
Preliminary Studies on Biclustering of GWA:
A Multiobjective Approach

Khedidja Seridi1,2, Laetitia Jourdan1,2(B), and El-Ghazali Talbi1,2

1 INRIA Lille - Nord Europe, DOLPHIN Project-Team,
59650 Villeneuve d’Ascq Cedex, France
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Abstract. Genome-wide association (GWA) studies aim to identify
genetic variations (polymorphisms) associated with diseases, and more
generally, with traits. Commonly, a Single Nucleotide Polymorphism
(SNP) is considered as it is the most common form of genetic vari-
ations. In the literature, several statistical and data mining methods
have been applied to GWA data analysis. In this article, we present a
preliminary study where we examine the possibilities of applying biclus-
tering approaches to detect association between SNP markers and pheno-
type traits. Therefore, we propose a multiobjective model for biclustering
problems in GWA context. Furthermore, we propose an adapted heuris-
tic and metaheuristic to solve it. The performance of our algorithms are
assessed using synthetic data sets.

1 Introduction

Association mapping has recently become a popular approach to discover the
genetic causes of many complex diseases. A genome wide association study
(GWAs) is the examination process of different genetic variants (markers) in
several individuals in the purpose of detecting eventual association between the
variants and certain traits. GWAs particularly focus on associations between
single-nucleotide polymorphisms (SNPs) and traits like major diseases. Once
such genetic associations are identified, researchers can use the information to
promote new strategies to detect, treat and prevent the diseases [2].

Regarding the considered phenotype’s nature, GWA studies usually deal with
two classes of data. In the first class, the data comprise the genetic informations
of all or a large fraction of the diseased subjects (cases) that appear in the con-
sidered study base and then sampling a comparable number of healthy subjects
(controls), ideally from the same study base, and potentially matched with the
cases by some socio-demographic characteristics such as race, age and gender.
Accordingly, the considered trait is a qualitative trait i.e. an individual is even a
case or a control. In the second class, the addressed phenotype is a quantitative
trait i.e. numerical values that can be ordered from highest to lowest such as
height, weight, cholesterol level, etc. The analysis of the later form of data is
known as Quantitative Trait Locus (QTL) analysis.
c© Springer International Publishing Switzerland 2014
P. Legrand et al. (Eds.): EA 2013, LNCS 8752, pp. 106–117, 2014.
DOI: 10.1007/978-3-319-11683-9 9



Preliminary Studies on Biclustering of GWA 107

By considering the entire genome, case/control data analysis is essentially
based on seeking alleles of variants that are more frequent in people with the
disease (cases). The found variant is then said to be associated with the disease.

Quantitative trait locus (QTL) analysis is a statistical method that links
two types of information i.e. phenotypic data (quantitative trait) and genotypic
data (usually markers), in an attempt to explain the genetic basis of variation
in complex traits [5]. QTL analysis allows researchers in different fields such
as agriculture, evolution, and medicine to link certain complex phenotypes to
specific regions of chromosomes. The goal of this process is to identify the action,
interaction, number, and precise location of these regions.

A QTL analysis starts by collecting phenotype and genotype data from a
number of unrelated individuals in the same way as in a case-control study.
However, in QTL studies there are no cases and no controls, just individuals
with a range of phenotype values. After that, association between the traits and
the different SNPs are detected using statistical method. The associations are
commonly formulated as predictive models.

Generally, genome wide associations studies are performed using supervised
methods such as logistic regression and discriminant analysis [1,9], Bayesian
approaches [4], etc. Commonly, the treated data comprises two main informa-
tions for each individual: genotype informations and phenotype informations.
Using a training data set, the study mainly consists in defining a predictive
model and validate it through a test data set.

In this work we propose an unsupervised study of the GWA data with quan-
titative traits (QTL). By this study we aim to extract a subset of SNPs that
have the same alleles for a sub set of individuals sharing similar traits. Actually,
the considered data can be seen as a matrix A = (X, (Y,Z)) = {aij} where each
row i presents an individual, each column j represents either a SNP (j ∈ Y )
or a trait (j ∈ Z) and an element aij presents the corresponding SNP’s allele
(if j ∈ Y ) or the corresponding traits value (if j ∈ Z) (see Table 1). Thus, a
bicluster B = (I, (J,K)) is a sub-matrix of A = (X, (Y,Z)) where I ⊂ X, J ⊂ Y
and K ⊂ Z.

This paper is organized as follows. Section 2 presented the biclustering prob-
lem and a new multiobjective model for a biclustering problem applied to ana-
lyzing GWA data sets. An adapted heuristic and metaheuristic are proposed in

Table 1. Studied GWA data

SNPs Traits

S1 ... SA T1 ... TB

A1 a11 ... a1A a1A+1 ... a1M

... ... ... ... ... ... ...

Ai ai1 ... aiA aiA+1 .... aiM

... ... ... ... ... ... ...

AN aN1 ... aNA aNA+1 .... aNM
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Sect. 3 to solve the proposed model. In Sect. 4, experimental analysis of the pro-
posed approaches and results are presented. Finally Sect. 5 concludes the paper
and presents perspectives.

2 Biclustering Method in Analyzing GWA Data

2.1 Biclustering

Biclustering or co-clustering is a well-known data mining method that has been
widely applied in a broad range of domains such as marketing, psychology and
bioinformatics. It consists in extracting submatrices B = (I, J) (I ⊂ X,J ⊂ Y )
(called biclusters) with maximal size and respecting a certain coherence con-
straint. Depending on the addressed problem, biclusters of different types can
be considered. The different biclusters types and some corresponding applica-
tions are described below.

1. Constant bicluster: all the biclusters elements have the same value.
2. Bicluster with constant rows/columns: the elements of each row (column)

have the same value.
3. Bicluster with coherent values: the definition of this type of biclusters is a

generalization of constant rows/columns biclusters. There exist two different
models associated to this class of biclusters:
(a) shifting model: where each row (and each column) can be obtained by

adding an offset to an other row (column).
(b) scaling model: where each row (and each column) can be obtained by

multiplying an other row (column) by a factor.
4. Bicluster with coherent evolution: the elements of the bicluster behave simi-

larly (correlated) independently of their numerical values.

When formulating a biclustering problem, a similarity (dissimilarity) measure
is required in order to evaluate the extracted results. The measure is, commonly,
related to the bicluster’s type. In the case of microarray data analysis, the study
aim to extract biclusters with coherent values or evolution (gene that present
similar behavior under a sub set of conditions). Different multiobjective modeling
for biclustering problem for microarrays data have been proposed [7,10–14] but
none for the case of GWA data. Commonly, the proposed multiobjective models
comprise: one or more function(s) to optimize the biclusters sizes, a function
that optimizes biclusters coherences and a function to optimize the rows vari-
ances. In all of these models, a solution represents one bicluster. Regarding the
size, most of the models maximize the ratio between the biclusters elements
number and the microarray data elements. However, as the number of rows is
generally more important than the number of columns, such functions may favor
the maximization of rows number with regard to columns number. Thereby, in
[7], authors proposed to maximize the number of rows and columns separately
by using two objective functions. Concerning biclusters coherence, all the pro-
posed models consider the Mean Squared Residue MSR [3] dissimilarity measure.
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In [14] the MSR value is allowed to increase as it does not exceed the threshold
δ. Regarding the rows fluctuations, all the existing models maximize the mean
row variance. In [12] the coherence and fluctuation objectives are merged in one
function by defining a function as the ratio between the MSR of the bicluster
and its mean rows variance.

The MSR measure is well adapted to identify biclusters with coherent values.
However, this measure can not be applied for GWA data as different biclusters
type is required.

2.2 Multiobjective Problem Modeling

In this section, we propose a multiobjective model for a biclustering method
applied to GWAs. In this study, we seek to extract biclusters with constant
columns, which correspond to a set of individuals that share SNPs presenting
the same alleles and the same traits. In order to extract such biclusters, two
objectives have to be considered: maximizing the biclusters size (find maximal
biclusters) and minimizing the average of columns variances. Actually, these two
criteria are clearly independent and conflicting. In fact, a non perfect bicluster’s
coherence (columns constance) can be improved by removing a row or a column,
i.e. by reducing its size. We can therefore deduce that the problem of biclustering
in GWAs can be formulated as a multiobjective optimization problem. Thus, the
proposed model is given by:

f1(I, (J,K)) = α × |I|
|X| + β × |J|

|Y | + γ × |K|
|Z|

f2(I, (J,K)) = Avar(I, (J,K)) = 1
|I]×(|J|+|K|)

∑
j∈J

⋃
K

∑
i∈I(aij − aIj)2

Where f1 (size) has to be maximized and f2 (average variance) has to be
minimized

3 Resolution Approaches

In this section we present two new approaches to solve the proposed model. The
first approach is a greedy heuristic Sbic and the second approach is a multiob-
jective metaheuristic SHMOBIibea.

3.1 Sbic Heuristic

Sbic is a greedy heuristic that aims to extract relevant biclusters from GWA data
matrix and that has been designed in a similar manner as Cheng and Churchs
heuristic [3] widely used for microarray data. At each run, Sbic extracts one
bicluster from the data matrix. Sbic deletes (adds) nodes that meet with some
conditions in order to decrease the biclusters average columns variances and
increase its size. The main steps of Sbic are given in Algorithm 1.

In multiple node deletion phase, Sbic starts by removing some nodes (rows
and columns) in order to decrease the average columns variance. In columns
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Algorithm 1. Sbic Algorithm
1:Input: Bicluster (I, (J, K)) /*which can be the whole data matrix*/
2: if(Avar(I, (J, K)) > δ)
3: MultipleNodeDeletion(I,J,K)
4: if(Avar(I, (J, K)) > δ)
5: SingleNodeDeletion (I,J,K)
6: endif
7: endif
8: MultipleNodeAddition(I,J,K)

dimension, the variance of each column is calculated. The columns that have the
highest variance are deleted. This process will clearly decrease the whole average
variances of the columns. Similarly, the average variance can also be decreased
by applying the same process on the rows dimension. Indeed, rows with the
highest contribution on the average columns variances are deleted. After that, if
the bicluster’s average variance still higher than δ the bicluster has to undergo
the single node deletion processes. The main steps are illustrated in Algorithm 2.

Algorithm 2. Multiple node deletion
1:Input: Bicluster (I, (J, K))

2: Compute aIj , Avar and coni =
∑

j∈J (aIj−aij)
2+
∑

k∈K(aIk−aik)
2

|J|+|K| i ∈ I

3: if(coni > γ × Avar)
4: Remove the rows i ∈ I
5: endif
6: Compute aIj , Avar and varj j ∈ J
7: if(varj > γ × Avar)
8 Remove the column j ∈ J
9: endif
10: Compute aIk, Avar and vark k ∈ K
11: if(vark > γ × Avar)
12: Remove the column k ∈ K
13: endif

In single node deletion, the nodes with the highest contribution on the aver-
age variance are iteratively deleted until the Avar reaches the desired value. The
main steps are illustrated in Algorithm 3.

Once the Avar of the considered bicluster reaches the desired value, the
algorithm tries to add other rows (columns) without increasing the Avar. For
instance all the columns (not present yet in the bicluster) that have a vari-
ance lower than or equal to Avar are added to the bicluster. Furthermore, the
expected contribution of each row i (coni) in the biclusters Avar value is com-
puted in order to decide whether the row can be added to the bicluster or not.
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Algorithm 3. Single node deletion
1:Input: Bicluster (I, (J, K))
2: while(Avar(I, (J, K)) > δ)
3: Recompute coni, varj and vark.
4: Find the node d (row or column) with the highest vard (cond) .
5: Delete d.
6: endwhile

The main steps are illustrated in Algorithm 4.

Algorithm 4. Multiple node addition
1:Input: Bicluster (I, (J, K))

2: Compute aIj , Avar and coni =
∑

j∈J (aIj−aij)
2+
∑

k∈K(aIk−aik)
2

|J|+|K| i /∈ I

3: if(coni ≤ Avar)
4: Add the rows i
5: endif
6: Compute aIj , Avar and varj j /∈ J
7: if(varj ≤ Avar)
8: Add the column j
9: endif
10: Compute aIk, Avar and vark k /∈ K
11: if(vark ≤ Avar)
12: Add the trait k
13: endif

Actually, Sbic is a deterministic algorithm. Thus, the same bicluster will be
extracted if the starting matrix is always the same. In order to extract several
biclusters from a data matrix (X, (Y,Z)) we propose to apply the Sbic over
the whole data matrix to extract the first bicluster. After that, Sbic can be
applied over a sub-matrix containing p% of the data’s rows and columns selected
randomly which will lead to discovering different bicluster at each run.

In the following section we present the main components of SHMOBIibea
metaheuristic.

3.2 SHMOBIibea

SHMOBIibea is based on HMOBIibea [15] which is a multiobjective meta-
heuristic based on the evolutionary algorithm MOBIibea [6] and DMLS
(1 · 1�) [8].

MOBI is a hybrid MOEA (Multi Objective Evolutionary Algorithm) for solv-
ing biclustering problem in the specific case of microarray data. It combines
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IBEA with a local search inspired from Cheng and Churchs heuristic [3] which
is dedicated for biclustering of microarray data. MOBIibea [6] allows in the case
of microarray data to extract biclusters of good quality.

DMLS (Dominance-based Multiobjective Local Search) are a general con-
cept of multiobjective local searches using the concept of Pareto Optimality. At
each generation, DMLS selects one or more non-visited solutions (solutions with
non-explored neighborhood) from the archive and explores their neighborhoods.
After that, the solutions are marked as visited. Different variants of DMLS exists
depending on the number of selected solutions and on the exploration strategy.
In this study, we will use DMLS(1 ·1�) where one solution is randomly selected
and the exploration of its neighborhood stops when the first improving solution
is found.

In this section, we propose SHMOBIibea which is an adapted version of
HMOBIibea to SNP data. Several changes have been done to adapt HMOBIibea
to the specific case of SNPs. Therefore, we present a suitable solutions encoding
and variation operators.

Solutions Encoding. In SHMOBIibea, we choose to represent a bicluster as
a list compound of six parts: Each one of the first 3 parts of the chromosome is
an ordered list of indexes corresponding to either rows, columns or traits; while
parts 4 to 6 are just the cardinalities of those lists.

Example:
Given the data matrix presented in Table 2, the string {1 3 2 3 2 2 2 1} represents
the following bicluster compound of two rows (1 and 3), two SNPs (2 and 3) and
one trait (2):

{1 3 2 3 2 2 2 1} =⇒
⎡

⎣
2 1 0.3

0 0 −0.75

⎤

⎦

Variation Operators.

1. Crossover:
A Single point crossover is used in the three first parts of the solution (rows
part, columns part and traits part). Each part undergoes crossover separately.
Let parents be chromosomes P1 = {r1 ... rn c1 ... cm t1 ...tp rnb cnb tnb} and
P2 = {r′

1 ... r′
l c′

1 ... c′
k t′1 ... t′q r′

nb c′
nb t′nb} where rn � r′

l.

Table 2. Example of SNPs and traits data matrix

SNPs Traits

1 2 1 12.5 0.3

0 1 2 10.75 1.2

1 0 0 10.33 –0.75
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4 8 4 3 1

3 3 1311385 15 18 1 2 4 5 2

1 4 132138 3 15 18 1

3 3 81185 51 3

4

P1

P2
C2

C1
λ1 λ

′
1

λ2 λ
′
2

1 2183 51 3 2 25

4 3 1

Fig. 1. An example of the crossover operator application.

Fig. 2. General scheme of SHMOBI

The crossover in the rows part is performed as follows: The crossover point
in P1 (λ1) is generated as a random integer in the range 2 � λ1 � rn. the
crossover point in P2 λ2 = r′

j where r′
j � λ1 and r′

j−1 � λ1. In the same way,
the crossover in the columns part and traits part is performed. The parts 4–6
are not involved directly in the crossover and are computed after it.

For example, consider the parents P1 and P2 presented in Fig. 1. Suppose the
3rd gene index and the 2nd condition index of P1 are selected, so: λ1 = 15 and
λ′
1 = 5 then λ2 = 16 and λ′

2 = 6, which results on the offspring C1 and C2.

2. Mutation:
We replace the mutation operator by the Sbic heuristic.

When generating random biclusters, it may happen that irrelevant rows and
columns get included in spite of their values lying far apart. Therefore, we start
by randomly generating a population where the irrelevant rows and columns of
each bicluster are deleted using the Sbic heuristic. The resulting population is
used as the initial population for SMOBIibea. After that, the DMLS(1 · 1�) is
applied for each solution of SMOBIibea’s archive (Pareto approximation). The
main steps of SHMOBIibea are illustrated in Fig. 2.

4 Experiments and Results

In this section we present the experimental protocol in assessing the performance
of the presented algorithms over synthetic data sets.

4.1 Data Sets

In order to assess the performance of the proposed algorithms, we use syn-
thetic data sets to investigate the ability of our algorithms to extract implanted
biclusters. In this purpose, we randomly generate different data sets of size:
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Set1(100, (1000, 3)) which corresponds to 100 rows 1000 SNPs columns and 3
traits columns and Set2(100, (10000, 3)) which corresponds to 100 rows 10000
SNPs columns and 3 traits columns. For each data set we implant 1 (called
Set1-1 et Set2-1) and 5 biclusters (called Set1-5 and Set2-5) with size 10 rows
50 SNPs columns. In each case, the biclusters may involve all (Set*-A) or some
of the traits (Set*-T).

4.2 Comparison Criteria

In order to assess the performance of the proposed biclustering algorithm, we
use the following two ratios:

θShared =
Scb

Totsize
× 100 (1)

Where Scb is the portion size of bicluster correctly extracted and Totsize is
the total size of the implanted bicluster.

θNotShared =
Sncb

Tot
′
size

× 100 (2)

Where Sncb is the portion size of bicluster not correctly extracted and Tot
′
size

is the total size of the extracted bicluster.

The ratio θShared (resp. θNotShared) expresses the rate of shared (resp. not
shared) biclusters volume with real biclusters. In fact, when θShared (resp.
θNotShared) is equal to 100 % the algorithm extracts the correct (resp. not cor-
rect) biclusters. A perfect solution has θShared =100 % and θNotShared=0 %
respectively. That is, the exact number of rows and columns of implanted
biclusters.

4.3 Parameters

Concerning the models parameters, we set α, β and γ to 0.5, 0, 0.5 respectively.
In fact, given the nature of data, SNPs columns present low variance compared
to trait columns. Hence, a big number of SNP columns will be added for each
bicluster undergoing the Sbic heuristic. Therefore, we favor biclusters having low
average variance and low SNPs columns to be selected in the search process and
this by setting β = 0.

In the other hand, all algorithms parameters have been set experimentally.
For the Sbic we set α to 1.5, δ to 0.15 and %p to 50 %. The algorithm is run 20
times in order to extract 20 biclusters. The first run uses all the data matrix.
The remaining runs starts by sub-matrices where the rows and the columns are
chosen randomly. When selecting rows, more chance is given to rows not present
yet in the previously extracted biclusters.

Concerning SMOBIibea, we experimentally set the initial population size to
400. The mutation and crossover operators parameters are set to 0.2 and 0.5
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respectively. The algorithm stops after a fixed time depending on the data set
size. For Set1 data sets the execution time is set to 500 s, and 700 s for Set2
data sets. The same time is allocated to SHMOBIibea algorithm where 90 %
of the execution time is accorded to SMOBIibea and the remaining 10 % to
DMLS(1 · 1�).

We apply our algorithms on the considered data sets and for each algorithm
we select the closest biclusters to the implanted ones. Thereafter, we calculate
θShared and θNotShared for each bicluster. For instances where several biclusters
are implanted, we report the average θShared and θNotShared of the extracted
biclusters.

4.4 Results

In this section, we compare the efficiency of Sbic, SMOBIibea and SHMOBIibea
in extracting the implanted biclusters. The comparison is done with regard to
θShared, θNotShared and the rate of found biclusters.

Tables 3 and 4 present the obtained results for the different instances corre-
sponding to one and five implanted biclusters respectively. A detailed observa-
tion of the found solutions show that, in most cases, the not correctly biclusters
extracted portions are mainly composed of extra columns (SNPs).
In Table 3 we can observe that all the approaches can find the implanted biclus-
ter. However, SHMOBIibea find the best results with the highest θShared and
lowest θnotShared. For instance, in the case of data Set1-1-A where all the traits
are involved in the bicluster, SHMOBIibea extracts the bicluster with only
θnotShared = 24.24%. Actually, SMOBIibea is able to find the implanted biclus-
ter. However, the θNotShared of the extracted bicluster is very high. This result
demonstrates the role of DMLS(1, 1�) in fine-tuning the found results.

Table 3. Comparative results when extracting one bicluster. SMOBI stands for
SMOBIibea, SHMOBI for SHMOBIibea.

Data θShared θNotShared Rate of found biclusters

Sbic SMOBI SHMOBI Sbic SMOBI SHMOBI Sbic SMOBI SHMOBI

Set1-1-A 78.6% 100% 100% 86.6% 80.07% 24.24% 100% 100% 100%

Set2-1-A 100% 100% 100% 86.07% 86.73% 57.01% 100% 100% 100%

Set1-1-T 60.0% 100% 100% 78.05% 92.46% 76.36% 100% 100% 100%

Set2-1-T 30% 90% 100% 81.41% 95.12% 67.12% 100% 100% 100%

Table 4. Comparative results when extracting five biclusters. SMOBI stands for
SMOBIibea, SHMOBI for SHMOBIibea.

Data θShared θNotShared Rate of found biclusters

Sbic SMOBI SHMOBI Sbic SMOBI SHMOBI Sbic SMOBI SHMOBI

Set1-5-A 50.62% 52.5% 85.92% 86.37% 85.61 % 60.9% 60% 80% 80%

Set2-5-A 63.33% 64.16% 85.83% 92.87% 91.11% 92.26% 60% 60% 60%

Set1-5-T 41.66% 64.88% 62.61% 87.27% 82.04% 82.44% 40% 80% 80%

Set2-5-T 45% 75% 85.83% 98.21% 94.5% 93.47% 40% 40% 60%
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Similarly, Table 4 shows that SHMOBIibea outperforms Sbic and SMOBIibea
in finding the implanted biclusters. Actually, SHMOBIibea finds more biclusters
than the other approaches with higher θShared. However, the θNotShared value
of the biclusters extracted using all the approaches are relatively high. This can
be explained by the huge number of SNPs columns in the data set.

Concerning running times, they are of 500 s for small instances (Set1-*) and
700 s for large instances (Set2-*).

5 Conclusion

In this article, we have presented a preliminary study on using a biclustering
method to analyze GWA data. Actually, GWA data consists in two types of
information i.e. phenotype data (traits) and genotype data (genetic variations).
Commonly, SNPs are considered as they present the most frequent form of
genetic variations. The analysis of such data consists in finding eventual asso-
ciations between traits and SNPs combinations. Therefore, we propose a mul-
tiobjective modeling for biclustering in order to extract samples (individuals)
sharing similar traits and having same alleles for a SNPs combination. The cor-
responding biclusters are constant columns biclusters.

The extracted biclusters may bring out existing associations between the con-
sidered SNPs and traits. Moreover, the extracted biclusters may provide impor-
tant informations that can be used in further GWA studies. Given the huge
number of SNPs, we propose to solve this problem using a hybrid metaheuristic
SHMOBIibea. The efficiency of SHMOBIibea have been assessed using syn-
thetic data sets of different sizes and different implanted biclusters numbers.
Further studies will be carried out in real data sets provided by the company
Genes Diffusions1.
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