
Pierrick Legrand · Marc-Michel Corsini
Jin-Kao Hao · Nicolas Monmarché
Evelyne Lutton · Marc Schoenauer (Eds.)

 123

LN
CS

 8
75

2

11th International Conference, Evolution Artificielle, EA 2013
Bordeaux, France, October 21–23, 2013
Revised Selected Papers

Artificial Evolution



Lecture Notes in Computer Science 8752

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Pierrick Legrand • Marc-Michel Corsini
Jin-Kao Hao • Nicolas Monmarché
Evelyne Lutton • Marc Schoenauer (Eds.)

Artificial Evolution
11th International Conference,
Evolution Artificielle, EA 2013
Bordeaux, France, October 21–23, 2013
Revised Selected Papers

123



Editors
Pierrick Legrand
INRIA Bordeaux sud-ouest, Equipe CQFD,
Institut de Mathématiques de Bordeaux

(IMB), UMR CNRS 5251,
Université de Bordeaux,
3ter place de la victoire, 33076 Bordeaux,
France

Marc-Michel Corsini
Université de Bordeaux,
3ter place de la victoire, 33076 Bordeaux,
France

Jin-Kao Hao
LERIA,
Université d’Angers,
2 Bd Lavoisier, 49045 Angers Cedex 01,
France

Nicolas Monmarché
Laboratoire d’Informatique de

l’Université de Tours,
Ecole Polytechnique de l’Université

de Tours,
64 avenue Jean Portalis, 37200 Tours,
France

Evelyne Lutton
INRA, UMR 782 GMPA,
1 Av. Brétignière,
78850, Thirverval-Grignon,
France

Marc Schoenauer
Equipe TAO, INRIA Futurs, LRI,
Université de Paris-Sud,
Bât 490, 91405 Orsay cedex,
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-319-11682-2 ISBN 978-3-319-11683-9 (eBook)
DOI 10.1007/978-3-319-11683-9

Library of Congress Control Number: 2014953268

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Artificial Evolution 2013, Presented by W.B. Langdon

It was my pleasure, as an invited speaker at Arti-
ficial Evolution 2013 Bordeaux, to be invited by
Pierrick Legrand to contribute this view of the
conference. First, let me thank Pierrick and the
whole EA 2013 conference in general for their
kind invitation and wonderful hospitality.
Although I saw most of the posters and presenta-
tions, it is impossible to treat them all fairly, for
that, I must direct you to the individual papers,
instead this will be a personal view

For me the conference started in bright sun-
shine, with registration in the newly completed
Inria building in Bordeaux. All the sessions were
held in the Ada Lovelace room. The first session
concerned solving discrete problems with presen-
tations by Rym Nesrine Guibadj on a delivery van
route application and then Olivier Gach on
detecting clusters in potentially small world

neighbor connectivity graphs. During the conference several presenters said they used
Pascal which provoked discussion about its merits versus the wisdom of more main-
stream languages such as C and Java. The second part of the session contained pre-
sentations by Ines Sghir and Fazia Aiboud. Although they continued the discrete
mathematics theme, Fazia’s talk on cellular automata was motivated by the desire to
model living cells within human organs.

Arnaud Liefooghe’s presentation continued the discrete mathematics theme from the
first session and included enumerating many benchmarks looking for features to
explain their difficulty for multi-objective solvers. Sandra Astete Morales showed new
proofs for the speed at which EAs will approach an optimum in continuous problems
where in the neighborhood of the optimum the objective function falls as the square of
the distance from it. Notice that finding the exact optimum is hard without additional
assumptions as the guidance the objective function provides dies toward zero as the
optimum is approached. Optima of continuous problems can often be represented by
the first few terms of a Taylor expansion and thus often have this sphere x2-like
property. I wondered if tighter bounds might be found by using the fact that Sandra’s
theorems assumed Gaussian noise, whose variances can be simply summed. Charlie
Vanaret’s Charibde program married differential evolution with branch and bound to
manage the problem in applications with many dimensions that branch and bound
potentially needs to keep track of an exponentially large number of options which must
still be explored.



The final session on Monday returned to evolving solutions for applications. Hoang
Luong presented his work on using genetic algorithms to optimally plan extensions to
the Dutch electricity distribution network (10–50 KV) on the assumption that demand
for electricity will continue to grow in parts of the Netherlands. Then, Laetitia Jourdan
presented work by Khedidja Seridi on using ParadisEO to try to attribute diseases,
particularly human diseases, to genetic mutations (SNPs).

In the evening, Inria and the conference were opened to both the conference
attendees and the members of the public for an exhibition of more than 30 evolved art
pieces by 13 international artists. Many of these were visually stunning colored pictures
but they also included fashionable textiles and tapestries. The exhibit commenced with
Emmanuel Cayla elaborating on how he used the Evelyne Lutton’s ArtiE-Fract soft-
ware to interactively evolve mathematical fractal patterns and then used the tool to
build on these to give vent to his artistic desires. Evelyne Lutton provided a real-time
translation from French to English.

Tuesday morning we started with a nice presentation by Federic Kruger on using
computer graphics hardware (GPU) within the EASEA platform to evolve predictions
for electricity demand in Strasbourg. This was closely followed by Alberto Tonda’s
description of using evolutionary computation and user interaction to control which
variables cause others (the direction of inference) in Bayesian networks. Alberto’s
target was Bayesian networks for use in the French food industry, particularly the
creation of learning networks for cheese ripening and biscuit baking.

Prof. Jean Louis Deneubourg from the Université libre de Bruxelles’ unit of social
ecology (USE) gave a wonderful invited talk including the mathematical scaling laws
observed in social animals, particularly cockroaches.

The poster session included new nature inspired algorithms and new approaches to
new delivery van scheduling problems.

After lunch we were treated to Christian Blum’s description of using ant colony
optimization (ACO) in combination with beam search applied to the problem of finding
the longest repetition-free subsequence in Bioinformatics strings.

No trip to Bordeaux would be complete without a visit to the wine country. Tuesday
evening we were whisked through the Bordeaux region to St. Emillion. First, a very
informative tour of the town itself, in which our guide pointed out the ancient forti-
fication constructed under the orders of John “Lackland” (known in England as King
John, 1166–1216) who then, but not for much longer, ruled this part of France. Since
St. Emillion was claimed both by the King of France and that of England, the people of
Saint Emillion tactfully refer to it as “the King’s tower” without saying which king.
After an unnoticed incident with the first bus, we moved seamlessly in a second to a
nearby chateau (Chateau de Sarpe) and its vineyards. Arriving before sunset to see the
same we received a very informative and entertaining description of its recent history
and viticulture before retiring to its ground level cellars to see both the current and
aging vintages and hear more of their production. Many estimates were made of the
value of the fluid concealed within the oaken barrels before ample opportunity to
sample the same stiffened with numerous fine French cheeses and preserved meats.

Wednesday morning, wishing to refresh my presentation slides, I was late and so
have little report on the second theory session. Nonetheless after it, in the genetic
programming session, Nuno Lourenco gave a nice discursive talk on using an
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evolutionary algorithm, grammatical evolution, to evolve the selection step in another
evolutionary algorithm. He applied the resulting hyper-heuristic to knapsack problems
and also described extensions he made to the traditional Backus-Naur Form (BNF)
grammar used in GE.

After my talk, we proceeded on foot happily as usual to the nearby Brasserie “Le
7eme Art” for lunch. During dessert the heavens opened and we were treated to a fine
display of lightning with thunder accompaniment. As might be guessed no one was
keen to run back to the Inria building. Instead my suggestion that we put the show on in
the restaurant was met with approval by all1 except, surprisingly, by Alina Mereuta,
who was to be the first speaker. Due to heroic efforts by Pierrick, Evelyne, Laetitia
Grimaldi, and Ingrid Rochel and the Inria EA 2013 conference souvenir umbrellas we
did indeed return to Inria and Alina extracted her revenge. Nonetheless, her talk on
using CMA-ES in real time to optimally rebalance the colours used on web pages to
best alleviate the effects of color blindness was well received and provoked a lively
discussion. Which included many suggestions such as: caching answers for the same or
similar pages; treating CMA as an anytime algorithm and updating the display each
time it finds a better answer, rather than waiting for it to find the optimal answer; and
allowing the user to instantly undo changes to prevent other people catching sight of his
screen and then re-apply changes after the boss has left the room. She was followed by
Juan Carlos Rivera who described work on emergency management, especially
scheduling disaster relief supplies.

The conference was concluded by Alejandro Lopez Rincon describing inferring
problems with the human heart from skin voltage measurements taken by an array of
electrical contacts on the chest and back and Piero Consoli and Mario Pavone’s paper
on partitioning networks.

November 2013 W.B. Langdon

1 Who have given their presentations.
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Preface

This LNCS volume includes the best papers presented at the 11th Biennial International
Conference on Artificial Evolution, EA2 2013, held in Bordeaux (France). Previous EA
editions took place in Angers (2011), Strasbourg (2009), Tours (2007), Lille (2005),
Marseille (2003), Le Creusot (2001), Dunkerque (1999), Nimes (1997), Brest (1995),
and Toulouse (1994).

Authors had been invited to present original work relevant to Artificial Evolution,
including, but not limited to: Evolutionary Computation, Evolutionary Optimization,
Co-evolution, Artificial Life, Population Dynamics, Theory, Algorithmics and Mod-
eling, Implementations, Application of Evolutionary Paradigms to the Real World
(industry, biosciences, …), other Biologically Inspired Paradigms (Swarm, Artificial
Ants, Artificial Immune Systems, Cultural Algorithms…), Memetic Algorithms, Multi-
Objective Optimization, Constraint Handling, Parallel Algorithms, Dynamic Optimi-
zation, Machine Learning, and hybridization with other soft computing techniques.

Each submitted paper was reviewed by four members of the International Program
Committee. Among the 39 submissions received, 20 papers were selected for oral
presentation and 2 other papers for poster presentation. For the previous editions, a
selection of the best papers which were presented at the conference and further revised
were published (see LNCS volumes 1063, 1363, 1829, 2310, 2936, 3871, 4926, 5975,
and 7401). Exceptionally, for this edition, the high quality of the 20 papers selected for
the oral presentation led us to include a revised version of all these paper in this volume
of Springer’s LNCS series.

We would like to express our sincere gratitude to our invited speakers: Jean-Louis
Deneubourg and William Langdon.

The success of the conference resulted from the input of many people to whom
I would like to express my appreciation: The members of Program Committee and the
secondary reviewers for their careful reviews that ensure the quality of the selected
papers and of the conference. The members of the Organizing Committee for their
efficient work and dedication assisted by Laetitia Grimaldi, Nicolas Jahier, Cathy
Metivier, and Ingrid Rochel. The members of the Steering Committee for their valuable
assistance. Aurélien Dumez for his support on the administration of the website.
Mélanie Toto for the design and the visual identity of the conference. Marc Schoenauer
for his support with the MyReview system. Laetitia Jourdan, Lola Kovacic, and Marion
Bachelet for the publicity. Marc-Michel Corsini for the edition of the proceedings.
Sebastien Verel for the registrations. Evelyne Lutton and Nicolas Monmarché for the
organization of the Side Event: “Art and Artificial Evolution,” and the artists. Laurent
Vezard for his support.

2 As for previous editions of the conference, the EA acronym is based on the original French name
“Évolution Artificielle.”



I take this opportunity to thank the different partners whose financial and material
support contributed to the organization of the conference: Université Bordeaux 1,
Université Bordeaux Segalen, Région Aquitaine, La CUB, CNRS, IMB, Inria, UFR
Sciences et Modélisation.

Last but not least, I thank all the authors who submitted their research papers to the
conference, and the authors of accepted papers who attended the conference to present
their work. Thank you all.

October 2013 Pierrick Legrand
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Invited Speakers

Jean Louis Deneubourg, Université libre de Bruxelles

Exploring animal collective behaviors

Jean-Louis Deneubourg is a FNRS researcher and the director of the Social Ecology
Department (Faculté des Sciences ULB). He is a member of the Royal Academy of
Belgium. His research activities are oriented toward collectives behaviors in animal
societies and artificial systems. He has written 300 publications on these topics.

William B. Langdon, University College London, Department of Computer Science

Genetic Improvement Programming

Bill Langdon gained his PhD at Univer-
sity College, London after a career in
industrial control software and IT con-
sulting. He has held positions in univer-
sities and research institutes both in
England and overseas. Recently, he has
applied genetic programming to optimiz-
ing software. He has written three books
on genetic programming, including A
Field Guide to Genetic Programming
and maintains the Genetic Programming
Bibliography.
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Side Event

Evolutionary Artworks Exhibition – October 21, 2013, 17h45

This exhibition, open to the public, displayed a series of artworks created by artists
and researchers using approaches based on artificial evolution.
The “biodiversity” of evo-artists was illustrated by works of a dozen different authors.
Some of them were on place for discussions, and an interactive design show was
presented by the artist Emmanuel Cayla. An electronic artworks catalog is available
on the conference website.
http://ea2013.inria.fr//EA2013-catalogue_side-event_A3.pdf

Organization and Contact:
– Evelyne Lutton (evelyne.lutton@grignon.inra.fr)
– Nicolas Monmarché (nicolas.monmarche@univ-tours.fr)
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What Makes an Instance Difficult for Black-Box
0–1 Evolutionary Multiobjective Optimizers?

Arnaud Liefooghe1,2(B), Sébastien Verel3, Hernán Aguirre4,
and Kiyoshi Tanaka4

1 LIFL (UMR CNRS 8022), Université Lille 1,
Villeneuve d’Ascq, France

2 Dolphin, Inria Lille-Nord Europe, Villeneuve d’Ascq, France
arnaud.liefooghe@univ-lille1.fr

3 LISIC, Université du Littoral Côte d’Opale, Calais, France
verel@lisic.univ-littoral.fr

4 Faculty of Engineering, Shinshu University, Nagano, Japan
{ahernan,ktanaka}@shinshu-u.ac.jp

Abstract. This paper investigates the correlation between the charac-
teristics extracted from the problem instance and the performance of a
simple evolutionary multiobjective optimization algorithm. First, a num-
ber of features are identified and measured on a large set of enumerable
multiobjective NK-landscapes with objective correlation. A correlation
analysis is conducted between those attributes, including low-level fea-
tures extracted from the problem input data as well as high-level features
extracted from the Pareto set, the Pareto graph and the fitness land-
scape. Second, we experimentally analyze the (estimated) running time
of the global SEMO algorithm to identify a (1+ ε)-approximation of the
Pareto set. By putting this performance measure in relation with prob-
lem instance features, we are able to explain the difficulties encountered
by the algorithm with respect to the main instance characteristics.

1 Introduction

In single-objective black-box combinatorial optimization, fitness landscape analy-
sis aims at apprehending the relation between the geometry of a problem instance
and the dynamics of randomized search algorithms. Understanding the main
problem-related features allows to explain the behavior and the performance
of such algorithms, the ultimate goal being to predict this performance and
adapt the algorithm setting to the instance being solved. Recently, the perfor-
mance of single-objective randomized search algorithms has been correlated to
fitness landscape features [2]. In this paper, we propose a general methodology
to analyze the correlation between problem features and algorithm performance
in black-box 0–1 evolutionary multiobjective optimization. To the best of our
knowledge, this is the first time that such an analysis is conducted in multiob-
jective optimization.

c© Springer International Publishing Switzerland 2014
P. Legrand et al. (Eds.): EA 2013, LNCS 8752, pp. 3–15, 2014.
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We first identify a number of existing and original multiobjective problem
features. They include low-level features extracted from the problem input data
like variable correlation, objective correlation, and objective space dimension,
as well as high-level features from the Pareto set, the Pareto graph and the
ruggedness and multimodality of the fitness landscape. Some of them are here
proposed for the first time. They consist of a simple autocorrelation function,
based on a local hypervolume measure, and allowing to estimate the ruggedness
of the fitness landscape. We report all these measures on a large number of
enumerable multiobjective NK-landscapes with objective correlation (ρMNK-
landscapes), together with a correlation analysis between them.

Next, we conduct an experimental analysis on the correlation between
instance features and algorithm performance. To do so, we investigate the esti-
mated running time of a simple evolutionary multiobjective optimization algo-
rithm, namely global SEMO [7], to identify a (1 + ε)-approximation of the
Pareto set. In particular, the original hypervolume-based autocorrelation func-
tions appear to be the features with the highest correlation with the algorithm
performance. Overall, the running time of the algorithm is impacted by each
of the identified multiobjective problem feature. Our analysis shows their rel-
ative importance on the algorithm efficiency. Moreover, taking the features all
together allows to better explain the dynamics of randomized search algorithms.

The paper is organized as follows. Section 2 details the background infor-
mation related to fitness landscape analysis, multiobjective optimization and
ρMNK-landscapes. In Sect. 3, low-level and high-level instance features are iden-
tified, and quantitative results, together with a correlation analysis, are reported
for ρMNK-landscapes. Section 4 presents the experimental setup of global SEMO
and discusses the correlation between the problem features and the estimated
running time of global SEMO. Section 5 concludes the paper and discusses fur-
ther research.

2 Preliminaries

2.1 Fitness Landscape Analysis

In single-objective optimization, fitness landscape analysis allows to study the
topology of a combinatorial optimization problem [13], by gathering important
information such as ruggedness or multimodality. A fitness landscape is defined
by a triplet (X,N , φ), where X is a set of admissible solutions (the search space),
N : X → 2X is a neighborhood relation, and φ : X → IR is a (scalar) fitness
function, here assumed to be maximized. A walk over the fitness landscape is
an ordered sequence 〈x0, x1, . . . , x�〉 of solutions from the search space such that
x0 ∈ X, and xt ∈ N (xt−1) for all t ∈ {1, . . . , �}.

An adaptive walk is a walk such that for all t ∈ {1, . . . , �}, φ(xt) > φ(xt−1), as
performed by a conventional hill-climbing algorithm. The number of iterations,
or steps, of the hill-climbing algorithm is the length of the adaptive walk. This
length is a good estimator of the average diameter of the local optima basins
of attraction, characterizing a problem instance multimodality. The larger the
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length, the larger the basin diameter. This allows to estimate the number of local
optima when the whole search space cannot be enumerated exhaustively.

Let 〈x0, x1, . . .〉 be an infinite random walk over the search space. The auto-
correlation function and the correlation length of such a random walk allow to
measure the ruggedness of a fitness landscape [13]. The random walk autocorre-
lation function r : N → IR of a (scalar) fitness function φ is defined as follows.

r(k) =
E[φ(xt) · φ(xt+k)] − E[φ(xt)] · E[φ(xt+k)]

Var(φ(xt))
(1)

where E[φ(xt)] and Var(φ(xt)) are the expected value and the variance of φ(xt),
respectively. The autocorrelation coefficients r(k) can be estimated within a
finite random walk 〈x0, x1, . . . , x�〉 of length �.

r̂(k) =
∑�−k

t=1 (φ(xt) − φ̄) · (φ(xt+k) − φ̄)
∑�

t=1(φ(xt) − φ̄)2
(2)

where φ̄ = 1
�

∑�
t=1 φ(xt), and � � 0. The estimation error diminishes with the

walk length �. The correlation length τ measures how the autocorrelation func-
tion decreases. This characterizes the ruggedness of the landscape: the larger the
correlation length, the smoother the landscape. Following [13], we define the cor-
relation length by τ = − 1

ln(r(1)) , making the assumption that the autocorrelation
function decreases exponentially.

2.2 Multiobjective Optimization

A multiobjective optimization problem can be defined by an objective vector
function f = (f1, . . . , fM ) with M � 2 objective functions, and a set X of
feasible solutions in the decision space. In the combinatorial case, X is a discrete
set. Let Z = f(X) ⊆ IRM be the set of feasible outcome vectors in the objective
space. To each solution x ∈ X is assigned an objective vector z ∈ Z on the
basis of the vector function f : X → Z with z = f(x). The conventional Pareto
dominance relation is defined as follows. In a maximization context, an objective
vector z ∈ Z is dominated by an objective vector z′ ∈ Z, denoted by z ≺ z′, if
and only if ∀m ∈ {1, . . . , M}, zm � z′

m and ∃m ∈ {1, . . . , M} such that zm < z′
m.

By extension, a solution x ∈ X is dominated by a solution x′ ∈ X, denoted by
x ≺ x′, if and only if f(x) ≺ f(x′). A solution x� ∈ X is said to be Pareto
optimal (or efficient, non-dominated), if and only if there does not exist any
other solution x ∈ X such that x� ≺ x. The set of all Pareto optimal solutions
is called the Pareto set X� ⊆ X. Its mapping in the objective space is called
the Pareto front Z� ⊆ Z. One of the most challenging task in multiobjective
optimization is to identify a minimal complete Pareto set [3], i.e. a Pareto set
of minimal size, that is one Pareto optimal solution for each point from the
Pareto front.

However, in the combinatorial case, generating a complete Pareto set is often
infeasible for two main reasons [3]: (i) the number of Pareto optimal solutions is
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typically exponential in the size of the problem instance, and (ii) deciding if a
feasible solution belongs to the Pareto set may be NP-complete. Therefore, the
overall goal is often to identify a good Pareto set approximation. To this end,
heuristics in general, and evolutionary algorithms in particular, have received a
growing interest since the late eighties.

2.3 ρMNK-Landscapes

The family of ρMNK-landscapes constitutes a problem-independent model used
for constructing multiobjective multimodal landscapes with objective correla-
tion [12]. It extends single-objective NK-landscapes [6] and multiobjective NK-
landscapes with independent objective functions [1]. Feasible solutions are binary
strings of size N , i.e. the decision space is X = {0, 1}N . The parameter N refers
to the problem size (the bit-string length), and the parameter K to the number
of variables that influence a particular position from the bit-string (the epistatic
interactions). The objective vector function f = (f1, . . . , fm, . . . , fM ) is defined
as f : {0, 1}N → [0, 1)M . Each objective function fm is to be maximized and
can be formalized as follows.

fm(x) =
1
N

N∑

i=1

cm
i (xi, xi1 , . . . , xiK ),m ∈ {1, . . . ,M} (3)

where cm
i : {0, 1}K+1 → [0, 1) defines the multidimensional component function

associated with each variable xi, i ∈ {1, . . . , N}, and where K < N . By increas-
ing the number of variable interactions K from 0 to (N − 1), ρMNK-landscapes
can be gradually tuned from smooth to rugged. In this work, we set the posi-
tion of these epistatic interactions uniformly at random. The same epistatic
degree Km = K and the same epistatic interactions are used for all objectives
m ∈ {1, . . . , M}. Component values are uniformly distributed in the range [0, 1),
and follow a multivariate uniform distribution of dimension M , defined by a cor-
relation coefficient ρ > −1

M−1 , i.e. the same correlation ρ is defined between all
pairs of objective functions. As a consequence, it is very unlikely that the same
objective vector is assigned to two different solutions. The positive (respectively
negative) data correlation allows to decrease (respectively increases) the degree
of conflict between the objective function values very precisely [12]. An instance
generator and the problem instances under study in this paper can be found at
the following URL: http://mocobench.sf.net/.

In the following, we investigate ρMNK-landscapes with an epistatic degree
K ∈ {2, 4, 6, 8, 10}, an objective space dimension M ∈ {2, 3, 5}, and an objective
correlation ρ ∈ {−0.9,−0.7,−0.4,−0.2, 0.0, 0.2, 0.4, 0.7, 0.9} such that ρ > −1

M−1 .
The problem size is set to N = 18 in order to enumerate the search space
exhaustively. The search space size is then |X| = 218. 30 different landscapes,
independently generated at random, are considered for each parameter combi-
nation: ρ, M , and K. This leads to a total of 3300 problem instances.

http://mocobench.sf.net/
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3 Problem Features and Correlation Analysis

In this section, we identify a number of general-purpose features, either directly
extracted from the problem instance itself (low-level features), or computed from
the enumerated Pareto set and from the fitness landscape (high-level features).
Then, a correlation analysis is conducted on those features in order to highlight
the main similarities in characterizing the difficulties of a problem instance.

3.1 Low-Level Features from Problem Input Data

First, we consider some features related to the definition of ρMNK-landscapes.

Number of epistatic interactions (K): This gives the number of variable
correlations in the construction of ρMNK-landscapes. As will be detailed
later, despite the K-value can generally not be retrieved directly from an
unknown instance, it can be precisely estimated within some high-level fit-
ness landscape metrics described below.

Number of objective functions (M): This parameter represents the dimen-
sion of the objective space in the construction of ρMNK-landscapes.

Objective correlation (ρ): This parameter allows to tune the correlation
between the objective function values in ρMNK-landscapes. In our analy-
sis, the objective correlation is the same between all pairs of objectives.

3.2 High-Level Features from the Pareto Set

The high-level fitness landscape metrics considered in our analysis are described
below. We start with some general features related to the Pareto set.

Number of Pareto optimal solutions (npo): The number of Pareto optimal
solutions enumerated in the instance under consideration simply corresponds
to the cardinality of the (exact) Pareto set, i.e. npo = |X�|. The approx-
imation set manipulated by any EMO algorithm is directly related to the
cardinality of the Pareto optimal set. For ρMNK-landscapes, the number
of Pareto optimal solutions typically grows exponentially with the problem
size, the number of objectives and with the degree of conflict between the
objectives [12].

Hypervolume (hv): The hypervolume value of a the Pareto set X� gives the
portion of the objective space that is dominated by X� [14]. We take the
origin as a reference point z� = (0.0, . . . , 0.0).

Average distance between Pareto optimal solutions (avgd): This metric
corresponds to the average distance, in terms of Hamming distance, between
any pair of Pareto optimal solutions.

Maximum distance between Pareto optimal solutions (maxd): This met-
ric is the maximum distance between two Pareto optimal solutions in terms
of Hamming distance.
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3.3 High-Level Features from the Pareto Graph

In the following, we describe some high-level features related to the connectedness
of the Pareto set [4]. If all Pareto optimal solutions are connected with respect
to a given neighborhood structure, the Pareto set is said to be connected, and
local search algorithms would be able to identify many non-dominated solutions
by starting with at least one Pareto optimal solution; see e.g. [9,10]. We follow
the definition of k-Pareto graph from [9]. The k-Pareto graph is defined as a
graph PGk = (V,E), where the set of vertices V contains all Pareto optimal
solutions, and there is an edge eij ∈ E between two nodes i and j if and only
if the shortest distance between solutions xi and xj ∈ X is below a bound k,
i.e. d(xi, xj) � k. The distance d(xi, xj) is taken as the Hamming distance for
ρMNK-landscapes. This corresponds to the bit-flip neighborhood operator. Some
connectedness-related high-level features under investigation are given below.

Number of connected components (nconnec): This metric gives the number
of connected components in the 1-Pareto graph, i.e. in PGk with k = 1.

Size of the largest connected component (lconnec): This corresponds to
the size of the largest connected component in the 1-Pareto graph PG1.

Minimum distance to be connected (kconnec): This measure corresponds
to the smallest distance k such that the k-Pareto graph is connected, i.e.
for all pairs of vertices xi, xj ∈ V in PGk, there exists and edge eij ∈ E.

3.4 High-Level Features from the Fitness Landscape

At last, we give some high-level metrics related to the number of local optima,
the length of adaptive walks, and the autocorrelation functions.

Number of Pareto local optima (nplo): A solution x ∈ X is a Pareto
local optimum with respect to a neighborhood structure N if there does not
exist any neighboring solution x′ ∈ N (x) such that x ≺ x′; see e.g. [11].
For ρMNK-landscapes, the neighborhood structure is taken as the 1-bit-flip,
which is directly related to a Hamming distance 1. This metric reports the
number of Pareto local optima enumerated on the ρMNK-landscape under
consideration.

Length of a Pareto-based adaptive walk (ladapt): We here compute the
length of adaptive walks by means of a very basic single solution-based
Pareto-based Hill-Climbing (PHC) algorithm. The PHC algorithm is ini-
tialized with a random solution. At each iteration, the current solution is
replaced by a random dominating neighboring solution. As a consequence,
PHC stops on a Pareto local optimum. The number of iterations, or steps,
of the PHC algorithm is the length of the Pareto-based adaptive walk. As
in the single-objective case, the number of Pareto local optima is expected
to increase exponentially when the adaptive length decreases for ρMNK-
landscapes [12].
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Fig. 1. Correlation matrix between all pairs of features. The feature names are reported
on the diagonal. For each pair of features, scatter plots and smoothing splines are dis-
played below the diagonal, and the corresponding correlation coefficients are reported
above the diagonal. The smoothing spline is a smoothing method that fits a smooth
curve to a set of noisy observations using a spline function. The correlation coefficient
is based on a Pearson product-moment correlation coefficient measuring the linear cor-
relation (dependence) between both features. Correlation coefficient values lie between
−1 (total negative correlation) and +1 (total positive correlation), while 0 means no
correlation.

Correlation length of solution hypervolume (corhv): The ruggedness is
here measured in terms of the autocorrelation of the hypervolume along a
random walk. As explained in Sect. 2.1, the correlation length τ measures
how the autocorrelation function, estimated with a random walk, decreases.
The autocorrelation coefficients are here computed with the following scalar
fitness function φ : X → IR: φ(x) = hv({x}), where hv({x}) is the hyper-
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volume of solution x ∈ X, the reference point being set to the origin. The
random walk length is set to � = 104, and the neighborhood is the 1-bit-flip.

Correlation length of local hypervolume (corlhv): This metric is similar
to the previous one, except that the fitness function is here based on a local
hypervolume measure. The local hypervolume is the portion of the objective
space covered by non-dominated neighboring solutions, i.e. for all x ∈ X,
φ(x) = hv(N (x) ∪ {x}). Similarly to corhv, the random walk length is set
to � = 104, and the neighborhood operator N is the 1-bit-flip.

3.5 Correlation Analysis

1 2 3 4 5 6 7

0
2

4
6

8
10

(beta_1 x M) + (beta_2 x rho) + e

lo
g(

np
o)

Fig. 2. Scatter plot of the
linear regression model
log(npo) = β1M + β2ρ + e, with
β1 = 1.30567, β2 = −2.87688,
and e = 0.27735. Residual
standard error: 1.037 on 3297
degrees of freedom, multiple
R-squared: 0.7629, adjusted
R-squared: 0.7627, F-statistic:
5303 on 2 and 3297 DF, p-value:
< 2.2e − 16.

The correlation matrix between each pair of fea-
tures is reported in Fig. 1. First of all, when
taken independently, the number of objective
functions M and the objective correlation ρ are
both moderately correlated to the cardinality of
the Pareto set npo (the absolute correlation coef-
ficient is around 0.5 in both cases). Surprisingly,
the objective space dimension does not explain
by itself the large amount of non-dominated
solutions found in many-objective optimization.
As pointed out in [12], this should be put in
relation with the degree of conflicts between the
objective function values. Indeed, as shown in
Fig. 2, it is easy to build a simple multi-linear
regression model based on M and ρ to pre-
dict the value of npo with a very high precision
(resulting in a correlation coefficient of 0.87, and
explaining 76% of the variance). This highlights
that the impact of many-objective fitness land-
scapes on the search process cannot be analyzed
properly without taking the objective correlation into account.

Interestingly, other important remarks can be extracted from the figure. With
respect to the Pareto set, the hypervolume value increases with the objective
space dimension. Moreover, and unsurprisingly, the Pareto set size and the size
of the largest connected component from the Pareto graph are highly correlated.
So are the maximum distance between Pareto optimal solutions and the mini-
mum distance for the Pareto set to be connected. As also reported in [12], there
is a high correlation between the number of Pareto optimal solutions npo and
of Pareto local optima nplo. More importantly, the number of Pareto local
optima nplo can be precisely estimated with the length of a Pareto-based adap-
tive walk ladapt (the absolute correlation coefficient between log(nplo) and
ladapt is 1). As a consequence, this allows to estimate the size of the Pareto
set as well. At last, the number of epistatic interactions (decision variable corre-
lations) K can be estimated with hypervolume-based autocorrelation functions
along a random walk corhv and corlhv. Since there is not much difference
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Algorithm 1. Pseudo-code of G-SEMO
Input: x0 ∈ X
Output: Archive A

1: A ← x0

2: loop
3: select x from A at random
4: create x′ by flipping each bit of x with a probability 1/N
5: A ← non-dominated solutions from A ∪ {x′}
6: end loop

between the correlations coefficients of both functions, the first one corhv should
preferably be considered due to its simplicity. Notice that a similar analysis
involving instances with the same number of objectives resulted in comparable
results.

4 Problem Features vs. Algorithm Performance

4.1 Experimental Setup

Global SEMO. Global SEMO (G-SEMO for short) [7] is a simple elitist
steady-state EMO algorithm for black-box 0–1 optimization problems dealing
with an arbitrary objective vector function defined as f : {0, 1}N → Z such
that Z ⊆ IRM , like ρMNK-landscapes. A pseudo-code is given in Algorithm 1.
It maintains an unbounded archive A of non-dominated solutions found so far.
The archive is initialized with one random solution from the search space. At
each iteration, one solution is chosen at random from the archive. Each bit of
this solution is independently flipped with a rate r = 1/N , and the obtained
solution is checked for insertion in the archive. Within such an independent bit-
flip mutation, any solution from the search space can potentially be reached by
applying the mutation operator to any arbitrary solution. In its general form, the
G-SEMO algorithm does not have any explicit stopping rule [7]. In this paper,
we are interested in its running time, in terms of a number of function evalua-
tions, until an (1 + ε)-approximation of the Pareto set has been identified and
is contained in the internal memory A of the algorithm, subject to a maximum
number of function evaluations.

Performance Evaluation. For any constant value ε � 0, the (multiplicative)
ε-dominance relation �ε can be defined as follows. For all z, z′ ∈ Z, z �ε z′ if
and only if zm · (1 + ε) � z′

m, ∀m ∈ {1, . . . ,M}. Similarly, for all x, x′ ∈ X,
x �ε x′ if and only if f(x) �ε f(x′). Let ε � 0. A set Xε ⊆ X is an (1 + ε)-
approximation of the Pareto set if and only if, for any solution x ∈ X, there is
one solution x′ ∈ Xε such that x �ε x′. This is equivalent of finding a Pareto set
approximation whose multiplicative epsilon quality indicator value with respect
to the exact Pareto set is (1+ ε), see e.g. [14]. Interestingly, under some general
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assumptions, there always exists an (1 + ε)-approximation, for any given ε � 0,
whose cardinality is both polynomial in the problem size and in 1/ε [8].

Following a conventional methodology from single-objective continuous black-
box optimization benchmarking [5], the expected number of function evaluations
to identify an (1 + ε)-approximation is chosen as a performance measure. How-
ever, as any EMO algorithm, G-SEMO can either succeed or fail to reach an
accuracy of ε in a single simulation run. In case of a success, the runtime is the
number of function evaluations until an (1+ε)-approximation was found. In case
of a failure, we simply restart the algorithm at random. We then obtain a “sim-
ulated runtime” [5] from a set of given trials of G-SEMO on a given instance.
Such a performance measure allows to take into account both the success rate
ps ∈ (0, 1] and the convergence speed of the G-SEMO algorithm. Indeed, after
(n − 1) failures, each one requiring Tf evaluations, and the final successful run
with Ts evaluations, the total runtime is T =

∑n−1
i=1 Tf + Ts. By taking the

expectation value and by considering that the probability of success after (n−1)
failures follows a Bernoulli distribution of parameter ps, we have:

E[T ] =
(

1 − ps

ps

)

E[Tf ] + E[Ts] (4)

In our case, the success rate ps is estimated with the ratio of successful runs over
the total number of executions (p̂s), the expected runtime for unsuccessful runs
E[Tf ] is set to a constant function evaluation limit Tmax, and the expected run-
time for successful runs E[Ts] is estimated with the average number of function
evaluations performed by successful runs.

ert =
(

1 − p̂s

p̂s

)

Tmax +
1

Ns

Ns∑

i=1

Ti (5)

where Ns is the number of successful runs, and Ti is the number of evaluations
required for successful run i. For more details, we refer to [5].

Parameter Setting. In our analysis, we set ε = 0.1. The time limit is set
to Tmax = 2N/10 < 26215 function evaluations without identifying an (1 + ε)-
approximation. The G-SEMO algorithm is executed 100 times per instance. For
a given instance, the success rate and the expected number of evaluations for
successful runs are estimated from those 100 executions. However, let us note
that G-SEMO was not able to identify a (1 + ε)-approximation set for any of
the runs on one instance with M = 3, ρ = 0.2 and K = 10, one instance with
M = 3, ρ = 0.4 and K = 10, ten instances with M = 5, ρ = 0.2 and K = 10,
six instances with M = 5, ρ = 0.4 and K = 10, as well as two instances with
M = 5, ρ = 0.7 and K = 10. Moreover, G-SEMO was not able to solve the
following instances due to an overload CPU resources available: M = 5 and
ρ ∈ {−0.2, 0.0}. Overall, this represents a total amount of 2980 instances times
100 executions, that is 298000 simulation runs.
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Fig. 3. Correlation between log(ert) and each feature. The feature names are reported
on the first line, correlation coefficients are reported on the second line, and scatter
plots as well as smoothing splines are displayed on the third line.

4.2 Computational Results

The correlation between each feature and the running time of G-SEMO is
reported in Fig. 3. First, with respect to low-level features, there exists a high
correlation between log(ert) and K, which is the highest absolute correlation
observed on our data. However, surprisingly, the correlation of the performance
measure with M and ρ is not significant. Second, with respect to high-level
features from the Pareto set, the size of the Pareto set and its hypervolume
does not explain the variance of log(ert). Nevertheless, the larger the distance
between Pareto optimal solutions in the decision space, the larger the running
time of G-SEMO. Similarly, when the Pareto graph is close to a fully connected
graph, G-SEMO is likely to take less time to identify a (1+ε)-approximation (the
absolute correlation value is around 0.3). As a consequence, the number of Pareto
optimal solutions has a smaller impact on the performance of G-SEMO than the
structure existing between those solutions in the decision space.

With respect to high-level fitness landscape features, the number of Pareto
local optima nplo and its estimator ladapt both present a significant correlation
with the estimated running time of G-SEMO. Indeed, the more Pareto local
optima, the longer the running time (the absolute correlation value is close to
0.5). At last, the hypervolume-based autocorrelation functions highly explain
the variance of the G-SEMO performance. For both corhv and corlhv, the
absolute correlation value is around 0.8. Overall, this correlation analysis gives
a “big picture” of a well-suited multiobjective fitness landscape for G-SEMO.
This corroborates the impact of the problem instance properties identified in the
previous section on the performance of multiobjective evolutionary algorithms.

5 Discussion

In this paper, we attempted to give a first step towards a better understanding of
the evolutionary multiobjective optimization algorithm performance according
to the main characteristics of the problem instance. We first presented a number
of general problem features, together with a correlation analysis between those
features on a large set of enumerable multiobjective NK-landscapes. Then, we
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put in relation the running time of a simple evolutionary multiobjective optimiza-
tion algorithm with those features. Our analysis clearly shows the high impact
of theses problem-related properties on the performance of the algorithm. In
particular, two relevant hypervolume-based autocorrelation functions have been
proposed for the first time, allowing to precisely estimate the ruggedness of the
instance under consideration, as well as the algorithm running time.

Using the general methodology introduced in the paper applied to larger
problem instances would allow to appreciate the impact of the multiobjective
features on the performance of evolutionary multiobjective optimizations when
tackling large-size instances. This should be possible with features that do not
require the complete enumeration of the decision space, including the prob-
lem size, the number of objectives, the objective correlation, the length of a
Pareto-based adaptive walk, and the hypervolume-based autocorrelation func-
tions proposed in this paper. As well, the impact of the stopping condition, and
in particular the approximation quality (the ε-value) should be carefully inves-
tigated. At last, a similar study would allow to better understand the structure
of the landscape for real-world multiobjective combinatorial optimization prob-
lems. This work pushes towards the design of a meta-algorithm able to select
the most efficient evolutionary multiobjective algorithm or parameter setting
according to a prediction model based on the main problem instance features.
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Abstract. Weconsider noisy optimization problems,without the assump-
tion of variance vanishing in the neighborhood of the optimum. We show
mathematically that simple rules with exponential number of resamplings
lead to a log-log convergence rate. In particular, in this case the log of
the distance to the optimum is linear on the log of the number of resam-
plings. As well as with number of resamplings polynomial in the inverse
step-size. We show empirically that this convergence rate is obtained also
with polynomial number of resamplings. In this polynomial resampling
setting, using classical evolution strategies and an ad hoc choice of the num-
ber of resamplings, we seemingly get the same rate as those obtained with
specific Estimation of Distribution Algorithms designed for noisy setting.

We also experiment non-adaptive polynomial resamplings. Compared
to the state of the art, our results provide (i) proofs of log-log convergence
for evolution strategies (which were not covered by existing results) in the
case of objective functions with quadratic expectations and constant noise,
(ii) log-log rates also for objective functions with expectation E[f(x)] =
||x − x∗||p, where x∗ represents the optimum (iii) experiments with dif-
ferent parameterizations than those considered in the proof. These results
propose some simple revaluation schemes. This paper extends [1].

1 Introduction

In this introduction, we first present the noisy optimization setting and the local
case of it. We then classify existing optimization algorithms for such settings.
Afterwards we discuss log-linear and log-log scales for convergence and give an
overview of the paper. In all the paper, log represents the natural logarithm and
N is a standard Gaussian random variable (possibly multidimensional, depend-
ing on the context), except when it is specified explicitly that N may be any
random variable with bounded density.

Noisy optimization. This term will denote the optimization of an objective
function which has internal stochastic effects. When the algorithm requests
fitness(·) of a point x, it gets in fact fitness(x, θ) for a realization of a random
variable θ. All calls to fitness(·) are based on independent realizations of the
same random variable θ. The goal of a noisy optimization algorithm is to find x
such that E(fitness(x, θ)) is minimized (or nearly minimized).

Local noisy optimization. Local noisy optimization refers to the optimiza-
tion of an objective function in which the main problem is noise, and not local
c© Springer International Publishing Switzerland 2014
P. Legrand et al. (Eds.): EA 2013, LNCS 8752, pp. 16–28, 2014.
DOI: 10.1007/978-3-319-11683-9 2



Log-log Convergence for Noisy Optimization 17

minima. Hence, diversity mechanisms as in [2] or [3], in spite of their qualities,
are not relevant here. We also restrict our work to noisy settings in which noise
does not decrease to 0 around the optimum. This constrain makes our work dif-
ferent from [4]. In [5,6] we can find noise models related to ours but the results
presented here are not covered by their analysis. On the other hand, in [7–9],
different noise models (with Bernoulli fitness values) are considered, inclusing
a noise with variance which does not decrease to 0 (as in the present paper).
They provide general lower bounds, or convergence rates for specific algorithms,
whereas we consider convergence rates for classical evolution strategies equipped
with resamplings.

Classification of local noisy optimization algorithms. We classify noisy
local convergence algorithms in the following 3 families:

– Algorithms based on sampling, as far as they can, close to the optimum. In
this category, we include evolution strategies [5,6,10] and EDA [11] as well as
pattern search methods designed for noisy cases [12–14]. Typically, these algo-
rithms are based on noise-free algorithms, and evaluate individuals multiple
times in order to cancel (reduce) the effect of noise. Authors studying such
algorithms focus on the number of resamplings; it can be chosen by estimating
the noise level [15], or using the step-size, or, as in parts of the present work,
in a non-adaptive manner.

– Algorithms which learn (model) the objective function, sample at locations in
which the model is not precise enough, and then assume that the optimum
is nearly the optimum of the learnt model. Surrogate models and Gaussian
processes [2,16] belong to this family. However, Gaussian processes are usually
supposed to achieve global convergence (i.e. good properties on multimodal
functions) rather than local convergence (i.e. good properties on unimodal
functions) - in this paper, we focus on local convergence.

– Algorithms which combine both ideas, assuming that learning the objective
function is a good idea for handling noise issues but considering that points
too far from the optimum cannot be that useful for an optimization. This
assumption makes sense at least in a scenario in which the objective function
cannot be that easy to learn on the whole search domain. CLOP [7,8] is such
an approach.

Log-linear scale and log-log scale: uniform and non-uniform rates. To
ensure the convergence of an algorithm and analyze the rate at which it converges
are part of the main goals when it comes to the study of optimization algorithms.

In the noise-free case, evolution strategies typically converge linearly in log-
linear scale, this is, the logarithm of the distance to the optimum typically scales
linearly with the number of evaluations (see Sect. 2.1 for more details on this).
The case of noisy fitness values leads to a log-log convergence [9]. We investigate
conditions under which such a log-log convergence is possible. In particular,
we focus on uniform rates. Uniform means that all points are under a linear
curve in the log-log scale. Formally, the rate is the infimum of C such that with
probability 1 − δ, for m sufficiently large, all iterates after m fitness evaluations
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verify log ||xm|| ≤ −C log m, where xm is the mth evaluated individual. This
is, all points are supposed to be “good” (i.e. satisfy the inequality); not only
the best point of a given iteration. In contrast, a non-uniform rate would be the
infimum of C such that log ||xkm

|| ≤ −C log km for some increasing sequence km.
The state of the art in this matter exhibits various results. For an objective

function with expectation E[f(x)] = ||x−x∗||2, when the variance is not supposed
to decrease in the neighborhood of the optimum, it is known that the best
possible slope in this log-log graph is − 1

2 (see [17]), but without uniform rate.
When optimizing f(x) = ||x||p + N , this slope is provably limited to − 1

p under
locality assumption (i.e. when sampling far from the optimum does not help, see
[9] for a formalization of this assumption), and it is known that some ad hoc
EDA can reach − 1

2p (see [18]).
For evolution strategies, the slope is not known. Also, the optimal rate for

E[f(x)] = ||x−x∗||p for p �= 2 is unknown; we show that our evolution strategies
with simple revaluation schemes have linear convergence in log-log representation
in such a case.

Algorithms considered in this paper. We here focus on simple revaluation
rules in evolution strategies, based on choosing the number of resamplings. We
start with rules which decide the number of revaluations only depending on the
iteration number n. This is, independently of the step-size σn, the parents xn

and fitness values. To the best of our knowledge, these simple rules have not
been analyzed so far. Nonetheless, they have strong advantages: we get a linear
slope in log-log curve simple rules only depending on n whereas rules based on
numbers of resamplings defined as a function of σn have a strong sensitivity to
parameters. Also evolution strategies, contrarily to algorithms with good non-
uniform rates, have a nice empirical behavior from the point of view of uniform
rates, as shown mathematically by [18].

Overview of the paper. In this paper we show mathematical proofs and exper-
imental results on the convergence of the evolutionary algorithms that will be
described in the following sections, which include some resampling rules aiming
to cancel the effect of noise. The theoretical analysis presents an exponential
number of resamplings together with an assumption of scale invariance. This
result is extended to an adaptive rule of resamplings (Sect. 2.3), in which the
number of evaluations depend on the step size only; we also get rid of the scale
invariant assumption. Essentially, the algorithms for which we get a proof have
the same dynamics as in the noise-free case, they just use enough resamplings
for cancelling the noise. This is consistent with the existing literature, in par-
ticular [18] which shows a log-log convergence for an Estimation of Distribution
Algorithm with exponentially decreasing step-size and exponentially increasing
number of resamplings.

In the experimental part, we see that another solution is a polynomially
increasing number of resamplings (independently of σn; the number of resam-
plings just smoothly increases with the number of iterations, in a non-adaptive
manner), leading to a slower convergence when considering the progress rate per
iteration, but the same log-log convergence when considering the progress rate
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per evaluation. We could get positive experimental results even with the non-
proved polynomial number of revaluations (non-adaptive); maybe those results
are the most satisfactory (stable) results. We could also get convergence with
adaptive rules (number of resamplings depending on the step-size), however
results are seemingly less stable than with non-adaptive methods.

2 Theoretical Analysis: Exponential Non-adaptive Rules
Can Lead to Log/log Convergence

Section 2.1 is devoted to some preliminaries. Section 2.2 presents results in the
scale invariant case, for an exponential number of resamplings and non-adaptive
rules. Section 2.3 will focus on adaptive rules, with numbers of resamplings
depending on the step-size.

2.1 Preliminary: Noise-Free Case

In the noise-free case, for some evolution strategies, we know the following
results, almost surely (see e.g. Theorem 4 in [19], where, however, the negativity
of the constant is not proved and only checked by Monte-Carlo simulations):
log(σn)/n converges to some constant (−A) < 0 and log(||xn||)/n converges to
some constant (−A′) < 0.

This implies that for any ρ < A, log(σn) ≤ −ρn for n sufficiently large.
So, supn≥1 log(σn) + ρn is finite. With these almost sure results, now consider
V the quantile 1 − δ/4 of exp

(
supn≥1 log(σn) + ρn

)
. Then, with probability at

least 1 − δ/4, ∀n ≥ 1, σn ≤ V exp(−ρn). We can apply the same trick for lower
bounding σn, and upper and lower bounding ||xn||, all of them with probability
1 − δ/4, so that all bounds hold true simultaneously with probability at least
1 − δ.

Hence, for any α < A′, α′ > A′, ρ < A, ρ′ > A, there exist C > 0, C ′ > 0,
V > 0, V ′ > 0, such that with probability at least 1 − δ

∀n ≥ 1, C ′ exp(−α′n) ≤ ||xn|| ≤ C exp(−αn); (1)
∀n ≥ 1, V ′ exp(−ρ′n) ≤ σn ≤ V exp(−ρn). (2)

We will first show, in Sect. 2.2, our noisy optimization result (Theorem 1):

(i) in the scale invariant case
(ii) using Eq. 1 (supposed to hold in the noise-free case).

We will then show similar results in Sect. 2.3:

(i) without scale-invariance
(ii) using Eq. 2 (supposed to hold in the noise-free case)
(iii) with other resamplings schemes.
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2.2 Scale Invariant Case, with Exponential Number of Resamplings

We consider Algorithm 1, a version of multi-membered Evolution Strategies, the
(μ,λ)-ES. μ denotes the number of parents and λ the number of offspring (μ ≤ λ).
In every generation, the selection takes place among the λ offspring, produced
from a population of μ parents. Selection is based on the ranking of the individ-
uals according their fitness(·) taking the μ best individuals among the popula-
tion. Here xn denotes the parent at iteration n.

Algorithm 1. An evolution strategy, with exponential number of resamplings.
If we consider K = 1 and ζ = 1 we obtain the case without resampling. N is
an arbitrary random variable with bounded density (each use is independent of
others).

Parameters: K > 0, ζ ≥ 0, λ ≥ μ > 0, a dimension d > 0.
Input: an initial x1 ∈ R

d and an initial σ0 > 0.
n ← 1
while (true) do

Generate λ individuals i1, . . . , iλ independently using
ij = xn + σn,jN . (3)

Evaluate each of them rn = �Kζn� times and average their fitness values.
Select the μ best individuals j1, . . . , jμ.
Update: from x, σn, i1, . . . , iλ and j1, . . . , jμ, compute xn+1 and σn+1.
n ← n + 1

end while

We now state our first theorem, under log-linear convergence assumption (the
assumption in Eq. 5 is just Eq. 1).

Theorem 1. Consider the fitness function

f(z) = ||z||p + N (4)

over R
d and x1 = (1, 1, . . . , 1).

Consider an evolution strategy with population size λ, parent population size μ,
such that without resampling, for any δ > 0, for some α > 0, α′ > 0, with
probability 1 − δ/2, with objective function fitness(x) = ||x||,

∃C,C′; C ′ exp(−α′n) ≤ ||xn|| ≤ C exp(−αn). (5)

Assume, additionally, that there is scale invariance:

σn = C ′′||xn|| (6)

for some C ′′ > 0.
Then, for any δ > 0, there is K0 > 0, ζ0 > 0 such that for K ≥ K0, ζ > ζ0,
Eq. 1 also holds with probability at least 1− δ for fitness function as in Eq. 4 and
resampling rule as in Algorithm1.
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Remarks: (i) Informally speaking, our theorem shows that if a scale invariant
algorithm converges in the noise-free case, then it also converges in the noisy
case with the exponential resampling rule, at least if parameters are large enough
(a similar effect of constants was pointed out in [4] in a different setting).

(ii) We assume that the optimum is in 0 and the initial x1 at 1. Note that these
assumptions have no influence when we use algorithms invariant by rotation and
translation.

(iii) We show a log-linear convergence rate as in the noise-free case, but at
the cost of more evaluations per iteration. When normalized by the number of
function evaluations, we get log ||xn|| linear in the logarithm of the number of
function evaluations, as detailed in Corollary 1.

Proof of the theorem: In all the proof, N denotes a standard Gaussian random
variable (depending on the context, in dimension 1 or d). Consider an arbitrary
δ > 0, n ≥ 1 and δn = exp(−γn) for some γ > 0.

Define pn the probability that two generated points, e.g. i1 and i2, are such
that | ||i1||p − ||i2||p | ≤ δn.

Step 1: Using Eqs. 3 and 6, we show that

pn ≤ B′ exp(−γ′n) (7)

for some B′ > 0, γ′ > 0 depending on γ, d, p, C ′, C ′′, α′.

Proof of step 1: with N1 and N2 two d-dimensional independent standard
Gaussian random variables,

pn ≤ P (| ||1 + C ′′N1||p − ||1 + C ′′N2||p | ≤ δn/||xn||p). (8)

Define densityMax the supremum of the density of | ||1+C ′′N1||p−||1+C ′′N2||p |
we get

pn ≤ densityMaxC ′−p exp((pα′ − γ)n),

hence the expected result with γ′ = γ−pα′ and B′ = densityMax(C ′)−p. Notice
that densityMax is upper bounded.

In particular, γ′ is arbitrarily large, provided that γ is sufficiently large.

Step 2: Consider now p
(1)
n the probability that there exists i1 and i2 such that

| ||i1||p − ||i2||p | ≤ δn. Then, p
(1)
n ≤ λ2pn ≤ B′λ2 exp(−γ′n).

Step 3: Consider now p
(2)
n the probability that |N/

√
Kζn| ≥ δn/2. First, we write

p
(2)
n = P (N ≥ δn

2

√
Kζn). So by Chebychev inequality, p

(2)
n ≤ B′′ exp(−γ′′n) for

γ′′ = log(ζ)−2γ arbitrarily large, provided that ζ is large enough, and B′′ = 4/K.

Step 4: Consider now p
(3)
n the probability that |N/

√
Kζn| ≥ δn/2 at least once

for the λ evaluated individuals of iteration n. Then, p
(3)
n ≤ λp

(2)
n .

Step 5: In this step we consider the probability that two individuals are mis-
ranked due to noise. Let us now consider p

(4)
n the probability that at least two

points ia and ib at iteration n verify
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||ia||p ≤ ||ib||p (9)

and noisyEvaluation(ia) ≥ noisyEvaluation(ib) (10)

where noisyEvaluation(i) is the average of the multiple evaluations of individual
i. Equations 9 and 10 occur simultaneously if either two points have very similar
fitness (difference less than δn) or the noise is big (larger than δn/2). Therefore,
p
(4)
n ≤ p

(1)
n + p

(3)
n ≤ λ2pn + λp

(2)
n so p

(4)
n ≤ (B′ + B′′)λ2 exp(−min(γ′, γ′′)n).

Step 6: Step 5 was about the probability that at least two points at iteration
n are misranked due to noise. We now consider

∑
n≥1 p

(4)
n , which is an upper

bound on the probability that in at least one iteration there is a misranking of
two individuals.

If γ′ and γ′′ are large enough,
∑

n≥1 p
(4)
n < δ.

This implies that with probability at least 1 − δ, provided that K and ζ
have been chosen large enough for γ and γ′ to be large enough, we get the same
rankings of points as in the noise free case - this proves the expected result. �

The following corollary shows that this is a log-log convergence.

Corollary 1: log-log convergence with exponential resampling. With en

the number of evaluations at the end of iteration n, we have en = Kζ ζn−1
ζ−1 . We

then get, from Eq. 1,

log(||xn||)/ log(en) → − α

log ζ
(11)

with probability at least 1 − δ. Eq. 11 is the convergence in log/log scale.
We have shown this property for an exponentially increasing number of

resamplings, which is indeed similar to R-EDA [18], which converges with a
small number of iterations but with exponentially many resamplings per itera-
tion. In the experimental Sect. 3, we will check what happens in the polynomial
case.

2.3 Extension: Adaptive Resamplings and Removing the Scale
Invariance Assumption

We have assumed above a scale invariance. This is obviously not a nice feature
of our proof, because scale invariance does not correspond to anything real; in
a real setting we do not know the distance to the optimum. We show below an
extension of the result above using the assumption of a log-linear convergence
of σn as in Eq. 2 instead of the scale invariance used before.

In the corollary below, we also get rid of the non-adaptive rule with exponen-
tial number of resamplings, replaced by a number of resamplings depending on
the step-size σn only, as in Eq. 2. In one corollary, we switch to both (i) adaptive
resampling rule and (ii) no scale invariance; each change can indeed be proved
independently of the other.
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Algorithm 2. An evolution strategy, with number of resamplings polynomial
in the step-size. The case without resampling means Y = 1 and η = 0. N is
an arbitrary random variable with bounded density (each use is independent of
others).

Parameters: Y > 0,η ≥ 0, λ ≥ μ > 0, a dimension d > 0.
Input: an initial x1 ∈ R

d and an initial σ0 > 0.
n ← 1
while (true) do

Generate λ individuals i1, . . . , iλ independently using
ij = xn + σn,jN . (12)

Evaluate each of them rn = �Y σn
−η� times and average their fitness values.

Select the μ best individuals j1, . . . , jμ.
Update: from x, σn, i1, . . . , iλ and j1, . . . , jμ, compute xn+1 and σn+1.
n ← n + 1

end while

Corollary 2: adaptive resampling and no scale-invariance. The proof of
Theorem [1] also holds without scale invariance, under the following assumptions:

– For any δ > 0, there are constants ρ > 0, V > 0, ρ′ > 0, V ′ > 0 such that with
probability at least 1 − δ, Eq. 2 holds.

– The number of revaluations is

Y

(
1
σn

)η

(13)

with Y and η sufficiently large.
– Individuals are still randomly drawn using xn+σnN for some random variable

N with bounded density.

Remark: This setting is useful in cases like self-adaptive algorithms, in which
we do not use directly a Gaussian random variable, but a Gaussian random vari-
able multiplied e.g. by exp( 1√

d
)Gaussian, with Gaussian a standard Gaussian

random variable. For example, SA-ES algorithms as in [19] are included in this
proof because they converge log-linearly as explained in Sect. 2.1.

Proof of corollary 2: Two steps of the proof are different, namely step 1 and
step 2. We here adapt the proofs of these two steps.

Adapting step 1: Eq. 8 becomes Eq. 14:

pn ≤ P (| ||1 + C ′′
nN1||p − ||1 + C ′′

nN2||p | ≤ δn/||xn||p). (14)

where C ′′
n = σn/||xn|| ≥ t′ exp(−tn) for some t > 0, t′ > 0 depending on

ρ, ρ′, V, V ′ only. Equation 14 leads to

pn ≤ (C ′′
n)−ddensityMaxC ′−p exp((pα′ − γ)n),
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hence the expected result with γ′ = γ − pα′ −dt. densityMax is upper bounded
due to the third condition of corollary 2.

Adapting step 2: It is sufficient to show that the number of resamplings is
larger (for each iteration) than in the Theorem 1, so that step 2 still holds.

Equation 13 implies that the number of revaluations at step n is at least
Y

(
1
V

)η exp(ρηn). This is more than Kζn, at least if Y and η are large enough.
This leads to the same conclusion as in the Theorem 1, except that we have
probability 1 − 2δ instead of 1 − δ (which is not a big issue as we can do the
same with δ/2). �

The following corollary is here for showing that our result leads to the log-log
convergence.

Corollary 3: log-log convergence for adaptive resampling. With en

the number of evaluations at the end of iteration n, we have en = Y
(

1
V

)η

exp(ρη) exp(ρηn)−1
exp(ρη)−1 . We then get, from Eq. 1,

log(||xn||)/ log(en) → − α

ρη
(15)

with probability at least 1 − δ. Equation 15 is the convergence in log/log scale.

3 Polynomial Number of Resamplings: Experiments

We here consider a polynomial number of resamplings, as in Algorithm 3.

Algorithm 3. An evolution strategy, with polynomial number of resamplings.
The case without resampling means K = 1 and ζ = 0.

Parameters: K > 0, ζ ≥ 0, λ ≥ μ > 0, a dimension d > 0.
Input: an initial x1 ∈ R

d and an initial σ0 > 0.
n ← 1
while (true) do

Generate λ individuals i1, . . . , iλ independently using

σn,j = σn × exp(
1√
d

N ) (16)

ij = xn + σn,jN .

Evaluate each of them rn = �Knζ� times and average their fitness values.
Select the μ best individuals j1, . . . , jμ.
Update: from x, σn, i1, . . . , iλ and j1, . . . , jμ, compute xn+1 and σn+1.
n ← n + 1

end while

Experiments are performed in a “real” setting, without scale invariance.
Importantly, our mathematical results hold only log-log convergence under the
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(a) d = 2, ζ = 2.Slope = −0.3267. (b) d = 4, ζ = 2.Slope = −0.2829.

(c) d = 2, ζ = 1.Slope = −0.2126. (d) d = 4, ζ = 1.Slope = −0.1404.

Fig. 1. Experiments in dimension 2, 3, 4 with ζ = 1, 2 (number of evaluations shown
by x-axis) for rn = K�nζ� (i.e. polynomial, non-adaptive) with μ = 2, λ = 4, p = 2
and K = 2. The slope is evaluated on the second half of the iterations. We get slopes
close to −1/(2p). All results are averaged over 20 runs.

assumption that constants are large enough. We present results with fitness
function f(x) = ||x||p + N with p = 2 in Fig. 1.

In experiments with the following parameters (as recommended in [10,20]):
p = 1 or p = 4, dimension 2, 3, 4, 5, ζ = 1, 2, 3, μ = min(d, 	λ/4
), λ = 	d√

d
,
slopes are usually better than −1/(2p) for ζ = 2 or ζ = 3 and worse for ζ = 1.
Non-presented experiments show that ζ = 0 performs very poorly. Seemingly
results for ζ large are farther from the asymptotic regime. We conjecture that
the asymptotic regime is −1/(2p) but that it is reached later when ζ is large.
R-EDA [18] reaches −1/(2p); we seemingly get slightly better but this might be
due to a non-asymptotic effect. Figure 1 provides results with high numbers of
evaluations.

4 Experiments with Adaptivity: Y σ−η
n Revaluations

We here show experiments with Algorithm 2. The algorithm should converge lin-
early in log-log scale as shown by Corollary 3, at least for large enough values
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Table 1. Left: Dimension 100. Estimated slope for the adaptive rule with rn =

�
(

1
σn

)2
� resamplings at iteration n. Slopes are estimated on the second half of the

curve. Right: Dimension 10. Estimated slope for the adaptive rule with rn =

�Y
(

1
σn

)2
� resamplings at iteration n (Y = 1 as in previous curves, and Y = 20

for checking the impact of convergence; the negative slope (apparent convergence) for
Y = 20 is stable, as well as the divergence or stagnation for Y = 1 for p = 4). Slopes
are estimated on the second half of the curve.

d = 100

p slope for Y = 1

1 -0.52
2 -0.51
4 -0.45

d = 10

p slope for Y = 1 slope for Y = 20

1 -0.51 -0.50
2 -0.18 -0.17
4 >0 -0.08

of Y and η. Notice that we consider values of μ, λ for which log-linear con-
vergence is proved in the noise-free setting (see Sect. 2.1).In all this section,
μ = min(d, 	λ/4
), λ = 	d√

d
.
Slopes as estimated on the case η = 2 (usually the most favorable, and

an important case naturally arising in sufficiently differentiable problems) are
given in Table 1 (left) for dimension d = 100. In this case we are far from the
asymptotic regime.

We get results close to − 1
2 in all cases This slope of − 1

2 is reachable by
algorithms which learn a model of the fitness function, as e.g. [7]. In this case
of high dimension we are far from the slope 1/(−2p), which might be the case
for the asymptotic results. This is suggested by experiments in dimension 10
summarized in Table 1 (right). We also point out that the known complexity
bounds is − 1

p (from [9]), and maybe the slope can reach − 1
p in some cases.

Results with Y
(
1
σ

)η are moderately stable (impact of Y , in particular). This
supports our preference for stable rules, such as non-adaptively choosing n2

revaluations per individual at iteration n.

5 Conclusion

We have shown mathematically log-log convergence results and studied experi-
mentally the slope in this convergence. These results were shown for evolution
strategies, which are known for having good uniform rates, rather than good
non-uniform rates. We summarize these two parts below and give some research
directions.
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Log-log convergence. We have shown that the log-log convergence (i.e. linear
convergence with x-axis the log of the number of evaluations and y-axis the log
of the distance to the optimum) occurs in various cases:

– Non-adaptive rules, with number of resamplings exponential in the iteration
counter. Here we have a mathematical proof, which includes the assumption
of scale invariance; as shown by Corollary 2, this can be extended to non
scale-invariant algorithms;

– Adaptive rules, with number of resamplings polynomial in 1/σn with σn the
step-size. Here we have a mathematical proof; however, there is a strong sen-
sitivity to constants Y and η which participate in the number of resamplings
per individual, Y

(
1

σn

)η

;
– Non-adaptive rule, with polynomial number of resamplings. This case is a

quite convenient scheme experimentally but we have no proof.

Slope in log-log convergence. Experimentally, the best slope in the log-log
representation is often close to − 1

2p for fitness function f(x) = ||x||p + N . It
is known that under modeling assumptions (i.e. the function is regular enough
for being optimized by learning), it is possible to do better than that (the slope
becomes −1/2 for parametric cases, see [7] and references therein), but − 1

2p is the
best known exponent under locality assumption. Basically, locality assumption
ensures that most points are reasonably good, whereas some specialized noisy
optimization algorithms sample a few very good points and essentially sample
individuals far from the optimum (see e.g. [7]).

Further work. The main further work is the mathematical analysis of the poly-
nomial number of resamplings in the non-adaptive case. Also, a combination of
adaptive and non-adaptive rules might be interesting; adaptive rules are intu-
itively satisfactory, but non-adaptive polynomial rules provide simple efficient
solutions, with empirically easy (no tuning) results. If our life depended on a
scheme, we would for the moment choose a simple polynomial rule with a num-
ber of revaluations quadratic in the number of evaluations, in spite of (maybe)
moderate elegance due to lack of adaptivity.
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Abstract. Evolutionary Algorithms (EA) usually carry out an efficient
exploration of the search-space, but get often trapped in local minima
and do not prove the optimality of the solution. Interval-based tech-
niques, on the other hand, yield a numerical proof of optimality of the
solution. However, they may fail to converge within a reasonable time
due to their exponential complexity and their inability to quickly com-
pute a good approximation of the global minimum. The contribution
of this paper is a hybrid algorithm called Charibde in which a partic-
ular EA, Differential Evolution, cooperates with a branch and bound
algorithm endowed with interval propagation techniques. It prevents
premature convergence toward local optima and is highly competitive
with both deterministic and stochastic existing approaches. We demon-
strate its efficiency on a benchmark of highly multimodal problems, for
which we provide previously unknown global minima and certification of
optimality.

1 Motivation

Evolutionary Algorithms (EA) have been widely used by the global optimization
community for their ability to handle complex problems with no assumption on
continuity or differentiability. They generally converge toward satisfactory solu-
tions, but may get trapped in local optima and provide suboptimal solutions.
Moreover, their convergence remains hard to control due to their stochastic
nature. On the other hand, exhaustive Branch and Bound methods based on
Interval Analysis [1] guarantee rigorous bounds on the solutions to numerical
optimization problems but are limited by their exponential complexity.

Few methods attempted to hybridize EA and branch and bound algorithms
in which lower bounds of the objective function are computed using Interval
Analysis. The approaches in the literature are essentially integrative, in that they
embed one algorithm within the other. Sotiropoulos et al. [2] used an Interval
Branch and Bound (IB&B) to reduce the domain to a list of ε-large subspaces.
A Genetic Algorithm (GA) [3] was then initialized within each subspace to
c© Springer International Publishing Switzerland 2014
P. Legrand et al. (Eds.): EA 2013, LNCS 8752, pp. 29–40, 2014.
DOI: 10.1007/978-3-319-11683-9 3
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improve the upper bound of the global minimum. Zhang and Liu [4] and Lei
and Chen [5] used respectively a GA and mind evolutionary computation within
the IB&B to improve the bounds and the exploration of the remaining subspaces.
In a previous communication [6], we proposed a cooperative approach combin-
ing the efficiency of a GA and the reliability of Interval Analysis. We presented
new optimality results for two multimodal benchmark functions (Michalewicz,
dimension 12 and rotated Griewank, dimension 8), demonstrating the validity
of the approach. However, techniques that exploit the analytical form of the
objective function, such as local monotonicity and constraint programming,
were not addressed. In this paper, we propose an advanced cooperative algo-
rithm, Charibde (Cooperative Hybrid Algorithm using Reliable Interval-Based
methods and Differential Evolution), in which a Differential Evolution algorithm
cooperates with interval propagation methods. New optimal results achieved on
a benchmark of difficult multimodal functions attest the substantial gain in
performance.

The rest of the paper is organized as follows. Notations of Interval Analysis
are introduced in Sect. 2 and interval-based techniques are presented in Sect. 3.
The implementation of Charibde is detailed in Sect. 4. Results on a benchmark
of test functions are discussed in Sect. 5.

2 Interval Analysis

Interval Analysis (IA) bounds round-off errors due to the use of floating-point
arithmetic by computing interval operations with outward rounding [1]. Interval
arithmetic extends real-valued functions to intervals.

Definition 1 (Notations). An interval X = [X,X] with floating-point bounds
defines the set {x ∈ R | X ≤ x ≤ X}. IR denotes the set of real intervals. We
note m(X) = 1

2 (X + X) its midpoint. A box X = (X1, . . . , Xn) is an interval
vector. We note m(X) = (m(X1), . . . ,m(Xn)) its midpoint. We note ��(X,Y )
the convex hull of two boxes X and Y , that is the smallest box that contains X
and Y .

In the following, capital letters represent interval quantities (interval X) and
bold letters represent vectors (box X, vector x).

Definition 2 (Interval extension; Natural interval extension). Let f :
R

n → R be a real-valued function. F : IR
n → IR is an interval extension of f if

∀X ∈ IR
n, f(X) = {f(x) | x ∈ X} ⊂ F (X)

∀(X,Y) ∈ IR
n,X ⊂ Y ⇒ F (X) ⊂ F (Y)

The natural interval extension FN is obtained by replacing the variables with
their domains and real elementary operations with interval arithmetic operations.

The quality of enclosure of f(X) depends on the syntactic form of f : the natural
interval extensions of different but equivalent expressions may yield different



Preventing Premature Convergence and Proving the Optimality 31

ranges (Example 1). In particular, IA generally computes a large overestima-
tion of the image due to multiple occurrences of a same variable, considered as
different variables. This dependency problem is the main source of overes-
timation when using interval computations. However, an appropriate rewriting
of the expression may reduce or overcome dependency: if f is continuous inside
a box, its natural interval extension FN yields the optimal image when each
variable occurs only once in its expression.

Example 1. Let f(x) = x2 − 2x, g(x) = x(x − 2) and h(x) = (x − 1)2 − 1, where
x ∈ X = [1, 4]. f , g and h have equivalent expressions, however computing their
natural interval extensions yields

FN ([1, 4]) = [1, 4]2 − 2 × [1, 4] = [1, 16] − [2, 8] = [−7, 14]

GN ([1, 4]) = [1, 4] × ([1, 4] − 2) = [1, 4] × [−1, 2] = [−4, 8]

HN ([1, 4]) = ([1, 4] − 1)2 − 1 = [0, 3]2 − 1 = [0, 9] − 1 = [−1, 8]

We have f([1, 4]) = HN ([1, 4]) ⊂ GN ([1, 4]) ⊂ FN ([1, 4]).

3 Interval-Based Techniques

Interval Branch and Bound Algorithms (IB&B) exploit the conservative
properties of interval extensions to rigorously bound global optima of numerical
optimization problems [7]. The method consists in splitting the initial search-
space into subspaces (branching) on which an interval extension F of the objec-
tive function f is evaluated (bounding). By keeping track of the best upper bound
f̃ of the global minimum f∗, boxes that certainly do not contain a global mini-
mizer are discarded (Example 2). The remaining boxes are stored to be processed
at a later stage until the desired precision ε is reached. The process is repeated
until all boxes have been processed. Convergence certifies that f̃ − f∗ < ε, even
in the presence of rounding errors. However, the exponential complexity of IB&B
hinders the speed of convergence on large problems.

Example 2. Let us detail the first step of the IB&B on the problem min
x∈X

f(x) =

x4 − 4x2 over the interval X = [−1, 4]. The natural interval extension of f is
FN (X) = X4 − 4X2 and FN ([−1, 4]) = [−64, 256] ⊃ [−4, 192] = f([−1, 4]). The
floating-point evaluation f(1) = −3 yields an upper bound f̃ of f∗. Evaluating
FN on the subinterval [3, 4] reduces the overestimation induced by the depen-
dency effect: FN ([3, 4]) = [17, 220] ⊃ [45, 192] = f([3, 4]). Since this enclosure
is rigorous, ∀x ∈ [3, 4], f(x) ≥ 17 > f̃ = −3 ≥ f∗. Therefore, the interval [3, 4]
cannot contain a global minimizer and can be safely discarded.

Interval Constraint Programming (ICP) aims at solving systems of
nonlinear equations and numerical optimization problems. Stemming from Inter-
val Analysis and Interval Constraint Programming communities, filtering/contr-
action algorithms [8] narrow the bounds of the variables without loss of solutions.
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The standard contraction algorithm HC4Revise [9] carries out a double explo-
ration of the syntax tree of a constraint to contract each occurrence of the vari-
ables (Example 3). It consists in an evaluation (bottom-up) phase that computes
the elementary operation of each node, and a backward (top-down) propagation
phase using inverse functions.

Example 3. Let 2x = z − y2 be an equality constraint, with x ∈ [0, 20], y ∈
[−10, 10] and z ∈ [0, 16]. The elementary expressions are the nodes n1 = 2x,
n2 = y2 and n3 = z − n2.

The evaluation phase (Fig. 1) computes n1 = 2 × [0, 20] = [0, 40], n2 =
[−10, 10]2 = [0, 100] and n3 = [0, 16] − [0, 100] = [−100, 16].

The propagation phase (Fig. 2) starts by intersecting n1 and n3 (steps 1 and
2), then computes the inversion of each elementary expression (steps 3 to 6).

– steps 1 and 2: n′
1 = n′

3 = n1 ∩ n3 = [0, 40] ∩ [−100, 16] = [0, 16]
– step 3: x′ = x ∩ n′

1
2 = [0, 20] ∩ [0, 8] = [0, 8]

– step 4: z′ = z ∩ (n2 + n′
3) = [0, 16] ∩ ([0, 100] + [0, 16]) = [0, 16]

– step 5: n′
2 = n2 ∩ (z′ − n′

3) = [0, 100] ∩ ([0, 16] − [0, 16]) = [0, 16]
– step 6: y′ = ��(y ∩ −√

n′
2, y ∩ √

n′
2) = ��([−4, 0], [0, 4]) = [−4, 4]

The initial box ([0, 20], [−10, 10], [0, 16]) has been reduced to ([0, 8], [−4, 4],
[0, 16]) without loss of solutions.
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When partial derivatives are available, detecting local monotonicity with
respect to a variable cancels the dependency effect due to this variable (Defin-
ition 3 and Example 4). In Definition 3, we call a monotonic variable a variable
with respect to which f is monotonic.

Definition 3 (Monotonicity-based extension). Let f be a function involv-
ing the set of variables V. Let X ⊆ V be a subset of k monotonic variables and
W = V\X the set of variables not detected monotonic. If xi is an increasing
(resp. decreasing) variable, we note x−

i = xi and x+
i = xi (resp. x−

i = xi and
x+

i = xi). fmin and fmax are functions defined by:

fmin(W) = f(x−
1 , . . . , x−

k ,W)

fmax(W) = f(x+
1 , . . . , x+

k ,W)

The monotonicity-based extension FM of f computes:

FM = [fmin(W), fmax(W)]

Example 4. Let f(x) = x2−2x and X = [1, 4]. As seen in Example 1, FN ([1, 4]) =
[−7, 14]. The derivative of f is f ′(x) = 2x − 2, and F ′

N ([1, 4]) = 2 × [1, 4] −
2 = [0, 6] ≥ 0. f is thus increasing with respect to x in X. Therefore, the
monotonicity-based interval extension computes the optimal range: FM ([1, 4]) =
[F (X), F (X)] = [F (1), F (4)] = [−1, 8] = f([1, 4]).

This powerful property has been exploited in the contractor Mohc [10] and
implemented in Charibde to enhance constraint propagation. However, the effi-
ciency of this approach remains limited because the computation of partial deriv-
atives may also be subject to overestimation.

4 Charibde Algorithm

We consider the following n-dimensional optimization problem and we assume
that f is differentiable and that the analytical forms of f and its partial deriva-
tives are available. We note n the dimension of the search-space.

min
x∈D⊂Rn

f(x)

s.t. gi(x) ≤ 0, i ∈ {1, . . . , m}
The current work extends the core method described in [6], in which we com-

bined a GA and an IB&B that ran independently, and cooperated by exchanging
information through shared memory in order to accelerate the convergence. In
this framework, the GA quickly finds satisfactory solutions that improve the
upper bound f̃ of the global minimum, and allows the IB&B to prune parts of
the search-space more efficiently.

The interval-based algorithm embedded in Charibde follows a Branch &
Contract (IB&C) scheme (described in Algorithm 1), namely an IB&B algo-
rithm that integrates a contraction step based on HC4Revise. An IB&B merely
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Fig. 3. Cooperative scheme of Charibde

relies on the refutation principle (discard a box if it is unfeasible or if it cannot
contain a global minimizer). An IB&C may contract boxes by taking into account
the constraints gi(x) ≤ 0, i ∈ {1, . . . , m} (feasibility) or ∂f

∂xi
= 0, i ∈ {1, . . . , n}

(local optimality) and f ≤ f̃ . Exploiting the analytical form of the objective
function and its derivatives achieves faster convergence of the hybrid algorithm.
Filtering algorithms show particular efficiency when f̃ is a good approximation
of the global minimum provided by the EA thread, hence the necessity to quickly
find an incumbent solution. Charibde thus outperforms our previous algorithm
by far.

We note x̃ the best known solution, such that F (x̃) = f̃ . The cooperation
between the two threads boils down to three main steps (Fig. 3):

– Whenever the best known DE evaluation is improved, the best individual xb

is evaluated using IA. The upper bound of the image F (xb) – an upper bound
of the global minimum – is sent to the IB&C thread

– In the IB&C algorithm, F (xb) is compared to the current best upper bound
f̃ . An improvement of the latter leads to a more efficiently pruning of the
subspaces that cannot contain a (feasible) global minimizer

– Whenever the evaluation of the center m(X) of a box improves f̃ , the individ-
ual m(X) replaces the worst individual xw of DE, thus preventing premature
convergence

In the following, we detail the implementations of the two main components
of our algorithm: the deterministic IB&C thread and the stochastic DE thread.

4.1 Interval Branch & Contract Thread

We note L the priority queue in which the remaining boxes are stored and ε the
desired precision. The basic framework of IB&C algorithms is described in Algo-
rithm 1. The following rules have been experimentally tested and implemented
in Charibde:

Selection rule: The box X for which F (X) is the largest is extracted from L
Bounding rule: Evaluating F (X) yields a rigorous enclosure of f(X)
Cut-off test: If f̃ − ε < F (X), X is discarded as it cannot improve f̃ by more

than ε
Midpoint test: If the evaluation of the midpoint of X improves f̃ , f̃ is updated
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Branching rule: X is bisected along the k-th dimension, where k is chosen
according to the round-robin method (one dimension after another). The
two resulting subboxes are inserted in L to be processed at a later stage

Algorithm 1. Interval Branch and Contract framework
f̃ ← +∞ � best found upper bound
L ← {X0} � priority queue of boxes to process
repeat

Extract a box X from L � selection rule
Compute F (X) � bounding rule
if X cannot be eliminated then � cut-off test

Contract(X, f̃) � filtering algorithms
Compute F (m(X)) to update f̃ � midpoint test
Bisect X into X1 and X2 � branching rule
Store X1 and X2 in L

end if
until L = ∅

return (f̃ , x̃)

4.2 Differential Evolution Thread

Differential Evolution (DE) is an EA that combines the coordinates of existing
individuals with a particular probability to generate new potential solutions [11].
It has shown great potential for solving difficult optimization problems, and has
few control parameters. Let us denote NP the population size, W > 0 the
weighting factor and CR ∈ [0, 1] the crossover rate. For each individual x of
the population, three other individuals u, v and w, all different and different
from x, are randomly picked in the population. The newly generated individual
y = (y1, . . . , yj , . . . , yn) is computed as follows:

yj =

{
uj + W × (vj − wj) if j = R or rand(0, 1) < CR

xj otherwise
(1)

R is a random index in {1, . . . , n} ensuring that at least one component of y
differs from that of x. y replaces x in the population if f(y) < f(x).

Boundary constraints: When a component yj lies outside the bounds [Dj ,Dj ]
of the search-space, the bounce-back method [12] replaces yj with a compo-
nent that lies between uj (the j-th component of u) and the admissible
bound:

yj =

{
uj + rand(0, 1)(Dj − uj), if yj > Dj

uj + rand(0, 1)(Dj − uj), if yj < Dj

(2)

Evaluation: Given inequality constraints {gi | i = 1, . . . , m}, the evaluation of
an individual x is computed as a triplet (fx, nx, sx), where fx is the objective
value, nx the number of violated constraints and sx =

∑m
i=1 max(gi(x), 0). If

at least one of the constraints is violated, the objective value is not computed
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Selection: Given the evaluation triplets (fx, nx, sx) and (fy, ny, sy) of two can-
didate solutions x and y, the best individual to be kept for the next gener-
ation is computed as follows:
– if nx < ny or (nx = ny > 0 and sx < sy) or (nx = ny = 0 and fx < fy)

then x is kept
– otherwise, y replaces x

Termination: The DE has no termination criterion and stops only when the
IB&C thread has reached convergence

5 Experimental Results

Charibde has been tested on a benchmark of standard test functions includ-
ing quadratic, polynomial and nonlinear functions: bound-constrained problems
(Rana, Egg Holder, Schwefel, Rosenbrock, Rastrigin, Michalewicz and Griewanlk)
and inequality-constrained problems (Tension, Himmelblau, Welded Beam and
Keane). Both the best known minimum in the literature and the certified global
minimum1 computed by Charibde are reported in Table 1. The global minima
may be analytically computed for some separable or trivial functions, but for oth-
ers (Rana and Egg Holder functions) no result concerning deterministic methods
exists in the literature. Charibde has achieved new optimality results for three
functions (Rana, Egg Holder and Michalewicz) and has proven the optimality of
the known minima of the other functions.

Table 1. Test functions with best known and certified minima

n Type Reference Best known Certified minimum
minimum by Charibde

Bound-Constrained Problems

Rana 4 Nonlinear [15] – –1535.1243381

Egg Holder 10 Nonlinear [16] −8247 [17] –8291.2400675249

Schwefel 10 Nonlinear −4189.828873 [18] −4189.8288727

Rosenbrock 50 Quadratic 0 0

Rastrigin 50 Nonlinear 0 0

Michalewicz 75 Nonlinear – –74.6218111876

Griewank 200 Nonlinear 0 0

Inequality-Constrained Problems

Tension 3 Polynomial [19] 0.012665232788319 [20] 0.0126652328

Himmelblau 5 Quadratic [19] −31025.560242 [21] −31025.5602424972

Welded Beam 4 Nonlinear [19] 1.724852309 [22] 1.7248523085974

Keane 5 Nonlinear [23] −0.634448687 [24] −0.6344486869

Note that the constraints of Keane’s function do not contain variables with
multiple occurrences, and are therefore not subject to dependency. However, the
first inequality constraint, describing a hyperbola in two dimensions, is active at
1 Corresponding solutions are available upon request.
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the global minimizer. The second inequality constraint is linear and is not active
at the global minimizer. These constraints are highly combinatorial due to the
sum and product operations, which makes constraint propagation rather ineffi-
cient. The Egg Holder (resp. Rana) function is strongly subject to dependency:
x1 and xn occur three (resp. Five) times in its expression, and (x2, . . . , xn−1)
occur six (resp. Ten) times. Their natural interval extensions therefore produce a
large overestimation of the actual range. They are extremely difficult for interval-
based solvers to optimize.

Partial derivatives of the objective function are computed using automatic
differentiation [13]. To compute the partial derivatives of the functions that
contain absolute values (Rana, Egg Holder, Schwefel and Keane), we use an
interval extension based on the subderivative of | · | [14]:

| · |′(X) =

⎧
⎪⎨

⎪⎩

[−1,−1] if X < 0
[1, 1] if X > 0
[−1, 1] otherwise

(3)

The statistics of Charibde over 100 runs are presented in Table 2. ε is the
numerical precision of the certified minimum such that f̃−f∗ < ε, (NP , W , CR)
are the DE parameters, tmax is the maximal computation time (in seconds), Smax

is the maximal size of the priority queue L, nef is the number of evaluations
of the real-valued function f and neF = neDE

F + neIB&C
F is the number of

evaluations of the interval function F computed in the DE thread (neDE
F ) and the

IB&C thread (neIB&C
F ). Note that neDE

F represents the number of improvements
of the best DE evaluation. Because the DE thread keeps running as long as the
IB&C thread has not achieved convergence, nef is generally much larger than

Table 2. Average results over 100 runs

n ε NP W CR tmax Smax nef neF

Bound-Constrained Problems

Rana 4 10−6 50 0.7 0.5 222 42 274847000 47 + 27771415

Egg Holder 10 10−6 50 0.7 0.5 768 45 423230200 190 + 423230200

Schwefel 10 10−6 40 0.7 0.5 2.3 32 1462900 150 + 362290

Rosenbrock 50 10−12 40 0.7 0.9 3.3 531 368028 678 + 664914

Rastrigin 50 10−15 40 0.7 0 0.3 93 29372 29 + 42879

Michalewicz 75 10−9 70 0.5 0 138 187 6053495 1203 + 5796189

Griewank 200 10−12 50 0.5 0 11.8 134 188340 316 + 116624

Inequality-Constrained Problems

Tension 3 10−9 50 0.7 0.9 3.8 80 1324026 113 + 1057964

Himmelblau 5 10−9 50 0.7 0.9 0.07 139 12147 104 + 36669

Beam 4 10−12 50 0.7 0.9 2.2 11 316966 166 + 54426

Keane 5 10−4 40 0.7 0.5 472 23 152402815 125 + 99273548
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Fig. 4. Comparison of Charibde and standalone DE and IB&C (logarithmic x scale)

the number of evaluations required to reach f̃ . These statistics suggest that the
Egg Holder function, Keane’s function and Rana’s function are among the most
challenging nonlinear problems for numerical solvers.

Figure 4 portrays the average comparison of performance between Charibde
and standalone DE and IB&C over 100 runs of Six of the test functions (Egg Holder,
Griewank, Keane, Michalewicz, Rana and Schwefel). A particular instance of each
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problem has been selected so that the standalone IB&C reaches convergence within
reasonable time; to this end, the standard “best-first search” heuristic (extract the
box X with the lowest F (X)) seemed more suitable. The DE algorithm reaches the
global minimum for all instances. The IB&C generally experiences several phases
of stagnation: this is due to the (crude) upper bounds of f∗ obtained when eval-
uating the center of the boxes. On the contrary, Charibde benefits from the start
of convergence of either the DE algorithm (Egg Holder, Keane, Rana and Schwe-
fel) or the IB&C algorithm (Griewank and Michalewicz) to reach the global mini-
mum faster than its standalone methods. Charibde proves to be highly competitive
with the IB&C algorithm: on these (relatively simple) instances, the gain ratios in
CPU time are respectively 2.04 (Egg Holder), 3.93 (Griewank), 1.14 (Keane), 377
(Michalewicz) and 3.95 (Rana). The IB&C algorithm however turns out to be more
efficient than Charibde on the Schwefel function (gain ratio in CPU time: 0.36).

6 Conclusion

Extending the basic concept of [6], we have presented in this paper a new coop-
erative hybrid algorithm, Charibde, in which a stochastic Differential Evolution
algorithm (DE) cooperates with a deterministic Interval Branch and Contract
algorithm (IB&C). The DE algorithm quickly finds incumbent solutions that
help the IB&C to improve pruning the search-space using interval propagation
techniques. Whenever the IB&C improves the best known upper bound f̃ of the
global minimum f∗, the corresponding solution is used as a new DE individual
to avoid premature convergence toward local optima.

We have demonstrated the efficiency of this algorithm on a benchmark of
difficult multimodal functions. Previously unknown results have been presented
for Rana, Egg Holder and Michalewicz functions, while other known minima
have been certified. By preventing premature convergence in the DE algorithm
and providing the IB&C algorithm with a good approximation f̃ of f∗, Charibde
proves highly competitive with its two standalone components.
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Abstract. This article extracts and analyzes local optima networks for
the permutation flow-shop problem. Two widely used move operators
for permutation representations, namely, swap and insertion, are incor-
porated into the network landscape model. The performance of a heuris-
tic search algorithm on this problem is also analyzed. In particular, we
study the correlation between local optima network features and the per-
formance of an iterated local search heuristic. Our analysis reveals that
network features can explain and predict problem difficulty. The evidence
confirms the superiority of the insertion operator for this problem.

1 Introduction

The number and distribution of local optima in a combinatorial search space are
known to impact the search difficulty on the corresponding landscape. Under-
stating these features can also inform the design of efficient search algorithms.
For example, it has been observed in many combinatorial landscapes that local
optima are not randomly distributed, rather they tend to be relatively close
to each other (in terms of a plausible metric) and to the known global opti-
mum; clustered in a “central massif” (or “big valley” if we are minimizing)
[4,11,18]. Search algorithms exploiting this globally convex structure have been
proposed [4,18].

A recently proposed model of combinatorial fitness landscape local optima
networks, captures in detail the distribution and topology of local optima in
a landscape. The model was adapted from the study of energy landscapes in
physics, which exist in continuous space [21]. In this network view of energy sur-
faces, vertices are energy minima and there is an edge between two minima if the
system can jump from one to the other with an energy cost of the order of the
thermal energies. In the combinatorial counterpart, vertices correspond to solu-
tions that are minima or maxima of the associated combinatorial problem, but
edges are defined differently, and are oriented and weighted. In a first version,
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P. Legrand et al. (Eds.): EA 2013, LNCS 8752, pp. 41–52, 2014.
DOI: 10.1007/978-3-319-11683-9 4



42 F. Daolio et al.

the weights represent an approximation to the probability of transition between
the respective basins in a given direction [6,16,23,25]. This definition, although
informative, produced densely connected networks and required exhaustive sam-
pling of the basins of attraction. A second version, escape edges was proposed in
[24], which does not require a full computation of the basins. Instead, these edges
account for the chances of escaping a local optimum after a controlled mutation
(e.g.1 or 2 bit-flips in binary space) followed by hill-climbing. This second type
of edges has, up to now, only been explored for binary spaces [24]. Also, previous
work on networks with both basin and escape edges considered a single move
operator on the corresponding search space.

This article extracts, analyzes and compares local optima networks of the
Permutation Flow-shop Problem considering two types of move operators com-
monly used for permutation representation, namely, insertion and exchange. The
article goes further and studies correlations among network features and the per-
formance of an iterated local search heuristic.

2 Methods

2.1 Permutation Flow-Shop Problem

This section describes the optimization problem, solution representation, and
move operators considered in this study.

Problem Formulation. In the Permutation Flow-shop Problem (PFSP), a
flow of n jobs has to be scheduled for processing on m different machines in
sequential order. Each of the n jobs will start at machine 1 and end at machine m.
Concurrency and preemption are not allowed. In other words, job i can not start
on machine j + 1 until machine j has completed it, and execution must run to
completion once started. For any operation, job i will require a given processing
time dij on machine j. Hence, a solution to the PFSP is a job processing order π,
i.e. a permutation of the sequence of n jobs, where π(i) denotes the ith job in the
sequence. The objective is to find the permutation πbest yielding the minimum
makespan, Cmax, which is defined as the earliest completion time of its last job,
πbest(n), on the last machine m.

Search Operators. Several methods for solving the PFSP have been pro-
posed [19], many of which are based on local search heuristics. For those, the
choice of a move operator determines the topology of the search space [10].
We consider here two widely used operators for permutation representation.
Namely, the swap (or exchange) operator, and the shift (or insertion) oper-
ator. Exchange(x, y) simply swaps the job at positions x and y, while Insert(x, y)
selects a job at position x and inserts it into position y, shifting all others jobs;
this operator is known to work well on the PFSP [22].
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2.2 Local Optima Networks

This section overviews relevant definitions for building Local Optima Networks
with Escape Edges in the presence of a neutral fitness landscapes.

A fitness landscape [20] is a triplet (S, V, f) where S, a search space, is the
set of all admissible solutions, V : S −→ 2|S|, a neighborhood structure, is the
function that assigns to every s ∈ S a set of neighbors V (s), and f : S −→ R is
a fitness function that maps the quality of the corresponding solutions.

Given a fitness landscape (S, V, f), a local optimum (LO), which is taken
to be a maximum here, is a solution s∗ such that ∀s ∈ V (s), f(s) ≤ f(s∗).

In our study, the search space is composed of job sequences π of length
n, therefore |S| = n!. The neighborhood is defined by the two selected move
operators, consequently |V (π)| = n(n − 1)/2 under the exchange operator and
|V (π)| = (n− 1)(n− 1) under the insertion operator. Finally, f(π) = −Cmax(π)
that is to be maximized.

A neutral neighbor of s is a configuration x ∈ V (s) with the same fitness
value f(x) = f(s); the size of the set Vn(s) = {x ∈ V (s) | f(x) = f(s)} gives
the neutral degree of a solution, i.e. how many neutral neighbors it has. When
this number is high, the landscape can be thought of as composed of several
sub-graphs of configurations with the same fitness value. This is the case for the
fitness landscape of PFSP [14].

A neutral network (connected sub-graph whose vertices are neutral neigh-
bors), also called a plateau, is a local optimum neutral network if all of its
vertices are local optima.

Algorithm 1. Stochastic Best-Improvement Hill-Climber
Choose initial solution s ∈ S ;
repeat

randomly choose s′ from {z ∈ V (s)|f(z) = maxx∈V (s) f(x)};
if f(s′) ≥ f(s) then

s ← s′;

until s is in a Local Optimum Neutral Network ;

Since the size of the landscape is finite, we can mark the local optima neutral
networks as LONN1, LONN2, . . . , LONNn. These are the vertices of the local
optima network in the neutral case. In other words, we have a network whose
nodes are themselves networks.

Algorithm 1 finds the local optima and defines their basins of attraction [16].
The connections among optima represent the chances of escaping from a LONN
and jumping into another basin after a controlled move [24]. But in a neutral
landscape, the partition of solutions into basins of attraction is not sharp: Algo-
rithm 1 is a stochastic operator h and ∀s ∈ S there is a probability pi(s) =
P (h(s) ∈ LONNi). Therefore, the basin of attraction of LONNi is the set
bi = {s ∈ S | pi(s) > 0} and its size is

∑
s∈S pi(s) [25]. If we perturb a solu-

tion s ∈ LONNi by applying D random moves, we obtain a solution s′ that
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will belong to another basin bj with probability pj , i.e. with probability pj ,
h(s′) will eventually climb to LONNj . The probability to go from s to bj is then
p(s → bj) =

∑
s′∈bj

p(s → s′)pj(s′), where p(s → s′) = P (s′ ∈ {z | d(z, s) ≤ D})
is the probability for s′ to be within D moves from s and can be evaluated
in terms of relative frequency. Escaping from LONNi to the basin bj after
such a perturbation thus happens with probability wij = p(LONNi → bj) =

1
�LONNi

∑
s∈LONNi

pi(s)p(s → bj). Notice that wij might be different from wji.
The Local Optima Network (LON) is the weighted graph G = (N,E)

where the nodes are the local optima neutral networks, and there is an arc
eij ∈ E with weight wij = p(LONNi → bj) between two nodes i and j if
p(LONNi → bj) > 0.

3 Local Optima Network Analysis

This section overviews the main topological features of the permutation flow-
shop local optima networks. Networks were extracted for instances with n = 10
jobs and m ∈ {5, 6, 7, 8, 9, 10} number of machines. Instances of the unstructured
(random) class were generated using the problem generator proposed by Watson
et al. [26], which is based on the well-known Taillard benchmark [22]. For each
combination of n and m, 30 instances were generated and results are presented
through box-and-whiskers plots, to illustrate the distribution of the different
metrics.

Four LON models are considered, namely, combining two neighborhoods:
exchange and insertion, with two values of edge-escape distances: D = 1 and D =
2. For building the models, local optima are obtained using Algorithm 1 with,
respectively, exchange and insertion moves, whereas the escape-edges consider
the exchange move for the 4 models. The Algorithms were implemented in C++
using the “ParadisEO” library [5]; data analysis and visualization use R [17] with
the appropriate packages for network analysis and statistical computing.

Network size: Figure 1a shows that the number of local optima for all LON
models increases with the number of machines. This is consistent with the obser-
vation that increasing the number of machines (number of constraints) makes
the problem harder to solve. The number of optima does not depend on the
edges model (D = 1, D = 2), therefore, the two subplots in Fig. 1a are exactly
the same. Figure 1a also indicates that the exchange LON model has a larger
number of nodes as compared with the insertion model, which confirms that
insertion is a better operator for the PFSP.

Figure 1b shows the density of edges, defined as the ratio of the LON number
of edges to such number in a complete graph. As expected, the LON models with
D = 2 are more dense. The density decreases with the number of machines for
all models, and it is higher for the insertion LONs.

Clustering coefficient: The clustering coefficient of a network is the average
probability that two neighbors of a given node are also neighbors of each other.
In the language of social networks, the friend of your friend is likely also to be
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Fig. 1. Box-and-whiskers plots giving the distribution of LON features. Boxes comprise
the 0.25 and 0.75-quantiles, with a thick black line at the median value (i.e. the 0.50-
quantile). Whiskers extend for 1.5 times the inter-quantile range and define “outliers”
values, depicted as black dots.
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your friend. The standard clustering coefficient [15] does not consider weighted
edges. We thus use the weighted clustering coefficient, CCw proposed by [3]. In a
random graph, the probability for links to form transitive closures would be the
same as the probability to draw any link. Therefore, the clustering coefficient
(CC) would be the same as the graph link density (De) [15]. By comparing the
LONs weighted clustering coefficients CCw on Fig. 1c with their density of edges
on Fig. 1b, we see that CCw is higher on average than De. This suggests that the
LONs have a local structure. Moreover, by looking at the clustering coefficient
of un-weighted graphs (not presented here to save place), we notice that the
weighted clustering coefficient CCw is higher than the un-weighed coefficient,
an evidence that high-probability transitions are more likely to form triangular
closures than low-probability transitions.

Transitions between optima: Figure 1d reports the average transition prob-
abilities of self-loops (wii) within the networks. For all LON models, this metric
decreases with the number of machines, and it is higher for the exchange oper-
ator. For all LON models, wii is on average higher than wij,j �=i (not presented
here). This suggests that a hill-climber after a perturbation from LONNi is more
likely to remain in the same basin than to escape it and reach another basin.

Link heterogeneity: Figure 1e shows the LON’s average out-degree kout, i.e.
the average number of edges eij leaving a node i. As expected, the more dense
LON models (with D = 2) have higher out degree. For all models, this metric
increases with the number of machines.

Figure 1e shows the disparity measure Y2(i), which gauges the weight het-
erogeneity of the arcs leaving a node [3]. For all models, this metric deviates
from what would be expected in a random network, suggesting that the LON
out-going edges are not equiprobable, but instead have predominant directions.

Path lengths: Figure 1g reports the LON’s average path length. The length
associated to a single edge eij , is dij = 1/wij , which can be interpreted as the
expected number of random perturbations for escaping LONNi and entering
exactly the basin of LONNj . The length of a path, then, is simply the sum of all
the edge lengths in it. For all models, the path length increases with the number
of machines. Path lengths are longer for the exchange LON with D = 1. The
other LON models show short path lengths, specially for the insertion operator.
Additional evidence supporting the advantage of this operator.

Figure 1h shows the average length of shortest paths that reach the global
optimum starting from any other local optimum. This measure is clearly rele-
vant to search difficulty. Shortest paths to the optimum reveal easy to search
landscapes. Again, the insertion operator induces shortest distances, specially
when coupled with an escape intensity D = 2.

Mixing patterns: Figure 2a reports on the tendency of LON nodes to connect
to nodes with similar degree. Specifically, figure shows the Newman’s r coeffi-
cient, a common measure of assortativity roughly equivalent the Pearson corre-
lation between the endpoints degree of all the existing links [15]. Degree mixing
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Fig. 2. (a) Newman’s r coefficient of assortativity; (b) Spearman ρ correlation between
the fitness of a node and the weighted average of its neighbors’ fitness.

is known to a have strong influence on the dynamical processes happening on
complex network [2].

More interesting is to investigate mixing patterns with respect to the nodes
fitness values. Figure 2b shows the Spearman correlation coefficient between the
fitness of a LONNi and the average value of its neighbors LONNj fitnesses,
weighted by the respective transition probabilities wij,j �=i. This measure is less
reliable on the small and dense LONs extracted from the insertion landscape,
but on the exchange LONs, it suggests a positive fitness-fitness correlation that
tends to increase with the number of machines. This might suggest that good
solutions tend to be clustered within the search space.

More general and more pronounced is the positive correlation, measured by
Spearman’s ρ statistic, between the fitness value of a node and the sum of the
weights of its incoming transitions. Considering all instances, ρ is in the 95%
confidence interval (0.78, 0.81), indicating that the higher the fitness of a LONN ,
the easier it is to reach it. This is consistent with results on other combinatorial
spaces displaying a positive correlation between fitness and basin size [7].

4 The Performance of Iterated Local Search

The network metrics studied in the previous section, suggest that the insertion
operator is preferable over the exchange operator, and that an escape distance
of 2 (D = 2) induces an easier to search landscape. In order to corroborate these
predictions, this section studies the performance of a heuristic search algorithm,
specifically, iterated local search, when running on the modeled PFSP instances.
Moreover, we show that it is possible to predict the running time of ILS using
multi-linear regression model based on LON features.

Iterated local search is a relatively simple but powerful strategy, which oper-
ates by alternating between a perturbation stage and an improvement stage. This
search principle has been rediscovered multiple times, within different research
communities and with different names. The term iterated local search (ILS) was
proposed in [12]. Algorithm 2 outlines the procedure.
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Algorithm 2. Iterated Local Search
s0 ← Choose random initial solution s ∈ S;
s∗ ← LocalSearch(s0, op); // hill-climber using move operator op
repeat

s′ ← Perturbation(s∗, D); // D-moves of random swap

s′∗ ← LocalSearch(s′, op); // hill-climber using move operator op
if f(s′∗) > f(s∗) then

s∗ ← s′∗; // accept if better

until FE ≤ FEmax;

The LocalSearch procedure in Algorithm 2, corresponds to the stochastic hill-
climber given in Algorithm 1. In our implementation, the two operators studied:
insertion and exchange can be used in this stage. The perturbation stage uses
only the exchange operator but with two different intensities of one or two oper-
ator applications. Notice that Algorithm 2 follows closely the structure of basins
of the search space, and thus, the LON models should explain the performance of
such ILS. Specifically, four ILS implementations are tested, namely, using inser-
tion and exchange in the local stage, and using one or two applications of the
exchange operator in the perturbation stage, which we denote D = 1 and D = 2.

Experimental Setup: The same instances studied in Sect. 3 are considered,
i.e. unstructured (random) instances with n = 10 jobs and m ∈ {5, 6, 7, 8, 9, 10}
number of machines. The four variants of ILS (Algorithm 2 described above) are
tested. The maximum running time is set to FEmax = 0.2|S| = 0.2·10! = 725760
function evaluations. On each instance, independent runs are randomly restarted
1000 times upon termination, which occurs either on finding the global optimum
or on exhausting the FE budget.

For assessing the algorithms’ performance, we use the expected number of
function evaluations to reach the global optimum (Run-Length [9]), considering
independent restarts of the ILS algorithms [1]. This accounts for both the success
rate (ps ∈ (0, 1]) and the convergence speed. After (N − 1) unsuccessful runs
stopped at Tus-steps and the final successful one running for Ts-steps, the total
run-length would be T =

∑N−1
k=1 (Tus)k +Ts. Taking the expectation and consid-

ering that N follows a geometric distribution (Bernoulli trials) with parameter
ps, it gives: E(T ) =

(
1−ps

ps

)
E(Tus) + E(Ts), where E(Tus) = FEmax, the ratio

of successful to total runs is an estimator for ps, and E(Ts) can be estimated by
the average running time of successful runs.

Comparing the Performance of ILS Variants: Figure 3 compares the per-
formance of the four ILS variants. Figure 3a reports the estimated probability
of success, which is clearly superior for ILS variants with perturbation strength
of 2 (D = 2). In this case the ILS algorithm solves all instances to optimal-
ity in the median. For one perturbation (D = 1, in Fig. 3a), success rates are
much lower, specially for the exchange operator, where they decrease with
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Fig. 3. Performance of iterated local search: (a) success probability, (b) run-length.

increasing number of machines. A closer look at the performance of the ILS vari-
ants is appreciated in Fig. 3b, showing the estimated run-lengths. Run-lengths
are much higher for ILS variants with a single exchange (D = 1). For both D = 1
and D = 2, the insertion operator produce shorter running lengths, although dif-
ferences are greater when a single perturbation is used. Finally, for all ILS vari-
ants, the running length tends to increase with the number of machines. These
performance observations, are consistent with the search difficulty predicted by
the LON metrics in Sect. 3.

Table 1. Spearman’s ρ statistic for the correlation between the estimated run-length of
ILS variants and the LON metrics by the respective move and perturbation. Nv nb of
local optima, CCw avg weighted clustering coeff., Fnn neighboring nodes fitness-fitness
corr., knn neighboring nodes degree-degree corr., r Newman’s assortativity, Lopt avg
shortest distance to the global optimum, Lv avg path length, Fsin fitness-strength(in)
corr., wii avg weight of self-loops, Y2 avg disparity of (out)links, kout avg (out)degree.

ILS/LON Nv CCw Fnn knn r Lopt Lv Fsρ wii Y2 kout

Insertion D1 0.46 −0.221 0.199 0.078 0.238 0.634 0.40 −0.101 −0.31 −0.41 0.479

Insertion D2 0.54 −0.209 0.316 −0.165 0.117 0.691 0.45 −0.167 −0.476 −0.46 0.55

Exchange D1 0.535 −0.506 −0.004 0.142 0.353 0.624 0.536 −0.102 −0.235 −0.473 0.448

Exchange D2 0.408 −0.255 0.22 −0.111 0.165 0.527 0.353 −0.035 −0.272 −0.434 0.409

Performance prediction: This section explores the correlations between the
LON metrics from Sect. 3 and the ILS performance presented above. More pre-
cisely, Table 1 reports the rank-based Spearman’s ρ statistic between each LON
metric and the ILS estimated run-length, considering the natural pairings of
move operator and perturbation intensity between ILS variants and LON mod-
els. In all cases, the higher the number of local optima (Nv) and, even more
importantly, the longer the average lengths of paths to the global optimum
(Lopt), the longer it takes for the iterated search to solve an instance to opti-
mality. Figure 4 shows such correlations, which are the highest observed. Other
scatter plots are less clear and are left out for reasons of space, but admittedly,
their interpretation would also be less straightforward.
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Fig. 4. Scatter plots of the estimated run-length versus different network metrics.

Finally, in order to investigate how the LON features could be used to predict
the search difficulty on the whole set of explored landscapes, we propose a set of
linear regression models having the estimated run-length as a dependent variable,
log-transformed after a preliminary analysis (log-likelihood of Box-Cox’s power
parameter). We perform an exhaustive search in the set of all possible regressors
subsets [13] and for each subset size we retain the best model according to
Mallow’s Cp statistic [8]. Results are given in Table 2. Interestingly, the number of
local optima Nv is never chosen; instead, the best single predictor is the average
length of the shortest paths to the global optimum Lopt, log-transformed, which
alone accounts for more than 57% of the observed run-length variance across
the PFSP instances under study.

Table 2. Exhaustive search among all regressors subsets for the multiple linear regres-
sion predicting the logarithm of estimated run-length as a function of the LON metrics.
For each number of predictors �P , the best model in terms of Mallow’s Cp statistic is
given, along with its estimated regression coefficients and the resulting adjusted R2.

�P log(Nv) CCw Fnn knn r log(Lopt) log(Lv) F sρ wii Y2 kout Cp adjR2

1 2.13 265.54 0.574

2 −5.18 1.43 64.06 0.675

3 1.481 0.895 −0.042 16.48 0.700

4 −2.079 1.473 0.540 −0.032 8.75 0.704

5 −2.388 −1.633 1.470 0.528 −0.030 5.97 0.706

6 −2.532 −1.722 1.469 0.472 −1.405 −0.028 3.75 0.707

7 −2.772 −1.986 1.461 0.427 −1.497 −0.408 −0.029 5.02 0.707

8 −2.748 −0.188 −2.078 1.464 0.452 −1.579 −0.515 −0.029 6.39 0.707

5 Conclusions

This article extracts and analyzes, for the first time, the local optima net-
works of the permutation flow-shop problem. The LON model with the so-called
escape-edges, which account for the chances of escaping a local optimum after
a controlled perturbation (1 or 2 random exchanges in our implementation), is
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extended to landscapes with neutrality. Two move operators, widely used for per-
mutation representations (exchange and insert), are considered and contrasted.

LONs induced by the insertion operator present fewer nodes (i.e. fewer local
optima), and shortest distances both among nodes and from any node to the
global optimum. This evidence supports the superior performance of the inser-
tion over the exchange move as reported in the literature. The LON models with
D = 2 produce shortest distances among nodes, and from any node to the global
optimum, compared to models with D = 1. Therefore a local search heuristic
using the insertion operator for adaptive walks and several kicks of the exchange
operator to escape local optima, should perform well on these PFSP instances.

Indeed, four iterated local search variants were implemented and tested,
which resemble the considered LON models. Among these, the ILS with insertion
in the improvement stage and two exchanges in the perturbation stage, produced
the best performance. This confirms the intuitions from the LON model metrics.
Actually, not only the LON metrics correlate with the search performance, but
also the ILS running time can be estimated using the LON features.

Future work will explore larger problems, which requires sampling to extract
the LON models, and additional permutation flow-shop instance classes, such as
machine-correlated and mixed-correlated instances [26]. The ultimate goal is to
derive easy-to-compute landscape metrics that can predict the performance and
guide the design of heuristic search algorithms when solving difficult combina-
torial problems. This article is an additional step in this direction.
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3. Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Characterization
and modeling of weighted networks. Phys. A Stat. Mech. Appl. 346(1), 34–43
(2005)

4. Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique for
combinatorial global optimizations. Oper. Res. Lett. 16, 101–113 (1994)

5. Cahon, S., Melab, N., Talbi, E.G.: Paradiseo: A framework for the reusable design
of parallel and distributed metaheuristics. J. Heuristics 10, 357–380 (2004)

6. Daolio, F., Tomassini, M., Verel, S., Ochoa, G.: Communities of minima in local
optima networks of combinatorial spaces. Phys. A Stat. Mech. Appl. 390, 1684–
1694 (2011)

7. Daolio, F., Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of the
quadratic assignment problem. In: 2010 IEEE Congress on Evolutionary Compu-
tation (CEC), pp. 1–8. IEEE (2010)

8. Gilmour, S.G.: The interpretation of mallows’s Cp-statistic. The Statistician 45,
49–56 (1996)
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Abstract. We study the linear convergence of a simple pattern search
method on non quasi-convex functions on continuous domains. Assump-
tions include an assumption on the sampling performed by the evolu-
tionary algorithm (supposed to cover efficiently the neighborhood of the
current search point), the conditioning of the objective function (so that
the probability of improvement is not too low at each time step, given a
correct step size), and the unicity of the optimum.

1 Introduction

Continuous evolutionary algorithms are well known for robust convergence. How-
ever, most proven results are for simple objective functions, e.g. sphere functions
[1]. Results also include compositions with monotone functions (so that not
only convex functions are covered), but the considered objective functions are
nonetheless still almost always quasi-convex (i.e. sublevel sets are convex), as
well as most derivative free optimization algorithms [4], whereas nearly all test-
beds are based on more difficult functions [7,11]. Extensions to non quasi-convex
functions are still rare [12] and limited to convergence (i.e.: asymptotically we
will find the optimum). We here extend such results to linear convergence (i.e.
the precision after n iterations is O(exp(−Ω(n))). There are works devoted to
unimodal objective functions, without convexity assumptions [6], but such works
are in the discrete domain and do not say anything for the linear convergence on
continuous domains. All in all, only one of the six objective functions of Fig. 1
is covered by existing results, in terms of linear convergence.

In this paper, we prove linear convergence of a simple pattern search method
with derandomized sampling on non quasi-convex families of functions. Section 2
presents the framework, and the assumptions under which our results hold.
Section 3 is the mathematical analysis, under this set of assumptions. Section 4
presents the application to positive definite quadratic forms: it shows that the
family of quadratic forms with conditioning bounded by some constant verifies
our set of assumptions, and therefore that our evolution strategy with deran-
domized sampling has linear convergence rate on such objective functions. Inci-
dentally, this section emphasizes the critical underlying assumptions for proving

c© Springer International Publishing Switzerland 2014
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Fig. 1. Six graphical representations of easy objective functions; only the first one
(sphere) is covered by existing linear convergence results. Even the sixth one (ellipsoids)
is not included in published linear convergence results. We extend to all functions
verifying Eqs. 1–6 (see these equations in text), including all functions presented here.
We present assumptions under which our results hold in Sect. 2, the main result in
Sect. 3, and we will show in details that the sixth case above (quadratic functions) is
covered by the result in Sect. 4 (but case 1 is a special case of case 6, and cases 2, 3, 4,
5 can be tackled similarly). Reference [12] provides other examples, with different but
very related assumptions; their examples are also covered by our theorem.

the result, suggesting extensions to other families of fitness functions. Section 5
concludes and discusses limitations and further work.

2 A Simple Pattern Search Method

We consider an evolutionary algorithm as in Algorithm1. As the sampling is
derandomized, we might indeed call this algorithm a pattern search method. We
assume the followings.

The Objective Function. We assume that the function f has a unique mini-
mum. Without loss of generality, we assume that the objective function verifies
f(0) = 0 and that this is the minimum. The considered algorithms are invariant
by transition or composition with monotone functions, so this does not reduce
the generality of the analysis.

Conditioning. We assume that

K ′||x|| ≤ f(x) ≤ K ′′||x|| (1)

for all x in IRd and for some constants K ′ > 0 and K ′′ > 0. We point out
that, as we consider algorithms which are invariant under transformations of the
objective function by composition with monotonic functions, this assumption is
not so strong as a constraint and quadratic positive definite forms with bounded
condition number are in fact covered (their square root verifies Eq. 1).
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Algorithm 1. The Simple Evolution Strategy. In case there is no unicity for
choosing x′, any breaking tie solution is ok. (c) refers to the counting operation,
which will be important in the proof. [[1, k]] stands for the integer set {1, . . . , k}.

Initialize x ∈ IRd

Parameters k ∈ N
∗, δ1, . . . , δk ∈ IRd, σ ∈ IR∗

+, k1 ∈ N
∗, k2 ∈ N

∗

for t = 1, 2, 3, . . . do

// just for archiving
X t ← x

// mutations
For i ∈ [[1, k]], xi ← x + σδi

// useful auxiliary variables
n ← number of xi such that f(xi) < f(x) (c)
x′ ← xi with i ∈ [[1, k]] such that f(xi) is minimum

// step-size adaptation
if n ≤ k1 then

σ ← σ/2
end if
if n ≥ k2 then

σ ← 2σ
end if

// win: accepted mutation
if k1 < n < k2 then

x ← x′

end if
end for

Good Sampling. Here we use the derandomized sampling assumptions (Eqs. 2–
6), which are crucial in our work. This sampling is deterministic, as in pattern
search methods [4]. We assume that for some 0 < b < b′ ≤ 2b′ ≤ c′ ≤ c, 0 < η < 1
and ∀x ∈ IRd,

σ too large: σ ≥ b−1||x||
⇒ #{i ∈ [[1, k]]; f(x + σδi) < f(x)} ≤ k1 (2)

σ small enough: σ ≤ b′−1||x||
⇒ #{i ∈ [[1, k]]; f(x + σδi) < f(x)} > k1 (3)

σ large enough: σ ≥ c′−1||x||
⇒ #{i ∈ [[1, k]]; f(x + σδi) < f(x)} < k2 (4)
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σ too small: σ ≤ c−1||x||
⇒ #{i ∈ [[1, k]]; f(x + σδi) < f(x)} ≥ k2 (5)

Perfect σ : b′−1||x|| ≤ σ ≤ c′−1||x||
⇒ ∃i ∈ [[1, k]]; f(x + σδi) ≤ ηf(x) (6)

Discussion on Assumptions. Assumptions 2, 3, 4, 5, 6 basically assume that
the sampling is regular enough for the shape of the level sets. For example, the
finite VC-dimension of ellipsoids ensure that, when the conditioning is bounded,
quadratic functions verify the assumptions above (and therefore the theorem
below) with arbitrarily high probability if δ1,. . . ,δk are randomly drawn and if
k is large enough. Importantly, the critical assumption in the derandomization
is that all iterations have the same δ1, . . . , δk. This will be developed in Sect. 4.

Assumptions 1 and 6 use the fitness values; but they just have to hold for
one of the fitness values obtained by replacing f with g ◦ f with g a monotone
function.

3 Mathematical Analysis

Main Theorem: Assume Eqs. 1–6. There exists a constant K, depending on
η,K ′,K ′′,maxi ||δi|| only such that for index t sufficiently large

ln(||Xt||)/t ≤ K < 0 (7)

(with ln(0) = −∞) where the sequence of Xt is defined as in Algorithm1.

Proof: First, we briefly explain and illustrate the proof, before the formal proof
below. The proof is sketched in Fig. 2. At each iteration t, we are at some point in
the figure; the x-axis is − ln(||x||) (equivalent to − ln(f(x)), by Eq. 1), the y-axis
is l = ln

(
||x||

σ

)
. The step-size adaptation ensures that if we are at the bottom

(l ≤ ln(b)), we go upwards; if we are at the top (l ≥ ln(c)), we go downwards.
Between l = ln(b) and l = ln(c), everything can happen; but if there’s no “win”
case in the mean time, we will arrive between l = ln(b′) and l = ln(c′), where
a win is ensured. As steps are fast, this can not take too much time (if there is
no “win”, l increases by ln(2) or decreases by ln(2) in direction of the “forced
win” range [ln(b′), ln(c′)]). This will be formalized below. c′ ≥ 2b′ ensures that
the algorithm can not jump from l < ln(b′) to l > ln(c′) or from l > ln(c′) to
l < ln(b′). Therefore there is necessarily a “win” in the mean time. Equation 6
ensures that wins provide a significant improvement.

We now write the proof formally. Consider an iteration of the algorithm, with
n the number of mutations i with f(x+σδi) < f(x) (as defined in Algorithm 1,
Eq. (c)).
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Fig. 2. The linear convergence proof in a nutshell. X-axis: − ln(||x||). Y-axis: l =

ln( ||x||
σ

). At each iteration, either case A holds: then the iteration is for sure an
improvement by a factor at least η, or case B holds: the iteration can be an improve-
ment or not; if not, the point is moved towards case A by ln(2) upwards or downwards,
or case C holds: then x is moved upwards (if it is at the bottom) or downwards (if
it is at the top). This ensures that after finitely many time steps we go back to case A
unless there is a “win” by case B in the mean time. The crucial point for the proof is
that each “win” is an improvement by least a controlled factor η, so that the slope of
“win” arrows is bounded, so that there is linear convergence and not only an infinite
sequence of “small” improvements.

Define l = ln
(

||x||
σ

)
. Equations 2–6 can be rephrased as follows:

l ≤ ln(b) ⇒ #{i ∈ [[1, k]]; f(x + σδi) < f(x)} ≤ k1 (8)
l ≥ ln(b′) ⇒ #{i ∈ [[1, k]]; f(x + σδi) < f(x)} > k1 (9)
l ≤ ln(c′) ⇒ #{i ∈ [[1, k]]; f(x + σδi) < f(x)} < k2 (10)
l ≥ ln(c) ⇒ #{i ∈ [[1, k]]; f(x + σδi) < f(x)} ≥ k2 (11)

ln(b′) ≤ l ≤ ln(c′) ⇒ ∃i ∈ [[1, k]]; f(x + σδi) ≤ ηf(x) (12)

Define x′ as in Algorithm 1. We get the following behavior:

– Forced increase: if l ≤ ln(b), then n ≤ k1; σ is divided by 2, and l is increased
by ln(2) (Eq. 8). This is a case C in Fig. 2.

– Forced decrease: if l ≥ ln(c), then n ≥ k2; σ is multiplied by 2, and l is
decreased by ln(2) (Eq. 11). This is a case C in Fig. 2.

– Forced win: if ln(b′) ≤ l ≤ ln(c′), then x ← x′; this is the “sure win” case
(Eq. 12); l can be increased (at most by maxi ||δi||) or decreased (by Δ =
ln(||x||/||x′||)). This is a case A in Fig. 2.

Importantly, these 3 cases do not cover all possible cases; ln(c′) < l < ln(c) and
ln(b) < l < ln(b′) are not covered in items above. These two remaining cases are
termed case B in Fig. 2.



58 J. Decock and O. Teytaud

Step 1: Showing that there are infinitely many wins. The two first lines
above (case l ≤ ln(b) and case l ≥ ln(c)) ensure that if l is too low or too high,
it eventually comes back to the range [ln(b′), ln(c′)] (where a win necessarily
occurs), unless there is a win in the mean time (in the range [ln(b), ln(c)] where
wins are not sure but are possible). Importantly, l can increase or decrease by
ln(2) at most; so the algorithm can not jump from less than ln(b′) to more than
ln(c′). This ensures that infinitely often we have a win x ← x′. But we want
linear convergence. Therefore we must consider how many steps there are before
we come back to a “win”, and how large are improvements in case of “win”.

Step 2: showing that “wins” are big enough. In all cases of “win”, i.e.
k1 < n < k2, with Δ = ln(||x||/||x′||), we know that f(x′) ≤ ηf(x) and f(x′) ≤
K ′′||x′|| ≤ K′′

K′
||x′||
||x|| f(x) so that ln(f(x)) is decreased by at least

max(ln(1/η), ln(K ′/K ′′) + Δ). (13)

After a “win”, with l′ = ln
(

||x′||
σ

)
,

– if l′ ≤ ln(b′), then the number of iterations before the next win is at most
z = 1 + ln( c

b )Δ/ ln(2), because l′ ≥ ln(b) − Δ ≥ ln(b′) − ln(b′/b) − Δ ≥
ln(b′) − ln(c/b) − Δ and forced increase are by steps of at least ln(2).

– if l′ ≥ ln(c′), then the number of iterations before the next win is at most
z = 1 + ln( c

b )maxi ln(||δi||)/ ln(2), because l′ ≤ ln(c) − maxi ln(δi) ≤ ln(c′) −
ln(c′/c)−maxi ln(δi) ≤ ln(c′)− ln(c/b)−maxi ln(δi) and forced decreases are
by steps of at least ln(2).

– less than in both cases above, otherwise.

In both cases, Eq. 13 divided by z is lower bounded by some positive constant

ProgressRate

=Eq. 13 divided byz

=
max(ln(1/η), ln(K ′/K ′′) + Δi)

min(1 + ln(c/b)Δi/ ln(2), 1 + ln(c/b)maxj ln(||δj ||)/ ln(2))
. (14)

Step 3: summing iterations. Equation 14 is the progress rate between two
wins, after normalization by the number of steps between these two wins. Hence
if t > n0,

ln(f(Xt)) ≤ ln(f(X1)) − (t − n0) ×
∑

i

max(ln(1/η), ln(K ′/K ′′) + Δi)
min(1 + Δi/ ln(2), 1 + maxj ln(||δj ||)/ ln(2))

(15)

where the summation is for i index of an iteration t with a “win”, and n0 is
the number of initial iterations before a “win” (i.e. n0 depends on the initial
conditions but it is finite).
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Equation 15 yields the expected result. �
This result would be void if there was no algorithm and no space of functions
for which assumptions 1–6 hold. Therefore, next Section is devoted to showing
that for the important case of families of quadratic functions with bounded
conditioning, assumptions 1–6 hold, and therefore the theorem above holds.

4 Application to Quadratic Functions

This section shows an example of application of the theorem above. The main
strength of our results is that it covers many families of functions; yet, Eqs. 1–6
are not so readable. We show in this section that a simple family of fitness functions
verify all the assumptions.

We consider the application to positive definite quadratic forms with bounded
conditioning, i.e. we consider f ∈ F with F the set of quadratic positive definite
objective functions f such that

max Eigen V alue(Hessian(f))
min Eigen V alue(Hessian(f))

< cmax < ∞. (16)

Notably, thanks to the use of VC-dimension, the approach is indeed quite generic
and can be applied to all families of functions obtained by rotation/translation
from fitness functions in Fig. 1.

Instead of working on Q directly, with x �→ Q(x−x∗) a quadratic form with
Q positive definite with optimum in 0, we work on x �→ √

Q(x − x∗), so that
Eq. 1 is verified; as considered algorithms are invariants by composition with
monotone functions, this does not change the result.

We assume that δ1, δ2, . . . , δk are independently uniformly randomly drawn
in the unit ball B(0, 1). From now on, we note p = px,σ,f the probability that
x+σδi is in E = f−1([0, f(x)[), and p̂ = p̂x,σ,f the frequency 1

k

∑k
i=1 χx+σδi∈E .

We will often drop the indices for short.
The assumptions in Sect. 2 essentially mean that frequencies are close to

expectations for x + σδi ∈ f−1([0, f(x)[) and x + σδi ∈ f−1([0, ηf(x)[), inde-
pendently of x, σ, f . This is typically a case in which VC-dimension [14] can help.

The purpose of this section is to show Eqs. 1–6, for a given family of functions,
namely the family F defined above; by proving Eqs. 1–6, we show the following.

Corollary: Assume that the δi are uniformly randomly drawn in the unit ball
B(0, 1). Assume that F is the set of quadratic functions with minimum in 0
(f(0) = 0) which verify Eq. 16 for some cmax < ∞. Then, almost surely on the
sequence δ1, δ2, . . . , δk , for k large enough and some parameters k1 and k2 of
Algorithm1, then Eqs. 1–6 hold, and therefore for some K < 0, for all t > 0,

ln(||Xt||)/t ≤ K (17)

with ln(0) = −∞ and where the sequence of Xt is defined as in Algorithm1.
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Proof: We use the main theorem above for proving Eq. 17, so we just have to
prove that Eqs. 1–6 hold.

Step 1: Using VC-dimension for Approximating Expectations by Fre-
quencies. Thanks to the finiteness of the VC-dimension of quadratic forms (see
e.g. [5]), we know that for all ε > 0, almost surely in δ1, δ2, . . . , δk, for all δ > 0
and k sufficiently large, with probability at least 1 − δ,

sup
x,f,σ>0

|p̂x,σ,f − px,σ,f | ≤ ε/2 (18)

where x ranges over the domain, f ranges over F .
For short, we will often drop the indices, so that Eq. 18 becomes Eq. 19:

sup
x,f,σ>0

|p̂ − p| ≤ ε/2 (19)

The important point here is that this result is a uniform result (uniform on
f ∈ F ); this is not just a simple law of large numbers, it is a uniform law of large
numbers, so that it is not a mistake if there is a supremum on x, σ, f . Almost
surely, the supremum is bounded; it is not only bounded almost surely for each
x, σ, f separately, and this is the key concept in this proof.

Step 2: showing that σ small leads to high acceptance rate and σ high
leads to small acceptance rate. Thanks to the bounded conditioning (Eq. 16),
there exists ε > 0 s.t.

s′ <
1
2
s (20)

with s = sup
{

σ

||x|| ;σ,x, f s.t. p ≥ ε

2

}

and s′ = inf
{

σ

||x|| ;σ,x, f s.t. p <
1
2

− ε

2

}

because s′ → 0 and s → ∞ as ε → 0.
Equation 18 implies

1
2
ŝ ≥ 1

2
s (21)

and
s′ ≥ ŝ′ (22)

with ŝ = sup
{

σ

||x|| ;σ,x, f s.t. p̂ ≥ ε

}

and ŝ′ = inf
{

σ

||x|| ;σ,x, f s.t. p̂ <
1
2

− ε

}
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So, Eqs. 19, 21 and 22, with k large enough, imply

1
2
ŝ > ŝ′ (23)

Equation 23 provide k1, k2, c′ and b′ as follows for Eqs. 3 and 4:

1
b′ = ŝ ,

1
c′ = ŝ′,

k1 = εk� and k2 =
⌈

(
1
2

− ε)k
⌉

with ε < 1
10 (due to step 1). Equations above imply c′ ≥ 2b′.

Step 3: showing that k large enough and σ well chosen leads to at least
one mutation with significant improvement. Similarly, k large enough
yield

b−1 = sup
{

σ

||x|| ;σ,x, f s.t. p̂ > k1/k

}

,

c−1 = inf
{

σ

||x|| ;σ,x, f s.t. p̂ < k2/k

}

,

which provide Eqs. 5 and 2 with b < c thanks to ε < 1
10 (ε was chosen with

ε < 1
10 in step 1). Equations 2–5 then imply b < b′ and c′ < c.

We now have to ensure Eq. 6. Equations 1–5 are proven above for k sufficiently
large; from now on, we note q = qx,σ,f the probability that x + σδi is in E′ =
f−1([0, ηf(x)[), and q̂ = q̂x,σ,f the frequency 1

k

∑k
i=1 1x+σδi∈E′ . For showing

Eq. 6, let us assume
b−1 ≤ σ

||x|| ≤ c−1;

this implies q > ε0 for some ε0 > 0; so for k sufficiently large for ensuring
supσ,x,f |qx,σ,f − q̂x,σ,f | ≤ ε0/2, by VC-dimension, we get q′ ≥ ε0/2 > 0, which
implies that at least one δi verifies x + δi ∈ E′. This is exactly Eq. 6.

Step 4: Concluding. We have shown Eqs. 1–6 for square roots of positive
definite quadratic normal forms with bounded conditioning. Therefore, the main
theorem can be applied and leads to Eq. 17. �

5 Discussion and Conclusion

This work provides, to the best of our knowledge, the first proof of linear conver-
gence of evolutionary algorithms (here, the Simple Evolution Strategy in Algo-
rithm1) in continuous domains on non quasi-convex functions. Indeed, even
the application to quadratic positive definite forms is new. This proof is for
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derandomized samplings only, which means that the mutations δi, before multi-
plication by the step-size which obviously varies, are constant. A main missing
point for an application is the evaluation of the convergence rate as a function
of condition numbers (see extensions below) and the extension to randomized
algorithms preferred by many practitioners.

In Sect. 5.1 we discuss extensions of this paper that we plane to develop in
the near future, and in Sect. 5.2 deeper (harder to get rid of) limitations.

5.1 Extensions

Two properties are used for applying our main theorem to quadratic functions
with a bound on condition numbers:
– VC-dimension of level sets. VC-dimension is a classical easy tool for showing

that a family of functions verify a property such as Eq. 19 for arbitrarily small
ε > 0, provided that k is large enough.

– Equation 20, also crucial in the proof, is directly a consequence of bounded
conditioning (assumption formalized in Eq. 16).

With these two assumptions, we can show Eqs. 1–6, and then the theorem can
be applied. This is enough for objective functions with level sets having simple
graphical representations with rotations/translations.

However, we do not need assumptions so strong as finite VC-dimension for
showing Eqs. 1–6. Glivenko-Cantelli results are enough; and for this, finiteness
of the bracketing covering numbers, for example, is enough [13]; this is the most
natural extension of this work. In particular, there are results showing the finite-
ness of bracketing covering numbers for families of Hölderian spaces of func-
tions; this is a nice path for applying results from this paper to wide families of
functions.

Assumptions in [2] are slightly different from assumptions in this paper; their
main assumption are
– the frontier of any level set f−1(r) has a bounded curvature.
– for some Cmin ∈ IR and Cmax ∈ IR, with x∗ the (assumed unique) optimum

of the objective function f and f(x∗) = 0, for any r ∈ IR, we have

B(x∗, Cminr) ⊂ f−1(r) ⊂ B(x∗, Cmaxr).

The second assumption is equivalent to our conditioning assumption, but the
first one is not directly equivalent to our derandomized sampling assumptions.
Refining the assumptions might be possible by combining their assumptions and
our assumptions.

Condition numbers are classical for estimating the difficulty of local conver-
gence; a nice condition number for difficult optimization should generalize some
classical condition number from the literature, and include non-differentiable
functions as well. Reference [12] did a first step for that; in particular, isotropic
algorithms do not solve functions with infinite condition number (for the defini-
tion of [12]), whereas covariance-based algorithms [8,10] do. Equation 7 we guess
that it is possible to derive a new such number with direct links to convergence
rates of evolution strategies.
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5.2 Limitations

In this paper, we work on an evolutionary algorithm for which mutations δi’s are
randomly drawn once and for all (the same mutation vectors δ1, . . . , δk for all
iterations of the algorithms). This makes the proof much easier. We believe that
the proof can be extended to the case in which the mutations are randomly drawn
at each iteration, as in most usual cases; yet, the adaptation is not straightfor-
ward; we must study the frequency (over iterations) at which assumptions 2–6
hold, and the consequences of bad cases on Eq. 15. For this paper, we just assume
that the δi’s are randomly drawn once and for all iterations; equivalently, they
could be quasi-randomized.

Cumulative adaptation [9] is not considered in our analysis; this is a consider-
ably harder step for generalizing our results, because then the simple separation
between 5 cases (see Fig. 2) is the idea that clearly divides the proof between
step-size adaptation and progress rate.

This work covers quadratic functions, but the rates are not independent of
the conditioning, so complementary results are necessary for algorithms evolving
a covariance matrix, such as [3,8,10]. Maybe ergodic Markov chains are a better
tool for showing such results [1].

We work under assumptions which imply a very large k. More precisely, using
VC-dimension or bracketing numbers, it is possible to get explicit bounds on k,
but these numbers will be far above the usual values for k. Obtaining results
for limited values of k is a classical challenge in machine learning, and for the
moment only huge values of k are applicable when using VC-dimension assump-
tions. Seemingly, weaker assumptions are enough, such as Glivenko-Cantelli
properties [13]. For this paper, VC-dimension is easier to use and sufficient for
our purpose.

Acknowledgements. We are grateful to Rémi Bergasse [2] for interesting discussions.
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Abstract. Multi-caste ant algorithms allow the coexistence of differ-
ent search strategies, thereby enhancing search effectiveness in dynamic
optimization situation. We present two new variants for a multi-caste ant
colony system that promote a better migration of ants between alterna-
tive behaviors. Results obtained with large and highly dynamic traveling
salesperson instances confirm the effectiveness and robustness of the app-
roach. A detailed analysis reveals that one of the castes should adopt a
clearly exploratory behavior, as this minimizes the recovery time after
an environmental change.

Keywords: Ant colony optimization · Dynamic traveling salesperson
problem · Multi-caste ant colony system · Traffic factor

1 Introduction

Ant Colony Optimization (ACO) encompasses a class of algorithms loosely
inspired in the behavior of ants [4]. First developed to deal with the Traveling
Salesperson Problem, it has proven successful in a wide range of hard combina-
torial optimization problems [4]. Ant Colony System (ACS) [3] is one of the most
successful ACO variants and its main distinguishing feature is the existence of a
greedy decision rule adopted by artificial ants when building a solution for the
problem being solved.

ACS, as well as other ACO variants, depend on a set of parameters that gov-
ern the way the search is conducted. Although beneficial, a careful adjustment of
the settings is far from trivial. Also, the ideal setting may change throughout an
optimization run, as the search conditions vary. In dynamic environments, where
the problem modifies over time, this situation is amplified. In a previous work
[15] we proposed a multi-caste framework that allows the coexistence of different
sets of parameter values, hence search strategies, inside a single ACS algorithm.
Also, although the total colony size is fixed, ants may migrate between castes
c© Springer International Publishing Switzerland 2014
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during the run, thereby favoring the specific search strategy that seems to be
more suitable at a given period. In [16], the multi-caste ACS was applied to sev-
eral Dynamic Traveling Salesperson Problem (DTSP) instances. Results revealed
that the adoption of different castes enhances the robustness of the algorithm,
even though the absolute best performance was usually achieved by a standard
ACS with an ideal fixed setting.

In this paper we extend the original framework by proposing two new multi-
caste variants. The goal is to foster an efficient migration of ants between castes,
thereby promoting a fast adaptation to the different scenarios that arise during
search. Also, we test our framework with larger DTSP instances, with over 1000
cities. Dynamism is inserted by modifying the travel cost between cities. Several
scenarios, differing in frequency and magnitude of change, are considered. Results
show that the new multi-caste configurations are effective and outperform both
standard ACS with ideal fixed settings and previous multi-caste variants, par-
ticularly in large DTSP instances.

The structure of the paper is the following: in Sect. 2 we present the multi-
caste ACS used in our work. Section 3 describes the DTSP, whereas Sect. 4 com-
prises a presentation of the optimization results and corresponding analysis.
Finally, Sect. 5 gathers the conclusions and suggests directions for future work.

2 Multi-caste Ant Colony System

While foraging, ants lay pheromones, a chemical signal, on the ground. This
will gradually guide ants towards promising trails, thereby leading to the emer-
gence of an indirect form of communication. Artificial ants belonging to ACO
algorithms mimic this behavior and rely on an artificial trail to share informa-
tion about the problem being solved. The optimization cycle of a general ACO
method comprises two main steps: first, each ant builds a solution biased by
pheromone values and specific heuristic information; afterwards, the pheromone
values of the artificial trail are updated to reflect the quality of the new solutions
found. This procedure is repeated until a termination criterion is satisfied.

2.1 Standard ACS

Ant System (AS) was the first ACO algorithm proposed [4]. Later on, ACS was
presented [3] with the aim of improving AS effectiveness. ACS differs from pre-
vious variants in three key issues (see the aforementioned references for details):
ants rely on a greedy decision rule to build the solutions, only the best ant is
allowed to update the artificial pheromone trail and a local pheromone updating
rule prevents the algorithm from excessive convergence. Parameter q0 controls,
in a probabilistic way, the amount of greediness the ants should use when con-
structing a solution. It is critical to the success of the ACS, as it balances the
relative importance given to exploitation vs. exploration.

There are several studies in the literature that report the limitation of rely-
ing on ACS with fixed settings. In the static TSP, varying the parameter values
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as the search progresses might lead to an overall performance enhancement [9].
Several experiments reported in another study [15], reveal that the best para-
meter values also depend on the instance being optimized. As for the DTSP, the
analysis described in [omitted reference] shows that distinct dynamic scenarios
require ACS algorithms with different q0 values.

2.2 Multi-caste ACS

In the multi-caste ACS, artificial ants are divided in several groups or castes.
Each group encodes its own q0 value, a parameter that strongly influences ACS
search behavior. The idea is to grant ACS with different strategies, allowing it
to select the best ant at any given search stage. Additionally, the alterations
introduced in the conventional ACS are minimal. Ants inherit the setting from
the caste to which they belong and, when applying the state transition rules, rely
on their specific q0 value. High q0 castes contain exploitive ants, whereas lower q0
castes are composed by more explorative ants, important to escape local optima
and recover from a modification in the dynamic environment. All colonies start
with the same number of ants and the total number of ants remains constant.
The term caste, when applied artificial ants, appeared for the first time in [1],
although no implementation was suggested.

When applying multi-caste ACS to a dynamic TSP we must ensure that, when-
ever a change occurs, the solution found by the best-so-far ant is re-evaluated using
the new distance matrix. This is necessary since the same tour after the change
could be associated with a bigger travel distance. Keeping the old, smaller, value
would prevent algorithm from updating the best-so-far ant, thus a sub-optimal
solution would be used to update the trail.

In [15] two multi-caste variants were proposed:

const-multi-caste The dimension of the castes is fixed throughout the opti-
mization;

jump-multi-caste At the end of each iteration, two ants are selected at ran-
dom. If the ants belong to different castes and both castes have more than
20 % of the total number of ants, the quality of their solutions is compared.
The ant with the worse solution jumps to the caste of the winning ant. The
idea behind this variant is to provide a simple method to dynamically adjust
the size of the castes, favoring those that in the current search status encode
the most promising q0 value.

These two variants proved to be robust and able to adapt to different dynamic
scenarios, particularly the jump-multi-caste. However, they tend to be outper-
formed by the conventional ACS with ideal settings. We hypothesize that this
might be due to the waste of resources (i.e., ants) in sub-optimal castes: this
happens either by keeping the caste’s size constant (const-multi-case) or by an
inefficient adjustment of the castes size when the optimization conditions change
(jump-multi-caste). To allow for a better change in the dimension of the castes,
i.e., to enforce a fast or more pronounced switch in the search strategy, we pro-
pose two new jump variants. At the end of each iteration, one ant from each
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caste is selected (independently of the castes size). If the ant with the worse
solution comes from a caste with, at least, 2 ants, it jumps to the caste of the
ant with the best solution. This simple rule allows a large concentration of ants
in promising castes and, at the same time, it prevents extinction. There are two
possible alternatives to select ants for the comparison:

super-jump-multi-caste One ant from each caste is selected at random.
greedy-jump-multi-caste The best ant from each caste is selected.

3 Dynamic Travelling Salesperson Problem

When considering DTSP, two types of dynamism can be devised: adding/removing
cities to the problem or changing the cost between pairs of cities. Existing ACO
techniques for the DTSP are usually aimed to one of the two variants.

In our work, we adopt the second possibility, also known as DTSP with a
traffic factor [12]. For each pair of cities, i and j, eij = dij × fij , where dij is
the original distance between cities i and j, and fij is the traffic factor between
those cities. Every F evaluations a random number R in [FL, FU ] is generated
probabilistically. FL and FU are the upper and lower bounds for the traffic factor
and R represents the traffic at that moment. With a probability M each link
can change its traffic factor to fij = 1 + R, or otherwise, reset its traffic factor
to 1 (meaning no traffic). F and M represent the number of iterations between
changes (i.e., its frequency) and the magnitude of change, respectively.

To be able to compare the different algorithms, and since we know at which
time step changes occur, we use the offline performance [2], that consists on the
average of the best-since-last-change at each time step.

To determine which algorithm was more robust to change, i.e., had a smaller
tour length immediately after a change we also measure the average peak, as
described in formula 1.

Q =
1
E

∑

i∈C

⎛

⎝ 1
T

T∑

j=1

Pij

⎞

⎠ (1)

where C is the set of iterations immediately after a change, T is the number of
independent runs, and Pij is the best solution found at iteration i of run j.

3.1 Related Work

The existing ACO approaches for the DTSP cover both forms of dynamism:
adding/removing cities to the problem [6–8,11,12,18] or changing the cost between
pairs of cities (inserting traffic jams) [5,10,13,14]. Different dynamic scenarios
have been considered by ACO algorithms. Some of the most relevant are:

– frequency of change: intervals between changes range from 20 iterations
[11–14] to 750 iterations [7,8], or somewhere in between [18]; further, single
or multiple changes can be considered [5,6,10];
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– severity of change - from 0.5 % [7,8] to 75 % [11,12] of the cities added/removed;
from 1 % [5,10] to 75 % [13,14] of the links affected by traffic jams;

DTSP instances selected to test the algorithms are usually of moderate size,
varying between 25 ([5]) and 532 cities ([13]). No wide accepted benchmark
exists.

The existing algorithms base their approaches mainly in: some sort of trail
equalization or adjustment ([5,6,8,18]); a local search (KeepElitist) or other
transformation procedure applied to an ant or a group of ants when a change
occurs ([7,8,11,12,14,18]); explicit memory ([7,13,14,18]); an immigrants scheme
([11–14]). The approach described in [10] relies on a rank based, Q-learning
inspired variant of ACO.

4 Experiments

We used the ACOTSP software [19], both to get the results for the standard
ACS and as the base for our own implementations. Unless otherwise noted,
the default values used for the experiments are: m = 10, β = 2, ρ = 0.1,
ξ = 0.1, τ0 = 1/(n · Lnn) (where Lnn is the length of the tour using the nearest
neighbor heuristic [4,19]), and the local search algorithm is the 3-opt. In multi-
caste configurations all castes have the same (initial) size. Different q0 values,
ranging from 0.1 to 0.99 were considered. Each experiment was repeated for 30
times.

Several TSP instances, with a number of cities between 532 and 1173, were
selected from the TSPLIB 95 [17] to construct our dynamic scenarios, as described
in Sect. 3. For every instance we consider 20 dynamic scenarios (4 values of F×
5 values of M): F = {10, 20, 100, 200}, where F = 10 defines a rapid chang-
ing environment and F = 200 represents a slow changing environment; M =
{10, 25, 50, 75, 90}, with M = 10 and M = 90 establishing a small and large degree
of change, respectively. For each instance and M value, 900 distance matrixes were
created (30 distance matrixes per run × 30 runs). Each try was allowed to run for
at least 30 × F iterations.

For each dynamic scenario we compared each pair of configurations, using
the paired t-test with confidence level of 0.95 and 29 degrees of freedom. Then,
for each configuration c, we constructed a table (see Fig. 1). Let vf,m be the
value present in the cell at line f and column m: it represents the comparative
performance of the configuration c in a scenario where change occurs every f
iterations and affects m/100 of the links, and is calculated as vf,m = #w − #b,
where w is the set of configurations that have an average offline performance
statistically larger (worse) than c, and b is the set of configurations with a sta-
tistically smaller (better) offline performance than c. The bigger the value vf,m
(the lighter the cell shading), the better that configuration performed when com-
pared to the others, in that scenario. In the remainder of this section, we identify
the ACS configurations according to the following convention:
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configuration

difference between the number
of configurations that were
worse than this and the ones
that were better, for a 90%
probability of change and 100
iterations between changes

magnitude of change

number of iterations between changes

highest difference

lowest difference

average difference

Fig. 1. Example of how a performance table should be read

Fig. 2. Comparative performance of the ACS variants for the att532 instance
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Fig. 3. Comparative performance of the ACS variants for the rat783 instance

– c99: standard ACS with q0 = 0.99;
– jx 99 (sjx 99, gjx 99): jump (super-jump, greedy-jump) dual-caste configura-

tion with q0 values of 0.x and 0.99 (eg.: sj50 99);

Although other configurations were tested (namely const-multi-caste, and
other q0 values), due to space constraints and for the sake of clarity, we con-
centrate our analysis on the best performing configurations. A global overview
of results can be consulted in Figs. 2, 3, and 4 for instances att523, rat783, and
pcb1173 (results for other TSP instances follow the same trend). The outcomes
clearly show the advantage of multi-caste variants over conventional ACS (please
note that the standard ACS used in the analysis is already the best fixed config-
uration for the DTSP instances under study). The performance improvement is
more evident, as the instances grow in size and in situations with a high degree
of dynamism (big and/or frequent changes). This is an expected result, as insist-
ing on the current trail when a considerable change just occurred (the typical
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Fig. 4. Comparative performance of the ACS variants for the pcb1173 instance

behavior of ACS with a high q0), is not a good strategy. The problem is even
more serious, if the time available to reach a new solution is limited.

Focusing our analysis on the three jump variants, it seems that the new super-
jump and greedy-jump are more robust and effective than the original jump-
multi-caste. The aggressive rules used to resize castes that were proposed in this
paper lead to an efficient transfer of ants and allow for a faster recover when
a change in the environment happens. The differences in performance between
super-jump and greedy-jump are minimal in the tests performed and their behav-
ior can be considered as equivalent. Overall the configurations gj01 99, gj05 99,
gj10 99, sj01 99, and sj05 99 have consistently very good results. It is worth not-
ing that the best multi-caste configurations keep a set of ants with an extremely
low q0. In concrete, 01 99 arrangements oscillate between two extremes, thereby
adapting to different optimization scenarios: they can greedily exploit the best
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Fig. 5. Offline performance of the ACS variants on the att532 instance for the dynamic
scenario F = 100 and M = 25.
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Fig. 6. Offline performance of the ACS variants on the pcb1173 instance for the
dynamic scenario F = 100 and M = 25.

solutions found before, but, as soon as change happens, they quickly switch to
an exploration mode.

Figures 5 and 6 display the offline performance of the 19 configurations pre-
viously considered in a moderate (att532) and large (pcb1173) DTSP instances,
for a dynamic scenario obtained with F = 100 and M = 25 (the same trend
is visible for other scenarios). A comparative analysis of the figures confirms
our previous claims: the performance of the standard ACS deteriorates as the
instances grow in size and it is clearly outperformed by nearly all multi-caste
configurations in pcb1173. Also, within each variant, the relevance of specific q0
values is more visible in the larger instance. The advantage of having a caste
with a very low q0 is obvious in Fig. 6.

Figures 7 and 8 show, for the same instances and dynamic scenarios, the nor-
malized average offline performance (peak) measured in the iteration immediately
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Fig. 7. Average peak of the ACS variants on the att532 instance for the dynamic
scenario F = 100 and M = 25.

Fig. 8. Average peak of the ACS variants on the pcb1173 instance for the dynamic
scenario F = 100 and M = 25.

after the change occurred (Eq. 1). As expected, conventional ACS has higher
peaks immediately after change, as the ants are highly influenced by the cur-
rent, possibly sub-optimal, trail. This holds true for most scenarios and instances.
In the larger instance, it is evident that the presence of a caste with a low q0
enhances the ability of avoiding extreme peaks after change.

5 Conclusions

Multi-caste ACO algorithms allow for the coexistence of different search strate-
gies, thereby enhancing the plasticity and robustness of the method when solving
a difficult optimization situation. In this paper we proposed two new multi-
caste ACS variants that allow for a better migration of ants. This is particularly
important in dynamic environments, where different scenarios appear over time.
Results obtained with DTSP instances show that the new variants are effective
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and robust and outperform both the conventional ACS and previous multi-caste
configurations. The advantage of the new proposals is more evident, when DTSP
instances grow in size and when the degree of dynamism is higher. A noteworthy
results is the need to maintain a caste with an extremely low q0 value (q0 ≤ 0.1),
that supervises the fast recovery of solutions when the environment changes.

All the tests reported in this paper dealt with dual-castes configuration. In
the near future, we aim to study the advantages and weaknesses of generalizing
our approach to a higher number of castes. Also, we intend to test this framework
in different dynamic optimization problems.
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4. Dorigo, M., Stützle, T.: Ant Colony Optimization. A Bradford Book. MIT Press,
Cambridge (2004)

5. Eyckelhof, C.J., Snoek, M.: Ant systems for a dynamic TSP: ants caught in a
traffic jam. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms
2002. LNCS, vol. 2463, pp. 88–99. Springer, Heidelberg (2002)

6. Guntsch, M., Middendorf, M.: Pheromone modification strategies for ant algo-
rithms applied to dynamic TSP. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith,
R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWork-
shops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001.
LNCS, vol. 2037, pp. 213–222. Springer, Heidelberg (2001)

7. Guntsch, M., Middendorf, M.: Applying population based ACO to dynamic opti-
mization problems. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algo-
rithms 2002. LNCS, vol. 2463, pp. 111–122. Springer, Heidelberg (2002)

8. Guntsch, M., Middendorf, M., Schmeck, H.: An ant colony optimization approach
to dynamic TSP. In: GECCO’01 Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 860–867. Morgan Kaufmann Publishers (2001)

9. Hao, Z.F., Cai, R.C., Huang, H.: An adaptive parameter control strategy for ACO.
In: Fifth International Conference on Machine Learning and Cybernetics. IEEE
Press (2006)

10. Liu, J.: Rank-based ant colony optimization applied to dynamic traveling salesman
problems. Eng. Optim. 37(8), 831–847 (2005)

11. Mavrovouniotis, M., Yang, S.: Ant colony optimization with immigrants schemes
in dynamic environments. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G.
(eds.) PPSN XI. LNCS, vol. 6239, pp. 371–380. Springer, Heidelberg (2010)

12. Mavrovouniotis, M., Yang, S.: A memetic ant colony optimization algorithm for
the dynamic travelling salesman problem. Soft Comput. 15(7), 1405–1425 (2011)

13. Mavrovouniotis, M., Yang, S.: An immigrants scheme based on environmental infor-
mation for ant colony optimization for the dynamic travelling salesman problem.
In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoenauer,
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Abstract. In this paper we propose a Beam-ACO approach for a combi-
natorial optimization problem known as the repetition-free longest com-
mon subsequence problem. Given two input sequences x and y over a
finite alphabet Σ, this problem concerns to find a longest common sub-
sequence of x and y in which no letter is repeated. Beam-ACO algorithms
are combinations between the metaheuristic ant colony optimization and
a deterministic tree search technique called beam search. The algorithm
that we present is an adaptation of a previously published Beam-ACO
algorithm for the classical longest common subsequence problem. The
results of the proposed algorithm outperform existing heuristics from
the literature.

1 Introduction

The classical longest common subsequence (LCS) problem is a string problem
in which a problem instance (S,Σ) consists of a set S = {s1, s2, . . . , sn} of n
input strings over a finite alphabet Σ [7]. The problem is then about finding
a string being (1) as long as possible and (2) a subsequence of all the strings
in S. In this context, a string t is called a subsequence of a string s, if t can
be produced from s by deleting zero or more characters. For example, dga is a
subsequence of adagtta. A string that has both properties as described above is
called a longest common subsequence of the strings in S. The LCS problem has
applications in traditional computer science fields (such as data compression and
file comparison [2,13]) but also, for example, in computational biology [8,12].
Moreover, the LCS problem was shown to be NP-hard [10] for an arbitrary
number n of input strings.

The problem that we tackle in this work is a restricted version of the LCS prob-
lem, the so-called repetition-free longest common subsequence (RFLCS) problem.
Given exactly two input strings x and y over a finite alphabet Σ, the goal is to find
a longest common subsequence with the additional restriction that no letter may

c© Springer International Publishing Switzerland 2014
P. Legrand et al. (Eds.): EA 2013, LNCS 8752, pp. 79–90, 2014.
DOI: 10.1007/978-3-319-11683-9 7
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appear more than once. This problem was introduced in [1] for the purpose of hav-
ing a comparison measure for two sequences of biological origin. In the same paper,
the authors proposed three heuristics for solving this problem. These heuristics are
up to now the only published algorithms for the RFLCS problem in the literature.
Other variants of the classical LCS problem were studied, for example, in [5].

In contrast to the RFLCS, the classical LCS problem has already been subject
of a multitude of research works over the past decades. Apart from algorithms
based on dynamic programming and deterministic heuristics, the LCS has also
attracted researchers from the field of metaheuristics (see [6,9,11]). The lastest
one of the metaheuristic approaches for the LCS problem is Beam-ACO [3], a
metaheuristic approach which results from a combination of ant colony opti-
mization (ACO) with beam search (BS). In this work we adapt this Beam-ACO
approach to the RFLCS problem and show that the performance of the result-
ing algorithm is mostly superior to the performance of the heuristics from the
literature.

The organization of this paper is as follows. The proposed Beam-ACO app-
roach is described in Sect. 2. Section 3 outlines the experimental evaluation.
Finally, in Sect. 4 conclusions and an outlook to future work are offered.

2 Beam-ACO

In the following we first describe the ACO-based framework of the proposed
algorithm. Afterwards, the BS component is presented. Note that the algorithmic
framework is exactly the same as the one described in [3]. The adaptation of the
algorithm from the LCS to the RFLCS problem concerns the BS component.

Data Structures and Pheromone Model. The type of ACO algorithm which was
chosen for the algorithmic framework is a MAX -MIN Ant System imple-
mented in the hyper-cube framework (HCF) [4]. The pseudo-code is shown in
Algorithm 1. The algorithm requires the following data structures: (1) the best-
so-far solution T bs, i.e., the best solution generated by the algorithm over time;
(2) the restart-best solution T rb, i.e., the best solution generated since the algo-
rithm’s last restart; (3) the convergence factor cf, 0 ≤ cf ≤ 1, which is a measure
indicating the state of the convergence of the algorithm; and (4) the Boolean
control variable bs update, which assumes value true when the algorithm reaches
convergence.

One of the crucial components of any ACO algorithm is the pheromone model
T . In the context of this paper, T consists of a pheromone value 0 ≤ τx,i ≤ 1
for each position i of input sequence x (i ∈ {1, . . . , |x|}), and a pheromone value
τy,j for each position j of input sequence y (j ∈ {1, . . . , |y|}). Observe that a
pheromone value τx,i (respectively τy,j) indicates the desirability of adding the
letter at position i of string x (respectively, the letter at position j of string y)
to the solution under construction.

This pheromone model allows to represent solutions to the problem (that is,
repetition-free common subsequences) in a specific way. Note that any common
subsequence t of strings x and y can be translated in a well-defined way into a
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Algorithm 1. Beam-ACO for the RFLCS problem
1: input: x, y, kbw, μ ∈ Z

+

2: T bs := null, T rb := null, cf := 0, bs update := false
3: Initialize all pheromone values to 0.5
4: while CPU time limit not reached do
5: T pbs := ProbabilisticBeamSearch(kbw,μ) {see Alg. 2}
6: if |tpbs| > |trb| then T rb := T pbs

7: if |tpbs| > |tbs| then T bs := T pbs

8: ApplyPheromoneUpdate(cf ,bs update,T ,T pbs,T rb,T bs)
9: cf := ComputeConvergenceFactor(T )
10: if cf > 0.99 then
11: if bs update = true then
12: Re-init. all pheromone values to 0.5, T rb := null, bs update := false
13: else
14: bs update := true
15: end if
16: end if
17: end while
18: output: the string version tbs of T bs

unique ACO-solution T = (X,Y ), where both X and Y are binary strings and
X is of length |x| while Y is of length |y|. Hereby, the meaning of X[i] = 1 is that
the letter at position i of string x (that is, x[i]) was chosen for the construction
of solution t, while X[i] = 0 means that x[i] was not chosen. The same holds,
for example, for Y [j] = 1, respectively Y [j] = 0. A solution t is translated into
T = (X,Y ) as follows: first, the position of the left-most occurrence of t[1] in x
(where t[1] is the first character of t) is determined, say k1. Then, all X[i] with
i < k1 are set to 0, while X[k1] := 1. Next, the position of the first occurrence of
t[2] in x after position k1 is determined, say k2. Then, all X[i] with k1 < i < k2
are set to 0, while X[k2] := 1. This is continued until all positions of t are treated.
Afterwards, the same procedure is applied to string y in order to produce Y .

Algorithmic Framework. The algorithm works as follows. First all pheromone
values are initialized to 0.5. Then, at each iteration, a probabilistic version of BS
based on pheromone values is applied. For a description of the BS component
see Sect. 2.1. BS generates a solution T pbs as output. Afterwards, a pheromone
update is performed in ApplyPheromoneUpdate(cf , bs update, T , T pbs, T rb, T bs).
Moreover, the current value of the convergence factor cf is determined. Depend-
ing on cf and the value of the Boolean variable bs update, a decision on whether
to restart the algorithm is made. In case of a restart, all pheromone values are
readjusted to 0.5. The stopping criterion of the algorithm is a maximum com-
putation time. As output upon termination, the algorithm provides the string
version tbs of the best-so-far ACO-solution T bs. The two remaining procedures
of Algorithm 1 are detailed in the following.

ApplyPheromoneUpdate(cf ,bs update,T ,T pbs,T rb,T bs): As a standard procedure,
three solutions are used for updating the pheromone values: T pbs, as generated
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Table 1. Setting of κpbs, κrb, κbs, and ρ depending on the convergence factor cf and
the Boolean control variable bs update

bs update = false bs update = true

cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8

κpbs 1 2/3 1/3 0 0

κrb 0 1/3 2/3 1 0

κbs 0 0 0 0 1

ρ 0.2 0.2 0.2 0.15 0.15

by BS in the current iteration, T rb, and T bs. The weight of each solution for
the purpose of the pheromone update is determined as a function of cf, the
convergence factor. The pheromone values τx,i corresponding to input string x
are updated as follows:

τx,i := τx,i + ρ · (ξx,i − τx,i), (1)

where
ξx,i := κpbs · Xpbs[i] + κrb · Xrb[i] + κbs · Xbs[i], (2)

where κpbs is the weight of solution T pbs = (Xpbs, Y pbs), κrb the one of T rb =
(Xrb, Y rb), κbs the one of T bs = (Xbs, Y bs), and κpbs +κrb +κbs = 1. The weight
values that we chose are the standard ones shown in Table 1. Also, note that the
same pheromone update rule as described above is applied to the pheromone val-
ues τy,j corresponding to input string y. Finally, note that the algorithm works
with upper and lower bounds for the pheromone values, that is, τmax = 0.999
and τmin = 0.001. In case a pheromone values surpasses one of these limits, the
value is set to the corresponding limit. This has the effect that a complete con-
vergence of the algorithm is avoided.

ComputeConvergenceFactor(T ): The formula that was used for computing the
value of the convergence factor is as follows:

cf := 2

⎛

⎝

⎛

⎝

∑

τ∈T
max{τmax − τ, τ − τmin}
|T | · (τmax − τmin)

⎞

⎠ − 0.5

⎞

⎠

This implies that at the start of the algorithm (or after a restart) cf has value
zero. On the other side, in the case in which all pheromone values are either at
τmin or at τmax, cf has a value of one. In general, cf moves in [0, 1].

2.1 BS Component

The probabilistic BS component which is applied in Procedure ProbabilisticBeam-
Search(kbw,μ) of Algorithm 1 works as follows (see also the pseudo-code in Algo-
rithm2). Solutions are constructed from left to right, and partial solutions are
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Algorithm 2. Procedure ProbabilisticBeamSearch(kbw,μ) of Algorithm 1
1: input: x, y, kbw, μ
2: Bcompl := ∅, B := {∅}, tbsf := ∅
3: while B �= ∅ do
4: EB := Produce Extensions(B)
5: EB := Filter Extensions(EB)
6: B := ∅
7: for k = 1, . . . ,min{�μkbw�, |EB |} do
8: za := Choose Extension(EB)
9: t := za
10: if UB(t) = |t| then
11: Bcompl := Bcompl ∪ {t}
12: if |t| > |tbsf| then tbsf := t end if
13: else
14: if UB(t) ≥ |tbsf| then B := B ∪ {t} end if
15: end if
16: EB := EB\{t}
17: end for
18: B := Reduce(B, kbw)
19: end while
20: output: The ACO-version T pbs of argmax {|t| | t ∈ Bcompl}

extended by appending exactly one letter at a time. The two input parameters
of BS are kbw ∈ Z

+, which is the so-called beam width, and μ ∈ R
+ ≥ 1, which is

a parameter used to determine the maximal number of solution extensions that
may be chosen at each step. The algorithm maintains a set B (the beam) for
storing the current set of partial solutions. At the start B is initialized with the
empty string denoted by ∅. Let EB denote the set of all possible extensions of
the partial solutions in B. At each step, �μkbw� of these extensions are selected
based on a greedy function and the pheromone values. Hereby, complete (that
is, non-extensible) solutions are stored in Bcompl, and partial solutions are added
to set B in case the corresponding upper bound value (as computed by function
UB()) is greater than the length of the best-so-far solution tbsf. In order to final-
ize a step, B must be reduced in case it contains more than kbw partial solutions.
This is done on the basis of the upper bound values. More specifically, the best
partial solutions with respect to the upper bound values remain in B. In the
following the four different procedures of Algorithm2 are outlined in detail.

Produce Extensions(B): Given the current beam B as input, this procedure gen-
erates a set EB of non-dominated extensions of all the partial solutions in B,
which is done as explained in the following. First, given a partial solution t, the
reduced alphabet Σt only contains letters which do not appear in t. Furthermore,
let x = x+ · x− be the partition of input sequence x into substrings x+ and x−

such that t is a subsequence of x+, and x− has maximal length. In the same
way, y+ and y− are defined. Given this partition, which is well-defined, position
pointers px := |x+| and py := |y+| are introduced. Moreover, the position of the
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first appearance of a letter a ∈ Σt in strings x and y after the position point-
ers px and py is well-defined and denoted by pa

x and pa
y. In case letter a ∈ Σt

does not appear in x (respectively y), pa
x (respectively pa

y) is set to ∞. In this
context, a letter a ∈ Σt is called dominated, if there exists at least one letter
b ∈ Σt, a 	= b, such that pb

x < pa
x and pb

y < pa
y. Finally, Σt

nd ⊆ Σt denotes the
set of non-dominated letters of the reduced alphabet Σt with respect to partial
solution t. Observe also that letters in Σnd

t are required to appear at least once
in both x− and y−. Finally, set EB is generated as the set of subsequences ta,
where t ∈ B and a ∈ Σt

nd.

Filter Extensions(EB): The non-domination relation—as defined above—can also
be considered for extensions of different partial solutions of the same length.
Formally, given two extensions ta, zb ∈ EB , where t 	= z but not necessarily
a 	= b, ta is said to dominate zb if and only if the position pointers concerning a
appear before the position pointers concerning b in the corresponding remaining
parts of the two input strings. Using this relation, EB is filtered in order to
remove all dominated elements.

Choose Extension(EB): This procedure handles the probabilistic choice of a par-
tial solution from EB , both on the basis of a greedy function and the pheromone
values. The greedy value of an extension ta ∈ EB is computed as follows:

η(ta) :=
(

pa
x − px

|x−| +
pa

y − py

|y−|
)−1

(3)

Instead of directly using these greedy values, we decided to use the corresponding
ranks instead. More specifically, the final greedy value ν(ta) of a partial solution
ta ∈ EB is calculated as the sum of the ranks of the greedy weights that corre-
spond to the construction steps that were performed to construct string ta. With
this definition of ν(), the probability for each ta ∈ EB is computed as follows:

p(ta|EB) =

(
min{τx,pa

x
, τy,pa

y
} · ν(ta)−1

)

∑

zb∈EB

(
min{τx,pb

x
, τy,pb

y
} · ν(zb)−1

) (4)

Remember that pa
x was defined as the next position of letter a after position

pointer px in string x, and similarly for pa
y. The intuition of this formula is as

follows: If at least one of the pheromone values τx,pa
x

and τy,pa
y

is low, the corre-
sponding letter should not yet be appended to the string, because there seems
to be another letter that should be appended first. Finally, each application of
function Choose Extension(EB) is either executed probabilistically, or determin-
istically (by choosing the option with the highest probability). The probability
for a deterministic choice, also called the determinism rate, is henceforth denoted
by q ∈ [0, 1].

Reduce(B, kbw): This procedure reduces B, if necessary, to exactly kbw elements,
based on their upper bound value. Given a partial solution t ∈ B, δ(x, a) (for all
a ∈ Σt) evaluates to one, in case letter a appears at least once in x−. Otherwise,
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δ(x, a) evaluates to zero. The same holds for δ(y, a). The upper bound value of
t ∈ B is then defined as follows:

UB(t) := |t| +
∑

a∈Σt

min {δ(x, a), δ(y, a)} (5)

Note that this upper bound function can be efficiently computed by keeping
appropriate data structures.

3 Experimental Evaluation

The experimental evaluation has been performed on a PC with an Intel i7 quad
core processor with 3 GHz and 8 GB of memory. First, we re-implemented the
two best heuristics for the RFLCS problem presented in [1]. These heuristics are
henceforth labeled A1 and A2, just like in the original paper. A1 is a determin-
istic heuristic which computes a longest common subsequence t (using dynamic
programming) of the input sequences x and y. Afterwards, all repetitions of let-
ters in t are deleted, maintaining of each letter exactly one occurrence. A2 is
a probabilistic heuristic which works as follows. Let n(x, a) denote the number
of occurrences of a letter a in string x. Moreover, let ma(x, y) be defined as
min{n(x, a), n(y, a)}. For each a ∈ Σ, if ma(x, y) = n(x, a) heuristic A2 picks
uniformly at random one occurrence of a in x. All other occurrences of a in x
are deleted. Otherwise, if ma(x, y) = n(y, a) heuristic A2 picks uniformly at ran-
dom one occurrence of a in y. Again, all other occurrences of a in y are deleted.
This results in sequences x′ and y′. Finally, A2 computes a longest common
subsequence of x′ and y′ and provides the result as output. As in the original
paper, A2 was applied 20 times to each problem instance, and the best result
was taken as the final result. Beam-ACO was applied once to each problem
instance (remember that results are averaged over 10 problem instances), with
a computation time limit of 5 CPU seconds per run, a beam width of 10, and
a determinism rate of q = 0.9. Note that the short computation time and the
standard parameter setting (without a tuning process) was chosen on purpose
in order to show that even an un-tuned Beam-ACO with a short running time
is able to outperform the existing heuristics.

Problem Instances. Two sets of problem instances were generated, following the
procedure as described in [1]. The first set (henceforth called Set1) consists for each
combination of input sequence length n ∈ {32, 64, 128, 256, 512} and alphabet size
|Σ| ∈ {n/8, n/4, 3n/8, n/2, 5n/8, 3n/4, 7n/8} of exactly 10 problem instances.
The second set of instances (henceforth called Set2) is generated on the basis of
the alphabet size |Σ| ∈ {4, 8, 16, 32, 64} and the maximal repetition of each letter
rep ∈ {3, 4, 5, 6, 7, 8} in each input string. For each combination of |Σ| and rep
this instance set consists of 10 randomly generated problem instances.
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Table 2. Experimental results concerning the instances of Set1.

|Σ| n Heuristic A1 Heuristic A2 Beam-ACO
result std time (s) result std time (s) result std time (s)

n/8

32 4.0 0.00 < 0.001 4.0 0.0 < 0.001 4.0 0.0 < 0.001
64 7.8 0.42 < 0.001 8.0 0.0 < 0.001 8.0 0.0 < 0.001

128 15.1 0.74 < 0.001 15.4 0.52 0.0016 16.0 0.0 0.0036
256 28.5 1.65 < 0.001 25.7 0.67 0.002 31.9 0.32 0.026
512 51.9 1.45 0.0028 40.7 1.25 0.01 62.3 0.82 1.78

n/4

32 6.8 0.63 < 0.001 7.6 0.52 < 0.001 7.9 0.32 < 0.001
64 12.4 0.84 < 0.001 12.8 0.79 < 0.001 14.3 1.34 0.01

128 21.5 0.97 < 0.001 20.3 1.06 0.002 25.3 0.48 0.21
256 35.2 2.15 < 0.001 30.3 1.64 0.0032 42.4 1.43 0.72
512 59.0 4.03 0.0012 45.5 1.96 0.01 68.0 3.13 0.78

3n/8

32 7.3 0.48 < 0.001 8.6 0.84 < 0.001 8.7 0.68 < 0.001
64 13.1 2.02 < 0.001 13.3 1.25 0.0012 14.4 1.17 0.0036

128 22.1 2.56 < 0.001 21.2 1.87 0.002 25.1 2.13 0.063
256 35.9 2.47 < 0.001 31.3 1.42 0.0052 39.7 2.31 0.24
512 53.7 1.25 0.0024 42.6 2.22 0.002 59.4 1.84 1.31

n/2

32 7.6 1.65 < 0.001 8.3 1.34 < 0.001 8.8 1.55 < 0.001
64 13.2 1.92 < 0.001 13.8 1.14 0.0012 14.5 1.08 0.046

128 21.9 1.20 < 0.001 21.0 0.94 0.0024 23.4 0.97 0.048
256 31.9 2.69 < 0.001 29.8 1.81 0.0044 34.1 2.28 0.17
512 49.8 2.25 0.0016 43.7 2.26 0.0124 53.1 3.14 0.588

5n/8

32 7.4 0.97 < 0.001 7.9 0.88 < 0.001 7.9 0.88 < 0.001
64 12.6 2.01 < 0.001 12.9 1.45 0.0012 13.7 1.64 0.0032

128 19.6 2.59 < 0.001 19.5 1.58 0.0016 21.1 1.91 0.0156
256 29.7 2.63 < 0.001 28.7 1.83 0.0068 31.1 2.73 0.15
512 45.8 2.66 0.002 42.0 1.15 0.014 47.8 1.93 0.328

3n/4

32 7.0 1.25 < 0.001 7.7 0.95 < 0.001 7.8 1.14 < 0.001
64 12.2 1.03 < 0.001 13.0 0.94 < 0.001 13.1 0.74 0.0048

128 18.7 1.84 < 0.001 18.5 1.43 0.0028 19.1 1.97 0.0088
256 29.0 2.00 < 0.001 28.5 1.96 0.004 30.0 1.94 0.06
512 43.6 2.12 0.002 41.9 1.60 0.015 44.7 1.77 0.47

7n/8

32 7.1 1.20 < 0.001 7.5 1.51 < 0.001 7.6 1.58 < 0.001
64 12.1 2.23 < 0.001 11.9 2.28 0.0012 12.2 2.15 0.002

128 18.0 1.94 < 0.001 17.7 1.34 0.0024 18.5 1.9 0.012
256 26.4 0.84 < 0.001 26.1 1.52 0.004 27.2 1.32 0.053
512 40.1 2.85 0.002 38.8 2.39 0.021 40.7 2.0 0.307

3.1 Results

The numerical results are presented in Table 2 (for Set1) and Table 3 (for Set2).
Each table row presents the results averaged over 10 problem instances of the
same type. For each algorithm (that is, A1, A2, and Beam-ACO) the results
are provided in three columns. The first one (with heading result) provides
the result of the corresponding algorithm averaged over 10 problem instances.
The second column (with heading std) gives information on the corresponding
standard deviation. Finally, the third column (with heading time (s)) provides
the computation time. In the case of A1 and A2 the provided data corresponds
to the total amount of computation time (averaged over 10 problem instances),
while Beam-ACO was applied for 5 CPU seconds to each problem instance and
column time (s) provides information on the time at which the best solution of
a run was found (again, averaged over 10 problem instances).
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Table 3. Experimental results concerning the instances of Set2.

|Σ| #reps Heuristic A1 Heuristic A2 Beam-ACO
result std time (s) result std time (s) result std time (s)

4

3 3.0 0.67 < 0.001 3.4 0.52 < 0.001 3.4 0.52 < 0.001
4 3.4 0.52 < 0.001 3.8 0.42 < 0.001 3.8 0.42 < 0.001
5 3.5 0.97 < 0.001 3.8 0.42 < 0.001 3.8 0.42 < 0.001
6 3.6 0.52 < 0.001 3.8 0.42 < 0.001 3.8 0.42 < 0.001
7 3.2 0.79 < 0.001 3.9 0.32 < 0.001 3.9 0.32 < 0.001
8 3.8 0.42 < 0.001 4.0 0.0 < 0.001 4.0 0.0 < 0.001

8

3 5.5 0.85 < 0.001 5.8 0.63 < 0.001 5.9 0.57 < 0.001
4 6.2 0.79 < 0.001 6.6 0.52 < 0.001 6.7 0.48 < 0.001
5 6.1 1.10 < 0.001 6.9 0.88 < 0.001 6.8 0.79 < 0.001
6 6.3 0.82 < 0.001 7.1 0.74 < 0.001 7.3 0.82 < 0.001
7 6.8 0.63 < 0.001 7.5 0.53 < 0.001 7.6 0.52 < 0.001
8 6.7 1.25 < 0.001 7.5 0.53 < 0.001 7.5 0.53 < 0.001

16

3 8.9 1.85 < 0.001 9.3 1.49 < 0.001 9.6 1.51 < 0.001
4 9.9 1.37 < 0.001 10.6 1.07 < 0.001 11.1 1.1 0.0016
5 12.0 1.63 < 0.001 12.3 1.16 < 0.001 13.7 1.25 0.21
6 10.8 1.55 < 0.001 11.9 1.37 < 0.001 13.0 1.49 0.0044
7 12.3 1.34 < 0.001 13.4 0.84 < 0.001 14.5 0.97 0.0072
8 12.0 1.15 < 0.001 13.5 0.71 0.0012 14.7 0.95 0.038

32

3 14.9 1.97 < 0.001 14.7 1.34 0.0012 16.1 1.45 0.042
4 16.9 1.91 < 0.001 17.1 1.20 < 0.001 19.2 1.55 0.013
5 17.8 1.69 < 0.001 18.0 0.82 0.0016 20.6 0.84 0.103
6 19.4 2.99 < 0.001 19.7 1.16 0.0016 24.0 2.11 0.45
7 21.2 1.62 < 0.001 20.5 0.53 0.0024 24.9 1.37 0.048
8 21.0 2.54 < 0.001 21.7 1.25 0.002 26.8 1.32 0.38

64

3 23.5 1.72 < 0.001 22.1 1.37 0.002 24.8 2.15 0.041
4 27.7 2.16 < 0.001 25.2 1.40 0.0032 30.1 1.37 0.14
5 30.4 2.12 < 0.001 27.0 1.25 0.0044 34.5 1.43 0.19
6 33.4 2.22 < 0.001 29.1 1.20 0.0048 38.4 1.78 0.407
7 36.9 3.45 0.0012 31.0 1.41 0.006 42.3 2.95 0.394
8 37.1 3.14 0.0015 32.0 1.49 0.0084 45.1 2.23 0.916

First of all, regarding the computation times, it can be observed that all
algorithms are very fast. In fact, even Beam-ACO usually finds the best solution
of a run in a fraction of a second. Concerning the results, we can observe that
Beam-ACO is nearly always superior (or equal) to both A1 and A2 on both
instance sets. This is with the exception of one single case in instance set Set2
(alphabest size 8, and maximally 6 repetitions of the same letter) where heuristic
A2 performs slightly better.

The graphics that are shown in Figs. 1 and 2 help to appreciate the improve-
ment of Beam-ACO over A1 and A2. Hereby, Fig. 1 visualizes the improvement
of Beam-ACO over A1, and Fig. 2 visualizes the (possibly negative) improvement
of Beam-ACO over A2. The graphics in (a) (in both cases) concern Set1, whereas
the graphics in (b) concern Set2. For each combination of sequence length and
alphabet size (in the case of the graphics in (a)) and for each combination of the
alphabet size and the maximal number of repetitions (in the case of the graphics
in (b)) the size of the colored circle indicates the improvement of Beam-ACO
over A1 (respectively A2) in percent. The legend links circle size with the scale
of the percentages. Black circles indicate an improvement of Beam-ACO over A1
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Fig. 1. Percentage improvements of Beam-ACO over A1.

(respectively A2), while white circles indicate that the corresponding heuristic
was better than Beam-ACO.

Concerning a comparison of Beam-ACO with A1 on instances of Set1, the
graphic in Fig. 1(a) indicates that Beam-ACO has important advantages over A1
when the alphabet size is not too large. On the other side, when the alphabet size
is rather large in comparison to the sequence length, the improvement of Beam-
ACO over A1 decreases. Concerning Set2, the graphic in Fig. 1(b) indicates that
Beam-ACO is generally much better than A1, with important advantages of
up to ≈25% improvement over A1 when the input sequences are long and the
alphabet size is rather large. Concerning the comparison between Beam-ACO
and A2, the graphics in Fig. 2 show that Beam-ACO clearly outperforms A2. For
both instance sets Beam-ACO achieves up to 40–50 % of improvement over A2
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Fig. 2. Percentage improvements of Beam-ACO over A2.

in the most difficult cases. Summarizing we can say that Beam-ACO is a new
state-of-the-art method for the RFLCS problem.

4 Conclusions and Future Work

In this work we adapted a previously published Beam-ACO algorithm from
the classical longest common subsequence problem to the repetition-free longest
common subsequence problem. The results, in comparison to the best ones of
the heuristics from the literature, show that Beam-ACO generally outperforms
these heuristics, often even by a large margin.

Future work will include the development of a specific greedy function for
the RFLCS problem, with the aim of using it within the Beam-ACO algorithm.
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Moreover, we aim to either generate more difficult problem instances or to find
real-world instances which pose a challenge for the proposed algorithm.
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Abstract. Medium-voltage distribution network expansion planning
involves finding the most economical adjustments of both the capac-
ity and the topology of the network such that no operational constraints
are violated and the expected loads, that the expansion is planned for,
can be supplied. This paper tackles this important real-world problem
using realistic yet computationally feasible models and, for the first time,
using two instances of the recently proposed class of Gene-pool Opti-
mal Mixing Evolutionary Algorithms (GOMEAs) that have previously
been shown to be a highly efficient integration of local search and genetic
recombination, but only on standard benchmark problems. One GOMEA
instance that we use employs linkage learning and one instance assumes
no dependencies among problem variables. We also conduct experiments
with a widely used traditional Genetic Algorithm (GA). Our results show
that the favorable performance of GOMEA instances over traditional
GAs extends to the real-world problem at hand. Moreover, the use of
linkage learning is shown to further increase the algorithm’s effective-
ness in converging toward optimal solutions.

Keywords: Evolutionary algorithms · Linkage learning · Distribution
network · Power system expansion planning

1 Introduction

The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) combines
genetic recombination as is reminiscent of Genetic Algorithms (GAs) with model-
building as is reminiscent of Estimation of Distribution Algorithm (EDAs) and
direct improvements as is reminiscent of Local Search (LS) [1]. The model used
in GOMEA describes linkage relations between variables, i.e. which variables
should be copied jointly when performing genetic recombination. Various sub-
classes of the general linkage model are possible, ranging from allowing only fully
c© Springer International Publishing Switzerland 2014
P. Legrand et al. (Eds.): EA 2013, LNCS 8752, pp. 93–105, 2014.
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independent linkage relations to allowing overlapping linkage relations. Based on
the chosen and then learned linkage structure, GOMEA performs variation by
intensively mixing building blocks as identified by the linkage relations in a
greedy manner. The efficiency of GOMEA has so far been shown on a number
of academic benchmarks [1,2], but not yet on real-world optimization problems.

A medium-voltage (MV) distribution network carries electricity from the
(sub)transmission network to MV consuming units [3]. MV distribution network
expansion planning (DNEP) is an important real-world engineering problem. As
the loads (i.e. power consumptions) at different locations increase and/or newly
appeared loads need connections to the network, various electrical components
in the distribution network require replacement or new components must be
installed. Both the capacities of the components and the topology of the net-
work have to be taken into account. There exist various MV network layouts but
the two most common topologies are: radial topology and open loop topology
[3]. Radial topologies, in which every consuming unit is supplied by only one
electrical feed path, are often used in distribution networks with overhead lines,
especially for rural areas [3]. This paper focuses on the open loop layout, which
is used for distribution networks with underground cables, typically found in
urban areas of dense populations. Such MV networks contain groups of several
consuming units (load points). In each group, consuming units are physically
connected one by one by cables forming the shape of a loop. However, in normal
operation, due to management and protection policies, one cable of every loop is
put into an inactive state which creates an opening in the loop so that the net-
work operates in a radial manner. Those cables are put in reserve to be used for
reconfiguring the MV network when unexpected faults happen on active cables
[3]. A feasible expansion plan is one that satisfies all operation and configuration
constraints. An optimal plan is one that is feasible and has minimum expansion
costs. In this paper, investment expenses are of sole interest.

There exist numerous studies into DNEP but the problem modelling is still
far from being standardized. Every network operator has a different policy
regarding the operation constraints of their power systems and different reposi-
tories of electrical facilities. Most studies evaluate the reliability of distribution
networks based on the average failure rates and restoration times of compo-
nents, in which reserve cables are considered as options to enhance the network
reliability [4,5]. The result of such reliability analysis can then be capitalized
into customer outage cost to include in the overall cost to be optimized [4] or
can be treated as a separate objective function [5]. However, it is shown that
reliability in practice is a relative index as its calculation involves many intri-
cate problems with high uncertainty [6]. In this paper, we therefore consider
the capacity of reserve cables, from a different and more practically relevant
perspective, as a network configuration constraint, which is termed as reconfig-
urability. Reconfigurability requires the network to have enough reserve cables
with adequate capacities to bring the network back to operation when an outage
happens on some active cable. Although the cost function to be optimized is
relatively simple and the problem variables are even pairwise independent in it,
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the constraint functions are far more involved and require dedicated electrical
engineering computations (e.g. power flow calculations) that involve the entire
network, effectively introducing dependencies between problem variables. It is
therefore interesting, in addition to comparing the effectiveness of GOMEA with
the commonly employed traditional GA, to see whether the use and usefulness of
linkage learning also extends from traditional benchmark problems to real-world
problems such as the one at hand.

The remainder of this paper is organized as follows. Section 2 outlines GOMEA
and explains its components. Section 3 presents the anatomy of a conventional
distribution network and important constraints. Section 4 shows and discusses the
experimental results, while Sect. 5 concludes the paper.

2 Gene-pool Optimal Mixing Evolutionary Algorithm

Classic GAs have difficulty solving an optimization problem that has optimal
solutions made of multivariate building blocks whose constitutive problem vari-
ables are scattered over the solution representation string [7]. Traditional recom-
bination operators of GAs are either not able to juxtapose building blocks of
nonconsecutive variables (i.e. 1- or 2-point, or uniform crossover) or too disrup-
tive to preserve enough long building blocks (i.e. in case of uniform crossover).
EDAs were developed with an emphasis on linkage learning to help to detect
and preserve multivariate dependencies, but in EDAs this comes at the cost of
estimating the complete probability distribution, which is expensive and may
be unnecessary. On the other hand, problems with hierarchical dependencies
provide a huge challenge for a classic GA as its genetic recombination is only
horizontal and hierarchical dependencies (i.e. building blocks of building blocks)
cannot be exploited directly. The reason for this is that there is no intermediate
checking for improvements during genetic recombination, causing higher-level
building blocks to automatically overwrite and undo the effects of mixing lower-
level building blocks. GOMEA overcomes these issues by effectively integrating
local search into variation, making its overall procedure closer to that of genetic
local search [8]. For solving DNEP, GOMEA is therefore a strong candidate
optimization algorithm.

2.1 Family of Subsets

The GOMEA uses the concept of family of subsets (FOS) as the linkage model
to match the structure of optimization problems [1]. A FOS, denoted F , is a set
of subsets of a certain set S , which means F ⊆ P(S ), i.e. the powerset of S .
Normally, set S is the set of all variable indices {1, 2, . . . , l}. A FOS F can be
written as F = {F 1,F 2, . . . ,F |F|} where F i ⊆ {1, 2, . . . , l}, i ∈ {1, 2, . . . , |F|}.
To ensure all decision variables are considered in the variation operator, every
variable index is contained in at least one subset in F , i.e. ∀i ∈ {1, 2, . . . , l} :
(∃j ∈ {1, 2, . . . , |F|} : i ∈ F j). In this paper, we consider two FOS structures.
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Univariate Structure: This structure, which is arguably the simplest structure
possible, considers every decision variable to be independent from each other.
The corresponding FOS F thus contains only singleton subsets F i = {i}, i ∈
{1, 2, . . . , l}. As there is only one possible configuration, no linkage learning is
required. The use of the univariate structure is perhaps best known from GAs,
where it translates into the well-known uniform crossover operator (UX).

Linkage Tree Structure: The linkage tree (LT) structure represents depen-
dencies among decision variables in a hierarchical manner. The bottom level of
the tree (i.e. leaf nodes) contains all singleton subsets, i.e. the univariate struc-
ture. Intermediate levels contains subsets F i having more than one decision
variable index. Any bivariate or multivariate subset F i is the result of combin-
ing two subsets F j and F k such that F j ∩ F k = ∅, |F j | < |F i|, |F k| < |F i|
and F j ∪ F k = F i. The top level (root node) is the set S itself containing all
decision variable indices. This root node, which indicates that all variables are
jointly dependent, is excluded from the linkage tree FOS as performing building
block mixing based on this subset for any two solutions only results in the same
solutions.

The LT is learned from the selected candidate solutions at every generation by
performing a hierarchical clustering procedure where distances between clusters
are computed using the average pair-wise distance over all pairs of variables.
For details about clustering algorithms and different distance metrics, please
refer to the literature [1,2]. Here, we used mutual information (MI) as the basis
of distance between two variables (higher MI values mean a lower distance).
We further note that in this paper, variables are not binary but rather have a
larger bounded integer domain. However, since the search space is still Cartesian,
the extension of MI from binary to integer variables is straightforward. The
GOMEA variant that uses the LT structure as its linkage model is also known
as Linkage Tree Genetic Algorithm (LTGA) [1]. It is worthwhile to mention
that the computational complexity of learning an LT is low compared to typical
higher-order models in EDAs (i.e. O(nl2) versus O(nl3)).

2.2 Optimal Mixing and Forced Improvements

GOMEA uses a procedure called Gene-pool Optimal Mixing (GOM) as its vari-
ation operator [1]. For each existing parent solution in the population, exactly
one offspring is generated by mixing building blocks of that parent with those of
other solutions following the linkages specified by subsets in FOS F . First, the
parent solution is cloned. Then, the FOS is traversed and for each subset F i ∈ F
a donor solution is chosen randomly from the population. The values in the donor
corresponding to the variables in the linkage group are copied into the parent
solution. If such mixing results in an improvement, the changes are accepted,
otherwise the changes are reverted. Bosman et al. [2] showed that if GOM also
accepts changes that generate equally good solutions, better performance can be
achieved.
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If a solution cannot be improved by GOM alone, a procedure called forced
improvement (FI) is performed [9]. In essence, FI is an additional GOM opera-
tion with the current best solution always as the donor. However, in this case,
optimal mixing stops as soon as any single improvement is achieved. Because
accepting solutions of equal quality can potentially stall the algorithm indefi-
nitely on a fitness plateau, GOMEA is found to have better performance if FI
is also triggered when the number of continuous generations that the best solu-
tion is not updated, which is termed as no-improvement stretch (NIS), is larger
than 1 + 	log10(n)
 [2]. FI is reported to ensure efficient convergence while not
continuously reducing population diversity [9]. The pseudo-code for GOMEA
with GOM and FI is outlined in Fig. 1. Note that GOMEA typically does a
lot more evaluations per generation than a classic GA would do, but GOMEA
also typically requires far smaller population sizes and far less generations to
converge.

Fig. 1. Pseudo-code for GOMEA [2]
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3 MV Distribution Network Expansion Planning

Distribution network expansion planning (DNEP) involves decision making about
what, where, when and how electrical components in a power distribution system
should be adjusted to meet the forecasted growth in power demands at consum-
ing units. In this paper, we take a traditional conservative approach and consider
only the highest possible peak load for each consuming unit in the network. The
network must be configured such that it can handle those loads and thus it is
tested with that load profile. In this paper, we focus on a key part of the problem:
deciding upon the locations and the types of adjustments. Available enhancement
options are: changing existing devices, and installing new devices in the network,
without specifying the time horizon. This paper considers two kinds of electrical
devices: cables and transformers. An optimal expansion plan requires minimum
investment cost while satisfying all operation and configuration constraints (see
Sect. 3.2).

3.1 MV Distribution Network Encoding

An MV distribution network can be seen as a graph with a set of nodes (vertices)
and a set of branches (edges). A node can be a substation, which is the source
of power supply, or it can be a consuming unit, which demands and consumes
power. Every branch connects two nodes, and all branches together form feed
paths for electric currents flowing from power substations to consuming units. In
a DNEP problem, the power supply capacities of substations and power demands
of consuming units form the inputs. The outputs are decisions about capacities
of all branches. Available options are: whether to connect two nodes by a branch
(an overhead line or an underground cable, or a transformer if two nodes have
different voltages), the capacity of the branch, and whether the branch should
be active or in reserve.

To solve the DNEP for a network, we need to specify all the currently existing
branches and a restricted set of potential candidate branches that can be newly
added into the network. This set of potential branches is often determined by
using expert knowledge to disregard unnecessary branches. Let l denote the total
number of branches, and let m denote the total number of nodes. We represent
a distribution network as a vector of length l of integer-value elements

x = (x1, x2, . . . , xl), xi ∈ Ω(xi), i ∈ {1, 2, . . . , l} (1)

where each xi corresponds with the i-th branch of the network. The set of possible
devices Ω(xi) that can be installed at each branch xi depends on policies and
the repository of each network operator. We use an integer number to indicate
which device to install at a branch. The status of each xi is defined as follows

• xi = 0: There is no device at the i-th branch. This means that the previously
existing device is removed or that no device is decided to be installed at the
i-th branch.
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• xi = id > 0: A device with identification number id ∈ Ω(xi) is installed at
the i-th branch.

• xi = −id < 0: A device with identification number id ∈ Ω(xi) is put in reserve
at the i-th branch. The device is installed into the network but it does not
take part in the normal operation. It is used to reconfigure the system in
emergency cases.

Note that the original MV network has the xi of currently non-existing branches
set to 0.

3.2 Optimization Problem Formulation

Let x = (x1, x2, . . . , xl) be the original network and let x′ = (x′
1, x

′
2, . . . , x

′
l) be

an adjusted network. DNEP minimizes the investment cost as follows

Min f(x,x′) =
l∑

i=1

cost(xi, x
′
i) (2)

where

cost(xi, x
′
i) =

{
0 if xi = x′

i

cost of changing xi to x′
i if xi �= x′

i
(3)

For a given (test) load profile, the following constraints must be satisfied:

I Voltage constraints

|Vi|MIN ≤ |Vi| ≤ |Vi|MAX
, i ∈ {1, 2, . . . ,m} (4)

where |Vi| is the voltage magnitude at node i, and [|Vi|MIN
, |Vi|MAX ] is

the allowable range of voltage magnitude at node i. We quantify the degree
of the voltage constraint violation of a network by summing the amount
of out-of-bound voltage magnitude at every node (i.e. (|Vi|MIN − |Vi|) if
|Vi| < |Vi|MIN or (|Vi| − |Vi|MAX) if |Vi| > |Vi|MAX).

II Line flow constraints (or device capacity constraints)

|Si| ≤ |Si|MAX
, i ∈ {1, 2, . . . , l} (5)

where |Si| is the power flow through the device installed at branch xi, i.e. a
cable or a transformer, and |Si|MAX is the nominal capacity of that device.
There should be no overload at any device. We quantify the degree of the line
flow constraint violation of a network by summing the amount of overload
at every branch (i.e. (|Si| − |Si|MAX) if |Si| > |Si|MAX).

III Radial operation constraint: All the active cables together have to form
a radial configuration. This means that any consuming unit is supplied elec-
tricity via one single feed path in normal operation.
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IV Reconfigurability constraint: When, during normal operation, faults
happen on an active branch, that branch is isolated from the network by
opening its corresponding switches. The network is then reconfigured by clos-
ing the switches of reserve branches so that disconnected consuming units are
served again. The network may operate with loops in an emergency situation
and can endure a mild overload in a short time while the faulty branch is
being repaired. The degrees of emergency capacity of equipments are decided
by network operators. In this paper, we assume that equipment emergency
capacity is 120 % of its nominal capacity.

Constraints I, II, and III are commonly adopted in the literature [4,5]. The
constraint IV is employed here due to reasons mentioned in Sect. 1.

3.3 Solution Evaluation

As DNEP is a constrained optimization problem, the fitness evaluation for an
expansion plan involves both the investment cost calculation and constraint eval-
uations. When we need to compare any two solutions, as in selection or the opti-
mal mixing procedures, we use the concept of constraint domination. A feasible
solution is one that satisfies all constraints. A feasible solution is always better
than an infeasible one, a cheap feasible solution is better than a more expensive
one, and if both solutions are infeasible then the one with less or equal degree
of violation of all constraints and strictly less violation of at least one constraint
is the better solution.

While calculating investment cost is a trivial operation, constraint evalua-
tions are computationally expensive. For each expansion plan, we must perform
a power flow calculation (PLC) [10] to obtain the value of the voltage at each
node and the power flowing through each branch. These are used to check the
constraints (I) and (II). In essence, a PLC involves solving a system of non-linear
equations, called the AC power flow model. Due to inherent technical reasons,
the commonly used cheaper linear DC model cannot be used for distribution
network evaluation without a significant compromise on accuracy. For details
of PLC, see e.g. [10]. Therefore, constraints evaluations are computationally
expensive.

A complete fulfilment of the reconfigurability constraint requires performing
a single-line contingency for every branch in the network: a branch is assumed
to be failed, the network is then reconfigured back to operation, and the power
flowing in each branch is re-calculated. This paper considers a computationally
cheaper constraint evaluation commonly adopted in practice. It performs single
line contingency only on cables branching directly from substations as these
cables carry the heaviest loads before distributing power to subsequent nodes.

4 Experiments

4.1 Test Cases and Experiment Setup

Based on real-world data, we designed two MV distribution networks as opti-
mization benchmarks.
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Fig. 2. Network 1. Original topology: Potential cables are represented by dashed lines.
Reserve cables are marked with flag symbols. Transformers are denoted by pairs of
overlapped circles. Arrow symbols indicate power demands at consuming units. After
enhancement: Highlighted components are suggested to be replaced or newly installed.

• Network 1: an MV distribution network of one open loop contains 18 nodes
(1 substation, 9 consuming units, in which each transformer is represented by
2 nodes having different base voltages) and 25 possible branches (10 existing
cables, 8 existing transformers, and 7 potential cable connections). The topol-
ogy and experiment current and forecasted loads of Network 1 can be found
in Fig. 2 and Table 1.

• Network 2: an MV distribution network of two open loops contains 31 nodes
(1 substation and 30 consuming units) and 59 possible branches (32 existing
cables and 27 potential cable connections). Further details are withheld for
reasons of confidentiality.

In this paper, we consider 5 common types of MV cables, differentiated by their
areas of conductor: 120, 150, 240, 400, and 630 mm2. We also consider 5 common
options of transformers, denoted by their nominal capacities: 100, 160, 250, 400,
and 630 kVA.

We test 3 optimizers:GOMEA-LT (GOMEAwith linkage treeFOS),GOMEA-
UNI (GOMEA with univariate FOS), and a traditional genetic algorithm (GA)
with uniform crossover and tournament selection similarly configured as in [1]. For
every optimizer, we test it with 10 different population sizes which are exponen-
tially increased from 21 to 210. For every population size that we consider, we per-
form 30 independent runs of each optimizer. Each run starts with a population of
randomly generated expansion plans (network topology and the equipment type
at each element). We terminate a run only when the whole population converges
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Table 1. Network 1: current loads and forecasted loads at each consuming unit. PD

and QD are the active and reactive power demands, which make up the load at each
node. Other nodes have the base voltage of 10 kV and do not have power demand.

Node ID Base voltage (kV) Current load Forecasted load

PD QD PD QD

3 10 0.6735 0.3951 3.6735 0.3951

11 0.4 0.187 0.1159 0.287 0.1159

12 0.4 0.272 0.1686 0.372 0.1686

13 0.4 0.2818 0.1747 0.2818 0.1747

14 0.4 0.272 0.1747 0.272 0.1686

15 0.4 0.255 0.158 0.355 0.158

16 0.4 0.0808 0.050 0.3808 0.05

17 0.4 0.1785 0.1106 0.2785 0.1106

18 0.4 0.2975 0.1844 0.3975 0.1844

to the same solution because in practice, the optimum is not know beforehand and
we would like to see the best solutions that each optimizer possibly can obtain.

4.2 Results

Figure 2 shows MV Network 1 before enhancement and the best found expansion
plan. To satisfy the forecast load demand, a new cable should connect node 1
(the substation) and node 3. The branch connecting node 2 and 3 should be put
in reserve so that the network can operate radially. There are five overloaded
transformers, and all of them should be replaced by ones with higher capacities.

Figure 3 shows the capability of GOMEA-LT, GOMEA-UNI, and GA in min-
imizing the investment cost for the enhancement of Network 1 as the number
of fitness evaluations increases. Fitness evaluations for each candidate expan-
sion plan involve power flow calculations, which are the most computationally
expensive operations in the optimization process. Thus, different from academic
benchmarks, fitness evaluation for the DNEP problem, truly dominates the com-
puting time of all 3 optimizers. Hence, we use the number of fitness evaluations
that each optimizer needs to perform from beginning until convergence as an
indicator of computing time. Figure 3 shows both instances of GOMEA have bet-
ter performances than the traditional GA. The traditional GA consumes much
more computing time to come close to GOMEA but even for population size
1024, the traditional GA still cannot converge reliably to the same best solution
obtained by GOMEA. If we use a too small population size, it is difficult to find
feasible solutions, which explains why the line representing GA goes up first (fea-
sible solutions can be more expensive than infeasible solutions) before it starts
to go down when feasible solutions are found. Network 1 is a small distribution
network containing only 25 branches (i.e. the number of decision variables), and
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Fig. 3. Performance of GOMEA-LT, GOMEA-UNI and GA on minimizing the invest-
ment cost for enhancement of Network 1. Error bars show standard deviation.

while the variables are independent when evaluating the investment cost func-
tion, they are also linked when evaluating the constraints. However, depending
on the problem instance, these linkages may be weak and of little influence,
especially if the problem size is small. This explains why GOMEA-UNI, which
assumes no dependencies among variables, requires less computing times than
GOMEA-LT, which has an overhead of learning linkage trees and evaluating
unnecessary mixings of (weak) linkage groups. This calls for the need of filtering
spurious linkage groups in the linkage learning process as pointed out in [2]. It
should be noted that when considering reliable convergence (30/30 runs) to the
best solution ever found, GOMEA-LT requires less evaluations. The convenience
of independent decision variables that GOMEA-UNI can exploit is not available
in more complicated networks, which can be seen in case of Network 2.

Figure 4 shows the experimental results of 3 optimizers on solving DNEP for
Network 2. This test case has a much larger and more complicated search space
compared to Network 1. It can be seen that if we continue to run the optimization
process with larger population sizes (and hence more power flow calculations),
better solutions may still be obtained. Here, GOMEA-LT demonstrates that
it has the best performance in comparison with the other 2 optimizers. The
traditional GA has difficulty finding feasible solutions, let alone the optimum.
GOMEA-UNI has a good performance here due to the intensive optimal mixing
variation operator. However, without linkage learning, GOMEA-UNI does not
obtain solutions of high quality as those found by GOMEA-LT. GOMEA-UNI
can locate good solutions only if the decision variables are independent or weakly
linked as in case of Network 1. Otherwise, GOMEA-UNI cannot efficiently find
solutions that require the juxtaposition of multivariate linkage groups, e.g. as
in the classic trap function benchmarks. GOMEA-LT wins over its univariate
sibling in these cases.
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5 Conclusions

The recently-developed gene-pool optimal mixing evolutionary algorithm
(GOMEA) has so far been benchmarked on various theoretical optimization
problems in the literature. Meanwhile, the long-existing traditional genetic algo-
rithm (GA) has been widely used for numerous real-world optimization tasks.
In this paper, we tackled the real-world problem of medium-voltage distribu-
tion network expansion planning (DNEP) with two instances of GOMEA: one
with the univariate structure and one with the linkage tree. GOMEA was found
to have much better performance than the traditional GA in terms of comput-
ing time and quality of the obtained solutions. Moreover, experimental results
showed that linkage learning is truly beneficial for finding (near-)optimal solu-
tions, not only in theoretical benchmarks but also in this engineering problem,
further underlining the robustness of GOMEA and encouraging further applica-
tions of GOMEA on other real-world optimization problems.

References

1. Thierens, D., Bosman, P.A.N.: Optimal mixing evolutionary algorithms. In: Pro-
ceedings of the 13th Annual Genetic and Evolutionary Computation Conference,
GECCO 2011, Dublin, Ireland, July 12–16, pp. 617–624. ACM (2011)

2. Bosman, P.A.N., Thierens, D.: More concise and robust linkage learning by filter-
ing and combining linkage hierarchies. In: Genetic and Evolutionary Computation
Conference, GECCO ’13, Amsterdam, The Netherlands, July 6–10, pp. 359–366.
ACM (2013)

3. Puret, C.: Mv public distribution networks throughout the world. Technical report
155, Merlin Gerin Group, March 1992



MV Distribution Network Expansion Planning with GOMEAs 105

4. Falaghi, H., Singh, C., Haghifam, M.R., Ramezani, M.: Dg integrated multistage
distribution system expansion planning. Int. J. Electr. Power Energ. Syst. 33(8),
1489–1497 (2011)

5. Carrano, E.G., Soares, L.A.E., Takahashi, R.H., Saldanha, R.R., Neto, O.M.: Elec-
tric distribution network multiobjective design using a problem-specific genetic
algorithm. IEEE Trans. Power Delivery 21(2), 995–1005 (2006)

6. Slootweg, J.G., Van Oirsouw, P.M.: Incorporating reliability calculations in rou-
tine network planning: theory and practice. In: Proceedings of the 18th Interna-
tional Conference and Exhibition on Electricity Distribution - CIRED 2005, pp.
1–5 (2005)

7. Thierens, D., Goldberg, D.E.: Mixing in genetic algorithms. In: Proceedings of
the 5th International Conference on Genetic Algorithms, Urbana-Champaign, IL,
USA, pp. 38–47. Morgan Kaufmann, June 1993

8. Jaszkiewicz, A., Kominek, P.: Genetic local search with distance preserving recom-
bination operator for a vehicle routing problem. Eur. J. Oper. Res. 151(2), 352–364
(2003)

9. Bosman, P.A.N., Thierens, D.: Linkage neighbors, optimal mixing and forced
improvements in genetic algorithms. In: Genetic and Evolutionary Computation
Conference, GECCO ’12, Philadelphia, PA, USA, July 7–11, pp. 585–592. ACM
(2012)

10. Grainger, J.J., Stevenson, W.D.: Power System Analysis. McGraw-Hill Education,
New York (2003)



Preliminary Studies on Biclustering of GWA:
A Multiobjective Approach

Khedidja Seridi1,2, Laetitia Jourdan1,2(B), and El-Ghazali Talbi1,2

1 INRIA Lille - Nord Europe, DOLPHIN Project-Team,
59650 Villeneuve d’Ascq Cedex, France
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Abstract. Genome-wide association (GWA) studies aim to identify
genetic variations (polymorphisms) associated with diseases, and more
generally, with traits. Commonly, a Single Nucleotide Polymorphism
(SNP) is considered as it is the most common form of genetic vari-
ations. In the literature, several statistical and data mining methods
have been applied to GWA data analysis. In this article, we present a
preliminary study where we examine the possibilities of applying biclus-
tering approaches to detect association between SNP markers and pheno-
type traits. Therefore, we propose a multiobjective model for biclustering
problems in GWA context. Furthermore, we propose an adapted heuris-
tic and metaheuristic to solve it. The performance of our algorithms are
assessed using synthetic data sets.

1 Introduction

Association mapping has recently become a popular approach to discover the
genetic causes of many complex diseases. A genome wide association study
(GWAs) is the examination process of different genetic variants (markers) in
several individuals in the purpose of detecting eventual association between the
variants and certain traits. GWAs particularly focus on associations between
single-nucleotide polymorphisms (SNPs) and traits like major diseases. Once
such genetic associations are identified, researchers can use the information to
promote new strategies to detect, treat and prevent the diseases [2].

Regarding the considered phenotype’s nature, GWA studies usually deal with
two classes of data. In the first class, the data comprise the genetic informations
of all or a large fraction of the diseased subjects (cases) that appear in the con-
sidered study base and then sampling a comparable number of healthy subjects
(controls), ideally from the same study base, and potentially matched with the
cases by some socio-demographic characteristics such as race, age and gender.
Accordingly, the considered trait is a qualitative trait i.e. an individual is even a
case or a control. In the second class, the addressed phenotype is a quantitative
trait i.e. numerical values that can be ordered from highest to lowest such as
height, weight, cholesterol level, etc. The analysis of the later form of data is
known as Quantitative Trait Locus (QTL) analysis.
c© Springer International Publishing Switzerland 2014
P. Legrand et al. (Eds.): EA 2013, LNCS 8752, pp. 106–117, 2014.
DOI: 10.1007/978-3-319-11683-9 9
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By considering the entire genome, case/control data analysis is essentially
based on seeking alleles of variants that are more frequent in people with the
disease (cases). The found variant is then said to be associated with the disease.

Quantitative trait locus (QTL) analysis is a statistical method that links
two types of information i.e. phenotypic data (quantitative trait) and genotypic
data (usually markers), in an attempt to explain the genetic basis of variation
in complex traits [5]. QTL analysis allows researchers in different fields such
as agriculture, evolution, and medicine to link certain complex phenotypes to
specific regions of chromosomes. The goal of this process is to identify the action,
interaction, number, and precise location of these regions.

A QTL analysis starts by collecting phenotype and genotype data from a
number of unrelated individuals in the same way as in a case-control study.
However, in QTL studies there are no cases and no controls, just individuals
with a range of phenotype values. After that, association between the traits and
the different SNPs are detected using statistical method. The associations are
commonly formulated as predictive models.

Generally, genome wide associations studies are performed using supervised
methods such as logistic regression and discriminant analysis [1,9], Bayesian
approaches [4], etc. Commonly, the treated data comprises two main informa-
tions for each individual: genotype informations and phenotype informations.
Using a training data set, the study mainly consists in defining a predictive
model and validate it through a test data set.

In this work we propose an unsupervised study of the GWA data with quan-
titative traits (QTL). By this study we aim to extract a subset of SNPs that
have the same alleles for a sub set of individuals sharing similar traits. Actually,
the considered data can be seen as a matrix A = (X, (Y,Z)) = {aij} where each
row i presents an individual, each column j represents either a SNP (j ∈ Y )
or a trait (j ∈ Z) and an element aij presents the corresponding SNP’s allele
(if j ∈ Y ) or the corresponding traits value (if j ∈ Z) (see Table 1). Thus, a
bicluster B = (I, (J,K)) is a sub-matrix of A = (X, (Y,Z)) where I ⊂ X, J ⊂ Y
and K ⊂ Z.

This paper is organized as follows. Section 2 presented the biclustering prob-
lem and a new multiobjective model for a biclustering problem applied to ana-
lyzing GWA data sets. An adapted heuristic and metaheuristic are proposed in

Table 1. Studied GWA data

SNPs Traits

S1 ... SA T1 ... TB

A1 a11 ... a1A a1A+1 ... a1M

... ... ... ... ... ... ...

Ai ai1 ... aiA aiA+1 .... aiM

... ... ... ... ... ... ...

AN aN1 ... aNA aNA+1 .... aNM
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Sect. 3 to solve the proposed model. In Sect. 4, experimental analysis of the pro-
posed approaches and results are presented. Finally Sect. 5 concludes the paper
and presents perspectives.

2 Biclustering Method in Analyzing GWA Data

2.1 Biclustering

Biclustering or co-clustering is a well-known data mining method that has been
widely applied in a broad range of domains such as marketing, psychology and
bioinformatics. It consists in extracting submatrices B = (I, J) (I ⊂ X,J ⊂ Y )
(called biclusters) with maximal size and respecting a certain coherence con-
straint. Depending on the addressed problem, biclusters of different types can
be considered. The different biclusters types and some corresponding applica-
tions are described below.

1. Constant bicluster: all the biclusters elements have the same value.
2. Bicluster with constant rows/columns: the elements of each row (column)

have the same value.
3. Bicluster with coherent values: the definition of this type of biclusters is a

generalization of constant rows/columns biclusters. There exist two different
models associated to this class of biclusters:
(a) shifting model: where each row (and each column) can be obtained by

adding an offset to an other row (column).
(b) scaling model: where each row (and each column) can be obtained by

multiplying an other row (column) by a factor.
4. Bicluster with coherent evolution: the elements of the bicluster behave simi-

larly (correlated) independently of their numerical values.

When formulating a biclustering problem, a similarity (dissimilarity) measure
is required in order to evaluate the extracted results. The measure is, commonly,
related to the bicluster’s type. In the case of microarray data analysis, the study
aim to extract biclusters with coherent values or evolution (gene that present
similar behavior under a sub set of conditions). Different multiobjective modeling
for biclustering problem for microarrays data have been proposed [7,10–14] but
none for the case of GWA data. Commonly, the proposed multiobjective models
comprise: one or more function(s) to optimize the biclusters sizes, a function
that optimizes biclusters coherences and a function to optimize the rows vari-
ances. In all of these models, a solution represents one bicluster. Regarding the
size, most of the models maximize the ratio between the biclusters elements
number and the microarray data elements. However, as the number of rows is
generally more important than the number of columns, such functions may favor
the maximization of rows number with regard to columns number. Thereby, in
[7], authors proposed to maximize the number of rows and columns separately
by using two objective functions. Concerning biclusters coherence, all the pro-
posed models consider the Mean Squared Residue MSR [3] dissimilarity measure.
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In [14] the MSR value is allowed to increase as it does not exceed the threshold
δ. Regarding the rows fluctuations, all the existing models maximize the mean
row variance. In [12] the coherence and fluctuation objectives are merged in one
function by defining a function as the ratio between the MSR of the bicluster
and its mean rows variance.

The MSR measure is well adapted to identify biclusters with coherent values.
However, this measure can not be applied for GWA data as different biclusters
type is required.

2.2 Multiobjective Problem Modeling

In this section, we propose a multiobjective model for a biclustering method
applied to GWAs. In this study, we seek to extract biclusters with constant
columns, which correspond to a set of individuals that share SNPs presenting
the same alleles and the same traits. In order to extract such biclusters, two
objectives have to be considered: maximizing the biclusters size (find maximal
biclusters) and minimizing the average of columns variances. Actually, these two
criteria are clearly independent and conflicting. In fact, a non perfect bicluster’s
coherence (columns constance) can be improved by removing a row or a column,
i.e. by reducing its size. We can therefore deduce that the problem of biclustering
in GWAs can be formulated as a multiobjective optimization problem. Thus, the
proposed model is given by:

f1(I, (J,K)) = α × |I|
|X| + β × |J|

|Y | + γ × |K|
|Z|

f2(I, (J,K)) = Avar(I, (J,K)) = 1
|I]×(|J|+|K|)

∑
j∈J

⋃
K

∑
i∈I(aij − aIj)2

Where f1 (size) has to be maximized and f2 (average variance) has to be
minimized

3 Resolution Approaches

In this section we present two new approaches to solve the proposed model. The
first approach is a greedy heuristic Sbic and the second approach is a multiob-
jective metaheuristic SHMOBIibea.

3.1 Sbic Heuristic

Sbic is a greedy heuristic that aims to extract relevant biclusters from GWA data
matrix and that has been designed in a similar manner as Cheng and Churchs
heuristic [3] widely used for microarray data. At each run, Sbic extracts one
bicluster from the data matrix. Sbic deletes (adds) nodes that meet with some
conditions in order to decrease the biclusters average columns variances and
increase its size. The main steps of Sbic are given in Algorithm 1.

In multiple node deletion phase, Sbic starts by removing some nodes (rows
and columns) in order to decrease the average columns variance. In columns
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Algorithm 1. Sbic Algorithm
1:Input: Bicluster (I, (J, K)) /*which can be the whole data matrix*/
2: if(Avar(I, (J, K)) > δ)
3: MultipleNodeDeletion(I,J,K)
4: if(Avar(I, (J, K)) > δ)
5: SingleNodeDeletion (I,J,K)
6: endif
7: endif
8: MultipleNodeAddition(I,J,K)

dimension, the variance of each column is calculated. The columns that have the
highest variance are deleted. This process will clearly decrease the whole average
variances of the columns. Similarly, the average variance can also be decreased
by applying the same process on the rows dimension. Indeed, rows with the
highest contribution on the average columns variances are deleted. After that, if
the bicluster’s average variance still higher than δ the bicluster has to undergo
the single node deletion processes. The main steps are illustrated in Algorithm 2.

Algorithm 2. Multiple node deletion
1:Input: Bicluster (I, (J, K))

2: Compute aIj , Avar and coni =
∑

j∈J (aIj−aij)
2+
∑

k∈K(aIk−aik)
2

|J|+|K| i ∈ I

3: if(coni > γ × Avar)
4: Remove the rows i ∈ I
5: endif
6: Compute aIj , Avar and varj j ∈ J
7: if(varj > γ × Avar)
8 Remove the column j ∈ J
9: endif
10: Compute aIk, Avar and vark k ∈ K
11: if(vark > γ × Avar)
12: Remove the column k ∈ K
13: endif

In single node deletion, the nodes with the highest contribution on the aver-
age variance are iteratively deleted until the Avar reaches the desired value. The
main steps are illustrated in Algorithm 3.

Once the Avar of the considered bicluster reaches the desired value, the
algorithm tries to add other rows (columns) without increasing the Avar. For
instance all the columns (not present yet in the bicluster) that have a vari-
ance lower than or equal to Avar are added to the bicluster. Furthermore, the
expected contribution of each row i (coni) in the biclusters Avar value is com-
puted in order to decide whether the row can be added to the bicluster or not.
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Algorithm 3. Single node deletion
1:Input: Bicluster (I, (J, K))
2: while(Avar(I, (J, K)) > δ)
3: Recompute coni, varj and vark.
4: Find the node d (row or column) with the highest vard (cond) .
5: Delete d.
6: endwhile

The main steps are illustrated in Algorithm 4.

Algorithm 4. Multiple node addition
1:Input: Bicluster (I, (J, K))

2: Compute aIj , Avar and coni =
∑

j∈J (aIj−aij)
2+
∑

k∈K(aIk−aik)
2

|J|+|K| i /∈ I

3: if(coni ≤ Avar)
4: Add the rows i
5: endif
6: Compute aIj , Avar and varj j /∈ J
7: if(varj ≤ Avar)
8: Add the column j
9: endif
10: Compute aIk, Avar and vark k /∈ K
11: if(vark ≤ Avar)
12: Add the trait k
13: endif

Actually, Sbic is a deterministic algorithm. Thus, the same bicluster will be
extracted if the starting matrix is always the same. In order to extract several
biclusters from a data matrix (X, (Y,Z)) we propose to apply the Sbic over
the whole data matrix to extract the first bicluster. After that, Sbic can be
applied over a sub-matrix containing p% of the data’s rows and columns selected
randomly which will lead to discovering different bicluster at each run.

In the following section we present the main components of SHMOBIibea
metaheuristic.

3.2 SHMOBIibea

SHMOBIibea is based on HMOBIibea [15] which is a multiobjective meta-
heuristic based on the evolutionary algorithm MOBIibea [6] and DMLS
(1 · 1�) [8].

MOBI is a hybrid MOEA (Multi Objective Evolutionary Algorithm) for solv-
ing biclustering problem in the specific case of microarray data. It combines
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IBEA with a local search inspired from Cheng and Churchs heuristic [3] which
is dedicated for biclustering of microarray data. MOBIibea [6] allows in the case
of microarray data to extract biclusters of good quality.

DMLS (Dominance-based Multiobjective Local Search) are a general con-
cept of multiobjective local searches using the concept of Pareto Optimality. At
each generation, DMLS selects one or more non-visited solutions (solutions with
non-explored neighborhood) from the archive and explores their neighborhoods.
After that, the solutions are marked as visited. Different variants of DMLS exists
depending on the number of selected solutions and on the exploration strategy.
In this study, we will use DMLS(1 ·1�) where one solution is randomly selected
and the exploration of its neighborhood stops when the first improving solution
is found.

In this section, we propose SHMOBIibea which is an adapted version of
HMOBIibea to SNP data. Several changes have been done to adapt HMOBIibea
to the specific case of SNPs. Therefore, we present a suitable solutions encoding
and variation operators.

Solutions Encoding. In SHMOBIibea, we choose to represent a bicluster as
a list compound of six parts: Each one of the first 3 parts of the chromosome is
an ordered list of indexes corresponding to either rows, columns or traits; while
parts 4 to 6 are just the cardinalities of those lists.

Example:
Given the data matrix presented in Table 2, the string {1 3 2 3 2 2 2 1} represents
the following bicluster compound of two rows (1 and 3), two SNPs (2 and 3) and
one trait (2):

{1 3 2 3 2 2 2 1} =⇒
⎡

⎣
2 1 0.3

0 0 −0.75

⎤

⎦

Variation Operators.

1. Crossover:
A Single point crossover is used in the three first parts of the solution (rows
part, columns part and traits part). Each part undergoes crossover separately.
Let parents be chromosomes P1 = {r1 ... rn c1 ... cm t1 ...tp rnb cnb tnb} and
P2 = {r′

1 ... r′
l c′

1 ... c′
k t′1 ... t′q r′

nb c′
nb t′nb} where rn � r′

l.

Table 2. Example of SNPs and traits data matrix

SNPs Traits

1 2 1 12.5 0.3

0 1 2 10.75 1.2

1 0 0 10.33 –0.75
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4 8 4 3 1

3 3 1311385 15 18 1 2 4 5 2

1 4 132138 3 15 18 1

3 3 81185 51 3

4

P1

P2
C2

C1
λ1 λ

′
1

λ2 λ
′
2

1 2183 51 3 2 25

4 3 1

Fig. 1. An example of the crossover operator application.

Fig. 2. General scheme of SHMOBI

The crossover in the rows part is performed as follows: The crossover point
in P1 (λ1) is generated as a random integer in the range 2 � λ1 � rn. the
crossover point in P2 λ2 = r′

j where r′
j � λ1 and r′

j−1 � λ1. In the same way,
the crossover in the columns part and traits part is performed. The parts 4–6
are not involved directly in the crossover and are computed after it.

For example, consider the parents P1 and P2 presented in Fig. 1. Suppose the
3rd gene index and the 2nd condition index of P1 are selected, so: λ1 = 15 and
λ′
1 = 5 then λ2 = 16 and λ′

2 = 6, which results on the offspring C1 and C2.

2. Mutation:
We replace the mutation operator by the Sbic heuristic.

When generating random biclusters, it may happen that irrelevant rows and
columns get included in spite of their values lying far apart. Therefore, we start
by randomly generating a population where the irrelevant rows and columns of
each bicluster are deleted using the Sbic heuristic. The resulting population is
used as the initial population for SMOBIibea. After that, the DMLS(1 · 1�) is
applied for each solution of SMOBIibea’s archive (Pareto approximation). The
main steps of SHMOBIibea are illustrated in Fig. 2.

4 Experiments and Results

In this section we present the experimental protocol in assessing the performance
of the presented algorithms over synthetic data sets.

4.1 Data Sets

In order to assess the performance of the proposed algorithms, we use syn-
thetic data sets to investigate the ability of our algorithms to extract implanted
biclusters. In this purpose, we randomly generate different data sets of size:
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Set1(100, (1000, 3)) which corresponds to 100 rows 1000 SNPs columns and 3
traits columns and Set2(100, (10000, 3)) which corresponds to 100 rows 10000
SNPs columns and 3 traits columns. For each data set we implant 1 (called
Set1-1 et Set2-1) and 5 biclusters (called Set1-5 and Set2-5) with size 10 rows
50 SNPs columns. In each case, the biclusters may involve all (Set*-A) or some
of the traits (Set*-T).

4.2 Comparison Criteria

In order to assess the performance of the proposed biclustering algorithm, we
use the following two ratios:

θShared =
Scb

Totsize
× 100 (1)

Where Scb is the portion size of bicluster correctly extracted and Totsize is
the total size of the implanted bicluster.

θNotShared =
Sncb

Tot
′
size

× 100 (2)

Where Sncb is the portion size of bicluster not correctly extracted and Tot
′
size

is the total size of the extracted bicluster.

The ratio θShared (resp. θNotShared) expresses the rate of shared (resp. not
shared) biclusters volume with real biclusters. In fact, when θShared (resp.
θNotShared) is equal to 100 % the algorithm extracts the correct (resp. not cor-
rect) biclusters. A perfect solution has θShared =100 % and θNotShared=0 %
respectively. That is, the exact number of rows and columns of implanted
biclusters.

4.3 Parameters

Concerning the models parameters, we set α, β and γ to 0.5, 0, 0.5 respectively.
In fact, given the nature of data, SNPs columns present low variance compared
to trait columns. Hence, a big number of SNP columns will be added for each
bicluster undergoing the Sbic heuristic. Therefore, we favor biclusters having low
average variance and low SNPs columns to be selected in the search process and
this by setting β = 0.

In the other hand, all algorithms parameters have been set experimentally.
For the Sbic we set α to 1.5, δ to 0.15 and %p to 50 %. The algorithm is run 20
times in order to extract 20 biclusters. The first run uses all the data matrix.
The remaining runs starts by sub-matrices where the rows and the columns are
chosen randomly. When selecting rows, more chance is given to rows not present
yet in the previously extracted biclusters.

Concerning SMOBIibea, we experimentally set the initial population size to
400. The mutation and crossover operators parameters are set to 0.2 and 0.5
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respectively. The algorithm stops after a fixed time depending on the data set
size. For Set1 data sets the execution time is set to 500 s, and 700 s for Set2
data sets. The same time is allocated to SHMOBIibea algorithm where 90 %
of the execution time is accorded to SMOBIibea and the remaining 10 % to
DMLS(1 · 1�).

We apply our algorithms on the considered data sets and for each algorithm
we select the closest biclusters to the implanted ones. Thereafter, we calculate
θShared and θNotShared for each bicluster. For instances where several biclusters
are implanted, we report the average θShared and θNotShared of the extracted
biclusters.

4.4 Results

In this section, we compare the efficiency of Sbic, SMOBIibea and SHMOBIibea
in extracting the implanted biclusters. The comparison is done with regard to
θShared, θNotShared and the rate of found biclusters.

Tables 3 and 4 present the obtained results for the different instances corre-
sponding to one and five implanted biclusters respectively. A detailed observa-
tion of the found solutions show that, in most cases, the not correctly biclusters
extracted portions are mainly composed of extra columns (SNPs).
In Table 3 we can observe that all the approaches can find the implanted biclus-
ter. However, SHMOBIibea find the best results with the highest θShared and
lowest θnotShared. For instance, in the case of data Set1-1-A where all the traits
are involved in the bicluster, SHMOBIibea extracts the bicluster with only
θnotShared = 24.24%. Actually, SMOBIibea is able to find the implanted biclus-
ter. However, the θNotShared of the extracted bicluster is very high. This result
demonstrates the role of DMLS(1, 1�) in fine-tuning the found results.

Table 3. Comparative results when extracting one bicluster. SMOBI stands for
SMOBIibea, SHMOBI for SHMOBIibea.

Data θShared θNotShared Rate of found biclusters

Sbic SMOBI SHMOBI Sbic SMOBI SHMOBI Sbic SMOBI SHMOBI

Set1-1-A 78.6% 100% 100% 86.6% 80.07% 24.24% 100% 100% 100%

Set2-1-A 100% 100% 100% 86.07% 86.73% 57.01% 100% 100% 100%

Set1-1-T 60.0% 100% 100% 78.05% 92.46% 76.36% 100% 100% 100%

Set2-1-T 30% 90% 100% 81.41% 95.12% 67.12% 100% 100% 100%

Table 4. Comparative results when extracting five biclusters. SMOBI stands for
SMOBIibea, SHMOBI for SHMOBIibea.

Data θShared θNotShared Rate of found biclusters

Sbic SMOBI SHMOBI Sbic SMOBI SHMOBI Sbic SMOBI SHMOBI

Set1-5-A 50.62% 52.5% 85.92% 86.37% 85.61 % 60.9% 60% 80% 80%

Set2-5-A 63.33% 64.16% 85.83% 92.87% 91.11% 92.26% 60% 60% 60%

Set1-5-T 41.66% 64.88% 62.61% 87.27% 82.04% 82.44% 40% 80% 80%

Set2-5-T 45% 75% 85.83% 98.21% 94.5% 93.47% 40% 40% 60%
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Similarly, Table 4 shows that SHMOBIibea outperforms Sbic and SMOBIibea
in finding the implanted biclusters. Actually, SHMOBIibea finds more biclusters
than the other approaches with higher θShared. However, the θNotShared value
of the biclusters extracted using all the approaches are relatively high. This can
be explained by the huge number of SNPs columns in the data set.

Concerning running times, they are of 500 s for small instances (Set1-*) and
700 s for large instances (Set2-*).

5 Conclusion

In this article, we have presented a preliminary study on using a biclustering
method to analyze GWA data. Actually, GWA data consists in two types of
information i.e. phenotype data (traits) and genotype data (genetic variations).
Commonly, SNPs are considered as they present the most frequent form of
genetic variations. The analysis of such data consists in finding eventual asso-
ciations between traits and SNPs combinations. Therefore, we propose a mul-
tiobjective modeling for biclustering in order to extract samples (individuals)
sharing similar traits and having same alleles for a SNPs combination. The cor-
responding biclusters are constant columns biclusters.

The extracted biclusters may bring out existing associations between the con-
sidered SNPs and traits. Moreover, the extracted biclusters may provide impor-
tant informations that can be used in further GWA studies. Given the huge
number of SNPs, we propose to solve this problem using a hybrid metaheuristic
SHMOBIibea. The efficiency of SHMOBIibea have been assessed using syn-
thetic data sets of different sizes and different implanted biclusters numbers.
Further studies will be carried out in real data sets provided by the company
Genes Diffusions1.
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Laboratoire Informatique (EA6300), Université François Rabelais Tours,
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Abstract. In this paper, we are focusing on web accessibility, more pre-
cisely on improving web accessibility for Color Vision Deficiency (CVD)
users. The contrast optimization problem for dichromat users can be
modeled as a mono objective function which at minimum provides a
suitable solution to the problem. The function aims to compensate the
loss and maintains simultaneously a minimum change in the original
color. The CMA-ES method is used to minimize the function. Experi-
ments were conducted on real and artificial data in order to assess the
approach efficiency for different set of parameters. The results showed
that it is likely that the method performs better when the loss is impor-
tant. The approach produces satisfying results on both real and artificial
data for the set of tested parameters.

Keywords: Assistive technologies · Color vision deficiency · Dichro-
macy · CMA-ES

1 Web Accessibility and CVD Users

Web accessibility translates through full access to web resources for all users.
Sets of recommendations were proposed by the W3C’s WAI (World Wide Con-
sortium’ Web Accessibility Initiative) [17]. Web Content Accessibility Guidelines
(WCAG) 1.0 [16] proposed in May 1999 provides recommendations for creating
accessible web content. They are organized as a set of general principles. For each
principle, conformance levels are defined according to their impact on web acces-
sibility and a set of checkpoints is defined. The newest version of the guidelines
(WCAG 2.0) regroups the recommendation into 4 main categories: perceivable,
operable, understandable and robust. For each category, a list of success crite-
ria is presented. For each criterion, several techniques are presented to achieve
it. Even though efforts were made by webmasters, very little interest on acces-
sibility is shown while building and designing web sites. In this work, we are
focusing on color contrast improvement for users with color vision deficiency,
more precisely dichromat users. WCAG 1.0 states that “Ensure that foreground
and background color combinations provide sufficient contrast when viewed by
someone having color deficits or when viewed on a black and white screen”.
c© Springer International Publishing Switzerland 2014
P. Legrand et al. (Eds.): EA 2013, LNCS 8752, pp. 118–128, 2014.
DOI: 10.1007/978-3-319-11683-9 10
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Color vision deficiency (CVD) is the inability to perceive correctly certain
colors. This may consist in perceiving only black and white for achromatop-
sia or slightly altered perception of red, green and blue for anomalous trichro-
macy (protanomaly, deuteranomaly, tritanomaly) or in a sever altered perception
for dichromacy. In the following, we are focusing on dichromacy. The dichro-
macy is the result of the absence of one type of cone cells (among three) from
eye retina responsible for trichromat vision. Many types of dichromacy exists:
(1) deuteranopia (red-green deficiency due to the lack of M (green) cone cells),
(2) protanopia (red-green deficiency - L (red) cone cells are missing) and
(3) tritanopia (yellow-blue deficiency - S (blue) cone cells are absent).

Several algorithms to simulate dichromacy were developed [2,3,12]. The sim-
ulation algorithm proposed by Kuhn [12] is used for our experiments. The simula-
tion for dichromacy proposed by the later is performed in the CIE L*a*b*, a color
space which does not depend on the device on which the colors are represented.
Many recoloring methods for dichromat were proposed for images [12,14,15],
videos [13] and web pages [10,11].

2 Web Accessibility for CVD Users as an Optimization
Problem

2.1 Contrast Loss on Textual Content

The color space used to represent colors on the Internet is sRGB (standard Red
Green Blue). Let u = (ur, ug, ub) and v be two colors represented in the sRGB
color space, where ui ∈ [[0 : 255]], i = {r, g, b}. Let L(u) be the luminance for the
color u and Γu,v the contrast between u and v according to [17]. We denote by
D(u) ∈ [[0 : 255]]3 the function that simulates dichromacy and ΓD

u,v the contrast
ratio as perceived by a dichromat user. Then we have:

Γu,v =
max(L(u), L(v)) + 0.05
min(L(u), L(v)) + 0.05

∈ [1 : 21] (1)

and

L(u) = 0.2126 ∗ h(ur) + 0.7152 ∗ h(ug) + 0.0722 ∗ h(ub) (2)

with

h(a) =

⎧
⎨

⎩

a/255
12.92 if a/255 ≤ 0.03928
(

a/255+0.055
1.055

)2.4

otherwise
. (3)

For the contrast ratio, several recommendations are made in WCAG 2.0. The
guidelines 1.4.3 and 1.4.6 define minimum threshold at 4.5:1, respectively
enhanced at 7:1 for the contrast ratio of textual information. For all contrast
ratio values α ∈ [1 : 21] we have computed the maximal loss between the stan-
dard and the simulated contrast over the entire sRGB color space. The average



120 A. Mereuta et al.

maximal loss computed over the entire sRGB is important. It is at 1.9 for tri-
tanope, 2.5 for protanope and 2.6 for deuteranope. The maximum contrast loss
goes up to 3.8 for a protanope, 3.9 for a deuteranope and 3.7 for a tritanope.

2.2 Online Transformation of the Colors Through a User
Hosted Proxy

We want to achieve on the fly transformation of the page using a user hosted
proxy. This kind of proxy allows to perform specific transformation on any type
of content even on secured content (HTTPs).

The experiments were performed with the help of Smart Web Accessibility
Proxy (SWAP)1. SWAP is an open source project aiming to improve web acces-
sibility and usability. The proxy part of the project allows, among others things
to perform HTML and CSS analysis. The necessary time to carry out a specific
transformation using the proxy is highly dependent on the user machine capa-
bilities. So we need to improve the color contrast with varying time constraints.
The goal is not the best solution but the best in the available time interval. It
includes accessing the page (time variation), decoding the page and interpreting
the colors (depends on the page size), improving colors (depend on the existing
relationships between colors), recoding the page into HTML (depends on page
size). CPU availability and user’s computer capability are not controlled either.

Consequently, we have low control on the time required for a perfect page
recoloring, so we must be able to interrupt the process at any time and achieve
nevertheless good recoloring.

2.3 Modeling the Compensation as a Mono Objective Function

We denote by C = {u1, . . . , u|C|} the set of colors found on the page, and by
CF the corresponding set of transformed colors. We denote by E ⊂ C × C the
set of couples characterized by foreground and background colors found on the
page. We denote by CI the set of initial colors. Let be α ∈ [0, 1] a parameter
that balances the importance of the contrast improvement versus color change
and Δi the euclidean distance between the initial color ui and the corresponding
transformed color uF

i in CIE L*a*b* color space. We define by ΓF,D
i,j the final

contrast as perceived by a dichromat user for the couple of colors ui and uj . It is
be given by: ΓF,D

i,j = Γ (D(uF
i ),D(uF

j )) where D is the simulation function and
Γi,j the contrast ratio as defined above. Our aim is to compensate the contrast
loss and maintain in the same time a small amount of change in the colors. This
conducts to the minimization of the following function:

F (uF
1 , uF

2 , . . . , uF
N ) = (1−α)

∑

(ui,uj)∈E

1
2

[
max(Γ I

i,j − ΓF,D
i,j , 0)

]2
+α

∑

ci∈C

1
2
Δ2

i (4)

where max(Γ I
i,j − ΓF,D

i,j , 0) guarantees that the contrast ratio of the final colors
for a dichromat user is at least at the level of a standard user and Δi ensures that
1 https://projectsforge.org/projects/swap/

https://projectsforge.org/projects/swap/
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the perceptual distance between the final and the initial colors is maintained and
α is a constant used to weight between contrast compensation and reducing the
change in colors.

3 CMA-ES for Color Compensation

3.1 CMA-ES

CMA-ES is a stochastic optimisation method for non-smooth and non-linear
fitness function [9]. It is also one of the best evolutionary algorithm. In this work
we evaluate the usability of CMA-ES for the contrast compensation problem
for dichromat users. The method’s working principle consists in searching a
better solution (individual) among a set of candidate solutions (population of
individuals) for a number of iterations (generations) [7]. We denote by xk

i ∈
R

n, n ∈ N, the i-th individual at generation k ∈ N, where η ≥ 2 represents
the population size and λ ≤ η the number of selected individuals from the
population. At each generation, new individuals are sampled using multivariate
normal distribution (N (μ,Σ)):

xk+1
i ∼ σkN (μk, Σk) . (5)

Also the mean, the covariation matrix and the step size are updated. The new
mean is computed as a weighted average of the selected individuals sorted in a
ascending order according to their fitness value. It is given by:

μk+1 =
λ∑

i=1

ωix
k+1
i . (6)

The covariation matrix is updated using an evolution path. An evolution path
that exploits the information from the previous generation is built. Let λvar =
(∑λ

i=1 ω2
i

)−1

[7] be an indicator of the selection variance, cc ≤ 1 be the learning

rate and pk
c ∈ R

n be an evolution path at generation k. The new evolution path
is given by:

pk+1
c = (1 − cc) pk

c +
√

cc (2 − cc) λvar
μk+1 − μk

σk
(7)

where 1
cc

is the back time horizon for pc. At generation k + 1 the covariation
matrix is given by:

Σk+1 = (1 − c1 − cλ)Σk + c1p
k+1
c

(
pk+1

c

)T
+ cλ

λ∑

i=1

ωiz
k+1
i

(
zk+1

i

)T
(8)

where zk+1
i = xk+1

i −μk

σk , c1 is approximately 2
n2 and cλ is chosen to be around

min
(
λvar/n2, 1 − c1

)
. The step size update is given by [7]:
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σk+1 = σkexp

(
cσ

dσ

( ‖pk+1
σ ‖

E‖N (0, I)‖ − 1
))

(9)

where pσ is a conjugate evolution path which at generation k + 1 is built as
follows:

pk+1
σ = (1 − cσ) pk

σ +
√

cσ (2 − cσ) λvar

(
Σk

)− 1
2 μk+1 − μk

σk
. (10)

More details on the method can be found in [1,4–6,8,9].

3.2 Adaptation to Contrast Compensation

In our approach, we consider an individual i at generation k = 0 to be represented
by the set of the original colors as follows: xi = (uk

1 , u
k
2 , . . . , u

k
N ) where ui ∈ C

and N = |C|. With the notation established in Sect. 2.3, we have designed the
fitness function F : [[0 : 255]]3N → R

+ given by (4). Minimizing F will provide
a solution to our contrast compensation problem. By construction the fitness
balances between contrast compensation and colors change. The contrast and
the perceptual distance values are normalized in [0 : 1] in the fitness expression
to avoid scaling problems.

3.3 Real and Generated Dataset

In the analysis, we have considered two types of data. Real data (DR) were
obtained through CSS parsing of real web pages. For each page, a CSS analysis
was performed in order to accurately extract the colors and the relationships
between them. We consider a page as being fully represented by a set of entities
characterized by foreground and background colors. The method is also tested
on generated data (DG). We have created a similar set of entities for which
the contrast loss is artificially increased. To generate such colors, we have used
the confusion line as defined in [3]. Overall data from over 350 pages real and
generated ones were taken into account in our analysis. The real dataset has in
average 9 colors and 8 distinct couples of colors per page. For each page, we
have computed the number of couples of colors that display a contrast loss. The
average percentages of those couples are presented in Fig. 1.

3.4 Experiments and Discussion

An experimental study was performed on both real and artificial data. The
experimental study purpose is to identify the parameter settings that performs
statisfactory after a small number of evaluations. As we are dealing with on-
the-fly transformation, the ultimate goal is not as much as delivering a perfect
solution but more like a satisfactory improvement in a short amount of time, the
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Fig. 1. Average percentage of color couples losing contrast

maximum time limit being defined by the user in the final application. The CMA-
ES implementation, is the java version provided by N. Hansen2. This choice
suites us, as tests were performed with the SWAP platform developped in java.
Considering the experiments, 50 runs of the CMA-ES were performed for each
page. Their average was considered as being the method result for that page.

Several hypothesis were tested. We have studied the relationship between
the amount of compensation needed and the method behaviour (less compen-
sation for real data, more compensation for artificial dataset). Also, we have
tried to see if the method efficiency is bound to the initial step size and pop-
ulation size variation. A choice of parameter values was made. We have con-
sider population size (η) of 5 and 10 individuals. We have considered the values
σ = {0.02, 0.002, 0.0002} and α = 0.15. Considering α, higher values can be cho-
sen but the choice for 0.15 was made under the hypothesis that a user may prefer
a greater compensation of contrast than less variation in colors. We denote by A
the set of all parameter settings obtained through the variation of the initial step
size (σ) and population size (η) as mentioned above. For each parameter settings
ai ∈ A of CMA-ES, for each page p, the average fitness value for t evaluations
is F ai

p (t). We define:

fm
p (t) = min

ai∈A
t=1..2500

F ai
p (t), fM

p (t) = max
ai∈A

t=1..2500

F ai
p (t) (11)

representing the minimum and the maximum fitness value over the parameter
settings.

We were interested in establishing the global efficiency of the method. For
this, we have computed the average normalized performance for each type of
dataset (real and artificial) as follows:

2 https://www.lri.fr/∼hansen/CMA-ES inmatlab.html#java

https://www.lri.fr/~hansen/CMA-ES_inmatlab.html#java
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Table 1. Average normalized performance at 600, 800, 1000 and 1200 evaluations for
PS1 (σ = 0.02, η = 5), PS2 (σ = 0.002, η = 5), PS3 (σ = 0.002, η = 10) on real data.
Best values are typesetted in bold.

CVD type PS1 PS2 PS3

600 800 1000 1200 600 800 1000 1200 600 800 1000 1200

Deuteranope 0.69 0.66 0.64 0.61 0.6 0.57 0.55 0.54 0.54 0.50 0.48 0.47

Protanope 0.63 0.59 0.56 0.54 0.5 0.47 0.46 0.44 0.44 0.42 0.40 0.38

Tritanope 0.84 0.81 0.78 0.75 0.59 0.56 0.54 0.51 0.49 0.46 0.44 0.42

Table 2. Average normalized performance at 600, 800, 1000 and 1200 evaluations for
PS3 (σ = 0.002, η = 10), PS4 (σ = 0.0002, η = 5) and PS5 (σ = 0.0002, η = 10) on
real data. Best values are typesetted in bold

CVD type PS3 PS4 PS5

600 800 1000 1200 600 800 1000 1200 600 800 1000 1200

Deuteranope 0.54 0.50 0.48 0.47 0.67 0.63 0.6 0.57 0.67 0.61 0.57 0.53

Protanope 0.44 0.42 0.40 0.38 0.63 0.58 0.55 0.52 0.66 0.6 0.55 0.51

Tritanope 0.49 0.46 0.44 0.42 0.56 0.52 0.49 0.46 0.55 0.51 0.48 0.45

Table 3. Average normalized performance at 600, 800, 1000 and 1200 evaluations for
PS1 (σ = 0.02, η = 5), PS2 (σ = 0.002, η = 5), PS3 (σ = 0.002, η = 10), PS4
(σ = 0.0002, η = 5), PS5 (σ = 0.0002, η = 10) on artificial data. Best values are
typesetted in bold

CVD type PS1 PS2 PS3

600 800 1000 1200 600 800 1000 1200 600 800 1000 1200

Deuteranope 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.03 0.01 0.01 0

Protanope 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.03 0.01 0.01 0

Tritanope 0.13 0.11 0.1 0.09 0.08 0.07 0.06 0.05 0.05 0.04 0.04 0.03

Table 4. Average normalized performance at 600, 800, 1000 and 1200 evaluations for
PS3 (σ = 0.002, η = 10), PS4 (σ = 0.0002, η = 5) and PS5 (σ = 0.0002, η = 10) on
artificial data. Best values are typesetted in bold.

CVD type PS3 PS4 PS5

600 800 1000 1200 600 800 1000 1200 600 800 1000 1200

Deuteranope 0.03 0.01 0.01 0 0.42 0.29 0.2 0.15 0.57 0.4 0.29 0.21

Protanope 0.03 0.01 0.01 0 0.42 0.28 0.2 0.15 0.58 0.41 0.29 0.22

Tritanope 0.05 0.04 0.04 0.03 0.41 0.32 0.26 0.22 0.51 0.4 0.32 0.26
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fa
i (t) =

1
|Di|

∑

p∈Di

F a
p (t) − fm

p (t)
fM

p (t) − fm
p (t)

, i ∈ {R,G}. (12)

As we are dealing with an important time constraint, we are interested in deter-
mining the fitness behaviour after a small number of evaluations. The Tables 1,
2, 3 and 4 present the average normalized performance for all the parameter set-
tings (PS) taken into account and for all types of datasets. This kind of knowledge
is important as we are trying to be able to perform an on-the-fly transformation
of the page. The chosen number of evaluation is not random, it may corresponds
to user thresholds in the final application. A set of compensation levels may be
proposed to the user from which he may choose the one that better suits his
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Fig. 2. Average normalized performance for CMA-ES on real data for PS2 and PS3
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Fig. 3. Average normalized performance for CMA-ES on artificial data for PS1 and
PS3

needs. As we can see in Table 1 for about only 600 evaluations the average fit-
ness reaches around 0.5. This means that even in a limited amount of time an
improvement is possible. We also can notice that the best behaviour among the
variants of tested methods is achieved by PS3. PS1 and PS2 perform modest
after 600 evaluations. A medium step size and a wider exploration of the search
space produces half of the improvement needed. More tests need to be performed
in order to verify if an even larger exploration may produce satisfying results
faster.

Table 2 shows that a higher initial step size produces modest results after
a relatively small number of evaluation. We can observe in Table 3, that PS3
and PS1 perform better on pages in need of a higher level of compensation.
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It can also be observed that protanope and deuteranope behaviour are similar
for the choices of tested parameters. Also other parameters setting involving
bigger initial step size may be tested.

We have measured the transformation time using the client proxy part of
the SWAP project. The transformation includes: HTML parsing, CSS parsing,
color extraction, building relationships between colors, colors optimization and
sending the modified response with the optimized colors to the clients’ browser.

A protanope transformation for a page with only 9 colors and 8 entities
(which constitues the average in the real dataset used for experiments), needs
about 4.3 s for 1200 evaluations using PS3 (σ = 0.002 and η = 10). For a page
with 4 colors and 3 entities a tritanope transformation for 1200 evaluation takes
about 1.3 s (σ = 0.002 and η = 10). Taking into account the statistics presented
in Tables 1 and 3, we may conclude that our method can reach a satisfying
compensation is a small amount of time. The mean for the best parameters
setting was computed and presented in Figs. 2 and 3. Protanope and deuteranope
have a similar behaviour for both real and artificial data. In general, CMA-ES
tends to performs better when an important contrast compensation is needed,
as seen in Fig. 3.

These results are highly dependent of our choices made considering the values
of parameters and may be related to the considered datasets. A cluster analysis
remains to be performed in order to establish the influence of the dataset charac-
teristics as: number of colors on the page, the quantity of compensation needed,
the complexity of the relationships between colors, the number of entities on the
page that display a lower contrast. This set of parameters and much more need
to be tested on the resulted clusters. This kind of analysis will provide useful
knowledge which can be used in establishing appropriate thresholds in terms of
number of evaluation for different types of parameters and pages. More work
needs to be done on larger datasets.

4 Conclusion

In this paper, we propose an evolutionary approach to the contrast compen-
sation for dichromat users. The performed experiments showed that CMA-ES
works better when the contrast loss is important. The method behaviour is
similar for protanope and deuteranope and it tends to perform slightly better
for tritanope. Moreover, only about 700 evaluations are enough to obtain an
acceptable solution to our problem. As time is an important aspect of our prob-
lem, reasonable amount of time maybe enough to obtain an improvement. Still
more things remain to be done: for instance combination of parameters that
help the method to converge faster when the compensation is little need to be
found.
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Abstract. This paper studies the multitrip cumulative capacitated vehi-
cle routing problem (mt-CCVRP), a variant of the classical capacitated
vehicle routing problem (CVRP). In the mt-CCVRP the objective func-
tion becomes the minimization of the sum of arrival times at required
nodes and each vehicle may perform more than one trip. Applications
of this NP-Hard problem can be found in disaster logistics. This article
presents a Multistart Evolutionary Local Search (MS-ELS) that alter-
nates between giant tour and mt-CCVRP solutions, and uses an adapted
split procedure and a variable neighborhood descent (VND). The results
on two sets of instances show that this approach finds very good results
in relatively short computing time compared with a multistart iterated
local search which works directly on the mt-CCVRP solution space.

Keywords: Multi-trip cumulative capacitated vehicle routing problem ·
Disaster logistics · Evolutionary local search · Split · VND

1 Introduction

A recent trend is to apply operations research techniques to facilitate logistic
operations in disaster relief. An important logistical issue after a disaster is to
determine the transportation routes for first aids, supplies, rescue personnel or
equipment between supply points and the destination nodes geographically scat-
tered over the disaster region. The arrival time of relief supplies at the affected
communities clearly impacts the survival rate of the citizens and the suffering.

In this sense, vehicle routing models can be considered for delivery in dis-
aster context by using service-based objective functions to reflect the different
priorities for delivering humanitarian aid (Campbell et al. [1]).

In this paper, the multitrip cumulative capacitated vehicle routing problem
(mt-CCVRP) is studied. The mt-CCVRP (Rivera et al. [2]) is raised by the relief
operations, in which (a) the classical objective function (total time or distance
traveled) becomes the sum of arrival times at required nodes and (b) vehicles
are allowed to perform multiple trips. This flexibility is necessary when the total
demand exceeds the total capacity of the fleet of vehicles.

The paper is structured as follows: Sect. 2 briefly reviews the state of the art.
In Sect. 3 the problem is formally defined. The proposed approach is developed
in Sect. 4. Experimental results are presented in Sect. 5 and concluding remarks
are given in Sect. 6.
c© Springer International Publishing Switzerland 2014
P. Legrand et al. (Eds.): EA 2013, LNCS 8752, pp. 129–141, 2014.
DOI: 10.1007/978-3-319-11683-9 11
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2 State of the Art

In relief context, it is critical that the deliveries to affected sites be both fast
and fair. Campbell et al. [1] suggest that using service-based objective functions
may better reflect the different priorities and strategic goals found in delivering
humanitarian aid. The minimization of the average arrival times reflects better
the emergency of humanitarian logistic operations than the classical objective
functions such as the minimization of total tour length. Note that the minimiza-
tion of the average arrival times is equivalent to the minimization of the sum of
arrival times.

The sum of arrival times has been already used in some traveling salesman
problems (TSP). For instance, the minimum latency problem consists in finding
a tour starting at a depot and visiting each other node only once, in such a
way that the total latency is minimized [3]. This problem is also known as the
delivery man problem [4] or the travelling repairman problem (TRP) [5,6]. The
multiple travelling repairman problem (k-TRP) generalizes the TRP where k
tours must be determined [5].

The cumulative capacitated vehicle routing problem (CCVRP) is a variant
of the CVRP where the objective function becomes the sum of arrival times at
demand nodes. Ngueveu et al. [7] provide a mathematical model, several lower
bounds and two memetic algorithms. Ribeiro and Laporte [8] present an adap-
tive large neighborhood search (ALNS) algorithm which is compared with the
approach in [7], while Ke and Feng [9] improve some best known solutions with
a two-phase metaheuristic by using exchange-based and cross-based operators
to perturb the solutions in the first phase and local search moves in the second.

A comparison between cost minimization, minimization of the maximal arrival
time and minimization of the average arrival times for the TSP and CVRP is given
by Campbell et al. [1]. Their paper introduces lower bounds, an insertion heuristic
and a local search procedure.

A common assumption is that each vehicle performs a single trip. Clearly,
in many cases this assumption does not hold. Nevertheless, only Rivera et al.
[2] consider multiple trips and the minimization of the sum of arrival times.
These authors develop a non trivial mathematical model for mt-CCVRP, an
MS-ILS metaheuristic and a dominance rule with respect to the order of trips
in a multitrip.

Our approach uses a split procedure, proposed by Prins [10] for the CVRP
and adapted by Ngueveu et al. [7] for the CCVRP. This procedure is adapted
to mt-CCVRP, due to very particular features of the problem.

3 Problem Definition and Mixed Integer Linear Model

The problem is defined on an undirected complete graph G = (V,E). The node-
set V = {0, ..., n} includes a depot-node 0 and a set V ′ = V \{0} of affected sites
or required nodes. In the sequel, it is assumed that G is encoded as a symmetric
directed graph. A fleet of R identical vehicles of capacity Q is based at the
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depot and each node i ∈ V ′ has a known demand qi. It is assumed without loss
of generality that

∑
i∈V ′ qi ≥ R · Q, n ≥ R, and qi ≤ Q, ∀i ∈ V ′.

The objective is to identify a set of trips such that each site is visited exactly
once and the sum of arrival times at the sites is minimized. The important factor
in the emergency relief operations is the arrival time at sites and not the total
distance traveled by vehicles. A trip is defined as a circuit, starting and ending at
the depot, in which the total demand serviced does not exceed vehicle capacity
Q. Every trip must be assigned to exactly one vehicle and vehicles are allowed to
perform more than one trip. The set of successive trips performed by one vehicle
is called multitrip. The 0-1 mixed integer linear program (MILP), based on the
model proposed by Rivera et al. [2], is defined by Eqs. (1)–(14).

min Z =
∑

i∈V

∑

j∈V

wij · yij +
∑

i∈V ′

∑

j∈V ′
(wi0 + w0j) · y′

ij (1)

∑

i∈V ′
x0i = R (2)

∑

i∈V ′
(xij + x′

ij) + x0j = 1, ∀ j ∈ V ′ (3)

∑

i∈V ′
(xji + x′

ji) + xj0 = 1, ∀ j ∈ V ′ (4)

∑

j∈V

Fji −
∑

j∈V

Fij = qi, ∀ i ∈ V ′ (5)

Fij ≤ Q · xij , ∀ i, j ∈ V, i �= j (6)

F0j ≤ Q ·
(

x0j +
∑

i∈V ′
x′
ij

)

, ∀ j ∈ V ′ (7)

yij ≤ (n − R + 1) · xij , ∀ i, j ∈ V, i �= j (8)
y′
ij ≤ (n − R) · x′

ij , ∀ i, j ∈ V ′, i �= j (9)
∑

j∈V

(yij − yji) +
∑

j∈V ′
(y′

ij − y′
ji) = 1, ∀ i ∈ V ′ (10)

yij ≥ 2 · xij − xj0, ∀ i ∈ V, j ∈ V ′ (11)
y′
ij ≥ 2 · x′

ij − xj0, ∀ i ∈ V ′, j ∈ V ′ (12)

xij ∈ {0, 1}, yij ≥ 0, Fij ≥ 0, ∀ i, j ∈ V, i �= j (13)
x′
ij ∈ {0, 1}, y′

ij ≥ 0, ∀ i, j ∈ V ′, i �= j (14)

The model uses the concepts of replenishment arcs (Boland et al. [11]) and
arc coefficients (Ngueveu et al. [7]). Variables are indexed by arcs and no trip
nor multitrip index is required. Fij define the flow (load) on each arc (i, j). The
binary variables xij are equal to 1 if and only if arc (i, j) is traversed by a vehicle.
Variables yij expresses the arc coefficients which are very useful to compute
the objective function and prevent subtours. Arc coefficient yij designates the
number of times the arc cost wij is counted in the solution cost. Similar variables
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x′
ij and y′

ij are used for replenishment arcs. For instance, if a trip visits nodes
1, 2 and 3, the sum of arrival times is (w01) + (w01 + w12) + (w01 + w12 + w23)
and the arc coefficients are y01 = 3, y12 = 2 and y23 = 1.

The objective function (1) represents the sum of arrival times at affected
sites. Constraints (2) mean that only R vehicles (R multitrips) can be used.
Equations (3) and (4) respectively indicate that exactly one arc is traversed to
arrive at site j and leave it. Constraints (5)–(7) concern flow variables and ensure
that each demand is satisfied. Constraints (8)–(9) limit the number of arcs in a
multitrip and Eq. (10) decrease the arc coefficients along trips.

Constraints (11) and (12) are new valid inequalities, which express that tra-
versed arcs with not depot destination have an arc coefficient greater or equal
than two, but becomes one if the destination of its immediate successor arc is
the depot. Finally, constraints (13) and (14) define the five groups of variables.

4 Multistart Evolutionary Local Search

The proposed hybrid metaheuristic is a multistart evolutionary local search (MS-
ELS). This method alternates between two kind of solution representations: mt-
CCVRP solutions, which are sets of trips grouped in multitrips, and giant tours
solutions without trip or multitrip delimiters. The metaheuristic also calls a split
procedure and a variable neighborhood descent (VND) as improving phases. The
proposed MS-ELS is sketched in Algorithm1 while its internal components are
described in the sequel.

A number (MaxStart) of successive Randomized Greedy Solutions are con-
structed. Every randomized initial solution S, is immediately improved by the
VND. Concatenate procedure allows to translate the solution S in a giant tour
T . After that, a number (MaxIter) of iterations are performed. In every itera-
tion MaxChildren copies (T ′) of T are taken, a perturbation procedure (Perturb)
is performed to each copy, the perturbed giant tours are optimally split up in
multitrips (S′′) by a Split procedure and improved by VND. The best of the
MaxChildren solutions is used to replace S, in case of improvement. Finally, the
best solution found S∗ is updated when S improves the latter. The procedures
Precompute and Update are used to speed up the VND.

In Algorithm 1, Z(S∗) and Z(S′) define the global best cost and the cost of
the best child of the current generation, respectively.

4.1 Solution Representations

In our algorithm, two solution representations are used. In a mt-CCVRP solu-
tion, noted by S, each multitrip is coded as a list of nodes in the order to be
visited and uses the character “0” to delimit at the start and end of trips which
means the visit to the depot. Giant tour solutions, noted by T , are composed
of a single list of all required nodes in the order to be visited without trip or
multitrip delimiters. The procedure Concatenate is used to transform a solution
S to its correspondent T , while Split procedure optimally translates in O(Rn4)
a giant tour T to an adequate S.
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Algorithm 1. – MS-ELS
Z(S∗) ← ∞
for Start ← 1 to MaxStart do

Greedy Randomized Heuristic(S)
Precompute(δ, S)
VND(S)
for Iter ← 1 to MaxIter do

Concatenate(S, T )
Z(S′) ← ∞
for Child ← 1 to MaxChildren do

T ′ ← T
Perturb(T ′)
Split(T ′, S′′)
Update(δ, S′′)
VND(S′′)
if Z(S′′) < Z(S′) then

S′ ← S′′

end if
end for
if Z(S′) < Z(S) then

S ← S′

end if
end for
if Z(S) < Z(S∗) then

S∗ ← S
end if
if Z(S) < Z(S∗) then

S∗ ← S
end if

end for
return S∗

4.2 Pre-computations

Cost variation in moves is computed based on the concatenation operator ⊕,
proposed by Silva et al. [12]. Given a sequence σ, c(σ) denotes the cost to perform
σ when starting at time 0, t(σ) denotes the duration, |σ| denotes the number of
nodes in σ, and ←−σ denotes the reversal of σ.

The cost and the duration of a sequence with one node are assumed to be 0
since there is no travel. The operator ⊕ concatenates two sequences, σ = (u, ..., v)
and σ′ = (u′, ..., v′). The following equations allow to compute the number of
nodes, the duration and the cost values for σ ⊕ σ′:

|σ ⊕ σ′| = |σ| + |σ′| (15)
t(σ ⊕ σ′) = t(σ) + wv,u′ + t(σ′) (16)

c(σ ⊕ σ′) = c(σ) + |σ′| · (t(σ) + wv,u′) + c(σ′) (17)
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Note that the concatenation operator ⊕ is not commutative due to c(σ⊕σ′) �=
c(σ′ ⊕ σ) and t(σ ⊕ σ′) �= t(σ′ ⊕ σ).

Moreover, moves browsed in VND often require reversals of sequences. Con-
trary to the routing problems with cost-based objective functions, the sum of
arrival times of a sequence is modified after a reversal. In order to evaluate in
O(1) the cost variation of all moves, the cost for the reversal of any sequence σ
in the incumbent solution must be prepared. The sequences considered contain
required nodes only, so they must be completely contained in a trip.

Consider the reversal of σ = σ′ ⊕ u, where u is a single node and σ′ =
(u′, ..., v′). The cost c(←−σ ) can be recursively deduced in O(1) from the sequence
σ′ as ←−σ = u ⊕ ←−

σ′ , using Eq. (18). Note that c(
←−
σ′) = 0 if |σ′| = 1.

c(←−σ ) = c(v ⊕ ←−
σ′) = |σ′| · wu,v′ + c(

←−
σ′) (18)

The reversal costs c(←−σ ) is computed by the Precompute procedure, before calling
the VND after the initial solution, and stored in an array δ which is prepared
in O(n2). Update procedure renovates the values of the reversal costs after the
Split, but restricted to the sequences contained in modified multitrips.

4.3 Initial Solution Procedure

At each start of our MS-ELS, an initial solution is built by a greedy randomized
heuristic. In this heuristic, each new trip is initialized with the farthest unser-
viced site. Then, a restricted candidate list (RCL) gathers the sites according
with the following equation:

RCL = {i ∈ V ′′ | z(i) ≤ zmin + 0.05 · (zmax − zmin)} (19)

where V ′′ is the set of unserviced sites, z(i) the insertion cost of site i in the
emerging trip, and zmax and zmin the largest and smallest insertion costs. One
site is randomly selected from the RCL to be added. The RCL is updated and
sites are chosen until there is not enough capacity in the vehicle.

The trips are sorted in non-decreasing order of their mean duration, defined
as total duration divided by its number of required nodes, then assigned to the
end of the shortest partial multitrip. Rivera et al. [2] showed that the cost of a
multitrip is minimized by ordering its trips in non-decreasing order of mean trip
duration.

4.4 Variable Neighborhood Descent

The improvement procedure used in the MS-ELS is a variable neighborhood
descent (VND), based on 8 neighborhoods. Each neighborhood is implicitly
defined by a type of move. Starting from p = 1 and one input mt-CCVRP
solution S, the basic iteration of VND consists in exploring the neighborhood
Np of S. As soon as a better solution is discovered, it replaces S and p is reset



Multistart Evolutionary Local Search for a Disaster Relief Problem 135

to 1, otherwise p is incremented. The procedure stops when the exploration of
Np brings no improvement. Only feasible solutions are accepted.

2-OPT moves on one trip (N1): The 2-OPT move on one trip was already
used by Ngueveu et al. [7] for the CCVRP. It consists in deleting two arcs and
reconnecting the resulting fragments using two new arcs. Equivalently, it can
be defined as the reversal of a sequence, represented as σ1 ⊕ ←−σ2 ⊕ σ3, where
σ1 ⊕ σ2 ⊕ σ3 is a trip. As a trip gets a different cost when inverted, we consider
also the new variant represented as ←−σ3 ⊕ σ2 ⊕ ←−σ1.

λ-interchanges on one trip (N2): Moves tested in this neighborhood consist
in exchanging a sequence σ1 from one to λ consecutive nodes with another (non-
overlapping) sequence σ2 containing zero to λ consecutive nodes. Each sequence
with more than one node can be reversed in the reinsertion, giving four cases.
Note that we allow a length of zero for the second sequence, to include relocations
of the first string.

2-OPT moves involving two trips in a multitrip (N3): This neighborhood
takes two trips k and k′ in the same multitrip, deletes one arc from each trip and
reconnects them with different arcs. As we allow the reversal of each resulting
sequence in these transformations, eight cases must be evaluated.

λ-interchanges involving two trips in a multitrip (N4): Here, the λ-
interchanges involve one sequence in each trip. As we allow the reversal of each
sequence, four cases must be evaluated.

2-OPT moves on two trips done by distinct vehicles (N5): 2-opt moves
affecting two trips of different multitrips are similar to the ones browsed in N3

but they use two trips in different multitrips. As both sequences come from
different vehicles, a larger number of moves can be performed when R ≥ 2.

λ-interchanges on two trips done by distinct vehicles (N6): The λ-
interchanges moves affecting two trips from two different multitrips are similar
to the ones browsed in N4. As in N5, a larger number of moves can be performed
when R ≥ 2.

In all cases, cost variation of moves in N1, N2, N3, N4, N5 and N6 can be
evaluated in constant time by using the concatenation operator ⊕. So, these
neighborhoods can be browsed in O(n2).

Trip interchange (N7): This neighborhood interchanges two trips from differ-
ent multitrips. Every trip is inserted in the corresponding multitrip by following
the dominance rule mentioned before. Note that only one order must be con-
sidered for every multitrip. As every move is evaluated in constant time, this
neighborhood can be browsed in O(R2n).

Trip splitting (N8): This neighborhood adapts the route-splitting procedure for
the multitrip VRP (Petch and Salhi [13]). This procedure starts by determining
the shortest multitrip b, inspects each multitrip m �= b and evaluates the cost
variation if the last trip of m is cut after the first, second, . . ., last but one
customer and moved at the end of multitrip b. This process can be implemented
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with an O(Rn) complexity. In case of improvement, the VND goes back to
neighborhood N1, otherwise it terminates.

4.5 Concatenation

The concatenation procedure allows to transform a mt-CCVRP solution, S, to
a giant tour solution, T , without trip or multitrip delimiters in a list of size n.
The procedure starts by adding to an empty list, in order, the required nodes
visited by the first multitrip, after that it continues adding the required nodes
of the second multitrip, and so on, until multitrip R.

4.6 Perturbation

For each iteration, a perturbation procedure is applied to generate different
children. This procedure consists in changing the direction of a sequence of nodes
chosen randomly in a giant tour T . While this kind of perturbation changes
the absolute position of a lot of nodes in the giant tour, the relative position
remains similar. This kind of perturbation keeps together most of the nodes of
the original solution but the new solution is different because (a) the cost of a
sequence changes when it is reversed and (b) new trips are defined by the split
procedure.

4.7 Split

This procedure allows to obtain a mt-CCVRP solution S from a giant tour
solution T by solving a shortest path problem in an auxiliary digraph H =
(X,A,U). X = {0, 1, ..., n} is the set of nodes. The arc set A contains all arcs
(i − 1, j) with j > i, where arc (i − 1, j) means that sequence σ = (Ti, ..., Tj) is
visited by one vehicle. The mapping U defines the cost (sum of arrival times)
ui−1,j of these arcs. Note that multitrips do not have capacity constraints.

The cost ui−1,j of arc (i − 1, j) ∈ A can be computed by solving a supple-
mentary shortest path problem on another auxiliary digraph H ′ = (X ′, A′, U ′),
where the set of nodes X ′ contains a dummy node 0, and the nodes of sequence
σ. The arc set A′ contains arc (i′ − 1, j′) if the sequence σ′ = (Ti′ , ..., Tj′) can
be serviced by a feasible trip, respecting the capacity constraint. The set U ′

contains the cost u′
i′−1,j′ of arc (i′ −1, j′) ∈ A′, which is the sum of arrival times

of the corresponding trip.
Every time an arc (i − 1, j) ∈ A is considered to compose a multitrip, two

options are possible: either vehicles have enough capacity to visit all required
nodes and the cost is computed as ui−1,j = u′

i−1,j = w0,Ti
+c(σ) or the multitrip

must be split up in two or more trips. In the second case, the cost of arc (i′ −
1, j′) ∈ A′ can be computed as a function of the successive trips by using the
Eq. (17). The paths on the graphs are built backward in order to deduce the
splitting of the giant tour in O(Rn4).



Multistart Evolutionary Local Search for a Disaster Relief Problem 137

5 Computational Experiments

5.1 Implementation

MS-ELS algorithm is implemented in Visual C++ and the mathematical model
is solved by CPLEX 12.4. Both have been tested on a 2.50 GHz Intel Core i5
computer with 4 GB of RAM and Windows 7 Professional. Two kind of exper-
iments are reported. The first one compares the solution of the 0-1 MILP via
CPLEX solver with the hybrid metaheuristic. Such comparison is only possi-
ble on small instances. The second one compares the MS-ELS with the MS-ILS
introduced by Rivera et al. [2].

Three sets of instances are used for our experiments: 12 small instances (n =
15) of Rivera et al. [2] (RAP), 7 modified instances of Christofides et al. [14]
(CMT), and 20 modified instances of Golden et al. [15] (GWKC). Modifications
consist in reducing the number of vehicles in order to force them to execute
several trips and relaxing the trip length limit.

5.2 MS-ELS Parameter Tuning

The MS-ELS has only four parameters: the number of successive starts (MaxS-
tart), the number of iterations per ELS (MaxIter), the number of children
(MaxChildren) and the maximum number of consecutive sites in λ-interchange
moves (λ). As the running time is roughly proportional to the number of calls
to the VND, we decided to allocate a “computing budget” of 3000 calls to
avoid excessive execution times. The best results on average are obtained with
MaxStart = 3, MaxIter = 100, MaxChildren = 10 and λ = 3. For large
instances results are also compared with MaxStart = 3, MaxIter = 1000,
MaxChildren = 1 and λ = 3 which is equivalent to an MS-ILS by performing
the split procedure.

5.3 Results on Small Instances

Table 1 compares the results for the 0-1 mixed integer linear program and the
MS-ELS. The first four columns display the instance name, the number of
required nodes, the number of vehicles and the average number of trips per
vehicle

∑n
i=1 qi/(Q · R). For MILP we provide linear relaxations, solution values

(at the end of one hour, the best lower bound and the cost of the best integer
solution found), the running times in seconds, and the percentage gap between
best lower bounds and best cost of integer solutions. The best solution value
over five runs, the average running time per run in seconds and the percentage
gap between the best lower bound and the best cost are indicated for MS-ELS.

For the eight first instances, CPLEX finds an optimal solution. The instances
look harder when the number of vehicles decreases and the average number of
trips per vehicle increases: the running time of CPLEX augments quickly and the
four last instances cannot be solved in one hour. However, the MS-ELS always
returns a solution in at most 5.07 s (3 s on average). On the other hand, the
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Table 1. Tests on small instances of Rivera et al. [2]

File n R
∑

qi
Q·R 0-1 MILP MS-ELS (5 runs)

LR Cost Time Gap Best cost Time Gap

RAP01 15 4 1.00 619.04 687.29 8.66 0.00 687.29 1.87 0.00

RAP02 15 4 1.25 633.47 741.91 33.99 0.00 741.91 2.54 0.00

RAP03 15 4 1.67 686.32 855.91 38.38 0.00 855.91 1.76 0.00

RAP04 15 4 2.50 851.99 1090.67 24.20 0.00 1090.67 1.24 0.00

RAP05 15 3 1.11 697.26 817.22 16.13 0.00 817.22 4.15 0.00

RAP06 15 3 1.33 708.68 942.45 414.64 0.00 942.45 3.98 0.00

RAP07 15 3 1.67 733.24 1008.03 560.17 0.00 1008.03 2.06 0.00

RAP08 15 3 2.22 788.88 1111.04 124.54 0.00 1111.44 2.38 0.00

RAP09 15 2 1.25 802.20 (1116.97/1182.66) - 5.88 1182.66 5.07 5.88

RAP10 15 2 1.67 814.44 (1100.45/1327.76) - 20.65 1310.17 3.16 20.43

RAP11 15 2 2.00 830.58 (1199.17/1391.60) - 16.05 1391.60 3.28 16.05

RAP12 15 2 2.50 862.40 (1296.97/1513.06) - 16.66 1513.06 1.11 16.66

Mean 1301.72 3.07

Table 2. Results for the instances of Christofides et al. [14]

Instance n R
∑

qi
Q·R BKS MS-ILS MS-ELS1 MS-ELS10

Dbest Davg Time Dbest Davg Time Dbest Davg Time

CMT01 50 3 1.62 3856.39 0.00 0.16 78.26 0.00 0.14 34.62 0.00 0.14 32.61

CMT02 75 3 3.25 8300.15 0.00 0.04 68.37 0.00 0.01 47.59 0.00 0.03 48.22

CMT03 100 3 2.43 10957.00 0.00 0.42 238.07 0.40 0.63 144.66 0.00 0.45 139.25

CMT04 150 3 3.73 20595.93 0.01 0.25 479.34 0.00 0.07 316.62 0.00 0.21 329.71

CMT05 199 3 5.31 33981.40 0.18 0.48 750.80 0.16 0.42 502.71 0.00 0.97 551.14

CMT11 120 3 2.29 15797.40 0.00 0.17 470.41 0.00 0.11 217.54 0.00 0.14 275.24

CMT12 100 3 3.02 10658.70 0.00 0.00 329.87 0.00 0.00 137.85 0.00 0.00 149.42

Average 0.03 0.22 345.02 0.08 0.20 200.23 0.00 0.28 224.46

MS-ELS reaches all optimal or best known solutions, and improves one of the
best integer solutions found by CPLEX.

5.4 Results on Larger Instances

In this section, the proposed MS-ELS is compared with the MS-ILS of Rivera
et al. [2] (without split). MS-ELS10 refers to MS-ELS with ten children and
100 iterations while MS-ELS1 refers the same method with one child and 1000
iterations. The results for larger instances are presented in Table 2 for CMT
instances and Table 3 for GWKC instances, using the same columns: instance
name, number of nodes n, number of vehicles R, average number of trips per
vehicle

∑n
i=1 qi/(Q · R), best known solution BKS, and for each method (MS-

ILS, MS-ELS1 and MS-ELS10) deviation from the best solution found in 5 runs
in percent (Dbest), average deviation of the 5 solutions from BKS in percent
(Davg) and average duration per run in seconds (Time).

On the CMT instances, the average computational time is less than 4 min,
varying between 0.58 and 8.38 min for MS-ELS1 and between 0.54 and 9.18 min
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Table 3. Results for the instances of Golden et al. [15]

n R

∑
qi

Q·R BKS
1 10

Dbest Davg Dbest Davg Dbest Davg
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20

for MS-ELS10. MS-ELS10 is 35 % faster than MS-ILS, while MS-ELS1 is 42 %
faster than MS-ILS.

With five runs, MS-ELS10 always finds the best known solution, and two
solutions are improved. The average costs for five runs is close to the best cost
(0.28 %), indicating that MS-ELS is robust. MS-ELS1 finds 5 best known solu-
tions and improves two of the solutions finds by MS-ILS.

The best and average deviation for MS-ELS10 increase moderately on the
GWKC instances, with 0.19 % and 0.52 %, respectively. Nevertheless, 7 best
known solutions are improved. The deviation from the best solution found (Dbest)
from MS-ELS10 is larger than the Dbest from MS-ILS due to the values of a few
instances. But, if instances GWKC08, GWKC19 and GWKC20 are ignored,
Dbest from MS-ELS10 becomes 0.11 % while Dbest from MS-ILS becomes 0.13 %.

MS-ELS1 improves 4 best known solutions, one of them is also found by MS-
ELS10. The best and average deviation for MS-ELS1 are similar for both set of
parameters.

The average computational time has been improved about 20 % by MS-ELS1

and MS-ELS10, and it is ranging from 7 min to 234 min. The proposed meta-
heuristic is still stable in terms of solution quality, yet the execution times vary
a lot among instances of the same size. This variation is mainly due to the num-
ber of trips and the number of nodes per trip which have a great effect on the
number of moves in neighborhoods.
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A comparison between these methods shows that the use of the split proce-
dure increases the efficiency of the MS-ELS algorithm respect to the MS-ILS,
and the use of multiple children improves its performance.

6 Conclusions

The mt-CCVRP constitutes a good way to model the delivery of relief supplies
after a humanitarian disaster, where the number of vehicles is limited and the
time to reach affected areas is critical. The article presents an adapted split
procedure and a VND in a hybrid multistart evolutionary local search algorithm.

On small instances, the resulting algorithm MS-ELS finds the same results
as the mathematical model when the latter can be solved to optimality. The MS-
ELS is able to produce competitive results in relatively short computing time.
Some best known solutions has been improved for large instances.

A promising extension is the generalized CCVRP, in which the relief supplies
must be delivered to one airport to be selected among the ones that are still
operational in each region. Split deliveries should be allowed for a better use of
vehicles.
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Abstract. This paper presents an enhancement of the well-known Lou-
vain algorithm for community detection with modularity maximization
which was introduced in [16]. The Louvain algorithm is a partial multi-
level method which applies the vertex mover heuristic to a series of coars-
ened graphs. The Louvain+ algorithm proposed in this paper generalizes
the Louvain algorithm by including a uncoarsening phase, leading to a
full multi-level method. Experiments on a set of popular complex net-
works show the benefits induced by the proposed Louvain+ algorithm.

Keywords: Clustering · Optimization over networks · Heuristics

1 Introduction

Complex networks are a graph-based model which is very useful to represent
connections and interactions of the underlying entities in a real networked sys-
tem such as social [1], biological [2], and technological networks [3]. A vertex
of the complex network represents an object of the real system while an edge
symbolizes an interaction between two objects. For example in a social network,
a vertex corresponds to a particular member of the network and an edge repre-
sents a relationship between two members. Complex networks typically display
non-trivial structural and functional properties which impact the dynamics of
processes applied to the network [4]. Analysis and synthesis of complex networks
help discover these specific features, understand the dynamics of the networks
and represent a real challenge for research [5,6].

A complex network may be characterized by a community structure. Vertices
of a community are grouped to be highly interconnected while different commu-
nities are loosely associated with each other. Community is also called cluster
or still module [7]. All the communities of a network form a clustering. In terms
of graph theory, a clustering can be defined as a partition of the vertices of the
underlying graph into disjoint subsets, each subset representing a community.

Intuitively, a community is a cohesive group of vertices that are more con-
nected to each other than to the vertices in other communities. To quantify the
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quality of a given community and more generally a clustering, modularity is cer-
tainly the most popular measure [8]. Under this quality measure, the problem
of community detection becomes a pure combinatorial optimization problem.
Formally, the modularity measure can be stated as follows.

Given a weighted graph G = (V,E,w) where w is a weighting function, i.e.,
w : V × V �−→ R such that for all {u, v} ∈ E,w({u, v}) �= 0, and for all {u, v} /∈
E,w({u, v}) = 0. Let X ⊆ V and Y ⊆ V be two vertex subsets, W (X,Y ) the
weight sum of the edges linking X and Y , i.e., W (X,Y ) =

∑
u∈X,v∈Y w({u, v})

(in this formula, each edge is counted twice). The modularity of a clustering
with k communities C = {c1, c2, ..., ck} (∀i ∈ {1, 2, ..., k}, ci ⊂ V and ci �= ∅;
∪k
i=1ci = V ; ∀i, j ∈ {1, 2, ..., k}, ci ∩ cj = ∅) is given by:

Q(C) =
k∑

i=1

[
W (ci, ci)
W (V, V )

−
(

di
W (V, V )

)2
]

(1)

where di is the sum of the degrees of the vertices of community ci, i.e., di =∑
v∈ci

deg(v) with deg(v) being the degree of vertex v.
It is easy to show that Q belongs to the interval [-0.5,1]. A clustering with a

small Q value close to -0.5 implies the absence of real communities. A large Q
value close to 1 indicates a good clustering containing highly cohesive commu-
nities. The trivial clustering with a single cluster has a Q value of 0.

Community detection with modularity is an important research topic and
has a number of concrete applications [9]. In addition to its practical interest,
community detection is also notable for its difficulty from a computational point
of view. Indeed, the problem is known to be NP-hard [10] and constitutes thus
a real challenge for optimization methods.

A number of heuristic algorithms have been proposed recently in the liter-
ature for community detection with the modularity measure. These algorithms
follow three general solution approaches. First, greedy agglomeration algorithms
like [11,12] iteratively merge two clusters that yield a clustering by following
a greedy criterion. Second, local optimization algorithms like [13–15] improve
progressively the solution quality by transitioning from a clustering to another
clustering (often of better quality) by applying a move operator. The quality
of such an algorithm depends strongly (among other things) on the move oper-
ator(s) employed. Third, hybrid algorithms like [16–19] combine several search
strategies (e.g., greedy and multi-level methods) in order to take advantage of
the underlying methods. Among the existing community detection algorithms,
the Louvain algorithm presented in [16] (see next section) is among the most
popular methods.

The Louvain algorithm belongs to the hybrid approach and can be com-
pared to the general multi-level framework which requires both a coarsening
and uncoarsening phases [20]. The coarsening phase reduces the size of a graph
at each level by grouping several vertices of the original graph into a single ver-
tex. The uncoarsening phase does the inverse by unfolding the vertices of the
coarsen graph and then applying a refinement (optimization) procedure. While
Louvain algorithm does use a coarsening phase, it omits the uncoarsening phase.
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However, from an optimization point of view, it is known that the uncoarsening
phase within the multi-level framework is useful to further improve the quality
of the solution (see the example given in Sect. 2). This paper aims to extend the
Louvain algorithm by including a uncoarsening phase, making the algorithm a
full multi-level method. Experiments on a set of popular complex networks show
the benefits induced by the proposed Louvain+ algorithm.

2 The Louvain Algorithm

The Louvain algorithm presented by Blondel et al. [16] operates on multiple
levels of graphs, applying the vertex mover (VM) procedure on each level to
improve the modularity. In this Section, we recall the two key elements of the
methods: the VM procedure and the coarsening phase.

2.1 Vertex Mover Procedure

For a given graph where each vertex represents a community, one iteration of
VM explores all the vertices of the graph in a random order. For each vertex,
one examines all the possible moves to a neighbor community with an increased
modularity. The move giving the largest increase is chosen and realized. At the
end of an iteration, all the vertices of the current graph are processed. One
proceeds with a new iteration if at least one vertex has migrated. To ensure that
the vertices are examined in a purely random order during each iteration, the
exploration of the vertices follows a random permutation of {1, 2, ..., n} which
is generated at the beginning once and for all. The procedure stops if no vertex
has migrated when all the vertices have been examined. Another possible stop
criterion is a minimum modularity gain: if the total gain obtained in one iteration
is lower than the minimum gain required, the algorithm stops.

2.2 Coarsening Phase

The coarsening phase of the Louvain algorithm starts with the initial graph G
(call it level 0 graph G0) and produces a hierarchy of coarser graphs G1, G2, ... of
decreasing orders. We use Gl = (V l, El, wl) to denote the graph of level l. From
the graph G0 and the initial trivial clustering where each vertex of G0 forms
a singleton community, the VM heuristic is applied to generate an improved
clustering C0. Then the graph G1 of level 1 is created such that a vertex is
introduced for each community of C0 and an edge between two vertices is defined
if they represent two neighboring communities in C0. Now the VM heuristic is
applied to the new graph G1 with the clustering of singleton communities. This
process continues and stops at some level L if the VM heuristic can not improve
the initial clustering with singleton communities of GL.

Formally, the generation of the coarsened graph Gl+1 from (Gl,Cl) are
achieved according to the following steps [21].
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1. A vertex in Gl+1 corresponds to a community of clustering Cl and vice versa.
Given a community c of clustering Cl, let T l+1(c) denote the corresponding
vertex in Gl+1.

2. Given two communities c and c′ of clustering Cl, if they are connected by at
least one edge in Gl, then their corresponding vertices T l+1(c) and T l+1(c′)
are linked by an edge in Gl+1. Additionally, the edge is weighted by W l(c,c′)

2 .
3. A loop is added to each vertex T l+1(c) corresponding to community c weighted

by wl+1(T l+1(c), T l+1(c)) = W l(c, c).

This Louvain algorithm is illustrated on Fig. 1 with a simple graph containing
17 vertices and 29 edges.

3 Algorithm Louvain+

We extend the Louvain algorithm by introducing an uncoarsening-refinement
phase at the end of the standard Louvain algorithm. Our Louvain+ algorithm
executes the following steps:

1. Run the Louvain algorithm to obtain a series of coarsened graphs G1, G2, ...GL

and clusterings C1, C2, ...CL, assuming the highest level is L.
2. Run the uncoarsening phase from CL−1 and project the current clustering

to a new clustering C̄L−2 where each coarsened community of the current
clustering is unfolded (uncoarsened) into its composing communities. The
new clustering C̄L−2 is immediately refined by the VM heuristic to improve
its quality. The improved C̄L−2 serves then as the initial clustering for the
next projection application. This process continues until level 0 is reached.
(Notice that it is useless to start the uncoarsening phase from CL since no
moves are made by the VM heuristic during the last iteration of the coarsening
phase.)

We describe now the process of projection. Given two vertices vl
1 and vl

2

of graph Gl, we use vl
1 Γ l vl

2 to denote the relation “vl
1 and vl

2 belong to the
same community in Cl.” Furthermore, we use γl(vl) to denote the community
to which vertex vl belongs in Cl. By convention, let C̄L−1 = CL−1 denote the
first projected clustering. At each level l = L − 2, L − 3..., the clustering C̄l

is the result of the projection of C̄l+1 onto Cl which is optimized by the VM
heuristic. In C̄l, two vertices vl

1 and vl
2 belong to the same community if the

vertices in Gl+1 corresponding to the communities γl(vl
1) and γl(vl

2) from Cl

belong to the same community in Cl+1. Formally, this is denoted by vl
1 Γ l vl

2 ≡
T l(γl(vl

1))Γ l+1 T l(γl(vl
2)). This relation defines entirely the new clustering C̄l.

The number of communities in C̄l+1 is the same as in C̄l. The uncoarsening
phase with refinement by the VM heuristic is illustrated on Fig. 2 which starts
with the result of Louvain algorithm (i.e., C1) obtained in Fig. 1.
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Fig. 1. Illustration of the Louvain algorithm. The initial graph G0 contains 17 vertices
and 29 edges. A first application of VM procedure to the trivial clustering of singleton
communities gives the clustering C0 composed of 5 communities. Then the coarsen
graph G1 is built with weighted edges and loops (squares in this graph represents
communities from a lower level). The VM procedure is applied to the new graph G1

to obtain the clustering C1 with 3 communities. At level 2, the application of the
VM procedure to the initial clustering of singleton communities does not change the
clustering. The algorithm stops.

4 Experimental Results

4.1 Benchmark and Protocol of Test

To evaluate the efficiency of our Louvain+ algorithm, we compare it with the
Louvain algorithm on a set of 13 networks from different application domains
shown in Table 1. Both algorithms are coded in Free Pascal and executed on a
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Fig. 2. Illustration of the uncoarsening-refinement phase of the Louvain+ algorithm.
We start with level 1 from the example of Fig. 1. The clustering C1 of level 1 has three
communities containing communities from level 0. With the uncoarsening operation,
the clustering C1 is projected to a new clustering where new communities are formed.
For instance all the vertices from communities 1 and 5 of C0 now form a new community
of the projected clustering while communities 2 and 4 of C0 lead to another new
community. Since the structure of communities in the projected clustering has changed,
the VM procedure can be applied to the projected clustering to obtain an improved
clustering with an increased modularity. We see that displacing vertex 6 of the projected
clustering from community 1 to community 2 leads to a higher modularity (0.38228 vs
0.37872).

PC equipped with a Pentium Core i7 870 of 2.93 GHz and 8 GB of RAM1. Since
the algorithm is sensitive to the order of vertices, we generate 100 instances
of each graph with random vertices order. We use a deterministic version of
the Louvain and Louvain+ algorithms (i.e. without preliminary random vertex
reordering) and execute them on these 100 instances. For each graph, we present
the distribution or average of different measures (modularity, number of vertices
misplaced etc.) obtained over the 100 instances.

We use the minimal modularity gain ε between two consecutive iterations
(see Sect. 2.1) as the stop condition of the VM procedure. We use εc and εr
to distinguish the minimal modularity gain for the coarsening phase (for both
Louvain and Louvain+) and for the uncoarsening phase (only Louvain+). It is

1 The source code of our Louvain+ algorithm will be made available at www.info.
univ-angers.fr/pub/hao/Louvainplus.html.

www.info.univ-angers.fr/pub/hao/Louvainplus.html
www.info.univ-angers.fr/pub/hao/Louvainplus.html
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Table 1. Benchmark graphs in the literature for community detection with the number
of vertices (n) and the number of edges (m). These are undirected graphs with medium
size (from about 2000 to almost 1 million of edges).

Graph Description n m Source

Jazz jazz musician collaborations network 198 2742 [22]

Email university e-mail network 1133 5451 [23]

Power topology of the Western States Power Grid
of the United States

4941 6594 [24]

Yeast Protein-Protein interaction network in yeast 2284 6646 [25]

Erdos Erdös collaboration network 6927 11850 [26]

Arxiv network of scientific papers and their
citations

9377 24107 [27]

PGP trust network of mutual signing of
cryptography keys

10680 24316 [28]

Condmat2003 scientific coauthorship network in
condensed-matter physics

27519 116181 [29]

Astro-ph collaboration network of arXiv Astro
Physics

16046 121251 [30]

Enron email network from Enron 36692 183831 [31]

Brightkite friendship network from a location-based
social networking service

58228 214078 [32]

Slashdot social network from Slashdot news web site 77359 469180 [31]

Gowalla location-based social network from a website 196591 950327 [32]

clear that a smaller ε induces more applications of the VM heuristic and thus
more computing time. In all of our experiments, we set εr = 10−5.

It is obvious that with the uncoarsening-refinement phase, the proposed
Louvain+ algorithm will increase or leave unchanged the modularity which is
achieved by Louvain. In the rest of this section, we assess experimentally the
impact of the uncoarsening phase of Louvain+ on the run time cost, the modu-
larity improvement and the structural changes of the clustering.

4.2 Execution Time and Modularity

Figure 3 shows a comparison of accumulated average runtime between Louvain
and Louvain+ when they are applied to the set of 13 graphs with the same
parameter value εc = εr = 10−5. With the same coarsening phase in both algo-
rithms, we can measure the extra time required by the uncoarsening-refinement
phase of Louvain+. We observe that the curve of Louvain+ is slightly above that
of Louvain but with a similar linear growth on m (number of edges in graph).
The time complexity seems to be in O(m). Curve delta shows a linear increase
of runtime required by the uncoarsening-refinement phase. Louvain+ does not
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Fig. 3. Runtime comparison between Louvain and Louvain+. The three upper curves
show the average run time of Louvain, Louvain+(εc = 10−5) and Louvain+(εc = 10−2)
on the set of 13 graphs over 100 instances in milliseconds as a function of the number
of edges m. The blue curve delta (lowest one) represents the time difference between
Louvain+(εc = 10−5) and Louvain (Color figure online).

change the complexity of the Louvain algorithm. Over the 13 tested graphs, the
average increase of runtime caused by the refinement is about 20 %.

Figure 4 presents for each graph the gain of modularity given by the refine-
ment of Louvain+. We observe that Louvain+ leads to an increase of modularity
between 0.002 and 0.01 with respect to the results obtained by Louvain. This is
achieved thanks to the uncoarsening phase introduced in Louvain+.

On the other hand, as shown in Fig. 3, Louvain+ consumes more CPU time
than Louvain to achieve the reported (better) results. One interesting question is
to know whether Louvain+ is able to attain the same results with less computing
time. To verify this, we carry out another experiment where we run Louvain+
with a relaxed coarsening phase by using a much larger εc value (εc = 10−2

instead of εc = 10−5).
Now observe again Fig. 4 for the modularity gain of Louvain+. It can be seen

that Louvain+ with εc = 10−2 leads to a modularity performance comparable to
that with εc = 10−5 while the computing time is decreased, and becomes lower
than the computing time of Louvain. This can be explained as follows. With the
relaxed εc value, the coarsening phase is reduced. Even if this generally leads to
a clustering with a decreased modularity at the end of the coarsening phase, the
modularity is improved during the uncoarsening-refinement phase.

4.3 Bad Vertices and Structural Changes in Clustering

We now turn our attention to evaluate the structural changes in clustering made
by the uncoarsening-refinement phase of Louvain+. For this purpose, we com-
pare the clusterings obtained before and after the uncoarsening-refinement phase,
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Fig. 4. Box-and-Whisker Plots for the modularity gain obtained by the uncoarsening-
refinement phase on 100 instances of each graph. Two versions are tested, one with
εc = 10−5 and one with εc = 10−2 (parameter value on x-axis). In both cases, the final
expected precision is the same, εr = 10−5.

corresponding to the results of Louvain and Louvain+ respectively. An interest-
ing measure for this evaluation is the percentage of misplaced vertices according
to the strong sense of community criterion [33] correctly placed by the refine-
ment. A community is defined in the strong sense if the internal degree of all the
vertices of the community is greater than the external degree (there are more
adjacent vertices in a community than outside). This is a very strong condition
of existence of a community which is rarely satisfied in real networks, but it is
interesting to count the number of vertices that do not satisfy this condition
for a given clustering. To simplify our discussion, we use the term ‘correction’
to designate these vertices misplaced by Louvain (i.e., those vertices with an
internal degree smaller than some external degree), but correctly placed by Lou-
vain+, i.e. by the refinement phase. Generally, according to our observations,
the maximum of modularity goes with the minimum of misplaced vertices.

We show in Table 2 the percentage of vertices corrected by the refinement
phase of Louvain+ and the similarity between clusterings before and after this
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Table 2. Structural comparison between Louvain and the two versions of Louvain+
(with εc = 10−5 and εc = 10−2 respectively). The average percentage of vertices, mis-
placed before the uncoarsening-refinement phase and correctly placed after, are com-
puted over the 100 instances of graphs. We also show the similarity, computed by the
NMI, between clusterings before and after the refinement phase (column ‘similarity’).

Graph % corrections Similarity

εc = 10−5 εc = 10−2

Jazz 0.5 % 1.3 % 0.953

Email 1.2 % 1.2 % 0.879

Power 0.1 % 0.1 % 0.947

Yeast 0.6 % 0.4 % 0.869

Erdos 1.4 % 1.4 % 0.856

Arxiv 0.5 % 0.4 % 0.907

PGP 0.1 % 0.1 % 0.981

Condmat2003 0.4 % 0.4 % 0.884

Astro-ph 0.7 % 0.5 % 0.906

Enron 0.2 % 0.1 % 0.955

Brightkite 0.3 % 0.1 % 0.931

Slashdot 0.3 % 0.0 % 0.845

Gowalla 0.3 % 0.2 % 0.930

average 0.5 % 0.5 % 0.911

phase. We find that the percentage of corrections is positive for all the tested
graphs. This percentage represents 0.1 % to 1.4 % of the total vertices, with an
average of 0.5% over all the tested graphs. This information allows us to confirm
once again the usefulness of the uncoarsening-refinement phase introduced in the
Louvain+ algorithm.

We also calculate the global structural difference between clusterings before
and after the refinement phase, measured by the similarity called NMI [34]. This
measure is based on information theory and mostly used in community detection.
The range of NMI goes from 0 (completely different clusterings) to 1 (identical
clusterings). Table 2 discloses that structural changes made by the Louvain+
refinement is quite important with a NMI between 0.84 and 0.98. As the NMI
scale is logarithmic, a value of 0.9 implies a significant structural difference.

5 Conclusion and Perspectives

In this work, we have presented an improved algorithm for community detection
with modularity. The proposed Louvain+ algorithm extends the well-known Lou-
vain algorithm by adding an uncoarsening-refinement phase, leading to a fully
multi-level method. From the result of the Louvain algorithm, this extension goes
backward and uncoarsens successively each intermediate graph generated during
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the Louvain algorithm and applies the vertex mover heuristic to each uncoars-
ened graph to improve the modularity. We have assessed the performance of
the proposed algorithm on a set of 13 popular real networks. The comparisons
with Louvain show that with comparable computing times, Louvain+ achieves
systematically better modularity than Louvain does, thanks to the optimization
during the uncoarsening-refinement phase. Experiments also disclosed that the
extension of the uncoarsening phase does not change the linear complexity of
the initial Louvain algorithm.

Like Louvain, the proposed Louvain+ algorithm is conceptually simple and
computationally fast. As a consequence, it can be applied to very large networks
that can be encountered in numerous real situations. Additionally, it can be used
within more sophisticated methods, e.g. to generate initial clusterings that are
further improved by search-based heuristics.
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Abstract. We propose a dedicated tabu search algorithm (TSX WDP)
for the winner determination problem (WDP) in combinatorial auc-
tions. TSX WDP integrates two complementary neighborhoods designed
respectively for intensification and diversification. To escape deep local
optima, TSX WDP employs a backbone-based recombination operator
to generate new starting points for tabu search and to displace the search
into unexplored promising regions. The recombination operator oper-
ates on elite solutions previously found which are recorded in an global
archive. The performance of our algorithm is assessed on a set of 500
well-known WDP benchmark instances. Comparisons with five state of
the art algorithms demonstrate the effectiveness of our approach.

Keywords: Winner determination problem · Tabu search · Solution
recombination · Combinatorial optimization · Heuristics

1 Introduction

An auction involves an auctioneer wishing to maximize his/her selling revenue
and a set of bidders wishing to minimize their cost according to their valuations
of the items that they want to acquire. Examples of the most widely known
auctions are the English auction, the Holland’s auction, the Sealed envelope
auction, and the Vickrey auction [12]. These auctions typically handle one item
per sell.

Combinatorial auctions are multi-item auctions, which allow bids on combi-
nations of items [5,11]. In a combinatorial auction, we are given a set of items
exposed to buyers. Buyers offers different bids, each bid being defined by a sub-
set of items with a price (bidder’s valuation). Two bids are conflicting if they
share at least one item. The Winners Determination Problem (WDP) is to deter-
mine a conflict-free allocation of items to bidders (the auctioneer can keep some
of the items) that maximizes the auctioneer’s revenue defined as the sum of the
valuations of the winning bids [14]. The WDP is known to be a NP-hard prob-
lem with a number of practical applications like e-commerce, games theory and
resources allocation in multi-agents systems [11,21].
c© Springer International Publishing Switzerland 2014
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DOI: 10.1007/978-3-319-11683-9 13
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Formally, given a set of items M = {1, 2, ...,m} and a set of n bids N =
{1, 2, ...n}. Each bid j is a tuple <Sj , Pj> where Sj is a subset of items covered by
bid j, and Pj , the price of bid j. Let B be a m×n binary matrix such that Bij = 1
if object i ∈ Sj , Bij = 0 otherwise. Furthermore, define a decision variable xj

for each bid j such that xj = 1 if bid j is a winning bid, 0 otherwise. Then, the
WDP can be stated as the following binary integer optimization problem.

Maximize f(x) =
∑

j∈N

Pjxj (1)

subject to ∑

j∈N

Bijxj ≤ 1, i ∈ M (2)

The objective function (1) allows to maximize auctioneer’s gain calculated by
the sum of prices of the winning bids while the constraints expressed by formula
(2) ensure that an item appears at most in one winning bid.

The computational challenge of the WDP and its practical applications
have motivated a number of solution approaches including exact methods [18]
and metaheuristic methods. Representative examples of exact methods include:
Branch-on-Items (BoI), Branch-on-Bids (BoB) [19], Combinatorial Auctions BoB
(CABoB) [20], Combinatorial Auction Structural Search (CASS) [6] and Com-
binatorial Auctions Multi-unit Search (CAMUS) [15]. A dynamic programming
approach is introduced in [17] while a linear programming method is investigated
in [16]. An algorithm based on integer programming is shown in [1], a constraint
programming approach is used to solve a particular combinatorial Vickrey auc-
tion [9]. On the other hand, several stochastic methods were proposed for the
WDP. They include a local search method named Casanova [10], a hybrid algo-
rithm combining simulated annealing with Branch-and-Bound (SAGII) [8], and
more recently a tabu search method [3] and a memetic algorithm [4].

The rest of the paper is organized as follows. Section 2 describes the proposed
algorithm which is based on two complementary neighborhoods and a recombi-
nation operator. Experimental results are reported in Sect. 3 and compared with
five representative algorithms for the WDP. Finally, Sect. 4 concludes the paper.

2 Recombination-Based Tabu Search for the WDP

TSX WDP uses two complimentary move operators to explore effectively the
search space and a recombination operator as an additional means to escape
deep local optima. In this section, we presents in detail these key components.

2.1 The Solution Representation

A candidate solution is represented by an allocation A (a dynamic vector). Each
element of this allocation A receives the winning bid. Each bid is an object
composed of the list of items and the associated prices.
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2.2 The Evaluation Function

The objective function defined in Eq. (1) is used to measure the quality of a
candidate solution. So if an allocation A contains k bids {B1, B2, ..., Bk}, (Bi =
<Si, Pi>, 1 ≤ i ≤ k, k ≤ n), its quality is just equal to f(A) =

∑k
i=1 Pi, i.e.,

the sum of the valuations of the winning bids. Given two candidate solutions,
the one with a higher objective value is considered to be better. This relation is
used to compare neighboring solutions which are developed below.

2.3 The Basic Move Operators and the Neighborhoods

Our TSX WDP algorithm explores the search space by using two complementary
neighborhood relations which are defined by an intensification move operator and
a perturbation move operator.

Intensification Move. The intensification move operator chooses bids among
candidate bids to be inserted in the current allocation A. During one iteration of
the algorithm, several bids can be selected if they improve the current allocation.
To create a neighboring allocation, the following steps are followed:

– The initial candidate bids are sorted according to their utility prices;
– For each candidate bid Bx, a binary gain function is used to verify if the bid

can increase the revenue of the current allocation when the bid is inserted;
– Let Q be the set of winning bids that are in conflict with the current candidate

bid Bx, Let f(Q) be the revenue of the set of winning bids Q, and f(Bx) the
price of the candidate bid Bx. The gain function returns true if f(Q) < f(Bx)
and returns false otherwise;

– Based on the function f , a candidate bid Bx can be added to the current
allocation only if its price f(Bx) is higher than the revenue of other winning
bids which are conflicting with Bx in the current allocation (i.e., the gain
function is true);

– The gain of Bx, when it is selected to be added in the current allocation, is
calculated by: Gain(Bx) = f(A) − f(Q) + f(Bx);

– When a bid Bx is inserted in the current allocation A, the bids of Q which
are conflicting with Bx are removed from A;

– The steps mentioned previously are iterated until all the initial candidate bids
are visited and possibly added in the current allocation A.

Perturbation Move. The perturbation move operator chooses randomly one
candidate bid from the available ones. This move is activated only if no bid
among the candidate bids can improve the current solution. In fact, the appli-
cation of the intensification move can make the search to be trapped into local
optima during the search process, when no more bid can be found that improves
the revenue of the current allocation. Notice that this move operator can decrease
temporarily the revenue of the solution, but hopefully, it helps the search to
escape local optima by displacing the search to new zones of the search space.
This move operator plays thus a diversification role.
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2.4 Tabu List and Tabu Tenure Management

Tabu search uses a tabu list to forbid recently visited solutions from being revis-
ited. The TSX WDP algorithm considers the following general prohibition rule:
a bid that is chosen to be inserted in the current allocation A (by an intensi-
fication move or a perturbation move) is forbidden to be removed for the next
tt iterations (called tabu tenure). tt is calculated dynamically by the function
proposed in [7]: tt = L+�+f(A) where L is randomly chosen from the interval
[0, 9] and � is empirically fixed to 0.6. Experimentations show this dynamic tabu
tenure is robust and allows TSX WDP to reach high quality solutions. Notice
that we permit a move to be accepted in spite of being tabu if the move leads to
a solution better than any found so far. This is called the aspiration criterion.

2.5 Elite Solution Archive

The proposed algorithm also relies on a solution recombination operator (see
next section) which aims to blend elite solutions (high-quality local optima).
This technique is based on an archive P which is built as follows. During the
search, if the current best solution A∗ is not improved within a fixed number
p of consecutive iterations, A∗ is considered as a good local optimum and is
added into the archive P . At the same time, this allocation corresponds to a
deep local optimum which is difficult to escape. For this purpose, we trigger
a recombination operation to create a new starting point for the tabu search
procedure, which is explained in the next selection.

2.6 Recombination Operator

The recombination operator aims to transfer good properties of parents to their
descendants. The recombination pseudo-code is given in Algorithm 1.

Algorithm 1. The recombination operator
Require: two parent solutions I1 and I2
Ensure: An offspring solution I0
1: I0 ← ∅, D1 ← ∅, D2 ← ∅
2: Sort the bids in each parent according to their prices
3: while I1 and I2 are not empty do
4: D1 ← first element(I1)
5: D2 ← first element(I2)
6: if D1 and/or D2 are not conflicting with the bids in I0, add D1 and/or D2 to I0
7: remove D1 from I1
8: remove D2 from I2
9: end while

10: Return Child I0

Given two parent allocations I1 and I2 from the elite solution archive which
share the highest number of bids, the recombination operator constructs the
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offspring I0 in k steps until all the bids of the two parents are visited. Our
recombination operator is inspired by the idea of backbone used in [2,22]. In
the first step, the set of bids shared by the parents are identified and directly
transferred to I0. Then the following steps are performed:

– Choose the bid with the lowest price from each parent (lines 4 and 5,
Algorithm 1).

– The two selected bids are candidate bids that can be inserted in the offspring,
if they are not conflicting bids. This is done by conserving the best bids with
the highest revenue (lines 6 and 7, Algorithm 1).

– Remove the selected bids from their parents, even if they are not inserted in
the offspring (lines 9 and 10, Algorithm 1).

– Repeat the previous steps until all the bids of the parents are examined and
removed.

An example of this recombination operation is provided in Fig. 1.

2 7 5 8 11I1

2 4 116I2

7 5 8

4 6

I1

I2

5 8

6

I1

I2

8I1

I2

2 11I0 2 11 7 4 2 11 7 4 6 2 11 7 4 6 8I0 I0 I0

II1={7}
II2={4}
I0={2, 11, 7, 4} 
Iteration2 { the fort bids 2, 11, 7 
and 4  are not conflicted bids, 
so they are assigned to I0}

II1={5}
II2={6}
I0={2, 11, 7, 4, 6} 
Iteration 3 { the bid 5 is a conflicted 
bid, so it is discarded from I0}

II1={8}
II2={}
I0={2, 11, 7, 4, 6, 8} 
Iteration 4

A simple example of WDP that contains 11 bids and 16 items:
Bid 1={{1, 2, 3}; 50}, Bid 2={{1, 2, 4}; 100}, Bid 3={{2, 4}; 200}, Bid 4={{3, 5, 6}; 200}, Bid 5={{6, 7, 8}; 300}, Bid 6={{7, 8}; 200}, Bid 7={{9, 10, 11}; 150},
Bid 8={{12, 13, 14}; 400}, Bid 9={{7, 9}; 200}, Bid 10={{9, 10, 11}; 250}, Bid 11={{15,16}; 450}.

I0=I1 and I2={2, 11}
Iteration 1

Fig. 1. An example of the recombination operator

2.7 The TSX WDP Algorithm

The general TSX WDP algorithm is formalized in Algorithm 2. The algorithm
starts with an empty allocation in which no bid is chosen and tries to improve it
by looking for a better solution in the current neighborhood. In each iteration,
the best authorized bids are selected among the candidate bids to be included
in the current allocation. This is achieved with the intensification move (lines
7–9 of Algorithm 2). When no bid can be found to increase the revenue with the
intensification move, TSX WDP switches to the perturbation move by choosing
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a random bid from the candidate bids (line 11 of Algorithm2). In both cases,
the choice of the bids depends on the status of the tabu list which is updated
after each move. Any conflicting bids in the current allocation, when new bids
are considered, are removed (lines 13 and 14 of Algorithm2). The search process
is repeated for a fixed number Itermax of iterations. During these Itermax iter-
ations, if the current best solution cannot be updated for consecutive p (fixed
experimentally) moves, the best local optimum found so far is inserted into the
archive P and the recombination operator is activated to generate a new starting
point for a new round of the tabu search procedure (lines 20–25 of Algorithm2).

2.8 Discussion

The proposed TSX WDP algorithm distinguishes itself from the existing heuris-
tic approaches by several features. First, its tabu search procedure is based on
two complementary move operators to generate neighboring solutions. In partic-
ular, the intensification move can add several bids (instead of a single bid like in
most local search based heuristics). The tabu search procedure adopts a dynamic
tabu tenure which is missing in the existing methods. Second, the recombination
operator is based on the idea of backbone which proves to be quite useful for
the WDP.

3 Experimentation

This section presents experimental results of the proposed algorithm which is
implemented in Java. The program is run on a computer with a processor
of 2.5 GHz and 8 GB of RAM. To assess our TSX WDP algorithm, we run
TSX WDP on various benchmarks of diverse sizes defined in [13] and used in
several studies like [3,4,8]. Theses benchmarks take into account several factors
like the prices, bidders preferences and object distribution on bids. They can be
divided into five groups where each group contains 100 instances.

-REL 500-1000: From in101 to in200: m = 500, n = 1000
-REL 1000-1000: From in201 to in300: m = 1000, n = 1000
-REL 1000-500: From in401 to in500: m = 1000, n = 500
-REL 1000-1500: From in501 to in600: m = 1000, n = 1500
-REL 1500-1500: From in601 to in700: m = 1500, n = 1500
We calibrated the parameters of the proposed algorithms by an experimental

study: The maximum number of iterations (itermax) is fixed to 200 and the
parameter responsible for the tabu tenure � is fixed to 0.00006. Each of the
500 instance is solved 40 times independently by the TSX WDP algorithm with
different random seeds.

3.1 Experimental Results

In Table 1, we present the computational results of the TSX WDP algorithm
on the five groups of benchmarks. Given that there are 500 instances, we show
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Algorithm 2. TSX WDP for the Winners Determination Problem
Require: A matrix M , a parameter Itermax, Vector of bids B, Parameter p
Ensure: A vector of winning bids A∗ and its revenue f(A∗)

Iter ← 0 {Iteration counter}, Initiate tabu list
A∗ ← A ← ∅

opt ← 0 {An counter that is incremented if the current solution does not improve
in two consecutive iterations; opt returns to 0, when it exceeds the value p, after
activating the recombination operator}
initialize tabu list
P ← ∅ {Archive of the best local optima encountered A∗}
while (Iter < Itermax) do

Construct neighborhoods from A based on the intensification move
if There exists an intensification move then

Choose an overall best allowed neighbor A′ according to max gain criterion and
by considering M {to remove from A′ any conflicting bid) {Sect. 2.3}

else
Apply the perturbation move {Sect. 2.3} by choosing a random bid from B to
create a neighbor A′

end if
A ← A′ (Move to the selected neighboring solution A′)
Update tabu list {Sect. 2.4} and B {delete the winner bids from B and add the
looser bids in it}
if f(A) > f(A∗) then

A∗ ← A
else

opt ← opt + 1
end if
if opt = p then

Add A∗ to the Archive P
I1, I2 ← Parent Selection(P ) {Sect. 2.5}
I0 ← Recombination Operator(I1, I2) {Sect. 2.6}
A ← I0
opt ← 0

end if
Iter ← Iter + 1

end while
return (A∗ and f(A∗))

only some results of each group, like in some recent papers [4]. For each pre-
sented instance, the following computational statistics are indicated: the max-
imum revenue obtained by the TSX WDP algorithm over the 40 independent
trials (Rbest), the average revenue over the 40 trials (Ravg), the worst revenue
over the 40 trials (Rworst) and the average CPU time in seconds (AvgTime).
As one can observe, the values of Ravg are very close to the values of Rbest
in most of cases and these two values are even equal for certain instances (for
example for in101, in102, in205 etc.). This table shows the proposed algorithm
can consistently reach high quality solutions for the tested problems.
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Table 1. Results obtained by TSX WDP for WDP benchmarks

Instances Rbest Ravg Rworst AvgTime Instance Rbest Ravg Rworst AvgTime

in101 69585.298 69585.298 69585.298 88 in201 81557.742 80383.277 79331.63 56

in102 72518.222 72518.222 72518.222 76 in202 89289.573 86815.261 81291.193 52

in103 69730.618 69475.485 65903.632 75 in203 86239.213 83941.410 77220.427 54

in104 71327.641 70765.941 65948.396 78 in204 84879.397 84374.869 76822.810 55

in105 73351.044 71570.624 68899.994 93 in205 83748.837 83748.837 83748.837 57

in401 77417.482 77191.182 70628.481 12 in501 83738.040 83506.552 82605.443 107

in402 76273.336 76153.051 74469.073 10 in502 83297.340 82546.590 76751.565 82

in403 74843.958 74356.247 69989.28 10 in503 83718.749 82017.955 78112.719 81

in404 78761.690 78597.224 77939.364 10 in504 83944.901 82772.535 77217.558 76

in405 75915.900 75640.510 74899.125 10 in505 83071.930 81876.413 78909.275 66

in601 107246.248 102862.848 96840.461 117 in602 99668.269 97854.579 91452.904 78

in603 98577.454 96567.287 95219.36 75 in604 101713.602 100786.326 99395.413 78

Table 2. Comparative results of TSX WDP with Casanova, MA, SLS, TS, SAGII on
the WDP benchmarks: µ is the average of the best objective value of the 100 instances
in each group. time is the average time to reach the best solution.

Test set 100 instances REL-500-1000 REL-1000-500 REL-1000-1000 REL-1000-1500 REL-1500-1500

TSX WDP Time 74.19 9.45 48.98 75.92 90.61

μ 69647.975 75274.184 86786.159 85577.806 103178.732

Casanova Time 119.46 57.74 111.42 168.24 165.92

μ 37053.78 51248.79 51990.91 56406.74 65661.03

δT SX/Casanova(%) 46.79 31.91 40.09 34.08 36.36

TS Time 91.07 25.84 104.30 223.37 175.68

μ 65286.94 71985.34 81633.63 77931.41 97824.64

δT SX/T S(%) 6.26 4.36 5.93 8.93 5.18

SLS Time 22.35 5.91 14.19 14.97 16.47

μ 64216.14 72206.07 82120.31 79065.08 98877.07

δT SX/SLS(%) 7.79 4.07 5.37 7.61 4.16

MA Time 56.64 14.98 33.05 24.51 28.22

μ 65740.25 73604.62 83304.20 79644.64 99957.96

δT SX/AM (%) 5.61 2.21 4.01 6.93 3.12

SAGII Time 38.06 24.46 45.37 68.82 91.78

μ 64922.02 73922.10 83728.34 82651.49 101739.64

δT SX/SAGII (%) 6.78 1.79 3.52 3.41 1.39

3.2 Comparative Results for the WDP

In order to further show the effectiveness of the TSX WDP algorithm, we present
a comparative study with five state of the art algorithms from the literature:
Casanova [10], SAGII [8], SLS [3], TS [3], MA [4].

In Table 2, we show the general comparative results for each group. In this
table, rows μ correspond to the average of best objective value of the 100
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instances in each group. Rows time represent the average time to reach the
best solution. δ(%) is the deviation of the TSX WDP algorithm with respect to
each reference algorithm. The deviations are calculated respectively as follows:
μTSX WDP −μalgo X)/μTSX WDP where algo X is one of the five reference algo-
rithms. Since the compared algorithms are implemented in different languages
and run on different platforms, the comparison is focused on solution quality
that can be reached by each algorithm. The computing time is provided only for
indicative purposes. The results of the reference algorithms are extracted from
the corresponding papers except the results of Casanova which are from [8].

Table 2 discloses that TSX WDP gives an improvement between 31 % and
47 % in solution quality compared to Casanova. TSX WDP finds better solu-
tions with shorter times than Casanova. TSX WDP shows good performances
compared to SLS. The improvement is between 4 % and 8 %. The results of
TSX WDP are better than TS in quality and in time (with an improvement rate
between 4 % and 9 %). TSX WDP outperforms MA. The deviation is between
2 % and 7 %. Finally, TSX WDP produces better results than SAGII which is
currently the most successful algorithm for the WDP and is based on sophisti-
cated Branch-and-Bound and preprocessing tools (The deviation is between 1 %
and 7 %). Thus, we can conclude that TSX WDP discovers new best results for
the five groups of benchmarks.
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Fig. 2. A comparison of the solution quality between TSX WDP, Casanova, TS, SLS,
MA and SAGII
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To further illustrate the results of Table 2, we consider the comparative curves
of Fig. 2. The X-axis of the curves represent the 5 groups of the WDP benchmarks
and their Y-axis are the gain of each group (μ). These curves confirm that
TSX WDP competes favorably with each of the reference algorithms for each
group of instances.

4 Conclusion

In this work, we have presented a tabu search algorithm for the winner
determination problem based on a two different neighborhood structures and a
recombination operator. The algorithm uses the intensification move to improve
progressively the quality of the current solution. When the solution cannot be
further improved, the TSX WDP algorithm switches to a perturbation move by
choosing a random bid. In both cases, a tabu list is used to prevent the search
from revisiting the previous examined solutions. To escape deep local optima,
the proposed algorithm employs a backbone-based recombination operator which
relies on an elite solution archive which is built and updated during the search.
This recombination operator generates new starting points for tabu search with
the aim of leading the algorithm into new promising search areas. The proposed
TSX WDP algorithm is evaluated on a set of 500 benchmark instances. The
comparative study with five reference algorithms shows the proposed algorithm
is able to reach solution of very high quality.
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Abstract. The aim of this paper concerns several propositions to improve
previous works based on a combination between metaheuristic and cellular
automaton for the generation of 2D shapes. These improvements concern
both the reduction of the search space and of the computational time. The
first proposition concerns a new approach which delegates the determina-
tion of the number of generation to the cellular automaton. The second
proposition consists in the reduction of the number of times the cellular
automaton is requested. The last proposition concerns the adaptation of
the method by exploiting the properties of the expected shape, in partic-
ular in case of symmetric shapes. Obtained results show that these propo-
sitions permit to improve the results as well as the computational times
and the quality of the solution.

1 Introduction

Cellular automata were introduced by Stanislas Ulam and John Von Neumann
in an attempt to model natural physical and biological systems [1,2]. They are
discrete dynamic systems in space and time with simple local interactions but
complex global behavior [3]. They can be used to study complex dynamic systems
such as self-organization phenomena [1], development of tumor [4], fire forest
propagation [5], diffusion phenomena [6] and shapes generation [7].

Cellular automaton consists in a regular lattice of cells. The communication
between cells is limited to local interaction. Each cell can take a state chosen
among a finite set of states. This state can evolve over time depending on the
states of its neighbor determined by the interaction system through a local evo-
lutionary rule. The set of these local rules forms a transition function of the
cellular automaton.

In this paper, we consider the combination of cellular automaton and simu-
lated annealing to generate 2D binary preset shapes, also called inverse problem.
This work comes within the scope of preliminary studies of simulation of mor-
phogenesis process with the objective to simulate, by cellular automata, the
generation of full organ from a single cell. The morphogenesis is an important
process which allows living things to develop organized structures thanks to the
interactions of cells either among themselves or with their environment.

c© Springer International Publishing Switzerland 2014
P. Legrand et al. (Eds.): EA 2013, LNCS 8752, pp. 168–179, 2014.
DOI: 10.1007/978-3-319-11683-9 14
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In the next part, we present this inverse problem and a first approach to solve
it. The objective of this paper is to propose ways to address the drawbacks of this
first approach: to reduce the size of the solution, to accelerate the computational
time and to take into account the properties of the expected shape. These points
are presented in the third part. The fourth part gives numerical results.

2 Context

2.1 Cellular Automaton Inverse Problem

In order to obtain a given configuration of cellular automaton or behavior after a
given number of generations, it is very important to determine the initial configu-
ration and/or the transition function allowing this configuration or this behavior.
This problem is known as the inverse problem. The inverse problem of deduc-
ing the local rules from a given configuration or global behavior is extremely
hard [8].

Several works in the literature propose to use the evolutionary computa-
tion techniques such as genetic algorithm to solve this inverse problem. These
problems concern the computational tasks (density classification and synchro-
nization) [9,10] and the generation of full shapes [2,7].

In this paper, we consider the generation of any shapes: full shapes and hollow
shapes (shapes with holes). The generation of hollow shapes (shapes with holes)
is really important in order to consider biological phenomena where living cells
may die.

The generation of shapes by cellular automaton is a particular case of the
inverse problem of the cellular automaton. Two problems arise: the first one is
how to choose a transition function and the second one is how often to apply this
transition function (number of generations) allowing to the cellular automaton
to evolve from an input configuration (initial shape) toward output configuration
(expected shape).

The Fig. 1 illustrates the studied problem: how to obtain a shape Sh* from
an initial shape Sh0 with a cellular automaton? In other words, the objective is
to determine a transition function F* and a number of generation Ng∗ which
maximize a similarity criterion C(Sh, Sh∗):

determine F ∗ and Ng∗ such as C(ShF ∗,Ng∗ , Sh∗) = max
F,Ng

(C(ShF,Ng, Sh∗))

(1)
where ShF,Ng is the shape obtained after applying Ng times the transition

function F .

2.2 A First Approach

A first approach has been presented in [15] and consists in the combination of
simulated annealing and cellular automaton. This approach uses a binary solu-
tion encoding composed of two parts: one for the transition function F and one
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Fig. 1. Inverse problem

Fig. 2. Solution encoding

Fig. 3. An example of solution X

for the number of generations Ng. This encoding uses the notion of combination
of states (states of the cells of the interaction system) and is represented by
Fig. 2 where S(i)(c) represents the state of cell c at time t + 1 according to the
combination (i) at time t. Nc = kn is the number of combination of states in
the interaction system where n is the size of the interaction system and k is the
number of states. The size of the interaction system is the number of considered
neighbor cells.

Figure 3 shows an example of a solution with Von Neumann interaction sys-
tem with five neighbor cells (n = 5):

– the transition function describes the local rule applied to each combination
of the interaction system. The sixteen first combinations are the local evo-
lutionary rules when the observed cell is empty. The sixteen next combina-
tions describe the local evolutionary rules when the observed cell is occupied.
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Fig. 4. Evolution of the cellular automaton over times

Fig. 5. First approach (named (F,Ng))

The combination number is given in parenthesis. For each combination, the
state of the cell and its neighbor cells is detailed.

– the number of generations Ng is equal to 4.

Figure 4 shows the evolution of the cellular automaton over time by using the
solution given in Fig. 3. The last shape will be compared to the desired shape.

The simulated annealing starts with an initial solution randomly generated.
With this solution, the cellular automaton generates a shape ShF,ng that is
compared to the expected shape Sh∗. At each iteration, the simulated annealing
chooses randomly a new solution in the neighborhood system of the current solu-
tion. The cellular automaton then generates a new shape and the new solution
is accepted according to an acceptance criterion. The principle is depicted by
Fig. 5.

Three neighborhood systems have been proposed depending on the number of
modified elements. The modification of an element consists in choosing randomly
and uniformly a new state among the possible states.

– Γ1 a single element is modified,
– Γ2 two elements are modified,



172 F. Aboud et al.

– ΓM at each iteration, the number of elements to modify is randomly chosen
between 1 and M .

To compare two shapes (Sh1 and Sh2), two similarity criteria have been
proposed:

– ID the number of identical cells in the two shapes,
– MI the mutual information, specially used in the image registration domain

and information theory [11] takes into consideration all possible transitions
from one state to another. These transitions are given by the joint probabili-
ties. When two shapes are identical, the mutual information is maximal. The
mutual information is given by:

MI(Sh1, Sh2) =
∑

a∈α

∑

b inα

p(a, b, Sh1, Sh2)ln
p(a, b, Sh1, Sh2)

p(a, Sh1)p(b, Sh2)
(2)

• α is the number of possible cell states,
• L is the grid of the cellular automaton,
• p(a, b, Sh1, Sh2) = card(i,j)∈L such as (Sh1i,j=a)∧(Sh2i,j=b)

card(i,j)∈L is the joint prob-
abilities to have a state a in the shape Sh1 and the state b in the shape
Sh2.

• p(a, Sh) = card((i,j)∈L such as Shi,j=a
card(i,j)∈L) is the marginal probability to have a

state a in the shape Sh.

2.3 Conclusion

The size of the solutions space Ω is the product of the number of possible tran-
sition functions by the maximum number of iterations Ngmax expressed in the
solution encoding (size of the second part).

|Ω| = kNc × Ngmax (3)

The number of possible transition functions kNc depends on the size of the
transition function Nc which depends on the size of the interaction system and
the number of possible states of cell. When we use a cellular automaton with
two states and Moore interaction system composed of 8 neighbor cells and the
observed cell, the size of the solution is 512 and the number of possible transition
functions is 2512.

Table 1 presents the size of the solution space according to the number of
states of the cellular automaton k, the considered interaction system (Moore or
Von Neumann) and the maximum number of generation coded in the solution.

The size of search space increases exponentially with the number of states
(k) and Ngmax.

Obtained results are promising, but some improvement should be done par-
ticularly in terms of computation time and search space.
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Table 1. Size of solution space

Ngmax Von Neumann Moore

3 7 15 3 7 15

k 2 1,72E+10 3,44E+10 6,87E+10 6,36E+154 1,07E+155 2,15E+155

3 7,78E+116 2,35E+117 7,06E+117 ∞ ∞ ∞
4 ∞ ∞ ∞ ∞ ∞ ∞

3 Proposition

3.1 A New Approach to Reduce the Size of Solution

A possible way to reduce the search space is to delegate the determination of
Ng to the cellular automaton. To do so, we propose a solution encoding based
only on the transition function.

Figure 6 gives the principle of the combination. At each iteration, the meta-
heuristic provides to the cellular automaton a solution X = (F ) and the cellular
automaton builds different shapes by applying Ngmax times this transition
function F to the initial shape. At each generation i ∈ [1, Ngmax], the obtained
shape Sh(F,i) is compared to the expected shape Sh∗. The shape with the best
similarity criterion C(ShX,Ng, Sh∗) is recorded:

such as C(ShF,Ng, Sh∗) = max
i=1,Ngmax

(C(ShF,i, Sh∗)) (4)

The cellular automaton returns to the metaheuristic C(ShX,Ng, Sh∗) and
the corresponding number of generations Ng.

With this approach, the size of the solutions space Ω is equal to the number
of possible transition functions (|Ω| = kNc).

3.2 To Reduce the Computational Time

In the first approach, at each iteration of the metaheuristic, the cellular automa-
ton applies the transition function Ng times whereas in the proposed approach,
the transition function is applied Ngmax times. The proposition reduces the
search space but may increase the computational time.

To face this drawback, we propose to reduce the number of times the cellular
automaton is requested. In fact, during an iteration of the simulated annealing,
the transition is applied Ngmax times and during these iterations some com-
binations are never used. Instead of requesting the cellular automaton at each
iteration of the simulated annealing, we propose to use the cellular automaton
only if the modification proposed by the simulated annealing can have a con-
sequence on the similarity criterion. For that, when the transition function is
applied, the used and unused combinations are identified. If a combination is
not used and if this combination is selected during the next iteration of the
simulated annealing algorithm, the modification is accepted without using the
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Fig. 6. Proposed approach

cellular automaton as it is sure that the similarity criterion is not modified. As
will be seen in the next part, such a modification permits to reduce significantly
the computational time (with a ratio from 3 to 6).

3.3 To Take into Account the Properties of the Expected Shape

Another way to improve the results by reducing the search space is to adapt the
proposed method by exploiting the properties of the expected shape. It is the
case for symmetric shapes. In the literature, some works exploit the symmetry:

– In [12] the different types of symmetry in the spatiotemporal diagram of one
dimensional cellular automaton are presented. In these works, the authors
study the symmetric cellular automaton, but they have not interested to the
inverse problem.

– Reference [13] is interested to seek cellular automata that perform univer-
sal computational tasks. The only binary automaton currently identified as
supporting universal computation is “game of life”. Its ability to simulate a
Turing machine is proved, using gliders (periodic patterns which, when evolv-
ing alone, are re-produced identically after some shift in space), glider guns,
and eaters. The glider gun emits a glider stream that carries information and
creates logic gates through collisions. The eaters permit, by absorbing gliders,
the creation of logic circuits using any combination of logic gates. A tran-
sition function, which exploits symmetry, is used to search glider which can
displaced in the space in all direction.

We have identified different symmetries (Fig. 7).
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Fig. 7. Type of symmetry

Fig. 8. Equivalent combinations of the interaction system state by horizontal, vertical
and rotational symmetry

In order to reduce the search space of the metaheuristic, we propose a transi-
tion function which takes into account this symmetry. The symmetry in cellular
automaton may be defined by the invariance of the evolutionary local rules
according to a spatial transformation T of the interaction system state. The
spatial transformation T of the interaction system is a permutation of the order
of state of cells in the interaction system.

To exploit this symmetry, the combinations of the interaction system
state which are symmetric at the generation t should have the same state at
the generation t + 1. Then, an evolutionary local rule is applied to a set of sym-
metric combinations. These evolutionary local rules form the transition function
of the cellular automaton.

For example, in case of horizontal, vertical and rotational symmetry, the
transition function in case of Von Neumann interaction system is reduced to 12
combinations instead of 32 combinations. The corresponding equivalent combi-
nations of the interaction system state are given in Fig. 8.

Table 2 presents the effects of the modifications of the solution encoding on
its size and on the size of the search space according to the considered interaction
system (Moore or Von Neumann). We can see that the size of the search space
is largely reduced whatever the symmetry. In case of Von Neumann interaction
system, the reduction is so important that an enumeration of all solutions in the
search space is possible.
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Table 2. Size of solution and search space

Symmetry Von Neumann Moore

Solution Search space Reduction factor Solution Search space Reduction factor

size size of search space size size of search space

Without 32 4.293+09 - 512 1.34E+154

Horizontal 24 1.68E+07 2.56E+02 288 4.97E+86 2.70E+67

Vertical 24 1.68E+07 2.56E+02 288 4.97E+86 2.70E+67

Horizontal and

vertical

18 2.62E+05 1.64E+04 168 3.74E+50 3.58E+103

Rotation with 90 12 4.10E+03 1.05E+06 140 1.39E+42 9.62E+111

Rotation with 180 20 1.05E+06 4.10E+03 272 7.59E+81 1.77E+72

Horizontal,

vertical and

rotational

12 4.10E+03 1.05E+06 102 5.07E+30 2.64E+123

4 Results

We have tested our method with the symmetric shapes. Five shapes are gener-
ated for each type of symmetry and for each interaction system (Von Neumann
or Moore). These shapes depend on the interaction system used (“VN” for Von
Neumann interaction system and “M” for Moore interaction system) and the
type of symmetry (“H” for Horizontal symmetry, “V” for Vertical symmetry,
“HV” for the Horizontal and Vertical symmetry, “HVR” for Horizontal, Vertical
and Rotational symmetry, “R90-” for the Rotation by 90 and “R180-” for the
Rotation by 180). With Von Neumann interaction system, R90 and HVR are
equivalent so no shapes have been generated with R90.

For each shape Sh∗, we run the proposed algorithm by using either the
mutual information (MI) or the number of identical cells (ID) as similarity
criterion. For each shape generated with Von Neumann interaction system, we
have considered the two interaction systems: Von Neumann and Moore. For
each shape generated with Moore, we have only considered Moore interaction
system. As Moore interaction system is an extension of Von Neumann system,
it seems not suitable to consider Von Neumann interaction system to obtain
shapes generated with Moore interaction system.

The parameters of the simulated annealing are: number of iterations NIter =
5.106 iterations, initial temperature T0 = 10 and final temperature Tf = 10−4.
As the simulated annealing is a stochastic algorithm, five replications are done
in each case. For the neighborhood system ΓM , M is fixed to 10.

To compare our algorithms, we compute for each shape and each replication
the ratio R between the overlapping cells of the obtained shape and the expected
shape and, the total number of cells of the expected shape. This ratio is given by:

R(Sh, Sh∗) =
ID(Sh, Sh∗)
ID(Sh∗, Sh∗)

(5)

Results are given in Table 3. With Von Neumann interaction system, the
optimal solution is obtained at each replication for all shapes generated with Von
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Table 3. Results obtained with symmetric shapes

Neumann, taking into account or not the symmetry. The computational time of
the proposed method for symmetric shape is of the order of second while it is
of order of minute when the symmetry is not considered. These computational
times are of course lower than those of the enumerative method.

The results obtained by using Moore interaction system are presented in
Table 3. For each symmetry, each kind of shapes (generated by Von Neumann or
by Moore) and each similarity criterion, the frequency distribution of R is given.
When the symmetry is considered, R is always superior to 90 % and very often
superior to 95 % (in all cases for ID). So we have chosen to consider the classes



178 F. Aboud et al.

[90 %, 95 %[, [95 %, 98 %[ and [98 %, 100 %[. The column 100 % is added in order
to identify cases where the expected shape is obtained (optimal solution).

In all cases, the results are improved by taking into account the symmetry.
The number of identical cells as performance criterion seems to perform better
than mutual information but it is not obvious. Similarly, results obtained by the
neighborhood systems are similar and it is not easy not conclude.

With the reduction of search space, we have improved the run time with a
factor variable between 2 to 1512 for the shapes generated with Von Neumann
interaction system when we use Von Neumann interaction system. With Moore
interaction system, we have accelerated our algorithm with factor from 1.2 to
178. The run time depends on the similarity criterion and the type of symmetry.

5 Conclusion

In previous works, we have proposed a combination of simulated annealing and
binary cellular automata to generate 2D shapes. The principle was the following:
at each iteration, the simulated annealing chooses randomly a new solution (a
solution was composed of a transition function and a number of generations)
in the neighborhood system of the current solution. The cellular automaton
then generated a new shape and the new solution was accepted according to an
acceptance criterion. Obtained results were promising but some improvements
appeared to be necessary.

This is the aim of this paper in which different propositions are given in order
to reduce the computational time and/or the search space. The first improvement
concerns the proposition of a new approach which delegates the determination of
the number of generation to the cellular automaton. The second proposition con-
sists in the reduction of the number of times the cellular automaton is requested.
The last proposition concerns the adaptation of the method by exploiting the
properties of the expected shape, in particular in case of symmetric shapes.
Obtained results show that these propositions permit to improve the results as
well as the computational times and the quality of the solution.

Our future works consist to test other neighborhood systems and other objec-
tive functions, in order to improve our results. We envisage applying this method
to generate complex shapes: from any initial shape, with a number of states
greater than 2, 3D shapes. Finally, we envisage adapting our method to gener-
ate a set of target shapes and to solve this problem as dynamic optimization
problem.
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Abstract. The Team Orienteering Problem (TOP) is a variant of the
vehicle routing problem. Given a set of vertices, each one associated with
a score, the goal of TOP is to maximize the sum of the scores collected
by a fixed number of vehicles within a certain prescribed time limit.
More particularly, the Team Orienteering Problem with Time Windows
(TOPTW) imposes the period of time of customer availability as a con-
straint to assimilate the real world situations. In this paper, we present a
memetic algorithm for TOPTW based on the application of split strat-
egy to evaluate an individual. The effectiveness of the proposed MA is
shown by many experiments conducted on benchmark problem instances
available in the literature. The computational results indicate that the
proposed algorithm competes with the heuristic approaches present in
the literature and improves best known solutions in 101 instances.

1 Introduction

The Orienteering Problem (OP) was firstly introduced by Tsiligirides [24]. The
roots of this problem trace back to the pioneering work of Golden et al. [7] who
proved that the OP is NP-hard and used it to formulate and solve the home fuel
delivery problem. The name “Orienteering Problem” originates from the sport
game of orienteering described in [3]. Later, a new variant of the problem called
Team Orienteering Problem (TOP) was introduced since it is widely seen in
many real life situations, like for example the routing of technicians [21] and fuel
delivery problems [7]. Many heuristics have been successfully applied to TOP.
There are four methods that can be considered as the state-of-the-art algorithms
in the literature: a variable neighborhood search proposed by Archetti et al. [1], a
memetic algorithm [2], a path relinking approach [20] and a PSO-based memetic
algorithm [5]. The survey of Vansteenwegen et al. [25] gives a review of the most
important contributions on the orienteering literature.

Recently, the Orienteering Problem with Time Windows (OPTW) and the
Team Orienteering Problem with Time Windows (TOPTW) have been the inter-
est of many researchers. They are considered as the generalization of OP and
TOP with the additional time constraints. In these problems, the service of a

c© Springer International Publishing Switzerland 2014
P. Legrand et al. (Eds.): EA 2013, LNCS 8752, pp. 183–194, 2014.
DOI: 10.1007/978-3-319-11683-9 15
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customer must be started within a time window [ei, li] defined by customer i.
The vehicle cannot arrive earlier than time ei and no later than time li. A vehicle
arriving earlier than the earliest service time of a customer will incur waiting
time. The first who considered the time windows in the OP were Kantor and
Rosenwein [8]. They solved the problem with a tree heuristic that was more effi-
cient than the classical insertion heuristics. The only exact method that we found
was developed by Righini and Salani [17]. The computational time required by
their method to solve large problem instances was very expensive. Therefore,
most of the researchers focus on developing approximate methods. Montemanni
and Gambardella [12] used ant colony optimization to solve the problem, while
Vansteenwegen et al. [26] present an iterated local search metaheuristic. In this
method, an insert step is combined with a shake step to explore the search space
more efficiently. Tricoire et al. [23] defined the Multi-Period Orienteering Prob-
lem with Multiple Time Windows (MuPOPTW) as a new problem for scheduling
the customer visits of sales representatives. The MuPOPTW is a generalization
of OPTW and TOPTW, where customers may be visited on different days, and
may have several time windows for each given day. They propose an exact algo-
rithm embedded in a variable neighborhood search method and provide experi-
mental results for their method on standard benchmark of OPTW and TOPTW
instances. Lin and Yu [11] presented a simulated annealing based heuristic app-
roach to solve TOPTW. The method proposed by Labadie et al. [10] combines
greedy randomized adaptive search procedure (GRASP) with evolutionary local
search (ELS). ELS generates multiple distinct child solutions that are further
improved by a local search procedure, while GRASP provides multiple start-
ing solutions to ELS. Labadie et al. [9] introduced granular variant to a VNS
algorithm in order to improve its efficiency. Firstly, each arc is evaluated with
new cost taken into account traveling times, waiting times and profits. Then,
an assignment problem is optimally solved and intervals of granularity are cre-
ated. These intervals determine subset of promising arcs which will be considered
during the node sequences construction in the local search procedure.

In this paper, a metaheuristic-based memetic algorithm (MA) is presented
for TOPTW. The proposed MA works with permutation encoding and uses an
adapted procedure to optimally split a sequence into a set of routes. The rest of
the article is organized as follows. The next section is devoted to the formulation
of TOPTW. Section 3 presents the detailed description of the proposed method
including the solution representation, the optimal split procedure, and other
components and parameters. In Sect. 4, the effectiveness of the proposed algo-
rithm is demonstrated by many computational results based on some benchmark
problems. The conclusions are discussed in the final Sect. 5.

2 Formulation of the Problem

TOPTW is modeled with a graph G = (V,E), V = {0, 1, 2, ..., n} is the set of
vertices where i �= 0 represents a customer and 0 represents the depot. E =
{(i, j) : i �= j, i, j ∈ V } is the edge set. Each vertex i ∈ V, i �= 0 is associated
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with a profit Pi and a service time Ti. The visit of a vertex i can start only
within a predefined time window [ei, li]. The vehicle v cannot arrive later than
the time li and if it arrives earlier than ei, it must wait W v

i before the service can
start. Each edge (i, j) ∈ E is associated with a travel cost ci,j which is assumed
to be symmetric and satisfying the triangle inequality. A tour R is represented
as an ordered list of q customers from V , so R = (R[1], . . . , R[q]). Each tour
begins and ends at the depot vertex. We denote the total profit collected from
a tour R as P (R) =

∑i=q
i=1 PR[i], and the total travel cost or duration C(R) =

c0,R[1]+
∑i=q−1

i=1 cR[i],R[i+1]+
∑i=q

i=1 WR
R[i]+

∑i=q
i=1 TR[i]+cR[q],0. A tour R is feasible

if C(R) ≤ l0, l0 being a latest possible arrival time to the depot, and if each
customer is serviced within its time window. The fleet is composed of m identical
vehicles. A solution S is consequently a set of m (or fewer) feasible tours R in
which each customer is visited at most once. The goal is to find a solution
S such that

∑
R∈S P (R) is maximized. For mixed integer linear programming

formulations of TOPTW see [12,26].

3 Memetic Algorithm

Memetic algorithm is a combination of an evolutionary algorithm and local
search framework [13]. The basic idea behind memetic approaches is to combine
the advantages of the crossover that discovers unexplored promising regions of
the search space, and local optimization that finds good solutions by concentrat-
ing the search around these regions. The proposed memetic algorithm is based
on permutation encoding. The key feature of the proposed method is the split
procedure that allows a reduction of the solution space exploration within the
global optimization. We introduce an interesting way to represent solutions of
TOPTW, known as giant tours. Each giant tour is in fact a neighborhood of
solutions in the search space from which the optimal associated solution can
be easily extracted by an evaluation process. Therefore, a heuristic using this
representation explores a smaller solution space without any loss of information
and has a better chance to reach the global optimum. The good results obtained
on several extensions of the routing problems have raised a growing attention on
the split strategy [16]. Next, all the details of MA implementation are presented.

3.1 Chromosome and Evaluation

The representation of our chromosome consists of an ordered list of all acces-
sible customers in V called a giant tour. The giant tour is a permutation of n
positive integers, such that each integer corresponds to a customer without trip
delimiters. We try to extract m tours from the giant tour while respecting the
order of the customers in the sequence. A tour from a permutation π is identified
by its starting point i in the sequence and the number of customers following
i. A chromosome is evaluated using a tour splitting procedure which optimally
partitions π into feasible routes. Using this strategy, the MA searches the set of
possible giant tours to find one that gives an optimal solution after splitting.
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Bouly et al. [2] proposed an optimal splitting procedure which is specific
to TOP. In their method, only tours of maximum length are considered. This
means that all customers following i in the sequence are included in the tour as
long as all constraints are satisfied, or until the end of the sequence is reached.
Such a tour is called saturated tour. They proved that solutions containing only
saturated tours are dominant. Therefore, only saturated tours were considered
in their procedure. Later, Dang et al. [6] introduced a new evaluation procedure
in which the limited number of saturated tours is exploited more efficiently to
reduce the complexity of the evaluation process. Before reviewing the main idea
of the split procedure, we recall the definition of an interval graph [22] as follows.
A graph G = (V,E) is an interval graph if there is a mapping I between the
vertex set of G and a collection of intervals in the real line such that two vertices
of G are adjacent if their respective intervals intersect. Then, for all i and j of
V , [i, j] ∈ E if and only if I(i) ∩ I(j) �= ∅.

We have extended the split procedure for TOPTW to tackle time windows.
When defining a saturated tour R starting with x, we should make sure that
each customer is served within its time window and that C(R) ≤ l0, where l0 is
the latest possible arrival time to the depot and C(R) the total travel duration.
So, a waiting time is added each time the vehicle arrives at a customer before
the beginning of his time window. The set of extracted tours from a giant tour
can be mapped to the set of vertices of an interval graph X. An edge in X
indicates the presence of shared customers between the associated tours. A split
procedure looks for m tours without any shared customer such that the sum of
their profit is maximized. So this is equivalent to solve a knapsack problem with
the conflict graph X. In this particular knapsack problem, the number of items
is equal to the number of possible tours. This number is equal to n when only
saturated tours are considered. The weight of each item is one and the capacity
of the knapsack is m. Such a problem can be solved in O(m · n) time and space
[18].

Proposition 1. Given a TOPTW instance where m is the maximum number
of available vehicles and π a permutation of n customers, the split procedure of
π can be done optimally in O(m · n) time and space.

Fig. 1. An example of splitting problem.
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The evaluation process is performed with dynamic programming technique:
A two-dimensional array of size m · n is used to memorize the maximum reach-
able profit during process. Then, a backtrack is performed in order to deter-
mine the tours corresponding to the optimal solution. The first graph of Fig. 1
shows a sequence S = (1, 2, 3, 4, 5) where each customer has a profit and a
time window given in the square brackets. To simplify, we assume that the
service times are set to 0, the number of the vehicles m used is equal to 2,
and the maximum operation time l0 is 100. The interval model is given in the
Fig. 1.b. The first interval [1,2] for example with weight 40 corresponds to the
collected profit of the trip (d, 1, 2, a). Vehicle leaves the depot at time 0, waits
10 units of time at node 1 before leaving it to serve node 2 at time 40. The
customer 3 cannot be included in the trip, since its time window is already
closed when the vehicle reaches it at time 70. The other intervals [i, j] of the
graph are similarly defined. The maximum score obtained in the solving steps
is equal to 120. Finally, we give the optimal solution obtained by the algorithm
in Fig. 1.c. It is composed of two tours starting respectively with customers 1
and 4.

3.2 Population

A small part of the initial population is created with a fast heuristic procedure
and the remainder is generated randomly. In the proposed Iterative Destruc-
tion/Construction Heuristic (IDCH), we build a feasible solution by inserting
at every iteration an unrouted customer. This process is performed using Best
Insertion Algorithm (BIA). Initially, IDCH removes a limited random number
of customers D ∈ {1, 2, 3} from the current solution. Then, the travel cost of
tours is reduced using 2-opt* and Or-opt exchanges [14]. In the next step, we
rebuild the solution by re-inserting unrouted customers in all possible ways. To
ensure that the feasibility of an insertion is verified in O(1), we record for each
already included customer i in a route r, its waiting time W r

i and the maximum
delay allowed for the service Maxshiftri . All feasible insertions of each unserved
customer u between two couple of adjacent customers i and j are evaluated.
This is done according to a suitable cost function f(u) = Shiftu/(Pu)α where
Shiftu = (ci,u +W r

i +Tu + cu,j − ci,j). The feasible insertion that minimizes the
cost is then processed. In addition, priority coefficient priou is associated to
each customer u. Whenever the customer is not routed through a construc-
tion phase its priority is increased by the value of its profit. The customer u
that has a lager priou is more likely to be inserted. When a limited number of
iterations iterperturb = n is reached without a strict improvement, a method
of diversification is performed. Diversification stands for random moves that
can deteriorate the current solution by removing a large number of customers
Dperturb ∈ [1, n/m]. The destruction and construction phases are iterated until
itermax = n2 iterations without improvement.
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3.3 Selection and Crossover

In this work, the binary tournament method [15] is adopted to select a couple
of parents among the population. Two chromosomes are randomly selected in
the population, and the chromosome with the best evaluation becomes the first
parent. The tournament is repeated for the second parent. These parents are
then combined using linear order crossover or LOX [15]. LOX first chooses two
cut points randomly and passes the section enclosed by the cut points from one
parent to child. Then, the unpassed customers are placed in the unfilled positions
using the order of their occurrence in the other parent.

3.4 Local Search Engine

When a new child is computed with the crossover operator, the local search
scheme is applied with a probability pm. Neighborhoods are selected in a random
order. The search in a given neighborhood is stopped as soon as a better solution
is found. Then, a new neighborhood is chosen randomly. This process is stopped
when all neighborhoods fail to bring out an improvement to the current solution.
The set of local search operators used in the Memetic Algorithm are:

– 2-opt* operator : two routes r1 and r2 are divided into two parts. Then the
first part of r1 is connected to the second part of r2, while the first part of r2
is connected to the second part of r1.

– Or-opt operator : consider a sequence of one, two or three consecutive cus-
tomers in the current solution, and move the sequence to another location in
the same route.

– destruction/repair operator : first, a random number of customers (between
1 and n

m ) is removed from an identified solution. Then, the lowest possible
insertion cost Shifti

(Pi)α of each unrouted customer i is evaluated. The visit with
the lowest ratio will be selected for insertion.

– shift operator : a customer is removed from its current position and is relo-
cated at another one. Every possible insertion position for every customer is
considered.

– swap operator : positions of every two customers in the sequence are exchanged.

3.5 Population Update

When an offspring solution snew is created by the crossover operator presented
in Sect. 3.3 and improved by the local search algorithm described in Sect. 3.4, we
decide if the improved offspring should be inserted into the population and which
existing solution of the population should be replaced. Basically, our decision is
made based on both: the solution quality and the distance between solutions
in the population. The update procedure is applied if the performance of new
solution snew is better than the worst individual. Population is a list of solutions
sorted in descending order according to two criteria: the total collected profit
and the travel cost/time. Two solutions are said to be similar or identical if the
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evaluation procedure returns the same profit and a difference in travel cost/time
lower than a value δ. If there is a solution s similar to snew, then s is replaced
with snew. Otherwise the worst individual is deleted and the new solution is
inserted into the population.

3.6 Basic Algorithm

The proposed Memetic Algorithm associates all the elements described above.
Algorithm 1 presents a synthetic view of the whole process. The algorithm starts
with an initial set of solutions, called population. During each iteration, two
parents are selected and crossover operator is applied to create a new solution.
The obtained child chromosome has a probability pm of being mutated using
a set of local search techniques repeatedly. Finally, it is inserted within the
population according to its fitness evaluation. The stopping criterion for MA is
after reaching a maximum number of iterations without improvement. That is to
say after reaching the number of iterations where the child chromosome has the
same fitness as an existing chromosome in the population, or when its evaluation
is worse than the worst chromosome in the current population.

Algorithm 1. Basic algorithm
Data: POP a population of N solutions;
Result: SPOP [N − 1] best solution found;

1 begin
2 initialize and evaluate each solution in POP (see Sect. 3.2);
3 while NOT (stopping condition) do
4 select 2 parents POP [p1] and POP [p2] using binary tournament;
5 C ← LOX(POP [p1], POP [p2]) ;
6 if rand(0, 1) < pm then
7 apply local search on C (see Sect. 3.4);

8 if f(C) ≥ f(POP [0])(see Sect. 3.5) then
9 if �p‖(f(POP[p]) = f(C)) then

10 eject POP [0] from POP ;
11 reset stopping condition ;

12 else
13 update stopping condition;

14 insert or replace C in right place in POP ;

15 else
16 update stopping condition;

4 Numerical Results

We used 56 instances designed by Solomon [19] and 20 instances designed by
Cordeau et al. [4] to test our new proposed algorithm. Solomon’s 100-customer
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instances are divided into random, clustered and randomclustered categories. In
Cordeau’s instances, the number of customers varies between 48 and 288. A third
set of benchmark was introduced by Vansteenwegen et al. [26] using the original
instances of Solomon and Cordeau. In these instances, the number of vehicles
considered allows to visit all customers that is why the optimal solutions of these
instances are known since they are equal to the sum of customers’ profits. Travel
time between two customers is assumed to be equal to the travel distance. It
is rounded down to the first decimal for the Solomon’s instances and to the
second decimal for the Cordeau’s instances. The whole algorithmic approach
was implemented in C++ using the Standard Template Library (STL) for data
structures and was compiled using the GNU GCC compiler on an AMD Opteron
2.60 GHz in a Linux environment.

4.1 Parameter Setting

A number of different alternative values were tested and the ones selected are
those that gave the best computational results concerning both the quality
of the solution and the computational time needed to achieve this solution.
When the population is initialized, 5 chromosomes are generated by the IDCH
heuristic and the rest (35) are generated randomly. The similarity measurement
of individuals δ is set to 0.01 and the local search rate pm is calculated as:
1 − iter

itermax where iter is the number of consecutive iterations without improve-
ment. The algorithm stops when iter reaches itermax = k ∗ n/m. The cost
function C(u) = Shiftu/(Pu)α of the BIA heuristic uses a random value of α
generated in [1, 3]. This control parameter makes our IDCH less predictable and
actually a randomized heuristic. Moreover, the score becomes more relevant
than the time consumption when deciding which unrouted client is the most
promising to insert. If α is set to 1, the obtained results are worse. Finally
only two parameters are required to be tuned, they are the stopping condition
k and the population size N . Computational experiments were conducted on
a representative subset of the problem characteristics (problem size, distribu-
tion of customer location, and time windows characteristic). This small subset
includes 40 instances: 6 problems from Solomon’s instances and 4 problems from
Cordeau’s instances with m = 1, 2, 3, 4. The value of k and N were varied from
10 up to 50 with steps of 10. This results 25 different (k,N) settings to be tested.
The algorithm was run 5 times on different randomly generated seeds for each
instance. For an overall performance comparison between different configura-
tions, we use two following measures. The first one is the relative gap to the best
known solutions, denoted rpe(%) and the second is the average computational
time in seconds CPUavg. The results for each of the 25 parameter combina-
tions tested are illustrated in Fig. 2. We adopt the parameter settings (10, 40)
which gives a good trade off between algorithm performance and computational
time.
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Table 1. Performance comparison based on RPE average for each data set of the
standard benchmark.

Instance set ACS ILS VNS GRASP-ELS SA GVNS MA

rpe cpuavg rpe cpuavg rpe cpuavg rpe cpuavg rpe cpuavg rpe cpuavg rpe cpuavg

m=1

c100 0 6.34 1.11 0.33 0 98.39 0 22.59 0 21.07 0.56 166.46 0 0.98

r100 0 383.40 1.90 0.19 0 89.10 0.11 3.51 0.11 23.34 1.72 29.43 0 5.38

rc100 0 143.21 2.92 0.23 0 65.21 0.33 1.99 0 22.19 1.88 9.80 0 1.59

c200 0.40 342.61 2.28 1.71 0 560.17 0.40 32.18 0.13 37.49 0.55 192.40 0 122.40

r200 2.18 1556.70 2.89 1.66 0.40 1065.82 0.59 11.18 1.29 45.83 2.44 33.82 -0.52 236.10

rc200 1.23 1544.55 3.43 1.63 0.07 869.41 1.37 8.21 0.96 50.25 2.53 16.01 -0.02 201.52

pr01-pr10 1.05 1626.61 4.72 1.75 0 822.07 0.73 5.03 0.97 112.21 0.54 12.37 -0.02 485.98

pr11-pr20 10.73 887.66 9.11 1.98 0.93 1045.93 1.70 7.90 3.25 162.40 2.71 24.22 0.39 903.08

m=2

c100 0.15 818.00 0.94 1.08 0 87.98 0 70.94 0 26.42 0.47 139.53 0 70.09

r100 0.34 1559.36 2.27 0.87 0.06 63.46 0.92 7.97 0.14 36.63 1.10 60.34 -0.12 45.98

rc100 0.38 1375.78 2.47 0.71 0.23 55.16 1.46 4.66 0.19 40.48 0.78 20.31 0 46.33

c200 1.27 1398.10 2.54 3.46 0.51 545.65 0.09 29.26 1.18 53.66 0.25 33.79 0 164.93

r200 3.11 2735.15 2.69 2.27 0.20 1015.08 0.28 17.58 0.53 91.40 0.62 14.73 -0.57 634.67

rc200 2.64 2342.72 4.08 2.20 0.43 804.83 0.59 17.14 1.18 80.10 1.62 12.76 -0.60 355.97

pr01-pr10 2.35 1889.66 5.99 4.76 0.63 524.83 0.87 19.46 2.21 173.93 0.57 39.09 -0.44 1291.54

pr11-pr20 4.79 2384.81 7.65 5.21 1.04 618.78 2.21 28.77 3.66 201.63 0.98 82.44 -0.24 2144.27

m=3

c100 0.11 1043.24 2.44 1.50 0 85.49 0.13 86.74 0.22 35.26 0.34 165.01 0 70.77

r100 0.55 1668.86 1.78 1.67 0.21 61.91 0.89 13.86 0.38 56.07 1.21 73.93 -0.01 58.56

rc100 1.19 1476.81 3.14 1.11 0.36 60.62 1.83 8.65 0.64 42.80 0.91 33.68 -0.01 54.72

c200 0.55 1413.11 1.98 2.08 0.16 196.80 0.45 26.75 0.35 53.93 0.64 55.42 -0.10 104.73

r200 0.13 1171.65 0.30 1.36 0.03 321.65 0 2.49 0.08 41.95 0.11 6.97 0 74.22

rc200 0.37 1607.85 1.37 1.73 0.04 404.01 0.06 8.34 0.20 58.98 0.25 7.41 -0.07 212.43

pr01-pr10 3.01 2163.80 6.57 9.24 1.50 473.20 1.31 40.55 2.33 197.01 0.35 85.90 -0.33 1416.21

pr11-pr20 5.19 2383.29 8.91 9.69 1.48 517.48 2.00 42.95 3.51 251.83 0.72 150.73 -0.71 2388.19

m=4

c100 0.47 1056.05 2.93 2.57 0.09 81.87 0.50 84.58 0.36 49.51 0.85 133.22 -0.19 106.15

r100 0.99 1652.54 3.25 2.60 0.24 61.17 0.88 24.18 0.67 58.38 1.15 84.74 -0.11 79.46

rc100 0.92 1854.00 3.07 1.98 0.34 58.47 1.43 13.35 0.26 68.13 0.85 36.91 -0.24 57.66

c200 0 7.70 0 1.00 0 104.78 0 0.01 0 41.76 0 0.55 0 0.04

r200 0 126.46 0 0.87 0 150.74 0 0.03 0 39.71 0 0.27 0 0.10

rc200 0 646.72 0 1.24 0 164.56 0 0.03 0 40.15 0 0.88 0 0.15

pr01-pr10 2.34 2447.70 6.63 14.07 1.40 403.17 1.42 45.75 1.76 255.57 0.60 127.33 -1.12 1807.40

pr11-pr20 4.18 2583.50 7.16 13.74 0.90 408.01 1.20 65.33 2.57 283.98 0.64 232.64 -2.23 2784.70

Average 1.65 1401.79 3.38 3.09 0.36 375.62 0.74 22.60 0.96 88.30 0.87 64.34 -0.23 524.00

Table 2. Performance comparison based on ARPE average for each data set of the
new benchmark.

Instance set ILS GRASP-ELS SA GVNS MA

arpe cpuavg arpe cpuavg arpe cpuavg arpe cpuavg arpe cpuavg

new Solomon’s instances 1.12 2.38 0.35 70.34 0.30 35.70 0.65 16.92 0.04 43.02

new Cordeau’s instances 2.32 30.41 1.04 565.98 0.92 71.48 1.25 51.34 0.76 112.63

Average 1.72 16.40 0.70 318.16 0.61 53.59 0.95 34.13 0.40 77.82
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Fig. 2. Pareto front solutions obtained with different settings of the stopping condition
k and the population size N

4.2 Performance Comparison

In order to investigate the performance of the proposed MA for TOPTW, we
compare it with: the Ant Colony System (ACS) of [12], the Iterated Local Search
(ILS) of [26], the Variable Neighborhood Search (VNS) of [23], the Simulated
Annealing approach (SA) of [11], the Greedy Randomized Adaptive Search pro-
cedure of (GRASP-ELS) [10] and the Granular Variable Neighborhood Search
(GVNS) of [9]. The results of GVNS, GRASP-ELS and ACS were obtained with
5 runs of the algorithm on each instance. VNS was run 10 times per instance
while ILS and SA were executed only once. We used the same protocol as in
the state-of-the-art methods and run MA 5 times for each instance. The qual-
ity of the produced solutions is given in terms of the relative percentage error
(RPE) for the standard benchmark and in terms of the average relative percent-
age error (ARPE) for the new data set where there exists a solution visiting
all customers. Tables 1 and 2 summarize the comparison and report the per-
centage error (RPE or ARPE) and the average computational time in seconds
CPUavg for each instance set. MA produces the best relative gap which is equal
to −0, 23% for the standard benchmark and 0, 40% for the new data set. The
first conclusion that can be drawn from these tables is that MA is very com-
petitive compared to the others methods. It outperforms the other methods and
improves 101 instances for which the optimal solution remains unknown. How-
ever, one should note that MA is far more time consuming. Actually, on the
largest instances. MA needs more time to get good quality solutions. The reason
appears to be that a lot of time is consumed by local-search operators. This is
necessary to take entirely advantage of the MA component.

5 Conclusion

In this paper, a Memetic Algorithm was proposed for the Team Orienteer-
ing Problem with Time Windows. The key feature of our algorithm is the
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use of an Optimal Split procedure especially intended for TOPTW that runs
in O(m · n). The proposed algorithm integrates several optimization methods,
including heuristic approaches, a crossover operator, a local search optimization
procedure and a quality-and-diversity based population updating strategy. The
computational results obtained prove the efficiency of our memetic algorithm
for TOPTW in comparison with the existing ones. The algorithm brings further
improvements and has allowed the identification of new best known solutions.
The method is also very flexible in the sense that it can address many problem
variants with a unified methodology and common parameter settings. Future
work will focus on extending the methodology to a wider array of vehicle rout-
ing problems with time windows.
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Abstract. Hyper-Heuristics is a recent area of research concerned with
the automatic design of algorithms. In this paper we propose a grammar-
based hyper-heuristic to automate the design of an Evolutionary Algo-
rithm component, namely the parent selection mechanism. More
precisely, we present a grammar that defines the number of individu-
als that should be selected, and how they should be chosen in order to
adjust the selective pressure. Knapsack Problems are used to assess the
capacity to evolve selection strategies. The results obtained show that
the proposed approach is able to evolve general selection methods that
are competitive with the ones usually described in the literature.

1 Introduction

Evolutionary Algorithms (EAs) are computational methods loosely inspired by
the principles of natural selection and genetics, that have been successfully
applied over time to complex problems involving optimization, learning or design.
EAs work by defining an initial population of candidate solutions to the prob-
lem, which are then iteratively improved by means of variation operators. The
subset of individuals that undergo the modification process must be selected
according to some fitness criteria. The quality of the solutions achieved by the
EA depend on the careful adjustment of some its components and/or parame-
ters. The design is usually performed off-line, by hand, and requires the use of
expertise knowledge.

Hyper-Heuristics (HH) is a recent area of research, involving the construction
of specific, high-level, heuristic problem solvers, by searching the space of possible
low-level heuristics for the particular problem one wants to solve [10]. HH can be
divided in two major groups [1]: the selection group encompasses HH that search
for the best sequence of low-level heuristics, selected from a set of predefined
methods usually applied to the problem one intends to solve; the other group
includes methods that promote the creation of new heuristics. In the later case,
the HH iteratively learns the specific algorithm which is then applied to solve the
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problem at hand. During this process, the HH are usually guided by feedback
obtained through the execution of each candidate solution in instances of the
problem that needs to be solved. Genetic Programming (GP), a branch of EAs,
has been increasingly adopted as a HH to search for effective problem solving
algorithmic strategies [3,8]. In the recent years, Grammatical Evolution (GE) [7],
a form of GP, has been used with success as a HH, since it allows the enforcement
of semantic and syntactic restrictions, by means of a grammar.

In this paper we propose and test a GE-based HH framework to evolve a
EA particular component. Specifically, we propose a framework to evolve the
selection mechanism used by the EA. With this goal in mind, we expect to obtain
selection mechanisms that are general, and are able to successfully guide EAs to
solve the problem at hand. The selection component is important for the success
of the algorithm, since it determines which individuals should be combined to
produce new solutions. We describe a set of experiments, where we show that the
framework is able to evolve selection algorithms that are competitive with the
ones commonly used in EAs. Moreover we investigate the generalization capacity
of the evolved algorithms, by applying them to unseen scenarios. The results are
statistical validated.

The paper is organized as follows. In Sect. 2 we discuss some previous relevant
work on HH for nature-inspired algorithms, and present the grammar used to
evolve selection strategies. In Sect. 3 we introduce the experimental setup for the
learning phase and present the results. Section 4 deals with the validation and
generalization of the learned selection strategies. In Sect. 5 we summarize the
results and suggest directions for future work.

2 A Grammatical Evolution Hyper-Heuristic

The proposed HH relies on GE to search for selection methods. GE is a GP
branch, more specifically a form of Grammar-based GP, in which the variation
operators are applied to solutions encoded as binary strings. A mapping process
is then required to decode this information into an executable algorithmic strat-
egy. The mapping is done by means of a grammar and this process decouples the
search engine from the evaluation mechanism. For these reasons, a GE system
is general and flexible [7].

2.1 Grammar Definition

To apply a GE engine in our HH framework we must define a grammar whose
words are specific selection strategies. In this work we propose a grammar with
some modifications to the traditional Backus-Naur Form (BNF), inspired by [2].
These modifications aim to overcome some limitations that the BNF imposes,
namely the lack of tools to allow repetition of non-terminal symbols and ranges of
alternative values. The first extension is the addition of the operator ∼ to signal
the repetition of non-terminals. The full syntax is as follows: ∼< a >< NT >,
where < a > is an integer or terminal value, indicating that the non-terminal
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< NT > should be repeated < a > times. The second extension is the addi-
tion of valued range alternatives. A range of numeric alternative values can be
compactly specified, using the operator &. Thus < int >::= 0&5 is equivalent to
< int >::= 0|1|2|3|4|5. Taking these extensions into account, the grammar used
in this work is as follows:
<start > ::= <calculate -parents > <selection -strategy >

<selection -strategy > ::= parents = {~number -of-parents <elements >}

<elements > ::= get_rank(<rank >)

<rank > ::= 0 & POP_SIZE

<calculate -parents > ::= number -of-parents = (random01 () * POP_SIZE)

The < start > symbol represents the grammar axiom. The grammar starts by
calculating the number of parents that the strategy should select, according to a
percentage of the total individuals available (POP SIZE). The evolved strategies
are targeted for EAs with a crossover operators, thus we enforce an even number
of parents in the selection pool. Afterwards, a selection strategy to choose which
individuals will appear in the selection pool is generated. The solutions from
the current population are ranked by fitness and a selection strategy emerges by
defining which ranks should be chosen as parents.

2.2 Related Work

Several efforts have been reported in literature to automatically evolve nature-
inspired algorithms. In [11], Tavares et al. adopted GP to evolve a population
of mapping functions between the genotype and the phenotype. Experimental
results showed that GP finds mapping functions that can obtain results as good
as the ones that are designed by hand.

In [3], Keller et al. propose a linear-GP HH to evolve heuristics to Travel-
ling Salesman problem. In their work they propose several small languages to
reduce the search space size. They conclude that the proposed HH is able to
evolve heuristics that are able to solve the problem at hand, and that they are
parsimonious, i.e. the heuristics make a good use of the resources available.

In [12], Tavares et al. proposed a GE framework to evolve Ant Colony Opti-
mization Algorithms (ACO) to the Traveling Salesman Problem. The results
showed that the proposed framework is able to evolve ACO algorithms that are
competitive with the human designed ACOs.

Lourenço et al. [5] proposed a GE based HH to evolve full-featured EAs.
The results showed that the proposed architecture is able to evolve effective
algorithms for the problems under consideration.

In [13] Woodward et al. propose an HH to evolve mapping rules that assign
fitness values to each individual in the population. These fitness values are then
used to select individuals, using a fitness-proportional mechanism. They consider
a set of transformations that can be applied to either the rank or the fitness,
and then return the new fitness value of each individual. The experiments results
conducted showed that the evolved strategies are human competitive.
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3 Learning Selection Heuristics

In this section we aim to gain insight into the capacity of the proposed HH to
evolve effective selection strategies. The settings adopted by the GE-based HH
for all the tests conducted are depicted in Table 1. Individuals evolved by the
HH encode potential parent selection strategies. To estimate their relevance, one
must access how they help an EA to solve a given problem. Therefore, each HH
individual is implanted in a standard EA, which in turn will solve an instance of
an optimization problem. The quality of the best solution found by this EA is
used to assign fitness to the corresponding evolved selection strategy. Running
an EA to assign fitness to each evolved selection strategy is a computational
expensive task. To minimize the computational overhead, we rely on the following
conditions to assess the quality of the evolved strategies: (i) one single instance
of moderate size is used to assign fitness; (ii) only one run is performed.

We report experiments using three different EA settings as surrogates for the
selection strategies. In all of them, the maximum population size (POP SIZE)
is set to 50 and the number of generations is set to 250. Three possible replace-
ment strategies, R1, R2, and R3, are considered (see Table 2). R1 corresponds to
a standard generational EA, whereas the last two implement a steady-state archi-
tecture where descendants compete with existing individuals for survival based
on the fitness criterion. Both R1 and R2 force the evolved selection strategies
to select a number of parents that is equal to POP SIZE, thus the grammar
production < calculate − parents > simply becomes < calculate − parents >
::=number −of −parents = POP SIZE. On the contrary, R3 allows the selec-
tion strategy to choose a number of parents that is lower than POP SIZE. All
three replacement strategies consider uniform crossover with a rate of 0.9 and
swap mutation with rate 0.01 as variation operators. Additional combinations

Table 1. Parameter setting for the GE-based Hyper-Heuristic

Parameter Value

One point crossover probability 0.9

Bit flip mutation 0.01

Codon duplication probability 0.01

Codon pruning probability 0.01

Population size 100

Selection Tournament with size equal 3

Replacement Steady state

Codon size 8

Number of wraps 3

Codons in the initial population 50–55

Generations 50

Runs 30
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Table 2. Replacement strategies used in the surrogate EAs.

Setting Fixed Replacement strategy

R1 Yes Generational

R2 Steady state

R3 No Steady state

of variations operators were tested with similar outcomes to those reported in
this paper (detailed results are not shown due to space constraints).

3.1 The 0-1 Knapsack Problem

The combinatorial optimization 0-1 Knapsack Problem (KP) was selected as
the testbed for our experiments. It can be described as follows: given a set of
n items, each of which with some profit p and some weight w, how should a
subset of items be selected to maximize the profit while keeping the sum of the
weights bounded to a maximum capacity C? In all instances adopted in our
study, the knapsack capacity was set to half of the sum of the weights of all
items. A standard binary representation is adopted and evaluation considers a
linear penalty function to punish invalid solutions [6].

3.2 Results

The KP instance used to evaluate the selection strategies is composed by n = 100
items. Table 3 summarizes the results of the off-line learning process. Note that
the results are displayed in terms of the normalized root mean squared error.
Every cell contains two values: the number of GE runs that discovered selection
strategies that helped the EA to discover the optimum (BestHits) and the Mean
Best Fitness (MBF ) together with the corresponding standard deviation. The
outcomes reveal that, for all training situations, the HH is able to learn effective
selection strategies.

A detailed inspection reveals that the replacement strategies used in the sur-
rogate EA lead to the appearance of selection methods with different selective
pressure. The three lines from Fig. 1 (one from each replacement strategy) help
to clarify this issue. For every setting we selected the best selection algorithm
evolved in each run and created charts displaying the distribution of the appear-
ance of the possible ranks (values displayed are averages of 30 runs). Note that
rank 0 corresponds to the best individual and rank 49 to the worst. An inspec-
tion of the figure shows that selection strategies evolved inside a generational
surrogate (R1) have a higher selective pressure than those that evolved in the
steady state surrogates. In generational EAs, the whole population is replaced
at each generation. The HH acknowledges the risk of losing good quality solu-
tions and promotes the appearance of selection strategies with a high selective
pressure, thereby maximizing the likelihood of passing information contained in
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Table 3. Hyper-Heuristic learning results (for 30 runs)

Replacement strategies
R1 R2 R3

Best Hits 30 30 30
MBF 0.000 (±0.000) 0.000 (±0.000) 0.000 (±0.000)
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Fig. 1. Rank distribution in the best evolved strategies with the three replacement
settings.

good quality solutions to the next generations. On the other hand, in steady
state surrogate EAs, the ranks are distributed more or less evenly. This results
is not unexpected, since in this scenario, the greedy replacement mechanism
already ensures selective pressure: an offspring only enters the population if it
is better than its parents. Therefore the selection strategy in these EAs can act
more like a diversity preservation mechanism. Finally, in Fig. 2 we exemplify the
rank distribution of one of the best evolved strategies, using the R1 setting.

4 Validation of the Learned Selection Strategies

The experiments described in this section aim to study how the best strategies
discovered by the GE-based HH behave in KP instances that are different from
the one used in learning. We selected 4 evolved strategies from each possible
replacement strategy, taking into account the following criteria: (i) quality of
the solution; (ii) time taken to reach a solution. In the remainder of this section
these selection strategies are identified as R11 through R14 for methods evolved
with the R1 replacement strategy, R21 through R24 for R2 replacement strategy,
and R31 through R34 for R3 replacement strategy.

This experimental study will help to gain insight into the optimization per-
formance of EAs that have the learned strategies as selection methods. Also, we



Learning Selection Strategies for Evolutionary Algorithms 203

0 3 6 9 13 17 21 25 29 33 37 41 45 49

Ranks

#T
im

es
 U

se
d

0

1

2

3

4

Fig. 2. Example of the rank distribution of a selection strategy evolved with the R1
setting.

will verify if the strategies generalize well to unseen instances and are compet-
itive with standard hand-designed selection strategies. Three common selection
options (Roulette Wheel, Tournament with size 2, and Tournament with size
3) are considered. We report results obtained with a generational and a steady-
state surrogate EAs, both of them relying on uniform crossover with rate 0.9 and
binary swap mutation with rate 1/n as variation operators. A KP instance with
1000 items and with the knapsack capacity set to half of the sum of the weights
of all items was selected for the validation analysis. In every optimization sce-
nario, 30 runs were performed and the best solution found during the execution
was recorded. To support our analysis we apply the Friedman’s ANOVA test
to check for statistical differences in the means. When differences are detected,
the post-hoc Wilcoxon Signed Rank Test, with Bonferroni correction, is applied
to perform the pairwise comparisons. In both tests we used a significance level
α = 0.05.

Figure 3 presents the MBF box plot distribution of the 15 selected strategies
(12 evolved and 3 hand-designed) for each validation scenario: Panel (a) dis-
plays the results for the generational surrogate, whereas panel (b) presents the
results for the steady-state surrogate. Clearly, the performance of the evolved
strategies is related to the configuration where they are applied. Strategies
R11 − R14 were evolved with a generational EA surrogate and, as a conse-
quence, they promote a considerable selection pressure. Therefore it is not a
surprise that these strategies achieve good results in a validation scenario where
a generational surrogate is adopted (see Panel 3a). On the contrary, strategies
R21 − R24 and R31 − R34 have a low selective pressure and are inadequate for
a generational EA environment.

An opposite situation arises in the steady-state validation surrogate (panel
3b). In this scenario, and given the fitness-based replacement strategy adopted,
selection methods evolved in a generational environment converge prematurely
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Fig. 3. Optimization results of the 15 selection strategies chosen for the validation
study: panels (a), (b), present the results obtained with the generational and steady
state EAs, respectively.

to sub-optimal regions of the search space. The remaining 8 evolved strategies
were obtained in a scenario similar to the one used in this validation phase.
For that reason they contain features that help to maintain diversity and to
effectively help the EA to discover the regions of the search space containing
the best solutions. The distinction between these two sets of evolved selection
methods confirms that the HH framework is able to generate strategies that are
suited to the specific features of the training environment.

The results displayed in the two panels of Fig. 3 confirm that the HH is able
to evolve selection methods competitive with the hand-designed approaches. The
information displayed in Table 4 helps to further clarify the relative performance
of learned strategies. Considering the MBFs attained, we performed a full set
of pairwise comparisons between evolved strategies and the hand designed algo-
rithms and present a graphical overview: A +++ indicates that the algorithm
in the row is statistically better than the one in the column, and that the effect
size is large (r ≥ 0.5). As an example, R11 clearly outperforms Roulette Wheel
in the Generational surrogate. A ++ sign indicates that there are statistical dif-
ferences, and that the effect size is medium (0.3 ≤ r < 0.5). A - signals scenarios
where the algorithm in the row is worst than the one in the column. Finally, a ∼
indicates that no statistical differences between the algorithms were found. The
statistical results confirm that evolved strategies tend to perform better in situa-
tions resembling those found during learning. Selection methods R11−R14 excel
in the generational scenario and one specific strategy (R13) is able to outperform
all hand-designed approaches. When the steady-state EA surrogate is adopted,
the effectiveness of the R21 − R24 and R31 − R34 strategies is evident. The



Learning Selection Strategies for Evolutionary Algorithms 205

Algorithm

N
or

m
al

iz
ed

 R
M

SE

R
11

R
12

R
13

R
14

R
21

R
22

R
23

R
24

R
31

R
32

R
33

R
34

R
ou

le
tte

To
ur

na
m

en
t(2

)

To
ur

na
m

en
t(3

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Generational

Algorithm

N
or

m
al

iz
ed

 R
M

SE

R
11

R
12

R
13

R
14

R
21

R
22

R
23

R
24

R
31

R
32

R
33

R
34

R
ou

le
tte

To
ur

na
m

en
t(2

)

To
ur

na
m

en
t(3

)

0.
00

0.
02

0.
04

0.
06

0.
08

(b) Steady-State

Fig. 4. MKP optimization results of the 15 selection strategies chosen for the general-
ization study: panels (a), (b), present the results obtained with the generational and
steady state EAs, respectively.

Table 4. Statistical analysis between the learned strategies and the hand-designed
methods in the KP (see text for details on the notation).

Generational Steady-State
Roulette Wheel Tournament(2) Tournament(3) Roulette Wheel Tournament(2) Tournament(3)

R11 +++ +++ - - ∼ ∼
R12 +++ +++ - - - ∼
R13 +++ +++ ++ - - ∼
R14 +++ +++ - - - ∼
R21 - - - +++ +++ +++
R22 - - - +++ +++ +++
R23 - - - +++ +++ +++
R24 - - - ++ +++ +++
R31 +++ - - ∼ ∼ +++
R32 - - - ∼ +++ +++
R33 +++ - - ∼ +++ +++
R34 +++ - - ∼ ∼ +++

performance of methods evolved with the R2 setting is particularly impressive,
as each one of them outperforms all hand-designed selection mechanisms.

4.1 Generalization

To complete our analysis we briefly investigate if the evolved strategies generalize
well to a problem different from that used in the learning step. We maintain our
focus on the KP class, but consider the Multiple Knapsack Problem (MKP)
variant. The MKP can be described as follows: given two sets of n items and
m knapsack constraints (resources), for each item j, a profit pj is assigned, and



206 N. Lourenço et al.

Table 5. Statistical analysis between the learned strategies and the hand-designed
methods in the MKP (see text for details on the notation).

Generational Steady-State
Roulette Wheel Tournament(2) Tournament(3) Roulette Wheel Tournament(2) Tournament(3)

R11 +++ +++ ∼ ∼ ∼ ∼
R12 +++ +++ +++ - ∼ ∼
R13 +++ +++ ++ - ∼ ∼
R14 +++ +++ +++ - ∼ ∼
R21 - - - +++ +++ +++
R22 - - - ∼ ++ +++
R23 - - - +++ +++ +++
R24 - - - ++ +++ +++
R31 - - - ∼ ++ +++
R32 - - - ∼ +++ +++
R33 - - - ∼ +++ +++
R34 - - - +++ +++ +++

for each constraint i, a consumption value rij is assigned. The goal is to find a
subset items that maximizes the profit, without exceeding the given constraint
capacities Ci. Note that the KP is a special case of the MKP when m = 1. For a
formal definition and additional information on the MKP, please refer to [4] or
[9]. For our experimental analysis we selected several MKP instances from the
OR-Library1. Due to space constraints we present results obtained with a single
MKP instance with n = 250 items and m = 5 constraints. However, results
obtained with other instances follow the same trend.

We maintain the 15 selection strategies adopted in the previous validation
analysis and keep all other optimization conditions, including the two same sur-
rogate EAs. Figure 4 depicts the MBF box plot distribution of the selection meth-
ods, both for the generational (panel (a)) and steady-state (panel (b)) surrogates.
In Table 5 we summarize the statistical comparison between the strategies con-
sidered in the generalization study. The analysis of the results reveals the exact
same trend that was identified in the previous validation. Considering the per-
formance of the evolved selection strategies, there is a clear correlation between
the conditions found in the off-line learning step and those of the validation/-
generalization experiments. Additionally, optimization results are competitive
with those achieved by hand-designed approaches: R11 − R14 methods tend to
outperform standard selection strategies in generational environments, whereas
R21 − R24 and R31 − R34 excel in steady-state surrogates. These outcomes
confirm that the GE-based HH was able to learn strategies that generalize well
to different KP variants.

5 Conclusions

In this paper we proposed a GE-based HH to discover effective selection strate-
gies for EAs. The proposed grammar is composed by symbols that allow the
creation of rank-based selection strategies. We demonstrated the validity of the
1 http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/mknapinfo.html

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html
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approach in the domain of different Knapsack Problem variants. Results obtained
show that the HH framework adapts the selective pressure of the evolved mecha-
nism, taking into account the specific features of the adopted surrogate. Despite
the simplicity of the proposed grammar, the HH was able to learn effective selec-
tion strategies, competitive with standard hand-designed mechanisms regularly
adopted in the literature. Moreover, the evolved strategies generalize well to
different variants of the problem considered in our study.

There are several possible extensions to the work described in this paper. One
possibility is to expand this framework to different problems and verify if strate-
gies evolved in one specific optimization situation generalize well to different,
possibly related, problems. Another possibility is to consider different learning
design options, such as performing multiple runs to evaluate a solution, or the
adoption of multiple training instances.

We will also consider several extensions to the grammar, by adding new
symbols that take into account different features of the individuals belonging to
the population (e.g., age).

Acknowledgments. This work was partially supported by Fundação para a Ciência
e Tecnologia (FCT), Portugal, under the grant SFRH/BD/79649/2011.
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Abstract. In this paper we present a study based on an evolutionary
framework to explore what would be a reasonable compromise between
interaction and automated optimisation in finding possible solutions for a
complex problem, namely the learning of Bayesian network structures,
an NP-hard problem where user knowledge can be crucial to distinguish
among solutions of equal fitness but very different physical meaning.
Even though several classes of complex problems can be effectively tack-
led with Evolutionary Computation, most possess qualities that are dif-
ficult to directly encode in the fitness function or in the individual’s
genotype description. Expert knowledge can sometimes be used to inte-
grate the missing information, but new challenges arise when searching
for the best way to access it: full human interaction can lead to the
well-known problem of user-fatigue, while a completely automated evo-
lutionary process can miss important contributions by the expert. For
our study, we developed a GUI-based prototype application that lets
an expert user guide the evolution of a network by alternating between
fully-interactive and completely automatic steps. Preliminary user tests
were able to show that despite still requiring some improvements with
regards to its efficiency, the proposed approach indeed achieves its goal
of delivering satisfying results for an expert user.

Keywords: Interaction ·Memetic algorithms · Evolutionary algorithms ·
Local optimisation · Bayesian Networks · Model learning

1 Introduction

Efficiently using algorithmic solvers to address real world problems initially
requires dealing with the difficult issue of designing an adequate optimisation
landscape - that is, defining the search space and the function to be optimized.
The Bayesian Network Structure Learning (BNSL) problem is a good example
of a complex optimisation task in which expert knowledge is of crucial impor-
tance in the formulation of the problem, being as essential as the availability
c© Springer International Publishing Switzerland 2014
P. Legrand et al. (Eds.): EA 2013, LNCS 8752, pp. 211–223, 2014.
DOI: 10.1007/978-3-319-11683-9 17
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of a large enough experimental dataset. By its very nature, BNSL is also at
least bi-objective: its aim is to optimize the tailoring of a model to the data
while keeping its complexity low. The balance between the multiple objectives
has to be decided by an expert user, either a priori or a posteriori, depending
on whether a mono or multi-objective solver is used. Other high level design
choices made by the expert condition the type of model that is searched (i.e.,
the definition of the search space), and the constraints that are applied to the
search.

Lack of experimental data is a rather common issue in real world instances
of the BNSL problem, making the optimisation task very multi-modal or even
badly conditioned. Although previous work has proved that EA approaches tend
to be more robust to data sparseness than other learning algorithms [30], an
efficient and versatile way of collecting expert knowledge would still represent
an important progress. Interaction with the expert, for instance, can be useful
to disambiguate solutions considered as equivalent given the available dataset.
How to best access an expert’s knowledge, however, is still an open issue: asking
a human user for input at a high frequency may lead to the well-known problem
of user fatigue; not asking frequently enough might result in too little feedback.
In this paper we present a study that constitutes a first step into reaching this
balance between interaction and automation.

For our study we developed a prototype application that allows an expert
user to guide the evolution of a Bayesian network. The prototype works by
alternating steps of interactive visualisation with fully automated evolution. The
original network and evolved solutions are always displayed to the user as inter-
active node-link diagrams through which constraints can be added so that the
function to be optimized can be refined. Our approach is related to humanized
computation as defined by [1] (EvoINTERACTION Workshops) i.e., “systems
where human and computational intelligence cooperate.”

The use of interactive evolution (IEAs, or IEC) algorithms is the most com-
mon approach for humanized computation. This strategy considers the user as
the provider of a fitness function (or as a part of it) inside an evolutionary loop
and has been applied to various domains, such as art, industrial design, the
tuning of ear implants, and data retrieval [26,28]. There are, however, different
ways to interlace human interaction and optimization computations that may be
as simple as what we study in this paper (i.e., an iterative scheme) or as sophis-
ticated as collaborative learning and problem solving using Serious Games or
Crowd Sourcing [4,24,31]. An interesting feature of theses latter approaches is
that they consider various tools to deal with what they call “user engagement,”
which may represent a new source of inspiration to address the well-known “user
fatigue” issue of IEAs.

This paper is organized as follows. Section 2 gives a short background on
Bayesian Networks (BN) and how they can be visualized, as well as on methods
used for dealing with the BNSL problem. Section 3 details our proposed app-
roach. Experimental results are presented in Sect. 4 and an analysis is
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developed in Sect. 5. Finally, our conclusions and some possible directions for
future research are discussed in Sect. 6.

2 Background

2.1 Bayesian Networks

Formally, a Bayesian network is a directed acyclic graph (DAG) whose nodes
represent variables, and whose arcs encode conditional dependencies between
the variables. This graph is called the structure of the network and the nodes
containing probabilistic information are called the parameters of the network.
Figure 1 reports an example of a Bayesian network.

Fig. 1. Left, a directed acyclic graph. Right, the parameters it is associated with.
Together they form a Bayesian network BN whose joint probability distribution is
P (BN) = P (A)P (B|A,E)P (C|B)P (D|A)P (E).

The set of parent nodes of a node Xi is denoted by pa(Xi). In a Bayesian
network, the joint probability distribution of the node values can be written as
the product of the local probability distribution of each node and its parents:

P (X1,X2, ...,Xn) =
n∏

i=1

P (Xi|pa(Xi))

2.2 The Structure Learning Problem

Learning the optimal structure of a Bayesian network starting from a dataset
is proven to be an NP-hard problem [7]. Even obtaining good approximations
is extremely difficult, since compromises between the representativeness of the
model and its complexity must be found. The algorithmic approaches devised
to solve this problem can be divided into two main branches: heuristic algo-
rithms (which often rely upon statistical considerations on the learning set) and
score-and-search meta-heuristics. Recently, hybrid techniques have been shown
to produce promising results.

Heuristic algorithms: The machine learning community features several state-
of-the-art heuristics algorithms to build Bayesian network structures from data.
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Some of them rely upon the evaluation of conditional independence between vari-
ables, while others are similar to score-and-search approaches, only performed in
a local area of the solutions’ space, determined through heuristic considerations.
The main strength of these techniques is their ability of returning high-quality
results in a time which is negligible when compared to meta-heuristics.

Two of the best algorithms in this category are Greedy Thick Thinning
(GTT) [5] and Bayesian Search (BS) [9]. Although a detailed description of
the two procedures is outside the scope of this work, it is important to highlight
the most relevant difference between them. While GTT is fully deterministic,
always returning the same solution for the same input, BS is stochastic, starting
from different random positions at each execution. Both GTT and BS imple-
mentations can be found in commercial products such as GeNie/SMILE [12].

Evolutionary approaches: Among score-and-search meta-heuristics, evolu-
tionary algorithms are prominently featured. Several attempts to tackle the
problem have been tested, ranging from evolutionary programming [33], to coop-
erative co-evolution [2] and island models [25]. Interestingly, some of the evolu-
tionary approaches to Bayesian network structure learning in the literature show
features of memetic algorithms, hinting that injecting expert knowledge might
be necessary to obtain good results on such a complex problem. For example,
[33] employs a knowledge-guided mutation that performs a local search to find
the most interesting arc to add or remove. In [11], a local search is used to select
the best way to break a loop in a non-valid individual. The K2GA algorithm
[20], in its turn, exploits a genetic algorithm to navigate the space of possible
node orderings, and then runs the greedy local optimisation K2, which quickly
converges on good structures starting from a given sorting of the variables in
the problem.

Memetic algorithms: Memetic algorithms are “population-based meta-heuris-
tics composed of an evolutionary framework and a set of local search algorithms
which are activated within the generation cycle of the external framework” [18].
First presented in [23], they gained increasing popularity in the last few years
[21]. What makes these stochastic optimisation techniques attractive is their
ability to quickly find high-quality results while still maintaining the exploration
potential of a classic evolutionary algorithm. Their effectiveness has been proven
in several real-world problems [15,22] and there have been initial attempts to
employ them in the structure learning problem. In particular, in [29] the authors
combine the exploratory power of an evolutionary algorithm with the efficient
exploitation of GTT, obtaining Bayesian network structures with higher repre-
sentation and lower complexity than results produced by the most prominently
featured heuristic methods.

2.3 Visualizing Bayesian Networks

It has been shown that efficient interactions in humanized computation requires
efficient visualisations [19]. Current visualisation tools for BN rely on classical
graph layouts for the qualitative part of the BN, i.e., its graphical structure.



Balancing User Interaction and Control in Bayesian Network Structure 215

Fig. 2. Overview of the prototype’s interface in use: a network being displayed and pre-
pared for evolution. Node properties panel: The table shows the parameters or, in
other words, the conditional probabilities for the corresponding variable. Edge prop-
erties panel: The arcs can be set as forced or forbidden before running the structure
learning algorithms. Network properties panel: The log-likelihood expresses how
well the current network expresses the dataset, while the dimension is a measure of
the network’s complexity. History panel: Every time a structure learning algorithm
is run, a new network is added to the history.

Still, a difficult issue remains regarding the quantitative part of the BN: the
conditional probability set associated to each node of the graph. It has been
noted in 2005 that “the work performed on causal relation visualisation has been
surprisingly low” [6]. Various solutions have been proposed like in [10], BayViz
[6,10] SMILE and GeNIe [13], or VisualBayes [32]. To our knowledge, the most
advanced and versatile visualisation interface for dealing with structure learning
is GeNIe, a development environment for building graphical decision-theoretic
models from the Decision Systems Laboratory of the University of Pittsburgh:
it has gained a notoriety in teaching, research and industry.

None of these tools, however, has really been designed to run a smooth inter-
action scheme and to easily allow users to revisit the learning stage after the visu-
alisation. Our approach explores new features for visualisation-based interactive
structure learning strategies. For the moment, it does not address quantitative
visualisation, though that may be considered in the future.
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3 Proposed Approach

Automated structure learning processes usually score candidate networks with
specific metrics: however, networks with similar scores might be extremely differ-
ent from a user’s point of view. In order to take into account human expertise, we
propose an interactive evolutionary tool for Bayesian network structure learning.

To perform our study a prototype application has been developed through
which users can control the generation and evolution of the Bayesian network.
This application consists of a GUI (Fig. 2) that serves as a hub for network
manipulation and interactive evolution. The GUI consists of the menu, the
workspace, a node/edge properties panel, a network properties panel, and a history
panel.

To start the process from scratch, users can load a CSV file containing a
training set by selecting the appropriate option from the prototype’s File menu.
Alternatively, users can load an already computed network from an XMLBIF
file by choosing the corresponding option from the same menu. Once a network
is loaded, it will be displayed as a node-link diagram on the workspace, with
nodes represented as labelled circles and edges as directed line segments. When
a network is first loaded, nodes are arranged in a circular layout. Other layout
options can be found in the Layout menu, and include the Gürsoy-Atun [17],
Fruchterman-Reingold [16], and Sugiyama [27] layouts, see Fig. 3.

Fig. 3. Sample of layout options, from left to right: circular, Gürsoy-Atun,
Fruchterman-Reingold and Sugiyama layouts of the Alarm BN benchmark.

Navigation in the workspace consists of zooming and panning. Users can
zoom in or out by spinning the mouse wheel and pan using the scrollbars that
appear when the visualisation is too big to fit in the workspace’s view. Panning
can also be performed with the drag tool, accessible from the Edit menu. When
this tool is active, panning can be performed by clicking and dragging anywhere
on the workspace.

By default, when a network is first loaded the selection tool is active. This
tool allows users to select nodes and edges and move them around the workspace
by clicking and dragging. Multiple objects can be selected by clicking on each
object separately while the Ctrl key is pressed or by clicking on an empty area of
the workspace and dragging so that the shown selected area intersects or covers
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the desired objects. Clicking and dragging on any selected object will move all
others along with it.

Users can connect nodes to one another with the Create Edge tool, available
from the Graph menu. Once this tool is active, the new edge can be created
by first clicking on the desired origin node and subsequently on the target one.
While the new edge is being created, a dashed line is shown from the origin node
to the current cursor position to help users keep track of the operation. If after
choosing the origin node they click on empty space instead of on another node,
the edge creation is cancelled. To delete an edge from the graph, after selecting
it they can either press the Delete key on the keyboard or select Remove Edge
from the Graph menu. This operation is irreversible so a dialogue will pop up to
ask for their confirmation.

When an object is selected in the workspace, its properties are displayed in
the properties panel (node properties and edge properties panels of Fig. 2). Node
properties include its name and numeric id in the graph as well as its probability
table (if a training set has been loaded) and a list of other properties that might
be present in the network’s corresponding file. Edge properties show the id and
name of an edge’s origin and target nodes and helps users prepare the network
for evolution of the network by setting the edge as forced or forbidden, or leaving
it as a normal edge. Forced edges will appear in green in the workspace, while
forbidden edges will appear in red.

From the moment the network is loaded, its properties are displayed in the
network properties panel (Fig. 2). These properties include the amount of nodes
and edges, the network’s log likelihood and dimension, and other properties
loaded from the network file, all updated every time there is a change in the
graph. If the network was generated by evolving another, the parent network
and the method used to generate it will also be shown. The training set that will
be used to evolve the network can also be set from within this panel through
the corresponding field’s Choose button, which lets users load a CSV file. Note
that the training set must be compatible with the network (i.e., have the exact
same nodes).

If the current network has been created directly from a training set or one
has been loaded in the network properties panel, it can be evolved into new
networks. This is done through the learning algorithms accessible through the
Learning menu. Users can choose among three techniques: Greedy Thick Thin-
ning, Bayesian Search and µGP. When one is chosen, its corresponding config-
uration dialog is shown, where parameters for the evolution can be set and, for
the case of µGP, stop conditions defined.

After evolution, the workspace is updated to display the new network. The
new network is also added to the list in the history panel (Fig. 2). In this panel,
the current network is always shown highlighted. Users can change the currently
displayed network by clicking on its name and export it to an XMLBIF file
through the Export Selected Network button. The latest layout is always kept
when alternating among the different networks.



218 A. Tonda et al.

The prototype application was implemented in C++ using the Qt 4.8.2 frame-
work and the Boost (http://www.boost.org) and OGDF [8] libraries. Figure 2
shows the prototype in use. A couple of networks have been generated using the
learning algorithms, with the one displayed on the workspace having been created
with Greedy Thick Thinning. The user has set some of the edges to forced (MIN-
VOLSET to VENTMACH and MINVOLSET to DISCONNECT) and forbidden
(INTUBATION to SHUNT) and a node has been selected (DISCONNECT).

4 Experimental Setup

In order to validate the proposed approach, test runs were performed in coop-
eration with two experts on food processing and agriculture. Agri-food research
lines exploit Bayesian network models to represent complex industrial processes
for food production.

The first expert analysed a dataset on cheese ripening [3]. It consists of 27
variables evaluating different properties of the cheese from the point of view of
the producer. Of these variables, 7 are qualitative while the other 20 refer to
chemical processes. A candidate solution for the dataset is reported in Fig. 4.

Fig. 4. A sample configuration of the complete network used in the test trial. The
Sugyiama layout is preferred by the expert to visualize the structure.

The second expert analysed a dataset on biscuit baking. It consists of 10
variables describing both properties of the biscuits, such as weight and colour,
and controlling variables of the process, such as heat in the top and bottom parts
of the oven.

After a preliminary run, the setup of the memetic algorithm is changed in
order to better fit the user’s preferences. In particular, since the prototype is

http://www.boost.org
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not optimized with regards to the running speed of the evolutionary process, the
population size is reduced in comparison to the parameters reported in [30] so
that a compromise can be reached between the quality of the results and time
the user needs to wait before seeing the outcome.

5 Analysis and Perspectives

The expert users’ response to the prototype’s graphical user interface was
generally positive. The ease of arc manipulation, which made it possible to
immediately see the improvements in the network’s representativeness and/or
dimension, was well received. Also commended were the automatic layout algo-
rithms, which were extensively used when considering the entire network. The
possibility of rapidly browsing through the history of networks was used thor-
oughly by the experts and found to be advantageous. They felt, however, that
comparing candidates would have been more immediate and effective if the inter-
face would allow such candidates to be shown side-by-side, two at a time.

Since the process of structure learning is interactive, the users also noted
how the possibility of cumulating constraints would be beneficial. In the current
framework, the forced and forbidden arcs are clearly visible in each network,
but they have to be set again every time a learning method is run. Despite
results of slightly higher quality provided by the memetic approach, both users
felt that the improvement in quality did not justify the extra time needed to
obtain the solution (this approach can take up to several minutes, while the
others finish running after a few seconds). For this reason, the experts favoured a
more interactive approach, running the deterministic heuristic (GTT), changing
the forced and forbidden arcs in its results, and repeating the process until a
satisfactory solution was found.

Concerning algorithm performance, it should be noted that in order to under-
stand the efficacy of the tool one of the users repeatedly divided the original
network in smaller networks, being more confident that in this way he could
highlight links that he deemed right or wrong (see Fig. 5 for an example). In
networks with a reduced number of variables, however, the difference in per-
formance between the methods became less clear, since smaller search spaces
inevitably favours the heuristics. Nevertheless, the second expert was able to
use the tool to eventually exclude a potential relationship between two variables
in the process by iteratively generating configurations and then focusing on the
log-likelihood values presented by the different candidate solutions.

Summarizing, the feedback given by the expert user in this first trial allowed
us to compile a list of features that should make the structure learning experience
more efficient:

1. Speeding up the memetic algorithm is recommended, and can be done straight-
forwardly by using parallel evaluations and letting the user tweak some internal
parameters;
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Fig. 5. One of the sub-networks extensively explored by the user. In particular, this
one contains only qualitative variables from the original dataset.

2. Allowing the user to compare solutions side-by-side could be very helpful for
the user, since humans are more inclined to visually compare two network at
the same time than by simply browsing through the history;

3. Modifying the memetic algorithm to ask for the user’s input at predetermined
points (in order to try to extract his preferences by comparing networks, as
in user-centric memetic algorithms [14]) might be a way to involve the user
in a more time-consuming evolutionary process;

4. Designing special features to address Dynamic Bayesian Networks (DBNs).
DBNs are extensively used in the agri-food field, and existing BN tools are
often missing inference and learning method specifically tailored for these
structures;

5. Minor features such as: allowing the user to reverse arcs; visualizing node-
related statistics in pop-up windows (for clarity); selecting several arcs at the
same time; and making it possible to select only a subset of variables from
the original dataset.

6 Conclusion

In this paper we presented a preliminary study on balancing automatic evolution
and user interaction for the NP-hard problem of Bayesian network structure
learning. The study was performed through a graphical user interface.

A test run with a modelling expert showed that the tool is able to assist
the user in expressing knowledge that would be difficult to encode in a classical
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fitness function, returning more satisfying models than a completely automatic
approach. Despite the promising preliminary results, several improvements must
be performed on the proposed framework to enhance usability and progress
towards an optimal balance between automatic evolution of results and user
interaction. For example, the evolutionary approach included at the core of the
framework is found to be too time-consuming when compared to fast state-of-
the-art heuristic algorithms.

Further developments will add other evolutionary structure learning algo-
rithms, as well as the possibility for more user interaction in the definition of
parameters and during the evolution itself.

Acknowledgments. The authors would like to thank Cédric Baudrit and Nathalie
Perrot for contributing to this study with their expertise.
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Abstract. Evolutionary algorithms are capable of solving a wide range
of different optimization problems including real world ones. The latter,
however, often require a considerable amount of computational power.
Parallelization over powerful GPGPU cards is a way to tackle this prob-
lem, but this remains hard to do due to their specificities. Parallelizing
the fitness function only yields good results if it dwarfs the rest of the evo-
lutionary algorithm. Otherwise, parallelization overhead and Amdahl’s
law may ruin this effort.

In this paper, we will show how completely parallelizing an evolu-
tionary algorithm can help solving a large real world electrical problem
with a lightweight evaluation function without quality loss.

1 Introduction

Real world optimization problems often require a considerable amount of com-
putational power due to their high complexity. The use of GPGPU (General
Purpose Graphics Processing Units) revolutionizes evolutionary computation as
it allows to tackle a broader range of problems which, until now, were out of
reach for standard sequential evolutionary algorithms.

Many papers show the type of speedups that can be achieved on benchmark
functions as well as on real world problems (chemistry) by parallelizing the
evaluation function only on a single GPGPU card [1,3,4] and GPGPU specific
architecture is described in several publications [2–4].

However, this particular way to parallelize an evolutionary algorithm requires
extremely time consuming fitness functions. Problems with lightweight fitness
functions cannot take advantage of the GPGPUs computing power. In [2], the
authors describe a complete parallel evolutionary algorithm and present speedups
on benchmark functions showing that solving problems with lightweight evalua-
tion functions can also benefit from GPGPU parallelization.

In this paper, we propose to determine load profiles using a generational
evolutionary algorithm completely parallelized on a single GPGPU chip. The
obtained speedups are shown and the quality of the results discussed. Moreover,
the influence of parameters specific to GPGPU computing is also examined.
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2 Parallel Genetic Algorithm

2.1 Generational Evolutionary Algorithm

The specificity of a generational evolutionary algorithm is that it creates a pop-
ulation of children that is the same size as the population of parents. Then,
parents are discarded and the next generation is the children population.

A “refinement” can be added in order to implement an “elitist” generational
EA: a parent is replaced by one of his children only if the latter is better than
the parent. Otherwise, the rest of the algorithm is quite standard: the initial
population is generated randomly and children are generated thanks to genetic
variation operators applied to selected parents.

This evolutionary loop is repeated until a stopping criterion is met.

2.2 Full Parallelization of a Generational Evolutionary Algorithm

Each step of the generational algorithm is parallelized on a GPGPU card: after
memory allocation of two population spaces on the device (for a parent popu-
lation and an offspring population), all cores start with an initialization stage
where an initial population is created and individuals are evaluated in parallel.

Because all these steps are nearly identical for all cores, divergence between
cores is minimal, which is essential on an SIMD/SPMD architecture.

Then, for each generation, an evolutionary kernel is launched from the host.
It assigns as many threads as there are individuals in the parent population and
it dispatches the threads among the core blocks. The evolutionary kernel selects
2 parents from the parent population and performs a crossover between them to
create an offspring that is stored in the offspring population space on the device.
The genome of the offspring is then mutated and evaluated.

Finally, the freshly created offspring is compared to the parent with the same
thread ID. If the offspring is better, it replaces the parent. If not, the parent is
kept for the next generation.

Meanwhile, the host waits for all the threads on the device to synchronize,
in order to launch the evolution kernel for the next generation.

The selection of the parents for reproduction is performed through a tourna-
ment selection operator.

2.3 Random Number Generation: Host API vs. Device API

Pseudo random number sequences can be generated in two different ways using
the CURAND library [5]: by using the host API or by using the device API.

In the host API (Host RBG), random numbers are produced by generators.
The production of numbers requires the creation of a generator and memory allo-
cation on the device. Then, random numbers are generated in parallel directly
on the device, ready to be used by subsequent kernels. To maximize the effi-
ciency of the generator, a great amount of random numbers should be generated
simultaneously.
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In the device API (Dev RNG), each thread has its own generator and its own
seed. The states of the generators, after being initialized, are stored in device
memory. The pseudo random numbers are then generated directly on the device.
The advantage of this API is that the generation function can be called from
device functions while in the host API, random number are generated through
a specific kernel beforehand. While being faster than the host API, the device
API provides less guarantees about the mathematical properties of the generated
sequences.

3 Determination of Load Profiles

Energy distribution companies such as Électricité de Strasbourg Réseaux (ESR)
struggle to obtain very precise estimations of the energy demand of large scale
as well as medium scale electric networks. They have access to their power load
profiles that strive to approximate the behavior of specific end user classes, but
these profiles are often not very precise as they do not take into account factors
such as the presence of electrical heating or the type of housing. Ignoring these
factors results in inaccurate estimations of load curves for areas very sensitive
to temperature changes. For instance branches of the electrical network that
distribute energy mostly to end users with electrical heating are very sensitive
to temperature drops in the winter time.

3.1 Presentation of the Case Study

The determination of load profiles is a very prolific area of research [6–12]. There
are a multitude of different methods to obtain profiles of good quality. Neverthe-
less, most of these methods rely on time series of end user load measurements
obtained through measurement campaigns. These load measurements time series
are very expensive and time consuming to acquire and hence not always avail-
able. However, a paper of 2003 [13] shows that it is possible to obtain high
quality load profiles without any prior knowledge of the electrical network by
considering the load profile determination problem as a blind source separation
problem. The feasibility of the method is proven on artificial datasets only.

3.2 General Setup and Methodology

Available Information. The information used in the case of this real world
problem is provided by Électricité de Strasbourg Réseaux. The information
includes the topology of the electric network maintained by ÉSR as well as
load measurements performed at different levels of the network:

1. At the level of the 20 kV HV (high voltage) feeders: average load measure-
ments performed at a 10 min step

2. At the LV (low voltage) end user level: biannual energy meter readings from
which an average load can be calculated
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For the purpose of this study, the end users are separated into 8 different
classes according to the following criteria:

– Usage: domestic or professional
– Type of housing: apartments or single houses
– Presence of electrical heating: with or without
– Tariff: single rate or double rate

The presence of electrical heating was determined by machine learning tech-
niques applied on end user energy consumption history. The double rate tariff
represents the peak/offpeak tariff.

Methodology. The method applied to determine the new load profiles is similar
to the method presented in [13]. We assume that the load curve of a 20 kV feeder
d is equal to the weighted sum of the different profiled load curves of the end
users fed by d. The determination of the load profiles is hence very similar to
a blind source separation problem [14]: separate a set of source signals (the set
of profiles) from a set a mixed signals (the set of 20 kV feeder load curves). The
problem can be summed up by the following equation:
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Wm,8 × P8,1 + εm,1 = pm,1 (1b)

where:

• Wm,8 the weight matrix: 8 end user average load for m 20 kV feeders;
• P8,1 the profile matrix for the 8 end user classes (set of source signals);
• εm,1 the residue matrix for m 20 kV feeders;
• pm,1 the power matrix for m 20 kV feeders (set of mixed signals);

The residue matrix is necessary as the data used contains a certain amount
of noise and error caused by:

– Changes in the network topology (load transfer)
– Measurement device failures
– Power loss
– Other unknown elements

The consequence of these factors is a high amount of residue in εm,1. There-
fore, it is not possible to determine the linear independence of the system, a
prerequisite to a classic blind source separation. The linear independence of the
system was therefore assumed for the rest of this study. A genetic algorithm
(GA) was chosen to solve the blind source separation, more than adequate to
tackle this class of problems [15,16], regardless of the amount of error in the
data [17].
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3.3 Engine of the Genetic Algorithm

Fitness Function. The fitness function is a mix of two distinct sub-functions:
a function to compare the estimated load curves with the measured load curves
and a function to measure the smoothness of the load profiles.

The following equation calculates for a single 20 kV feeder c the difference
between the estimated load curve constructed with the profiles from the indi-
vidual’s genotype and the measured load curve:

Fc =

t1∑

t0

|p(t) − (W1P1(t) + . . . + WnPn(t))|

p(t)
(2)

where:

• p(t) load of the feeder at time t (in kW);
• Wn average power of end users with profile n (in kW);
• Pn(t) value of profile n at time t (no unit);

The second equation determines the smoothness of the profiles:

Dist =
n∑

i=1

MAX((d − Di), 0) (3)

where:

• n number of profiles (8 in the case of this study);
• d overall average distance between two half-hour points in a profiles;
• Di average distance between two half-hour points of profile i;

The total fitness F is determined over the complete set of m measured load
curves by combining the two equations presented above:

F =

m∑

c=1

Fc +
n∑

i=1

MAX((d − Di), 0)

n + m
(4)

where:

• m number of measured load curves in the mixed signals set;

The goal of the genetic algorithm is to find the individual i.e. the set of profiles
that minimizes the fitness value F that is very simple to compute (only simple
additions and a couple of divisions), making for a very light evaluation function.

Individual genome. An individual represents a set of 8 profiles for a specific
day of a given month. Each profile is represented as an array of 48 floating points
(one for every half-hour in the day). Hence, the genotype of an individual is a
48 × 8 long float point array.
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Engine of the original genetic algorithm. High quality power load profiles
(reference profiles) have already been found using an elitist genetic algorithm
generated with EASEA [18]. Nevertheless, the determination of load profiles
for a single day of the year requires about 13 min. The determination of load
profiles for a complete year therefore requires about 79 h! The latter are not
static. They are bound to evolve with end user energy consumption habits and
will require regular redefinitions. Accelerating their creation would enhance the
current process.

4 Results

The relevance and the quality of the load profiles found by the GA have been
presented in another paper [18] and will not be discussed in this paper. Instead,
the different speedups that can be achieved by parallelizing the problem on a
single GPGPU card are observed and the benefit of using GPGPUs for this par-
ticular problem will be presented. All the values exposed in this section represent
an average over 30 runs.

The experiments were performed on:

– 1 core of an Intel Core i7 CPU running at 3.33 GHz
– 512 cores of one nVidia GTX 590 processor.

The processors of an nVidia GTX 590 have 16 multi processors with 32 cuda
cores. The maximum number of thread per block is 1024 and the maximum
number of registers per block is 32768. Each processor of a GTX 590 has access
to 1,49 GB of global memory.

The fitness function presented above requires 42 registers per thread. There-
fore, the maximum number of threads per block is 780 as those threads take
32760 of the 32768 registers of the block. For security reasons, the maximum
number of threads per block for this function was capped at 512. Maximum
occupancy for one card is reached for 16 × 512 = 8192 threads.

The GA manages different data along with set of feeder load curves:

1. 2 populations: a parent population and an offspring population (2×popSize×
8 times48 values)

2. 1 vector with the mutation probability of each gene of every individual (vector
size: popSize × 8 × 48)

3. 1 vector with the mutation values of each gene of every individual (vector
size: popSize × 8 × 48)

4. 1 vector with the barycentric crossover weight of every individual (vector size:
popSize)

5. 1 vector with the fitness value of every individual (vector size: popSize)

The total number of real number values required by the GA is popSize×2306.
It is important to note that the arrays with mutation probabilities, mutation
values and crossover weights are only used in the case Host RNG.

Table 1 shows that for population sizes above 131072, the GPGPU card is out
of memory. The maximum population size that can be used for this particular
problem is of 131072 individuals.
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Table 1. Memory in GB required by the parallel GA on GPGPU with regards to
population size. Total global memory on a single GTX590 card: 1,49 GB

Population size Total amount of memory required by the GA (in GB)

64 0,0004

1024 0,007

8192 0,05

32768 0,23

131072 0,93

262144 1,87

Fig. 1. Speedup for CpuEzElGa vs. GpuEzElGa

Terminology. In order to make the following section more understandable,
the different algorithms compared during the determination of speedups are
described and given a specific name used in the following section:

1. CpuEzElGa: Elitist (El) genetic algorithm (Ga) generated with EASEA
(Ez ) running on CPU (Cpu)

2. GpuEzElGa: Elitist (El) genetic algorithm (Ga) generated with EASEA
(Ez ) running on GPU (Gpu)

3. GpuGenGaWiPt: Generational (Gen) genetic algorithm (Ga) with gener-
ational population transfer (WiPt) running on GPU (Gpu)

4. GpuGenGaWoPt: Generational (Gen) genetic algorithm (Ga) without gen-
erational population transfer (WoPt) running on GPU (Gpu)

In some cases, a generational information transfer is performed from the GPU
to the CPU. This information transfer is performed in order to compute and dis-
play statistics relative to the population convergence such as best fitness, average
fitness etc. . . While this information transfer is not relevant when the algorithm
is already tuned, it is vital while during engine parameters optimization. Hence
it is only fair to compare the speedups for both configurations.

4.1 Speedups

Figure 1 shows the speedup obtained by using the automatic EASEA GPU par-
allelization feature: only the fitness function is parallelized on a single GPGPU
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card. Maximum “speedup” of 0.6 is achieved for population sizes starting at
512 individuals. The values presented in Fig. 1 are hardly speedups and can be
referred to as “speeddowns”. As a matter of fact, Fig. 1 shows that the genetic
algorithm running on the CPU is faster than the GPU version generated with
EASEA. Figure 1 shows that the fitness function of this real world problem is
not intense enough computationally time-wise in order to benefit from GPU
parallelization.

No comparisons have been performed for population sizes greater than 4096
individuals due to the ridiculously enormous computation times.

Fig. 2. Speedup for CpuEzElGa vs. GpuGenGaWiPt (dashed curve) and
CpuEzElGa vs. GpuGenGaWoPt (lined curve)

Figure 2 shows the speedup obtained by parallelizing the generational genetic
algorithm completely on the GPGPU card. The dashed curve shows the speedup
obtained when a generational population transfer is performed, the lined curve
shows the speedup obtained when no generational population transfer is
performed.

The same figure shows that a speedup of ×160 is achieved for GpuGen-
GaWoPt whereas a speedup of “only” ×90 is achieved for GpuGenGaWiPt.
A speedup drop can be noticed for population sizes greater than 8192 individu-
als. These drops are due to the GPU card having reached maximum occupancy
(both thread and registry wise) as well as to the rising computation time for
random number generation/transfer.

4.2 Convergence Comparison

The second aspect to be observed is the differences in convergence for different
configurations.

In order to use the GPGPU to speedup the profile determination problem,
the engine of the genetic algorithm needs to be transformed from an elitist engine
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Fig. 3. Convergence comparison: elitist GA running on CPU (dotted curve), gener-
ational GA running on CPU (dashed curve) and generational GA running on GPU
(lined curve).

to a generational engine. This modification has an impact on the convergence
and it is of the upmost importance to make sure that this impact is minimal.

Figure 3 shows the convergence of best individual fitness for the elitist GA
running on CPU (dotted curve), the generational GA running on CPU (dashed
curve) and the generational GA running on GPU (lined curve). Figure 3 demon-
strates that the change of evolutionary engine does not impact the way the GA
converges. Moreover, the transfer of the GA from the CPU to the GPU does
not seem to have a significant impact on the convergence either. Nevertheless,
the impact of the visible difference in the final fitness values on the shape of the
resulting profiles has to be quantified.

4.3 Influence of Different Factors

When using GPGPU programming, several features can be tweaked in order
to improve speedup performances as well as result precision. Speedups can be
improved by using Dev RNG. Result quality can be improved by using double
precision, which, however, restricts the maximum population size.

The left chart of Fig. 4 shows the influence of Host RNG (lined curve) over
Dev RNG (dashed curve). This chart clearly reveals that the GA using Host RNG
reaches a far better final fitness value compared to the GA using Dev RNG. That
result is not surprising considering that Dev RNG provides less guarantees about
he mathematical properties of the generated sequences. In the case of this partic-
ular problem, only Host RNG should be used.

The right chart of Fig. 4 shows the influence of double precision (dashed
curve) over single precision (lined curve). Single precision reaches better results
than double precision.
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Influence of the host random num-
ber generation API (lined curve) and
the device random number generation
API (dashed curve) on the convergence
of the GA.

Influence of double precision
(dashed curve) over single precision
(lined curve) on the convergence of the
GA.

Fig. 4. Influence of different factors on the convergence of the GA.

4.4 Profile Quality Comparison

For real world problems, the quality of the results can be more important
than the time required to obtain it. In this case, it is very important to make
sure that the profiles obtained with the different GA configurations are equiva-
lent to the reference profiles found by CpuEzElGa.

Figure 5 presents a bar chart comparing the correlation coefficients between
the profiles found by CpuEzElGa and the profiles found by:

– GpuGenGa with a speedup optimal population size of 8192 individuals using
Host RNG (in black)

– GpuGenGa with the original optimal population size of 750 individuals using
Host RNG (in dark gray)

– GpuGenGa with the original optimal population size of 750 individuals using
Dev RNG (in light gray)

Figure 5 shows that the profiles found with the parallel GAs using Host RNG
have close to 1 correlation coefficients. On the other hand, the parallel GA using
Dev RNG performs very badly as the profiles have an average correlation coef-
ficient of 0.5! Figure 5 also reveals that using a greater population size does not
impact the quality of the results.

4.5 Discussion

Several conclusions can be drawn from the results presented above. Maximum
speedup of ×160 is achieved for this particular problem with a population size
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Fig. 5. Correlation coefficient between the reference profiles obtained with the elitist
genetic algorithm on CPU and the profiles obtained through different GA configura-
tions running on GPU.

of 8192. However, the population size of the original elitist genetic algorithm is
only of 750 individuals and Fig. 5 shows that the use of a greater population size
does not improve result quality. Therefore, if the time required by the original
GA is compared to the time required by the generational GA running on GPU
with a population size of 8192, a speedup of ×14 is achieved. Figure 2 shows
that for a population size of 750 individuals, a speedup of ×34 is achieved. It
is therefore more interesting to conserve the original population size even if it
means not using the GPU card to its full capacity.

The profile determination for a whole year which requires 79 h on CPU only
takes about 2 h when it is ported on GPGPU!

5 Conclusion

This paper shows how a genetic algorithm completely parallelized on GPGPU
can contribute in solving efficiently and little computation time a complex prob-
lem such as power load profile determination. The speedups presented in this
paper range between ×90 and ×160, reducing the computation time from 79 h
to a little more than 2 h. Different aspects of GPGPU computation have been
tested and their influence on GA convergence as well as profile quality examined.

The parallel genetic algorithm presented in this paper has not yet been inte-
grated into the EASEA language. The integration has to be performed in order
to allow people without GPGPU programming knowledge to take advantage of
computation power of these cards to solve their optimization problem.
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Abstract. Graph Coloring, one of the most challenging combinatorial
problems, finds applicability in many real-world tasks. In this work we
have developed a new artificial bee colony algorithm (called O-BEE-
COL) for solving this problem. The special features of the proposed
algorithm are (i) a SmartSwap mutation operator, (ii) an optimized
GPX operator, and (iii) a temperature mechanism. Various studies are
presented to show the impact factor of the three operators, their effi-
ciency, the robustness of O-BEE-COL, and finally the competitiveness
of O-BEE-COL with respect to the state-of-the-art. Inspecting all exper-
imental results we can claim that: (a) disabling one of these operators
O-BEE-COL worsens the performances in term of the Success Rate (SR),
and/or best coloring found; (b) O-BEE-COL obtains comparable, and
competitive results with respect to state-of-the-art algorithms for the
Graph Coloring Problem.

Keywords: Swarm intelligence · Artificial bee colony · Graph coloring
problem · Combinatorial optimization

1 Introduction

Graph coloring is one of the most popular and challenging combinatorial opti-
mization problems, playing a central role in graph theory. It can be formalized
as follow: given an undirected graph G = (V,E) a coloring of G is a mapping
c : V → S (⊆ ℵ+) that assigns a positive integer to each vertex in V such
that c(u) �= c(v) if u and v are adjacent vertices. The elements in S represent
the available colors. The optimization version of Graph Coloring Problem (GCP)
asks to find a mapping c with S = {1, 2, . . . , k} being of minimal size, i.e., finding
the smallest integer k such that G has a k − coloring. This minimal cardinality
of S is known as the chromatic number of G (χ(G)). Thus formally, if k > χ
then a graph G is called k − colorable, otherwise G is k − chromatic if k = χ.
Computing the chromatic number of a graph is an NP–complete problem [17].
c© Springer International Publishing Switzerland 2014
P. Legrand et al. (Eds.): EA 2013, LNCS 8752, pp. 243–255, 2014.
DOI: 10.1007/978-3-319-11683-9 19
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Tackling and solving the GCP becomes crucial and important since it has a
natural applicability in many real-world problems, such as scheduling [26], time
tabling [12], manufacturing [19], frequency assignment [16], register allocation [8]
and printed circuit testing [18]. The GCP can be tackled following two different
approaches: assignment or partitioning. The first approach consist in the classi-
cal assignment of colors to vertices; whilst the latter one is based on partitioning
the set of vertices V into k disjoint subsets (V1, V2, . . . , Vk) such that in any
subset no two vertices are linked by an edge, i.e. if u and v are in Vi (for some
i ∈ {1, . . . , k}) then (u, v) /∈ E. Every subset Vi represents a color class and
forms an Independent Set of vertices. Although several pure population–based
algorithms have been used to tackle the GCP, a hybrid approach where local
search methods, specialized operators and evolutionary algorithms (EAs) are
combined [25] might be more effective. This is, of course, due to the intractable
nature of the GCP [5].

In this work we propose an Artificial Bee Colony (ABC) [24] algorithm for
the GCP, based on three main features: (1) a new mutation operator, (2) an
optimized version of the Greedy Partitioning Crossover (GPX) [15], and (3) a
temperature mechanism. The ABC algorithm is a rather recent optimization
technique inspired by the intelligent foraging behavior of a colony of bees, whose
strength lies in the collective behavior of self-organized swarms that individually
behave without any supervision. During the last decade, ABC has attracted
quite a number of researchers, and it has been successfully applied mainly to
continuous optimization problems [3,23], whilst, rather few works have appeared
concerning discrete optimization problems (see, for example, [27,31]). In many
cases the results obtained by ABC, including the ones of this work, demonstrate
that this metaheuristic is able to compete with, and sometimes even outperforms,
existing state-of-the-art algorithms for difficult optimization problems.

2 O-BEE-COL: An Artificial Bee Colony

The ABC algorithm takes inspiration from the intelligent foraging behavior of
bees from a beehive. It is based on three main components: (1) food source
position, corresponding to a feasible solution to the given problem; (2) amount
of nectar, which indicates the quality of the solution; and (3) the bee types:
employed; onlooker; and scouts bees. The first ones have the purpose to search for
food sources, and, just found, storing their information. The onlooker bees select,
and exploit the better food sources found taking advantage of the information
learned from employed bees. Once one of the food sources is exhausted, the
employed bees associated with it become scout bees, with the purpose to discover
new food sources. Once discovered, they become again employed bees.

A new ABC heuristic has been developed in order to effectively coloring a
generic graph. This algorithm is henceforth referred to as “Optimal BEEs for
COLoring” (O-BEE-COL). The algorithm begins with the creation of the ini-
tial population, where each bee represents a permutation of vertices. Because the
choice of the starting points in the search space become crucial we have designed,
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and studied, three variants of O-BEE-COL in order to create the initial popu-
lation. In the basic variant, it is randomly generated via a uniform distribution.
The second variant, instead, uses a version partially randomize of RLF (Recur-
sive Largest First) algorithm [10]. Of course, as expected, with this last variant
O-BEE-COL shows better performances, because it begins the search from good
solutions than the first variant. On the other hand, however using this second
variant we have the disadvantage to get trapped into local optima easily, mainly
in more complex instances. Thus, we have developed a third variant that is a
mixed of the two previous ones. In this way, we introduce more diversity in the
population in order to better exploration the search space, escaping from local
optima, and exploiting good solutions at the same time. Analysing the compar-
isons among the three variants (not included in this paper due to limited space),
the mixed one has produced the best performances obtaining better coloring
in all instances tested. For example, if we take into account the “le450 15c”
DIMACS instance [22], using the first variant the algorithm starts from a best
solution found of 28 colors and improves the coloring until to reach a solution
with 20 colors. Instead with the randomized RLF, although O-BEE-COL begins
from 24 colors as best solution, it never improves this coloring found. If, however,
O-BEE-COL incorporates the mixed variant, starting from a best solution of 24
colors (the one found by randomized RLF), at the end of the evolution it is able
to coloring the graph with 15 colors, which is also the chromatic number for this
instance.

The strength of O-BEE-COL is based on three main operators: mutation
operator called SmartSwap; optimized version of GPX [15]; and Temperature
mechanism, as in Simulated Annealing, which has the aim of self-regulating
of some parameters of the algorithm. The mutation operator tries to reduce
the number of colour classes deleting one of them, and reassigning its vertices
inside other classes. Albeit is reasonable to think that this process might be
easily performed in the smaller class, unfortunately often belong to it the most
troublesome nodes, i.e. the ones harder to be handled. Thus, SmartSwap works
primarily on these troublesome nodes with the aim to replace them with the
ones more easy to be handled. In this way becomes easier the reassignment of
the vertices, and therefore the delete of the class. To do that, SmartSwap allows
a fixed number of constrains unsatisfied, which will be removed via the crossover
operator: only partLimit constraints unsatisfied are allowed. With this operator
we attempt to avoid that the solutions get trapped into local optima. Greedy
Partitioning Crossover – GPX – is a well-known crossover originally proposed in
[15], and based on strategy of considering more important the set of the vertices
that belong to the same class rather than the colors assigned to each vertex.
Via a round robin criterion two bees are selected for generating one offspring:
the biggest colorclass of the two selected parents is copied into the new solution,
and its vertices are removed from the color classes of the belonging parent. This
process is performed until classes with only one vertex are encountered. In this
case, the single node is inserted inside one of the existing classes. In O-BEE-COL
we have designed an optimized version of GPX, which differs from the original
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one basically in two aspects: (1) the number of solutions involved is determined
by a parameter partSol; and (2) the cardinality of the colorclasses that must
be copied into the new solution is determined by a parameter (partLimit). All
colorclasses with cardinality greater or equal to partLimit will be copied inside
the new solution. In this way, we want to force the transmission only of the best
colorclasses to the offsprings. An experimental study conducted on the optimized
GPX, also respect to the original one, confirmed us how these novelties intro-
duced contribute significantly better on its performances (see plots in Fig. 3). The
third novelty introduced in this work is the design of a Temperature mechanism
that has the aim to dynamically self-handle some parameters during the evolu-
tion. The parameters bound to this self-regulating mechanism are: (1) number
of parents involved in optimized GPX (partSol); (2) number of the improvement
trails needed before to replace a solution (evLimit); (3) number of scout bees
(nScouts); and (4) percentage of solutions that must be generated by randomized
RLF during the scout bees phase (percSol). Whenever a better solution than
the current one is found, the temperature mechanism sets the controlled para-
meters with their highest possible values, respectively [100, 20, 5, 100%]. During
the evolution, if no improvements occurred, then these values gradually decrease
generation to generation until to reach their minimal values, which correspond
to [10, 5, 2, 10%].

3 Results

In order to understand how the developed algorithm works, and how much is the
contribution given by the novelties introduced we have performed many exper-
iments using the classical DIMACS challenging benchmark1. O-BEE-COL has
been tested on 22 instances (the most used), and it was compared with several
algorithms, which represent the current state of the art for graph coloring prob-
lem. In this section we present all studies and experiments conducted, showing
best tuning of the parameters; the impact factor contribution of the novelties
designed; analysis on the running time; and comparisons conducted versus sev-
eral algorithms. In most of the instances tested O-BEE-COL has found the best
coloring, showing a robust convergence, and very competitive performances with
respect the state of the art.

O-BEE-COL dynamics. One of the main goal when someone designs a generic
EAs is to understand which is the best setting of the parameters because they
strongly influence the performances of the algorithm. Thus many experiments
have been performed with the aim to identify the best values of the parameters.
As described in Sect. 2, O-BEE-COL depends on three parameters: population
size (popSize ∈ {200, 500, 1000, 1500, 2000}) ; the lowest cardinality of the color
classes allowed to be transmitted during the partitioning phase (partLimit ∈ {5,
10, 15, 18}) ; and the percentage of Employed Bees (percEmp ∈ {10%, 20%,
50%, 70%, 90%}) . To carefully analyse the proper tuning of the parameters, we

1 http://mat.gsia.cmu.edu/COLOR/instances.html

http://mat.gsia.cmu.edu/COLOR/instances.html
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conducted our study over several DIMACS instances, and for each combination
of values we performed 10 independent runs. In Fig. 1 we show the convergence of
O-BEE-COL on the instance DSJC250.5 since it is challenging enough to make
robust our study. Inspecting all 100 experiments over this instance, O-BEE-COL
obtains the best performances in term of success rate (SR) with the combination
(200, 5, 10%). Due to a limit space, we show for each parameter the convergence
plots produced in combination with the other two best values. Analysing the left
plot (varying popSize) is possible to see how with large population size, O-BEE-
COL quickly gets down towards low values within few generations, after which it
shows a steady-state. On the other hand, choosing small dimensions, albeit the
algorithm needs more generations, it achieves still the best coloring. However,
inspecting step-by-step the convergence for each value, popSize = 200, although
is the slowest, it is the one that performs a better exploration of the search space
with the result of producing a good trade-off for diversity into the population.
In the middle plot, are shown the convergence curves produced varying the
parameter partLimit. The lower bound to the color classes transmitted during
the partitioning phase is the one that contributes most to the convergence speed
of the algorithm, and it usually assumes values within the range

(
2, |V |

χ

)
. In

particular, assigning partLimit = 5, O-BEE-COL has a slower convergence but
it reaches the best solution before than the others. In the right plot, and last of
Fig. 1, is shown the contribution given by percEmp, which indirectly represents
the exploitation phase of the best solutions found so far. For all curves, O-
BEE-COL shows a good trend without presenting fast or slow convergences.
Comparing the curves between them is possible to see how O-BEE-COL with
low percentage of employed bees is able to better explore the search space, and,
at the same time, exploit better the information gained so far. In fact, with
the lowest percentage possible (percEmp = 10%) the algorithm achieves the
best solution before than the others. It is important to point out how the best
values for the three parameters correspond to their minimal values tested. This
indicates us that there exists a good balance of diversity into the population,
which helps the algorithm to get out from local optima.

Fig. 1. Convergence behavior at varying the parameters: popSize, partLimit, and
percEmp.
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Table 1. Operating variants of O-BEE-COL, where k̂ is the mean of the best colors
found; k is the best coloring found in all runs; SR is the success rate, and AES is the
average number of fitness function evaluations to the solution.

Variant SmartSwap Crossover Temperature k̂ k SR AES

1 on opt GPX on 15 15 100 % 5, 972, 925

2 on GPX on 24 24 100 % 1, 503, 756

3 on opt GPX off 17.8 15 40 % 36, 599, 035

4 on GPX off 25 25 100 % 5

5 off opt GPX on 15.9 15 50 % 25, 981, 420

6 off GPX on 24 24 100 % 1, 639, 403

7 off opt GPX off 19.9 17 20 % 15, 872, 834

8 off GPX off 25 25 100 % 4

Several experiments have been conducted on the instance le450 15c in order
to prove the effectiveness and utility of the features introduced in O-BEE-COL
in terms of number of colors found; success rate; and average number of fitness
function evaluations to the solution (AES). The aim of these experiments is to
show that whatever the operators’ combination chosen if we inhibit one of them,
then its outcome will be negatively affected by this move. In Table 1 we show for
any possible combination the average of the colors found (k̂), best coloring found
(k), SR and AES. In the next figures (Figs. 2, 3, and 4) we show a comparison of
the several possible cases gradually disabling all the aforementioned features. The
experiments have been averaged over 10 runs with different seeds. In the left plot
of Fig. 2, we present the comparison of the convergence speed of O-BEE-COL
with and without the SmartSwap operator (variants 1 and 5 of Table 1). It is pos-
sible to see how the first variant managed to reach the χ of the instance in every
execution (SR = 100%), whilst turning off the SmartSwap operator, O-BEE-
COL is able to get the best coloring only in 50% of the executions. Middle plot
shows a version of the algorithm that does not use the temperature mechanism.
If we disable also the SmartSwap operator (variant 7) the algorithm reaches an
average of colors (k̂) equal to 19.9, and the best result of 17 colors during all the
executions; whilst using the mutation operator (variant 3) O-BEE-COL manages
to reach the chromatic number in 40% of the cases, with k̂ = 17.8. The right plot
of the figure illustrates the contribution given by SmartSwap if instead we make
use of the original GPX in O-BEE-COL (variants 2 and 6). Looking this plot is
very clear, as both variants are not particularly efficient. The variant using the
mutation operator (2nd variant) manages to achieve an average of colors of 24,
whilst the one that not using it (6th variant) is not able to do better than 25.
These three plots of Fig. 2 prove the usefulness of SmartSwap, and its benefits
that affect positively on the overall performances, regardless on the operators
combination enabled. The plots in Fig. 3 prove the real goodness of the optimized
GPX proposed with respect to the original version [15] improving significantly
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the performances of O-BEE-COL. The first plot on the left, presents a com-
parison of the speed convergences of O-BEE-COL using the proposed optimized
crossover (1st variant) versus the original one (2nd variant). This comparison
has been done on the fully enabled version of O-BEE-COL. The same compari-
son has been made also for the versions where the two other operators have been
disabled (7th and 8th variants), and it is shown in the second plot on the left
of the figure. Looking both plots becomes very clear as the developed optimized
version to equality of variant outperforms significantly the original one. The last
two plots in Fig. 3 show respectively the analysis conducted when we turn off the
temperature mechanism (penultimate plot), and SmartSwap mutation operator
(last plot). The role played by the optimized GPX is clearly evident even in
these plots. In particular, disabling the Temperature mechanism or SmartSwap
operator, O-BEE-COL with the original version of GPX is not able to achieve a
coloring with less than 25 colors; whilst with the designed GPX version O-BEE-
COL performs better decreasing the colors number in average to k̂ = 17.8 (with
only temperature enabled) and k̂ = 15.9 (with only mutation operator enabled).
Finally in Fig. 4 we show the improvements produced, in using the temperature
mechanism, which controls dynamically the values of some parameters. In the
left plot of Fig. 4 is plotted the difference concerning of O-BEE-COL with, and
without the temperature mechanism. In both variants the algorithm achieves
successfully the chromatic number, χ = 15 (see Table 1). However, whilst the
fully enabled version is able to achieved always the chromatic number (variant
1), when this operator is turned off (variant 3) the algorithm manages to achieve
the best coloring only in 40% of the executions. In middle plot the two differ-
ent versions of the algorithm make no use of the mutation operator. When the
temperature mechanism is enabled (5th variant) the algorithm finds the optimal
coloring in one out of two cases (k̂ = 15.9), whilst the other combination (7th
variant) does not manage to do better than a 17-coloring (k̂ = 19.9). The right
plot shows the behavior of the algorithm using the classical version of GPX (2nd
variant vs. 4th). Despite the poor performances, O-BEE-COL obtains a slightly
better result when using the temperature mechanism (variant 2). In the overall,
inspecting all combinations in Table 1 is possible to claim that the Temperature
mechanism developed is the one that gives a positive greater contribution with
respect to SmartSwap mutation operator.

Time-To-Target plots [1] have been used for studying the running time of
O-BEE-COL, comparing the empirical and theoretical distributions. They rep-
resent a classical tool for characterizing the running time of stochastic algorithms
in order to solve a specific optimization problem. In particular, we have used a
Perl program proposed in [2], which display the probability that an algorithm will
find a solution as good as a target within a given running time. Through this pro-
gram two kinds of plots are produced: QQ−plot with superimposed variability
information, and superimposed empirical and theoretical distributions. This kind
of analysis has been conducted on the instances School1 and DSJC250.1, per-
forming 200 independent runs for each instance. The produced plots are shown
in Fig. 5 (1st and 3rd plots for the first instance; 2nd and 4th plots for the last).



250 P. Consoli and M. Pavone

Fig. 2. Experimental analysis on the benefits provided by SmartSwap mutation
operator.

Fig. 3. Experimental analysis on the benefits provided by optimized GPX.

The plots show how for O-BEE-COL the empirical curve perfectly fits the theo-
retical one in both instances, except for very few worst cases (first two plots on
the left). In the quantile-quantile plots, the O-BEE-COL results are in most of
the cases equal to the theoretical ones, albeit a few less in DSJC250.1 instance.
This is explained because this last instance is more complex than the other one.

Experimental Comparisons. In order to evaluate the overall performances
of O-BEE-COL, we have performed several experiments using the most known
instances of the DIMACS benchmark [22]. The results in term of coloring found,
SR obtained and AES needed are showed in Table 2. In this table we report
for each instance its complexity characteristics; the chromatic number (χ); the
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Fig. 4. Experimental analysis on the benefits provided by Temperature mechanism.

Fig. 5. Time to target plots for O-BEE-COL. The values have been obtained over 200
executions of the algorithm, respectively on the instance School1 (1st and 3rd) and
DSJC250.1 (2nd and 4th).

best coloring known in literature (k∗); the best colors number found by O-BEE-
COL (k), with SR and AES obtained. Each experiment has been performed
on 10 independent runs. Inspecting such table, O-BEE-COL performs well on
all instances queen and school finding the optimal coloring with a success rate
of 100%. On the class of the instances DSJC, instead, O-BEE-COL seems to
have more difficulty in getting the best coloring known, except for DSJC125.1,
where it manages to find the optimal solution in only 5 tests out of 10, and for
DSJC125.5 where only in one case out of 10 the algorithm finds a 17-coloring.
On the instances DSJC250.1 and DSJC205.5, instead, the algorithm finds as
best solution a coloring with only one color in more; whilst for the instances
DSJC125.9 and DSJC250.9 the difference with the best coloring known is of 2
and 3 colors respectively. The same performances are achieved also in le450 15
family, where O-BEE-COL achieves the chromatic number in le450 15c and
le450 15d instances, whilst for the other two its solution differs from the chro-
matic number only for one color in more. Finally, in flat300 20 and flat300 26
O-BEE-COL founds the chromatic number producing a success rate of 100 %,
whilst in the last instance, flat300 28, it reaches a 31-coloring in 2 cases out of
10, where the chromatic number is however 28.

In Table 3 we present a comparison of O-BEE-COL with 6 different algo-
rithms for the graph coloring problem, 4 of which nature-inspired: HPSO [30];
HCA [15]; GPB [20]; VNS [4]; VSS [21]; HANTCOL [13] (see the relative publica-
tions for major details). The best results are highlighted in boldface. Inspecting
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Table 2. Experimental results on DIMACS benchmark instances [11,22].

Graph | V | | E | χ k∗ k SR AES

DSJC125.1 125 736 5 5 5 50 % 528, 715.6

DSJC125.5 125 3, 891 12 17 17 10 % 464, 633.0

DSJC125.9 125 6, 961 30 42 44 100 % 29, 817.4

DSJC250.1 250 3, 218 8 8 9 100 % 252, 538.7

DSJC250.5 250 15, 668 13 28 29 100 % 471, 823.0

DSJC250.9 250 27, 897 35 69 73 90 % 24, 403, 325.4

le450 15a 450 8, 168 15 15 16 100 % 17, 678, 139.9

le450 15b 450 8, 169 15 15 16 100 % 6, 188, 035.6

le450 15c 450 16, 680 15 15 15 100 % 5, 972, 925.6

le450 15d 450 16, 750 15 15 15 80 % 18, 630, 401.3

flat300 20 300 21, 375 20 20 20 100 % 4, 800

flat300 26 300 21, 633 26 26 26 100 % 72.9K

flat300 28 300 21, 695 28 28 31 20 % 5.6M

Queen5 5 25 320 5 5 5 100 % 1.9

Queen6 6 36 580 7 7 7 100 % 1, 741.66

Queen7 7 49 952 7 7 7 100 % 6, 636.84

Queen8 8 64 1, 456 9 9 9 100 % 22, 107.25

Queen8 12 96 2, 736 12 12 12 100 % 1, 212, 000.35

Queen9 9 81 1, 056 10 10 10 100 % 31, 243.28

School1.nsh 352 14, 612 14 14 14 100 % 1, 703.28

School1 385 19, 095 14 14 14 100 % 821.5

this table is possible to see how the performances of O-BEE-COL are competitive
with the compared algorithms, achieving in all tested instances the best color-
ing except in DSJC250.5. Moreover, albeit on flat300 28 the VSS algorithm has
found the lower number of colors, O-BEE-COL achieves yet the same results as
all others.

In Table 4, O-BEE-COL is compared with other 10 algorithms: IMMALG
[11,28], MACOL [33], IGrAl [7], ACS [9], FCNS [29], IPM [14], ABAC [6],
LAVCA, TPA and AMACOL [32]. The comparison has been performed with
respect to the best coloring found. We have highlighted in boldface the colors
found by O-BEE-COL, which are better or equal to the ones compared. Due
a limit space, we refer the reader to each publication for more details on the
algorithms. Also on these experiments is possible to see how O-BEE-COL is
comparable with the state-of-the-art achieving the best coloring in 14 instances
over 21. In the remaining instances nevertheless it isn’t the worst.
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Table 3. O-BEE-COL versus six different algorithms for graph coloring problem, with
respect the best coloring found. The best results are highlighted in boldface.

Graph O-BEE-COL HPSO HCA GPB VNS VSS HANTCOL

DSJC250.5 29 28 28 28 - - 28

flat300 26 26 26 - - 31 - -

flat300 28 31 31 31 31 31 29 31

le450 15c 15 15 15 15 15 15 15

le450 15d 15 15 - - 15 15 -

Table 4. O-BEE-COL versus state-of-the-art for graph coloring problem, with respect
the best coloring found. The best or equal coloring obtained by O-BEE-COL is high-
lighted in boldface.

Graph O-BEE-COL IMMALG MACOL IGrAl ACS FCNS IPM ABAC LAVCA TPA AMACOL

DSJC125.1 5 5 5 5 5 5 6 5 5 5 5

DSJC125.5 17 18 17 17 17 18 19 17 17 19 17

DSJC125.9 44 44 44 43 44 44 45 44 44 44 44

DSJC250.1 9 9 8 8 8 − 10 8 8 8 8

DSJC250.5 29 28 28 29 29 − − 29 28 30 28

DSJC250.9 73 74 72 72 73 − 75 72 72 72 72

flat300 20 0 20 20 20 − 20 − − − − − −
flat300 26 0 26 27 26 − 32 − − − − − −
flat300 28 0 31 32 29 − 32 − − − − − −
le450 15a 16 15 15 15 16 − − 15 15 15 15

le450 15b 16 15 15 15 16 − 17 15 15 15 15

le450 15c 15 15 15 16 15 − 17 15 15 15 15

le450 15d 15 16 15 16 15 − − 15 15 15 15

Queen5 5 5 5 − 5 − − − 5 − − −
Queen6 6 7 7 − 7 7 − − 7 − − −
Queen7 7 7 7 − 7 7 − − 7 − − −
Queen8 8 9 9 − 9 9 9 9 9 − − −
Queen8 12 12 12 − 12 12 − − 12 − − −
Queen9 9 10 10 − 10 10 10 10 10 − − −
school1 nsh 14 15 14 14 14 − − 14 − − −
School1 14 14 14 14 14 − − 14 − − −

4 Conclusion

In this research paper we have developed a new Artificial Bee Colony heuristic,
called O-BEE-COL, for the graph coloring problem. The novelties introduced in
O-BEE-COL are basically: (1) SmartSwap mutation, which attempts to reduce
the number of colorclasses, working primarily on the troublesome vertices; (2)
optimized version of GPX, which works as multi-parents operator, forcing the
transfer of the best colorclasses to the offsprings; and a (3) Temperature mech-
anism, which has the aim to dynamically handle some parameters.

Many experiments have been performed with the primary aim to evaluate
the contribution, and benefits given by these new operators. Thus, all possi-
ble combinations of these three operators have been taken into account, and
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have been tested; the obtained results prove us how inhibiting one of them the
overall performances are negatively affected. In particular, we show, via figures,
the significant improvements produced by the optimized version of GPX, and
as the Temperature mechanism is the one that gives a greater positive con-
tribution, respect to the SmartSwap operator. Via Time-To-Target plots are
also analysed the running times of O-BEE-COL, comparing the empirical and
theoretical curves. Finally, a comparison with the state-of-the-art has been con-
ducted as well, in order to evaluate the robustness and efficiency of O-BEE-COL.
Inspecting all results, and comparisons O-BEE-COL shows efficiency; robustness;
and very competitive performances, achieving in the most of the instances the
chromatic number, or the best coloring known.
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Abstract. In this paper we present a nearest neighbor particle swarm
optimization (PSO) algorithm applied to the numerical analysis of the
inverse problem in electrocardiography. A two-step algorithm is pro-
posed based on the application of the modified PSO algorithm with the
Tikhonov regularization method to calculate the potential distribution
in the heart. The PSO improvements include the use of the neighborhood
particles as a strategy to balance exploration and exploitation in order
to prevent premature convergences and produce a better local search.
In the literature the inverse problem in electrocardiography is solved
using the minimum energy norm in a Tikhonov regularization scheme.
Although this approach solves the system, the solution may not have a
meaning in the physical sense. Comparing to the classical reconstruction,
the two-step PSO algorithm improves the accuracy of the solution with
respect to the original distribution. Finally, to validate our results, we
create a distribution over the heart by using a model of electrical activity
(Bidomain model) coupled with a volume conductor model for the torso.
Then, using our method, we make the reconstruction of the potential
distribution.

Keywords: Direct and inverse problems · Particle swarm optimization
(PSO) · Bio-inspired algorithm · Finite element · Electrocardiography ·
Bidomain

1 Introduction

Cardiovascular disease is the leading cause of mortality in the Western countries
and the most common cause of death in people beyond 35 years in China, India
and South America [1]. Although cardiac function is linked to its muscular con-
traction in the common minds, this mechanical function is fully determined and
dependent on prior electrical activation of the cardiac cells. Therefore any car-
diac electrical disorder would impact on muscular contraction. The ideal solution

c© Springer International Publishing Switzerland 2014
P. Legrand et al. (Eds.): EA 2013, LNCS 8752, pp. 256–270, 2014.
DOI: 10.1007/978-3-319-11683-9 20



PSO with Tikhonov Regularization 257

will be to measure directly the potential in the heart, but this is highly invasive.
To calculate the electrical activity on the heart using boundary surface potential
measurements (BSPMs) is known as the inverse problem in electrocardiography.

The methodology is to consider the torso as a volume conductor (ruled by the
equation of Laplace), and then using a high density electrocardiogram to measure
the electrical activity on the thorax’ surface. This problem is considered as an
ill-posed boundary value, and it is commonly solved employing regularization
techniques [2]. In the literature the heart is considered as a closed surface in a
quasi-static scheme [3]. This approach has a linear relationship to the BSPMs [4],
but it is not possible to determine the sources in the cardiac volume. Considering
that the inverse problem in electrocardiography is ill-posed, many techniques
and methods have been developed to constrain the possible solutions; stochastic
search algorithms like genetic algorithm (GA) and particle swarm optimization
(PSO) have been found to be effective in dealing with these type of problems
[5,6].

PSO is a population-based evolutionary technique inspired by the social anal-
ogy of swarm behavior in populations of natural organisms, such as a flock of
birds or a school of fish [7]. The main procedure for PSO is to generate a pop-
ulation of candidate solutions, called particles. The particles are moved in the
search-space according to the mathematical formula of the particle’s position
and velocity. Each particle’s movement is influenced by it’s local best known
position and toward the best known positions in the search-space. The positions
are updated as better positions are found by other particles. This moves the
swarm toward the best solutions. The final solution is chosen by a stop criterion
or a specified number of iterations [8]. The PSO has been successfully applied
in a wide variety of optimization and inverse problems [9], for example inverse
scattering problems [10], for geophysical inverse problems [11], for inverse heat
conduction problems [12]. Moreover in [13], the authors used the PSO to deter-
mine parameters to a predator-prey model.

The idea of optimization algorithms for the inverse problem in electrocardiog-
raphy can be found in the literature. For example in [30], the authors propose the
use of real-valued genetic algorithms for the estimation of multiple regularization
parameters, that otherwise can not be measured. These parameters are used to
constrain the solution spatially and temporally. In the work by [14] evolutionary
algorithms are employed with a set of real measures, and regularized solutions
to improve the solution of the inverse problem. This method is similar to the
one proposed by [15] using artificial neural networks instead of an evolutionary
approach. Both of these methods require training data sets for the algorithm to
work. A similar approach can be found in [16], where the construction of the
initial populations comes from Tikhonov regularized solutions.

Although PSO has proved to converge quickly towards an efficient solution
in a reduced number of iterations [8], it has been reported that PSO experiences
difficulties in reaching the global optimal solution in some optimization prob-
lems [17], and can suffer premature convergence [18]. In this paper, we use an
improved PSO algorithm, using the nearest neighbor based on [19] to improve
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the performance of the standard PSO. Kennedy empirically examined the effects
of some neighborhood topologies in the PSO [20]. Similar approaches have been
proposed in [21] and in [22] showing better results compared to standard PSO.

The modified PSO was implemented in a two-step scheme to solve the inverse
problem in electrocardiography, and reconstruct the cardiac sources. We gener-
ate an operator, which gives the relationship between the membrane potential on
the heart, and the potential on the thorax surface using Finite Element Method
approximation. The solution is in a two step algorithm. The first step is to uti-
lize the enhanced PSO to create an approximate answer. The algorithm will
look for the coefficients of the fundamental solution of the Laplace equation that
solves the volume conductor system. In the second step, we will use the solution
from the modified PSO in a Tikhonov regularization scheme [23], as a priori
information. The system was tested by using voltage distributions generated by
the Bidomain model (see for e.g. [24]). The Bidomain model is used to calculate
forward computations of extra-cellular and BSPMs using membrane potentials
in the heart. A set of membrane potentials are created, and then voltage distri-
butions over the thorax are calculated using them. In our numerical tests the
membrane potentials will be reconstructed and compared to the originals.

The paper is organized as follows. In Sect. 2, we explain some information
on inverse problem in electrocardiography. Then Sect. 3 describes the particle
swarm optimization (PSO) and the nearest neighbor PSO algorithm. In Sect. 4,
we demonstrate the simulation experiments, and we discuss the results. Lastly,
we present the conclusions.

2 Methods

2.1 Create the Operator

The Bidomain model is a model of the electrical properties of the cardiac muscle
averaged over many cells. The model considers the anisotropy of the intracellular
and extracellular domains, which affects the electrical behavior. The model is
highly anisotropic; there will be different conductivities for the direction parallel,
perpendicular and normal to the fiber directions of the cardiac muscle. The
Bidomain model is given by the following equation in terms of ue, and vm,
which are the extracellular and membrane potential:

∇ · (Mi∇(vm + ue)) = χCm
∂vm

∂t
+ χIion + χIapp, (1)

−∇ · (Mi∇vm) = ∇ · ((Mi + Me)∇ue). (2)

where Cm is the membrane capacitance per unit area, χ is the membrane surface-
to-volume ratio. The conductivity tensors for the intracellular, and extracellular
medium are Mi, and Me. The ionic current is given by Iion, and the applied
current is Iapp. If we consider equal anisotropy rates Me = λMi [24] then we
can reduce the system, to the simplified model (Monodomain), for a further
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explanation refer to [24]. The Monodomain model is given by the following set
of equations:

λ

1 + λ
∇ · (Mi∇vm) = χCm

∂v

∂t
+ χIion + χIapp, (3)

∇ · (Mi∇vm) = −∇ · ((1 + λ)Mi∇ue). (4)

Observe that the Eq. (4) can be expressed numerically in the following matrix
form:

Mvm = Nue, (5)

or
MN−1vm = ue. (6)

If we take the Laplace equation system, that describes the volume conductor
model;

−∇ · (κ∇u) = 0 in Ω,
u = g on Γ1,

κ∇un = h on Γ2,
(7)

Herein, Ω is the torso, Γ1 the heart surface, and Γ2 the thorax surface. The
nodes in the thorax will be indicated with sub-index t, the nodes in the heart
h, and the nodes in between v. We can build the matrix-vector system in the
following form. First we calculate the Stiffness Matrix; we calculate the stiffness
matrix which entries are equal to

Kij =
∫

Ω

κ∇φi∇φjdΩ i, j = 1, 2, ..., N(number of nodes). (8)

The resulting matrix vector equation will be:
⎡

⎣
Khh Khv Kht

Kvh Kvv Kvt

Kth Ktv Ktt

⎤

⎦

⎡

⎣
uh

uv

ut

⎤

⎦ =

⎡

⎣
0
0
0

⎤

⎦ . (9)

The nodal values of the potential are uh, uv, ut for the inner surface, volume, and
outer surface, respectively. Then we apply the Dirichlet condition; we consider uh

is given, and considering no overlapping between the surfaces. Then, the system
becomes

[
Kvh Kvv Kvt

0 Ktv Ktt

]
⎡

⎣
uh

uv

ut

⎤

⎦ =
[

0
0

]

, (10)

or [
Kvv Kvt

Ktv Ktt

] [
uv

ut

]

=
[−Kvhuh

0

]

. (11)

Next, we apply the Neumann condition. For each triangle in the outer surface
(where the Neumann condition is applied), we calculate the following coefficient;

Neumannc = (A)/3.0, (12)
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Where A is the area of the triangle. Then, we apply these contributions to each
of the nodes of the triangle. In the end we will have a vector the size of the
nodes of the outer surface. This vector we will call it Nv. The contributions will
be in the form Nvi

+ = Neumannci . Creating this vector the global Laplace
matrix-equation will be;

[
Kvv Kvt

Ktv Ktt

] [
uv

ut

]

=
[ −Kvhuh

N t
vκ∇ut · n

]

. (13)

If the values in the volume in between are not from our interest; from the Eq. (13)
we can build a direct relationship between the potentials on the two surfaces;

Kvvuv + Kvtut = −Kvhuh, (14)
Ktvuv + Kttut = N t

vκ∇ut · n. (15)

Observe that from (14) we get

uv = −K−1
vv (Kvhuh + Kvtut). (16)

Using this in (15), we obtain,

− KtvK−1
vv Kvhuh − KtvK−1

vv Kvtut + Kttut = N t
vκ∇ut · n, (17)

or
(Ktt − KtvK−1

vv Kvt)ut = N t
vκ∇ut · n + KtvK−1

vv Kvhuh. (18)

We will define the operators P and Q as follows:

P = (Ktt − KtvK−1
vv Kvt)−1KtvK−1

vv Kvh, (19)
Q = (Ktt − KtvK−1

vv Kvt)−1N t
v. (20)

Then we can write the system (18) in the following form

ut = Puh + Qκ∇ut · n. (21)

The flux over the thorax is null so the multiplication Qκ∇ut · n, will be zero.
Thus, the relationship between the outer and inner surface will be

Puh = ut. (22)

For our test we consider an isolated heart; this means there is no continuity of
the flux from the heart, and we take into account the potential as a Dirichlet
condition. For this we add the following relationship

uh = ue. (23)

The result from this and (6) is

PMN−1vm = ut. (24)
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Since the inverse problem is an ill-posed problem a regularization technique is
necessary. The regularization technique used in our study is a global Tikhonov-
scheme. For this global scheme, the nodal values uh can be estimated by mini-
mizing a generalized form of the discretized Tikhonov functional:

minvm
(||PMN−1vm − ut||2 + λ||C(vm − v′

m)||2), μ > 0, (25)

where C is a constrained matrix (the identity matrix), and v′
m is the a priori

information. For the minimum energy v′
m = 0, and for the two-step v′

m = vpso;
where vpso is an approximation made using particle swarm optimization. For our
datasets, we took the value of μ = 0.00001.

3 Two-Step Algorithm

3.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based evolutionary algo-
rithm based on the social behaviour of birds flocking and fish schooling, it was
firstly introduced by [7]. The population denominated as swarm uses a number
of particles (candidate solutions) which are moved around the search space to
find best solution using their positions. Each particle cooperates with the others
during the search process by sharing the information of its current position with
the best position that it and the other particles in the swarm have found. The
mathematical formulation of the PSO is as follows:

Initially, a number of particles N of the swarm xi are randomly positioned
in the search space and random velocities vi are assigned to each particle. Then,
each particle is evaluated by calculating the objective function. Once the particles
have been evaluated the values of the particle’s best position pi and the global
best position g are calculated. Next, the algorithm iterates until the stopping
criterion is met; that is either an acceptable minimum error is attained or the
maximum number of iterations is exceeded. In each k iteration, each particles
position xk+1

i and velocity vk+1
i are updated following the next equations:

vk+1
i = ω · vk

i + c1 · r1
(
pk

i − xk
i

)
+ c2 · r2

(
gk − xk

i

)
(26)

xk+1
i = xk

i + vk+1
i , (27)

where ω is a real constant called inertia weight, c1 and c2 are the acceleration
coefficients that moves the particles toward the local and global best positions;
and r1 and r2 are both random values uniformly distributed between zero and
one. The process is repeated until the stopping condition is met, the final value
of gk represents the optimum solution found for the problem optimized using
this algorithm.

3.2 Nearest Neighbor Particle Swarm Optimization

As mentioned above, an enhanced PSO is used based in local neighborhood
topology. A third term in the velocity calculation is aggregated using the nearest



262 A. Lopez et al.

neighbor in the search space. The nearest neighbor rule is based on the distance
between particles in the search space. The result equation by adding the nearest
neighbor nk

i to the calculation of velocity in each particle is:

vk+1
i = ω · vk

i + c1 · r1
(
pk

i − xk
i

)
+ c2 · r2

(
gk − xk

i

)
+ c3 · r3

(
xk

i − nk
i

)
. (28)

The nearest neighbor nk
i is the nearest individual according to a distance com-

puted on the swarm, nk
i is modeled according to the following equation:

nk
i = minj∈{1,2,...,N} (di,j) , (29)

where the di,j is the Euclidean distance between the particles i and j, such that
di,j = ‖xi − xj‖.

The ratio between pk
i , gk and nk

i controls the effect of the velocities and
the trade-off between the global and local exploration capabilities of PSO. The
additional term can be considered as a vibration. At first steps in the algorithm,
the distance between two arbitrary particles is large, and the vibration may
produce a better probabilities to escape from local minimums. At final stages, the
distance of two arbitrary particles is small, this may provide a local exploitation
in the area. These aspects, avoiding premature convergence and local search can
make the nearest neighbor PSO algorithm converge more efficiently to global
optimum.

3.3 Two-Step Algorithm Using Nearest Neighbor PSO

The optimization process begins by setting a random set of possible solutions
with a fixed initial number of members in the swarm, called particles. In the
swarm each particle is defined by a collection of variables. The solution will have
the form of the fundamental solution of Laplace. The fundamental solution of
the Laplace equation in 3D centered at a point (ξ, η, ς) is:

∂2ω

∂x2
+

∂2ω

∂y2
+

∂2ω

∂z2
+ δ(x − ξ, y − η, z − ς) = 0. (30)

or
ω(x) = − A

4π
√

(x − ξ)2 + (y − η)2 + (z − ς)2
+ B, (31)

where ξ, η, ς, A and B are constants. Note that from (31) we have 5 coefficients
to find (ξ, η, ς, A and B).

The parameters of both PSO and the modified PSO are set to c1 = 2, c2 = 2;
besides, the weight factor decreases linearly from 0.9 to 0.2 [8]. The other para-
meters has been determined experimentally, they are kept for all experiments.
Such parameters are set to N = 50, c3 = 0.5 and iteration number = 1000. The
steps involved in the nearest neighbor PSO algorithm are detailed below. Ini-
tially the maximum (max) and minimum (min) limits in the search space are
defined for each value. For the membrane potential vm will be −85 mv, and
15 mv respectively. Each particle of the swarm will be a vector containing the
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5 values of the coefficients. The particles are composed of 5 decision variables.
Each particle is evaluated using (31) at each node, creating solution vectors. The
details steps for the nearest neighbor PSO are listed as follows.

Step 1. The algorithm randomly initialize positions and velocities for all of
the particles in the swarm. Include one particle initialized at −85, which is the
stability value for the electrical activity.

Step 2. The vectors are evaluated by the norm

||PMN−1vm − ut||2. (32)

Step 3. The personal historical best position pk
i , the global best position gk

and every nearest neighbor position nk
i are updated.

Step 4. At iteration k, the velocity of the particle i, is updated as:

vk+1
i = ω · vk

i + c1 · r1
(
pk

i − xk
i

)
+ c2 · r2

(
gk − xk

i

)
+ c3 · r3

(
xk

i − nk
i

)
(33)

and the new position is computed as:

xi = xi + vi (34)

Step 5. The procedure is repeated until

||PMN−1vm − ut||2 < β or niter < 1000, (35)

where β is the stop parameter value, and niter is the number of iterations.
Step 6. Use the nearest neighbor PSO result as a priori information in Eq. (25)

v′
m = vg.

The overall method is the following:

– Create transfer matrix using FEM.
– Create operator for the relationship between membrane potential and BSPMs.

• for(i = 0; i < Measures quantity; i + +)
∗ Create 99 first vector solutions randomly.
∗ Create 1 vector solution at – 85.
∗ while(||PMN−1vm − ut||2 < β or niter < 1000)

· Evaluate particles.
· Update historical best, global best and nearest neighbor positions of every
particle.

· Calculate velocities.
· Update positions.

∗ minvm
(||PMN−1vm − ut||2 + λ||C(vm − v′

m)||2), vm = vg.

4 Experimentation

In order to validate the two-step algorithm, we generate a voltage distribution in
the thorax by using the Bidomain model (to resemble the real electrical activity
of the heart). Later, we rebuild the membrane potential using the minimum
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energy norm v′
m = 0, and the nearest neighbor PSO solution v′

m = vg. To assess
the precision of the reconstructed solution we use the following formula

difference =
∑

(vmi
− vmi

∗)2
∑

(vmi
)2

, (36)

for the difference between the original distribution vm and the calculated one
vm∗.

4.1 Experiment 1

In the first test an impulse in the basal plane over the left ventricle was applied.
The original membrane potential generated with the cardiac model is in Fig. 1. The
reconstructed model using the minimum energy norm is found in Fig. 2. The
resulted model from the two-step algorithm is shown in Fig. 3. The heart is inverted
showing the basal plane in the bottom, and the apex on the top for visualization
purposes.

Fig. 1. Original Membrane Potential Distribution for 0 ms, 50 ms, 150 ms, 200, ms,
250 ms, 300 ms, 350 ms, 400 ms created using the Bidomain model for one pulse.

4.2 Experiment 2

In the second experiment impulses in three points over the basal plane were
applied; in the left ventricle, in the right ventricle and the wall that divides them.
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Fig. 2. Membrane Potential Distribution for 0 ms, 50 ms, 150 ms, 200, ms, 250 ms,
300 ms, 350 ms, 400 ms originated using the minimum energy norm.

Fig. 3. Membrane Potential Distribution for 0 ms, 50 ms, 150 ms, 200, ms, 250 ms,
300 ms, 350 ms, 400 ms originated using the two-step algorithm.
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Fig. 4. Original Membrane Potential Distribution for 0 ms, 50 ms, 150 ms, 200, ms,
250 ms, 300 ms, 350 ms, 400 ms created using the Bidomain model for three pulses
over the basal plane.

The original membrane potential distribution is in Fig. 4. The reconstructed
model using minimum energy norm is in Fig. 5. Using the two-step algorithm is
shown in Fig. 6.

4.3 Discussion

Based in the previous numerical simulations we summarize the results in Table 1
(using (36)) for comparison between minimum energy, PSO algorithm, nearest
neighbor PSO algorithm and two-step algorithm. The values in Table 1, refer to
the difference between the original membrane potential distribution using Bido-
main, and the calculated using the inverse problem for different methods. The
smaller the value from the difference is; the closer the calculated solution is to
the original distribution. In the literature the inverse problem in electrocardiog-
raphy is solved using the minimum energy norm for a closed geometry [25–28].
We would like to mention that with our new method we can reconstruct the
sources and the membrane potential, which is not possible by using minimum
energy norm method alone. Moreover, the quality of the reconstruction of elec-
trical cardiac activity improved significantly by using our new method (two-step
algorithm) comparing to the classical regularization methods used in [26–28].

Table 1 summarizes the results obtained, all algorithms have been programmed
in C# over the same computer. The simulations have been executed 10 times
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Fig. 5. Membrane Potential Distribution for 0 ms, 50 ms, 150 ms, 200, ms, 250 ms,
300 ms, 350 ms, 400 ms created using the minimum energy norm.

Fig. 6. Membrane Potential Distribution for 0 ms, 50 ms, 150 ms, 200, ms, 250 ms,
300 ms, 350 ms, 400 ms created using the two-step algorithm.
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Table 1. Comparison between the distributions from experiments 1 and 2, and the
calculated using the inverse problem for these different methods; Minimum Energy,
PSO Algorithm, NN-PSO Algorithm and Two-Step Algorithm.

Index Minimum Energy PSO NN-PSO Two-Step Algorithm

1 Pulse A 0.9674 0.7341 0.6937 0.6656

AB 0.9763 0.7562 0.7056 0.6661

SD 0.11 0.24 0.005 0.0004

3 Pulses A 0.9770 0.4341 0.3861 0.3632

AB 0.9847 0.4359 0.3872 0.3635

SD 0.13 0.34 0.003 0.0002

independently on each algorithm. In this table, results are based on the best (B),
average best (AB), and standard deviation (SD) of the values obtained by each
algorithm. As can be seen from results of Table 1, the two-step algorithm presents
the best performance and obtains the best precision in both experiments.

5 Conclusion

In our paper, we proposed a novel two-step scheme algorithm using the near-
est neighbor PSO with the Tikhonov Regularization to calculate the electrical
sources on the heart. In contrast to what is found in the literature [29], in our
approach we reconstruct the membrane potential over the volume of the heart
instead of the extracellular potential on the surface, without using any a priori
information or a database. The membrane reconstructed potential is the respon-
sible of the electrical activity of the heart, and has important information that
could be used in diagnostics. For example in Ischemia the membrane potential
has a different profile, and using our approach this point could be identifiable.
Another advantage is that the two step algorithm uses a quasi-static approach,
numerically, each time step can be solved independently. This allows the system
to be parallelized. It is noteworthy that although the proposed approach was
used for fundamental solution of Laplace, more suitable equations can be found
to describe the electrical activity of the heart, and could be easily substituted
in the method.
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