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Abstract. We consider a general reinforcement learning problem and
show that carefully combining the Bayesian optimal policy and an ex-
ploring policy leads to minimax sample-complexity bounds in a very gen-
eral class of (history-based) environments. We also prove lower bounds
and show that the new algorithm displays adaptive behaviour when the
environment is easier than worst-case.

1 Introduction

We study the question of finding the minimax sample-complexity of reinforce-
ment learning without making the usual Markov assumption, but where the
learner has access to a finite set of reinforcement learning environments to
which the truth is known to belong. This problem was tackled previously by
Dyagilev et al. (2008) and Lattimore et al. (2013a). The new algorithm improves
on the theoretical results in both papers and is simultaneously simpler and more
elegant. Unlike the latter work, in certain circumstances the new algorithm en-
joys adaptive sample-complexity bounds when the true environment is benign.
We show that if M = {μ1, · · · , μK} is a carefully chosen finite set of history-
based reinforcement learning environments, then every algorithm is necessarily

ε-suboptimal for Ω
(

K
ε2(1−γ)3 log

K
δ

)
time-steps with probability at least δ where

γ is the discount factor. The algorithm presented has a sample-complexity bound
equal to that bound except for one factor of log 1

ε(1−γ) , so the minimax sample-

complexity of this problem is essentially known.
Aside from the previously mentioned papers, there has been little work on this

problem, although sample-complexity bounds have been proven for MDPs
(Lattimore and Hutter, 2012; Szita and Szepesvári, 2010;Kearns and Singh, 2002,
and references there-in), as well as partially observable and factored MDPs
(Chakraborty and Stone, 2011; Even-Dar et al., 2005). There is also a significant
literature on the regret criterion forMDPs (Azar et al., 2013;Auer et al., 2010, and
references there-in), butmeaningful results cannot be obtainedwithout a connect-
edness assumption that we avoid here. Regret bounds are known if the true en-
vironment is finite-state, Markov and communicating, but where the state is not
observed directly (Odalric-Ambrym et al., 2013). Less restricted settings have also

P. Auer et al. (Eds.): ALT 2014, LNAI 8776, pp. 170–184, 2014.
c© Springer International Publishing Switzerland 2014



Bayesian Reinforcement Learning with Exploration 171

been studied. Sunehag and Hutter (2012) proved sample-complexity bounds for
the same type of reinforcement learning problems that we do, but only for deter-
ministic environments (for the stochastic case they gave asymptotic results). Also
similar is the k-meteorologist problem studied by Diuk et al. (2009), but they con-
sider only the 1-step problem, which is equivalent to the case where the discount
factor γ = 0. In that case their algorithm is comparable to the one developed
by Lattimore et al. (2013a) and suffers from the same drawbacks, most notable
of which is non-adaptivity. A more detailed discussion is given in the conclusion.
Recently there has been a growing interesting in algorithms based on the “near-
Bayesian”Thompson sampling. See, for example, thework byOsband et al. (2013)
and references there-in. Note that the aforementioned paper deals with a Bayesian
regret criterion for MDPs, rather than the frequentist sample-complexity results
presented here.

The new algorithm is based loosely on the universal Bayesian optimal rein-
forcement learning algorithm studied in depth by Hutter (2005). Unfortunately,
a pure Bayesian approach may not explore sufficiently to enjoy a finite sample-
complexity bound (Orseau, 2010) (some exceptions by Hutter (2002)). For this
reason we add exploration periods to ensure that sufficient exploration occurs
for sample-complexity bounds to become possible.

2 Notation

Due to lack of space, many of the easier proofs or omitted, along with results
that are periphery to the main bound on the sample-complexity. All proofs can
be found in the technical report (Lattimore and Hutter, 2014).

Strings/Sequences. A finite string of length n over non-empty alphabet H is
a finite sequence x1x2x3 · · ·xn where xk ∈ H. An infinite sequence over H is a
sequence x1x2x3 · · · . The set of sequences over alphabet H of length n is denoted
byHn. The set of finite sequences over alphabetH is denoted byH∗ :=

⋃∞
n=0 Hn.

The set of sequences of length at most n isH≤n :=
⋃n

k=0 Hk. The uncountable set
of infinite sequences is H∞. For x ∈ H∗∪H∞, the length of x is �(x). The empty
string of length zero is denoted by ε, which should not be confused with small
constants denoted by ε. Subsequences are x1:t := x1x2x3 · · ·xt and x<t := x1:t−1.
We say x is a prefix of y and write x � y if �(x) ≤ �(y) and xk = yk for all
k ≤ �(x). The words string and sequence are used interchangeably, although
the former is more likely to be finite and the latter more likely to be infinite.
Strings may be concatenated in the obvious way. If x ∈ H∗, then xk is defined
to be k concatenations of x. A set A ⊂ H∗ is prefix free if for all x, y ∈ H,
x � y =⇒ x = y. A prefix free set A is complete if for all infinite histories
y ∈ H∞ there exists an x ∈ A such that x � y.

History Sequences. Let A, O and R ⊂ [0, 1] be finite sets of actions, ob-
servations and rewards respectively and H := A × O × R. The set of infinite
history sequences is denoted H∞ while H∗ is the set of all finite-length histories.
The action/observation/reward at time-step t of history x are denoted by at(x),
ot(x), rt(x) respectively.



172 T. Lattimore and M. Hutter

Environments and Policies. An environment μ is a set of conditional prob-
ability distributions μ(·|x, a) : R × O → [0, 1] where x ∈ H∗ is a finite history
and a ∈ A is an action. The value μ(r, o|x, a) is the probability of environment
μ generating reward r ∈ R and observation o ∈ O given finite history x ∈ H∗

has occurred and action a ∈ A has just been taken by the agent. A deterministic
policy is a function π : H∗ → A where π(x) is the action taken by policy π given
history x. The space of all deterministic policies is denoted by Π . A determinis-
tic policy π is consistent with history x ∈ H∗ if π(x<t) = at(x) for all t ≤ �(x).
The set of policies consistent with history x is denoted by Π(x).

Probability Spaces. A policy and environment interact sequentially to stochas-
tically generate infinite histories. In order to be rigorous, it is necessary to define
a (filtered) probability space on the set of infinite histories H∞. Let x ∈ H∗ be
a finite history, then Γx := {y ∈ H∞ : x � y} is the set of all infinite histo-
ries starting with x and is called the cylinder set of x. Now define σ-algebras
generated by the cylinders of H∗ and Ht by F := σ({Γx : x ∈ H∗}) and
F<t := σ({Γx : x ∈ Ht−1}). Then (H∞,F , {F<t}) is a filtered probability
space. Throughout we use the convention that time starts at 1 with the empty
history. An environment and policy interact sequentially to induce a measure
μπ : F → [0, 1] on the filtered probability space (H∞,F , {F<t}). IfA ∈ F ⊆ H∞,
then μπ(A) is the probability of the event A occurring. As is common in the liter-
ature, we abuse notation and use the short-hand μπ(x) := μπ(Γx). If x, y ∈ H∗,
then conditional probabilities are μπ(y|x) := μπ(xy)/μπ(x). Expectations with
respect to μπ are denoted by E

π
μ. If ρ is any measure on (H∞,F , {F<t}), then

we define useful random variables:

ρ<t(x) := ρ(x<t) ρ1:t(x) := ρ(x1:t) ρt:t+d(x) :=
ρ(x1:t+d)

ρ(x<t)
.

Discounting and Value Functions. Let γ ∈ [0, 1) be the discount factor, then
the discounted value of history x is the expected discounted cumulative reward.

V π
μ (x; d) := E

π
μ

⎡
⎣

�(x)+d∑
t=�(x)+1

γt−�(x)−1rt

∣∣∣∣∣x
⎤
⎦ V π

μ (x) := lim
d→∞

V π
μ (x; d),

where d is a horizon after which reards are not counted and we assume that 00 =
1 when γ = 0. The optimal policy in environment μ is π∗

μ := argmaxπ∈Π V π
μ (ε).

Since rewards are bounded in [0, 1] and values are discounted, the value function
is also bounded: V π

μ (x) ∈ [0, 1
1−γ ]. The value of the optimal policy in environment

μ and having observed history x is V ∗
μ (x). Since the discount factor does not vary

within the results we omit it from the notation for the value function, but it is
important to note that all values depend on this quantity.

3 Algorithm

To begin, we consider only the prediction problem where π is fixed, but μ is un-
known and the task is to predict future observations and rewards given the his-
tory. We assume that π is some fixed policy and that μ ∈ M = {ν1 · · · νK} where
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M is known, but not μ. The Bayesian mixture measure is ξπ :=
∑

ν∈M wνν
π

where w : M → [0, 1] is a probability distribution on M. The Bayesian opti-
mal policy is defined by π∗

ξ := argmaxπ V
π
ξ (ε) ≡ argmaxπ

∑
ν∈M wνV

π
ν (ε). It is

reasonably well-known that the predictive distribution of the Bayesian mixture
converges almost surely to the truth for all μ, and that it does so fast with respect
to a variety of different metrics. To measure convergence we define the d-step
total variation and squared Hellinger distances between predictive distributions
of ξπ and νπ given the history at time-step t.

δdx(ν
π, ξπ) :=

1

2

∑
y∈Hd

|νπ(y|x) − ξπ(y|x)| δdt (ν
π , ξπ)(x) := δdx<t

(νπ , ξπ)

hd
x(ν

π, ξπ) :=
1

2

∑
y∈Hd

(√
νπ(y|x)−

√
ξπ(y|x)

)2

hd
t (ν

π , ξπ)(x) := hd
x<t

(νπ , ξπ).

where the distances on the right hand side are defined as random variables. The
following theorem by Hutter and Muchnik (2007) will be useful.

Theorem 1. If μ ∈ M, then E
π
μ exp

(
1

2

∞∑
t=1

h1
t (μ

π, ξπ)

)
≤
√

1

wμ
.

More usual than the Hellinger distance in the analysis of Bayesian sequence pre-
diction is the relative entropy, but this quantity is unbounded, which somewhat
surprisingly leads to weaker results (Lattimore et al., 2013b). The following the-
orem is a simple generalisation of Theorem 1 to the multi-step case.

Theorem 2. Let d ≥ 1 and {τk}∞k=1 be a sequence of (H∞,F , {F<t})-measurable
stopping times such that τk + d ≤ τk+1 for all k. Then for all μ ∈ M

E
π
μ exp

(
1

2

∞∑
k=1

hd
τk
(μπ , ξπ)

)
≤
√

1

wμ
.

Theorem 1 is regained by choosing τk = k and d = 1. The proof of Theorem 2 can
be found in the technical report. Theorem 2 shows that the predictive distribu-
tion of the Bayesian mixture converges fast to the true predictive distribution. In
particular, with high probability the cumulative squared total-variation distance
does not greatly exceed log 1

wμ
.

Corollary 3. If δ > 0, then μπ

( ∞∑
k=1

δdτk(μ
π, ξπ)2 ≥ log

1

wμ
+ log

1

δ2

)
≤ δ.

Proof. We combine Markov’s inequality with Theorem 2.

μπ

( ∞∑
k=1

δdτk(μ
π, ξπ)2 ≥ log

1

wμ
+ log

1

δ2

)
(a)

≤ μπ

( ∞∑
k=1

hd
τk
(μπ , ξπ) ≥ log

1

wμδ2

)

(b)
= μπ

(
exp

(
1

2

∞∑
k=1

hd
τk(μ

π, ξπ)

)
≥ 1

δ

√
1

wμ

)
(c)

≤ δ,
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where (a) follows since the Hellinger distance upper bounds the total variation
distance, (b) is trivial, and (c) by Markov’s inequality. �

The consequence of the above is that a Bayesian predictor quickly learns the
true distribution of the rewards and observations it will receive. On first sight
this might seem promising for Bayesian reinforcement learning, but there is a
problem. Bayesian sequence prediction is only capable of learning to predict
given a fixed policy. But in RL the agent must choose its action at each time-
step, and to do this effectively it must be able to predict the consequences of
all actions, not only the action it ultimately ends up taking. We side-step this
problem in the new algorithm called BayesExp by only following the Bayesian
optimal policy when it is guaranteed to be nearly optimal and exploring other-
wise. The BayesExp algorithm is as follows:

Algorithm 1. BayesExp

1: Inputs: ε, δ and M = {ν1, ν2, · · · , νK}
2: δ1 ← δ/2 and ε1 ← ε(1− γ)/4 and ε2 ← ε/12 and d ← log ε2(1−γ)

log γ

3: x ← ε and t ← 1 and wν ← 1/K and D(ν) ← 0, ∀ν
4: loop
5: Π∗ ← {π∗

ν : ν ∈ M} ∪ {π∗
ξ}

6: π ← argmaxπ∈Π∗ maxν∈M δdx(ν
π, ξπ)

7: Δ ← maxπ∈Π∗,ν∈M δdx(ν
π, ξπ)

8: if Δ > ε1 then
9: D(ν) ← D(ν) + δdx(ν

π, ξπ)2, ∀ν
10: for j = 1 → d do
11: act(π)

12: M ← {
ν : D(ν) ≤ logK/δ21

}

13: else
14: D(ν) ← D(ν) + δ1x(ν

π∗
ξ , ξπ

∗
ξ )2, ∀ν

15: act(π∗
ξ )

16: function Act(π)
17: Take action a = π(x) and observe o ∈ O and r ∈ R from environment
18: t ← t+ 1 and x ← xaor

Indices. For the sake of readability the time indices have been omitted in the
pseudo-code above. Throughout the analysis we write Mt, Dt(ν) and Δt for the
values of Δ, D(ν) and M as computed by BayesExp at time-step t. Similarly,
Mz, Dz(ν) and Δz are the values of M, D(ν) and Δ respectively as they would
be computed given the algorithm had reached history z ∈ H∗.

Exploration Phases. The algorithm operates in phases of exploration and
exploitation. If there exists an optimal policy π′ with respect to some plausible
environment such that the d-step total-variation distance between νπ

′
and ξπ

′

is larger than ε1, then the algorithm follows π′ for exactly d time-steps. This
period is called an exploration phase. The set of time-steps triggering exploring
phases is denoted by E ⊆ N. While the set of time-steps spent in exploration
phases is denoted by Ed :=

⋃
t∈E {t, t+ 1, · · · , t+ d− 1}.
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Exploitation Time-Steps. If BayesExp is not exploring at time-step t, then t
is an exploiting time-step where BayesExp is following the Bayes optimal policy.
The set of all exploitation time-steps is denoted by T := N− Ed.

Failure Phases. For the remainder of this section the policy π refers to the
policy of BayesExp. A failure phase is a period of d time-steps triggered at
time-step t provided t is not part of a previous exploration/failure phase and
μ ∈ Mt and V ∗

μ (x<t)− V π
μ (x<t) > ε. We denote the set of time-steps triggering

failure phases by F ⊂ N and the set of time-steps spent in failure phases by
Fd :=

⋃
t∈F {t, t+ 1, · · · , t+ d− 1}. Failure phases depend on the unknown μ,

so are not known to the algorithm and are only used in the analysis.

4 Upper Bound on Sample-Complexity

Theorem 4. Suppose π is the policy of Algorithm 1 given input ε > 0, δ > 0
and M = {ν1, · · · , νK}. If μ ∈ M, then

μπ

( ∞∑
t=1

1
{
V ∗
μ (x<t)− V π

μ (x<t) > ε
}
>

416Kd

ε2(1 − γ)2
log

4K

δ2

)
≤ δ

where x is the infinite history sampled from μπ and d = log(ε2(1−γ))
log γ is the effec-

tive horizon.

Noting that d ∈ O( 1
1−γ log 1

ε(1−γ) ), the sample-complexity is bounded by

O

(
K

ε2(1− γ)3

(
log

1

ε(1− γ)

)(
log

K

δ

))
.

Proof Overview
(a) By definition, if V ∗

μ (x<t)− V π
μ (x<t) > ε, then either μ /∈ Mt or t is part of

an exploration/failure phase, t ∈ Ed ∪ Fd.
(b) First we show that μ ∈ Mt for all t with probability at least 1− δ1.
(c) We then use the definition of the algorithm to bound

|E| ≤ K

ε21
log

K

δ21
=⇒ |Ed| ≤ Kd

ε21
log

K

δ21
.

(d) If μ ∈ Mt and BayesExp is exploiting, then all plausible environments are
sufficiently close under all optimal policies and so

V ∗
μ (x<t)− V

π∗
ξ

μ (x<t) � ε. (1)

(e) Unfortunately (1) does not imply that V ∗
μ (x<t)−V π

μ (x<t) ≤ ε. A careful ar-
gument is required to ensure that the number of errors in exploitation periods
is also small, which essentially means bounding the number of failure phases.
This eventually follows from the fact that if BayesExp is sub-optimal while
exploiting, then there must be some probability of triggering an exploration
phase, which cannot happen too often.
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The following lemmas are required for the proof of Theorem 4 and could be
skipped until they are referred to.

Lemma 5. Suppose t is a time-step when BayesExp is exploiting given history

x<t. Then V
π∗
ξ

μ (x<t)−V π
μ (x<t) ≤

∑
y∈Y

μπ(y|x<t)
(
V

π∗
ξ

μ (x<ty)− V π
μ (x<ty)

)
+ ε2,

where Y is the set of finite history sequences y of length at most d such that
BayesExp would explore given history x<ty.

Y =
{
y ∈ H≤d : BayesExp explores given history x<ty

}
.

Proof. Define Ȳ = Y ∪ {
y ∈ Hd : ∀z ∈ Y, z �� y

}
, which is complete and prefix

free by definition. Since t is an exploitation time-step, BayesExp will follow policy
π∗
ξ until such a time as it starts an exploration phase. Therefore by Lemma 13

V
π∗
ξ

μ (x<t)− V π
μ (x<t)

(a)
=

∑

y∈Ȳ

μπ(y|x<t)γ
�(y)

(
V

π∗
ξ

μ (x<ty)− V π
μ (x<ty)

)

(b)

≤
∑
y∈Y

μπ(y|x<t)
∣∣∣V π∗

ξ
μ (x<ty)− V π

μ (x<ty)
∣∣∣+ ε2

where (a) follows from Lemma 13. (b) by dropping all y ∈ Ȳ − Y and using the
fact that for y ∈ Ȳ − Y we have �(y) = d, which by the definition of the horizon

d = log ε2(1−γ)
log γ implies that the ratio γd ≤ ε2(1− γ). �

Lemma 6. Let x<t be the history at an exploitation time-step t ∈ T and assume

μ ∈ Mt. Then V ∗
μ (x<t; d)− V

π∗
ξ

μ (x<t; d) ≤ 2ε1
1− γ

.

Proof. Since t is an exploitation time-step we have that Δt ≤ ε1. Therefore

V ∗
μ (x<t; d)− V

π∗
ξ

μ (x<t; d)
(a)
= V

π∗
μ

μ (x<t; d)− V
π∗
ξ

μ (x<t; d)

(b)

≤ V
π∗
μ

μ (x<t; d)− V
π∗
μ

ξ (x<t; d) + V
π∗
μ

ξ (x<t; d)− V
π∗
ξ

ξ (x<t; d)

+ V
π∗
ξ

ξ (x<t; d)− V
π∗
ξ

μ (x<t; d)

(c)

≤ 1

1− γ

(
δdx<t

(μπ∗
μ , ξπ

∗
μ) + δdx<t

(μπ∗
ξ , ξπ

∗
ξ )
) (d)

≤ 2Δt

1− γ

(e)

≤ 2ε1
1− γ

where (a) is the definition of V ∗
μ (x<t; d). (b) by adding and subtracting value

functions. (c) by Lemma 11. (d) by the definition of Δt and μ ∈ Mt. (e) since t
is an exploitation time-step. �
Lemma 7. Let x<t be the history at an exploration time-step t ∈ E. Then

V ∗
μ (x<t; d)− V π

μ (x<t; d) ≤ max {4Δt,1{μ /∈ Mt}}
1− γ

.
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Proof. If μ /∈ Mt, then we use the trivial bound of 1
1−γ . Now assume μ ∈ Mt and

let π∗
ρ = argmaxπ∈Π∗

t
maxν∈Mt δ

d
t (ν

π∗
ρ , ξπ

∗
ρ ), which means that ρ ∈ Mt ∪ {ξ}.

Therefore

V ∗
μ (x<t; d)− V π

μ (x<t; d)
(a)
= V

π∗
μ

μ (x<t; d)− V
π∗
ρ

μ (x<t; d)

(b)

≤ V
π∗
μ

ρ (x<t; d)− V
π∗
ρ

ρ (x<t; d) +
(
V

π∗
μ

μ (x<t; d)− V
π∗
μ

ρ (x<t; d)
)

+
(
V

π∗
ρ

ρ (x<t; d)− V
π∗
ρ

μ (x<t; d)
)

(c)

≤ 1

1− γ

(
δdx<t

(ρπ
∗
μ , μπ∗

μ) + δdx<t
(ρπ

∗
ρ , μπ∗

ρ )
)

(d)

≤ 1

1− γ

(
δdx<t

(ρπ
∗
μ , ξπ

∗
μ) + δdx<t

(ξπ
∗
μ , μπ∗

μ) + δdx<t
(ρπ

∗
ρ , ξπ

∗
ρ ) + δdx<t

(ξπ
∗
ρ , μπ∗

ρ )
)

(e)

≤ 4Δt

1− γ

where (a) follows since BayesExp follows policy π∗
ρ while exploring. (b) by ex-

panding the values. (c) by Lemma 11. (d) by the triangle inequality. (e) by the
definition of Δt and because ρ, μ ∈ M∪ {ξ}. �

The proof of Theorem 4 uses a number of constants that are functions of each
other. For convenience they are described in the table below.

Table 1. Constants for Theorem 4

constant ε1 ε2 ε3 ε4 δ1 d

constraint = ε2 +
2ε1
1−γ = (ε − ε3 − 2ε2)(1 − γ)

value ε(1 − γ)/4 ε/12 7ε/12 ε(1 − γ)/4 δ/2
log ε2
log γ

Proof (of Theorem 4). Following the plan, we start by bounding the probability
that μ is removed from Mt.

Step 1: Bounding Inconsistency Probability. Let A1 be the event that
μ ∈ Mt for all time-steps t. Environment μ is removed from the model class
Mt only once the counter D(μ) exceeds logK/δ21 . But D(μ) is the cumulative
squared total variation distance between μπ and ξπ , which by Corollary 3 is
bounded by logK/δ21 with μπ-probability at least 1− δ1 and so μπ(A1) ≥ 1− δ1.

Step 2: Bounding Exploration Phases. Let t be the start of an exploration
phase. Then by definition there exists a ν ∈ Mt such that δdt (ν

π , ξπ) > ε1 and
so D(ν) is incremented by at least ε21. Since an environment is removed from M
once D(ν) exceeds logK/δ21 , the number of exploration phases is bounded by
Emax := K

ε21
log K

δ21
. Since each exploration phase is exactly d time-steps long, the

number of time-steps spent in exploration phases satisfies

|Ed| ≤ Kd

ε21
log

K

δ21
. (2)
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By identical reasoning it holds that
∑
t∈E

Δ2
t ≤ K log

K

δ21
. (3)

Note that both (2) and (3) hold surely over all history trajectories.

Step 3: Exploitation Success. Assume that event A1 is true, which means
that μ ∈ Mt for all time-steps. Let t ∈ T be a time-step when BayesExp is
exploiting. Therefore

V ∗
μ (x<t)− V

π∗
ξ

μ (x<t)
(a)

≤ ε2 + V ∗
μ (x<t; d)− V

π∗
ξ

μ (x<t; d)
(b)

≤ 2ε1
1− γ

+ ε2 =: ε3 < ε

where (a) follows by truncating the horizon (Lemma 12) and (b) by Lemma 6.

Step 4: Connecting the Policies.We now bound the number of failure phases.
The intuition is that if BayesExp is exploiting at time-step t, then the Bayes-
optimal policy π∗

ξ is near-optimal. Since BayesExp follows this policy until an
exploration phase, V ∗

μ (x) − V π
μ (x) can only be large if there is a reasonable

probability of encountering an exploration phase within the next d time-steps.
By some form of concentration inequality this cannot happen too often before
an exploration phase actually occurs, which will lead to the correct bound on
the number of time-steps when V ∗

μ (x<t)− V π
μ (x<t) > ε. Let F = {t1, t2, · · · } be

the set of time-steps triggering failure phases with corresponding histories x<tk .
For k > |F | define tk = ∞. At time-step tk having observed history x<tk define
Y as in the statement of Lemma 5 to be the set of finite histories of length at
most d such that BayesExp would explore upon reaching history x<tky.

Y :=
{
y ∈ H≤d : BayesExp explores given history x<tky

}
.

For tk < ∞ we have that

ε
(a)
< V ∗

μ (x<tk)− V π
μ (x<tk)

(b)
= V ∗

μ (x<tk)− V
π∗
ξ

μ (x<tk) + V
π∗
ξ

μ (x<tk )− V π
μ (x<tk)

(c)

≤ ε3 + V
π∗
ξ

μ (x<tk )− V π
μ (x<tk)

(d)

≤ ε3 + ε2 +
∑
y∈Y

μπ(y|x<tk)
(
V

π∗
ξ

μ (x<tky)− V π
μ (x<tky)

)

(e)

≤ ε3 + 2ε2 +
∑
y∈Y

μπ(y|x<tk)
(
V ∗
μ (x<tky; d)− V π

μ (x<tky; d)
)

(f)

≤ ε3 + 2ε2 +
∑
y∈Y

μπ(y|x<tk)

⎛
⎝max

{
4Δx<tk

y,1
{
μ /∈ Mx<tk

y

}}

1− γ

⎞
⎠ (4)

where (a) follows from the definition of tk as a time-step when π is ε-suboptimal.
(b) by splitting the difference sum. (c) by the fact that π∗

ξ is at worst ε3-
suboptimal when BayesExp is exploiting and μ ∈ Mt (Step 3). Note that
μ ∈ Mtk is assumed in the definition of a failure phase. (d) by Lemma 5.
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(e) by the fact that V ∗
μ ≥ V π

μ for all π and by Lemma 12. (f) by Lemma 7.
Define random variable Xk by

Xk :=

tk+d∑
t=tk

1{t ∈ E} (max {4Δt,1{μ /∈ Mt}}) ∈ [0, 4].

By the definition of Xk and (4), if tk < ∞, then

E
π
μ[Xk|x<tk ] =

∑
y∈Y

μπ(y|x<tk)
(
4Δx<tk

y + 1{μ /∈ Mt}
)

≥ (ε− ε3 − 2ε2) (1 − γ) =: ε4 ≡ ε1. (5)

Using the bounds on the number of exploration phases given in Step 2 we have
∞∑
k=1

Xk

(a)

≤ 1 +
∑
t∈E

4Δt

(b)

≤ 1 + 4

√
|E|

∑
t∈E

Δ2
t

(c)

≤ 1 + 4

√
K

ε21
log

K

δ21
·K log

K

δ21
≤ 5K

ε1
log

K

δ21
(6)

where (a) follows from the definition of Xk and the fact that μ ∈ Mtk for all
tk < ∞. (b) by Jensen’s inequality. (c) by Equations (2) and (3). Finally we
can apply concentration inequalities by noting that

∑n
k=1 E

π
μ[Xk|x<tk ] −Xk is

a martingale with zero expectation and differences bounded by 4. Let Fmax ∈ N

be a constant to be defined shortly and let A2 be the event that:

Fmax∑
k=1

E
π
μ[Xk|x<tk ] ≤

Fmax∑
k=1

Xk +

√
2 · 42 · Fmax log

1

δ1
.

By Azuma’s inequality μπ(A2) ≥ 1− δ1. If A2 occurs, then

1

Fmax

Fmax∑
k=1

E[Xk|Xk−1]
(a)

≤ 5K

ε1Fmax
log

K

δ21
+

√
2 · 42
Fmax

log
1

δ1

(b)
< ε4 (7)

where (a) follows by substituting (6) and (b) by choosing

Fmax :=
25K

ε1ε4
log

K

δ21
≡ 400K

ε2(1− γ)2
log

4K

δ2
.

But (7) implies that there exists a k < Fmax such that E[Xk|x<tk ] ≤ ε4, which
by (5) implies that tk = ∞ and so |F | ≤ Fmax and |Fd| ≤ Fmaxd.

Step 5: Finishing Up. Assuming events A1 and A2 both occur, then it holds
that both |Ed| ≤ dEmax and |Fd| ≤ dFmax. Since V

∗
μ (x<t)−V π

μ (x<t) > ε implies
that t ∈ Fd ∪ Ed or μ /∈ Mt it follows that

μπ

( ∞∑
t=1

1
{
V ∗
μ (x<t)− V π

μ (x<t) > ε
} ≤ d(Emax + Fmax)

)

≥ μπ(A1 ∩ A2) ≥ 1− 2δ1 = 1− δ.



180 T. Lattimore and M. Hutter

Substituting Emax = 16K
ε2(1−γ)2 log

4K
δ2 and Fmax = 400K

ε2(1−γ)2 log
4K
δ2 completes the

proof that

μπ

( ∞∑
t=1

1
{
V ∗
μ (x<t)− V π

μ (x<t) > ε
}
>

416Kd

ε2(1 − γ)2
log

4K

δ2

)
≤ δ

as required. �
Remark 8. The constant can be reduced to ∼ 200 by making ε2 significantly
smaller (and paying only a log cost) and increasing ε1 = ε4 ≈ ε(1− γ)/3.

5 Lower Bound on Sample-Complexity

In the last section we showed for any finite environment class M of size K that
the algorithm BayesExp is ε-optimal except for at most

O

(
K

ε2(1− γ)3

(
log

1

ε(1− γ)

)(
log

K

δ

))
(�)

time-steps with probability at least 1− δ. We now describe the counter-example
leading to a nearly-matching lower-bound in the sense that there exist envi-
ronment classes where no algorithm has sample-complexity much better than
(�). We do not claim that BayesExp achieves the optimal sample-complexity
bound in all classes (it does not), only that there exists a class where it (very
nearly) does. The gap between the lower and upper bounds is only a log 1

ε(1−γ)

factor. The most natural approach to proving a lower bound on the sample-
complexity would be to use the famous result by Mannor and Tsitsiklis (2004)
on the sample-complexity of exploration for multi-armed bandits. But environ-
ment classes based on stationary bandit-like environments lead only to an Ω(K)
bounds on the sample-complexity rather than the desired Ω(K logK). The rea-
son is that for such environments the median elimination algorithm for min-
imising bandit sample-complexity can be used, which achieves the O(K) bound
(Even-Dar et al., 2002). This highlights a distinction between the two settings.
Even if γ = 0 (1 step lookahead), the non-stationary version of the problem
considered here is harder than the (stationary) bandit case.

Theorem 9. For each K > 1 and γ > 0 there exists an environment class M
such that for all policies π there exists a μ ∈ M where

μπ

( ∞∑
t=1

1
{
V ∗
μ (x<t)− V π

μ (x<t) > ε
}
> c ·

(
log 1

2

log γ

)
K

ε2(1− γ)2
log

K

δ

)
> δ.

for some c > 0 independent of K, π and γ.

The complete proof is left for the technical report, but we describe the counter-
example and justify the bound.
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r = 1
2

1
2 + εt,k
r = 1

1
2 − εt,k
r = 0

Fig. 1. Counter-example for
lower bound. Environment μk

Counter-Example. Let A = { , } con-
sist of two actions, O be a singleton and R ={
0, 1

2 , 1
}
. Let K ≥ 2 and ε, δ > 0 be suffi-

ciently small. Define environment class M =
{μ1, μ2, · · · , μK} as in Figure 1. The parameter
εt,k determines the optimal action at each time-
step. Let L be some large constant, then define
εt,k in environment μk by εt,k = ε

2 sign {kL− t}.
So if the learner chooses action , then with
probability 1

2 + εt,k it receives reward 1 and oth-
erwise no reward. For it deterministically re-
ceives reward 1

2 regardless of the time-step or
environment.

Explanation of the Bound. The optimal action in environment μk is to take
action until time-step kL and there-after take action . We call each period
of L time-steps a phase and consider the number of ε-errors made in the first
K−1 phases. The difficulty arises because at the start of the �th phase an agent
cannot distinguish between environment μ� and μ�+1. But in environment μ�

the agent should take action while in environment μ�+1 the agent should
take action . Now is uninformative, so the only question is how many
times a policy must sample action before switching to action . In order
to guarantee that it is correct in phase � with probability δ/K it should take
action approximately 1

ε2 log
K
δ times. Since it must be correct in all phases,

which are essentially independent, the number of times must be taken in
environment μK in phases � < K is O(Kε2 log

K
δ ). In order to add the dependence

on γ we must make two modifications.
1. Add a near-absorbing state corresponding to the times when the agent re-

ceives rewards 1, 0 and 1/2 respectively. If the agent stays in these states
for O( 1

1−γ ), then the cost of a mistake becomes ε/(1 − γ) and the mistake

bound will depend on ε−2(1− γ)−2.
2. To obtain an additional factor of the horizon we proceed in the same fash-

ion as the lower bound given by Lattimore and Hutter (2012). Adapt the
environment again so that the agent stays in the decision node for exactly
O( 1

1−γ ) time-steps, regardless of its action. Only the action at the end of

this period decides whether or not the agent gets reward 1/2 or 0 or 1. But
if the agent is following a policy that makes an error, then this is counted
for O( 1

1−γ ) time-steps before the error actually occurs, which multiplies the
total number of errors by this quantity.

6 Adaptivity of BayesExp

We now show that the algorithm may learn faster when environments are easy
to distinguish. Assume γ = 0, which implies that the effective horizon d = 1.
A K-armed Bernoulli bandit is characterised by a vector p ∈ [0, 1]K . At each
time-step the learner chooses arm It ∈ {1, · · · ,K} and receives reward 1 with
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probability pIt and reward 0 otherwise. The value pk is called the bias of the kth
arm. There is now a huge literature on bandits, which we will not discuss, but see
Bubeck and Cesa-Bianchi (2012) and references there-in for a good introduction.
Choose M = {ν1, · · · , νK} to be the set of K-armed Bernoulli bandits where
in environment νk the bias of the k arm is 1

2 while for all other arms it is
equal to 1

2 − Δk where Δk ≥ ε. Thus the optimal action in environment νk
is to always choose arm k. Note that in this setting there are no observations
(O ≡ singleton) and R = {0, 1}. We show that the performance of BayesExp
is substantially improved for large Δk where the environments are more easily
distinguished.

Theorem 10. If BayesExp is run on the environment class described above, then

μπ

⎛
⎝

∞∑
t=1

1
{
V ∗
μ (x<t)− V π

μ (x<t) > ε
}
>

∑
k:νk 	=μ

4

Δ2
k

log
K

δ2

⎞
⎠ ≤ δ.

The proof may be found in the associated technical report.

7 Conclusion

We adapted the Bayesian optimal agent studied by Hutter (2005) and others by
adding an exploration component. The new algorithm achieves minimax finite
sample-complexity bounds for finite environment classes. The theoretical results
improve substantially on those given for the MERL algorithm by Lattimore et al.
(2013a). In that work only two environments are compared in each exploration
phase and models were discarded based on rewards alone, with observations com-
pletely ignored. Like the k-meteorologist algorithm (Diuk et al., 2009) models
were only removed in discrete blocks. In contrast, the approach used here elim-
inates environments smoothly, which in benign environments may occur signifi-
cantly faster than the worst-case bounds suggest. An example of this adaptivity
is given for bandit environments in Section 6. There is another benefit of Baye-
sExp illustrated by the example in Section 6. While the analysis in the proof of
Theorem 4 leads to a largish constant, it is not used by the algorithm, which
means that in simple cases the analysis can be improved substantially.

Future work could focus on proving more general problem-dependent bounds
on the sample-complexity of algorithms like BayesExp, and characterising the
difficulty of reinforcement learning environments and classes. This problem is
now reasonably understood for bandit environments, but even for MDPs there
is only limited work on problem-dependent bounds, and nothing for general
RL as far as we are aware. Larger environment classes are also worth consider-
ing, including countable or separable spaces where uniform sample-complexity
bounds are not possible, but problem-dependent asymptotic bounds are. We are
optimistic that BayesExp can be extended to these cases.
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A Properties of Value Functions

Lemma 11. Let π ∈ Π and μ and ν be two environments. Then

V π
μ (x; d)− V π

ν (x; d) ≤ δdx(μ
π, νπ)

1− γ
.

Proof. The difference in value functions is a difference in expected returns with
respect to μπ and νπ . This is bounded by the total variation distance multiplied
by the maximum return, which is 1/(1− γ). �

Lemma 12. If x is a history at time-step t and ε > 0 and d ≥
⌈
log ε(1−γ)

log γ

⌉
,

then V π
μ (x) ≥ V π

μ (x; d) and V π
μ (x) − V π

μ (x; d) ≤ ε.

Proof. That V π
μ (x) ≥ V π

μ (x; d) is trivial. For the second claim:

V π
μ (x)− V π

μ (x; d)
(a)
= E

π
μ

[ ∞∑
k=t+d

γk−trk

∣∣∣∣∣x
]

(b)

≤
∞∑

k=t+d

γk−t (c)
=

γd

1− γ

(d)

≤ ε

where (a) follows by adding and subtracting the tail sum. (b) because rk ∈ [0, 1].
(c) is trivial while (d) follows from the definition of d. �
Lemma 13. Let μ be an environment, x ∈ H∗ a history and Y ⊂ H∗ be com-
plete and prefix free. If π1 and π2 are policies such that π1(xz) = π2(xz) for all
y, z for which z � y. Then

V π1
μ (x) − V π2

μ (x) =
∑
y∈Y

μπ1(y|x)γ�(y)
(
V π1
μ (xy)− V π2

μ (xy)
)
.
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