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Abstract. We examine the robustness and privacy of Bayesian infer-
ence, under assumptions on the prior, and with no modifications to the
Bayesian framework. First, we generalise the concept of differential pri-
vacy to arbitrary dataset distances, outcome spaces and distribution fam-
ilies. We then prove bounds on the robustness of the posterior, introduce
a posterior sampling mechanism, show that it is differentially private and
provide finite sample bounds for distinguishability-based privacy under
a strong adversarial model. Finally, we give examples satisfying our as-
sumptions.

1 Introduction

Significant research challenges for statistical learning include efficiency, robust-
ness to noise (stochasticity) and adversarial manipulation, and preserving train-
ing data privacy. In this paper we study techniques for meeting these challenges
simultaneously, through a simple unification of Bayesian inference, differential
privacy and distinguishability. In particular, we examine the following problem.

Summary of Setting. A Bayesian statistician (B) wants to communicate re-
sults about some data x to a third party (A ), but without revealing the data x
itself. (x could be a single datum, or a sample of data.) More specifically:

(i) B selects a model family (FΘ) and a prior (ξ).
(ii) A is allowed to see FΘ and ξ and is computationally unbounded.
(iii) B observes data x and calculates the posterior ξ(θ|x) but does not reveal

it. Instead, B responds to queries at times t = 1, . . . as follows.
(iv) A sends a query qt to B.
(v) B responds qt(θt) where θt is drawn from the posterior: θt ∼ ξ(θ|x).
We show that if FΘ or ξ are chosen appropriately, the resulting posterior-
sampling mechanism satisfies generalized differential privacy and indistinguisha-
bility properties. The intuition is that robustness and privacy are linked via
smoothness. Learning algorithms that are smooth mappings—their output (e.g.,
a spam filter) varies little with perturbations to input (e.g., similar training
corpora)—are robust: outliers have reduced influence, and adversaries cannot
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easily discover unknown information about the data. This suggests that robust-
ness and privacy can be simultaneously achieved and perhaps are deeply linked.
We show that under mild assumptions this is indeed true for the posterior dis-
tribution, suggesting a differentially-private mechanism for Bayesian inference.

Our contributions. (i) We generalise differential privacy to arbitrary dataset dis-
tances, outcome spaces, and distribution families. (ii) Under certain regularity
conditions on the prior distribution ξ or likelihood family FΘ, we show that
the posterior distribution is robust : small changes in the dataset result in small
posterior changes; (iii) We introduce a novel posterior sampling mechanism that
is private. Unlike other common mechanisms, our approach sits squarely in the
non-private (Bayesian) learning framework without modification; (iv) We intro-
duce the notion of dataset distinguishability for which we provide finite-sample
bounds for our mechanism (v) We provide examples of conjugate-pair distribu-
tions where our assumptions hold.

Paper organisation. Section 1.1 discusses related work. Section 2 specifies the
setting and our assumptions. Section 3 proves results on robustness of Bayesian
learning. Section 4 proves privacy results. Examples where our assumptions hold
are given in Section 5. We present a discussion of our results in Section 6. Ap-
pendix A contains proofs of the main theorems. Proofs of the examples and a
discussion on matching lower bounds are given in a technical report [8].

1.1 Related Work

In Bayesian statistical decision theory [1, 2, 7], learning is cast as a statistical
inference problem and decision-theoretic criteria are used as a basis for assess-
ing, selecting and designing procedures. In particular, for a given cost function,
the Bayes-optimal procedure minimises the Bayes risk under a particular prior
distribution.

In an adversarial setting, this is extended to a minimax risk, by assuming
that the prior distribution is selected arbitrarily by nature. In the field of ro-
bust statistics, the minimax asymptotic bias of a procedure incurred within an
ε-contamination neighbourhood is used as a robustness criterion giving rise to
the notion of a procedure’s influence function and breakdown point to charac-
terise robustness [17, 18]. In a Bayesian context, robustness appears in several
guises including minimax risk, robustness of the posterior within ε-contamination
neighbourhoods, and robust priors [1]. In this context Grünwald and Dawid [15]
demonstrated the link between robustness in terms of the minimax expected
score of the likelihood function and the (generalized) maximum entropy princi-
ple, whereby nature is allowed to select a worst-case prior.

Differential privacy, first proposed by Dwork et al. [12], has achieved promi-
nence in the theory of computer science, databases, and more recently learning
communities. Its success is largely due to the semantic guarantee of privacy it
formalises. Differential privacy is normally defined with respect to a randomised
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mechanism for responding to queries. Informally, a mechanism preserves differ-
ential privacy if perturbing one training instance results in a small change to the
mechanism’s response distribution. Differential privacy is detailed in Section 2.

A popular approach for differential privacy is the exponential mechanism [19]
which generalises the Laplace mechanism of adding Laplace noise to released
statistics [12]. This mechanism releases a response with probability exponential
in a score function measuring distance to the non-private response. An alternate
approach, employed for privatising regularised ERM [6], is to alter the inferential
procedure itself, in that case by adding a random term to the primal objective.
Further results on the accuracy of the exponential mechanism with respect to
the Kolmogorov-Smirnov distance are given in [23]. Unlike previous studies, our
mechanisms do not require modification to the underlying learning framework.

In a different direction, Duchi et al. [9] provided information-theoretic bounds
for private learning, by modelling the protocol for interacting with an adversary
as an arbitrary conditional distribution, rather than restricting it to specific
mechanisms. In a similar vein Chaudhuri and Hsu [5] drew a quantitative connec-
tion between robust statistics and differential privacy by providing finite sample
convergence rates for differentially private plug-in statistical estimators in terms
of the gross error sensitivity, a common measure of robustness. These bounds
can be seen as complementary to ours because our Bayesian estimators do not
have private views of the data but use a suitably-defined prior instead.

Little research in differential privacy focuses on the Bayesian paradigm, and
to our knowledge, none has established differentially-private Bayesian inference.
Williams and McSherry [25] applied Bayesian inference to improve the utility of
differentially private releases by computing posteriors in a noisy measurement
model. In a similar vein, Xiao and Xiong [26] used Bayesian credible intervals to
respond to queries with as high utility as possible, subject to a privacy budget.
In the PAC-Bayesian setting, Mir [20] showed that the Gibbs estimator [19] is
differentially private. While their algorithm corresponds to a posterior sampling
mechanism, it is a posterior found by minimising risk bounds; by contrast, our
results are purely Bayesian and come from conditions on the prior.

Smoothness of the learning map, achieved here for Bayesian inference by ap-
propriate concentration of the prior, is related to algorithmic stability which is
used in statistical learning theory to establish error rates [3]. Rubinstein et al.
[22] used the γ-uniform stability of the SVM to calibrate the level of noise for us-
ing the Laplace mechanism to achieve differential privacy for the SVM. Hall et al.
[16] extended this technique to adding Gaussian process noise for differentially
private release of infinite-dimensional functions lying in an RKHS.

Finally, Dwork and Lei [11] made the first connection between (frequentist) ro-
bust statistics and differential privacy, developing mechanisms for the interquar-
tile, median and B-robust regression. While robust statistics are designed to
operate near an ideal distribution, they can have prohibitively high global,
worst-case sensitivity. In this case privacy was still achieved by performing a
differentially-private test on local sensitivity before release [13]. Little further
work has explored robustness and privacy, and no general connection is known.
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2 Problem Setting

We consider the problem of a Bayesian statistician (B) communicating with an
untrusted third party (A ). B wants to convey useful information to the queries
of A (e.g., how many people suffer from a disease or vote for a particular party)
without revealing private information about the original data (e.g., whether a
particular person has cancer). This requires communicating information in a
way that strikes a good balance between utility and privacy. In this paper, we
study the inherent privacy and robustness properties of Bayesian inference and
explore the question of whether B can select a prior distribution so that a
computationally unbounded A cannot obtain private information from queries.

2.1 Definitions

We begin with our notation. Let S be the set of all possible datasets. For example,
if X is a finite alphabet, then we might have S =

⋃∞
n=0 Xn, i.e., the set of all

possible observation sequences over X .

Comparing datasets. Central to notions of privacy and robustness, is the concept
of distance between datasets. Firstly, the effect of dataset perturbation on learn-
ing depends on the amount of noise as quantified by some distance. Secondly,
the amount that an attacker can learn from queries can be quantified in terms
of the distance of his guesses to the true dataset. To model these situations, we
equip S with a pseudo-metric1 ρ : S × S → R+. Using pseudo-metrics, we con-
siderably generalise previous work on differential privacy, which considers only
the special case of Hamming distance. We note that a similar generalisation has
been developed in parallel and independently by Chatzikokolakis et al. [4].

Bayesian inference. This paper focuses on the Bayesian inference setting, where
the statistician B constructs a posterior distribution from a prior distribution ξ
and a training dataset x. More precisely, we assume that data x ∈ S have been
drawn from some distribution Pθ∗ on S, parametrised by θ∗, from a family of
distributions FΘ. B defines a parameter set Θ indexing a family of distributions
FΘ on (S,SS), where SS is an appropriate σ-algebra on S:

FΘ � {Pθ : θ ∈ Θ } , (1)

and where we use pθ to denote the corresponding densities2 when necessary.
To perform inference in the Bayesian setting, B selects a prior measure ξ on
(Θ,SΘ) reflecting B’s subjective beliefs about which θ is more likely to be true,
a priori; i.e., for any measurable set B ∈ SΘ, ξ(B) represents B’s prior belief
that θ∗ ∈ B. In general, the posterior distribution after observing x ∈ S is:

ξ(B | x) =
∫
B
pθ(x) dξ(θ)

φ(x)
, (2)

1 Meaning that ρ(x, y) = 0 does not necessarily imply x = y.
2 I.e., the Radon-Nikodym derivative of Pθ relative to some dominating measure ν.
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where φ is the corresponding marginal density given by:

φ(x) �
∫

Θ

pθ(x) dξ(θ) . (3)

While the choice of the prior is generally arbitrary, this paper shows that its
careful selection can yield good privacy guarantees.

Privacy. We first recall the idea of differential privacy [10]. This states that on
similar datasets, a randomised query response mechanism yields (pointwise) sim-
ilar distributions. We adopt the view of mechanisms as conditional distributions
under which differential privacy can be seen as a measure of smoothness. In our
setting, conditional distributions conveniently correspond to posterior distribu-
tions. These can also be interpreted as the distribution of a mechanism that uses
posterior sampling, to be introduced in Section 4.2.

Definition 1 ((ε, δ)-differential privacy). A conditional distribution P (· | x)
on (Θ,SΘ) is (ε, δ)-differentially private if, for allB ∈ SΘ and for anyx ∈ S = Xn

P (B | x) ≤ eεP (B | y) + δ,

for all y in the hamming-1 neighbourhood of x. That is, there is at most one
i ∈ {1, . . . , n} such that xi �= yi.

As a first step, we generalise this definition to arbitrary dataset spaces S that are
not necessarily product spaces. To do so, we introduce the notion of differential
privacy under a pseudo-metric ρ on the space of all datasets.

Definition 2 ((ε, δ)-differential privacy under ρ.). A conditional distribu-
tion P (· | x) on (Θ,SΘ) is (ε, δ)-differentially private under a pseudo-metric
ρ : S × S → R+ if, for all B ∈ SΘ and for any x ∈ S, then:

P (B | x) ≤ eερ(x,y)P (B | y) + δρ(x, y) ∀y .

Remark 1. If S = Xn and ρ(x, y) =
∑n

i=1 I {xi �= yi} is the Hamming distance,
this definition is analogous to standard (ε, δ)-differential privacy. When consid-
ering only (ε, 0)- differential privacy or (0, δ)-privacy, it is an equivalent notion.3

Proof. For (ε, 0)-DP, let ρ(x, z) = ρ(z, y) = 1; i.e., they only differ in one ele-
ment. Then, from standard DP, we have P (B | x) ≤ eεP (B | z) and so obtain
P (B | x) ≤ e2εP (B | y) = eρ(x,y)εP (B | y). By induction, this holds for any
x, y pair. Similarly, for (0, δ)-DP, by induction we obtain P (B | x) ≤ P (B |
x) + δρ(x, y).

Definition 1 allows for privacy against a very strong attacker A , who attempts
to match the empirical distribution induced by the true dataset by querying

3 Making the definition wholly equivalent is possible, but results in an unnecessarily
complex definition.
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the learned mechanism and comparing its responses to those given by distri-
butions simulated using knowledge of the mechanism and knowledge of all but
one datum—narrowing the dataset down to a hamming-1 ball. Indeed the re-
quirement of differential privacy is sometimes too strong since it may come at
the price of utility. Our Definition 2 allows for a much broader encoding of the
attacker’s knowledge via the selected pseudo-metric.

2.2 Our Main Assumptions

In the sequel, we show that if the distribution family FΘ or prior ξ is such that
close datasets x, y ∈ S, result in posterior distributions that are close. In that
case, it is difficult for a third party to use such a posterior to distinguish the
true dataset x from similar datasets.

To formalise these notions, we introduce two possible assumptions one could
make on the smoothness of the family FΘ with respect to some metric d on R+.
The first assumption states that the likelihood is smooth for all parameteriza-
tions of the family:

Assumption 1 (Lipschitz continuity). Let d(·, ·) be a metric on R. There
exists L > 0 such that, for any θ ∈ Θ:

d(pθ(x), pθ(y)) ≤ Lρ(x, y), ∀x, y ∈ S . (4)

However, it may be difficult for this assumption to hold uniformly over Θ.
This can be seen by a counterexample for the Bernoulli family of distributions.
Consequently, we relax it by only requiring that B’s prior probability ξ is con-
centrated in the parts of the family for which the likelihood is smoothest:

Assumption 2 (Stochastic Lipschitz continuity[21]). Let d(·, ·) be a met-
ric on R and let

ΘL �
{
θ ∈ Θ : sup

x,y∈S

{
d(pθ(x), pθ(y))− Lρ(x, y)

} ≤ 0
}

(5)

be the set of parameters for which Lipschitz continuity holds with Lipschitz con-
stant L. Then there is some constant c > 0 such that, for all L ≥ 0:

ξ(ΘL) ≥ 1− exp(−cL) . (6)

By not requiring uniform smoothness, this weaker assumption is easier to meet
but still yields useful guarantees. In fact, in Section 5, we demonstrate that this
assumption is satisfied by many important example distribution families.

To make our assumptions concrete, we now fix the distance function d to be
the absolute log-ratio,

d(a, b) �
{
0 if a = b = 0
∣
∣ln a

b

∣
∣ otherwise

, (7)
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which is a proper metric on R+ ×R+. This particular choice of distance yields
guarantees on differential privacy and indistinguishability.

We next show that verifying our assumptions for a distribution of a single
random variable lifts to a corresponding property for the product distribution
on i.i.d. samples.

Lemma 1. If pΘ satisfies Assumption 1 (resp. Assumption 2) with respect to
pseudo-metric ρ and constant L (or c), then, for any fixed n ∈ N, pnΘ({ xi }) =∏n

i=1 pΘ(xi) satisfies the same assumption with respect to:

ρn({ xi } , { yi }) =
∑n

i=1 ρ(xi, yi)

and constant L · n (or c
n). Further, if {xi } and { yi } differ in at most k items,

the assumption holds with the same pseudo-metric but with constant L ·k (or c
k )

instead.

3 Robustness of the Posterior Distribution

We now show that the above assumptions provide guarantees on the robustness
of the posterior. That is, if the distance between two datasets x, y is small, then
so too is the distance between the two resulting posteriors, ξ(· | x) and ξ(· | y).
We prove this result for the case where we measure the distance between the
posteriors in terms of the well-known KL-divergence:

D (P ‖ Q) =

∫

S

ln
dP

dQ
dP . (8)

The following theorem shows that any distribution family FΘ and prior ξ sat-
isfying one of our assumptions is robust, in the sense that the posterior does
not change significantly with small changes to the dataset. It is notable that our
mechanisms are simply tuned through the choice of prior.

Theorem 1. When d : R+ ×R+ → R+ is the absolute log-ratio distance (7), ξ
is a prior distribution on Θ and ξ(· | x) and ξ(· | y) are the respective posterior
distributions for datasets x, y ∈ S, the following results hold:

(i) Under a metric ρ and L > 0 satisfying Assumption 1,

D (ξ(· | x) ‖ ξ(· | y)) ≤ 2Lρ(x, y) (9)

(ii) Under a metric ρ and c > 0 satisfying Assumption 2,

D (ξ(· | x) ‖ ξ(· | y)) ≤ κ

c
· ρ(x, y) (10)

where κ is constant (see Appendix A); κ ≈ 4.91081.

Note that the second claim bounds the KL divergence in terms of B’s prior
belief that L is small, which is expressed via the constant c. The larger c is, the
less prior mass is placed in large L and so the more robust inference becomes.
Of course, choosing c to be too large may decrease efficiency.
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4 Privacy Properties of the Posterior Distribution

We next examine the differential privacy of the posterior distribution. We show
in Section 4.1 that this can be achieved under either of our assumptions. The
result can also be interpreted as the differential privacy of a posterior sampling
mechanism for responding to queries, which is described in Section 4.2. Finally,
Section 4.3 introduces an alternative notion of privacy: dataset distinguishability.
We prove a high-probability bound on the sample complexity of distinguishabil-
ity under our assumptions.

4.1 Differential Privacy of Posterior Distributions

We consider our generalised notion of differential privacy for posterior distribu-
tions (Definition 2); and show that the type of privacy exhibited by the posterior
depends on which assumption holds.

Theorem 2. Using the log-ratio distance (as in Theorem 1),

(i) Under Assumption 1, for all x, y ∈ S, B ∈ SΘ:

ξ(B | x) ≤ exp{2Lρ(x, y)}ξ(B | y) (11)

i.e., the posterior ξ is (2L, 0)-differentially private under pseudo-metric ρ.
(ii) Under Assumption 2, for all x, y ∈ S, B ∈ SΘ:

|ξ(B | x) − ξ(B | y)| ≤
√

κ

2c
ρ(x, y)

i.e., the posterior ξ is
(
0,
√

κ
2c

)
-differentially private under pseudo-metric√

ρ.

4.2 Posterior Sampling Query Model

Given that we have a full posterior distribution, we use it to define an algorithm
achieving privacy. In this framework, we allow the adversary to submit a set of
queries { qk } which are mappings from parameter space Θ to some arbitrary
answer set Ψ ; i.e.,, qk : Θ → Ψ . If we know the true parameter θ, then we would
reply to any query with qk(θ). However, since θ is unknown, we must select a
method for conveying the required information. There are three main approaches
that we are aware of. The first is to marginalise θ out. The second is to use the
maximum a posteriori value of θ. The final, which we employ here, is to use
sampling; i.e., to reply to each query qk using a θk sampled from the posterior.

This sample-based interactive query model is presented in Algorithm 1. First,
the algorithm calculates the posterior distribution ξ(· | x). Then, for the kth re-
ceived query qk, the algorithm draws a sample θk from the posterior distribution
and responds with qk(θk).
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Algorithm 1. Posterior sampling query model

1. Input prior ξ, data x ∈ S
2. Calculate posterior ξ(· | x).
3. for k = 1, . . . do
4. Observe query qk : Θ → Ψ .
5. Sample θk ∼ ξ(· | x).
6. Return qk(θk).
7. end for

In this context, Theorem 2 can be interpreted as proving differential privacy
for the posterior sampling mechanism for the case when the response set is the
parameter set; i.e., Ψ = Θ and qk(θ) = θ. Due to the data-processing inequal-
ity, this also holds for all query functions. As an example, consider querying
conditional expectations:

Example 1. Let each model Pθ in the family define a distribution on the product
space S =

⋃∞
n=1 Xn, such for any x = (x1, . . . , xn) ∈ Xn, Pθ(x) =

∏
i Pθ(xi).

In addition, let X = Y × Z (with appropriate algebras SX ,SY ,SZ) and write
xi = (xi,Y , xi,Z) for point xi and its two components. A conditional expectation
query would require an answer to the question:

Eθ(x|Y | x|Z),

where the parameter θ is unknown to the questioner. In this case, the answer
set Ψ would be identical to Y, while k would index the values in Z.

4.3 Distinguishability of Datasets

A limitation of the differential privacy framework is that it does not give us
insight on the amount of effort required by an adversary to obtain private infor-
mation. In fact, an adversary wishing to breach privacy, needs to distinguish x
from alternative datasets y. Within the posterior sampling query model, A has
to decide whether B’s posterior is ξ(· | x) or ξ(· | y). However, he can only do so
within some neighbourhood ε of the original data. In this section, we bound his
error in determining the posterior in terms of the number of queries he performs.
This is analogous to the dataset-size bounds on queries in interactive models of
differential privacy [12].

Let us consider an adversary querying to sample θk ∼ ξ(· | x). This is the
most powerful query possible under the model shown in Algorithm 1. Then, the
adversary needs only to construct the empirical distribution to approximate the
posterior up to some sample error. By bounds on the KL divergence between
the empirical and actual distributions we can bound his power in terms of how
many samples he needs in order to distinguish between x and y.

Due to the sampling model, we first require a finite sample bound on the
quality of the empirical distribution. The adversary could attempt to distinguish
different posteriors by forming the empirical distribution on any sub-algebra S.
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Lemma 2. For any δ ∈ (0, 1), let M be a finite partition of the sample space S,
of size m ≤ log2

√
1/δ, generating the σ-algebra S = σ(M ). Let x1, . . . , xn ∼ P

be i.i.d. samples from a probability measure P on S, let P|S be the restriction of

P on S and let P̂n
|S be the empirical measure on S. Then, with probability at

least 1− δ:
∥
∥
∥P̂n

|S − P|S
∥
∥
∥
1
≤

√
3

n
ln

1

δ
. (12)

Of course, the adversary could choose any arbitrary estimator ψ to guess x. The
accompanying technical report [8] describes how to apply Le Cam’s method to
obtain matching lower bound rates in this case, by defining dataset estimators.
This is however is not essential for the remainder of the paper.

We can combine this bound on the adversary’s estimation error with Theo-
rem 1’s bound on the KL divergence between posteriors resulting from similar
data to obtain a measure of how fine a distinction between datasets the adversary
can make after a finite number of draws from the posterior:

Theorem 3. Under Assumption 1, the adversary can distinguish between data
x, y with probability 1− δ if:

ρ(x, y) ≥ 3

4Ln
ln

1

δ
. (13)

Under Assumption 2, this becomes:

ρ(x, y) ≥ 3c

2κn
ln

1

δ
. (14)

Consequently, either smoother likelihoods (i.e., decreasing L), or a larger con-
centration on smoother likelihoods (i.e., increasing c), both increases the effort
required by the adversary and reduces the sensitivity of the posterior. Note that,
unlike the results obtained for differential privacy of the posterior sampling mech-
anism, these results have the same algebraic form under both assumptions.

5 Examples Satisfying Our Assumptions

In what follows we study, for different choices of likelihood and corresponding
conjugate prior, what constraints must be placed on the prior’s concentration to
guarantee a desired level of privacy. These case studies closely follow the pattern
in differential privacy research where the main theorem for a new mechanism are
sufficient conditions on (e.g., Laplace) noise levels to be introduced to a response
in order to guarantee a level ε of ε-differential privacy.

For exponential families, we have pθ(x) = h(x) exp
{
η�θ T (x)−A(ηθ)

}
, where

h(x) is the base measure, ηθ is the distribution’s natural parameter corresponding
to θ, T (x) is the distribution’s sufficient statistic, and A(ηθ) is its log-partition
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function. For distributions in this family, under the absolute log-ratio distance,
the family of parameters ΘL of Assumption 2 must satisfy, for all x, y ∈ S:∣
∣
∣ln

h(x)
h(y) + η�θ (T (x)− T (y))

∣
∣
∣ ≤ Lρ(x, y). If the left-hand side has an amenable

form, then we can quantify the set ΘL for which this requirement holds. Particu-
larly, for distributions where h(x) is constant and T (x) is scalar (e.g., Bernoulli,

exponential, and Laplace), this requirement simplifies to |T (x)−T (y)|
ρ(x,y) ≤ L

ηθ
. One

can then find the supremum of the left-hand side independent from θ, yielding
a simple formula for the feasible L for any θ. Here are some examples, whose
proofs can be found in [8].

Lemma 3 (Exponential conjugate prior). For the case of an exponential
distribution Exp(θ) with exponential conjugate prior θ ∼ Exp(λ), λ > 0 satisfies
Assumption 2 with parameter c = λ and metric ρ(x, y) = |x− y|.
Lemma 4 (Laplace conjugate prior). The Laplace distribution Laplace(θ)
and Laplace conjugate prior θ ∼ Laplace(μ, s, λ), μ ∈ R, s ≥ L, λ > 0 satisfies
Assumption 2 with parameters c = λ and metric ρ(x, y) = |x− y|
Lemma 5 (Beta-Binomial conjugate prior). The Binomial distribution
Binom(θ, n), with Binomial prior θ ∼ Beta(α, β), α = β > 1 satisfies Assump-
tion 2 for c = O(α) and metric ρ(x, y) = |x− y|.
Lemma 6 (Normal distribution). The normal distribution N(μ, σ2) with an
exponential prior σ2 ∼ Exp(λ) satisfies Assumption 2 with parameter c = λ and
metric ρ(x, y) =

∣
∣x2 − y2

∣
∣+ 2 |x− y|.

Lemma 7 (Discrete Bayesian networks). Consider a family of discrete
Bayesian networks on K variables, FΘ = {Pθ : θ ∈ Θ }. More specifically, each

member Pθ, is a distribution on a finite space S =
∏K

k=1 Sk and we write
Pθ(x) for the probability of any outcome x = (x1, . . . , xK) in S. We also let

ρ(x, y) �
∑K

k=1 I {xk �= yk} be the distance between x and y. If ε is the smallest
probability assigned to any one sub-event, then Assumption 1 is satisfied with
L = ln 1/ε.

The above examples demonstrate that our assumptions are reasonable. In
fact, for several of them we recover standard choices of prior distributions.

6 Conclusion

We have presented a unifying framework for private and secure inference in a
Bayesian setting. Under simple but general assumptions, we have shown that
Bayesian inference is both robust and private in a certain formal sense. In par-
ticular, our results establish that generalised differential privacy can be achieved
while using only existing constructs in Bayesian inference. Our results merely
place concentration conditions on the prior. This allows us to use a general pos-
terior sampling mechanism for responding to queries.



302 C. Dimitrakakis et al.

Due to its relative simplicity on top of non-private inference, our framework
may thus serve as a fundamental building block for more sophisticated, general-
purpose Bayesian inference. As an additional step towards this goal, we have
demonstrated the application of our framework to deriving analytical expressions
for well-known distribution families, and for discrete Bayesian networks. Finally,
we bounded the amount of effort required of an attacker to breach privacy when
observing samples from the posterior. This serves as a principled guide for how
much access can be granted to querying the posterior, while still guaranteeing
privacy.

We have not examined how privacy concerns relate to learning. While larger
c improves privacy, it also concentrates the prior so much that learning would
be inhibited. Thus, c should be chosen to optimise the trade-off between privacy
and learning. However, we leave this issue for future work.
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A Proofs of Main Theorems

Proof (Proof of Lemma 1). For Assumption 1, the proof follows directly from
the definition of the absolute log-ratio distance; namely,

d(pnΘ({ xi }), pnΘ({ yi })) = n
∑n

i=1 d(pΘ(xi), pΘ(yi))

≤ L · n∑n
i=1 d(xi, yi) .

This can be reduced from n to k if only k items differ since d(pΘ(xi), pΘ(yi)) = 0
if xi = yi.

For Assumption 2, the same argument shows that the ΘL from Eq. (5) be-
comes ΘL·n (or ΘL·k for the k differing items case) for the product distribution.
Hence, the same prior can be used to give the bound required by Eq. (6) if
parameter c

n (or c
k ) is used.

Proof (Proof of Theorem 1). Let us now tackle claim (1.i). First, we can decom-
pose the KL-divergence D (ξ(· | x) ‖ ξ(· | y)) into two parts:

∫

Θ

ln
dξ(θ | x)
dξ(θ | y) dξ(θ) =

∫

Θ

ln
pθ(x)

pθ(y)
dξ(θ) +

∫

Θ

ln
φ(y)

φ(x)
dξ(θ)

≤
∫

Θ

∣
∣
∣
∣ln

pθ(x)

pθ(y)

∣
∣
∣
∣ dξ(θ) +

∫

Θ

ln
φ(y)

φ(x)
dξ(θ) ≤ Lρ(x, y) +

∣
∣
∣
∣ln

φ(y)

φ(x)

∣
∣
∣
∣ . (15)

From Ass. 1, pθ(y) ≤ exp(Lρ(x, y))pθ(x) for all θ so:

φ(y) =

∫

Θ

pθ(y) dξ(θ) ≤ exp(Lρ(x, y))

∫

Θ

pθ(x) dξ(θ) = exp(Lρ(x, y))φ(x).

(16)
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Combining this with (15) we obtain D (ξ(· | x) ‖ ξ(· | y)) ≤ 2Lρ(x, y).
Claim (1.ii) is dealt with similarly. Once more, we can break down the distance

in parts. Let Θ[a,b] � Θb \ Θa. Then ξ(Θ[a,b]) = ξ(Θb) − ξ(Θa) ≤ e−ca, as
Θb ⊃ Θa, while ξ(Θb) ≤ 1 and ξ(Θa) ≥ 1 − e−ca from Ass 2. We can partition
Θ into uniform intervals [(L − 1)α,Lα) of size α > 0 indexed by L. We bound
the divergence on each partition and sum over L.

D (ξ(· | x) ‖ ξ(· | y))

≤
∞∑

L=1

{∫

Θ[(L−1)α,Lα)

∣
∣
∣
∣ln

pθ(x)

pθ(y)

∣
∣
∣
∣ dξ(θ) +

∫

Θ[(L−1)α,Lα]

ln
φ(y)

φ(x)
dξ(θ)

}

≤2ρ(x, y)α

∞∑

L=1

Le−c(L−1)α = 2ρ(x, y)α
(
1− e−cα

)−2
, (17)

via the geometric series. This holds for any size parameter α > 0 and is convex
for α > 0, c > 0. Thus, there is an optimal choice for α that minimizes this
bound. Differentiating w.r.t α and setting the result to 0 yields α� = ω

c where
ω is the unique non-zero solution to eω = 2ω + 1. The optimal bound is then

D (ξ(· | x) ‖ ξ(· | y)) ≤ 2ω
(1−e−ω)2 · ρ(x,y)c As the ω ≈ 1.25643 is the unique positive

solution to eω = 2ω + 1, and we define κ = 2ω
(1−e−ω)2 ≈ 4.91081.

Proof (Proof of Theorem 2). For part (2.i), we assumed that there is an L > 0

such that ∀x, y ∈ S,
∣
∣
∣log

pθ(x)
pθ(y)

∣
∣
∣ ≤ Lρ(x, y), thus implying pθ(x)

pθ(y)
≤ exp{Lρ(x, y)}.

Further, in the proof of Theorem 1, we showed that φ(y) ≤ exp{Lρ(x, y)}φ(x)
for all x, y ∈ S. From Eq. 2, we can then combine these to bound the posterior
of any B ∈ SΘ as follows for all x, y ∈ S:

ξ(B | x) =
∫
B

pθ(x)
pθ(y)

pθ(y) dξ(θ)

φ(y)
· φ(y)
φ(x)

≤ exp{2Lρ(x, y)}ξ(B | y) .

For part (2.ii), note that from Theorem (1.ii) that the KL divergence of the
posteriors under assumption is bounded by κρ(x, y)/c. Now, recall Pinsker’s
inequality [cf. 14]:

D (Q‖P ) ≥ 1

2
‖Q − P‖21 . (18)

Using it, this bound yields: |ξ(B | x)− ξ(B | y)| ≤
√

1
2D (ξ(· | x) ‖ ξ(· | y)) ≤

√
κρ(x, y)/2c

Proof (Proof of Lemma 2). We use the inequality due to Weissman et al. [24] on
the �1 norm, which states that for any multinomial distribution p with m out-
comes, the �1 deviation of the empirical distribution p̂n satisfies: P(‖p̂n − p‖1 ≥
ε) ≤ (2m−2)e−

1
2nε

2

. The right hand side is bounded by em ln 2− 1
2nε

2

. Substituting

ε =
√

3
n ln 1

δ :
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P(‖p̂n − p‖1 ≥
√

3

n
ln

1

δ
) ≤ em ln 2− 3

2 ln 1
δ

≤ elog2
√

1
δ ln 2− 3

2 ln 1
δ = e

1
2 ln 1

δ− 3
2 ln 1

δ = δ. (19)

where the second inequality follows from m ≤ log2
√
1/δ.

Proof (Proof of Theorem 3). Recall that the data processing inequality states
that, for any sub-algebra S:

∥
∥Q|S − P|S

∥
∥
1
≤ ‖Q− P‖1 . (20)

Using this and Pinsker’s inequality (18) we get:

2Lρ(x, y) ≥ 2Lε ≥ D (ξ(· | x)‖ξ(· | y))
≥ 1

2
‖ξ(· | x)− ξ(· | y)‖21 ≥ 1

2

∥
∥ξ|S(· | x) − ξ|S(· | y)

∥
∥2
1
. (21)

On the other hand, due to (12) the adversary’s �1 error in the posterior distribu-

tion is bounded by
√

3
n ln 1

δ with probability 1− δ. Using the above inequalities,

we can bound the error in terms of the distinguishability of the real dataset x
from an arbitrary set y as: 4Lρ(x, y) ≥ 3

n ln 1
δ . Rearranging, we obtain the re-

quired result. The second case is treated similarly to obtain: 2κρ(x, y)/c ≥ 3
n ln 1

δ .
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