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Abstract. Graph Coloring, one of the most challenging combinatorial
problems, finds applicability in many real-world tasks. In this work we
have developed a new artificial bee colony algorithm (called O-BEE-
COL) for solving this problem. The special features of the proposed
algorithm are (i) a SmartSwap mutation operator, (ii) an optimized
GPX operator, and (iii) a temperature mechanism. Various studies are
presented to show the impact factor of the three operators, their effi-
ciency, the robustness of O-BEE-COL, and finally the competitiveness
of O-BEE-COL with respect to the state-of-the-art. Inspecting all exper-
imental results we can claim that: (a) disabling one of these operators
O-BEE-COL worsens the performances in term of the Success Rate (SR),
and/or best coloring found; (b) O-BEE-COL obtains comparable, and
competitive results with respect to state-of-the-art algorithms for the
Graph Coloring Problem.

Keywords: Swarm intelligence · Artificial bee colony · Graph coloring
problem · Combinatorial optimization

1 Introduction

Graph coloring is one of the most popular and challenging combinatorial opti-
mization problems, playing a central role in graph theory. It can be formalized
as follow: given an undirected graph G = (V,E) a coloring of G is a mapping
c : V → S (⊆ ℵ+) that assigns a positive integer to each vertex in V such
that c(u) �= c(v) if u and v are adjacent vertices. The elements in S represent
the available colors. The optimization version of Graph Coloring Problem (GCP)
asks to find a mapping c with S = {1, 2, . . . , k} being of minimal size, i.e., finding
the smallest integer k such that G has a k − coloring. This minimal cardinality
of S is known as the chromatic number of G (χ(G)). Thus formally, if k > χ
then a graph G is called k − colorable, otherwise G is k − chromatic if k = χ.
Computing the chromatic number of a graph is an NP–complete problem [17].
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Tackling and solving the GCP becomes crucial and important since it has a
natural applicability in many real-world problems, such as scheduling [26], time
tabling [12], manufacturing [19], frequency assignment [16], register allocation [8]
and printed circuit testing [18]. The GCP can be tackled following two different
approaches: assignment or partitioning. The first approach consist in the classi-
cal assignment of colors to vertices; whilst the latter one is based on partitioning
the set of vertices V into k disjoint subsets (V1, V2, . . . , Vk) such that in any
subset no two vertices are linked by an edge, i.e. if u and v are in Vi (for some
i ∈ {1, . . . , k}) then (u, v) /∈ E. Every subset Vi represents a color class and
forms an Independent Set of vertices. Although several pure population–based
algorithms have been used to tackle the GCP, a hybrid approach where local
search methods, specialized operators and evolutionary algorithms (EAs) are
combined [25] might be more effective. This is, of course, due to the intractable
nature of the GCP [5].

In this work we propose an Artificial Bee Colony (ABC) [24] algorithm for
the GCP, based on three main features: (1) a new mutation operator, (2) an
optimized version of the Greedy Partitioning Crossover (GPX) [15], and (3) a
temperature mechanism. The ABC algorithm is a rather recent optimization
technique inspired by the intelligent foraging behavior of a colony of bees, whose
strength lies in the collective behavior of self-organized swarms that individually
behave without any supervision. During the last decade, ABC has attracted
quite a number of researchers, and it has been successfully applied mainly to
continuous optimization problems [3,23], whilst, rather few works have appeared
concerning discrete optimization problems (see, for example, [27,31]). In many
cases the results obtained by ABC, including the ones of this work, demonstrate
that this metaheuristic is able to compete with, and sometimes even outperforms,
existing state-of-the-art algorithms for difficult optimization problems.

2 O-BEE-COL: An Artificial Bee Colony

The ABC algorithm takes inspiration from the intelligent foraging behavior of
bees from a beehive. It is based on three main components: (1) food source
position, corresponding to a feasible solution to the given problem; (2) amount
of nectar, which indicates the quality of the solution; and (3) the bee types:
employed; onlooker; and scouts bees. The first ones have the purpose to search for
food sources, and, just found, storing their information. The onlooker bees select,
and exploit the better food sources found taking advantage of the information
learned from employed bees. Once one of the food sources is exhausted, the
employed bees associated with it become scout bees, with the purpose to discover
new food sources. Once discovered, they become again employed bees.

A new ABC heuristic has been developed in order to effectively coloring a
generic graph. This algorithm is henceforth referred to as “Optimal BEEs for
COLoring” (O-BEE-COL). The algorithm begins with the creation of the ini-
tial population, where each bee represents a permutation of vertices. Because the
choice of the starting points in the search space become crucial we have designed,
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and studied, three variants of O-BEE-COL in order to create the initial popu-
lation. In the basic variant, it is randomly generated via a uniform distribution.
The second variant, instead, uses a version partially randomize of RLF (Recur-
sive Largest First) algorithm [10]. Of course, as expected, with this last variant
O-BEE-COL shows better performances, because it begins the search from good
solutions than the first variant. On the other hand, however using this second
variant we have the disadvantage to get trapped into local optima easily, mainly
in more complex instances. Thus, we have developed a third variant that is a
mixed of the two previous ones. In this way, we introduce more diversity in the
population in order to better exploration the search space, escaping from local
optima, and exploiting good solutions at the same time. Analysing the compar-
isons among the three variants (not included in this paper due to limited space),
the mixed one has produced the best performances obtaining better coloring
in all instances tested. For example, if we take into account the “le450 15c”
DIMACS instance [22], using the first variant the algorithm starts from a best
solution found of 28 colors and improves the coloring until to reach a solution
with 20 colors. Instead with the randomized RLF, although O-BEE-COL begins
from 24 colors as best solution, it never improves this coloring found. If, however,
O-BEE-COL incorporates the mixed variant, starting from a best solution of 24
colors (the one found by randomized RLF), at the end of the evolution it is able
to coloring the graph with 15 colors, which is also the chromatic number for this
instance.

The strength of O-BEE-COL is based on three main operators: mutation
operator called SmartSwap; optimized version of GPX [15]; and Temperature
mechanism, as in Simulated Annealing, which has the aim of self-regulating
of some parameters of the algorithm. The mutation operator tries to reduce
the number of colour classes deleting one of them, and reassigning its vertices
inside other classes. Albeit is reasonable to think that this process might be
easily performed in the smaller class, unfortunately often belong to it the most
troublesome nodes, i.e. the ones harder to be handled. Thus, SmartSwap works
primarily on these troublesome nodes with the aim to replace them with the
ones more easy to be handled. In this way becomes easier the reassignment of
the vertices, and therefore the delete of the class. To do that, SmartSwap allows
a fixed number of constrains unsatisfied, which will be removed via the crossover
operator: only partLimit constraints unsatisfied are allowed. With this operator
we attempt to avoid that the solutions get trapped into local optima. Greedy
Partitioning Crossover – GPX – is a well-known crossover originally proposed in
[15], and based on strategy of considering more important the set of the vertices
that belong to the same class rather than the colors assigned to each vertex.
Via a round robin criterion two bees are selected for generating one offspring:
the biggest colorclass of the two selected parents is copied into the new solution,
and its vertices are removed from the color classes of the belonging parent. This
process is performed until classes with only one vertex are encountered. In this
case, the single node is inserted inside one of the existing classes. In O-BEE-COL
we have designed an optimized version of GPX, which differs from the original
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one basically in two aspects: (1) the number of solutions involved is determined
by a parameter partSol; and (2) the cardinality of the colorclasses that must
be copied into the new solution is determined by a parameter (partLimit). All
colorclasses with cardinality greater or equal to partLimit will be copied inside
the new solution. In this way, we want to force the transmission only of the best
colorclasses to the offsprings. An experimental study conducted on the optimized
GPX, also respect to the original one, confirmed us how these novelties intro-
duced contribute significantly better on its performances (see plots in Fig. 3). The
third novelty introduced in this work is the design of a Temperature mechanism
that has the aim to dynamically self-handle some parameters during the evolu-
tion. The parameters bound to this self-regulating mechanism are: (1) number
of parents involved in optimized GPX (partSol); (2) number of the improvement
trails needed before to replace a solution (evLimit); (3) number of scout bees
(nScouts); and (4) percentage of solutions that must be generated by randomized
RLF during the scout bees phase (percSol). Whenever a better solution than
the current one is found, the temperature mechanism sets the controlled para-
meters with their highest possible values, respectively [100, 20, 5, 100%]. During
the evolution, if no improvements occurred, then these values gradually decrease
generation to generation until to reach their minimal values, which correspond
to [10, 5, 2, 10%].

3 Results

In order to understand how the developed algorithm works, and how much is the
contribution given by the novelties introduced we have performed many exper-
iments using the classical DIMACS challenging benchmark1. O-BEE-COL has
been tested on 22 instances (the most used), and it was compared with several
algorithms, which represent the current state of the art for graph coloring prob-
lem. In this section we present all studies and experiments conducted, showing
best tuning of the parameters; the impact factor contribution of the novelties
designed; analysis on the running time; and comparisons conducted versus sev-
eral algorithms. In most of the instances tested O-BEE-COL has found the best
coloring, showing a robust convergence, and very competitive performances with
respect the state of the art.

O-BEE-COL dynamics. One of the main goal when someone designs a generic
EAs is to understand which is the best setting of the parameters because they
strongly influence the performances of the algorithm. Thus many experiments
have been performed with the aim to identify the best values of the parameters.
As described in Sect. 2, O-BEE-COL depends on three parameters: population
size (popSize ∈ {200, 500, 1000, 1500, 2000}) ; the lowest cardinality of the color
classes allowed to be transmitted during the partitioning phase (partLimit ∈ {5,
10, 15, 18}) ; and the percentage of Employed Bees (percEmp ∈ {10%, 20%,
50%, 70%, 90%}) . To carefully analyse the proper tuning of the parameters, we

1 http://mat.gsia.cmu.edu/COLOR/instances.html

http://mat.gsia.cmu.edu/COLOR/instances.html
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conducted our study over several DIMACS instances, and for each combination
of values we performed 10 independent runs. In Fig. 1 we show the convergence of
O-BEE-COL on the instance DSJC250.5 since it is challenging enough to make
robust our study. Inspecting all 100 experiments over this instance, O-BEE-COL
obtains the best performances in term of success rate (SR) with the combination
(200, 5, 10%). Due to a limit space, we show for each parameter the convergence
plots produced in combination with the other two best values. Analysing the left
plot (varying popSize) is possible to see how with large population size, O-BEE-
COL quickly gets down towards low values within few generations, after which it
shows a steady-state. On the other hand, choosing small dimensions, albeit the
algorithm needs more generations, it achieves still the best coloring. However,
inspecting step-by-step the convergence for each value, popSize = 200, although
is the slowest, it is the one that performs a better exploration of the search space
with the result of producing a good trade-off for diversity into the population.
In the middle plot, are shown the convergence curves produced varying the
parameter partLimit. The lower bound to the color classes transmitted during
the partitioning phase is the one that contributes most to the convergence speed
of the algorithm, and it usually assumes values within the range

(
2, |V |

χ

)
. In

particular, assigning partLimit = 5, O-BEE-COL has a slower convergence but
it reaches the best solution before than the others. In the right plot, and last of
Fig. 1, is shown the contribution given by percEmp, which indirectly represents
the exploitation phase of the best solutions found so far. For all curves, O-
BEE-COL shows a good trend without presenting fast or slow convergences.
Comparing the curves between them is possible to see how O-BEE-COL with
low percentage of employed bees is able to better explore the search space, and,
at the same time, exploit better the information gained so far. In fact, with
the lowest percentage possible (percEmp = 10%) the algorithm achieves the
best solution before than the others. It is important to point out how the best
values for the three parameters correspond to their minimal values tested. This
indicates us that there exists a good balance of diversity into the population,
which helps the algorithm to get out from local optima.

Fig. 1. Convergence behavior at varying the parameters: popSize, partLimit, and
percEmp.
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Table 1. Operating variants of O-BEE-COL, where k̂ is the mean of the best colors
found; k is the best coloring found in all runs; SR is the success rate, and AES is the
average number of fitness function evaluations to the solution.

Variant SmartSwap Crossover Temperature k̂ k SR AES

1 on opt GPX on 15 15 100 % 5, 972, 925

2 on GPX on 24 24 100 % 1, 503, 756

3 on opt GPX off 17.8 15 40 % 36, 599, 035

4 on GPX off 25 25 100 % 5

5 off opt GPX on 15.9 15 50 % 25, 981, 420

6 off GPX on 24 24 100 % 1, 639, 403

7 off opt GPX off 19.9 17 20 % 15, 872, 834

8 off GPX off 25 25 100 % 4

Several experiments have been conducted on the instance le450 15c in order
to prove the effectiveness and utility of the features introduced in O-BEE-COL
in terms of number of colors found; success rate; and average number of fitness
function evaluations to the solution (AES). The aim of these experiments is to
show that whatever the operators’ combination chosen if we inhibit one of them,
then its outcome will be negatively affected by this move. In Table 1 we show for
any possible combination the average of the colors found (k̂), best coloring found
(k), SR and AES. In the next figures (Figs. 2, 3, and 4) we show a comparison of
the several possible cases gradually disabling all the aforementioned features. The
experiments have been averaged over 10 runs with different seeds. In the left plot
of Fig. 2, we present the comparison of the convergence speed of O-BEE-COL
with and without the SmartSwap operator (variants 1 and 5 of Table 1). It is pos-
sible to see how the first variant managed to reach the χ of the instance in every
execution (SR = 100%), whilst turning off the SmartSwap operator, O-BEE-
COL is able to get the best coloring only in 50% of the executions. Middle plot
shows a version of the algorithm that does not use the temperature mechanism.
If we disable also the SmartSwap operator (variant 7) the algorithm reaches an
average of colors (k̂) equal to 19.9, and the best result of 17 colors during all the
executions; whilst using the mutation operator (variant 3) O-BEE-COL manages
to reach the chromatic number in 40% of the cases, with k̂ = 17.8. The right plot
of the figure illustrates the contribution given by SmartSwap if instead we make
use of the original GPX in O-BEE-COL (variants 2 and 6). Looking this plot is
very clear, as both variants are not particularly efficient. The variant using the
mutation operator (2nd variant) manages to achieve an average of colors of 24,
whilst the one that not using it (6th variant) is not able to do better than 25.
These three plots of Fig. 2 prove the usefulness of SmartSwap, and its benefits
that affect positively on the overall performances, regardless on the operators
combination enabled. The plots in Fig. 3 prove the real goodness of the optimized
GPX proposed with respect to the original version [15] improving significantly
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the performances of O-BEE-COL. The first plot on the left, presents a com-
parison of the speed convergences of O-BEE-COL using the proposed optimized
crossover (1st variant) versus the original one (2nd variant). This comparison
has been done on the fully enabled version of O-BEE-COL. The same compari-
son has been made also for the versions where the two other operators have been
disabled (7th and 8th variants), and it is shown in the second plot on the left
of the figure. Looking both plots becomes very clear as the developed optimized
version to equality of variant outperforms significantly the original one. The last
two plots in Fig. 3 show respectively the analysis conducted when we turn off the
temperature mechanism (penultimate plot), and SmartSwap mutation operator
(last plot). The role played by the optimized GPX is clearly evident even in
these plots. In particular, disabling the Temperature mechanism or SmartSwap
operator, O-BEE-COL with the original version of GPX is not able to achieve a
coloring with less than 25 colors; whilst with the designed GPX version O-BEE-
COL performs better decreasing the colors number in average to k̂ = 17.8 (with
only temperature enabled) and k̂ = 15.9 (with only mutation operator enabled).
Finally in Fig. 4 we show the improvements produced, in using the temperature
mechanism, which controls dynamically the values of some parameters. In the
left plot of Fig. 4 is plotted the difference concerning of O-BEE-COL with, and
without the temperature mechanism. In both variants the algorithm achieves
successfully the chromatic number, χ = 15 (see Table 1). However, whilst the
fully enabled version is able to achieved always the chromatic number (variant
1), when this operator is turned off (variant 3) the algorithm manages to achieve
the best coloring only in 40% of the executions. In middle plot the two differ-
ent versions of the algorithm make no use of the mutation operator. When the
temperature mechanism is enabled (5th variant) the algorithm finds the optimal
coloring in one out of two cases (k̂ = 15.9), whilst the other combination (7th
variant) does not manage to do better than a 17-coloring (k̂ = 19.9). The right
plot shows the behavior of the algorithm using the classical version of GPX (2nd
variant vs. 4th). Despite the poor performances, O-BEE-COL obtains a slightly
better result when using the temperature mechanism (variant 2). In the overall,
inspecting all combinations in Table 1 is possible to claim that the Temperature
mechanism developed is the one that gives a positive greater contribution with
respect to SmartSwap mutation operator.

Time-To-Target plots [1] have been used for studying the running time of
O-BEE-COL, comparing the empirical and theoretical distributions. They rep-
resent a classical tool for characterizing the running time of stochastic algorithms
in order to solve a specific optimization problem. In particular, we have used a
Perl program proposed in [2], which display the probability that an algorithm will
find a solution as good as a target within a given running time. Through this pro-
gram two kinds of plots are produced: QQ−plot with superimposed variability
information, and superimposed empirical and theoretical distributions. This kind
of analysis has been conducted on the instances School1 and DSJC250.1, per-
forming 200 independent runs for each instance. The produced plots are shown
in Fig. 5 (1st and 3rd plots for the first instance; 2nd and 4th plots for the last).



250 P. Consoli and M. Pavone

Fig. 2. Experimental analysis on the benefits provided by SmartSwap mutation
operator.

Fig. 3. Experimental analysis on the benefits provided by optimized GPX.

The plots show how for O-BEE-COL the empirical curve perfectly fits the theo-
retical one in both instances, except for very few worst cases (first two plots on
the left). In the quantile-quantile plots, the O-BEE-COL results are in most of
the cases equal to the theoretical ones, albeit a few less in DSJC250.1 instance.
This is explained because this last instance is more complex than the other one.

Experimental Comparisons. In order to evaluate the overall performances
of O-BEE-COL, we have performed several experiments using the most known
instances of the DIMACS benchmark [22]. The results in term of coloring found,
SR obtained and AES needed are showed in Table 2. In this table we report
for each instance its complexity characteristics; the chromatic number (χ); the
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Fig. 4. Experimental analysis on the benefits provided by Temperature mechanism.

Fig. 5. Time to target plots for O-BEE-COL. The values have been obtained over 200
executions of the algorithm, respectively on the instance School1 (1st and 3rd) and
DSJC250.1 (2nd and 4th).

best coloring known in literature (k∗); the best colors number found by O-BEE-
COL (k), with SR and AES obtained. Each experiment has been performed
on 10 independent runs. Inspecting such table, O-BEE-COL performs well on
all instances queen and school finding the optimal coloring with a success rate
of 100%. On the class of the instances DSJC, instead, O-BEE-COL seems to
have more difficulty in getting the best coloring known, except for DSJC125.1,
where it manages to find the optimal solution in only 5 tests out of 10, and for
DSJC125.5 where only in one case out of 10 the algorithm finds a 17-coloring.
On the instances DSJC250.1 and DSJC205.5, instead, the algorithm finds as
best solution a coloring with only one color in more; whilst for the instances
DSJC125.9 and DSJC250.9 the difference with the best coloring known is of 2
and 3 colors respectively. The same performances are achieved also in le450 15
family, where O-BEE-COL achieves the chromatic number in le450 15c and
le450 15d instances, whilst for the other two its solution differs from the chro-
matic number only for one color in more. Finally, in flat300 20 and flat300 26
O-BEE-COL founds the chromatic number producing a success rate of 100 %,
whilst in the last instance, flat300 28, it reaches a 31-coloring in 2 cases out of
10, where the chromatic number is however 28.

In Table 3 we present a comparison of O-BEE-COL with 6 different algo-
rithms for the graph coloring problem, 4 of which nature-inspired: HPSO [30];
HCA [15]; GPB [20]; VNS [4]; VSS [21]; HANTCOL [13] (see the relative publica-
tions for major details). The best results are highlighted in boldface. Inspecting
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Table 2. Experimental results on DIMACS benchmark instances [11,22].

Graph | V | | E | χ k∗ k SR AES

DSJC125.1 125 736 5 5 5 50 % 528, 715.6

DSJC125.5 125 3, 891 12 17 17 10 % 464, 633.0

DSJC125.9 125 6, 961 30 42 44 100 % 29, 817.4

DSJC250.1 250 3, 218 8 8 9 100 % 252, 538.7

DSJC250.5 250 15, 668 13 28 29 100 % 471, 823.0

DSJC250.9 250 27, 897 35 69 73 90 % 24, 403, 325.4

le450 15a 450 8, 168 15 15 16 100 % 17, 678, 139.9

le450 15b 450 8, 169 15 15 16 100 % 6, 188, 035.6

le450 15c 450 16, 680 15 15 15 100 % 5, 972, 925.6

le450 15d 450 16, 750 15 15 15 80 % 18, 630, 401.3

flat300 20 300 21, 375 20 20 20 100 % 4, 800

flat300 26 300 21, 633 26 26 26 100 % 72.9K

flat300 28 300 21, 695 28 28 31 20 % 5.6M

Queen5 5 25 320 5 5 5 100 % 1.9

Queen6 6 36 580 7 7 7 100 % 1, 741.66

Queen7 7 49 952 7 7 7 100 % 6, 636.84

Queen8 8 64 1, 456 9 9 9 100 % 22, 107.25

Queen8 12 96 2, 736 12 12 12 100 % 1, 212, 000.35

Queen9 9 81 1, 056 10 10 10 100 % 31, 243.28

School1.nsh 352 14, 612 14 14 14 100 % 1, 703.28

School1 385 19, 095 14 14 14 100 % 821.5

this table is possible to see how the performances of O-BEE-COL are competitive
with the compared algorithms, achieving in all tested instances the best color-
ing except in DSJC250.5. Moreover, albeit on flat300 28 the VSS algorithm has
found the lower number of colors, O-BEE-COL achieves yet the same results as
all others.

In Table 4, O-BEE-COL is compared with other 10 algorithms: IMMALG
[11,28], MACOL [33], IGrAl [7], ACS [9], FCNS [29], IPM [14], ABAC [6],
LAVCA, TPA and AMACOL [32]. The comparison has been performed with
respect to the best coloring found. We have highlighted in boldface the colors
found by O-BEE-COL, which are better or equal to the ones compared. Due
a limit space, we refer the reader to each publication for more details on the
algorithms. Also on these experiments is possible to see how O-BEE-COL is
comparable with the state-of-the-art achieving the best coloring in 14 instances
over 21. In the remaining instances nevertheless it isn’t the worst.
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Table 3. O-BEE-COL versus six different algorithms for graph coloring problem, with
respect the best coloring found. The best results are highlighted in boldface.

Graph O-BEE-COL HPSO HCA GPB VNS VSS HANTCOL

DSJC250.5 29 28 28 28 - - 28

flat300 26 26 26 - - 31 - -

flat300 28 31 31 31 31 31 29 31

le450 15c 15 15 15 15 15 15 15

le450 15d 15 15 - - 15 15 -

Table 4. O-BEE-COL versus state-of-the-art for graph coloring problem, with respect
the best coloring found. The best or equal coloring obtained by O-BEE-COL is high-
lighted in boldface.

Graph O-BEE-COL IMMALG MACOL IGrAl ACS FCNS IPM ABAC LAVCA TPA AMACOL

DSJC125.1 5 5 5 5 5 5 6 5 5 5 5

DSJC125.5 17 18 17 17 17 18 19 17 17 19 17

DSJC125.9 44 44 44 43 44 44 45 44 44 44 44

DSJC250.1 9 9 8 8 8 − 10 8 8 8 8

DSJC250.5 29 28 28 29 29 − − 29 28 30 28

DSJC250.9 73 74 72 72 73 − 75 72 72 72 72

flat300 20 0 20 20 20 − 20 − − − − − −
flat300 26 0 26 27 26 − 32 − − − − − −
flat300 28 0 31 32 29 − 32 − − − − − −
le450 15a 16 15 15 15 16 − − 15 15 15 15

le450 15b 16 15 15 15 16 − 17 15 15 15 15

le450 15c 15 15 15 16 15 − 17 15 15 15 15

le450 15d 15 16 15 16 15 − − 15 15 15 15

Queen5 5 5 5 − 5 − − − 5 − − −
Queen6 6 7 7 − 7 7 − − 7 − − −
Queen7 7 7 7 − 7 7 − − 7 − − −
Queen8 8 9 9 − 9 9 9 9 9 − − −
Queen8 12 12 12 − 12 12 − − 12 − − −
Queen9 9 10 10 − 10 10 10 10 10 − − −
school1 nsh 14 15 14 14 14 − − 14 − − −
School1 14 14 14 14 14 − − 14 − − −

4 Conclusion

In this research paper we have developed a new Artificial Bee Colony heuristic,
called O-BEE-COL, for the graph coloring problem. The novelties introduced in
O-BEE-COL are basically: (1) SmartSwap mutation, which attempts to reduce
the number of colorclasses, working primarily on the troublesome vertices; (2)
optimized version of GPX, which works as multi-parents operator, forcing the
transfer of the best colorclasses to the offsprings; and a (3) Temperature mech-
anism, which has the aim to dynamically handle some parameters.

Many experiments have been performed with the primary aim to evaluate
the contribution, and benefits given by these new operators. Thus, all possi-
ble combinations of these three operators have been taken into account, and
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have been tested; the obtained results prove us how inhibiting one of them the
overall performances are negatively affected. In particular, we show, via figures,
the significant improvements produced by the optimized version of GPX, and
as the Temperature mechanism is the one that gives a greater positive con-
tribution, respect to the SmartSwap operator. Via Time-To-Target plots are
also analysed the running times of O-BEE-COL, comparing the empirical and
theoretical curves. Finally, a comparison with the state-of-the-art has been con-
ducted as well, in order to evaluate the robustness and efficiency of O-BEE-COL.
Inspecting all results, and comparisons O-BEE-COL shows efficiency; robustness;
and very competitive performances, achieving in the most of the instances the
chromatic number, or the best coloring known.
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