A Lightweight Formal Approach for
Component Reuse

Khai T. Huynh*, Thang H. Bui, and Tho T. Quan

Abstract. Component reuse is playing a crucial role in today software design. How-
ever, the current approaches used in industry are quite effort-consuming due to the
lack of an effective mechanism to describe and capture semantics in software compo-
nents. In this paper, we propose a formal approach to overcome this problem, which
is based on First-Order Logic (FOL). In one hand, FOL is sufficiently expressive to
describe semantics in various software domains, from generic to specific ones. In the
other hand, FOL also supports automatic searching, matching and inferring mecha-
nism by computer-based tools and provers. Thus, our approach both effectively sup-
ports expert human to describe system components and computer programs to reuse
those components, and even to compose new components from existing ones for fur-
ther usage. We realize our approach as a framework which can be applied in various
situations of software designs, as illustrated in some case studies.

Keywords: Component-based development, rapid software development, formal
specification, component reuse.

1 Introduction

Component reuse is one of the most promising field of software engineering [1]. En-
hanced productivity (as less code needs to be written), increased quality (since assets
proven in one project can be carried through to the next) and improved business per-
formance (lower costs, shorter time-to-market) are the main benefits of developing
software from a stock of reusable components [2][3].

Khai T. Huynh - Thang H. Bui - Tho T. Quan
Faculty of Computer Science and Engineering
Ho Chi Minh City University of Technology
Ho Chi Minh City, VietNam

e-mail: 551220035@stu.hcmut.edu.vn

* Corresponding author.

© Springer International Publishing Switzerland 2015 513
V.-H. Nguyen et al. (eds.), Knowledge and Systems Engineering,
Advances in Intelligent Systems and Computing 326, DOI: 10.1007/978-3-319-11680-8 41

514 K.T. Huynh, T.H. Bui, and T.T. Quan

However, there are problems associated with reuse. There is a significant cost
associated with understanding whether or not a component is suitable for reuse in a
particular situation, and in testing that component to ensure its dependability. These
additional costs will increase the overall development costs. There are some prob-
lems associates with reuse software components [3] as follows: (i) current software
tools do not support development with reuse; (ii) the cost for creating, maintain-
ing, and using a component repository is typically quite expensive; and (iii) there
is currently lacking a practical and formal mechanism for finding, understanding,
and adapting reusable components. The common reason for all of above problems is
the lack of an effective mechanism to encode semantics to the descriptions of soft-
ware components. There are several attempts reported to formally describe software
design with embedded semantic information [4][5]. However, those approaches typ-
ically suffered from high computational cost thus causing some difficulties when
applied in real life applications.

This observation urges us to consider an approach which should be at the same
time conveniently lightweight for the human users and formally expressive for ma-
chine understanding and processing. This idea is realized as a framework proposed
in this paper, which formally facilitates reusing existing components previously de-
veloped in a lightweight manner. It is achieved by the following technical aspect:

» Using first-order logic-based (FOL) [6] to describe components.

» Using machine learning-based approach for similarity evaluation between FOL
formulas.

* Employing and enhancing the Artificial Intelligence (Al) planning technique
to compose a design fulfilling an input request. During doing so, additional
components can be composed and added to the current component library.

The rest of the paper is organized as follows. Section 2 discusses some back-
ground knowledge. Section 3 presents our proposed framework for rapid software
development based on reusing formal specification components. Section 4 illustrates
the capability of framework through two case studies. We present the related works
in Section 5 and conclude the paper in Section 6.

2 Background

2.1 FOL-Based Component Specification

First-order logic (FOL) [7] is a well-known formal representation which extends the
classical proposition logic with predicate, quantifier and variable. Thus, FOL allows
more flexible and compact representation of knowledge [8]. In our framework, FOL
is used to specify software components. The component is considered as a black box
and stored in repository as a structure in Listing 1 with expression is a FOL-based
expression.

A Lightweight Formal Approach for Component Reuse 515

Listing 1: Structure of a component stored in repository.

<component name=comp_name>
<input>variable: type_name</input>
<output>variable: type_name</output>
<pre>expression</pre>
<post>expression</post>

</component>

Listing 2 shows an example specification of binarySearch function considered as a
component stored in the repository. The components are organized in a hierarchical
organization to provide a faster means for browsing and searching.
Listing 2: Specification of binarySearch function.
<component name=java.util.Arrays.binarySearch>
<input>a: Object[], x: Object</input>
<output>i: Integer</output>
<pre><! [CDATA[
a != null && (\forall i:int; 0<i && i<a.length; ali-1]<=al[il])
11></pre>
<post><! [CDATA[
((\forall j:int; 0<=3j && j<a.length; al[j]l'!=x) && i==-1) ||
(\exists j:int; 0<=j && j<a.length; al[jl==x) && i==7))
11></post>
</component>

2.2 FOL-Based Similarity Computation

Once software components are represented as FOL formulas stored in a repository, it
is needed to develop a similarity measure between those formulas to support search-
ing the required component over the repository. To achieve this, we rely on the fol-
lowing definitions [9]:

Let I be the set of FOL formulas, T = {#1,...,1, } is set of all symbols and terms
that appear in I" and ¢, p are two FOL formulas in T".

Definition 1. Feature matrix
The feature matrix ® =T x {1,...,m} — {0,1}

o(c,) 1 if #; appear in ¢
c,i) = i
0 otherwise

Definition 2. Feature function
The feature matrix gives rise to the feature function ¢.
Define ¢: T — {0, 1} which for ¢ € T is the vector ¢° with entries in {0,1}
satisfying:
¢f =14 D(c,i) =1

516 K.T. Huynh, T.H. Bui, and T.T. Quan

Definition 3. Classifier function
For each p in T, the classifier function is defined:
Cy(.):T—=R

Given a conjecture ¢, Cp(c) estimates how useful p is for proving c. The classifier
function is useful when we need to decide if a premise p would then be useful to
prove a required goal c. It would be the case if C,(c) is above certain threshold. A
common approach to ranking is to use classification, and to combine the real-valued
classifiers [10]. The premises for a conjecture ¢ are ranked by the values of C,(c),
and we choose a certain number of the best ones.

With vector ¢ has been calculated, we can develop methods of calculating the
similarity Cp(c). These methods can be as simple as the angle between the vector
calculus, or others methods such as Naive Bayes [11], depending on the complexity
of the problem.

Listing 3: Specification of three components: fl, f2 and f3.

<component name=fl>
<input>x: double</input>
<output>y: double</output>
<post>y== 2 * x</post>

</component>

<component name=£f2>
<input>x: double</input>
<output>y: double</output>
<post>y==-x</post>

</component>

<component name=£f3>
<input>x: double</input>
<output>y: double</output>
<post><![CDATA[(x>0)=> (y==x+1) && (x<=0)=>(y==log(x))]]></post>

</component>

For example, with the components f1, f2 and f3 are described in Listing 3, if we
denote the terms py, p»2, p3 and p4 corresponding to the set of operators: {+, -}, {*},
{>,<=} and {log}, we will have the feature matrix as follow:

® p1p2p3p4
f10100
21000
f31011

Then, we will calculate the feature vectors for each component based on the ma-
trix @. For example, we have the vector representing the component f2 is ¢/2 =
[1,0,0,0] (value 1 in ith column mean that f2 has the feature p;). With the calculated
vectors ¢/, we can develop the techniques for calculating the similarity between
two vectors. This technique can be as simple as calculation the angle between two
vectors, or maybe a machine learning method such as Naive Bayes [11], depending
on the complexity of each domain.

A Lightweight Formal Approach for Component Reuse 517

2.3 FOL-Based Al Planning for Component Composition

Al planning is the area of study concerned with the automatic generation of a plan to
solve a problem within a particular domain. At its simplest, a plan is a sequence of
actions. Given an initial state, the planner tries to find the actions required to achieve
some goal conditions [12].

According to the STRIPS representation [13], the system consists of a set of
states, goals and operations. Each operation has operation name, preconditions - a
sentence describing the conditions that must occur so that the operator can be ex-
ecuted and effect - a sentence describing how the world has change as a result of
executing the operator. The algorithm of classical Al planning with STRIPS repre-
sentation is presented in [13].

With classical Al planning, the matching mechanism between the two FOL for-
mulas is exact matches. In fact, the matching is not so simple. It is easy to see that
in the mathematical formulas representation, two different formulas may have the
same computation result but there are many different representation ways, example
(2*x) and (x+x). Hence, to make the matching is more precise, we enhance the clas-
sical Al planning that allows to prove the truth of two FOL formulas have different
representation with a theorem prover, such as Z3 [14].

3 The Framework

Fig.1 describes the framework for automatic search and reusage components based
on formal specification. The framework has three modules as follows.

3.1 Component Selection Module

This module acts as a pre-processing step of framework. It computes the similarity
between the logic formulas representing the components, as discussed in Section
2.2. Thus, we can narrow the component search space. The narrowing is obtained
by similarity computation between formal specifications of the components in the
repository.

3.2 Component Composition Module

The second module of framework is the component composition module. This is
the most important part of framework. The searching and synthetic components
module based on Al-planning works on the following principle. Starting from initial
requirement (c) and the set of components (P) which have a degree of similarity in
a predefined threshold for (c), the planner will choose a component p from P (with
the priority of the degree of similarity). As discussed in Section 2.3, we rely on a
mathematical prover to judge if the precondition of p is equivalent to that of c. If it
is the case, the search process stops and returns results (return p). In contrast, the

518 K.T. Huynh, T.H. Bui, and T.T. Quan

Formal specification of Software/ Software
software requirement prototype

(Component Composition Module
Composition }-—-{ Al planning |-l—[Prover [H
s J
[
)
{~ Component Selection Module N

Enrich Repository

Simitariy | Module

(. I ¢ vy

Repository of formal specification components

Fig. 1 Structure of framework

algorithm will consider the precondition of p as new postcondition and the search
process will repeated. In case of deadlock, the algorithm will backtrack with the
function p’ in P (p' # p).

3.3 Enrich Repository Module

This module of framework performs enriching the component specification repos-
itory for future use. So, this module helps us to optimize the system performance
when encountering a search request that is similar to those previously performed.

4 Case Studies

4.1 Apply the Framework to Find Function(s) Satisfy the
Requirement

In this section, we present an illustrative example of the automatic API functions
searching which satisfy the requirement specifications.

We want to generate a program segment which returns the list of students who to
be received scholarship from a list of students. List of students received scholarship
is defined as the list which has a maximum of » items (usually, n is 10% of total
students) taken in order from top to bottom by GPA; The student in this list must
have a GPA greater than or equal 7.0/10.0 and every subject must has the result is

A Lightweight Formal Approach for Component Reuse 519

greater than or equal 5.0/10.0. With that requirement, the specification is given as
follows:

//@in s: StudentList, n: int

//@out x: StudentList

//@require listnotnull (s)

//@ensure x.len<=n && orderlist (x) &&

//Q@ (forall i: int; i>=0 && i<x.len; x[1].GPA>=7.0) &&

//@ (forall i: int; i>=0 && i<x.len;

//@Q (forall j:int; j>=0&&j<x[i].subjs.len; x[i].subjs[j]1>=5.0))

In our system repository, we have a list of API functions:
The function returns the list of students who have the GPA greater than or equal
the value n:

<component name=get_StudentList_By_GPA>
<input>s:StudentList, n:float</input>
<output>x: StudentList</output>
<pre>listnotnul (s)</pre>
<post><! [CDATA[(forall i: int; i>=0 && i<x.len; x[i].GPA>=n)
11></post>
</component>

The function returns the list of students who have the result of every subject is
greater than or equal the value n:

<component name=get_StudentList_By_SubjectScore>
<input>s:StudentList, n:float</input>
<output>x: StudentList</output>
<pre>listnotnul (s)</pre>
<post><! [CDATA[(forall i: int; i>=0 && i<x.len;
(forall j:int; j>=0&&j<x[i].subjs.len; x[i].subjs[J]l>=n))
]11></post>
</component>

The function returns the first n students from the list of Student. If the number of
items in student list is less than #, all item of student list will be returned.

<component name=get_n_FElements>
<input>s:StudentList</input>
<output>x: StudentList</output>
<pre>listnotnul (s) </pre>
<post><![CDATA[x.len<=n]]></post>
</component>

The function sorts the list in descending order of GPA:

<component name=sort_DescList_BRy_GPA>
<input>s:StudentList</input>
<output>x: StudentList</output>
<pre>listnotnul (s)</pre>
<post>orderlist (x)</post>
</component>

520 K.T. Huynh, T.H. Bui, and T.T. Quan

listnatnull(x)
| ? |
x.len<=n && orderlist{x) && (forall i; int; i>=0 && i<x.len; x[i]. GPA>=T7.0) &&
{forall i: int; i>=0 && i<x len; {forall jint; j>=0 && j<x[i].subjs len; x[i].subjs[]>=5.0})

-
listnotnull(s)
| ?
orderlist(x) && (forall i; int; i==0 && i<x.len; x[].GPA==7.0) &&
(forall i int; i==0 && i<x.len; (forall jint; j>=0 && j<x[i].subjs len; x[i].subjs[j]>=5.0})
&& listnotnull(x)
[get_n_Elements(x:StudentList, n); |
xlen<=n &8 orderlist(x) && (forall i. int; i==0 && i<x.len; «[il. GPA>=T7.0) &&

(forall i int; i==0 && i<x.len; {forall jint; j';='0 && j<xfi].subjs len; x[il.subjs[il==5.0))

Jisrm;i%ﬂf{s)
[Skip |
listnotrullix
[get_StudentList By SubjectScore(x:StudentList, 5.0}; |
(forall i: int; i==0 && i<x.len; (forall fzint; j(>=0 && j<xfil subjs.len; x[il subjsfil>=5.0))
&& listnotnull(x)
[get_StudentList_By GPA(x:StudentList, 7.0); i
(forall i int; i>=0 && i<x.len: x{il. GPA>=7.0) &&
(forall i; int; i>=0 && i<x.len; (forall jint; j>=0 && j<x{i].subjs.len; x{il.subjs{i]>=5.0))
&& listnotnull{x)
[sort_DescList_By GPA(x:StudentList); |
orderlist{x) && (forall i int; i==0 && i=x.len; x[i]. GPA==7.0) &&
(forall i; int; i==0 && i=x.len; (forall jiint; j==0 && j<x[i].subfs.len; x[i]. subjs[jl==5.0))
&& listnotnull{x)
[get_n_Elements(x:StudentList, n);
xlen==n && orderlist{x) && (forall i int; i==0 && i<x.len; x[i] GPA>=7.0) &&
(forall i: int; i==0 && i<x.len; (forall j:int; j>=0 && j<x[i].subys.len; x[i].subjsffj==5.0))

Fig. 2 Planning process to generate list of Student received scholarship

Rapid software development framework EI@IEI
File Systern Config Help
Repository tree Reguirement Specification Editor:

Nprogram segment refurn tha Tist of Students who tobe received scholarship

v [Dmm Repository
private int get_StudentList_ReceivedSchalarchip{

'@] Genletliing StudentList 5= get_Students(;
M 7 mathematical Funci intn=s.leng;
[String Functions figgin 5: StudentList, n: int

()77 Triganemetric Fung| | f@outx Studentlist
f@require listnotnull(s)

TH]7_HCMUT Llarary fi@ensure xlen<=n && orderlistod &8 foral i int; =0 & < en; 4l GPA==]
] 7 maO Library i@ (forall i int =0 && i=xlen; (forall jint; j==0 && j=x(il subjs len; il subjs|
[7 Financial Function o _|
7 Foreign Language {| |- -~ -~
Results: lﬂJ
private int get_StudentList_ReceivedScholarchip{ L‘|
StudentList s = get_Students(;
intn = g.leng;

get_n_Elements(
sor_DescList_By_GPA{
get_StudentList_By_GPAL
get_StudentList_By_SubjectScoreds, 5.0,
700,

Fig. 3 Illustrated result of generating list of Student received scholarship

A Lightweight Formal Approach for Component Reuse 521

With the above requirement and API function repository, the planning steps per-
form as in Fig.2 and Fig.3 illustrates the result produced from framework. Note that
the composed result can be further added to the repository for future reuse if needed.

4.2 Automatically Searching for Web Template

In practice, when developing a website, we want to find the templates which can ap-
ply to our website. Searching the template matching with the requirement is a boring
and time consuming work. With our framework, we can perform this searching pro-
cess automatically. Suppose that we have a repository of website templates which
contains three specified templates as follows:

Template_1 has three parts: header, body, and footer. The header contains
banner, logo and menu. Body of the template is divided into three columns:
left_col, center_col and right_col. The menu contains three links: Home, Intro
and Contact. This template is specified:

<component name=Template_1>
<post><! [CDATA[page (header, body, footer) &&
header (banner, logo, menu) &&
body (left_col, center_col, right_col) &&
menu (Home, Intro, Contact)]]></post>
</component>

Template_2 has three parts: header, body, and footer. The header contains
banner and logo. Body of the template is divided into three columns: left_col,
center_col and right_col. The left_col contains a vertical_menu which has three
links: Home, Intro and Contact.

<component name=Template_2>
<post><! [CDATA[page (header, body, footer) &&
header (banner, logo) &&
body (left_col, center_col, right_col) &&

left_col (vertical_menu)) &&
vertical_menu (Home, Intro, Contact)]]></post>
</component>

Template_3 has three parts: header, body, and footer. The header contains
banner and logo. Body of the template is divided into two columns: left_col and
main_col. The left_col contains a vertical_menu and the vertical_menu has three
links: Home, Intro and Contact. This template is specified:

<component name=Template_3>
<post><![CDATA[page (header, body, footer) &&
header (banner, logo) &&
body (left_col, main_col) &&
left_col (vertical_menu)) &&
vertical_menu (Home, Intro,Contact)]]1></post>
</component>

522 K.T. Huynh, T.H. Bui, and T.T. Quan

User wants to find a website template which has three parts: header, body and
footer. The header contains the banner and logo. Body of the site is divided into
three columns: left_col, center_col and right _col. The le ft_col contains a vertical
menu which has links: Home, News, Products and Contact. The specification of
user requirements is as follows:

//@ ensure page (header, body, footer) && header (banner, logo) &&

//@ body (left_col, center_col, right_col) s&&
//@ left_col (vertical_menu)) &&
//Q vertical_menu (Home, News, Products, Contact)

With above requirement, the similarity computation between the specification
of requirement and templates in repository will return the Template_2 is the most
suitable template with a similarity degree of 80% (matching 4 of 5 terms). The
Template_1 has a similarity degree of 40% (matching 2 of 5 terms) and the
Template_3 has similarity degree of 60% (matching 3 of 5 terms).

Thus, the Template_2 is the needed template. Of course, this template does not
completely satisfy to the requirement, but only the one that the best fits the require-
ment. Then, user may need to further modify before deploying.

5 Related Work

Intelligent Software Architecture Reuse Environment (ISARE) [15] is a framework
on the aspects of software Architecture on quality attributes. It is mainly directed on
reuse of available software architecture evaluation methods. ISARE strengthen the
Software Architecture repository and automate the software architecture selection
and evaluation methods for efficient and reliable systems. The main input of ISARE
is the set of architectural styles and their comprehensive analysis against the set of
quality attribute.

Trusted National Software ResoUrce Sharing and Co-operaTeng EnvironmEnt
(TRUSTIE) [16] is a tool that is used to construct a large-scale software produc-
tion environment for trust worthy resource sharing and development cooperation.
TRUSTIE is used as a command-line tool for component development. A new tool
has to be developed to provide advantages of meta-model to model-editor genera-
tors. A research issue presents the close connection with Service Oriented Architec-
ture [16].

N Md Jubair Bash et al. [17] has proposed a framework studio for effective com-
ponent reusability which provides the selection of components from framework stu-
dio and generates source code based on the stakeholders needs. This framework
studio is implemented in using swings which are integrated onto the Netbeans IDE
which helps in faster generation of the source code.

A Lightweight Formal Approach for Component Reuse 523

6 Conclusion

In this paper, we propose a framework which allows automatic reuse and composi-
tion of software components. In our framework, we first suggest to use First-order
Logic (FOL) for describing software components. By doing so, our frameworks
can serve various situations of software design, ranging from function APIs to GUI
templates searching. One of the key properties of our framework is that it can be
applied in a lightweight manner, i.e. users are not restricted to a certain convention
when using FOL to describe the components. Then, due to the solid mathematical
foundation of FOL, the predefined FOL-based components can be processed effec-
tively for searching, matching or even incremental composition by computer-based
tools and provers. We have demonstrated the effectiveness of our framework in two
case studies reflecting two common demands of component reuse in practice, which
are Java API and Web interface searching.

References

[1] Basili, V., Rombach, H.D.: Support for comprehensive reuse. IEEE Software Engineer-
ing Journal, vol 6(5), 303-316 (1991)

[2] Sametinger, J.: Software engineering with reusable components. Springer, New York
(1997)

[3] Sommerville, I.: Software Engineering, 9th edn., ch. 16. Addison-Wesley (2010) ISBN-
10: 0137035152

[4] Liu, S., et al.: SOFL: A formal engineering methodology for industrial applications.
IEEE Transactions on Software Engineering 24(1), 2445 (1998)

[5] Zschaler, S.: Formal specification of non-functional properties of component-based
software systems. Software & Systems Modeling 9(2), 161-201 (2010)

[6] Barwise, J.: An introduction to first-order logic. Studies in Logic and the Foundations
of Mathematics 90, 5-46 (1977)

[7] Srivastava, S.M.: Syntax of First-Order Logic. A Course on Mathematical Logic, pp.
1-13. Springer, New York (2013)

[8] Ayorinde, I.T., Akinkunmi, B.O.: Application of First-Order Logic in Knowledge Based
Systems. African Journal of Computing & ICT 6(3) (2013)

[9] Jesse, A., et al.: Premise selection for mathematics by corpus analysis and kernel meth-
ods. Journal of Automated Reasoning, 1-23 (2011)

[10] Richard, M.D., Richard, P.L.: Neural network classifiers estimate Bayesian a posteriori
probabilities. Neural Computation 3(4), 461-483 (1991)

[11] Irina, R.: An empirical study of the naive Bayes classifier. In: IJCAI 2001 Workshop on
Empirical Methods in Artificial Intelligence, vol. 3, pp. 41-46 (2001)

[12] Russell, S.: Artificial intelligence: A modern approach, 2nd edn., vol. ch. 11. Pearson
Education India (2003)

[13] Richard, E., Nilsson, J.: Strips: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence 2, 189-208 (1971)

[14] de Moura, L., Bjgrner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008)

[15] Rizwan, A., Saif, R.K., Aamer, N., Tai-hoo, K.: JASRE: An Integrated Software Archi-
tecture Reuse and Evaluation Framework. In: ASEA 2010, pp. 174-187 (2010)

524 K.T. Huynh, T.H. Bui, and T.T. Quan

[16] Xinyu, Z., Li, Z., Cheng, S.: The Research of the Component-based Software Engineer-
ing. In: Sixth International Conference on Information Technology: New Generations,
pp- 1590-1591. IEEE (2009)

[17] Jubair, B.N.M., Salman, A.M.: A Framework Studio for Component Reusability. CS &
IT-CSCP-2012, 325-335 (2012)

	A Lightweight Formal Approach for Component Reuse
	1 Introduction
	2 Background
	2.1 FOL-Based Component Specification
	2.2 FOL-Based Similarity Computation
	2.3 FOL-Based AI Planning for Component Composition

	3 The Framework
	3.1 Component Selection Module
	3.2 Component Composition Module
	3.3 Enrich Repository Module

	4 Case Studies
	4.1 Apply the Framework to Find Function(s) Satisfy the Requirement
	4.2 Automatically Searching for Web Template

	5 Related Work
	6 Conclusion
	References

