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Abstract. The present work investigates the relationship of iterative
learning with other learning criteria such as decisiveness, caution, reli-
ability, non-U-shapedness, monotonicity, strong monotonicity and con-
servativeness. Building on the result of Case and Moelius that iterative
learners can be made non-U-shaped, we show that they also can be made
cautious and decisive. Furthermore, we obtain various special results with
respect to one-one texts, fat texts and one-one hypothesis spaces.

1 Introduction

Iterative learning is the most common variant of learning in the limit which ad-
dresses memory constraints: the memory of the learner on past data is just its
current hypothesis. Due to the padding lemma, this memory is still not void, but
finitely many data can be memorised in the hypothesis. However, one subfield of
the study of iterative learning considers therefore the usage of class-preserving
one-one hypothesis spaces which limit this type of coding during the learning
process. Other ways to limit it is to control the amount and types of updates;
such constraints also aim for other natural properties of the conjectures: For
example, updates have to be motivated by inconsistent data observed (syntactic
conservativeness), semantic updates have to be motivated by inconsistent data
observed (semantic conservativeness), updates cannot repeat semantically aban-
doned conjectures (decisiveness), updates cannot go from correct to incorrect
hypotheses (non-U-shapedness), conjectures cannot be proper supersets of the
language to be learnt (cautiousness) or conjectures have to contain all the data
observed so far (consistency). There is already a quite comprehensive body of
work on how iterativeness relates with various combinations of these constraints
[CK10, GL04, JMZ13, JORS99, K6t09, LG02, LG03, LZ96, LZZ08], however var-
ious important questions remained unsolved. A few years ago, Case and Moelius
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[CMO8b] obtained a breakthrough result by showing that iterative learners can
be made non-U-shaped. The present work improves this result by showing that
they can also be made decisive — this stands in contrast to the case of the
usual non-iterative framework where decisiveness is a real restriction in learn-
ing [BCMSWO08]. Further results complete the picture and also include the role
of hypothesis spaces and text-types in iterative learning.

We completely characterise the relationship of the iterative learning criteria
with the different restrictions as given in the diagramme in Figure 1. A line
indicates a previously known inclusion. A gray box around criteria indicates
equality of these criteria, as found in this work.
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Fig. 1. Relation of criteria combined with iterative learning

The learning criteria investigated in the present work are quite natural. Con-
servativeness, consistency, cautiousness and decisiveness are natural constraints
studied for a long time [Ang80, OSWS86]; these criteria require that conjectures
contain the data observed (consistency) or that mind changes are based on evi-
dence that the prior hypothesis is incorrect (conservativeness); a lot of work has
been undertaken using the assumption that learners are both, consistent and
conservative. Monotonicity constraints play an important role in various fields
like monotonic versus non-monotonic logic and this is reflected in inductive in-
ference by considering the additional requirement that new hypotheses should be
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at least as general as the previous ones [Jan91, LZ93]. The fundamental notion of
iterative learning is one of the first memory-constraints to be investigated in in-
ductive inference and has been widely studied [LG02, LG03, LZ96, OSWS86]; the
beauty of this criterion is that the memory limitation comes rather indirectly, as
for finitely many steps the memory can be enhanced by padding; after that, how-
ever, the learner has to converge and to ignore new data unless it gives enough
evidence to undertake a mind change. Osherson, Stob and Weinstein [OSW82]
formalised decisiveness as a notion where a learner never semantically returns to
an abandoned hypothesis; they left it as an open problem whether the notion of
decisiveness is restrictive; it took about two decades until the problem was solved
[BCMSWO8|. The search for this solution and also the parallels to developmental
psychology motivated to study the related notion of non-U-shapedness where a
non-U-shaped learner never abandons a correct hypothesis for an incorrect one
and later (in a U-shaped way) returns to a correct hypothesis. The study of this
field turned out to be quite fruitful and productive and we also consider decisive
and non-U-shaped learning and its variants in this paper.

Taking this into account, we believe that the criteria investigated are natu-
ral and deserve to be studied; the restrictions on texts which we investigated
are motivated from the fact that in the case of memory limitations (like en-
forced by iterativeness), the learners cannot keep track of which information has
been presented before and therefore certain properties of the text (like every
datum appearing exactly once or every datum appearing infinitely often) can
be exploited by the learner during the learning process. In some cases these
exploitations only matter when the restrictions on the hypothesis space make
the iterativeness-constraint stricter, as they might rule out padding. Such a re-
striction is quite natural, as padding is a way to permit finite calculations to go
into the update process and thereby bypass the basic idea behind the notion of
iterativeness; this is reflected in the finding that the relations between the learn-
ing criteria differ for iterative learning in general and iterative learning using a
class-preserving one-one hypothesis space.

Due to space restrictions some proofs are omitted. The full paper is available
as Technical Report TRA7/14, School of Computing, National University of
Singapore.

2 Mathematical Preliminaries

Unintroduced notation follows the textbook of Rogers [Rog67] on recursion the-
ory. The set of natural numbers is denoted by N = {0,1,2,...}. The symbols
C, C, D, D respectively denote the subset, proper subset, superset and proper
superset relation between sets. The symbol () denotes both the empty set and
the empty sequence.

With dom and range we denote, respectively, domain and range of a given
function. We sometimes denote a partial function f of n >0 arguments z1,...,x,
in lambda notation (as in Lisp) as Az1,...,z, f(21,...,2,). For example, with
c € N, Az c is the constantly ¢ function of one argument.
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We let (z,y) = (I+y)(§+y+1) + = be Cantor’s Pairing function which is an
invertible, order-preserving function from N x N — N. Whenever we consider
tuples of natural numbers as input to a function, it is understood that the general
coding function (-, ) is used to code the tuples into a single natural number. We
similarly fix a coding for finite sets and sequences, so that we can use those as
input as well.

If a function f is not defined for some argument x, then we denote this fact
by f(z)1 and we say that f on x diverges; the opposite is denoted by f(z){ and
we say that f on x converges. If f on x converges to p, then we denote this fact
by f(z)l =p.

P and R denote, respectively, the set of all partial recursive and the set of
all recursive functions (mapping N — N). We let ¢ be any fixed acceptable
numbering for P (an acceptable numbering could, for example, be based on a
natural programming language such as C or Java). Further, we let ¢, denote the
partial-recursive function computed by the p-program with code number p. A set
L C N is recursively enumerable (r.e.) iff it is the domain of a partial recursive
function. We let £ denote the set of all r.e. sets. We let W be the mapping such
that Ve : W, = dom(p.). W is, then, a mapping from N onto £. We say that e is
an index, or program, (in W) for W,. Let W, s denote W, enumerated in s steps
in some uniform way to enumerate all the W,’s. We let pad be a 1-1 padding
function such that for all e and finite sets D, Wyaq(e,p) = We.

The special symbol ? is used as a possible hypothesis (meaning “no change of
hypothesis”). The symbol # stands for a pause, that is, for “no new input data
in the text”. For each (possibly infinite) sequence ¢ with its range contained in
NU {#}, let content(q) = (range(q) \ {#}). By using an appropriate coding, we
assume that ? and # can be handled by recursive functions.

For any function f and all 4, we use f[i] to denote the sequence f(0), ...,
f(i — 1) (the empty sequence if i = 0 and undefined, if one of these values is
undefined).

3 Learning Criteria

In this section we formally introduce our setting of learning in the limit and
associated learning criteria. We follow [K6t09] in its “building-blocks” approach
for defining learning criteria.

A learner is a partial function from N to NU {?}. A language is a r.e. set
L C N. Any total function T : N — N U {#} is called a text. For any given
language L, a text for L is a text T such that content(7) = L. Initial parts of
this kind of text is what learners usually get as information. We let ¢ and 7
range over initial segments of texts. Concatenation of two initial segments o and
7 is denoted by o o 7. For a given set of texts F, we let Txt" (L) denote the set
of all texts in F for L.

An interaction operator is an operator [ taking as arguments a function M
(the learner) and a text T', and that outputs a function p. We call p the learning
sequence (or sequence of hypotheses) of M given T'. Intuitively, 8 defines how a
learner can interact with a given text to produce a sequence of conjectures.
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We define the sequence generating operators G and It (corresponding to the
learning criteria discussed in the introduction) as follows. For all learners M,
texts T and all i,

G(M,T)(i) = M(TT[i]);

. (®), i3 =0
It(M,T)(i) = { MIt(M,T)(i —1),T(i — 1)), otherwise;

where M (0)) denotes the initial conjecture made by M. Thus, in iterative learn-
ing, the learner has access to the previous conjecture, but not to all previous
data as in G-learning. With any iterative learner M we associate a learner M*
such that

M*(0) = M(0) and
Vo,x : M*(cox) = M(M*(0),z).

Intuitively, M™* on a sequence o returns the hypothesis which M makes af-
ter being fed the sequence o in order. Note that, for all texts T, G(M*,T) =
It(M,T). We let M(T) (respectively M*(T')) denote lim,,_,oc M (T'[n]) (respec-
tively, lim,,_yoo M*(T'[n])) if it exists.

Successful learning requires the learner to observe certain restrictions, for
example convergence to a correct index. These restrictions are formalised in our
next definition.

A learning restriction is a predicate 6 on a learning sequence and a text.
We give the important example of explanatory learning (Ex, [Gol67]) and that
of vacillatory learning (Fex, [CL82, OW82, Cas99|) defined such that, for all
sequences of hypotheses p and all texts T,

Ex(p,T) < [3noVn > ng : p(n) = p(no) A Wy(ny) = content(T)];
Fex(p,T) < [3ne3 finite D C N
Vn > ng:p(n) € DAYe e D: W, = content(T)].

Furthemore, we formally define the restrictions discussed in Section 1 in Figure 2.
We combine any two sequence acceptance criteria § and ¢’ by intersecting them;
we denote this by juxtaposition (for example, all the restrictions given in Figure 2
are meant to be always used together with Ex).

For any set of texts F', interaction operator 8 and any (combination of) learn-
ing restrictions &, Txt 88 is a learning criterion. A learner M Txt? 36-learns
all languages in the class

Txt"B5(M) = {L € £ |VT € Txt(L) N F : 3(3(M,T),T)}

and we use Txt(J to denote the set of all Txt (d-learnable classes (learnable by
some learner). Note that we omit the superscript F' whenever F is the set of all
texts.

In some cases, we consider learning using an explicitly given particular hy-
pothesis space (H.).cn instead of the usual acceptable numbering (W, ).en. For
this, one replaces W, by H, in the respective definitions of learning as above.
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[Vi : content(T'[i 4 1]) C W5y = p(i) = p(i + 1)];

Vi, j : Wpay C Wy = 1 < jl;

Vi, j, k1 <j <k N Wyuy=Wyp =content(T) = Wy =Wpil;
Vi, g, ki <3<k A Wy =Wpamy = Woi) = Wpi;

Vi, j, k1 <j <k N Wyu = Wy = content(T') = p(j) = p(i)];
Vi, g, ki <j <k N Wy =Wy = p(j) = p@)];

Vi, j i <j= Wya) € Wpils

Vi, j : i < j = Wy Neontent(T) C Wy(;) N content(T)];

Vi, j : i < j A content(T[j]) € Wy = Wpu) © Wyl
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Fig. 2. Definitions of learning restrictions

4 Plain-Text Learning

In this section we first show that, for iterative learning, the convergence restric-
tions Ex and Fex allow for learning the same sets of languages. After that we
give the necessary theorems establishing the diagramme given in Figure 1.

Theorem 1. TxtItFex = TxtItEx.

Next we give separating theorems for monotone learning and first show that there
is a class which can be learnt iteratively by a learner which is strongly decisive,
conservative, monotone and cautious while on the other hand, there is no learner
which, even non-iteratively, learns the same class strongly monotonically.

Theorem 2. TxtItSDecConsvMonCautEx ¢ TxtGSMonEx.

Proof. Let Ly ={0,2,4,...} and for all n, L,,11 = {2m | m <n} U {2n+1}.
Let £ = {L, : n € N}. Let e be a recursive function computing an r.e. index for
Lyp: Weny = Lp. Let M € P be the iterative learner which memorises a single
state in its conjecture (using padding) and has the following state transition
diagramme (an edge labeled ¢ means that the edge indicates a state transition
on input z with conjecture output e).

1€2N €N
e(0) e(n+1)

%n-&-l)
e(n+1
0 1

Clearly, M is a TxtItSDecConsvMonCautEx-learner for £. It is known that
L is not strongly monotonically learnable.

Note that one can modify this protocol such that M only memorises the state;
however, M then abstains from repeating correct conjectures and one has to
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modify the learnability criterion such that outputting a special symbol for re-
peating the last (correct) conjecture is allowed. The next result shows that there
is a class of languages which can be learnt by an iterative learner which is strongly
decisive, conservative and cautious; on the other hand, there is no learner, even
non-iterative one, that learns the class monotonically.

Theorem 3. TxtItSDecConsvCautEx ¢ TxtGMonEx.

Proof. We consider Ly = {0,2,4,...} and, for all n, Lopt1 = {2m | m <
n} U {4n+ 1} and Lopye = 2m | m < n+1} U {4n+ 1,4n + 3}. We let
L={L,|neN}

Let e be a recursive function such that, for all n, We(,) = L;,. Let M € P be
the iterative learner using state transitions as given by the following diagramme.

i€2N iEN—{4n+3} ieN
e(0) e(2n+1) e(2n+2)

4n—+3
e(2n+2)

Clearly, M fulfills all the desired requirements for TxtItSDecConsvCautEx-
learning £. One can show that every learner of £ outputs on some text for some
Lop42 hypotheses for Lo, La,11 and Lo, 4o (in that order, with possibly other
hypotheses in between) and is therefore not learning monotonically.

The next result shows that there is a class of languages which is simultane-
ously iteratively, monotonically, decisively, weakly monotonically and cautiously
learnable, but not iteratively strongly non-U-shapedly learnable.

Theorem 4. TxtItMonDecWMonCautEx ¢ TxtItSNUShEx.

The next result shows that there is an iteratively and strongly monotonically
learnable class which does not have any iterative learner which is strongly non-
U-shaped, that is, which never revises a correct hypothesis. The proof uses the
notion of a join which is defined as A@ B={2x:2 € AyU{2z+1: 2z € B}.

Theorem 5. TxtItSMonEx ¢ TxtItSNUShEx.

Proof. Let My, M, ... denote a recursive listing of all partial recursive iterative
learning machines. Consider a class £ consisting of the following sets for each e €
N (where F(-), G(-) are recursively enumerable sets in the parameters described
later):

— {2e} @ F(e)
— {2e,2d+ 1} & G(e, d)
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— {2¢,2d+1}®N
where,

(a) If there exists an s such that M*(declo# o30# obo#... 0254+ 1) =
Mi(deolo# o3o0#0bo#...02s+1o# 025" + 1), for all ' > s, then
F(e) ={0,1,2,...,s}, else F(e) =N.

(b) If F(e) = N or max(F(e)) > d, then G(e,d) = N. Otherwise, if there exists a
k > dsuch that M} (declo#o30#050# .. 02 max(F(e))+1o#odd+20#") =
Mi(deolo#Ho3oH# obo#Ho...02max(F(e)) +1o#Hodd+20H#" o #) #
Mi(deolo#Ho3o#Hobo# . ..02max(F(e))+1o#Hodd+20# o# 02k +1)
then G(e,d) = F(e) U {k} for first such k found in some algorithmic search,
else G(e,d) = F(e).

Now, the above class is TxtItSMonEx learnable, as the learner can remember
seeing 4e, 4d + 2 in the input text, if any:

- Having seen only 4e, the learner outputs a grammar for {2e¢} ® F'(e);

- Having seen 4e, 4d+2, the learner outputs a grammar for {2¢, 2d+1}®G(e, d)
until it sees, (after having seen 4e, 4d + 2), two more odd elements bigger
than 2d in the input, at which point the learner switches to outputting a
grammar for {2e,2d+ 1} @ N.

It is easy to verify that the above learner will TxtItSMon learn L.

Now we show that £ is not TxtItSNUShEx-learnable. Suppose by way
of contradiction that M, TxtItSNUShEx-learns £. Then the following state-
ments hold:

— There exists an s as described in the definition of F(e) above and thus F(e)
is finite, as otherwise M, does not learn 2e ® F'(e) = 2e ® N;

— For d > max(F\(e)), there exists a k > d as described in the definition of
G(e, d), as otherwise M, does not learn at least one of {2e,2d+ 1} ® G(e, d)
and {2e,2d+ 1} & N;

— Now the learner M, has two different hypotheses on the segments (declo#o
3oFto. . O2F (e)+1o#02k+1o#odd+20#") and (decloFo3o#o. . .02F (e)+10
#02k+1o#0dd+20#"02k+1) and first of them must be correct hypothesis
for {2e,2d+ 1} ® G(e, d), as otherwise the learner M, does not learn it from
the text — deolo#o30#0...02F(e)+10# 02k +10# 0dd+20#" o #>
— see part (b) in the definition of G(e, d), whereas second is a mind change,
after the correct hypothesis by M, on {2¢,2d+ 1} & G(e, d).

Thus, M. does not TxtItSNUShEx-learn L.

For our following proofs we will require the notion of a canny learner [CMO8b].

Definition 6 (Case and Moelius [CMO08b]). For all iterative learners M,
we say that M is canny iff

1. M never outputs 7,
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2. for all e, M(e,#) = e and
3. forallz, 7 and o, if M*(cox) # M*(0) then M*(coxoTox) = M*(ooxoT).

Case and Moelius [CM08b| showed that, for TxtItEx-learning, learners can be
assumed to be canny.

Lemma 7 (Case and Moelius [CMO8b]). For all L € TxtItEx there exists
canny iterative learner M such that £ C TxtItEx(M).

The term “sink-locking” means that on any text for a language to be learnt the
learner converges to a sink, a correct hypothesis which is not abandoned on any
continuation of the text. The following result does not only hold for the case
where all texts are allowed but also for the case where only fat texts are allowed
(see Section 5).

Theorem 8. Let L be sink-lockingly TxtItEx-learnable. Then L is cautiously,
conservatively, strongly decisively and weakly monotonically TxtItEx-learnable.

The previous theorem gives us the following immediate corollary which states
that a class is iteratively strongly decisive learnable from text iff it is itera-
tively conservatively learnable from text iff it is iteratively strongly non-U-shaped
learnable from text.

Corollary 9. We have that
TxtItSDecEx = TxtItConsvEx = TxtItSNUShEx.

Proof. We have that strongly decisive or conservative (iterative) learnability
trivially implies strongly non-U-shaped learnability. Using Theorem 8 it remains
to show that strongly non-U-shaped learnability implies sink-locking learnability.
But this is trivial, as the learner can never converge to a correct conjecture that
might possibly be abandoned on the given language, as this would contradict
strong non-U-shapedness.

Case and Moelius [CMO08b| showed that TxtItNUShEx = TxtItEx; we finally
show that this proof can be extended to also cover decisiveness, weak monotonic-
ity and caution.

Theorem 10. We have that
TxtItEx = TxtItDecEx = TxtItWMonEx = TxtItCautEx.

Proof. Suppose M is a canny iterative learner which learns a class £. Below
we will construct an iterative learner N which is weakly monotonic and learns
L. Let

Cu(o)={x e NU{#}: M*(oox)l = M*"(0)l};

Bur(o) = {z € NU{#}: M (g o)l £ M*(0)L}:

By(o)= (] Buloli);

0<i<|o]

CBM(O')Z U C}u(O’[i])ﬂBM(U).

0<i<|o]|
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Let P be such that for all o and m and x € NU {#}, P(o,m,x) iff (i) x # #
and (ii) (3w)[M*(o o w) converges in x steps, Wy« (,) enumerates w in x steps,
w € CBpy (o) and m < w < z.

Let N be such that N(0) = f(0,0,0), and for all inputs x, and previous
conjecture f(o,m,a), N outputs as follows:

0 (i) if M*(7)1 for some 7 € {0, 00,00z, 00 aox};
fleoaox,0,0), (i) if = (i) and (z€ B}, () or (r€CBy (o) and x>m));
flo,m,aox), (iii) if = ((i) or (ii)) and

x € CBy(ooa)
f(o,z,0), (iv) if = ((i) or (ii)) and

z € Cp(ooa)and P(o,m,z) and o = ;
flooaox,0,0), (v)if = ((i) or (ii)) and

z € Cp(ooa) and Plo,m,z) and o # 0;
flo,m,a), (vi) if = ((i) or (ii)) and

xz € Cp(ooa) and =P (o, m, ).

Here Wy (g m,q) is defined as follows.

1. Enumerate content(o)
In the following, if the needed M*(-) (to compute various parameters), is not
defined, then do not enumerate any more.
2. Go to stage 0.
Stage s:
Let Ay = content(o) U W= (4,4
(a) If there exists an x € A, such that x € Bf; (o), then no more elements
are enumerated.
(b) If there exists an © € A, such that x > m, and [x € CBp(0) or
P(o,m, )], then:
If for all 7 with content(7) C A, and |7| < |As|+ 1, 7 not containing
# and 7 starting with a y in CBa(0): As € Wisor,0,0)s
then enumerate Ag and go to stage s + 1;
otherwise, no more elements are enumerated.
(basically, this is testing if x satisfies clauses ii, iv or v in the defn of
M)
(c) If both (a) and (b) fail, then enumerate A, and go to stage s + 1.
End stage s

It can be easily shown by induction on the length of p, that for all input p, if
N*(p) = f(o,m,a), then M*(p) = M*(0o ¢ ).

Now, for finite languages L iteratively learnt by M, if content(c) C L and
LNBY; (o) = 0, then Wi« () = L. To see this note that if we construct a sequence
7 from o, by inserting elements of L — content(o) after the initial segment o’
of ¢ such that z € Cp(0’), then M*(o) = M*(7), and content(r) = L; thus,
M*(o) = M*(o#>°) = M*(7#°), which must be a grammar for L. Thus for



Iterative Learning 65

such o, for content(«r) C L, using the fact that M is canny and using reverse
induction on the number of mind changes made by M on ¢ (which is bounded
by card(L) due to M being canny), it is easy to verify that Wy, m,q) would
be L.

Given an infinite languages L € £ and a text T for L, consider the output
f(on, My, a) of N*(T[n]). As M*(T') converges, it holds that o = lim,,_,o o,
and lim,,_.o o, would converge. For this paragraph fix this ¢ and «a. If o # (),
then clearly m = lim,_,o, m, also converges, and as By, (c) N L = 0, we also
have Wy« (o) = L. If a = ), then as M*(T) = M*(0), we have that Wy« () = L
and all but finitely many of the elements of L do not belong to Bjs(o). Thus,
in this case also m = lim,_,,, m,, converges. In both cases, m bounds all the
elements of L which are in Bps(c). Thus, f(o,m,a) would be a grammar for L.

We show the weak monotonicity of N. Note that, for all o, a, m, Wy (5 m.a) C
content(c) U Wiy« (o).

Also, note that W5 m.a) € Wiom+1,a) for all m,a, 0,0/ — (P1).

Now suppose N on input p ¢ x and previous conjecture (on input p) being
f(o,m, ) outputs f(ocoaox,0,0). This implies that, 2 € BY;(c) or x > m and
(CBp (o) or P(o,m,z)) hold.

Case 1: content(a ¢ ) is not contained in W (g, a)-

In this case clearly content(poz) D content(o ¢ oo ) and thus, content(po x)
is not contained in Wy, m o), S0 mind change is safe.

Case 2: content(a ¢ x) is contained in Wy (s .q) and thus in content(o) U

Let s be least such that content(« ¢ x) is contained in A, as in stage s. Then,
the definition of Wy (4 1, q) ensures that Wy n, o) enumerates Ay, t > s, only if
Ay is contained in Wy (soa0z,0,0) (note that the case of A; = content(c), already
satisfies Ar € Wi(roa02,0,0))-

It follows from the above analysis that either the new input is not contained
in the previous conjecture of N, or the previous conjecture is contained in the
new conjecture. Thus, N is weakly monotonic.

It follows from the above construction that N is also decisive and cautious. To
see this, note that whenever mind change of N falls in Case 1 above, all future
conjectures of N (beyond input p ¢ x) contain content(a ¢ ); thus, N never
returns to the conjecture Wy, 1.q), which does not contain content(a ¢ ). On
the other hand, the mind changes due to Case 2 or mind changes due to IV
outputting f(o,m/, ') after outputting f(o, m, ), are strongly monotonic (see
the discussion in Case 2, as well as property (P1) mentioned above). The theorem
follows.

5 Learning from Fat-Texts and other Texts

In this section we deal with special kinds of texts. A text is called fat iff every
datum appears infinitely often in that text. A text T is called one-one iff for all
x € content(T'), there exists a unique n such that T'(n) = x. We let fat denote the
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set of all fat texts and one — one the set of all one-one texts. Standard techniques
can be used to show the following result.

Theorem 11. TxtItEx C Txt™ItEx c TxtGEx.

The above result shows that iterative learners have not only information-theore-
tic limitations in that they forget past data and cannot recover them (on normal
text), but also computational limitations which cannot be compensated by hav-
ing fat text. Next we show that fat text always allows for learning conservatively
(as well as cautiously and strongly decisively).

Theorem 12. Txt™ItEx = Txt™ItConsvEx = Txt™ItSDecEx.

Proposition 13. (a) There exists a class of languages which is TxtItMonEx,
TxtItSDecEx, TxtItConsvEx-learnable but not Txt™*SMonEx-learnable.

(b) There is a class which is TxtItSDecEx-learnable (and therefore also
TxtItConsvEx-learnable) but not Txt™ ItMonEx or Txt°"* °"°ItMonEx-
learnable.

Theorem 14. TxtItSMonEx ¢ Txt™ItSNUShEx.

We next show that learning from one-one texts is equivalent to learning from
arbitrary text.

Theorem 15. Txt°"* °"ItEx = TxtItEx.

Theorem 16. There exists a class L which is Txt°"*~°"*ItFex-learnable but
not Txt®"*~*"*Ex-learnable. Therefore L is not TxtItEx-learnable (and hence
not TxtItFex-learnable).

Proof. Let L consist of the languages L. ., z < e, e,z € N, where L., =
{(e;zy) o=z orm+y< Wk

The learner on seeing any input element (e, z, ), outputs a grammar (obtained
effectively from (e, x)) for Le min({e,})-

If W, is infinite, then L. . = L., for all z < e, and thus all the (finitely many)
grammars output by the learner are for L .

If W, is finite, then L. . contains only finitely many elements which are not
of the form (e, z, -), and thus on any one-one text for L. ., the learner converges
to a grammar for L. ,.

We now show that £ is not TxtEx-learnable. Suppose otherwise that some
learner TxtEx-learns £. Then, for e > 2, W, is infinite iff the learner has a
stabilising sequence [BB75, Ful90] 7 on the set {(e,z,y) : =,y € N} and the
largest sum z + y for some (e, x,y) occurring in 7 is below |W,|. Thus it would
be a X5 condition to check whether W, is infinite in contradiction to the fact
that checking whether W, is infinite is Il complete. Thus such a learner does
not exist.

Theorem 17. There exists a class of languages which is iteratively learnable
using texts where every element which is mazimal so far is marked, but is not
TxtItEx-learnable.
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6 Class Preserving Hypotheses Spaces

A one-one hypothesis space might be considered in order to prevent that an
iterative learner cheats by storing information in the hypothesis. A hypothesis
space (H)cen is called class preserving (for learning £) iff {H.: e € N} = L. A
learner is class preserving, if the hypothesis space used by it is class preserving.
The first result shows that the usage of one-one texts increases the learning power
of those iterative learners which are forced to use one-one hypothesis spaces, that
is, which cannot store information in the hypothesis during the learning process.

Theorem 18. There exists a class L having a one-one class preserving hypoth-
esis space such that the following conditions hold:

(a) L can be Txt°"*" "It Ex-learnt using any fized one-one class preserving
hypothesis space for L;

(b) L cannot be TxtItEx-learnt using any fized one-one class preserving hy-
pothesis space for L.

In general, the hierarchy SMonEx C MonEx C WMonEx holds. The follow-
ing result shows that this hierarchy is proper and that one can get the separations
even in the case that the more general criterion is made stricter by enforcing the
use of a one-one hypothesis space.

Theorem 19. (a) TxtItWMonEx ¢ TxtItMonEx;

(b) TxtItMonEx ¢ TxtItSMonEx.

Here the positive sides can be shown using a one-one class preserving hypothesis
space.

Theorem 2 and Theorem 3 show the above result and also provide conservatively
learnable families for these separations. We now consider learning by reliable
learners. A learner is reliable if it is total and for any text T, if the learner
converges on T' to a hypothesis e, then e is a correct grammar for content(7"). We
denote the reliability constraint on the learner by using Rel in the criterion name.
For the following result, we assume (by definition) that if a learner converges to
7 on a text, then it is not reliable. The next result shows that there is exactly
one class which has a reliable iterative learner using a one-one class preserving
hypothesis space and this is the class FIN = {L : L is finite}.

Theorem 20. If L is TxtItRelEx-learnable using a one-one class preserving
hypothesis space then £ must be FIN.

Theorem 21. There exists a subclass of FIN which is not TxtItEx-learnable
using a one-one class preserving hypothesis space.

Note that in learning theory without loss of generality one assumes that classes
are not empty. The next theorem characterises when a class can be iteratively
and reliably learnt using a class preserving hypothesis space: it is the case if and
only if the set of canonical indices of the languages in the class is recursively
enumerable. Note that the hypothesis space considered here is not one-one and
that padding is a natural ingredient of the (omitted) learning algorithm.
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Theorem 22. A class L has a class-preserving iterative and reliable learner iff
it does not contain infinite languages and the set {e : D, € L} of its canonical
indices is recursively enumerable.

7 Syntactic versus Semantic Conservativeness

A learner is called semantically conservative iff whenever it outputs two indices
1, j such that W; # W; and 4 is output before j then the hypothesis j is based on
some observed data not contained in W;. This notion coincides with syntactic
conservative learning in the case of standard explanatory learning; however, in
the special case of iterative learning, it is more powerful than the usual notion
of conservative learning.

Theorem 23. There is a class L which can be learnt iteratively and strongly
monotonically and semantically conservatively but which does not have an iter-
atiwve and syntactically conservative learner.
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