
Generalization Bounds for Time Series

Prediction with Non-stationary Processes

Vitaly Kuznetsov1 and Mehryar Mohri1,2

1 Courant Institute of Mathematical Sciences,
251 Mercer street, New York, NY 10012, USA

2 Google Research, 111 8th Avenue, New York, NY 10012, USA
{vitaly,mohri}@cims.nyu.edu

Abstract. This paper presents the first generalization bounds for
time series prediction with a non-stationary mixing stochastic process.
We prove Rademacher complexity learning bounds for both average-
path generalization with non-stationary β-mixing processes and path-
dependent generalization with non-stationary φ-mixing processes. Our
guarantees are expressed in terms of β- or φ-mixing coefficients and a nat-
ural measure of discrepancy between training and target distributions.
They admit as special cases previous Rademacher complexity bounds
for non-i.i.d. stationary distributions, for independent but not identi-
cally distributed random variables, or for the i.i.d. case. We show that,
using a new sub-sample selection technique we introduce, our bounds
can be tightened under the natural assumption of convergent stochas-
tic processes. We also prove that fast learning rates can be achieved
by extending existing local Rademacher complexity analysis to non-i.i.d.
setting.

Keywords: Generalization bounds, time series, mixing, stationary pro-
cesses, fast rates, local Rademacher complexity.

1 Introduction

Given a sample ((X1, Y1), . . . , (Xm, Ym)) of pairs in Z = X × Y, the standard
supervised learning task consists of selecting, out of a class of functions H , a
hypothesis h : X → Y that admits a small expected loss measured using some
specified loss function L : Y×Y → R+. The common assumption in the statistical
learning theory and the design of algorithms is that samples are drawn i.i.d.
from some unknown distribution and generalization in this scenario has been
extensively studied in the past. However, for many problems such as time series
prediction, the i.i.d. assumption is too restrictive and it is important to analyze
generalization in the absence of that condition. A variety of relaxations of this
i.i.d. setting have been proposed in the machine learning and statistics literature.
In particular, the scenario in which observations are drawn from a stationary
mixing distribution has become standard and has been adopted by most previous
studies [1, 10, 11, 12, 18, 20]. In this work, we seek to analyze generalization
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under the more realistic assumption of non-stationary data. This covers a wide
spectrum of stochastic processes considered in applications, including Markov
chains, which are non-stationary.

Suppose we are given a doubly infinite sequence of Z-valued random variables
{Zt}∞t=−∞ jointly distributed according to P. We will write Zb

a to denote a vector
(Za, Za+1, . . . , Zb) where a and b are allowed to take values−∞ and∞. Similarly,
Pb

a denotes the distribution of Zb
a. Following [4], we define β-mixing coefficients

for P as follows. For each positive integer a, we set

β(a) = sup
t

‖Pt
−∞ ⊗P∞

t+a −Pt
−∞ ∧P∞

t+a‖TV , (1)

where Pt
−∞ ∧ P∞

t+a denotes the joint distribution of Zt
−∞ and Z∞

t+a. Recall
that the total variation distance ‖ · ‖TV between two probability measures P
and Q defined on the same σ-algebra of events G is given by ‖P − Q‖TV =
supA∈G |P (A) − Q(A)|. We say that P is β-mixing (or absolutely regular) if
β(a) → 0 as a → ∞. Roughly speaking, this means that the future has a
sufficiently weak dependence on the distant past. We remark that β-mixing co-
efficients can be defined equivalently as follows:

β(a) = sup
t

EZt
−∞

[
‖P∞

t+a(·|Zt
−∞)−P∞

t+a‖TV

]
, (2)

where P(·|·) denotes conditional probability measure [4]. Another standard mea-
sure of the dependence of the future on the past is the ϕ-mixing coefficient defined
for any a > 0 by

ϕ(a) = sup
t

sup
B∈Ft

‖P∞
t+a(·|B)−P∞

t+a‖TV , (3)

where Ft is the σ-algebra generated by Zt−∞. A distribution P is said to be
ϕ-mixing if ϕ(a) → 0 as a → ∞. Note that β(a) ≤ ϕ(a), so any ϕ-mixing
distribution is necessarily β-mixing. We also recall that a sequence of random
variables Z∞−∞ is (strictly) stationary provided that, for any t and any non-

negative integers m and k, Zt+m
t and Zt+m+k

t+k have the same distribution.
Unlike the i.i.d. case where E[L(h(X), Y )] is used to measure the generaliza-

tion error of h, in the case of time series prediction, there is no unique measure
commonly used to assess the quality of a given hypothesis h. One approach con-
sists of seeking a hypothesis h that performs well in the near future, given the
observed trajectory of the process. That is, we would like to achieve a small
path-dependent generalization error

LT+s(h) = EZT+s [L(h(XT+s), YT+s)|ZT
1 ], (4)

where s ≥ 1 is fixed. To simplify the notation, we will often write �(h, z) =
L(h(x), y), where z = (x, y). For time series prediction tasks, we often receive
a sample YT

1 and wish to forecast YT+s. A large class of (bounded-memory)
auto-regressive models uses q past observations YT

T−q+1 to predict YT+s. Our
scenario includes this setting as a special case where we take X = Yq and
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Zt+s = (Yt
t−q+1, Yt+s).

1 The generalization ability of stable algorithms with
error defined by (4) was studied by Mohri and Rostamizadeh [12].

Alternatively, one may wish to perform well in the near future when being on
some “average” trajectory. This leads to the averaged generalization error:

L̄T+s(h) = EZT
1
[LT+s(h)] = EZT+s [�(h, ZT+s)]. (5)

We note that L̄T+s(h) = LT+s(h) when the training and testing sets are inde-
pendent. The pioneering work of Yu [20] led to VC-dimension bounds for L̄T+s

under the assumption of stationarity and β-mixing. Later, Meir [10] used that to
derive generalization bounds in terms of covering numbers of H . These results
have been further extended by Mohri and Rostamizadeh [11] to data-dependent
learning bounds in terms of the Rademacher complexity of H .

Most of the generalization bounds for non-i.i.d. scenarios that can be found
in the machine learning and statistics literature assume that observations come
from a (strictly) stationary distribution. The only exception that we are aware of
is the work of Agarwal and Duchi [1], who present bounds for stable on-line learn-
ing algorithms under the assumptions of suitably convergent process.2 The main
contribution of our work is the first generalization bounds for both LT+s and
L̄T+s when the data is generated by a non-stationary mixing stochastic process.
These results provide a sufficient condition for the predictive PAC learnability
of Pestov [3, 14]. Next, we strengthen our assumptions and give generalization
bounds for convergent processes. In doing so, we establish sufficient conditions
for the predictive PAC learnability of Shalizi and Kontorovich [17]. These re-
sults are algorithm-agnostic analogues of the algorithm-dependent bounds of
Agarwal and Duchi [1]. In [1], Agarwal and Duchi also prove fast convergence
rates when a strongly convex loss is used. Similarly, Steinwart and Christmann
[18] showed that regularized learning algorithms admit faster convergence rates
under the assumptions of mixing and stationarity. We conclude this paper by
showing that this is in fact a general phenomenon. We use local Rademacher
complexity techniques [2] to establish faster convergence rates for stationary or
convergent mixing processes.

A key ingredient of the bounds we present is the notion of discrepancy between
two probability distributions that was used by Mohri and Muñoz Medina [13]
to give generalization bounds for sequences of independent (but not identically
distributed) random variables. In our setting, discrepancy can be defined as

d(t1, t2) = sup
h∈H

|Lt1(h)− Lt2(h)| (6)

and similarly we can define d̄(t1, t2), where we replace Lt with L̄t. Discrepancy is
a natural measure of the non-stationarity of a stochastic process with respect to

1 Observe that if Y is β-mixing, then so is Z and βZ(a) = βY(a− q). Similarly, the
ϕ-mixing assumption is also preserved. It is an open problem (posed by Meir [10])
to derive generalization bounds for unbounded-memory models.

2 Agarwal and Duchi [1] additionally assume that distributions are absolutely contin-
uous and that the loss function is convex and Lipschitz.
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the hypothesis classH and a loss function L. For instance, if the process is strictly
stationary then d̄(t1, t2) = 0 for all t1, t2 ∈ Z. As a more interesting example,
consider a weakly stationary stochastic process,3 together with a squared loss
L and a set of linear hypothesis H = {YT

t−q+1 
→ w · YT
t−q+1 : w ∈ R

q}. It can

be shown that in this case we again have d̄(t1, t2) = 0 for all t1, t2 ∈ Z. An
additional advantage of the discrepancy measure is that it can be replaced by
an upper bound that, under mild conditions, can be estimated from data [8, 6].

The rest of this paper is organized as follows. In Section 2 we discuss the main
technical tool used to derive our bounds. Section 3 and Section 4 present learning
guarantees for averaged and path-dependent errors respectively. In Section 5 we
analyze generalization with convergent processes. We conclude with fast learning
rates for the non-i.i.d. setting in Section 6.

2 Independent Blocks and Sub-sample Selection

The first step towards our generalization bounds is to reduce the setting of a
mixing stochastic process to a simpler scenario of a sequence of independent ran-
dom variables, where we can take advantage of the known concentration results.
One way to achieve this is via the independent block technique introduced by
Yu [20] which we now describe.

We can divide a given sample ZT
1 into 2m blocks such that each block has size

ai and we require T =
∑2m

i=1 ai. In other words, we consider a sequence of random

vectors Z(i) = Z
u(i)
l(i) , i = 1, . . . , 2m where l(i) = 1+

∑i−1
j=1 aj and u(i) =

∑i
j=1 aj .

It will be convenient to refer to even and odd blocks separately. We will write
Zo = (Z(1),Z(3) . . . ,Z(2m − 1)) and Ze = (Z(2),Z(4), . . . ,Z(2m)). In fact, we
will often work with blocks that are independent.

Let Z̃o = (Z̃(1), . . . , Z̃(2m− 1)) where Z̃(i), i = 1, 3, . . . , 2m− 1, are indepen-

dent and each Z̃(i) has the same distribution as Z(i). We construct Z̃e in the
same way. The following result due to Yu [20] enables us to relate sequences of
dependent and independent blocks.

Proposition 1. Let g be a real-valued Borel measurable function such that
−M1 ≤ g ≤ M2 for some M1,M2 ≥ 0. Then, the following holds:

|E[g(Z̃o)]− E[g(Zo)]| ≤ (M1 +M2)

m−1∑
i=1

β(a2i).

The proof of this result is given in [20], which in turn is based on [5] and [19].
We present a sketch of the main steps of the proof as these will be useful for us
as stand-alone results.

3 A process Z is weakly stationary if E[Zt] is a constant function of t and E[Zt1Zt2 ]
only depends on t1 − t2.
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Lemma 1. Let Q and P be probability measures on (Ω,F) and let h : Ω → R

be a Borel measurable function such that −M1 ≤ h ≤ M2 for some M1,M2 ≥ 0.
Then

|EQ[h]− EP [h]| ≤ (M1 +M2)‖P −Q‖TV .

The proof of Lemma 1 can be found in [5, 19, 20]. Lemma 1 extended via
induction yields the following result. See [5] for further details.

Lemma 2. Let m ≥ 1 and (
∏m

k=1 Ωk,
∏m

k=1 Fk) be a measure space with P a

measure on this space and Pj the marginal on (
∏j

k=1 Ωk,
∏j

k=1 Fk). Let Qj be a
measure on (Ωj ,Fj) and define

βj = E

[∥∥∥∥Pj+1

(
· |

j∏
k=1

Fk

)
−Qj+1

∥∥∥∥
TV

]
.

Then, for any Borel measurable function h :
∏m

k=1 Ωk → R such that −M1 ≤
h ≤ M2 for some M1,M2 ≥ 0, the following holds

|EP [h]− EQ[h]| ≤ (M1 +M2)

m−1∑
j=1

βj

where Q = Q1 ⊗Q2 ⊗ . . .⊗Qm.

Proposition 1 now follows from Lemma 2 by taking Qj to be the marginal of
P on (Ωj ,Fj) and applying it to the case of independent blocks.

Proposition 1 is not the only way to relate mixing and independent cases.
Next, we present another technique that we term sub-sample selection, which
is particularly useful when the process is convergent. Suppose we are given a
sample ZT

1 . Fix a ≥ 1 such that T = ma for some m ≥ 1 and define a sub-
sample Z(j) = (Z1+j , . . . , Zm−1+j), j = 0, . . . , a− 1. An application of Lemma 2
yields the following result.

Proposition 2. Let g be a real-valued Borel measurable function such that
−M1 ≤ g ≤ M2 for some M1,M2 ≥ 0. Then

|E[g(Z̃Π)]− E[g(Z(j))]| ≤ (M1 +M2)(m− 1)β(a),

where Z̃Π is an i.i.d. sample of size m from a distribution Π and β(a) =
supt E[‖Pt+a(·|Zt

1)−Π‖TV ].

Proposition 2 is commonly applied with Π being the stationary probability
measure of a convergent process.



Generalization Bounds for Time Series Prediction 265

3 Generalization Bound for the Averaged Error

In this section, we derive a generalization bound for averaged error L̄T+s. Given
a sample ZT

1 generated by a (β-)mixing process,4 we define Φ(ZT
1 ) as follows:

Φ(ZT
1 ) = sup

h∈H

(
L̄T+s(h)− 1

T

T∑
t=1

�(h, Zt)

)
. (7)

We will also use I1 to denote the set of indices of the elements from the sample
ZT
1 that are contained in the odd blocks. Similarly, I2 is used for elements in the

even blocks.
We establish our bounds in a series of lemmas. We start by proving a concen-

tration result for dependent non-stationary data.

Lemma 3. Let L be a loss function bounded by M and H an arbitrary hy-
pothesis set. For any a1, . . . , a2m > 0 such that T =

∑2m
i=1 ai, partition the

given sample ZT
1 into blocks as described in Section 2. Then, for any ε >

max(E[Φ(Z̃o)],E[Φ(Z̃e)]), the following holds:

P(Φ(ZT
1 ) > ε) ≤ P(Φ(Z̃o)−E[Φ(Z̃o)] > ε1)+P(Φ(Z̃e)−E[Φ(Z̃e)] > ε2)+

m−1∑
i=2

β(ai),

where ε1 = ε− E[Φ(Z̃o)] and ε2 = ε − E[Φ(Z̃e)].

Proof. By convexity of the supremum Φ(ZT
1 ) ≤ |I1|

T Φ(Zo) + |I2|
T Φ(Ze). Since

|I1| + |I2| = T , for |I1|
T Φ(Zo) + |I2|

T Φ(Ze) to exceed ε at least one element of
{Φ(Zo), Φ(Ze)} must be greater than ε. Thus, by the union bound, we can write

P(Φ(ZT
1 ) > ε) ≤ P(Φ(Zo) > ε) + P(Φ(Ze) > ε)

= P(Φ(Zo)− E[Φ(Z̃o)] > ε1) + P(Φ(Ze)− E[Φ(Z̃e)] > ε2).

We apply Proposition 1 to the indicator functions of the events {Φ(Zo)−E[Φ(Z̃o)]

> ε1} and {Φ(Ze)− E[Φ(Z̃e)] > ε2} to complete the proof. ��
Lemma 4. Under the same assumptions as in Lemma 3, the following holds:

P(Φ(ZT
1 ) > ε) ≤ exp

( −2T 2ε21
‖ao‖22M2

)
+ exp

( −2T 2ε22
‖ae‖22M2

)
+

m−1∑
i=2

β(ai),

where ao = (a1, a3, . . . , a2m−1) and ae = (a2, a4, . . . , a2m).

Proof. We apply McDiarmid’s inequality [9] to the sequence of independent

blocks. We note that if Z̃o and Z̃ are two sequences of independent (odd) blocks

4 All the results of this section hold for a slightly weaker notion of β-mixing with
β(a) = supt E‖Pt+a(·|Zt

−∞)−Pt+a‖TV .
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that differ only by one block (say block i) then Φ(Z̃o) − Φ(Z̃) ≤ ai
M
T and it

follows from McDiarmid’s inequality that

P(Φ(Z̃o)− E[Φ(Z̃o)] > ε1) ≤ exp

( −2T 2ε21
‖ao‖22M2

)
.

Using the same argument for Z̃e finishes the proof of this lemma. ��

The next step is to bound max(E[Φ(Z̃o)],E[Φ(Z̃e)]). The bound that we give
is in terms of block Rademacher complexity defined by

R(Z̃o) =
1

|I1|E
[
sup
h∈H

m∑
i=1

σi l
(
h,Z(2i− 1)

)]
, (8)

where σi is a sequence of Rademacher random variables and l(h,Z(2i − 1)) =∑
t∈I1∩Z(2i−1) �(h, Zt). Below we will show that if the block size is constant (i.e.

ai = a), then the block complexity can be bounded in terms of the regular
Rademacher complexity.

Lemma 5. For j = 1, 2, let Δj = 1
|Ij |

∑
t∈Ij

d̄(t, T + s), which is an average

discrepancy. Then, the following bound holds:

max(E[Φ(Z̃o)],E[Φ(Z̃e)]) ≤ 2max(R(Z̃o),R(Z̃e)) + max(Δ1, Δ2). (9)

Proof. In the course of this proof Zt, denotes a sample drawn according to the
distribution of Z̃o (and not that of Zo). Using the sub-additivity of the supremum
and the linearity of expectation, we can write

E

[
sup
h∈H

L̄T+s(h)− 1

|I1|
∑
t∈I1

�(h, Zt)

]

= E

[
sup
h∈H

L̄T+s(h)− 1

|I1|
∑
t∈I1

L̄t(h) +
1

|I1|
∑
t∈I1

L̄t(h)− 1

|I1|
∑
t∈I1

�(h, Zt)

]

≤ E

[
sup
h∈H

L̄T+s(h)− 1

|I1|
∑
t∈I1

L̄t(h) + sup
h∈H

1

|I1|
∑
t∈I1

L̄t(h)− 1

|I1|
∑
t∈I1

�(h, Zt)

]

=
1

|I1|
∑
t∈I1

sup
h∈H

∣∣L̄T+s(h)− L̄t(h)
∣∣+ 1

|I1|E
[
sup
h∈H

∑
t∈I1

L̄t(h)−
∑
t∈I1

�(h, Zt)

]

= Δ1 +
1

|I1|E
[
sup
h∈H

m∑
i=1

E[l(h, Z̃(2i− 1))]− l(h, Z̃(2i− 1))

]
.

The second term can be written as

A =
1

|I1|E
[
sup
h∈H

m∑
i=1

Ai(h)

]
,
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with Ai(h) = E[l(h, Z̃(2i − 1))] − l(h, Z̃(2i − 1)) for all i ∈ [1,m]. Since the
terms Ai(h) are all independent, the same proof as that of the standard i.i.d.
symmetrization bound in terms of the Rademacher complexity applies and A
can be bounded by R(Z̃o). Using the same arguments for even blocks completes
the proof. ��
Combining Lemma 4 and Lemma 5 leads directly to themain result of this section.

Theorem 1. With the assumptions of Lemma 3, for any δ >
∑m−1

i=2 β(ai), with
probability 1− δ, the following holds for all hypotheses h ∈ H:

L̄T+s(h) ≤ 1

T

T∑
t=1

�(h, Zt) + 2max(R(Z̃o),R(Z̃e)) + max(Δ1, Δ2)

+M max(‖ae‖2, ‖ae‖2)
√

log 2
δ′

2T 2
,

where δ′ = δ −∑m−1
i=2 β(ai).

The learning bound of Theorem 1 indicates the challenges faced by the learner
when presented with data drawn from a non-stationary stochastic process. In
particular, the presence of the term max(Δ1, Δ2) in the bound shows that gen-
eralization in this setting depends on the “degree” of non-stationarity of the
underlying process. The dependency in the training instances reduces the ef-
fective size of the sample from T to (T/(‖ae‖2 + ‖ae‖2))2. Observe that for a
general non-stationary process the learning bounds presented may not converge
to zero as a function of the sample size, due to the discrepancies between the
training and target distributions. In Section 5 and Section 6, we will describe
some natural assumptions under which this convergence does occur.

When the same size a is used for all the blocks considered in the analy-
sis, thus T = 2ma, then the block Rademacher complexity terms can be re-
placed with standard Rademacher complexities. Indeed, in that case, we can
group the summands in the definition of the block complexity according to sub-
samples Z(j) and use the sub-additivity of the supremum to find that R(Z̃o) ≤
1
a

∑a
j=1 Rm(Z̃(j)), where Rm(Z̃(j)) = 1

mE[suph∈H

∑
i=1 σi�(h, Zi,j)] with (σi)i

a sequence of Rademacher random variables and (Zi,j)i,j a sequence of inde-
pendent random variables such that Zi,j is distributed according to the law of
Za(2i−1)+j from ZT

1 . This leads to the following perhaps more informative but
somewhat less tight bound:

L̄T+s(h) ≤ 1

T

T∑
t=1

�(h, Zt) +
2

a

2a∑
j=1

Rm(Z(j)) +
2

T

T∑
t=1

d̄(t, T + s) +M

√
log 2

δ′

8m
.

If the process is stationary, then we recover as a special case the generalization
bound of [11]. If ZT

1 is a sequence of independent but not identically distributed
random variables, we recover the results of [13]. In the i.i.d. case, Theorem 1
reduces to the generalization bounds of Koltchinskii and Panchenko [7].
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4 Generalization Bound for the Path-Dependent Error

In this section we give generalization bounds for a path-dependent error LT+s

under the assumption that the data is generated by a (ϕ-)mixing non-stationary
process.5 In this section, we will use Φ(ZT

1 ) to denote the same quantity as in
(7) except that L̄T+s is replaced with LT+s.

The key technical tool that we will use is the version of McDiarmid’s inequal-
ity for dependent random variables, which requires a bound on the differences
of conditional expectations of Φ (see Corollary 6.10 in [9]). We start with the
following adaptation of Lemma 1 to this setting.

Lemma 6. Let ZT
1 be a sequence of Z-valued random variables and suppose that

g : Zk+j → R is a Borel-measurable function such that −M1 ≤ g ≤ M2 for some
M1,M2 ≥ 0. Then, for any z1, . . . , zk ∈ Z, the following bound holds:

|E[g(Z1, . . . , Zk, ZT−j+1, . . . , ZT )|z1, . . . , zk]− E[g(z1, . . . , zk, ZT−j+1, . . . , ZT )]|
≤ (M1 +M2)ϕ(T + 1− (k + j)).

Proof. This result follows from an application of Lemma 1:

|E[g(Z1, . . . , Zk, ZT−j+1, . . . , ZT )|z1, . . . , zk]− E[g(z1, . . . , zk, ZT−j+1, . . . , ZT )]|
≤ (M1 +M2)‖PT

T−j+1(·|z1, . . . , zk)−PT
T−j+1‖TV

≤ (M1 +M2)ϕ(T + 1− (k + j)),

where the second inequality follows from the definition of ϕ-mixing coefficients.
��

Lemma 7. For any z1, . . . , zk, z
′
k ∈ Z and any 0 ≤ j ≤ T − k with k > 1, the

following holds:
∣∣E[Φ(ZT

1 )|z1, . . . , zk]− E[Φ(ZT
1 )|z1, . . . , z′k]

∣∣ ≤ 2M( j+1
T + γϕ(j + 2) + ϕ(s)),

where γ = 1 iff j + k < T and 0 otherwise. Moreover, if LT+s(h) = L̄T+s(h),
then the term ϕ(s) can be omitted from the bound.

Proof. First, we observe that using Lemma 6 we have |LT+s(h) − L̄T+s(h)| ≤
Mϕ(s). Next, we use this result, the properties of conditional expectation and
Lemma 6 to show that E[Φ(ZT

1 )|z1, . . . , zk] is bounded by

E

[
sup
h∈H

(
L̄T+s(h)− 1

T

T∑
t=1

�(h, Zt)

)∣∣∣∣z1, . . . , zk
]
+Mϕ(s)

≤ E

[
sup
h∈H

(
L̄T+s(h)− 1

T

T∑
t=k+j

�(h, Zt)− 1

T

k−1∑
t=1

�(h, Zt)

)∣∣∣∣z1, . . . , zk
]
+ η

≤ E

[
sup
h∈H

(
L̄T+s(h)− 1

T

T∑
t=k+j

�(h, Zt)− 1

T

k−1∑
t=1

�(h, zt)

)]
+Mγϕ(j + 2) + η,

5 As in Section 3, we can weaken the notion of ϕ-mixing by using ϕ(a) =
supt supB∈Ft

‖Pt+a(·|B)−Pt+a‖TV .
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where η = M( j
T +ϕ(s)). Using a similar argument to bound E[Φ(ZT

1 )|z1, . . . , z′k]
from below by −M(γϕ(j + 2) + j

T + ϕ(s)) and taking the difference completes
the proof. ��

The last ingredient that we will need to establish a generalization bound for
LT+s is a bound on E[Φ]. The bound we present is in terms of a discrepancy
measure and the sequential Rademacher complexity introduced in [15].

Lemma 8. The following bound holds

E[Φ(ZT
1 )] ≤ E[Δ] + 2Rseq

T−s(H�) +M
s− 1

T
,

where Rseq
T−s(H�) is the sequential Rademacher complexity of the function class

H� = {z 
→ �(h, z) : h ∈ H} and Δ = 1
T

∑T−s
t=1 d(t+ s, T + s).

Proof. First, we write E[Φ(ZT
1 )] ≤ E

[
suph∈H(LT+s(h)− 1

T

∑T
t=s �(h, Zt))

]
+

M s−1
T . Using the sub-additivity of the supremum, we bound the first term by

E

[
sup
h∈H

1

T

T−s∑
t=1

(Lt+s(h)− �(h, Zt+s))

]
+ E

[
sup
h∈H

1

T

T−s∑
t=1

(LT+s(h)− Lt+s(h))

]
.

The first summand above is bounded by 2Rseq
T−s(H�) by Theorem 2 of [16]. Note

that the result of [16] is for s = 1 but it can be extended to an arbitrary s. The
second summand is bounded by E[Δ] by the definition of the discrepancy. ��

McDiarmid’s inequality (Corollary 6.10 in [9]), Lemma 7 and Lemma 8 com-
bined yield the following generalization bound for path-dependent error LT+s(h).

Theorem 2. Let L be a loss function bounded by M and let H be an arbitrary
hypothesis set. Let d = (d1, . . . , dT ) with dt =

jt+1
T + γtϕ(jt + 2) + ϕ(s) where

0 ≤ jt ≤ T − t and γt = 1 iff jt + t < T and 0 otherwise (in case training and
testing sets are independent we can take dt =

jt+1
T + γtϕ(jt +2)). Then, for any

δ > 0, with probability at least 1− δ, the following holds for all h ∈ H:

LT+s(h) ≤ 1

T

T∑
t=1

�(h, Zt) + E[Δ] + 2Rseq
T−s(H�) +M‖d‖2

√
2 log

1

δ
+M

s− 1

T
.

Observe that for the bound of Theorem 2 to be nontrivial the mixing rate is
required to be sufficiently fast. For instance, if ϕ(log(T )) = O(T 2), then taking
s = log(T ) and jt = min{t, logT } yields ‖d‖2 = O(

√
(logT )3/T ). Combining

this with an observation that by Lemma 6, E[Δ] ≤ 2ϕ(s) + 1
T

∑T
t=1 d̄(t, T + s)

one can show that for any δ > 0 with probability at least 1 − δ, the following
holds for all h ∈ H :

LT+s(h) ≤ 1

T

T∑
t=1

�(h, Zt) + 2Rseq
T−s(H�) +

1

T

T∑
t=1

d̄(t, T + s) +O

(√
(logT )3

T

)
.

As commented in Section 3, in general, our bounds are convergent under some
natural assumptions examined in the next sections.
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5 Convergent Processes

In Section 3 and Section 4 we observed that, for a general non-stationary pro-
cess, our learning bounds may not converge to zero as a function of the sample
size, due to the discrepancies between the training and target distributions. The
bounds that we derive suggest that for that convergence to take place, training
distributions should “get closer” to the target distribution. However, the issue
is that as the sample size grows, the target “is moving”. In light of this, we
consider a stochastic process that converges to some stationary distribution Π .
More precisely, we define

β(a) = sup
t

E
[‖Pt+a(·|Zt

−∞)−Π‖TV

]
(10)

and define φ(a) in a similar way. We say that a process is β- or φ-mixing if
β(a) → 0 or φ(a) → 0 as a → ∞ respectively. We remark that this is precisely
the mixing assumption used by Agarwal and Duchi [1]. Note that the notions
of β- and φ-mixing are strictly stronger than the necessary mixing assump-
tions in Section 3 and Section 4. Indeed, consider a sequence Zt of independent
Gaussian random variables with mean t and unit variance. It is immediate that
this sequence is β-mixing but it is not β-mixing. On the other hand, if we use
finite-dimensional mixing coefficients, then the following holds:

β(a) = sup
t

E
[‖Pt+a(·|Zt

−∞)−Pt+a‖TV

]

≤ sup
t

E
[‖Pt+a(·|Zt

−∞)−Π‖TV

]
+ sup

t
sup
A

|E[Et+a[1A|Zt
−∞]]−Π |

≤ 2β(a).

However, note that a stationary β-mixing process is necessarily β-mixing with
Π = P0. We define the long-term loss or error LΠ(h) = EΠ [�(h, Z)] and observe
that L̄T (h) ≤ LΠ(h)+Mβ(T ) since by Lemma 1 the following inequality holds:

|L̄T (h)− LΠ(h)| ≤ M‖PT −Π‖TV ≤ ME
[‖PT (·|F0)−Π‖TV

]

≤ sup
t

E
[‖PT+t(·|Ft)−Π‖TV

]
= Mβ(T ).

Similarly, we can show that the following holds: LT+s(h) ≤ LΠ(h) + Mφ(s).
Therefore, we can use LΠ as a proxy to derive our generalization bound. With
this in mind, we consider Φ(ZT

1 ) defined as in (7) except L̄T+s is replaced by
LΠ . Using the sub-sample selection technique of Proposition 2 and the same
arguments as in the proof of Lemma 3, we obtain the following result.

Lemma 9. Let L be a loss function bounded by M and H any hypothesis set.
Suppose that T = ma for some m, a > 0. Then, for any ε > E[Φ(Z̃Π)], the
following holds:

P(Φ(ZT
1 ) > ε) ≤ aP(Φ(Z̃Π)− E[Φ(Z̃Π)] > ε′) + a(m− 1)β(a), (11)

where ε′ = ε− E[Φ(Z̃Π )] and Z̃Π is an i.i.d. sample of size m from Π.
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Using a Rademacher complexity bound [7] for P(Φ(Z̃Π) − E[Φ(Z̃Π )] > ε′)
yields the following result.

Theorem 3. With the assumptions of Lemma 9, for any δ > a(m − 1)β(a),
with probability 1− δ, the following holds for all hypothesis h ∈ H:

LΠ(h) ≤ 1

T

T∑
t=1

�(h, Zt) + 2Rm(H,Π) +M

√
log a

δ′

2m
,

where δ′ = δ − a(m − 1)β(a) and Rm(H,Π) = 1
mE[suph∈H

∑m
i=1 σi�(h, Z̃Π,i)]

with σi a sequence of Rademacher random variables.

Note that our bound requires the confidence parameter δ to be at least a(m−
1)β(a). Therefore, for the bound to hold with high probability, we need to require
Tβ(a) → 0 as T → ∞. This imposes restrictions on the speed of decay of β.
Suppose first that our process is algebraically β-mixing, that is β(a) ≤ Ca−d

where C > 0 and d > 0. Then Tβ(a) ≤ C0Ta
−d for some C0 > 0. Therefore,

we would require a = Tα with 1
d < α ≤ 1, which leads to a convergence rate

of the order
√
T (α−1) logT . Note that we must have d > 1. If the processes

is exponentially β-mixing, i.e. β(a) ≤ Ce−da for some C, d > 0, then setting
a = log T 2/d leads to a convergence rate of the order

√
T−1(logT )2.

Finally, we remark that, using the same arguments, it is possible to replace
Rm(H,Π) by its empirical counterpart 1

mE[suph∈H

∑T
t=1 σt�(h, Zt)|ZT

1 ] leading
to data-dependent bounds.

6 Fast Rates for Non-i.i.d. Data

For stationary mixing6 processes, Steinwart and Christmann [18] have estab-
lished fast convergence rates when a class of regularized learning algorithms is
considered. Agarwal and Duchi [1] also show that stable on-line learning algo-
rithms enjoy faster convergence rates if the loss function is strictly convex. In
this section, we present an extension of the local Rademacher complexity results
of [2] that imply that under some mild assumptions on the hypothesis set (that
are typically used in i.i.d. setting as well) it is possible to have fast learning rates
when the data is generated by a convergent process.

The technical assumption that we will exploit is that the Rademacher com-
plexity Rm(H�) of the function class H� = {z 
→ �(h, z) : h ∈ H} is bounded
by some sub-root function ψ(r). A non-negative non-decreasing function ψ(r)
is said to be sub-root if ψ(r)/

√
r is non-increasing. Note that in this section

Rm(F ) always denotes the standard Rademacher complexity with respect to

distribution Π defined by Rm(F ) = E[supf∈F
1
m

∑m
i=1 σif(Z̃i)] where Z̃i is an

i.i.d. sample of size m drawn according to Π . Observe that one can always find

6 In fact, the results of Steinwart and Christmann hold for α-mixing processes which
is a weaker statistical assumption then β-mixing.
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a sub-root upper bound on Rm({f ∈ F : E[f2] ≤ r}) by considering a slightly
enlarged function class. More precisely,

Rm({f ∈ F: E[f2] ≤ r}) ≤ Rm({g : E[g2] ≤ r, g = αf, α ∈ [0, 1], f ∈ F}) = ψ(r)

and ψ(r) can be shown to be sub-root (see Lemma 3.4 in [2]). The following
analogue of Theorem 3.3 in [2] for the i.i.d. setting is the main result of this
section.

Theorem 4. Let T = am for some a,m > 0. Assume that the Rademacher
complexity Rm({g ∈ H� : E[g

2] ≤ r}) is upper bounded by a sub-root function
ψ(r) with a fixed point r∗.7 Then, for any K > 1 and any δ > a(m − 1)β(a),
with probability at least 1− δ, the following holds for all h ∈ H:

LΠ(h) ≤
(

K

K − 1

)
1

T

T∑
t=1

�(h, Zt) + C1r
∗ +

C2 log
a
δ′

m
(12)

where δ′ = δ − a(m− 1)β(a), C1 = 704K/M , and C2 = 26MK + 11M .

Before we prove Theorem 4, we discuss the consequences of this result. Theo-
rem 4 tells us that with high probability, for any h ∈ H , LΠ(h) is bounded by a
term proportional to the empirical loss, another term proportional to r∗, which
represents the complexity of H , and a term in O( 1

m ) = O(2aT ). Here, m can be
thought of as an “effective” size of the sample and a the price to pay for the
dependency in the training sample. In certain situations of interest, the complex-
ity term r∗ decays at a fast rate. For example, if H� is a class of {0, 1}-valued
functions with finite VC-dimension d, then we can replace r∗ in the statement
of the Theorem with a term of order d log m

d /m at the price of slightly worse
constants (see Corollary 2.2, Corollary 3.7, and Theorem B.7 in [2]).

Note that unlike standard high probability results, our bound requires the
confidence parameter δ to be at least a(m − 1)β(a). Therefore, for our bound
to hold with high probability, we need to require Tβ(a) → 0 as T → ∞ which
depends on mixing rate. Suppose that our process is algebraically mixing, that is
β(a) ≤ Ca−d where C > 0 and d > 0. Then, we can write Tβ(a) ≤ CTa−d and
in order to guarantee that Tβ(a) → 0 we would require a = Tα with 1

d < α ≤ 1.
On the other hand, this leads to a rate of convergence of the order Tα−1 logT
and in order to have a fast rate, we need 1

2 > α which is possible only if d > 2. We
conclude that for a high probability fast rate result, in addition to the technical
assumptions on the function class H�, we may also need to require that the
process generating the data be algebraically mixing with exponent d > 2. We
remark that if the underlying stochastic process is geometrically mixing, that
is β(a) ≤ Ce−da for some C, d > 0, then a similar analysis shows that taking
a = log T 2/d leads to a high probability fast rate of T−1(logT )2.

We now present the proof of Theorem 4.

7 The existence of a unique fixed point is guaranteed by Lemma 3.2 in [2].
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Proof. First, we define Φ(ZT
1 ) = suph∈H

(
LΠ(h)− K

K−1
1
T

∑T
t=1 �(h, Zt)

)
. Using

the sub-sample selection technique of Proposition 2, we obtain that P(Φ(ZT
1 ) >

ε) ≤ aP(Φ(Z̃Π) > ε)+a(m− 1)β(a), where Z̃Π is an i.i.d. sample of size m from

Π . By Theorem 3.3 of [2], if ε = C1r
∗+

C2 log
a
δ′

m , then aP(Φ(Z̃Π) > ε) is bounded
above by δ − a(m− 1)β(a), which completes the proof. Note that Theorem 3.3
requires that there exists B such that EΠ [g2] ≤ BEΠ [g] for all g ∈ H�. This
condition is satisfied with B = M since each g ∈ H� is a bounded non-negative
function. ��

We remark that, using similar arguments, most of the results of [2] can be
extended to the setting of convergent processes. Of course, these results also
hold for stationary β-mixing processes since, as we pointed out in Section 5,
these are just a special case of convergent processes. However, we note that a
slightly tighter bound can be derived for stationary β-mixing processes by using
the independent block technique directly instead of relying on the sub-sample
selection method.

7 Conclusion

We presented a series of generalization guarantees for learning in presence of non-
stationary stochastic processes in terms of an average discrepancy measure that
appears as a natural quantity in our general analysis. Our bounds can guide the
design of time series prediction algorithms that would tame non-stationarity in
the data by minimizing an upper bound on the discrepancy that can be computed
from the data [8, 6]. The learning guarantees that we present strictly generalize
previous Rademacher complexity guarantees derived for stationary stochastic
processes or a drifting setting. We also presented simpler bounds under the
natural assumption of convergent processes. In doing so, we have introduced a
new sub-sample selection technique that can be of independent interest. Finally,
we proved new fast rate learning guarantees in the non-i.i.d. setting. The fast
rate guarantees presented can be further expanded by extending in a similar way
several of the results of [2].
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