The analysis of this table
shows that (i) correlation results remain stable throughout the days and that
(ii) the proposed measure is robust to context variations. In fact, the correlation
computed for node (e) does not significantly change over the two days even if
this was the one covered by the opaque sheet.

4.3 Sensitivity to Sensor Faults

In the third series of experiments, we checked the sensitivity of the approach
to possible faults of node sensors. In particular, we simulated faults in one of
the sensors of a node introducing randomly generated out-of-scale noise in the
stream. Then, we computed I〈π1,π2〉 for different percentage of noisy values.
Obtained results are illustrated in Figure 4 where it is possible to observe that
the correlation index correctly decreases for an increasing amount of noise. From
the analysis of this graph it is possible to conclude that our approach could
be possibly able to identify potential sensor faults when observing significant
variations in the correlation index.

Fig. 4. Sensitivity to sensor faults, Node (d)

394 F. Cauteruccio et al.

5 Conclusion

In this paper we presented a novel approach for monitoring heterogeneous wire-
less sensor networks. The approach showed to be general enough to handle vari-
ous kind of variabilities in input streams of data, such as data scales and formats,
data drifts, time shifts, noises, environment changes, etc. Experimental valida-
tion on a real use case provided numerical validation of these properties and,
more generally, of the capability to handle heterogenous data streams. Presented
work is a first step towards monitoring of different kind of sensors in complex
networks. As far as future work is concerned, we plan to further improve the
approach both in terms of efficiency and in terms of practical applicability. In
particular, several extensions could be devised in order to include domain specific
notions about potential symbol correlations, or in order to restrict time-based
alignments to represent cause-effect measures. Another line of extensions aim to
design automatic control flows in wireless sensor networks using the proposed
approach. Finally, we plan to conduct a more extensive testing with more het-
erogeneous sensor data and positioning.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Computer Networks: The International Journal of Computer and
Telecommunications Networking 38, 393–422 (2002)

2. Fortino, G., Giannantonio, R., Gravina, R., Kuryloski, P., Jafari, R.: Enabling
Effective Programming and Flexible Management of Efficient Body Sensor Net-
work Applications. IEEE Transactions on Human-Machine Systems 43(1), 115–133
(2013)

3. Stankovic, J.: When sensor and actuator cover the world. Electronics and Telecom-
munications Research Institute (ETRI) Journal 30(5), 627–633 (2008)

4. Fortino, G., Guerrieri, A., O’Hare, G., Ruzzelli, A.: A flexible building management
framework based on wireless sensor and actuator networks. Journal of Network and
Computer Applications 35, 1934–1952 (2012)

5. Bosman, H., Liotta, A., Iacca, G., Wörtche, H.: Anomaly detection in sensor sys-
tems using lightweight machine learning. In: IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pp. 7–13 (2013)

6. Bosman, H., Liotta, A., Iacca, G., Wörtche, H.: Online extreme learning on fixed-
point sensor networks. In: IEEE 13th International Conference on Data Mining
Workshops (ICDMW), pp. 319–326 (2013)

7. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control
systems. Annual Reviews in Control 32(2), 229–252 (2008)

8. Ahmed, T., Coates, M., Lakhina, A.: Multivariate online anomaly detection using
kernel recursive least squares. In: 26th IEEE International Conference on Computer
Communications (INFOCOM), pp. 625–633 (2007)

9. Phua, C., Lee, V.C.S., Smith-Miles, K., Gayler, R.W.: A comprehensive survey of
data mining-based fraud detection research. CoRR abs/1009.6119 (2010)

10. Garcia-Teodoro, P., Dı́az-Verdejo, J.E., Maciá-Fernández, G., Vázquez, E.:
Anomaly-based network intrusion detection: Techniques, systems and challenges.
Computers & Security 28(1-2), 18–28 (2009)

Discovery of Hidden Correlations 395

11. Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and re-
versals. Soviet Physics-Doklady 10(8), 707–710 (1966)

12. Guerrieri, A., Fortino, G., Ruzzelli, A., O’Hare, G.: AWSN-based building manage-
ment framework to support energy-saving applications in buildings. In: Advance-
ments in Distributed Computing and Internet Technologies: Trends and Issues,
pp. 258–273 (2011)

13. Baker, B.S.: Parameterized pattern matching: Algorithms and applications. Jour-
nal of Computer and System Sciences 52, 28–42 (1996)

14. Hazay, C., Lewenstein, M., Sokol, D.: Approximate parameterized matching. ACM
Transactions on Algorithms 3(3), art. 29 (2007)

15. Apostolico, A., Erdős, P., Lewenstein, M.: Parameterized matching with mis-
matches. Journal of Discrete Algorithms 5(1), 135–140 (2007)

16. Baker, B.: Parameterized diff. In: Proc. of the 10th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 854–855. Society for Industrial and Applied
Mathematics, Philadelphia (1999)

17. Keller, O., Kopelowitz, T., Lewenstein, M.: On the longest common parameterized
subsequence. Theoretical Computer Science 410(51), 5347–5353 (2009)

18. Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: a self-regulating algorithm for
code propagation and maintenance in wireless sensor networks. In: Proceedings of
the 1st conference on Symposium on Networked Systems Design and Implementa-
tion, NSDI 2004, vol. 1. USENIX Association, Berkeley (2004)

19. Gnawali, O., Fonseca, R., Jamieson, K., Kazandjieva, M., Moss, D., Levis, P.: CTP:
An Efficient, Robust, and Reliable Collection Tree Protocol for Wireless Sensor
Networks. ACM Transactions on Sensors Networks 10(1), 16:1–16:49 (2013)

A Learning-Based MAC for Energy Efficient

Wireless Sensor Networks

Stefano Galzarano1,2, Giancarlo Fortino2, and Antonio Liotta1

1 Department of Electrical Engineering,
Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands

{s.galzarano,a.liotta}@tue.nl
2 Department of Informatics, Modelling, Electronics and Systems (DIMES),

University of Calabria (UNICAL), Rende, Italy
g.fortino@unical.it

Abstract. Designing energy-efficient communication protocols is one of
the main challenges in wireless sensor networks. This work presents an
adaptive radio scheduling schema employing a reinforcement learning al-
gorithm for reducing the energy consumption while preserving the other
network performances. By means of a decentralized on-line approach,
each nodes determines the most beneficial radio schedule by dynami-
cally adapting to its own traffic load and to the neighbors’ communi-
cation activities. We compare our approach with other learning-based
MAC protocols as well as conventional MAC approaches and show that,
under different simulating scenarios and traffic conditions, our protocol
achieves better trade-offs in terms of energy consumption, latency and
throughput.

Keywords: Wireless Sensor Networks (WSN), Media Access Control
(MAC), energy-efficient protocol, reinforcement learning.

1 Introduction

Wireless Sensor Networks (WSNs) are typically composed of small embedded
devices providing sensing and computing capabilities for supporting a wide range
of distributed applications [1]. Unless external energy power sources are available,
which however sacrifice size, weight and flexibility, sensor nodes are typically
battery-powered systems. Thus, energy constraint is one of the main limitation
of WSNs due to the difficulties in recharging or replacing batteries once the WSN
has been deployed.

The usual approach for extending the network lifetime is then adopting energy-
efficient mechanisms for managing the node’s tasks and keeping the energy con-
sumption to a minimum. Specifically, handling the radio activities is the most
demanding requirements in WSNs, since wireless communication and sensing are
the most energy-consuming tasks. As a consequence, the MAC protocol has a
significant impact on the whole network performance because it is responsible
for coordinating the access to the radio channel, thus affecting directly not only

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 396–406, 2014.
c© Springer International Publishing Switzerland 2014

A Learning-Based MAC for Energy Efficient Wireless Sensor Networks 397

the energy consumption but also other metrics like throughput and latency. A
well conceived MAC layer should guarantee an energy-efficient radio manage-
ment by firstly addressing the main sources of energy waste such as overhearing,
idle listening, packet collisions and excessive retransmissions and, at the same
time, ensuring the successful delivery of packets to destination.

Since a WSN is usually deployed as an unstructured network in which nodes
randomly form ad-hoc connections to each other, the MAC protocol can rely
neither on a fixed duty cycle nor on a centralized orchestrator in charge of
controlling the optimal allocation of communication slots among nodes. On the
contrary, a distributed and decentralized approach capable of adapting to the
changing network conditions is more suitable [2]. The need for such an adaptive
behavior encouraged us to explore computational intelligence methods [3] for
sensor networks, thanks also to the fact that some machine learning approaches
can be viable solutions even in the context of lightweight sensor system [4,5].

In this paper, a contention-based MAC protocol for WSNs is described and
evaluated. Based on Reinforcement Learning (RL) [6], the protocol aims at ef-
ficiently managing the node’s sleep and active periods to reduce energy con-
sumption by taking into consideration the current traffic load of the node and
of its neighborhood. Moreover, since both MAC [7] and network protocols [8]
contribute to the network performance, our protocol benefits from a cross-layer
interaction with the network layer, so as to better understand the communication
patterns to significantly reduce energy consumption due to both idle listening
and overhearing. The proposed approach is inherently distributed and thanks to
its very low computational complexity, it is suitable for practical deployments
in real resource-constrained sensor platforms.

The rest of this paper is organised as follows. In Sect. 2, we report some of the
most representative MAC approaches proposed for WSNs. A detailed description
of our approach is provided in Sect. 3. In Sect. 4 our protocol is compared with
other learning-based MAC protocol through simulation and the performance
results are discussed. Finally, in Sect. 5, conclusions are drawn.

2 Related Work

MACprotocols forWSNs are usually divided into twomain categories, contention-
based and schedule-based (or contention-free). In a contention-based approach,
the node does not rely on pre-scheduled transmissions but has to contend for the
access to the radio channel whenever it has data to send. On the contrary, in
schedule-based approaches, the channel is handled through reservation and one
or more transmission slots are assigned to each node.

A typical contention-free protocol relies on a time division multiple access
(TDMA) [9] which adopts a fixed time-based schedule for avoiding packet colli-
sions. However, the small slot duration needs an extremely exact timing in order
to avoid critical behaviors, whereas maintaining a deterministic schedule in an
ad-hoc environment is a complex task.

S-MAC [10] is a contention-based MAC protocol aiming at reducing energy
consumption and collisions. It divides time into large frames, and each frame

398 S. Galzarano, G. Fortino, and A. Liotta

into two time portions (a sleeping phase and an active phase). Compared to the
TDMA approach, S-MAC requires much looser synchronization among neighbor-
ing nodes. However, due to a fixed duty cycle it is not able to adapt to changing
network traffic conditions.

The Timeout-MAC (T-MAC) protocol [11] is an improvement of S-MAC as
it uses an adaptive duty cycle. In particular, by means of a time-out mechanism
it detects possible activities in its vicinity. If no activity is detected during the
time-out interval, the node goes to sleep for a certain period of time. Such
a mechanism occurs every time a communication between two nodes is over.
Although T-MAC outperforms S-MAC, its performance degrades under high
traffic loads.

In the P-MAC [12] protocol the sleep-wakeup schedules of the sensor nodes
are adaptively determined on the basis of a node’s own traffic and that of its
neighbors. The idle listening periods, which are source of energy wastage, are
minimized by means of some kind of matching algorithm among patterns of
schedules in the neighboring. However, the high computational complexity limits
its use in real resource-constrained sensor platforms.

Other adaptive MAC protocols have been proposed in the literature and few of
them employ online machine learning approaches such as reinforcement learning
[13,14].

The RL-MAC protocol proposed in [13] tackles the problem of adjusting the
sleeping and active periods over the frame by actively inferring the state of other
nodes with the aim of increasing throughput and saving energy. In its active
period, the node can transmit data messages only during a specific reserved slot.
Moreover, at the beginning of this reserved slot, the node exchanges some control
information as well as the reward for the other nodes, depending on the number
of waiting messages and the number of successfully transmitted messages during
the reserved slot. It achieves higher throughput and lower energy expenditure
compared to S-MAC.

In [14], the authors address the problem of high latency and high energy
expenditure in random topology for data aggregation applications. They first
define a specific energy efficiency function to be locally computed by each node
over each time frame. Then, the proposed algorithm computes the average energy
efficiency by considering the node’s neighborhood and use the result as reward
signal in order to determine the optimal start and duration of the sleep period
for the next frame. The proposed decentralized algorithm is reported to achieve
better results in terms of energy expenditure and latency, with respect to a
non-learning approach (fixed sleep duration).

3 RL-Based Protocol Design

The proposed protocol has been designed to allow each node to independently
determine a good sleep/active scheduling policy over the time by not only taking
into consideration its own traffic load but also learning at runtime the neighbor-
hood’s behavior and then adapting to the changing local traffic conditions.

A Learning-Based MAC for Energy Efficient Wireless Sensor Networks 399

The basic underlying structure of our protocol is similar to most other MAC
protocols: it divides the time into small discrete units, called frames, which
are further divided into smaller time units, the slots. Both frame length and
slot number depend on the specific application and, thus, they are considered
parameters of the algorithm and remain unchanged at runtime. On top of this
frame-based structure, a simple asynchronous CSMA-CA approach is employed.
Setting the optimal length of the frame or the amount of time slots within the
frame will not be discussed in this paper due to space restrictions.

The main aim of the algorithm is to learn the most beneficial wake-up schedule
in order to limit the number of slots in which the node’s radio will be turned
on and prevent the main source of energy waste such as overhearing and idle
listening. This non-fixed schedule reduces energy consumption over the time
while preserving the network performances in terms of throughput and latency,
as discussed in Sect. 4.

Specifically, a Reinforcement Learning (RL) algorithm has been employed.
This is concerned with how an agent (i.e. each node in our specific case) takes
actions so as to maximize some kind of long-term reward. In particular, the
agent explores its environment by selecting at each step a specific action and
receiving a corresponding reward from the environment. Since the best action
is never known a-priori, the agent has to learn from its experience, by means of
the execution of a sequence of different actions and deducing what should be the
best behavior based on the obtained corresponding rewards.

In particular, the popular Q-Learning algorithm has been chosen as the basis
for our protocol. It does not need the environment to be modeled whereas its
actions depend on a so called Q-function, which evaluates the quality of a specific
action at a specific agent’s state. However, differently from the traditional Q-
learning, the notion of states is not used in our approach.

On each node, a specific Q-function is computed on every slot within the
frame and the resulting Q-values are stored and updated frame by frame. Each
of these Q-values specifies how beneficial it is for the node to stay awake on a
specific slot of the frame. Thus, this set of values determines the wake-up pattern
of the node over the current frame. As a consequence, the actions available to
each agent/node consist in deciding whether it should stay in active or in sleep
mode during each single time slot, whereas the Q-values are updated based on
specific events occurring during the same slot at each frame (e.g. sent, received
or overheard packet, as will be discussed later on) and on some state information
coming from the node’s neighbors. In particular, on a certain node i, the quality
value of a specific slot is updated by means of the following update rule:

Qi
s,f+1 ← (1− λ)Qi

s,f + λRi
s,f (1)

where Qi
s,f ∈ [0, 1] is the Q-value associated to the slot s of the current frame

f , Qi
s,f+1 is the updated Q-value of the same slot s but for the next frame,

λ ∈ [0, 1] is the learning rate and Ri
s,f is the obtained reward during the slot

of the current frame. The new set of Qi
s,f+1 values will be then considered for

determining the radio schedule pattern to be employed during the next frame.

400 S. Galzarano, G. Fortino, and A. Liotta

It is worth noting that, at startup, all the Q-values on every node are set to
“1”, meaning that all nodes have their radio transceiver ON in every slot (i.e.
for the entire frame). During the learning process, the Q-values changes over the
time accordingly to the new obtained rewards. In order to properly set the state
for the radio transceiver on the basis of the Q-values, our protocol relies on a
specific parameter, TON , representing a threshold value:

Radio[slot s] =

{
On if Qi

s,f ≥ TON

Off otherwise

If the quality value of a specific slot s is below this threshold value, the node
will put itself in sleep mode for the duration of the whole slot. Otherwise, it will
stay in active mode because most likely there will be communication activities
directly involving the node.

In such a decentralized learning approach, the main challenge is defining a
suitable reward function for the individual node that will implicitly lead to a
coordinated-group behavior. Thus, it should consider the current condition of
both the node and its neighborhood. Specifically, a certain node i will consider
as reward signals for a specific slot s the following information:

– Received packets: the total amount of packets correctly received by the
node from its neighbors during the slot;

– Transmitted packets: the amount of packets the node has successfully
transmitted to the intended receiver during the slot. In case of unicast com-
munication in the MAC layer, successful data reception is directly acknowl-
edged with an ACK packet.

– Over-heard packets: the amount of over-heard packets received during the
same slot, i.e. the packets received but actually not intended for the node
itself. Again, in unicast communication the MAC layer is able to directly
detect such packets;

– Expected received packets: the amount of packets a specific neighboring
node has sent to node i during the slot; this is the only information explic-
itly exchanged by the protocol and is necessary when the node is in sleep
mode during the slot and cannot perceive the communication activities of
its neighborhood. Thanks to this information, the node is then able to fig-
ure out when it would be better to turn on the radio again during the slot
because of a new packet traffic pattern. It is also used to check the amount
of packets not successfully received due to collisions.

The transmission of the MAC packets may also take place in broadcast mode,
so that a node is not able to figure out whether each single received packet is
actually destined for itself or not and the ACK packet cannot be sent back. In
this case, it is necessary to get some extra information from the upper layers.
This is why our MAC protocol employs an effective cross-layer communication:
every received broadcast packet is decapsulated and delivered to the network
layer, which in turns checks whether or not the packet is intended for the node.
In case the packet is discarded, the network layer signals the MAC protocol

A Learning-Based MAC for Energy Efficient Wireless Sensor Networks 401

about the reception of a overheard packet, and the reward function is updated
accordingly.

Moreover, if the radio is turned off at a specific slot but the node needs to
send a packet, we prefer to buffer it and postpone its transmission on the next
available slot (i.e. the first one in which the node is in active mode).

4 Simulations and Results

In this section we proceed with the experimental comparison between our proto-
col and other similar learning-based approaches, in particular the ones proposed
in [14], which we will rename as EE-MAC here for easy reference, and the RL-
MAC proposed in [13]. For each comparison, different simulation scenarios and
settings have been considered, since we have decided to employ the same exper-
imental setup described in the original reference papers. Our protocol has been
implemented, simulated and evaluated in Castalia1, a plugin for OMNET++
specifically designed for simulating WSNs.

4.1 Comparison with EE-MAC

As described in [14], networks characterized by a random topology and differ-
ent sizes (10 and 50 nodes) have been considered. As for the communication
pattern, a nodes-to-sink data gathering application has been employed in our
simulations, since data-collection is one of the most typical use cases of a WSN
in real contexts. In particular, the sensor data acquired by each node is sent to
a sink, which is centered in the middle of the simulation area. In both scenarios
(i.e. small and large networks), the packet rate is set to 2 packets per second,
with a data payload of 32 bytes, whereas the simulation time for the learning
process is 500 seconds (the time needed by the setup phase described later on is
not included).

Since the sink is not in the transmission range of every node, a multipath ring
routing has been used as network layer protocol. Once the nodes are deployed, an
initial setup phase is first triggered by the sink, which broadcasts a specific packet
with a counter set to 0. When the packet is received by a one-hop distance node,
it sets its own level/ring number to 0, increments the counter and rebroadcasts
the packet. This process goes further on until all nodes set their own ring level.
During this setup phase, the learning algorithms are not running because we
are only interested in the traffic pattern generated by the actual sensor data.
Once the setup phase is over, every node has a ring number representing the
hop distance to the sink. When a node has data to send, it broadcasts a data
packet by attaching its ring number. Only the neighbors with a smaller ring
number process the packet and rebroadcast it by replacing the previous value
for the ring number with its own ring number. This process continues until the
data packet reaches the sink.

1 http://castalia.research.nicta.com.au

http://castalia.research.nicta.com.au

402 S. Galzarano, G. Fortino, and A. Liotta

The following performance criteria have been considered and measured in the
experiments:

– Average latency, which measures the mean time a message takes to be de-
livered to the sink from the sending node.

– Standard deviation of the average latency.
– The maximum latency of the network, i.e. the latency of the packet that took

the most time to reach the sink.
– Total number of packets received by the sink within the simulation time.
– Average improvement of the remaining battery, which measures the mean in-

crement, in percentage, of the remaining battery at the end of the simulation
by using the learning algorithm instead of a fixed sleep duration.

The results provided by the simulations are reported in Tab. 1.

Table 1. Comparison results

Performance metric - 10 nodes EE-MAC Our QL-based MAC

Latency - mean (sec) 3.937 0.045

Latency - std. dev. (sec) 3.348 0.024

Latency - max (sec) 18.975 0.14

Packets arrived at Sink 2167 6679

Remaining battery improvement - mean 10.4% 26.2%

Performance metric - 50 nodes EE-MAC Our QL-based MAC

Latency - mean (sec) 5.823 0.246

Latency - std. dev. (sec) 5.850 0.137

Latency - max (sec) 50.892 0.872

Packets arrived at Sink 2296 23722

Remaining battery improvement - mean 1.9% 12.7%

As it can be seen, in both small and large network and for all the performance
metrics our approach provides a better performance. In particular, it is worth
noting the differences in latency. It is evident how our learning algorithm guar-
antees a latency below 1 second even in the large network, where, by adopting
the EE-MAC algorithm, a data packet may even take a few tens of seconds be-
fore being delivered to the sink. Another significant difference is related to the
packet delivery, since our approach is able to successfully deliver a greater num-
ber of packets to the sink, in both networks. In particular, the EE-MAC shows
very poor performance when dealing with the large network, by delivering al-
most the same amount of packets as in the small network although. This means
that most of the data packets are actually lost during the data gathering process
probably due to a high collision rate. Finally, as for the energy efficiency, our
algorithm provides a higher increment in the remaining battery after the end of
the simulation.

A Learning-Based MAC for Energy Efficient Wireless Sensor Networks 403

4.2 Comparison with RL-MAC

In order to further evaluate the performance of the proposed MAC protocol,
several other simulations have been carried out in comparison to RL-MAC, the
reinforcement learning-based MAC protocol described in [13]. Moreover, the per-
formance of a non-learning protocol, S-MAC, has been also taken into consider-
ation. Three scenarios have been simulated having different network topology:
star, linear and mesh. For each scenario, the data packet inter-arrival time has
been varied and the following performance metrics have been considered: data
throughput, latency, and energy efficiency. The energy efficiency represents the
energy cost per-byte of the goodput (i.e. excluding any overhead from the data
throughput). As for the radio setting, the parameters in Tab. 2 have been used
for all the simulations.

Table 2. Radio parameters used in the simulations

Radio Parameter Value

Transmission power: 0.5 W

Receiving power: 0.3 W

Idle listening power: 0.05 W

Radio transmission rate: 20 kbps

A first set of simulations are related to the star topology, with a receiving
sink node in the middle and all other nodes sending data packets with a varying
inter-arrival time, from 1 to 10 seconds (the theoretical generating throughput
is between 20 and 200 byte/sec). A second set of simulations focus on a linear
topology network consisting of 10 nodes. The traffic is generated from one edge
node to the other one, with 200-byte long packet sent with the same varying
inter-arrival time, i.e. from 1 to 10 seconds and thus generating throughput
between 20 and 200 byte/sec.

Fig. 1 shows that our protocol can achieve a considerably higher throughput
with respect to both RL-MAC and S-MAC when traffic load is heavy (i.e. at
low data packet inter-arrival time). In particular, it is able to always achieve the
maximum theoretical throughput both in the star topology, Fig. 1(a), and in
the linear one, Fig. 1(b), since it is able to effectively adapt to any traffic load
without incurring any packet loss. On the contrary, when traffic load is high (200
byte/sec), the RL-MAC throughput can achieve 80% of the generated traffic in
the star topology and only 35% in the linear one.

As illustrated in Fig. 2, the proposed protocol clearly outperforms both RL-
MAC and S-MAC in term of packet latency. Specifically, the values are constantly
much lower than 1 second, meaning that such a metric is not influenced at all
by the traffic load of the network and all the packets are successfully delivered
to destination with very negligible delay. RL-MAC, instead, with respect to the
S-MAC, provides better results at higher traffic load, i.e. with less than 5-second
and 8-second inter-arrival time for the star and linear topology.

404 S. Galzarano, G. Fortino, and A. Liotta

 0

 50

 100

 150

 200

 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 [b

yt
es

/s
ec

]

Packet inter-arrival time [sec]

QL-MAC
RL-MAC
S-MAC

 0

 50

 100

 150

 200

 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 [b

yt
es

/s
ec

]

Packet inter-arrival time [sec]

QL-MAC
RL-MAC
S-MAC

(a) (b)

Fig. 1. Data throughput versus packet inter-arrival time on star (a) and linear (b)
topologies

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10

La
te

nc
y

[s
ec

]

Packet inter-arrival time [sec]

QL-MAC
RL-MAC
S-MAC

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

La
te

nc
y

[s
ec

]

Packet inter-arrival time [sec]

QL-MAC
RL-MAC
S-MAC

(a) (b)

Fig. 2. Latency versus packet inter-arrival time on star (a) and linear (b) topologies

In term of energy efficiency, as it can be seen in Fig. 3(a), for the star topology,
our protocol offers up to 40% of energy savings when compared to RL-MAC
and up to 80% when compared to S-MAC. Much more evident is the energy
savings achieved in the liner topology, Fig. 3(b). In fact, differently from RL-
MAC and S-MAC, the energy efficiency of the proposed protocol does not change
so much between the star and the linear topology because, in both scenarios,
the nodes are kept in active mode during the same slots of the frame over the
time. Moreover, in all the algorithms, the energy spent per-byte decreases (or
the energy efficiency increases) as the traffic load increases because more energy
is used in transmission and reception rather than idle listening.

In the last set of simulations, a mesh network consisting of 100 nodes (having
a transmission range of 20 meters) uniformly distributed over a 100x100 meters
area is adopted. The sink is placed in one of the corner of the simulation area,
whereas a subset of nodes are selected for generating the data traffic to the sink.
Again, the inter-arrival time has been varied from 1 to 10 sec.

A Learning-Based MAC for Energy Efficient Wireless Sensor Networks 405

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10

En
er

gy
 e

ffi
ci

en
cy

 [m
J/

by
te

]

Packet inter-arrival time [sec]

QL-MAC
RL-MAC
S-MAC

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

En
er

gy
 e

ffi
ci

en
cy

 [m
J/

by
te

]

Packet inter-arrival time [sec]

QL-MAC
RL-MAC
S-MAC

(a) (b)

Fig. 3. Energy efficiency versus packet inter-arrival time on star (a) and linear (b)
topologies

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 [b

yt
es

/s
ec

]

Packet inter-arrival time [sec]

QL-MAC
RL-MAC
S-MAC

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

En
er

gy
 e

ffi
ci

en
cy

 [m
J/

by
te

]

Packet inter-arrival time [sec]

QL-MAC
RL-MAC
S-MAC

(a) (b)

Fig. 4. Throughput (a) and Energy efficiency (b) versus packet inter-arrival time on
mesh topology

In Fig. 4, the data throughput and the energy efficiency of the three protocols
are depicted. In particular, the proposed protocol achieves the higher through-
put, especially when the traffic load is heavy and, at the same time, is able to
better manage the average energy expenditure of the network.

5 Conclusion

In this paper, a Q-Learning based MAC protocol is proposed. The decentralized
learning algorithm is employed to dynamically adapt the radio scheduling to
both the node’s traffic load and the traffic load of its neighbors, in order to
reduce the energy consumption while preserving the network performance. The
simulation results show that, compared to other reinforcement learning-based
MAC protocols for WSNs, the adaptive behavior of our protocol guarantees
higher network performance in terms of throughput, latency and packet delivery
and lower average energy consumption. Moreover, the learning approach requires

406 S. Galzarano, G. Fortino, and A. Liotta

minimal overhead and very low computational complexity, so that the protocol is
suitable for practical deployments in real resource-constrained sensor platforms.

Acknowledgments. This work has been partially supported by ARTEMIS
project DEMANES (Design, Monitoring and Operation of Adaptive Networked
Embedded Systems, contract 295372).

References

1. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Computer
Networks 52, 2292–2330 (2008)

2. Liotta, A.: Farewell to deterministic networks. In: 2012 IEEE 19th Symposium on
Communications and Vehicular Technology in the Benelux (SCVT), pp. 1–4 (2012)

3. Liotta, A.: The Cognitive Net is Coming. IEEE Spectrum 50, 26–31 (2013)
4. Bosman, H.H.W.J., Liotta, A., Iacca, G., Wortche, H.: Online extreme learning on

fixed-point sensor networks. In: 2013 IEEE 13th International Conference on Data
Mining Workshops, pp. 319–326 (2013)

5. Bosman, H.H.W.J., Liotta, A., Iacca, G., Wortche, H.: Anomaly detection in sensor
systems using lightweight machine learning. In: 2013 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), pp. 7–13 (2013)

6. Kaelbling, L.P., Littman, M.L., Moore, A.P.: Reinforcement Learning: A Survey.
Journal of Artificial Intelligence Research 4, 237–285 (1996)

7. Galzarano, S., Liotta, A., Fortino, G.: QL-MAC: A Q-Learning Based MAC for
Wireless Sensor Networks. In: Aversa, R., Ko�lodziej, J., Zhang, J., Amato, F.,
Fortino, G. (eds.) ICA3PP 2013, Part II. LNCS, vol. 8286, pp. 267–275. Springer,
Heidelberg (2013)

8. Galzarano, S., Savaglio, C., Liotta, A., Fortino, G.: Gossiping-based AODV for
Wireless Sensor Networks. In: Proceedings of the 2013 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), pp. 26–31 (2013)

9. Havinga, P.J., Smit, G.J.: Energy-efficient TDMA medium access control protocol
scheduling. In: Asian International Mobile Computing Conf., AMOC, pp. 1–10
(2000)

10. Ye, W., Heidemann, J., Estrin, D.: An Energy-Efficient MAC Protocol for Wireless
Sensor Networks. In: Proc. 21st International Annual Joint Conference of the IEEE
Computer and Communications Societies, New York, USA (2002)

11. Dam, T.V., Langendoen, K.: An Adaptive Energy-Efficient MAC Protocol for
Wireless Sensor Networks. In: Proceedings of the 1st International Conference on
Embedded Networked Sensor Systems, SenSys (2003)

12. Zheng, T., Radhakrishnan, S., Sarangan, V.: PMAC: An adaptive energy-efficient
MAC protocol for wireless sensor networks. In: Proceedings of the 19th IEEE
International Parallel and Distributed Processing Symposium, p. 8 (2005)

13. Liu, Z., Elhanany, I.: RL-MAC: A reinforcement learning based MAC protocol
for wireless sensor networks. International Journal of Sensor Networks 1, 117–124
(2006)

14. Mihaylov, M., Tuyls, K., Nowé, A.: Decentralized learning in wireless sensor net-
works. In: Taylor, M.E., Tuyls, K. (eds.) ALA 2009. LNCS (LNAI), vol. 5924,
pp. 60–73. Springer, Heidelberg (2010)

Smart Energy Systems

Equilibria in Concave Non-cooperative Games
and Their Applications in Smart Energy

Allocation

Maciej Drwal1, Weronika Radziszewska2, Maria Ganzha2,3,
and Marcin Paprzycki2

1 Institute of Computer Science, Wroclaw University of Technology, Wroclaw, Poland
2 Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

3 Institute of Informatics, University of Gdansk, Gdansk, Poland

Abstract. Game theory is often applied to modeling interactions of
non-cooperative decision makers. Such interaction appear, among oth-
ers, in the case of energy management. In this context we formulate the
problem of energy allocation for a group of electric vehicles in a smart
grid. Subsequently, we formulate a game-theoretic model of interactions
of agents controlling vehicle charging schedules. An algorithm for com-
puting pure Nash equilibrium in such game is presented. Moreover, we
introduce a solver, which is specifically designed to find equilibria in con-
cave games. The core of the proposed solver is based on the primal-dual
interior-point method for nonlinear programming. Experimental results
of applying the solver are compared with a centralized solution.

Keywords: game theory, smart energy, demand side management, con-
vex optimization, charging electric vehicles, energy allocation.

1 Introduction

Electric vehicles have a long history [1], but only now their popularity is ris-
ing. This is, among others, due to the availability of cheaper and more ecological
energy from renewable power sources. Electric vehicles are pollution free and “al-
most silent.” Their range and speed is often not worse than those of conventional
models (especially in cities, where traveled distances are limited and speed is re-
duced by the traffic). Their main limitations are the capacity and the physical
properties of batteries, which tend to be heavy, not very durable and, constrained
by the speed of charging. Furthermore, the infrastructure for battery-recharge
(or exchange) is still insufficient. However, there are many ongoing country-level
projects that fund construction of charging stations, for example the UK govern-
ment dedicated £37 million to building charging stations [6]. Furthermore, the
pressure on decreasing the emission levels (in particular in the cities) is helping
speed-up the development of infrastructure for electric cars.

In this context, need for solving the problem of charging a group of electric
vehicles, is no longer a futuristic one. Note that, a sudden peak in the power

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 409–421, 2014.
c© Springer International Publishing Switzerland 2014

410 M. Drwal et al.

grid, caused by multiple electric vehicles that are to be charged, has to be quickly
compensated by the existing power production. While currently, charging electric
vehicles takes only a fraction of the power of the network, with the increasing
number of cars this fraction will increase fast. This might cause serious power
peaks, as fast-charging vehicles can take large amounts of power in a very short
time, which might destabilize the currently existing power grid. Control over
maximum power usage can help avoiding such power peaks. Therefore, it can
be assumed that charging stations will have limitations on the amount of power
available to connected cars. Optimizing discharge of available power, becomes
important, to allow owners to “optimally” use their vehicles. Furthermore, stable
power consumption allows contracting energy for long term. Such long-term deals
are much more beneficial both both the supplier (planning power production)
and the consumer (who pays less). Note that deviations from the contracted
power consumption are additionally charged.

Therefore, we consider charging a group of electric vehicles in a charging
station placed within a smart grid. Following one of the major approaches to
the development of smart grids, we assume that electric cars are controlled by
software agents (one per vehicle) [3, 12]. One of the main ideas underlying the
smart grid is that vehicles can be flexibly charged, according to their current
needs (e.g. the distance of the next anticipated travel or the time when the
car/motorbike will be needed again). In this scenario, a game-theoretic model of
interactions between agents controlling the process of charging the vehicles can
be applied. Here, allocation decisions are made independently by each agent in
a distributed manner [13, 18].

1.1 Detailed Problem Description

Problems faced by the power grid are varied: balancing power, power peaks,
failures, unpredictability of usage and of production, etc. Here, we consider a
small subclass of the Demand Side Management (DSM) problem: allocation of
energy to a group of electric vehicles to be charged at a charging station, placed
within a smart grid environment. This problem concerns distribution of scarce
resources and thus it is assumed that agents representing individual vehicles are
selfish, as cooperation requires existence of common goals and communication.
While there can be a common goal (e.g. shaving the power peaks or reducing
the cost of electricity by signing a long-term contract with the provider), such
goals are placed within policies of the charging station, and their management
is out of the scope of our work. Therefore, agents representing cars compete for
power and a game theoretic approach becomes appropriate.

Let us now describe our use case scenario. We assume that a “charging station”
has a limited number of charging slots and a limit on the total amount of power
it can draw at one time. Such limit is the effect of long-term deals with the
energy suppliers as well as the actual power infrastructure within and outside
of the station. Each car has a software agent installed, which is responsible,
among others, for vehicle’s battery charge/exchange planning. These plans are
to match the user’s needs. Note that the “special” situation, when batteries

Equilibria in Concave Non-cooperative Games 411

are to be exchanged/replaced, is omitted from the current contribution. The
charging station allows the vehicles, to charge with an appropriate speed (related
to the throughput of the slot and battery limitations) in a sequence of fixed time
periods. Car agents define their strategies concerning how much power needs to
be charged in a given time period for “their vehicle.” The minimal goal is to reach
the minimal required charge level, e.g. to complete the next trip (the ultimate
goal is to reach the total capacity of the battery). If there are too many vehicles
with large power requirements, it is not possible to charge them concurrently at
high rates. As a result, the actual charging speeds are decided by the charging
station; when the vehicles with their proclaimed demands arrive and connect to
the charging slots. We assume that all vehicles arrive once per day (we plan to
relax this restriction in the future), and are supposed to be left at the charging
station for up to a fixed number of hours (e.g., 10 hours at a time).

Here, it is assumed that agents in vehicles arriving at the station for charg-
ing are not aware of other agents demands. Thus charging plans need to be
negotiated among agents representing all vehicles. This can be interpreted as a
non-cooperative game. Here, we omit a situation when charging schedule negoti-
ations involve also selection of the charge station. In other words, the individual
charging schedule involves its power needs and the limited power output of the
selected station. Consequently, in order to achieve the highest charging efficiency,
agents should construct charging schedules, which correspond to the Nash equi-
libria of an allocation game (defined in Section 4). Proposed approach can be
extended to consider the changing prices of electric energy, battery exchange,
number of charging periods during the day, selection of the charging stations
among these that are available, etc.).

The paper is organized as follows. In Section 2 we present an overview of
the related works. We follow, in Section 3, with the definition of the needed
mathematical notation. Next, in Section 4, we formulate the decision making
problem. Section 5 contains details of software developed to solve the problem.
In Section 6 we summarize the results of an experimental study. Finally, in
Section 7 we summarize the paper and outline future research directions.

2 Related Works

Considered problem is typically called the Demand Side Management (DSM) or
the Demand Response (DR). A comprehensive review of the literature of this
topic can be found in [3]. There are two main approaches to the solution of the
DSM: (a) planning and scheduling power usage [10], and (b) dynamically shift-
ing consumption towards a better moment [21]. Research in the DSM includes
contributions from mathematics, game theory and social psychology [19].

In power management, some devices can be automatically delayed or inter-
rupted. However, when an operated by a human device might be of little impor-
tance, the user might refuse to switch it off. Separately, power storage units allow
compensating for sudden peaks of energy consumption and, consequently, may
limit the daily variability of power use [22]. In considered problem, devices are

412 M. Drwal et al.

electric cars equipped with batteries. Such batteries can, in theory, be used as a
general power storage. However, their main use is to power the electric vehicle.
Therefore, the key problem is to charge the car in a limited time, without over-
loading the power grid. Car batteries have relatively high capacity. Therefore,
while a single car is not causing a big charging load, a large number of cars can
result in a serious load for the grid. The effect of using plug-in electric vehicle
(PHEV) on the power grid, including the influence on its stability, is discussed
in [9]. Here, author analyses the charging patterns of batteries and shows that
electric vehicle can be considered a Flexible AC Transmission System and can
help improve the power quality in the energy network. In [11] the decentralized
control method of charging electric vehicle is presented. In that work, the large
number of electric cars is considered and the charging control goal is to shift the
power usage by cars to off-peak time and, by doing that, reduce the cost of sup-
ping power supply. Separately, in [17], the state of the art concerning charging
electric vehicles and its effect on power prices is considered. Authors show that
the electric/hybrid vehicles are much cheaper on average. In [4, 24] the amount
of power used during charging and the payoff were considered. However, other
aspects, such as the order, speed and/or time of charging, were omitted. While
these aspects can be simplified in theory (resulting in an easier model), in the
actual power systems they have to be considered.

The analysis of battery operation, found in [22], considers the amount of
charged or discharged power, in a time interval of a predefined length. This
publication provides foundation for the game model, proposed in our paper.

2.1 Game-Theoretic Approach

Most of work in non-cooperative game theory concerns games with a finite sets
of strategies. In such games decision makers choose among a predefined sets
of actions. Here, only mixed-strategy Nash equilibria are guaranteed to exist
(see, for instance, [5]). Furthermore, the complexity class PPAD (Polynomial
Parity Arguments on Directed Graphs; [15]) captures the inherent combinatorial
difficulty of this type of problems. It is conjectured that no polynomial-time
algorithms exist for solving them.

Concave games, in contrast, are computationally less demanding. By allowing
the decision makers to choose from a continuum of decisions, and by exploiting
properties of strategy space, it is possible to reach an equilibrium in polynomial
time. It has to be stressed that such games still model decision making problems
of practical importance. For instance, in a packet-based computer network, a
sender may wish to select the transmission speed in a channel of limited capacity
(shared with other transmissions) [8,20]. Financial institutions may select prices
of their assets and expect yields depending on all prices of assets available on the
market. Users of smart energy grids may use only some of their deices – when
the supply of energy, for all users, is limited – and energy has to be shared.

Recently, we have developed a software package aimed at efficiently solving
concave games. There exist a number of packages for convex programming, us-
ing highly efficient implementations of primal-dual interior-point method. Our

Equilibria in Concave Non-cooperative Games 413

work aims at providing a similar functionality for the non-cooperative game the-
ory. The tool under development will allow easy description of the input, while
efficiently computing the equilibria.

Here, note that a centralized solution can be found for the considered problem.
However, it requires providing information about the level of battery charge,
required battery level, and other data, which might be considered a violation
of privacy by the owner of the vehicle. Furthermore, as was mentioned in [11],
the owners of vehicles are reluctant to give away the control over the charging
procedure. Furthermore, solutions where the agent of a car suggests strategies
for charging its vehicle allow the system to consider special constraints (e.g.
controlling the number of charge cycles) that might prolong the life of the battery.

3 Definitions

Strategic (mathematical) games are used to model situations of conflict (or co-
operation) between two or more players. Each player decides on its strategy (also
called action), and receives a payoff, which, in general, depends on strategies of
other players. It is assumed that each player is rational, and wants to maximize
its payoff. For more details, see [14]. Now, let N = {1, . . . , N}, N ≥ 2, be the
set of players. A non-cooperative game is defined by specifying sets of strategies
{Si}i∈N and payoff functions {ui}i∈N that are to be maximized (alternatively,
cost functions ci = −ui can be defined, and the goal of each player would be to
minimize them). The set Si is called the set of pure strategies of ith player, or
its strategy space. Vector x = (x1, x2, . . . , xN), where xi ∈ Si, is called strategy
profile of the game, and consists of strategies xi of all players. Value of ui(x)
defines the payoff of ith player, resulting from a strategy profile x. The following
notation is conventionally used for the strategy profile:

x−i = (x1, . . . , xi−1, xi+1, . . . , xN).

It denotes a vector of all strategies, except that of the ith player. The notation
x = (xi,x−i) is often used to distinguish the ith player’s strategy. Assuming
that players make decisions independently and are characterized by selfishness,
the best outcome of the game would be the one in which each player realizes
the best response to all other players’ strategies. A (pure) Nash equilibrium of a
game is such strategy profile x̄ that:

∀i ∈ N , ∀xi : ui(x̄i, x̄−i) ≥ ui(xi, x̄−i).

If each player decided on a strategy x̄i, such that x̄ is a Nash equilibrium, then
no player has an incentive to change its strategy, as such change is not going to
improve its payoff. Thus, such strategy profile can be seen as the “socially best
profile.” Therefore, non-cooperative, rational, selfish agents should prefer to use
strategies resulting in a Nash equilibrium.

Let us now consider concave non-cooperative games. Here, the strategy of
each player is a vector in the Euclidean space xi ∈ R

mi , i = 1, . . . , N . Each

414 M. Drwal et al.

strategy space set Si is a convex set. The payoff function ui is continuous in
x, and is concave in xi, for each fixed value x−i. Alternatively, consider cost
functions ci, continuous in x, and convex in xi, for each fixed value x−i. It is
well-known that pure Nash equilibrium always exists in concave games [16]. An
equilibrium point is a solution of a system of nonlinear equations, similar to the
Karush-Kuhn-Tucker (KKT) conditions, in standard optimization. Assume that
the strategy space of ith player can be defined by a set of differentiable functions:

Si = {xi : hi1(xi) ≥ 0, hi2(xi) ≥ 0, . . . , hiki(xi) ≥ 0}.

Finally, in the considered game, an equilibrium point x must satisfy the feasibility
conditions of all strategy spaces, i.e.:

∀i ∈ N , ∀j ∈ {1, . . . , ki} : hij(xi) ≥ 0, (1)

as well as the complementary slackness conditions:

∀i ∈ N , ∀j ∈ {1, . . . , ki}, ∃λij ≥ 0 : λijhij(xi) = 0, (2)

and the stationarity conditions of Lagrange functions:

∇xiui(x)−
ki∑
j=1

λij∇xihj(xi) = 0, ∀i ∈ N . (3)

4 Problem Formulation

Let us now consider an optimization problem representing the vehicle charging
scenario. Let N denote the set of electric vehicles (EVs), where |N | = N . Each
of them has an energy demand Dn > 0, as well as a battery capacity Cn > 0,
n = 1, . . . , N . The total charging time of all N vehicles is divided into a fixed
number of T discrete intervals (e.g., 1-hour intervals). Each vehicle needs to
formulate a charging plan xn = [xn,1, . . . , xn,T]

ᵀ, where xn,t is the n-th vehicle’s
requested charging rate for t-th time interval, while xn,t represents the requested
speed of charging n-th vehicle’s battery during t-th time interval. Observe that
it is not assumed that vehicles arrive at the charging station at the same time,
but the access time to the charging slots is discretized: a vehicle may set its
requested rates to 0 for some of T charging periods, which means that it does
not have to be connected to the charging station then. In order for the n-th
vehicle to satisfy its demand, it must receive the total energy allocation equal to∑T

t=1 xn,t, which must reach at least the amount of energy needed for the next
expected travel (but it cannot be greater than the capacity of its battery):

∀n ∈ N Dn ≤
T∑

t=1

xn,t ≤ Cn. (4)

Equilibria in Concave Non-cooperative Games 415

Additionally, in order for a vehicle to be operational, it is required that its energy
level never falls below a minimum energy reserve threshold. To assure this, for
each charging interval t there is a rate lower bound Ln,t given by:

∀n ∈ N ∀t ∈ {1, . . . , T } xn,t ≥ Ln,t. (5)

Note that values Ln,t do not have to be positive, as we may allow, in a given
time interval t, for discharging the battery (negative values of xn,t are interpreted
as discharging rates). However, here we consider only the case when Ln,t ≥ 0.
Nevertheless, this generalizes to include discharging. The reserve threshold is not
explicitly given in the input data, as it is enough to provide values of Ln,t.

Although user agents may select any rate requests satisfying (4)–(5), the ac-
tual charging rate is allocated by the charging station, taking into account the
total requestes from all N vehicles. In each t-th time interval, each n-th vehicle
receives a fraction ρt of its requested rate xn,t, where ρt = f(

∑N
j=1 xj,t); the

function f : R → [0, 1] is a nonincreasing function of a total of requested rates.
It is selected in order to prevent the station overcharge. In general, if the sta-
tion has a fixed supply S units of energy for one charging period t, then for the
aggregate demand d > S, f(d) < 1 must be selected so that

∑N
j=1 xj,tf(d) < S.

The faster the function f decreases, the more the station penalizes the aggregate
demands that are too high. Here, we restrict f to linear functions, leaving choice
of other functions for future investigations. The total energy that the n-th vehi-
cle receives from the station in the time period consisting of T -intervals is equal
to:

un(xn) =

T∑
t=1

xn,tf(

N∑
j=1

xj,t). (6)

We can now define the following energy-allocation game. Let us assume that N
players have feasible strategies defined as the set of all vectors xn = [x1, . . . ,xT]

ᵀ

satisfying (4)–(5). Here, the goal of each player is to maximize the payoff function
defined as in (6). In other words, each player must select the charging rate
resulting in fastest charging, but must take into consideration the fact that
requesting too high charging rate by many players will be penalized by the
reduced energy flow from the station. Thus, each player should individually
balance its request between fast charging and keeping charging rates low, to
prevent the station overcharge (which would penalize all players).

5 Software Solver

5.1 Representation of Games

Let us now describe in more detail the software that we have developed for
solving convex/concave non-cooperative games. To solve a game, we first need
to pass it as an input to the solver. The developed software uses a relatively
simple syntax, which is presented in Example 1, and stores game descriptions as
a text file.

416 M. Drwal et al.

Example 1. Input file representing a simple two-player instance of the considered
game.

N 2
S1 (x11, x12) {
10 - x11 - x12

}
S1 {
x11 + x12 - 5

}
S2 (x21, x22) {
20 - x21 - x22

}
S2 {
x21 + x22 - 10

}
P1 {
set y = 1 - x11 - x21 - x12 - x22
x11 * y + x12 * y

}
P2 {
set y = 1 - x11 - x21 - x12 - x22
x21 * y + x22 * y

}

Here, the first line defines the number of players, indicated by the integer
after symbol N (two players in this case). Following are definitions of the strategy
spaces of each player. A strategy space is defined in the form:

hij(xi) ≥ 0,

where hij is the jth constraint of the ith player’s strategy space. User must
provide formulas for hij , for each player, which is accomplished in constraint
blocks, denoted by the symbol S, immediately followed by the index of the player.
Names of player’s decision variables must be given in parentheses before the first
constraint block (and can be omitted in each subsequent block). The body of the
function itself must be contained within brackets. In Example 1, there are two
constraints defining the strategy space of Player 1 : h11(x1) = 10 − x11 − x12,
and h12(x1) = x11 + x12 − 5, where x1 = (x11, x12).

Subsequently, the payoff functions are defined in function blocks, starting with
the symbol P, followed by the index of the player. The value of the payoff can
depend on all decision variables of all other players. Thus any subset of decision
variables of all players may appear in the block defining payoff function.

The value of the last expression in each block is the payoff. Observe that
computations can be simplified using set expressions, which define the auxiliary
variables. For instance the variable y defined at the beginning of both payoff

Equilibria in Concave Non-cooperative Games 417

functions, above. Here, variable y appears multiple times in the second line of
the payoff function, but the expression is evaluated only once.

The input syntax supports arithmetic operations on floating point numbers,
as well as all standard mathematical functions (min/max, logarithms, exponen-
tiation, trigonometric functions).

5.2 Optimization Algorithm

The core solver is based on the primal-dual interior-point method from non-
linear programming. The method seeks to find a solution to the relaxed KKT
conditions, which define a system of equations (1)–(3). Such solution approxi-
mates pure Nash equilibrium in the convex/concave non-cooperative game. By
regulating the relaxation parameter one may obtain the approximation with an
arbitrary accuracy (bounded only by the use of floating-point arithmetic). For
each player n ∈ N we can formulate the KKT conditions corresponding to its
problem of maximizing the concave function. The primal-dual variant of the
interior-point algorithm relaxes the slackness conditions (2) to the form:

∀i ∈ N ∀j ∈ {1, . . . , ki} λijhij(xi) = 1/t, (7)

where t > 0 is a parameter. Feasibility conditions (1) are changed from the
inequality to the equality, by introducing the vector of slack variables s =
[s11, . . . , sij , . . . , sNkN]

ᵀ:

∀i ∈ N ∀j ∈ {1, . . . , ki} hij(xi)− sij = 0. (8)

After user selects the accuracy ε > 0 and the parameter α > 0, the solver starts
from a small value of t = t0 and “any” feasible solution x = x0. Next, it forms
a set of linear equations (1), (3) and (7), by substituting x0 into them. Based
on these equations, the solver computes a Newton step Δx, which indicates the
direction of maximization. The Newton step is computed from the solution of
the system of the following primal-dual equations [23]:

⎡
⎢⎣
∇2

xL1 . . . ∇2
xLN 0 −Hᵀ(x)

0
. . . 0 Λ S

h1(x1) . . . hN (xN) −I 0

⎤
⎥⎦
⎡
⎢⎢⎢⎢⎢⎣

Δx1

...
ΔxN

Δs
Δλ

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

∇u1(x)− λᵀ
1h1(x1)

...
∇uN (x)− λᵀ

NhN (xN)
Sλ − e/t
H(x)− s

⎤
⎥⎥⎥⎥⎥⎦ , (9)

where Ln = un(x) − λᵀ
n(hn(xn) − sn) is the Lagrangian associated with n-th

player’s payoff function, λ is the vector of all dual variables, H(x) is the Jacobian
matrix of all constraints h(x), matrix Λ is a diagonal matrix of all dual variables,
S is a diagonal matrix of all slack variables, and I and e are unit matrix and
vector, respectively. The actual step (in both primal x and dual λ variables)
is computed using appropriately selected parameters α. Then, the solution is
updated as follows: x ← x + αΔx. If the change in either the value of solution
or the right hand side of (9) is smaller than ε, the solver halts.

418 M. Drwal et al.

The algorithm has has been implemented in C++, using BLAS/LAPACK
libraries for efficient matrix computations [2]. Note that use of BLAS may al-
low efficient use of multicore processors. This may be of value when solving
large problems. Observe that solving system (9) requires computing Jacobian
and Hessian of the system of equations resulting from KKT conditions. This
requires calculating derivatives, which, if done numerically, can be moderately
time consuming for some functions. In order to alleviate this, the solver allows
the user to provide analytically derived expressions for derivatives.

6 Experimental Study

In the computational experiments we used randomly generated problem in-
stances, defined by the number of players N and the number of charging time
intervals T (of constant duration). Table 1 presents the results for N = 10
and T = 5. For each n-th player, energy consumption demands Dn were ran-
domly generated using uniform distribution from the interval [0, 0.05], while bat-
tery capacities Cn were randomly generated using uniform distribution from the
[Dn, 0.1] interval. Minimal threshold values Ln,t were selected from the [0, 0.01]
interval, again, using uniform distribution. Function f was f(x) = 1− x.

Table 1. Detailed computational results for instance with N = 10 and T = 5

player t = 1 t = 2 t = 3 t = 4 t = 5 demand payoff (charge)
1 0.00819 0.00916 0.01222 0.00916 0.01127 0.022 0.045
2 0.00781 0.01079 0.01279 0.01379 0.00481 0.006 0.044
3 0.01107 0.00594 0.01392 0.01092 0.00918 0.046 0.046
4 0.00620 0.01524 0.00924 0.01213 0.00720 0.035 0.045
5 0.00704 0.01416 0.01516 0.00705 0.00704 0.045 0.045
6 0.01112 0.00896 0.00696 0.01086 0.01212 0.038 0.045
7 0.01156 0.01252 0.01044 0.00850 0.00754 0.046 0.046
8 0.00465 0.01372 0.01172 0.01172 0.00875 0.046 0.046
9 0.00899 0.00994 0.00913 0.00908 0.01317 0.044 0.045
10 0.00892 0.00678 0.01074 0.01274 0.01082 0.015 0.044

It took the solver 18 iterations to find a Nash equilibrium for ε = 0.001, and
6 iterations for ε = 0.01. Table 1 contains values of xn,t, Dn and un, for each
player from the final iteration. Observe that each player receives approximately
the same payoff, which means that the station assigns, in total, approximately
the same amount of energy to each vehicle. However, in each time period t the
charging rates vary significantly for each car. Overall, all demands are satisfied
and allocation is well balanced.

In the second experiment we considered the performance of the proposed
algorithm for an increasing number of players N . For convenience, we normalized
the units of energy to the capacity of the charging station. Hence, the demand of

Equilibria in Concave Non-cooperative Games 419

each client was inversely proportional to the total number of clients. Specifically,
no car would claim more than 1/2 unit of energy in each charging interval.
Moreover, we assumed that if the total demand in the charging period exceeded
one unit, then no charging took place. Thus, functions in equations (6) were:

un(x) =
T∑

t=1

xn,t

(
1−

N∑
m=1

xm,t

)
.

Table 2 compares results of applying our solver with allocations obtained by solv-
ing the concave quadratic problem centrally, assuming that all clients’ demands
are known in advance by a central authority (e.g. they have all been submitted
to the charging station that establishes the charging schedule based on its prefer-
ences). The first column represents the number of clients N . The second column,
(min.sol.), presents the smallest amount of energy that any player receives in
the equilibrium solution, while the column max.sol., states the largest amount
of energy that any player receives in the equilibrium solution. In comparison,
columns denoted min.central and max.central contain info about minimal
and maximal allocations computed centrally. They have been obtained as a so-
lution to a problem of finding vector x that maximizes the objective function:

U(x) =
1

N

N∑
n=1

un(x) (10)

subject to constraints (4)–(5). This constitutes the average players’ payoff, and
can be considered as a measure of “social” quality of the solution [13]. These val-
ues were obtained using the state-of-the-art CPLEX [7] software, which applies
the barrier interior-point algorithm to solve concave quadratic problems (see, [7]
for all details concerning the centralized solution method).

Table 2. Comparison of solutions computed for different number of players N

instance N min.sol. max.sol. min.central max.central iterations time
10 0.061 0.13 0.021 0.15 8 6 s.
15 0.040 0.092 0.014 0.16 12 39 s.
20 0.029 0.076 0.006 0.21 9 55 s.
25 0.015 0.061 0.004 0.21 10 116 s.
30 0.012 0.048 0.003 0.193 11 216 s.
35 0.006 0.031 0.001 0.2 11 334 s.
40 0.002 0.027 0 0.202 11 492 s.
50 0.004 0.100 0 0.221 10 846 s.

The solution computed centrally typically allocates large amount of energy
to a specific car (e.g., the first client that arrived at the station), while leaving
only very little energy for other cars (they are charged just as much as needed
to satisfy their minimal demands). This can be seen as an unfair allocation. In

420 M. Drwal et al.

contrast, the equilibrium solutions (found using the proposed method) tend to
balance allocations among clients (differences between the client with the small-
est allocated charge and the one with the largest one are relatively small). This
can be seen as a fair allocation that reduces negative effects of selfishness (due
to the threat of loss of payoff that each player takes into consideration). As a re-
sult, each client usually receives significantly more than the requested minimum,
while no client dominates others in its total allocation. Here, the drawback is
that the corresponding values U(x) (average allocated energy) are strictly less
than the optimal average values computed centrally. This global performance
loss is the price paid for balancing allocations. An interesting question opens
here: what is better “unfair optimality” or “fair suboptimality.” However, this
question cannot be answered on the basis of computational optimization itself.

Moreover, Table 2 lists numbers of iterations needed to reach Nash equilibrium
when the requested accuracy was ε = 0.01, and the computation time. The
number of iterations is almost constant, regardless of the problem size. However,
the computational cost of a single iteration raises quickly with increasing N , thus
computing the charging plans for a large number of cars can become expensive.

7 Concluding Remarks

In the paper we have demonstrated practical application of theory of non-
cooperative concave games to smart energy allocation (charging electric vehi-
cles). The presented approach is distributing power “fairly though suboptimally.”
In this case, fairness means that the differences between the total amount of allo-
cated energy (to each car) are relatively small. Note that, when human decision-
making is considered, fairness is very often considered to be of great value.
Moreover, we have described a solver for computing equilibria in non-cooperative
convex/concave games with the use of primal-dual interior-point algorithm. We
have evaluated its performance for the considered vehicle charging scenario and
the results are encouraging.

Across the paper we have indicated a number of directions, which we plan to
explore. Some of them are related to the vehicle charging scenario itself, others
to the solver. We will disclose our findings in subsequent reports.

References

1. Anderson, C.D., Anderson, J.: Electric and Hybrid Cars: A History, 2nd edn. Mc-
Farland, Incorporated, Publishers (2004)

2. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du
Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK
Users’ Guide, 3rd edn. SIAM, Philadelphia (1999)

3. Balijepalli, V.S.K.M., Pradhan, V., Khaparde, S.A., Shereef, R.M.: Review of de-
mand response under smart grid paradigm. In: 2011 IEEE PES Innovative Smart
Grid Technologies - India (ISGT India), pp. 236–243 (December 2011)

4. Chau, C., Elbassioni, K., Khonji, M.: Truthful mechanisms for combinatorial ac
electric power allocation. arXiv preprint arXiv:1403.3907 (2014)

Equilibria in Concave Non-cooperative Games 421

5. Deng, X., Papadimitriou, C., Safra, S.: On the complexity of equilibria. In: Pro-
ceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 67–71.
ACM (2002)

6. The Rt Hon Michael Fallon MP Department for Transport, The Rt Hon Norman
Baker MP and Office for Low Emission Vehicles. Hundreds of new chargepoints for
electric cars (2013)

7. Users Manual for CPLEX 12.2. IBM ILOG (2010)
8. Gąsior, D., Drwal, M.: Pareto-optimal Nash equilibrium in capacity allocation game

for self-managed networks. Computer Networks 57(14), 2675–2868 (2013)
9. Islam, F.: Impact and Utilization of Emerging PHEV in Smart Power Systems.

PhD thesis, University of New South Wales - UNSW Canberra. Engineering &
Information Technology (2013)

10. Kim, T., Poor, H.V.: Scheduling power consumption with price uncertainty. IEEE
Transactions on Smart Grid 2(3), 519–527 (2011)

11. Ma, Z., Callaway, D., Hiskens, I.: Decentralized charging control of large populations
of plug-in electric vehicles. IEEE Trans. Contr. Sys. Techn. 21(1), 67–78 (2013)

12. Mohsenian-Rad, A., Wong, V., Jatskevich, J., Schober, R., Leon-Garcia, A.: Au-
tonomous demand-side management based on game-theoretic energy consumption
scheduling for the future smart grid. IEEE Transactions on Smart Grid 1(3),
320–331 (2010)

13. Nisan, N.: Algorithmic Game Theory. Cambridge University Press (2007)
14. Osborne, M.J., Rubinstein, A.: A course in game theory. MIT Press (1994)
15. Papadimitriou, C.: On the complexity of the parity argument and other inefficient

proofs of existence. Journal of Computer and System Sciences 48(3), 498–532 (1994)
16. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person

games. Econometrica: Journal of the Econometric Society, 520–534 (1965)
17. Rotering, N., Ilic, M.: Optimal charge control of plug-in hybrid electric vehicles

in deregulated electricity markets. IEEE Transactions on Power Systems 26(3),
1021–1029 (2011)

18. Saad, W., Han, Z., Poor, H., Basar, T.: Game-theoretic methods for the smart
grid: An overview of microgrid systems, demand-side management, and smart grid
communications. IEEE Signal Processing Magazine 29(5), 86–105 (2012)

19. Schultz, P.W., Nolan, J.M., Cialdini, R.B., Goldstein, N.J., Griskevicius, V.: The
constructive, destructive, and reconstructive power of social norms. Psychological
Science 18(5), 429–434 (2007)

20. Turowska, M., Gąsior, D., Drwal, M.: Allocation-pricing game for multipath routing
in virtual networks. In: Swiątek, J., Grzech, A., Swiątek, P., Tomczak, J.M. (eds.)
Advances in Systems Science. AISC, vol. 240, pp. 553–563. Springer, Heidelberg
(2014)

21. Vandael, S., Boucké, N., Holvoet, T., De Craemer, K., Deconinck, G.: Decentralized
coordination of plug-in hybrid vehicles for imbalance reduction in a smart grid.
In: The 10th International Conference on Autonomous Agents and Multiagent
Systems, vol. 2, pp. 803–810 (2011)

22. Vytelingum, P., Voice, T.D., Ramchurn, S.D., Rogers, A., Jennings, N.R.: The-
oretical and practical foundations of large-scale agent-based micro-storage in the
smart grid. J. Artif. Int. Res. 42(1), 765–813 (2011)

23. Wright, S., Nocedal, J.: Numerical optimization. Springer, New York (1999)
24. Yu, L., Chau, C.: Complex-demand knapsack problems and incentives in ac power

systems. In: Proceedings of the 2013 International Conference on Autonomous
Agents and Multi-agent Systems, pp. 973–980. International Foundation for Au-
tonomous Agents and Multiagent Systems (2013)

A Distributed System

for Smart Energy Negotiation

Alba Amato1, Beniamino Di Martino1, Marco Scialdone1,
Salvatore Venticinque1, Svein Hallsteinsen2, and Shanshan Jiang2

1 Second University of Naples, Dep. of Industrial and Information Engineering,
Aversa, Italy

2 SINTEF ICT, Throndeim, Norvey
{alba.amato,beniamino.dimartino,marco.scialdone,

salvatore.venticinque}@unina2.it,
{Svein.Hallsteinsen,Shanshan.Jiang}@sintef.no

Abstract. Distributed energy production by Solar Panels is really wide-
spread today. However the mismatch between production and consump-
tion during the day, and expensiveness of energy storages, limits an high
rate of self-consumption. In fact the overall overproduction is currently
reversed into the power grid and delivered to the energy provider. In this
context the CoSSMic project aims at developing a distributed software
architecture that allows for the collaboration among neighbors, both to
schedule the consumptions and the exchange of energy, in order to max-
imize the self-consumption of micro grids. This paper focus on the archi-
tecture design, scouting of technology and preliminary demonstrator.

Keywords: Multi-Agent Systems, Smart Grid, Smart Energy.

1 Introduction

Rooftop PV panels may play a central role in the transition to an energy sup-
ply system based on renewable energy sources. However the fluctuating nature
of the energy production from such panels limits the achievable levels of self-
consumption and self-sufficiency of building micro-grids with local PV produc-
tion, and therefore also causes challenges for the public grid. Coordinating load
shifting, use of storage, and exchange of excess power between the buildings in
a neighbourhood could alleviate this situation and bring significant benefits in
terms of reduced power bills for the house owners, reduced peak loads on the
public grid and in turn reduced need for fossil fuel based backup production
capacity. To exploit this potential, the CoSSMic project is developing an innova-
tive autonomic ICT based system, able to control the energy usage and storage
and the exchange with the public grid of clusters of collaborating micro-grids.
The system is governed by preferences and constraints set by the building in-
habitants, using modern interaction devices such as smartphones and touchpads,
and is exploiting pricing signals and other demand side guidance provided by
the electric power retailers and public grid operators. Storage can be provided
by dedicated batteries, and also by battery powered units connected temporarily

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 422–434, 2014.
c© Springer International Publishing Switzerland 2014

A Distributed System for Smart Energy Negotiation 423

for charging, e.g. electric cars. Weather forecasts will be used to predict power
needs and thus enable near optimal coordination. The economic benefits will be
shared among the neighbours according to reward based business models ensur-
ing sufficient rewards to the users willing to share resources and collaborate to
optimise the overall working of the power grid.

In this paper we outline the architecture of the intended system and discuss
the design choices made. In addition to the functional requirements inherent
in the functionality outlined above, the architecture has been shaped by the
wish to provide a low threshold and low cost solution that can be installed
and maintained by common people without special technical skills, and foster
the emergence of neighbourhoods with coordinated energy management without
command by a central authority, the need establish organisational structures, nor
to invest in central equipment. This has resulted in a highly distributed peer-to-
peer oriented architecture with a flexible deployment model able to leverage on
cloud resources if desirable.

The paper is structured as follows. Section 2 gives a brief overview of re-
lated work. Then Section 3 details the requirements and objectives. In sections
4-6 we present and discuss the architecture from different viewpoints in accor-
dance with the IEEE Recommended Practice for Architectural Description for
Software-Intensive Systems1, and in Section 7 we give an overview of the ongoing
implementation. Finally, some preliminary conclusions are drawn.

2 Related Work

Several different Smart Grid Architectures are promoted and various standards
for Smart Grid exist. The various regional and international initiatives for Smart
Grid standardization outline the importance of standards in the Smart Grid do-
main [10]. In the context of the European Commission’s Standardization Man-
date M/490, an holistic viewpoint of an overall architecture named Smart Grid
Architecture Model (SGAM) [5] is developed. The layers of the SGAM are [10]:
Business Layer, regarding strategic and tactical goals and processes as well as
regulatory aspects; Function Layer, IT-oriented, technology independent descrip-
tion of use cases, functions and service; Information Layer, Business objects and
data models of the Function Layer to enable interoperability; Communication
Layer, Specification of protocols and procedures for the data exchange between
components based on the Information Layer; Component Layer, Physical and
technical view on Smart Grids components. Power-system related infrastructure
and equipment, ICT-infrastructure and -systems are also considered.

IntelliGrid architecture[9], created by the Electric Power Research Institute
(EPRI), provides tools and recommendations for standards and technologies for
utility use in designing IT-based systems, such as advanced metering, distribu-
tion automation, and demand response. Several utilities have applied IntelliGrid
architecture including Southern California Edison, Long Island Power Authority,
Salt River Project, and TXU Electric Delivery.

1 http://standards.ieee.org/findstds/standard/1471-2000.html

http://standards.ieee.org/findstds/standard/1471-2000.html

424 A. Amato et al.

Grid 2030 [6] is a joint vision statement for the U.S. electrical system de-
veloped by the electric utility industry, equipment manufacturers, information
technology providers, federal and state government agencies, interest groups, uni-
versities, and national laboratories. It covers generation, transmission, distribu-
tion, storage, and enduse. The National Electric Delivery Technologies Roadmap
is the implementation document for the Grid 2030 vision. The Roadmap out-
lines the key issues and challenges for modernizing the grid and suggests paths
that government and industry can take to build Americas future electric delivery
system.

The SmartHouse/SmartGrid2 project sets out to validate and test how ICT-
enabled collaborative technical-commercial aggregations of Smart Houses provide
an essential step to achieve the needed radically higher levels of energy efficiency in
Europe. The three main goals that the SmartHouse/SmartGrid project is heading
towards are: improving energy efficiency, increasing the penetration of renewable
energies, and diversifying and decentralising Europe’s energy mix.

The CossMic project is based on 1471-2000 standard, an IEEE Recommended
Practice for Architectural Description for Software-Intensive Systems. It is an
approved and proposed IEEE smart grid-related standard that addresses the
activities of the creation, analysis, and sustainment of architectures of software-
intensive systems, and the recording of such architectures in terms of architec-
tural descriptions. CoSSMic [1] is overcoming the limitations of current solutions
by coordinating local energy production and storage resources of neighbour-
hoods of individual houses, thereby balancing the energy flow and consumption
and reducing the fluctuations towards the central power grid, and improving the
predictability of consumer behaviour.

3 Requirements and Objectives

Optimizing the use of energy leads to increased utilisation of energy produced
by local renewable resources. As a result, there is an economic return and also
less pollution due to the decrease of the consumption of electricity from non-
renewable sources such as fossil fuels. To achieve this goal the CoSSMic project
will enable the exchange of energy between producers and consumers to limit the
need of storage and the delivery of energy across the grid when there is a peak
of production. Moreover, to minimize the overlapping of overproductions among
households, the CoSSMic framework will plan the optimal schedule of load by
controlling the appliance using weather forecast, monitoring information and
according to user’s constraints and preferences. An ICT platform has been de-
signed to support producers (which in our case are users who have installed
solar panels) for selling energy to their neighbors, and buying when there is a
power need. The user thus becomes at the same time producer and consumer
(prosumer). The energy exchange will be made by intelligent agents that act
on user’s behalf autonomously, according to high level policy set by prosumers.

2 http://www.smarthouse-smartgrid.eu/index.php?id=43

http://www.smarthouse-smartgrid.eu/index.php?id=43

A Distributed System for Smart Energy Negotiation 425

Agents based networks to support users’ activities [7] and negotiation/broker-
ing of Service Level Agreements (SLA) [3] have been investigated in different
application fields. Main objective of the agents, here, will be the optimal nego-
tiation strategy. In both cases, the agents will enter into a virtual market [2]. If
agents fail to sell/buy all the energy required, they must contact the electricity
company (GenCo). Then software agents represent the main actors of the ICT
platform. They will take the role of Consumers when they manage an appliance
that absorbs energy, such as refrigerators, computers, ovens, washing machines,
etc, but also storages when they absorb energy. Producers will manage solar pan-
els, but also energy storages with available energy. Gencos will be represented
by agents that are always ready to receive or deliver energy. The important re-
quirements that have contributed to shape the architecture are the possibility to
implement the foreseen functionality. To achieve this aim we need to integrate a
variety of devices such that they can be monitored and controlled. We also need
to keep installation complexity and cost low (low threshold technology), to sup-
port wireless communication with devices, to support ”plug-and-play” style of
installation, to allow deployment on cheap commonly available hardware, offload-
ing resource demanding computations to the cloud if necessary, to use already
available communication infrastructure to communicate between buildings and
with the public grid, to use already available user interaction devices, such as
smart phones and touch pads. Besides, to enable easy and sustainable emergence
of neighbourhoods we need that can be created without setting up central re-
sources so that new houses can join dynamically and the system is robust to the
failing or withdrawal of individual houses.

The framework must also provide functionalities for the management of de-
vices, like electric cars, allowing to turn them on/off by an interactive control
or according to preferences and constraints set by user. For example, the sys-
tem must allow the user to specify earliest and latest start time for appliance,
charging policy for energy storages, etc.

4 CoSSMic Architecture

The CoSSMic architecture design follows the model defined by ARCADE ar-
chitecture description3. ARCADE is based on the standard 1471-2000 - IEEE
Recommended Practice for Architectural Description for Software-Intensive Sys-
tems4 and proposes an understanding of architecture as covering both the system
and the organisational and business environment it is going to operate within,
and both architectural level requirements and architectural and technological
choices. A central element is the meta-model for architecture descriptions intro-
ducing concepts such as stakeholders, concerns and views. A stakeholder is an
individual, team, or organization (or classes thereof) with interests in, or con-
cerns relative to, a system. A view is a representation of a whole system from the

3 http://www.arcade-framework.org/
4 http://standards.ieee.org/findstds/standard/1471-2000.html

http://www.arcade-framework.org/
http://standards.ieee.org/findstds/standard/1471-2000.html

426 A. Amato et al.

perspective of a related set of concerns. The CoSSMic architecture is described
using five views with respective models:

Context View. The models in the context view provide a description of the
environment, in particular the main stakeholders and their concerns. The main
stakeholders include user, installer, electricity supplier/retailer, equipment ven-
dor, Distributed System Operator (DSO), public authorities, the CoSSMic trial
and evaluation team and software developer. This view also describes the ac-
tivities of the system with regard to the stakeholders (i.e., use cases) and the
equipment and external services that the system interfaces.

Requirements View. Architectural requirements have been collected and de-
rived from various sources, including user centric workshops held at the two trial
sites, business model analysis, technology survey and analysis. One design deci-
sion coming from the requirements is that the system needs a computing device
(as called home gateway in this paper) with capacity to firstly, act as a gateway
for communication, and secondly, execute the intelligence based on distributed
computing. Another requirement concerning the flexibility of the deployment of
software components sets constraints for the distribution view and deployment
models.

Component View. This view identifies and documents specific physical or log-
ical components, including information elements and data model, interfaces and
interactions between components. We have identified main components for de-
vice integration , user and neighbourhood management, as well as components
for planning and optimisation.

Distribution View. This describes the logical distribution of software and hard-
ware components. It shows if some components cannot be separated and if any
must be separated. The distribution view is further discussed in the next section.

Deployment View. The realisation view shows how the logical components
of the CoSSMic software system are realised as ”‘physical” components and de-
ployed into the environment. It also describes the architectural and technological
choices. Four deployment models have been proposed based on the distribution
view. More details about these models are described in the next Sections.

4.1 Components View

In Figure 1 the main components of CoSSMic System are shown. Functionalities
and interfaces are defined. The user interface supports interactive control and
configuration of the system. Cloud services provide information about energy
tariff and predicted PV production. They provide remote resources to offload
computation and data when necessary resources are not available locally, and
support communication over distributed infrastructures. Using the Cloud, users
can access CoSSMic services outside their household. The Mediator provides
APIs for storing and management of smartgrid information. Mediator services
are accessed by the drivers to store measures and by agents to collect information
about energy production and consumption of the household. The same APIs are
used to store the results of negotiation. The allocation of energy to devices is
modeled as task schedule with power and time constraints carried out by soft-

A Distributed System for Smart Energy Negotiation 427

Fig. 1. CoSSMic Architecture - Components View

ware agents. The Multi Agent System (MAS) includes both agents platforms
and application that use optimization techniques and negotiation mechanisms
for management and exchange of green energy. The agents, acting on behalf
of the user, invoke the mediator to obtain information about energy produc-
tion/consumption. They schedule and control tasks, switching smart plugs or
controlling more complex appliances. Agents use the mediator also to store re-
sults of negotiation in terms of energy and credits exchanged with the CoSSMic
neighborhood. They negotiate the energy exchanges exploiting neighborhood
management facilities, for sharing information about the scheduled loads and
over energy productions, but also for implementing the negotiation protocol.

4.2 Distribution View

In Figure 2 we complement the previous figure with devices and drivers, and
identify those packages which cannot be distributed.

Devices : They are hardware devices with any kind of wireless/wired network
interface. These devices (inside home/office/building) are connected to a device

428 A. Amato et al.

Fig. 2. CoSSMic Architecture - Distribution View

drivers. According to the capability of each device and according to its network
interface it can be installed standalone or as a node of a wireless sensor network
(WSN). For example, in the first case it could be accessed by its driver using a
TCP/IP connection. In the second case it needs that the device and the driver
belong to the same local network.

Device Management : It is composed of a number of drivers that collect in-
formation from devices and send controls to them. They implement different
interfaces to communicate with devices and a uniform interface to use the medi-
ator APIs. In particular they can execute on hardware with reduced capability
that is connected to the Internet. If the mediator is hosted on the same hard-
ware the drivers invoke the mediator APIs locally and the Internet connection
is eventually used by the mediator or by MAS exploit Cloud services.

CoSSMic Mediator : It is preferred that also the mediator runs on the same
node. In fact to develop a pure p2p microgrid of CoSSMic nodes we plan the
execution of a mediator instance in each household. In this way users devices and
data are bounded to the local area network and there will be limited problems
about privacy and routing.

MAS : Software agents implement negotiation and task schedule. They can be
hosted on the same node of the mediator if the computational capabilities sup-
port its execution. Otherwise agents will execute in Cloud accessing the mediator
API via Internet if it executes at different locations.

Cloud Services : As we will see in the next section, the agents, except for one
configuration (All In Cloud), reside on the home gateway and use the Cloud only
to exchange information.

4.3 Deployment View

As possible configurations we have taken into account the heterogeneity of users
and what could be their needs and their priorities. We have, for example, consid-
ered the need to access the platform from remote. Whether the communication
of private information outside the household is another criteria. The market type
and its boundary can be an additional requirement (es. the whole neighborhood
or just the buildings in a campus or in a park). Starting from the general view
of Figure 2, we modeled four configurations for deployment(Figure 3).

All In Home: All Software resides on a home gateway and the cloud is only
used by agents to negotiate energy. In this configuration, the entire system resides

A Distributed System for Smart Energy Negotiation 429

Fig. 3. Framework Configurations: 1. All in home, 2. Hybrid, 3. All Private, 4. All in
Cloud

inside the home. Everything is managed by a home gateway that encapsulates
the functions of device management, mediator and MAS. The various devices
in the home, using special driver, connect to the home gateway. The connect to
the web GUI, hosted at the home gateway in order to control and manage the
system. Cloud services are only used by agents to exchange info about energy.
The optimization is performed inside the home and the energy exchange occurs
within the neighborhood.

Hybrid: Conceptually, it is similar to All in Home but it is more complete. In
fact, it gives the possibility to access the system from the outside through mobile
devices. In this configuration, on the home gateway only the front end (client
side) of the mediator is present, that syncs with the mediator (server side) in
the cloud. As All In Home, the optimization is performed inside the home and
the energy exchange occurs within the neighborhood. In the previous case, the
measurement data reside in the home gateway while in this case they reside in
the cloud.

All Private: There are no public Cloud services. The software is distributed
between a home gateway and a local server. This configuration favors privacy.
In this configuration, that can represent the case of an industry or a campus
or a homepark, the privacy is the most important thing. In fact, through this
configuration, the data never go outside, so much so that cloud services are not
present. In place of the cloud there is a local server where there are the mediator
and the MAS. All the home gateway of the campus connect to this local server.
The energy is exchanged only locally, namely the industry/campus works as
a neighborhood itself and therefore it does not exchanges energy with other

430 A. Amato et al.

neighbors but only among the gateways within its organization and consequently
also the optimization is local.

All In Cloud: All services are in Cloud. This configuration requires that there
is always access to the network and less assurance of privacy. The home gateway
only forwards the information of devices to mediator that is in cloud as well as the
MAS. The optimization and energy exchange are performed at the neighborhood
level.

5 Implementation

The current implementation of CoSSMic demonstrator is driven by the charac-
teristics of trials selected at the city of Kostanz (Germany) and at the Province
of Caserta (Italy). Experimental activities have started using the deployment
model “All in Home”. Real devices are currently monitored in each household,
including smart meters for solar panels and for the global consumption, but
also smart plugs to monitor and control heaters, air conditioners, washing ma-
chines and other common appliances. Meters are connected to a local gateway
through heterogeneous wireless interface. In particular WIFI, UHF 800Ghz and
zigbee radio are supported and applied according to the specific requirements of
the trial site. Virtual devices are used for testing and simulation purpose. The
local gateway is hosted on a Raspberry Pi, that is a credit-card-sized single-
board computer equipped with an SD memory, an ARM processor, 512 RAM.
A derivative of Linux based Debian distribution is used as Operating System.
In the current deployment model the gateway runs drivers, the mediator, the
multi agent system and a web GUI. Drivers are developed from scratch for the
specific meter/connection technology. They use the mediator APIs to store mon-
itoring information and to receive control actions for the managed devices. The
mediator implementation is based on EmonCMS5, an open-source web-app for
processing, logging and visualising energy, temperature and other environmental
data. EmonCMS has been extended to provide facilities to drivers for the man-
agement of devices. Both the user GUI and software agents use the REST APIs
of the mediator, to run related interactive and autonomous monitoring and con-
trol actions on energy resources. In particular agents provide information about
the energy exchange with the neighborhood, which is represented itself as an
additional device. A fine grain control of the Mediator is also available by the
extended web interface of EmonCMS that is shown in Figure 4, but it is hidden
to the final user. Moreover by the GUI the user can also set constraints about
the utilization of his appliances such as earliest and latest start time. Such a
policy is enforced by software agents that are delegated to negotiate the energy
exchanges with other agents of the neighborhood, eventually shifting their loads
to improve the global optimization of self-consumption.

The JADE6 agent platform has been used to develop a preliminary prototype
of the multi agent system. JADE [4] is a free software framework for agents

5 http://emoncms.org/
6 http://jade.tilab.com/

http://emoncms.org/
http://jade.tilab.com/

A Distributed System for Smart Energy Negotiation 431

Fig. 4. EmonCMS Input View

development and management totally written in Java. JADE is also fully com-
pliant with FIPA specifications. The current Architecture of the MAS is shown
in Figure 5. A Control Agent is responsible for the energy scheduling and ne-
gotiation of his own device. Solar panels are represented by producer agents,
whereas appliances by consumer agents. An energy storage is handled by a cou-
ple of producer and consumer. Schedule strategy is driven by weather forecast,

Fig. 5. Architecture of MAS

user constraints, device information and market availability. The goal is always
the optimization of self-consumption that will improve the individual’s utility
by a fair distribution of the global savings.

Market APIs allowed the implementation of the negotiation protocol over a
peer to peer overlay, which supports sharing of their energy schedule in terms
of energy offers and requests. A distributed solution is in fact preferred to a
centralized that is also investigated by research efforts on Cloud and Big data
technologies [8].

The SLA template shown in Listing 1 includes agent id, date, needed power
(Watt), price (Eur), duration, Earliest and Latest Start Time (EST, LST).

432 A. Amato et al.

Fig. 6. Sequence diagram of negotiation

<?xml version ="1.0" encoding ="UTF-8"?>

<SLA>

<AId> Agent_1 </AgentId>

<Date> 04/15/2014 </Date>

<Power> 3000 </Power>

<Price> 0.2 </Price>

<Last> 02:55 </Last>

<IP>ContractNet </IP>

<EST> 15:05 </EST>

<LST> 16:05 </LST>

</SLA>

As shown in Figure 6, agents take the role of initiator or responder in a many
to many negotiation scenario. In particular it behaves as a responder when it
has published its own proposal and is contacted by another agent. In this case it
will accept or refuse the incoming request. Agents behave as initiator when they
broker the best composite SLA, choosing the best set of published proposals that
satisfy its energy needs, and contacting other agents to close the agreements. For
the communication of agents across the neighborhood we are investigating two
different technologies. An XMPP (Extensible Messaging and Presence Protocol)
communication infrastructure, based on the Tigase7 solution at server side and
on Smack APIs8 at client side is already available. We have also investigated
the adoption a server-less infrastructure based on Retroshare9 for the market
implementation.

7 http://www.tigase.org/
8 http://www.igniterealtime.org/projects/smack/
9 http://retroshare.sourceforge.net/

http://www.tigase.org/
http://www.igniterealtime.org/projects/smack/
http://retroshare.sourceforge.net/

A Distributed System for Smart Energy Negotiation 433

The current prototype allows the users to access the GUI by a web browser.
The user is asked to edit an APIKEY at the startup, when the CoSSMic smart
pack is installed and it needs to demonstrate the ownership of the equipment.
After that the first user is registered and the GUI is used to define other users
and authorization policies. In Figure 7 a snapshot of the preliminary implemen-
tation of the GUI is shown. The GUI connects device instances to mediator

Fig. 7. GUI snapshot

nodes handled by drivers. Households, individual devices and neighborhood are
monitored and controlled by specific dialogs, defined by a user-centric approach
during project meeting. In fact user trials have been actively involved in the de-
sign process since the beginning of the project. Cloud services are also planned
to be designed and developed for supporting remote access by the user and also
to monitor mobile equipment such electric cars.

6 Conclusion

In this paper we presented design and technologies for the development of an
ICT platform to enable the collaboration among neighbors, who consume and
produce energy by renewable sources. Distributed scheduling and negotiation of
green energy by intelligent software agents are exploited to address the fluctu-
ating nature of decentralized energy production by solar panels and to increase
the rate of self-consumption of the neighborhood. Ongoing activities focus on
development of all the software components and on their integration. Numerical
simulation using synthetic and real data have been used to tune the optimiza-
tion strategy. Experimental activities have been started in the city of Konstanz
(Germany) and in the Province of Caserta (Italy), which have been selected as
trials sites.

Acknowledgements. This paper is partially supported by the EU CoSSMic
project FP7-608806-Smart Cities-2013 and by PRIST 2009, Fruizione assistita
e context aware di siti archelogici complessi mediante terminali mobile, founded
by Second University of Naples.

434 A. Amato et al.

References

1. Amato, A., Aversa, R., Di Martino, B., Scialdone, M., Venticinque, S., Hallsteinsen,
S., Horn, G.: Software agents for collaborating smart solar-powered micro-grids.
In: Caporarello, L., Di Martino, B., Martinez, M. (eds.) Smart Organizations and
Smart Artifacts. Lecture Notes in Information Systems and Organisation, vol. 7,
pp. 125–133. Springer International Publishing (2014)

2. Amato, A., Di Martino, B., Scialdone, M., Venticinque, S.: An agent-based ap-
proach for smart energy grids. In: 6th Int. Conf. on Agents & Artificial Intelligence
(ICAART 2014), vol. 2, pp. 164–171. SciTePress, Angers (2014)

3. Amato, A., Liccardo, L., Rak, M., Venticinque, S.: SLA negotiation and brokering
for sky computing. In: Proceedings of the 2nd International Conference on Cloud
Computing and Services Science, CLOSER 2012, pp. 611–620. SciTePress, Science
and Technology Publications, PRT (2012)

4. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with a
fipa-compliant agent framework. Software: Practice and Experience 31(2), 103–128
(2001)

5. Bruinenberg, J., Colton, L., et al.: Smart grid coordination group technical report
reference architecture for the smart grid version 1.0 (draft) 2012-03-02. Tech. rep.
(2012)

6. Department of Energy: 2030: A National Vision for Electricity’s Second 100 Years
(2003)

7. Di Martino, B., Venticinque, S., Aversa, R.: Distributed agents network for ubiq-
uitous monitoring and services exploitation. In: 7th IEEE/IFIP International Con-
ference on Embedded and Ubiquitous Computing (EUC 2009), vol. 1, pp. 197–204.
IEEE Computer Society, Washington, DC (2009),
http://dx.medra.org/10.1109/CSE.2009.122

8. Esposito, C., Ficco, M., Palmieri, F., Castiglione, A.: A knowledge-based platform
for big data analytics based on publish/subscribe services and stream processing.
Knowledge-Based Systems (2014)

9. Hughes, J.: Intelligrid architecture concepts and iec61850. In: 2005/2006 IEEE
PES Transmission and Distribution Conference and Exhibition, pp. 401–404 (May
2006)

10. Uslar, M.: Introduction and smart grid basics. In: Standardization in Smart Grids.
Power Systems, pp. 3–12. Springer, Heidelberg (2013)

http://dx.medra.org/10.1109/CSE.2009.122

Social Networks and Applications

Recommending Users in Social Networks

by Integrating Local and Global Reputation

Pasquale De Meo1, Fabrizio Messina2, Domenico Rosaci3,
and Giuseppe M.L. Sarné4

1 DICAM, University of Messina, Italy
pdemeo@unime.it

2 DMI, University of Catania, Italy
messina@dmi.unict.it

3 DIIES, University Mediterranea of Reggio Calabria, Italy
domenico.rosaci@unirc.it

4 DICEAM, University Mediterranea of Reggio Calabria, Italy
sarne@unirc.it

Abstract. A central research theme in the Online Social Network (OSN)
scenario consists of predicting the trustworthiness a user should assign
to the other OSN members. Past approaches to predict trust relied on
global reputation models: they were based on feedbacks about the ac-
tions performed by the user in the past and provided for the entire OSN.
These models have shown an evident limitation in considering the ef-
fects of malicious and fraudulent behaviors, thus making unreliable the
feedbacks themselves. In this paper, we propose to integrate global repu-
tation models with a local reputation, computed on the user ego-network.
Some experiments, performed on real datasets show that the global rep-
utation is useful only if the size of the user ego-network is small, as for a
newcomer. Besides, the integrated usage of global and local reputations
leads to predict the expected trust with a very high level of precision.

1 Introduction

A relevant research issue in Online Social Networks (OSNs) is that to design rec-
ommender systems capable to provide a user with suggestions about the trust-
worthiness to assign to other users with which he/she has not interacted in the
past. This capability would avoid the user to be involved with unreliable users
also to avoid risks and harmful interactions. This issue emerged in large on-
line e-Commerce communities, for instance eBay, and it is largely discussed in
many OSNs in which users are allowed to create and share contents and opin-
ions with other users. This is the case, for example, of OSNs like EPINIONS
(www.epinions.com) and CIAO (www.ciao.it), in which users provide reviews
about commercial products falling in different categories, but also of more gener-
alist OSNs like Facebook (www.facebook.com) and Twitter (www.twitter.com).

Almost all of these platforms face such an issue by adopting a reputation sys-
tem. Reputation is a form of indirect trust, in which a user takes advantage from

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 437–446, 2014.
c© Springer International Publishing Switzerland 2014

438 P. De Meo et al.

the recommendations of other users in order to evaluate the probable trustworthi-
ness of an interlocutor. Generally, in the traditional online social contexts[22, 21],
the reputation of a user is evaluated by averaging the feedbacks provided by all
the users of the community. For instance, in CIAO and in EPINIONS, each user
can post a review that can be evaluated by the other users, and a value of help-
fulness is associated with each review. Such a form of reputation will be called
global reputation, to highlight that it has been generated by leveraging on the
feedbacks issued from the entire community. Global reputation has also been
largely used in past recommender systems for OSNs [2–4] but its effectiveness in
estimating trustworthiness of unknown users is limited by the uncertainty about
the reliability of the recommendations.

In this paper, we propose to integrate the traditional use of the global repu-
tation with another form of reputation, called local reputation, based on sugges-
tions only coming by the entourage of the user (friends, friends of friends and so
on) and thus probably more reliable than completely unreferenced recommen-
dations. Our contribution consists in proposing a model to integrate local and
global reputation in an OSN, depending on three main parameters, namely: (i)
the importance given to local vs global reputation; (ii) the threshold of reputa-
tion under which a user is considered unreliable; (iii) the size of the ego-network
associated with a target user, i.e., the subgraph of the social graph containing
all the OSN members that are connected to the user via a path of trust links.
We evaluate our model on a dataset extracted from the above mentioned social
network CIAO, obtaining two main results: i) the role of the global reputation
is relevant only for those users having an ego-network small enough; ii) the use
of the sole local reputation is the best choice for minimising the average error in
predicting the trust, with respect to consider all the users of the OSN.

The paper is organised as follows. Section 2 illustrates some related work on
recommending users in OSNs. In Section 3 we synthetically describe the scenario
which we deal with, while Section 4 presents the approach we propose for pre-
dicting the trust of a user in another user. Section 5 describes some experiments
we performed for evaluating our proposal and, finally, in Section 6 we draw our
final conclusions.

2 Related Work

Due to their exponential growth in popularity, OSNs permeate many aspects of
the human life [10]. However, social interactions and decision processes carried
out on OSNs can be potentially risky, as much as the OSN size is large [13], for
the presence of malicious behaviors performed by unreliable partners [6].

In the OSN trust systems, the three main aspects are identifiable in: (i) in-
formative sources [1]; (ii) aggregation rules [5]; (iii) trust inference along the
SN [16, 31]. More in detail, the informative sources at disposal of a user are the
direct opinions, derived by own personal past experiences, and/or the indirect
information, consisting of the opinions provided by other users. They are known
as the reliability and the reputation of a user, respectively [11, 20, 28]. In an OSN

Recommending Users in Social Networks 439

scenario, reputation is often predominant since a user usually interacts with a
narrow portion of affiliated and, therefore, a trustworthy opinion about someone
could be difficult to obtain without to rely on the opinions provided by others.
As a consequence, different proposals exist in the literature to aggregate such
informative sources, often in a unique global synthetic trust measure [26, 27].

Trust computational models rely on a local or a global point of view, in-
dependently of the fact that a trust model is implemented in a centralised or
distributed fashion. This means that a user can have a partial vision of trust of
other OSN members (e.g., some of his/her peers) or, vice versa, the computa-
tion of trust is based on parameters/metrics defined over the whole OSN. Massa
and Aversani [19] investigated both advantages and disadvantages of local and
global metrics and the main outcome of their study is that local trust metrics
can be more accurate than global ones if based on the personal users’ point of
views. Conversely, the computation of local trust values is surely more time-
expensive than the computation of global trust metrics, although, it depends
on the user’s neighbor horizon adopted to discovery a trust chain linking two
users [31]. If we model an OSN as a directed graph (trust network) whose ver-
tices are users and edges encode trust relationships, we can use some topological
concepts from graph theory – like the concept of path or the concept of shortest
path – to infer[24, 23, 25] trust relationships among pairs of unknown users. See,
for instance [7, 17, 14, 16].

The TidalTrust algorithm [7] infers trust values in trust networks. In Tidal-
Trust, trust values are continuous values in a fixed interval. TidalTrust performs
a modified Breadth First Search on the trust network to find all the shortest
path linking two users (not directly connected) in an incremental way and com-
puting the user’s trust rating as a weighted average of trust ratings from the
source to the target users. This algorithm relies on the assumption that closer
neighbors provide more accurate trust predictions about a trustworthy user than
other OSN users. MoleTrust [18] differs from TidalTrust for the opportunities
to specify a maximum depth in the search-tree and to perform a backward ex-
ploration. MoleTrust computes the trust score of all the users at each depth in
the path between two users. In particular, (i) the trust score of a user at depth
x only depends on trust scores of users at depth x− 1 (already computed) and
(ii) predicted users’ trust values only consider the average of all incoming trust
edges coming from users having a predicted trust score greater than a threshold
weighted by the trust score of the user who has issued the trust statement.

Sparsity problems might force trust-based systems to consider ratings pro-
vided by indirect and poor reliably neighbors with a strong risk to decrease in
precision. To address such an issue, Jamali and Ester proposed in [12] a random
walk model called TrustWalker, which considers both ratings of the target item
and those of similar items. The random walker searches in the trust network,
while the other component considers ratings on similar items to limit depth
search in the network. TrustWalker improves the precision by preferring raters
at a nearer distance and improves the coverage by considering similar items as
well as the exact target item (with probability increasing with the walk length).

440 P. De Meo et al.

The algorithm proposed in [9] combines trust and distrust and propagates them
through an OSN. Even though this approach provides interesting results in pre-
dicting trust and distrust between unknown users, distrust rates are not always
available in an OSN. SWTrust [13] is a framework incorporable in different trust
models to generate small trusted subgraphs of large OSNs. Authors developed,
both in centralised and distributed version, a breadth-first search algorithm to
preprocess large SNs based on the weak ties theory [8] on the spread of infor-
mation in SNs and by inferring trust values. The two algorithms return a trust
network where trusted knowledge chains allow trust evaluations to be performed.
This algorithm has been validated by using the real data set EPINIONS .

Finally, a model integrating in a single measure the propagation of local trust
and global influence [15] within an OSN is presented in [30]. Both [15] and [30]
assume that each link connecting OSN users may express an interest to a content
or the trust into a user and that trust between each pair of users belonging to
the same neighbor is already known (either explicitly or implicitly). This model
analyses the graph to discover trustful, influential or interesting nodes into the
OSN by incorporating the notion of influence with the freshness of the trust
connections between users.

3 The Social Network Scenario

Our scenario deals with an OSN S composed by a set of users U . We represent
such a network as a directed unlabelled graph GS = 〈N,A〉, where N is the set
of nodes and A is the set of arcs. Each node n ∈ N is associated with a user
un ∈ U , while each arc a ∈ A is a pair (a, b), with a, b ∈ N representing a trust
link between the users ua and ub (i.e. a trusts b). We denote by n(u) the node
of the graph corresponding to the user u.

We define the ego-network of a user u the sub-graph of GS , denoted by Gu =
〈T, P 〉, where T is a set of nodes containing n(u) and all the nodes n(k) ∈ U that
are connected to n(u); P contains all the arcs belonging to the paths existing
between n(u) and n(k), for each k ∈ T . In words, Gu represents both all the
users in which u directly trusts and all the users indirectly trusted by u; we say
that u indirectly trusts a user v if either (i) there exists a user k which directly
trusts v and u directly trusts k or (ii) there exists a user k which trusts in v,
and u, in turn, indirectly trusts k. Hereafter, we will informally say that a user
v belongs to the ego-network of u if the node n(v) belongs to Gu.

In the context above, we define local trust a relation LT defined on U × U ,
such that an ordered pair of users t = [u, v] belongs to LT if and only if the
node n(v) belongs to the ego-network Gu of u. For all the nodes n(u), n(v) such
that [u, v] ∈ LT we define a local reputation measure λ(u, v), that represents how
much the users belonging to the ego network of u trusts v. More in particular, we
propose to compute the local reputation by suitably summing the contributions
(in terms of trust in v) of all the users k (k �= u) belonging to the ego-network of u
which are also connected with v. We denote by s(u, v) this sum, and we call local
network L(u, v) the set of contributors, i.e., L(u, v) = {z : z ∈ Gu∧∃(z, v) ∈ Gu}.

Recommending Users in Social Networks 441

(A) (B)d

e

a

c

b

f hg

e

a

c

b

hg

a

c

1/2

(C)

1

b

hg

Fig. 1. (A) An example of social network; (B) The ego-network of node a; (C) The
nodes involving in the computation of λ(a, b) - links label the contributions.

If k ∈ L(u, v) is a user in which u directly trusts, then there exists an arc
(n(u), n(k)) in Gu; in this case, the contribution of k to s(u, v) will be equal to
1. Instead, if k is indirectly trusted by u, then there is at least one path in Gu

connecting u and k. We consider the shortest path between n(u) and n(k) in
Gu and suppose it has length lu,k. In this case, the contribution carried in by
k to the trust computation will be equal to 1/2lu,k−1. This choice corresponds
to consider as exponentially less important the contributions coming from users
more distant from u in the ego-network of u for computing the local reputation
of v. We normalise s(u, v) dividing it by the maximum value of the analogous
sums s(u, z), for all z ∈ U . More formally, the formula for computing λ(u, v) is:

λ(u, v) =

∑
k∈L(u,v),k �=u,v

1

2lu,k−1

maxz∈U,z �=u,v

(∑
h∈L(u,z),h �=u,z

1

2lu,h−1

) (1)

An important characteristic of λ(u, v) is represented by the number of nodes
that contribute to its computation, that is the cardinality ‖L(u, v)‖. If ‖L(u, v)‖
is very small, then u will not have a sufficient information about v from his/her
ego-network. A simple example of the above scenario is graphically depicted in
Figure 1-(A), representing a social network with 8 nodes. In Figure 1-(B) is
represented the ego-network of the node a, while in Figure 1-(A) we can observe
that, in order to compute λ(a, b), the nodes contributing to the sum appearing
at the numerator of Equation 3 are g,c and h. The contributions of g and c to
the sum are equal to 1, because g and c are directly connected with a, while the
contribution of h is equal to 1/2, since the length of the shortest path between a
and h is 2. The sum of these three contributions equals (1+1+1/2)=2.5 and also
represents the maximum value of the other sums considered when computing the
maximum in the denominator of Formula 3. For this reason, we conclude that
λ(a, b) is equal to 1. Instead, we note that, in order to compute λ(a, h), the unique
contribution to the sum appearing at the numerator of Equation 3 is that of the
node g, that is equal to 1. Then we can conclude that λ(a, h) = 1/2.5 = 0.4.

Moreover, in our scenario we suppose that users can make actions, and each
action can be evaluated by the other users by means of a feedback. For instance,

442 P. De Meo et al.

in Facebook each user can post a content, and the other user can use features
like I like it, thus providing a positive evaluation of that content. In other social
networks, as in EPINIONS or in CIAO, each can provide reviews of some items,
and the other users can evaluate the helpfulness of the reviews.

Generally, we define the global reputation of a user u, denoted by γ(u), as the
average of all the feedbacks related to all the actions made by u. More formally,
if a1u, a

2
u, ...a

p
u are the p actions performed by u, f(k, aiu) is the feedback provided

by the user k about the i-th action aiu of u and ‖U‖ is the cardinality of the set
of users U of the OSN, therefore the global reputation is defined as follows:

γ(u) =

∑
i=1,..,p

∑
k∈U,k �=u f(k, a

i
u)

p · ‖U‖ − 1
(2)

4 Suggesting Trust

In this section, we present our approach for suggesting to a user u if he/she
should trust or not in another user v of a given social network. To this aim, if v
is the user that must be evaluated from u, we propose to assign to v a synthetic
score, denoted by σ(u, v) to take into account both local and global reputations
we defined in Section 3. More in particular, we propose to use a weighted mean
of λ(u, v) and γ(v), weighting the importance of λ(u, v) with respect to γ(v) by
a parameter ω, where ω is a real value ranging in [0...1]. Formally,

σ(u, v) = ω · λ(u, v) + (1− ω) · γ(v) (3)

Now, we suggest the user u to trust in v if the score σ(u, v) is greater than a
threshold τ . More formally, let st(u, v) be a variable, whose value is 1 if u has
to trust in v, 0 otherwise. Then:

st(u, v) =

{
1 if σ(u, v) > τ

0 otherwise
(4)

In order to find suitable values for ω and τ , we propose to examine a training-
set TR = 〈U∗, A∗, F∗, T ∗〉, where: (i) U∗ ⊂ U is a subset of the users of S;
(ii) A∗ is a set of actions performed by the users of U∗; (iii) F∗ is a set of
feedbacks provided by the users of U∗ related to the actions contained in A∗;
(iv) T ∗ contains the trust values t(u, v), for all u, v ∈ U∗. Then, given two values
ω and τ , we can compute the suggested trust st(u, v), and then determining the
difference, in the absolute value, between st(u, v) and the actual trust t(u, v).
Moreover, we will compute the mean of these differences for all the pair (u, v),
obtaining the global error ε = ε(ω, τ):

ε(ω, τ) =

∑
u,v∈U,u�=v |st(u, v)− t(u, v)|

(‖U‖ − 1)2
(5)

Recommending Users in Social Networks 443

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

12

ω

ε s (%
)

τ = 0.4
τ = 0.5
τ = 0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
2

4

6

8

10

12

ω

ε s (%
)

τ = 0.4
τ = 0.5
τ = 0.6
τ = 0.7

Fig. 2. Average error vs ω: A) node 101, local dimension ρ = 733; B) node 1, local
dimension ρ = 2560

We will use the values for ω∗ and τ∗ minimising ε(ω, τ), i.e.:

ε(ω∗, τ∗) = min

∑
u,v∈U,u�=v |st(u, v)− t(u, v)|

(‖U‖ − 1)
2 (6)

5 Experiments

In this Section, we describe some experiments to validate our approach. We used
as test-bed some real data extracted from the well-known CIAO social network.
The dataset has been crawled in the context of the researchdescribed in [29], and it
is publicly available at http://www.public.asu.edu/~jtang20/datasetcode/
truststudy.htm. First, we examined how the global error ε(ω, τ) depends on
the mean ‖L(u, v)‖ of the user u, i.e. on the following parameter, denoted by ρu
and computed as ρu =

∑
v∈U

λ(u,v)
|L(u,v)‖ .

In Figures 2-3 the relationship ε = ε(ω, τ) is reported for different values of ω
and τ , and for 4 users having different values of ρu. We observe for all the users
the error generally decreases with the parameter τ , obtaining the best results in
correspondence of τ = 0.6. For values of τ higher than 0.6, the error increases,
thus we have only represented the curves corresponding to some values of τ > 0.6.

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
4

6

8

10

12

14

16

ω

ε s (%
)

τ = 0.4
τ = 0.5
τ = 0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
6

8

10

12

14

16

18

20

ω

ε s (%
)

τ = 0.4
τ = 0.5
τ = 0.6

Fig. 3. Average error vs ω: A) node 13, local dimension ρ = 7360; B) node 339, local
dimension ρ = 14599

http://www.public.asu.edu/~jtang20/datasetcode/truststudy.htm
http://www.public.asu.edu/~jtang20/datasetcode/truststudy.htm

444 P. De Meo et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

ω
ε s (%

)

τ = 0.4
τ = 0.5
τ = 0.6

Fig. 4. Average error vs ω for the whole CIAO social network dataset

We also note that user with ID equal to 101, having a relatively small value of
ρu (i.e, ρu = 733) presents an error that has a minimum in correspondence of
the pair (ω, τ) = (0.5, 0.6). Therefore, for this type of user, it is important to
merge both local and global reputations in equal measure, due to the fact that
the local ego-network is not sufficiently large to suggest a correct trust without
the help of the global reputation. User with ID equal to 1, having ρ = 2560,
again presents a minimum error in (0.5, 0.6), but the difference from using high
values of ω is less important (if we would set ω = 1. Thus, by exploiting only
the local reputation, we will obtain an increment of the error lesser than 2%).

Figures 3 A-B are related with users having very high values of ρu, and show
that the influence of the global reputation is almost negligible. The result re-
ported in Figure 4 is finally related to the entire CIAO dataset, and represents
the global error averaged on all the 2600 users composing the dataset. This result
shows that for obtaining the minimum average error for the entire community,
it is possible also to use ω = 1, avoiding to consider the global trust.

6 Conclusion

In this paper, we propose a model integrating local and global reputation in an
OSN. We considered three important parameters for characterising the model:
(i) ω represents the importance given to local vs global reputation; (ii) τ is the
reputation threshold under which a user is considered unreliable; (iii) ρ repre-
sents the dimension of the user ego-network, containing all the OSN members
connected to him/her via a path of trust links. Some experiments on a real
dataset extracted from the social network CIAO, show that the size of user ego-
networks has a discriminatory effect: in fact, global reputation is relevant only for
those users having an ego-network small enough but in the case of users having
large ego-networks, local reputation is sufficient for predicting trustworthiness
with a very high precision. Besides, our experiments show that the use of the sole
local reputation is the best choice to minimise the average error in predicting
the trust, by considering all the users of the OSN. We argue that these results
are particularly important in designing a recommender system for OSNs having
large ego-networks for most of the users, since in this case we can avoid to use
a global reputation mechanism, as usually implemented by many OSNs.

Recommending Users in Social Networks 445

In our ongoing research, we plan to better study the influence of several pa-
rameters characterising the ego-network of the user.

Acknowledgements. This work is a part of the research project PRISMA,
code PON04a2 A/F, funded by the Italian Ministry of University within the
PON 2007-2013 framework program.

References

1. De Meo, P., Ferrara, E., Rosaci, D., Sarnè, G.M.L.: How to improve group ho-
mogeneity in online social networks. In: Proc. of the 14th WOA 2013. CEUR
Workshop Proceedings, vol. 1099. CEUR-WS.org (2011)

2. De Meo, P., Nocera, A., Quattrone, G., Rosaci, D., Ursino, D.: Finding reliable
users and social networks in a social internetworking system. In: Proc. of the 2009
Int. Database Engineering & Applications Symposium, pp. 173–181. ACM (2009)

3. De Meo, P., Nocera, A., Rosaci, D., Ursino, D.: Recommendation of reliable users,
social networks and high-quality resources in a social internetworking system. AI
Communications 24(1), 31–50 (2011)

4. De Meo, P., Quattrone, G., Rosaci, D., Ursino, D.: Dependable recommendations
in social internetworking. In: Web Intelligence and Intelligent Agent Technologies,
2009, pp. 519–522. IET (2009)

5. Dellarocas, C.: Designing reputation systems for the social web. SSRN Electronic
Journal (2010)

6. Fogel, J., Nehmad, E.: Internet social network communities: Risk taking, trust,
and privacy concerns. Computers in Human Behavior 25(1), 153–160 (2009)

7. Golbeck, J.A.: Computing and applying trust in web-based social networks (2005)
8. Granovetter, M.: The strength of weak ties: A network theory revisited. Sociological

Theory 1(1), 201–233 (1983)
9. Guha, R., et al.: Propagation of trust and distrust. In: Proc. of the 13th Interna-

tional Conference on World Wide Web, pp. 403–412. ACM (2004)
10. Heidemann, J., Klier, M., Probst, F.: Online social networks: A survey of a global

phenomenon. Computer Networks 56(18), 3866–3878 (2012)
11. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An integrated trust and reputa-

tion model for open multi-agent systems. Autonomous Agents and Multi-Agent
Systems 13(2), 119–154 (2006)

12. Jamali, M., Ester, M.: Trustwalker: A random walk model for combining trust-
based and item-based recommendation. In: Proc. of the 15th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining, pp. 397–406. ACM (2009)

13. Jiang, W., Wang, G., Wu, J.: Generating trusted graphs for trust evaluation in
online social networks. Future Generation Computer Systems 31, 48–58 (2014)

14. Jøsang, A., Gray, E., Kinateder, M.: Simplification and analysis of transitive trust
networks. Web Intelligence and Agent Systems 4(2), 139–161 (2006)

15. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. In: Proc. of the 9th ACM SIGKDD International Conference on
Knowledge Ddiscovery and Data Mining, pp. 137–146. ACM (2003)

16. Kim, Y., Song, H.S.: Strategies for predicting local trust based on trust propagation
in social networks. Knowledge-Based Systems 24(8), 1360–1371 (2011)

17. Lesani, M., Montazeri, N.: Fuzzy trust aggregation and personalized trust inference
in virtual social networks. Computational Intelligence 25(2), 51–83 (2009)

446 P. De Meo et al.

18. Massa, P., Avesani, P.: Trust-aware recommender systems. In: Proc. of the 2007
ACM Conference on Recommender Systems, pp. 17–24. ACM (2007)

19. Massa, P., Avesani, P.: Trust metrics on controversial users: Balancing between
tyranny of the majority. IJSWIS 3(1), 39–64 (2007)

20. Messina, F., Pappalardo, G., Rosaci, D., Santoro, C., Sarné, G.M.L.: A trust-
based approach for a competitive cloud/grid computing scenario. In: Intelligent
Distributed Computing VI, pp. 129–138 (2013)

21. Messina, F., Pappalardo, G., Rosaci, D., Santoro, C., Sarné, G.M.L.: HySoN: A
distributed agent-based protocol for group formation in online social networks.
In: Klusch, M., Thimm, M., Paprzycki, M. (eds.) MATES 2013. LNCS, vol. 8076,
pp. 320–333. Springer, Heidelberg (2013)

22. Messina, F., Pappalardo, G., Rosaci, D., Santoro, C., Sarné, G.M.L.: A distributed
agent-based approach for supporting group formation in p2p e-learning. In: Bal-
doni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS (LNAI),
vol. 8249, pp. 312–323. Springer, Heidelberg (2013)

23. Messina, F., Pappalardo, G., Santoro, C.: Complexsim: An smp-aware complex net-
work simulation framework. In: 2012 Sixth International Conference on Complex,
Intelligent and Software Intensive Systems (CISIS), pp. 861–866. IEEE (2012),
doi:10.1109/CISIS.2012.102

24. Messina, F., Pappalardo, G., Santoro, C.: Exploiting gpus to simulate com-
plex systems. In: 2013 Seventh International Conference on Complex, Intel-
ligent, and Software Intensive Systems (CISIS), pp. 535–540. IEEE (2013),
doi:10.1109/CISIS.2013.97

25. Messina, F., Pappalardo, G., Santoro, C.: Complexsim: A flexible simulation plat-
form for complex systems. International Journal of Simulation and Process Mod-
elling 8(4), 202–211 (2013), doi:10.1504/IJSPM.2013.059417

26. Pinyol, I., Sabater-Mir, J.: Computational trust and reputation models for open
multi-agent systems: A review. Artificial Intelligence Review 40(1), 1–25 (2013)

27. Rosaci, D., Sarnè, G.M.L., Garruzzo, S.: Integrating trust measures in multiagent
systems. International Journal of Intelligent Systems 27(1), 1–15 (2012)

28. Sabater, J., Sierra, C.: Regret: reputation in gregarious societies. In: Proc. of the
5th Int. Conference on Autonomous Agents, pp. 194–195. ACM (2001)

29. Tang, J., Hu, X., Gao, H., Liu, H.: Exploiting local and global social context for
recommendation. In: IJCAI, pp. 2712–2718. AAAI Press (2013)

30. Varlamis, I., Eirinaki, M., Louta, M.: Application of social network metrics to a
trust-aware collaborative model for generating personalized user recommendations.
In: The Influence of Technology on Social Network Analysis and Mining. LNSN,
vol. 6, pp. 49–74. Springer (2013)

31. Ziegler, C.N., Lausen, G.: Spreading activation models for trust propagation. In:
EEE 2004, pp. 83–97. IEEE (2004)

A Carpooling Open Application
with Social Oriented Reward Mechanism

Simone Bonarrigo, Vincenza Carchiolo, Alessandro Longheu, Mark Loria,
Michele Malgeri, and Giuseppe Mangioni

Dip. Ingegneria Elettrica, Elettronica e Informatica - Università degli Studi di Catania - Italy
simone.bonarrigo@hotmail.it,

{vincenza.carchiolo,alessandro.longheu,michele.malgeri,
giuseppe.mangioni}@dieei.unict.it, mark.loria@gmail.com

Abstract. Carpooling is currently getting more and more attractive thanks both
to an increasing emphasis placed on environmental issues and to the huge use
of web based social networks. They indeed (1) allow to spread all information
for an effective service (2) compensate the lack of confidence among carpooling
users (3) promote carpooling companies via viral marketing (4) act as a basis for
trust based users recommendation system. CORSA is an open source solution for
a real time ride sharing (RTRS) carpooling service, with high accessibility, high
usability, and effectiveness and efficiency in finding a riding solution for users.
This proposal also endorses the role of social networks using a virtual credits
reward mechanism.

Keywords: carpooling, RTRS, ride sharing, social networks virtual credits.

1 Introduction

The transport system based on sharing private cars, simply known as carpooling is
an innovative yet quite old idea whose first proposals date back to more than thirty
years ago [10] [22]. The renewal of the interest for carpooling is due to the increasing
emphasis placed on the reduction in the number of vehicles, the expenses for gas and in
energy consumption and pollution.

An additional factor that is encouraging the intensive adoption of carpooling comes
from the massive use of web based social networks [12] [20]. They indeed represent a
well-established tool:

– to share all information for an effective carpooling service (users personal profiles,
ongoing position, preferred routes etc.)

– to leverage social relationships to remedy the lack of confidence among users that
currently limits the use of carpooling,

– to encompass the traditional forms of marketing and advertising for instance en-
dorsing carpooling companies by viral marketing [9]

– to provide feedback mechanisms as users/service rating and recommendation use-
ful to build an overlay trust network [4] that can consolidate the relationship of
carpooling users [8] and allow to safely add new users, e.g. persons could choose
only trusted people for sharing their routes [5].

G. Fortino et al. (Eds.): IDCS 2014, LNCS 8729, pp. 447–456, 2014.
c© Springer International Publishing Switzerland 2014

448 S. Bonarrigo et al.

– to exploit hidden relationships, for instance if a community of people that lives
and/or work at close places is discovered [3], the system can put them into contact
for sharing common routes

The work presented in this paper, named CORSA (Carpooling Open source Ride
Sharing Application) [17], is a solution for a carpooling service accessible anytime
from anywhere with high usability, effectiveness and efficiency in automatically pro-
viding users with helpful solutions. In addition to these features, in our proposal we
also endorse the role of social networks. Indeed, we reward users with virtual credits to
promote carpooling and to spend such credits, an ecosystem of business or public insti-
tutions affiliated with the platform is needed; for this mechanism to be successful, we
push users to publicize it to their friends belonging to the same social netwkork acting
as in a competition where the greater score you earn, the more credits you can spend on
the platform, according to the viral marketing paradigma [16].

To exploit social networks from the very beginning, the initial set of users involved in
the testing phase consists of students attending the same university, so a (possibly strong
connected) virtual social network is already present. Finally, the work was developed
using only open sources libraries, to spread its adoption.

The paper is organized as follows. In section 2 we briefly compare our approach with
others, whereas in section 3 the application model and its architecture are discussed. In
section 4 we introduce some use cases to show how the application works, providing
concluding remarks and future works in section 5.

2 Related Work

In literature, two carpooling services exist, the Daily Car Pooling Problem [1], where
each day a number of users declare their availability for picking up colleagues, and the
Long-term Car Pooling Problem, where the goal is to define pools where each user will
(in turn) pick up the remaining pool members on different days [19]. Our proposal falls
into the former, in particular belongs to the so-called real time ride sharing (or RTRS)
family problems [15] [13] [11], where trips are planned just before they occur.

Considering other (even commercial) solutions, there are several characteristics that
differentiate RTRS platforms: user registration and management, with special attention
to drivers; payment methods; Gamification mechanisms to encourage the usage of the
service; feedback and ranking system to manage trust and reputation of users; route
management, in particular pick up and dropoff points of passengers.

Six companies are taken into consideration: Lyft [18], Uber [24], SideCar [21],
Wingz [25], BlaBlacar [2] and Carma [6]. The first four offer services comparable to
the ones of a taxi in which passengers contact drivers asking to dropped off in a certain
destination. Registered users can become drivers if they successfully pass the companys
approval process and meet security requirements such as: no criminal record, minimum
age 23 years old, at least three years of driving, a car that meets specific safety stan-
dards, no DUI. In addition, all drivers must have insurance coverage. The remaining
companies, BlaBlaCar and Carma, are traditional carpooling, where drivers actually
share their car for journeys they are doing. In all six cases, passenger pay a monetary
compensation for the service.In the case of BlaBlaCar the payment is made in cash, in

A Carpooling Open Application 449

all other cases with cardcredit. The compensation fee is divided with different percent-
ages between the driver and the company. For example Lyft retains 20 % of the fees for
each ride while Carma 15%.

All systems provide a method for calculating the right compensation according to the
duration and length of the ride. Costs for the first four companies are higher. In Uber
the price can vary also with the type of car.

All companies have adopted a policy of incentives that rewards frequent users and all
those who invite new users to join the community. The rewards are provided in the form
of coupons, credits that can be used inside the platform itself and free rides. All these
companies developed a feedback system that allows drivers and passengers to rate each
other at the end of each trip. Each user can view a log of the completed trips with their
scores and comments that determine their reliability within the community. To increase
the trust factor, most of the platforms integrate to a certain degree with popular social
networks, such as Facebook.

Following the analysis of the various realtime ridesharing companies, Carma emerges
as the most interesting as it is able to target micro mobility with soft real time capabil-
ities without falling into the a taxi model. This is also reflected in the lower rates that
are closer to expense compensation rather than a profit.

3 The Development of the RTRS Service

3.1 Requirements

Most carpooling platforms don’t face two questions, the former related to the real time
requirement and the latter to the so-called micro carpooling. The fact that a micro car-
pooling system targets short range trips means that the definition of pickup points is a
crucial aspect. Whereas long distance carpooling can easily make use of points of inter-
est such as bus stations, airports, ecc micro carpooling requires finding a pickup point
in the proximity of starting locations of driver and rider. The real time factor reinforces
this problem since pickup points must be reached quickly by both users. Automatic
selection of pickup points requires considerable work to determine in advance which
would be convenient. This would limit the spread of the app as it would only be us-
able in towns that the system targets. A workaround is to let users freely decide pickup
points by chatting before the ride.

3.2 Technical Issues

From a technical view point the challenges that a real time ride sharing platform implies
derive mainly from the constraints on usability and response time of the system. We can
describe these constraints with three concepts:

– Automatically - The usage scenario of a real time ride sharing app implies that
the system must make all the possible choices for the end user. Many carpooling
websites and services closely resemble a bulletin board where the user must find
a compatible ride. The short span of useful time and the limited display screen
create the need for an intelligent behind the scenes selection of compatible rides to

450 S. Bonarrigo et al.

display. Ideally the system must be able to show a limited selection of compatible
rides, as an excess of options would consume useful time.

– Immediately - The aspect of immediacy resides not only in the name but in the
nature of the use cases of such system. Short range travelers that make use of pub-
lic transportation might want the ability to make choices very quickly in order to
make decisions regarding the rest of their journey. A system that provides such
slow performances would be useless for users, representing a waste of time and not
allowing them to effectively make use of the system by integrating it with the all
ready present transportation network. Operational speed and quick response time
translate in optimization of ride lookup and reducing network data transfer to the
bare minimum.

– Easily - The expected context of use is on the go, the app (we propose to adopt) for
a real time ride sharing system must be usable in the simplest of ways. This aspect
has more to do with the usability of the user interface but also with how well the
use cases represent the effective desired usage.

3.3 Virtual Credits and Social Networks

The majority of carpooling platforms often resemble a bulletin board with a number of
proposed journeys the user can choose from, usually proposed according to the compat-
ibility of start and finish point only. The platforms that allow searching of intermediate
journeys provide this feature by letting the driver insert during the creation of the route
in between stops that he plans to do. This is a time consuming operation that can be
easily automated by a system that considers compatibility between rides on the basis
of the actual scheduled route. This solution however forces the developer to face a new
set of challenges, mainly related to performance as the lookup is a more resource inten-
sive operation. In order to ensure extremely fast response time vertical and horizontal
scalability might not always represent the ideal solution. We further discuss lookup
optimization and the problems we have encountered in the next paragraph.

The innovation of our carpooling idea is to use virtual credits as the sole source of
reimbursement for the service. The purpose of carpooling is to share a resource in order
to obtain various benefits for the environment, social interaction and urban mobility. Our
aim is not to create a money making platform for the driver, by creating an alternative
to taxis or Transportation Network Companies. In short distance micro-carpooling the
payment procedure needs to be addressed differently than a long distance carpooling.
The short distances involved indeed would lead to ridiculously low reimbursements
that cannot guarantee the coverage of costs implied by the extra mileage. The usage of
virtual credits seems to be the best for several reasons:

– In a micro carpooling context the resulting compensation is minimal. The driver
might not be inclined to share their time and resources for a low fee. The idea
of rewarding the driver with credits reusable in different scenarios, might be an
incentive for the driver to be an active member of the community.

– By using virtual credits, institutions and retail companies would be directly in-
volved in creating campaigns that would generate economic, cultural and social
benefits.

A Carpooling Open Application 451

– By using virtual credits it is easy to implement fun and engaging recreational ini-
tiatives, incentivizing users to be active carpoolers.

Integration with social networks is a key feature of the platform. The first benefit is
the increase in mutual trust between users. Secondly, by creating a community around
the platform users can create events, which involve other people, even strangers, but
with whom they share the same interests. As an example a user may share with the com-
munity the intention of reaching the city centre for a concert. By sharing rides users not
only save money, but also enlarge their social network by reaching people they shares
interests with and spend quality time with. Tight integration with social networks allows
the carpooling platform to add social interactions to the list of environmental and finan-
cial benefits. Also government institutions and retail companies can benefit from the use
of our system and social network. By promoting events and activities, they can reward
users to reach their facilities by ridesharing. Institutions and companies would benefit
from users actively promoting them through the social network. Users would benefit
by gaining extra virtual credits that can be spent within the market. The implementa-
tion of such system is very simple. By accessing a dedicated interface, institutions and
retail companies can create promotional campaigns with associated locations. These lo-
cations, called hot spots, can be markers or polygons that represent a place of interest.
When users check-in or check-out their position is controlled by the server. If there is
an associated promotional campaign to their location they receive the reward. The most
interesting aspect of the carpooling is that it allows to improve transportation and envi-
ronmental sustainability by reducing traffic. Micro-carpooling is especially interesting
since cities are highly polluted areas, due to the high traffic density. CORSA is a valu-
able tool to address such problems. By creating campaigns and associated hotspots it
allows institutions to influence urban mobility in a way that is engaging and fun for the
end user. Secondly, by analyzing long term data, government institutions could study
accurate commuter flows allowing them to create effective campaigns or redefine parts
of the public transport network.

4 Using CORSA

The system we propose is composed of three main components (see fig 1): a mobile
frontend, a server backend with real time bidirectional communication capabilities and
a path mangment system accessed through an API. The app and the real time server
communicate through web sockets, while calls to the path managment api are done
through http. In both cases data is transferred by JSON[14].

The mobile solution, coming from the real time requirement, could be developed as
a native implementation or as a hybrid solution. Both have strengths and weaknesses
with the main trade off being between performance and platform coverage [23]. These
are both key aspects for our platform, but a lot of the performance concerns are tied to
network communication and server interaction. Going native would only speed up part
of the process. On the other hand, fast prototyping and spread of the applications are
key aspects we did not want to compromise on.

Morevoer, a common problem in developing mobile apps that require heavy inter-
action with a server is to establish whether first developing the app and then the server

452 S. Bonarrigo et al.

Fig. 1. Application architecture - Components of the CORSA platform

or conversely developing both of them side by side. What emerged pretty quickly was
that usability was so important that use cases would need to be tested for usability con-
straints on a device or emulator. Graphical mockups didn’t aid the purpose, since the
lack of navigation structures in mobile apps is substituted by gestures. Because of all
of this we decided to use a web application as a mockup. To compensate the absence
of the api we created static JSON files to inject data into the app. At the end a testing
stage where we evaluated usability of the UI and use cases, the static JSON files ac-
tually described what data the path management API had to provide and it’s structure.
With a well defined structure, we were able to concentrate on algorithms and query
optimization during the API implementation stage.

4.1 Mobile Application

The system front end is a hybrid mobile app made by two main components: a native
wrapper and a web application. While the codebase can be written from scratch, we
used existing frameworks to speed up the development of the app. Mobile web frame-
works differ firstly on the level of integration they offer. On one side of the spectrum we
have fully integrated solutions such as JQuerymobile that combine elements of logic,
navigation and UI. On the other side we have limited frameworks that target specific
needs leaving the developer to decide which ones to use and how to integrate them.
Integrated solutions are useful as they allow the developer to have a running app soon.
Heavy customization can however become problematic. We went for the second ap-
proach using AngularJS, a javascript MVC framework, and Topcoat as a css library. We
preferred separating the two elements to have more flexibility for later customization
of the application. As a native wrapper we used Apache Cordova [7]. In the following,
some use cases of the mobile app are described.

Searching for a driver or passenger - A user simply needs to specify his desired
destination (see fig 2) and the app will show a list of compatible rides. Alternatively he
can specify a departure and arrival address, time of depature and number of seats re-
quired or available. If not specified the former will be set to the default values, that can
be customized from a settings dashboard. For each proposed ride the user can view the
route on a map, view profile details (e.g. rating). A real time chat allows the passenger
and driver to negotiate pickup and drop-off locations. Once the user finds a travel com-

A Carpooling Open Application 453

Fig. 2. Mobile app - Creating a journey and searching for a driver

panion that suits him he has the ability to propose a journey. If the proposed journey is
accepted by the other user, the ride contract is established.

Direct contact - The system provides a means of direct contact between users to aid
commuters and groups of friends organize journeys. This feature allows to formalize
rides with people a user already knows and gain reputation and virtual credits within
the platform.

Handshake - The system provides a means for formalizing the start and finish of the
journey with a virtual handshake. This can be implemented in a number of ways, such
as tapping a feature on the apps GUI or by scanning a qrcode. With a simple calculation
on the distance between pickup and drop-off points the system can then calculate the
number of credits that need to be charged. This stage is crucial for the rewarding system
in order to determine stat and finish locations.

User and journey feedback - Once the journey has ended the app allows to review the
passenger or driver. Feedback can be generic, to reflect the general level of satisfaction
or specific, for instance ride quality, punctuality or similar.

4.2 Paths Management

Calculating distance between objects and paths on the earths surface is a complex op-
eration and rarely encompasses all the various irregularities that such surface present.
The majority of applications will use a degree of approximation that can be accepted by
the specific use case. For a real time ride sharing app that is oriented to short distance
travels the approximation of the earths surface to a plane is acceptable. One of the most
common ways of build a route is to store a number of intermediate points that are vir-
tually connected by segments. To simplify the process we focused on nodes since they
represent the geographical location really crossed by the driver, whereas segments will
not necessarily approximate curves in the path.

If nodes are too far from each other the system can provide additional nodes to pro-
vide a better fitting to the actual route and better intermediate sampling. A passengers
and a drivers route are said to be compatible if the nodes of the former fall within the
neighborhood of two nodes of the drivers route. To simplify the process we used square
bounding boxes centered on the starting and arrival points transforming the problem of
compatibility into a simple problem of elements within a numerical range (see fig 3).

454 S. Bonarrigo et al.

Fig. 3. Path matching

The compatibility analysis between the routes of a passenger and a driver would
require in a full scan approach the calculation of 2*n distances between points, where
n represents the number of nodes crossed by a driver. While this could be feasible in a
small environment, for an app that goes viral with usage heavily concentrated over peak
commuter hours it could significantly affect performance.

We considered the lookup procedure as a stratified process made up of two sets of
quering algorithms. Each level of the lookup process contributes to the main procedure
by pushing data to the mobile device as it finds it. The general idea is to try to find
results with limited queries based on assumptions made on statistics and analysis of the
typical usage and fall back on the brute force if the amount or quality of data found
is not ideal. If the system is able to find the minimum amount of rides required with
an average level of compatibility it stops, otherwise it passes to the next query. If all
the targeted queries fail the system terminates the execution for that ride. With this
approach some compatible rides can be lost, but it’s a compromise that is acceptable
and that is flexible.

The first algorithm will try to match routes based on start and finish nodes just as
other carpooling platforms. The rate of success of this query depends a lot on the nature
of usage of the system. We create a bounding box around the departure and arrival
points and search for corresponding nodes that fall within it. These represent the best
answers usually as no pick up point needs to be agreed on, since the car is already
parked, so ideally if the system manages to provide an acceptable number of such rides
the search algorithm terminates successfully.

The idea of bounding boxes is to iterate over the set of rides by further narrowing the
subset of rides to take into consideration. We first filter the rides based on a bounding
box that contains the ride for which we are searching passengers or drivers for. These
will not be minimum bounding boxes, but always buffered since minimum bounding
boxes tend to a segment if the route is orientated along the horizontal o vertical axis.
We repeat this procedure by increasing the number of bounding boxes that cover sub-
portions of the path, with every iteration better fitting the path. The objective of this
phase is to filter the paths memorized in memory until we reach a number we can han-
dle. The result is that the bounding box approach will return a subset that contains the
best rides but isn’t able to filter out all the bad ones. Just as an example, this technique
would still consider compatible a ride that closely follows our path but in an opposite

A Carpooling Open Application 455

direction. When the subset has shrunk to an acceptable size, determined by computa-
tional power and system load, the system must run the compatibility algorithm to ensure
validity of the result. Running only on a small subset this can happen very quickly.

4.3 Server and Asymmetric Data

One of the main problems we faced when evaluating the results of queries described
above, is that there is no guarantee that drivers and passengers will be able to see data
symmetrically. The work around we implemented was to accept this as a normal be-
havior and shift the app structure to respond to events. Leveraging the potential of web
sockets, apps can virtually communicate to each other. If a passenger tries to contact a
driver, and the latter is unaware of such journey, the app will be notified and pull data
from the server quering only a specific trip.

5 Conclusions

An open source solution for a real time ride sharing (RTRS) has been introduced, named
CORSA. Our proposal comes with high accessibility, high usability, and effectiveness
and efficiency in finding a riding solution for users. Here we also described how so-
cial networks can endorse effect and benefits of the virtual credits reward mechanism
CORSA is based on. We also analyzed some of RTRS platform related questions, both
from a functional and a technical point of view. The overall architecture was described,
in particular the mobile app acting as the user front-end, and the paths management
mechanism.

We are going to consider further questions, as

– how the use of social network can improve the proposed carpooling service
– to discover and exploit hidden relationships, for instance communities among users

sharing trips
– to gather data on users and rides for further analysis.

This work was developed under the projecty ”S.R.S. - Progetto di formazione inte-
grato SINERGREEN (Smart Intelligent Energy Green), RES-NOVAE, SEM” supported
by MIUR (Minister of Education, University and Research).

References

1. Baldacci, R., Maniezzo, V., Mingozzi, A.: An exact method for the car pooling problem
based on lagrangean column generation. Oper. Res. 52(3), 422–439 (2004),
http://dx.doi.org/10.1287/opre.1030.0106

2. Blablacar, https://www.blablacar.it/
3. Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Search for overlapped communities

by parallel genetic algorithms. CoRR abs/0912.0913 (2009),
http://dblp.uni-trier.de/db/journals/corr/
corr0912.html#abs-0912-0913

http://dx.doi.org/10.1287/opre.1030.0106
https://www.blablacar.it/
http://dblp.uni-trier.de/db/journals/corr/corr0912.html#abs-0912-0913
http://dblp.uni-trier.de/db/journals/corr/corr0912.html#abs-0912-0913

456 S. Bonarrigo et al.

4. Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Trust assessment: A personalized,
distributed, and secure approach. Concurr. Comput. Pract. Exper. 24(6), 605–617 (2012),
http://dx.doi.org/10.1002/cpe.1856

5. Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Users' attachment in trust net-
works: Reputation vs. Int. J. Bio-Inspired Comput. 5(4), 199–209 (2013),
http://dx.doi.org/10.1504/IJBIC.2013.055450

6. Carma, https://www.carmacarpool.com/
7. Cordova, http://cordova.apache.org/
8. Diewald, S., Möller, A., Roalter, L., Kranz, M.: MobiliNet: A Social Network for Optimized

Mobility. In: Adjunct Proceedings of the 4th International Conference on Automotive User
Interfaces and Interactive Vehicular Applications (AutomotiveUI 2012), pp. 145–150 (Octo-
ber 2012)

9. Domingos, P.: Mining social networks for viral marketing. IEEE Intelligent Systems 20(1),
80–82 (2005)

10. Fagin, R., Williams, J.H.: A fair carpool scheduling algorithm. IBM J. Res. Dev. 27(2),
133–139 (1983), http://dx.doi.org/10.1147/rd.272.0133

11. Ghoseiri, K., Haghani, A., Hamedi, M., Center, M.A.U.T.: of Transportation, P.D., of Trans-
portation. Research, U.S.D., Administration, I.T.: Real-time Rideshare Matching Problem.
Mid-Atlantic Universities Transportation Center (2011),
http://books.google.it/books?id=l3YFtwAACAAJ

12. Golbeck, J.: The dynamics of web-based social networks: Membership, relationships, and
change. First Monday 12(11) (2007),
http://firstmonday.org/ojs/index.php/fm/article/view/2023

13. Huang, Y., Jin, R., Bastani, F., Wang, X.S.: Large scale real-time ridesharing with service
guarantee on road networks. CoRR abs/1302.6666 (2013)

14. JSON, http://tools.ietf.org/html/rfc7159
15. Kamar, E., Horvitz, E.: Collaboration and shared plans in the open world: Studies of

ridesharing. In: Proceedings of the 21st International Jont Conference on Artifical Intelli-
gence, IJCAI 2009, pp. 187–194. Morgan Kaufmann Publishers Inc., San Francisco (2009),
http://dl.acm.org/citation.cfm?id=1661445.1661476

16. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM Trans.
Web 1(1) (May 2007), http://doi.acm.org/10.1145/1232722.1232727

17. Loria, M., Bonarrigo, S.: Rtrs: A social oriented proposal. Tech. rep., DIEEI - Universita’ di
Catania (2014)

18. Lyft - On demand ridesharing, https://www.lyft.me/
19. Maniezzo, V., Carbonaro, A., Hildmann, H.: An ants heuristic for the long term car pooling

problem. In: Onwubolu, G.C., Babu, B.V. (eds.) New Optimization Techniques in Engineer-
ing. STUDFUZZ, vol. 141, pp. 411–430. Springer, Heidelberg (2004),
http://dx.doi.org/10.1007/978-3-540-39930-8_15

20. Mika, P.: Social Networks and the Semantic Web, Semantic Web and Beyond, vol. 5.
Springer, Berlin (2007)

21. Sidecar, https://www.side.cr/
22. Teal, R.F.: Carpooling: Who, how and why. Transportation Research Part A: General 21(3),

203–214 (1987), http://www.sciencedirect.com/science/
article/pii/0191260787900148

23. Tradeoff, http://tech.pro/blog/1355/when-to-go-native-mobile-
web-or-cross-platformhybrid

24. Uber, https://www.uber.com/
25. Wingz, https://www.wingz.me/

http://dx.doi.org/10.1002/cpe.1856
http://dx.doi.org/10.1504/IJBIC.2013.055450
https://www.carmacarpool.com/
http://cordova.apache.org/
http://dx.doi.org/10.1147/rd.272.0133
http://books.google.it/books?id=l3YFtwAACAAJ
http://firstmonday.org/ojs/index.php/fm/article/view/2023
http://tools.ietf.org/html/rfc7159
http://dl.acm.org/citation.cfm?id=1661445.1661476
http://doi.acm.org/10.1145/1232722.1232727
https://www.lyft.me/
http://dx.doi.org/10.1007/978-3-540-39930-8_15
https://www.side.cr/
http://www.sciencedirect.com/science/article/pii/0191260787900148
http://www.sciencedirect.com/science/article/pii/0191260787900148
http://tech.pro/blog/1355/when-to-go-native-mobile-web-or-cross-platformhybrid
http://tech.pro/blog/1355/when-to-go-native-mobile-web-or-cross-platformhybrid
https://www.uber.com/
https://www.wingz.me/

Author Index

Alamri, Atif 51
Alhakbani, Noura 136
Ali, Syed Amjad 358
Alnuem, Mohammed 136
Amato, Alba 422

Balderas-Dı́az, Sara 184
Barbato, Andrea 64
Benghazi, Kawtar 335
Bergenti, Federico 26
Bhunia, Suman Sankar 325
Bihany, Tushar 174
Bonarrigo, Simone 447
Boronat, Pablo 250

Calafate, Carlos 250
Cano, Juan Carlos 250
Cao, Jingjing 303
Carchiolo, Vincenza 447
Carta, Graziella 39
Cauteruccio, Francesco 383
Cecilio, Jose 124
Cicirelli, Franco 204
Costa, Rafael O. 348
Cretella, Giuseppina 39
Cuzzocrea, Alfredo 124, 285

Daniel, Laila 111
Das, Bijoy 325
de Farias, Claudio M. 348
Delaney, Declan T. 312
De Meo, Pasquale 437
Di Martino, Beniamino 39, 64, 422
dos Santos, Igor Leão 348
Drwal, Maciej 409

Esposito, Antonio 39, 64
Ever, Enver 369

Forestiero, Agostino 15
Fortino, Giancarlo 147, 383, 396
Fujii, Tatsuya 217
Furfaro, Angelo 263
Furtado, Pedro 124

Galzarano, Stefano 396
Ganzha, Maria 3, 409
Garofalo, Giuseppina 87
Garrido, José Luis 184
Gemikonakli, Orhan 369
Giordano, Andrea 87
Guerrero-Contreras, Gabriel 184
Guerrieri, Antonio 383
Gugnani, Shashank 174

Hallsteinsen, Svein 422
Hassan, Mohammad Mehedi 51
Hassan, Mohammed Mehedi 136
Hossain, M. Anwar 136
Hossain, M. Shamim 51

Jiang, Shanshan 422

Khadilkar, Nikhil 174
Khanolkar, Devavrat 174
Kimiyama, Hiroyuki 217
Kitamura, Masahiko 217
Kojo, Markku 111

Latvala, Mikael 111
Li, Wenfeng 303
Liotta, Antonio 396
Longheu, Alessandro 447
Loria, Mark 447
Luzuriaga, Jorge E. 250

Ma, Congcong 303
Malgeri, Michele 447
Mangioni, Giuseppe 447
Manzoni, Pietro 250
Mariani, Stefano 99
Mastroianni, Carlo 15
Meseguer, Roc 237
Mesjasz, Mariusz Marek 3
Messina, Fabrizio 74, 437
Millán, Pere 237
Molina, Carlos 237
Mostarda, Leonardo 369
Mukherjee, Nandini 325

458 Author Index

Nigro, Libero 204
Noguera, Manuel 335

Ochoa, Sergio F. 237
Ogura, Tsuyoshi 217
O’Hare, Gregory M.P. 312
Omi, Keita 227
Omicini, Andrea 99
Omondi, Fredrick A. 369
Ouedraogo, Moussa 3

Pace, Pasquale 263
Pappalardo, Giuseppe 74
Paprzycki, Marcin 3, 409
Parise, Andrea 263
Perez, Miguel 250
Pinheiro, Renato 348
Piro, Patrizia 87
Poggi, Agostino 26

Radziszewska, Weronika 409
Rodinò, Vincenzo 285
Rodŕıguez-Domı́nguez, Carlos 184
Rosaci, Domenico 74, 437
Rovella, Anna 147
Ruiz-Zafra, Angel 335
Russo, Wilma 147

Santos, Rodrigo 237
Sarné, Giuseppe M.L. 74, 437
Satoh, Ichiro 194
Savaglio, Claudio 147
Scialdone, Marco 422
Sevgi, Cüneyt 358
Shah, Purav 369
Song, Biao 51
Spezzano, Giandomenico 87
Srinivasan, Avinash 275
Sun, Jingtao 194

Terracina, Giorgio 383
Tomaiuolo, Michele 26

Valdiviezo, Lorena Molina 263
Venticinque, Salvatore 422
Vinci, Andrea 87
Vizenor, Lowell 275

Wang, Shuwu 303
Wei, Wei 161
Wu, Lei 303

Yoshiura, Noriaki 161, 227

Zhu, Wen 275

	Preface
	Organization
	Table of Contents
	Agent-Oriented Algorithms and Systems
	Inserting “Brains” into Software Agents –Preliminary Considerations
	1 Introduction
	2 Introducing Intelligence into Software Agents
	2.1 Native Approaches
	2.2 Rule-Based Expert Systems for Agent Systems
	2.3 Semantic Technologies for Agent Systems

	3 Implementing Agents with “Brains” on Mobile Devices – Proposed Approach
	3.1 Testing the Solution

	4 Concluding Remarks
	References

	A Multi-agent Algorithm to Improve ContentManagement in CDN Networks
	1 Introduction
	2 Related Works
	3 Algorithm for Metadata Reorganization
	4 Algorithm for Metadata Discovery
	5 Experimental Results
	6 Conclusions
	References

	An Actor Based Software Framework for Scalable Applications
	1 Introduction
	2 CoDE
	2.1 Actors
	2.2 Actor Spaces
	2.3 Actor and Scheduler Implementations

	3 Experimentation
	4 Related Work
	5 Conclusions
	References

	Cloud Computing
	Semantic Representation of Cloud Services:A Case Study for Openstack
	1 Introduction
	2 Related Works
	2.1 Semantic Based Representations

	3 OpenStack Services Overview
	4 The Cloud Services Ontology
	5 The Cloud Provider Ontology
	5.1 Description of Resources Configurations

	6 OWL-S Annotation of the Openstack Neutron Service
	7 Conclusion
	References

	Efficient Resource Scheduling for Big DataProcessing in Cloud Platform
	1 Introduction
	2 Problem Formulation
	2.1 Physical Servers and Tasks
	2.2 Optimization Goal
	2.3 Problem Analysis

	3 Online Allocation and Dynamic Control
	3.1 Key Parameters
	3.2 Online Allocation

	4 Performance Evaluation
	4.1 Setup
	4.2 Simulation Results

	5 Conclusion
	References

	High Performance Cloud: A MapReduceand GPGPU Based Hybrid Approach
	1 Introduction
	2 State of Art
	2.1 Parallel Skeletons
	2.2 MapReduce
	2.3 GPU and CUDA

	3 Overview of the Prototype Tool
	3.1 Analysis of the Source Code
	3.2 A Skeleton Based Approach

	4 Application of MapReduce
	4.1 Applying GPU Parallelization

	5 Conclusion and Future Work
	References

	A Trust-Based, Multi-agent ArchitectureSupporting Inter-Cloud VM Migrationin IaaS Federations
	1 Introduction
	2 Motivating Scenario and Basic Architecture
	3 The Trust Model for Inter-Cloud VM Migration
	4 Maintaining and Disseminating Trust Information
	4.1 The Trust Network

	5 Related Work
	6 Conclusions and Future Work
	References

	Cyberphysical Systems and IoT
	A Cyber-Physical System for DistributedReal-Time Control of Urban Drainage Networksin Smart Cities
	1 Introduction
	2 Drainage Network Optimization
	2.1 Task 1: Gossip-Based Aggregation
	2.2 Task 2: Tuning Gates through PID Controllers

	3 Implementation
	4 Experimental Results
	5 Conclusions
	References

	Coordination in Situated Systems:Engineering MAS Environment in TuCSoN
	1 Coordination and Situatedness in MAS
	2 TuCSoN Architecture
	3 Environment Engineering in TuCSoN: A Case Study
	4 Conclusion
	References

	Experimental Evaluation of the CoAP, HTTP and SPDY Transport Services for Internet of Things
	1 Introduction
	2 Related Work
	3 Transport Services for IoT
	4 Experimental Evaluation of CoAP, HTTP, SPDY, IoT-HTTP and IoT-SPDY
	4.1 Experimental Setup
	4.2 Results
	4.3 Detailed Analysis of the Results

	5 Analysis of Protocol Overhead and Discussions on Additional Enhancements
	6 Summary and Future Work
	References

	An Effective and Efficient Middleware for Supporting Distributed Query Processing in Large-Scale Cyber-Physical Systems
	1 Introduction
	2 Data Management Within the Node
	3 StreamOp Architecture
	4 Experimental Results
	5 Conclusions and Future Work
	References

	A Framework of Adaptive Interaction Support in Cloud-Based Internet of Things (IoT) Environment
	1 Introduction
	2 Literature Review
	2.1 Internet of Things (IoT) and Cloud Computing
	2.2 IoT Cloud Architecture
	2.3 Interaction Support in IoT Cloud Platform

	3 Proposed Interaction Support Framework
	3.1 Inceptions
	3.2 Quality of Context Information and Services
	3.3 Motivation for Interaction Support
	3.4 The Proposed Framework for Adaptive Interaction in the IoT Cloud Centric Environment
	3.5 Limitations of the Proposed Framework

	4 Conclusions
	References

	Including Cyberphysical Smart Objects into Digital Libraries
	1 Introduction
	2 Related Work
	3 A Metadata Model for CyberPhysical Smart Objects
	4 A Case Study: Smart Office
	5 SO Inclusion According to the Digital Library Reference Model
	5.1 Content
	5.2 User
	5.3 Functionality
	5.4 Policy
	5.5 Quality
	5.6 Architecture

	6 Conclusion and Future Work
	References

	Parallel and Distributed Computing
	Static Data Race Detection for Java Programswith Dynamic Class Loading
	1 Introduction
	2 Static Data Race Detection
	2.1 Algorithm of Static Data Race Detection
	2.2 Problems of Static Data Race Detection Method

	3 Java Dynamic Class Loading
	4 Method for Dynamic Class Loading
	4.1 Conversion of Programs
	4.2 Data Race Detection Method
	4.3 Implementation

	5 Experiment
	5.1 Result of Experiment
	5.2 Discussion

	6 Conclusion
	References

	Rule Based Classification on a Multi NodeScalable Hadoop Cluster
	1 Introduction
	2 Related Work
	3 Rule Based Classification Using RIPPER
	3.1 The RIPPER Algorithm
	3.2 Why Is Parallelizing RIPPER Important?
	3.3 RIPPER Implementation on Hadoop

	4 Complexity Analysis
	4.1 Sequential Implementation
	4.2 Parallel Implementation
	4.3 Speed Up
	4.4 Cost Optimality

	5 Experimental Results
	5.1 Experimental Environment
	5.2 Datasets Used
	5.3 Speed Up

	6 Conclusion and Future Work
	References

	Consistent Management of Context Informationin Ubiquitous Systems
	1 Introduction
	2 Related Work
	3 Consistent Management of Context Information
	3.1 The Service Entity and Replica Manager
	3.2 The Synchronization and Monitoring Services
	3.3 The Context Manager

	4 Case Study
	5 Conclusions and Future Work
	References

	Dynamic Deployment of Software Components for Self-adaptive Distributed Systems
	1 Introduction
	2 Approach
	2.1 Requirements
	2.2 Policy-Based Adaptation

	3 Design
	3.1 Component Runtime System
	3.2 Adaptation Manager

	4 Implementation
	5 Application
	6 Related Work
	7 Conclusion
	References

	Modelling and Analysis of Parallel/DistributedTime-dependent Systems:An Approach Based on JADE
	1 Introduction
	2 A Computational Model Based on Actors and Actions
	3 A Control Framework in JADE
	4 A Library of Control Forms
	4.1 Prototyped Control Machines
	4.2 Action Schedulers

	5 A Case Study
	6 Conclusions
	References

	Advanced Networking
	A Basic Study on High Bandwidth Streamingin Realtime over Multipath UsingLDPC-IRA Codes
	1 Introduction
	2 Distributed Streaming System with IRA Codes
	3 Multipath Realtime Streaming with IRA Codes
	3.1 LDPC and IRA Codes
	3.2 Design of IRA Codes for Multipath Streaming
	3.3 Evaluation of Redundant Packet Sending and System Design

	4 Conclusion
	References

	Resolving Fallback and Path MTU ProblemsCaused by Denying ICMP Packets in IPv6
	1 Introduction
	2 Problems in IPv6 by Blocking ICMP Packets
	2.1 Fallback Problem
	2.2 Path MTU Problem

	3 Overview of the Proposed System
	3.1 Work Flow of System
	3.2 Capture of Packets
	3.3 Processing Flag
	3.4 Analysis of Communications
	3.5 Creating and Sending ICMP Packets
	3.6 Decision of Success of Fallback

	4 Implementation and Experiment
	4.1 Result of Experiment

	5 Discussion
	6 Conclusion
	References

	Using a History-Based Approach to Predict Topology Control Information in Mobile Ad Hoc Networks
	1 Introduction
	2 Predicting TCI Using Past Information
	3 Experimental Framework
	4 Analysis of Obtained Results
	4.1 Predictability Limits
	4.2 Frequency of the Observed Control Packets
	4.3 History-Based Prediction
	4.4 History-Based Prediction Using a Confidence Mechanism
	4.5 Dynamic History-Depth

	5 Conclusions and Future Work
	References

	Testing AMQP Protocol on Unstableand Mobile Networks
	1 Introduction
	2 Related Work
	3 Methodology of the Experiments
	4 Results
	4.1 Behaviour during Access Point Transition
	4.2 Workload Boundary
	4.3 Jitter Analysis

	5 Conclusions and Future Work
	References

	Security Methods and Systems
	Modelling and Simulation of a Defense Strategy to Face Indirect DDoS Flooding Attacks
	1 Introduction
	2 Related Work
	3 The StopIt Mechanism
	3.1 Security Aspects
	3.2 Limitations

	4 The Proposal
	4.1 DiffServ for Traffic Management
	4.2 StopIt-DiffServ Cooperation

	5 Simulation Analysis and Results
	5.1 Modelling with ns-3
	5.2 Simulation Scenario

	6 Conclusion
	References

	Towards a Reference Architecture for Service-Oriented Cross Domain Security Infrastructures
	1 Introduction
	2 Background and Issues
	2.1 Cross Domain Solutions Today
	2.2 CDC in the Context of SOA
	2.3 Relevant Security Ontology Work

	3 Cross Domain Security Reference Architecture (CDC-RA)
	3.1 Overview
	3.2 CDC Participants
	3.3 Guards as Active Workflow Participants

	4 Security Ontology
	5 CDC Protocol Candidates
	6 Road to Implementation
	7 Conclusion
	References

	Interoperability of Security-Aware Web Service Business Processes: Case Studies and Empirical Evaluation
	1 Introduction
	2 A State-of-the-Art Framework for Checking the Compatibility and Replaceability of Security-Aware Web Service Business Processes
	3 Conversion of Implicit Security-Aware Web Service Business Process Protocols into Explicit Security-Aware Web Service Business Process Protocols
	4 Checking the Compatibility of Security-Aware Web Service Business Process Protocols
	5 Checking the Replaceability of Security-Aware Web Service Business Process Protocols
	6 Conclusions and Future Work
	References

	Sensor Networks
	A Fatigue Detect System Based on Activity Recognition
	1 Introduction
	2 Methodology
	2.1 Related Work
	2.2 Proposed Method
	2.3 System Architecture

	3 Experiments
	4 Conclusion
	References

	Modelling the Performance of a WSNwith Regard to the Physical Features Exhibitedby the Network
	1 Introduction
	2 Related Work
	3 Physical Features
	4 Testing
	5 Modelling
	6 Conclusion and Future Work
	References

	EMCR : Routing in WSN Using Multi CriteriaDecision Analysis and Entropy Weights
	1 Introduction
	2 Multi-criteria Decision Analysis
	2.1 Weighted Product Model (WPM)

	3 Proposed Routing Scheme
	4 Calculation of Weights
	4.1 Information Theory
	4.2 Entropy in Information Theory
	4.3 Entropy Based Weight Calculation

	5 Implementation
	6 Results and Discussion
	6.1 Residual Energy
	6.2 Delay

	7 Related Work
	8 Conclusion
	References

	Towards a Model-Driven Approach for Sensor Management in Wireless Body Area Networks
	1 Introduction
	2 Related Work
	3 Background
	4 Towards a Model-Driven Approach for Sensor Management
	4.1 Wearable Specification Meta-Model
	4.2 Coordinator
	4.3 Integration Process
	4.4 Case Study

	5 Conclusions and Future Work
	References

	DISSN: A Dynamic Intrusion Detection Systemfor Shared Sensor Networks
	1 Introduction
	2 Related Works
	3 DISSN: A Dynamic Intrusion Detection System for Shared Sensor Networks
	3.1 Logical Architecture
	3.2 DISSN Operation

	4 Experiments
	4.1 Experiment Environment and Metrics
	4.2 Efficiency
	4.3 Efficacy

	5 Conclusion
	References

	On the Analysis of Expected Distancebetween Sensor Nodes and the Base Stationin Randomly Deployed WSNs
	1 Introduction
	2 Related Work
	3 Network Model
	3.1 Assumptions

	4 Expected Distance between the Nodes and the BS
	4.1 Derivation of E[dtoBS−tri] in a Triangle
	4.2 Derivation of E[dtoBS−trap] in a Trapezoid
	4.3 Derivation of E[dtoBS] in a Square
	4.4 Validation

	5 Conclusion
	References

	Performability Modelling and Analysisof Clustered Wireless Sensor Networkswith Limited Storage Capacities
	1 Introduction
	2 Related Work
	3 System Description
	4 System Modelling
	4.1 Choosing Preferred Model
	4.2 Queueing Model for the System

	5 Two Dimensional Markov Representation of the Proposed Model
	6 Numerical Results and Discussions
	6.1 Parameter Choice
	6.2 Results and Discussions

	7 Conclusions and Future Directions
	References

	Discovery of Hidden Correlations betweenHeterogeneous Wireless Sensor Data Streams
	1 Introduction
	2 Problem Statement and Solution
	2.1 Problem Statement
	2.2 Heuristic Solution

	3 Case Study
	4 Experiments and Result Analysis
	4.1 Hidden Correlation for Different Positioning of the Sensors Nodes
	4.2 Robustness of the Measure
	4.3 Sensitivity to Sensor Faults

	5 Conclusion
	References

	A Learning-Based MAC for Energy EfficientWireless Sensor Networks
	1 Introduction
	2 Related Work
	3 RL-Based Protocol Design
	4 Simulations and Results
	4.1 Comparison with EE-MAC
	4.2 Comparison with RL-MAC

	5 Conclusion
	References

	Smart Energy Systems
	Equilibria in Concave Non-cooperative Games and Their Applications in Smart Energy Allocation
	1 Introduction
	1.1 Detailed Problem Description

	2 Related Works
	2.1 Game-Theoretic Approach

	3 Definitions
	4 Problem Formulation
	5 Software Solver
	5.1 Representation of Games
	5.2 Optimization Algorithm

	6 Experimental Study
	7 Concluding Remarks
	References

	A Distributed Systemfor Smart Energy Negotiation
	1 Introduction
	2 Related Work
	3 Requirements and Objectives
	4 CoSSMic Architecture
	4.1 Components View
	4.2 Distribution View
	4.3 Deployment View

	5 Implementation
	6 Conclusion
	References

	Social Networks and Applications
	Recommending Users in Social Networksby Integrating Local and Global Reputation
	1 Introduction
	2 Related Work
	3 The Social Network Scenario
	4 Suggesting Trust
	5 Experiments
	6 Conclusion
	References

	A Carpooling Open Application with Social Oriented Reward Mechanism
	1 Introduction
	2 Related Work
	3 The Development of the RTRS Service
	3.1 Requirements
	3.2 Technical Issues
	3.3 Virtual Credits and Social Networks

	4 Using CORSA
	4.1 Mobile Application
	4.2 Paths Management
	4.3 Server and Asymmetric Data

	5 Conclusions
	References

	Author Index

