On Automating Inference of OCL Constraints
from Counterexamples and Examples

Duc-Hanh Dang and Jordi Cabot

Abstract. Within model-based approaches, defining domains and domain restric-
tions for conceptual models or metamodels is significant. Recently, a domain is often
presented as a class diagram, and domain restrictions are expressed using the Ob-
ject Constraint Language (OCL). An effective method to define a domain is based
on a description of the domain at the instance and example level. So far such a
method has often focused on the generation of structure aspects, but have omitted
the inference of OCL restrictions that could complement the domain structure and
improve the precision of the domain. This paper proposes an approach to automat-
ing the inference of OCL restrictions from a domain description in terms of counter-
and examples. Candidates are generated by a problem solving, and irrelevant ones
are eliminated using the user feedback on generated counter- and examples. Our
approach is realized with the support tool InferOCL.

1 Introduction

To capture a domain corresponding to a conceptual model of a system or a meta-
model is a significant step to manipulate models within model-driven approaches.
An effective approach to define domains is based on a description of the domain at
the instance and example level [1]. So far such a method has often focused on the
generation of structure aspects captured by a class diagram, but have omitted the
inference of restrictions that could complement the domain structure and improve
the precision of the domain. The restrictions are often expressed in the Object Con-
straint Language (OCL) [2]. It puts forward a need to infer OCL restrictions from
the instance level information of the domain.

Duc-Hanh Dang
VNU - University of Engineering and Technology, Hanoi, Vietnam
e-mail: hanhdd@vnu.edu.vn

Jordi Cabot
AtlanMod, cole des Mines de Nantes - INRIA, LINA, Nantes, France
e-mail: jordi.cabot@inria.fr

© Springer International Publishing Switzerland 2015 219
V.-H. Nguyen et al. (eds.), Knowledge and Systems Engineering,
Advances in Intelligent Systems and Computing 326, DOI: 10.1007/978-3-319-11680-8 18

220 D.-H. Dang and J. Cabot

The essence of such an inference is to consider the relationship between snap-
shots (object diagrams) and OCL invariants. Several authors offer methods to check
if a snapshot is valid [3]. Current works often translate OCL specifications into
other specification environments such as CSP [4], Alloy [5], and relational logic [6]
in order to effectively validate snapshots or to find valid (invalid) snapshots or to
check properties. The work in [7] proposes a genetic algorithm in order to generate
OCL well-formedness rules from counter- and examples. However, the work lacks
of considering the relevance of generated candidates.

This paper introduces an approach to automating the inference of OCL invari-
ants. At the first step, from input valid and invalid snapshots, OCL invariant candi-
dates are generated using patterns [8]. This paper enhances this step at two points:
(1) input snapshots are preprocessed in order to increase the relevance of generated
candidates, and (2) the algorithm is improved in order to remove the duplication
of candidates. At the second step, model finding is employed in order to generate
counter- and examples. By getting user feedback on generated snapshots, irrelevant
cases could be eliminated. We realize the approach with the tool InferOCL, based on
the tool EMFtoCSP [4], and the solver ECL/PS¢ [9]. We have applied the approach
on the domain of Role-Based Access Control (RBAC) models [10]. The experiment
shows a possibility to apply the tool InferOCL in practice as well as threads to va-
lidity of our approach.

The remainder of this paper is organized as follows. Section 2 motivates the work
with a running example. Section 3 introduces an approach to automating the infer-
ence of OCL invariants. Section 4 explains our realization for the approach with the
tool InferOCL. We present experimental results in Sect. 5 and discusses threats to
validity of our approach in Sect. 6. Section 7 surveys related work. This paper is
closed with conclusions and an outlook on future work.

2 Running Example

Role-based access control (RBAC) [10] is a popular approach to restricting system
access to authorized users. In order to build and integrate RBAC concrete policies
in the system, it is necessary to define a conceptual model for it. Figure 1 presents
such a conceptual model in form of a class diagram. In this way a RBAC concrete
policy would be presented by an object diagram (a snapshot) as depicted in Fig. 2.

Domains like RBAC often require to add certain restrictions on the class model
in order to obtain a more precise specification of them. For example, the example
RBAC policy shown in Fig. 2 is actually an invalid snapshot since the number of
roles that the ada could play is greater than the value of the maxRoles attribute.
Such restrictions are often expressed in OCL and referred to as OCL invariants. We
might find the OCL invariants for the simplified RBAC domain [11] as depicted in
Fig. 2: (1) The maximum number of roles to which a user is assigned must be less
than its attribute maxRoles; (2) The assignment of a dependent role with a user
postulates the assignment of required roles with the user; (3) A user must not be
assigned to both of the mutually exclusive roles.

On Automating Inference of OCL Constraints 221

User MutuallyExclusive
name : String wrtUserdssignment : Boolean
maxFRoles : Integer wrtPermissionAssignment : Boolean

* -~

-
user -
-
-~
-

) -
Userhssignment - “MutuallyExclusive

-~

- PrereguisitePermissions

role -

dependent
1% ® | roleB e *
role
Role * Permission *

= * PerrmissionfAssignmment 1. % X
narne ; String name : String required

maxMembers ; Integer |5 required role REFMISSION | ovpnles | Integer
dependent| *

PrereguisiteRaoles

context User inv maxCard_Role: self.role —>size() <
self.maxRoles

context User inv requiredInclusion_role: self.role —>forAll(
d \ d.required —>forAll (r | self.role —>includes (r)))

context MutuallyExclusive inv retrictedAssoc_user:
self.wrtUserAssignment implies self.roleA.user
—>excludesAll (self.roleB.user)

Fig. 1 Simplified RBAC conceptual model

ada:User rl:Role p2:Permission
name="'~Ada’ name="'superisar' name="updatescc
maxRoles=1 maxMembers=2 maxRoles=2
dependent dependent
required required
r2:Role pl:Permission
name='clerk' name="viewhcc'
maxMembers=5 maxRoles=2
ml:MutuallyExclusive
wrtlUserAssignment=true | — — — — —
wrtPermissionAssignrent=rfalse
r3:Role

narme='user'
maxMembers=20

Fig. 2 The instance-level information with snapshots in form of object diagrams

222 D.-H. Dang and J. Cabot

Define OCL invariants by means of examples. To capture such a RBAC domain
in a natural way, the modeler often employs snapshots as counter- and examples that
provide instance-level information of the domain. Such instance-level information
exposes key concepts, relationships, and restrictions of the domain and supports
for the modeler grasp them. The challenge is how we can automatically infer OCL
invariants from a set of valid and invalid snapshots.

3 A Pattern-Based Automated Inference

Figure 3 illustrates for our approach to automating inference of OCL invariants:
OCL Invariant Patterns are used as templates to generate OCL invariants that accept
valid snapshots and reject invalid ones [8]. The validation of snapshots, that conform
to Conceptual Model, is determined by the Domain Knowledge, i.e., domain experts
or model-generating tools such as UML2CSP [4] and USE [3].

~
 RLERREEEEERRETTRERREEY Conceptual Modelj<-------------; .
<<representOf>> <<conformTo>>
Domain : Designer
Knowledge : OCL Invariant
<<input>> Patterns
<<input>> '
- ‘ <<conformTo>>
. Inference of :
i i <<input>> i <<generated>> -
Valid and Invalid|_ =57 puzz OCL Invariant =22 2+ OCL Domain
Snmapshots | | LLEEARETT ~ Restrictions

Fig. 3 Overview of the pattern-based approach

An OCL invariant pattern consists of an OCL template and a matching function that
takes as input a valid snapshot set and an invalid one, binding the variables of the
template to values in order to form an OCL invariant [8]. Figure 4 shows the patterns
for the OCL invariants within the running example.

3.1 Generating OCL Invariant Candidates as Solving a CSP

We view the generation of OCL invariants as solving a CSP, where OCL invariant
patterns are encoded as CSP constraints.

Fetching Patterns from a Catalog. The basic idea is that each OCL invariant
set candidate corresponds to a partition of the invalid set SNOK = | JSNOK;, where
each invariant is obtained by applying a pattern such that it accepts SOK and rejects
SNOK;. We encode the algorithm in prolog as follows:

On Automating Inference of OCL Constraints 223
Pattern Structure OCL Template
Maxcard context [A] inv:
self.[role]->size() <= self.[attr]

RequiredInclusion

context [A] inv:
self.[roleB]->forAll (d
d. [required]->forAll(r
self.[roleB]->includes(r)))

RestrictedAssoc

context [A] inv:

self. [cond] implies
self.[roleA].[roleC]
->excludesAll (self. [roleB].[roleC])

Fig. 4 OCL invariant patterns for the running example

apply_all (SOK, SNOK, PATTERN, INV) :—

sort (SNOK, SNOKo),

o

partition (SNOKo, SnokGroups),

(foreach (SnokGroup,

SnokGroups) ,

fromto([], InINV, OutINV, INV),

param (SOK, PATTERN)

do

member (Pattern, PATTERN),

Fo—— Get all partitions of the invalid snapshot set SNOK —-—----—-—

%$-— Each SnokGroup is rejected by a pattern-generated invariant —---—
applyPattern (Pattern, SOK, SnokGroup, Para),

f———— Each invariant is captured by a pair (Pattern, Para) —--—————-—
OutINV = [[Pattern, Para] | InINV]

The aim of the constraint applyPattern (Pattern, SOK, SnokGroup, Para)
is to define the matching value Para as we apply the Pattern on the valid snap-
shots SOK and the invalid ones SnokGroup. Note that the generated invariant
could be formed by the pair [Pattern,Para]. We encode the applyPat—
tern(_,_,_,_) based on the encoding of each pattern as mentioned below.

Encoding OCL Invariant Patterns. We map each pattern to a CSP constraint so
that generated invariants could accept valid snapshots and reject invalid ones. For
example, the maxCard pattern could be encoded as follows:

apply_maxCard (SOK, SNOK,

Para) :—

o Ensuring the invariant accepts SOK-————--—————-———————
(foreach (SnapshotOk, SOK),

param(Para) do

maxCard (SnapshotOk, Para, 1)

)

o

(foreach (SnapshotNok, SNOK),

param(Para) do

maxCard (SnapshotNok, Para, 0)

S Ensuring the invariant rejects SNOK-———--————-—--———————

224 D.-H. Dang and J. Cabot

The parameterized OCL invariant maxCard is translated into the CSP constraint
maxCard (Snapshot, Para, Ret), where the Ret, that may be O or 1, deter-
mines the validation of the input snapshot. Such a CSP predicate could be obtained
by a translation of OCL invariants into CSP as explained in [4].

3.2 Incorporating User Feedback

In order to capture user’s knowledge of the underlying domain in OCL we propose
incorporating user feedback at the two aspects: (1) The user could locate part of a
snapshot that makes it invalid, and (2) she could determine whether a snapshot is
valid or invalid. The first one is to preprocess input snapshots, and the second one
is to eliminate irrelevant inferred results.

Preprocessing Input Snapshots. Let us focus on the snapshot shown in Fig. 2, that
could be presented as an instance of the following snapshot structure:
SnapshotStructure = [user (oid,name,maxRoles), role(oid,name,maxMembers)
mutuallyexclusive (oid, roleA, roleB, id, wrtUserAssignment, wrtPermissionAssignment),
permission(oid, name, maxRoles), userassignment (user,role),

prerequisiteroles (dependent, required),

assoccls_mutuallyexclusive (roleA, roleB),

prerequisitepermissions (dependent, required),
permissionassignment (role,permission)]

Since this is an invalid snapshot w.r.t the invariant maxCard_Role as shown in
Fig. 1, the user could highlight relevant part of the snapshot. Technically, we could
present preprocessed snapshots in this way:

PreprocessedSnapshot = [[user(l,_,1)], [role(l,_,_),role(2,_,_))1,[1,1]1,
[userassignment (1,1),userassignment (1,2)1,[1,[1,[1,[]

Eliminating Irrelevant Results. We aim to get user feed back in order to eliminate
irrelevant generated sets of OCL invariants. The basic idea of this method is that we
consider each pair of generated invariant sets, INV; = {inv;;,invy2,...,invy,,} and
INV, = {invy;,invyy, ...,inv2, }, and generating a valid snapshot for the new invariant
set INV; U {not invy;}, w.r.t each invariant inv,; € INV,. We then capture user feed-
back for the generated snapshot example: (1) If the user gives a positive feedback,
the result INV> as well as the other generated results that reject the snapshot example
should be irrelevant; (2) In the other case the result INV; and the other generated
results that accept the snapshot example should also be irrelevant. In case no valid
snapshot w.r.t the new invariant set could be found, we would have INV; = invy;,
and then if that is true for all invy; € INV,, we would have INV; = INV,. As we
would also have INV; = INV/, they are logically equivalent.

4 Tool Support

This section first overviews the support tool InferOCL based on the tool
EMFtoCSP [4], and the solver ECL'PS¢ [9]. Then, it illustrates the tool and our
inference method by applying them for the running example.

On Automating Inference of OCL Constraints 225

4.1 Overview of the InferOCL Tool

Figure 5 outlines the InferOCL tool. First, a model is loaded with an xmi file and
encoded in prolog using the EMFtoCSP tool. The control module analyzes input
snapshots provided by the user, and sending a query to the ECL/PS¢ solver to obtain
OCL invariant candidates. In order to generate counter- and examples, the user needs
to provide a domain restriction for snapshots.

<<XMI>> <<UMITtoCSP>> <<ECLiPSe>>
Input Model Encoding Input OCL&UML Libs
Model in Prolog

<<DataFile>>
Valid and Invalid

/ Snapshots \ validating
<<Control>> snapshots <<ECLiPSe>>

feedback <<View>> Inference of | £, Sol
finding olver
— 1 Generated Example OCL Invariants | invariants
User and Counterexamples and snapshots
<<View>> <<ECLiPSe>>
Ian_Jt Snap;hgt generating snapshot OCL Invarl-ant
Domain Restrictions | examples and counterexamples Pattern Libs

Fig. 5 Overview of the InferOCL tool

The elimination step finishes as no example could be found, and the InferOCL
tool brings out final candidates, each of which includes OCL invariants. At this
point the candidates are logically equivalent to each other. The user may continue
validating the result by examining as much as possible on counter- and examples.

4.2 Applying the Method to the Running Example

We could apply the method to the running example with the following steps.

Stepl - Preprocessing Input Snapshots. The user provides as input 1 valid snap-
shot and 3 invalid ones that have been preprocessed. The first invalid snapshot cor-
responds to the maxCard_Role invariant, mentioned in Fig. 1. The second and
third one corresponds to the retrictedAssoc_user and requiredInclu-
sion_user invariant, respectively. Note that for sake of clarity, we employ the
type Integer instead of the String in this example.

SOK = [[[user(1,100,3)], [role(1,100,5),role(2,200,5),ro0le(3,300,5)],
[mutuallyexclusive(1,1,2,1,0),mutuallyexclusive(2,2,3,1,0)],
[permission(1,100,2),permission(2,200,2)],

[userassignment (1,1),userassignment (1,3)], [prerequisiteroles(1l,3)],
[assoccls_mutuallyexclusive(1l,2),assoccls_mutuallyexclusive(2,3)],
[prerequisitepermissions(2,1)1],

[permissionassignment (1,1), permissionassignment (2,1),
permissionassignment (3,1),permissionassignment (3,2)]1],

SNOK = [[[user(l,_,2)], [role(l,_,_),role(2,_,_),role(3,_,_)1,
[userassignment (1, 1) ,userassignment (1,2),userassignment (1, 3)]

[[user(l,_,_)]1,[role(l,_,_),role(2,_,_),role(3,_,_)1,

[

226 D.-H. Dang and J. Cabot

[mutuallyexclusive(1,1,2,1,_),mutuallyexclusive(2,1,3,1,_),
mutuallyexclusive(3,2,3,1,_)1,[], [userassignment (1,1),userassignment (1,3)1,[],
[assoccls_mutuallyexclusive (1,2),assoccls_mutuallyexclusive(1l,3),
assoccls_mutuallyexclusive(2,3)1,[],[]1],

[{user(l,_,_)], [role(l,_,_),role(2,_,_)1,I[]1,[], [userassignment(1l,1)],
[prerequisiteroles(1,2)], [1, (1, [1]]

Step 2 - Generating Candidates. With the input data from Step 1, the InferOCL
tool could generate 18 candidates by an inference on our experimental catalog of
OCL invariant patterns, including the 3 patterns as depicted in Fig. 4 and the 5
patterns as introduced in [8]. For example, the following is one of the candidates,
that includes three OCL invariants.

context Role inv cardInv_roleB: self.roleB —> size ()
< 2

context User inv requiredInclusion_role: self.role
—> forAll(d | d.required —> forAll(r | self.role
—> includes(r)))

context User inv intv_maxRoles: 2 < self.maxRoles

Step 3 - Eliminating Irrelevant Candidates. The elimination of irrelevant can-
didates for the running example is summarized as in Table 1. At the first step the
user provides a domain restriction for snapshots, that includes bounds for the size of
classes and associations and attribute values:

User :: 0..10; name: Integer :: 1..10; maxRoles: Integer :: 1..10;

Role :: 0..10; name: Integer :: 1..10; maxMembers: Integer :: 1..10;

MutuallyExclusive :: 0..10; wrtUserAssignment: Boolean :: 0..1;
wrtPermissionAssignment: Boolean :: 0..1;

Permission :: 0..10; name: Integer :: 1..10; maxRoles: Integer :: 1..10;

UserAssignment :: 0..10; PrerequisiteRoles :: 0..10;

PrerequisitePermission :: 0..10; PermissionAssignment :: 0..10;

The generated example at step 2 in Table 1 is irrelevant w.r.t the retrictedAs—
soc_user restriction. The irrelevant snapshots at step 3 and 5 correspond to the
requiredInclusion_user and maxCard_Role restriction.

Step 4 - Examining on Equivalent Candidates. At this step the InferOCL tool
brings out the final candidate including 3 OCL invariants as mentioned in Fig. 1. The
user could continue to validate this result and each equivalent candidate in general
by examining on generated counter- and examples.

5 Experimental Results

This experiment is performed on a 64-bit computer with 2.70GHz Intel Core i7
processor and 8Gb RAM. We take as input 05 arbitrary snapshots for the valid set
SOK and from 3 to 11 other ones for the invalid set SNOK. In the first case the
input SNOK is preprocessed and the other case without preprocessing. The result
of generating candidates and the corresponding performance time is presented as
in Table 2. We could realize that the number of generated candidates decreases as

On Automating Inference of OCL Constraints 227
Table 1 Eliminating irrelevant candidates for the running example

Step Generated Example Snapshot Feedback Candidate

1 [[1,[role(1,1,1),role(2,1,1)],[mutuallyexclusive(1,1,1,0,0), Yes 12
mutuallyexclusive(2,2,1,0,0)],[permission(1,1,1)],[1,[],
[assoccls_mutuallyexclusive(1,1),
assoccls_mutuallyexclusive(2,1)],[],
[permissionassignment(1,1),permissionassignment(2,1)]]

2 [[user(1,10,3)],[role(1,1,1),role(2,1,1)], No 6
[mutuallyexclusive(1,1,1,1,0)],[permission(1,1,1)],
[userassignment(1,2),userassignment(1,1)],[],

[assoccls_mutuallyexclusive(1,1)],[],
[permissionassignment(1,1),permissionassignment(2,1)]]

3 [[user(1,10,3)],[role(1,1,1),role(2,1,1),role(3,1,1)1,[1, No 3
[permission(1,1,1)],[userassignment(1,2),
userassignment(1,1)],[prerequisiteroles(1,3)],[1,[1,
[permissionassignment(1,1),permissionassignment(2,1),
permissionassignment(3,1)]]

4 [[user(1,10,3)],[role(1,1,1),role(2,1,1),role(3,1,1)1,[1, Yes 2
[permission(1,1,1)],[userassignment(1,3),
userassignment(1,2),userassignment(1,1)1,[1,[1,[],
[permissionassignment(1,1),permissionassignment(2,1),
permissionassignment(3,1)]]

5 [[user(1,10,3)],[role(1,1,1),role(2,1,1),role(3,1,1), No 1
role(4,1,1)],[1,[permission(1,1,1)],[userassignment(1,4),
userassignment(1,3),userassignment(1,2),
userassignment(1,1)],[1,[1,[],[permissionassignment(1,1),
permissionassignment(2,1),permissionassignment(3,1),
permissionassignment(4,1)]]

the input is preprocessed, i.e., the preprocessing highlights invalid part of snapshots
so that irrelevant cases are eliminated. The generation of candidates is also faster
performed as the input is preprocessed.

The experiment points out a certain restriction on the size of input data: The tool
works well on 10 invalid snapshots of a conceptual model including 4 classes and 5
associations. It could accept a large domain restriction in order to generate counter-
and examples. Specifically, with a quite large domain and applicable in practice
like 0..500 for attribute values and a simple domain for the number of classes and
associations like 1..10, the finding is performed just in few seconds.

228 D.-H. Dang and J. Cabot

Table 2 The number of generated candidates and the performance time in two cases, (1) with
preprocessing and (2) without preprocessing

SNOK Size Candidates 1 Candidates2 Time1l Time 2

3 1 2 0.31s 0.29s

4 1 6 0.78s 0.92s

5 1 6 2.09s 2.55s

6 2 18 8.05s 10.55s

7 4 54 34.62s 46.32s

8 4 54 152.72s 210.77s
9 4 108 738.04s 996.49s
10 8 324 4077.09s 5244.91s
11 8 324 23030.21s 30252.04s

6 Threats to Validity

There are certain threats to validity of our inference approach. First, the approach
is just evaluated on simple examples. Further explorations on larger case studies
need to be performed. Second, the method to generate invariant candidates currently
retains limitations in performance. We would need a better preprocessing solution,
e.g., a web-based solution, to effectively get user feedback on a large number of input
snapshots. Last but not least, the current method to eliminate irrelevant candidates
puts forward challenges: (1) How we can always confirm whether a counter- or an
example exists on a given domain, and (2) how a user-given domain restriction could
be defined with less effort from the user.

7 Related Work

OCL Inference. The need to infer OCL restrictions from instance-level information
has been considered in the work [12], where a technique to infer metamodels from
instances is introduced. The work in [7] proposes an approach based on genetic
programming. They encode sets of invariants as populations, and genetic operators
is provided in order to evolve the population and to obtain the final generation that
accepts examples and rejects counterexamples. However, the work does not consider
the relevance of generated candidates.

OCL and Snapshet. There is significant work concentrating on the relationship
between OCL constraints and snapshots. In [3] the USE tool allows us to check OCL
restrictions on class diagrams. The paper in [13] proposes to validate UML and OCL
models by generating snapshots from a declarative description. Other works often

On Automating Inference of OCL Constraints 229

translate the OCL specification into specification environments such as CSP [4],
Alloy [5], and relational logic [6] in order to effectively validate snapshots or to
find valid (invalid) snapshots or to check properties. We here focus on how OCL
constraints are defined by analyzing snapshots.

OCL Pattern. Our method to specify OCL invariant pattern is related to the pa-
per in [14], in which a method to represent OCL expressions in a SBVR form in
order to generate natural language explanations for business rules is proposed. The
paper in [15] introduces a method to generate semantically equivalent alternatives
for the initially defined OCL constraints. It assists the designer to better define OCL
constraints.

OCL Learning. The essence of this work is a concept learning, an issue in machine
learning. The paper in [16] introduces the L* algorithm in order to generate the
best assumption in form of deterministic final-state automata from examples. The
paper in [17] proposes a SAT-based method to acquire binary constraint networks.
The paper in [18] discusses a method to generate OCL constraints from natural
language. Our work focuses on learning OCL constraints.

This work continues our previous work in [8]. In this work a new algorithm to
fetch patterns is introduced so that we could get over the duplication of inferred
results. Moreover, this work supports for multiple restrictions instead of only one
as explained in the previous work. The proposal in this work to incorporate user
feedback could help decreasing the number of generated candidates. This work also
offers a more effective strategy to eliminate irrelevant cases.

8 Conclusions

This paper has introduced an approach to automating the inference of domain re-
strictions as OCL invariants from the instance-level information captured by valid
and invalid snapshots. In the language engineering context the underlying domain
classifies models, while within the software engineering context the domain corre-
sponds to a conceptual model, representing for system snapshots. The basic idea of
this approach is to employ OCL invariants patterns as inference patterns in order to
infer invariant candidates from a set of valid and invalid snapshots. The user could
help to preprocess input snapshots so that less irrelevant candidates are generated.
Getting user feedback on generated snapshots also help to remove irrelevant candi-
dates. The approach is realized with the InferOCL tool, based on the model finding
tool EMFtoCSP and the ECL/PS® solver. The experiment on the simplified RBAC
model shows a possibility of the InferOCL tool in practice as well as threads to
validity of the approach.

In future, we aim to apply the approach on larger case studies in order to get
detailed feedback on it. Such a task could be to validate and to infer invariants for the
UML metamodel. It would require us to enrich and maintain the catalog of patterns
as well as to extend the method to generate invariant candidates and to eliminate
irrelevant ones. To enhance the InferOCL tool with such new features is also on

230

D.-H. Dang and J. Cabot

the focus of our future work. Our enhancements in model finding would be further
assessed in order to make contribution to that issue.

Acknowledgement. This work was supported by the research project QG.14.06, Vietnam Na-
tional University, Hanoi. We also thank anonymous reviewers for their comments on the ear-

lier version of this paper.

References

(1]
(2]
(3]

(4]

(3]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

Sutcliffe, A.G., Maiden, N.A.M., Minocha, S., Manuel, D.: Supporting Scenario-Based
Requirements Engineering. IEEE Trans. Software Eng. 24(12), 1072—-1088 (1998)
Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready
for MDA, 2nd edn. Addison-Wesley Professional (2003)

Gogolla, M., Biittner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming 69(1-3), 27-34
(2007)

Cabot, J., Claris, R., Riera, D.: UMLtoCSP: A Tool for the Formal Verification of
UML/OCL Models Using Constraint Programming. In: Kurt Stirewalt, R.E., Alexan-
der Egyed, B.F. (eds.) Proc. 22th Int. Conf. Automated Software Engineering (ASE),
pp. 547-548. ACM, New York (2007)

Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A Challenging Model
Transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS
2007. LNCS, vol. 4735, pp. 436-450. Springer, Heidelberg (2007)

Kuhlmann, M., Gogolla, M.: From UML and OCL to Relational Logic and Back.
In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 415-431. Springer, Heidelberg (2012)

Faunes, M., Cadavid, J.J., Baudry, B., Sahraoui, H.A., Combemale, B.: Automatically
searching for metamodel well-formedness rules in examples and counter-examples. In:
Moreira, A., Schitz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS,
vol. 8107, pp. 187-202. Springer, Heidelberg (2013)

Dang, D.H., Cabot, J.: Automating Inference of OCL Business Rules from User Sce-
narios. In: Proc. 20th Asia-Pacific Conf. Software Engineering (APSEC), pp. 156-163.
IEEE (2013)

ECLiPSe: The ECLiPSe Constraint Programming System. Version 6.1 (June 2013)
Ferraiolo, D., Kuhn, D.: Role-Based Access Control. In: Proc. 15th National Computer
Security Conf., pp. 554-563 (1992)

Kuhlmann, M., Sohr, K., Gogolla, M.: Comprehensive Two-Level Analysis of Static and
Dynamic RBAC Constraints with UML and OCL. In: Baik, J., Massacci, F., Zulkernine,
M. (eds.) Proc. 5th Int. Conf. Secure Software Integration and Reliability Improvement
(SSIRI), pp. 108-117. IEEE (2011)

Javed, F., Mernik, M., Gray, J., Bryant, B.R.: MARS: A Metamodel Recovery Sys-
tem Using Grammar Inference. Information & Software Technology 50(9-10), 948-968
(2008)

Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL Models in USE by
Automatic Snapshot Generation. Software and System Modeling 4(4), 386-398 (2005)
Pau, R., Cabot, J.: Paraphrasing OCL Expressions with SBVR. In: Kapetanios, E.,
Sugumaran, V., Spiliopoulou, M. (eds.) NLDB 2008. LNCS, vol. 5039, pp. 311-316.
Springer, Heidelberg (2008)

On Automating Inference of OCL Constraints 231

[15] Cabot, J., Teniente, E.: Transformation Techniques for OCL Constraints. Science of
Computer Programming 68(3), 152—-168 (2007)

[16] Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Information
and Computation 75(2), 87-106 (1987)

[17] Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: A SAT-Based Version Space Al-
gorithm for Acquiring Constraint Satisfaction Problems. In: Gama, J., Camacho, R.,
Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp.
23-34. Springer, Heidelberg (2005)

[18] Bajwa, 1., Bordbar, B., Lee, M.: OCL Constraints Generation from Natural Language
Specification. In: Proc. 14th Int. Conf. Enterprise Distributed Object Computing Con-
ference (EDOC), pp. 204-213. IEEE (2010)

	On Automating Inference of OCL Constraints from Counterexamples and Examples
	1 Introduction
	2 Running Example
	3 A Pattern-Based Automated Inference
	3.1 Generating OCL Invariant Candidates as Solving a CSP
	3.2 Incorporating User Feedback

	4 Tool Support
	4.1 Overview of the InferOCL Tool
	4.2 Applying the Method to the Running Example

	5 Experimental Results
	6 Threats to Validity
	7 Related Work
	8 Conclusions
	References

