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Preface

This volume contains the papers presented at the 25th International Conference
on Algorithmic Learning Theory (ALT 2014), which was held in Bled, Slovenia,
during October 8–10, 2014. ALT 2014 was co-located with the 17th International
Conference on Discovery Science (DS 2014). The technical program of ALT 2014
had 4 invited talks (presented jointly to both ALT 2014 and DS 2014) and 21
papers selected from 50 submissions by the ALT Program Committee.

ALT 2014 took place in the hotel Golf in a beautiful park full of old trees
in the very heart of Bled. It provided a stimulating interdisciplinary forum to
discuss the theoretical foundations of machine learning as well as their relevance
to practical applications.

ALT is dedicated to the theoretical foundations of machine learning and pro-
vides a forum for high-quality talks and scientific interaction in areas such as
reinforcement learning, inductive inference and grammatical inference, learn-
ing from queries, active learning, probably approximate correct learning, on-
line learning, bandit theory, statistical learning theory, Bayesian and stochastic
learning, un-supervised or semi-supervised learning, clustering, universal pre-
diction, stochastic optimization, high dimensional and non-parametric infer-
ence, information-based methods, decision tree methods, kernel-based methods,
graph methods and/or manifold-based methods, sample complexity, complexity
of learning, privacy preserving learning, learning based on Kolmogorov complex-
ity, new learning models, and applications of algorithmic learning theory.

The present volume of LNAI contains the text of the 21 papers presented at
ALT 2014, as well as the texts/abstracts of the invited talks:

– Zoubin Ghahramani (University of Cambridge, Cambridge, UK), “Build-
ing an Automated Statistician” (joint invited speaker for ALT 2014 and
DS 2014)

– Luc Devroye (McGill University, Montreal, Canada), “Cellular Tree Classi-
fiers” (invited speaker for ALT 2014),

– Eyke Hüllermeier (Universität Paderborn, Germany), “A Survey of Prefer-
ence-Based Online Learning with Bandit Algorithms” (tutorial speaker for
ALT 2014),

– Anuška Ferligoj (University of Ljubljana, Slovenia). “Social Network Anal-
ysis” (tutorial speaker for DS 2014)

Since 1999, ALT has been awarding the E. M. Gold Award for the most outstand-
ing student contribution. This year, the award was given to Hasan Abasi and
Ali Z. Abdi for their paper “Learning Boolean Halfspaces with Small Weights
from Membership Queries” co-authored by Nader H. Bshouty.

ALT 2014 was the 25th meeting in the ALT conference series, established in
Japan in 1990. The ALT series is supervised by its Steering Committee: Peter
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Auer (University of Leoben, Austria), Shai Ben-David (University of Waterloo,
Canada), Nader H. Bshouty (Technion - Israel Institute of Technology, Israel),
Alexander Clark (King’s College London, UK), Marcus Hutter (Australian Na-
tional University, Canberra, Australia), Jyrki Kivinen (University of Helsinki,
Finland), Frank Stephan (National University of Singapore, Republic of Singa-
pore), Gilles Stoltz (Ecole normale supérieure, Paris, France), Csaba Szepesvári
(University of Alberta, Edmonton, Canada), Eiji Takimoto (Kyushu University,
Fukuoka, Japan), György Turán (University of Illinois at Chicago, USA, and
University of Szeged, Hungary), Akihiro Yamamoto (Kyoto University, Japan),
Thomas Zeugmann (Chair, Hokkaido University, Sapporo, Japan), and Sandra
Zilles (Co-chair, University of Regina, Saskatchewan, Canada).

We thank various people and institutions who contributed to the success of
the conference. Most importantly, we would like to thank the authors for con-
tributing and presenting their work at the conference. Without their contribution
this conference would not have been possible. We would like to thank the Office
of Naval Research Global for the generous financial support for the conference
ALT 2014 provided under ONRG GRANT N62909-14-1-C195.

ALT 2014 and DS 2014 were organized by the Jožef Stefan Institute (JSI) and
the University of Ljubljana. We are very grateful to the Department of Knowl-
edge Technologies (and the project MAESTRA) at JSI for sponsoring the con-
ferences and providing administrative support. In particular, we thank the local
arrangement chair, Mili Bauer, and her team, Tina Anžič, Nikola Simidjievski,
and Jurica Levatić from JSI for their efforts in organizing the two conferences.

We are grateful for the collaboration with the conference series Discovery
Science. In particular we would like to thank the general chair of DS 2014 and
ALT 2014 Ljupčo Todorovski and the DS 2014 Program Committee chairs Sašo
Džeroski, Dragi Kocev, and Panče Panov.

We are also grateful to EasyChair, the excellent conference management sys-
tem, which was used for putting together the program for ALT 2014. EasyChair
was developed mainly by Andrei Voronkov and is hosted at the University of
Manchester. The system is cost-free.

We are grateful to the members of the Program Committee for ALT 2014
and the subreferees for their hard work in selecting a good program for ALT
2014. Last but not the least, we thank Springer for their support in preparing
and publishing this volume in the Lecture Notes in Artificial Intelligence series.

August 2014 Peter Auer
Alexander Clark

Thomas Zeugmann
Sandra Zilles
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A Survey of Preference-Based Online Learning

with Bandit Algorithms

Róbert Busa-Fekete and Eyke Hüllermeier

Department of Computer Science
University of Paderborn, Germany

{busarobi,eyke}@upb.de

Abstract. In machine learning, the notion of multi-armed bandits refers
to a class of online learning problems, in which an agent is supposed to
simultaneously explore and exploit a given set of choice alternatives in
the course of a sequential decision process. In the standard setting, the
agent learns from stochastic feedback in the form of real-valued rewards.
In many applications, however, numerical reward signals are not readily
available—instead, only weaker information is provided, in particular rel-
ative preferences in the form of qualitative comparisons between pairs of
alternatives. This observation has motivated the study of variants of the
multi-armed bandit problem, in which more general representations are
used both for the type of feedback to learn from and the target of predic-
tion. The aim of this paper is to provide a survey of the state-of-the-art
in this field, that we refer to as preference-based multi-armed bandits. To
this end, we provide an overview of problems that have been considered
in the literature as well as methods for tackling them. Our systematiza-
tion is mainly based on the assumptions made by these methods about
the data-generating process and, related to this, the properties of the
preference-based feedback.

Keywords: Multi-armed bandits, online learning, preference learning,
ranking, top-k selection, exploration/exploitation, cumulative regret, sam-
ple complexity, PAC learning.



Cellular Tree Classifiers

Gérard Biau1,2 and Luc Devroye3

1 Sorbonne Universités, UPMC Univ Paris 06, France
2 Institut universitaire de France

3 McGill University, Canada

Abstract. Suppose that binary classification is done by a tree method
in which the leaves of a tree correspond to a partition of d-space. Within
a partition, a majority vote is used. Suppose furthermore that this tree
must be constructed recursively by implementing just two functions, so
that the construction can be carried out in parallel by using “cells”: first
of all, given input data, a cell must decide whether it will become a leaf
or an internal node in the tree. Secondly, if it decides on an internal
node, it must decide how to partition the space linearly. Data are then
split into two parts and sent downstream to two new independent cells.
We discuss the design and properties of such classifiers.



Social Network Analysis

Anuška Ferligoj

Faculty of Social Sciences,
University of Ljubljana

anuska.ferligoj@fdv.uni-lj.si

Abstract. Social network analysis has attracted considerable interest
from social and behavioral science community in recent decades. Much
of this interest can be attributed to the focus of social network analysis
on relationship among units, and on the patterns of these relationships.
Social network analysis is a rapidly expanding and changing field with
broad range of approaches, methods, models and substantive applica-
tions. In the talk special attention will be given to:
1. General introduction to social network analysis:

– What are social networks?
– Data collection issues.
– Basic network concepts: network representation; types of net-

works; size and density.
– Walks and paths in networks: length and value of path; the short-

est path, k-neighbours; acyclic networks.
– Connectivity: weakly, strongly and bi-connected components;

contraction; extraction.
2. Overview of tasks and corresponding methods:

– Network/node properties: centrality (degree, closeness, between-
ness); hubs and authorities.

– Cohesion: triads, cliques, cores, islands.
– Partitioning: blockmodeling (direct and indirect approaches;

structural, regular equivalence; generalised blockmodeling); clus-
tering.

– Statistical models.
3. Software for social network analysis (UCINET, PAJEK, . . . )



Building an Automated Statistician

Zoubin Ghahramani

Department of Engineering,
University of Cambridge,

Trumpington Street
Cambridge CB2 1PZ, UK

zoubin@eng.cam.ac.uk

Abstract. We will live an era of abundant data and there is an increas-
ing need for methods to automate data analysis and statistics. I will de-
scribe the “Automated Statistician”, a project which aims to automate
the exploratory analysis and modelling of data. Our approach starts by
defining a large space of related probabilistic models via a grammar
over models, and then uses Bayesian marginal likelihood computations
to search over this space for one or a few good models of the data. The
aim is to find models which have both good predictive performance, and
are somewhat interpretable. Our initial work has focused on the learning
of unknown nonparametric regression functions, and on learning models
of time series data, both using Gaussian processes. Once a good model
has been found, the Automated Statistician generates a natural language
summary of the analysis, producing a 10-15 page report with plots and
tables describing the analysis. I will discuss challenges such as: how to
trade off predictive performance and interpretability, how to translate
complex statistical concepts into natural language text that is under-
standable by a numerate non-statistician, and how to integrate model
checking. This is joint work with James Lloyd and David Duvenaud
(Cambridge) and Roger Grosse and Josh Tenenbaum (MIT).
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Editors’ Introduction

Peter Auer, Alexander Clark, Thomas Zeugmann, and Sandra Zilles

The aim of the series of conferences on Algorithmic Learning Theory (ALT)
is to look at learning from an algorithmic and mathematical perspective. Over
time several models of learning have been developed which study different as-
pects of learning. In the following we describe in brief the invited talks and the
contributed papers for ALT 2014 held in Bled, Slovenia..

Invited Talks. Following the tradition of the co-located conferences ALT and
DS all invited lectures are shared by the two conferences. The invited speakers
are eminent researchers in their fields and present either their specific research
area or lecture about a topic of broader interest.

This year’s joint invited speaker for ALT 2014 and DS 2014 is Zoubin Ghahra-
mani, who is Professor of Information Engineering at the University of Cam-
bridge, UK, where he leads a group of about 30 researchers. He studied computer
science and cognitive science at the University of Pennsylvania, obtained his PhD
from MIT in 1995 under the supervision of Michael Jordan, and was a postdoc-
toral fellow at the University of Toronto with Geoffrey Hinton. His academic
career includes concurrent appointments as one of the founding members of the
Gatsby Computational Neuroscience Unit in London, and as a faculty member of
CMU’s Machine Learning Department for over 10 years. His current research fo-
cuses on nonparametric Bayesian modeling and statistical machine learning. He
has also worked on applications to bioinformatics, econometrics, and a variety of
large-scale data modeling problems. He has published over 200 papers, receiving
25,000 citations (an h-index of 68). His work has been funded by grants and do-
nations from EPSRC, DARPA, Microsoft, Google, Infosys, Facebook, Amazon,
FX Concepts and a number of other industrial partners. In 2013, he received
a $750,000 Google Award for research on building the Automatic Statistician.
In his invited talk Building an Automated Statistician (joint work with James
Lloyd, David Duvenaud, Roger Grosse, and Josh Tenenbaum) Zoubin Ghahra-
mani addresses the problem of abundant data and the increasing need for meth-
ods to automate data analysis and statistics. The Automated Statistician project
aims to automate the exploratory analysis and modeling of data. The approach
uses Bayesian marginal likelihood computations to search over a large space of
related probabilistic models. Once a good model has been found, the Automated
Statistician generates a natural language summary of the analysis, producing a
10-15 page report with plots and tables describing the analysis. Zoubin Ghahra-
mani discusses challenges such as: how to trade off predictive performance and
interpretability, how to translate complex statistical concepts into natural lan-
guage text that is understandable by a numerate non-statistician, and how to
integrate model checking.

The invited speaker for ALT 2014 is Luc Devroye, who is a James McGill Pro-
fessor in the School of Computer Science of McGill University in Montreal. He

P. Auer et al. (Eds.): ALT 2014, LNAI 8776, pp. 1–7, 2014.
c© Springer International Publishing Switzerland 2014



2 P. Auer et al.

studied at Katholieke Universiteit Leuven and subsequently at Osaka University
and in 1976 received his PhD from University of Texas at Austin under the su-
pervision of Terry Wagner. Luc Devroye specializes in the probabilistic analysis
of algorithms, random number generation and enjoys typography. Since joining
the McGill faculty in 1977 he has won numerous awards, including an E.W.R.
Steacie Memorial Fellowship (1987), a Humboldt Research Award (2004), the
Killam Prize (2005) and the Statistical Society of Canada gold medal (2008).
He received an honorary doctorate from the Université catholique de Louvain
in 2002, and an honorary doctorate from Universiteit Antwerpen in 2012. The
invited paper Cellular Tree Classifiers (joint work with Gerard Biau) deals with
classification by decision trees, where the decision trees are constructed recur-
sively by using only two local rules: (1) given the input data to a node, it must
decide whether it will become a leaf or not, and (2) a non-leaf node needs to
decide how to split the data for sending them downstream. The important point
is that each node can make these decisions based only on its local data, such
that the decision tree construction can be carried out in parallel. Somewhat
surprisingly there are such local rules that guarantee convergence of the deci-
sion tree error to the Bayes optimal error. Luc Devroye discusses the design and
properties of such classifiers.

The ALT 2014 tutorial speaker is Eyke Hüllermeier, who is professor and
head of the Intelligent Systems Group at the Department of Computer Science
of the University of Paderborn. He received his PhD in Computer Science from
the University of Paderborn in 1997 and he also holds an MSc degree in busi-
ness informatics. He was a researcher in artificial intelligence, knowledge-based
systems, and statistics at the University of Paderborn and the University of
Dortmund and a Marie Curie fellow at the Institut de Recherche en Informa-
tique de Toulouse. He has held already a full professorship in the Department
of Mathematics and Computer Science at Marburg University before rejoining
the University of Paderborn. In his tutorial A Survey of Preference-based Online
Learning with Bandit Algorithms (joint work with Róbert Busa-Fekete) Eyke
Hüllermeier reports on learning with bandit feedback that is weaker than the
usual real-value reward. When learning with bandit feedback the learning al-
gorithm receives feedback only from the decisions it makes, but no information
from other alternatives. Thus the learning algorithm needs to simultaneously
explore and exploit a given set of alternatives in the course of a sequential deci-
sion process. In many applications the feedback is not a numerical reward signal
but some weaker information, in particular relative preferences in the form of
qualitative comparisons between pairs of alternatives. This observation has mo-
tivated the study of variants of the multi-armed bandit problem, in which more
general representations are used both for the type of feedback to learn from and
the target of prediction. The aim of the tutorial is to provide a survey of the
state-of-the-art in this area which is referred to as preference-based multi-armed
bandits. To this end, Eyke Hüllermeier provides an overview of problems that
have been considered in the literature as well as methods for tackling them.
His systematization is mainly based on the assumptions made by these meth-
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ods about the data-generating process and, related to this, the properties of the
preference-based feedback.

The DS 2014 tutorial speaker is Anuška Ferligoj, who is professor of Multi-
variate Statistical Methods at the University of Ljubljana. She is a Slovenian
mathematician who earned international recognition by her research work on
network analysis. Her interests include multivariate analysis (constrained and
multicriteria clustering), social networks (measurement quality and blockmod-
eling), and survey methodology (reliability and validity of measurement). She
is a fellow of the European Academy of Sociology. She has also been an edi-
tor of the journal Advances in Methodology and Statistics (Metodoloski zvezki)
since 2004 and is a member of the editorial boards of the Journal of Mathemati-
cal Sociology, Journal of Classification, Social Networks, Statistic in Transition,
Methodology, Structure and Dynamics: eJournal of Anthropology and Related
Sciences. She was a Fulbright scholar in 1990 and visiting professor at the Uni-
versity of Pittsburgh. She was awarded the title of Ambassador of Science of the
Republic of Slovenia in 1997. Social network analysis has attracted considerable
interest from the social and behavioral science community in recent decades.
Much of this interest can be attributed to the focus of social network analysis
on relationship among units, and on the patterns of these relationships. Social
network analysis is a rapidly expanding and changing field with broad range of
approaches, methods, models and substantive applications. In her tutorial Social
Network Analysis Anuška Ferligoj gives a general introduction to social network
analysis and an overview of tasks and corresponding methods, accompanied by
pointers to software for social network analysis.

Inductive Inference. There are a number of papers in the field of inductive
inference, the most classical branch of algorithmic learning theory. First, A Map
of Update Constraints in Inductive Inference by Timo Kötzing and Raphaela
Palenta provides a systematic overview of various constraints on learners in
inductive inference problems. They focus on the question of which constraints
and combinations of constraints reduce the learning power, meaning the class of
languages that are learnable with respect to certain criteria.

On a related theme, the paper On the Role of Update Constraints and Text-
Types in Iterative Learning by Sanjay Jain, Timo Kötzing, Junqi Ma, and Frank
Stephan looks more specifically at the case where the learner has no memory
beyond the current hypothesis. In this situation the paper is able to completely
characterize the relations between the various constraints.

The paper Parallel Learning of Automatic Classes of Languages by Sanjay
Jain and Efim Kinber continues the line of research on learning automatic classes
of languages initiated by Jain, Luo and Stephan in 2012, in this case by consid-
ering the problem of learning multiple distinct languages at the same time.

Laurent Bienvenu, Benôıt Monin and Alexander Shen present a negative result
in their paper Algorithmic Identification of Probabilities is Hard. They show that
it is impossible to identify in the limit the exact parameter—in the sense of the
Turing code for a computable real number—of a Bernoulli distribution, though
it is of course easy to approximate it.
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Exact Learning from Queries. In cases where the instance space is discrete,
it is reasonable to aim at exact learning algorithms where the learner is required
to produce a hypothesis that is exactly correct.

The paper winning the E.M. Gold Award, Learning Boolean Halfspaces with
Small Weights from Membership Queries by the student authors Hasan Abasi
and Ali Z. Abdi and co-authored by Nader H. Bshouty, presents a signifi-
cantly improved algorithm for learning Boolean Halfspaces in {0, 1}n with integer
weights {0, . . . , t} from membership queries only. It is shown that this algorithm
needs only nO(t) membership queries, which improves over previous algorithms
with nO(t5) queries and closes the gap to the known lower bound nt.

The paper by Hasan Abasi, Nader H. Bshouty and Hanna Mazzawi On Exact
Learning Monotone DNF from Membership Queries presents learning results on
learnability by membership queries of monotone DNF (disjunctive normal forms)
with a bounded number of terms and a bounded number of variables per term.

Dana Angluin and Dana Fisman look at exact learning using membership
queries and equivalence queries in their paper Learning Regular Omega Lan-
guages. Here the class concerned is that of regular languages over infinite words;
the authors consider three different representations which vary in their suc-
cinctness. This problem has applications in verification and synthesis of reactive
systems.

Reinforcement Learning. Reinforcement learning continues to be a centrally
important area of learning theory, and this conference contains a number of
contributions in this field. Ronald Ortner, Odalric-Ambrym Maillard and Daniil
Ryabko present a paper Selecting Near-Optimal Approximate State Representa-
tions in Reinforcement Learning, which looks at the problem where the learner
does not have direct information about the states in the underlying Markov
Decision Process (MDP); in contrast to Partially Observable MDPs, here the
information is via various models that map the histories to states.

L.A. Prashanth considers risk constrained reinforcement learning in his pa-
per Policy Gradients for CVaR-Constrained MDPs, focusing on the stochastic
shortest path problem. For a risk constrained problem not only the expected
sum of costs per step E[

∑
m g(sm, am)] is to be minimized, but also the sum of

an additional cost measure C =
∑

m c(sm, am) needs to be bounded from above.
Usually the Value at Risk, VaRα = inf{ξ|P(C ≤ ξ) ≥ α}, is constrained, but
such constrained problems are hard to optimize. Instead, the paper proposes
to constrain the Conditional Value at Risk, CVaRα = E[C|C ≥ VaRα], which
allows to apply standard optimization techniques. Two algorithms are presented
that converge to a locally risk-optimal policy using stochastic approximation,
mini batches, policy gradients, and importance sampling.

In contrast to the usual MDP setting for reinforcement learning, the two fol-
lowing papers consider more general reinforcement learning. Bayesian Reinforce-
ment Learning with Exploration by Tor Lattimore and Marcus Hutter improves
some of their earlier work on general reinforcement learning. Here the true envi-
ronment does not need to be Markovian, but it is known to be drawn at random
from a finite class of possible environments. An algorithm is presented that alter-
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nates between periods of playing the Bayes optimal policy and periods of forced
experimentation. Upper bounds on the sample complexity are established, and
it is shown that for some classes of environments this bound cannot be improved
by more than a logarithmic factor.

Marcus Hutter’s paper Extreme State Aggregation beyond MDPs considers
how an arbitrary (non-Markov) decision process with a finite number of actions
can be approximated by a finite-state MDP. For a given feature function φ :
H → S mapping histories h of the general process to some finite state space S,
the transition probabilities of the MDP can be defined appropriately. It is shown
that the MDP approximates the general process well if the optimal policy for
the general process is consistent with the feature function, π∗(h1) = π∗(h2) for
φ(h1) = φ(h2), or if the optimal Q-value function is consistent with the feature
function, |Q∗(h1, a)−Q∗(h2, a)| < ε for φ(h1) = φ(h2) and all a. It is also shown
that such a feature function always exists.

Online Learning and Learning with Bandit Information. The paper
On Learning the Optimal Waiting Time by Tor Lattimore, András György, and
Csaba Szepesvári, addresses the problem of how long to wait for an event with
independent and identically distributed (i.i.d.) arrival times from an unknown
distribution. If the event occurs during the waiting time, then the cost is the
time until arrival. If the event occurs after the waiting time, then the cost is the
waiting time plus a fixed and known amount. Algorithms for the full information
setting and for bandit information are presented that sequentially choose waiting
times over several rounds in order to minimize the regret in respect to an optimal
waiting time. For bandit information the arrival time is only revealed if it is
smaller than the waiting time, and in the full information setting it is revealed
always. The performance of the algorithms nearly matches the minimax lower
bound on the regret.

In many application areas, e.g. recommendation systems, the learning algo-
rithm should return a ranking: a permutation of some finite set of elements. This
problem is studied in the paper by Nir Ailon, Kohei Hatano, and Eiji Takimoto
titled Bandit Online Optimization Over the Permutahedron when the cost of a
rankings is calculated as

∑n
i=1 π(i)s(i), where π(i) is the rank of item i and s(i)

is its cost. In the bandit setting in each iteration an unknown cost vector st is
chosen, and the goal of the algorithm is to minimize the regret in respect to the
best fixed ranking of the items.

Marcus Hutter’s paper Offline to Online Conversion introduces the problem
of turning a sequence of distributions qn on strings in Xn, n = 1, . . . , n, into a
stochastic online predictor for the next symbol q̃(xn|x1, . . . , xn−1), such that the
induced probabilities q̃(x1, . . . , xn) are close to qn(x1, . . . , xn) for all sequences
x1, x2, . . . The paper considers four strategies for doing such a conversion, show-
ing that näıve approaches might not be satisfactory but that a good predictor
can always be constructed, at the cost of possible computational inefficiency.
One examples of such a conversion gives a simple combinatorial derivation of
the Good-Turing estimator.
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Statistical Learning Theory. Andreas Maurer’s paper A Chain Rule for the
Expected Suprema of Gaussian Processes investigates the problem of assessing
generalization of a learner who is adapting a feature space while also learning
the target function. The approach taken is to consider extensions of bounds on
Gaussian averages to the case where there is a class of functions that create
features and a class of mappings from those features to outputs. In the appli-
cations considered in the paper this corresponds to a two layer kernel machine,
multitask learning, and through an iteration of the application of the bound to
multilayer networks and deep learners.

A standard assumption in statistical learning theory is that the data are gen-
erated independently and identically distributed from some fixed distribution;
in practice, this assumption is often violated and a more realistic assumption is
that the data are generated by a process which is only sufficiently fast mixing,
and maybe even non-stationary. Vitaly Kuznetsov and Mehryar Mohri in their
paper Generalization Bounds for Time Series Prediction with Non-stationary
Processes consider this case and are able to prove new generalization bounds
that depend on the mixing coefficients and the shift of the distribution.

Rahim Samei, Boting Yang, and Sandra Zilles in their paper Generalizing
Labeled and Unlabeled Sample Compression to Multi-label Concept Classes con-
sider generalizations of the binary VC-dimension to multi-label classification,
such that maximum classes of dimension d allow a tight compression scheme of
size d. Sufficient conditions for notions of dimensions with this property are de-
rived, and it is shown that some multi-label generalizations of the VC-dimension
allow tight compression schemes, while other generalizations do not.

Privacy, Clustering, MDL, and Kolmogorov Complexity. Christos Dim-
itrakakis, Blaine Nelson, Aikaterini Mitrokotsa, and Benjamin I.P. Rubinstein
present the paper Robust and Private Bayesian Inference. This paper looks at
the problem of privacy in machine learning, where an agent, a statistician for
example, might want to reveal information derived from a data set, but without
revealing information about the particular data points in the set, which might
contain confidential information. The authors show that it is possible to do
Bayesian inference in this setting, satisfying differential privacy, provided that
the likelihoods and conjugate priors satisfy some properties.

Behnam Neyshabur, Yury Makarychev, and Nathan Srebro in their paper
Clustering, Hamming Embedding, Generalized LSH and the Max Norm look at
asymmetric locality sensitive hashing (LSH) which is useful in many types of
machine learning applications. Locality sensitive hashing, which is closely re-
lated to the problem of clustering, is a method of probabilistically reducing the
dimension of high dimensional data sets; assigning each data point a hash such
that similar data points will be mapped to the same hash. The paper shows that
by shifting to co-clustering and asymmetric LSH the problem admits a tractable
relaxation.

Jan Leike and Marcus Hutter look at martingale theory in Indefinitely Oscil-
lating Martingales ; as a consequence of their analysis they show a negative re-
sult in the theory of Minimum Description Length (MDL) learning, namely that
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the MDL estimator is in general inductively inconsistent: it will not necessar-
ily converge. The MDL estimator gives the regularized code length, MDL(u) =
minQ{Q(u) + K(Q)}, where Q is a coding function, K(Q) its complexity, and
Q(u) the code length for the string u. It is shown that the family of coding
functions Q can be constructed such that limn→∞ MDL(u1:n) does not converge
for most infinite words u.

As is well-known, the Kolmogorov complexity is not computable. Peter Bloem,
Francisco Mota, Steven de Rooij, Lúıs Antunes, and Pieter Adriaans in their
paper A Safe Approximation for Kolmogorov Complexity study the problem of
approximating this quantity using a restriction to a particular class of models,
and a probabilistic bound on the approximation error.
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Abstract. Suppose that binary classification is done by a tree method
in which the leaves of a tree correspond to a partition of d-space. Within
a partition, a majority vote is used. Suppose furthermore that this tree
must be constructed recursively by implementing just two functions, so
that the construction can be carried out in parallel by using “cells”: first
of all, given input data, a cell must decide whether it will become a leaf
or an internal node in the tree. Secondly, if it decides on an internal
node, it must decide how to partition the space linearly. Data are then
split into two parts and sent downstream to two new independent cells.
We discuss the design and properties of such classifiers.

1 Introduction

We explore in this note a new way of dealing with the supervised classification
problem, inspired by greedy approaches and the divide-and-conquer philosophy.
Our point of view is novel, but has a wide reach in a world in which parallel
and distributed computation are important. In the short term, parallelism will
take hold in massive data sets and complex systems and, as such, is one of the
exciting questions that will be asked to the statistics and machine learning fields.

The general context is that of classification trees, which make decisions by
recursively partitioning Rd into regions, sometimes called cells. In the model we
promote, a basic computational unit in classification, a cell, takes as input train-
ing data, and makes a decision whether a majority rule should be locally applied.
In the negative, the data should be split and each part of the partition should
be transmitted to another cell. What is original in our approach is that all cells
must use exactly the same protocol to make their decision—their function is
not altered by external inputs or global parameters. In other words, the decision
to split depends only upon the data presented to the cell, independently of the
overall edifice. Classifiers designed according to this autonomous principle will
be called cellular tree classifiers, or simply cellular classifiers.

Decision tree learning is a method commonly used in data mining (see, e.g.,
[27]). For example, in CART (Classification and Regression Trees, [5]), splits are
made perpendicular to the axes based on the notion of Gini impurity. Splits are
performed until all data are isolated. In a second phase, nodes are recombined
from the bottom-up in a process called pruning. It is this second process that
makes the CART trees non-cellular, as global information is shared to manage
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the recombination process. Quinlan’s C4.5 [26] also prunes. Others split until all
nodes or cells are homogeneous (i.e., have the same class)—the prime example is
Quinlan’s ID3 [25]. This strategy, while compliant with the cellular framework,
leads to non-consistent rules, as we point out in the present paper. In fact, the
choice of a good stopping rule for decision trees is very hard—we were not able
to find any in the literature that guarantee convergence to the Bayes error.

2 Tree Classifiers

In the design of classifiers, we have an unknown distribution of a random pro-
totype pair (X, Y ), where X takes values in Rd and Y takes only finitely many
values, say 0 or 1 for simplicity. Classical pattern recognition deals with pre-
dicting the unknown nature Y of the observation X via a measurable classifier
g : Rd → {0, 1}. We make a mistake if g(X) differs from Y , and the probability
of error for a particular decision rule g is L(g) = P{g(X) �= Y }. The Bayes
classifier

g�(x) =

{
1 if P{Y = 1|X = x} > P{Y = 0|X = x}
0 otherwise

has the smallest probability of error, that is

L� = L(g�) = inf
g:Rd→{0,1}

P{g(X) �= Y }

(see, for instance, Theorem 2.1 in [7]). However, most of the time, the distribution
of (X, Y ) is unknown, so that the optimal decision g� is unknown too. We do
not consult an expert to try to reconstruct g�, but have access to a database
Dn = (X1, Y1), . . . , (Xn, Yn) of i.i.d. copies of (X, Y ), observed in the past. We
assume that Dn and (X, Y ) are independent. In this context, a classification
rule gn(x;Dn) is a Borel measurable function of x and Dn, and it attempts to
estimate Y from x and Dn. For simplicity, we suppress Dn in the notation and
write gn(x) instead of gn(x;Dn).

The probability of error of a given classifier gn is the random variable

L(gn) = P{gn(X) �= Y |Dn},

and the rule is consistent if

lim
n→∞

EL(gn) = L�.

It is universally consistent if it is consistent for all possible distributions of
(X, Y ). Many popular classifiers are universally consistent. These include sev-
eral brands of histogram rules, k-nearest neighbor rules, kernel rules, neural
networks, and tree classifiers. There are too many references to be cited here,
but the monographs by [7] and [15] will provide the reader with a comprehensive
introduction to the domain and a literature review.



10 G. Biau and L. Devroye
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Fig. 1. A binary tree (left) and the corresponding partition (right)

Trees have been suggested as tools for classification for more than thirty years.
We mention in particular the early work of Fu [36, 1, 21, 18, 24]. Other references
from the 1970s include [20, 3, 23, 30, 34, 12, 8]. Most influential in the classi-
fication tree literature was the CART proposal by [5]. While CART proposes
partitions by hyperrectangles, linear hyperplanes in general position have also
gained in popularity—the early work on that topic is by [19], and [22]. Additional
references on tree classification include [14, 2, 16, 17, 35, 33, 31, 6, 9, 10, 32, 13].

3 Cellular Trees

In general, classification trees partition Rd into regions, often hyperrectangles
parallel to the axes (an example is depicted in Figure 1). Of interest in this
article are binary trees, where each node has exactly 0 or 2 children. If a node u
represents the set A and its children u1, u2 represent A1, A2, then it is required
that A = A1 ∪ A2 and A1 ∩ A2 = ∅. The root of the tree represents Rd, and
the terminal nodes (or leaves), taken together, form a partition of Rd. If a leaf
represents region A, then the tree classifier takes the simple form

gn(x) =

{
1 if

∑n
i=1 1[Xi∈A,Yi=1] >

∑n
i=1 1[Xi∈A,Yi=0], x ∈ A

0 otherwise.

That is, in every leaf region, a majority vote is taken over all (Xi, Yi)’s with Xi’s
in the same region. Ties are broken, by convention, in favor of class 0.

The tree structure is usually data-dependent, and indeed, it is in the construc-
tion itself where different trees differ. Thus, there are virtually infinitely many
possible strategies to build classification trees. Nevertheless, despite this great
diversity, all tree species end up with two fundamental questions at each node:



Cellular Tree Classifiers 11

① Should the node be split?
② In the affirmative, what are its children?

These two questions are typically answered using global information on the
tree, such as, for example, a function of the data Dn, the level of the node within
the tree, the size of the data set and, more generally, any parameter connected
with the structure of the tree. This parameter could be, for example, the total
number k of cells in a k-partition tree or the penalty term in the pruning of the
CART algorithm (e.g., [5] and [11]).

Our cellular trees proceed from a different philosophy. In short, a cellular
tree should, at each node, be able to answer questions ① and ② using local
information only, without any help from the other nodes. In other words, each
cell can perform as many operations as it wishes, provided it uses only the data
that are transmitted to it, regardless of the general structure of the tree. Just
imagine that the calculations to be carried out at the nodes are sent to different
computers, eventually asynchronously, and that the system architecture is so
complex that computers do not communicate. Thus, once a computer receives
its data, it has to make its own decisions on ① and ② based on this data subset
only, independently of the others and without knowing anything of the overall
edifice. Once a data set is split, it can be given to another computer for further
splitting, since the remaining data points have no influence.

Formally, a cellular binary classification tree is a machine that partitions the
space recursively in the following manner. With each node we associate a subset
of Rd, starting with Rd for the root node. We consider binary tree classifiers
based on a class C of possible Borel subsets of Rd that can be used for splits. A
typical example of such a class is the family of all hyperplanes, or the class of all
hyperplanes that are perpendicular to one of the axes. Higher order polynomial
splitting surfaces can be imagined as well. The class is parametrized by a vector
σ ∈ Rp. There is a splitting function f(x, σ), x ∈ Rd, σ ∈ Rp, such that Rd is
partitioned into A = {x ∈ Rd : f(x, σ) ≥ 0} and B = {x ∈ Rd : f(x, σ) < 0}.
Formally, a cellular split can be viewed as a family of measurable mappings
(σm)m from (Rd × {0, 1})m to Rp. In this model, m is the size of the data set
transmitted to the cell. Thus, for each possible input size m, we have a map. In
addition, there is a family of measurable mappings (θm)m from (Rd × {0, 1})m
to {0, 1} that indicate decisions: θm = 1 indicates that a split should be applied,
while θm = 0 corresponds to a decision not to split. In that case, the cell acts
as a leaf node in the tree. We note that (θm)m and (σm)m correspond to the
decisions given in ① and ②.

Let the set data set be Dn. If θ(Dn) = 0, the root cell is final, and the space
is not split. Otherwise, Rd is split into

A =
{
x ∈ Rd : f (x, σ(Dn)) ≥ 0

}
and B =

{
x ∈ Rd : f (x, σ(Dn)) < 0

}
.

The data Dn are partitioned into two groups–the first group contains all (Xi, Yi),
i = 1, . . . , n, for which Xi ∈ A, and the second group all others. The groups are
sent to child cells, and the process is repeated. When x ∈ Rd needs to be clas-
sified, we first determine the unique leaf set A(x) to which x belongs, and then
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take votes among the {Yi : Xi ∈ A(x), i = 1, . . . , n}. Classification proceeds by
a majority vote, with the majority deciding the estimate gn(x). In case of a tie,
we set gn(x) = 0.

A cellular binary tree classifier is said to be randomized if each node in the
tree has an independent copy of a uniform [0, 1] random variable associated with
it, and θ and σ are mappings that have one extra real-valued component in
the input. For example, we could flip an unbiased coin at each node to decide
whether θm = 0 or θm = 1.

4 A Consistent Cellular Tree Classifier

At first sight, it appears that there are no universally consistent cellular tree
classifiers. Consider for example complete binary trees with k full levels, i.e.,
there are 2k leaf regions. We can have consistency when k is allowed to depend
upon n. An example is the median tree (see Section 20.3 in [7]). When d = 1,
split by finding the median element among the Xi’s, so that the child sets have
cardinality given by 
(n− 1)/2� and �(n− 1)/2, where 
.� and �. are the floor
and ceiling functions. The median itself does stay behind and is not sent down to
the subtrees, with an appropriate convention for breaking cell boundaries as well
as empty cells. Keep doing this for k rounds—in d dimensions, one can either
rotate through the coordinates for median splitting, or randomize by selecting
uniformly at random a coordinate to split orthogonally.

This rule is known to be consistent as soon as the marginal distributions of X
are nonatomic, provided k → ∞ and k2k/n → 0. However, this is not a cellular
tree classifier. While we can indeed specify σm, it is impossible to define θm
because θm cannot be a function of the global value of n. In other words, if we
were to apply median splitting and decide to split for a fixed k, then the leaf
nodes would all correspond to a fixed proportion of the data points. It is clear
that the decisions in the leaves are off with a fair probability if we have, for
example, Y independent of X and P{Y = 1} = 1/2. Thus, we cannot create a
cellular tree classifier in this manner.

In view of the preceding discussion, it seems paradoxical that there indeed
exist universally consistent cellular tree classifiers. (We note here that we abuse
the word “universal”—we will assume throughout, to keep the discussion at a
manageable level, that the marginal distributions of X are nonatomic. But no
other conditions on the joint distribution of (X, Y ) are imposed.) Our construc-
tion follows the median tree principle and uses randomization. The original work
on the solution appears in [4].

From now on, to keep things simple, it is assumed that the marginal dis-
tributions of X are nonatomic. The cellular splitting method σm described in
this section mimics the median tree classifier discussed above. We first choose
a dimension to cut, uniformly at random from the d dimensions, as rotating
through the dimensions by level number would violate the cellular condition.
The selected dimension is then split at the data median, just as in the classical
median tree. Repeating this for k levels of nodes leads to 2k leaf regions. On any
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path of length k to one of the 2k leaves, we have a deterministic sequence of car-
dinalities n0 = n(root), n1, n2, . . . , nk. We always have ni/2 − 1 ≤ ni+1 ≤ ni/2.
Thus, by induction, one easily shows that, for all i,

n

2i
− 2 ≤ ni ≤

n

2i
.

In particular, each leaf has at least max(n/2k − 2, 0) points and at most n/2k.
The novelty is in the choice of the decision function. This function ignores the
data altogether and uses a randomized decision that is based on the size of the
input. More precisely, consider a nonincreasing function ϕ : N → (0, 1] with
ϕ(0) = ϕ(1) = 1. Cells correspond in a natural way to sets of Rd. So, we can
and will speak of a cell A, where A ⊂ Rd. The number of data points in A is
denoted by N(A):

N(A) =

n∑
i=1

1[Xi∈A].

Then, if U is the uniform [0, 1] random variable associated with the cell A and
the input to the cell is N(A), the stopping rule ① takes the form:

① Put θ = 0 if

U ≤ ϕ (N(A)) .

In this manner, we obtain a possibly infinite randomized binary tree classifier.
Splitting occurs with probability 1 − ϕ(m) on inputs of size m. Note that no
attempt is made to split empty sets or singleton sets. For consistency, we need
to look at the random leaf region to which X belongs. This is roughly equivalent
to studying the distance from that cell to the root of the tree.

In the sequel, the notation un = o(vn) (respectively, un = ω(vn) and un =
O(vn)) means that un/vn → 0 (respectively, vn/un → 0 and un ≤ Cvn for some
constant C) as n → ∞. Many choices ϕ(m) = o(1), but not all, will do for us.
The next lemma makes things more precise.

Lemma 1. Let β ∈ (0, 1). Define

ϕ(m) =

{
1 if m < 3

1/logβ m if m ≥ 3.

Let K(X) denote the random path distance between the cell of X and the root of
the tree. Then

lim
n→∞

P {K(X) ≥ kn} =

{
0 if kn = ω(logβ n)

1 if kn = o(logβ n).

Proof. Let us recall that, at level k, each cell of the underlying median tree
contains at least max(n/2k − 2, 0) points and at most n/2k. Since the function
ϕ(.) is nonincreasing, the first result follows from this:
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P {K(X) ≥ kn} ≤
kn−1∏
i=0

(
1− ϕ

(

n/2i�

))
≤ exp

(
−

kn−1∑
i=0

ϕ
(

n/2i�

))
≤ exp (−knϕ(n)) .

The second statement follows from

P {K(X) < kn} ≤
kn−1∑
i=0

ϕ
(
�n/2i − 2

)
≤ knϕ

(
�n/2kn

)
,

valid for all n large enough since n/2kn →∞ as n →∞. ��

Lemma 1, combined with the median tree consistency result of [7], suffices to
establish consistency of the randomized cellular tree classifier.

Theorem 1. Let β be a real number in (0, 1). Define

ϕ(m) =

{
1 if m < 3

1/logβ m if m ≥ 3.

Let gn be the associated randomized cellular binary tree classifier. Assume that
the marginal distributions of X are nonatomic. Then the classification rule gn
is consistent:

lim
n→∞

EL(gn) = L�.

Proof. By diam(A) we mean the diameter of the cell A, i.e., the maximal distance
between two points of A. We recall a general consistency theorem for partitioning
classifiers whose cell design depends on the Xi’s only (see Theorem 6.1 in [7]).
According to this theorem, such a classifier is consistent if both

1. diam(A(X)) → 0 in probability as n→∞, and
2. N(A(X)) →∞ in probability as n →∞,

where A(X) is the cell of the random partition containing X.
Condition 2. is proved in Lemma 1. Notice that

N (A(X)) ≥ n

2K(X)
− 2

≥ 1[K(X)<log(β+1)/2 n]

(
n

2log
(β+1)/2 n

− 2

)
= ω(1)1[K(X)<log(β+1)/2 n].

Therefore, by Lemma 1, N (A(X)) → ∞ in probability as n→ ∞.
To show that diam(A(X)) → 0 in probability, observe that on a path of length

K(X), the number of times the first dimension is cut is binomial (K(X), 1/d).
This tends to infinity in probability. Following the proof of Theorem 20.2 in [7],
the diameter of the cell of X tends to 0 in probability with n. Details are left to
the reader. ��
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Let us finally take care of the randomization. Can one do without randomization?
The hint to the solution of that enigma is in the hypothesis that the data elements
in Dn are i.i.d. The median classifier does not use the ordering in the data. Thus,
one can use the randomness present in the permutation of the observations, e.g.,
the �-th components of the Xi’s can form n! permutations if ties do not occur.
This corresponds to (1 + o(1))n log2 n independent fair coin flips, which are at
our disposal. Each decision to split requires on average at most 2 independent
bits. The selection of a random direction to cut requires no more than 1+ log2 d
independent bits. Since the total tree size is, with probability tending to 1,

O(2log
β+ε n) for any ε > 0, a fact that follows with a bit of work from summing

the expected number of nodes at each level, the total number of bits required to
carry out all computations is

O
(
(3 + log2 d)2

logβ+ε n
)
,

which is orders of magnitude smaller than n provided that β+ε < 1. Thus, there
is sufficient randomness at hand to do the job. How it is actually implemented
is another matter, as there is some inevitable dependence between the data sets
that correspond to cells and the data sets that correspond to their children. We
will not worry about the finer details of this in the present paper.
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[11] Gey, S., Nédélec, E.: Model selection for CART regression trees. IEEE Transac-
tions on Information Theory 51, 658–670 (2005)

[12] Gordon, L., Olshen, R.A.: Asymptotically efficient solutions to the classification
problem. The Annals of Statistics 6, 515–533 (1978)

[13] Guo, H., Gelfand, S.B.: Classification trees with neural network feature extraction.
IEEE Transactions on Neural Networks 3, 923–933 (1992)

[14] Gustafson, D.E., Gelfand, S., Mitter, S.K.: A nonparametric multiclass partition-
ing method for classification. In: Proceedings of the Fifth International Conference
on Pattern Recognition, pp. 654–659 (1980)
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Abstract. In machine learning, the notion of multi-armed bandits refers
to a class of online learning problems, in which an agent is supposed to
simultaneously explore and exploit a given set of choice alternatives in
the course of a sequential decision process. In the standard setting, the
agent learns from stochastic feedback in the form of real-valued rewards.
In many applications, however, numerical reward signals are not readily
available—instead, only weaker information is provided, in particular rel-
ative preferences in the form of qualitative comparisons between pairs of
alternatives. This observation has motivated the study of variants of the
multi-armed bandit problem, in which more general representations are
used both for the type of feedback to learn from and the target of predic-
tion. The aim of this paper is to provide a survey of the state-of-the-art
in this field, that we refer to as preference-based multi-armed bandits. To
this end, we provide an overview of problems that have been considered
in the literature as well as methods for tackling them. Our systematiza-
tion is mainly based on the assumptions made by these methods about
the data-generating process and, related to this, the properties of the
preference-based feedback.

Keywords: Multi-armed bandits, online learning, preference learning,
ranking, top-k selection, exploration/exploitation, cumulative regret,
sample complexity, PAC learning.

1 Introduction

Multi-armed bandit (MAB) algorithms have received considerable attention and
have been studied quite intensely in machine learning in the recent past. The great
interest in this topic is hardly surprising, given that the MAB setting is not only
theoretically challenging but also practically useful, as can be seen from their use
in a wide range of applications. For example, MAB algorithms turned out to offer
effective solutions for problems in medical treatment design [35, 34], online adver-
tisement [16], and recommendation systems [33], just to mention a few.

The multi-armed bandit problem, or bandit problem for short, is one of the
simplest instances of the sequential decision making problem, in which a learner
(also called decision maker or agent) needs to select options from a given set of
alternatives repeatedly in an online manner—referring to the metaphor of the

P. Auer et al. (Eds.): ALT 2014, LNAI 8776, pp. 18–39, 2014.
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eponymous gambling machine in casinos, these options are also associated with
“arms” that can be “pulled”. More specifically, the agent selects one option at
a time and observes a numerical (and typically noisy) reward signal providing
information on the quality of that option. The goal of the learner is to optimize
an evaluation criterion such as the error rate (the expected percentage of playing
a suboptimal arm) or the cumulative regret (the expected difference between the
sum of the rewards actually obtained and the sum of rewards that could have
been obtained by playing the best arm in each round). To achieve the desired
goal, the online learner has to cope with the famous exploration/exploitation
dilemma [5, 14, 35]: It has to find a reasonable compromise between playing the
arms that produced high rewards in the past (exploitation) and trying other,
possibly even better arms the (expected) reward of which is not precisely known
so far (exploration).

The assumption of a numerical reward signal is a potential limitation of the
MAB setting. In fact, there are many practical applications in which it is hard or
even impossible to quantify the quality of an option on a numerical scale. More
generally, the lack of precise feedback or exact supervision has been observed in
other branches of machine learning, too, and has led to the emergence of fields
such as weakly supervised learning and preference learning [25]. In the latter,
feedback is typically represented in a purely qualitative way, namely in terms of
pairwise comparisons or rankings. Feedback of this kind can be useful in online
learning, too, as has been shown in online information retrieval [28, 42].

As another example, think of crowd-sourcing services like the Amazon Me-
chanical Turk, where simple questions such as pairwise comparisons between
decision alternatives are asked to a group of annotators. The task is to approx-
imate an underlying target ranking on the basis of these pairwise comparisons,
which are possibly noisy and partially inconsistent [17]. Another application
worth mentioning is the ranking of XBox gamers based on their pairwise online
duels; the ranking system of XBox is called TrueSkillTM[26].

Extending the multi-armed bandit setting to the case of preference-based
feedback, i.e., the case in which the online learner is allowed to compare arms in
a qualitative way, is therefore a promising idea. And indeed, extensions of that
kind have received increasing attention in the recent years. The aim of this paper
is to provide a survey of the state-of-the-art in the field of preference-based multi-
armed bandits (PB-MAB). After recalling the basic setting of the problem in
Section 2, we provide an overview of methods that have been proposed to tackle
PB-MAB problems in Sections 3 and 4. Our main criterion for systematization
is the assumptions made by these methods about the data-generating process or,
more specifically, the properties of the pairwise comparisons between arms. Our
survey is focused on the stochastic MAB setup, in which feedback is generated
according to an underlying (unknown but stationary) probabilistic process; we
do not cover the case of an adversarial data-generating processes, although this
setting has recently received a lot of attention, too [1, 15, 14].
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2 The Preference-Based Bandit Problem

The stochastic MAB problem with pairwise comparisons as actions has been
studied under the notion of “dueling bandits” in several papers [45, 44]. However,
since this term is associated with specific modeling assumptions, we shall use the
more general term “preference-based bandits” throughout this paper.

Consider a fixed set of arms (options) A = {a1, . . . , aK}. As actions, the
learning algorithm (or simply the learner or agent) can perform a comparison
between any pair of arms ai and aj , i.e., the action space can be identified
with the set of index pairs (i, j) such that 1 ≤ i ≤ j ≤ K. We assume the
feedback observable by the learner to be generated by an underlying (unknown)
probabilistic process characterized by a preference relation

Q = [qi,j ]1≤i,j≤K ∈ [0, 1]K×K .

More specifically, for each pair of actions (ai, aj), this relation specifies the prob-
ability

P (ai � aj) = qi,j (1)

of observing a preference for ai in a direct comparison with aj . Thus, each qi,j
specifies a Bernoulli distribution. These distributions are assumed to be station-
ary and independent, both across actions and iterations. Thus, whenever the
learner takes action (i, j), the outcome is distributed according to (1), regardless
of the outcomes in previous iterations.

The relation Q is reciprocal in the sense that qi,j = 1 − qj,i for all i, j ∈
[K] = {1, . . . ,K}. We note that, instead of only observing strict preferences, one
may also allow a comparison to result in a tie or an indifference. In that case,
the outcome is a trinomial instead of a binomial event. Since this generalization
makes the problem technically more complicated, though without changing it
conceptually, we shall not consider it further. In [12, 11], indifference was handled
by giving “half a point” to both arms, which, in expectation, is equivalent to
deciding the winner by flipping a coin. Thus, the problem is essentially reduced
to the case of binomial outcomes.

We say arm ai beats arm aj if qi,j > 1/2, i.e., if the probability of winning
in a pairwise comparison is larger for ai than it is for aj . Clearly, the closer qi,j
is to 1/2, the harder it becomes to distinguish the arms ai and aj based on a
finite sample set from P (ai � aj). In the worst case, when qi,j = 1/2, one cannot
decide which arm is better based on a finite number of pairwise comparisons.
Therefore,

Δi,j = qi,j −
1

2
appears to be a reasonable quantity to characterize the hardness of a PB-MAB
task (whatever goal the learner wants to achieve). Note that Δi,j can also be
negative (unlike the value-based setting, in which the quantity used for char-
acterizing the complexity of a multi-armed bandit task is always positive and
depends on the gap between the means of the best arm and the suboptimal
arms).
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2.1 Pairwise Probability Estimation

The decision making process iterates in discrete steps, either through a finite
time horizon T = [T ] or an infinite horizon T = N. As mentioned above, the
learner is allowed to compare two actions in each iteration t ∈ T. Thus, in each
iteration t, it selects an index pair 1 ≤ i(t) ≤ j(t) ≤ K and observes{

ai(t) � aj(t) with probability qi(t),j(t)

aj(t) � ai(t) with probability qj(t),i(t)

The pairwise probabilities qi,j can be estimated on the basis of finite sample
sets. Consider the set of time steps among the first t iterations, in which the
learner decides to compare arms ai and aj , and denote the size of this set by
nt
i,j . Moreover, denoting by wt

i,j and wt
j,i the frequency of “wins” of ai and aj ,

respectively, the proportion of wins of ai against aj up to iteration t is then
given by

q̂ t
i,j =

wt
i,j

nt
i,j

=
wt

i,j

wt
i,j + wt

j,i

.

Since our samples are assumed to be independent and identically distributed
(i.i.d.), q̂ t

i,j is a plausible estimate of the pairwise probability (1). Yet, this es-
timate might be biased, since nt

i,j depends on the choice of the learner, which
in turn depends on the data; therefore, nt

i,j itself is a random quantity. A high
probability confidence interval for qi,j can be obtained based on the Hoeffding
bound [27], which is commonly used in the bandit literature. Although the spe-
cific computation of the confidence intervals may differ from case to case, they
are generally of the form [q̂ t

i,j ± cti,j ]. Accordingly, if q̂ t
i,j − cti,j > 1/2, arm ai

beats arm aj with high probability; analogously, ai is beaten by arm aj with
high probability, if q̂ t

j,i + ctj,i < 1/2.

2.2 Evaluation Criteria

The goal of the online learner is usually stated as minimizing some kind of cumula-
tive regret. Alternatively, in the “pure exploration” scenario, the goal is to identify
the best arm (or the best k arms, or a ranking of all arms) both quickly and re-
liably. As an important difference between these two types of targets, note that
the regret of a comparison of arms depends on the concrete arms being chosen,
whereas the sample complexity penalizes each comparison equally.

It is also worth mentioning that the notion of optimality of an arm is far less
obvious in the preference-based setting than it is in the value-based (numerical)
setting. In the latter, the optimal arm is simply the one with the highest expected
reward—more generally, the expected reward induces a natural total order on
the set of actions A. In the preference-based case, the connection between the
pairwise preferences Q and the order induced by this relation on A is less trivial;
in particular, the latter may contain preferential cycles. We shall postpone a more
detailed discussion of these issues to subsequent sections, and for the time being
simply assume the existence of an arm ai∗ that is considered optimal.
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2.3 Cumulative Regret

In a preference-based setting, defining a reasonable regret is not as straightfor-
ward as in the value-based setting, where the sub-optimality of an action can
be expressed easily on a numerical scale. In particular, since the learner selects
two arms to be compared in an iteration, the sub-optimality of both of these
arms should be taken into account. A commonly used definition of regret is the
following [46, 43, 47, 45]: Suppose the learner selects arms ai(t) and aj(t) in time
step t. Then, the cumulative regret incurred by the learner A up to time T is

RT
A =

T∑
t=1

rt =

T∑
t=1

Δi∗,i(t) +Δi∗,j(t)

2
. (2)

This regret takes into account the optimality of both arms, meaning that the
learner has to select two nearly optimal arms to incur small regret. Note that
this regret is zero if the optimal arm ai∗ is compared to itself, i.e., if the learner
effectively abstains from gathering further information and instead fully commits
to the arm ai∗ .

2.4 Regret Bounds

In a theoretical analysis of a MAB algorithm, one is typically interested in pro-
viding a bound on the (cumulative) regret produced by that algorithm. We are
going to distinguish two types of regret bound. The first one is the expected regret
bound, which is of the form

E
[
RT
]
≤ B(Q,K, T ) , (3)

where E [·] is the expected value operator, RT is the regret accumulated till time
step T , and B(·) is a positive real-valued function with the following arguments:
the pairwise probabilities Q, the number of arms K, and the iteration number
T . This function may additionally depend on parameters of the learner, however,
we neglect this dependence here. The expectation is taken with respect to the
stochastic nature of the data-generating process and the (possible) internal ran-
domization of the online learner. The regret bound (3) is technically akin to the
expected regret bound of value-based multi-armed bandit algorithms like the one
that is calculated for UCB [5], although the parameters used for characterizing
the complexity of the learning task are different.

The bound in (3) does not inform about how the regret achieved by the learner
is concentrated around its expectation. Therefore, we consider a second type of
regret bound, namely one that holds with high probability. This bound can be
written in the form

P
(
RT < B(Q,K, T, δ)

)
≥ 1− δ .

For simplicity, we also say that the regret achieved by the online learner is
O(B(Q,K, T, δ)) with high probability.
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2.5 Sample Complexity

The sample complexity analysis is considered in a “pure exploration” setup where
the learner, in each iteration, must either select a pair of arms to be compared or
terminate and return its recommendation. The sample complexity of the learner
is then the number of pairwise comparisons it queries prior to termination, and
the corresponding bound is denoted B(Q,K, δ). Here, 1 − δ specifies a lower
bound on the probability that the learner terminates and returns the correct
solution.1 Note that only the number of the pairwise comparisons is taken into
account, which means that pairwise comparisons are equally penalized, indepen-
dently of the suboptimality of the arms chosen.

The recommendation of the learner depends on the task to be solved. In
the simplest case, it consists of the best arm. However, as will be discussed in
Section 4, more complex predictions are conceivable, such as a complete ranking
of all arms.

The above sample complexity bound is valid most of the time (more than
1− δ of the runs). However, in case an error occurs and the correct recommen-
dation is not found by the algorithm, the bound does not guarantee anything.
Therefore, it cannot be directly linked to the expected sample complexity. In
order to define the expected sample complexity, the learning algorithm needs to
terminate in a finite number of steps with probability 1. Under this condition,
running a learning algorithm on the same bandit instance results in a finite sam-
ple complexity, which is a random number distributed according to an unknown
law P : N → [0, 1]. The distribution P has finite support, since the algorithm
terminates in a finite number of steps in every case. By definition, the expected
sample complexity of the learning algorithm is the finite mean of the distribu-
tion P. Moreover, the worst case sample complexity is the upper bound of the
support of P.

2.6 PAC Algorithms

In many applications, one might be interested in gaining efficiency at the cost of
optimality: The algorithm is allowed to return a solution that is only approxi-
mately optimal, though it is supposed to do so more quickly. For standard bandit
problems, for example, this could mean returning an arm the expected reward
of which deviates by at most some ε from the expected reward of the optimal
arm.

In the preference-based setup, approximation errors are less straightforward
to define. Nevertheless, the sample complexity can also be analyzed in a PAC-
framework as originally introduced by Even-Dar et al. [20] for value-based MABs.
A preference-based MAB algorithm is called (ε, δ)-PAC preference-based MAB
algorithm with a sample complexity B(Q,K, ε, δ), if it terminates and returns
an ε-optimal arm with probability at least 1− δ, and the number of comparisons

1 Here, we consider the pure exploration setup with fixed confidence. Alternatively,
one can fix the horizon and control the error of the recommendation [4, 8, 9].
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taken by the algorithm is at most B(Q,K, ε, δ). If the problem is to select a
single arm, ε-optimality could mean, for example, that Δi∗,j < ε, although other
notions of approximation can be used as well.

2.7 Explore-then-Exploit Algorithms

Most PB-MAB algorithms for optimizing regret are based on the idea of de-
coupling the exploration and exploitation phases: First, the algorithm tries to
identify the best arm with high probability, and then fully commits to the arm
found to be best for the rest of the time (i.e., repeatedly compares this arm to
itself). Algorithms implementing this principle are called “explore-then-exploit”
algorithms.

Such algorithms need to know the time horizon T in advance, since being
aware of the horizon, the learning algorithm is able to control the regret incurred
in case it fails to identify the best arm. More specifically, assume a so-called
exploratory algorithm A to be given, which is able to identify the best arm ai∗

with probability at least 1− δ. By setting δ to 1/T , algorithm A guarantees that

P( î∗ = i∗ ) > 1−1/T if it terminates before iteration step T , where î∗ is the arm

index returned by A. Thus, if A terminates and commits a mistake, i.e., î∗ �= i∗,
then the expected regret incurred in the exploitation phase is 1/T ·O(T ) = O(1),
since the per-round regret is upper-bounded by one and the exploitation phase
consists of at most T steps. Consequently, the expected regret of an explore-
then-exploit algorithm is

E[RT ] ≤ (1− 1/T )E[RT
A] + (1/T )O(T ) = O

(
E[RT

A] + 1
)

.

Note that the inequality is trivially valid if A does not terminate before T .
The same argument as given above for the case of expected regret also holds

for high probability regret bounds in the explore-then-exploit framework. In
summary, the performance of an explore-then-exploit algorithm is bounded by
the performance of the exploration algorithm. More importantly, since the per
round regret is at most one, the sample complexity of the exploration algorithm
readily upper-bounds the expected regret; this fact was pointed out in [46, 44].
Therefore, like in the case of value-based MABs, explore-then-exploit algorithms
somehow blur the distinction between the “pure exploration” and regret opti-
mization setting.

However, in a recent study [47], a novel preference-based MAB algorithm is
proposed that optimizes the cumulative regret without decoupling the explo-
ration from the exploitation phase (for more details see Section 3.1). Without
decoupling, there is no need to know the horizon in advance, which allows one
to provide a horizonless regret bound that holds for any time step T .

The regret defined in (2) reflects the average quality of the decision made by
the learner. Obviously, one can define a more strict or less strict regret by taking
the maximum or minimum, respectively, instead of the average. Formally, the
strong and weak regret in time step t are defined, respectively, as
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rtmax = max
{
Δi∗,i(t), Δi∗,j(t)

}
,

rtmin = min
{
Δi∗,i(t), Δi∗,j(t)

}
.

From a theoretical point of view, when the number of pairwise comparisons is
bounded by a known horizon, these regret definitions do not lead to a fundamen-
tally different problem. Roughly speaking, this is because most of the methods
designed for optimizing regret seek to identify the best arm with high probability
in the exploration phase, based on as few sample as possible.

3 Learning from Consistent Pairwise Comparisons

As explained in Section 2.1, learning in the preference-based MAB setting es-
sentially means estimating the pairwise preference matrix Q, i.e., the pairwise
probabilities qi,j . The target of the agent’s prediction, however, is not the rela-
tion Q itself, but the best arm or, more generally, a ranking � of all arms A.
Consequently, the least assumption to be made is a connection between Q and
�, so that information about the former is indicative of the latter. Or, stated
differently, the pairwise probabilities qi,j should be sufficiently consistent, so as
to allow the learner to approximate and eventually identify the target (at least
in the limit when the sample size grows to infinity). For example, if the target is
a ranking � on A, then the qi,j should be somehow consistent with that ranking,
e.g., in the sense that ai � aj implies qi,j > 1/2.

While this is only an example of a consistency property that might be required,
different consistency or regularity assumptions on the pairwise probabilities Q
have been proposed in the literature—needless to say, these assumptions have
a major impact on how PB-MAB problems are tackled algorithmically. In this
section and the next one, we provide an overview of approaches to such problems,
categorized according to these assumptions (see Figure 1).

3.1 Axiomatic Approaches

The seminal work of Yue et al. [44] relies on three regularity properties on the
set of arms and their pairwise probabilities:

– Total order over arms : there exists a total order � on A, such that ai � aj
implies Δi,j > 0.

– Strong stochastic transitivity: for any triplet of arms such that ai � aj � ak,
the pairwise probabilities satisfy Δi,k ≥ max (Δi,j , Δj,k).

– Stochastic triangle inequality : for any triplet of arms such that ai � aj � ak,
the pairwise probabilities satisfy Δi,k ≤ Δi,j +Δj,k.

The first assumption of a total order with arms separated by positive margins
ensures the existence of a unique best arm, which in this case coincides with the
Condorcet winner.2 The second and third assumptions induce a strong structure
on the pairwise preferences, which allows one to devise efficient algorithms.

2 In voting and choice theory, an option is a Condorcet winner if it beats all other
options in a pairwise comparison. In our context, this means an arm ai is considered
a Condorcet winner if Δi,j > 1/2 for all j ∈ [K].
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Preference-based (stochastic) MAB

Consistent Q
Section 3

Arbitrary Q
Section 4

Axiomatic approaches

Interleaved filtering [44]

Beat-the-mean [46]

RUCB [47]

Utility functions

Gradient descent [45]

Reduction to value-based
MAB[2]

Statistical models

Mallows [10]

Voting bandits [43]

Preference-based racing
[12]

PAC rank elicitation [11]

Fig. 1. A taxonomy of (stochastic) PB-MAB algorithms

InterleavedFiltering. Yue et al. [44] propose an explore-then-exploit algorithm.
The exploration step consists of a simple sequential elimination strategy, called
Interleaved Filtering (IF), which identifies the best arm with probability at
least 1−δ. The IF algorithmsuccessively selects an armwhich is compared to other
arms in a one-versus-all manner. More specifically, the currently selected arm ai
is compared to the rest of the active (not yet eliminated) arms. If an arm aj beats
ai, that is, q̂i,j + ci,j < 1/2, then ai is eliminated, and aj is compared to the rest of
the (active) arms, again in a one-versus-all manner. In addition, a simple pruning
technique can be applied: if q̂i,j − ci,j > 1/2 for an arm aj at any time, then aj can
be eliminated, as it cannot be the best arm anymore (with high probability). After
the exploration step, the exploitation step simply takes the best arm âi∗ found by
IF and repeatedly compares âi∗ to itself.

The authors analyze the expected regret achieved by IF. Assuming the horizon
T to be finite and known in advance, they show that IF incurs an expected regret

E
[
RT

IF

]
= O

(
K

minj �=i∗ Δi∗,j
logT

)
.

Beat the Mean. In a subsequent work, Yue and Joachims [46] relax the strong
stochastic transitivity property and only require a so-called relaxed stochastic
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transitivity for the pairwise probabilities: There is a γ ≥ 1 such that, for any
triplet of arms such that ai∗ � ai � aj with respect to the total order �,

γ Δi∗,j ≥ max {Δi∗,i, Δi,j} .

Obviously, the strong stochastic transitivity is recovered for γ = 1, albeit it
is still restricted to triplets involving the best arm ai∗ . The stochastic triangle
inequality is relaxed in a similar way, and again, it is required to hold only
relative to the best arm.

With these relaxed properties, Yue and Joachims [46] propose a preference-
based online learning algorithm called Beat-The-Mean (BTM), which is an
elimination strategy resembling IF. However, while IF compares a single arm to
the rest of the (active) arms in a one-versus-all manner,BTM selects an arm with
the fewest comparisons so far and pairs it with a randomly chosen arm from the
set of active arms (using the uniform distribution). Based on the outcomes of the
pairwise comparisons, a score bi is assigned to each active arm ai, which is an em-
pirical estimate of the probability that ai is winning in a pairwise comparison (not
taking into account which arm it was compared to). The idea is that comparing an
arm ai to the “mean” arm, which beats half of the arms, is equivalent to comparing
ai to an arm randomly selected from the active set. One can deduce a confidence
interval for the bi scores, which allows for deciding whether the scores for two arms
are significantly different. An arm is then eliminated as soon as there is another
arm with a significantly higher score.

In the regret analysis of BTM, a high probability bound is provided for a
finite time horizon. More precisely, the regret accumulated by BTM is

O
(

γ7K

minj �=i∗ Δi∗,j
log T

)
with high probability. This result is stronger than the one proven for IF, in
which only the expected regret is upper bounded. Moreover, this high proba-
bility regret bound matches with the expected regret bound in the case γ = 1
(strong stochastic transitivity). The authors also analyze the BTM algorithm
in a PAC setting, and find that BTM is an (ε, δ)-PAC preference-based learner
(by setting its input parameters appropriately) with a sample complexity of

O(γ
6K
ε2 log KN

δ ) if N is large enough, that is, N is the smallest positive integer

for which N =
⌈
36γ6

ε2 log K3N
δ

⌉
. One may simplify this bound by noting that

N < N ′ =
⌈
864γ6

ε2 log K
δ

⌉
. Therefore, the sample complexity is

O
(
γ6K

ε2
log

Kγ log(K/δ)

δε

)
.

Preference-based UCB. In a very recent work by Zoghi et al. [47], the well-
known UCB [5] algorithm is adapted from the value-based to the preference-
based MAP setup. One of the main advantages of the proposed algorithm,
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called RUCB (for Relative UCB), is that only the existence of a Condorcet
winner is required. Consequently, it is more broadly applicable. The RUCB al-
gorithm is based on the “optimism in the face of uncertainty” principle, which
means that the arms to be compared next are selected based on the optimistic
estimates of the pairwise probabilities, that is, based on the upper boundaries
q̂i,j + ci,j of the confidence intervals. In an iteration step, RUCB selects the set
of potential Condorcet winners for which all q̂i,j + ci,j values are above 1/2, and
then selects an arm ai from this set uniformly at random. Finally, ai is compared
to the arm aj , j = argmax� �=i q̂i,� + ci,�, that may lead to the smallest regret,
taking into account the optimistic estimates.

In the analysis of the RUCB algorithm, horizonless regret bounds are pro-
vided, both for the expected regret and high probability bound. Thus, unlike the
bounds for IF and BTM, these bounds are valid for each time step. Both the
expected regret bound and high probability bound of RUCB are O(K logT ).
However, while the regret bounds of IF and BTM only depend on minj �=i∗ Δi∗,j ,
the constants are now of different nature, despite being still calculated based on
the Δi,j values. Therefore, the regret bounds for RUCB are not directly com-
parable with those given for IF and BTM.

3.2 Regularity through Latent Utility Functions

The representation of preferences in terms of utility functions has a long history
in decision theory [22]. The idea is that the absolute preference for each choice al-
ternative can be reflected by a real-valued utility degree. Obviously, such degrees
immediately impose a total order on the set of alternatives. Typically, however,
the utility degrees are assumed to be latent and not directly observable.

In [45], a preference-based stochastic MAB setting is introduced in which the
pairwise probabilities are directly derived from the (latent) utilities of the arms.
More specifically, the authors assume a space S of arms, which is not necessarily
finite.3 The probability of an arm a ∈ S beating arm a′ ∈ S is given by

P(a � a′) =
1

2
+ δ(a, a′)

where δ : S × S → [−1/2, 1/2]. Obviously, the closer the value of the function
δ is to 0, the harder it becomes to compare the corresponding pair of arms.
The authors furthermore assume the pairwise δ-values to be connected to an
underlying (differentiable and strictly concave) utility function u : S → R:

1

2
+ δ(a, a′) = σ

(
u(a)− u(a′)

)
,

where σ : R → [0, 1] is called link function, as it establishes a connection between
the pairwise probabilities and utilities. This function is assumed to satisfy the
following conditions: limx→∞ σ(x) = 1 and limx→−∞ σ(x) = 0, σ(x) = 1− σ(x),

3 This space corresponds to our set of arms A. However, as we assume A to be finite,
we use another notation here.
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σ(0) = 1/2. An example of such a function is the logistic function, which was
used in [45].

The problem of finding the optimal arm can be viewed as a noisy optimization
task [21]. The underlying search space is S, and the function values cannot be
observed directly; instead, only noisy pairwise comparisons of function values
(utilities) are available. In this framework, it is hard to have a reasonable esti-
mate for the gradient, therefore the authors opted for applying an online convex
optimization method [23], which does not require the gradient to be calculated
explicitly.

In the theoretical analysis of the proposed method, the regret definition is
similar to the one in (2), and can be written as

RT =

T∑
t=1

δ(a∗, at) + δ(a∗, a
′
t) .

Here, however, the reference arm a∗ is the best one known only in hindsight. In
other words, a∗ is the best arm among those evaluated during the search process.

Under a strong convexity assumption on ε, an expected regret bound for the
proposed algorithm is computed as follows. Assuming the search space S to be
given by the d-dimensional ball of radius R, the expected regret is

E[RT ] ≤ 2T 3/4
√
10RdL .

Ailon et al. [47] propose various methodologies to reduce the utility-based
PB-MAB problem to the standard value-based MAB problem. In their setup,
the utility of an arm is assumed to be in [0, 1]. Formally, u : S → [0, 1], and the
link function is a linear function σlin(x) =

1
2x. Therefore, the probability of an

arm a ∈ S beating another arm a′ ∈ S is

P(a � a′) =
1 + u(a)− u(a′)

2
,

which is again in [0, 1]. The regret considered is the one defined in (2), where
the reference arm ai∗ is the globally best arm with maximal utility.

In [47], two reduction techniques are proposed for a finite and an infinite set
of arms. In both techniques, value-based MAB algorithms such as UCB [5] are
used as a black box for driving the search in the space of arms. For a finite
number of arms, value-based bandit instances are assigned to each arm, and
these bandit algorithms are run in parallel. More specifically, assume that an
arm i(t) is selected in iteration t (to be explained in more detail shortly). Then,
the bandit instance that belongs to arm i(t) suggests another arm j(t). These
two arms are then compared in iteration t, and the reward, which is 0 or 1, is
assigned to the bandit algorithm that belongs to i(t). In iteration t+1, the arm
j(t) suggested by the bandit algorithm is compared, that is, i(t+1) = j(t). What
is nice about this reduction technique is that, under some mild conditions on
the performance of the bandit algorithm, the preference-based expected regret
defined in (2) is asymptotically identical to the one achieved by the value-based
algorithm for the standard value-based MAB task.
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For infinitely many arms, the reduction technique can be viewed as a two
player game. A run is divided into epochs: the �-th epoch starts in round t = 2�

and ends in round t = 2�+1 − 1, and in each epoch the players start a new
game. During the �th epoch, the second player plays adaptively according to a
strategy provided by the value-based bandit instance, which is able to handle
infinitely many arms, such as the ConfidenceBall algorithm by Dani et al. [19].
The first player obeys some stochastic strategy, which is based on the strategy
of the second player from the previous epoch. That is, the first player always
draws a random arm from the multi-set of arms that contains the arms selected
by the second player in the previous epoch. This reduction technique incurs an
extra logT factor to the expected regret of the value-based bandit instance.

3.3 Regularity through Statistical Models

Since the most general task in the realm of preference-based bandits is to elicit
a ranking of the complete set of arms based on noisy (probabilistic) feedback,
it is quite natural to establish a connection to statistical models of rank data
[37]. This idea was recently put forward by Busa-Fekete et al. [10], who assume
the underlying data-generating process to be given in the form of a probability
distribution P : SK → [0, 1]. Here, SK is the set of all permutations of [K] (the
symmetric group of order K) or, via a natural bijection, the set of all rankings
(total orders) of the K arms.

The probabilities for pairwise comparisons are then obtained as marginals
of P. More specifically, with P(r) the probability of observing the ranking r,
the probability qi,j that ai is preferred to aj is obtained by summing over all
rankings r in which ai precedes aj :

qi,j = P(ai � aj) =
∑

r∈L(rj>ri)

P(r) (4)

where L(rj > ri) = {r ∈ SK | rj > ri} denotes the subset of permutations for
which the rank rj of aj is higher than the rank ri of ai (smaller ranks indicate
higher preference).

In this setting, the learning problem essentially comes down to making infer-
ence about P based on samples in the form of pairwise comparisons. Concretely,
three different goals of the learner are considered, depending on whether the
application calls for the prediction of a single arm, a full ranking of all arms, or
the entire probability distribution:

– The MPI problem consists of finding the most preferred item i∗, namely the
item whose probability of being top-ranked is maximal:

i∗ = argmax
1≤i≤K

Er∼P I{ri = 1} = argmax
1≤i≤K

∑
r∈L(ri=1)

P(r) ,

where I{·} denotes the indicator function.
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– The MPR problem consists of finding the most probable ranking r∗:

r∗ = argmax
r∈SK

P(r)

– The KLD problem calls for producing a good estimate P̂ of the distribution
P, that is, an estimate with small KL divergence:

KL
(
P, P̂

)
=
∑
r∈SK

P(r) log
P(r)

P̂(r)
< ε

All three goals are meant to be achieved with probability at least 1− δ.
Busa-Fekete et al. [10] assume the underlying probability distribution P to

be a Mallows model [36], one of the most well-known and widely used statistical
models of rank data [37]. The Mallows model or, more specifically, Mallows
φ-distribution is a parameterized, distance-based probability distribution that
belongs to the family of exponential distributions:

P(r | θ, r̃) = 1

Z(φ)
φd(r,r̃) (5)

where φ and r̃ are the parameters of the model: r̃ = (r̃1, . . . , r̃K) ∈ SK is the
location parameter (center ranking) and φ ∈ (0, 1] the spread parameter. More-
over, d(·, ·) is the Kendall distance on rankings, that is, the number of discordant
pairs:

d(r, r̃) =
∑

1≤i<j≤K

I{ (ri − rj)(r̃i − r̃j) < 0 } .

The normalization factor in (5) can be written as

Z(φ) =
∑
r∈SK

P(r | θ, r̃) =
K−1∏
i=1

i∑
j=0

φj

and thus only depends on the spread [24]. Note that, since d(r, r̃) = 0 is equiv-
alent to r = r̃, the center ranking r̃ is the mode of P(· | θ, r̃), that is, the most
probable ranking according to the Mallows model.

In the case of Mallows, it is easy to see that r̃i < r̃j implies qi,j > 1/2 for any
pair of items ai and aj . That is, the center ranking defines a total order on the
set of arms: If an arm ai precedes another arm aj in the (center) ranking, then
ai beats aj in a pairwise comparison.4 Moreover, as shown by Mallows [36], the
pairwise probabilities can be calculated analytically as functions of the model
parameters φ and r̃ as follows: Assume the Mallows model with parameters φ and
r̃. Then, for any pair of items i and j such that r̃i < r̃j , the pairwise probability
is given by qi,j = g(r̃i, r̃j , φ), where

g(i, j, φ) = h(j − i+ 1, φ)− h(j − i, φ)

4 Recall that this property is an axiomatic assumption underlying the IF and BTM

algorithms. Interestingly, the stochastic triangle inequality, which is also assumed by
Yue et al. [44], is not satisfied for Mallows φ-model [36].
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with h(k, φ) = k/(1−φk). Based on this result, one can show that the “margin”

min
i�=j

|1/2− qi,j |

around 1/2 is relatively wide; more specifically, there is no qi,j ∈ ( φ
1+φ ,

1
1+φ ).

Moreover, the result also implies that qi,j − qi,k = O(�φ�) for arms ai, aj , ak
satisfying r̃i = r̃j − � = r̃k − �− 1 with 1 < �, and qi,k − qi,j = O(�φ�) for arms
ai, aj , ak satisfying r̃i = r̃j + � = r̃k + � + 1 with 1 < �. Therefore, deciding
whether an arm aj has higher or lower rank than ai (with respect to r̃) is easier
than selecting the preferred option from two candidates aj and ak for which
j, k �= i.

Based on these observations, one can devise an efficient algorithm for identi-
fying the most preferred arm when the underlying distribution is Mallows. The
algorithm proposed in [10] for the MPI problem, called MallowsMPI, is sim-
ilar to the one used for finding the largest element in an array. However, since
a stochastic environment is assumed in which the outcomes of pairwise compar-
isons are random variables, a single comparison of two arms ai and aj is not
enough; instead, they are compared until

1/2 /∈
[
q̂i,j − ci,j , q̂i,j + ci,j

]
. (6)

This simple strategy finds the most preferred arm with probability at least 1− δ

for a sample complexity that is of the form O
(

K
ρ2 log

K
δρ

)
, where ρ = 1−φ

1+φ .

For the MPR problem, a sampling strategy called MallowsMerge is pro-
posed, which is based on the merge sort algorithm for selecting the arms to be
compared. However, as in the case of MPI, two arms ai and aj are not only
compared once but until condition (6) holds. The MallowsMerge algorithm
finds the most probable ranking, which coincides with the center ranking of the
Mallows model, with a sample complexity of

O
(
K log2K

ρ2
log

K log2K

δρ

)
,

where ρ = 1−φ
1+φ . The leading factor of the sample complexity of MallowsMerge

differs from the one of MallowsMPI by a logarithmic factor. This was to be
expected, and simply reflects the difference in the worst case complexity for
finding the largest element in an array and sorting an array using the merge sort
strategy.

The KLD problem turns out to be very hard for the case of Mallows, and
even for small K, the sample complexity required for a good approximation of
the underlying Mallows model is extremely high with respect to ε. In [10], the
existence of a polynomial algorithm for this problem (under the assumption of
the Mallows model) was left as an open question.

4 Learning from Inconsistent Pairwise Comparisons

The methods presented in the previous section essentially proceed from a given
target, for example a ranking� of all arms,which is considered as a “ground truth”.
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The preference feedback in the form of (stochastic) pairwise comparisons provide
information about this target and, consequently, should obey certain consistency
or regularity properties. This is perhaps most explicitly expressed in Section 3.3,
in which the qi,j are derived as marginals of a probability distribution on the set of
all rankings, which can be seen asmodeling a noisy observation of the ground truth
given in the form of the center ranking.

Another way to look at the problem is to start from the pairwise preferences
Q themselves, that is to say, to consider the pairwise probabilities qi,j as the
ground truth. In tournaments in sports, for example, the qi,j may express the
probabilities of one team ai beating another one aj . In this case, there is no
underlying ground truth ranking from which these probabilities are derived.
Instead, it is just the other way around: A ranking is derived from the pairwise
comparisons. Moreover, there is no reason for why the qi,j should be consistent
in a specific sense. In particular, preferential cyclic and violations of transitivity
are commonly observed in many applications.

This is exactly the challenge faced by ranking procedures, which have been
studied quite intensely in operations research and decision theory [40, 18]. A
ranking procedure R turns Q into a complete preorder relation �R of the al-
ternatives under consideration. Thus, another way to pose the preference-based
MAB problem is to instantiate � with �R as the target for prediction—the
connection between Q and � is then established by the ranking procedure R,
which of course needs to be given as part of the problem specification.

Formally, a ranking procedure R is a map [0, 1]K×K → CK , where CK denotes
the set of complete preorders on the set of alternatives. We denote the complete
preorder produced by the ranking procedure R on the basis of Q by �R

Q, or

simply by �R if Q is clear from the context. In [12], three instantiations of the
ranking procedure R are considered:

– Copeland’s ranking (CO) is defined as follows [40]: ai �CO aj if and only
if di > dj , where di = #{k ∈ [K] | 1/2 < qi,k}. The interpretation of this
relation is very simple: An option ai is preferred to aj whenever ai “beats”
more options than aj does.

– The sum of expectations (SE) (or Borda) ranking is a “soft” version of CO:
ai �SE aj if and only if

qi =
1

K − 1

∑
k �=i

qi,k >
1

K − 1

∑
k �=j

qj,k = qj . (7)

– The idea of the random walk (RW) ranking is to handle the matrix Q as a
transition matrix of a Markov chain and order the options based on its sta-
tionary distribution. More precisely, RW first transformsQ into the stochas-
tic matrix S = [si,j ]K×K where si,j = qi,j/

∑K
�=1 qi,�. Then, it determines

the stationary distribution (v1, . . . , vK) for this matrix (i.e., the eigenvector
corresponding to the largest eigenvalue 1). Finally, the options are sorted
according to these probabilities: ai �RW aj iff vi > vj . The RW ranking
is directly motivated by the PageRank algorithm [7], which has been well
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studied in social choice theory [3, 6] and rank aggregation [41], and which is
widely used in many application fields [7, 32].

Top-k Selection. The learning problem considered in [12] is to find, for some
k < K, the top-k arms with respect to the above ranking procedures with high
probability. To this end, three different learning algorithms are proposed in the
finite horizon case, with the horizon given in advance. In principle, these learning
problems are very similar to the value-based racing task [38, 39], where the goal
is to select the k arms with the highest means. However, in the preference-based
case, the ranking over the arms is determined by the ranking procedure instead
of the means. Accordingly, the algorithms proposed in [12] consist of a successive
selection and rejection strategy. The sample complexity bounds of all algorithms
are of the form O(K2 logT ). Thus, they are not as tight in the number of arms as
those considered in Section 3. This is mainly due to the lack of any assumptions
on the structure of Q. Since there are no regularities, and hence no redundancies
inQ that could be exploited, a sufficiently good estimation of the entire relation is
needed to guarantee a good approximation of the target ranking in the worst case.

PAC Rank Elicitation. In a subsequent work by Busa-Fekete et al. [11], an
extended version of the top-k selection problem is considered. In the PAC rank
elicitation problem, the goal is to find a ranking that is “close” to the ranking pro-
duced by the ranking procedure with high probability. To make this problem fea-
sible, more practical ranking procedures are considered. In fact, the problem of
ranking procedures like Copeland is that a minimal change of a value qi,j ≈ 1

2
may strongly influence the induced order relation �CO. Consequently, the num-
ber of samples needed to assure (with high probability) a certain approximation
quality may become arbitrarily large. A similar problem arises for�SE as a target
order if some of the individual scores qi are very close or equal to each other.

As a practical (yet meaningful) solution to this problem, the relations �CO

and �SE are made a bit more “partial” by imposing stronger requirements on
the order. To this end, let d∗i = # {k | 1/2 + ε < qi,k, i �= k} denote the number
of options that are beaten by ai with a margin ε > 0, and let

s∗i = # {k : |1/2− qi,k| ≤ ε, i �= k} .

Then, the ε-insensitive Copeland relation is defined as follows: ai �COε aj if and
only if d∗i + s∗i > d∗j . Likewise, in the case of �SE, small differences of the qi
are neglected the ε-insensitive sum of expectations relation is defined as follows:
ai �SEε aj if and only if qi + ε > qj .

These ε-insensitive extensions are interval (and hence partial) orders, that is,
they are obtained by characterizing each option ai by the interval [d∗i , d

∗
i + s∗i ]

and sorting intervals according to [a, b] � [a′, b′] iff b > a′. It is readily shown
that �COε ⊆�COε′ ⊆�CO for ε > ε′, with equality �CO0 ≡�CO if qi,j �= 1/2 for
all i �= j ∈ [K] (and similarly for SE). The parameter ε controls the strictness of
the order relations, and thereby the difficulty of the rank elicitation task.

As mentioned above, the task in PAC rank elicitation is to approximate �R

without knowing the qi,j . Instead, relevant information can only be obtained
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through sampling pairwise comparisons from the underlying distribution. Thus,
the options can be compared in a pairwise manner, and a single sample essen-
tially informs about a pairwise preference between two options ai and aj. The
goal is to devise a sampling strategy that keeps the size of the sample (the sam-
ple complexity) as small as possible while producing an estimation � that is
“good” in a PAC sense: � is supposed to be sufficiently “close” to �R with
high probability. Actually, the algorithms in [11] even produce a total order as
a prediction, i.e., � is a ranking that can be represented by a permutation τ of
order K, where τi denotes the rank of option ai in the order.

To formalize the notion of “closeness”, appropriate distance measures are ap-
plied that compare a (predicted) permutation τ with a (target) order �. In [11],
the following two measures are used: The number of discordant pairs (NDP),
which is closely connected to Kendall’s rank correlation [31], and can be ex-
pressed as follows:

dK(τ,�) =

K∑
i=1

∑
j �=i

I{τj < τi}I{ai � aj}.

The maximum rank difference (MRD) is defined as the maximum difference be-
tween the rank of an object ai according to τ and �, respectively. More specif-
ically, since � is a partial but not necessarily total order, τ is compared to the
set L� of its linear extensions:5

dM(τ,�) = min
τ ′∈L�

max
1≤i≤K

|τi − τ ′i |.

In [11], the authors propose four different methods for the two ε-sensitive rank-
ing procedures, along with the two distance measures described above. Each
algorithm calculates a surrogate ranking based on the empirical estimate of the
preference matrix whose distance can be upper-bounded again based on some
statistics of the empirical estimates of preference. The sampling is carried out in
a greedy manner in every case, in the sense that those arms are compared which
are supposed to result in a maximum decrease of the upper bound calculated for
the surrogate ranking.

An expected sample complexity bound is calculated for the ε-sensitive Cope-
land ranking procedure along with the MRD distance in a similar way like in
[29, 30]. The bound is of the form O

(
R1 log

(
R1

δ

))
, where R1 is a task dependent

constant. More specifically, R1 depends on the Δi,j values, and on the robustness
of the ranking procedure to small changes in the preference matrix (i.e., on how
much the ranking produced by the ranking procedure might be changed in terms
of the MRD distance if the preference matrix is slightly altered). Interestingly,
an expected sample complexity can also be calculated for the ε-insensitive sum
of expectations ranking procedure along with the MRD distance with a similar
flavor like for the ε-sensitive Copeland ranking procedure. The analysis of the
NDP distance is more difficult, since small changes in the preference matrix

5 τ ∈ L� iff ∀ i, j ∈ [K] : (ai � aj) ⇒ (τi < τj).
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may strongly change the ranking in terms of the NDP distance. The sample
complexity analysis for this distance has therefore been left as an open question.

Urvoy et al. [43] consider a setup similar to the one in [11]. Again, a ranking
procedure is assumed that produces a ranking over the arms, and the goal of
the learner is to find a maximal element according to this ranking (instead of
the top-k). Note that a ranking procedure only defines a complete preorder,
which means there can be more than one “best” element. The authors propose
an algorithm called SAVAGE as a general solution to this problem, which can
be adapted to various ranking procedure. Concretely, the Copeland and the sum
of expectations (or Borda counts) procedure are used in their study. Moreover,
they also devise a method to find the Condorcet winner, assuming it exists—a
problem that is akin to the axiomatic approaches described in Subsection 3.1.

The sample complexity of the implementations in [43] are of order K2 in
general. Just like in [11], this is the price to pay for a “model-free” learning
procedure that does not make any assumptions on the structure of the preference
matrix. The analysis of the authors is more general, because they also investigate
the infinite horizon case, where a time limit is not given in advance.

5 Summary and Perspectives

This paper provides a survey of the state-of-the-art in preference-based online
learning with bandit algorithms, an emerging research field that we referred to
as preference-based multi-armed bandits (PB-MAB). In contrast to standard
MAB problems, where bandit information is understood as (stochastic) real-
valued rewards produced by the arms the learner decided to explore (or exploit),
feedback is assumed to be of a more indirect and qualitative nature in the PB-
MAB setting. In particular, the work so far has focused on preference information
in the form of comparisons between pairs of arms. We have given an overview
of instances of the PB-MAP problem that have been studied in the literature,
algorithms for tackling them and criteria for evaluating such algorithms.

Needless to say, the field is still in its beginning and far from being mature. The
contributions so far are highly interesting, and some of them have already been
used in concrete applications, such as preference-based reinforcement learning
[13]. Yet, they are still somewhat fragmentary, and a complete and coherent
theoretical framework is still to be developed. With this survey, we hope to
contribute to the popularization, development and shaping of the field.

We conclude the paper with a short (and certainly non-exhaustive) list of
open problems that we consider particularly interesting for future work:

– As we have seen, the difficulty of PB-MAB learning strongly depends on the
assumptions on properties of the preference relation Q: The more restrictive
these assumptions are, the easier the learning task becomes. An interesting
question in this regard concerns the “weakest” assumptions one could make
while still guaranteeing the existence of an algorithm that scales linearly in
the number of arms.

– A similar question can be asked for the regret. The RUCB algorithm achieves
a high probability regret bound of order K log T by merely assuming the
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existence of a Condorcet winner. Yet, this assumption is arguable and cer-
tainly not always valid.

– For most of the settings discussed in the paper, such as those based on
statistical models like Mallows, a lower bound on the sample complexity is
not known. Thus, it is difficult to say whether an algorithm is optimal or
not. There are a few exceptions, however. For dueling bandits, it is known
that, for any algorithm A, there is a bandit problem such that the regret of
A is Ω(K logT ). Obviously, this is also a lower bound for all settings starting
from weaker assumptions than dueling bandits, including RUCB.

– Another important problem concerns the development of (statistical) tests
for verifying the assumptions made by the different approaches in a real
application. In the case of the statistical approach based on the Mallows
distribution, for example, the problem would be to decide, based on data in
the form of pairwise comparisons, whether the underlying distribution could
indeed be Mallows. Similarly, one could ask for methods to test the validity
of strong stochastic transitivity and stochastic triangle inequality as required
by methods such as IF and BTM.

– Last but not least, it would be important to test the algorithms in real
applications—crowd-sourcing platforms appear to provide an interesting test-
bed in this regard.

Acknowledgments. The authors are grateful for financial support by the Ger-
man Research Foundation (DFG).
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Abstract. We investigate how different learning restrictions reduce
learning power and how the different restrictions relate to one another.
We give a complete map for nine different restrictions both for the cases
of complete information learning and set-driven learning. This completes
the picture for these well-studied delayable learning restrictions. A fur-
ther insight is gained by different characterizations of conservative learn-
ing in terms of variants of cautious learning.

Our analyses greatly benefit from general theorems we give, for ex-
ample showing that learners with exclusively delayable restrictions can
always be assumed total.

1 Introduction

This paper is set in the framework of inductive inference, a branch of (algo-
rithmic) learning theory. This branch analyzes the problem of algorithmically
learning a description for a formal language (a computably enumerable subset
of the set of natural numbers) when presented successively all and only the ele-
ments of that language. For example, a learner h might be presented more and
more even numbers. After each new number, h outputs a description for a lan-
guage as its conjecture. The learner h might decide to output a program for the
set of all multiples of 4, as long as all numbers presented are divisible by 4. Later,
when h sees an even number not divisible by 4, it might change this guess to a
program for the set of all multiples of 2.

Many criteria for deciding whether a learner h is successful on a language L
have been proposed in the literature. Gold, in his seminal paper [Gol67], gave a
first, simple learning criterion, TxtGEx-learning1, where a learner is successful
iff, on every text for L (listing of all and only the elements of L) it eventually
stops changing its conjectures, and its final conjecture is a correct description
for the input sequence. Trivially, each single, describable language L has a suit-
able constant function as a TxtGEx-learner (this learner constantly outputs a
description for L). Thus, we are interested in analyzing for which classes of lan-
guages L there is a single learner h learning each member of L. This framework
� We would like to thank the reviewers for their very helpful comments.
1 Txt stands for learning from a text of positive examples; G stands for Gold, who

introduced this model, and is used to to indicate full-information learning; Ex stands
for explanatory.

P. Auer et al. (Eds.): ALT 2014, LNAI 8776, pp. 40–54, 2014.
c© Springer International Publishing Switzerland 2014



A Map of Update Constraints in Inductive Inference 41

is also sometimes known as language learning in the limit and has been studied
extensively, using a wide range of learning criteria similar to TxtGEx-learning
(see, for example, the textbook [JORS99]).

A wealth of learning criteria can be derived from TxtGEx-learning by adding
restrictions on the intermediate conjectures and how they should relate to each
other and the data. For example, one could require that a conjecture which
is consistent with the data must not be changed; this is known as conservative
learning and known to restrict what classes of languages can be learned ([Ang80],
we use Conv to denote the restriction of conservative learning). Additionally to
conservative learning, the following learning restrictions are considered in this
paper (see Section 2.1 for a formal definition of learning criteria including these
learning restrictions).

In cautious learning (Caut, [OSW82]) the learner is not allowed to ever give
a conjecture for a strict subset of a previously conjectured set. In non-U-shaped
learning (NU, [BCM+08]) a learner may never semantically abandon a correct
conjecture; in strongly non-U-shaped learning (SNU, [CM11]) not even syntactic
changes are allowed after giving a correct conjecture.

In decisive learning (Dec, [OSW82]), a learner may never (semantically)
return to a semantically abandoned conjecture; in strongly decisive learning
(SDec, [Köt14]) the learner may not even (semantically) return to syntacti-
cally abandoned conjectures. Finally, a number of monotonicity requirements
are studied ([Jan91, Wie91, LZ93]): in strongly monotone learning (SMon) the
conjectured sets may only grow; in monotone learning (Mon) only incorrect data
may be removed; and in weakly monotone learning (WMon) the conjectured
set may only grow while it is consistent.

The main question is now whether and how these different restrictions reduce
learning power. For example, non-U-shaped learning is known not to restrict
the learning power [BCM+08], and the same for strongly non-U-shaped learn-
ing [CM11]; on the other hand, decisive learning is restrictive [BCM+08]. The
relations of the different monotone learning restriction were given in [LZ93]. Con-
servativeness is long known to restrict learning power [Ang80], but also known
to be equivalent to weakly monotone learning [KS95, JS98].

Cautious learning was shown to be a restriction but not when added to con-
servativeness in [OSW82, OSW86], similarly the relationship between decisive
and conservative learning was given. In Exercise 4.5.4B of [OSW86] it is claimed
(without proof) that cautious learners cannot be made conservative; we claim
the opposite in Theorem 13.

This list of previously known results leaves a number of relations between
the learning criteria open, even when adding trivial inclusion results (we call
an inclusion trivial iff it follows straight from the definition of the restriction
without considering the learning model, for example strongly decisive learning
is included in decisive learning; formally, trivial inclusion is inclusion on the
level of learning restrictions as predicates, see Section 2.1). With this paper we
now give the complete picture of these learning restrictions. The result is shown
as a map in Figure 1. A solid black line indicates a trivial inclusion (the lower
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Fig. 1. Relation of criteria

criterion is included in the higher); a dashed black line indicates inclusion (which
is not trivial). A gray box around criteria indicates equality of (learning of) these
criteria.

A different way of depicting the same results is given in Figure 2 (where solid
lines indicate any kind of inclusion). Results involving monotone learning can be
found in Section 6, all others in Section 4.

For the important restriction of conservative learning we give the characteri-
zation of being equivalent to cautious learning. Furthermore, we show that even
two weak versions of cautiousness are equivalent to conservative learning. Recall
that cautiousness forbids to return to a strict subset of a previously conjectured
set. If we now weaken this restriction to forbid to return to finite subsets of a
previously conjectured set we get a restriction still equivalent to conservative
learning. If we forbid to go down to a correct conjecture, effectively forbidding
to ever conjecture a superset of the target language, we also obtain a restriction
equivalent to conservative learning. On the other hand, if we weaken it so as to
only forbid going to infinite subsets of previously conjectured sets, we obtain a
restriction equivalent to no restriction. These results can be found in Section 4.

In set-driven learning [WC80] the learner does not get the full information
about what data has been presented in what order and multiplicity; instead, the
learner only gets the set of data presented so far. For this learning model it is
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Fig. 2. Partial order of delayable learning restrictions in Gold-style learning

known that, surprisingly, conservative learning is no restriction [KS95]! We com-
plete the picture for set driven learning by showing that set-driven learners can
always be assumed conservative, strongly decisive and cautious, and by showing
that the hierarchy of monotone and strongly monotone learning also holds for
set-driven learning. The situation is depicted in Figure 3. These results can be
found in Section 5.

1.1 Techniques

A major emphasis of this paper is on the techniques used to get our results.
These techniques include specific techniques for specific problems, as well as
general theorems which are applicable in many different settings. The general

Sd

T NU SNU Conv
Caut WMon Dec SDec

Mon

SMon

Fig. 3. Hierarchy of delayable learning restrictions in set-driven learning
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techniques are given in Section 3, one main general result is as follows. It is
well-known that any TxtGEx-learner h learning a language L has a locking
sequence, a sequence σ of data from L such that, for any further data from L,
the conjecture does not change and is correct. However, there might be texts such
that no initial sequence of the text is a locking sequence. We call a learner such
that any text for a target language contains a locking sequence strongly locking,
a property which is very handy to have in many proofs. Fulk [Ful90] showed that,
without loss of generality, a TxtGEx-learner can be assumed strongly locking,
as well as having many other useful properties (we call this the Fulk normal
form, see Definition 8). For many learning criteria considered in this paper it
might be too much to hope for that all of them allow for learning by a learner in
Fulk normal form. However, we show in Corollary 7 that we can always assume
our learners to be strongly locking, total, and what we call syntactically decisive,
never syntactically returning to syntactically abandoned hypotheses.

The main technique we use to show that something is decisively learnable, for
example in Theorem 22, is what we call poisoning of conjectures. In the proof
of Theorem 22 we show that a class of languages is decisively learnable by sim-
ulating a given monotone learner h, but changing conjectures as follows. Given
a conjecture e made by h, if there is no mind change in the future with data
from conjecture e, the new conjecture is equivalent to e; otherwise it is suit-
ably changed, poisoned, to make sure that the resulting learner is decisive. This
technique was also used in [CK10] to show strongly non-U-shaped learnability.

Finally, for showing classes of languages to be not (strongly) decisively learn-
able, we adapt a technique known in computability theory as a “priority argu-
ment” (note, though, that we do not deal with oracle computations). We use
this technique to reprove that decisiveness is a restriction to TxtGEx-learning
(as shown in [BCM+08]), and then use a variation of the proof to show that
strongly decisive learning is a restriction to decisive learning.

Due to space constraints, we cannot give all proofs in this version of the
paper. The full version of the paper can be found at http://arxiv.org/abs/
1404.7527.

2 Mathematical Preliminaries

Unintroduced notation follows [Rog67], a textbook on computability theory.
N denotes the set of natural numbers, {0, 1, 2, . . .}. The symbols ⊆, ⊂, ⊇,

⊃ respectively denote the subset, proper subset, superset and proper superset
relation between sets; \ denotes set difference. ∅ and λ denote the empty set and
the empty sequence, respectively. The quantifier ∀∞x means “for all but finitely
many x”. With dom and range we denote, respectively, domain and range of a
given function.

Whenever we consider tuples of natural numbers as input to a function, it is
understood that the general coding function 〈·, ·〉 is used to code the tuples into
a single natural number. We similarly fix a coding for finite sets and sequences,
so that we can use those as input as well. For finite sequences, we suppose that

http://arxiv.org/abs/1404.7527
http://arxiv.org/abs/1404.7527
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for any σ ⊆ τ we have that the code number of σ is at most the code number of
τ . We let Seq denote the set of all (finite) sequences, and Seq≤t the (finite) set
of all sequences of length at most t using only elements ≤ t.

If a function f is not defined for some argument x, then we denote this fact
by f(x)↑, and we say that f on x diverges; the opposite is denoted by f(x)↓,
and we say that f on x converges. If f on x converges to p, then we denote this
fact by f(x)↓ = p. We let P denote the set of all partial functions N → N and
R the set of all total such functions.

P and R denote, respectively, the set of all partial computable and the set of
all total computable functions (mapping N → N).

We let ϕ be any fixed acceptable programming system for P (an acceptable
programming system could, for example, be based on a natural programming
language such as C or Java, or on Turing machines). Further, we let ϕp denote
the partial computable function computed by the ϕ-program with code number
p. A set L ⊆ N is computably enumerable (ce) iff it is the domain of a computable
function. Let E denote the set of all ce sets. We let W be the mapping such that
∀e : W (e) = dom(ϕe). For each e, we write We instead of W (e). W is, then, a
mapping from N onto E . We say that e is an index, or program, (in W ) for We.

We let Φ be a Blum complexity measure associated with ϕ (for example, for
each e and x, Φe(x) could denote the number of steps that program e takes on
input x before terminating). For all e and t we let W t

e = {x ≤ t | Φe(x) ≤ t} (note
that a complete description for the finite set W t

e is computable from e and t). The
symbol # is pronounced pause and is used to symbolize “no new input data” in a
text. For each (possibly infinite) sequence q with its range contained in N∪{#},
let content(q) = (range(q) \ {#}). By using an appropriate coding, we assume
that ? and # can be handled by computable functions. For any function T and
all i, we use T [i] to denote the sequence T (0), . . . , T (i− 1) (the empty sequence
if i = 0 and undefined, if any of these values is undefined).

2.1 Learning Criteria

In this section we formally introduce our setting of learning in the limit and
associated learning criteria. We follow [Köt09] in its “building-blocks” approach
for defining learning criteria.

A learner is a partial computable function h ∈ P . A language is a ce set
L ⊆ N. Any total function T : N → N ∪ {#} is called a text. For any given
language L, a text for L is a text T such that content(T ) = L. Initial parts of
this kind of text is what learners usually get as information.

An interaction operator is an operator β taking as arguments a function h
(the learner) and a text T , and that outputs a function p. We call p the learning
sequence (or sequence of hypotheses) of h given T . Intuitively, β defines how a
learner can interact with a given text to produce a sequence of conjectures.

We define the interaction operators G, Psd (partially set-driven learning,
[SR84]) and Sd (set-driven learning, [WC80]) as follows. For all learners h, texts
T and all i,
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G(h, T )(i) = h(T [i]);

Psd(h, T )(i) = h(content(T [i]), i);

Sd(h, T )(i) = h(content(T [i])).

Thus, in set-driven learning, the learner has access to the set of all previous data,
but not to the sequence as in G-learning. In partially set-driven learning, the
learner has the set of data and the current iteration number.

Successful learning requires the learner to observe certain restrictions, for
example convergence to a correct index. These restrictions are formalized in our
next definition.

A learning restriction is a predicate δ on a learning sequence and a text. We
give the important example of explanatory learning (Ex, [Gol67]) defined such
that, for all sequences of hypotheses p and all texts T ,

Ex(p, T )⇔ p total ∧ [∃n0∀n ≥ n0 : p(n) = p(n0) ∧Wp(n0) = content(T )].

Furthermore, we formally define the restrictions discussed in Section 1 in Figure 4
(where we implicitly require the learning sequence p to be total, as in Ex-learning;
note that this is a technicality without major importance).

Conv(p, T ) ⇔ [∀i : content(T [i+ 1]) ⊆ Wp(i) ⇒ p(i) = p(i+ 1)];

Caut(p, T ) ⇔ [∀i, j : Wp(i) ⊂ Wp(j) ⇒ i < j];

NU(p, T ) ⇔ [∀i, j, k : i ≤ j ≤ k ∧ Wp(i) = Wp(k) = content(T ) ⇒ Wp(j) = Wp(i)];

Dec(p, T ) ⇔ [∀i, j, k : i ≤ j ≤ k ∧ Wp(i) = Wp(k) ⇒ Wp(j) = Wp(i)];

SNU(p, T ) ⇔ [∀i, j, k : i ≤ j ≤ k ∧ Wp(i) = Wp(k) = content(T ) ⇒ p(j) = p(i)];

SDec(p, T ) ⇔ [∀i, j, k : i ≤ j ≤ k ∧ Wp(i) = Wp(k) ⇒ p(j) = p(i)];

SMon(p, T ) ⇔ [∀i, j : i < j ⇒ Wp(i) ⊆ Wp(j)];

Mon(p, T ) ⇔ [∀i, j : i < j ⇒ Wp(i) ∩ content(T ) ⊆ Wp(j) ∩ content(T )];

WMon(p, T ) ⇔ [∀i, j : i < j ∧ content(T [j]) ⊆ Wp(i) ⇒ Wp(i) ⊆ Wp(j)].

Fig. 4. Definitions of learning restrictions

A variant on decisiveness is syntactic decisiveness, SynDec, a technically
useful property defined as follows.

SynDec(p, T ) ⇔ [∀i, j, k : i ≤ j ≤ k ∧ p(i) = p(k) ⇒ p(j) = p(i)].

We combine any two sequence acceptance criteria δ and δ′ by intersecting them;
we denote this by juxtaposition (for example, all the restrictions given in Figure 4
are meant to be always used together with Ex). With T we denote the always
true sequence acceptance criterion (no restriction on learning).

A learning criterion is a tuple (C, β, δ), where C is a set of learners (the
admissible learners), β is an interaction operator and δ is a learning restriction;
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we usually write CTxtβδ to denote the learning criterion, omitting C in case of
C = P . We say that a learner h ∈ C CTxtβδ-learns a language L iff, for all texts
T for L, δ(β(h, T ), T ). The set of languages CTxtβδ-learned by h ∈ C is denoted
by CTxtβδ(h). We write [CTxtβδ] to denote the set of all CTxtβδ-learnable
classes (learnable by some learner in C).

3 Delayable Learning Restrictions

In this section we present technically useful results which show that learners can
always be assumed to be in some normal form. We will later always assume our
learners to be in the normal form established by Corollary 7, the main result
of this section. We start with the definition of delayable. Intuitively, a learning
criterion δ is delayable iff the output of a hypothesis can be arbitrarily (but not
indefinitely) delayed.

Definition 1. Let �R be the set of all non-decreasing r : N → N with infinite
limit inferior, i.e. for all m we have ∀∞n : r(n) ≥ m.

A learning restriction δ is delayable iff, for all texts T and T ′ with content(T ) =

content(T ′), all p and all r ∈ �R, if (p, T ) ∈ δ and ∀n : content(T [r(n)]) ⊆
content(T ′[n]), then (p ◦ r, T ′) ∈ δ. Intuitively, as long as the learner has at
least as much data as was used for a given conjecture, then the conjecture is
permissible. Note that this condition holds for T = T ′ if ∀n : r(n) ≤ n.

Note that the intersection of two delayable learning criteria is again delayable
and that all learning restrictions considered in this paper are delayable.

As the name suggests, we can apply delaying tricks (tricks which delay updates
of the conjecture) in order to achieve fast computation times in each iteration
(but of course in the limit we still spend an infinite amount of time). This gives
us equally powerful but total learners, as shown in the next theorem. While
it is well-known that, for many learning criteria, the learner can be assumed
total, this theorem explicitly formalizes conditions under which totality can be
assumed (note that there are also natural learning criteria where totality cannot
be assumed, such as consistent learning [JORS99]).

Theorem 2. For any delayable learning restriction δ, we have [TxtGδ] =
[RTxtGδ].

Next we define another useful property, which can always be assumed for
delayable learning restrictions.

Definition 3. A locking sequence for a learner h on a language L is any finite
sequence σ of elements from L such that h(σ) is a correct hypothesis for L and,
for sequences τ with elements from L, h(σ#τ) = h(σ)[BB75]. It is well known that
every learner h learning a language L has a locking sequence on L. We say that
a learning criterion I allows for strongly locking learning iff, for each I-learnable
class of languages L there is a learner h such that h I-learnsL and, for each L ∈ L
and any text T for L, there is an n such that T [n] is a locking sequence of h on L
(we call such a learner h strongly locking).



48 T. Kötzing and R. Palenta

With this definition we can give the following theorem.

Theorem 4. Let δ be a delayable learning criterion. Then RTxtGδEx allows
for strongly locking learning.

Next we define semantic and pseudo-semantic restrictions introduced
in [Köt14]. Intuitively, semantic restrictions allow for replacing hypotheses by
equivalent ones; pseudo-sematic restrictions allow the same, as long as no new
mind changes are introduced.

Definition 5. For all total functions p ∈ P, we let

Sem(p) = {p′ ∈ P | ∀i : Wp(i) = Wp′(i)};
Mc(p) = {p′ ∈ P | ∀i : p′(i) �= p′(i+ 1) ⇒ p(i) �= p(i+ 1)}.

A sequence acceptance criterion δ is said to be a semantic restriction iff, for
all (p, q) ∈ δ and p′ ∈ Sem(p), (p′, q) ∈ δ.

A sequence acceptance criterion δ is said to be a pseudo-semantic restriction
iff, for all (p, q) ∈ δ and p′ ∈ Sem(p) ∩Mc(p), (p′, q) ∈ δ.

We note that the intersection of two (pseudo-) semantic learning restrictions
is again (pseudo-) semantic. All learning restrictions considered in this paper are
pseudo-semantic, and all except Conv, SNU, SDec and Ex are semantic.

The next lemma shows that, for every pseudo-semantic learning restriction,
learning can be done syntactically decisively.

Lemma 6. Let δ be a pseudo-semantic learning criterion. Then we have

[RTxtGδ] = [RTxtGSynDecδ].

As SynDec is a delayable learning criterion, we get the following corollary
by taking Theorems 2 and 4 and Lemma 6 together. We will always assume our
learners to be in this normal form in this paper.

Corollary 7. Let δ be pseudo-semantic and delayable. Then TxtGδEx allows
for strongly locking learning by a syntactically decisive total learner.

Fulk showed that any TxtGEx-learner can be (effectively) turned into an
equivalent learner with many useful properties, including strongly locking learn-
ing [Ful90]. One of the properties is called order-independence, meaning that on
any two texts for a target language the learner converges to the same hypothe-
sis. Another property is called rearrangement-independence, where a learner h is
rearrangement-independent if there is a function f such that, for all sequences
σ, h(σ) = f(content(σ), |σ|) (intuitively, rearrangement independence is equiva-
lent to the existence of a partially set-driven learner for the same language). We
define the collection of all the properties which Fulk showed a learner can have
to be the Fulk normal form as follows.
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Definition 8. We say a TxtGEx-learner h is in Fulk normal form if (1)− (5)
hold.

(1) h is order-independent.
(2) h is rearrangement-independent.
(3) If h TxtGEx-learns a language L from some text, then h TxtGEx-learns L.
(4) If there is a locking sequence of h for some L, then h TxtGEx-learns L.
(5) For all L ∈ TxtGEx(h), h is strongly locking on L.

The following theorem is somewhat weaker than what Fulk states himself.

Theorem 9 ([Ful90, Theorem 13]). Every TxtGEx-learnable set of lan-
guages has a TxtGEx-learner in Fulk normal form.

4 Full-Information Learning

In this section we consider various versions of cautious learning and show that all
of our variants are either no restriction to learning, or equivalent to conservative
learning as is shown in Figure 5.

Additionally, we will show that every cautious TxtGEx-learnable lan-
guage is conservative TxtGEx-learnable which implies that [TxtGConvEx],
[TxtGWMonEx] and [TxtGCautEx] are equivalent. Last, we will separate
these three learning criteria from strongly decisive TxtGEx-learning and show
that [TxtGSDecEx] is a proper superset.

Theorem 10. We have that any conservative learner can be assumed cautious
and strongly decisive, i.e.

[TxtGConvEx] = [TxtGConvSDecCautEx].

Proof. Let h ∈ R and L be such that h TxtGConvEx-learns L. We define, for
all σ, a set M(σ) as follows

M(σ) = {τ | τ ⊆ σ ∧ ∀x ∈ content(τ) : Φh(τ)(x) ≤ |σ|}.

We let
∀σ : h′(σ) = h(max(M(σ))).

Let T be a text for a language L ∈ L. We first show that h′ TxtGEx-learns
L from the text T . As h TxtGConvEx-learns L, there are n and e such that
∀n′ ≥ n : h(T [n]) = h(T [n′]) = e and We = L. Thus, there is m ≥ n such
that ∀x ∈ content(T [n]) : Φh(T [n])(x) ≤ m and therefore ∀m′ ≥ m : h′(T [m]) =
h′(T [m′]) = e.

Next we show that h′ is strongly decisive and conservative; for that we show
that, with every mind change, there is a new element of the target included
in the conjecture which is currently not included but is included in all future
conjectures; it is easy to see that this property implies both caution and strong
decisiveness. Let i and i′ be such that max(M(T [i′])) = T [i]. This implies that

content(T [i]) ⊆Wh′(T [i′]).
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Let j′ > i′ such that h′(T [i′]) �= h′(T [j′]). Then there is j > i such that
max(M(T [j′])) = T [j] and therefore

content(T [j]) ⊆ Wh′(T [j′]).

Note that in the following diagram j could also be between i and i′.

h′(T [i′]) = h(T [i]) h′(T [j′]) = h(T [j])
content(T [i]) ⊆Wh(T [i]) content(T [j]) ⊆ Wh(T [j])

i

mind change h

i′

mind change h′

j

mind change h

j′

mind change h′

no mind change h′

As h is conservative and content(T [i]) ⊆ Wh(T [i]), there exists � such that i <
� < j and T (�) /∈ Wh(T [i]). Then we have ∀n ≥ j′ : T (�) ∈ Wh′(T [n]) as T (�) ∈
Wh′(T [j′]).

Obviously h′ is conservative as it only outputs (delayed) hypotheses of h (and
maybe skip some) and h is conservative.

In the following we consider three new learning restrictions. The learning
restriction CautFin means that the learner never returns a hypothesis for a
finite set that is a proper subset of a previous hypothesis. Caut∞ is the same
restriction for infinite hypotheses. With CautTar the learner is not allowed to
ever output a hypothesis that is a proper superset of the target language that is
learned.

Definition 11.

CautFin(p, T )⇔ [∀i < j : Wp(j) ⊂ Wp(i) ⇒ Wp(j) is infinite]
Caut∞(p, T )⇔ [∀i < j : Wp(j) ⊂ Wp(i) ⇒ Wp(j) is finite]

CautTar(p, T )⇔ [∀i : ¬(content(T ) ⊂Wp(i))]

The proof of the following theorem is essentially the same as given in [OSW86]
to show that cautious learning is a proper restriction of TxtGEx-learning,
we now extend it to strongly decisive learning. Note that a different extension
was given in [BCM+08] (with an elegant proof exploiting the undecidability of
the halting problem), pertaining to behaviorally correct learning. The proof in
[BCM+08] as well as our proof would also carry over to the combination of these
two extensions.

Theorem 12. There is a class of languages that is TxtGSDecMonEx-
learnable, but not TxtGCautEx-learnable.

The following theorem contradicts a theorem given as an exercise in [OSW86]
(Exercise 4.5.4B).
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T

Caut

Caut∞

CautTar CautFin

Fig. 5. Relation of different variants of cautious learning. A black line indicates in-
clusion (bottom to top); all and only the black lines meeting the gray line are proper
inclusions.

Theorem 13. For δ ∈ {Caut,CautTar,CautFin} we have

[TxtGδEx] = [TxtGConvEx].

From the definitions of the learning criteria we have [TxtGConvEx] ⊆
[TxtGWMonEx]. Using Theorem 13 and the equivalence of weakly monotone
and conservative learning (using G) [KS95, JS98], we get the following.

Corollary 14. We have

[TxtGConvEx] = [TxtGWMonEx] = [TxtGCautEx].

Using Corollary 14 and Theorem 10 we get that weakly monotone TxtGEx-
learning is included in strongly decisive TxtGEx-learning. Theorem 12 shows
that this inclusion is proper.

Corollary 15. We have

[TxtGWMonEx] ⊂ [TxtGSDecEx].

The next theorem is the last theorem of this section and shows that forbid-
ding to go down to strict infinite subsets of previously conjectures sets is no
restriction.

Theorem 16. We have

[TxtGCaut∞Ex] = [TxtGEx].

Proof. Obviously we have [TxtGCaut∞Ex] ⊆ [TxtGEx]. Thus, we have to
show that [TxtGEx] ⊆ [TxtGCaut∞Ex]. Let L be a set of languages and h
be a learner such that h TxtGEx-learns L and h is strongly locking on L (see
Corollary 7). We define, for all σ and t, the set M t

σ such that

M t
σ = {τ | τ ∈ Seq(W t

h(σ) ∪ content(σ)) ∧ |τ # σ| ≤ t}.
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Using the S-m-n Theorem we get a function p ∈ R such that

∀σ : Wp(σ) = content(σ)
⋃
t∈N

{
W t

h(σ), if ∀ρ ∈ M t
σ : h(σ # ρ) = h(σ);

∅, otherwise.

We define a learner h′ as

∀σ : h′(σ) =

{
p(σ), if h(σ) �= h(σ−);

h′(σ−), otherwise.

We will show now that the learner h′ TxtGCaut∞Ex-learns L. Let an L ∈ L
and a text T for L be given. As h is strongly locking there is n0 such that for
all τ ∈ Seq(L), h(T [n0] # τ) = h(T [n0]) and Wh(T [n0]) = L. Thus we have, for
all n ≥ n0, h′(T [n]) = h′(T [n0]) and Wh′(T [n0]) = Wp(T [n0]) = Wh(T [n0]) = L. To
show that the learning restriction Caut∞ holds, we assume that there are i < j
such that Wh′(T [j]) ⊂ Wh′(T [i]) and Wh′(T [j]) is infinite. W.l.o.g. j is the first
time that h′ returns the hypothesis Wh′(T [j]). Let τ be such that T [i] # τ = T [j].
From the definition of the function p we get that content(T [j]) ⊆ Wh′(T [j]) ⊆
Wh′(T [i]). Thus, content(τ) ⊆ Wh′(T [i]) = Wp(T [i]) and therefore Wp(T [i]) is finite,
a contradiction to the assumption that Wh′(T [j]) is infinite.

The following theorem can be shown with a priority argument. The detailed
proof is about eight pages long, following some ideas given in [BCM+08] for
proving the second inequality, but adapted to the priority argument.

Theorem 17. We have

[TxtGSDecEx] ⊂ [TxtGDecEx] ⊂ [TxtGEx].

5 Set-Driven Learning

In this section we give theorems regarding set-driven learning. For this we build
on the result that set-driven learning can always be done conservatively [KS95].

First we show that any conservative set-driven learner can be assumed to be
cautious and syntactically decisive, an important technical lemma.

Lemma 18. We have

[TxtSdEx] = [TxtSdConvSynDecEx].

In other words, every set-driven learner can be assumed syntactically decisive.

The following Theorem is the main result of this section, showing that set-driven
learning can be done not just conservatively, but also strongly decisively and
cautiously at the same time.

Theorem 19. We have

[TxtSdEx] = [TxtSdConvSDecCautEx].
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6 Monotone Learning

In this section we show the hierarchies regarding monotone and strongly mono-
tone learning, simultaneously for the settings of G and Sd in Theorems 20
and 21. With Theorems 22 and 23 we establish that monotone learnabilty im-
plies strongly decisive learnability.

Theorem 20. There is a language L that is TxtSdMonWMonEx-learnable
but not TxtGSMonEx-learnable, i.e.

[TxtSdMonWMonEx]\[TxtGSMonEx] �= ∅.

Theorem 21. There is L such that L is TxtSdWMonEx-learnable but not
TxtGMonEx-learnable.

The following theorem is an extension of a theorem from [BCM+08], where
the theorem has been shown for decisive learning instead of strongly decisive
learning.

Theorem 22. Let N ∈ L and L be TxtGEx-learnable. Then, we have L is
TxtGSDecEx-learnable.

Theorem 23. We have that any monotone TxtGEx-learnable class of lan-
guages is strongly decisive learnable, while the converse does not hold, i.e.

[TxtGMonEx] ⊂ [TxtGSDecEx].

Proof. Let h ∈ R be a learner and L = TxtGMonEx(h). We distinguish the
following two cases. We call L dense iff it contains a superset of every finite set.

Case 1: L is dense. We will show now that h TxtGSMonEx-learns the
class L. Let L ∈ L and T be a text for L. Suppose there are i and j with
i < j such that Wh(T [i]) � Wh(T [j]). Thus, we have Wh(T [i])\Wh(T [j]) �= ∅. Let
x ∈ Wh(T [i])\Wh(T [j]). As L is dense there is a language L′ ∈ L such that
content(T [j])∪{x} ∈ L′. Let T ′ be a text for L′ and T ′′ be such that T ′′ = T [j]#
T ′. Obviously, T ′′ is a text for L′. We have that x ∈ Wh(T ′′[i]) but x /∈ Wh(T ′′[j])
which is a contradiction as h is monotone. Thus, h TxtGSMonEx-learns L,
which implies that h TxtGWMonEx-learns L. Using Corollary 15 we get that
L is TxtGSDecEx-learnable.

Case 2: L is not dense. Thus, L′ = L ∪ N is TxtGEx-learnable. Using The-
orem 22 L′ is TxtGSDecEx-learnable and therefore so is L.

Note that [TxtGSDecEx] ⊆ [TxtGMonEx] does not hold as in Case 1
with Corollary 15 a proper subset relation is used.
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Abstract. The present work investigates the relationship of iterative
learning with other learning criteria such as decisiveness, caution, reli-
ability, non-U-shapedness, monotonicity, strong monotonicity and con-
servativeness. Building on the result of Case and Moelius that iterative
learners can be made non-U-shaped, we show that they also can be made
cautious and decisive. Furthermore, we obtain various special results with
respect to one-one texts, fat texts and one-one hypothesis spaces.

1 Introduction

Iterative learning is the most common variant of learning in the limit which ad-
dresses memory constraints: the memory of the learner on past data is just its
current hypothesis. Due to the padding lemma, this memory is still not void, but
finitely many data can be memorised in the hypothesis. However, one subfield of
the study of iterative learning considers therefore the usage of class-preserving
one-one hypothesis spaces which limit this type of coding during the learning
process. Other ways to limit it is to control the amount and types of updates;
such constraints also aim for other natural properties of the conjectures: For
example, updates have to be motivated by inconsistent data observed (syntactic
conservativeness), semantic updates have to be motivated by inconsistent data
observed (semantic conservativeness), updates cannot repeat semantically aban-
doned conjectures (decisiveness), updates cannot go from correct to incorrect
hypotheses (non-U-shapedness), conjectures cannot be proper supersets of the
language to be learnt (cautiousness) or conjectures have to contain all the data
observed so far (consistency). There is already a quite comprehensive body of
work on how iterativeness relates with various combinations of these constraints
[CK10, GL04, JMZ13, JORS99, Köt09, LG02, LG03, LZ96, LZZ08], however var-
ious important questions remained unsolved. A few years ago, Case and Moelius
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[CM08b] obtained a breakthrough result by showing that iterative learners can
be made non-U-shaped. The present work improves this result by showing that
they can also be made decisive — this stands in contrast to the case of the
usual non-iterative framework where decisiveness is a real restriction in learn-
ing [BCMSW08]. Further results complete the picture and also include the role
of hypothesis spaces and text-types in iterative learning.

We completely characterise the relationship of the iterative learning criteria
with the different restrictions as given in the diagramme in Figure 1. A line
indicates a previously known inclusion. A gray box around criteria indicates
equality of these criteria, as found in this work.

It

Ex

NUSh

Dec

SMon

Mon

WMon

Caut

SDec

SNUSh

Consv

Fig. 1. Relation of criteria combined with iterative learning

The learning criteria investigated in the present work are quite natural. Con-
servativeness, consistency, cautiousness and decisiveness are natural constraints
studied for a long time [Ang80, OSW86]; these criteria require that conjectures
contain the data observed (consistency) or that mind changes are based on evi-
dence that the prior hypothesis is incorrect (conservativeness); a lot of work has
been undertaken using the assumption that learners are both, consistent and
conservative. Monotonicity constraints play an important role in various fields
like monotonic versus non-monotonic logic and this is reflected in inductive in-
ference by considering the additional requirement that new hypotheses should be
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at least as general as the previous ones [Jan91, LZ93]. The fundamental notion of
iterative learning is one of the first memory-constraints to be investigated in in-
ductive inference and has been widely studied [LG02, LG03, LZ96, OSW86]; the
beauty of this criterion is that the memory limitation comes rather indirectly, as
for finitely many steps the memory can be enhanced by padding; after that, how-
ever, the learner has to converge and to ignore new data unless it gives enough
evidence to undertake a mind change. Osherson, Stob and Weinstein [OSW82]
formalised decisiveness as a notion where a learner never semantically returns to
an abandoned hypothesis; they left it as an open problem whether the notion of
decisiveness is restrictive; it took about two decades until the problem was solved
[BCMSW08]. The search for this solution and also the parallels to developmental
psychology motivated to study the related notion of non-U-shapedness where a
non-U-shaped learner never abandons a correct hypothesis for an incorrect one
and later (in a U-shaped way) returns to a correct hypothesis. The study of this
field turned out to be quite fruitful and productive and we also consider decisive
and non-U-shaped learning and its variants in this paper.

Taking this into account, we believe that the criteria investigated are natu-
ral and deserve to be studied; the restrictions on texts which we investigated
are motivated from the fact that in the case of memory limitations (like en-
forced by iterativeness), the learners cannot keep track of which information has
been presented before and therefore certain properties of the text (like every
datum appearing exactly once or every datum appearing infinitely often) can
be exploited by the learner during the learning process. In some cases these
exploitations only matter when the restrictions on the hypothesis space make
the iterativeness-constraint stricter, as they might rule out padding. Such a re-
striction is quite natural, as padding is a way to permit finite calculations to go
into the update process and thereby bypass the basic idea behind the notion of
iterativeness; this is reflected in the finding that the relations between the learn-
ing criteria differ for iterative learning in general and iterative learning using a
class-preserving one-one hypothesis space.

Due to space restrictions some proofs are omitted. The full paper is available
as Technical Report TRA7/14, School of Computing, National University of
Singapore.

2 Mathematical Preliminaries

Unintroduced notation follows the textbook of Rogers [Rog67] on recursion the-
ory. The set of natural numbers is denoted by N = {0, 1, 2, . . .}. The symbols
⊆, ⊂, ⊇, ⊃ respectively denote the subset, proper subset, superset and proper
superset relation between sets. The symbol ∅ denotes both the empty set and
the empty sequence.

With dom and range we denote, respectively, domain and range of a given
function. We sometimes denote a partial function f of n>0 arguments x1, . . . , xn
in lambda notation (as in Lisp) as λx1, . . . , xn f(x1, . . . , xn). For example, with
c ∈ N, λx c is the constantly c function of one argument.
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We let 〈x, y〉 = (x+y)(x+y+1)
2 + x be Cantor’s Pairing function which is an

invertible, order-preserving function from N × N → N. Whenever we consider
tuples of natural numbers as input to a function, it is understood that the general
coding function 〈·, ·〉 is used to code the tuples into a single natural number. We
similarly fix a coding for finite sets and sequences, so that we can use those as
input as well.

If a function f is not defined for some argument x, then we denote this fact
by f(x)↑ and we say that f on x diverges; the opposite is denoted by f(x)↓ and
we say that f on x converges. If f on x converges to p, then we denote this fact
by f(x)↓ = p.

P and R denote, respectively, the set of all partial recursive and the set of
all recursive functions (mapping N → N). We let ϕ be any fixed acceptable
numbering for P (an acceptable numbering could, for example, be based on a
natural programming language such as C or Java). Further, we let ϕp denote the
partial-recursive function computed by the ϕ-program with code number p. A set
L ⊆ N is recursively enumerable (r.e.) iff it is the domain of a partial recursive
function. We let E denote the set of all r.e. sets. We let W be the mapping such
that ∀e : We = dom(ϕe). W is, then, a mapping from N onto E . We say that e is
an index, or program, (in W ) for We. Let We,s denote We enumerated in s steps
in some uniform way to enumerate all the We’s. We let pad be a 1–1 padding
function such that for all e and finite sets D, Wpad(e,D) = We.

The special symbol ? is used as a possible hypothesis (meaning “no change of
hypothesis”). The symbol # stands for a pause, that is, for “no new input data
in the text”. For each (possibly infinite) sequence q with its range contained in
N∪ {#}, let content(q) = (range(q) \ {#}). By using an appropriate coding, we
assume that ? and # can be handled by recursive functions.

For any function f and all i, we use f [i] to denote the sequence f(0), . . . ,
f(i − 1) (the empty sequence if i = 0 and undefined, if one of these values is
undefined).

3 Learning Criteria

In this section we formally introduce our setting of learning in the limit and
associated learning criteria. We follow [Köt09] in its “building-blocks” approach
for defining learning criteria.

A learner is a partial function from N to N ∪ {?}. A language is a r.e. set
L ⊆ N. Any total function T : N → N ∪ {#} is called a text. For any given
language L, a text for L is a text T such that content(T ) = L. Initial parts of
this kind of text is what learners usually get as information. We let σ and τ
range over initial segments of texts. Concatenation of two initial segments σ and
τ is denoted by σ # τ . For a given set of texts F , we let TxtF (L) denote the set
of all texts in F for L.

An interaction operator is an operator β taking as arguments a function M
(the learner) and a text T , and that outputs a function p. We call p the learning
sequence (or sequence of hypotheses) of M given T . Intuitively, β defines how a
learner can interact with a given text to produce a sequence of conjectures.
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We define the sequence generating operators G and It (corresponding to the
learning criteria discussed in the introduction) as follows. For all learners M ,
texts T and all i,

G(M,T )(i) = M(T [i]);

It(M,T )(i) =

{
M(∅), if i = 0;

M(It(M,T )(i− 1), T (i− 1)), otherwise;

where M(∅) denotes the initial conjecture made by M . Thus, in iterative learn-
ing, the learner has access to the previous conjecture, but not to all previous
data as in G-learning. With any iterative learner M we associate a learner M∗

such that

M∗(∅) = M(∅) and
∀σ, x : M∗(σ # x) = M(M∗(σ), x).

Intuitively, M∗ on a sequence σ returns the hypothesis which M makes af-
ter being fed the sequence σ in order. Note that, for all texts T , G(M∗, T ) =
It(M,T ). We let M(T ) (respectively M∗(T )) denote limn→∞M(T [n]) (respec-
tively, limn→∞M∗(T [n])) if it exists.

Successful learning requires the learner to observe certain restrictions, for
example convergence to a correct index. These restrictions are formalised in our
next definition.

A learning restriction is a predicate δ on a learning sequence and a text.
We give the important example of explanatory learning (Ex, [Gol67]) and that
of vacillatory learning (Fex, [CL82, OW82, Cas99]) defined such that, for all
sequences of hypotheses p and all texts T ,

Ex(p, T ) ⇔ [∃n0∀n ≥ n0 : p(n) = p(n0) ∧Wp(n0) = content(T )];

Fex(p, T ) ⇔ [∃n0∃ finite D ⊂ N

∀n ≥ n0 : p(n) ∈ D ∧ ∀e ∈ D : We = content(T )].

Furthemore, we formally define the restrictions discussed in Section 1 in Figure 2.
We combine any two sequence acceptance criteria δ and δ′ by intersecting them;
we denote this by juxtaposition (for example, all the restrictions given in Figure 2
are meant to be always used together with Ex).

For any set of texts F , interaction operator β and any (combination of) learn-
ing restrictions δ, TxtFβδ is a learning criterion. A learner M TxtFβδ-learns
all languages in the class

TxtFβδ(M) = {L ∈ E | ∀T ∈ Txt(L) ∩ F : δ(β(M,T ), T )}

and we use Txtβδ to denote the set of all Txtβδ-learnable classes (learnable by
some learner). Note that we omit the superscript F whenever F is the set of all
texts.

In some cases, we consider learning using an explicitly given particular hy-
pothesis space (He)e∈N instead of the usual acceptable numbering (We)e∈N. For
this, one replaces We by He in the respective definitions of learning as above.
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Consv(p, T ) ⇔ [∀i : content(T [i+ 1]) ⊆ Wp(i) ⇒ p(i) = p(i+ 1)];

Caut(p, T ) ⇔ [∀i, j : Wp(i) ⊂ Wp(j) ⇒ i < j];

NUSh(p, T ) ⇔ [∀i, j, k : i ≤ j ≤ k ∧ Wp(i)=Wp(k)=content(T ) ⇒ Wp(j)=Wp(i)];

Dec(p, T ) ⇔ [∀i, j, k : i ≤ j ≤ k ∧ Wp(i) = Wp(k) ⇒ Wp(j) = Wp(i)];

SNUSh(p, T ) ⇔ [∀i, j, k : i ≤ j ≤ k ∧ Wp(i) = Wp(k) = content(T ) ⇒ p(j) = p(i)];

SDec(p, T ) ⇔ [∀i, j, k : i ≤ j ≤ k ∧ Wp(i) = Wp(k) ⇒ p(j) = p(i)];

SMon(p, T ) ⇔ [∀i, j : i < j ⇒ Wp(i) ⊆ Wp(j)];

Mon(p, T ) ⇔ [∀i, j : i < j ⇒ Wp(i) ∩ content(T ) ⊆ Wp(j) ∩ content(T )];

WMon(p, T ) ⇔ [∀i, j : i < j ∧ content(T [j]) ⊆ Wp(i) ⇒ Wp(i) ⊆ Wp(j)].

Fig. 2. Definitions of learning restrictions

4 Plain-Text Learning

In this section we first show that, for iterative learning, the convergence restric-
tions Ex and Fex allow for learning the same sets of languages. After that we
give the necessary theorems establishing the diagramme given in Figure 1.

Theorem 1. TxtItFex = TxtItEx.

Next we give separating theorems for monotone learning and first show that there
is a class which can be learnt iteratively by a learner which is strongly decisive,
conservative, monotone and cautious while on the other hand, there is no learner
which, even non-iteratively, learns the same class strongly monotonically.

Theorem 2. TxtItSDecConsvMonCautEx �⊆ TxtGSMonEx.

Proof. Let L0 = {0, 2, 4, . . .} and for all n, Ln+1 = {2m | m ≤ n} ∪ {2n+ 1}.
Let L = {Ln : n ∈ N}. Let e be a recursive function computing an r.e. index for
Ln: We(n) = Ln. Let M ∈ P be the iterative learner which memorises a single
state in its conjecture (using padding) and has the following state transition
diagramme (an edge labeled x

e means that the edge indicates a state transition
on input x with conjecture output e).

0 1

i∈2N
e(0)

2n+1
e(n+1)

i∈N

e(n+1)

Clearly, M is a TxtItSDecConsvMonCautEx-learner for L. It is known that
L is not strongly monotonically learnable.

Note that one can modify this protocol such that M only memorises the state;
however, M then abstains from repeating correct conjectures and one has to
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modify the learnability criterion such that outputting a special symbol for re-
peating the last (correct) conjecture is allowed. The next result shows that there
is a class of languages which can be learnt by an iterative learner which is strongly
decisive, conservative and cautious; on the other hand, there is no learner, even
non-iterative one, that learns the class monotonically.

Theorem 3. TxtItSDecConsvCautEx �⊆ TxtGMonEx.

Proof. We consider L0 = {0, 2, 4, . . .} and, for all n, L2n+1 = {2m | m ≤
n} ∪ {4n + 1} and L2n+2 = {2m | m ≤ n + 1} ∪ {4n + 1, 4n + 3}. We let
L = {Ln | n ∈ N}.

Let e be a recursive function such that, for all n, We(n) = Ln. Let M ∈ P be
the iterative learner using state transitions as given by the following diagramme.

0 1 2

i∈2N
e(0)

4n+1
e(2n+1)

i∈N−{4n+3}
e(2n+1)

4n+3
e(2n+2)

4n+3
e(2n+2)

i∈N

e(2n+2)

Clearly, M fulfills all the desired requirements for TxtItSDecConsvCautEx-
learning L. One can show that every learner of L outputs on some text for some
L2n+2 hypotheses for L0, L2n+1 and L2n+2 (in that order, with possibly other
hypotheses in between) and is therefore not learning monotonically.

The next result shows that there is a class of languages which is simultane-
ously iteratively, monotonically, decisively, weakly monotonically and cautiously
learnable, but not iteratively strongly non-U-shapedly learnable.

Theorem 4. TxtItMonDecWMonCautEx �⊆ TxtItSNUShEx.

The next result shows that there is an iteratively and strongly monotonically
learnable class which does not have any iterative learner which is strongly non-
U-shaped, that is, which never revises a correct hypothesis. The proof uses the
notion of a join which is defined as A⊕B = {2x : x ∈ A} ∪ {2x+ 1 : x ∈ B}.

Theorem 5. TxtItSMonEx �⊆ TxtItSNUShEx.

Proof. Let M0,M1, . . . denote a recursive listing of all partial recursive iterative
learning machines. Consider a class L consisting of the following sets for each e ∈
N (where F (·), G(·) are recursively enumerable sets in the parameters described
later):

– {2e} ⊕ F (e)
– {2e, 2d+ 1} ⊕G(e, d)
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– {2e, 2d+ 1} ⊕ N

where,

(a) If there exists an s such that M∗
e (4e # 1 # # # 3 # # # 5 # # . . . # 2s + 1) =

M∗
e (4e # 1 ## # 3 ## # 5 ## . . . # 2s + 1 ## # 2s′ + 1), for all s′ > s, then

F (e) = {0, 1, 2, . . . , s}, else F (e) = N.
(b) If F (e) = N or max(F (e)) > d, then G(e, d) = N. Otherwise, if there exists a

k > d such that M∗
e (4e#1###3###5## . . .#2max(F (e))+1###4d+2##r) =

M∗
e (4e # 1 ## # 3 ## # 5 ## # . . . # 2max(F (e)) + 1 ## # 4d+ 2 ##r ##) �=

M∗
e (4e# 1 ### 3 ### 5 ## . . .# 2max(F (e))+1 ### 4d+2 ##r### 2k+1)

then G(e, d) = F (e) ∪ {k} for first such k found in some algorithmic search,
else G(e, d) = F (e).

Now, the above class is TxtItSMonEx learnable, as the learner can remember
seeing 4e, 4d+ 2 in the input text, if any:

- Having seen only 4e, the learner outputs a grammar for {2e} ⊕ F (e);
- Having seen 4e, 4d+2, the learner outputs a grammar for {2e, 2d+1}⊕G(e, d)

until it sees, (after having seen 4e, 4d + 2), two more odd elements bigger
than 2d in the input, at which point the learner switches to outputting a
grammar for {2e, 2d+ 1} ⊕ N.

It is easy to verify that the above learner will TxtItSMon learn L.
Now we show that L is not TxtItSNUShEx-learnable. Suppose by way

of contradiction that Me TxtItSNUShEx-learns L. Then the following state-
ments hold:

– There exists an s as described in the definition of F (e) above and thus F (e)
is finite, as otherwise Me does not learn 2e⊕ F (e) = 2e⊕ N;

– For d > max(F (e)), there exists a k > d as described in the definition of
G(e, d), as otherwise Me does not learn at least one of {2e, 2d+1}⊕G(e, d)
and {2e, 2d+ 1} ⊕ N;

– Now the learner Me has two different hypotheses on the segments (4e#1###
3###. . .#2F (e)+1###2k+1###4d+2##r) and (4e#1###3###. . .#2F (e)+1#
##2k+1###4d+2##r#2k+1) and first of them must be correct hypothesis
for {2e, 2d+1}⊕G(e, d), as otherwise the learner Me does not learn it from
the text — 4e#1###3### . . .#2F (e)+1###2k+1###4d+2##r ##∞

— see part (b) in the definition of G(e, d), whereas second is a mind change,
after the correct hypothesis by Me on {2e, 2d+ 1} ⊕G(e, d).

Thus, Me does not TxtItSNUShEx-learn L.

For our following proofs we will require the notion of a canny learner [CM08b].

Definition 6 (Case and Moelius [CM08b]). For all iterative learners M ,
we say that M is canny iff

1. M never outputs ?,
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2. for all e, M(e,#) = e and
3. for all x, τ and σ, if M∗(σ#x) �= M∗(σ) then M∗(σ#x#τ #x) = M∗(σ#x#τ).

Case and Moelius [CM08b] showed that, for TxtItEx-learning, learners can be
assumed to be canny.

Lemma 7 (Case and Moelius [CM08b]). For all L ∈ TxtItEx there exists
canny iterative learner M such that L ⊆ TxtItEx(M).

The term “sink-locking” means that on any text for a language to be learnt the
learner converges to a sink, a correct hypothesis which is not abandoned on any
continuation of the text. The following result does not only hold for the case
where all texts are allowed but also for the case where only fat texts are allowed
(see Section 5).

Theorem 8. Let L be sink-lockingly TxtItEx-learnable. Then L is cautiously,
conservatively, strongly decisively and weakly monotonically TxtItEx-learnable.

The previous theorem gives us the following immediate corollary which states
that a class is iteratively strongly decisive learnable from text iff it is itera-
tively conservatively learnable from text iff it is iteratively strongly non-U-shaped
learnable from text.

Corollary 9. We have that

TxtItSDecEx = TxtItConsvEx = TxtItSNUShEx.

Proof. We have that strongly decisive or conservative (iterative) learnability
trivially implies strongly non-U-shaped learnability. Using Theorem 8 it remains
to show that strongly non-U-shaped learnability implies sink-locking learnability.
But this is trivial, as the learner can never converge to a correct conjecture that
might possibly be abandoned on the given language, as this would contradict
strong non-U-shapedness.

Case and Moelius [CM08b] showed that TxtItNUShEx = TxtItEx; we finally
show that this proof can be extended to also cover decisiveness, weak monotonic-
ity and caution.

Theorem 10. We have that

TxtItEx = TxtItDecEx = TxtItWMonEx = TxtItCautEx.

Proof. Suppose M is a canny iterative learner which learns a class L. Below
we will construct an iterative learner N which is weakly monotonic and learns
L. Let

CM (σ) = {x ∈ N ∪ {#} : M∗(σ # x)↓ = M∗(σ)↓};
BM (σ) = {x ∈ N ∪ {#} : M∗(σ # x)↓ �= M∗(σ)↓};
B∩

M (σ) =
⋂

0≤i≤|σ|
BM (σ[i]);

CBM (σ) =
⋃

0≤i<|σ|
CM (σ[i]) ∩BM (σ).
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Let P be such that for all σ and m and x ∈ N ∪ {#}, P (σ,m, x) iff (i) x �= #
and (ii) (∃w)[M∗(σ #w) converges in x steps, WM∗(σ) enumerates w in x steps,
w ∈ CBM (σ) and m < w ≤ x].

Let N be such that N(∅) = f(∅, 0, ∅), and for all inputs x, and previous
conjecture f(σ,m, α), N outputs as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

↑, (i) if M∗(τ)↑ for some τ ∈ {σ, σ # α, σ # x, σ # α # x};
f(σ # α # x, 0, ∅), (ii) if ¬ (i) and (x∈B∩

M (σ) or (x∈CBM (σ) and x>m));

f(σ,m, α # x), (iii) if ¬ ((i) or (ii)) and
x ∈ CBM (σ # α)

f(σ, x, ∅), (iv) if ¬ ((i) or (ii)) and
x ∈ CM (σ # α) and P (σ,m, x) and α = ∅;

f(σ # α # x, 0, ∅), (v) if ¬ ((i) or (ii)) and
x ∈ CM (σ # α) and P (σ,m, x) and α �= ∅;

f(σ,m, α), (vi) if ¬ ((i) or (ii)) and
x ∈ CM (σ # α) and ¬P (σ,m, x).

Here Wf(σ,m,α) is defined as follows.

1. Enumerate content(σ)
In the following, if the needed M∗(·) (to compute various parameters), is not
defined, then do not enumerate any more.

2. Go to stage 0.
Stage s:

Let As = content(σ) ∪WM∗(σ),s
(a) If there exists an x ∈ As such that x ∈ B∩

M (σ), then no more elements
are enumerated.

(b) If there exists an x ∈ As such that x > m, and [x ∈ CBM (σ) or
P (σ,m, x)], then:

If for all τ with content(τ) ⊆ As and |τ | ≤ |As|+1, τ not containing
# and τ starting with a y in CBM (σ): As ⊆ Wf(στ,0,∅),
then enumerate As and go to stage s+ 1;
otherwise, no more elements are enumerated.
(basically, this is testing if x satisfies clauses ii, iv or v in the defn of
M)

(c) If both (a) and (b) fail, then enumerate As, and go to stage s+ 1.
End stage s

It can be easily shown by induction on the length of ρ, that for all input ρ, if
N∗(ρ) = f(σ,m, α), then M∗(ρ) = M∗(σ # α).

Now, for finite languages L iteratively learnt by M , if content(σ) ⊆ L and
L∩B∩

M (σ) = ∅, then WM∗(σ) = L. To see this note that if we construct a sequence
τ from σ, by inserting elements of L − content(σ) after the initial segment σ′

of σ such that x ∈ CM (σ′), then M∗(σ) = M∗(τ), and content(τ) = L; thus,
M∗(σ) = M∗(σ#∞) = M∗(τ#∞), which must be a grammar for L. Thus for
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such σ, for content(α) ⊆ L, using the fact that M is canny and using reverse
induction on the number of mind changes made by M on σ (which is bounded
by card(L) due to M being canny), it is easy to verify that Wf(σ,m,α) would
be L.

Given an infinite languages L ∈ L and a text T for L, consider the output
f(σn,mn, αn) of N∗(T [n]). As M∗(T ) converges, it holds that σ = limn→∞ σn
and limn→∞ αn would converge. For this paragraph fix this σ and α. If α �= ∅,
then clearly m = limn→∞ mn also converges, and as B∩

M (σ) ∩ L = ∅, we also
have WM∗(σ) = L. If α = ∅, then as M∗(T ) = M∗(σ), we have that WM∗(σ) = L
and all but finitely many of the elements of L do not belong to BM (σ). Thus,
in this case also m = limn→∞mn converges. In both cases, m bounds all the
elements of L which are in BM (σ). Thus, f(σ,m, α) would be a grammar for L.

We show the weak monotonicity of N . Note that, for all σ, α,m, Wf(σ,m,α) ⊆
content(σ) ∪WM∗(σ).

Also, note that Wf(σ,m,α) ⊆Wf(σ,m+1,α′) for all m,α, σ, α′ — (P1).
Now suppose N on input ρ # x and previous conjecture (on input ρ) being

f(σ,m, α) outputs f(σ #α #x, 0, ∅). This implies that, x ∈ B∩
M (σ) or x > m and

(CBM (σ) or P (σ,m, x)) hold.
Case 1: content(α # x) is not contained in Wf(σ,m,α).
In this case clearly content(ρ #x) ⊇ content(σ #α #x) and thus, content(ρ #x)

is not contained in Wf(σ,m,α), so mind change is safe.
Case 2: content(α # x) is contained in Wf(σ,m,α) and thus in content(σ) ∪

WM∗(σ).
Let s be least such that content(α # x) is contained in As as in stage s. Then,

the definition of Wf(σ,m,α) ensures that Wf(σ,m,α) enumerates At, t ≥ s, only if
At is contained in Wf(σαx,0,∅) (note that the case of At = content(σ), already
satisfies At ⊆ Wf(σαx,0,∅)).

It follows from the above analysis that either the new input is not contained
in the previous conjecture of N , or the previous conjecture is contained in the
new conjecture. Thus, N is weakly monotonic.

It follows from the above construction that N is also decisive and cautious. To
see this, note that whenever mind change of N falls in Case 1 above, all future
conjectures of N (beyond input ρ # x) contain content(α # x); thus, N never
returns to the conjecture Wf(σ,m,α), which does not contain content(α # x). On
the other hand, the mind changes due to Case 2 or mind changes due to N
outputting f(σ,m′, α′) after outputting f(σ,m, α), are strongly monotonic (see
the discussion in Case 2, as well as property (P1) mentioned above). The theorem
follows.

5 Learning from Fat-Texts and other Texts

In this section we deal with special kinds of texts. A text is called fat iff every
datum appears infinitely often in that text. A text T is called one-one iff for all
x ∈ content(T ), there exists a unique n such that T (n) = x. We let fat denote the
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set of all fat texts and one− one the set of all one-one texts. Standard techniques
can be used to show the following result.

Theorem 11. TxtItEx ⊂ TxtfatItEx ⊂ TxtGEx.

The above result shows that iterative learners have not only information-theore-
tic limitations in that they forget past data and cannot recover them (on normal
text), but also computational limitations which cannot be compensated by hav-
ing fat text. Next we show that fat text always allows for learning conservatively
(as well as cautiously and strongly decisively).

Theorem 12. TxtfatItEx = TxtfatItConsvEx = TxtfatItSDecEx.

Proposition 13. (a) There exists a class of languages which is TxtItMonEx,
TxtItSDecEx, TxtItConsvEx-learnable but not TxtfatSMonEx-learnable.

(b) There is a class which is TxtItSDecEx-learnable (and therefore also
TxtItConsvEx-learnable) but not TxtfatItMonEx or Txtone−oneItMonEx-
learnable.

Theorem 14. TxtItSMonEx �⊆ TxtfatItSNUShEx.

We next show that learning from one-one texts is equivalent to learning from
arbitrary text.

Theorem 15. Txtone−oneItEx = TxtItEx.

Theorem 16. There exists a class L which is Txtone−oneItFex-learnable but
not Txtone−oneEx-learnable. Therefore L is not TxtItEx-learnable (and hence
not TxtItFex-learnable).

Proof. Let L consist of the languages Le,z, z ≤ e, e, z ∈ N, where Le,z =
{(e, x, y) : x = z or x+ y < |We|}.

The learner on seeing any input element (e, x, y), outputs a grammar (obtained
effectively from (e, x)) for Le,min({e,x}).

If We is infinite, then Le,e = Le,z for all z ≤ e, and thus all the (finitely many)
grammars output by the learner are for Le,e.

If We is finite, then Le,z contains only finitely many elements which are not
of the form (e, z, ·), and thus on any one-one text for Le,z, the learner converges
to a grammar for Le,z.

We now show that L is not TxtEx-learnable. Suppose otherwise that some
learner TxtEx-learns L. Then, for e ≥ 2, We is infinite iff the learner has a
stabilising sequence [BB75, Ful90] τ on the set {(e, x, y) : x, y ∈ N} and the
largest sum x + y for some (e, x, y) occurring in τ is below |We|. Thus it would
be a Σ2 condition to check whether We is infinite in contradiction to the fact
that checking whether We is infinite is Π2 complete. Thus such a learner does
not exist.

Theorem 17. There exists a class of languages which is iteratively learnable
using texts where every element which is maximal so far is marked, but is not
TxtItEx-learnable.
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6 Class Preserving Hypotheses Spaces

A one-one hypothesis space might be considered in order to prevent that an
iterative learner cheats by storing information in the hypothesis. A hypothesis
space (He)e∈N is called class preserving (for learning L) iff {He : e ∈ N} = L. A
learner is class preserving, if the hypothesis space used by it is class preserving.
The first result shows that the usage of one-one texts increases the learning power
of those iterative learners which are forced to use one-one hypothesis spaces, that
is, which cannot store information in the hypothesis during the learning process.

Theorem 18. There exists a class L having a one-one class preserving hypoth-
esis space such that the following conditions hold:

(a) L can be Txtone−oneItEx-learnt using any fixed one-one class preserving
hypothesis space for L;

(b) L cannot be TxtItEx-learnt using any fixed one-one class preserving hy-
pothesis space for L.

In general, the hierarchy SMonEx ⊆ MonEx ⊆ WMonEx holds. The follow-
ing result shows that this hierarchy is proper and that one can get the separations
even in the case that the more general criterion is made stricter by enforcing the
use of a one-one hypothesis space.

Theorem 19. (a) TxtItWMonEx �⊆ TxtItMonEx;
(b) TxtItMonEx �⊆ TxtItSMonEx.
Here the positive sides can be shown using a one-one class preserving hypothesis
space.

Theorem 2 and Theorem 3 show the above result and also provide conservatively
learnable families for these separations. We now consider learning by reliable
learners. A learner is reliable if it is total and for any text T , if the learner
converges on T to a hypothesis e, then e is a correct grammar for content(T ). We
denote the reliability constraint on the learner by using Rel in the criterion name.
For the following result, we assume (by definition) that if a learner converges to
? on a text, then it is not reliable. The next result shows that there is exactly
one class which has a reliable iterative learner using a one-one class preserving
hypothesis space and this is the class FIN = {L : L is finite}.

Theorem 20. If L is TxtItRelEx-learnable using a one-one class preserving
hypothesis space then L must be FIN.

Theorem 21. There exists a subclass of FIN which is not TxtItEx-learnable
using a one-one class preserving hypothesis space.

Note that in learning theory without loss of generality one assumes that classes
are not empty. The next theorem characterises when a class can be iteratively
and reliably learnt using a class preserving hypothesis space: it is the case if and
only if the set of canonical indices of the languages in the class is recursively
enumerable. Note that the hypothesis space considered here is not one-one and
that padding is a natural ingredient of the (omitted) learning algorithm.
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Theorem 22. A class L has a class-preserving iterative and reliable learner iff
it does not contain infinite languages and the set {e : De ∈ L} of its canonical
indices is recursively enumerable.

7 Syntactic versus Semantic Conservativeness

A learner is called semantically conservative iff whenever it outputs two indices
i, j such that Wi �= Wj and i is output before j then the hypothesis j is based on
some observed data not contained in Wi. This notion coincides with syntactic
conservative learning in the case of standard explanatory learning; however, in
the special case of iterative learning, it is more powerful than the usual notion
of conservative learning.

Theorem 23. There is a class L which can be learnt iteratively and strongly
monotonically and semantically conservatively but which does not have an iter-
ative and syntactically conservative learner.
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Abstract. We introduce and explore a model for parallel learning of
families of languages computable by finite automata. In this model, an
algorithmic or automatic learner takes on n different input languages
and identifies at least m of them correctly. For finite parallel learning,
for large enough families, we establish a full characterization of learn-
ability in terms of characteristic samples of languages. Based on this
characterization, we show that it is the difference n−m, the number of
languages which are potentially not identified, which is crucial. Similar
results are obtained also for parallel learning in the limit. We consider
also parallel finite learnability by finite automata and obtain some partial
results. A number of problems for automatic variant of parallel learning
remain open.

1 Introduction

In this paper, we define and explore a model for learning automatic families
of languages in parallel. A family of languages is called automatic if it is an
indexed family, and there is a finite automaton that, given an index v of a
language and a string u can solve the membership problem for u in the language
indexed by v (study of learnability of automatic classes was initiated in [JLS12]).
Our aim is to establish if, under what circumstances, and on what expense,
learning several languages from an automatic family in parallel can be more
powerful than learning one language at a time. In the past, few approaches to
learning in parallel have been suggested. One of them, known as team inference
involves a finite team of learning machines working in parallel on the same input
function or language (see for example [Smi82]). Our approach follows the one
suggested for parallel learning recursive functions in [KSVW95]: one learning
machine is learning a finite collection of (pairwise distinct) languages (in some
sense, this model is a generalization of the model introduced in [AGS89]). A
similar approach has recently been utilized in a study of prediction of recursive
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function values in [BKF11]: one algorithm predicts next values of several different
input functions.

We consider learning languages in two different, albeight related settings:
a) Finite learning [Gol67]: a learning machine, after seeing a finite amount of

input data, terminates and outputs conjectures for grammars of languages being
learnt; for this type of learning, we also consider the case when the learner itself
is a finite automaton (see [JLS12]).

b) Learning in the limit [Gol67]: a learning machine outputs a potentially
infinite sequence of conjectures, stabilizing on a correct grammar for the target
language.

The learners in our model use input texts — potentially infinite sequences
that contain full positive data in a target language, intermittent with periods
of “no data”. Both settings, under the name of inductive inference, have a long
history, see, for example, [JORS99].

A simple example of the family of three languages, {0}, {1}, {0, 1} (which can
be trivially made automatic), shows that finite learning of three languages in
parallel might be possible, whereas no learner can learn languages in the family
one at a time: the desired parallel learner will just wait when texts for the three
input languages will be pairwise distinct (when both 0 and 1 will appear in one
of the input texts) and output three correct conjectures; on the other hand, if
an individual learner gets on the input a text containing all 0-s and settles on
the conjecture {0}, it will be too late if 1 appears in the input.

However, interestingly, when families of languages are large, finite parallel
learning of all input languages has no advantage over finite learning of individ-
ual languages: as it follows from one of our results (Theorem 8), if the number
of languages in an automatic family is at least 4, and the family is learnable
in parallel by a finite learner taking three different input texts, then the fam-
ily is finitely learnable, one language at a time. Therefore, we consider a more
general model of parallel learning, where the potential advantage of parallelism
may compensate for lack of precision — so-called (m,n) or frequency learning:
a learner gets input texts for n different languages and learns at least m of
them correctly. This model of learning was first suggested and explored for al-
gorithmic learning of recursive functions in [KSVW95]. The idea of frequency
learning stems from a more general idea of (m,n)-computation, which, in the
recursion-theoretic setting, means the following: to compute a function, an algo-
rithm takes on n different inputs at a time and outputs correct values on at least
m inputs. This idea can be traced to the works by G. Rose [Ros60] and B.A.
Trakhtenbrot [Tra64] who suggested frequency computation as a deterministic
alternative to traditional probabilistic algorithms using randomization. Since
then, this idea has been applied to various settings, from computation by finite
automata ([Kin76, ADHP05]) to computation with a small number of bounded
queries ([BGK96]).

We explore and, whenever it has been possible, determine what makes auto-
matic classes of languages (m,n)-learnable for various numbers n and m ≤ n.
Whereas, in our general model, it is not possible to identify which m conjectures
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among n are correct, we also consider the special case of finite learning automatic
classes when the learner can identify m correct conjectures.

In the theory of language learning, a prominent role belongs to the so-called
characteristic samples ([Muk92], see also [Ang80] for the related concept of tell-
tale sets): a finite subset D of a language L is called a characteristic sample
of L (with respect to the family of languages under consideration) if, for ev-
ery language L′ in the family, D ⊆ L′ implies L′ = L. A family of languages
satisfies characteristic sample condition if every language in it has a character-
istic sample. Several of our characterizations of (m,n)-learnability are based on
suitable variants of the characteristic sample condition. Since in all our settings
(m,n)-learning (for m < n) turns out to be more powerful than learning individ-
ual languages, we study and discover interesting relationships between classes of
languages (m,n)-learnable with different parameters m and/or n. In particular,
we are concerned with the following questions:

a) does (m,n)-learnability imply (m+ 1, n+ 1)-learnability of a class? (thus,
increasing frequency of correct conjectures, while keeping the number of possibly
erroneous conjectures the same);

b) does (m + 1, n + 1)-learnability imply (m,n)-learnability? (thus, loosing
in terms of frequency of correct conjectures, but allowing a smaller number of
languages to be learnt in parallel, with the same number of possibly erroneous
conjectures);

c) does (m,n+ 1)-learnability imply (m,n)-learnability? (thus, reducing the
number of possibly erroneous conjectures and increasing frequency of correct
conjectures at the same time).

For each of our variants of learnability, we obtain either full or partial answers
to all the above questions, for large enough families.

The structure of our study of (m,n)-learning is as follows. In the next section,
we introduce necessary mathematical preliminaries and notation. In Section 3
we formally define our learning models. In Section 4, we take on the case of finite
(m,n)-learning when a learner can identify at least m languages learnt correctly
— following [KSVW95], we call (m,n)-learning of this kind superlearning. In
Theorems 7 and 8, for the classes containing at least 2n+ 1−m languages, we
give a full characterization for (m,n)-superlearnability in terms of characteristic
samples. For large classes of languages, this characterization provides us full
positive answers to the above questions a), b), and the negative answer to c).
We also address the case when the number of languages in a class to be learnt
is smaller than 2n+ 1−m.

In Section 5 we consider finite (m,n)-learning when a learner cannot tell
which m conjectures are correct. For large classes of languages, we again obtain
a full characterization of (m,n)-learnability in terms of characteristic samples —
albeight somewhat different from the case of superlearnability. This characteri-
zation, as in case of superlearnability, provides us answers to the questions a),
b), and c). The proofs in this section are quite involved — to obtain necessary
results, we developed a technique based on bipartite graphs.
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In Section 6, we address finite (m,n)-learning by finite automata — automatic
learning. We have not been able to come up with a characterization of this type
of learnability, however, we answer positively to the question b) and negatively
to the question c). The question a) remains open.

In Section 7 we obtain full positive answers for the questions a) and b) and the
negative answer to the question c) for (m,n)-learnability of automatic classes in
the limit.

2 Preliminaries

The set of natural numbers, {0, 1, 2, . . .}, is denoted by N . We let Σ denote a
finite alphabet. The set of all strings over the alphabet Σ is denoted by Σ∗. A
language is a subset of Σ∗. The length of a string x is denoted by |x|. We let ε
denote the empty string.

A string x = x(0)x(1) . . . x(n−1) is identified with the corresponding function
from {0, 1, . . . , n− 1} to Σ. We assume some canonical ordering of members of
Σ. Lexicographic order is then the dictionary order over strings. A string w is
length-lexicographically before (or smaller than) string w′ (written w <ll w

′)
iff |w| < |w′| or |w| = |w′| and w is lexicographically before w′. Furthermore,
w ≤ll w′ denotes that either w = w′ or w <ll w′. For any set of strings S,
let succS(w) denote the length-lexicographically least w′ such that w′ ∈ S and
w <ll w

′ — if there is no such string, then succS(w) is undefined.
We let ∅,⊆ and ⊂ respectively denote empty set, subset and proper subset.

The cardinality of a set S is denoted by card(S).
We now define the convolution of two strings x = x(0)x(1) . . . x(n − 1) and

y = y(0)y(1) . . . y(m − 1), denoted conv(x, y). Let x′, y′ be strings of length
max({m,n}) such that x′(i) = x(i) for i < n, x′(i) = # for n ≤ i < max({m,n}),
y′(i) = y(i) for i < m, and y′(i) = # for m ≤ i < max({m,n}), where # �∈ Σ
is a special padding symbol. Thus, x′, y′ are obtained from x, y by padding the
smaller string with #’s. Then, conv(x, y) = z, where |z| = max({m,n}) and
z(i) = (x′(i), y′(i)), for i < max({m,n}). Here, note that z is a string over the
alphabet (Σ ∪ {#})× (Σ ∪ {#}). Intuitively, giving a convolution of two strings
as input to a machine means giving the two strings in parallel, with the shorter
string being padded with #s. The definition of convolution of two strings can be
easily generalized to convolution of more than two strings. An n-ary relation R
is automatic, if {conv(x1, x2, . . . , xn) : (x1, x2, . . . , xn) ∈ R} is regular. Similarly,
an n-ary function f is automatic if {conv(x1, x2, . . . , xn, y) : f(x1, x2, . . . , xn) =
y} is regular.

A family of languages, (Lα)α∈I , over some finite alphabet Σ, is called an
automatic family if (a) the index set I is regular and (b) the set {conv(α, x) :
α ∈ I, x ∈ Lα} is regular. We often identify an automatic family (Lα)α∈I with
the class L = {Lα : α ∈ I}, where the indexing is implicit. An automatic family
(Lα)α∈I is 1–1 (or the indexing is 1–1), if for all α, β ∈ I, Lα = Lβ implies
α = β.

It can be shown that any family, relation or function that is first-order defin-
able using other automatic relations or functions is itself automatic.
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Lemma 1. [BG00, KN95] Any relation that is first-order definable from exist-
ing automatic relations is automatic.

We use the above lemma implicitly in our proofs, without explicitly stating so.
The example below gives some well-known automatic families.

Example 2. (a) For any fixed k, the class of all subsets of Σ∗ having at most
k elements is an automatic family.

(b) The class of all finite and cofinite subsets of {0}∗ is an automatic family.
(c) The class of closed intervals, consisting of languages Lconv(α,β) = {x ∈ Σ∗ :

α ≤lex x ≤lex β} where α, β ∈ Σ∗, over the alphabet Σ is an automatic
family.

3 Learning Automatic Families

A text T is a mapping from N to Σ∗ ∪ {#}. The content of a text T , denoted
content(T ), is {T (i) : i ∈ N}−{#}. A text T is for a language L iff content(T ) =
L. Intuitively, #’s denote pauses in the presentation of data. Furthermore, #∞

is the only text for ∅.
Let T [n] denote T (0)T (1) . . . T (n−1), the initial sequence of T of length n. We

let σ and τ range over finite initial sequences of texts. The length of σ is denoted
by |σ|. For n ≤ |σ|, σ[n] denotes σ(0)σ(1) . . . σ(n − 1). The empty sequence is
denoted by Λ. Let content(σ) = {σ(i) : i < |σ|}.

We now consider learning machines. Since we are considering parallel learning,
we directly define learners which take as input n texts. Furthermore, to make
it easier to define automatic learners, we define the learners as mapping from
the current memory and the new datum, to the new memory and conjecture
(see [JLS12]). When one does not have any memory constraints (as imposed,
for example, by automatic learning requirement), these learners are equivalent
to those defined by Gold [Gol67]. The learner uses some hypothesis space {Hα :
α ∈ J} to interpret its hypothesis. We always require (without explicitly stating
so) that {Hα : α ∈ J} is a uniformly r.e. class (that is, {(x, α) : x ∈ Hα} is r.e.).
Often the hypothesis space is even required to be an automatic family, with the
index set J being regular.

Definition 3. (Based on [Gol67, JLS12]) Suppose Σ and Δ are finite alphabets
used for languages and memory of learners respectively, where # �∈ Σ. Suppose
J is the index set (over some finite alphabet) for the hypothesis space used by
the learner. Let ? be a special symbol not in J . Suppose 0 < n.

(a) A learner (from n-texts) is a mapping from Δ∗× (Σ∗ ∪ {#})n to Δ∗ × (J ∪
{?})n.
A learner has an initial memory mem0 ∈ Δ∗, and an initial hypotheses
(hyp01, hyp

0
2, . . . , hyp

0
n) ∈ (J ∪ {?})n.

(b) Suppose a learner M with the initial memory mem0 and the initial hy-
potheses hyp01, hyp

0
2, . . . , hyp

0
n is given. Suppose T1, T2, . . . , Tn are n texts.

Then the definition of M is extended to sequences as follows.
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M(Λ,Λ, . . . , Λ) = (mem0, hyp
0
1, hyp

0
2, . . . , hyp

0
n);

M(T1[s + 1], T2[s + 1], . . . , Tn[s + 1]) = M(mem, T1(s), T2(s), . . . , Tn(s)),
where M(T1[s], T2[s], . . . , Tn[s]) = (mem, hyp1, hyp2, . . . , hypn), for some
(hyp1, hyp2, . . . , hypn) ∈ (J ∪ {?})n and mem ∈ Δ∗.

(c) We say that M converges on T1, T2, . . . , Tn to hypotheses (β1, β2, . . . , βn) ∈
(J ∪{?})n (written: M(T1, T2, . . . , Tn)↓hyp = (β1, β2, . . . , βn)) iff there exists
a t such that, for all t′ ≥ t,
M(T1[t

′], T2[t
′], . . . , Tn[t

′]) ∈ Δ∗ × {(β1, β2, . . . , βn)}.

Intuitively, M(T1[s], T2[s], . . . , T2[s]) = (mem, hyp1, hyp2, . . . , hypn) means that
the memory and the hypotheses of the learner M after having seen the initial
parts T1[s], T2[s], . . . , Tn[s] of the n texts are mem and hyp1, hyp2, . . . , hypn,
respectively.

We call the learner automatic, if the corresponding graph of the learner is auto-
matic. That is, {conv(mem, x1, x2, . . . , xn, newmem, β1, β2, . . . , βn) : M(mem,
x1, x2, . . . , xn) = (newmem, β1, β2, . . . , βn)} is regular.

We can think of a learner as receiving the texts T1, T2, . . . , Tn one element at
a time from each of the texts. At each input, the learner updates its previous
memory, and outputs a new conjecture (hypothesis) for each of the texts. If the
sequence of hypotheses converges to a grammar for content(T ), then we say that
the learner TxtEx-learns the corresponding text ([Gol67]). Here Ex denotes
“explains”, and Txt denotes learning from text. For parallel (m,n)-learnability,
we require that the learner converges to a correct grammar for at least m out of
the n input texts. Now we define learnability formally.

Definition 4. (Based on [Gol67, KSVW95] )
Suppose L = {Lα : α ∈ I} is a target class, and H = {Hβ : β ∈ J} is a

hypothesis space. Suppose 0 < m ≤ n.

(a) We say that M (m,n)-TxtEx-learns the class L (using H as the hypothesis
space) iff for all n-texts T1, T2, . . . , Tn for distinct languages in L,
M(T1, T2, . . . , Tn)↓hyp = (β1, β2, . . . , βn) such that for at least m different
i ∈ {1, 2, . . . , n}, βi ∈ J and Hβi = content(Ti).

(b) (m,n)-TxtEx = {L : (∃ M)[M (m,n)-TxtEx-learns L using some H as
the hypothesis space]}.

(c) We say that M (m,n)-TxtFin-learns the class L (using H as the hypothesis
space) iff for all n-texts T1, T2, . . . , Tn for distinct languages in L, there exists
an s such that, for all s′ < s and s′′ ≥ s:
(i) M(T1[s

′], T2[s
′], . . . , Tn[s

′]) ∈ Δ∗ × (?, ?, . . . , ?) (where there are n ? in
the above).
(ii) M(T1[s

′′], T2[s
′′], . . . , Tn[s

′′]) ∈ Δ∗ × (β1, β2, . . . , βn), where for at least
m distinct i ∈ {1, 2, . . . , n}, βi ∈ J and Hβi = content(Ti).

(d) (m,n)-TxtFin = {L : (∃ M)[M (m,n)-TxtFin-learns L using some H as
the hypothesis space]}.

We drop the reference to “using the hypothesis space H”, when the hypothesis
space is clear from the context. A hypothesis spaceH is said to be class preserving
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[LZ93] for learning a class L if L = H. A hypothesis space H is said to be class
comprising [LZ93] for learning a class L if L ⊆ H.

For (m,n)-superTxtEx or (m,n)-superTxtFin-learnability, we require the
learner to also identify the (at least m) texts which it has learnt. This is done
via allowing additional output (along with the hypotheses) to the learner. Then,
for superlearnability, we require that the learner specifies the m-texts which it is
able to learn, outputting 1 (along with the corresponding hypothesis) to denote
that it has learnt the text and 0 to denote that it is not making any guarantees
about its hypothesis.

When we are considering automatic learners (that is, learners, whose graphs
are regular [JLS12]), we prefix the learning criterionTxtEx orTxtFin byAuto.
For this we also require the hypothesis space used to be an automatic family.

For ease of notation, rather than giving the learner as a mapping from memory
and n-input elements to new memory and conjecture, we often just give an
informal description of the learner, where for finite learning the learner will
output only one conjecture different from (?, ?, . . . , ?). It will be clear from the
context how the formal learners can be obtained from the description.

Definition 5. [Muk92] We say that S is a characteristic sample for L with
respect to L iff (a) S is a finite subset of L and (b) for all L′ ∈ L, S ⊆ L′ implies
L = L′.

Using Lemma 1, it is easy to see that testing whether or not a finite set S
is a characteristic sample of L with respect to automatic family L is decidable
effectively in S and index for L (since we can express such a property using
first-order formula).

The following lemma is used implicitly in several proofs, without explicitly
referring to it.

Lemma 6. Suppose L and a language L ∈ L are given such that L does not have
a characteristic sample with respect to L. Then, either (a) there exists L′ ∈ L
such that L ⊂ L′ or (b) for all n, there are Xn ∈ L, such that Xn are pairwise
distinct and L ∩ {x : x ≤ n} ⊆ Xn ∩ {x : x ≤ n}.

4 (m,n)-superTxtFin-Learnability

The next two theorems give a full characterization of (m,n)-superTxtFin-
learnability for large automatic classes.

Theorem 7. Suppose 0 < m ≤ n. Suppose L is automatic, and for all except
at most n−m L ∈ L, there exists a characteristic sample for L with respect to
L. Then L is (m,n)-superTxtFin-learnable.

Proof. The desired learner M, on any input texts T1, . . . , Tn, searches for an
r such that at least m of content(T1[r]), content(T2[r]), . . . , content(Tn[r]) are
characteristic samples for some languages in L (before finding such an r, M
conjectures ? for all the texts). When it finds such an r,M outputs corresponding
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grammars for the languages on the corresponding texts and lists them as having
been learnt (the conjectures on remaining texts are irrelevant).

The following result shows that the above result is optimal for large enough
classes of languages. For small finite classes, we need some special considerations,
as illustrated by Remark 13 below.

Theorem 8. Suppose 0 < m ≤ n. If L has at least 2n+ 1−m languages, then
(m,n)-superTxtFin-learnability of L implies there are at most n−m languages
in L which do not have characteristic sample with respect to L.

Proof. (sketch) Suppose by way of contradiction otherwise. Pick at least n−m+1
languages in the class which do not have a characteristic sample with respect to
L. Let these languages be A0, A1, . . . , An−m.

For each r ≤ n − m, let Br ∈ L − {A0, A1, . . . , An−m} be a language in L
which is a superset of Ar. If there is no such language, then Br is taken to be
an arbitrary member of L− {A0, A1, . . . , An−m}. The Bi’s may not be different
from each other.

Note that ifBr is not a superset ofAr, then there exist infinitely many pairwise
distinct languages Sw

r ∈ L, w ∈ Σ∗, such that each Sw
r containsAr∩{x : x ≤ll w}

— this follows from the fact that there is no characteristic sample for any Ai in
L, i ≤ n−m.

Now consider the behaviour of the superlearner on the texts T0, T1, . . . , Tn−1

for languages A0, A1, . . . , An−m, Cn−m+1, . . . , Cn−1, where Cm−n+1, . . . , Cn−1

are members of L which are different from Ar, Br, r ≤ n−m. Suppose the su-
perlearner outputs its conjecture (different from (?, ?, . . . , ?)) after seeing input
T0[s], T1[s], . . . , Tn−1[s]. As the superlearner identifies at least m languages, it
has to identify at least one A0, A1, . . . , An−m, say Ar . Suppose content(Tr[s]) ⊆
{x : x ≤ll w} Then one can replace Ar by Br or by an appropriate one of
Sw′
r , w′ ≥ll w, which is not among A0, A1, . . . , An−m, Cn−m+1, . . . , Cn−1, thus

making the superlearner fail.

The following corollaries easily follow from the above two theorems.

Corollary 9. Suppose 0 < n. If an automatic class L contains at least n + 1
languages and is (n, n)-superTxtFin-learnable, then every language in L has a
characteristic sample and, thus, the class is TxtFin-learnable.

Corollary 10. Suppose 0 < m ≤ n. If a large enough automatic class L is
(m,n)-superTxtFin-learnable, then it is (m−1, n−1)-superTxtFin-learnable
and (m+ 1, n+ 1)-superTxtFin-learnable.

Corollary 11. Suppose 0 < m < n. There exists an automatic class L that is
(m,n)-superTxtFin-learnable, but not (m,n− 1)-superTxtFin-learnable.

For m = 1, Theorem 8 can be strengthened to

Theorem 12. Suppose 0 < n. Suppose L contains at least n languages L which
do not have a characteristic sample with respect to L. Then, L is not (1, n)-
superTxtFin-learnable.
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Remark 13. Let 2 ≤ m ≤ n.
Let L2r = {2r}, L2r+1 = {2r, 2r + 1}, for r ≤ n−m.
Let Li = {i}, for 2n− 2m+ 2 ≤ i < 2n−m.
Let L = {Li : i < 2n−m}.
Now, L contains n−m+1 languages (L2r, for r ≤ n−m) which do not have

a characteristic sample with respect to L. However, L is (m,n)-superTxtFin-
learnable. To see (m,n)-superTxtFin-learnability, note that in any collection
of n languages from L, there can be at most n−m different s ≤ n−m such that
the collection contains L2s but not L2s+1. Note that if the collection contains
both L2s and L2s+1, then we can identify both of them, from texts, as the
languages given as input to (m,n)-superTxtFin-learner are supposed to be
different. Thus, one can easily (m,n)-superTxtFin-learn the class L.

5 (m,n)-TxtFin-Learnability

Our first goal is to find a necessary condition for finite (m,n)-learnability of
large automatic classes in terms of characteristic samples. For this, we introduce
the concept of a cut of a bipartite graph and an important technical lemma.

Definition 14. Suppose G = (V,E) is a bipartite graph, where V1, V2 are the
two partitions of the vertices. Then,

(a) (V ′
1 , V

′
2) is called a cut of G if G does not contain any edges between

V1 − V ′
1 and V2 − V ′

2 . (V
′
1 , V

′
2) is called a minimum cut, if it is a cut which

minimizes card(V ′
1 ∪ V ′

2).
(b) E′ ⊆ E is called a matching if for all distinct (v, w), (v′, w′) ∈ E′, v �= v′

and w �= w′. E′ is called a maximum matching if E′ is a matching with maximum
cardinality.

Note that cuts are usually defined using edges rather than vertices, however for
our purposes it is convenient to define cut sets using vertices. We often write
a bipartite graph (V,E) as (V1, V2, E), where V1, V2 are the two partitions. For
example, consider the graph V = {a, b, c1, c2, . . . , cr, d1, d2, . . . , dk} with E =
{(a, d1), (a, d2), . . . , (a, dk), (c1, b), (c2, b), . . . , (cr, b)}. The minimum cut in the
graph would be ({a}, {b}). Note also that {(a, d1), (c1, b)} forms a maximum
matching in the graph. Both minimum cut and maximum matching have same
cardinality. This is not an accident, and the following lemma can be proven using
the Max-Flow-Min-Cut Theorem (by adding a source node, with edge to each
vertex in V1, and a sink node, with edge from each vertex in V2). For Max-Flow-
Min-Cut Theorem and related concepts see, for example, [PS98].

Lemma 15. For any bipartite graph, the size of the minimum cut is the same
as the size of the maximum matching.

Now we can show that the existence of characteristic samples for all the lan-
guages in the class, except at most n− 1 ones, (where characteristic samples are
relative to the class excluding the n−1 latter languages) is a necessary condition
for (1, n)-TxtFin-learnability. Note that this characteristic sample condition is
similar, but different from the one for (1, n)-superTxtFin-learning.
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Theorem 16. Suppose L is (1, n)-TxtFin-learnable.
Then there exists a subset S of L of size at most n−1 such that every language

in L− S has a characteristic sample with respect to L − S.

Proof. Suppose M (1, n)-TxtFin-learns L.
Let L′ = {L ∈ L : (∃ distinct SL

w ∈ L for each w ∈ Σ∗)[L∩{x : x ≤ll w} ⊆ SL
w]}.

For each L in L′, w ∈ Σ∗, fix SL
w as in the definition of L′.

Let L′′ = {L ∈ L− L′ : L does not have a characteristic sample with respect to
L − L′}.
Let L′′′ = {A ∈ L − L′ : (∃L ∈ L − L′)[L ⊂ A]}.

Claim. card(L′) < n.

To see the claim, suppose L′ has ≥ n languages. Then as input to M, we can
give texts T1, T2, . . . , Tn for C1, C2, . . . , Cn ∈ L′. Suppose M converges, say,
after seeing T1[m], T2[m], . . . , Tn[m], to conjecture (p1, p2, . . . , pn) (different from
(?, ?, . . . , ?)). Then consider texts T ′

i extending Ti[m], where T ′
i is a text for

Ei = SCi

ji
, for some ji such that SCi

ji
⊇ content(Ti[m]) and (a) pi is not a

grammar for SCi

ji
and (b) SCi

ji
are pairwise distinct for different i. Note that this

can be easily ensured. Then, M fails on input T ′
1, T

′
2, . . . , T

′
n. This completes the

proof of the claim.
Suppose card(L′) = n− r.
Note that every language in L′′ has a proper superset in L′′′ and every lan-

guage in L′′′ has a proper subset in L′′. Consider the bipartite graph G formed
by having the vertex set V1 = L′′ and V2 = L′′′, and edge between (L′′, L′′′) iff
L′′ ⊂ L′′′. (If L ∈ L′′ ∩ L′′′, then for the purposes of the bipartite graph, we
consider corresponding vertex in V1 and V2 representing L as different).

Claim. There exists a cut of G of size at most r − 1.

Assume by way of contradiction otherwise. Then, by Lemma 15, there exists a
matching of size at least r. Let this matching be (A1, B1), . . . , (Ar, Br). Here,
each Ai ∈ L′′ and each Bi ∈ L′′′. Ai’s are pairwise distinct, Bi’s are pairwise dis-
tinct, but Ai’s and Bj ’s might coincide with each other. Assume without loss of
generality that if i < j, then Aj �⊆ Ai. Now consider giving the learner input texts
T1, T2, . . . , Tn for A1, A2, . . . , Ar, Cr+1, Cr+2, . . . , Cn, where Cr+1, Cr+2, . . . , Cn

are distinct members of L′. Suppose M outputs conjecture (p1, p2, . . . , pn) (dif-
ferent from (?, ?, . . . , ?)) after seeing input T1[m], T2[m], . . . , Tn[m].

Now we define texts T ′
1, . . . , T

′
n extending T1[m], . . . , Tn[m] respectively for

languages E1, . . . , En, on which M fails.
Below we will define E1, . . . , Er. Definition of Er+1, . . . , En can be done ap-

propriately as done in the case above when L′ was at least n. Now we define Ej

by induction from j = r to 1.

Suppose we have already defined Er, . . . , Ej+1, and are now defining
Ej . We will also maintain languages B′

1, B
′
2, . . ., which change over the

construction. Initially, let B′
i = Bi for all i. We will have at any stage (by
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induction) the invariants that (a) B′
1, . . . , B

′
j , Ej+1, . . . , Er are pairwise

distinct, (b) A1, A2, . . . , Aj , Ej+1, . . . , Er are pairwise distinct, (c) Ai ⊂
B′

i for 1 ≤ i ≤ j.
It is easy to verify that induction hypothesis holds when j = r. Note

that this implies that B′
j �= Ai, for 1 ≤ i ≤ j (as Ai �⊃ Aj , for all

1 ≤ i ≤ j).
Definition of Ej :

If pj is a grammar for Aj , then let Ej = B′
j (and other values

do not change).
If pj is not a grammar for Aj , then let Ej = Aj . If one of

B′
i = Aj , for i < j, then replace B′

i by B′
j . Other variables do

not change value.

It is now easy to verify that the construction maintains the invariants, and
thus M fails to (1, n)-TxtFin-learn L. The claim follows.

Now, it is easy to verify that taking S as L′ unioned with the cut of G as in
the claim, satisfies the requirements of the Theorem.

Note that by appropriate modification of the proof, one can also show:

Theorem 17. Suppose L is (m,n)-TxtFin-learnable and L contains at least
2n−m+ 1 languages.

Then, there exists a subset S of L of size at most n − m such that every
language in L − S has a characteristic sample with respect to L − S.

Now we show that the necessary condition of the previous Theorem is sufficient
for (m,n)-TxtFin-learning.

Theorem 18. Suppose L is automatic. Suppose there exists a subset S of L of
size at most n−m such that every language in L−S has a characteristic sample
with respect to L − S. Then, L is (m,n)-TxtFin-learnable.

Proof. Let L′ = {L ∈ L : (∃ infinitely many distinct SL
w ∈ L, w ∈ Σ∗)[L ∩ {x :

x ≤ll w} ⊆ SL
w]}.

Note that L′ ⊆ S. Thus, card(L′) = n− r ≤ n−m, for some r.
Furthermore, for all L ∈ L−L′, there exists a finite subset X of L such that

there exist at most finitely many L′ ∈ L satisfying X ⊆ L′. Furthermore, none
of the members of L − L′ are contained in any member of L′.

So the learner M behaves as follows on input texts T1, T2, . . . , Tn. It first
searches for an s such that, for at least r members j of {1, 2, . . . n},

(a) content(Tj[s]) is not contained in any L in L′, and
(b) content(Tj[s]) is contained in at most finitely many of L in L.

Note that there exists such an s, and it can be effectively found, given an
automatic numbering of L. Without loss of generality, for ease of notation, from
now on we assume that these r members are {1, 2, . . . , r}.
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This gives us that the corresponding r texts T1, T2, . . . , Tr can only be for
languages from L − L′. Up to card(S) − (n − r) of these may be from S − L′,
and thus at least n− card(S) are from L− S.

Let H = {L ∈ L : (∃i : 1 ≤ i ≤ r)[content(Ti[s]) ⊆ L]}. By (b) above, H is
finite. Arrange elements of H in a directed graph G, where there is an edge from
L to L′ iff L ⊂ L′ and no other L′′ ∈ H satisfies L ⊂ L′′ ⊂ L′. Note that the
graph is acyclic. Also, note that there is no path from any L ∈ L−S to another
L′ ∈ L− S (as this would imply that L ⊂ L′, and thus no characteristic sample
for L with respect to L − S would exist).

Now let s′ > s be such that

(c) for each i, 1 ≤ i ≤ r, there exists a (necessarily unique) L ∈ H such that
content(Ti[s

′]) ⊆ L but content(Ti[s
′]) �⊆ L′ for any other L′ ∈ H which

satisfies L′ �⊇ L — we assign Ti to the node L in the graph G in this case,
and

(d) for each node L in G, at most one Ti is assigned to L.

Note that such s′ will eventually be found as the texts T1, T2, . . . , Tr are for
different languages from H. Once such s′ is found, the learner outputs grammar
for L on Ti iff Ti is assigned to the node L. We now claim that the above learner
(m,n)-TxtFin-learns L. For this, it suffices to show that the learner is correct
on at least m of the texts T1, T2, . . . , Tr.

(**) We will only count the correctness of the learner for languages in L−S.
Let G′ be just as graph G, except that the texts assigned to nodes may change

— Ti is assigned to a node L iff Ti is actually a text for L. Note that each node
in G and G′ is assigned at most one text.

Note that if Ti is assigned to a node L in G, but to a node L′ in G′, then
L ⊆ L′. Now consider the texts Ti on which the learner is wrong. These texts
can be divided up into maximal chains of the form Ti1 , Ti2 , Ti3 , . . . , Tij−1 , where
(i) Tis is assigned to Ais in G and Ais+1 (which represented content(Tis)) in G′,
(ii) Ais ⊂ Ais+1 , for 1 ≤ s < j, (iii) no text is assigned to Ai1 in G′ and no
text is assigned to Aij in G, and (iv) the different maximal chains as above do
not have any texts/nodes in the graph in common. Thus, we can consider such
maximal chains independently for error computation: each of these chains has at
most one member from L−S (since members of L−S are pairwise not included
in each other), and thus contain at least j − 1 members from S − L′. Thus, the
learner fails on at most card(S − L′) texts among T1, T2, . . . , Tr. It follows that
the learner is correct on at least r− card(S −L′) many texts from T1, T2, . . . , Tr,
and thus correct on at least m input texts.

The following corollaries easily follow from the above two theorems.

Corollary 19. Suppose 0 < m ≤ n. If a (large enough) automatic class L is
(m,n)-TxtFin-learnable, then it is (m − 1, n− 1)-TxtFin-learnable and (m+
1, n+ 1)-TxtFin-learnable.

Corollary 20. Suppose 0 < m < n. There exists an automatic class L that is
(m,n)-TxtFin-learnable, but not (m,n− 1)-TxtFin-learnable.
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6 Automatic (m,n)-Finite Learning

In this section, we consider finite (m,n)-learning by finite automata. Proofs are
omitted due to space constraints.

Note that, for automatic learnability, results of the previous section do not
hold. This is illustrated by the following result, based on techniques from [JLS12].

Theorem 21. [JLS12] Let L = {L : (∃n)(∃x ∈ Σn)[L = Σn − {x}]}. Then, L
is not AutoTxtEx-learnable.

The proof for the above theorem can be generalized to show that L is not
(1, k)-AutoTxtEx-learnable. Note that every language in the class has a char-
acteristic sample (the language itself).

In the sequel, without loss of generality assume that all languages have at most
one grammar in the hypothesis space (which is automatic). So below equality of
languages is equivalent to grammars being the same.

First we show that, for finite automatic classes of languages, (m,n)-TxtFin-
learnability implies (m,n)-AutoTxtFin-learnability.

Theorem 22. Suppose L is an automatic finite class. Then, L is (m,n)-TxtFin-
learnable implies L is (m,n)-AutoTxtFin-learnable.

Our next goal is to show that, for large enough automatic classes, automatic
finite (m+ 1, n+ 1)-learnability implies automatic finite (m,n)-learnability.

Theorem 23. Let 0 < m ≤ n. Suppose L is an infinite automatic class which is
(m+1, n+1)-AutoTxtFin-learnable. Then L is (m,n)-AutoTxtFin-learnable.

Remark 24. Suppose 0 < m ≤ n, L is finite and contains at least 2n+ 2 −m
languages, and L is (m + 1, n + 1)-AutoTxtFin-learnable. Then, L is (m,n)-
AutoTxtFin-learnable. This holds as by Theorem 17 and Theorem 18, L is
(m,n)-TxtFin-learnable and thus by Theorem 22, L is (m,n)-AutoTxtFin-
learnable.

We have not been able to prove that automatic finite (m,n)-learnability im-
plies automatic finite (m+1, n+1)-learnability (even for large automatic classes).
Yet, we can show that automatic finite (m,n)-learnability does not imply even
finite (m,n− 1)-learnability.

Proposition 25 Suppose r ∈ N , and r ≥ 1. Let Lai = {ai}, Let Lbi = {bi},
and Lci = {bi, ci}.

Let L = {Lai : i ≥ 1} ∪ {Lbi : 1 ≤ i ≤ r} ∪ {Lci : 1 ≤ i ≤ r}.
Then, for m ≥ 1, L is (m,m + r)-AutosuperTxtFin-learnable, but not

(m,m+ r − 1)-TxtFin-learnable.

Corollary 26. For all m,n such that 0 < m ≤ n − 1, there exists an au-
tomatic family which can be (m,n)-AutoTxtFin-learnt but not (m,n − 1)-
AutoTxtFin-learnt.
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7 (m,n)-TxtEx-Learning

In this section we consider (m,n)-learning of automatic classes in the limit.
We show that the number of languages learnable in parallel can be increased
or decreased when n −m, the number of languages which may be erroneously
identified, remains the same. For the rest of this section, we assume that the
hypothesis spaces are always automatic. Proofs are omitted due to space con-
straints.

Theorem 27. Suppose 0 < m ≤ n. Suppose L is an automatic class. If L can
be (m,n)-TxtEx-learnt then L can be (m+ 1, n+ 1)-TxtEx-learnt.

Theorem 28. Suppose 0 < m ≤ n. Suppose L is automatic. Suppose L is
(m+ 1, n+ 1)-TxtEx-learnable. Then, L is (m,n)-TxtEx-learnable.

Theorem 29. Suppose 0 < n. There exists an automatic L which can be (1, n+
1)-TxtEx-learnt but not (1, n)-TxtEx-learnt.

Corollary 30. For 0 < m ≤ n, there exists an automatic L such that L can be
(m,n+ 1)-TxtEx-learnt but not (m,n)-TxtEx-learnt.

8 Conclusion

We defined and explored a model of parallel learning n languages at a time
when at least m languages are required to be learnt correctly. Similarly to
(m,n)-computation being a deterministic alternative to probabilistic compu-
tation based on randomization, our model suggests a deterministic alternative
to traditional probablistic learnability of languages (explored, for example, in
[Pit89] and [WFK84]; as L. Pitt showed in [Pit89], learning using traditional
probability is strongly related to another type of parallel deterministic learn-
ing — learning a language by a team). It turns out that, for the finite (m,n)-
learnability, the maximum number n−m of languages in the automatic family
that do not have characteristic samples is the crucial factor defining learnability
(and not the frequency m out of n of correct conjectures — as it follows from our
results, increasing frequency not necessarily diminishes learnability of families
of languages). Since a family of languages with a larger number of languages
without characteristic samples is more topologically complex, the number n−m
can be interpreted as a measure of this complexity, and we have shown that
there are learnability hierarchies based on this complexity measure.

Several interesting problems remain open. The major problem is finding char-
acterizations — if any — for (m,n)-AutoTxtFin-learnability and for (m,n)-
TxtEx-learnability. It is open whether (m,n)-AutoTxtFin-learnability implies
(m+1, n+1)-AutoTxtFin-learnability. Another potentially interesting area of
research would be finding if and how frequency learnability can help in terms of
efficiency of learning.
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Abstract. Suppose that we are given an infinite binary sequence which
is random for a Bernoulli measure of parameter p. By the law of large
numbers, the frequency of zeros in the sequence tends to p, and thus we
can get better and better approximations of p as we read the sequence.
We study in this paper a similar question, but from the viewpoint of
inductive inference. We suppose now that p is a computable real, and
one asks for more: as we are reading more and more bits of our random
sequence, we have to eventually guess the exact parameter p (in the form
of its Turing code). Can one do such a thing uniformly for all sequences
that are random for computable Bernoulli measures, or even for a ‘large
enough’ fraction of them? In this paper, we give a negative answer to this
question. In fact, we prove a very general negative result which extends
far beyond the class of Bernoulli measures.

1 Introduction

1.1 Learnability of Sequences

The study of learnability of computable sequences is concerned with the following
problem. Suppose we have a black box that generates some infinite computable
sequence of bits X = X(0)X(1)X(2), . . . We do not know the program running
in the box, and want to guess it looking at finite prefixes

X �n = X(0) . . .X(n− 1)

for increasing n. There could be different programs that produce the same se-
quence, and it is enough to guess one of them (since there is no way to distinguish
between them looking at the output bits). The more bits we see, the more in-
formation we have about the sequence. For example, it is hard to say something
about a sequence seeing only its first bit 1, but looking at the prefix

110010010000111111011010101000
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one may observe that this is a prefix of the binary expansion of π, and guess
that the machine inside the box does exactly that (though the machine may as
well produce the binary expansion of, say, 47627751/15160384).

The hope is that, as we gain access to more and more bits, we will eventually
figure out how the sequence X is generated. More precisely, we hope to have a
computable function A such that for every computable X , the sequence

A(X �1), A(X �2), A(X �3), . . .

converges to a program (=Turing machine) that computes X . This is referred
to as identification in the limit, and can be understood in two ways:

– Strong success: for every computable X , the above sequence converges to a
single program that produces X .

– Weak success: for every computable X , all but finitely many terms of the
above sequence are programs that produce X (may be, different ones).

The first type of success is often referred to as exact (EX) and the second
type as behaviorally correct (BC). Either way, such an algorithm A does not
exist in general. The main obstacle: certain machines are not total (produce
only finitely many bits), and distinguishing total machines from non-total ones
cannot be done computably. (If we restrict ourselves to some decidable class of
total machines, e.g., primitive recursive functions, then exact learning is possible:
let A(u) be the first machine in the class that is compatible with u.) We refer the
reader to [ZZ08] for a detailed survey of learnability of computable functions.

1.2 Learnability of Probability Measures

Recently, Vitanyi and Chater [VC13] proposed to study a related problem. Sup-
pose that instead of a total deterministic machine, the black box contains an
almost total probabilistic machine M . By “almost total” machine we mean a
randomized algorithm that produces an infinite sequence with probability 1.
The output distribution of such a machine is a computable probability measure
μM over the space 2ω of infinite binary sequences. Again, our ultimate goal is to
guess what machine is in the box, i.e., to give a reasonable explanation for the
observed sequence X . For example, observing the sequence

000111111110000110000000001111111111111

one may guess that M is a probabilistic machine that starts with 0 and then
chooses each output bit to be equal to the previous one with probability 4/5 (so
the change happens with probability 1/5), making all the choices independently.

What should count as a good guess for some observed sequence? Again there
is no hope to distinguish between some machine M and another machine M ′

that has the same output distribution μM ′ = μM . So our goal should be to
reconstruct the output distribution and not the specific machine.

But even this is too much to ask for. Assume that we have agreed that some
machine M is a plausible explanation for some sequence X . Consider another
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machine M ′ that starts by tossing a coin and then (depending on the outcome)
either generates an infinite sequence of zeros or simulates M ′. If X is a plausible
output of M , then X is also a plausible output for M ′, because it may happen
(with probability 1/2) that M ′ simulates M .

A reasonable formalization of ‘good guess’ is provided by the theory of algo-
rithmic randomness. As Chater and Vitanyi recall, there is a widely accepted
formalization of “plausible outputs” for an almost total probabilistic machine
with output distribution μ: the notion of Martin-Löf random sequences with re-
spect to μ. These are the sequences which pass all effective statistical tests for
the measure μ, also known as μ-Martin-Löf tests. (We assume that the reader
is familiar with algorithmic randomness and Kolmogorov complexity. The most
useful references for our purposes are [Gác05] and [LV08].) Having this notion
in mind, one could look for an algorithm A with the following property:

for every almost total probabilistic machine M with output distribution
μM , for μM -almost all X, the sequence A(X � 1),A(X � 2),A(X � 3), ...
identifies in the limit an almost total probabilistic machine M ′ such that
X is μM ′-Martin-Löf random.

Note that this requirement uses two machines M and M ′ (more precisely, their
output distributions): the first one is used when we speak about “almost all”
X , and the second is used in the definition of Martin-Löf randomness. Here M ′

may differ from M and, moreover, may be different for different X .
Vitanyi and Chater suggest that this can be achieved in the strongest sense

(EX): the guesses A(X �n) converge to a single code of some machine M ′. The
main result of this paper says that even a much weaker goal cannot be achieved.

Let us consider a rather weak notion of success: A succeeds on X if there ex-
ists c > 0 such that for all sufficiently large n the guess A(X �n) is a machine M ′

such that X is μM ′ -Martin-Löf random with randomness deficiency1 less than c.
So the machines A(X �n) may be different, we only require that X is Martin-Löf
random (with bounded deficiency) for almost all of them. (If almost all machines
A(X �n) generate the same distribution andX is Martin-Löf randomwith respect
to this distribution, this condition is guaranteed to be true.)

Moreover, we require A to be successful only with some positive probability
instead of probability 1, and only for machines from some class: for every ma-
chineM from this class of machines, A is required to succeed with μM -probability
at least δ > 0, for some δ independent of M .

Of course, this class should not be too narrow: if it contains only one ma-
chine M , the algorithm A can always produce a code for this machine. The
exact conditions on the class will be discussed in the next section.

The proof of this result is quite involved. In the rest of the paper, we spec-
ify which classes of machines are considered, present the proof and discuss the
consequences of this result.

1 See below about the version of the randomness deficiency function that we use.
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2 Identifying Measures

2.1 Background and Notation

Let us start by providing some notation and background.

We denote by 2ω the set of infinite binary sequences and by 2<ω the set of
finite binary sequences (or strings). The length of a string σ is denoted by |σ|.
The n-th element of a sequence X(0), X(1), . . . is X(n− 1) (assuming that the
length of X is at least n); the string X �n = X(0)X(1) . . .X(n−1) is n-bit prefix
of X . We write σ % X if σ is a prefix of X (of some finite length).

The space 2ω is endowed with the distance d defined by

d(X,Y ) = 2−min{n:X(n) �=Y (n)}

This distance is compatible with the product topology generated by cylinders

[σ] = {X ∈ 2ω : σ % X}

A cylinder is both open and closed (= clopen). Thus, any finite union of cylinders
is also clopen. It is easy to see, by compactness, that the converse holds: every
clopen subset of 2ω is a finite union of cylinders. We say that a clopen set C
has granularity at most n if it can be written as a finite union of cylinders [σ]
with all σ’s of length at most n. We denote by Γn the family of clopen sets of
granularity at most n.

The space of Borel probability measures over 2ω is denoted by M(2ω). It
is equipped with the weak topology. Several classical distances are compatible
with this topology; for our purposes, it will be convenient to use the distance ρ,
constructed as follows: For μ, ν ∈ M(2ω), let ρn(μ, ν) (for an integer n) be the
quantity

ρn(μ, ν) = max
C∈Γn

|μ(C)− ν(C)|

and then set

ρ(μ, ν) =
∑
n

2−nρn(μ, ν)

The open (resp. closed) ball B of center μ and radius r is the set of measures ν
such that ρ(μ, ν) < r (resp. ρ(μ, ν) ≤ r). Note that for any ν in this open (resp.
closed) ball, if C is a clopen set of granularity at most n, then |μ(C)−ν(C)| < 2n r
(resp. ≤ 2n r). The distance ρmakesM(2ω) a computable compact metric space;
its computable points are called computable probability measures. A measure is
computable if and only if it is the output distribution of some almost total
probabilistic Turing machine (see, e.g., [Gác05]). Since M(2ω) is a computable
metric space, one can define partial computable functions from some discrete
space X (such as N) to M(2ω) via type-2 computability: a partial function
f :⊆ X →M(2ω) is partial computable if there is an algorithm g that for every
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input x ∈ X enumerates a (finite or infinite) list of rational balls2 B1, B2,. . . in
M(2ω) such that Bi+1 ⊆ Bi, the radius of Bi is less than 2−i, and for every x
in the domain of f , the list of enumerated balls is infinite and their intersection
is the singleton {f(x)}. (We do not require any specific behavior outside the
domain of f .)

Let us introduce two non-standard, but important in this paper, pieces of
terminology: having fixed the algorithm g associated to f , we write err(f(x)) <
ε to mean that the list of balls produced by g on input x contains a ball of
radius less than ε (the justification for this notation is that when such a ball is
enumerated, should f(x) be defined, we know its value with error at most ε for
the distance ρ). When the algorithm g on input x enumerates an empty list of
balls, we say that g is null on input x.

We denote by K the prefix-free Kolmogorov complexity function. Given a
computable measure μ, we call randomness deficiency of X with respect to μ the
quantity

d(X |μ) = sup
n

[
log

1

μ([X �n]) −K(X �n)
]

It is known that X ∈ 2ω is μ-Martin-Löf random (or μ-random for short) if
d(X |μ) < ∞. This definition is slightly non-standard; to get a more standard
one, one has to add μ as the condition (with some precautions). However, the
above is enough for our purposes.

We say that two measures μ and ν are orthogonal if there is a set having
μ-measure 1 and ν-measure 0.

If B is a ball (open or closed) in M(2ω), with center μ and radius r, we define
the estimated deficiency of X relative to B by

ed(X |B) = sup
n

[
log

1

μ([X �n]) + 2n r
−K(X �n)

]
Note that ed(X |B) is a lower bound for d(X |ν) for every ν ∈ B: we know

that the value of ν([X �n]) does not exceed μ([X �n]) + 2n r for every ν in the
ball B. For a fixed pair (X,μ) we have limB→μ ed(X |B) = d(X |μ): if d(X |μ)
is large, one of the terms (for some n) is large, and the corresponding term in
ed(X |B) is close to it if B has small radius and contains μ.

Sometimes in the paper we will use the notation ed(X |A(σ)). By this we mean
the supremum of ed(X |B) over all balls B output by A on input σ.

The next lemma will be useful in the sequel.

Lemma 1 (Randomness deficiency lemma). Let B ⊆ M(2ω) be a ball of
center μ (rational measure) and rational radius not exceeding r, and let C be a
clopen set of granularity at most n. Then for all X ∈ C:

ed(X |B) ≥ log
μ(X �n)

μ(X �n) + 2nr
− logμ(C)−K(C, μ, r, n)−O(1)

2 We fix some natural dense set of finitely representable measures. Rational balls
are balls of rational radius with centers in this set. Such balls can also be finitely
represented.



90 L. Bienvenu, B. Monin, and A. Shen

Proof. Knowing C, μ, r, n, one can build a prefix-free machine which associates
to every string σ of length n such that [σ] ⊆ C a a description of size − logμ(X �
n)− log μ(C), so that indeed∑

σ

2− logμ(X�n)−log μ(C) =
1

μ(C)

∑
σ

μ(σ) = 1

where the sums are taken over those σ such that [σ] ⊆ C. This shows that for
every such σ of length n, K(σ) ≤ − logμ(X �n)− logμ(C)+K(C, μ, r, n)−O(1).
Applying the definition of ed, we get, for all X ∈ C

ed(X |B) ≥ log
1

μ([X �n]) + 2n r
−K(X �n)

≥ log
1

μ(X �n) + 2n r
+ logμ(X �n)− logμ(C) −K(C, μ, r, n)−O(1)

≥ log
μ(X �n)

μ(X �n) + 2n r
− logμ(C)−K(C, μ, r, n)−O(1)

��

2.2 The Main Theorem

Now we return to the formulation of our main result. The learning algorithm is
a partial computable function A :⊆ 2<ω → M(2ω); it gets the prefix X � n of
a sequence X and computes (in type-2 sense) some measure A(X �n). (Such a
computable function can be converted into an algorithm that, given an input
string, produces a program that computes the output measure, and vice versa.)
We say that A BC-succeeds on a sequence X ∈ 2ω if A(X � n) outputs the
same computable measure μ for all sufficiently large n, and X is Martin-Löf
random with respect to μ. This is a weaker requirement that exact (EX) success
mentioned above: the algorithm is obliged to produce the same measure (for
almost all n), but is not obliged to produce the same machine. Our main result,
in its weak form, says that this goal cannot be achieved for all sequences that
are random with respect to some computable measure:

Theorem 2. There is no algorithm A that BC-succeeds on every sequence X
which is random with respect to some computable measure.

As we have discussed, we prove a stronger version of this result—stronger in
three directions.

First, we require the learning algorithm to succeed only on sequences that
are random with respect to measures in some restricted class, for example, the
class of Bernoulli measures (the main particular case considered by Chater and
Vitanyi).

Second, for each measure μ in this class we do not require the algorithm to
succeed on all sequences X that are μ-Martin-Löf random: it is enough that it
succeeds with some fixed positive μ-probability (a weaker condition).
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Finally, the notion of success on a sequence X is now weaker: we do not re-
quire that the algorithm produces (for all sufficiently long inputs) some specific
measure, asking only that it gives ‘good explanations’ for the observed sequence
from some point on. More specifically, we say that an algorithm A BD-succeeds
(BD stands for ‘bounded deficiency’) on some X , if for some c and for all suffi-
ciently large n the measure A(X �n) is defined and X is random with deficiency
at most c with respect to this measure. Clearly BC-success implies BD-success.
(Note that in our definition the randomness deficiency depends only on the mea-
sure but not on the algorithm that computes it.)

We now are ready to state our main result in its strong form.

Theorem 3. Let M0 be a subspace of M(2ω) with the following properties :

– M0 is effectively closed, i.e., one can enumerate a sequence of open balls in
M(2ω) whose union is the complement of M0.

– M0 is recursively enumerable, i.e., one can enumerate the open balls in
M(2ω) which intersect M0.

– every non-empty open subset of M0 (i.e., a non-empty intersection of an
open set in M(2ω) with M0) contains infinitely many pairwise orthogonal
computable measures.

and let δ > 0. Then there is no algorithm A such that for every computable
μ ∈M0, the μ-measure of sequences X on which A BD-succeeds is at least δ.

The notion of an recursively enumerable closed set is standard in computable
analysis, see [Wei00, Definition 5.1.1].

Note that the hypotheses on the class M0 are not very restrictive: many stan-
dard classes of probability measures have these properties. Bernoulli measuresBp

(independent trials with success probability p, where p is a parameter in [0, 1])
are an obvious example; so there is no algorithm that can learn all Bernoulli
measures (not to speak about all Markov chains). Let us give another interest-
ing example: for every parameter p ∈ [0, 1], consider measure μp associated to
the stochastic process which generates a binary sequence bit-by-bit as follows:
the first bit is 1, and the conditional probability of 1 after σ10k is p/(k+1). The
class M(2ω) = {μp : p ∈ [0, 1]} satisfies the hypotheses of the theorem.

Note also that these hypotheses are not added for convenience: although they
might not be optimal, they cannot be outright removed. If we do not require
compactness, then the class of Bernoulli measures Bp with rational parameter
p would qualify, but it is easy to see that this class admits an algorithm which
correctly identifies each of the measures in the class with probability 1. The third
condition is important, too. Consider the measures B0 and B1 concentrated on
the sequences 0000 . . . and 1111 . . . respectively. Then the class M0 = {pB0 +
(1 − p)B1 | p ∈ [0, 1]} is indeed effectively compact, but it is obvious that there
is an algorithm that succeeds with probability 1 for all measures of that class
(in the most strong sense: the first bit determines the entire sequence). For the
second condition we do not have a counterexample showing that it is really
needed, but it is true for all the natural classes (it is guaranteed to be true if
M0 has a computable dense sequence).
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3 The Proof of the Main Theorem

The rest of the paper is devoted to proving Theorem 3. Fix a subset M0 of
M(2ω) satisfying the hypotheses of the theorem, and some δ > 0. In the sequel,
by “success” we always mean BD-success.

For every algorithm A we consider the set of sequences on which it succeeds.
We say that A is δ-good if this success set has μ-probability at least δ for every
μ ∈M0. We need to show that δ-good algorithms do not exist.

Let us introduce some useful notation. First, let

Succ(A, c, n) =
{
X ∈ 2ω : (X �n) ∈ dom(A) ∧ d(X |A(X �n)) ≤ c

}
be the set of X on which A achieves “local success” on the prefix of length n for
randomness deficiency c. The success set is then

⋃
c

⋃
N

⋂
n≥N Succ(A, c, n).

According to our type-2 definition, the algorithm computing A produces (for
each input string) a finite or infinite sequence of balls (we assume that i-th ball
has radius at most 2−i). We will write ‘B ∈ A(σ)’ to signify that on input σ this
algorithm enumerates the ball B at some point. For any function f : 2<ω → [0, 1]
converging to 0, we define the set Prec(A, f, n) of points X which are ‘precise
enough’ in the sense that A(X �n) almost outputs a measure:

Prec(A, f, n) = {X ∈ 2ω : err(A(X �n)) < f(X �n)}

(notice that Prec(A, f, n) is a clopen set because the membership of X in
Prec(A, f, n) is determined fully by the first n bits of X). The specific choice
of f (how ‘precise’ should be the output measure) is discussed later.

In contrast to Prec, we define the following “nullity” sets:

Null(A, N) =
{
X ∈ 2ω : A(X �n) is null for every n ≥ N

}
.

Proposition 4 (Nullity amplification). Assume that A is a δ-good algo-
rithm, N is an integer, η ≥ 0 is a real number and B is an open ball intersecting
M0 such that μ(Null(A, N)) ≥ η for all μ ∈ B∩M0. Then there is a non-empty
ball B′ ⊆ B intersecting M0, an integer N ′ ≥ N and a δ-good algorithm A′ such
that μ(Null(A′, N ′)) ≥ η + δ/2 for all μ ∈ B′ ∩M0.

This proposition clearly shows that there can be no δ-good algorithm: if there
was one, one could construct by induction (taking for the base case η = 0,N = 0,
and B = any ball intersectingM0) a sequence of δ-good algorithms Ai, a non-
increasing sequence of balls Bi intersectingM0, and a non-decreasing sequence of
integersNi such that μ(Null(Ai, Ni)) ≥ δ+ i ·(δ/2) for every μ ∈ Bi∩M0, which
gives a contradiction for large i. Thus, all we need to do is to prove this proposition.

Proof. Fix A, N , η and B as in the hypotheses of the proposition. For m ≥ N ,
define a decreasing sequence of effectively open sets Um by

Um = {μ | (∃n > m)
(
μ(Prec(A, f, n)) > 1− η − δ/2

)
}.

The first step of this proof consists in showing that if f is carefully chosen to tend
to 0 fast enough, then only finitely many of the Um can be dense in B ∩M0.
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The way we do this is by proving the following fact: if Um is dense in B∩M0 for
some m, then for every B′ ⊆ B intersecting M0, one can effectively find B′′ ⊆ B′

intersecting M0 such that for all μ ∈ B′′, μ(Succ(A, n, n)) < 7δ/8 for some
n ≥ m ≥ N .

This would yield a contradiction since this would allow us to construct a com-
putable sequence of decreasing balls Bm, all intersecting M0, where all μ ∈ Bm

would be such that μ(Succ(A, n, n)) < 7δ/8 for some n ≥ m, and thus the in-
tersection of the Bm would be a computable measure μ∗ – belonging to M0 by
closedness of M0 – for which the success set of A has μ∗-measure at most 7δ/8,
a contradiction.

The definition of f on strings of length n will depend on a “large enough”
parameter s = s(n) which we will define later as a computable function of n.
Suppose s has already been chosen. We shall first define in terms of s an impor-
tant auxiliary computable function L. It is computed as follows. For a given n,
let ε = min(2−n · δ/4, r) where r is the radius of B.

First, we effectively find k(ε) rational balls D1,D2, · · ·Dk(ε), all intersecting
M0, whose union covers M0 and for any ball of radius at least ε, one of the
Di is contained in this ball. (To do this, enumerate all balls with rational center
and radius smaller than ε/3. By effective compactness of the space of measures
M(2ω) and since M0 is effectively closed, one can find a finite number of them,
call them D1,D2, . . . ,Dk(ε), which cover M0 entirely. Now, let A be a ball of
radius at least ε intersecting M0 and μ its center. Since μ is at distance ε/3 of
some measure ν ∈ M0. But the Di’s cover M0, so ν belongs to some ball Di,
and by the triangular inequality, every member of Di is at distance at most 2ε/3
of μ, hence Di is contained in A).

Then, inside each ball Di, we effectively find 2s rational measures ξ
(i)
1 , . . . , ξ

(i)
2s

and pairwise disjoint clopen sets V
(i)
1 , . . . , V

(i)
2s such that ξ

(i)
j (V

(i)
j ) > 1− δ/8.

To see that this can be done, observe that the conditions ‘ξ1, . . . , ξs ∈ B’, ‘the
Vi are disjoint’, and ‘ξi(Vi) > 1− ε for all i’ are all Σ0

1-conditions. Therefore, all
we need to argue is that such measures and clopen sets exist. By our assumption
on M0, let ξ1, . . . , ξs be pairwise orthogonal measures inside B. By definition,
this means that for every pair (i, j) with i �= j, there exists a set Si,j ⊆ 2ω such
that ξi(Si,j) = 1 and ξj(Si,j) = 0. For each i, let Si =

⋂
j �=i Si,j . One can easily

check that ξi(Si) = 1 for all i and ξi(Sj) = 0 when i �= j. The measure of a
set is the infimum of the measures of open sets covering it. Therefore, for each i
there is an open set Ui covering Si such that ξj(Ui) ≤ 2−s−1ε for i �= j (and of
course, ξi(Ui) = 1 for all i). Now we use the fact that the measure of an open
set is the supremum of the measures of the clopen sets it contains. Therefore,
for each i there exists a clopen set U ′

i ⊆ Ui such that ξi(U
′
i) ≥ 1 − ε/2 (and of

course ξi(U
′
j) ≤ 2−s−1ε for i �= j). Now Vi = U ′

i \
⋃

j �=i U
′
j for each i is a clopen

set of ξi-measure at least 1− ε/2− 2s · 2−s−1ε = 1− ε. The pairwise disjointness
of the Vi is clear from their definition.

Compute the maximum of the granularities of all the clopen sets V
(i)
j for

i ≤ k(ε) and j ≤ 2s and denote this maximum by L(n).
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Suppose now that for every non-empty B′ ⊆ B intersecting M0, there exists
some μ ∈ B′ and some n,

μ(Prec(A, f, n)) > 1− η − δ/2

for some measure μ ∈ B and some n ≥ N . Set again ε = min(2−n · δ/4, r) and
compute a family D1,D2, · · · Dk(ε) intersecting M0 and whose union covers M0

so that for any ball B of radius at least ε, there is some Di ⊆ B.

Recall that Prec(A, f, n) is a clopen set of granularity n. Thus, if ρ(ν, μ) <
2−n ·δ/4, then ν(Prec(A, f, n)) > 1−η−δ/2−δ/4 = 1−η−3δ/4. And thus, by
definition of the Di, there exists i such that for all ν ∈ Di, ν(Prec(A, f, n)) >
1−η−3δ/4. Moreover, such an i can be found effectively knowing Prec(A, f, n)
and δ. Fix such an i and set D = Di.

Now consider the behaviour of the algorithm A on all possible strings σ of
length n. On some of these strings, the algorithm does not achieve precision
f(σ); we ignore such strings. On some others, A(σ) achieves precision f(σ) and
thus returns a sequence containing some ball A of radius less than f(σ). Call
A1, ...,At all such balls (obtained by some A(σ) with σ of length n). Note that
t ≤ 2n. Let α1, ..., αt be the centers of these balls, and consider their average
β = (1/t)

∑
i≤t αi. Since the Vi are disjoint and there are 2s-many of them, by

the pigeonhole principle, there exists some j such that β(Vj) ≤ 2−s, and thus
αi(Vj) ≤ t · 2−s ≤ 2n−s for all i. Fix such a j and set V = Vj , and ξ = ξj .

Recalling that the granularity of V is at most L(n), we can apply the ran-
domness deficiency lemma, we have for all X ∈ V :

ed(X |A(X �n)) ≥ log
αi(X �L(n))

αi(X �L(n)) + 2L(n) f(X �n) − logαi(V )

−K(V, n, s(n))−O(1)

where αi is the center of the ball of radius f(X � n) enumerated by A(X � n).
And this finally tells us how the function f should be defined: we require that
2L(n)f(X � n) is smaller than αi(X � L(n)), so as to make constant the first
term of the right-hand-side. It seems to be a circular definition, but it is not
the case: we can define f(σ) to be the first rational q we find such that A(σ)
enumerates a ball of radius at most q and such that the center α of this ball is
such that α(σ) > 2L(|σ|)q. This makes f a partial computable function, which
is fine for our construction. Note also that f(σ) can be undefined if A(σ) is a
measure γ such that γ(σ) = 0, but we need not worry about this case because
it automatically makes the algorithm fail on σ (because the γ-deficiency of any
extension of σ is infinite).

It remains to evaluate the Kolmogorov complexity of V . What we need to ob-
serve that K(V ) can be computed from Prec(A, f, n), which, being a clopen set
of granularity at most n, has complexity at most 2n+O(1). Indeed, knowing this
set, one can compute the open set of measures ν such that ν(Prec(A, f, n)) >
1−η−3δ/4 and effectively find a ball D as above. Then, from D, the sequence of
clopen sets V1, . . . , V2s can be effectively computed. Moreover, to choose the V
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as above, we need to know β, hence the sequence of measures α1, . . . αt. But
these can also be found knowing Prec(A, f, n), by definition of the latter. Thus
we have established that K(V ) ≤ 2n+O(1).

Plugging all these complexity estimates in the above expression, we get

ed(X |A(X �n)) ≥ s(n)− n−K(s(n))−O(1) (1)

≥ s(n)− 2 log(s(n))− n−O(1) (2)

Thus, by taking s(n) = 2n+ d for some large enough constant d, we get that

ed(X |A(X �n)) > n

for all X ∈ V . But the clopen set V has ξ-measure at least 1 − δ/8, so by
definition of the Ai, A returns a ξ-inconsistent answer for deficiency level n on
a set of ξ-measure at least 1 − η − 3δ/4− δ/8 of strings of length n. Note that
this is a Σ0

1 -property of ξ, so we can in fact effectively find a ball B′′ intersecting
M0 on which this happens. For every ν ∈ B′′, A(σ) is null on a set of strings of
ν-measure at least η (by assumption) and is inconsistent on a set of measure at
least 1 − η − 7δ/8, so Succ(A, n, n) has a ν-measure of at most 7δ/8, which is
the contradiction we wanted.

Now, we have reached our first goal which was to show that some UN ′ is not
dense in B∩M0 for some N ′. Note that the Um are non-increasing so this further
means that there is a ball B′ ⊆ B such that B∩M0 does not intersect any of the
Um for m ≥ N ′. By definition, this means that on any measure ν of that ball B′,
the algorithm does not reach precision f(σ) on a set of strings σ of ν-measure
at least η + δ/2. Thus, it suffices to consider the algorithm A′ which on any
input σ does the following: it runs A(σ) until A(σ) reaches precision f(σ). If
this never happens, A′(σ) remains null. If it does, then A′(σ) returns the same
list of balls as A(σ). Clearly the algorithm A′ is δ-good since for every σ in the
domain of A, A′(σ) = A(σ). But by construction our new algorithm A′ is such
that ν(Null(A′, N ′)) ≥ η + δ/2 for all ν ∈ B′. This finishes the proof. ��
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Abstract. We consider the problem of proper learning a Boolean Half-
space with integer weights {0, 1, . . . , t} from membership queries only.
The best known algorithm for this problem is an adaptive algorithm

that asks nO(t5) membership queries where the best lower bound for the
number of membership queries is nt [4].

In this paper we close this gap and give an adaptive proper learning
algorithm with two rounds that asks nO(t) membership queries. We also

give a non-adaptive proper learning algorithm that asks nO(t3) member-
ship queries.

1 Introduction

We study the problem of the learnability of boolean halfspace functions from
membership queries [2, 1]. Boolean halfspace is a function f = [w1x1 + · · · +
wnxn ≥ u] from {0, 1}n to {0, 1} where the weights w1, . . . , wn and the threshold
u are integers. The function is 1 if the arithmetic sum w1x1 + · · · + wnxn is
greater or equal to u and zero otherwise. In the membership query model [2, 1]
the learning algorithm has access to a membership oracle Of , for some target
function f . The oracle can receive an assignment a ∈ {0, 1}n from the algorithm
and returns f(a). A proper learning algorithm for a class of functions C is an
algorithm that has access to Of where f ∈ C asks membership queries and
returns a function g in C that is equivalent to f .

The problem of learning classes from membership queries only were moti-
vated from many problems in different areas such as computational biology that
arises in whole-genome (DNA) shotgun sequencing [8, 5, 11], DNA library screen-
ing [15], multiplex PCR method of genome physical mapping [13], linkage dis-
covery problems of artificial intelligence [11], chemical reaction problem [3, 6, 7]
and signature coding problem for the multiple access adder channels [9].

Another scenario that motivate the problem of learning Halfspaces is the
following. Given a set of n similar looking objects of unknown weights (or any
other measure), but from some class of weights W . Suppose we have a scale (or
a measure instrument) that can only indicate whether the weight of any set of
objects exceeds some unknown fixed threshold (or capacity). How many weighing
do one needs in order to find the weights (or all possible weights) of the objects.

P. Auer et al. (Eds.): ALT 2014, LNAI 8776, pp. 96–110, 2014.
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In this paper we study the problem of proper learnability of boolean halfs-
pace functions with t + 1 different non-negative weights W = {0, 1, . . . , t} from
membership queries. The best known algorithm for this problem is an adaptive
algorithm that asks nO(t5) membership queries where the best lower bound for
the number of membership queries is nt [4].

In this paper we close the above gap and give an adaptive proper learning
algorithm with two rounds that asks nO(t) membership queries. We also give
a non-adaptive proper learning algorithm that asks nO(t3) membership queries.
All the algorithms in this paper runs in time that is linear in the membership
query complexity.

Extending such result to non-positive weights is impossible. In [4] Abboud et.
al. showed that in order to learn boolean Halfspace functions with weights W =
{−1, 0, 1}, we need at least O(2n−o(n)) membership queries. Therefore the algo-
rithm that asks all the 2n queries in {0, 1}n is optimal for this case. Shevchenko
and Zolotykh [16] studied halfspace function over the domain {0, 1, . . . , k − 1}n
when n is fixed and no constraints on the coefficients. They gave the lower bound
Ω(logn−2 k) for learning this class from membership queries. Hegedüs [14] prove
the upper bound O(logn k/ log log k). For fixed n Shevchenko and Zolotykh [17]
gave a polynomial time algorithm (in log k) for this class. One of the reviewers
noted that applying Theorem 3 in [14], the upper bound O(logn−2 k) for the
teaching dimension of a halfspace, [12], gives the upper bound O(logn−1 k/ log
log k).

This paper is organized as follows. In Section 2 we give some definitions and
preliminary results. In Section 3 we show that any boolean halfspace with poly-
nomially bounded coefficients can be expressed as an Automaton of polynomial
size. A result that will be used in Section 4. In Section 4 we give the two round
learning algorithm and the non-adaptive algorithm.

2 Definitions and Preliminary Results

In this section we give some definitions and preliminary results that will be used
throughout the paper

2.1 Main Lemma

In this subsection we prove two main results that will be frequently used in this
paper

For integers t < r we denote [t] := {1, 2, . . . , t}, [t]0 = {0, 1, . . . , t} and [t, r] =
{t, t+ 1, . . . , r}.

We first prove the following

Lemma 1. Let w1, . . . , wm ∈ [−t, t] where at least one wj �∈ {−t, 0, t} and

m∑
i=1

wi = r ∈ [−t+ 1, t− 1].
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There is a permutation φ : [m] → [m] such that for every j ∈ [m], Wj :=∑j
i=1 wφ(i) ∈ [−t+ 1, t− 1].

Proof. Since there is j such that wj ∈ [−t+ 1, t− 1]\{0} we can take φ(1) = j.
Then W1 = wj ∈ [−t+1, t− 1]. If there is j1, j2 such that wj1 = t and wj2 = −t
we set φ(2) = j1, φ(3) = j2 if W1 < 0 and φ(2) = j2, φ(3) = j1 if W1 > 0. We
repeat the latter until there are either no more t or no more −t in the rest of
the elements.

Assume that we have chosen φ(1), . . . , φ(k− 1) such that Wj ∈ [−t+1, t− 1]
for j ∈ [k− 1]. We now show how to determine φ(k) so that Wk ∈ [−t+1, t− 1].

If Wk−1 =
∑k−1

i=1 wφ(i) > 0 and there is q �∈ {φ(1), . . . , φ(k−1)} such that wq < 0
then we take φ(k) := q. Then Wk = Wk−1 + wq ∈ [−t + 1, t − 1]. If Wk−1 < 0
and there is q �∈ {φ(1), . . . , φ(k − 1)} such that wq > 0 then we take φ(k) := q.
Then Wk = Wk−1 + wq ∈ [−t + 1, t − 1]. If for every q �∈ {φ(1), . . . , φ(k − 1)},
wq > 0 (resp. wq < 0) then we can take an arbitrary order of the other elements
and we get Wk−1 < Wk < Wk+1 < · · · < Wm = r (resp. Wk−1 > Wk > Wk+1 >
· · · > Wm = r). If Wk−1 = 0 then there must be q �∈ {φ(1), . . . , φ(k − 1)} such
that wq ∈ [−t+1, t− 1]. This is because not both t and −t exist in the elements
that are not assigned yet. We then take φ(k) := q.

This completes the proof. ��

We now prove the first main lemma

Lemma 2. Let w1, . . . , wm ∈ [−t, t] and

m∑
i=1

wi = r ∈ [−t+ 1, t− 1].

There is a partition S1, S2, . . . , Sq of [m] such that

1. For every j ∈ [q − 1],
∑

i∈Sj
wi = 0.

2.
∑

i∈Sq
wi = r.

3. For every j ∈ [q], |Sj | ≤ 2t− 1.
4. If r �= 0 then |Sq| ≤ 2t− 2.

Proof. If w1, . . . , wm ∈ {−t, 0, t} then r must be zero, and the number of non-
zero elements is even and half of them are equal to t and the other half are equal
to −t. Then we can take Si = {−t, t} or Si = {0} for all i. Therefore we may
assume that at least one wj �∈ {−t, 0, t}.

By Lemma 1 we may assume w.l.o.g (by reordering the elements) that such

that Wj :=
∑j

i=1 wi ∈ [−t + 1, t − 1] for all j ∈ [m]. Let W0 = 0. Consider
W0,W1,W2, . . . ,W2t−1. By the pigeonhole principle there is 0 ≤ j1 < j2 ≤ 2t−1
such that Wj2 = Wj1 and then Wj2 − Wj1 =

∑j2
i=j1+1 wi = 0. We then take

S1 = {j1 + 1, . . . , j2}. Notice that |S1| = j2 − j1 ≤ 2t− 1.
Since

∑
i�∈S1

wi = r we can repeat the above to find S2, S3, · · ·. This can be
repeated as long as |[m]\(S1 ∪ S2 ∪ · · · ∪ Sh)| ≥ 2t− 1. This proves 1− 3.
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We now prove 4. If g := |[m]\(S1 ∪ S2 ∪ · · · ∪ Sh)| < 2t − 1 then define
Sh+1 = [m]\(S1∪S2∪· · ·∪Sh) and we get 4 for q = h+1. If g = 2t−1 thenW0 =
0,W1,W2, . . . ,W2t−1 = r and since r �= 0 we must have 0 ≤ j1 < j2 ≤ 2t − 1
and j2 − j1 < 2t− 1 such that Wj2 = Wj1 . Then define Sh+1 = {j1 + 1, . . . , j2},
Sh+2 = [m]\(S1 ∪ S2 ∪ · · · ∪ Sh+1) and q = h + 2. Then |Sh+2| ≤ 2t − 2,∑

i∈Sh+1
wi = Wj2 −Wj1 = 0 and

∑
i∈Sh+2

wi = r. ��

The following example shows that the bound 2t − 2 for the size of set in
Lemma 2 is tight. Consider the 2t− 2 elements w1 = w2 = · · · = wt−1 = t and
wt = wt+1 = · · · = w2t−2 = −(t − 1). The sum of any subset of elements is
distinct. By adding the element w2t−1 = −(t − 1) it is easy to show that the
bound 2t− 1 in the lemma is also tight.

We now prove the second main lemma

Lemma 3. Let (w1, v1), . . . , (wm, vm) ∈ [−t, t]2 and

m∑
i=1

(wi, vi) = (r, s) ∈ [−t+ 1, t− 1]2.

There is M ⊆ [m] such that

1.
∑

i∈M (wi, vi) = (r, s).
2. |M | ≤ 8t3 − 4t2 − 2t+ 1.

Proof. Since w1, . . . , wm ∈ [−t, t] and
∑m

i=1 wi = r ∈ [−t+1, t−1], by Lemma 2,
there is a partition S1, . . . , Sq of [m] that satisfies the conditions 1− 4 given in
the lemma. Let Vj =

∑
i∈Sj

vi for j = 1, . . . , q. We have

Vj ∈ [−t|Sj |, t|Sj |] ⊆ [−t(2t− 1), t(2t− 1)] ⊂ [−2t2, 2t2]

for j = 1, . . . , q and

q−1∑
i=1

Vi = s− Vq ∈ [−2t2 + 1, 2t2 − 1].

If s−Vq = 0 then for M = Sq we have |M | = |Sq| ≤ 2t−1 ≤ 8t3−4t2−2t+1
and ∑

i∈M

(wi, vi) =
∑
i∈Sq

(wi, vi) = (r, Vq) = (r, s).

Therefore we may assume that s− Vq �= 0.
Consider V1, V2, . . . , Vq−1. By 4 in Lemma 2 there is a set Q ⊆ [q − 1] of size

at most 2(2t2)− 2 = 4t2 − 2 such that
∑

i∈Q Vi = s− Vq. Then for

M = Sq ∪
⋃
i∈Q

Si
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we have
|M | ≤ (2t− 1) + (4t2 − 2)(2t− 1) = 8t3 − 4t2 − 2t+ 1

and ∑
i∈M

(wi, vi) =
∑
i∈Sq

(wi, vi) +
∑
j∈Q

∑
i∈Sj

(wi, vi)

= (r, Vq) +
∑
j∈Q

(0, Vj)

= (r, Vq) + (0, s− Vq) = (r, s).

��

2.2 Boolean Functions

For a boolean function f(x1, . . . , xn) : {0, 1}n → {0, 1}, 1 ≤ i1 < i2 < · · · < ik ≤
n and σ1, . . . , σk ∈ {0, 1} we denote by

f |xi1=σ1,xi2=σ2,···,xik
=σk

the function f when fixing the variables xij to σj for all j ∈ [k]. For a ∈
{0, 1}n we denote by a|xi1=σ1,xi2=σ2,···,xik

=σk
the assignment a where each aij

is replaced by σj for all j ∈ [k]. We note here (and throughout the paper)
that f |xi1=σ1,xi2=σ2,···,xik

=σk
is a function from {0, 1}n → {0, 1} with the same

variables x1, . . . , xn as of f . Obviously

f |xi1=σ1,xi2=σ2,···,xik
=σk

(a) = f(a|xi1=σ1,xi2=σ2,···,xik
=σk

).

When σ1 = · · · = σk = ξ and S = {xi1 , . . . , xik} we denote

f |S←ξ = f |xi1=ξ,xi2=ξ,···,xik
=ξ.

In the same way we define a|S←ξ. We denote by 0n = (0, 0, . . . , 0) ∈ {0, 1}n and
1n = (1, 1, . . . , 1) ∈ {0, 1}n. For two assignments a ∈ {0, 1}k and b ∈ {0, 1}j we
denote by ab ∈ {0, 1}k+j the concatenation of the two assignments.

For two assignments a, b ∈ {0, 1}n we write a ≤ b if for every i, ai ≤ bi. A
boolean function f : {0, 1}n → {0, 1} is monotone if for every two assignments
a, b ∈ {0, 1}n, if a ≤ b then f(a) ≤ f(b). Recall that every monotone boolean
function f has a unique representation as a reduced monotone DNF [1]. That is,
f = M1 ∨M2 ∨ · · · ∨Ms where each monomial Mi is an ANDs of input variables
and for every monomial Mi there is a unique assignment a(i) ∈ {0, 1}n such that

f(a(i)) = 1 and for every j ∈ [n] where a
(i)
j = 1 we have f(a(i)|xj=0) = 0. We

call such assignment a minterm of the function f . Notice that every monotone
DNF can be uniquely determined by its minterms.

We say that xi is relevant in f if f |xi=0 �≡ f |xi=1. Obviously, if f is monotone
then xi is relevant in f if there is an assignment a such that f(a|xi=0) = 0 and
f(a|xi=1) = 1. We say that a is a semiminterm of f if for every ai = 1 either
f(a|xi=0) = 0 or xi is not relevant in f .
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For two assignments a, b ∈ {0, 1}n we define the distance between a and b as
wt(a + b) where wt is the Hamming weight and + is the bitwise exclusive or of
assignments. The set B(a, d) is the set of all assignments that are of distance at
most d from a ∈ {0, 1}n.

2.3 Symmetric and Nonsymmetric

We say that a boolean function f is symmetric in xi and xj if for any ξ1, ξ2 ∈
{0, 1} we have f |xi=ξ1,xj=ξ2 ≡ f |xi=ξ2,xj=ξ1 . Obviously, this is equivalent to
f |xi=0,xj=1 ≡ f |xi=1,xj=0. We say that f is nonsymmetric in xi and xj if it is
not symmetric in xi and xj . This is equivalent to f |xi=0,xj=1 �≡ f |xi=1,xj=0. We
now prove

Lemma 4. Let f be a monotone function and 1 ≤ i < j ≤ n. Then f is
nonsymmetric in xi and xj if and only if there is a minterm a of f such that
ai + aj = 1 (one is 0 and the other is 1) where f(a|xi=0,xj=1) �= f(a|xi=1,xj=0).

Proof. Since f is nonsymmetric in xi and xj we have f |xi=0,xj=1 �≡ f |xi=1,xj=0

and therefore there is an assignment a′ such that

f |xi=0,xj=1(a
′) �= f |xi=1,xj=0(a

′).

Suppose w.l.o.g. f |xi=0,xj=1(a
′) = 0 and f |xi=1,xj=0(a

′) = 1. Take a minterm
a ≤ a′ of f |xi=1,xj=0. Notice that ai = aj = 0. Otherwise we can flip them to
0 without changing the value of the function f |xi=1,xj=0 and then a is not a
minterm. Then f |xi=1,xj=0(a) = 1 and since a ≤ a′, f |xi=0,xj=1(a) = 0.

We now prove that b = a|xi=1,xj=0 is a minterm of f . Since b|xi=0 =
a|xi=0,xj=0 < a|xi=0,xj=1 we have f(b|xi=0) < f(a|xi=0,xj=1) = f |xi=0,xj=1(a) =
0 and therefore f(b|xi=0) = 0. For any bk = 1 where k �= i, since a is a minterm
for f |xi=1,xj=0, we have f(b|xk=0) = f |xi=1,xj=0(a|xk=0) = 0. Therefore b is a
minterm of f . ��

We write xi ∼f xj when f is symmetric in xi and xj and call∼f the symmetric
relation of f . The following folklore result is proved for completeness

Lemma 5. The relation ∼f is an equivalence relation.

Proof. Obviously, xi ∼f xi and if xi ∼f xj then xj ∼f xi. Now if xi ∼f xj and
xj ∼f xk then f |xi=ξ1,xj=ξ2,xk=ξ3 ≡ f |xi=ξ2,xj=ξ1,xk=ξ3 ≡ f |xi=ξ2,xj=ξ3,xk=ξ1

≡ f |xi=ξ3,xj=ξ2,xk=ξ1 and therefore xi ∼f xk. ��

2.4 Properties of Boolean Halfspaces

A Boolean Halfspace function is a boolean function f : {0, 1}n → {0, 1}, f =
[w1x1 + w2x2 + · · · + wnxn ≥ u] where w1, . . . , wn, u are integers, defined as
f(x1, . . . , xn) = 1 if w1x1+w2x2+ · · ·+wnxn ≥ u and 0 otherwise. The numbers
wi, i ∈ [n] are called the weights and u is called the threshold. The class HS is the
class of all Boolean Halfspace functions. The class HSt is the class of all Boolean
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Halfspace functions with weights wi ∈ [t]0 and the class HS[−t,t] is the class of all
Boolean Halfspace functions with weights wi ∈ [−t, t]. Obviously, the functions
f ∈ HSt are monotone. The representation of the above Boolean Halfspaces are
not unique. For example, [3x1 + 2x2 ≥ 2] is equivalent to [x1 + x2 ≥ 1]. We will
assume that

There is an assignment a ∈ {0, 1}n such that w1a1 + · · ·+ wnan = b (1)

Otherwise we can replace b by the minimum integer w1a1 + · · · + wnan where
f(a) = 1 and get an equivalent function. Such a is called a strong assignment
of f . If f is monotone, a is strong assignment and minterm of f then a is called
a strong minterm.

The following lemma follows from the above definitions

Lemma 6. Let f ∈ HSt. We have

1. If a is strong assignment of f then a is semiminterm of f .
2. If all the variables in f are relevant then any semiminterm of f is a minterm

of f .

We now prove

Lemma 7. Let f = [w1x1 + w2x2 + · · ·+ wnxn ≥ u] ∈ HSt. Then

1. If w1 = w2 then f is symmetric in x1 and x2.
2. If f is symmetric in x1 and x2 then there are w′

1 and w′
2 such that |w′

1−w′
2| ≤

1 and f ≡ [w′
1x1 + w′

2x2 + w3x3 · · ·+ wnxn ≥ u] ∈ HSt.

Proof. If w1 = w2 then for any assignment z = (z1, z2, . . . , zn) we have w1z1 +
w2z2 + · · ·+ wnzn = w1z2 + w2z1 + · · ·+ wnzn. Therefore, f(0, 1, x3, . . . , xn) ≡
f(1, 0, x3, . . . , xn).

Suppose w1 > w2. It is enough to show that f ≡ g := [(w1−1)x1+(w2+1)x2+
w3x3 · · ·+wnxn ≥ u]. Obviously, f(x) = g(x) when x1 = x2 = 1 or x1 = x2 = 0.
If f(0, 1, x3, . . . , xn) ≡ f(1, 0, x3, . . . , xn) then w1+w3x3+w4x4+ · · ·+wnxn ≥ u
if and only if w2 + w3x3 + w4x4 + · · · + wnxn ≥ u and therefore w1 + w3x3 +
w4x4 + · · ·+ wnxn ≥ u if and only if (w1 − 1) + w3x3 + w4x4 + · · ·+ wnxn ≥ u
if and only if (w2 + 1) + w3x3 + w4x4 + · · ·+ wnxn ≥ u. ��

We now prove

Lemma 8. Let f ∈ HSt. Let a be any assignment such that f(a) = 1 and
f(a|xi=0) = 0 for some i ∈ [n]. There is a strong assignment of f in B(a, 2t−2).

Proof. Let f = [w1x1 + · · · + wnxn ≥ u]. Since f(a) = 1 and f |xi=0(a) = 0,
ai = 1 and we have w1a1 + w2a2 + · · · + wnan = u + u′ where t − 1 ≥ u′ ≥ 0.
If u′ = 0 then a ∈ B(a, 2t− 2) is a strong assignment. So we may assume that
u′ �= 0.

By (1) there is an assignment b where w1b1+w2b2+ · · ·+wnbn = u. Therefore
w1(b1−a1)+w2(b2−a2)+ · · ·+wn(bn−an) = −u′. Since wi(bi−ai) ∈ [−t, t], by
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Lemma 2 there is S ⊆ [n] of size at most 2t−2 such that
∑

i∈S wi(bi−ai) = −u′.
Therefore

u = −u′ + (u+ u′) =
∑
i∈S

wi(bi − ai) +

n∑
i=1

wiai =
∑
i∈S

wibi +
∑
i�∈S

wiai.

Thus the assignment c where ci = bi for i ∈ S and ci = ai for i �∈ S is a strong
assignment of f and c ∈ B(a, 2t− 2). ��

The following will be used to find the relevant variables

Lemma 9. Let f ∈ HSt. Suppose xk is relevant in f . Let a be any assignment
such that ak = 1, f(a) = 1 and f(a|xj=0) = 0 for some j ∈ [n]. There is
c ∈ B(a, 2t− 2) such that ck = 1, f(c) = 1 and f(c|xk=0) = 0.

Proof. Let f = [w1x1 + · · · + wnxn ≥ u]. Since f(a) = 1 and f(a|xj=0) = 0 we
have aj = 1 and w1a1 + w2a2 + · · ·+ wnan = u + u′ where t − 1 ≥ u′ ≥ 0. Let
b a minterm of f such that bk = 1. Since b is a minterm we have w1b1 +w2b2 +
· · ·+wnbn = u+ u′′ where t− 1 ≥ u′′ ≥ 0 and since f(b|xk=0) = 0 we also have
u′′ −wk < 0. If u′′ = u′ then we may take c = a. Therefore we may assume that
u′′ �= u′.

Hence
∑n

i=1,i�=k wi(bi− ai) = u′′−u′ ∈ [−t+1, t− 1]\{0}. By Lemma 2 there
is S ⊆ [n]\{k} of size at most 2t − 2 such that

∑
i∈S wi(bi − ai) = u′′ − u′.

Therefore

u+ u′′ =
∑
i∈S

wi(bi − ai) +

n∑
i=1

wiai =
∑
i∈S

wibi +
∑
i�∈S

wiai.

Thus the assignment c where ci = bi for i ∈ S and ci = ai for i �∈ S satisfies
ck = ak = 1 and c ∈ B(a, 2t− 2). Since

∑n
i=1,i�=k wici = u+u′′− bk < u we have

f(c|xk=0) = 0. ��

The following will be used to find the order of the weights

Lemma 10. Let f ∈ HSt be nonsymmetric in x1 and x2. For any minterm a
of f of weight at least 2 there is b ∈ B(a, 2t + 1) such that b1 + b2 = 1 and
f |x1=0,x2=1(b) �= f |x1=1,x2=0(b).

Proof. Let f = [w1x1 + · · ·+wnxn ≥ u]. Assume w.l.o.g w1 > w2. By Lemma 4
there is a minterm c = (1, 0, c3, . . . , cn) such that f(c) = 1 and f(0, 1, c3, . . . , cn)
= 0. Then W1 := w1 + w3c3 + · · · + wncn = u + v where 0 ≤ v ≤ t − 1 and
W2 := w2+w3c3+· · ·+wncn = u−z where 1 ≤ z ≤ t−1. In fact−z = v−w1+w2.
Since a is a minterm we haveW3 := w1a1+· · ·+wnan = u+h where 0 ≤ h ≤ t−1.
It is now enough to find b ∈ B(a, 2t− 2) such that either

1. b1 = 1, b2 = 0 and w1b1 + · · ·+ wnbn = u+ v, or

2. b1 = 0, b2 = 1 and w1b1 + · · ·+ wnbn = u− z.
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This is because if b1 = 1, b2 = 0 and w1b1+ · · ·+wnbn = u+ v (the other case is
similar) then f(1, 0, b2, . . . , bn) = 1 and since w1 ·0+w2 ·1+w3 ·a3 · · ·+wnan =
u+ v − w1 + w2 = u− z we have f(0, 1, b2, . . . , bn) = 0.

We now have four cases
Case I. a1 = 1 and a2 = 0: Then W1 −W3 = w3(c3 − a3) + · · ·+wn(cn − an) =
v−h ∈ [−t+1, t− 1]. By Lemma 2 there is S ⊆ [3, n] of size at most 2t− 1 such
that

∑
i∈S wi(ci − ai) = v − h. Therefore

u+ v = v − h+W3 =
∑
i∈S

wi(ci − ai) +

n∑
i=1

wiai =
∑
i∈S

wici +

n∑
i�∈S

wiai.

Now define b to be bi = ci for i ∈ S and bi = ai for i �∈ S. Since 1, 2 �∈ S
b1 = a1 = 1 and b2 = a2 = 0. Since b ∈ B(a, 2t − 1) ⊂ B(a, 2t + 1) and b
satisfies 1. the result follows for this case.
Case II. a1 = 0 and a2 = 1: Since a is of weight at least 2, we may assume w.l.o.g
that a3 = 1. Since a is a minterm f(a) = 1 and f(a|x3=0) = 0 and therefore for
a′ = a|x3=0 we haveW4 := w1a

′
1+w2a

′
2+· · ·+wna

′
n = u−h′ where 1 ≤ h′ ≤ t−1.

Then W2 −W4 =
∑n

i=3 wi(ci − a′i) = h′ − z ∈ [−t+1, t− 1]. By Lemma 2 there
is S ⊆ [3, n] of size at most 2t− 1 such that

∑
i∈S wi(ci−a′i) = h′− z. Therefore

u− z = h′ − z +W4 =
∑
i∈S

wi(ci − a′i) +
n∑

i=1

wia
′
i =
∑
i∈S

wici +

n∑
i�∈S

wia
′
i.

Now define b to be bi = ci for i ∈ S and bi = a′i for i �∈ S. Since 1, 2 �∈ S
b1 = a′1 = 0 and b2 = a′2 = 1. Since b ∈ B(a′, 2t − 1) ⊂ B(a, 2t + 1) and b
satisfies 2. the result follows for this case.
Case III. a1 = 1 and a2 = 1: Since a is a minterm f(a) = 1 and f(a|x1=0) = 0
and therefore for a′ = a|x1=0 we have W4 := w1a

′
1 +w2a

′
2 + · · ·+wna

′
n = u− h′

where 1 ≤ h′ ≤ t− 1. We now proceed exactly as in Case II.
Case IV. a1 = 0 and a2 = 0: Since a is of weight at least 2 we may assume
w.l.o.g that a3 = 1. Since a is a minterm f(a) = 1 and f(a|x3=0) = 0 and
therefore for a′ = a|x3=0 we have W4 := a′1w1 + a′2w2 + · · · + a′nwn = u − h′

where 1 ≤ h′ ≤ t − 1. If f(a′|x2=1) = 0 then proceed as in Case II to get
b ∈ B(a, 2t + 1) that satisfies 2. If f(a′|x1=1) = 1 then proceed as in Case I.
Now the case where f(a′|x2=1) = 1 and f(a′|x1=1) = 0 cannot happen since
w1 > w2. ��

The following will be used for the non-adaptive algorithm

Lemma 11. Let f, g ∈ HSt be such that f �⇒ g. For any minterm b of f there
is c ∈ B(b, 8t3 +O(t2)) such that f(c) + g(c) = 1.

Proof. Let f = [w1x1+ · · ·+wnxn ≥ u] and g = [w′
1x1+ · · ·+w′

nxn ≥ u′]. Since
f �⇒ g, there is a′ ∈ {0, 1}n such that f(a′) = 1 and g(a′) = 0. Let a ≤ a′ be a
minterm of f . Then f(a) = 1 and since a ≤ a′ we also have g(a) = 0. Therefore
w1a1+ · · ·+wnan = u+r where 0 ≤ r ≤ t−1 and w′

1a1+ · · ·+w′
nan = u′−s for
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some integer s ≥ 1. Since b is a minterm of f we have w1b1+ · · ·+wnbn = u+ r′

where 0 ≤ r′ ≤ t− 1. If g(b) = 0 then take c = b. Otherwise, if for some bi = 1,
g(b|xi=0) = 1 then take c = b|xi=0. Therefore we may assume that b is also a
minterm of g. Thus w′

1b1 + · · ·+ w′
nbn = u+ s′ where 0 ≤ s′ ≤ t− 1.

Consider the sequence Zi, i = 1, . . . , n+s−1 where Zi = (wi(ai− bi), w
′
i(ai−

bi)) for i = 1, . . . , n and Zi = (0, 1) for i = n+ 1, . . . , n+ s− 1. Then

n+s−1∑
i=1

Zi = (r − r′,−1− s′) ∈ [−t, t]2.

By Lemma 3 there is a set S ⊆ [n+s−1] of size 8t3+O(t2) such that
∑

i∈S Zi =
(r− r′,−1−s′). Therefore, there is a set T ⊆ [n] of size at most 8t3+O(t2) such
that

∑
i∈T Zi = (r − r′,−�− 1− s′) for some � > 0. Therefore∑

i∈T

wi(ai − bi) = r − r′ and
∑
i∈T

w′
i(ai − bi) = −�− 1− s′.

Define c such that ci = ai for i ∈ T and ci = bi for i �∈ T . Then

n∑
i=1

wici = u+ r ≥ u and

n∑
i=1

w′
ici = u′ − �− 1 < u′.

Therefore f(c) = 1 and g(c) = 0. This gives the result. ��

3 Boolean Halfspace and Automata

In this section we show that functions in HS[−t,t] has an automaton representa-
tion of poly(n, t) size.

Lemma 12. Let f1, f2, . . . , fk ∈ HS[−t,t] and g : {0, 1}k → {0, 1}. Then g(f1, . . .

, fk) can be represented with an Automaton of size (2t)knk+1.

Proof. Let fi = [wi,1x1 + · · · + wi,nxn ≥ ui], i = 1, . . . , k. Define the following
automaton: The alphabet of the automaton is {0, 1}. The states are S ⊆ [n]0 ×
[−tn, tn]k. The automaton has n+1 levels. States in level i are connected only to
states in level i+1 for all i ∈ [n]0. We denote by Si the states in level i. We also
have Si ⊆ {i} × [−tn, tn]k so the first entry of the state indicates the level that
the state belongs to. The state (0, (0, 0, . . . , 0)) is the initial state and is the only
state in level 0. That is S0 = {(0, (0, 0, . . . , 0))}. We now show how to connect
states in level i to states in level i + 1. Given a state s = (i, (W1,W2, . . . ,Wk))
in Si. Then the transition function for this state is

δ((i, (W1,W2, . . . ,Wk)), 0) = (i + 1, (W1,W2, . . . ,Wk))

and

δ((i, (W1,W2, . . . ,Wk)), 1) = (i+1, (W1+w1,i+1,W2+w2,i+1, . . . ,Wk+wk,i+1)).
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The accept states (where the output of the automaton is 1) are all the states
(n, (W1, . . . ,Wk)) where g([W1 ≥ u1], [W2 ≥ u2], . . . , [Wn ≥ un]) = 1. Here
[Wi ≥ ui] = 1 if Wi ≥ ui and zero otherwise. All other states are nonaccept
states (output 0).

We now claim that the above automaton is equivalent to g(f1, . . . , fk). The
proof is by induction on n. The claim we want to prove is that the sub-automaton
that starts from state s = (i, (W1,W2, . . . ,Wk)) computes a function gs that is
equivalent to the function g(f i

1, . . . , f
i
k) where f

i
j = [wj,i+1xi+1 + · · ·+wj,nxn ≥

uj −Wj ]. This immediately follows from the fact that

gs|xi+1=0 ≡ gδ(s,0), and gs|xi+1=1 ≡ gδ(s,1).

It remains to prove the result for level n. The claim is true for the states at level
n because

g(fn
1 , . . . , f

n
k ) = g([0 ≥ u1 −W1], . . . , [0 ≥ un −Wn])

= g([W1 ≥ u1], [W2 ≥ u2], . . . , [Wn ≥ un]).

This completes the proof. ��

Now the following will be used in the sequel

Lemma 13. Let f1, f2 ∈ HS[−t,t]. There is an algorithm that runs in time
O(t2n3) and decides whether f1 ≡ f2. If f1 �≡ f2 then the algorithm finds an
assignment a such that f1(a) �= f2(a).

Proof. We build an automaton for f1 + f2. If there is no accept state then
f1 ≡ f2. If there is, then any path from the start state to an accept state defines
an assignment a such that f1(a) �= f2(a).

The time complexity follows from Lemma 12. ��

4 Two Rounds and Non-adaptive Algorithm

In this section we give a two rounds algorithm for learning HSt that uses n
O(t)

membership queries.
The algorithm is in Figure 1. Let f = [w1x1 +w2x2 + · · ·+wnxn ≥ u] be the

target function. Let

Am =

n⋃
i,j=0

B(0i1n−i−j0j,m).

In Lemma 14 below we show that by querying all the assignments in A2t−1 the
algorithm can find all the relevant variables of the target function f . In the first
step in round 1 the algorithm finds the relevant variables X of f . In Lemma 16
below we show that by querying all the assignments in A4t−1 the algorithm
can find all the nonsymmetric pairs of variables and therefore the order of the
corresponding weights. This is the second step in round 1. The algorithm define
a set Y of all the pairs (xj , xk) where wj < wk and then order all the weights.
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By the end of the first round, the algorithm knows the relevant variables and
the order of the weights of the target function.

In the second round, the algorithm defines the set F of all possible functions
in HSt that has weights with the order that was found in round 1. As we will see
below |F| = nO(t). For every two non-equivalent f1, f2 ∈ F the algorithm finds
an assignment a such that f1(a) �= f2(a). Then either f(a) �= f1(a) in which case
f1 is removed from F , or f(a) �= f2(a) in which case f2 is removed from F . All
the functions remain in F are equivalent to the target function f .

Learning HalfSpace f = [w1x1 + w2x2 + · · ·+ wnxn ≥ u]

Round 1.
X ← ∅, Y ← ∅
Ask Membership Queries for all the assignments in

A4t−1 :=
⋃n

i,j=0 B(0i1n−i−j0j , 4t − 1)

For k = 1, . . . , n
If there is a ∈ A2t−2 such that ak = 1, a|xk=0 ∈ A2t−1 and f(a) �= f(a|xk=0)
then X ← X ∪ {xk}.
/∗ X contains all the relevant variables. If xi �∈ X then wi = 0 ∗/

For each xj , xk ∈ X do
If there is b ∈ A4t−1 such that bj + bk = 1

and f |xj=0,xk=1(b) = 1, f |xj=1,xk=0(b) = 0 then Y = Y ∪ {(xj , xk)}
/∗ (xj , xk) ∈ Y iff xj , xk are nonsymmetric and wj < wk ∗/

Find an order xj1 , . . . , xjr of all the elements of X such that
(xji+1 , xji) �∈ Y for all i = 1, . . . , r − 1
/∗ Here we have wj1 ≤ wj2 ≤ · · · ≤ wjr ∗/

Round 2.
D ← ∅
F = All possible functions g := [w′

1x1 + w′
2x2 + · · ·+ w′

nxn ≥ u′] where
1 ≤ w′

j1 ≤ w′
j2 ≤ · · · ≤ w′

jr ≤ t, all other w′
j = 0 and u′ ∈ [nt]

For every two non-equivalent functions f1, f2 ∈ F
Find a such that f1(a) �= f2(a)
D ← D ∪ {a}.

Ask Membership Queries for all the assignments in D.
For every g ∈ F and a ∈ D if g(a) �= f(a) then F ← F\{g}
Output(F)

Fig. 1. Two Rounds Algorithm

We now present a complete analysis. Let f = [w1x1 + . . . + wnxn ≥ u]. If
f(0n) = 1 then f ≡ 1. If there is a minterm of weight one, i.e., f(a) = 1 for some
a ∈ B(0n, 1), then 0 ≤ u ≤ t and then all the minterms of f are of weight at most
t. In this case we can find all the minterms in one round by asking membership
queries for all the assignments in B(0, t) (all other assignments gives 0), finding
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all the relevant variables and the nonsymmetric variables and move to the second
round. This case is handled separately to avoid unnecessary complications in the
following analysis. Therefore we may assume that all the minterms of f are of
weight at least two.

Consider the set

Am =
n⋃

i,j=0

B(0i1n−i−j0j,m).

we now prove

Lemma 14. Let f ∈ HSt. The variable xk is relevant in f if and only if there
is a ∈ A2t−2 such that ak = 1, a|xk=0 ∈ A2t−1 and f(a) �= f(a|xk=0).

Proof. If xk is relevant in f then f �≡ 0, 1 and therefore f(0n) = 0 and f(1n) = 1.
Therefore there is an element a in the following sequence

0n, 0k−110n−k, 0k−1120n−k−1, . . . , 0k−11n−k+1, 0k−21n−k+2, . . . , 01n−1, 1n

and j ∈ [n] such that f(a) = 1 and f(a|xj=0) = 0. Notice that ak = 1 and
therefore by Lemma 9 there is c ∈ B(a, 2t − 2) such that ck = 1, f(c) = 1 and
f(c|xk=0) = 0. Since c|xk=0 ∈ B(a, 2t− 1), the result follows. ��

Therefore from the assignments in A2t−1 one can determine the relevant vari-
ables in f . This implies that we may assume w.l.o.g that all the variables are
relevant.

We now show

Lemma 15. If all the variables in f ∈ HSt are relevant then there is a strong
minterm a ∈ A2t−2 of f .

Proof. Follows from Lemma 8 and Lemma 6. ��

Lemma 16. Let f ∈ HSt and suppose all the variables in f are relevant. Sup-
pose f is nonsymmetric in xj and xk. There is b ∈ A4t−1 such that b1 + b2 = 1
and f |xj=0,xk=1(b) �= f |xj=1,xk=0(b).

Proof. By Lemma 15 there is a minterm a ∈ A2t−2 of f . Since wt(a) > 1, by
Lemma 10 there is b ∈ B(a, 2t− 1) such that bj + bk = 1 and f |xj=0,xk=1(b) �=
f |xj=1,xk=0(b). Since b ∈ B(a, 2t+ 1) ⊆ A4t−1 the result follows. ��

Therefore from the assignments in A4t−1 one can find a permutation φ of the
variables in f such that fφ = [w′

1x1 + w′
2x2 + · · · + w′

nxn ≥ u] and w′
1 ≤ w′

2 ≤
· · · ≤ w′

n.
This completes the first round. We now may assume w.l.o.g that f = [w1x1+

· · · + wnxn ≥ u] and 1 ≤ w1 ≤ w2 ≤ · · · ≤ wn ≤ t and all the variables are
relevant. The goal of the second round is to find wi ∈ [1, t] and u ∈ [0, nt]. Since
we know that 1 ≤ w1 ≤ w2 ≤ · · · ≤ wn ≤ t we have(

n+ t− 1

t− 1

)
nt ≤ nt+1
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choices of w1, . . . , wn. That is, at most nt+1 possible functions in HSt. For every
two such functions f1, f2 we use Lemma 13 to find out if f1 ≡ f2 and if not to
find an assignment a such that f1(a) �= f2(a). This takes time(

nt+1

2

)
t2n3 ≤ n2t+7.

Let D the set of all such assignments. Then |D| ≤ n2t+2. In the second round
we ask membership queries with all the assignments in D.

Now notice that if f1(a) �= f2(a) then either f(a) �= f1(a) or f(a) �= f2(a).
This shows that the assignments in B eliminates all the functions that are not
equivalent to the target and all the remaining functions are equivalent to the
target.

Now using Lemma 11 one can replace the set D by B(b, 8t3 +O(t2)) for any
minterm b of f . Lemma 11 shows that for any f1 �≡ f2 there is a ∈ B(b, 8t3 +
O(t2)) such that f1(a) �= f2(a). This shows that the two rounds can be made
into one round and therefore changes the algorithm to a non-adaptive algorithm.
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Abstract. In this paper, we study the problem of learning a mono-
tone DNF with at most s terms of size (number of variables in each
term) at most r (s term r-MDNF) from membership queries. This prob-
lem is equivalent to the problem of learning a general hypergraph using
hyperedge-detecting queries, a problem motivated by applications arising
in chemical reactions and genome sequencing.

We first present new lower bounds for this problem and then present
deterministic and randomized adaptive algorithms with query complexi-
ties that are almost optimal. All the algorithms we present in this paper
run in time linear in the query complexity and the number of variables
n. In addition, all of the algorithms we present in this paper are asymp-
totically tight for fixed r and/or s.

1 Introduction

We consider the problem of learning a monotone DNF with at most s monotone
terms, where each monotone term contains at most r variables (s term r-MDNF)
from membership queries [1]. This is equivalent to the problem of learning a gen-
eral hypergraph using hyperedge-detecting queries, a problem that is motivated
by applications arising in chemical reaction and genome sequencing.

1.1 Learning Hypergraph

A hypergraph is H = (V,E) where V is the set of vertices and E ⊆ 2V is the set
of edges. The dimension of the hypergraph H is the cardinality of the largest set
in E. For a set S ⊆ V , the edge-detecting queries QH(S) is answered “Yes” or
“No”, indicating whether S contains all the vertices of at least one edge of H .
Our learning problem is equivalent to learning a hidden hypergraph of dimension
r with s edges using edge-detecting queries [4].

This problem has many applications in chemical reactions and genome se-
quencing. In chemical reactions, we are given a set of chemicals, some of which
react and some which do not. When multiple chemicals are combined in one
test tube, a reaction is detectable if and only if at least one set of the chemicals
in the tube reacts. The goal is to identify which sets react using as few exper-
iments as possible. The time needed to compute which experiments to do is a

P. Auer et al. (Eds.): ALT 2014, LNAI 8776, pp. 111–124, 2014.
c© Springer International Publishing Switzerland 2014
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secondary consideration, though it is polynomial for the algorithms we present
[5]. See [18, 11, 3, 2, 13, 4, 21, 5, 15] for more details and other applications.

1.2 Previous Results

In [5], Angluin and Chen presented a deterministic optimal adaptive learning
algorithm for learning s-term 2-MDNF with n variables. They also gave a lower
bound of Ω((2s/r)r/2 + rs log n) for learning the class of s-term r-MDNF when
r < s. In [4], Angluin and Chen gave a randomized algorithm for s-term r-
uniformMDNF (the size of each term is exactly r) that asksO(24rs·poly(r, logn))
membership queries. For s-term r-MDNF where r ≤ s, they gave a randomized
learning algorithm that asks O(2r+r2/2s1+r/2 · poly(logn)) membership queries.

Literature has also addressed learning some subclasses of s-term 2-MDNF.
Those classes have specific applications to genome sequencing. See [18, 11, 3, 2,
13, 4, 21, 5, 15]. In this paper we are interested in learning the class of all s-term
r-MDNF formulas for any r and s.

1.3 Our Results

In this paper, we distinguish between two cases: s ≥ r and s < r.
For s < r, we first prove the lower bound Ω((r/s)s−1+rs logn). We then give

three algorithms. Algorithm I is a deterministic algorithm that asks O(rs−1 +
rs logn) membership queries. Algorithm II is a deterministic algorithm that asks
O(s · N((s − 1; r); sr) + rs logn) membership queries where N((s − 1; r); sr) is
the size of (sr, (s− 1, r))-cover free family (see Subsection 2.2 for the definition
of cover free) that can be constructed in time linear in its size. Bshouty and
Gabizon showed in [10] that a (sr, (s−1, r))-cover free family of size (r/s)s−1+o(1)

can be constructed in linear time and therefore algorithm II is almost optimal.
Algorithm III is a randomized algorithm that asks

O

((
s+ r

s

)√
sr log(sr) + rs log n

)
= O

((r
s

)s−1+o(1)

+ rs logn

)
membership queries. This algorithm is almost optimal.

For the case s ≥ r, Angluin and Chen, [5], gave the lower bound Ω((2s/r)r/2+
rs logn). We give two algorithms that are almost tight. The first algorithm, Al-
gorithm IV, is a deterministic algorithm that asks (crs)r/2+1.5 + rs logn mem-
bership queries for some constant c. The second algorithm, Algorithm V, is a
randomized algorithm that asks (c′s)r/2+0.75 + rs logn membership queries for
some constant c′.

All the algorithms we present in this paper run in time linear in the query
complexity and n. Additionally, all the algorithms we describe in this paper are
asymptotically tight for fixed r and s.

The following table summarizes our results. We have removed the term rs log n
from all the bounds to be able to fit this table in this page. Det. and Rand. stands
for deterministic algorithm and randomized algorithm, respectively.
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Rand./
r, s Lower Bound Algorithm Det. Upper Bound

Alg. I Det. rs logn+ rs−1

r > s rs log n+
(
r
s

)s−1
Alg. II Det. rs logn+

(
r
s

)s+o(s)

Alg. III Rand. rs logn+ (log r)
√
ses
(
r
s + 1

)s
r ≤ s rs logn+

(
2s
r

)r/2
Alg. IV. Det. rs logn+ sr/2+o(r)

Alg. IV. Rand. rs logn+
√
r(3e)r(log s)sr/2+1

2 Definitions and Notations

For a vector w, we denote by wi the ith entry of w. For a positive integer j, we
denote by [j] the set {1, 2, . . . , j}.

Let f(x1, x2, . . . , xn) be a Boolean function from {0, 1}n to {0, 1}. For an
assignment a ∈ {0, 1}n we say that f is ξ in a (or a is ξ in f) if f(a) = ξ. We
say that a is zero in xi if ai = 0. For a set of variables S, we say that a is zero
in S if for every xi ∈ S, a is zero in xi. Denote Xn = {x1, . . . , xn}.

For a Boolean function f(x1, . . . , xn), 1 ≤ i1 < i2 < · · · < ik ≤ n and
σ1, . . . , σk ∈ {0, 1} we denote by

f |xi1=σ1,xi2=σ2,···,xik
=σk

the function f when fixing the variables xij to σj for all j ∈ [k]. We denote by
a|xi1=σ1,xi2=σ2,···,xik

=σk
the assignment a where each aij is replaced by σj for all

j ∈ [k]. Note that

f |xi1=σ1,xi2=σ2,···,xik
=σk

(a) = f(a|xi1=σ1,xi2=σ2,···,xik
=σk

).

When σ1 = · · · = σk = ξ and S = {xi1 , . . . , xik}, we denote

f |xi1=σ1,xi2=σ2,···,xik
=σk

by f |S←ξ. In the same way, we define a|S←ξ. We denote by 1n = (1, 1, . . . , 1) ∈
{0, 1}n.

For two assignments a, b ∈ {0, 1}n, we write a ≤ b if for every i, ai ≤ bi. A
Boolean function f : {0, 1}n → {0, 1} is monotone if for every two assignments
a, b ∈ {0, 1}n, if a ≤ b then f(a) ≤ f(b). Recall that every monotone Boolean
function f has a unique representation as a reduced monotone DNF [1]. That is,
f = M1∨M2∨· · ·∨Ms where each monomial Mi is an ANDs of input variables,
and for every monomial Mi there is a unique assignment a(i) ∈ {0, 1}n such that

f(a(i)) = 1 and for every j ∈ [n] where a
(i)
j = 1 we have f(a(i)|xj=0) = 0. We

call such assignment a minterm of the function f . Notice that every monotone
DNF can be uniquely determined by its minterms [1]. That is, a ∈ {0, 1}n is a
minterm of f iff M := ∧ai=1xi is a term in f .

For a monotone DNF, f(x1, x2, . . . , xn) = M1∨M2∨· · ·∨Ms, and a variable xi,
we say that xi is t-frequent if it appears in more than or equal to t terms. A
monotone DNF f is called read k monotone DNF, if none of its variables is
k+1-frequent. An s term r-MDNF is a monotone DNF with at most s monotone
terms, where each monotone term contains at most r variables.
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2.1 Learning Model

Consider a teacher (or a black box) that has a target function f : {0, 1}n → {0, 1}
that is s-term r-MDNF. The teacher can answer membership queries. That is,
when receiving a ∈ {0, 1}n it returns f(a). A learning algorithm is an algorithm
that can ask the teacher membership queries. The goal of the learning algorithm
is to exactly learn (exactly find) f with minimum number of membership queries
and optimal time complexity.

In our algorithms, for a function f we will denote by MQf the oracle that
answers the membership queries. That is, for a ∈ {0, 1}n, MQf (a) = f(a).

2.2 Cover Free Families

The problem (n, (s, r))-cover free family, ((n, (s, r))-CFF), [17], is equivalent to
the following problem: A (n, (s, r))-cover free family is a set A ⊆ {0, 1}n such
that for every 1 ≤ i1 < i2 < · · · < id ≤ n where d = s + r and every J ⊆ [d] of
size |J | = s there is a ∈ A such that aik = 0 for all k ∈ J and aij = 1 for all
j �∈ J . Denote by N((s; r);n) the minimum size of such set. The lower bounds
in [22] are

N((s; r);n) ≥ Ω

(
(s+ r)

log
(
s+r
s

)(s+ r

s

)
logn

)
.

It is known that a set of random

m = O

(√
min(r, s)

(
s+ r

s

)(
(s+ r) log n+ log

1

δ

))
(1)

vectors a(i) ∈ {0, 1}n, where each a
(i)
j is 1 with probability r/(s + r), is a

(n, (s, r))-cover free family with probability at least 1− δ.
In [9, 8], Bshouty gave a deterministic construction of (n, (s, r))-CFF of size

C := min((2e)srs+1, (2e)rsr+1) logn

=

(
s+ r

r

)
2min(s log s,r log r)(1+o(1)) logn (2)

that can be constructed in time C · n. Fomin et. al. in [16] gave a construction
of size

D :=

(
s+ r

r

)
2O(

r+s
log log(r+s) ) logn (3)

that can be constructed in time D · n. The former bound, (2), is better than
the latter when s ≥ r log r log log r or r ≥ s log s log log s. We also note that the
former bound, (2), is almost optimal, i.e.,(

s+ r

r

)1+o(1)

logn,

when r = sω(1) or r = so(1) and the latter bound, (3), is almost optimal when
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o(s log log s log log log s) = r = ω

(
s

log log s log log log s

)
.

Recently, Bshouty and Gabizon, [10], gave a linear time almost optimal construc-
tion of (n, (s, r))-CFF for any r and s. The size of the (n, (r, s))-CFF in [10] is

(
s+ r

r

)1+o(1)

logn (4)

where the o(1) is with respect to min(r, s).

3 Lower Bounds

In this section, we prove some lower bounds.

3.1 General Lower Bound

In this section, we prove that the information theoretic lower bound for learning
a class C from membership queries is also a lower bound for any randomized
learning algorithm. We believe it is a folklore result, but we could not find the
proof in the literature. We first state the following information-theoretic lower
bound for deterministic learning algorithm,

Lemma 1. Let C be any class of Boolean function. Then any deterministic
learning algorithm for C must ask at least log |C| membership queries.

We now prove,

Lemma 2. Let C be any class of boolean function. Then any Monte Carlo (and
therefore, Las Vegas) randomized learning algorithm that learns C with probabil-
ity at least 3/4 must ask at least log |C| − 1 membership queries.

Proof. Let A be a randomized algorithm that for every f ∈ C and an oracle
MQf that answers membership queries for f , asks m membership queries and
satisfies

Prs [A(MQf , s) = f ] ≥ 3

4

where s ∈ {0, 1}N is chosen randomly uniformly for some largeN . Here A(MQf ,
s) is the output of the algorithm A when running with the membership oracle
MQf for f and random seed s. Consider the random variable Xf(s) that is 1 if
A(MQf , s) = f and 0, otherwise. Then for every f , Es[Xf ] ≥ 3/4. Therefore,
for random uniform f ∈ C

3/4 ≤ Ef [Es[Xf ]] = Es[Ef [Xf(s)]].

and by Markov Bound for at least 1/2 of the elements s ∈ {0, 1}N we have
Ef [Xf (s)] ≥ 1/2. Let S ⊆ {0, 1}N be the set of such elements. Then |S| ≥ 2N/2.
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Let s0 ∈ S and Cs0 ⊆ C the class of functions f where Xf (s0) = 1. Then
|Cs0 | ≥ |C|/2 and A(MQf , s0) is a deterministic algorithm that learns the class
Cs0 . Using the information theoretic lower bound for deterministic algorithm,
we conclude that A(MQf , s0) must ask at least

m ≥ log |Cs0 | = log(1/2) + log |C|

membership queries. ��

Specifically, since the number of s-term r-MDNF is((n
r

)
s

)
we have,

Corollary 1. Any Monte Carlo (and therefore Las Vegas) randomized learning
algorithm for the class of s-term r-MDNF must ask on average at least rs log n
membership queries.

3.2 Two Lower Bounds

In this section, we give two lower bounds. The first is from [4] and the second
follows using the same techniques used in [12].

In [4], Angluin and Chen proved,

Theorem 1. Let r and s be integers. Let k and � be two integers such that

� ≤ r, s ≥
(
k

2

)
�+ 1.

Any (Monte Carlo) randomized learning algorithm for the class of s-term r-
MDNF must ask at least

k� − 1

membership queries.
Specifically, when s >> r we have the lower bound

Ω

((
2s

r

)r/2
)

membership queries. Also, for any integer λ where(
λ

2

)
r + 1 ≤ s <

(
λ+ 1

2

)
r

we have the lower bound λr − 1.

We now prove the following lower bound.
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Theorem 2. Let r and s be integers and � and t be two integers such that

�−
⌊
�

t

⌋
≤ r,

⌊
�

t

⌋
≤ s− 1.

Any (Monte Carlo) randomized learning algorithm for the class of s-term r-
MDNF must ask at least t��/t� membership queries.

Specifically, for r >> s we have the lower bound(r
s

)s−1

.

and for any constant integer λ and λs ≤ r < (λ + 1)s we have the lower bound

(λ+ 1)s−1.

Proof. Let m = 
�/t�. Consider the monotone terms Mj = x(j−1)t+1 · · ·xjt for
j = 1, 2, . . . ,m. Define Mi,k where i = 1, . . . ,m and k = 1, . . . , t the mono-
tone term Mi without the variable x(i−1)t+k. Let Mk1,k2,...,km = M1,k1M2,k2 · · ·
Mm,km . Let f = M1∨M2∨· · ·∨Mm and g = M1∨M2∨· · ·∨Mm∨Mk1,k2,...,km . It
is easy to see that f and g are s-term r-MDNF. The only way we can distinguish
between the two hypothesis f and g is by guessing an assignment that is 1 in
all its first mt entries except for the entire k1, t+ k2, 2t+ k3, . . . , (m− 1)t+ km.
That is, by guessing k1, k2, . . . , km. This takes an average of tm guesses. Since
both f and g are s-term r-MDNF, the result follows. ��

For r >> s, we choose � = r and t such that 
�/t� = s − 1. Since s − 1 =

�/t� ≥ �/t− 1, we have t ≥ r/s and the result follows.

For λs ≤ r < (λ+ 1)s, proving the lower bound for r = λs is sufficient. Take
t = λ+ 1 and � = (λ + 1)s− 1.

4 Optimal Algorithms for Monotone DNF

In this section, we present the algorithms (Algorithm I-V) that learn the class of
s-term r-MDNF. We first give a simple algorithm that learns one term. We then
give three algorithms (Algorithm I-III) for the case r > s and two algorithms
(Algorithm IV-V) for the case s ≥ r.

4.1 Learning One Monotone Term

In this section, we prove the following result.

Lemma 3. Let f(x) = M1 ∨M2 ∨ · · · ∨Ms be the target function where each
Mi is a monotone term of size at most r. Suppose g(x) = M1 ∨M2 ∨ · · · ∨Ms′

and h(x) = Ms′+1 ∨Ms′+2 ∨ · · · ∨Ms. If a is an assignment such that g(a) = 0
and h(a) = 1, then a monotone term in h(x) can be found with

O
(
r log

n

r

)
membership queries.
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Proof. First notice that since g is monotone, for any b ≤ a we have g(b) = 0.
Our algorithm finds a minterm b ≤ a of f and therefore b is a minterm of h.

First, if the number of ones in a is 2r, then we can find a minterm by flipping
each bit in a that does change the value of f and get a minterm. This takes at
most 2r membership queries.

If the number of ones in a is w > 2r, then we divide the entries of a that are
equal to 1 into 2r disjoint sets S1, S2, . . . , S2r where for every i, the size of Si is
either 
w/(2r)� or �w/(2r). Now for i = 1, 2, . . . , 2r, we flip all the entries of Si

in a to zero and ask a membership query. If the function is one, we keep those
entries 0. Otherwise we set them back to 1 and proceed to i + 1. At the end of
this procedure, at most r sets are not flipped. Therefore, at least half of the bits
in a are flipped to zero using 2r membership queries. Therefore, the number of
membership queries we need to get a minterm is 2r log(n/2r) + 2r. ��

We will call the above procedure Find-Term. See Figure 1.

Find-Term(f, g, h, a)
g(a) = 0 and h(a) = 1.
1) If the number of ones in a, wt(a), is less than or equal 2r then

For i = 1 to n
If ai = 1 and f(a|xi=0) = 1 then a ← a|xi=0.

Output(a).
2) Let S = {xi | ai = 1}
3) Partition S = S1 ∪ S2 ∪ · · · ∪ S2r such that |Si| ∈ {�w/(2r)� or �w/(2r)�}.
4) For i = 1 to 2r

If f(a|Si←0) = 1 then a ← a|Si←0.
5) Goto 1.

Fig. 1. Algorithm Find-Term for finding a new term in f

4.2 The case r > s

In this section, we present three algorithms, two deterministic and one random-
ized. We start with the deterministic algorithm.

Deterministic Algorithm: Consider the class s-term r-MDNF. Let f be the
target function. Given s − � monotone terms h := M1 ∨M2 ∨ · · · ∨Ms−� that
are known to the learning algorithm to be in f . The learning algorithm goal is
to find a new monotone term. In order to find a new term we need to find an
assignment a that is zero in M1∨M2 ∨ · · · ∨Ms−� and 1 in the function f . Then
by the procedure Find-Term in Subsection 4.1, we get a new term in O(r logn)
additional membership queries.

To find such an assignment, we present three algorithms:
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Algorithm I: (Exhaustive Search) choose a variable from each Mi and set
it to zero and set all the other variables to 1. The set of all such assignments is
denoted by A. If f is 1 in some a ∈ A, then find a new term using Find-Term.

We now show.

Lemma 4. If f �≡ h, then Algorithm I finds a new term in rs−� + O(r logn)
membership queries.

Proof. Since the number of variables in each term in h := M1 ∨M2 ∨ · · · ∨Ms−�

is at most r the number of assignments in A is at most rs−�. Since we choose
one variable from each term in h and set it to zero, all the assignments in A are
zero in h. We now show that one of the assignments in A must be 1 in f , and
therefore a new term can be found.

Let b be an assignment that is 1 in f and zero in h. Such assignment exists
because otherwise f ⇒ h and since h ⇒ f we get f ≡ h. Since h(b) = 0 there
is at least one variable xji in each Mi that is zero in b. Then the assignment
a := 1n|xj1=0,...,xjs−�

=0 is in A and h(a) = 0. Since a ≥ b we also have f(a) = 1.

The number of queries in this algorithm is

s∑
�=1

O
(
rs−� + r logn

)
= O(rs−1 + rs logn).

��

We now present the second algorithm. Recall that Xn = {x1, . . . , xn}.

Algorithm II
1) Let V be the set of variables that appear in M1 ∨M2 ∨ · · · ∨Ms−�.
2) Take a (|V |, (s− �, r))-CFF A over the variables V .
3) For each a ∈ A

3.1) Define an assignment a′ that is ai in xi for every xi ∈ V
and 1 in xi for every xi ∈ Xn\V .

3.2) If M1 ∨M2 ∨ · · · ∨Ms−� is 0 in a′ and f is one in a′

then find a new term using Find-Term

Fig. 2. Algorithm II for the case r > s

We now show,

Lemma 5. If f �≡ h, then Algorithm II finds a new term in N((s− �; r); (s−
�)r) +O(r logn) membership queries.

Proof. Let h := M1 ∨M2 ∨ · · · ∨Ms−�. Let b be an assignment that is 1 in f
and zero in h. Since h(b) = 0, there is at least one variable xji in each Mi that
is zero in b. Consider the set U = {xji |i = 1, . . . , s − �}. Since f(b) = 1 there
is a new term M in f that is one in b. That is, all of its variables are one in b.
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Let W be the set of all variables in M . Since A is (|V |, (s− �, r))-CFF and since
|U ∪ (W ∩V )| ≤ s− �+ r there is an assignment a ∈ A that is 0 in each variable
in U and is one in each variable in W ∩ V . Since a′ is also 0, in each variable in
U we have h(a′) = 0. Since a′ is one in each variable in W ∩ V and one in each
variable W\V , we have M(a′) = 1 and therefore f(a′) = 1.

The number of queries in Algorithm II is

s−1∑
�=1

N((s− �; r); (s− �)r) + r logn = O(sN((s − 1; r); sr) + rs logn).

This completes the proof. ��

Randomized Algorithm: Our third algorithm, Algorithm III, is a randomized
algorithm. It is basically Algorithm II where an (rs, (s−1, r))-CFF A is randomly
constructed, as in (1). Notice that an (rs, (s−1, r))-CFF is also an (|V |, (s−�, r))-
CFF, so it can be used in every round of the algorithm. The algorithm fails if
there is a new term that has not been found and this happens if and only if A
is not (rs, (s − 1, r))-CFF. So the failure probability is δ. By (1), this gives a
Monte Carlo randomized algorithm with query complexity

O

(√
s

(
s+ r

s

)(
r log r + log

1

δ

)
+ rs logn

)
.

4.3 The case r < s

In this section, we present two algorithms. Algorithm IV is deterministic and
Algorithm V is randomized. We start with the deterministic algorithm.

Deterministic Algorithm: In this section, we present Algorithm IV, used
when r < s. For this case, we prove the following.

Theorem 3. There is a deterministic learning algorithm for the class of s-term
r-MDNF that asks

O
(
(3e)r(rs)r/2+1.5 + rs logn

)
,

membership queries.

Before proving this theorem, we first prove learnability in simpler settings.
We prove the following.

Lemma 6. Let f(x1, x2, . . . , xn) = M1∨· · ·∨Ms be the target s-term r-MDNF.
Suppose the learning algorithm knows some of the terms, h = M1∨M2∨· · ·∨Ms−�

and knows that Ms−�+1 is of size r′. Suppose that h is a read k monotone DNF.
Then, there exists an algorithm that finds a new term (not necessarily Ms−�+1)
using

O (N((r′k; r′); sr)) + r logn) ,

membership queries.
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LearnRead(MQf , s, �, r
′)

1) Let V be the set of variables that appear in h.
2) Let A be a (|V |, (r′k, r′))-CFF over the variables V .
3) For each a ∈ A

3.1) Let a′ ∈ {0, 1}n where a′ is ai in each xi ∈ V ,
and one in each xi ∈ Xn\V .

3.2) X ← ∅.
3.3) For each Mi, i = 1, . . . , s− � such that Mi(a

′) = 1 do
Take any variable xj in Mi and set X ← X ∪ {xj}

3.4) Set a′′ ← a′|X←0.
3.5) If f(a′′) = 1 and h(a′′) = 0

then find a new term using Find-Term.

Fig. 3. Finding a new term in read k

Proof. Consider the algorithm in Figure 3.
Let V be the set of variables that appear in h. Let M := Ms−�+1. Let U be

the set of variables in M and W = U ∩ V . Each variable in W can appear in at
most k terms in h. Let w.l.o.g h′ := M1 ∨ · · · ∨Mt be those terms. Notice that
t ≤ |W |k ≤ r′k. In each term Mi, i ≤ t one can choose a variable xji that is
not in W . This is because, if all the variable in Mi are in W , then M ⇒ Mi and
then f is not reduced MDNF.

Let Z = {xji |i = 1, . . . , t}. Since |Z| ≤ t ≤ r′k and |U | ≤ r′ there is a ∈ A
that is 0 in every variable in Z and is 1 in every variable in U . Now notice
that a′ in step 3.1 in the algorithm is the same as a over the variables in Z
and therefore h′(a′) = 0. Also a′ is the same as a over the variables in U and
therefore M(a′) = 1. Now notice that since Mi(a

′) = 0 for i ≤ t, in step 3.4 in
the algorithm we only flip a′i that correspond to variables in the terms Mi, i > t.
The set of variables in each other term Mi, i > t is disjoint with U . Therefore
if for some i > t, Mi(a

′) = 1 then setting any variable xj in Mi that is one
in a′ to zero will not change the values M(a′) = 1 and (from monotonicity)
h′(a′) = 0. Eventually, we will have an assignment a′′ that satisfies h(a′′) = 0
and M(a′′) = 1 which implies f(a′′) = 1. ��

In the following lemma, we remove the restriction on h.

Lemma 7. Let f(x1, x2, . . . , xn) = M1∨· · ·∨Ms be the target s-term r-MDNF.
Suppose some of the terms, h = M1 ∨M2 ∨ . . .∨Ms−�, are already known to the
learning algorithm. Then, for any integer d, there exists an algorithm that finds
a new term using

O

(
r∑

i=1

(
r
√
ds

i

)
N(((r − i)

√
s/d; (r − i)); rs) + r logn

)
,

membership queries.

Proof. Consider the algorithm in Figure 4.
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Learn(s, �)

1) Let S be the set of
√

s/d-frequent variables in h.
2) For every R ⊆ S of size |R| ≤ r do

2.1) Define A ∈ ({0, 1} ∪Xn)
n that is 1 in R and 0 in S\R

and Ai = xi for every xi �∈ S.
2.2) Run LearnRead(MQf(A), s, �, r − |R|) to find a′′.

3) Use a′′|R←1,S\R←0 to find a new term using Find-Term.

Fig. 4. Finding a new term

First note that in step 2.2, f(A) is considered in LearnRead as a function
in all the variables Xn. Note also that the oracle MQf(A) can be simulated by
MQf , since f(A)(a) = f(a|R←1,S\R←0).

Let W be the set of variables that appear in M := Ms−�+1 and R = S ∩W .
Note that A is zero in all S\R and 1 in R and therefore f(A) is now a read√
s/d and M(A) contains at most |W\R| ≤ r − |R| variables. Therefore, when

we run LearnRead(MQf(A), s, �, r− |R|) we find an assignment a′′ that is 1 in
M(A) and zero in f(A) and then a′′|R←1,S\R←0 is one in f and zero in h.

We now find the number of queries. By the Pigeon hole principle, there are at
most |S| ≤ r

√
ds that are

√
s/d-frequent. The number of sets R ⊆ S of size i is(

r
√
ds
i

)
. For each set, we run LearnRead(MQf(A), s, �, r−|R|) that by Lemma 6

asks N(((r − i)
√
s/d; (r − i)); rs) queries. This implies the result. ��

We now prove Theorem 3.

Proof. We choose d = r. Then by the construction (2), we have(
r
√
ds

i

)
N(((r − i)

√
s/d; (r − i)); rs) ≤

(
er
√
rs

i

)i

(2e)r−i

(
(r − i)

√
s√

r

)r−i+3

≤ er2r−i(
√
rs)r+3

(r
i

)i(r − i

r

)r−i+3

≤ er2r−i

(
r

i

)
(
√
rs)r+3.

and therefore

r∑
i=1

(
r
√
ds

i

)
N(((r − i)

√
s/d; (r − i)); rs) ≤ (3e)r(rs)r/2+1.5.

Using the result in (4) with d = 1 we get the bound

sr/2+o(r)

��
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Randomized Algorithm: In this section, we give a randomized algorithm for
the case s > r.

The randomized algorithm is the same as the deterministic one, except that
each CFF is constructed randomly, as in (1) with probability of success 1− δ/s.
Since the algorithm in Lemma 7 is running s times, the probability of success of
the algorithm is at least 1− δ. We choose d = 1 in Lemma 7 and get(

r
√
ds

i

)
N(((r − i)

√
s/d; (r − i)); rs)

≤
(
er
√
s

i

)i√
r(e(

√
s+ 1))r−i

(
2s log rs+ log

s

δ

)
.

≤ er2r−i
(r
i

)i√
rsr/2(s log s+ log(1/δ))

and therefore number of queries used in the algorithm is

r∑
i=1

(
r
√
ds

i

)
N(((r − i)

√
s/d; (r − i)); rs) ≤

√
r(3e)rsr/2(s log s+ log(1/δ)).

5 Conclusion and Open Problems

In this paper, we gave an almost optimal adaptive exact learning algorithms for
the class of s-term r-MDNF. When r and s are fixed, the bounds are asymp-
totically tight. Some gaps occur between the lower bounds and upper bounds.
For r ≥ s, the gap is cs for some constant c and for r ≤ s the gap is rr/2. It
is interesting to close these gaps. Finding a better deterministic construction of
CFF will give better deterministic algorithms.

Another challenging problem is finding tight bounds for non-adaptive learning
of this class.
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Abstract. We provide an algorithm for learning an unknown regular
set of infinite words, using membership and equivalence queries. Three
variations of the algorithm learn three different canonical representations
of omega regular languages, using the notion of families of dfas. One is of
size similar to L$, a dfa representation recently learned using L∗ [7]. The
second is based on the syntactic forc, introduced in [14]. The third is
introduced herein. We show that the second can be exponentially smaller
than the first, and the third is at most as large as the first two, with up
to a quadratic saving with respect to the second.

1 Introduction

The L∗ algorithm learns an unknown regular language in polynomial time using
membership and equivalence queries [2]. It has proved useful in many areas
including AI, neural networks, geometry, data mining, verification and many
more. Some of these areas, in particular verification, call for an extension of the
algorithm to regular ω-languages, i.e. regular languages over infinite words.

Regular ω-languages are the main means to model reactive systems and are
used extensively in the theory and practice of formal verification and synthesis.
The question of learning regular ω-languages has several natural applications
in this context. For instance, a major critique of reactive-system synthesis, the
problem of synthesizing a reactive system from a given temporal logic formula,
is that it shifts the problem of implementing a system that adheres to the spec-
ification in mind to formulating a temporal logic formula that expresses it. A
potential customer of a computerized system may find it hard to specify his re-
quirements by means of a temporal logic formula. Instead, he might find it easier
to provide good and bad examples of ongoing behaviors (or computations) of the
required system, or classify a given computation as good or bad — a classical
scenario for interactive learning of an unknown language using membership and
equivalence queries.

Another example, concerns compositional reasoning, a technique aimed to im-
prove scalability of verification tools by reducing the original verification task
into subproblems. The simplification is typically based on the assume-guarantee
reasoning principles and requires identifying adequate environment assumptions

� Research of this author was supported by US NSF grant CCF-0916389.
�� Research of this author was supported by US NSF grant CCF-1138996.

P. Auer et al. (Eds.): ALT 2014, LNAI 8776, pp. 125–139, 2014.
c© Springer International Publishing Switzerland 2014



126 D. Angluin and D. Fisman

for components. A recent approach to the automatic derivation of assumptions
uses L∗ [5, 1, 17] and a model checker for the different component playing the
role of the teacher. Using L∗ allows learning only safety properties (a subset of
ω-regular properties that state that something bad hasn’t happened and can be
expressed by automata on finite words). To learn liveness and fairness proper-
ties, we need to extend L∗ to the full class of regular ω-languages — a problem
considered open for many years [11].

The first issue confrontedwhen extending to ω-languages is how to cope with in-
finite words? Some finite representation is needed. There are two main approaches
for that: one considers only finite prefixes of infinite computations and the other
considers ultimately periodic words, i.e., words of the form uvω where vω stands
for the infinite concatenation of v to itself. It follows from McNaughton’s theo-
rem [15] that two ω-regular languages are equivalent if they agree on the set of
ultimately periodic words, justifying their use for representing examples.

Work by de la Higuera and Janodet [6] gives positive results for polynomially
learning in the limit safe regular ω-languages from prefixes, and negative results
for learning any strictly subsuming class of regular ω-languages from prefixes.
A regular ω-language L is safe if for all w /∈ L there exists a prefix u of w such
that any extension of u is not in L. This work is extended in [8] to learning bi-ω
languages from subwords.

Saoudi and Yokomori [19] consider ultimately periodic words and provide an
algorithm for learning in the limit the class of local ω-languages and what they
call recognizable ω-languages. An ω-language is said to be local if there exist
I ⊆ Σ and C ⊆ Σ2 such that L = IΣω − Σ∗CΣω. An ω-language is referred
to as recognizable [19] if it is recognizable by a deterministic automaton all of
whose states are accepting.

Maler and Pnueli [13] provide an extension of the L∗ algorithm, using ulti-
mately periodic words as examples, to the class of regular ω-languages which are
recognizable by both deterministic Büchi and deterministic co-Büchi automata.
This is the subset for which the straightforward extension of right-congruence to
infinite words gives a Myhill-Nerode characterization [20]. Generalizing this to
wider classes calls for finding a Myhill-Nerode characterization for larger classes
of regular ω-languages. This direction of research was taken in [10, 14] and is
one of the starting points of our work.

In fact the full class of regular ω-languages can be learned using the result of
Calbrix, Nivat and Podelski [4]. They define for a given ω-language L the set
L$ = {u$v | u∈Σ∗, v∈Σ+, uvω∈L} and show that L$ is regular by constructing
an nfa and a dfa accepting it. Since dfas are canonical for regular languages,
it follows that a dfa for L$ is a canonical representation of L. Such a dfa can
be learned by the L∗ algorithm provided the teacher’s counter examples are
ultimately periodic words, given e.g. as a pair (u, v) standing for uvω — a quite
reasonable assumption that is common to the other works too. This dfa can be
converted to a Büchi automaton recognizing it. This approach was studied and
implemented by Farzan et al. [7]. For a Büchi automaton with m states, Calbrix

et al. provide an upper bound of 2m + 22m
2+m on the size of a dfa for L$.
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So the full class of regular ω-languages can be learnt using membership and
equivalence queries, yet not very efficiently. We thus examine an alternative
canonical representation of the full class of regular ω-languages. Maler and
Staiger [14] show that regular ω-languages can be represented by a family of
right congruences (forc, for short). With a given ω-language they associate a
particular forc, the syntactic forc, which they show to be the coarsest forc
recognizing the language. We adapt and relax the notion of forc to families
of dfas (fdfa, for short). We show that the syntactic forc can be factorially
smaller than L$. That is, there exists a family of languages Ln for which the syn-
tactic fdfa is of size O(n) and the minimal dfa for L$ is of size Ω(n!). We then
provide a third representation, the recurrent fdfa. We show that the recurrent
fdfa is at most as large as both the syntactic fdfa and an fdfa corresponding
to L$, with up to a quadratic saving with respect to the syntactic fdfa.

We provide a learning algorithm Lω that can learn an unknown regular ω-
language using membership and equivalence queries. The learned representations
use the notion of families of dfas (fdfas). Three variations of the algorithm can
learn the three canonical representations: the periodic fdfa (the fdfa corre-
sponding to L$), the syntactic fdfa (the fdfa corresponding to the syntactic
forc) and the recurrent fdfa. The running time of the three learning algorithms
is polynomial in the size of the periodic fdfa.

2 Preliminaries

Let Σ be a finite set of symbols. The set of finite words over Σ is denoted Σ∗,
and the set of infinite words, termed ω-words, over Σ is denoted Σω. A language
is a set of finite words, that is, a subset of Σ∗, while an ω-language is a set of
ω-words, that is, a subset of Σω. Throughout the paper we use u, v, x, y, z for
finite words, w for ω-words, a, b, c for letters of the alphabet Σ, and i, j, k, l,m, n
for natural numbers. We use [i..j] for the set {i, i+1, . . . , j}. We use w[i] for the
i-th letter of w and w[i..k] for the subword of v starting at the i-th letter and
ending at the k-th letter, inclusive.

An automaton is a tuple M = 〈Σ,Q, q0, δ〉 consisting of a finite alphabet Σ
of symbols, a finite set Q of states, an initial state q0 and a transition function
δ : Q×Σ → 2Q. A run of an automaton on a finite word v = a1a2 . . . an is a
sequence of states q0, q1, . . . , qn such that qi+1 ∈ δ(qi, ai+1). A run on an infinite
word is defined similarly and results in an infinite sequence of states. The transi-
tion function can be extended to a function from Q×Σ∗ by defining δ(q, λ) = q
and δ(q, av) = δ(δ(q, a), v) for q ∈ Q, a ∈ Σ and v ∈ Σ∗. We often use M(v) as
a shorthand for δ(q0, v) and |M | for the number of states in Q. A transition
function is deterministic if δ(q, a) is a singleton for every q ∈ Q and a ∈ Σ, in
which case we use δ(q, a) = q′ rather than δ(q, a) = {q′}.

By augmenting an automaton with an acceptance condition α, obtaining a
tuple 〈Σ,Q, q0, δ, α〉, we get an acceptor, a machine that accepts some words and
rejects others. An acceptor accepts a word, if one of the runs on that word is
accepting. For finite words the acceptance condition is a set F ⊆ Q and a run
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on v is accepting if it ends in an accepting state, i.e. if δ(q0, v) ∈ F . For infinite
words, there are many acceptance conditions in the literature, here we mention
three: Büchi, co-Büchi and Muller. Büchi and co-Büchi acceptance conditions
are also a set F ⊆ Q. A run of a Büchi automaton is accepting if it visits F
infinitely often. A run of a co-Büchi is accepting if it visits F only finitely many
times. A Muller acceptance condition is a map τ : 2Q → {+,−}. A run of a
Muller automaton is accepting if the set S of states visited infinitely often along
the run is such that τ(S) = +. The set of words accepted by an acceptor A is
denoted [[A]].

We use three letter acronyms to describe acceptors. The first letter is d or
n: d if the transition relation is deterministic and n if it is not. The second
letter is one of {f,b,c,m}: f if this is an acceptor over finite words, b, c, m if
it is an acceptor over infinite words with Büchi, co-Büchi or Muller acceptance
condition, respectively. The third letter is always a for acceptor. For finite words
dfas and nfas have the same expressive power. For infinite words the theory
is much more involved. For instance, dbas are weaker than nbas, dmas are as
expressive as nmas, and nbas are as expressive as dmas. A language is said to
be regular if it is accepted by a dfa. An ω-language is said to be regular if it is
accepted by a dma.

An equivalence relation∼ onΣ∗ is a right-congruence if x ∼ y implies xv ∼ yv
for every x, y, v ∈ Σ∗. The index of ∼, denoted |∼| is the number of equivalence
classes of ∼. Given a language L its canonical right congruence ∼L is defined as
follows: x ∼L y iff ∀v ∈ Σ∗ we have xv ∈ L ⇐⇒ yv ∈ L. We use [∼] to denote
the equivalence classes of the right-congruence ∼ (instead of the more common
notation Σ∗/ ∼). For a word v ∈ Σ∗ the notation [v] is used for the class of ∼
in which v resides.

A right congruence ∼ can be naturally associated with an automaton M∼ =
〈Σ,Q, q0, δ〉 as follows: the set of states Q are the equivalence classes of ∼.
The initial state q0 is the equivalence class [λ]. The transition function δ is
defined by δ([u], σ) = [uσ]. Similarly, given an automaton M = 〈Σ,Q, q0, δ〉
we can naturally associate with it a right congruence as follows: x ∼M y iff
δ(q0, x) = δ(q0, y). The Myhill-Nerode Theorem states that a language L is
regular iff ∼L is of finite index. Moreover, if L is accepted by a dfa A then ∼A

refines ∼L. Finally, the index of ∼L gives the size of the minimal dfa for L.
For ω-languages, the right congruence ∼L is defined similarly, by quantifying

over ω-words. That is, x ∼L y iff ∀w ∈ Σω we have xw ∈ L ⇐⇒ yw ∈ L.
Given a deterministic automaton M we can define ∼M exactly as for finite
words. However, for ω-regular languages, right-congruence alone does not suffice
to obtain a “Myhill-Nerode” characterization. As an example consider the lan-
guage L1 = Σ∗aω. We have that ∼L1 consists of just one equivalence class, but
obviously an acceptor recognizing L1 needs more than a single state.

3 Canonical Representations of Regular ω-Languages

As mentioned in the introduction, the language L$ = {u$v | u∈Σ∗, v∈Σ+,
uvω∈L} provides a canonical representation for a regular ω-language L. As the
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upper bound of going from a given Büchi automaton of size m to L$, is quite

large (2m + 22m
2+m) we investigate other canonical representations.

Second Canonical Representation - Syntactic FORC. Searching for a
notion of right congruence adequate for regular ω-languages was the subject of
many works (c.f. [21, 12, 9, 3, 14]). In the latest of these [14] Maler and Staiger
proposed the notion of a family of right-congruences or forc.

Definition 1 (FORC, Recognition by FORC [14]). A family of right con-
gruences (in short forc) is a pair R = (∼, {≈u}u∈[∼]) such that

1. ∼ is a right congruence,

2. ≈u is a right congruence for every u ∈ [∼], and

3. x≈u y implies ux ∼ uy for every u, x, y ∈ Σ∗.

An ω-language L is recognized by a forc R = (∼,≈u) if it can be written as a
union of sets of the form [u]([v]u)

ω such that uv ∼L u.1

Definition 2 (Syntactic FORC [14]). Let x, y, u ∈ Σ∗, and L be a regular
ω-language. We use x≈u

s
y iff ux ∼L uy and ∀v ∈ Σ∗ if uxv ∼L u then u(xv)ω ∈

L ⇐⇒ u(yv)ω ∈ L. The syntactic forc of L is (∼L, {≈u
s
}u∈[∼L]).

Theorem 1 (Minimality of the Syntactic FORC [14]). An ω-language
is regular iff it is recognized by a finite forc. Moreover, for every regular ω-
language, its syntactic forc is the coarsest forc recognizing it.

Moving to Families of DFAs. We have seen in the preliminaries how a right
congruence defines an automaton, and that the latter can be augmented with an
acceptance criterion to get an acceptor for regular languages. In a similar way,
we would like to define a family of automata, and augment it with an acceptance
criterion to get an acceptor for regular ω-languages.

Definition 3 (Family of DFAs (FDFA)). A family of dfas F = (M, {Aq})
over an alphabet Σ consists of a leading automaton M = (Σ,Q, q0, δ) and
progress dfas Aq = (Σ,Sq, s

0
q, δq, Fq) for each q ∈ Q.

Note that the definition of fdfa, does not impose the third requirement in
the definition of forc. If needed this condition can be imposed by the progress
dfas themselves.2

1 The original definition of recognition by a forc requires also that the language L
be saturated by R. An ω-language L is saturated by R if for every u, v s.t. uv ∼ u
it holds that [u]([v]u)

ω ⊆ L. It is shown in [14] that for finite forcs, covering and
saturation coincide. Thus, the definition here only requires that L is covered by R.

2 In [10] Klarlund also suggested the notion of family of dfas. However, that work did
require the third condition in the definition of forc to hold.
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Definition 4 (Syntactic FDFA). Let L be a regular ω-language, and let M be
the automaton corresponding to ∼L. For every equivalence class [u] of ∼L let Au

s

be the dfas corresponding to ≈u
s
, where the accepting states are the equivalence

classes [v] of ≈u
s

for which uv ∼L u and uvω ∈ L. We use Fs to denote the
fdfa (M, {Au

s
}), and refer to it as the syntactic fdfa.3

The following is a direct consequence of Theorem 1 and Definitions 1 and 4.

Proposition 1. Let L be an ω-language and Fs = (M, {Au
s
}) the syntactic

fdfa. Let w ∈ Σω be an ultimately periodic word. Then w ∈ L iff there exists u
and v such that w = uvω, uv ∼L u and v ∈ [[Aũ

s
]] where ũ = M(u).

To get an understanding of the subtleties in the definition of ≈u
s
we consider

the following simpler definition of a right congruence for the progress automata,
and the corresponding fdfa. It is basically the fdfa version of L$.

Definition 5 (Periodic FDFA). Let x, y, u ∈ Σ∗ and L be an ω-language.
We use x≈u

p
y iff ∀v ∈ Σ∗ we have u(xv)ω ∈ L ⇐⇒ u(yv)ω ∈ L. Let M be the

automaton corresponding to ∼L. For every equivalence class [u] of ∼L let Au
p

be the dfa corresponding to ≈u
p

where the accepting states are the equivalence
classes [v] of ≈u

s
for which uvω ∈ L. We use Fp to denote the fdfa (M, {Au

p
}),

and refer to it as the periodic fdfa.4

It is not hard to see that the following proposition holds.

Proposition 2. Let L be a regular ω-language and Fp = (M, {Au
s
}) the periodic

fdfa. Let w ∈ Σω be an ultimately periodic word. Then w ∈ L iff there exists u
and v such that w = uvω, uv ∼L u and v ∈ [[Aũ

p
]] where ũ = M(u).

Maler and Staiger show that the syntactic forc is the coarsest forc. They
do not compare its size with that of other representations. Below we show that it
can be factorially more succinct than the periodic forc, and the same arguments
can be used to show that the syntactic forc is factorially more succinct than
the dfa for L$. Intuitively, the reason is that Fp pertinaciously insists on finding
every period of u, while Fs may not accept a valid period, if it accepts some
repetition of it. For instance, take L2 = (aba + bab)ω. Then Aλ

p
accepts ab as

this is a valid period, yet Aλ
s
rejects it, since λ �∼L ab but it does accept its

repetition ababab. This flexibility is common to all acceptance conditions used
in the theory of ω-automata (Büchi, Muller, etc.) but is missing from L$ and
Fp. And as the following example shows, it can make a very big difference.

Theorem 2. There exists a family of languages Ln whose syntactic fdfa has
O(n) states but the periodic fdfa has at least n! states.

Proof. Consider the languages Ln over the alphabet Σn = [0..n] described by
the dba B in Fig. 1 on the left.5 The leading automaton L looks like B but has

3 The syntactic fdfa is well defined since, as shown in [14], uvω ∈ L implies [u][v]ω ⊆ L.
4 It is easy to see that uvω ∈ L implies [u][v]ω ⊆ L. Thus the periodic fdfa is well
defined.

5 The automata for the languages Ln are the deterministic version of the automata
for a family Mn introduced by Michel [16] to prove there exists an nba with O(n)
states whose complement cannot be recognized by an nba with fewer than n! states.
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Fig. 1. On the left, Büchi automaton B for Ln, and the syntactic fdfa for Ln. On the
right, leading automaton L for Tn, the syntactic and recurrent progress automaton for
i, Si and Ri.

no accepting states. The syntactic progress dfa for the empty word is described
by Sλ (in the middle), the syntactic progress dfa for any i ∈ [1..n] is given by Si

(on the right), and the syntactic progress dfa for ⊥ is the trivial dfa accepting
the empty language.

We now show that the progress automaton for λ in the periodic fdfa requires
at least (n + 1)! states. The idea of the proof is as follows. Given a word v we
use fv to denote the function from [0..n] to [0..n] that satisfies f(i) = δ(i, v).
We show that with each permutation π = (i0 i1 . . . in) of [0..n] we can associate
a word vπ (of length at most 3n) such that fvπ = π (i.e. fvπ(k) = ik for every
k ∈ [0..n]). Let V be the set of all such words. We then show that for each
v1, v2 ∈ V we can find a word y such that v1y

ω ∈ Ln iff v2y
ω /∈ L. Since V is of

size (n+1)! any dfa with fewer than (n+1)! states is bound to make a mistake.

Table 1. Distinguishing word y

Case Condition y

1 i0 = 0, j0 �= 0 j00j0

2 i0 �= 0, j0 = 0 i00i0

3 i0 �= 0, j0 �= 0, i0 �= j0 i00i0j0

4 i0 = j0 = 0, ik �= jk, ik = k kjk0jk

5 i0 = j0 = 0, ik �= jk, jk = k kik0ik

6 i0 = j0 = 0, ik �= jk, ik �= k, jk �= k kjk0jkik

7 i0 = j0 �= 0, ik = k i0kjk0jk

8 i0 = j0 �= 0, jk = k i0kik0ik

9 i0 = j0 �= 0, ik �= k, jk �= k i0kjk0jkij

We now show that we can associate
with each π the promised word vπ. With
π0 = (0 1 . . . n) we associate the word
λ. It is known that one can get from any
permutation π to any other permutation
π′ by a sequence of at most n transposi-
tions (transformations switching exactly
two elements). It thus suffices to provide
for any permutations π = (i0 i1 . . . in)
and π′ = (i′0 i

′
1 . . . i

′
n) differing in only two

elements, a word u such that fvπu = π′.
Suppose π and π′ differ in indices j and
k. If both ij �= 0 and ik �= 0 then the word
ijikij will take state ij to ik and state ik to ij and leave all other states un-
changed. If ij = 0 the word ik does the job, and symmetrically if ik = 0 we
choose ij. We have thus shown that with each permutation π we can associate
a word vπ such that fvπ = π.

We now show that for each two such words v1, v2 we can find a differentiating
word y. Let fv1 = (i0 i1 . . . in) and fv2 = (j0 j1 . . . jn). Table 1 explains how we
choose y. In the first three cases we get fv1y(0) = 0 and fv2y(0) = ⊥ or vice versa.
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In the rest of the cases we get fv1y(0) = k, fv1y(k) = 0 and fv2y(0) = k,fv2y(k) =
⊥ or vice versa. Thus f(v1y)2 = f2

v1y(0) = 0 and f(v2y)n = fn
v2y(0) = ⊥ for any

n ≥ 2, or vice versa. Thus (v1y)
ω ∈ L iff (v2y)

ω /∈ L. ��

Families of FDFAs as Acceptors. Families of automata are not an opera-
tional acceptor. The answer to whether a given ultimately periodic word w ∈ Σω

is accepted by the fdfa relies on the existence of a decomposition of w into uvω,
but it is not clear how to find such a decomposition. We would like to use fami-
lies of automata as acceptors for pairs of words, such that (u, v) being accepted
implies uvω is. We can try defining acceptance as follows.

Definition 6 (FDFA Exact Acceptance). Let F = (M, {Au}) be a fdfa

and u, v finite words. We say that (u, v) ∈ [[F ]]
E
if v ∈ [[Aũ]] where ũ = M(u).

Since our goal is to use families of automata as acceptors for regular ω-
languages, and an ultimately periodic ω-word w may be represented by different
pairs (u, v) and (x, y) such that w = uvω = xyω (where u �= x and/or v �= y) it
makes sense to require the representation to be saturated, in the following sense.

Definition 7 (Saturation). A language L of pairs of finite words is said to be
saturated if for every u, v, x, y such that uvω = xyω we have (u, v) ∈ L ⇐⇒
(x, y) ∈ L.

Calbrix et al. [4] have showed that (1) L$ is saturated, and (2) a regular
language of pairs K is saturated iff it is L$ for some regular ω-language L. It is
thus not surprising that the periodic family is saturated as well.

Proposition 3. Let L be an ω-language and Fp and Fs the corresponding peri-
odic and syntactic fdfas. Then [[Fp]]E is saturated.

The language [[Fs]]E on the other hand, is not necessarily saturated. Consider
L3 = aω + abω. Let x = aa, y = a, u = a, v = a. It can be seen that although
xyω = uvω we have (aa, a) ∈ [[Fs]]E yet (a, a) /∈ [[Fs]]E. The reason is that, in
order to be smaller, the syntactic family does not insist on finding every possible
legitimate period v of u (e.g. period a of a in this example). Instead, it suffices
in finding a repetition of it vk, starting from some u so that reading uv on the
leading automaton takes us back to the state we got to after reading u.

Given a right congruence ∼ of finite index and a periodic word w we say
that (x, y) is a factorization of w with respect to ∼ if w = xyω and xy ∼ x.
If w is given by a pair (u, v) so that w = uvω we can define the normalized
factorization of (u, v) as the pair (x, y) such that (x, y) is a factorization of
uvω, x = uvi, y = vj and 0 ≤ i < j are the smallest for which uvi ∼L uvi+j .
Since ∼ is of finite index, there must exist such i and j such that i+ j < |∼|+ 1.
If we base our acceptance criteria on the normalized factorization, we achieve
that [[Fs]]N is saturated as well.
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Definition 8 (FDFA Normalized Acceptance). Let F = (M, {Au}) be an
fdfa, and u, v finite words. We say that (u, v) ∈ [[F ]]

N
if y ∈ AM(x) where (x, y)

is the normalized factorization of (x, y) with respect to ∼M .

Proposition 4. Let L be an ω-language and Fp and Fs the corresponding peri-
odic and syntactic families. Then [[Fp]]N and [[Fs]]N are saturated.

Proof. We show that given an ultimately periodic word w, for any x, y such that
w = xyω, (x, y) ∈ [[Fs]]N iff w ∈ L. This shows that [[Fs]]N is a saturated acceptor
of L. Assume towards contradiction that w = uvω, w ∈ L yet (u, v) /∈ [[Fs]]N.
Let (x, y) be the normalized factorization of (u, v) with respect to ∼L. We have
xy ∼L x, x = uvi and y = vj for some i, j. Let x̃ be M(xyj). Let ỹ = Ax̃(y).
Thus ỹ is not an accepting state. Meaning x̃ ỹω /∈ L.

On the other hand we have that uvω ∈ L and uvω = uvivω = xvω . Since
x̃ ∼L x we get that x̃yω ∈ L and since yω = (yj)ω that x̃(yj)ω ∈ L. Since y≈x̃

s
ỹ

and x̃y ∼L x̃ it follows that x̃ỹω /∈ L. Contradiction.
Similar arguments show that [[Fp]]N as well is saturated. ��

New Canonical Representation - The Recurrent FDFA. We note that
there is some redundancy in the definition of the syntactic fdfa: the condition
that ux ∼L uy can be checked on the leading automaton rather than refine
the definitions of the ≈u

s
’s. We thus propose the following definition of right

congruence, and corresponding fdfa.

Definition 9 (Recurrent FDFA). Let x, y, u ∈ Σ∗ and L be an ω-language.
We use x≈u

r
y iff ∀v ∈ Σ∗ if uxv ∼L u and u(xv)ω ∈ L then uyv ∼L u and

u(yv)ω ∈ L. We use Fr to denote the fdfa (M, {Au
r
}) where the accepting states

of Au
r
are those v for which uv ∼L u and uvω ∈ L. We refer to Fr as the recur-

rent fdfa.

Note that the proof of Proposition 4 did not make use of the additional re-
quirement ux ∼L uy of ≈u

s
. The same arguments thus show that the recurrent

fdfa is a saturated acceptor of L.

Proposition 5. Let L be a regular ω-language and Fr = (M, {Au
r
}) be its re-

current fdfa. Then [[Fr]]N is saturated and is an acceptor of L.

It follows from the definitions of ≈u
s

and ≈u
r

and ≈u
p

that (a) ≈u
p

refines
≈u

r
(b) ≈u

s
refines ≈u

r
and (c) if | ∼L | = n and |≈u

r
| = m then ≈u

s
is of size

at most nm. Thus there is at most a quadratic size reduction in the recurrent
fdfa, with respect to the syntactic fdfa. We show a matching lower bound.

Proposition 6. There exists a family of languages Tn such that the size of the
syntactic fdfa for Tn is Θ(n2) and the size of the recurrent fdfa is Θ(n).

Proof. Consider the alphabet Σn = {a0, a1, . . . , an−1}. Let Li abbreviate a+i .
Let Ui be the set of ultimately periodic words (L0L1 . . . Ln−1)

∗(L0L1 . . . Li)a
ω
i .

Finally let Tn be the union U0∪U1∪....Un−1. In Figure 1 on the right we show its
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Algorithm 1. The Learner Lω

1 Initialize the leading table T = (S, S̃, E, T ) with S = S̃ = {λ} and E = {(λ, λ)}.
2 CloseTable(T , ent1,dfr1) and let M = Aut1(T ).

3 forall u ∈ S̃ do

4 Initialize the table for u, Tu = (Su, S̃u, Eu, Tu), with Su = S̃u = Eu = {λ}.
5 CloseTable(Tu, ent

u
2 ,dfr

u
2 ) and let Au = Aut2(Tu).

6 Let (a, u, v) be the teacher’s response on the equivalence query H = (M, {Au}).
7 while a =“no” do
8 Let (x, y) be the normalized factorization of (u, v) with respect to M .
9 Let x̃ be M(x).

10 if mq(x, y) �= mq(x̃, y) then
11 E = E ∪ FindDistinguishingExperiment(x, y).
12 CloseTable(T , ent1,dfr1) and let M = Aut1(T ).

13 forall u ∈ S̃ do
14 CloseTable(Tu, ent

u
2 ,dfr

u
2 ) and let Au = Aut2(Tu).

15 else
16 Ex̃ = Ex̃ ∪ FindDistinguishingExperiment(x̃, y).

17 CloseTable(Tx̃, ent
x̃
2 ,dfr

x̃
2) and let Ax = Aut2(Tx̃).

18 Let (a, u, v) be the teacher’s response on equivalence query H = (M, {Au}).
19 return H

leading dfa and the syntactic and recurrent progress dfas for state i. (The sink
state is not shown, and ⊕,* are plus and minus modulo n.) The total number
of states for the recurrent fdfa is (n+1)+ 3n+1 and for the syntactic fdfa it
is (n+ 1) + n(n+ 3) + (n+ 1). ��

We observe that the recurrent family may not produce a minimal result.
Working with the normalized acceptance criterion, we have that a progress dfa
Pu for leading state u should satisfy [u]([[Pu]] ∩ Cu) = L ∩ [u]Cu where Cu =
{v | uv ∼L u}. Thus, in learning Pu we have don’t cares for all the words that
are not in Cu. Minimizing a dfa with don’t cares is an NP-hard problem [18].
The recurrent fdfa chooses to treat all don’t cares as rejecting.

4 Learning ω-regular Languages via Families of DFAs

In the previous section we have provided three canonical representations of reg-
ular ω-languages as families of dfas. The L∗ algorithm provides us an efficient
way to learn a dfa for an unknown regular language. Have we reduced the prob-
lem to using L∗ for the different dfas of the family? Not quite. This would be
true if we had oracles answering membership and equivalence for the languages
of the leading and progress dfas. But the question we consider assumes we have
oracles for answering membership and equivalence queries for the unknown reg-
ular ω-language. Specifically, the membership oracle, given a pair (u, v) answers
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whether uvω ∈ L, and the equivalence oracle answers whether a given fdfa F ,
satisfies [[F ]]

N
= L and returns a counterexample if not. The counterexample is

in the format (a, u, v) where a is one of the strings “yes” or “no”, and if it is
“no” then uvω is in (L \ [[F ]]

N
) ∪ ([[F ]]

N
\ L).

We use a common scheme for learning the three families (Fp, Fs and Fr) under
the normalized acceptance criteria, see Alg. 1. This is a simple modification of
the L∗ algorithm to learn an unknown dfa using membership and equivalence
queries [2]. We first explain the general scheme. Then we provide the necessary
details for obtaining the learning algorithm for each of the families, and prove
correctness.

Auxiliary Procedures. The algorithm makes use of the notion of an obser-
vation table. An observation table is a tuple T = (S, S̃, E, T ) where S is a
prefix-closed set of strings, E is a set of experiments trying to differentiate the S
strings, and T : S×E → D stores in entry T (s, e) an element in some domain D.
Some criterion should be given to determine when two strings s1, s2 ∈ S should
be considered distinct (presumably by considering the contents of the respective
rows of the table). The component S̃ is the subset of strings in S considered
distinct. A table is closed if S is prefix closed and for every s ∈ S̃ and a ∈ Σ we
have sa ∈ S.

The procedure CloseTable thus uses two sub-procedures ent and dfr to fulfill
its task. Procedure ent is used to fill in the entries of the table. This procedure
invokes a call to the membership oracle. The procedure dfr is used to determine
which rows of the table should be differentiated. Closing the leading table is done
using ent1 and dfr1. Closing the progress table for u is done using ent2 and
dfr2. (This is where the algorithms for the different families differ.)

A closed table can be transformed into an automaton by identifying the au-
tomaton states with S̃, the initial state with the empty string, and for every letter
a ∈ Σ defining the transition δ(s1, a) = s2 iff s2 ∈ S̃ is the representative of s1a.
By designating certain states as accepting, e.g. those for which T (s, λ) = d∗
for some designated d∗ ∈ D, we get a dfa. Procedures Aut1(T ) and Aut2(T )
are used for performing this transformation, for the leading and progress tables
respectively.

The Main Scheme. The algorithm starts by initializing and closing the leading
table (lines 1-2), and the respective progress tables (lines 3-5) and asking an
equivalence query about the resulting hypothesis. The algorithm then repeats
the following loop (lines 7-18) until the equivalence query returns “yes”.

If the equivalence query returns a counter example (u, v) the learner first ob-
tains the normalized factorization (x, y) of (u, v) with respect to its current lead-
ing automaton (line 8). It then checks whether membership queries for (x, y) and
(x̃, y), where x̃ is the state M arrives at after reading x, return different results.
If so, it calls the procedure FindDistinguishingExperiment to find a distinguish-
ing experiment to add to the leading table (line 11). It then closes the leading
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table and all the progress tables (lines 12-14) and obtains a new hypothesis H
(line 18).

If membership queries for (x, y) and (x̃, y) return the same results, it calls the
procedure FindDistinguishingExperiment to find a distinguishing experiment in
the progress automaton for x̃ (line 16). It then closes this table (line 17) and
obtains a new hypothesis (line 18).

It is clear that if the learning algorithm halts, its output is correct. We discuss
the time complexity at the end of the section.

Specializing for the Periodic, Syntactic and Recurrent Families. We
now turn to provide the details for specializing Lω to learn the different families
Fp, Fs and Fr.

The different learning algorithms differ in the content they put in the progress
tables (i.e. procedure ent2), in the criterion for differentiating rows in a progress
table (i.e. procedure dfr2), the states they choose to be accepting (i.e. proce-
dure Aut2) and the way they find a distinguishing experiment (i.e. procedure
FindDistinguishingExperiment). The details of the latter are given within the
respective proofs of correctness.

For learning the leading automaton, which is same in all 3 families, the fol-
lowing procedures: ent1, dfr1 and Aut1 are used. For u ∈ Σ∗ and xyω ∈ Σω

the procedure ent1(u, xy
ω) returns whether uxyω is in the unknown language

L. Given two row strings u1, u2 ∈ S the procedure dfr1(u1, u2) returns true, if
there exists w ∈ E s.t. T (u1, w) �= T (u2, w). We use Aut1 for the procedure
transforming the leading table into a dfa with no accepting states.

For theperiodicfdfa, givenu, x, v ∈ Σ∗,wehaveentu
p
(x, v) = T iffu(xv)ω ∈ L,

anddfrp(x1, x2) is simply ∃v ∈ E s.t.T (x1, v) �= T (x2, v). The procedureAutp de-
clares a state x as accepting if T (x, λ) = T.

Theorem 3. Calling the learner Lω with ent1,dfr1,Aut1 and entp,dfrp,Autp
halts and returns the periodic fdfa.

Proof. We need to show that in each iteration of the while loop at least one
state is added to one of the tables. Suppose the returned counter example is
(u, v), and its normalized factorization with respect to the current leading au-
tomaton M is (x, y). The learner then checks whether membership queries for
(x, y) and (x̃, y) return different results where x̃ = M(x). Let |x| = n and for
i ∈ [1..n] let si = M(x[1..i]) be the state of the leading automaton reached after
reading the first i symbols of x. Then x̃ = sn, and we know that a sequence
of membership queries with (x, y), (s1x[2..n], y), (s2x[3..n], y), and so on, up to
(sn, y) = (x̃, y) has different answers for the first and last queries. Thus, a sequen-
tial search of this sequence suffices to find a consecutive pair, say (si−1x[i..n], y)
and (six[i+1..n], y), with different answers to membership queries. This shows
that the experiment (x[i+1..n], y) distinguishes si−1x[i] from si in the leading
table, though δ(si−1, x[i]) = si, so that adding it, there will be at least one more
state in the leading automaton.



Learning Regular Omega Languages 137

If membership queries for (x, y) and (x̃, y) return same answers, we look for
an experiment that will distinguish a new state in the progress table of x̃. Let
ỹ = Mx̃(y). Let |y| = n and for i ∈ [1..n] let si = Ax̃(y[1..i]) be the state reached
by Ax̃ after reading the first i symbols of y. Thus sn = ỹ. Consider the sequence
(λ, y), (s1, y[2..n]), (s2, y[3..n]), up to (sn, λ). Then we know the entry for first
and last return different results, though they should not. We can thus find, in
an analogous manner to the first case, a suffix y′ of y that is a differentiating
experiment for the progress table for x̃. ��

For the syntactic fdfa, given u, x, v ∈ Σ∗, the procedure ent
u
s
(x, v) returns

a pair (m, c) ∈ {T,F} × {T,F} such that m = T iff u(xv)ω ∈ L and c = T iff
uxv ∼L u. Given two rows x1 and x2 in the progress table corresponding to lead-
ing state u, the procedure dfr

u
s
(x1, x2) returns true if either M(x1) �= M(x2),

or there exists an experiment v ∈ Eu for which T (u1, v) = (m1, c1), T (u2, v) =
(m2, c2) and (c1 ∨ c2) ∧ (m1 �= m2). The procedure Auts declares a state x as
accepting if T (x, λ) = (T,T).

Theorem 4. Calling the learner Lω with ent1,dfr1,Aut1 and ent
u
s
,dfru

s
,Auts

halts and returns the syntactic fdfa.

Proof. Again we need to show that each iteration of the while loop creates a state.
The proof for the first part is same as in Thm. 3. For the second part, let (x, y) be
the normalized factorization of the given counter example w.r.t to current leading
automaton. We can consider the sequence of experiments (λ, y), (s1, y[2..n]),
(s2, y[3..n]), up to (sn, λ) as we did in the periodic case. Now, however, the
fact that two experiments (x1, v), (x2, v) differ in the answer to the membership
query does not guarantee they would get distinguished, as this fact might be
hidden if for both M(uxiv) �= M(u). Let (m0, c0), (m1, c1), . . . , (mn, cn) be the
respective results for the entry query. We know that m0 �= mn. Also, we know
that c0 = T since we chose x and y so that M(xy) = M(x). Let i be the smallest
for which mi−1 �= mi. If all the cj ’s for j ≤ i are T, we can find a distinguishing
experiment as in the case of periodic fdfa. Otherwise let k be the smallest for
which ck = F. Then M(xsk−1y[k..n]) = M(x) but M(xsky[k + 1..n]) �= M(x).
Therefore y[k + 1..n] distinguishes sk−1y[k] from sk and so we add it to the
experiments Ex̃ of the progress table for x̃. ��

For the recurrent fdfa, given u, x, v ∈ Σ∗ the query ent
u
r
(x, v) is same as

ent
u
s
(x, v). The criterion for differentiating rows, is more relaxed though. Given

two rows x1 and x2 in the progress table corresponding to leading state u, the
procedure dfr

u
r
(x1, x2) returns true if there exists an experiment v for which

T (x1, v) = (T,T) and T (x2, v) �= (T,T) or vice versa. The procedure Autr also
declares a state x as accepting if T (x, λ) = (T,T).

Theorem 5. Calling the learner Lω with ent1,dfr1,Aut1 and ent
u
r
,dfru

r
,Autr

halts and returns the recurrent fdfa.

Proof. The first part is same as in the proof of Theorem 3. For the second part,
let (x, y) be the normalized factorization of (u, v) with respect to M . Let x̃ be
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M(x) and let ỹ be Ax̃(ỹ). As in the proof of Theorem 4, consider the sequence
of experiments (λ, y), (s1, y[2..n]), (s2, y[3..n]) up to (sn, λ) and the respective
entries (m0, c0), (m1, c1), . . . , (mn, cn) in the table Tx̃. We know that out of
(m0, c0) and (mn, cn) one is (T,T) and the other one is not. Therefore for some
i we should have that (mi, ci) is (T,T) and (mi−1, ci−1) is not, or vice versa.
Thus, the experiment y[i+ 1..n] distinguishes si−1y[i] from si. ��

Starting with a Given Leading Automaton. In [10] Klarlund has shown
that while the syntactic forc is the coarsest forc recognizing a certain lan-
guage, it is not necessarily the minimal one. That is, taking a finer (bigger)
leading congruence may yield smaller progress congruences. In particular, he
showed a family of languages Kn where | ∼Kn | = 1, and its syntactic progress
dfa is of size O(nn), but it has an fdfa with n states in the leading automaton
and n states in each of the progress dfas — thus the total size is O(n2). The
family Kn over the alphabet Σn = {a1, a2, . . . , an} ∪ {b | b ∈ {0, 1}n} accepts
all words where at some point ai appears infinitely often, all other aj ’s stop
appearing, and the number of 1’s in the i-th track between two occurrences of ai
is exactly n. It can be seen that the recurrent fdfa will also have O(nn) states.
The family that has a total of O(n) states has a leading automaton K with n
states, remembering which letter among the ai’s was the last to occur.

We can change Lω so that it starts with a given leading automaton, and
proceeds exactly as before. The resulting algorithm may end up refining the
leading automaton if necessary. If we apply it to learn Kn by giving it K as the
leading automaton, the learnt syntactic/recurrent families would have O(n2)
states as well.

Time Complexity. In each iteration of the while loop, i.e. in processing each
counter example, at least one new state is added either to the leading automaton
or to one of the progress automata. If the leading automaton is learned first, we
are guaranteed that we have not distinguished more states than necessary, and
so, since each operation of the while loop is polynomial in the size of the learned
family, the entire procedure will run in time polynomial in the size of the learned
family. However, it can be that we will unnecessarily add states to a progress
automaton, since the leading automaton has not been fully learned yet, in which
case the progress automaton may try to learn the exact periods as does the
periodic family. At a certain point the leading automaton will be exact and the
size of that progress automaton will shrink as necessary. But the worse case time
complexity for all three families is thus polynomial in the size of the periodic
family, rather than the size of the learned family.
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Abstract. We consider a reinforcement learning setting introduced
in [5] where the learner does not have explicit access to the states of
the underlying Markov decision process (MDP). Instead, she has access
to several models that map histories of past interactions to states. Here
we improve over known regret bounds in this setting, and more impor-
tantly generalize to the case where the models given to the learner do
not contain a true model resulting in an MDP representation but only
approximations of it. We also give improved error bounds for state ag-
gregation.

1 Introduction

Inspired by [3], in [5] a reinforcement learning setting has been introduced where
the learner does not have explicit information about the state space of the under-
lying Markov decision process (MDP). Instead, the learner has a set of models at
her disposal that map histories (i.e., observations, chosen actions and collected
rewards) to states. However, only some models give a correct MDP representa-
tion. The first regret bounds in this setting were derived in [5]. They recently
have been improved in [6] and extended to infinite model sets in [7]. Here we ex-
tend and improve the results of [6] as follows. First, we do not assume anymore
that the model set given to the learner contains a true model resulting in an
MDP representation. Instead, models will only approximate an MDP. Second,
we improve the bounds of [6] with respect to the dependence on the state space.

For discussion of potential applications and related work on learning state
representations in POMDPs (like predictive state representations), we refer to
[5–7]. Here we only would like to mention the recent work [2] that considers a
similar setting, however is mainly interested in the question whether the true
model will be identified in the long run, a question we think is subordinate to
that of minimizing the regret, which means fast learning of optimal behavior.

1.1 Setting

For each time step t = 1, 2, . . ., let Ht := O × (A × R × O)t−1 be the set
of histories up to time t, where O is the set of observations, A a finite set of

P. Auer et al. (Eds.): ALT 2014, LNAI 8776, pp. 140–154, 2014.
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actions, and R = [0, 1] the set of possible rewards. We consider the following
reinforcement learning problem: The learner receives some initial observation
h1 = o1 ∈ H1 = O. Then at any time step t > 0, the learner chooses an
action at ∈ A based on the current history ht ∈ Ht, and receives an immediate
reward rt and the next observation ot+1 from the unknown environment. Thus,
ht+1 is the concatenation of ht with (at, rt, ot+1).

State Representation Models. A state-representation model φ is a function
from the set of histories H =

⋃
t≥1Ht to a finite set of states S. A particular

role will be played by state-representation models that induce a Markov decision
process (MDP). An MDP is defined as a decision process in which at any discrete
time t, given action at, the probability of immediate reward rt and next observa-
tion ot+1, given the past history ht, only depends on the current observation ot
i.e., P (ot+1, rt|htat) = P (ot+1, rt|ot, at), and this probability is also independent
of t. Observations in this process are called states of the environment. We say
that a state-representation model φ is a Markov model of the environment, if the
process (φ(ht), at, rt), t ∈ N is an MDP. Note that such an MDP representation
needs not be unique. In particular, we assume that we obtain a Markov model
when mapping each possible history to a unique state. Since these states are not
visited more than once, this model is not very useful from the practical point
of view, however. In general, an MDP is denoted as M(φ) = (Sφ,A, r, p), where
r(s, a) is the mean reward and p(s′|s, a) the probability of a transition to state
s′ ∈ Sφ when choosing action a ∈ A in state s ∈ Sφ.

We assume that there is an underlying true Markov model φ◦ that gives a
finite and weakly communicating MDP, that is, for each pair of states s, s′ ∈
S◦ := Sφ◦ there is a k ∈ N and a sequence of actions a1, . . . , ak ∈ A such that
the probability of reaching state s′ when starting in state s and taking actions
a1, . . . , ak is positive. In such a weakly communicating MDP we can define the
diameter D := D(φ◦) := D(M(φ◦)) to be the expected minimum time it takes
to reach any state starting from any other state in the MDP M(φ◦), cf. [4]. In
finite state MDPs, the Poisson equation relates the average reward ρπ of any
policy π to the single step mean rewards and the transition probabilities. That
is, for each policy π that maps states to actions, it holds that

ρπ + λπ(s) = r(s, π(s)) +
∑

s′∈S◦ p(s′|s, π(s)) · λπ(s
′), (1)

where λπ is the so-called bias vector of π, which intuitively quantifies the differ-
ence in accumulated rewards when starting in different states. Accordingly, we
are sometimes interested in the span of the bias vector λ of an optimal policy
defined as span(λ) := maxs∈S◦ λ(s)−mins′∈S◦ λ(s′). In the following we assume
that rewards are bounded in [0, 1], which implies that span(λ) is upper bounded
by D, cf. [1, 4].

Problem Setting. Given a finite set of models Φ (not necessarily containing
a Markov model), we want to construct a strategy that performs as well as
the algorithm that knows the underlying true Markov model φ◦, including its
rewards and transition probabilities. For that purpose we define for the Markov
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model φ◦ the regret of any strategy at time T , cf. [1, 3, 4], as

Δ(φ◦, T ) := Tρ∗(φ◦)−
∑T

t=1 rt ,

where rt are the rewards receivedwhen following the proposed strategy and ρ
∗(φ◦)

is the average optimal reward in φ◦, i.e. ρ∗(φ◦) := ρ∗(M(φ◦)) := ρ(M(φ◦), π∗
φ◦) :=

limT→∞
1
T E
[∑T

t=1 rt(π
∗
φ◦)
]
where rt(π

∗
φ◦) are the rewards receivedwhen following

the optimal policy π∗
φ◦ onM(φ◦). Note that for weakly communicating MDPs the

average optimal reward does not depend on the initial state.
We consider the case when Φ is finite and the learner has no knowledge of

the correct approximation errors of each model in Φ. Thus, while for each model
φ ∈ Φ there is an associated ε = ε(φ) ≥ 0 which indicates the aggregation error
(cf. Definition 1 below), this ε is unknown to the learner for each model.

We remark that we cannot expect to perform as well as the unknown under-
lying Markov model, if the model set only provides approximations. Thus, if the
best approximation has error ε we have to be ready to accept respective error of
order εD per step, cf. the lower bound provided by Theorem 2 below.

Overview. We start with explicating our notion of approximation in Section 2,
then introduce our algorithm in Section 3, present our regret bounds in Section 4,
and conclude with the proofs in Section 5. Due to space constraints some proofs
can only be found in the extended version [9].

2 Preliminaries: MDP Approximations

Approximations. Before we give the precise notion of approximation we are
going to use, first note that in our setting the transition probabilities p(h′|h, a)
for any two histories h, h′ ∈ H and an action a are well-defined. Then given an
arbitrary model φ and a state s′ ∈ Sφ, we can define the aggregated transition
probabilities pagg(s′|h, a) :=

∑
h′:φ(h′)=s′ p(h

′|h, a). Note that the true transition
probabilities under φ◦ are then given by p(s′|s, a) := pagg(s′|h, a) for s = φ◦(h)
and s′ ∈ S◦.

Definition 1. A model φ is said to be an ε-approximation of the true model φ◦

if: (i) for all histories h, h′ with φ(h) = φ(h′) and all actions a∣∣r(φ◦(h), a)− r(φ◦(h′), a)
∣∣ < ε, and

∥∥p(·|φ◦(h), a)− p(·|φ◦(h′), a)
∥∥
1
< ε

2 , (2)

and (ii) there is a surjective mapping α : S◦ → Sφ such that for all histories h
and all actions a it holds that∑

ṡ′∈Sφ

∣∣∣pagg(ṡ′|h, a)− ∑
s′∈S◦:α(s′)=ṡ′

pagg(s′|h, a)
∣∣∣ < ε

2 . (3)

Intuitively, condition (2) assures that the approximate model aggregates only
histories that are mapped to similar states under the true model. Complemen-
tary, condition (3) guarantees that the state space under the approximate model
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resembles the true state space.1 Note that any model will be an ε-approximation
of the underlying true model φ◦ for sufficiently large ε.

A particular natural case are approximation models φ which also satisfy

∀h, h′ ∈ H : φ◦(h) = φ◦(h′) =⇒ φ(h) = φ(h′).

That is, intuitively, states in S◦ are aggregated to meta-states in Sφ, and (3)
holds trivially.

We may carry over our definition of ε-approximation to MDPs. This will
turn out useful, since each approximate model can be interpreted as an MDP
approximation, cf. Section 5.1 below.

Definition 2. An MDP M̄ = (S̄,A, r̄, p̄) is an ε-approximation of another MDP
M = (S,A, r, p) if there is a surjective function α : S → S̄ such that for
all s in S:∣∣r̄(α(s), a)− r(s, a)

∣∣ < ε, and
∑
ṡ′∈S̄

∣∣∣p̄(ṡ′|α(s), a)− ∑
s′:α(s′)=ṡ′

p(s′|s, a)
∣∣∣ < ε. (4)

Error Bounds for ε-Approximations. The following is an error bound on
the error made by an ε-approximation. It generalizes bounds of [8] from ergodic
to communicating MDPs. For a proof see Appendix A of [9].

Theorem 1. Let M be a communicating MDP and M̄ be an ε-approximation
of M . Then ∣∣ρ∗(M)− ρ∗(M̄)

∣∣ ≤ ε (D(M) + 1).

The following is a matching lower bound on the error by aggregation. This
is an improvement over the results in [8], which only showed that the error
approaches 1 when the diameter goes to infinity.

Theorem 2. For each ε > 0 and each 2 < D < 4
ε there are MDPs M , M̄ such

that M̄ is an ε-approximation of M , M has diameter D(M) = D, and

|ρ∗(M)− ρ∗(M̄)| > 1
56εD(M).

Proof. Consider the MDP M shown in Figure 1 (left), where the (deterministic)
reward in states s0, s

′
0 is 0 and 1 in state s1. We assume that 0 < ε := ε

2 < δ := 2
D .

Then the diameter D(M) is the expected transition time from s′0 to s0 and
equal to 2

δ = D. Aggregating states s0, s
′
0 gives the MDP M̄ on the right hand

side of Figure 1. Obviously, M̄ is an ε-approximation of M . It is straightfor-
ward to check that the stationary distribution μ (of the only policy) in M is

(μ(s0), μ(s
′
0), μ(s1)) =

(
δ

3ε+4δ ,
ε+δ

3ε+4δ ,
2ε+2δ
3ε+4δ

)
, while the stationary distribution

in M̄ is (12 ,
1
2 ). Thus, the difference in average reward is

|ρ∗(M)− ρ∗(M̄)| = 2ε+2δ
3ε+4δ −

1
2 = ε

2(3ε+4δ) > ε
14δ = 1

56εD(M). ��
1 The allowed error in the conditions for the transition probabilities is chosen to be ε

2

so that the total error with respect to the transition probabilities is ε. This matches
the respective condition for MDP approximations in Definition 2, cf. also Section 5.1.
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Fig. 1. The MDPs M (left) and M̄ (right) in the proof of Theorem 2. Solid, dashed,
and dotted arrows indicate different actions.

Theorems 1 and 2 compare the optimal policies of two different MDPs, how-
ever it is straightforward to see from the proofs that the same error bounds
hold when comparing on some MDP M the optimal average reward ρ∗(M) to
the average reward when applying the optimal policy of an ε-approximation M̄
of M . Thus, when we approximate an MDP M by an ε-approximation M̄ , the
respective error of the optimal policy of M̄ on M can be of order εD(M) as
well. Hence, we cannot expect to perform below this error if we only have an
ε-approximation of the true model at our disposal.

3 Algorithm

The OAMS algorithm (shown in detail as Algorithm 1) we propose for the setting
introduced in Section 1 is a generalization of the OMS algorithm of [6]. Application
of the original OMS algorithm to our setting would not work, since OMS compares
the collected rewards of each model to the reward it would receive if the model
were Markov. Models not giving sufficiently high reward are identified as non-
Markov and rejected. In our case, there may be no Markov model in the set of
given models Φ. Thus, the main difference to OMS is that OAMS for each model
estimates and takes into account the possible approximation error with respect
to a closest Markov model.

OAMS proceeds in episodes k = 1, 2, . . ., each consisting of several runs j =
1, 2, . . .. In each run j of some episode k, starting at time t = tkj , OAMS chooses
a policy πkj applying the optimism in face of uncertainty principle twice.

Plausible Models. First, OAMS considers for each model φ ∈ Φ a set of plausible
MDPs Mt,φ defined to contain all MDPs with state space Sφ and with rewards
r+ and transition probabilities p+ satisfying

∣∣r+(s, a)− r̂t(s, a)
∣∣ ≤ ε̃(φ) +

√
log(48SφAt3/δ)

2Nt(s,a)
, (5)

∥∥p+(·|s, a)− p̂t(·|s, a)
∥∥
1
≤ ε̃(φ) +

√
2Sφ log(48SφAt3/δ)

Nt(s,a)
, (6)

where ε̃(φ) is the estimate for the approximation error of model φ (cf. below),
p̂t(·|s, a) and r̂t(s, a) are respectively the empirical state-transition probabilities
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and the mean reward at time t for taking action a in state s ∈ Sφ, Sφ := |Sφ|
denotes the number of states under model φ, A := |A| is the number of actions,
and Nt(s, a) is the number of times action a has been chosen in state s up to
time t. (If a hasn’t been chosen in s so far, we set Nt(s, a) to 1.) The inequalities
(5) and (6) are obviously inspired by Chernov bounds that would hold with high
probability in case the respective model φ is Markov, cf. also Lemma 1 below.

Optimistic MDP for Each Model φ. In line 4, the algorithm computes for
each model φ a so-called optimistic MDP M+

t (φ) ∈ Mt,φ and an associated
optimal policy π+

t,φ on M+
t (φ) such that the average reward ρ(M+

t (φ), π+
t,φ) is

maximized. This can be done by extended value iteration (EVI) [4]. Indeed, if
r+t (s, a) and p

+
t (s

′|s, a) denote the optimistic rewards and transition probabilities
of M+

t (φ), then EVI computes optimistic state values u+
t,φ = (u+

t,φ(s))s ∈ RSφ

such that (cf. [4])

ρ̂+t (φ) := min
s∈Sφ

{
r+t (s, π

+
t,φ(s)) +

∑
s′

p+t (s
′|s, π+

t,φ(s))u
+
t,φ(s

′)− u+
t,φ(s)

}
(7)

is an approximation of ρ∗(M+
t (φ)), that is,

ρ̂+t (φ) ≥ ρ∗(M+
t (φ))− 2/

√
t. (8)

Optimistic Model Selection. In line 5, OAMS chooses a model φkj ∈ Φ with
corresponding MDP Mkj = M+

t (φkj) and policy πkj := π+
t,φkj

that maximizes

the average reward penalized by the term pen(φ, t) defined as

pen(φ, t) := 2−j/2
((
λ(u+

t,φ)
√
2Sφ + 3√

2

)√
SφA log

( 48SφAt3

δ

)
(9)

+λ(u+
t,φ)

√
2 log(24t

2

δ )
)
+ 2−jλ(u+

t,φ) + ε̃(φ)
(
λ(u+

t,φ) + 3
)
,

where we define λ(u+
t,φ) := maxs∈Sφ

u+
t,φ(s)−mins∈Sφ

u+
t,φ(s) to be the empirical

value span of the optimistic MDP M+
t (φ). Intuitively, the penalization term is

an upper bound on the per-step regret of the model φ in the run to follow in
case φ is chosen, cf. eq. (35) in the proof of the main theorem. Similar to the
REGAL algorithm of [1] this shall prefer simpler models (i.e., models having
smaller state space and smaller value span) to more complex ones.

Termination of Runs and Episodes. The chosen policy πkj is then executed
until either (i) run j reaches the maximal length of 2j steps, (ii) episode k
terminates when the number of visits in some state has been doubled (line 12),
or (iii) the executed policy πkj does not give sufficiently high rewards (line 9).
That is, at any time t in run j of episode k it is checked whether the total reward
in the current run is at least �kjρkj − lobkj(t), where �kj := t − tkj + 1 is the
(current) length of run j in episode k, and lobkj(t) is defined as

lobkj(t) :=
(
λ+
kj

√
2Skj +

3√
2

)∑
s∈Skj

∑
a∈A

√
vkj(s, a) log

( 48SkjAt3kj

δ

)
+ λ+

kj

√
2�kj log

( 24t2kj

δ

)
+ λ+

kj + ε̃
(
φkj)�kj(λ

+
kj + 3

)
, (10)
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Algorithm 1. Optimal Approximate Model Selection (OAMS)

input set of models Φ, confidence parameter δ ∈ (0, 1), precision parameter ε0 ∈ (0, 1)
1: Let t be the current time step, and set ε̃(φ) := ε0 for all φ ∈ Φ.
2: for episodes k = 1, 2, . . . do
3: for runs j = 1, 2, . . . do
4: ∀φ ∈ Φ, use EVI to compute an optimistic MDP M+

t (φ) in Mt,φ (the set
of plausible MDPs defined via the confidence intervals (5) and (6) for the
estimates so far), a (near-)optimal policy π+

t,φ on M+
t (φ) with approximate

average reward ρ̂+t (φ), and the empirical value span λ(u+
t,φ).

5: Choose model φkj ∈ Φ such that

φkj = argmax
φ∈Φ

{
ρ̂+t (φ)− pen(φ, t)

}
. (11)

6: Set tkj := t, ρkj := ρ̂+t (φkj), πkj := π+
t,φkj

, and Skj := Sφkj
.

7: for 2j steps do
8: Choose action at := πkj(st), get reward rt, observe next state st+1 ∈ Skj .
9: if the total reward collected so far in the current run is less than

(t− tkj + 1)ρkj − lobkj(t), (12)

then
10: ε̃(φkj) := 2ε̃(φkj)
11: Terminate current episode.
12: else if

∑j
j′=1 vkj′ (st, at) = Ntk1(st, at) then

13: Terminate current episode.
14: end if
15: end for
16: end for
17: end for

where λ+
kj := λ(u+

tkj ,φkj
), Skj := Sφkj

, and vkj(s, a) are the (current) state-action
counts of run j in episode k. That way, OAMS assumes each model to be Markov,
as long as it performs well. We will see that lobkj(t) can be upper bounded by
�kjpen(φkj , tkj), cf. eq. (35) below.

Guessing the Approximation Error. The algorithm tries to guess for each
model φ the correct approximation error ε(φ). In the beginning the guessed value
ε̃(φ) for each model φ ∈ Φ is set to the precision parameter ε0, the best possible
precision we aim for. Whenever the reward test fails for a particular model φ, it
is likely that ε̃(φ) is too small and it is therefore doubled (line 10).

4 Regret Bounds

The following upper bound on the regret of OAMS is the main result of this paper.

Theorem 3. There are c1, c2, c3 ∈ R such that in each learning problem where
the learner is given access to a set of models Φ not necessarily containing the
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true model φ◦, the regret Δ(φ◦, T ) of OAMS (with parameters δ, ε0) with respect
to the true model φ◦ after any T ≥ SA steps is upper bounded by

c1 ·DSA(log( 1
ε0
) logT + log2 T ) + c2 ·DA(log3/2 T )

√
SφS log( 1

ε0
)T

+c3 ·D(log( 1
ε0
) + T )max{ε0, ε(φ)}

with probability at least 1− δ, where φ ∈ Φ is an ε(φ)-approximation of the true
underlying Markov model φ◦, D := D(φ◦), and S :=

∑
φ∈Φ Sφ.

As already mentioned, by Theorem 2 the last term in the regret bound is un-
avoidable when only considering models in Φ. Note that Theorem 3 holds for all
models φ ∈ Φ. For the best possible bound there is a payoff between the size Sφ

of the approximate model and its precision ε(φ).
When the learner knows that Φ contains a Markov model φ◦, the original OMS

algorithm of [6] can be employed. In case when the total number S =
∑

φ Sφ of

states over all models is large, i.e., S > D2|Φ|S◦, we can improve on the state
space dependence of the regret bound given in [6] as follows. The proof (found
in Appendix H of [9]) is a simple modification of the analysis in [6] that exploits
that by (11) the selected models cannot have arbitrarily large state space.

Theorem 4. If Φ contains a Markov model φ◦, with probability at least 1 − δ
the regret of OMS is bounded by Õ(D2S◦A

√
|Φ|T ).

Discussion. Unfortunately, while the bound in Theorem 3 is optimal with re-
spect to the dependence on the horizon T , the improvement on the state space
dependence that we could achieve in Theorem 4 for OMS is not as straightforward
for OAMS and remains an open question just as the optimality of the bound with
respect to the other appearing parameters. We note that this is still an open
question even for learning in MDPs (without additionally selecting the state
representation) as well, cf. [4].

Another direction for future work is the extension to the case when the un-
derlying true MDP has continuous state space. In this setting, the models have
the natural interpretation of being discretizations of the original state space.
This could also give improvements over current regret bounds for continuous
reinforcement learning as given in [10]. Of course, the most challenging goal re-
mains to generate suitable state representation models algorithmically instead
of assuming them to be given. However, at the moment it is not even clear how
to deal with the case when an infinite set of models is given.

5 Proof of Theorem 3

The proof is divided into three parts and follows the lines of [6], now taking into
account the necessary modifications to deal with the approximation error. First,
in Section 5.1 we deal with the error of ε-approximations. Then in Section 5.2,
we show that all state-representation models φ which are an ε(φ)-approximation
of a Markov model pass the test in (12) on the rewards collected so far with high
probability, provided that the estimate ε̃(φ) ≥ ε(φ). Finally, in Section 5.3 we
use this result to derive the regret bound of Theorem 3.
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5.1 Error Bounds for ε-Approximate Models

We start with some observations about the empirical rewards and transition
probabilities our algorithm calculates and employs for each model φ. While the
estimated rewards r̂ and transition probabilities p̂ used by the algorithm do in
general not correspond to some underlying true values, the expectation values
of r̂ and p̂ are still well-defined, given the history h ∈ H so far. Indeed, consider
some h ∈ H with φ(h) = ṡ ∈ Sφ, φ

◦(h) = s ∈ S◦, and an action a, and assume
that the estimates r̂(ṡ, a) and p̂(·|ṡ, a) are calculated from samples when action a
was chosen after histories h1, h2, . . . , hn ∈ H that are mapped to the same state ṡ
by φ. (In the following, we will denote the states of an approximation φ by
variables with dot, such as ṡ, ṡ′, etc., and states in the state space S◦ of the true
Markov model φ◦ without a dot, such as s, s′, etc.) Since rewards and transition
probabilities are well-defined under φ◦, we have

E[r̂(ṡ, a)] = 1
n

n∑
i=1

r(φ◦(hi), a), and E[p̂(ṡ′|ṡ, a)] = 1
n

n∑
i=1

∑
h′:φ(h′)=ṡ′

p(h′|hi, a). (13)

Since φ maps the histories h, h1, . . . , hn to the same state ṡ ∈ Sφ, the rewards
and transition probabilities in the states φ◦(h), φ◦(h1), . . . , φ

◦(hn) of the true
underlying MDP are ε-close, cf. (2). It follows that for s = φ◦(h) and ṡ = φ(h)∣∣∣E[r̂(ṡ, a)]− r(s, a)

∣∣∣ = ∣∣∣ 1n n∑
i=1

(
r(φ◦(hi), a)− r(φ◦(h), a)

)∣∣∣ < ε(φ). (14)

For the transition probabilities we have by (3) for i = 1, . . . , n∑
ṡ′∈Sφ

∣∣∣pagg(ṡ′|hi, a)−
∑

s′∈S◦:α(s′)=ṡ′
pagg(s′|hi, a)

∣∣∣ < ε(φ)
2 . (15)

Further, all hi as well as h are mapped to ṡ by φ so that according to (2) and
recalling that s = φ◦(h) we have for i = 1, . . . , n∑

ṡ′∈Sφ

∣∣∣ ∑
s′∈S◦:α(s′)=ṡ′

pagg(s′|hi, a)−
∑

s′∈S◦:α(s′)=ṡ′
p(s′|s, a)

∣∣∣
≤
∑
s′∈S◦

∣∣pagg(s′|hi, a)− p(s′|s, a)
∣∣ < ε(φ)

2 . (16)

By (15) and (16) for i = 1, . . . , n∑
ṡ′∈Sφ

∣∣∣pagg(ṡ′|hi, a)−
∑

s′∈S◦:α(s′)=ṡ′
p(s′|s, a)

∣∣∣ < ε(φ), (17)

so that from (13) and (17) we can finally bound∑
ṡ′∈Sφ

∣∣∣E[p̂(ṡ′|ṡ, a)]− ∑
s′∈S◦:α(s′)=ṡ′

p(s′|s, a)
∣∣∣

≤ 1
n

n∑
i=1

∑
ṡ′∈Sφ

∣∣∣pagg(ṡ′|hi, a)−
∑

s′∈S◦:α(s′)=ṡ′
p(s′|s, a)

∣∣∣ < ε(φ). (18)
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Thus, according to (14) and (18) the ε-approximate model φ gives rise to an
MDP M̄ on Sφ with rewards r̄(ṡ, a) := E[r̂(ṡ, a)] and transition probabilities
p̄(ṡ′|ṡ, a) := E[p̂(ṡ′|ṡ, a)] that is an ε-approximation of the true MDP M(φ◦).
Note that M̄ actually depends on the history so far.

The following lemma gives some basic confidence intervals for the estimated
rewards and transition probabilities. For a proof sketch see Appendix B of [9].

Lemma 1. Let t be an arbitrary time step and φ ∈ Φ be the model employed at
step t. Then the estimated rewards r̂ and transition probabilities p̂ satisfy for all
ṡ, ṡ′ ∈ Sφ and all a ∈ A

r̂(ṡ, a)− E[r̂(ṡ, a)] ≤
√

log(48SφAt3/δ)
Nt(ṡ,a)

,∥∥∥p̂(·|ṡ, a)− E[p̂(·|ṡ, a)]
∥∥∥
1
≤
√

2Sφ log(48SφAt3/δ)
Nt(ṡ,a)

,

each with probability at least 1− δ
24t2 .

The following is a consequence of Theorem 1, see Appendix C of [9] for a
detailed proof.

Lemma 2. Let φ◦ be the underlying true Markov model leading to MDP M =
(S◦,A, r, p), and φ be an ε-approximation of φ◦. Assume that the confidence
intervals given in Lemma 1 hold at step t for all states ṡ, ṡ′ ∈ Sφ and all actions a.
Then the optimistic average reward ρ̂+t (φ) defined in (7) satisfies

ρ̂+t (φ) ≥ ρ∗(M)− ε(D(M) + 1)− 2√
t
.

5.2 Approximate Markov Models Pass the Test in (12)

Assume that the model φkj ∈ Φ employed in run j of episode k is an εkj :=
ε(φkj)-approximation of the true Markov model. We are going to show that φkj

will pass the test (12) on the collected rewards with high probability at any
step t, provided that ε̃kj := ε̃(φkj) ≥ εkj .

Lemma 3. For each step t in some run j of some episode k, given that tkj = t′

the chosen model φkj passes the test in (12) at step t with probability at least
1− δ

6t′2 whenever ε̃kj(φkj) ≥ ε(φkj).

Proof. In the following, ṡτ := φkj(hτ ) and sτ := φ◦(hτ ) are the states at time
step τ under model φkj and the true Markov model φ◦, respectively.

Initial Decomposition. First note that at time t when the test is performed,
we have

∑
ṡ∈Skj

∑
a∈A vkj(ṡ, a) = �kj = t− t′ + 1, so that

�kjρkj −
t∑

τ=t′
rτ =

∑
ṡ∈Skj

∑
a∈A

vkj(ṡ, a)
(
ρkj − r̂t′:t(ṡ, a)

)
,
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where r̂t′:t(ṡ, a) is the empirical average reward collected for choosing a in ṡ from
time t′ to the current time t in run j of episode k.

Let r+kj(ṡ, a) be the rewards and p+kj(·|ṡ, a) the transition probabilities of the

optimistic model M+
tkj

(φkj). Noting that vkj(ṡ, a) = 0 when a �= πkj(ṡ), we get

�kjρkj −
t∑

τ=t′
rτ =

∑
ṡ,a

vkj(ṡ, a)
(
ρ̂+kj(φkj)− r+kj(ṡ, a)

)
(19)

+
∑
ṡ,a

vkj(ṡ, a)
(
r+kj(ṡ, a)− r̂t′:t(ṡ, a)

)
. (20)

We continue bounding the two terms (19) and (20) separately.

Bounding the Reward Term (20). Recall that r(s, a) is the mean reward for
choosing a in s in the true Markov model φ◦. Then we have at each time step
τ = t′, . . . , t with probability at least 1− δ

12t′2

r+kj(ṡτ , a)− r̂t′:t(ṡτ , a) =
(
r+kj(ṡτ , a)− r̂t′(ṡτ , a)

)
+
(
r̂t′(ṡτ , a)− E[r̂t′(ṡτ , a)]

)
+
(
E[r̂t′ (ṡτ , a)]− r(sτ , a)

)
+
(
r(sτ , a)− E[r̂t′ :t(ṡτ , a)]

)
+
(
E[r̂t′:t(ṡτ , a)]− r̂t′:t(ṡτ , a)

)
≤ ε̃kj + 2

√
log(48SkjAt′3/δ)

2Nt′ (ṡ,a)
+ 2εkj +

√
log(48SkjAt′3/δ)

2vkj(ṡ,a)
, (21)

where we bounded the first term in the decomposition by (5), the second term by
Lemma 1, the third and fourth according to (14), and the fifth by an equivalent
to Lemma 1 for the rewards collected so far in the current run. In summary,
with probability at least 1− δ

12t′2 we can bound (20) as∑
ṡ,a

vkj(ṡ, a)
(
r+kj(ṡ, a)− r̂t′:t(ṡ, a)

)
≤ 3ε̃kj�kj+

3√
2

∑
ṡ,a

√
vkj(ṡ, a) log

(48SkjAt′3

δ

)
, (22)

where we used the assumption that ε̃kj ≥ εkj as well as vkj(ṡ, a) ≤ Nt′(ṡ, a).

Bounding the Bias Term (19). First, notice that we can use (7) to bound∑
ṡ,a

vkj(ṡ, a)
(
ρ̂+kj(φkj)−r+kj(ṡ, a)

)
≤
∑
ṡ,a

vkj(ṡ, a)
(∑

ṡ′
p+kj(ṡ

′|ṡ, a)u+
kj(ṡ

′)−u+
kj(ṡ)

)
,

where u+
kj(ṡ) := u+

tkj ,φkj
(ṡ) are the state values given by EVI. Further, since the

transition probabilities p+kj(·|ṡ, a) sum to 1, this is invariant under a translation

of the vector u+
kj . In particular, defining wkj(ṡ) := u+

kj(ṡ)− 1
2

(
minṡ∈Skj

u+
kj(ṡ)+

maxṡ∈Skj
u+
kj(ṡ)

)
, so that ‖wkj‖∞ = λ+

kj/2, we can replace u+
kj with wkj , and

(19) can be bounded as∑
ṡ,a

vkj(ṡ, a)
(
ρ̂+kj(φkj)− r+kj(ṡ, a)

)
≤
∑
ṡ,a

t∑
τ=t′

1
{
(ṡτ , aτ ) = (ṡ, a)

}( ∑
ṡ′∈Skj

p+kj(ṡ
′|ṡτ , a)wkj(ṡ

′)− wkj(ṡτ )
)
. (23)
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Now we decompose for each time step τ = t′, . . . , t∑
ṡ′∈Skj

p+kj(ṡ
′|ṡτ , a)wkj(ṡ

′)− wkj(ṡτ ) =

∑
ṡ′∈Skj

(
p+kj(ṡ

′|ṡτ , a)− p̂t′(ṡ
′|ṡτ , a)

)
wkj(ṡ

′) (24)

+
∑

ṡ′∈Skj

(
p̂t′(ṡ

′|ṡτ , a)− E[p̂t′(ṡ
′|ṡτ , a)]

)
wkj(ṡ

′) (25)

+
∑

ṡ′∈Skj

(
E[p̂t′(ṡ

′|ṡτ , a)]−
∑

s′:α(s′)=ṡ′
p(s′|sτ , a)

)
wkj(ṡ

′) (26)

+
∑

ṡ′∈Skj

∑
s′:α(s′)=ṡ′

p(s′|sτ , a)wkj(ṡ
′)− wkj(ṡτ ) (27)

and continue bounding each of these terms individually.
Bounding (24): Using ‖wkj‖∞ = λ+

kj/2, (24) is bounded according to (6) as∑
ṡ′∈Skj

(
p+kj(ṡ

′|ṡτ , a)− p̂t′(ṡ
′|ṡτ , a)

)
wkj(ṡ

′) ≤
∥∥p+kj(·|ṡτ , a)− p̂t′(·|ṡτ , a)

∥∥
1
‖wkj‖∞

≤ ε̃kjλ
+
kj

2 +
λ+
kj

2

√
2Skj log(48SkjAt′3/δ)

Nt′ (s,a)
. (28)

Bounding (25): Similarly, by Lemma 1 with probability at least 1− δ
24t′2 we

can bound (25) at all time steps τ as∑
ṡ′∈Skj

(
p̂t′(ṡ

′|ṡτ , a)− E[p̂t′(ṡ
′|ṡτ , a)]

)
wkj(ṡ

′) ≤ λ+
kj

2

√
2Skj log(48SkjAt′3/δ)

Nt′ (s,a)
. (29)

Bounding (26): By (18) and using that ‖wkj‖∞ = λ+
kj/2, we can bound (26)

by ∑
ṡ′∈Skj

(
E[p̂t′(ṡ

′|ṡτ , a)]−
∑

s′:α(s′)=ṡ′
p(s′|sτ , a)

)
wkj(ṡ

′) <
εkjλ

+
kj

2 . (30)

Bounding (27): We set w′(s) := wkj(α(s)) for s ∈ S◦ and rewrite (27) as∑
ṡ′∈Skj

∑
s′:α(s′)=ṡ′

p(s′|sτ , a)wkj(ṡ
′)− wkj(ṡτ ) =

∑
s′∈S◦

p(s′|sτ , a)w′(s′)− w′(sτ ).(31)

Summing this term over all steps τ = t′, . . . , t, we can rewrite the sum as
a martingale difference sequence, so that Azuma-Hoeffding’s inequality (e.g.,
Lemma 10 of [4]) yields that with probability at least 1− δ

24t′3

t∑
τ=t′

∑
s′∈S◦

p(s′|sτ , a)w′(s′)− w′(sτ ) =
t∑

τ=t′

(∑
s′

p(s′|sτ , a)w′(s′)− w′(sτ+1)
)

+w′(st+1)− w′(st′) ≤ λ+
kj

√
2�kj log(

24t′3
δ ) + λ+

kj , (32)



152 R. Ortner, O.-A. Maillard, and D. Ryabko

since the sequence Xτ :=
∑

s′ p(s
′|sτ , a)w′(s′)−w′(sτ+1) is a martingale differ-

ence sequence with |Xt| ≤ λ+
kj .

Wrap-up. Summing over the steps τ = t′, . . . , t, we get from (23), (27), (28),
(29), (30), (31), and (32) that with probability at least 1− δ

12t′2∑
ṡ,a

vkj(ṡ, a)
(
ρ̂+kj(φkj)− r+kj(ṡ, a)

)
≤ ε̃kjλ

+
kj�kj

+λ+
kj

∑
ṡ,a

√
2vkj(ṡ, a)Skj log

( 48SkjAt′3

δ

)
+ λ+

kj

√
2�kj log

(
24t′2
δ

)
+ λ+

kj , (33)

using that vkj(ṡ, a) ≤ Nt′(ṡ, a) and the assumption that εkj ≤ ε̃kj . Combining
(20), (22), and (33) gives the claimed lemma. ��

Summing Lemma 3 over all episodes gives the following lemma, for a detailed
proof see Appendix D of [9].

Lemma 4. With probability at least 1 − δ, for all runs j of all episodes k the
chosen model φkj passes all tests, provided that ε̃kj(φkj) ≥ ε(φkj).

5.3 Preliminaries for the Proof of Theorem 3

We start with some auxiliary results for the proof of Theorem 3. Lemma 5
bounds the bias span of the optimistic policy, Lemma 6 deals with the estimated
precision of φkj , and Lemma 7 provides a bound for the number of episodes. For
proofs see Appendix E, F, and G of [9].

Lemma 5. Assume that the confidence intervals given in Lemma 1 hold at some
step t for all states ṡ ∈ Sφ and all actions a. Then for each φ, the set of plausible

MDPs Mt,φ contains an MDP M̃ with diameter D(M̃) upper bounded by the
true diameter D, provided that ε̃(φ) ≥ ε(φ). Consequently, the respective bias
span λ(u+

t,φ) is bounded by D as well.

Lemma 6. If all chosen models φkj pass all tests in run j of episode k whenever
ε̃(φkj) ≥ ε(φkj), then ε̃(φ) ≤ max{ε0, 2ε(φ)} always holds for all models φ.

Lemma 7. Assume that all chosen models φkj pass all tests in run j of episode k
whenever ε̃(φkj) ≥ ε(φkj). Then the number of episodes KT after any T ≥ SA

steps is upper bounded as KT ≤ SA log2
(
2T
SA

)
+
∑

φ:ε(φ)>ε0
log2

( ε(φ)
ε0

)
.

5.4 Bounding the Regret (Proof of Theorem 3)

Now we can finally turn to showing the regret bound of Theorem 3. We will
assume that all chosen models φkj pass all tests in run j of episode k whenever
ε̃(φkj) ≥ ε(φkj). According to Lemma 4 this holds with probability at least 1−δ.
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Let φkj ∈ Φ be the model that has been chosen at time tkj , and consider the
last but one step t of run j in episode k. The regret Δkj of run j in episode k
with respect to ρ∗ := ρ∗(φ◦) is bounded by

Δkj := (�kj + 1)ρ∗ −
∑t+1

τ=tkj
rτ ≤ �kj

(
ρ∗ − ρkj

)
+ ρ∗ + �kjρkj −

∑t
τ=tkj

rτ ,

where as before �kj := t− tkj + 1 denotes the length of run j in episode k up to
the considered step t. By assumption the test (12) on the collected rewards has
been passed at step t, so that

Δkj ≤ �kj
(
ρ∗ − ρkj

)
+ ρ∗ + lobkj(t), (34)

and we continue bounding the terms of lobkj(t).

Bounding the Regret with the Penalization Term. Since we have
vkj(ṡ, a) ≤ Ntk1

(ṡ, a) for all ṡ ∈ Skj , a ∈ A and also
∑

ṡ,a vkj(ṡ, a) = �kj ≤ 2j ,

by Cauchy-Schwarz inequality
∑

ṡ,a

√
vkj(ṡ, a) ≤ 2j/2

√
SkjA. Applying this to

the definition (10) of lobkj , we obtain from (34) and by the definition (9) of the
penalty term that

Δkj ≤ �kj
(
ρ∗ − ρkj

)
+ ρ∗ + 2j/2

(
λ+
kj

√
2Skj +

3√
2

)√
SkjA log

( 48SkjAt3kj

δ

)
+ λ+

kj

√
2�kj log

( 24t2kj

δ

)
+ λ+

kj + ε̃
(
φkj)�kj(λ

+
kj + 3

)
≤ �kj

(
ρ∗ − ρkj

)
+ ρ∗ + 2jpen(φkj , tkj). (35)

The Key Step. Now, by definition of the algorithm and Lemma 2, for any
approximate model φ we have

ρkj − pen(φkj , tkj) ≥ ρ̂+tkj
(φ) − pen(φ, tkj) (36)

≥ ρ∗ − (D + 1)ε(φ)− pen(φ, tkj)− 2t
−1/2
kj ,

or equivalently ρ∗ − ρkj + pen(φkj , tkj) ≤ pen(φ, tkj) + (D + 1)ε(φ) + 2t
−1/2
kj .

Multiplying this inequality with 2j and noting that �kj ≤ 2j then gives

�kj
(
ρ∗ − ρkj

)
+ 2jpen(φkj , tkj) ≤ 2jpen(φ, tkj) + 2j(D + 1)ε(φ) + 2j+1t

−1/2
kj .

Combining this with (35), we get by application of Lemma 5, i.e., λ(u+
tkj ,φ

) ≤ D,

and the definition of the penalty term (9) that

Δkj ≤ ρ∗ + 2j/2
((
D
√
2Sφ + 3√

2

)√
SφA log

( 48SφAt3kj

δ

)
+D

√
2 log(

24t2kj

δ )
)

+D + 2j ε̃(φ)
(
D + 3

)
+ 2j(D + 1)ε(φ) + 2j+1t

−1/2
kj .

By Lemma 6 and using that 2tkj ≥ 2j (so that 2j+1t
−1/2
kj ≤ 2

√
2 · 2j/2) we get

Δkj ≤ ρ∗ + 2j/2
((
D
√
2Sφ + 3√

2

)√
SφA log

( 48SφAt3kj

δ

)
+D

√
2 log(

24t2kj

δ )
)

+D + 3
2 · 2

j max{ε0, 2ε(φ)}
(
D + 7

3

)
+ 2

√
2 · 2j/2. (37)
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Summing over Runs and Episodes. Let Jk be the total number of runs in
episode k, and let KT be the total number of episodes up to time T . Noting that
tkj ≤ T and summing (37) over all runs and episodes gives

Δ(φ◦, T ) =

KT∑
k=1

Jk∑
j=1

Δkj ≤
(
ρ∗ +D

)KT∑
k=1

Jk +
3
2 max{ε0, 2ε(φ)}

(
D + 7

3

) KT∑
k=1

Jk∑
j=1

2j

+

((
D
√
2Sφ + 3√

2

)√
SφA log

( 48SφAT 3

δ

)
+D

√
2 log(24T

2

δ ) + 2
√
2

)KT∑
k=1

Jk∑
j=1

2j/2.

As shown in Section 5.2 of [6],
∑

k Jk ≤ KT log2(2T/KT ),
∑

k

∑
j 2

j ≤√
2(T +KT ) and

∑
k

∑
j 2

j/2 ≤
√
2KT log2(2T/KT )(T +KT ), and we may

conclude the proof applying Lemma 7 and some minor simplifications. ��
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Abstract. We study a risk-constrained version of the stochastic shortest path
(SSP) problem, where the risk measure considered is Conditional Value-at-Risk
(CVaR). We propose two algorithms that obtain a locally risk-optimal policy by
employing four tools: stochastic approximation, mini batches, policy gradients
and importance sampling. Both the algorithms incorporate a CVaR estimation
procedure, along the lines of [3], which in turn is based on Rockafellar-Uryasev’s
representation for CVaR and utilize the likelihood ratio principle for estimating
the gradient of the sum of one cost function (objective of the SSP) and the gra-
dient of the CVaR of the sum of another cost function (constraint of the SSP).
The algorithms differ in the manner in which they approximate the CVaR es-
timates/necessary gradients - the first algorithm uses stochastic approximation,
while the second employs mini-batches in the spirit of Monte Carlo methods.
We establish asymptotic convergence of both the algorithms. Further, since esti-
mating CVaR is related to rare-event simulation, we incorporate an importance
sampling based variance reduction scheme into our proposed algorithms.

1 Introduction

Risk-constrained Markov decision processes (MDPs) have attracted a lot of attention
recently in the reinforcement learning (RL) community (cf. [8, 18, 14, 19]). However,
unlike previous works that focused mostly on variance of the return as a measure of
risk, we consider Conditional Value-at-Risk (CVaR) as a risk measure. CVaR has the
form of a conditional expectation, where the conditioning is based on a constraint on
Value-at-Risk (VaR).

The aim in this paper is to find a risk-optimal policy in the context of a stochastic
shortest path (SSP) problem. A risk-optimal policy is one that minimizes the sum of
one cost function (see Gθ(s0) in (1)), while ensuring that the conditional expectation
of the sum of another cost function (see Cθ(s0) in (1)) given some confidence level,
stays bounded, i.e., the solution to the following risk-constrained problem: For a given
α ∈ (0, 1) and Kα > 0,

min
θ∈Θ

E

[
τ−1∑
m=0

g(sm, am)
∣∣s0=s0

]
︸ ︷︷ ︸

Gθ(s0)

subject to CVaRα

[
τ−1∑
m=0

c(sm, am)
∣∣s0=s0

]
︸ ︷︷ ︸

Cθ(s0)

≤Kα.

(1)

In the above, s0 is the starting state and the actions a0, . . . , aτ−1 are chosen according
to a randomized policy πθ governed by θ. Further, g(s, a) and c(s, a) are cost functions
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that take a state s and an action a as inputs and τ is the first passage time to the recurrent
state of the underlying SSP (see Section 2 for a detailed formulation). In [8], a similar
problem is considered in a finite horizon MDP, though under a strong separability as-
sumption for the cost function c(s, a).

The problem (1) is motivated by applications in finance and energy markets. For
example, consider a portfolio reallocation problem where the aim is to find an invest-
ment strategy that achieves a targeted asset allocation. The portfolio is composed of
assets (e.g. stocks) and the gains obtained by buying or selling assets is stochastic and
depends on the market situation. A risk-averse investor would prefer a investment strat-
egy that alters the mix of assets in the portfolio that (i) quickly achieves the target asset
allocation (modeled by the objective in (1)), and (ii) minimizes the worst-case losses
incurred (modeled by the CVaR constraint in (1)). Another problem of interest, as out-
lined in [8], is in the re-insurance business. The insurance companies collect premiums
for providing coverage, but run the risk of heavy payouts due to catastrophic events and
this problem can be effectively cast into the framework of a risk-constrained SSP.

Solving the risk-constrained problem (1) is challenging due to two reasons:
(i) Finding a globally risk-optimal policy is intractable even for a simpler case when the
risk is defined as the variance of the return of an MDP (see [12]). The risk-constrained
MDP that we consider is more complicated in comparison, since CVaR is a conditional
expectation, with the conditioning governed by an event that bounds a probability.
(ii) For the sake of optimization of the CVaR-constrained MDP that we consider in this
paper, it is required to estimate both VaR/CVaR of the total cost (Cθ(s0) in (1)) as well
as its gradient.
(iii) Since VaR/CVaR concerns the tail of the distribution of the total cost, a variance
reduction technique is required to speed up the estimation procedure.
We avoid the first problem by proposing a policy gradient scheme that is proven to
converge to a locally risk-optimal policy. The second problem is alleviated using two
principled approaches: stochastic approximation [15, 3] and mini-batch [2] procedures
for estimating VaR/CVaR and policy gradients using likelihood ratios [4]. The final
problem is solved by incorporating an importance sampling scheme.

The contributions of this paper are summarized as follows:
(I) First, using the representation of CVaR (and also VaR) as the solution of a certain
convex optimization problem by Rockafellar and Uryasev [16], we develop a stochastic
approximation procedure, along the lines of [3], for estimating the CVaR of a policy
for an SSP. In addition, we also propose a mini-batch variant to estimate CVaR. Mini-
batches are in the spirit of Monte Carlo methods and have been proposed in [2] under a
different optimization context for stochastic proximal gradient algorithms.
(II) Second, we develop two novel policy gradient algorithms for finding a (locally)
risk-optimal policy of the CVaR-constrained SSP. The first algorithm is a four time-
scale stochastic approximation scheme that (a) on the fastest two timescales, estimates
VaR/CVaR and uses the policy-gradient principle with likelihood ratios to estimate
the gradient of the total cost Gθ(s0) as well as CVaR of another cost sum Cθ(s0);
(b) updates the policy parameter in the negative descent direction on the intermediate
timescale and performs dual ascent for the Lagrange multiplier on the slowest timescale.
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On the other hand, the second algorithm operates on two timescales as it employs mini-
batches to estimate the CVaR as well as the necessary gradients.
(III) Third, we adapt our proposed algorithms to incorporate importance sampling (IS).
This is motivated by the fact that when the confidence level α is close to 1, estimating
VaR as well as CVaR takes longer as the interesting samples used to estimate CVaR
come from the tail of the distribution of the total cost Cθ(s0) random variable. We
provide a non-trivial adaptation of the IS scheme proposed in [11] to our setting. Un-
like [11] which requires the knowledge of transition dynamics, we use the randomized
policies to derive sampling ratios for the IS procedure.

The rest of the paper is organized as follows: In Section 2 we formalize the CVaR-
constrained SSP and in Section 3 describe the structure of our proposed algorithms.
In Section 4 we present the first algorithm based on stochastic approximation and in
Section 5 we present the mini-batch variant. In Section 6, we sketch the convergence of
our algorithms and later in Section 7 describe the importance sampling variants of our
algorithms. In Section 8, we review relevant previous works. Finally, in Section 9 we
provide the concluding remarks.

2 Problem Formulation

In this section, we first introduce VaR/CVaR risk measures, then formalize the stochas-
tic shortest path problem and subsequently define the CVaR-constrained SSP.

2.1 Background on VaR and CVaR

For any random variable X , we define the VaR at level α ∈ (0, 1) as

VaRα(X) := inf {ξ | P (X ≤ ξ) ≥ α} .

If the distribution of X is continuous, then VaR is the lowest solution to P (X ≤ ξ) = α.
VaR as a risk measure has several drawbacks, which precludes using standard stochas-
tic optimization methods. This motivated the definition of coherent risk measures in
[1]. A risk measure is coherent if it is convex, monotone, positive homogeneous and
translation equi-variant. CVaR is one popular risk measure defined by

CVaRα(X) := E [X |X ≥ VaRα(X)] .

Unlike VaR, the above is a coherent risk measure.

2.2 Stochastic Shortest Path (SSP)

We consider a SSP with a finite state space S = {0, 1, . . . , r}, where 0 is a special cost-
free and absorbing terminal state. The set of feasible actions in state s ∈ S is denoted
by A(s). A transition from state s to s′ under action a ∈ A(s) occurs with probability
pss′(a) and incurs the following costs: g(s, a) and c(s, a), respectively.

A policy specifies how actions are chosen in each state. A stationary randomized
policy π(·|s) maps any state s to a probability vector on A(s). As is standard in policy
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gradient algorithms, we parameterize the policy and assume that the policy is contin-
uously differentiable in the parameter θ ∈ Rd. Since a policy π is identifiable by its
parameter θ, we use them interchangeably in this paper.

As defined in [5], a proper policy is one which ensures that there is a positive proba-
bility that the terminal state 0 will be reached, starting from any initial state, after utmost
r transitions. This in turn implies the states 1, . . . , r are transient. We assume that class
of parameterized policies considered, i.e., {πθ | θ ∈ Θ}, is proper. We assume that Θ
is a compact and convex subset of Rd.

2.3 CVaR-Constrained SSP

As outlined earlier, the risk-constrained objective is:

min
θ∈Θ

E

[
τ−1∑
m=0

g(sm, am)
∣∣s0=s0

]
︸ ︷︷ ︸

Gθ(s0)

subject to CVaRα

[
τ−1∑
m=0

c(sm, am)
∣∣s0=s0

]
︸ ︷︷ ︸

Cθ(s0)

≤Kα.

where τ denotes the first visiting time to terminal state 0, i.e., τ = min{m | sm = 0}.
The actions a0, . . . , aτ−1 are chosen according to the randomized policy πθ . Further, α
and Kα are constants that specify the confidence level and constraint bound for CVaR,
respectively.

Using the standard trick of Lagrangian relaxation for constrained optimization prob-
lems, we convert (1) to the following unconstrained problem:

max
λ

min
θ

[
Lθ,λ(s0) := Gθ(s0) + λ

(
CVaRα(C

θ(s0))−Kα

)]
. (2)

3 Algorithm Structure

In order to solve (2), a standard constrained optimization procedure operates as follows:

Simulation. This is the inner-most loop where the SSP is simulated for several
episodes and the resulting costs are aggregated.

Policy Update. This is the intermediate loop where the gradient of the Lagrangian
along θ is estimated using simulated values above. The gradient estimates are then
used to update policy parameter θ along a descent direction. Note that this loop is
for a given value of λ; and

Lagrange Multiplier Update. This is the outer-most loop where the Lagrange multi-
plier λ is updated along an ascent direction, using the converged values of the inner
two loops.

Using two-timescale stochastic approximation (see Chapter 6 of [7]), the policy and
Lagrange multiplier update can run in parallel as follows:

θn+1 = Γ
(
θn − γn∇θLθ,λ(s0)

)
and λn+1 = Γλ

(
λn + βn∇λLθ,λ(s0)

)
, (3)
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θn

Using policy πθn ,

simulate SSP

Simulation

Estimate CVaRα(C
θ(s0))

CVaR Estimation

Estimate ∇θG
θ(s0)

Policy Gradient

Estimate ∇θCVaRα(C
θ(s0))

CVaR Gradient

Update θn

using (9)

Policy Update

θn+1

Fig. 1. Overall flow of our algorithms

where Γ and Γλ are projection operators that keep the iterates θn and λn bounded
within the compacts sets Θ and [0, λmax] for some λmax > 0, respectively. Further,
γn, βn, n ≥ 0 are step-sizes that satisfy the following assumption:

∞∑
n=1

βn = ∞,

∞∑
n=1

γn = ∞,

∞∑
n=1

(
β2
n + γ2

n

)
<∞ and

βn
γn

→ 0. (4)

The last condition above ensures that θ-recursion proceeds on a faster timescale in com-
parison to λ-recursion.

Simulation Optimization. No closed form expression for the gradient of the Lagrangian
Lθ,λ(s0) is available and moreover,Gθ(s0) and Cθ(s0) are observable only via simula-
tion. Observe that∇θLθ,λ(s0) = ∇θG

θ(s0)+λ∇θCVaRα(C
θ(s0)) and∇λLθ,λ(s0) =

CVaRα(C
θ(s0))−Kα. Hence, in order to update according to (3), we need to estimate,

for any policy parameter θ, the following quantities via simulation:
(i) CVaRα(C

θ(s0)); (ii) ∇θG
θ(s0); and (iii) ∇θCVaRα(C

θ(s0)).
In the following sections, we describe two algorithms that differ in the way they es-
timate each of the above quantities and subsequently establish that the estimates (and
hence the overall algorithms) converge.

4 Algorithm 1: PG-CVaR-SA

Algorithm 1 describes the complete algorithm along with the update rules for the vari-
ous parameters. The algorithm involves the following crucial components - simulation
of the SSP, VaR/CVaR estimation and policy gradients for the objective as well as the
CVaR constraint. Each of these components is described in detail in the following.
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Algorithm 1. PG-CVaR-SA
Input: parameterized policy πθ(·|·), step-sizes {ζn,1, ζn,2, γn, βn}n≥1

Initialization: Starting state s0, initial policy θ0, , number of iterations M >> 1.
for n = 1, 2, . . . ,M do

Simulation

Simulate the SSP for an episode using actions an,0, . . . , an,τn−1 generated using πθn−1

Obtain cost estimates: Gn :=

τn−1∑
j=0

g(sn,j , an,j) and Cn :=

τn−1∑
j=0

c(sn,j , an,j)

Obtain likelihood derivative: zn :=

τn−1∑
j=0

∇ log πθ(sn,j , an,j)

VaR/CVaR estimation:

VaR: ξn = ξn−1 − ζn,1

(
1− 1

1− α
1{Cn≥ξn−1}

)
, (5)

CVaR: ψn = ψn−1 − ζn,2 (ψn−1 − v(ξn−1, Cn)) . (6)

Policy Gradient:

Total Cost: Ḡn = Ḡn−1 − ζn,2(Gn − Ḡn), Gradient: ∂Gn = Ḡnzn. (7)

CVaR Gradient:

Total Cost: C̃n = C̃n−1 − ζn,2(Cn − C̃n), Gradient: ∂Cn = (C̃n − ξn)zn1{Cn≥ξn}.
(8)

Policy and Lagrange Multiplier Update:

θn = θn−1 − γn(∂Gn + λn−1(∂Cn)), λn = Γλ

(
λn−1 + βn(ψn −Kα)

)
. (9)

end for
Output (θM , λM ).

4.1 SSP Simulation

In each iteration of PG-CVaR-SA, an episode of the underlying SSP is simulated. Each
episode ends with a visit to the recurrent state 0 of the SSP. Let τn denote the time of this
visit in episode n. The actions an,j, j = 0, . . . , τn−1 in episode n are chosen according

to the policy πθn−1 . Let Gn :=
τn−1∑
j=0

g(sn,j, an,j) and Cn :=
τn−1∑
j=0

c(sn,j, an,j) denote

the accumulated cost values. Further, let zn :=
τn−1∑
j=0

∇ log πθ(sn,j , an,j) denote the

likelihood derivative (see Section 4.3 below). The tuple (Gn, Cn, zn) obtained at the
end of the nth episode is used to estimate CVaR as well as policy gradients.
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4.2 Estimating VaR and CVaR

A well-known result from [16] is that both VaR and CVaR can be obtained from the
solution of a certain convex optimization problem and we recall this result next.

Theorem 1. For any random variable X , let

v(ξ,X) := ξ +
1

1− α
(X − ξ)+ and V (ξ) = E [v(ξ,X)] (10)

Then, VaRα(X) = (argmin V := {ξ ∈ R | V ′(ξ) = 0}), where V ′ is the derivative of
V w.r.t. ξ. Further, CVaRα(X) = V (VaRα(X)).

From the above, it is clear that in order to estimate VaR/CVaR, one needs to find a ξ
that satisfies V ′(ξ) = 0. Stochastic approximation (SA) is a natural tool to use in this
situation. We briefly introduce SA next and later develop a scheme for estimating CVaR
along the lines of [3] on the faster timescale of PG-CVaR-SA.

Stochastic Approximation. The aim is to solve the equation F (θ) = 0 when analytical
form of F is not known. However, noisy measurements F (θn) + ξn can be obtained,
where θn, n ≥ 0 are the input parameters and ξn, n ≥ 0 are zero-mean random vari-
ables, that are not necessarily i.i.d.

The seminal Robbins Monro algorithm solved this problem by employing the fol-
lowing update rule:

θn+1 = θn + γn(F (θn) + ξn). (11)

In the above, γn are step-sizes that satisfy
∞∑

n=1
γn = ∞ and

∞∑
n=1

γ2
n < ∞. Under a sta-

bility assumption for the iterates and bounded noise, it can be shown that θn governed
by (11) converges to the solution of F (θ) = 0 (cf. Proposition 1 in Section 6).

CVaR Estimation Using SA. Using the stochastic approximation principle and the
result in Theorem 1, we have the following scheme to estimate the VaR/CVaR simulta-
neously from the simulated samples Cn:

VaR: ξn = ξn−1 − ζn,1(1−
1

1− α
1{Cn≥ξ}︸ ︷︷ ︸

∂v
∂ξ (ξ,Cn)

), (12)

CVaR: ψn = ψn−1 − ζn,2 (ψn−1 − v(ξn−1, Cn)) . (13)

In the above, (12) can be seen as a gradient descent rule, while (13) can be seen as a
plain averaging update. The scheme above is similar to the one proposed in [3], except
that the random variable Cθ(s0) (whose CVaR we try to estimate) is a sum of costs
obtained at the end of each episode, unlike the single-shot r.v. considered in [3]. The
step-sizes ζn,1, ζn,2 satisfy

∞∑
n=1

ζn,1 = ∞,

∞∑
n=1

ζn,2 = ∞,

∞∑
n=1

(
ζ2n,1 + ζ2n,2

)
<∞,

ζn,2
ζn,1

→ 0 and
γn
ζn,2

→ 0. (14)
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The last two conditions above ensure that VaR estimation recursion (12) proceeds on a
faster timescale in comparison to CVaR estimation recursion (13) and further, the CVaR
recursion itself proceeds on a faster timescale as compared to the policy parameter θ-
recursion.

Using the ordinary differential equation (ODE) approach, we establish later that the
tuple (ξn, ψn) converges to VaRα(C

θ(s0)),CVaRα(C
θ(s0)), for any fixed policy pa-

rameter θ (see Theorem 2 in Section 6).

4.3 Policy Gradient

We briefly introduce the technique of likelihood ratios for gradient estimation [9] and
later provide the necessary estimate for the gradient of total cost Gθ(s0).

Gradient Estimation Using Likelihood Ratios. Consider a Markov chain {Xn} with
a single recurrent state 0 and transient states 1, . . . , r. Let P (θ) := [[pXiXj (θ)]]

r
i,j=0

denote the transition probability matrix of this chain. Here pXiXj (θ) denotes the prob-
ability of going from state Xi to Xj and is parameterized by θ. Let τ denote the first
passage time to the recurrent state 0.

Let X := (X0, . . . , Xτ−1)
T denote the sequence of states encountered between

visits to the recurrent state 0. The aim is to optimize a performance measure F (θ) =
E[f(X)] for this chain using simulated values of X . The likelihood estimate is ob-
tained by first simulating the Markov chain according to P (θ) to obtain the samples
X0, . . . , Xτ−1 and then estimate the gradient as follows:

∇θF (θ) = E

[
f(X)

τ−1∑
m=0

∇θpXmXm+1(θ)

pXmXm+1(θ)

]
.

Policy Gradient for the Objective. For estimating the gradient of the objectiveGθ(s0),
we employ the following well-known estimate (cf. [4]):

∇θG
θ(s0) = E

[(
τ−1∑
n=0

g(sn, an)

)
∇ logP (s0, . . . , sτ−1) | s0 = s0

]
, (15)

where ∇ logP (s0, . . . , sτ ) is the likelihood derivative for a policy parameterized by θ,
defined as

∇ logP (s0, . . . , sτ−1) =

τ−1∑
m=0

∇ log πθ(am |sm ). (16)

The above relation holds owing to the fact that we parameterize the policies and hence,
the gradient of the transition probabilities can be estimated from the policy alone. This
is the well-known policy gradient technique that makes it amenable for estimating gra-
dient of a performance measure in MDPs, since the transition probabilities are not re-
quired and one can work with policies and simulated transitions from the MDP.
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4.4 Policy Gradient for the CVaR Constraint

For estimating the gradient of the CVaR of Cθ(s0) for a given policy parameter θ, we
employ the following likelihood estimate proposed in [20]:

∇θCVaRα(C
θ(s0)) (17)

= E
[(
Cθ(s0)− VaRα(C

θ(s0))
)
∇ logP (s0, . . . , sτ−1) | Cθ(s0)≥VaRα(C

θ(s0))
]
,

where ∇ logP (s0, . . . , sτ ) is as defined before in (16).
Since we do not know VaRα(C

θ(s0)), in Algorithm 1 we have an online scheme
that uses ξn (see (12)) to approximate VaRα(C

θ(s0)), which is then used to derive an
approximation to the gradient ∇θCVaRα(C

θ(s0)) (see (8)).

5 Algorithm 2: PG-CVaR-mB

As illustrated in Figure 2, in each iteration n of PG-CVaR-mB, we simulate the SSP
for mn episodes. Recall that each episode starts in the state s0 and ends in the ab-
sorbing state 0. At the end of the simulation, we obtain the total costs and likeli-
hood derivative estimates {Gn,j , Cn,j , zn,j}mn

j=1. Using these, the following quantities -
CVaRα(C

θ(s0)), ∇θCVaRα(C
θ(s0)) and ∇θG

θ(s0) - are approximated as follows:

VaR: ξn =
1

mn

mn∑
j=1

(
1−

1{Cn,j≥ξn−1}

1− α

)
, CVaR: ψn =

1

mn

mn∑
j=1

v(ξn−1, Cn,j)

Total Cost: Ḡn =
1

mn

mn∑
j=1

Gn,j , Policy Gradient: ∂Gn = Ḡnzn.

Total Cost: C̄n =
1

mn

mn∑
j=1

Cn,j , CVaR Gradient: ∂Cn = (C̃n − ξn)zn1{C̄n≥ξn}.

The above approximations can be seen as empirical means of functions of Gn,j , Cn,j ,
zn,j , respectively.

The policy and Lagrange multiplier updates are as in the earlier algorithm, i.e., ac-
cording to (9).
Mini-Batch Size. A simple setting for the batch-size mn is Cnδ for some δ > 0,
i.e., mn increases as a function of n. We cannot have constant batches, i.e., δ = 0,
since the bias of the CVaR estimates and the gradient approximations has to vanish
asymptotically.

θn−1

Using policy πθn−1 ,

simulate mn episodes

Simulation

Obtain

{Gn,j , Cn,j , zn,j}mn
j=1

Cost/Likelihood Estimates

Estimate CVaR and

policy/CVaR gradients

Averaging

θn

Fig. 2. Illustration of mini-batch principle in PG-CVaR-mB algorithm
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6 Outline of Convergence

We analyze our algorithms using the theory of multiple time-scale stochastic approx-
imation [7, Chapter 6]. For the analysis of our algorithms, we make the following as-
sumptions:
(A1) For any θ ∈ Θ, the random variable Cθ(s0) has a continuous distribution.
(A2) For any θ ∈ Θ, the policy πθ is proper and continuously differentiable in θ.
(A3) Step-sizes βn, γn satisfy the conditions in (4), while ζn,1, ζn,2 satisfy those in (14).
We first provide the analysis for PG-CVaR-SA algorithm and later describe the neces-
sary modification for the mini-batch variant1.

Before the main proof, we recall the following well-known result (cf. Chapter 2 of
[7]) related to convergence of stochastic approximation schemes under the existence of
a so-called Lyapunov function:

Proposition 1. Consider the following recursive scheme:

θn+1 = θn + γn(F (θn) + ξn+1), (18)

where F : Rd → Rd is a L-Lipschitz map and ξn a square-integrable martingale
difference sequence with respect to the filtration Fn := σ(θm, ξm,m ≤ n). Moreover,

E[‖ξn+1‖22 | Fn] ≤ K(1+ ‖θn‖22) for some K > 0. The step-sizes γn satisfy
∞∑
n=1

γn =

∞ and
∞∑
n=1

γ2
n < ∞.

Lyapunov function. Suppose there exists a continuously differentiable V : Rd →
[0,∞) such that lim‖θ‖2→∞ V (θ) = ∞. Writing Z := {θ ∈ Rd | V (θ) = 0} �= φ, V
satisfies 〈F (θ),∇V (θ)〉 ≤ 0 with equality if and only if θ ∈ Z.

Then, θn governed by (18) converges a.s. to an internally chain transitive set con-
tained in Z.

The steps involved in proving the convergence of PG-CVaR-SA are as follows:

Step 1: CVaR Estimation on Fastest Time-scale

Owing to the time-scale separation, θ and λ can be assumed to be constant while ana-
lyzing the VaR/CVaR recursions (12)–(13). The main claim is given as follows:

Theorem 2. For any given policy parameter θ and Lagrange multiplier λ, the tuple
(ξn, ψn) governed by (12)–(13) almost surely converges to the corresponding true val-
ues (VaRα(C

θ(s0)),CVaRα(C
θ(s0))), as n →∞.

The claim above regarding ξn can inferred by observing that V (see (10)) itself serves
as the Lyapunov function and the fact that the step-sizes satisfy (A3) implies the iterates
remain bounded. Thus, by an application of Proposition 1, it is evident that the recursion
(12) converges to a point in the set {ξ | V (ξ) = 0}. Since every local minimum is a
global minimum for V , the iterates ξn will converge to VaRα(C

θ(s0)). Establishing the
convergence of the companion recursion for CVaR in (13) is easier because it is a plain
averaging update that uses the VaR estimate ξn from (12).

1 Due to space limitations, the detailed convergence proofs will be presented in a longer version
of this paper.
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Step 2: Policy Update on Intermediate Time-scale

We provide the main arguments to show that θn governed by (9) converges to asymp-
totically stable equilibrium points of the following ODE:

θ̇t = Γ̌
(
∇θLθt,λ(s0)

)
= Γ̌

(
∇θG

θt(s0) + λ∇θCVaRα(C
θt(s0))

)
, (19)

where Γ̌ is a projection operator that keeps θt evolving according to (19) bounded with
the compact and convex set Θ ∈ Rd. Since λ is on the slowest timescale, its effect
is ’quasi-static’ on the θ-recursion. Further, since the CVaR estimation and necessary
gradient estimates using likelihood ratios are on the faster timescale, the θ-update in (9)
views these quantities as almost equilibrated. Thus, the θ-update in (9) can be seen to
be asymptotically equivalent to the following in the sense that the difference between
the two updates is o(1):

θn+1 = θn − γn
(
∇θG

θn(s0) + λ∇θCVaRα(C
θn(s0))

)
,

Thus, (9) can be seen to be a discretization of the ODE (19). Moreover,Lθ,λ(s0) serves

as the Lyapunov function for the above recursion, since
dLθ,λ(s0)

dt
= ∇θLθ,λ(s0)θ̇ =

∇θLθ,λ(s0)
(
− ∇θLθ,λ(s0)

)
< 0. Thus, by an application of Kushner-Clark lemma

[10], one can claim the following:

Theorem 3. For any given Lagrange multiplier λ, θn governed by (9) almost surely
converges to the asymptotically stable attractor, say Zλ, for the ODE (19), as n →∞.

Step 3: Lagrange Multiplier Update on Slowest Time-scale

This is easier in comparison to the other steps and follows using arguments similar to
that used for constrained MDPs in general in [6]. The λ recursion views θ as almost
equilibrated owing to time-scale separation and converges to the set of asymptotically
stable equilibria of the following system of ODEs:

λ̇t = Γ̌λ

(
∇λLθλt ,λt(s0)

)
= Γ̌λ

(
CVaRα(C

θλt
(s0))−Kα

)
(20)

where θλ is the value of the converged policy parameter θ when multiplier λ is used.
Γ̌λ is a suitably defined projection operator that keeps λt bounded within [0, λmax].

Theorem 4. Let F �
= {λ | λ ∈ [0, λmax], Γ̌λ

[
CVaRα(C

θλ

(s0)) − Kα

]
= 0, θλ ∈

Zλ}. Then, λn governed by (9) converges almost surely to F as n →∞.

The proof of the above theorem follows using a standard stochastic approximation ar-
gument, as in [6, 14], that views λ-recursion as performing gradient ascent. By invoking
the envelope theorem of mathematical economics [13], the PG-CVaR-SA algorithm can
be shown to converge to a (local) saddle point of Lθ,λ(s0), i.e., to a tuple (θ∗, λ∗) that
are a local minimum w.r.t. θ and a local maximum w.r.t. λ of Lθ,λ(s0).
PG-CVaR-mB. The proof for mini-batch variant differs only in the first step, i.e., esti-
mation of VaR/CVaR and necessary gradients. Assuming that the number of mini-batch
samples mn → ∞, a straightforward application of law of large numbers establishes
that the empirical mean estimates for VaR, CVaR and the necessary gradients in PG-
CVaR-mB converge to their corresponding true values. The rest of the proof follows in
a similar manner as PG-CVaR-SA.
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7 Extension to Incorporate Importance Sampling

In this section, we incorporate an importance sampling procedure in the spirit of [11, 3]
to speed up the estimation procedure for VaR/CVaR in our algorithms.
Importance Sampling. Given a random variable X with density p(·) and a function
H(·), the aim of an IS based scheme is to estimate the expectation E(H(X)) in a
manner that reduces the variance of the estimates. Suppose X is sampled using another
distribution with density p̃(X, η) that is parameterized by η, such that p̃(X, η) = 0 ⇒
p(X) = 0, i.e., satisfies an absolute continuity condition. Then,

E(H(X)) = E

[
H(X)

p(X)

p̃(X, η)

]
. (21)

The problem is to choose the parameter η of the sampling distribution so as to minimize
the variance of the above estimate.

A slightly different approach based on mean-translation is taken in a recent method
proposed in [11]. By translation invariance, we have

E[H(X)] = E

[
H(X + η)

p(X + η)

p(X)

]
, (22)

and the objective is to find a η that minimizes the following variance term:

Q(η) := E

[
H2(X + η)

p2(X + η)

p2(X)

]
. (23)

If ∇Q can be written as an expectation, i.e., ∇Q(η) = E[q(η,X)], then one can hope
to estimate this expectation (and hence minimize Q) using a stochastic approximation
recursion. However, this is not straightforward since ‖q(η, x)‖2 is required to be sub-
linear to ensure convergence of the resulting scheme2.

One can get around this problem by double translation of η as suggested first in [11]
and later used in [3] for VaR/CVaR estimation. Formally, under classic log-concavity
assumptions on p(X), it can be shown that Q is finite, convex and differentiable, so that

∇Q(η) :=E

[
H(X − η)2

p2(X − η)

p(X)p(X − 2η)

∇p(X − 2η)

p(X − 2η)

]
. (24)

Writing K(η,X) := p2(X−η)
p(X)p(X−2η)

∇p(X−2η)
p(X−2η) , one can bound K(η,X) by a determinis-

tic function of η as follows: |K(η,X)| ≤ e2ρ|η|
b

(A|x|b−1 + A|η|b−1 + B), for some
constants ρ,A and B. The last piece before present an IS scheme is related to con-
trolling the growth of H(X). We assume that H(X) is controlled by another function
W (X) that satisfies ∀x, |H(x)| ≤ W (x),W (x+y) ≤ C(1+W (x))c(1+W (y))c and
E
[
|X |2(b−1)W (X)4c

]
<∞.

An IS scheme based on stochastic approximation updates as follows:

ηn = ηn−1 − γnq̃(ηn−1, Xn), (25)

2 As illustrated in [3, Section 2.3], even for a standard Gaussian distributed X , i.e., X ∼
N (0, 1), the function q(η, x) = exp(|η|2/2− ηx)H2(x)(η − x) and hence not sub-linear.
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where q̃(η,X) := H(X − η)2e−2ρ|θ|bK(η,X). In lieu of the above discussion,
‖q̃(η,X)‖2 can be bounded by a linear function of ‖η‖2 and hence, the recursion (25)
converges to the set {η | ∇Q(η) = 0} (See Section 2.3 in [3] for more details).

IS for VaR/CVaR Estimation. Let D := (s0, a0, . . . , sτ−1, aτ−1) be the random vari-
able corresponding to an SSP episode and let Dn := (sn,0, an,0, . . . , sn,τ−1, an,τ−1)
be the nth sample simulated using the distribution of D. Recall that the objective is to
estimate the VaR/CVaR of the total cost Cθ(s0), for a given policy parameter θ using
samples from D.

Applying the IS procedure described above to our setting is not straightforward, as
one requires the knowledge of the density, say p(·), of the random variable D. Notice

that the density p(D) can be written as p(D) =
τ−1∏
m=0

πθ(am | sm)P (sm+1 | sm, am).

As pointed out in earlier works (cf. [17]), the ratio p(d)
p(d′) can be computed for two (in-

dependent) episodes d and d′ without requiring knowledge of the transition dynamics.

In the following, we use p̃(Dn) :=
τ−1∏
m=0

πθ(an,m | sn,m) as a proxy for the den-

sity p(Dn) and apply the IS scheme described above to reduce the variance of the
VaR/CVaR estimation scheme (12)–(13). The update rule of the resulting recursion is
as follows:

ξn = ξn−1 − ζn,1e
−ρ|η|b

(
1− 1

1− α
1{Cn+ηn−1≥ξn−1}

p̃(Dn + ηn−1)

p̃(Dn)

)
, (26)

ηn = ηn−1 − ζn,1e
−2ρ|ηn−1|b1{Cn−ηn−1≥ξn−1}

p̃2(Dn − ηn−1)∇p̃(Dn − 2ηn−1)

p̃(Dn)p̃(Dn − 2η)p̃(Dn − 2ηn−1)
,

(27)

ψn = ψn−1 − ζn,2

(
ψn−1 − ξn−1 −

1

1− α
(Cn + μn−1 − ξn−1) (28)

1{Cn+μn−1≥ξn−1}
p̃(Dn + μn−1)

p̃(Dn)

)
,

μn = μn−1 − ζn,2
e−2ρ|μn−1|b

1 +W (−μn−1)2c + ξ2n−1

(Cn − μn−1 − ξn−1)
2
. (29)

× 1{Cn−μn−1≥ξn−1}
p̃2(Dn − μn−1)

p̃(Dn)p̃(Dn − 2μn−1)

∇p̃(Dn − 2μn−1)

p̃(Dn − 2μn−1)
.

In the above, (26) estimates the VaR, while (27) attempts to find the best variance
reducer parameter for VaR estimation procedure. Similarly, (28) estimates the CVaR,
while (27) attempts to find the best variance reducer parameter for CVaR estimation
procedure.
Note on Convergence. Since we approximated the true density p(D) above using the
policy, the convergence analysis of the above scheme is challenging. The nontrivial part
is to establish that one can use the approximation p̃(·) in place of the true density p(·)
and this is left for future work. Assuming that this substitution holds, it can be shown
that the tuple (ηn, μn) updated according to (27) and (29), converge to the optimal
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variance reducers (η∗, μ∗), using arguments similar to that in Proposition 3.1 of [3].
(η∗, μ∗) minimize the convex functions

Q1(η, ξ
∗
α) := E

[
1{Cθ(s0)≥ξ∗α}

p(D)
p(D−η)

]
and

Q2(μ, ξ
∗
α) := E

[(
Cθ(s0)− ξ∗α

)2
1{Cθ(s0)≥ξ∗α}

p(D)
p(D−μ)

]
,where ξ∗α is a VaRα(C

θ(s0)).

8 Comparison to Previous Work

In comparison to [8] and [20], which are the most closely related contributions, we
would like to point out the following:
(i) The authors in [8] develop an algorithm for a (finite horizon) CVaR constrained MDP,
under a separability condition for the single-stage cost. On the other hand, without a
separability condition, we devise policy gradient algorithms in a SSP setting and our
algorithms are shown to converge as well; and
(ii) The authors in [20] derive a likelihood estimate for the gradient of the CVaR of
a random variable. However, they do not consider a risk-constrained SSP and instead
optimize only CVaR. In contrast, we employ a convergent procedure for estimating
CVaR that is motivated by a well-known convex optimization problem [16] and then
employ policy gradients for both the objective and constraints to find a locally risk-
optimal policy.

9 Conclusions

In this paper, we considered the problem of solving a risk-constrained stochastic short-
est path. We used Conditional Value-at-Risk (CVaR) as a risk measure and this is
motivated by applications in finance and energy markets. Using a careful synthesis
of well-known techniques from stochastic approximation, likelihood ratios and im-
portance sampling, we proposed a policy gradient algorithm that is provably conver-
gent to a locally risk-optimal policy. We also proposed another algorithm based on the
idea of mini-batches for estimating CVaR from the simulated samples. Both the al-
gorithms incorporated a CVaR estimation procedure along the lines of [3], which in
turn is based on the well-known convex optimization representation by Rockafellar-
Uryasev [16]. Stochastic approximation or mini-batches are used to approximate CVaR
estimates/necessary gradients in the algorithms, while the gradients themselves are ob-
tained using the likelihood ratio technique. Further, since CVaR is an expectation that
conditions on the tail probability, to speed up CVaR estimation we incorporated an im-
portance sampling procedure along the lines of [3].

There are several future directions to be explored such as (i) obtaining finite-time
bounds for our proposed algorithms , (ii) handling very large state spaces using function
approximation, and (iii) applying our algorithms in practical contexts such as portfolio
management in finance/energy sectors and revenue maximization in the re-insurance
business.

Acknowledgments. The author would like to thank the European Community’s Sev-
enth Framework Programme (FP7/2007− 2013) under grant agreement no 270327 for
funding the research leading to these results.
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Abstract. We consider a general reinforcement learning problem and
show that carefully combining the Bayesian optimal policy and an ex-
ploring policy leads to minimax sample-complexity bounds in a very gen-
eral class of (history-based) environments. We also prove lower bounds
and show that the new algorithm displays adaptive behaviour when the
environment is easier than worst-case.

1 Introduction

We study the question of finding the minimax sample-complexity of reinforce-
ment learning without making the usual Markov assumption, but where the
learner has access to a finite set of reinforcement learning environments to
which the truth is known to belong. This problem was tackled previously by
Dyagilev et al. (2008) and Lattimore et al. (2013a). The new algorithm improves
on the theoretical results in both papers and is simultaneously simpler and more
elegant. Unlike the latter work, in certain circumstances the new algorithm en-
joys adaptive sample-complexity bounds when the true environment is benign.
We show that if M = {μ1, · · · , μK} is a carefully chosen finite set of history-
based reinforcement learning environments, then every algorithm is necessarily

ε-suboptimal for Ω
(

K
ε2(1−γ)3 log

K
δ

)
time-steps with probability at least δ where

γ is the discount factor. The algorithm presented has a sample-complexity bound
equal to that bound except for one factor of log 1

ε(1−γ) , so the minimax sample-

complexity of this problem is essentially known.
Aside from the previously mentioned papers, there has been little work on this

problem, although sample-complexity bounds have been proven for MDPs
(Lattimore and Hutter, 2012; Szita and Szepesvári, 2010;Kearns and Singh, 2002,
and references there-in), as well as partially observable and factored MDPs
(Chakraborty and Stone, 2011; Even-Dar et al., 2005). There is also a significant
literature on the regret criterion forMDPs (Azar et al., 2013;Auer et al., 2010, and
references there-in), butmeaningful results cannot be obtainedwithout a connect-
edness assumption that we avoid here. Regret bounds are known if the true en-
vironment is finite-state, Markov and communicating, but where the state is not
observed directly (Odalric-Ambrym et al., 2013). Less restricted settings have also

P. Auer et al. (Eds.): ALT 2014, LNAI 8776, pp. 170–184, 2014.
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been studied. Sunehag and Hutter (2012) proved sample-complexity bounds for
the same type of reinforcement learning problems that we do, but only for deter-
ministic environments (for the stochastic case they gave asymptotic results). Also
similar is the k-meteorologist problem studied by Diuk et al. (2009), but they con-
sider only the 1-step problem, which is equivalent to the case where the discount
factor γ = 0. In that case their algorithm is comparable to the one developed
by Lattimore et al. (2013a) and suffers from the same drawbacks, most notable
of which is non-adaptivity. A more detailed discussion is given in the conclusion.
Recently there has been a growing interesting in algorithms based on the “near-
Bayesian”Thompson sampling. See, for example, thework byOsband et al. (2013)
and references there-in. Note that the aforementioned paper deals with a Bayesian
regret criterion for MDPs, rather than the frequentist sample-complexity results
presented here.

The new algorithm is based loosely on the universal Bayesian optimal rein-
forcement learning algorithm studied in depth by Hutter (2005). Unfortunately,
a pure Bayesian approach may not explore sufficiently to enjoy a finite sample-
complexity bound (Orseau, 2010) (some exceptions by Hutter (2002)). For this
reason we add exploration periods to ensure that sufficient exploration occurs
for sample-complexity bounds to become possible.

2 Notation

Due to lack of space, many of the easier proofs or omitted, along with results
that are periphery to the main bound on the sample-complexity. All proofs can
be found in the technical report (Lattimore and Hutter, 2014).

Strings/Sequences. A finite string of length n over non-empty alphabet H is
a finite sequence x1x2x3 · · ·xn where xk ∈ H. An infinite sequence over H is a
sequence x1x2x3 · · · . The set of sequences over alphabetH of length n is denoted
byHn. The set of finite sequences over alphabetH is denoted byH∗ :=

⋃∞
n=0 Hn.

The set of sequences of length at most n isH≤n :=
⋃n

k=0Hk. The uncountable set
of infinite sequences is H∞. For x ∈ H∗∪H∞, the length of x is �(x). The empty
string of length zero is denoted by ε, which should not be confused with small
constants denoted by ε. Subsequences are x1:t := x1x2x3 · · ·xt and x<t := x1:t−1.
We say x is a prefix of y and write x - y if �(x) ≤ �(y) and xk = yk for all
k ≤ �(x). The words string and sequence are used interchangeably, although
the former is more likely to be finite and the latter more likely to be infinite.
Strings may be concatenated in the obvious way. If x ∈ H∗, then xk is defined
to be k concatenations of x. A set A ⊂ H∗ is prefix free if for all x, y ∈ H,
x - y =⇒ x = y. A prefix free set A is complete if for all infinite histories
y ∈ H∞ there exists an x ∈ A such that x - y.

History Sequences. Let A, O and R ⊂ [0, 1] be finite sets of actions, ob-
servations and rewards respectively and H := A × O × R. The set of infinite
history sequences is denoted H∞ while H∗ is the set of all finite-length histories.
The action/observation/reward at time-step t of history x are denoted by at(x),
ot(x), rt(x) respectively.
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Environments and Policies. An environment μ is a set of conditional prob-
ability distributions μ(·|x, a) : R × O → [0, 1] where x ∈ H∗ is a finite history
and a ∈ A is an action. The value μ(r, o|x, a) is the probability of environment
μ generating reward r ∈ R and observation o ∈ O given finite history x ∈ H∗

has occurred and action a ∈ A has just been taken by the agent. A deterministic
policy is a function π : H∗ → A where π(x) is the action taken by policy π given
history x. The space of all deterministic policies is denoted by Π . A determinis-
tic policy π is consistent with history x ∈ H∗ if π(x<t) = at(x) for all t ≤ �(x).
The set of policies consistent with history x is denoted by Π(x).

Probability Spaces. A policy and environment interact sequentially to stochas-
tically generate infinite histories. In order to be rigorous, it is necessary to define
a (filtered) probability space on the set of infinite histories H∞. Let x ∈ H∗ be
a finite history, then Γx := {y ∈ H∞ : x - y} is the set of all infinite histo-
ries starting with x and is called the cylinder set of x. Now define σ-algebras
generated by the cylinders of H∗ and Ht by F := σ({Γx : x ∈ H∗}) and
F<t := σ({Γx : x ∈ Ht−1}). Then (H∞,F , {F<t}) is a filtered probability
space. Throughout we use the convention that time starts at 1 with the empty
history. An environment and policy interact sequentially to induce a measure
μπ : F → [0, 1] on the filtered probability space (H∞,F , {F<t}). IfA ∈ F ⊆ H∞,
then μπ(A) is the probability of the event A occurring. As is common in the liter-
ature, we abuse notation and use the short-hand μπ(x) := μπ(Γx). If x, y ∈ H∗,
then conditional probabilities are μπ(y|x) := μπ(xy)/μπ(x). Expectations with
respect to μπ are denoted by Eπ

μ. If ρ is any measure on (H∞,F , {F<t}), then
we define useful random variables:

ρ<t(x) := ρ(x<t) ρ1:t(x) := ρ(x1:t) ρt:t+d(x) :=
ρ(x1:t+d)

ρ(x<t)
.

Discounting and Value Functions. Let γ ∈ [0, 1) be the discount factor, then
the discounted value of history x is the expected discounted cumulative reward.

V π
μ (x; d) := Eπ

μ

⎡⎣ �(x)+d∑
t=�(x)+1

γt−�(x)−1rt

∣∣∣∣∣x
⎤⎦ V π

μ (x) := lim
d→∞

V π
μ (x; d),

where d is a horizon after which reards are not counted and we assume that 00 =
1 when γ = 0. The optimal policy in environment μ is π∗

μ := argmaxπ∈Π V π
μ (ε).

Since rewards are bounded in [0, 1] and values are discounted, the value function
is also bounded: V π

μ (x) ∈ [0, 1
1−γ ]. The value of the optimal policy in environment

μ and having observed history x is V ∗
μ (x). Since the discount factor does not vary

within the results we omit it from the notation for the value function, but it is
important to note that all values depend on this quantity.

3 Algorithm

To begin, we consider only the prediction problem where π is fixed, but μ is un-
known and the task is to predict future observations and rewards given the his-
tory. We assume that π is some fixed policy and that μ ∈M = {ν1 · · · νK} where
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M is known, but not μ. The Bayesian mixture measure is ξπ :=
∑

ν∈M wνν
π

where w : M → [0, 1] is a probability distribution on M. The Bayesian opti-
mal policy is defined by π∗

ξ := argmaxπ V
π
ξ (ε) ≡ argmaxπ

∑
ν∈M wνV

π
ν (ε). It is

reasonably well-known that the predictive distribution of the Bayesian mixture
converges almost surely to the truth for all μ, and that it does so fast with respect
to a variety of different metrics. To measure convergence we define the d-step
total variation and squared Hellinger distances between predictive distributions
of ξπ and νπ given the history at time-step t.

δdx(ν
π, ξπ) :=

1

2

∑
y∈Hd

|νπ(y|x) − ξπ(y|x)| δdt (ν
π , ξπ)(x) := δdx<t

(νπ , ξπ)

hd
x(ν

π, ξπ) :=
1

2

∑
y∈Hd

(√
νπ(y|x)−

√
ξπ(y|x)

)2
hd
t (ν

π , ξπ)(x) := hd
x<t

(νπ , ξπ).

where the distances on the right hand side are defined as random variables. The
following theorem by Hutter and Muchnik (2007) will be useful.

Theorem 1. If μ ∈ M, then Eπ
μ exp

(
1

2

∞∑
t=1

h1
t (μ

π, ξπ)

)
≤
√

1

wμ
.

More usual than the Hellinger distance in the analysis of Bayesian sequence pre-
diction is the relative entropy, but this quantity is unbounded, which somewhat
surprisingly leads to weaker results (Lattimore et al., 2013b). The following the-
orem is a simple generalisation of Theorem 1 to the multi-step case.

Theorem 2. Let d ≥ 1 and {τk}∞k=1 be a sequence of (H∞,F , {F<t})-measurable
stopping times such that τk + d ≤ τk+1 for all k. Then for all μ ∈ M

Eπ
μ exp

(
1

2

∞∑
k=1

hd
τk
(μπ , ξπ)

)
≤
√

1

wμ
.

Theorem 1 is regained by choosing τk = k and d = 1. The proof of Theorem 2 can
be found in the technical report. Theorem 2 shows that the predictive distribu-
tion of the Bayesian mixture converges fast to the true predictive distribution. In
particular, with high probability the cumulative squared total-variation distance
does not greatly exceed log 1

wμ
.

Corollary 3. If δ > 0, then μπ

( ∞∑
k=1

δdτk(μ
π, ξπ)2 ≥ log

1

wμ
+ log

1

δ2

)
≤ δ.

Proof. We combine Markov’s inequality with Theorem 2.

μπ

( ∞∑
k=1

δdτk(μ
π, ξπ)2 ≥ log

1

wμ
+ log

1

δ2

)
(a)

≤ μπ

( ∞∑
k=1

hd
τk
(μπ , ξπ) ≥ log

1

wμδ2

)
(b)
= μπ

(
exp

(
1

2

∞∑
k=1

hd
τk(μ

π, ξπ)

)
≥ 1

δ

√
1

wμ

)
(c)

≤ δ,
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where (a) follows since the Hellinger distance upper bounds the total variation
distance, (b) is trivial, and (c) by Markov’s inequality. ��

The consequence of the above is that a Bayesian predictor quickly learns the
true distribution of the rewards and observations it will receive. On first sight
this might seem promising for Bayesian reinforcement learning, but there is a
problem. Bayesian sequence prediction is only capable of learning to predict
given a fixed policy. But in RL the agent must choose its action at each time-
step, and to do this effectively it must be able to predict the consequences of
all actions, not only the action it ultimately ends up taking. We side-step this
problem in the new algorithm called BayesExp by only following the Bayesian
optimal policy when it is guaranteed to be nearly optimal and exploring other-
wise. The BayesExp algorithm is as follows:

Algorithm 1. BayesExp

1: Inputs: ε, δ and M = {ν1, ν2, · · · , νK}
2: δ1 ← δ/2 and ε1 ← ε(1− γ)/4 and ε2 ← ε/12 and d ← log ε2(1−γ)

log γ

3: x ← ε and t ← 1 and wν ← 1/K and D(ν) ← 0, ∀ν
4: loop
5: Π∗ ← {π∗

ν : ν ∈ M} ∪ {π∗
ξ}

6: π ← argmaxπ∈Π∗ maxν∈M δdx(ν
π, ξπ)

7: Δ ← maxπ∈Π∗,ν∈M δdx(ν
π, ξπ)

8: if Δ > ε1 then
9: D(ν) ← D(ν) + δdx(ν

π, ξπ)2, ∀ν
10: for j = 1 → d do
11: act(π)

12: M ←
{
ν : D(ν) ≤ logK/δ21

}
13: else
14: D(ν) ← D(ν) + δ1x(ν

π∗
ξ , ξπ

∗
ξ )2, ∀ν

15: act(π∗
ξ )

16: function Act(π)
17: Take action a = π(x) and observe o ∈ O and r ∈ R from environment
18: t ← t+ 1 and x ← xaor

Indices. For the sake of readability the time indices have been omitted in the
pseudo-code above. Throughout the analysis we write Mt, Dt(ν) and Δt for the
values of Δ, D(ν) and M as computed by BayesExp at time-step t. Similarly,
Mz, Dz(ν) and Δz are the values of M, D(ν) and Δ respectively as they would
be computed given the algorithm had reached history z ∈ H∗.

Exploration Phases. The algorithm operates in phases of exploration and
exploitation. If there exists an optimal policy π′ with respect to some plausible
environment such that the d-step total-variation distance between νπ

′
and ξπ

′

is larger than ε1, then the algorithm follows π′ for exactly d time-steps. This
period is called an exploration phase. The set of time-steps triggering exploring
phases is denoted by E ⊆ N. While the set of time-steps spent in exploration
phases is denoted by Ed :=

⋃
t∈E {t, t+ 1, · · · , t+ d− 1}.
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Exploitation Time-Steps. If BayesExp is not exploring at time-step t, then t
is an exploiting time-step where BayesExp is following the Bayes optimal policy.
The set of all exploitation time-steps is denoted by T := N− Ed.

Failure Phases. For the remainder of this section the policy π refers to the
policy of BayesExp. A failure phase is a period of d time-steps triggered at
time-step t provided t is not part of a previous exploration/failure phase and
μ ∈Mt and V ∗

μ (x<t)− V π
μ (x<t) > ε. We denote the set of time-steps triggering

failure phases by F ⊂ N and the set of time-steps spent in failure phases by
Fd :=

⋃
t∈F {t, t+ 1, · · · , t+ d− 1}. Failure phases depend on the unknown μ,

so are not known to the algorithm and are only used in the analysis.

4 Upper Bound on Sample-Complexity

Theorem 4. Suppose π is the policy of Algorithm 1 given input ε > 0, δ > 0
and M = {ν1, · · · , νK}. If μ ∈M, then

μπ

( ∞∑
t=1

1
{
V ∗
μ (x<t)− V π

μ (x<t) > ε
}
>

416Kd

ε2(1 − γ)2
log

4K

δ2

)
≤ δ

where x is the infinite history sampled from μπ and d = log(ε2(1−γ))
log γ is the effec-

tive horizon.

Noting that d ∈ O( 1
1−γ log 1

ε(1−γ) ), the sample-complexity is bounded by

O

(
K

ε2(1− γ)3

(
log

1

ε(1− γ)

)(
log

K

δ

))
.

Proof Overview
(a) By definition, if V ∗

μ (x<t)− V π
μ (x<t) > ε, then either μ /∈ Mt or t is part of

an exploration/failure phase, t ∈ Ed ∪ Fd.
(b) First we show that μ ∈ Mt for all t with probability at least 1− δ1.
(c) We then use the definition of the algorithm to bound

|E| ≤ K

ε21
log

K

δ21
=⇒ |Ed| ≤

Kd

ε21
log

K

δ21
.

(d) If μ ∈ Mt and BayesExp is exploiting, then all plausible environments are
sufficiently close under all optimal policies and so

V ∗
μ (x<t)− V

π∗
ξ

μ (x<t) � ε. (1)

(e) Unfortunately (1) does not imply that V ∗
μ (x<t)−V π

μ (x<t) ≤ ε. A careful ar-
gument is required to ensure that the number of errors in exploitation periods
is also small, which essentially means bounding the number of failure phases.
This eventually follows from the fact that if BayesExp is sub-optimal while
exploiting, then there must be some probability of triggering an exploration
phase, which cannot happen too often.
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The following lemmas are required for the proof of Theorem 4 and could be
skipped until they are referred to.

Lemma 5. Suppose t is a time-step when BayesExp is exploiting given history

x<t. Then V
π∗
ξ

μ (x<t)−V π
μ (x<t) ≤

∑
y∈Y

μπ(y|x<t)
(
V

π∗
ξ

μ (x<ty)− V π
μ (x<ty)

)
+ ε2,

where Y is the set of finite history sequences y of length at most d such that
BayesExp would explore given history x<ty.

Y =
{
y ∈ H≤d : BayesExp explores given history x<ty

}
.

Proof. Define Ȳ = Y ∪
{
y ∈ Hd : ∀z ∈ Y, z �- y

}
, which is complete and prefix

free by definition. Since t is an exploitation time-step, BayesExp will follow policy
π∗
ξ until such a time as it starts an exploration phase. Therefore by Lemma 13

V
π∗
ξ

μ (x<t)− V π
μ (x<t)

(a)
=
∑
y∈Ȳ

μπ(y|x<t)γ
�(y)
(
V

π∗
ξ

μ (x<ty)− V π
μ (x<ty)

)
(b)

≤
∑
y∈Y

μπ(y|x<t)
∣∣∣V π∗

ξ
μ (x<ty)− V π

μ (x<ty)
∣∣∣+ ε2

where (a) follows from Lemma 13. (b) by dropping all y ∈ Ȳ − Y and using the
fact that for y ∈ Ȳ − Y we have �(y) = d, which by the definition of the horizon

d = log ε2(1−γ)
log γ implies that the ratio γd ≤ ε2(1− γ). ��

Lemma 6. Let x<t be the history at an exploitation time-step t ∈ T and assume

μ ∈Mt. Then V ∗
μ (x<t; d)− V

π∗
ξ

μ (x<t; d) ≤
2ε1
1− γ

.

Proof. Since t is an exploitation time-step we have that Δt ≤ ε1. Therefore

V ∗
μ (x<t; d)− V

π∗
ξ

μ (x<t; d)
(a)
= V

π∗
μ

μ (x<t; d)− V
π∗
ξ

μ (x<t; d)

(b)

≤ V
π∗
μ

μ (x<t; d)− V
π∗
μ

ξ (x<t; d) + V
π∗
μ

ξ (x<t; d)− V
π∗
ξ

ξ (x<t; d)

+ V
π∗
ξ

ξ (x<t; d)− V
π∗
ξ

μ (x<t; d)

(c)

≤ 1

1− γ

(
δdx<t

(μπ∗
μ , ξπ

∗
μ) + δdx<t

(μπ∗
ξ , ξπ

∗
ξ )
) (d)

≤ 2Δt

1− γ

(e)

≤ 2ε1
1− γ

where (a) is the definition of V ∗
μ (x<t; d). (b) by adding and subtracting value

functions. (c) by Lemma 11. (d) by the definition of Δt and μ ∈ Mt. (e) since t
is an exploitation time-step. ��

Lemma 7. Let x<t be the history at an exploration time-step t ∈ E. Then

V ∗
μ (x<t; d)− V π

μ (x<t; d) ≤
max {4Δt,1{μ /∈Mt}}

1− γ
.
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Proof. If μ /∈ Mt, then we use the trivial bound of 1
1−γ . Now assume μ ∈Mt and

let π∗
ρ = argmaxπ∈Π∗

t
maxν∈Mt δ

d
t (ν

π∗
ρ , ξπ

∗
ρ ), which means that ρ ∈ Mt ∪ {ξ}.

Therefore

V ∗
μ (x<t; d)− V π

μ (x<t; d)
(a)
= V

π∗
μ

μ (x<t; d)− V
π∗
ρ

μ (x<t; d)

(b)

≤ V
π∗
μ

ρ (x<t; d)− V
π∗
ρ

ρ (x<t; d) +
(
V

π∗
μ

μ (x<t; d)− V
π∗
μ

ρ (x<t; d)
)

+
(
V

π∗
ρ

ρ (x<t; d)− V
π∗
ρ

μ (x<t; d)
)

(c)

≤ 1

1− γ

(
δdx<t

(ρπ
∗
μ , μπ∗

μ) + δdx<t
(ρπ

∗
ρ , μπ∗

ρ )
)

(d)

≤ 1

1− γ

(
δdx<t

(ρπ
∗
μ , ξπ

∗
μ) + δdx<t

(ξπ
∗
μ , μπ∗

μ) + δdx<t
(ρπ

∗
ρ , ξπ

∗
ρ ) + δdx<t

(ξπ
∗
ρ , μπ∗

ρ )
)

(e)

≤ 4Δt

1− γ

where (a) follows since BayesExp follows policy π∗
ρ while exploring. (b) by ex-

panding the values. (c) by Lemma 11. (d) by the triangle inequality. (e) by the
definition of Δt and because ρ, μ ∈M∪ {ξ}. ��

The proof of Theorem 4 uses a number of constants that are functions of each
other. For convenience they are described in the table below.

Table 1. Constants for Theorem 4

constant ε1 ε2 ε3 ε4 δ1 d

constraint = ε2 +
2ε1
1−γ = (ε − ε3 − 2ε2)(1 − γ)

value ε(1 − γ)/4 ε/12 7ε/12 ε(1 − γ)/4 δ/2
log ε2
log γ

Proof (of Theorem 4). Following the plan, we start by bounding the probability
that μ is removed from Mt.

Step 1: Bounding Inconsistency Probability. Let A1 be the event that
μ ∈ Mt for all time-steps t. Environment μ is removed from the model class
Mt only once the counter D(μ) exceeds logK/δ21 . But D(μ) is the cumulative
squared total variation distance between μπ and ξπ , which by Corollary 3 is
bounded by logK/δ21 with μπ-probability at least 1− δ1 and so μπ(A1) ≥ 1− δ1.

Step 2: Bounding Exploration Phases. Let t be the start of an exploration
phase. Then by definition there exists a ν ∈ Mt such that δdt (ν

π , ξπ) > ε1 and
so D(ν) is incremented by at least ε21. Since an environment is removed from M
once D(ν) exceeds logK/δ21 , the number of exploration phases is bounded by
Emax := K

ε21
log K

δ21
. Since each exploration phase is exactly d time-steps long, the

number of time-steps spent in exploration phases satisfies

|Ed| ≤
Kd

ε21
log

K

δ21
. (2)
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By identical reasoning it holds that
∑
t∈E

Δ2
t ≤ K log

K

δ21
. (3)

Note that both (2) and (3) hold surely over all history trajectories.

Step 3: Exploitation Success. Assume that event A1 is true, which means
that μ ∈ Mt for all time-steps. Let t ∈ T be a time-step when BayesExp is
exploiting. Therefore

V ∗
μ (x<t)− V

π∗
ξ

μ (x<t)
(a)

≤ ε2 + V ∗
μ (x<t; d)− V

π∗
ξ

μ (x<t; d)
(b)

≤ 2ε1
1− γ

+ ε2 =: ε3 < ε

where (a) follows by truncating the horizon (Lemma 12) and (b) by Lemma 6.

Step 4: Connecting the Policies.We now bound the number of failure phases.
The intuition is that if BayesExp is exploiting at time-step t, then the Bayes-
optimal policy π∗

ξ is near-optimal. Since BayesExp follows this policy until an
exploration phase, V ∗

μ (x) − V π
μ (x) can only be large if there is a reasonable

probability of encountering an exploration phase within the next d time-steps.
By some form of concentration inequality this cannot happen too often before
an exploration phase actually occurs, which will lead to the correct bound on
the number of time-steps when V ∗

μ (x<t)− V π
μ (x<t) > ε. Let F = {t1, t2, · · · } be

the set of time-steps triggering failure phases with corresponding histories x<tk .
For k > |F | define tk = ∞. At time-step tk having observed history x<tk define
Y as in the statement of Lemma 5 to be the set of finite histories of length at
most d such that BayesExp would explore upon reaching history x<tky.

Y :=
{
y ∈ H≤d : BayesExp explores given history x<tky

}
.

For tk <∞ we have that

ε
(a)
< V ∗

μ (x<tk)− V π
μ (x<tk)

(b)
= V ∗

μ (x<tk)− V
π∗
ξ

μ (x<tk) + V
π∗
ξ

μ (x<tk )− V π
μ (x<tk)

(c)

≤ ε3 + V
π∗
ξ

μ (x<tk )− V π
μ (x<tk)

(d)

≤ ε3 + ε2 +
∑
y∈Y

μπ(y|x<tk)
(
V

π∗
ξ

μ (x<tky)− V π
μ (x<tky)

)
(e)

≤ ε3 + 2ε2 +
∑
y∈Y

μπ(y|x<tk)
(
V ∗
μ (x<tky; d)− V π

μ (x<tky; d)
)

(f)

≤ ε3 + 2ε2 +
∑
y∈Y

μπ(y|x<tk)

⎛⎝max
{
4Δx<tk

y,1
{
μ /∈ Mx<tk

y

}}
1− γ

⎞⎠ (4)

where (a) follows from the definition of tk as a time-step when π is ε-suboptimal.
(b) by splitting the difference sum. (c) by the fact that π∗

ξ is at worst ε3-
suboptimal when BayesExp is exploiting and μ ∈ Mt (Step 3). Note that
μ ∈ Mtk is assumed in the definition of a failure phase. (d) by Lemma 5.
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(e) by the fact that V ∗
μ ≥ V π

μ for all π and by Lemma 12. (f) by Lemma 7.
Define random variable Xk by

Xk :=

tk+d∑
t=tk

1{t ∈ E} (max {4Δt,1{μ /∈ Mt}}) ∈ [0, 4].

By the definition of Xk and (4), if tk < ∞, then

Eπ
μ[Xk|x<tk ] =

∑
y∈Y

μπ(y|x<tk)
(
4Δx<tk

y + 1{μ /∈ Mt}
)

≥ (ε− ε3 − 2ε2) (1 − γ) =: ε4 ≡ ε1. (5)

Using the bounds on the number of exploration phases given in Step 2 we have
∞∑
k=1

Xk

(a)

≤ 1 +
∑
t∈E

4Δt

(b)

≤ 1 + 4

√
|E|
∑
t∈E

Δ2
t

(c)

≤ 1 + 4

√
K

ε21
log

K

δ21
·K log

K

δ21
≤ 5K

ε1
log

K

δ21
(6)

where (a) follows from the definition of Xk and the fact that μ ∈ Mtk for all
tk < ∞. (b) by Jensen’s inequality. (c) by Equations (2) and (3). Finally we
can apply concentration inequalities by noting that

∑n
k=1 E

π
μ[Xk|x<tk ] −Xk is

a martingale with zero expectation and differences bounded by 4. Let Fmax ∈ N
be a constant to be defined shortly and let A2 be the event that:

Fmax∑
k=1

Eπ
μ[Xk|x<tk ] ≤

Fmax∑
k=1

Xk +

√
2 · 42 · Fmax log

1

δ1
.

By Azuma’s inequality μπ(A2) ≥ 1− δ1. If A2 occurs, then

1

Fmax

Fmax∑
k=1

E[Xk|Xk−1]
(a)

≤ 5K

ε1Fmax
log

K

δ21
+

√
2 · 42
Fmax

log
1

δ1

(b)
< ε4 (7)

where (a) follows by substituting (6) and (b) by choosing

Fmax :=
25K

ε1ε4
log

K

δ21
≡ 400K

ε2(1− γ)2
log

4K

δ2
.

But (7) implies that there exists a k < Fmax such that E[Xk|x<tk ] ≤ ε4, which
by (5) implies that tk = ∞ and so |F | ≤ Fmax and |Fd| ≤ Fmaxd.

Step 5: Finishing Up. Assuming events A1 and A2 both occur, then it holds
that both |Ed| ≤ dEmax and |Fd| ≤ dFmax. Since V

∗
μ (x<t)−V π

μ (x<t) > ε implies
that t ∈ Fd ∪ Ed or μ /∈Mt it follows that

μπ

( ∞∑
t=1

1
{
V ∗
μ (x<t)− V π

μ (x<t) > ε
}
≤ d(Emax + Fmax)

)
≥ μπ(A1 ∩ A2) ≥ 1− 2δ1 = 1− δ.
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Substituting Emax = 16K
ε2(1−γ)2 log

4K
δ2 and Fmax = 400K

ε2(1−γ)2 log
4K
δ2 completes the

proof that

μπ

( ∞∑
t=1

1
{
V ∗
μ (x<t)− V π

μ (x<t) > ε
}
>

416Kd

ε2(1 − γ)2
log

4K

δ2

)
≤ δ

as required. ��

Remark 8. The constant can be reduced to ∼ 200 by making ε2 significantly
smaller (and paying only a log cost) and increasing ε1 = ε4 ≈ ε(1− γ)/3.

5 Lower Bound on Sample-Complexity

In the last section we showed for any finite environment class M of size K that
the algorithm BayesExp is ε-optimal except for at most

O

(
K

ε2(1− γ)3

(
log

1

ε(1− γ)

)(
log

K

δ

))
(!)

time-steps with probability at least 1− δ. We now describe the counter-example
leading to a nearly-matching lower-bound in the sense that there exist envi-
ronment classes where no algorithm has sample-complexity much better than
(!). We do not claim that BayesExp achieves the optimal sample-complexity
bound in all classes (it does not), only that there exists a class where it (very
nearly) does. The gap between the lower and upper bounds is only a log 1

ε(1−γ)

factor. The most natural approach to proving a lower bound on the sample-
complexity would be to use the famous result by Mannor and Tsitsiklis (2004)
on the sample-complexity of exploration for multi-armed bandits. But environ-
ment classes based on stationary bandit-like environments lead only to an Ω(K)
bounds on the sample-complexity rather than the desired Ω(K logK). The rea-
son is that for such environments the median elimination algorithm for min-
imising bandit sample-complexity can be used, which achieves the O(K) bound
(Even-Dar et al., 2002). This highlights a distinction between the two settings.
Even if γ = 0 (1 step lookahead), the non-stationary version of the problem
considered here is harder than the (stationary) bandit case.

Theorem 9. For each K > 1 and γ > 0 there exists an environment class M
such that for all policies π there exists a μ ∈M where

μπ

( ∞∑
t=1

1
{
V ∗
μ (x<t)− V π

μ (x<t) > ε
}
> c ·

(
log 1

2

log γ

)
K

ε2(1− γ)2
log

K

δ

)
> δ.

for some c > 0 independent of K, π and γ.

The complete proof is left for the technical report, but we describe the counter-
example and justify the bound.
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r = 1
2

1
2 + εt,k
r = 1

1
2 − εt,k
r = 0

Fig. 1. Counter-example for
lower bound. Environment μk

Counter-Example. Let A = { , } con-
sist of two actions, O be a singleton and R ={
0, 12 , 1

}
. Let K ≥ 2 and ε, δ > 0 be suffi-

ciently small. Define environment class M =
{μ1, μ2, · · · , μK} as in Figure 1. The parameter
εt,k determines the optimal action at each time-
step. Let L be some large constant, then define
εt,k in environment μk by εt,k = ε

2 sign {kL− t}.
So if the learner chooses action , then with
probability 1

2 + εt,k it receives reward 1 and oth-
erwise no reward. For it deterministically re-
ceives reward 1

2 regardless of the time-step or
environment.

Explanation of the Bound. The optimal action in environment μk is to take
action until time-step kL and there-after take action . We call each period
of L time-steps a phase and consider the number of ε-errors made in the first
K−1 phases. The difficulty arises because at the start of the �th phase an agent
cannot distinguish between environment μ� and μ�+1. But in environment μ�

the agent should take action while in environment μ�+1 the agent should
take action . Now is uninformative, so the only question is how many
times a policy must sample action before switching to action . In order
to guarantee that it is correct in phase � with probability δ/K it should take
action approximately 1

ε2 log
K
δ times. Since it must be correct in all phases,

which are essentially independent, the number of times must be taken in
environment μK in phases � < K is O(Kε2 log

K
δ ). In order to add the dependence

on γ we must make two modifications.
1. Add a near-absorbing state corresponding to the times when the agent re-

ceives rewards 1, 0 and 1/2 respectively. If the agent stays in these states
for O( 1

1−γ ), then the cost of a mistake becomes ε/(1 − γ) and the mistake

bound will depend on ε−2(1− γ)−2.
2. To obtain an additional factor of the horizon we proceed in the same fash-

ion as the lower bound given by Lattimore and Hutter (2012). Adapt the
environment again so that the agent stays in the decision node for exactly
O( 1

1−γ ) time-steps, regardless of its action. Only the action at the end of

this period decides whether or not the agent gets reward 1/2 or 0 or 1. But
if the agent is following a policy that makes an error, then this is counted
for O( 1

1−γ ) time-steps before the error actually occurs, which multiplies the
total number of errors by this quantity.

6 Adaptivity of BayesExp

We now show that the algorithm may learn faster when environments are easy
to distinguish. Assume γ = 0, which implies that the effective horizon d = 1.
A K-armed Bernoulli bandit is characterised by a vector p ∈ [0, 1]K . At each
time-step the learner chooses arm It ∈ {1, · · · ,K} and receives reward 1 with



182 T. Lattimore and M. Hutter

probability pIt and reward 0 otherwise. The value pk is called the bias of the kth
arm. There is now a huge literature on bandits, which we will not discuss, but see
Bubeck and Cesa-Bianchi (2012) and references there-in for a good introduction.
Choose M = {ν1, · · · , νK} to be the set of K-armed Bernoulli bandits where
in environment νk the bias of the k arm is 1

2 while for all other arms it is
equal to 1

2 − Δk where Δk ≥ ε. Thus the optimal action in environment νk
is to always choose arm k. Note that in this setting there are no observations
(O ≡ singleton) and R = {0, 1}. We show that the performance of BayesExp
is substantially improved for large Δk where the environments are more easily
distinguished.

Theorem 10. If BayesExp is run on the environment class described above, then

μπ

⎛⎝ ∞∑
t=1

1
{
V ∗
μ (x<t)− V π

μ (x<t) > ε
}
>
∑

k:νk �=μ

4

Δ2
k

log
K

δ2

⎞⎠ ≤ δ.

The proof may be found in the associated technical report.

7 Conclusion

We adapted the Bayesian optimal agent studied by Hutter (2005) and others by
adding an exploration component. The new algorithm achieves minimax finite
sample-complexity bounds for finite environment classes. The theoretical results
improve substantially on those given for the MERL algorithm by Lattimore et al.
(2013a). In that work only two environments are compared in each exploration
phase and models were discarded based on rewards alone, with observations com-
pletely ignored. Like the k-meteorologist algorithm (Diuk et al., 2009) models
were only removed in discrete blocks. In contrast, the approach used here elim-
inates environments smoothly, which in benign environments may occur signifi-
cantly faster than the worst-case bounds suggest. An example of this adaptivity
is given for bandit environments in Section 6. There is another benefit of Baye-
sExp illustrated by the example in Section 6. While the analysis in the proof of
Theorem 4 leads to a largish constant, it is not used by the algorithm, which
means that in simple cases the analysis can be improved substantially.

Future work could focus on proving more general problem-dependent bounds
on the sample-complexity of algorithms like BayesExp, and characterising the
difficulty of reinforcement learning environments and classes. This problem is
now reasonably understood for bandit environments, but even for MDPs there
is only limited work on problem-dependent bounds, and nothing for general
RL as far as we are aware. Larger environment classes are also worth consider-
ing, including countable or separable spaces where uniform sample-complexity
bounds are not possible, but problem-dependent asymptotic bounds are. We are
optimistic that BayesExp can be extended to these cases.

Acknowledgements. This work was supported by the Alberta Innovates Tech-
nology Futures and NSERC.



Bayesian Reinforcement Learning with Exploration 183

References

Auer, P., Jaksch, T., Ortner, R.: Near-optimal regret bounds for reinforcement learning.
Journal of Machine Learning Research 99, 1532–4435 (2010) ISSN 1532-4435

Azar, M.G., Lazaric, A., Brunskill, E.: Regret bounds for reinforcement learning with
policy advice. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML
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A Properties of Value Functions

Lemma 11. Let π ∈ Π and μ and ν be two environments. Then

V π
μ (x; d)− V π

ν (x; d) ≤ δdx(μ
π, νπ)

1− γ
.

Proof. The difference in value functions is a difference in expected returns with
respect to μπ and νπ . This is bounded by the total variation distance multiplied
by the maximum return, which is 1/(1− γ). ��

Lemma 12. If x is a history at time-step t and ε > 0 and d ≥
⌈
log ε(1−γ)

log γ

⌉
,

then V π
μ (x) ≥ V π

μ (x; d) and V π
μ (x) − V π

μ (x; d) ≤ ε.

Proof. That V π
μ (x) ≥ V π

μ (x; d) is trivial. For the second claim:

V π
μ (x)− V π

μ (x; d)
(a)
= Eπ

μ

[ ∞∑
k=t+d

γk−trk

∣∣∣∣∣x
]

(b)

≤
∞∑

k=t+d

γk−t (c)
=

γd

1− γ

(d)

≤ ε

where (a) follows by adding and subtracting the tail sum. (b) because rk ∈ [0, 1].
(c) is trivial while (d) follows from the definition of d. ��

Lemma 13. Let μ be an environment, x ∈ H∗ a history and Y ⊂ H∗ be com-
plete and prefix free. If π1 and π2 are policies such that π1(xz) = π2(xz) for all
y, z for which z � y. Then

V π1
μ (x) − V π2

μ (x) =
∑
y∈Y

μπ1(y|x)γ�(y)
(
V π1
μ (xy)− V π2

μ (xy)
)
.
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Abstract. We consider a Reinforcement Learning setup without any
(esp. MDP) assumptions on the environment. State aggregation and
more generally feature reinforcement learning is concerned with mapping
histories/raw-states to reduced/aggregated states. The idea behind both
is that the resulting reduced process (approximately) forms a small sta-
tionary finite-state MDP, which can then be efficiently solved or learnt.
We considerably generalize existing aggregation results by showing that
even if the reduced process is not an MDP, the (q-)value functions and
(optimal) policies of an associated MDP with same state-space size solve
the original problem, as long as the solution can approximately be repre-
sented as a function of the reduced states. This implies an upper bound
on the required state space size that holds uniformly for all RL problems.
It may also explain why RL algorithms designed for MDPs sometimes
perform well beyond MDPs.

Keywords: State aggregation, reinforcement learning, non-MDP.

1 Introduction

In Reinforcement Learning (RL) [SB98], an agent Π takes actions in some
environment P and observes its consequences and is rewarded for them.
A well-understood and efficiently solvable [Put94] and efficiently learnable
[SLL09, LH12] case is where the environment is (modelled as) a finite-state sta-
tionary Markov Decision Process (MDP). Unfortunately most interesting real-
world problems P are neither finite-state, nor stationary, nor Markov. One way
of dealing with this mismatch is to somehow transform the real-world prob-
lem into a small MDP: Feature Reinforcement Learning (FRL) [Hut09b] and
U-tree [McC96] deal with the case of arbitrary unknown environments, while
state aggregation assumes the environment is a large known stationary MDP
[GDG03, FPP04]. The former maps histories into states (Section 2), the latter
groups raw states into aggregated states.

Here we follow the FRL approach and terminology, since it is arguably most
general: It subsumes the cases where the original process P is an MDP, a k-
order MDP, a POMDP, and others [Hut09b]. Thinking in terms of histories also
naturally stifles any temptation of a naive frequency estimate of P (no history
ever repeats).

P. Auer et al. (Eds.): ALT 2014, LNAI 8776, pp. 185–199, 2014.
c© Springer International Publishing Switzerland 2014
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More importantly, we consider maps φ from histories to states for which the
reduced process Pφ is not (even approximately) an MDP (Section 3). At first this
seems to defeat the original purpose, namely of reducing P to a well-understood
and efficiently solvable problem class, namely small MDPs. The main novel con-
tribution of this paper is to show that there is still an associated finite-state
stationary MDP p whose solution (approximately) solves the original problem
P , as long as the solution can still be represented (Section 4). Indeed, we pro-
vide an upper bound on the required state space size that holds uniformly for
all P (Section 5). We also show how to learn p from experience (Section 6), and
sketch an overall learning algorithm and regret/PAC analysis based on our main
theorems (Section 7). We conclude with an outlook on future work and open
problems (Section 8). All proofs can be found in the extended technical report
[Hut14].

2 Feature Markov Decision Processes (ΦMDP)

This section formally describes the setup of [Hut09b]. It consists of the agent-
environment framework and maps φ from observation-reward-action histories to
MDP states. This arrangement is called “Feature MDP” or short ΦMDP. We use
upper-case letters P , Q, V , and Π for the Probability, (Q-)Value, and Policy of
the original (agent-environment interactive) Process, and lower-case letters p, q,
v, and π for the probability, (q-)value, and policy of the (reduced/aggregated)
MDP.

Agent-environment Setup [Hut09b]. We start with the standard agent-
environment setup [RN10] in which an agent Π interacts with an environment
P . The agent can choose from actions a ∈ A and the environment provides
observations o ∈ O and real-valued rewards r ∈ R ⊆ [0; 1] to the agent. This
happens in cycles t = 1, 2, 3, ...: At time t, after observing ot and receiving reward
rt, the agent takes action at based on history

ht := o1r1a1...ot−1rt−1at−1otrt ∈ Ht := (O ×R×A)t−1 ×O ×R

Then the next cycle t+1 starts. The agent’s objective is to maximize its long-term
reward. To avoid integrals and densities, we assume spaces O and R are finite.
They may be huge, so this is not really restrictive. Indeed, the ΦMDP framework
has been specifically developed for huge observation spaces. Generalization to
continuous O and R is routine [Hut09a]. Furthermore we assume that A is
finite and smallish, which is restrictive. Potential extensions to continuous A are
discussed in Section 8.

The agent and environment may be viewed as a pair of interlocking functions
of the history H := (O ×R×A)∗ ×O ×R:

Env. P : H×A � O ×R, P (ot+1rt+1|htat),

Agent Π : H � A, Π(at|ht) or at = Π(ht),

�

�

�

�
Agent Π

�

�

�

�
Env.P

action �

reward�
observation

�
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where � indicates that mappings → are in general stochastic. We make no
(stationarity or Markov or other) assumption on environment P . For most parts,
environment P is assumed to be fixed, so dependencies on P will be suppressed.
For convenience and since optimal policies can be chosen to be deterministic, we
consider deterministic policies at = Π(ht) only.

Value Functions, Optimal Policies, and History Bellman Equations.We
measure the performance of a policy Π in terms of the P -expected γ-discounted
reward (0 ≤ γ < 1), called (Q-)Value of Policy Π at history ht (and action at)

V Π(ht) := EΠ [Rt+1|ht], QΠ(ht, at) := EΠ [Rt+1|htat], Rt :=

∞∑
τ=t

γτ−trτ

The optimal Policy and (Q-)Value functions are

V ∗(ht) :=max
Π

V Π(ht), Q∗(ht, at) :=max
Π

QΠ(ht, at), Π∗:∈argmax
Π

V Π(ε) (1)

The maximum over all policies Π always exists [LH14] but may not be unique,
in which case argmax denotes the set of optimal policies and Π∗ denotes a
representative or the whole set of optimal policies. Despite being history-based
we can write down (pseudo)recursive Bellman (optimality) equations for the
(optimal) (Q-)Values [Hut05, Sec.4.2]:

QΠ(ht, at)=
∑

ot+1rt+1

P (ot+1rt+1|htat)[rt+1+γV Π(ht+1)], V
Π(ht)=QΠ(ht, Π(ht))(2)

Q∗(ht, at) =
∑

ot+1rt+1

P (ot+1rt+1|htat)[rt+1+γV ∗(ht+1)], V
∗(ht)=max

at∈A
Q∗(ht, at) (3)

Π∗(ht) ∈ arg max
at∈A

Q∗(ht, at) (4)

Unlike their classical state-space cousins (see below), they are not self-consistency
equations: The r.h.s. refers to a longer history ht+1 which is always different
from the history ht on the l.h.s, which precludes any learning algorithm based
on estimating the frequency of state/history visits. Still the recursions will be
convenient for the mathematical development.

From Histories to States (φ). The space of histories is huge and unwieldy
and no history ever repeats. Standard ways of dealing with this are to define
a similarity metric on histories [McC96] or to aggregate histories [Hut09b]. We
pursue the latter via a feature map φ : H → S which reduces histories ht ∈ H
to states st := φ(ht) ∈ S. W.l.g. we assume that φ is surjective. We also assume
that state space S is finite; indeed we are interested in small S. This corresponds
and indeed is equivalent to a partitioning of histories {φ−1(s) : s ∈ S}. Classical
state aggregation usually uses the partitioning view [GDG03, FPP04], but the
map notation is a bit more convenient here.

The state st is supposed to summarize all relevant information in history
ht, which lower bounds the size of S. We pass from the complete history
o1r1a1...onrn to a ‘reduced’ history s1r1a1...snrn. Traditionally, ‘relevant’ means
that the future is predictable from st (and at) alone, or technically that the re-
duced history forms a Markov decision process. This is precisely the condition
this paper intends to lift (later).
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From Histories to MDPs. The probability of the successor states and rewards
can be obtained by marginalization

Pφ(st+1rt+1|htat) :=
∑

õt+1:φ(htatõt+1rt+1)=st+1

P (õt+1rt+1|htat) (5)

The reduced process Pφ is a Markov Decision Process, or Markov for short, if
Pφ only depends on ht through st, i.e. is the same for all histories mapped to
the same state. Formally

Pφ ∈ MDP :⇐⇒ ∃p : Pφ(st+1rt+1|h̃tat) = p(st+1rt+1|stat) ∀φ(h̃t) = st (6)

Here and elsewhere a quantifier such as ∀φ(h̃t) = st shall mean: for all values
of all involved variables consistent with the constraint φ(h̃t) = st. The MDP
Pφ is assumed to be stationary, i.e. independent of t; another condition to be
lifted later. Condition (6) is essentially the stochastic bisimulation condition
generalized to histories and being somewhat more restrictive regarding rewards
[GDG03]: It is a condition on the reward distribution, while [GDG03] constrains
its expectation only. This could easily be rectified but is besides the point of this
paper. The bisimulation metric [FPP04] is an approximate version of (6), which
measures the deviation of Pφ from being an MDP.

Many problems P can be reduced (approximately) to stationary MDPs
[Hut09b]: Full-information games such as chess with static opponent are already
Markov, classical physics is approximately 2nd-order Markov, (conditional) i.i.d.
processes such as Bandits have counting sufficient statistics, and for a POMDP
planning problem, the belief vector is Markov.

Markov Decision Processes (MDP). We have used and continue to use
upper-case letters V , Q, Π for the general process P . We will use lower-case
letters v, q, π for (stationary) MDPs p. We use s and a for the current state and
action, and s′ and r′ for successor state and reward. Consider a stationary finite-
state MDP p : S×A � S×R and stationary deterministic policy π : S → A. In
this paper, p will not be given by (6), but in general p will be different from (6). In
any case, the p-expected γ-discounted reward sum, called (q-)value of (optimal)
policy π(∗) in MDP p, are given by the Bellman (optimality) equations

qπ(s, a) =
∑
s′r′

p(s′r′|sa)[r′+γvπ(s′)] and vπ(s) = qπ(s, π(s)) (7)

q∗(s, a) =
∑
s′r′

p(s′r′|sa)[r′+γv∗(s′)] and v∗(s) = max
a

q∗(s, a) (8)

π∗(s) ∈ argmax
a

q∗(s, a). Note: vπ(s) ≤ v∗(s), qπ(s, a) ≤ q∗(s, a) (9)

Using p(s′r′|sa) = p(r′|sas′)p(s′|sa) we could also rewrite them in terms of
transition matrix p(s′|sa) and expected reward E[r′|sa] [SB98].

One can show that if P reduces via φ to an MDP p, the solution of these
equations, yields (Q-)Values and optimal Policy of the original process P . This
is not surprising and just history-based versions of classical state-aggregation
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results [GDG03]. Approximate versions based on bisimulation metric [FPP04]
can also be historized.

More Notation.While our equations often assume or imply s = st, a = at, s
′ =

st+1, r
′ = rt+1, (and ht+1 = htao

′r′) for some t, technically s, a, s′, r′ are different
variables from all variables in history hn = o1r1a1...otrtatot+1rt+1...anrn. Less
prone to confusion are o = ot, o

′ = ot+1, h = ht, h
′ = hao′r′. We call a function

f(h), piecewise constant or φ-uniform iff f(h) = f(h̃) for all φ(h) = φ(h̃). Here
and elsewhere ∀φ(h) = φ(h̃) is short for ∀h, h̃ : φ(h) = φ(h̃). Similarly ∀s = φ(h)
is short for ∀s, h : s = φ(h). Etc. The Iverson bracket, [[R]] := 1 if R=true and
[[R]] := 0 if R=false, denotes the indicator function. Throughout, ε, δ ≥ 0 denote
approximation accuracy. Note that this includes the exact = 0 case.

3 Approximate Aggregation for General P

This section prepares for the main technical contribution of the paper in the
next section. The key quantity to relate original and reduced Bellman equations
is a form of stochastic inverse of φ, whose choice and analysis will be deferred
to Section 6. Proofs can be found in [Hut14].

Dispersion Probability B. Let Bφ : S ×A � H be a probability distribution
on finite histories for each state-action pair such that Bφ(h|sa) = 0 if s �=
φ(h). B ≡ Bφ may be viewed as a stochastic inverse of φ that assigns non-zero
probability only to h ∈ φ−1(s). The formal constraints we pose on B are

B(h|sa) ≥ 0 and
∑
h∈H

B(h|sa) =
∑

h:φ(h)=s

B(h|sa) = 1 ∀s, a (10)

This implicitly requires φ to be surjective, i.e. φ(H) = S, which can always
be made true by defining S := Sφ := φ(H). Note that the sum is taken over
histories of any/mixed length. In general, B is a somewhat weird distribution,
since it assigns probabilities to past and future observations given the current
state and action. The interpretation and choice of B does not need to concern
us, except later when we want to learn p.

The MDP requirement (6) will be replaced by the following definition:

p(s′r′|sa) :=
∑
h∈H

Pφ(s
′r′|ha)B(h|sa) (11)

≡
∞∑
t=1

∑
ht∈Ht

Pφ(st+1 = s′, rt+1 = r′|ht, at = a)B(ht|sa)

That is, the finite-state stationary MDP p is built from feature map φ, dispersion
probability B, and environment P : The p-probability of observing state-reward
pair (s′, r′) from state-action pair (s, a) is defined as the B-average over all his-
tories h consistent with (s, a) of the Pφ-probability of observing (s′, r′) (obtained
from P by φ-marginalizing) given history h and action a. The r.h.s. of the first
line is merely shorthand for the second line. Note that sas′r′ are fixed and do
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not appear in h which ranges over histories H of all lengths. It is easy to see that
p is a probability distribution, and it is Markov by definition. If Pφ ∈ MDP, then
definition (11) coincides with p defined in (6). In general, the MDP p, depending
on arbitrary B, is not the state distribution induced by P (and Π), which in
general is non-Markov. Note that p is a stationary MDP for any B satisfying
(10) and any φ and P . We need the following lemmas:

Some Lemmas. The first lemma establishes the key relation between P and p
via B used later to relate original history Bellman (optimality) equations (2–4)
with reduced state Bellman (optimality) equations (7–9).

Lemma 1 (B-P -p relation). For any function f : S × R → R and p defined
in (11) in terms of P via (5), and s′ := φ(h′) and h′ := hao′r′ it holds∑

h∈H
B(h|sa)

∑
o′r′

P (o′r′|ha)f(s′
↑

depends on hao′r′

, r′) =
∑
s′r′

p(s′r′|sa)f(s′, r′)

The following lemma trivially bounds v − V differences in terms of q − Q
differences, essentially |v − V | ≤ maxa |q −Q|.
Lemma 2 (|v − V | ≤ |q − Q|).

(i) If Π(h) = π(s) ∀s = φ(h) and δ := sup
s=φ(h),a

|qπ(s, a)−QΠ(h, a)|

then |vπ(s)−V Π(h)| ≤ δ ∀s = φ(h) (12)

(ii) δ := sup
s=φ(h),a

|q∗(s, a)−Q∗(h, a)|

implies |v∗(s)−V ∗(h)| ≤ δ ∀s = φ(h) (13)

(i) follows from (2) and (7), and (ii) follows from (3) and (8) and |maxx f(x)−
maxx g(x)| ≤ maxx |f(x)− g(x)|.

The next lemma shows that a reverse holds in B-expectation, i.e. |q−〈Q〉B| ≤
γ|v − V |. The expectation can (only) be dropped if Q is constant for all h ∈
φ−1(s). Formally define

〈f(h, a)〉B :=
∑
h̃∈H

B(h̃|sa)f(h̃, a), where s := φ(h) (14)

That is, 〈f(h, a)〉B takes a B-average over all h̃ that φ maps to the same state as
h. For convenience we will drop the tilde, which we can do if we declare s := φ(h)
to refer to the ‘global’ h in 〈f(h, a)〉B and not to the ‘local’ variable in the h ∈ H
sum.

Lemma 3 (|q−〈Q〉| ≤ γ|v−V |). For any P , φ, B, define p via (11) and (5)
(i) If |vπ(s)− V Π(h)| ≤ δ ∀s = φ(h)

then |qπ(s, a)− 〈QΠ(h, a)〉B | ≤ γδ ∀s = φ(h) ∀a.
(ii) If |v∗(s)− V ∗(h)| ≤ δ ∀s = φ(h)

then |q∗(s, a)− 〈Q∗(h, a)〉B| ≤ γδ ∀s = φ(h) ∀a.
The proof uses Lemma 1 for (i) together with (2) and (7) and for (ii) together

with (3) and (8). Note that in general Π∗ �= π∗.
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4 Approximate Aggregation Results

This section contains the main technical contribution of the paper. We show
that histories (or raw states) can be aggregated and modeled by an MDP even
if the true aggregated process is actually not an MDP. A necessary condition
for successful aggregation is of course that the quantities of interest, namely (Q-
)Value functions and Policies can be represented as functions of the aggregated
states. The results in this section roughly show that this necessary condition,
which is significantly weaker than the MDP requirement, is also sufficient. All but
one result also holds for approximate aggregation, i.e. approximate conditions
lead to approximate reductions. We also lift the stationarity assumption. Proofs
can be found in [Hut14].

– Theorem 4 shows how (approximately) φ-uniformQΠ andΠ can be obtained
from the reduced Bellman equations (7).

– Theorem 5 weakens the assumptions and conclusions to (approximately) φ-
uniform V Π and Π .

– Theorem 6 shows that for (approximately) φ-uniform Q∗, the optimal policy
is (approximately) φ-uniform, and (an approximation of it) can be obtained
via the reduced Bellman optimality equations (8).

– Theorem 7 shows that for (approximately) φ-uniform V ∗ and Π∗ we can
obtain similar but somewhat weaker results. The proof of the latter involves
extra complications not present in the other three proofs. Indeed, whether
the arguably most desirable bound holds is Open Problem 8.

Note that all theorems crucially differ in their conditions and conclusions.

Theorem 4 (φQπ). For any P , φ, and B, define p via (11) and (5). Let Π
be some policy such that Π(h) = Π(h̃) and |QΠ(h, a) − QΠ(h̃, a)| ≤ ε for all
φ(h) = φ(h̃) and all a. Then for all a and h it holds:

|QΠ(h, a)− qπ(s, a)| ≤ ε

1− γ
and |V Π(h)− vπ(s)| ≤ ε

1− γ
,

where π(s) := Π(h) and s = φ(h)

Note that π(s) is well-defined, since φ is surjective and Π(h) is the same for all
h ∈ φ−1(s). The proof uses (12) and Lemma 3i.

Theorem 5 (φV π). For any P , φ, and B, define p via (11) and (5). Let
Π be some policy such that Π(h) = Π(h̃) and |V Π(h) − V Π(h̃)| ≤ ε for all
φ(h) = φ(h̃). Then for all a and h it holds:

|V Π(h)− vπ(s)| ≤ ε

1− γ
and |qπ(s, a)− 〈QΠ(h, a)〉B | ≤

εγ

1− γ

where π(s) := Π(h) and s = φ(h)

The proof also uses Lemma 3i but otherwise is different. A simple example
of a P and φ that satisfy the conditions of Theorems 4 and 5, but violate the



192 M. Hutter

bisimulation condition [GDG03] and indeed have large bisimulation distance
[FPP04] is given in [Hut14]. We now turn from the fixed policy case to similar
theorems for optimal policies.

Theorem 6 (φQ∗). For any P , φ, and B, define p via (11) and (5). Assume
|Q∗(h, a)−Q∗(h̃, a)| ≤ ε for all φ(h) = φ(h̃) and all a. Then for all a and h and
s = φ(h) it holds:

(i) |Q∗(h, a)− q∗(s, a)| ≤ ε

1− γ
and |V ∗(h)− v∗(s)| ≤ ε

1− γ
,

(ii) 0 ≤ V ∗(h)− V Π̃(h) ≤ 2ε

(1 − γ)2
, where Π̃(h) := π∗(s)

(iii) If ε = 0 then Π∗(h) = π∗(s)

The proof of (i) follows the same steps as the proof of Theorem 4, but uses
(13) and Lemma 3ii to justify the steps. (ii) follows from (i) and (8) and an
additional lemma [Hut14]. (iii) follows from (i).

Theorem 7 (φV ∗). For any P , φ, and B, define p via (11) and (5). Assume
Π∗(h) = Π∗(h̃) and |V ∗(h)−V ∗(h̃)| ≤ ε for all φ(h) = φ(h̃). Then for all a and
h and s = φ(h) it holds:

(i) |V ∗(h)− v∗(s)| ≤ 3ε

(1− γ)2
and |q∗(s, a)− 〈Q∗(h, a)〉B| ≤

3εγ

(1− γ)2
,

(ii) If ε = 0 then Π∗(h) = π∗(s)

The proof actually implies the stronger lower bound V ∗(h) − v∗(s) ≥ 3ε
1−γ

and similarly for Q∗, but we do not know whether the upper bound can be
improved. The proof involves (7) for π0 := Π∗ �= π∗, (8), (4), (3), and (10), and
uses Theorem 5 applied to Π := Π∗ (with π = π0) and Lemma 3ii.

We are primarily interested in the optimal policy Π∗(h); to correctly repre-
sent the value V ∗(h) is only of indirect interest. If Π∗ is φ-uniform, it can be
represented as Π∗(h) = π0(s) for some π0, but if the φ-uniformity condition on
V ∗ in Theorem 7 is dropped, the conclusion Π∗(h) = π∗(s) can fail [Hut14].

Open Problem 8 (φV ∗) Under the same conditions as Theorem 7, is

V ∗(h)− V Π̃(h)
??
= O

( ε

(1− γ)?

)
where Π̃(h) := π∗(s) (15)

We only know that this holds for ε = 0, which follows from Theorem 7. See
[Hut14] for why it may be true or false for ε > 0.

Discussion. Open Problem 8 would be the main result if we had a proof for
ε > 0. Absent of it we have to be content with Theorem 6ii. Both statements
imply that we can aggregate histories as much as we wish, as long as the optimal
value function and policy are still approximately representable as functions of ag-
gregated states. Whether the reduced process Pφ is Markov or not is immaterial.
We can use surrogate MDP p to find an ε-optimal policy for P .
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Most RL work, including on state aggregation, is formulated in terms of
MDPs, i.e. the original process P is already an MDP. Let us call this the orig-
inal or raw MDP. We could interpret the whole history as a raw state, which
formally makes every P an MDP, but normally only observations are identified
with raw states, i.e. P is a raw MDP iff P (o′r′|ha) = P (o′r′|oa). In this case,
V ∗(ht) = V ∗(ot) etc. depends on raw states only (which is well known). Since our
results hold for all P , they clearly hold if P is a raw MDP and if φ(ht) := φ(ot)
maps raw states to aggregated states.

The remainder of this paper shows how much we can aggregate and how to
develop RL algorithms exploiting these insights.

5 Extreme Aggregation

The results of Section 4 showed that histories can be aggregated and modeled by
an MDP even if the true aggregated process is not an MDP. The only restrictions
were that the (Q-)Value functions and Policies could still be (approximately)
represented as functions of the aggregated states. We will see in this section that
in theory this allows to represent any process P as a small finite-state MDP.

Extreme Aggregation Based on Theorem 6. Consider φ that maps each
history to the vector-over-actions of optimalQ-valuesQ∗(h, ·) discretized to some
finite ε-grid:

φ(h) :=
(

Q∗(h, a)/ε�

)
a∈A ∈ {0, 1, ..., 
 1

ε(1−γ)�}
A =: S (16)

That is, all histories with ε-close Q∗-values are mapped to the same state:

|Q∗(h, a)−Q∗(h̃, a)| ≤ ε ∀φ(h) = φ(h̃) ∀a

Now choose some B and determine p from P via (11) and (5). Find the optimal
policy π∗ of MDP p of size |S|. Define Π̃(h) := π∗(φ(h)). By Theorem 6ii, Π̃ is
an ε′-optimal policy of original process P in the sense that

|V Π̃(h)− V ∗(h)| ≤ 2ε

(1− γ)2
=: ε′

Extreme Aggregation Based on Open Problem 8. If (15) holds, we can
aggregate even better: Consider φ that maps each history to the optimal Value
V ∗(h) discretized to some finite ε-grid and to the optimal action Π∗(h):

φ(h) :=
(

V ∗(h)/ε�, Π∗(h)

)
∈ {0, 1, ..., 
 1

ε(1−γ)�} × A =: S (17)

That is, all histories with ε-close V ∗-Values and same optimal action are mapped
to the same state:

|V ∗(h)− V ∗(h̃)| ≤ ε and Π∗(h) = Π∗(h̃) ∀φ(h) = φ(h̃)
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As before, determine p, find its optimal policy π∗, and define Π̃(h) := π∗(φ(h)).
If (15) holds, then Π̃ is an ε′-optimal policy of original process P in the sense
that

|V Π̃(h) − V ∗(h)| = O
( ε

(1− γ)?

)
=: ε′

The following theorem summarizes the considerations for the two choices of φ
above:

Theorem 9 (Extreme φ). For every process P there exists a reduction φ ( (16)
or (17) will do) and MDP p defined via (11) and (5) whose optimal policy π∗ is
an ε′-optimal policy Π̃(h) := π∗(φ(h)) for P . The size of the MDP is bounded
(uniformly for any P ) by

|S| ≤
( 3

ε′(1 − γ)3

)|A|
and if (15) holds even by |S| = O

( |A|
ε′(1− γ)1+?

)
Discussion. A valid question is of course whether Theorem 9 is just an inter-
esting theoretical insight/curiosity or of any practical use. After all, φ depends
on Q∗ (or V ∗ and Π∗), but if we knew Q∗, Π∗ would readily be available and
the detour through p and π∗ pointless.

Theorem 9 reaches relevance by the following observation: If we start with
a sufficiently rich class of maps Φ that contains at least one φ approximately
representing Q∗(h, ·), and have a learning algorithm that favors such φ, then
Theorems 4–7 tell us that we do not need to worry about whether Pφ is MDP or
not; we “simply” use/learn MDP p instead. Theorem 9 tells us that this allows
for extreme aggregation far beyond MDPs.

This program is in parts worked out in the next two sections, but more re-
search is needed for its completion. Learning p from (real) P -samples is consid-
ered in Section 6 and learning φ in Section 7.

6 Reinforcement Learning

In RL, P and therefore p are unknown. We now show how to learn p from samples
from P . For this we have to link B to the distribution over histories induced by
P and to the behavior policy ΠB the agent follows. We still assume φ is given.

Behavior Policy ΠB. Let ΠB : H � A be the behavior policy of our RL
agent, which in general is non-stationary due to learning, often stochastic to
ensure exploration, and (usually) different from any policy considered so far
(Π∗, π∗, Π̃,Π, π).

Choice of B. The interaction of agent ΠB with environment P stochasti-
cally generates some history ht followed by action at with joint probability, say
PB(htat). We use subscripts B and/or φ to indicate dependence on ΠB and/or
φ. We can get PφB(ht|stat) from PB(htat) by marginalization and conditioning
in the usual way, and similar for other arguments. PφB(ht|stat) seems a natural
choice for B(h|sa). It nearly satisfies the required condition (10) for B but not
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quite. See [Hut14] for details. We can fix this mismatch by introducing weights
wt : S ×A � [0; 1] and define

B(ht|sa) := wt(sa)PφB(ht|st = s, at = a) ∀t, where

∞∑
t=1

wt(sa) = 1 ∀s, a

(18)
which now satisfies (10) (due to

∑
h∈H =

∑∞
t=1

∑
ht∈Ht

). MDP p can now be
represented as

p(s′r′|sa) =
∞∑
t=1

wt(sa)
∑

ht∈Ht

Pφ(st+1=s′, rt+1=r′|ht, at=a)PφB(ht|st=s, at=a)

=

∞∑
t=1

wt(sa)P
t
φB(s

′r′|sa) (19)

That is, p is the w-weighted time-average of P t
φB. The first equality follows from

(11) and (18); the second one from from the definition of conditional probability.
We also introduced the shorthand P t

φB(s
′r′|sa) := PφB(st+1 = s′, rt+1 = r′|st =

s, at = a).

Choice of wt. If P
t
φB in (19) is stationary, i.e. independent of t, then p(s′r′|sa) =

P t
φB(s

′r′|sa) for all t, since the weights sum to one, and estimation is easy. Note
that in general we cannot estimate non-stationary P t

φB, since for each t we have
only one sample available, but we will see that estimation of p is still possible.
Assume we have observed hn, and choose

wt(sa) :=
P t
φB(sa)∑n

t=1 P
t
φB(sa)

for t ≤ n and 0 for t > n (20)

Inserting this into (19) gives

p(s′r′|sa) =
1
n

∑n
t=1 P

t
φB(sas

′r′)
1
n

∑n
t=1 P

t
φB(sa)

(21)

We estimate numerator and denominator separately.

Law of Large Numbers. For t = 1, 2, 3, ... let Xt ∈ {0, 1} be binary ran-
dom variables with expectation E[Xt]. Define n1 =

∑n
t=1Xt be the number of

sampled 1s. The strong law of large numbers says that

n1

n
− 1

n

n∑
t=1

E[Xt]
n→∞−→ 0 almost surely under weak conditions (22)

Note that the law holds far beyond i.i.d. random variables under a variety of
conditions [FK01, VGS05] which we collectively call ‘weak conditions’. It is not
even necessary for n1/n to converge.

Estimation of p. Now fix some (s, a), and let Xt := [[st = s, at = a]]. (Here
we assume that variables in ht are random variables and sas′r′ are realizations.)
Then

n(sa) := n1 =

n∑
t=1

Xt = #{t ≤ n : st = s, at = a}
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is the number of times action a is taken in state s, and E[Xt] = P (Xt = 1) =
P t
φB(sa), hence (22) implies

n(sa)

n
− 1

n

n∑
t=1

P t
φB(sa)

n→∞−→ 0 a.s. under weak conditions (23)

Similarly for Yt := [[statst+1rt+1 = sas′r′]] and n(sas′r′) :=
∑n

t=1 Yt we have

n(sas′r′)

n
− 1

n

n∑
t=1

P t
φB(sas

′r′)
n→∞−→ 0 with P -probability 1 (24)

under weak conditions. (23) and (24) via (21) are nearly sufficient to imply

n(sas′r′)

n(sa)
− p(s′r′|sa) n→∞−−−−→ 0 almost surely (25)

A sufficient but by far not necessary condition is

lim inf
n→∞

n(sa)

n
> 0 almost surely (26)

Theorem 10 (p-estimation). For B defined in (18) and (20) we have: If (24)
and (26) hold, then (25) holds. For example, if Yt are stationary ergodic pro-
cesses, then (24) and (26) hence (25) hold for all state-action pairs that matter
(i.e. for those occurring with non-zero probability).

Discussion. Limit (25) shows that standard frequency estimation for p will
converge to the true p under weak conditions. If Pφ is MDP, samples are condi-
tionally i.i.d. and the ‘weak conditions’ are satisfied. But the law of large numbers
and hence (25) holds far beyond the i.i.d. case [FK01, VGS05], e.g. for station-
ary ergodic processes. Condition (26) that every state-action pair be visited with
non-vanishing relative frequency can be significantly relaxed. Stationarity is also
not necessary, and indeed often does not hold due to a non-stationary environ-
ment P or a non-stationary behavior policy ΠB (or both). Other choices for wt

are possible, e.g. we could multiply numerator and denominator of (20) by some
arbitrary positive function ut(as), which leads to a weighted average estimator.
We estimate p in order to estimate q∗ and ultimately π∗. This is model-based
RL. We can also learn π∗ model-free. For instance, condition (25) should be
sufficient for Q-learning to converge to Q∗. Q-learning and other RL algorithms
designed for MDPs have been observed to often (but not always) perform well
even if applied to non-MDP domains. Our results appear to explain why, but
this calls for further investigations.

7 Feature Reinforcement Learning

The idea of FRL is to learn φ [Hut09b]. FRL starts with a class of maps Φ,
compares different φ ∈ Φ, and selects the most appropriate one given the ex-
perience ht so far. Several criteria based on how well φ reduces P to an MDP
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have been devised [Hut09b, Hut09a] and theoretically [SH10] and experimen-
tally [NSH11] investigated [Ngu13]. Theorems 4–7 show that demanding Pφ to
be approximately MDP is overly restrictive. Theorem 9 suggests that if we relax
this condition, much more substantial aggregation is possible, provided Φ is rich
enough.

The BLB algorithm [MMR11] and its extensions IBLB [NMRO13] and im-
provements OMS [NOR13] can (nearly) readily be used for our purpose. The
BLB family uses the same basic FRL setup from [Hut09b] used also here. The
authors consider a countable class Φ assumed to contain at least one φ such
that Pφ is an MDP (6). They consider average reward, rather then discounting,
and analyze regret, which (in general) requires some assumption on the mix-
ing rate or ‘diameter’ of the MDP. They prove that the total regret grows with
Õ(n1/2...2/3), depending on the algorithm.

Their algorithms and analyses rely on UCRL2 [JOA10], an exploration algo-
rithm for finite-state MDPs. Going through the BLB proofs, it appears that the
condition that Pφ is an MDP can be removed if p (11) is used instead, mod-
ulo the analysis of UCRL2 itself. The proofs for the bounds for UCRL2 exploit
that s′, r′ conditioned on s, a are i.i.d., which is true if Pφ is Markov but not
in general. Asymptotic versions should remain valid under the ‘weak conditions’
alluded to in (25). With some stronger assumptions that guarantee good conver-
gence rates, the regret analysis of UCRL2 should remain valid too. Formally, the
use of Hoeffding’s inequality for i.i.d. need to be replaced by comparable bounds
with weaker conditions, e.g. Azuma’s inequality for martingales.

There is one serious gap in the argument above. BLB uses average reward
while our theorems are for discounted reward. It is often possible to adapt al-
gorithms and proofs which come with regret bounds for average reward to PAC
bounds for discounted reward or vice versa. This would have to be done first:
either a PAC version of BLB by combining MERL [LHS13] with UCRLγ [LH12],
or average reward versions of the bounds derived in this paper.

See [Hut14] for a general outline of how to learn φ beyond MDPs by intro-
ducing partial orders on Φ justified by our results.

8 Discussion

Summary. Our results show that RL algorithms for finite-state MDPs can
be utilized even for problems P that have arbitrary history dependence and
history-to-state reductions/aggregations φ that induce Pφ that are also neither
stationary nor MDP. The only condition to be placed on the reduction is that
the quantities of interest, (Q-)Values and (optimal) Policies, can approximately
be represented. This considerably generalizes previous work on feature reinforce-
ment learning and MDP state aggregation and allows for extreme state aggrega-
tions beyond MDPs. The obtained results may also explain why RL algorithms
designed for MDPs sometimes perform well beyond MDPs.

Outlook. As usual, lots remains to be done. A list of the more interesting
remaining tasks and open questions follows:
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• While the approximate φ-uniformity condition on Q∗ in Theorem 6 is very
weak compared to bisimilarity, uniformity of V ∗ in Theorem 7 is even weaker
(Theorem 9 shows how much of a difference this can make). It is an Open Prob-
lem 8 whether an analogue of Theorem 6ii also holds for Theorem 7 beyond
ε = 0.
• An algorithm learning φ beyond MDPs that comes with regret or PAC

guarantees has yet to be developed. This could be done by adapting the class
and proofs of BLB algorithms, or by integrating MERL with UCRLγ, or by
other means [Hut14].
• All bounds contain 1

1−γ to some power. Can the exponents be improved?
For which environments/examples are the bounds tight?
• The trick to use a-dependent Q∗ as a-independent map φ in Section 5 was

to vectorize Q∗ in a. Unfortunately this leads to a state-space size exponen-
tial in A. Solution φ based on (V ∗, Π∗) pair is only linear in A, but rests on
Open Problem 8. Are there other/better ways of dealing with actions? Other
extreme aggregations φ, or are a-dependent φ possible?
• Are average-reward total-regret versions of our discounted reward results

possible, under suitable mixing rate conditions?
• For small discrete action spaces typical for many board games, the exact con-

ditions on Π are met. For continuous action spaces as in robotics, we can simply
discretize the action space, introducing another ε-error, but action-continuous
versions of our results would be nicer. Except for Theorem 6, any interesting
generalization should replace the exact by approximate φ-uniformity conditions
on Π .
• Our theorems and/or proof ideas should allow to extend existing convergence

theorems for RL algorithms such as Q-learning and others from MDPs to beyond
MDPs.
• The bisimulation conditions of classical state aggregation results are for

reward and transition probabilities. It would be interesting to derive explicit
weaker conditions for them that still imply our conditions on (Q-)Values.
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Abstract. Consider the problem of learning how long to wait for a bus
before walking, experimenting each day and assuming that the bus arrival
times are independent and identically distributed random variables with
an unknown distribution. Similar uncertain optimal stopping problems
arise when devising power-saving strategies, e.g., learning the optimal
disk spin-down time for mobile computers, or speeding up certain types of
satisficing search procedures by switching from a potentially fast search
method that is unreliable, to one that is reliable, but slower. Formally,
the problem can be described as a repeated game. In each round of the
game an agent is waiting for an event to occur. If the event occurs while
the agent is waiting, the agent suffers a loss that is the sum of the event’s
“arrival time” and some fixed loss. If the agents decides to give up waiting
before the event occurs, he suffers a loss that is the sum of the waiting
time and some other fixed loss. It is assumed that the arrival times
are independent random quantities with the same distribution, which is
unknown, while the agent knows the loss associated with each outcome.
Two versions of the game are considered. In the full information case
the agent observes the arrival times regardless of its actions, while in
the partial information case the arrival time is observed only if it does
not exceed the waiting time. After some general structural observations
about the problem, we present a number of algorithms for both cases
that learn the optimal weighting time with nearly matching minimax
upper and lower bounds on their regret.

1 Introduction

Each day a student travels to school, either by bus or on foot, whichever is faster.
The expected travel time for the bus is five minutes and is denoted by β while
walking takes twenty minutes and is denoted by ω. Unfortunately, the bus is not
always on time, so on each day t the student must decide how long he wants to
wait for the bus, Yt. The bus comes at random time Xt and if Xt ≤ Yt, then the
student catches the bus. If Xt > Yt, then they walk. The loss at time step t is
the total travel time, which the student wants to keep as small as possible and
is defined by

�t(Yt)
.
=

{
Xt + β, if Xt ≤ Yt ;

Yt + ω, otherwise .
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Table 1. Examples of losses and optimal waiting times for particular choices of arrival
distributions. The first column gives the density of the arrival times.

p(x) �(y) y∗ �(y∗)

Power 1{x≥1}
x2 β + 1 + ω−β

y
+ log y ω − β β + 2 + log(ω − β)

Exponential λe−λx β + 1
λ
+ e−λy

[
(ω − β)− 1

λ

] 0, if ω − β < 1
λ
;

∞, otherwise
ω, if ω − β < 1

λ
;

β + 1
λ
, otherwise

We assume that β < ω and that the arrival times for the bus (Xt)t are identically
and independently distributed according to some unknown distribution over the
positive real line. We make no additional assumptions on the distribution of
arrival times.1 The expected loss of a fixed deterministic waiting time y ≥ 0 is

�(y) = E [1{X ≤ y} (X + β) + 1{X > y} (y + ω)] ,

where X is identically distributed to Xt.
2 An optimal waiting time is given by

y∗
.
= argminy≥0 �(y), which we will show to exist (y∗ may be infinite and the

optimal waiting may not be unique, as we will demonstrate below).
To guide the reader’s intuition, in Table 1 we tabulate the loss function, the

optimal action, and the loss of the optimal action for two particular arrival time
distributions. The examples show that the loss may be convex, or concave, it
can be unbounded and the optimal action can also take on any value between
0 and infinity. These examples should not mislead the reader. Our methods do
not need to know the form of the arrival time distributions, i.e., we consider the
nonparametric setting.

Since the distribution of arrival times is unknown, the student cannot know
when to stop waiting and must experiment to gain information. The regret at
time step t is the difference between the actual travel time and the travel time
under an optimal waiting time, rt

.
= �t(Yt)−�t(y

∗). Note that rt may be negative,
but has non-negative expectation, and that rt does not depend on the choice of
y∗. The cumulative regret until time step n is

Rn
.
=

n∑
t=1

(
�t(Yt)− �t(y

∗)
)
.

In the long run the student hopes to choose Yt in such a way as to learn the
optimal waiting time, in which case limn→∞ E[Rn]/n = 0.

Two observation models will be considered. The first is a full information set-
ting where Xt is always observed. This assumption is unnatural for the problem
of waiting for a bus because the student would not usually observe the arrival
time of the bus if they decided to walk. There are, however, waiting problems

1 Note that the game is trivial if β ≥ ω, since in this case the student should always
walk regardless of the expected arrival time of the bus.

2 One can show that the expected loss is minimized by a fixed deterministic waiting
time, i.e., there is no advantage to using a stopping rule. The simple reason is that
when the bus arrives, due to our assumption that ω > β it is better to take the bus
then to continue waiting and then eventually walk (since no more buses are coming).
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for which the full information setting is appropriate. An example is maximising
hard-disk efficiency in mobile computing, previously considered by Krishnan,
Long and Vitter [12] where a hard-disk controller must decide after each inter-
action how long to wait before spinning down the disk to conserve energy. This
is modelled by choosing β = 0 and ω to be some value that reflects the cost
(in terms of time/energy/annoyance) of spinning up the disk. The goal of the
controller is to minimise the sum of energy consumption and spin-up costs.

The second setting, called the partial information setting, is trickier, but often
more natural, e.g., for the bus-stop problem, when the student in general will not
observe Xt unless Xt ≤ Yt. More precisely, the student observes the pair (Zt, δt)
whereZt = min {Xt, Yt} and δt = 1{Xt ≤ Yt}. So δt is 1 if the student travelled by
bus and 0 otherwise, while Zt is the time at which the travel starts. Another appli-
cation of the partial information setting is the problem of combining algorithms to
solve a number of instances of a satisficing search problems.3 We assume that the
agent has access to two algorithms for a given type of search problem. The first is
potentially fast, but unreliable, while the second is typically slower, but has known
guarantees on its performance. For each problem instance, the agent tries to use
the potentially fast solver, switching to the more consistent algorithm if the first
fails to deliver a solution within a certain amount of time. The task of the agent
is to learn when to switch between solvers. Formally, the unreliable solver pro-
vides a solution to instance t at random time Xt, and the completion time of the
slower method is deterministically ω for all instances. As for the hard-disk prob-
lem, β = 0. Comparisons between stochastic satisficing search algorithms have
been made before (e.g., [16] and references there-in), but to our knowledge the
sequential setting combined with the regret criterion are new.

Estimating the common distribution of Xt (or other quantities depending
on this distribution) in the partial information (or “censored”) setting is heavily
studied in the statistics literature [e.g. 6], but the focus tends to be on the natural
medical applications where the censoring times are uncontrolled and independent
of the arrival times. We know of no previous work on the decision problem studied
here. Optimising the regret is more complex when only partial information is
available because in this case the actions influence the observations.

The censored information problem is an instance of stochastic partial moni-
toring, first studied by Agrawal, Teneketzis and Anantharam [1]. In recent years
there has been significant progress towards understanding partial monitoring
with finitely many actions, both in the stochastic and adversarial settings [4, 9, 3],
but the case where the number of actions is infinite/continuous the work has been
more limited and specialised [11].

Summary of Results. The full information setting is analysed in Section 3
where we present two algorithms. The first is based on discretising the action
space and applying the exponential weighting algorithm (EWA), while the second
is an instance of the Follow-the-Leader (FTL) algorithm. We prove that EWA

suffers a regret of at most O(log3/2(n)
√
n) while for FTL we were able to shave

3 A search problem is satisficing if the searcher can stop once a satisfactory solution
has been found, with SAT being a prototypical example.
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off a small amount and bound the regret by O(log(n)
√
n). We also establish a

lower bound of Ω(
√
n).

For the partial information case we also consider two algorithms (Section 4).
The first is again based on a variant of the exponential weights algorithm, which
cleverly controls the exploration of actions to deal with the partial information
setting [2]. We establish that this algorithm enjoys a regret of O(log2(n)

√
n).

Next we propose a novel optimistic algorithm that conservatively waits for the
longest time that it cannot prove to be sub-optimal with high probability. We
prove that this algorithm enjoys a regret of O(log3/2(n)

√
n). Thus, for both

algorithms, the cost of partial information is surprisingly small and of order
O(log1/2(n)). Some proofs have been omitted or sketched, but complete versions
may be found in our report [13].

The theoretical findings are complemented by computer simulations in a va-
riety of controlled scenarios (Section 5). Results are presented for the full in-
formation setting only (similar results were observed in the partial information
setting). The most interesting finding here is that for the exponential distri-
bution, both algorithms perform better than is predicted by theory, with at
least FTL achieving O(log n) regret. The EWA algorithm behaves comparably
to FTL, but only when the learning rate is tuned to be much larger than is
theoretically justified.

Notation. At time step t define the empirical probability measure by Pt {A} .
=

1
t

∑t
s=1 1{Xs ∈ A} where A is any Borel-measurable subset of the real line.

The cumulative distribution of the samples X1, . . . , Xt is Ft(x) = Pt {(−∞, x]}.
Expectations with respect to the empirical distribution Pt {·} are denoted by
Et{·}. Further, by slightly abusing the notation for any measurable function
f : R → R, we define Et[f(X)] =

∫
f(x)dPt(x) and for any Borel measurable

subset A of the real line, Pt {X ∈ A} = Et[1{X ∈ A}].

2 Structure of the Waiting Problem

Before the main theorems we present a crucial lemma that characterises the
cumulative distribution of the arrival times in terms of the optimal action y∗.
The result shows that the tail of X decays exponentially for times before y∗. As
a consequence, if the optimal waiting time is large then the loss of choosing y
much smaller than optimal cannot be too large. This latter fact should not be
surprising. If it is optimal to wait for the bus for a very long time, then there
must be a reasonable probability that it will arrive soon. This means that the
bus is still likely to arrive if you wait for a shorter time. The critical case occurs
when arrival times are exponentially distributed. As a result, it is not hard to
see that to achieve a polynomially decreasing regret in n time steps, it is enough
to consider waiting times below some O(log n) threshold.

Lemma 1. Let 0 < ŷ ≤ ỹ such that infy∈[0,ŷ] �(y) ≥ �(ỹ). Then, the following
hold true for any y ∈ [0, ŷ]:
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1. P {X > y} ≤ 2−

y

2(ω−β) �.
2. �(y)− �(ŷ) ≤ (ω − β)2−


y
2(ω−β) �.

In particular, if y∗ ∈ [0,∞] is optimal, then the above holds with ỹ = ŷ = y∗.

The proof of the lemma utilizes the following bounds on loss differences, which
will also be useful later and follows trivially from the definitions. The proof may
be found in the technical report [13].

Lemma 2. Let y2 ≥ y1, then
1. �(y2)− �(y1) = E[1{y1 < X ≤ y2} (X − y1 + β −ω) +1{X > y2} (y2 − y1)].
2. �(y2)− �(y1) ≥ (y2 − y1)(1 − F (y2))− (ω − β)(F (y2)− F (y1)).
3. �(y2)− �(y1) ≤ (y2 − y1)(1 − F (y1))− (ω − β)(F (y2)− F (y1)).

Proof (Lemma 1). Let c ≥ 0 be some constant to be chosen later and 0 ≤ y ≤
ŷ − c. Then we have

0
(a)

≤ �(y)− �(ỹ)
(b)
= E[(y + ω − β −X)1{y < X ≤ ỹ}+ (y − ỹ)1{X > ỹ}]

(c)

≤ E[(y + ω − β −X)1{y < X ≤ y + c}+ (ω − β − c)1{X > y + c}]
(d)

≤ (ω − β)E[1{y < X ≤ y + c}+ (ω − β − c)1{X > y + c}]
(e)
= (ω − β)P {y < X ≤ y + c}+ (ω − β − c)P {X > y + c} (1)

(f)

≤ (ω − β)P {y < X} , (2)

where (a) follows since �(ỹ) ≤ �(y) by assumption, (b) follows from Part 1 of
Lemma 2, (c) follows by breaking 1{y + c < X ≤ ỹ} off from both indicators and
since y ≤ ŷ − c ≤ ỹ − c, while (d) is true by noting that y + ω − β −X ≤ ω − β
for y ≤ X . (e) and (f) are trivial. Choosing c = 2(ω − β) > 0, (1) implies

P {y < X ≤ y + 2(ω − β)} ≥ P {X > y + 2(ω − β)} .
Therefore, for any y ≥ 0 such that y + 2(ω − β) ≤ ŷ,

P {X ≤ y + 2(ω − β)|X > y} ≥ 1

2
(3)

and if 2k(ω − β) ≤ ŷ, then

P {X > 2k(ω − β)} (a)
=

k∏
i=1

P {X > 2i(ω − β)|X > 2(i− 1)(ω − β)}

(b)
=

k∏
i=1

(1− P {X ≤ 2i(ω − β)|X > 2(i− 1)(ω − β)})
(c)

≤ 2−k , (4)

where (a) follows from the chain rule for probability, (b) is just P {A|B} =
1 − P {Ac|B} for events A and B and (c) follows by substituting (3), which is
permitted thanks to 2k(ω − β) ≤ ŷ. The above inequality immediately implies
Part 1 (for y ≤ ŷ < 2k(ω − β) the result holds trivially) and, combined with (2)
for c = 0, it also yields Part 2. ��
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That an optimal waiting time is guaranteed to exist follows from Lemma 1
by a tedious case-based analysis. See the technical report for the proof [13].

Theorem 1. For any arrival time distribution there exists a y∗ ∈ [0,∞] such
that �(y∗) = infy∈[0,∞] �(y).

Part 2 of Lemma 1 also shows that to guarantee an ε-optimal action, it suffices
to consider the waiting times in an interval of length O(log(1/ε)) starting at zero:

Corollary 1. Let ε > 0 and ȳ(ε)
.
= 2(ω − β)max

{
1 + log2(

ω−β
ε ), 0

}
. Then

infy∈[0,ȳ(ε)] �(y)− �(y∗) < ε.

Proof. The result follows immediately from Part 2 of Lemma 1.

3 Full Information Setting

We consider the case when Xt is always observed in round t. Our first algo-
rithm discretises the set of actions and then applies the exponential weighting
algorithm [e.g., 5]. The key observation is that by Corollary 1, to guarantee an ε-
optimal action, it suffices to play in the interval of length O(log(1/ε)). Since the
exponential weights algorithm assumes a finite action set, we need to discretise
the action space. The following elementary observation, which follows directly
from Part 1 of Lemma 2 shows that to achieve an ε-error, it suffices to discretise
the interval with an accuracy of ε.

Proposition 1. For any y2 ≥ y1 ≥ 0, �(y2)− �(y1) ≤ y2 − y1.

The exponential weights algorithm enjoys a regret smaller than R
√
n log(K)/2,

where n is the number of rounds, K is the number of actions, and R is the range
of losses [5, §4.2, Thm 2.2]. So we see that this method suffers a regret of at
least O(

√
n). This suggests choosing ε = (ω − β)/

√
n and using the action set

A = {kε : 0 ≤ k ≤ ȳ(ε)/ε, k ∈ N}, leading to Algorithm 1, where for tuning the
learning rate η we use that the range of the loss function is m + ω when the
largest waiting time is m = maxA. The running time of the algorithm is O(|A|)
per time step, which in this case is O(

√
n log(n)).

Theorem 2 (EWA Regret). Let n > 0 and Rn be the regret of Algorithm 1

when used for n rounds. Then E [Rn] ∈ O((ω − β) log3/2(n)
√
n).

Proof. Let ε, A and R be as in the pseudo-code of the algorithm. As noted before-
hand, the expected regret4 of EWA against the best action in A is R

√
n/2 logK,

where K = |A| ≤ �ȳ(ε)/ε = �ȳ((ω − β)/
√
n)
√
n/(ω − β). By Proposition 1,

miny∈A �(y)− infy∈[0,ȳ(ε)] �(y) ≤ ε and by Corollary 1, infy∈[0,ȳ(ε)] �(y)− �(y∗) ≤
ε. Hence, E [Rn] ≤ R

√
n/2 log(ȳ((ω − β)/

√
n)
√
n/(ω − β) + 1) + 2(ω − β)

√
n ∈

O((ω − β) log3/2(n)
√
n), where we used R = ȳ((ω − β)/

√
n) + ω and that

ȳ((ω − β)/
√
n) ∈ O((ω − β) log(n)).

4 Bounds for adversarial algorithms like EWA are typically proven for the regret with-
out the expectation, but in the stochastic case this distinction is not important
with bounds on the expected regret following from a straight-forward application of
standard concentration inequalities.



206 T. Lattimore, A. György, and C. Szepesvári

Algorithm 1. EWA for Optimal Waiting

1: Input: ω, β, and n
2: ε ← (ω − β)/

√
n,A ← {kε : 0 ≤ k ≤ ȳ(ε)/ε, k ∈ N}, R ← ȳ(ε) + ω

3: η ←
√

8 log(|A|)/n/R and w1(y) ← 1 for all y ∈ A
4: for t = 1, . . . , n do
5: Wt ←

∑
y∈Awt(y) and pt(y) ← wt(y)/Wt for each y

6: Sample waiting time Yt from distribution pt on A and observe Xt

7: for y ∈ A do // Update the weights

�t(y) ← 1{Xt ≤ y} (Xt + β) + 1{Xt > y} (y + ω)

wt+1(y) ← wt(y) exp(−η�t(y))

8: end for
9: end for

Under the full information stochastic setting the FTL algorithm, which at
each round chooses the waiting time that minimises the empirical loss so far, is
also expected to do well. The next theorem shows that FTL does indeed improve
slightly on EWA.

Theorem 3 (FTL Regret). Let Yt be defined by Y1
.
= 0 and, for all t ≥ 2,

Yt ∈ argmin
y

t−1∑
s=1

(1{Xs ≤ y} (Xs + β) + 1{Xs > y} (y + ω)) .

Then, E[Rn] ≤ (ω − β)(11.6
√
n logn− 11

√
n+ logn+ 12).

Remark 4. It is easy to see that for any t ≥ 1, Yt = Xs for some 1 ≤ s ≤ t−1,
hence Yt can be computed in O(t) time. Note that Yt is not unique.

Proof. The empirical loss of wait-time y at time step t is

�̂t(y)
.
=

1

t

t∑
s=1

(1{Xs ≤ y} (Xs + β) + 1{Xs > y} (y + ω)) .

The expected regret at time step t may be decomposed. Let (st)t be a sequence
of constants to be chosen later. Then,

E [rt|Yt] = �(Yt)− �(y∗) = �(Yt)− �(st) + �(st)− �(y∗)

= �(Yt)− �̂t−1(Yt) + �̂t−1(Yt)− �(st) + �̂t−1(st)− �̂t−1(st) + �(st)− �(y∗)

(a)

≤
∣∣∣�(Yt)− �̂t−1(Yt)

∣∣∣ + ∣∣∣�(st)− �̂t−1(st)
∣∣∣+ �(st)− �(y∗) ,

where in (a) we used the fact that �̂t−1(Yt) ≤ �̂t−1(st). Now,

|�(y)− �̂t(y)|
(a)
= |(E − Et)[1{X ≤ y} (X + β) + 1{X > y} (ω + y)]|
(b)
= |(E− Et)[1{X ≤ y} (X − y) + 1{X > y} (ω − β)]|
(c)

≤ y |F (y)− Ft(y)|+ (ω − β) |F (y)− Ft(y)| ,
where (a) is simply the definition of the losses and (E− Et), (b) by rearranging
and using the fact that (E − Et)α = 0 for any constant α, (c) by |X − y| ≤ y
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which holds for 0 ≤ X ≤ y and the definition of the cumulative distribution.
Combined with [7, Thm. 3.3], which states that E[supx |Ft(x) − F (x)|] ≤ 1/

√
t,

the last inequality gives

E

[
sup
y≤s

∣∣∣�(y)− �̂t(y)
∣∣∣] ≤ s+ ω − β√

t
. (5)

Next we show that Yt+1 ∈ O(log t) for any t ≥ 1. Since Yt+1 is the optimal
waiting time for the empirical distribution of the arrival times, we can apply
Part 1 of Lemma 1 to obtain

Pt {X ≥ Yt+1} = inf
ε>0

Pt {X > Yt+1 − ε} ≤ inf
ε>0

2
−
⌊

Yt+1−ε

2(ω−β)

⌋

≤ inf
ε>0

21−
Yt+1−ε

2(ω−β) = 21−
Yt+1

2(ω−β) .

Therefore, if Yt+1 > mt+1
.
= 2(ω − β)(1 + log2 t), then Pt {X ≥ Yt+1} < 1/t.

On the other hand, Pt {X ≥ Yt+1} ≥ 1/t since Yt+1 ∈ {X1, . . . , Xt}. Thus,
Yt+1 ≤ mt+1. Choose st = min {y∗,mt}. Then, by (5),

E [rt+1] ≤ E
[∣∣∣�(Yt+1)− �̂t(Yt+1)

∣∣∣+ ∣∣∣�(st+1)− �̂t(st+1)
∣∣∣]+ �(st+1)− �(y∗)

≤ E

[
sup

y≤mt+1

∣∣∣�(y)− �̂t(y)
∣∣∣ + ∣∣∣�(st+1)− �̂t(st+1)

∣∣∣]+ �(st+1)− �(y∗)

≤ (mt+1 + st+1 + 2(ω − β))
1√
t
+ �(st+1)− �(y∗)

≤ (mt+1 + st+1 + 2(ω − β))
1√
t
+

ω − β

t
,

where in the last step we used Part 2 of Lemma 1 to bound �(st+1) − �(y∗).
Summing over t ultimately leads to

E [Rn] = E [r1] +

n∑
t=2

E [rt] ≤ (ω − β)

(
1 +

n−1∑
t=1

[
6 + 4 log t

log 2√
t

+
1

t

])
≤ (ω − β)(11.6

√
n log n− 11

√
n+ logn+ 12) .

as required. ��

If the arrival time Xt is exponentially distributed, then the regret of the FTL
algorithm may be shown to be at most poly-logarithmic. Experimental results
suggest that the true regret is actually logarithmic in n, but so far the proof
eludes us.

Theorem 5. Assume that Xt is exponentially distributed with parameter λ such
that 1/λ < ω − β. Then, for the algorithm of Theorem 3, we have E [Rn] ∈
O(log2 n).

3.1 Lower Bound

The general upper bounds given in the previous section cannot be greatly im-
proved in the worst-case. Note that the following theorem is proven for the
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easier full information setting, so translates immediately to give an identical
lower bound in the partial information setting.

Theorem 6. There exists a universal constant c > 0 such that for each algo-
rithm and fixed n there exists a distribution such that ERn ≥ c(ω − β)

√
n.

Proof. For p ∈ [0, 1] let Pp be a measure defined such that Pp(X = 1/2) = p and
Pp(X = ∞) = 1− p. Let us denote the expected loss under measure Pp by �p. A
simple calculation shows that

�p(y) =

{
y + ω, if y < 1

2 ;

p(12 + β) + (1− p)(y + ω), otherwise.

Thus, �p is piecewise linear, with two increasing segments. The two local minima
of �p are at 0 and 1/2 with values �p(0) = ω and �p(1/2) = 1/2 + ω − p(ω − β).
For simplicity, we set ω = 1, β = 0, the full result can be obtained by scaling.
Thus, �p(0) = 1, �p(1/2) = 3/2 − p and the optimal waiting time y∗p is 0 for
p < 1/2 and 1/2 for p > 1/2. If p = 1/2, then 0 and 1 are both optimal. It is
also clear that for the “rounding function” ρ defined by ρ(y) = 1

21{y ≥ 1/2},
then for any y ≥ 0 it holds that �p(ρ(y)) ≤ �p(y): By “rounding down” the
waiting time y to either 0 or 1/2, one can only win in terms of the expected loss.
Based on Pp, we construct three environments and will use a fairly standard
technique based on the relative entropy that shows that the regret will be large
in at least in one of the environments. The three environments are given by
the measures P1/2, P1/2+ε and P1/2−ε for some ε ∈ [0, 1/2) to be chosen later.
Note that |�1/2+σε(0)− �1/2+σε(1/2)| = σε. Fix n > 0. Now, take any algorithm
A and let Yt be the choice made by A in round 1 ≤ t ≤ n. Let Rσ be the
expected regret of A during the first n rounds when used on the measure P1/2+σε,
σ ∈ {−1, 0,+1}. Denoting by Eσ the expectation under P1/2+σε, we thus have

Rσ = Eσ[
∑n

t=1 �1/2+σε(Yt)− �1/2+σε(y
∗
1/2+σε)]. Let Ŷt = ρ(Yt) be the “rounded”

decision and let N(y) =
∑n

t=1 1
{
Ŷt = y

}
, y ∈ {0, 1/2}. Then,

Rσ ≥ Eσ

[
n∑

t=1

�1/2+σε(Ŷt)− �1/2+σε(y
∗
1/2+σε)

]
and thus

R1 ≥ εE1[N(0)], R−1 ≥ εE−1[N(1/2)] . (6)

Now, a standard argument shows that

E0[N(0)]− E1[N(0)] ≤ n

√
n

2
D(P0||P1) ≤ 2nε

√
n

2
,

E0[N(1/2)]− E−1[N(1/2)] ≤ n

√
n

2
D(P0||P−1) ≤ 2nε

√
n

2
,

where D(P0||P−1) denotes the relative entropy between P0 and P−1. Summing
up these two inequalities and using (6), n−(R1/ε+R−1/ε) ≤ 4nε

√
n/2. Setting

ε = c/
√
n and reordering gives

√
nc(1−2

√
2c) ≤ R1+R−1. Choose c = 1/(4

√
2)

and note that 2max(R1, R−1) ≥ R1 +R−1 to finish the proof. ��
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4 Partial Information

We now consider the more challenging case where Xt is not observed if Yt < Xt

and so the waiting time directly influences the amount of information gained
at each time step. Just like in the previous section, our first algorithm is based
on a discretisation idea. As before, we first notice that it is enough to consider
stopping times in an interval of length O((ω−β) log(n)) and also that a discreti-
sation accuracy of ε = (ω − β)/

√
n will suffice to get a Õ(

√
n) regret, which is

conjectured to hold. In this case, however, an appropriately modified version of
the exponential weights algorithm is needed which works with estimated losses
and adds exploration to facilitate the estimation of losses. In fact, as it turns
out, after discretisation, our problem falls into the framework of prediction with
expert advice with side-observations, where after the learner chooses an action
Yt ∈ A it observes the losses for a subset S(Yt) ⊂ A of actions. In our case,
S(Yt) = {y ∈ A : y ≤ Yt}, which means that waiting for a longer time leads
to more information than waiting for a shorter time. This framework was first
studied by Mannor and Shamir [14]. Here, we will use the Exp3-DOM algo-
rithm of Alon et. al. as this algorithm improves upon the results of Mannor
and Shamir for our setting [2]. The general idea of Exp3-DOM is to restrict
exploration to actions in a dominating set D, which is a subset of actions such
that ∪a∈DS(a) = A. In particular, exploration is restricted to a minimal dom-
inating set. In our case, the minimal dominating set contains a single element,
ymax = maxA. This results in Algorithm 2. If the learning rate η is chosen care-
fully, then Theorem 7 of [2] shows that the algorithm suffers a Õ(

√
n) regret.

Recall the definition of ȳ(ε)

Algorithm 2. Exp3-Dom

1: Input: ω, β, and n
2: // Recall definition of ȳ(ε) given in Corollary 1
3: ε ← (ω − β)/

√
n, A ← {kε : 0 ≤ k ≤ ȳ(ε)/ε, k ∈ N}, R ← ȳ(ε) + ω, η ← 1/(R

√
n)

4: w1(y) ← 1 for all y ∈ A
5: for t = 1, . . . , n do
6: Wt ←

∑
y∈Awt(y) and pt(y) ← ηwt(y)/Wt + (1− η)1{y = maxA} for each y

7: Sample waiting time Yt from distribution pt on A and observe Zt, δt
8: wt+1(y) ← wt(y) for all y ∈ A
9: for y ∈ A ∩ [0, Yt] do // Update the weights

�t(y) ← 1{Zt ≤ y} (Zt + β) + 1{Zt > y} (y + ω)

qt(y) ←
∑

y′∈A:y′≥y

pt(y
′) and �̃t(y) ← �t(y)/qt(y)

wt+1(y) ← wt(y) exp(−η�̃t(y))

10: end for
11: end for

Theorem 7. Pick n > 0 and let Rn be the regret of Algorithm 1 when used for
n rounds. Then, E [Rn] ∈ O((ω − β) log2(n)

√
n).
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Proof. Let ε, A and R be as in the pseudo-code of the algorithm. Using that
in our case the the observation sets S(a) are fixed, Theorem 7, Eq. (2) of
[2] gives that the regret of Exp3-DOM against the best waiting time in A
is O(K log(K) + log(K)(1/η + ηR2

∑n
t=1(1 + Qt))), where K = |A| is the

number of actions and Qt =
∑

y∈A pt(y)/qt(y) and where we used that the
dominant set in our case has a single element. Now, Lemma 13 of [2] gives
that Qt = α ln(K/η), where α is the so-called independence number of the
graph (A,E) underlying the observation system: (a1, a2) ∈ E if a1 ∈ S(a2) or
a2 ∈ S(a1). In our case, the graph is a clique and hence its independence number
is α = 1. Choosing η = 1/(R

√
n) thus gives that the regret of Exp3-DOM against

the best waiting time in A is O(R log(K)
√
n + K log(K)). By Proposition 1,

miny∈A �(y)−infy∈[0,ȳ(ε)] �(y) ≤ ε, while by Corollary 1, infy∈[0,ȳ(ε)] �(y)−�(y∗) ≤
ε. Hence, E [Rn] ∈ O(R log(K)

√
n+K log(K)+(ω−β)

√
n). Now, using the def-

inition of ȳ, ȳ((ω−β)/
√
n) ∈ O((ω−β) log(n)). Thus, K = |A| ∈ O(�ȳ(ε)/ε) =

O(ȳ((ω − β)/
√
n)
√
n/(ω − β)) = O(log(n)

√
n) and R = ȳ((ω − β)/

√
n) + ω ∈

O((ω − β) log(n)). Plugging these into the previous bound, we get E [Rn] ∈
O((ω − β) log2(n)

√
n).

Note that since the partial information setting is strictly more difficult than
the full information setting, our previous lower bound shows that the regret
cannot be better than Ω(

√
n). However, as in the full information setting, we

can expect to improve upon the performance of Exp3-DOM by using an algo-
rithm that exploits the fact that the environment is stochastic. In particular, as is
common in sequential learning algorithms we make use of an optimistic strategy,
which will wait for the bus as long as reasonably possible. The algorithm main-
tains an estimate of the cumulative distribution and chooses a non-increasing
sequence of waiting times starting from a carefully chosen upper bound. The
waiting times decrease at a data-dependent rate that is chosen to ensure some
nearly-optimal waiting time is always smaller than the action chosen. This results
in Algorithm 3.

The following theorem bounds the expected regret of Algorithm 3. The bound
is worse by a factor of O(

√
logn) than that obtained in the full information

setting described in Section 3, but improves the bound announced in Theorem 7.

Theorem 8. The regret is bounded by E [Rn] ≤ (ω − β)(42 + 7 log3/2(n)
√
n).

Lemma 3. Define ȳ = min {y∗, ymax}, where ymax is given in Algorithm 3.
Then �(ȳ)− �(y∗) ≤ (ω − β)/

√
n.

Proof. Apply Part 2 of Lemma 1 and the definition of ȳ. ��

The following lemma shows that Yt ≥ ȳ for all 1 ≤ t ≤ n with high probability.
This means that if y∗ ≥ ymax, then with high probability the algorithm will
always choose Yt = ymax and suffer no more than (ω − β)/

√
n regret per time

step. On the other hand, if y∗ < ymax, then the algorithm will choose Yt ≥ y∗,
which guarantees that it is continually learning information about the loss of the
optimal action.
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Algorithm 3. Optimistic Waiting

1: Input: ω, β, and n
2: α ← 3/2 and ymax ← 2(ω − β)(1 + log2

√
n) and Y1 ← ymax

3: for t = 1, . . . , n do
4: Observe Zt, δt

5: Compute the empirical distribution: Gt(y)
.
=

1

t

t∑
s=1

1{Zs ≤ y}

6: Compute waiting time for next day:

εt ←
√

log 2nα

2t

Yt+1 ← max

{
0 ≤ y ≤ Yt : Gt(y)−Gt(y

′) + 2εt ≥

y − y′

ω − β
(1−Gt(y)− εt)−

1√
n
, 0 ≤ y′ ≤ y

}
7: end for

Lemma 4. For 1 ≤ t ≤ n, we have that P {Ac
n} ≤ n1−α, where event At is

defined by At =
⋂

s≤t

{
Ys ≥ ȳ and supy≤Ys−1

|Gs−1(y)− F (y)| ≤ εt−1

}
.

Proof. Define event B =
⋃

t≤n

{
supx≤Yt−1

|Gt−1(x) − F (x)| ≥ εt−1

}
and re-

call that Ft(x) = 1
t

∑t
s=1 1{Xs ≤ x}, which is unknown to the learner. The

Dvoretzky–Kiefer–Wolfowitz–Massart theorem [8, 15] gives that

P

{
sup
x

|Ft(x) − F (x)| ≥ εt

}
≤ 2 exp

(
−2ε2t t

)
= n−α.

Therefore, by the union bound, with probability at least 1− n1−α it holds that
|Ft(x)−F (x)| ≤ εt for all t ≤ n and x ∈ R. By the definition of the observations
(Zs)s, Gt(y) = Ft(y) for all y ≤ min1≤s≤t Ys. Further, since by construction
(Yt)t is non-increasing, min1≤s≤t Ys = Yt and so Gt(y) = Ft(y) for all y ≤ Yt.
Therefore P {B} ≤ n1−α. We now show that if B does not occur then At holds
for 1 ≤ t ≤ n. We prove this by induction on t. That Bc implies A1 is trivial.
Now, assume that Bc implies that At holds for some 1 ≤ t < n. On Bc we have

sup
y≤Yt

|Gt(y)− F (y)| ≤ εt. (7)

Thus, it suffices to show that on Bc, Yt+1 ≥ ȳ also holds. By the induction
hypothesis, Yt ≥ ȳ. Combining this with (7) we get

sup
y≤ȳ

|Gt(y)− F (y)| ≤ εt. (8)

Now let y′ ≤ ȳ ≤ y∗. Then

0
(a)

≥ �t(y
∗)− �t(y

′)
(b)

≥ �t(ȳ)− �t(y
′)− ω − β√

n

(c)

≥ (ȳ − y′)(1− F (ȳ))− (ω − β)(F (ȳ)− F (y′))− ω − β√
n
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(d)

≥ (ȳ − y′)(1 −Gt(ȳ)− εt)− (ω − β)(Gt(ȳ)−Gt(y
′) + 2εt)−

ω − β√
n

,

where (a) follows since y∗ is the optimal waiting time, (b) by Lemma 3, (c) by
Part 2 of Lemma 2, and (d) holds by (8). Rearranging we obtain

Gt(ȳ)−Gt(y
′) + 2εt ≥

ȳ − y′

ω − β
(1−Gt(ȳ)− εt)−

1√
n
,

which implies, by the definition of Yt+1, that Yt+1 ≥ ȳ. Therefore At+1 holds
and so Bc implies that An holds. Therefore P {An} ≥ P {Bc} ≥ 1− n1−α. ��

Proof (of Theorem 8). The proof follows almost immediately from Lemmas 2
to 4. Assume that An holds. Then

�(Yt)− �(y∗)
(a)

≤ �(Yt)− �(ȳ) +
ω − β√

n

(b)

≤ (Yt − ȳ)(1− F (ȳ))− (ω − β)(F (Yt)− F (ȳ))

(c)

≤ (Yt − ȳ) (1−Gt−1(ȳ) + εt−1)− (ω − β) (Gt−1(Yt)−Gt−1(ȳ)− 2εt−1)

(d)

≤ 2εt−1(Yt − ȳ) + 4εt−1(ω − β) +
ω − β√

n
, (9)

where (a) follows from Lemma 3, (b) by Part 2 of Lemma 2 and the fact that
Yt ≥ ȳ, (c) follows from the definition of An while (d) follows from the definition
of Yt. Therefore, on An,
n∑

t=1

�(Yt)−�(y∗)
(a)

≤ �(Y1)− �(y∗) +
n∑

t=2

(
2εt−1(Yt − ȳ) + 4εt−1(ω − β) +

ω − β√
n

)
(b)

≤ ymax+
n∑

t=2

(
2εt−1(ymax + 2(ω − β)) +

ω − β√
n

)
(c)

≤ (ω − β)(40 + 5 log
3
2 (n)

√
n),

where (a) follows from (9), (b) follows by naively bounding Yt− ȳ ≤ ymax, while
(c) follows arduously from the definition of εt and ymax. In case An does not
hold, the regret may be as much as ymax per day, but P {Ac

n} ≤ n1−α = 1/
√
n.

Combining with the previous display completes the result. ��

5 Experiments

We performed three experiments comparing EWA with FTL in the full-
information case with ω = 20 and β = 5. We used two exponential distributions
with λ = 1/20 and 1/5 respectively, as well as a power law distribution (see
Table 1). The horizon was set to n = 10, 000 and the learning rate of exponential
weighting was tuned to be a factor of 100 larger than the theoretical optimum,
which was observed to give a good performance across all three problems. The
FTL algorithm generally out-performs the exponential weighting algorithm,
but not by an enormous margin. If the theoretically optimal learning rate is
used then the performance of exponential weighting deteriorates significantly.
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Figures (e) and (f) suggest that FTL suffers
√
n regret on the power-law distribu-

tion, but logarithmic regret for exponentially distributed arrival times with pa-
rameter λ = 1/20. Each data point is the average of 20 independent trials. Code
is available at http://downloads.tor-lattimore.com/projects/optimal

waiting.
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6 Conclusions

We introduced the problem of learning an optimal waiting time with two
variants. In both cases, we presented two general algorithms relying on no as-
sumptions that were shown to enjoy near-optimal worst-case regret. Interesting
future work is to further analyse the problem-dependent regret bounds of FTL
and other algorithms in both full and partial information settings beyond ex-
ponentially distributed arrivals. One approach for less conservative algorithms
may be to use the Kaplan-Meier estimator rather than the standard empirical
distribution, but the mathematical theory behind this estimator is not yet well-
developed for this setting where the censoring times are known and not i.i.d.
One exception is by Ganchev et. al., but unfortunately their confidence bound
depends on the scale and is not suitable for obtaining optimal regret bounds
in our problem [10]. Another challenge is to improve the running time of the
algorithms to O(1) per time step. While our results are the first in this setting,
we expect various extensions to related problems, such as when one can choose
between multiple options with random durations.
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Abstract. The permutahedron is the convex polytope with vertex set
consisting of the vectors (π(1), . . . , π(n)) for all permutations (bijections)
π over {1, . . . , n}. We study a bandit game in which, at each step t, an
adversary chooses a hidden weight weight vector st, a player chooses a
vertex πt of the permutahedron and suffers an observed instantaneous
loss of

∑n
i=1 πt(i)st(i).

We study the problem in two regimes. In the first regime, st is a point
in the polytope dual to the permutahedron. Algorithm CombBand of
Cesa-Bianchi et al (2009) guarantees a regret of O(n

√
T log n) after T

steps. Unfortunately, CombBand requires at each step an n-by-n matrix
permanent computation, a #P -hard problem. Approximating the per-
manent is possible in the impractical running time of O(n10), with an
additional heavy inverse-polynomial dependence on the sought accuracy.
We provide an algorithm of slightly worse regret O(n3/2

√
T ) but with

more realistic time complexity O(n3) per step. The technical contribu-
tion is a bound on the variance of the Plackett-Luce noisy sorting pro-
cess’s ‘pseudo loss’, obtained by establishing positive semi-definiteness
of a family of 3-by-3 matrices of rational functions in exponents of 3
parameters.

In the second regime, st is in the hypercube. For this case we present
and analyze an algorithm based on Bubeck et al.’s (2012) OSMD ap-
proach with a novel projection and decomposition technique for the per-
mutahedron. The algorithm is efficient and achieves a regret of O(n

√
T ),

but for a more restricted space of possible loss vectors.

1 Introduction

Consider a game in which, at each step, a player plays a permutation of some
ground set V = {1, . . . , n}, and then suffers (and observes) a loss. We model the
loss as a sum over the items of some latent quality of the item, weighted by its
position in the permutation. The game is repeated, and the items’ quality can
adversarially change over time. The game models many scenarios in which the
player is an online system (say, a search/recommendation engine) presenting a
ranked list of items (results/products) to a stream of users. A user’s experience
is positive if she perceives the quality of the top items on the list as higher

P. Auer et al. (Eds.): ALT 2014, LNAI 8776, pp. 215–229, 2014.
c© Springer International Publishing Switzerland 2014
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than those at the bottom. The goal of the system is to create a total positive
experience for its users.

There is a myriad of methods for modelling ranking loss functions in the
literature, especially (but not exclusively) for information retrieval. Our choice
allows us to study the problem in the framework of online combinatorial opti-
mization in the bandit setting, and to obtain highly nontrivial results improving
on state of the art in either run time or regret bounds. More formally, we study
online linear optimization over the the n-permutahedron action set, defined as
the convex closure of all vectors in Rn consisting of n distinct coordinates taking
values in [n] := {1, . . . , n} (permutations). At each step t = 1, . . . , T , the player
outputs an action πt and suffers a loss π′

tst =
∑n

i=1 πt(i)st(i) , where st ∈ Rn is
the vector of “item qualities” chosen by some adversary who knows the player’s
strategy but doesn’t control their random coins. The performance of the player
is the difference between their total loss and that of the optimal static player,
who plays the best (in hindsight) single permutation π∗ throughout. This dif-
ference is known as regret. Note that, given s1, . . . , sT , π

∗ can be computed by
sorting the coordinates of

∑T
t=1 st in decreasing order. This is aligned with our

practical requirement that items with higher quality should be placed first, and
those with lower quality should be last.

2 Results, Techniques and Contribution

Our first of two results, stated as Theorem 1, is for the setting in which at each
step the loss is uniformly bounded (by 1 for simplicity) in absolute value for all
possible permutations. Equivalently, the vectors st belong to the polytope that
is dual to the permutahedron. Our algorithm, BanditRank, plays permutations
from a distribution known as the Plackett-Luce model (see [13]) which is widely
used in statistics and econometrics (see eg [4]). It uses an inverse covariance
matrix of the distribution in order to obtain an unbiased loss vector estimator,
which is a standard technique [7]. The main technical difficulty (Lemma 2) is in
bounding second moment properties of Plackett-Luce, by establishing positive
semidefiniteness of a certain family of 3 by 3 matrices. The lemma is interesting
in its own right as a tool for studying distributions over permutations. The ex-
pected regret of our algorithm is O(n3/2

√
T ) for T steps, with running time of

O(n3) per time step. This result should be compared to CombBand of [7], where
a framework for playing bandit games over combinatorially structured sets was
developed. Their techniques extend that of [8]. In each step, it draws a per-
mutation from a distribution that assigns to each permutation π a probability
of eη

∑t
τ=1 π′s̃τ , where s̃t is a pseudo-loss vector at time t, an unbiased estima-

tor of the loss vector st. Their algorithm guarantees a regret of O(n
√
T logn),

which is better than ours by a factor of Θ(
√
n/ logn). However, its computa-

tional requirements are much worse. In order to draw permutations, they need
to compute nonnegative n by n matrix permanents. Unfortunately, nonnegative
permanent computation is #P -hard, as shown by [15]. On the other hand, a
groundbreaking result of [12] presents a polynomial time approximation scheme
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for permanent, which runs in time O(n10) for fixed accuracy. To make things
worse, the dependence in the accuracy is inverse polynomial, implying that, even
if we could perform arbitrarily accurate floating point operations, the total run-
ning time would be super linear in T , because a regret dependence of

√
T over T

steps requires accuracy inverse polynomial in T . (Our algorithm does not suffer
from this problem.) From a practical point of view, the runtime dependence of
CombBand in both n and T is infeasible for even modest cases. For example, our
algorithm can handle online ranking of n = 100 items in an order of few millions
of operations per game iteration. In contrast, approximating the permanent of
a 100-by-100 positive matrix is utterly impractical.

We note that independently of our work, Hazan et al. [10] have improved
the state-of-the-art general purpose algorithm for linear bandit optimization,
implying an algorithm with regret O(n

√
T ) for our problem, but with worse

running time Õ(n4).1

In our second result in Section 5 we further restrict st to have �1 norm of 1/n.
(Note that this restriction is contained in |π′

tst| ≤ 1 by Hölder). We present and
analyze an algorithm OSMDRank based on the bandit algorithm OSMD of [6]
with projection and decomposition techniques over the permutahedron ([16, 14]).
The projection is defined in terms of the binary relative entropy divergence. The
restriction allows us to obtain an expected regret bound of O(n

√
T ) (a

√
logn

improvement over CombBand). The running time is O(n2 + nτ(n)), where τ(n)
is the time complexity for some numerical procedure, which is O(n2) in a fixed
precision machine.

We note previous work on playing the permutahedron online optimization
game in the full information case, namely, when st is known for each t. As far as
we know, Helmbold et al. [11] were the first to study a more general version of
this problem, where the action set is the vertex set of the Birkhoff-von-Neumann
polytope (doubly-stochastic matrices). Suehiro et al. [14] studied the problem
by casting it as a submodularly constrained optimization problem, giving near
optimal regret bounds, and more recently Ailon [1] both provided optimal regret
bounds with improved running time and established tight regret lower bounds.

3 Definitions and Problem Statement

Let V be a ground set of n items. For simplicity, we identify V with [n] :=
{1, . . . n}. Let Sn denote the set of n! permutations over V , namely bijections
over [n]. By convention, we think of π(v) for v ∈ V as the position of v ∈ V in
the ranking, where we think of lower numbered positions as more favorable. For
distinct u, v ∈ V , we say that u ≺π v if π(u) < π(v) (in words: u beats v). We
use [u, v]π as shorthand for the indicator function of the predicate u ≺π v.

1 The running time is a product of Õ(n3) number of Markov chain steps required for
drawing a random point from a convex set under a log-concave distribution, and
O(n log n) time to test whether a point lies in the permutahedron. By Õ we hide
poly-logarithmic factors.
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The convex closure of Sn is known as the permutahedron polytope. It will be
more convenient for us to consider a translated version of the permutahedron,
centered around the origin. More precisely, for π ∈ Sn we let π̂ denote

π̂ := (π(1)− (n+ 1)/2, π(2)− (n+ 1)/2, . . . , π(n)− (n+ 1)/2) .

It will be convenient to define a symmetrized version of the permutation set
Ŝn := {π̂ : π ∈ Sn}. The symmetrized n-permutahedron, denoted P̂n is the con-
vex closure of Ŝn. Symmetrization allows us to work with a polytope that is cen-
tered around the origin. Generalization our result to standard (un-symmetrized)
permutations is a simple technicality that will be explained below. The notation
u ≺π̂ v and [u, v]π̂ is defined as for π ∈ Sn in an obvious manner.

At each step t = 1, . . . , T , an adversary chooses and hides a nonnegative
vector st ∈ Rn ≡ RV , which assigns an elementwise quality measure st(v) for any
v ∈ V . The player-algorithm chooses a permutation π̂t ∈ Ŝn, possibly random,
and suffers an instantaneous loss

�t := π̂′
tst =

∑
v∈V

π̂t(v)st(v) . (3.1)

The total loss Lt is defined as
∑T

t=1 �t. We will work with the notion of regret,

defined as the difference Lt − L∗
t , where L∗

T = minπ̂∈Ŝn

∑T
t=1 π̂

′st. We let π̂∗

denote any minimizer achieving L∗
T in the RHS.

For any π̂ ∈ Ŝn and s ∈ Rn, the dot-product π̂′s can be decomposed over pairs:
π̂′s = 1

2

∑
u�=v[u, v]π(s(v) − s(u)). This makes the symmetrized permutahedron

easier to work with. Nevertheless, our results also apply to the non-symmetrized
permutahedron as well, as we shall see below.

Throughout, the notation
∑

u�=v means summation over distinct, ordered pairs
of elements u, v ∈ V , and

∑
u<v means summation over distinct, unordered

pairs.2 The uniform distribution over Ŝn will be denoted Un.
The smallest eigenvalue of a PSD matrix A is denoted λmin(A). The norm ‖·‖2

will denote spectral norm (Euclidean norm for a vector). To avoid notation such
as C,C′, C′′, C1 for universal constants, the expression C will denote a “general
positive constant” that may change its value as necessary. For example, we may
write C = 3C + 5.

4 Algorithm BanditRank and Its Guarantee

For this section, we will assume that the instantaneous losses are uniformly
bounded by 1, in absolute value: For all t and π̂ ∈ Ŝn, |π̂′st| ≤ 1. Equivalently,
using geometric language, the loss vectors belong to a polytope which is dual to
the permutahedron.

Now consider Algorithm 1. It maintains, at each time step t, a weight vector
wt ∈ Rn. At each time step, it draws a random permutation π̂t from a mixture Dt

2 We will only use expressions of the form
∑

u<v f(u, v) for symmetric functions sat-
isfying f(u, v) = f(v, u).
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Algorithm 1. Algorithm BanditRank(n, η, γ, T ) (assuming |π̂′st| ≤ 1 for all t
and π̂ ∈ Ŝn)

1: given: ground set size n, positive parameters η, γ (γ ≤ 1), time horizon T
2: set w0(u) = 0 for all u ∈ V = [n]
3: for t = 1..T do
4: let distribution Dt over Ŝn denote a mixture of Un (with probability γ) and

PLn(wt−1) (with probability 1− γ)
5: draw and output π̂t ∼ Dt

6: observe and suffer loss �t (= π̂′
tst)

7: s̃t = �tP
+
t π̂t where Pt = Eσ̂∼Dt [σ̂σ̂

′]
8: set wt = wt−1 + ηs̃
9: end for

of the uniform distribution over Ŝn and a distribution PLn(w) which we define
shortly. The distribution mixture is determined by a parameter γ. The algorithm
then plays the permutation π̂t and thereby suffers the instantaneous loss defined
in (3.1). The weights are consequently updated by adding an unbiased estimator
s̃t of st (computed using the pseudo-inverse covariance matrix corresponding to
Dt), multiplied by another parameter η > 0.

The Plackett-Luce Random Sorting Procedure: The distribution PLn(w) over
Ŝn, parametrized by w ∈ Rn, is defined by the following procedure. To choose
the first (most preferred) item, the procedure draws a random item, assigning
probability proportional to ew(u) for each u ∈ V . It then removes this item from
the pool of available items, and iteratively continues to choose the second item,
then third and so on. As claimed in the introduction, this random permutation
model is well studied in statistics. An important well known property of the dis-
tribution is that it can be equivalently defined as a Random Utility Model (RUM)
[13, 17]: To draw a permutation, add a random iid noise variable following the
Gumbel distribution to each weight, and then sort the items of V in decreasing
value of noisy-weights.3 The RUM characterization implies, in particular, that
for any two disjoint pairs of element (u, v) and (u′, v′), the events u ≺π v and
u′ ≺π v′ are statistically independent if π is drawn from PLn(w), for any w.
This fact will be used later.
We are finally ready to state our main result, bounding the expected regret of
the algorithm.

Theorem 1. If algorithm BanditRank (Algorithm 1) is executed with parame-
ters γ = O(n3/2/

√
T ) and η = O(γ/n), then the expected regret (with respect to

the game defined by the symmetrized permutahedron) is at most O(n3/2
√
T ). The

running time of each iteration is O(n3). Additionally, there exists an algorithm
with the same expected regret bound and running time with respect to the standard
permutahedron (assuming the vectors st uniformly satisfy |π′st| ≤ 1, ∀π ∈ Sn.)

3 The Gumbel distribution, also known as doubly-exponential, has a cdf of e−e−x

.
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The proof uses a standard technique used e.g. in Cesa-Bianchi et al.’s Comb-
Band [7], which is itself an adaptation of Auer et al.’s Exp3 [3] from the finite case
to the structured combinatorial case. The distribution from which the actions π̂t
are drawn in the algorithm differ from the distribution used in CombBand, and
give rise to the technical difficulty of variance estimation, resolved in Lemma 2.

Proof. Let Tn denote the set of tournaments over [n]. More precisely, an element
A ∈ Tn is a subset of [n]× [n] with either (u, v) ∈ A or (v, u) ∈ A (but not both)
for all u < v. We extend our previous notation so that u ≺A v is equivalent to
the predicate (u, v) ∈ A.

For any pair π̂ ∈ Ŝn and w ∈ Rn, p(π̂|w) denotes the probability assigned to
π̂ ∈ Ŝn by PLn(w). Slightly abusing notation, we define the following shorthand:

p(u ≺ v|w) :=
∑

π̂:u≺π̂v

p(π|w) = ew(u)

ew(u) + ew(v)

p(u ≺ v ≺ z|w) :=
∑

π̂:u≺π̂v≺π̂z

p(π̂|w) = ew(u)+w(v)

(ew(u) + ew(v) + ew(z))(ew(v) + ew(z))
.

The last two right hand sides are easily derived from the definition of the
distribution PLn(w), see also e.g. [13]. We also define the following abbreviations:

p(u ≺ v
z |w) := p(u ≺ v ≺ z|w) + p(u ≺ z ≺ v|w) = ew(u)

ew(u) + ew(v) + ew(z)
(4.1)

p(uv ≺ z|w) := p(u ≺ v ≺ z|w) + p(v ≺ u ≺ z|w)

=
ew(u)+w(v)

ew(u) + ew(v) + ew(z)

(
1

ew(v) + ew(z)
+

1

ew(u) + ew(z)

)
(4.2)

We will also need to define a distribution over the set of tournaments Tn. The
distribution, BT Ln(w) is parametrized by a weight vector w ∈ Rn. Drawing
A ∼ BT Ln(w) is done by independently setting, for all u < v in V ,

(u, v) ∈ A with probability p(u ≺ v|w) = ew(u)

ew(u) + ew(v)

(v, u) ∈ A with probability p(v ≺ u|w) = ew(v)

ew(u) + ew(v)
.

(Note that the distribution is equivalently defined as the product distribution,
over all u < v in V , of the Bradley-Terry-Luce pairwise preference model, hence
the name BT Ln. We refer to [13] for definition and history of the Bradley-Terry-
Luce model.)

For A ∈ Tn, we denote by p̃(A|w) the probability
∏

u≺Av p(u ≺ v|w) of draw-
ing A from BT Ln(w). The proof of the theorem proceeds roughly as the main
result upper bounding the expected regret of CombBand in [7]. The following
technical lemma is required in anticipation of a major hurdle (inequality (4.5).
We believe the inequality is interesting in its own right as a probabilistic state-
ment on permutation and tournament distributions.
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Lemma 2. Let s, w ∈ Rn. Let π̂ ∼ PLn(w) and A ∼ BT Ln(w) be drawn inde-
pendently. Define X1 =

∑
u,v: u≺π̂v

(s(v)−s(u)) = π̂′s, X2 =
∑

u,v: u≺Av(s(v)−
s(u)). Then E[X2

2 ] ≤ E[X2
1 ].

(Note that clearly, E[X2] = E[X1], so the lemma in fact upper bounds the
variance of X2 by that of X1.) The proof of the lemma is deferred to Section 4.1.

Continuing the proof of Theorem 1, we let q(π|w) denote the probability of
drawing π from the mixture of the uniform distribution (with probability γ)
and PLn(w) (with probability (1 − γ). Similarly to above, q(u ≺ v|w) denotes∑

π̂:u≺π̂v
q(π̂|w). By these definitions,

q(π̂|w) = (1− γ)p(π̂|w) + γ

n!
q(u ≺ v|w) = (1− γ)p(u ≺ v|w) + γ

2
. (4.3)

The analysis proceeds by defining a potential function:

Wt(u, v) := e
1
2η(wt(u)−wt(v)) + e

1
2η(wt(v)−wt(u)) .

The quanatity of interest will be E
[∑

u<v

∑
t log

Wt(u,v)
Wt−1(u,v)

]
, where the expecta-

tion is taken over all random coins used by the algorithm throughout T steps.
This quantity will be bounded from above and from below, giving rise to a bound
on the expected total loss, expressed using the optimal static loss. On the one
hand,

∑
u<v

log
Wt(u, v)

Wt−1(u, v)
=
∑
u<v

log

(
e

1
2 (wt(u)−wt(v))

Wt−1(u, v)
+

e
1
2 (wt(v)−wt(u))

Wt−1(u, v)

)

=
∑
u<v

log

(
e

1
2 (wt−1(u)−wt−1(v))e

1
2η(s̃t(u)−s̃t(v)) + e

1
2 (wt(v)−wt(u))e

1
2η(s̃t(v)−s̃t(u))

Wt−1(u, v)

)
=
∑
u<v

log
(
p(u ≺ v|wt−1)e

1
2η(s̃t(u)−s̃t(v)) + p(v ≺ u|wt−1)e

1
2η(s̃t(v)−s̃t(u))

)
= log

(∑
A∈Tn

p̃(A|wt−1)e
1
2η

∑
u≺Av(s̃t(u)−s̃t(v))

)
.

We will now assume that η is small enough so that for all A ∈ Tn and for all t,

η

∣∣∣∣∣∣
∑

(u,v)∈A

(s̃t(u)− s̃t(v))

∣∣∣∣∣∣ ≤ 1 . (4.4)
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(This will be shortly enforced.) Using ex ≤ 1 + x+ x2 ∀x ∈ [−1/2, 1/2],

∑
u,v

log
Wt(u, v)

Wt−1(u, v)
≤ log

[ ∑
A∈Tn

p̃(A|wt−1)

(
1 +

η

2

∑
u≺Av

(s̃t(u)− s̃t(v))

+
η2

4

(∑
u≺Av

(s̃t(u)− s̃t(v))

)2
⎞⎠⎤⎦

= log

[
1 +

η

2
EA∼BT Ln(wt−1)

[ ∑
u≺Av

(s̃t(u)− s̃t(v))

+
η2

4

(∑
u≺Av

(s̃t(u)− s̃t(v))

)2
⎤⎦⎤⎦

≤ log

[
1 +

η

2
Eπ̂∼PLn(wt−1)

[∑
u≺π̂v

(s̃t(u)− s̃t(v))

+
η2

4

(∑
u≺π̂v

(s̃t(u)− s̃t(v))

)2
⎤⎦⎤⎦ .

(4.5)

where we used Lemma 2 in the last inequality (together with the fact that the
marginal probability of the event “u ≺Y v” is identical for both Y ∼ PLn(wt−1)
and Y ∼ BT Ln(wt−1)). Henceforth, for any π̂ ∈ Ŝ, we let �̃t(π̂) := π̂′s̃t =∑

u≺π̂v
(s̃(v)− s̃(u)). Using 4.3 and the fact that log(1 + x) ≤ x for all x, we get∑

u<v

log
Wt(u, v)

Wt−1(u, v)

≤ η

2

∑
u�=v

q(u ≺ v|wt−1)− γ
2

1− γ
(s̃t(u)− s̃t(v)) +

η2

4

∑
π̂∈Ŝn

q(π|wt−1)− γ
n!

1− γ
�̃t(π̂)

2

≤ −η
2(1− γ)

∑
π̂∈Ŝn

qt(π̂|wt−1)�̃t(π̂) +
η2

4(1− γ)

∑
π̂∈Ŝn

qt(π̂|wt−1)�̃t(π̂)
2 .

We now note that (1)
∑

π̂∈Ŝ qt(π̂|wt−1)�̃t = �t (following the properties of ma-

trix pseudo-inverse in Line 7 in Algorithm 1), and (2)
∑

π̂∈Ŝn
qt(π̂|wt−1)�̃t(π)

2] ≤
n (see top of page 31 together with Lemma 15 in [7]). Applying these inequalities,
and then taking expectations over the algorithm’s randomness and summing for
t = 1, . . . , T , we get

T∑
t=1

E

[∑
u,v

log
Wt(u, v)

Wt−1(u, v)

]
≤ − η

2(1− γ)
E[LT ] +

η2

8(1− γ)
nT .
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On the other hand,

T∑
t=1

E

[∑
u,v

log
Wt(u, v)

Wt−1(u, v)

]
≥
∑
u,v

E
[
log
(
[u, v]π∗e

1
2 (wT (u)−wT (v)) + [v, u]π∗e

1
2 (wT (u)−wT (v)))

)]
−
∑
u,v

log 2

=
1

2

∑
u,v

(E [[u, v]π∗(wT (u)− wT (v)) + [v, u]π∗(wT (u)− wT (v))])−
(
n

2

)
log 2

=
η

2

∑
u,v

(
E

[
[u, v]π∗

∑
t

(s̃t(u)− s̃t(v)) + [v, u]π∗
∑
t

(s̃t(u)− s̃t(v))

])

−
(
n

2

)
log 2

=
η

2

∑
u,v

(
[u, v]π∗

∑
t

(st(u)− st(v)) + [v, u]π∗
∑
t

(st(u)− st(v))

)
−
(
n

2

)
log 2

= −η

2
L∗
T −

(
n

2

)
log 2 ,

where L∗
T is the total loss of a player who chooses the best permutatation π̂∗ ∈ Ŝn

in hindsight. Combining, we obtain η
2(1−γ)E[Lt] ≤ η

2L
∗
T + n2

2 log 2 + η2

4(1−γ)nT .

Multiplying both sides by 2(1− γ)/η yields

E[LT ] ≤ L∗
T + γ|L∗

T |+
n2 log 2

η
+

η

2
nT . (4.6)

We shall now work to impose (4.4).

max
t

max
A∈T (V )

∣∣∣∣∣∣
∑

(u,v)∈A

(s̃t(u)− s̃t(v))

∣∣∣∣∣∣ ≤ max
t

√∑
v∈V

s̃t(v)2

√√√√√ (n−1)/2∑
i=−(n−1)/2

i2

≤ Cmax
t

‖s̃t‖2n3/2 , (4.7)

where the left inequality is Cauchy-Schwartz. We now note that

‖s̃t‖2 ≤ |�t|‖P+
t ‖2‖π̂t‖2 .

Clearly ‖π̂‖2 is bounded above by Cn3/2. Also ‖P+
t ‖2 equals 1/λmin(Pt). By

Weyl’s inequality λmin(Pt) ≥ γλmin(Eτ̂∼Un [τ̂ τ̂
′]). It is an exercise to check that

λmin(Eτ̂∼Un [τ̂ τ̂
′]) ≥ Cn2. We conclude (also recalling that |�t| ≤ 1) that

max
t

‖s̃t‖2 ≤ C/(n1/2γ) .
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Combining, we shall satisfy (4.7) by imposing η ≤ γ/(Cn). Plugging in (4.6),
we get

E[LT (Alg)] ≤ L∗
T + γ|L∗

T |+
Cn3

γ
+ CγT . (4.8)

Choosing γ =
√

Cn3

T gives E[LT (Alg)] ≤ L∗
T + Cn3/2

√
T

|L∗
T |+ n3/2

√
T .

This concludes the required result for the symmetrized case, because |L∗
T | ≤ T .

For the standard permutahedron, notice that for any π ∈ Sn and its symmetrized
counterpart π̂ ∈ Ŝn, π

′s− π̂′s = n−1
2

∑
v∈V s(v) =: f(s) for any s ∈ Rn. Equiv-

alently, we can write π′s = (π̂′, 1)(s; f(s)), where (·, a) appends the scalar a to
the right of a row vector and (·; a) appends to the bottom of a column vector.
Algorithm 1 can be easily adjusted to work with action set Ŝn × {1}. For the
proof, we keep the same potential function. The technical part of the proof is
lower bounding the smallest eigenvalue of the expectation of τ̂ τ̂ ′, where τ̂ is now
drawn from the uniform distribution on Ŝn × {1}. We omit these simple details
for lack of space. ��

4.1 Proof of Lemma 2

The expression E[X2
1 ] can be written as

E[X2
1 ] =

∑
u�=v

p(u ≺ v|w)((s(v) − s(u))2

+
∑

|{u,v,u′,v′}|=4

p(u ≺ v ∧ u′ ≺ v′|w) (s(v) − s(u))(s(v′)− s(u′))

+
∑

u�=v,u′ �=v′
|{u,v,u′,v′}|=3

p(u ≺ v ∧ u′ ≺ v′|w) (s(v) − s(u))(s(v′)− s(u′)) , (4.9)

where p(u ≺ v ∧ u′ ≺ v′|w) is the probability that both u ≺π̂ v and u′ ≺π̂ v′

with π̂ ∼ PLn(w). Similarly,

E[X2
2 ] =

∑
u�=v

p(u, v|w)((s(v) − s(u))2

+
∑

|{u,v,u′,v′}|=4

p(u ≺ v|w)p(u′ ≺ v′|w) (s(v) − s(u))(s(v′)− s(u′))

+
∑

u�=v,u′ �=v′
|{u,v,u′,v′}|=3

p(u ≺ v|w)p(u′ ≺ v′|w) (s(v) − s(u))(s(v′)− s(u′)) .

(4.10)

Since Plackett-Luce is a random utility model (see [13]), it is clear that when-
ever a pair of pairs u �= v, u′ �= v′ satisfies |{u, v, u′, v′}| = 4, p(u ≺ v ∧ u′ ≺
v′|w) = p(u ≺ v|w)p(u′ ≺ v′|w). Hence, it suffices to prove that the third sum-
mand in the RHS of (4.10) is upper bounded by the third summand in the RHS
of (4.9). But now notice the following identity:
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∑
u�=v,u′ �=v′

|{u,v,u′,v′}|=3

≡
∑
Δ⊆V
|Δ|=3

∑
u�=v,u′ �=v′
u,v,u′,v′∈Δ

|{u,v,u′,v′}|=3

.

This last sum rearrangement implies that it suffices to prove that for any Δ of
cardinality 3,

F2(Δ) :=
∑

u�=v,u′ �=v′
u,v,u′,v′∈Δ

|{u,v,u′,v′}|=3

p(u, v|w)p(u′, v′|w) (s(v) − s(u))(s(v′)− s(u′))

≤
∑

u�=v,u′ �=v′
u,v,u′ ,v′∈Δ

||{u,v,u′,v′}|=3

p(u, v ∧ u′, v′|w) (s(v) − s(u))(s(v′)− s(u′)) =: F1(Δ) .

If we now denote Δ = {a, b, c}, then both F1(Δ) and F2(Δ) are quadratic
forms in s(a), s(b), s(c) (for fixed w). It hence suffices to prove that H(Δ) :=
F1(Δ) − F2(Δ) is a positive semi-definite form in s(Δ) := (s(a), s(b), s(c))′. We
now write

H(Δ) = s(Δ)′

⎛⎝ Haa
1
2Hab

1
2Hac

1
2Hab Hbb

1
2Hbc

1
2Hac

1
2Hbc Hcc

⎞⎠ s(Δ) .

The matrix is singular, because clearly H(Δ) = F1(Δ) = F2(Δ) = 0 whenever
s(a) = s(b) = s(c). To prove positive semi-definiteness, by Sylvester’s criterion it
hence suffices to show that the diagonal element Haa ≥ 0 and that the principal
2-by-2 minor determinant HaaHbb − 1

4H
2
ab ≥ 0. Using the definitions, together

with the properties of PLn(w), a technical (but quite tedious) algebraic deriva-
tion that we omit (for lack of space) gives

Haa =
4es(a)+s(b)+s(c)

(es(a) + es(b))(es(a) + es(c))(es(a) + es(b) + es(c))
. (4.11)

(See full version or technical report [2] for details). Similarly, by symmetry,

Hbb = 4es(a)+s(b)+s(c)

(es(b)+es(a))(es(b)+es(c))(es(a)+es(b)+es(c))
. From a similar (yet more tedious)

technical algebraic calculation which we omit, one gets:

Hab =
−8es(a)+s(b)+2s(c)

(es(a) + es(b))(es(a) + es(c))(es(b) + es(c))(es(a) + es(b) + es(c))
. (4.12)

(see full version or technical report [2] for details). One now verifies, using (4.11)-
(4.12), the identity

HaaHbb −
1

4
H2

ab =
16e2s(a)+2s(b)+2s(c)

Z
,

where Z := (es(a) + es(b))2(es(a) + es(c))(es(b) + es(c))(es(a) + es(b) + es(c))2.
It remains to notice, trivially, that Haa ≥ 0 and HaaHbb − 1

4H
2
ab ≥ 0 for all

possible values of s(a), s(b), s(c). The proof of the lemma is concluded.
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Algorithm 2. Algorithm OSMDRank(n, η, γ, T ) (assuming ‖st‖1 ≤ 1 and π̂t ∈
Q̂n for all t )

1: given: ground set size n, positive parameters η, γ (γ ≤ 1), time horizon T
2: let x1 = 0 ∈ Q̂n. (Note that x1 = argmina∈Q̂n

F (a))
3: for t = 1, . . . , T do
4: let x̃t = (1− γ)xt (Note that ãt ∈ Q̂n since the origin 0 and xt are in Q̂n and x̃t

is a convex combination of them).
5: output πt = Decomposition(x̃t) (i.e., choose πt so that E[πt] = x̃t) and suffer

loss �t (= π′
tst)

6: let distribution Dt over [−1, 1]ndenote a mixture of the uniform distribution
over the canonical basis with random sign (with probability γ) and a Radmacher
distribution over {−1, 1}n with parameter (1+xt,i)/2 for each i = 1, . . . , n (with
probability 1− γ)

7: estimate the loss vector s̃t = �tP
+
t πt, where Pt = Eσ∼Dt [σσ

′]
8: let xt+ 1

2
= ∇F ∗(F (xt)− ηs̃t)

9: let xt+1 = Projection(xt+ 1
2
) (that is, xt+1 = minx∈Q̂n

DF (x, xt+ 1
2
))

10: end for

5 Bandit Algorithm Based on Projection and
Decomposition

In this section, we propose another bandit algorithm OSMDRank, described in
Algorithm 2. We will be working under the more restricted assumption that
sup ‖st‖1 ≤ 1 and sup ‖π̂t‖∞ ≤ 1. This in particular implies that |π̂′

tst| ≤ 1, as
before. But now we shall achieve a better expected regret of O(n

√
T ).

We prefer, for reasons clarified shortly, to require that the actions π̂t are
vertices of the rescaling Q̂n := 2

n−1 P̂n ∈ [−1, 1]n of the symmetrized permu-
tahedron. That is, sup ‖π̂t‖∞ ≤ 1 (and sup ‖st‖1 ≤ 1). This will allow us
to work with the following standard regularizer F : [−1, 1]n → R+: F (x) =
1
2

∑n
i=1 ((1 + x) ln(1 + x) + (1− x) ln(1− x)). The regularizer F (x) is the key

to the OSMD (Online Stochastic Mirror Descent) algorithm of Bubeck et al. [6],
on which our algorithm is based. OSMD is a bandit algorithm over the hyper-
cube domain [−1, 1]n and a variant of Follow the Regularized Leader (FTRL,
e.g., [9]) for linear loss functions. To apply this algorithm, we need a new pro-
jection and decomposition technique for the polytope Q̂n, as well as a slightly
modified perturbation step in line 4 of Algorithm 2. Our algorithm OSMDRank
has the following two procedures:

1. Projection: Given a point xt ∈ [−1, 1]n, return argminyt∈Q̂n
ΔF (yt, xt),

whereΔF is the Bregman divergence defined wr.t. F , i.e., ΔF (y, x) = F (y)−
F (x)−∇F (x)′(y − x) (also known as binary relative entropy).4

2. Decomposition: Given yt ∈ Q̂n from the the projection step, output a
random vertex π̂t of Q̂n such that E[π̂t] = yt.

4 Note that the binary relative entropy is different from the relative entropy, where the
relative entropy is defined as Rel(p, q) =

∑n
i=1 pi ln

pi
qi
for probability distributions p

and q over [n].
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The decomposition can be done using the technique of [16], which runs in
O(n log n) time. (To be precise, the method there was defined for the standard
permutahedron; The adjustments for the symmetrized version are trivial.) For
notational purposes, we define f := ∇F , and notice that f(x)i =

1
2 ln

1+xi

1−xi
, and

its inverse function f−1 is given by f−1(y)i =
e2yi−1
e2yi+1

. Our projection procedure
is presented in Algorithm 3.

Lemma 3. (i) Given q ∈ [−1, 1]n, Algorithm 3 outputs the projection of q onto
Q̂n, with respect to the regularizer F . (ii) The time complexity of the algorithm
is O(nτ(n) + n2), where τ(n) is the time complexity to perform step 4.

Proof (skecth). Our projection algorithm is an extension of that in [14] and our
proof follows a similar argument in [14]. For simplicity, we assume that elements
in q are sorted in descending order, i.e., q1 ≥ q2 ≥ · · · ≥ qn. This can be achieved
in time O(n log n) by sorting q. Then, it can be shown that projection preserves
the order in q by using Lemma 1 in [14]. That is, the projection p of q satisfies

p1 ≥ p2 ≥ · · · ≥ pn. So, if the conditions 2
n−1

∑i
j=1 pj ≤

∑i
j=1(

n+1
2 − j), for

i = 1, . . . , n − 1, are satisfied, then other inequality constraints are satisfied as
well since for any S ⊂ [n] such that |S| = i,

∑
j∈S pj ≤

∑i
j=1 pj . Therefore,

relevant constraints for projection onto Q̂n are only linearly many.
By following a similar argument in [14], we can show that the output p indeed

satisfies the KKT optimality conditions for projection, which completes the proof
of the first statement. Finally, the algorithm terminates in time O(nτ(n) + n2)
since the number of iteration is at most n and each iteration takes O(n+ τ(n))
time, which completes the second statement of the lemma. ��

Note that with respect to other regularizers (e.g. relative entropy or Euclidean
norm squared), a different projection scheme is possible in time O(n2) (see [16,
14] for the details). It is an open question whether an O(n2) algorithm can be
devised with respect to the binary relative entropy we need here. In our case,
we need to solve a numerical optimization problem by, say, binary search. Note
that the time τ(n) is reasonably small: In fact, we can perform the binary search
over the domain [−1, 1] for each dimension i. Therefore, if the precision is a fixed
constant, the binary search ends in time O(n) for each dimension. In that case,
τ(n) is O(n2). We are ready to present our main result for this section.

Theorem 4. For η = O(n
√

1/T ) and γ = O(
√
1/T ), Algorithm OSMDRank

has expected regret O(n
√
T ) and running time O(n2 + nτ(n)) per step, where

τ(n) is the time for a numerical optimization step depending on n. Additionally,
there exists an algorithm with the same expected regret bound and running time
with respect to the standard permutahedron (assuming ‖st‖1 ≤ 1/n).

Proof (sketch). The algorithm OSMDRank is a modification of OSMD for the
hypercube [−1, 1]n obtained by adding (1) a projection step and (2) a decom-
position step. Standard techniques show that adding the projection step does
not increase the expected regret bound (see, e.g., chapters 5 and 7 on OMD
and OSMD of Bubeck’s lecture notes [5]). The key facts are: (i) A variant of
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Algorithm 3. Projection onto Q̂n

1: given (q1, . . . , qn) ∈ [−1, 1]n satisfying q1 ≥ q2 ≥ · · · ≥ qn. (This assumption holds
by renaming the indices, and reverting to their original names at the end).

2: set i0 = 0
3: for k = 1, . . . , n do
4: for each i = ik−1 + 1, . . . , n, set δki = minδ∈R δ subject to:∑i

j=ik−1+1 f
−1(f(qj)− δ) ≤ 2

n−1

∑i
j=ik−1+1

(
n+1
2

− j
)
.

5: ik = argmaxi:ik−1<i≤n δki . In case of multiple minimizers, choose largest as ik.

6: set pj = f−1(f(qj)− δkik ) for j = ik−1 + 1, . . . , ik
7: if ik = n, then break
8: end for
9: return (p1, . . . , pn)

′

Theorem 2 of [6] (regret bound of OSMD) holds for OSMD with Projection, (ii)
E[πt] = (1−γ)xt, and (iii) The estimated loss is the same one used in OSMD for
the hypercube [−1, 1]n . Once these three conditions are satisfied, we can prove
a regret bound of OSMDRank by following the proof of Theorem 5 in Bubeck et
al. [6]. In addition, the running time of OSMD per trial is O(n) [6]. Combining
Lemma 3 for the projection and the analysis of the decomposition from [16], the
proof of the first statement is concluded. The statement related to the standard
permutahedron holds based on the affine transformation between the standard
permutahedron and Q̂n. ��

6 Future Work

The main open question is whether there is an algorithm of expected regret
O(n

√
T ) and time O(n3) in the setting of Section 4. Another interesting line

of research is to study other ranking polytopes. For example, given any strictly
monotonically increasing function f : R /→ R we can consider as an action set
fn(Sn), defined as fn(Sn) := {(f(π(1)), f(π(2)), . . . , f(π(n))) : π ∈ Sn}.
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Abstract. We consider the problem of converting offline estimators into
an online predictor or estimator with small extra regret. Formally this is
the problem of merging a collection of probability measures over strings
of length 1,2,3,... into a single probability measure over infinite sequences.
We describe various approaches and their pros and cons on various exam-
ples. As a side-result we give an elementary non-heuristic purely com-
binatoric derivation of Turing’s famous estimator. Our main technical
contribution is to determine the computational complexity of online es-
timators with good guarantees in general.

Keywords: Offline, online, batch, sequential, probability, estimation,
prediction, time-consistency, normalization, tractable, regret, combina-
torics, Bayes, Laplace, Ristad, Good-Turing.

1 Introduction

A standard problem in statistics and machine learning is to estimate or learn an
in general non-i.i.d. probability distribution qn : Xn → [0, 1] from a batch of data
x1, ..., xn. qn might be the Bayesian mixture over a class of distributions M, or
the (penalized) maximum likelihood (ML/MAP/MDL/MML) distribution from
M, or a combinatorial probability, or an exponentiated code length, or else. This
is the batch or offline setting. An important problem is to predict xn+1 from
x1, ..., xn sequentially for n = 0, 1, 2..., called online learning if the predictor
improves with n. A stochastic prediction q̃(xn+1|x1:n) can be useful in itself
(e.g. weather forecasts), or be the basis for some decision, or be used for data
compression via arithmetic coding, or otherwise. We use the prediction picture,
but could have equally well phrased everything in terms of log-likelihoods, or
perplexity, or code-lengths, or log-loss.

The naive predictor is q̃rat(xn+1|x1...xn) := qn+1(x1...xn+1)/qn(x1...xn)
is not properly normalized to 1 if qn and qn+1 are not compati-
ble. We could fix the problem by normalization q̃n1(xn+1|x1...xn) :=
q̃rat(xn+1|x1...xn)/

∑
xn+1

q̃rat(xn+1|x1...xn), but this may result in a very poor

predictor. We discuss two further schemes, q̃lim and q̃mix, the latter having good
performance guarantees (small regret), but a direct computation of either is
prohibitive. A major open problem is to find a computationally tractable online

P. Auer et al. (Eds.): ALT 2014, LNAI 8776, pp. 230–244, 2014.
c© Springer International Publishing Switzerland 2014
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predictor q̃ with provably good performance given offline probabilities (qn). A
positive answer would benefit many applications.

Applications. (i) Being able to use an offline estimator to make stochastic
predictions (e.g. weather forecasts) is of course useful. The predictive probability
needs to sum to 1 which q̃n1 guarantees, but the regret should also be small,
which only q̃mix guarantees.

(ii) Given a parameterized class of (already) online estimators {q̃θ}, estimating
the parameter θ from data x1...xn (e.g. maximum likelihood) for n = 1, 2, 3, ...

leads to a sequence of parameters (θ̂n) and a sequence of estimators (qn) := (q̃θ̂n)
that is usually not online. They need to be reconverted to become online to be
useful for prediction or compression, etc.

(iii) Arithmetic coding requires an online estimator, but often is based on a
class of distributions as described in (ii). The default ‘trick’ to get a fast and

online estimator is to use q̃θ̂n(xn+1|x1:n) which is properly normalized and often
very good.

(iv) Online conversions are needed even for some offline purposes. For instance,
computing the cumulative distribution function

∑
y1:n≤x1:n

qn(y1:n) can be hard
in general, but can be computed in time O(n) if (qn) is (converted to) online.

Contributions and Contents. The main purpose of this paper is to intro-
duce and discuss the problem of converting offline estimators (qn) to an online
predictor q̃ (Section 2). We compare and discuss the pros and cons of the four
conversion proposals (Section 3). We also define the worst-case extra regret of
online q̃ over offline (qn), measuring the conversion quality. We illustrate their
behavior for various classical estimators (Bayes, MDL, Laplace, Good-Turing,
Ristad) (Section 4). Naive normalization of the triple uniform estimator interest-
ingly leads to the Good-Turing estimator, but induces huge extra regret, while
naive normalization of Ristad’s quadruple uniform estimator induces negligible
extra regret. Given that q̃n1 can fail for interesting offline estimators, natural
questions to ask are: whether the excellent predictor q̃mix can be computed or
approximated (yes), by an efficient algorithm (no), whether for every (qn) there
exists any fast q̃ nearly as good as q̃mix (no), or whether there exist (qn) for
which no fast q̃ can even slightly beat the trivial uniform predictor (yes) (Sec-
tion 5). These results do not preclude a satisfactory positive solution in practice,
in particular given the contrived nature of the constructed (qn), but as any neg-
ative complexity result they show that a solution requires extra assumptions
or to moderate our demands. This leads to some precise open problems to this
effect (Section 6). Proofs for the regret bounds can be found in Appendix A
and computational complexity proofs for q̃mix in Appendix B and for general q̃
in [Hut14]. As a side-result we give the arguably most convincing (simplest and
least heuristic) derivation of the famous Good-Turing estimator. Other attempts
at deriving the estimator Alan Turing suggested in 1941 to I.J. Good are less
convincing (to us) [Goo53]. They appear more heuristic or convoluted, or are in-
complete, often assuming something close to what one wants to get out [Nad85].
Our purely combinatorial derivation also feels right for 1941 and Alan Turing.
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2 Problem Formulation

We now formally state the problem of offline to online conversion in three equiv-
alent ways and the quality of a conversion. Let xt ∈ X for t ∈ {1, ..., n} and
xt:n := xt...xn ∈ Xn−t+1, x<n := x1...xn−1 ∈ Xn−1, and x1:0 = x<1 = ε be the
empty string. ln denotes the natural logarithm and log the binary logarithm.
q̃|Xn constrains the domain X ∗ of q̃ to Xn.

Formulation 1 (Measures). Given probability measures Qn on Xn for n =
1, 2, 3, ..., find a probability measure Q̃ on X∞ close to all Qn in the sense of
Q̃(A ×X∞) ≈ Qn(A) for all measurable A ⊆ Xn and all n.

For simplicity of notation, we will restrict to countable X , and all examples
will be for finite X = {1, ..., d}. This allows us to reformulate the problem in
terms of probability (mass) functions and predictors. A choice for ≈ will be given
below.

Formulation 2 (Probability Mass Function). Given probability mass func-
tions qn : Xn → [0; 1], i.e.

∑
x1:n

qn(x1:n) = 1, find a function q̃ : X ∗ → [0; 1]
which is time-consistent (TC) in the sense∑

xn

q̃(x1:n) = q̃(x<n) ∀n, x<n and q̃(ε) = 1 (TC)

and is close to qn i.e. q̃(x1:n) ≈ qn(x1:n) for all n and x1:n.
This is equivalent to Formulation 1, via qn(x1:n) := Qn({x1:n}), and since q̃

is TC iff there exists Q̃ with q̃(x1:n) = Q̃({x1:n} × X∞). We will use the follow-
ing equivalent predictive formulation, discussed in the introduction, whenever
convenient:

Formulation 3 (Predictors). Given qn as before, find a predictor q̃ : X×X ∗ →
[0; 1] which must be normalized as∑

xn

q̃(xn|x<n) = 1 ∀n, x<n (Norm)

such that its joint probability q̃(x1:n) :=

n∏
t=1

q̃(xt|x<t) is close to qn as before.

q̃(x1:n) is the probability that an (infinite) sequence starts with x1:n and
q̃(xn|x<n) ≡ q̃(x1:n)/q̃(x<n) is the probability that xn follows given x<n. Con-
ditions (TC) and (Norm) are equivalent, and are the formal requirement(s) for
an estimator to be online. We also speak of (qn) being (not) Norm or TC.

Performance/Distance Measure. For modelling and coding we want q̃ as
large as possible, which suggests the worst-case regret or log-loss regret

Rn ≡ Rn(q̃) ≡ Rn(q̃||qn) := max
x1:n

ln
qn(x1:n)

q̃(x1:n)
(1)

For our qualitative considerations, other continuous Rn ≥ 0 with Rn = 0 iff
q̃|Xn = qn would also do. The Rn quantification of ≈ above has several conve-
nient properties: Since an online arithmetic code of x1:n w.r.t. q̃ has code length
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| log2 q̃(x1:n)|, and an offline Shannon-Fano or Huffman code for x1:n w.r.t. qn
has code length | log2 qn(x1:n)|, this shows that the online coding of x1:n w.r.t.
q̃ leads to codes at most Rn ln 2 bits longer than offline codes w.r.t. qn. Natu-
rally we are interested in q̃ with small Rn, and indeed we will see that this is
always achievable. Also, if qn is an offline approximation of the true sampling
distribution μ, then Rn upper bounds the extra regret of a corresponding online
approximation q̃:

Ronline
n −Roffline

n ≡ Rn(q̃||μ)−Rn(qn||μ) ≤ Rn(q̃||qn) ≡ Rn (2)

Extending qs from X s to X∞. Some (natural) offline (qn)n∈N considered
later are automatically online in the sense that q̃ defined by q̃(x1:n) := qn(x1:n)
∀n, x1:n is TC and hence Rn = 0 for all n. Note that it is always possible to
choose q̃ such that Rn = 0 for some n: For some fixed s ∈ N0 define

q̄s(x1:n) :=

⎧⎨⎩
qs(x1:s) if n = s,∑

xn+1:s
qs(x1:s) if n < s,

qs(x1:s)Q(xs+1:n|x1:s) if n > s

(3)

where Q can be an arbitrary measure on X∞, e.g. uniform Q(xs+1:n|x1:s) =
|X |n−s. It is easy to see that q̃ := q̄s is TC with Rs(q̃) = Rs(q̄s) = Rs(qs) = 0,
but in general Rn(q̄s) > 0 for n �= s. Therefore naive minimization of Rn w.r.t.
q̃ does not work. Minimizing limn→∞ Rn can also fail for a number of reasons:
the limit may not exist or is infinite, or minimizing it leads to poor finite-n
performance or is not analytically possible or computationally intractable.

3 Conversion Methods

We now consider four methods of converting offline estimators to online predic-
tors and discuss their pros and cons. They illustrate the difficulties and serve as
a starting point to a more satisfactory solution.

Naive Ratio. The simplest way to define a predictor q̃ from qn is via ratio

q̃rat(xt|x<t) :=
qt(x1:t)

qt−1(x<t)
or equivalently q̃rat(x1:n) := qn(x1:n) (4)

While this “solution” is tractable, it obviously only works when qn already is
TC. Otherwise q̃rat violates (TC). The deviation of

N (x<t) :=
∑
xt

q̃rat(xt|x<t) ≡
∑

xt
qt(x1:t)

qt−1(x<t)
(5)

from 1 measures the degree of violation. Note that the expectation of N (x<t)
w.r.t. qt−1 is 1, so if N (x<t) is smaller than 1 for some x<t it must be larger for
others, hence maxx<t N (x<t) = 1 iff N (x<t) = 1 for all x<t ∈ X t−1.

Naive Normalization. Failure of q̃rat(xt|x<t) to satisfy (Norm) is easily cor-
rected by normalization [Sol78]:
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q̃n1(xt|x<t) :=
qt(x1:t)∑
xt
qt(x1:t)

≡ q̃rat(xt|x<t)

N (x<t)
and (6)

q̃n1(x1:n) :=

n∏
t=1

q̃n1(xt|x<t) ≡ qn(x1:n)∏n
t=1N (x<t)

(7)

This guarantees TC and for small X is still tractable, but note that q̃n1|Xn �≡ qn
unless qn is already TC. Unfortunately, this way of normalization can result in
poor performance and very large regret Rn for finite n and asymptotically. Even
if performance is good, computing Rn or finding good upper bounds can be very
hard. Using (1) and (7), the regret can be represented and upper bounded as
follows:

Rn(q̃
n1) = max

x1:n

n∑
t=1

lnN (x<t) ≤
n∑

t=1

lnmax
x<t

N (x<t) (8)

If qn is TC, then N ≡ 1, hence Rn as well as the upper bound are 0.
Let us consider here a simple but artificial example how bad things can get,

following up with important practical examples in the next section. For an i.i.d.
estimator qn(x1:n) = qn(x1) · ... · qn(xn), where we slightly overloaded nota-
tion, q̃n1(xt|x<t) = qt(xt) and q̃n1(x1:n) = q1(x1) · ... · qn(xn), therefore by
definition (1)

Rn(q̃
n1) = max

x1:n

ln

n∏
t=1

qn(xt)

qt(xt)
=

n∑
t=1

lnmax
xt

qn(xt)

qt(xt)

We now consider X = {0, 1} with concrete Bernoulli(2/3) probability qn(xt =
1) = 2/3 for even n and Bernoulli(1/3) probability qn(xt = 1) = 1/3 for odd n. We
see that for even t,

q̃rat(1t|1<t) =
qt(11) · ... · qt(1t−1) · qt(1t)

qt−1(11)·...·qt−1(1t−1)
= 2t−1 · 2

3

is very badly unnormalized. Indeed Rn(q̃
n1) grows linearly with n, i.e. becomes

very large:

Rn(q̃
n1) =

n∑
t=1

ln

{
1 if n− t is even

2 if n− t is odd

}
= 
n

2
� ln 2

Limit. We have seen how to make Rs = 0 for any fixed s using q̄s (3). A
somewhat natural idea is to define

q̃lim(x1:n) := lim
s→∞

q̄s(x1:n) = lim
s→∞

∑
xn+1:s

qs(x1:s)

in the hope to make lims→∞Rs = 0. Effectively what q̃lim does is to use qs for
very large s also for short strings of length n by marginalization. Problems are
plenty: The limit may not exist, may exist but be incomputable, Rn may be
hard to impossible to compute or upper bound, and even if the limit exists, q̃lim

may perform badly.
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For instance, for the above Bernoulli(1/3|2/3) example, the argument of the
limit

q̃lim(x1:n) = lim
s→∞

∑
xn+1:s

qs(x1) · ... · qs(xs) = lim
s→∞

[qs(x1) · ... · qs(xn)]

oscillates indefinitely (except if x1+ ...+xn = n/2). A template leading to a con-
verging but badly performing q̃lim is qn(x1:n) = Bad(x<�n/2�) · Good(x�n/2�:n).
While offline qn(x1:n) is a “good” estimator on half of the data, q̃lim(x1:n) =
Bad(x1:n) is “bad” on all data. For example, Bad(x1:n) := |X |−n (see Uniform
next Section) and Good(x1:n) =

(
n+d−1

n1...nd d−1

)
(see Laplace next Section) or sim-

pler Good(11:n) = 1, lead to Rn(q̃
lim) ∝ n.

Mixture. Another way of exploiting q̄s is as follows: Rather than taking the
limit s → ∞ let us consider the class {q̄1, q̄2, ...} of all q̄s. This corresponds to
a set of measures on X∞, each good in a particular circumstance, namely q̄s is
good and indeed perfect at time s. It is therefore natural to consider a Bayesian
mixture over this class [San06]

q̃mix(x1:n) :=

∞∑
s=0

q̄s(x1:n)ws with prior ws > 0,

∞∑
s=0

ws = 1. (9)

q̃mix is TC and its regret can easily be upper bounded [San06]:

Rn(q̃
mix) = max

x1:n

ln
qn(x1:n)∑∞

s=0 q̄s(x1:n)ws
≤ max

x1:n

ln
qn(x1:n)

q̄n(x1:n)wn
= lnw−1

n (10)

For e.g. wn := 1
(n+1)(n+2) we have lnw−1

n ≤ 2 ln(n + 2) which usually can be
regarded as small. This shows that any offline estimator can be converted into an
online predictor with very small extra regret (2). Note that while q̃mix depends on
arbitrary Q defined in (3), the upper bound (10) on Rn does not. Unfortunately
it is unclear how to convert this heavy construction into an efficient algorithm.

A variation is to set Q ≡ 0, which makes q̃mix a semi-measure, which could be
made TC by naive normalization (7). Bound (10) still holds since for q̃mix with
Q ≡ 0 the normalizer N ≤ 1. Another variation is as follows. Often qn violates
TC only weakly, in which case a sparser prior, e.g. w2k := 1

(k+1)(k+2) and wn = 0
for all other n, can lead to even smaller regret.

Further Choices for q̃. Of course the four presented choices for q̃ do not
exhaust all options. Indeed, finding a tractable q̃ with good properties is a major
open problem. Several estimation procedures do not only provide qn on Xn, but
measures on X∞ or equivalently for each n separately a TC qn : X ∗ → [0; 1]
(see Bayes and crude MDL below). While this opens further options for q̃, e.g.
q̃(xn+1|x1:n) := qn(x1:n+1)/qn(x1:n) with some (weak) results for MDL [PH05],
it does not solve our main problem.

Notes. Each solution attempt has its down-sides, and a solution satisfying all
our criteria remains open. It is easy to verify that, if qn is already TC, the first
three definitions of q̃ coincide, and Rn = 0, which is reassuring, but q̃mix

n in
general differs due to the arbitrary w in (9) and arbitrary Q in q̄ in (3).
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4 Examples

All examples below fall in one of two major strategies for designing estimators
(the introduction mentions others we do not consider). One strategy is to start
with a classM of probability measures ν on X∞ in the hope one of them is good.
For instance, M may contain (a subset of) i.i.d. measures νθ(x1:n) := θx1 · ... ·θxn

with θi ≥ 0 and θ1+ ...+θd = 1 and d := |X |. One may either select a ν from M
informed by given data x1:n or take an average over the class. The other strategy
assigns uniform probabilities over subsets of Xn. This combinatorial approach
will be described later. Some strategies lead to TC and some examples are TC.
For the others we will discuss the various online conversions q̃.

Bayes. The Bayesianmixture overMw.r.t. some prior (density) w() is defined as

qn(x1:n) :=

∫
M

ν(x1:n)w(ν) dν

Since qn is TC, (qratn ) ≡ (qn1n ) ≡ (qlimn ) coincide with q̃, Rn = 0, and q̃rat is
tractable if the Bayes mixture is. Note that q̃ �∈ M in general, in particular
it is not i.i.d. Assume the true sampling distribution μ is in M. For countable
M and counting measure dν, we have qn(x1:n) ≥ μ(x1:n)w(μ), hence Ronline

n =
Roffline

n ≤ lnw(μ)−1. For continuous classes M we have Ronline
n = Roffline

n �
lnw(μ)−1 +O(lnn) under some mild conditions [BC91, Hut03, RH07].

MDL/NML/MAP. The MAP or MDL estimator is

q̂n(x1:n) := sup
ν∈M

{ν(x1:n)w(ν)} and qn(x1:n) :=
q̂n(x1:n)∑
x1:n

q̂n(x1:n)

Since q̂n is not even a probability on Xn, we have to normalize it to qn. For
uniform prior density w(), q̂n is the maximum likelihood (ML) estimator, and
qn is known under the name normalized maximum likelihood (NML) or modern
minimum description length (MDL). Unlike Bayes, qn is not TC, which causes
all kinds of complications [Grü07, Hut09], many of them can be traced back to
our main open problem and the unsatisfactory choices for q̃ [PH05]. Roffline

n is
essentially the same as for Bayes under similar conditions, but Ronline

n depends
on the choice of q̃. Crude MDL simply selects qn := argmaxν∈M{ν(x1:n)w(ν)}
at time n, which is a probability measure on X∞. While this opens additional
options for defining q̃, they also can perform poorly in the worst case [PH05].
Note that most versions of MDL perform often very well in practice, comparable
to Bayes; robustness and proving guarantees are the open problems.

Uniform. The uniform probability qn(x1:n) := |X |−n is TC, hence all four
q̃ coincide and Rn = 0 (only for uniform Q in case of qmix

n ). Unless data is
uniform, this is a lousy estimator, since predictor q̃(xt|x<t) = 1/|X | is indifferent
and ignores all evidence x<t to the contrary. But the basic idea of uniform
probabilities is sound, if applied smartly: The general idea is to partition the
sample space (here Xn) into P = {S1, ..., S|P|} and assign uniform probabilities
to each partition: qn(x1:n|Sr) = 1/|Sr| and a (possibly) uniform probability to
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the parts themselves qn(Sr) = 1/|P|. For small |P|, qn(x1:n) = qn(x1:n|Sr)qn(Sr)
is never more than a small factor |P| smaller than uniform |X |−n but may be
a huge factor of |X |n/|Sr||P| larger. The Laplace rule can be derived that way,
and the Good-Turing and Ristad estimators by further sub-partitioning.

Laplace. More interesting than the uniform probability is the following double
uniform combinatorial probability: Let ni := |{t : xt = i}| be the number of
times, symbol i ∈ X = {1, ..., d} appears in x1:n. We assign a uniform prob-
ability to all sequences x1:n with the same counts n := (n1, ..., nd), therefore

qn(x1:n|n) =
(

n
n1...nd

)−1
. We also assign a uniform probability to the counts n

themselves, therefore qn(n) = |{n : n1+ ...+nd = n}|−1 =
(
n+d−1
d−1

)−1
. Together

qn(x1:n) =

(
n

n1 ... nd

)−1(
n+ d− 1

d− 1

)−1

=

(
n+ d− 1

n1 ... nd d− 1

)−1

hence q̃rat(xn+1 = i|x1:n) =
qn+1(x1:ni)

qn(x1:n)
=

ni + 1

n+ d

is properly normalized (Norm), so q̃rat is TC, and (qratn ) ≡ (qn1n ) ≡ (qlimn ) coincide
with q̃ and Rn = 0. q̃rat is nothing but Laplace’s famous rule.

Good-Turing. Even more interesting is the following triple uniform probability:
Let Mr := {i : ni = r} be the symbols that appear exactly r ∈ N0 times in x1:n,
and mr := |Mr| be their number. Clearly mr = 0 for all r > n, but due to∑n

r=0 r ·mr = n, mr = 0 also for many r < n. We assign uniform probabilities
to qn(x1:n|n) as before and to qn(n|m) and to qn(m), where m := (m0, ...,mn).
There are

(
d

m0...mn

)
ways to distribute symbols 1, ..., d into sets (M0, ...,Mn)

(many of them empty) of sizes m0, ...,mn. Therefore qn(n|m) =
(

d
m0...mn

)−1
.

Each m constitutes a decomposition of n into natural summands with repetition
but without regard to order. The number of such decompositions is a well-
known function [AS74, §24.2.2] which we denote by Part(n). Therefore qn(m) =
Part(n)−1. Together

qn(x1:n) =

(
n

n1 ... nd

)−1(
d

m0 ... mn

)−1

Part(n)−1, hence (11)

q̃rat(xn+1= i|x1:n) =
qn+1(x1:ni)

qn(x1:n)
=

ni+1

n+1
· mr+1+1

mr
· Part(n)

Part(n+1)
, r = ni (12)

This is not TC as can be verified by example, but is a very interesting predictor:
The first term is close to a frequency estimate ni/n. The second term is close to
the Good-Turing (GT) correction mr+1/mr. The intuition is that if e.g. many
symbols have appeared once (m1 large), but few twice (m2 small), we should be
skeptical of observing a symbol that has been observed only once another time,
since it would move from a likely category to an unlikely one. The third term
Part(n)

Part(n+1) → 1 for n →∞. The normalized version
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q̃n1(xn+1 = i|x1:n) =
q̃rat(xn+1 = i|x1:n)∑
xn+1

q̃rat(xn+1|x1:n)
=

1

Nn
· r + 1

n+ 1
· mr+1 + 1

mr
(13)

where Nn :=
1

n+ 1

n∑
r=0,mr �=0

(r + 1)(mr+1 + 1) (14)

is even closer to the GT estimator. We kept 1
n+1 as in [Goo53, Eq.(13)], while

often 1
n is seen due to [Goo53, Eq.(2)]. Anyway after normalization there is no

difference. The only difference to the GT estimator is the appearance of mr+1+1
instead of mr+1. Unfortunately its regret is very large:

Theorem 1 (Naively Normalized Triple Uniform Estimator). Naive
normalization of the triple uniform combinatorial offline estimator qn defined
in (11) leads to the (non-smoothed) Good-Turing estimator q̃n1 given in (13)
with regret

Rn(q̃
n1||qn) = max

x1:n

{ n∑
t=1

lnNt−1

}
−ln(Part(n))

{
= n ln 2±O(

√
n) for |X | = ∞

≥ 0.43n−O(
√
n) for |X | ≥ 3

(15)

Inserting (12) and (14) into (6) we getN (x1:n) =
q̃rat(xn+1|x1:n)
q̃n1(xn+1|x1:n)

= Part(n)
Part(n+1)Nn

which by (8) implies the first equality. We prove the last equality in Appendix A
by showing that the maximizing sequence is x1:∞ = 1223334444... with Nn =
2 ± O(n−1/2) which requires infinite d or at least d ≥

√
2n. We also show that

Rn ≥ 0.43n−O(
√
n) for every d ≥ 3. The linearly growing Rn shows that naive

normalization severely harms the offline triple uniform estimator qn.
Indeed, raw GT performs very poorly for large r in practice, but smoothing

the function m() leads to an excellent estimator in practice [Goo53], e.g. Kneser-
Ney smoothing for text data [CG99]. Our mr+1 � mr+1 + 1 is a kind of albeit
insufficient smoothing. q̃mix may be regarded as an (unusual) kind of smoothing,
which comes with the strong guaranteeRn ≤ 2 ln(n+2), but a direct computation
is prohibitive. [San06] gives a low-complexity smoothing of the original GT that
comes with guarantees, namely sub-linear O(n2/3) log worst-case sequence atten-
uation, but this is different from Rn in various respects: Log worst-case sequence-
attenuation is relative to i.i.d. coding and unlike Rn lower bounded by O(n1/3).
Still a similar construction may lead to sublinear and ideally logarithmic Rn.

Ristad. [Ris95] designed an interesting quadruple uniform probability motivated
as follows: If X is the set of English words and x1:n some typical English text,
then most symbols=words will not appear (d 1 n). In this case, Laplace assigns
not enough probability (ni+1

n+d 2 ni

n ) to observed words. This can be rectified by
treating symbols A := {i : ni > 0} that do appear different from symbols X \A
that don’t. For n > 0, x1:n may contain m ∈ {1, ...,min{n, d}} different symbols,
so we set qn(m) = 1/min{n, d}. Now choose uniformly which m symbols A
appear, qn(A|m) =

(
d
m

)−1
for |A| = m. There are

(
n−1
m−1

)
ways of choosing the

frequency of symbols consistent with n1 + ... + nd = n and ni > 0 ⇔ i ∈ A,

hence qn(n|A) =
(
n−1
m−1

)−1
. Finally, qn(x1:n|n) =

(
n

n1...nd

)−1
as before. Together
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qn(x1:n) =

(
n

n1 ... nd

)−1(
n− 1

m− 1

)−1(
d

m

)−1
1

min{n, d} , which implies

(16)

q̃rat(xn+1 = i|x1:n) =
min{n, d}

min{n+ 1, d} ·

⎧⎨⎩
(ni+1)(n−m+1)

n(n+1) if ni > 0

m(m+1)
n(n+1) · 1

d−m if ni = 0

This is not TC, since

N (x1:n) =
min{n, d}

min{n+ 1, d} ·

⎧⎨⎩ 1 + 2m
n(n+1) if m < d

1− m(m−1)
n(n+1) if m = d

is not identically 1. Normalization leads to

q̃n1(xn+1 = i|x1:n) =

⎧⎪⎨⎪⎩
(ni+1)(n−m+1)

n(n+1)+2m if ni > 0 and m < d
m(m+1)

n(n+1)+2m · 1
d−m if ni = 0

ni+1
n+m if m = d [⇒ ni > 0]

(17)

For n = 0 we have q̃rat(x1) = q̃n1(x1) = qn(x1) = 1/d and N (ε) = 1. While
by construction, the offline estimator should have good performance (in the
intended regime), the performance of the online version depends on how much
the normalizer exceeds 1. The first factor in N is ≤ 1 and the m = d case is ≤ 1.
Therefore N (x1:n) ≤ 1 + 2m

n(n+1) ≤ 1 + 2
n+1 , where we have used m ≤ n in the

second step. The regret can hence be bounded by

Rn(q̃
n1) ≤

n∑
t=1

lnmax
x<t

N (x<t) ≤
n∑

t=2

ln(1+ 2
t ) ≤

n∑
t=2

2
t ≤ 2 lnn

Theorem 2 (Quadruple Uniform Estimator). Naive normalization of Ris-
tad’s quadruple uniform combinatorial offline estimator qn defined in (16) leads
to Ristad’s natural law q̃n1 given in (17) with regret Rn(q̃

n1||qn) ≤ 2 lnn.

This shows that simple normalization does not ruin performance. Indeed, the
regret bound is as good as we are able to guarantee in general via q̃mix.

5 Computational Complexity of q̃

Computability and Complexity of q̃mix. From the four discussed online
estimators only qmix

n guarantees small extra regret over offline (qn) in general,
but the definition of q̃mix is quite heavy and at first it is not even clear whether
it is computable. The following theorem proven in Appendix B shows that q̃mix

can be computed to relative accuracy ε in double-exponential time:

Theorem 3 (Computational Complexity of q̃mix). There is an algo-
rithm A that computes q̃mix (with uniform choice for Q) to relative accuracy
|A(x1:n, ε)/q̃mix(x1:n)− 1| < ε in time O(|X |4|X |n/ε) for all ε > 0.
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The relative accuracy ε allows us to compute the predictive distribution
q̃mix(xt|x<t) to accuracy ε, ensures A(x1:n, ε) > (1 − ε)q̃mix

n (x1:n), hence
Rn(A(·, ε)||qn) ≤ Rn(q̃

mix||qn) + ε
1−ε , and approximate normalization |1 −∑

x1:n
A(x1:n, ε)| < ε.

Computational Complexity of General q̃. The existence of q̃mix shows that
any offline estimator can be converted into an online estimator with minimal extra
regretRn ≤ 2 ln(n+2).While encouraging and of theoretical interest, the provided
algorithm for q̃mix is prohibitive. Indeed, Theorem 4 below establishes that there
exist offline (qn) computable in polynomial time for which the fastest algorithm
for any online (=TC) q̃ with Rn ≤ O(log n) is at least exponential in time.

Trivially Rn ≤ n ln |X | can always be achieved for any (qn) by uniform
q̃(x1:n) = |X |−n. So a very modest quest would be Rn ≤ (1 − ε)n ln |X |. If we
require q̃ to run in polynomial time but with free oracle access to (qn), Theorem 5
below shows that this is also not possible for some exponential time (qn).

Together this does not rule out that for every fast (qn) there exists a fast q̃
with e.g. Rn ≤

√
n. This is our main remaining open problem to be discussed in

Section 6.
The main proof idea for both results is as follows: We construct a deterministic

(qs) that is 1 on the sequence of quasi-independent quasi-random strings ẋ11:1,
ẋ21:2, ẋ

3
1:3, ... . The only way for q̃(x1:n) to be not too much smaller than q̄s(ẋ

s
1:n)

is to know ẋs1:s. If s = s(n) is exponential in n this costs exponential time. If q̃
has only oracle access to (qs), it needs exponentially many oracle calls even for
linear s(n) = (1 + ε)n.

The general theorem is a bit unwieldy and is deferred to the end of the sec-
tion and is proven in the extended technical report [Hut14]. First we present
and discuss the most interesting special cases. TIME(g(n)) is defined as the
class of all algorithms that run in time O(g(n)) on inputs of length n. Real-
valued algorithms produce for any rational ε > 0 given as an extra argument,
an ε-approximation in this time, as did A(x1:n, ε) for q̃

mix above. Algorithms in
Ec := TIME(2cn) run in exponential time, while P :=

⋃∞
k=1 TIME(nk) is the

classical class of all algorithms that run in polynomial time (strictly speaking
Function-P or FP [AB09]). The theorems don’t rest on any complexity sepa-
ration assumptions such as P �=NP. We only state and prove the theorems for
binary alphabet X = B = {0, 1}. The generalization to arbitrary finite alphabet
is trivial. ‘For all large n’ shall mean ‘for all but finitely many n’, denoted by
∀′n. m > 0 is a constant that depends on the machine model, e.g. m = 1 for a
random access machine (RAM).

Theorem 4 (Sub-optimal Fast Online for Fast Offline). For all r > 0 and
c > 0 and ε > 0

(i) ∃(qs) ∈ TIME(sb+m) ∀q̃ ∈ Ec : Rn(q̃||qn) ≥ r lnn ∀′n, where b := c+1+ε
1−ε r

(ii) in particular for large c and r: ∃(qs) ∈ P ∀q̃ ∈ Ec : Rn ≥ r lnn ∀′n,
(iii) in particular for small c, ε: ∃(qs)∈TIME(sr+m+ε)∀q̃∈P : Rn ≥ r lnn ∀′n,
(iv) in particular for q̃mix: ∃(qs) ∈ P : q̃mix �∈ Ec
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In particular (iii) implies that there is an offline estimator (qs) computable in
quartic time s4 on a RAM for which no polynomial-time online estimator q̃ is as
good as q̃mix. The slower (qs) we admit (larger r), the higher the lower bound
gets. (ii) says that even algorithms for q̃ running in exponential time 2cn cannot
achieve logarithmic regret for all (qs) ∈ P. In particular this implies that (iv) any
algorithm for q̃mix requires super-exponential time for some (qs) ∈ P on some
arguments.

The next theorem is much stronger in the sense that it rules out even very
modest demands on Rn but is also much weaker since it only applies to online es-
timators for slow (qs) used as a black box oracle. That is, q̃o(x1:n) can call qs(z1:s)
for any s and z1:s and receives the correct answer. We define TIMEo(g(n)) as the
class of all algorithms with such oracle access that run in time O(g(n)), where
each oracle call is counted only as one step, and similarly Po and Ec,o.

Theorem 5 (Very Poor Fast Online Using Offline Oracle). For all ε > 0

∃o ≡ (qs) ∈ E1 ∀q̃o ∈ Eε/2,o : Rn(q̃
o||qn) ≥ (1− ε)n ln 2 ∀′n

or cruder: ∃o ≡ (qs) ∀q̃o ∈ Po : Rn(q̃
o||qn) ≥ (1− ε)n ln 2 ∀′n

The second line states that the trivial bound Rn ≤ n ln 2 achieved by the uniform
distribution can in general not be improved by a fast q̃o that (only) has oracle
access to the offline estimator.

Usually one Does not state the complexity of the oracle, since it does not
matter, but knowing that an o ∈ E1 is sufficient (first line) tells us something:
First, the negative result is not an artifact of some exotic non-computable offline
estimator. On the other hand, if an exponential time offline o is indeed needed
to make the result true, the result wouldn’t be particularly devastating. It is an
open question whether an o ∈ P can cause such bad regret.

The general computational complexity result is as follows:

Theorem 6 (Fast Offline can Imply Slow Online (General)). Let s(n)
and f(n) and g(n) be monotone increasing functions. s(n) shall be injective and
≥ n for large n with inverse n(s) := max{n : s(n) ≤ s} and g(n) < 1

2n
−δh(n),

where h(n) := 2s(n)−n[n−γ − 2f(s(n))−n]. m > 0 is a constant depending on the
machine model, e.g. m = 1 for a RAM. Then for all γ > 0 and δ > 0 it holds
that

∃o ≡ (qs) ∈ TIME(n(s)γ+δ2n(s)g(n(s))sm)

∀q̃o ∈ TIMEo(g(n)) : Rn(q̃
o||qn) ≥ f(n) ln 2 ∀′n

For s = 2(1−ε)n/r and f(s) = r log s = (1 − ε)n and g(n) = 2cn this implies
Theorem 4, and for s = (1 + ε)n and f(s) = (1 − ε)s and g(n) = 2εn/2 this
implies Theorem 5. See the extended technical report [Hut14] for the proofs of
Theorems 4, 5 and 6.

6 Open Problems

We now discuss and quantify the problems that we raised earlier and are
still open. For some specific collection (qn) of probabilities, does there exist a
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polynomial-time computable time-consistent q̃ with Rn(q̃||qn) ≤ 2 ln(n+ 2)∀n?
Note that q̃mix satisfies the bound, but a direct computation is prohibitive. So
one way to a positive answer could be to find an efficient approximation of q̃mix.
If the answer is negative for a specific (qn) one could try to weaken the require-
ments on Rn. We have seen that for some, (non-TC) (qn), namely Ristad’s,
simple normalization q̃n1 solves the problem.

A concrete unanswered example are the triple uniform Good-Turing proba-
bilities (qn). Preliminary experiments indicate that they and therefore q̃mix are
more robust than current heuristic smoothing techniques, so a tractable approx-
imation of q̃mix would be highly desirable. It would be convenient and insightful
if such a q̃ had a traditional GT representation but with a smarter smoothing
function m().

The nasty (qn) constructed in the proof of Theorem 6 is very artificial: It
assigns extreme probabilities (namely 1) to quasi-random sequences. It is un-
known whether there is any offline estimator of practical relevance (such as
Good-Turing) for which no fast online estimator can achieve logarithmic regret.

An open problem for general (qn) is as follows: Does there exist for every (qn)
a polynomial-time algorithm that computes a time-consistent q̃ with Rn(q̃||qn) ≤
f(n)∀n. We have shown that this is not possible for f(n) = O(log n) and not
even for f(n) = (1− ε)n ln 2 if q̃ has only oracle access to (qn). This still allows
for a positive answer to the following open problem:

Open Problem 7 (Fast Online from Offline with Small Extra Regret).
Can every polynomial-time offline estimator (qn) be converted to a polynomial-
time online estimator q̃ with small regret Rn(q̃||qn) ≤

√
n ∀′n? Or weaker:

∀(qn) ∈ P∃q̃ ∈ P : Rn = o(n)? Or stronger: ∀(qn) ∈ P∃q̃ ∈ P : Rn = O(log n)2?

A positive answer would reduce once and for all the problem of finding good
online estimators to the apparently easier problem of finding good offline esti-
mators. We could also weaken our notion of worst-case regret to e.g. expected
regret E[ln(qn/q̃)]. Expectation could be taken w.r.t. (qn), but other choices are
possible. Other losses than logarithmic also have practical interest, but I do not
see how this makes the problem easier. Ignoring computational considerations,
of theoretical interest is whether O(log n) is the best one can achieve in general,
say ∃qn∀q̃ : Rn(q̃) ≥ lnn, or whether a constant is achievable. Devising general
techniques to upper bound Rn(q̃

n1||qn), especially if small, is of interest too.

Acknowledgements. Thanks to Jan Leike for feedback on earlier drafts.
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A Proof of Theorem 1

For GT we prove maxx1:n Nn → 2, therefore maxx1:n N (x1:n) → 2 due to
Part(n)

Part(n+1) → 1 for n →∞. We can upper bound (14) as

(n+ 1)Nn =

n∑
r=0,mr �=0

(r + 1)mr+1 +

n∑
r=0,mr �=0

r +

n∑
r=0,mr �=0

1

≤
n+1∑
r′=1

r′mr′ +
n∑

r=0

rmr + |{r : mr �= 0}|

= n+ n+ |{r : mr �= 0}| ≤ 2n+
√
2n+ 1

|{r : mr �= 0}| under the constraint
∑n

r=0 rmr = n is maximized for m0 = ... =
mk = 1 and mk+1 = ... = mn = 0 for suitable k. We may have to set one mr = 2

to meet the constraint. Therefore n =
∑n

r=0 rmr ≥
∑k

r=0 r = k(k+1)
2 ≥ 1

2k
2,

hence |{r : mr �= 0}| = k + 1 ≤
√
2n+ 1.

http://www.hutter1.net/publ/off2onx.pdf
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For the lower bound we construct a sequence that attains the upper bound.
For instance, x1:k(k+1)/2 = 1223334444 ... k...k has m1 = ... = mk = 1, hence
x1:∞ = 1223334444... has m1 ≥ 1, ...,mk ≥ 1 for all n ≥ 1

2k(k + 1). Conversely,

for any n we have m1 ≥ 1, ...,mk ≥ 1 with k := 

√
2n� − 1. For the chosen

sequence we therefore have

(n+ 1)Nn ≥
k−1∑
r=0

(r + 1)(1 + 1) = k(k + 1) ≥ 2n− 3
√
2n

The upper and lower bounds together imply maxx1:n Nn = 2±O(n−1/2), there-

fore maxx1:n N (x1:n) = 2 ± O(n−1/2) due to Part(n)
Part(n+1) = 1 − O(n−1/2) [AS74].

Inserting this into (15) gives Rn = n ln 2±O(n−1/2).
The upper bound holds for any d, but the lower bound requires d = ∞ or

at least d ≥
√
2n. We now show linear growth of Rn even for finite d ≥ 3.

The lower bound is based on the same sequence as used in [San06]: For x1:∞ =

12(132)∞ elementary algebra gives Nn = 5
3 + 7/3

n+1 and Nn+1 = 5
3 + 5/3

n+2 and

Nn+2 = 4
3 + 1

n+3 for n a multiple of 3, hence NnNn+1Nn+2 ≥ 100
27 (except

N0N1N2 = 2
3 ). Together with asymptotics ln(Part(n)) ∼ π

√
2n/3 [AS74], this

implies that Rn ≥ n
3 ln 100

27 −O(
√
n).

B Proof of Theorem 3

The design of an algorithm for q̃mix and the analysis of its run-time follows
standard recipes, so will only be sketched. A real-valued function q̃mix : X ∗ →
[0; 1] is (by definition) computable (also called estimable [Hut05]), if there is an
always halting algorithm A : X ∗×Q+ → Q with |A(x1:n, ε)− q̃mix(x1:n)| < ε for
all rational ε > 0. We assume there is an oracle qεt that provides qt to ε-accuracy
in time O(1). We assume that real numbers can be processed in unit time. In
reality we need O(ln 1/ε) bits to represent, and time to process, real numbers to
accuracy ε. This leads to some logarithmic factors in run-time which are dwarfed
by our exponentials, so will be ignored. To compute q̄s(x1:n) to accuracy ε/2 we

need to call q
ε/2N
s oracleN := max{|X |s−n, 1} times and add up all numbers. We

can compute q̃mix to ε-accuracy by the truncated sum
∑2/ε

s=0 q̄
ε/2
s (x1:n)ws with

ws = 1
(s+1)(s+2) , since the tail sum is bounded by ε/2. Hence overall runtime is

O(|X |2/ε−n). But this is not sufficient. For large n, q̃mix(x1:n) is typically small,
and we need a relative accuracy of ε, i.e. |A(x1:n, ε′)/q̃mix(x1:n) − 1| < ε. For
Q(x1:n) = |X |−n, we have q̃mix(x1:n) ≥ 1

2Q(x1:n) =
1
2 |X |−n, hence ε′ = ε

2 |X |−n

suffices. Run time becomes O(|X | 4ε |X |n−n) ≤ ee
O(n)/ε.



A Chain Rule for the Expected Suprema

of Gaussian Processes

Andreas Maurer

Adalbertstrasse 55
D-80799 München, Germany

am@andreas-maurer.eu

Abstract. The expected supremum of a Gaussian process indexed by
the image of an index set under a function class is bounded in terms of
separate properties of the index set and the function class. The bound
is relevant to the estimation of nonlinear transformations or the analysis
of learning algorithms whenever hypotheses are chosen from composite
classes, as is the case for multi-layer models.

1 Introduction

Rademacher and Gaussian averages ([1], see also [5],[11]) provide an elegant
method to demonstrate generalization for a wide variety of learning algorithms
and are particularly well suited to analyze kernel machines, where the use of
more classical methods relying on covering numbers becomes cumbersome.

To briefly describe the use of Gaussian averages (Rademacher averages will
not concern us), let Y ⊆ Rn and let γ be a vector γ = (γ1, ..., γn) of independent
standard normal variables. We define the (expected supremum of the) Gaussian
average of Y as

G (Y ) = E sup
y∈Y

〈γ,y〉 , (1)

where 〈., .〉 denotes the inner product in Rn. Consider a loss class F of functions
f : X → R, where X is some space of examples (such as input-output pairs), a
sample x = (x1, ..., xn) ∈ Xn of observations and write F (x) for the subset of
Rn given by F (x) = {(f (x1) , ..., f (xn)) : f ∈ F}. Then we have the following
result [1].

Theorem 1. Let the members of F take values in [0, 1] and let X,X1, ..., Xn be
iid random variables with values in X , X = (X1, ..., Xn). Then for δ > 0 with
probability at least 1− δ we have for every f ∈ F that

Ef (X) ≤ 1

n

∑
f (Xi) +

√
2π

n
G (F (X)) +

√
9 ln 2/δ

2n
,

where the expectation in the definition (1) of G (F (X)) is conditional to the
sample X.
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The utility of Gaussian averages is not limited to functions with values in
[0, 1]. For real functions φ with Lipschitz constant L (φ) we have G ((φ ◦ F) (x))
≤ L (φ) G (F (x)) (see also Slepian’s Lemma, [6], [4]), where φ ◦ F is the class
{x /→ φ (f (x)) : f ∈ F}.

The inequality G ((φ ◦ F) (x)) ≤ L (φ) G (F (x)), which in the above form
holds also for Rademacher averages [10], is extremely useful and in part respon-
sible for the success of these complexity measures. For Gaussian averages it holds
in a more general sense: if φ : Rn → Rm has Lipschitz constant L (φ) with re-
spect to the Euclidean distances, then G (φ (Y )) ≤ L (φ)G (Y ). This is a direct
consequence of Slepian’s Lemma and can be applied to the analysis of clustering
or learning to learn ([9] and [8]).

But what if we also want some freedom in the choice of φ after seeing the
data? If the class of Lipschitz functions considered has small cardinality, a union
bound can be used. If it is very large one can try to use covering numbers, but
the matter soon becomes quite complicated and destroys the elegant simplicity
of the method.

These considerations lead to a more general question: given a set Y ⊂ Rn and
a class F of functions f : Rn→ Rm, how can we bound the Gaussian average
G (F (Y )) = G ({f (y) : f ∈ F , y ∈ Y }) in terms of separate properties of Y and
F , properties which should preferably very closely resemble Gaussian averages?
If H is some class of functions mapping samples to Rn and Y = H (x), then
the bound is on G (F (Y )) = G ((F ◦ H) (x)), so our question is relevant to the
estimation of composite functions in general. Such estimates are necessary for
multitask feature-learning, where H is a class of feature maps and F is vector-
valued, with components chosen independently for each task. Other potential
applications are to the currently popular subject of deep learning, where we
consider functional concatenations as in FM◦FM−1◦... ◦ F1.

The present paper gives a preliminary answer. To state it we introduce some
notation. We will always take γ = (γ1, ...) to be a random vector whose compo-
nents are independent standard normal variables, while ‖.‖ and 〈., .〉 denote norm
and inner product in a Euclidean space, the dimension of which is determined
by context, as is the dimension of the vector γ.

Definition 1. If Y ⊆ Rn we set

D (Y ) = sup
y,y′∈Y

‖y − y′‖ and G (Y ) = E sup
y∈Y

〈γ,y〉 .

If F is a class of functions f : Y → Rm we set

L (F , Y ) = sup
y,y′∈Y, y �=y′

sup
f∈F

‖f (y) − f (y′)‖
‖y − y′‖ and

R (F , Y ) = sup
y,y′∈Y, y �=y′

E sup
f∈F

〈γ, f (y) − f (y′)〉
‖y − y′‖ .

We also write F (Y ) = {f (y) : f ∈ F ,y ∈ Y }. When there is no ambiguity we
write L (F) = L (F , Y ) and R (F) = R (F , Y ).
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Then D (Y ) is the diameter of Y , and G (Y ) is the Gaussian average already
introduced above. L (F) is the smallest Lipschitz constant acceptable for all
f ∈ F , and the more unusual quantity R (F) can be viewed as a Gaussian
average of Lipschitz quotients. In section 3.1 we give some properties of R (F).
Our main result is the following chain rule.

Theorem 2. Let Y ⊂ Rn be finite, F a finite class of functions f : Y → Rm.
Then there are universal constants C1 and C2 such that for any y0 ∈ Y

G (F (Y )) ≤ C1L (F)G (Y ) + C2D (Y )R (F) +G (F (y0)) . (2)

We make some general remarks on the implications of our result.
1. The requirement of finiteness for Y and F is a simplification to avoid issues

of measurability. The cardinality of these sets plays no role.
2. The constants C1 and C2 as they result from the proof are rather large,

because they accumulate the constants of Talagrand’s majorizing measure the-
orem and generic chaining [6][14][15][16]. This is a major shortcoming and the
reason why our result is regarded as preliminary. Is there another proof of a
similar result, avoiding majorizing measures and resulting in smaller constants?
This question is the subject of current research.

3. The first term on the right hand side of (2) describes the complexity inher-
ited from the bottom layer Y (which we may think of as H (x)), and it depends
on the top layer F only through the Lipschitz constant L (F). The other two
terms represent the complexity of the top layer, depending on the bottom layer
only through the diameter D (Y ) of Y . If Y has unit diameter and the func-
tions in F are contractions, then the two layers are completely decoupled in the
bound. This decoupling is the most attractive property of our result.

4. Apart from the large constants the inequality is tight in at least two situ-
ations: first, if Y = {y0} is a singleton, then only the last term remains, and we
recover the Gaussian average of F (y0). This also shows that the last term can-
not be eliminated. On the other hand if F consists of a single Lipschitz function
φ, then we recover (up to a constant) the inequality G (φ (Y )) ≤ L (φ)G (Y )
above.

5. The bound can be iterated to multiple layers by re-substitution of F (Y ) in
place of Y . A corresponding formula is given in Section 3, where we also sketch
applications to vector-valued function classes.

The next section gives a proof of Theorem 2, then we explain how our result
can be applied to machine learning. The last section is devoted to the proof of
a technical result encapsulating our use of majorizing measures.

2 Proving the Chain Rule

To prove Theorem 2 we need the theory of majorizing measures and generic
chaining. Our use of these techniques is summarized in the following theorem,
which is also the origin of our large constants.
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Theorem 3. Let Xy be a random process indexed by a finite set Y ⊂ Rn. Sup-
pose that there is a number K ≥ 1 such that for any distinct members y,y′ ∈ Y
and any s > 0

Pr {Xy −Xy′ > s} ≤ K exp

(
−s2

2 ‖y − y′‖2

)
(3)

Then for any y0 ∈ Y

E

[
sup
y∈Y

Xy −Xy0

]
≤ C′G (Y ) + C′′D (Y )

√
lnK,

where C′ and C′′ are universal constants.

This is obtained from Talagrand’s majorizing measure theorem (Theorem 6
below) combined with generic chaining [16]. An early version of a similar result
is Theorem 15 in [13], where the author remarks that his method of proof (which
we also use) is very indirect, and that a more direct proof would be desirable. In
Section 4 we do supply a proof, largely because the dependence on K, which can
often be swept under the carpet, plays a crucial role in our arguments below.

We also need the following Gaussian concentration inequality (Tsirelson-
Ibragimov-Sudakov inequality, Theorem 5.6 in [4]).

Theorem 4. Let F : Rn → R be L-Lipschitz. Then for any s > 0

Pr {F (γ) > EF (γ) + s} ≤ e−s2/(2L2).

To conclude the preparation for the proof of Theorem 2 we give a simple
lemma.

Lemma 1. Suppose a random variable X satisfies Pr {X −A > s} ≤ e−s2 , for
any s > 0. Then

∀s > 0 , Pr {X > s} ≤ eA
2

e−s2/2.

Proof. For s ≤ A the conclusion is trivial, so suppose that s > A. From s2 =
(s−A+A)2 ≤ 2 (s−A)2 + 2A2 we get (s−A)2 ≥

(
s2/2

)
−A2, so

Pr {X > s} = Pr {X −A > s−A} ≤ e−(s−A)2 ≤ eA
2

e−s2/2.

�

Proof (of Theorem 2). The result is trivial if F consists only of constants, so we
can assume that L (F) > 0. For y,y′ ∈ Y define a function F : Rm → R by

F (z) = sup
f∈F

〈z, f (y) − f (y′)〉 .
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F is Lipschitz with Lipschitz constant bounded by supf∈F ‖f (y)− f (y′)‖ ≤
L (F) ‖y − y′‖. Writing Zy,y′ = F (γ), it then follows from Gaussian concentra-
tion (Theorem 4) that

Pr {Zy,y′ > EZy,y′ + s} ≤ exp

(
−s2

2L (F)
2 ‖y − y′‖2

)
.

Since by definition EZy,y′ ≤ R (F) ‖y − y′‖, Lemma 1 gives

Pr {Zy,y′ > s} ≤ exp

(
R (F)

2

2L (F)
2

)
exp

(
−s2

4L (F)
2 ‖y − y′‖2

)
.

Now define a process Xy, indexed by Y , as

Xy =
1√

2L (F)
sup
f∈F

〈γ, f (y)〉 .

Since Xy −Xy′ ≤ Zy,y′/
(√

2L (F)
)
we have

Pr {Xy −Xy′ > s} ≤ Pr
{
Zy,y′ >

√
2L (F) s

}
≤ exp

(
R (F)2

2L (F)
2

)
exp

(
−s2

2 ‖y − y′‖2

)

and by Theorem 3, with K = exp
(
R (F)

2
/
(
2L (F)

2
))

≥ 1,

E sup
y∈Y

(Xy −Xy0) ≤ C′G (Y ) + C′′D (Y )
R (F)√
2L (F)

.

Multiplication by
√
2L (F) then gives

E sup
y∈Y

(
sup
f∈F

〈γ, f (y)〉 − sup
f∈F

〈γ, f (y0)〉
)
≤ C1L (F)G (Y ) + C2D (Y )R (F)

with C1 =
√
2C′ and C2 = C′′. �

3 Applications

We first give some elementary properties of the quantity R (F , Y ) which appears
in Theorem 2. Then we apply Theorem 2 to a two layer kernel machine and give
a bound for multi-task learning of low-dimensional representations.
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3.1 Some Properties of R (F)

Recall the definition of R (F , Y ). If Y ⊆ Rnand F consists of functions f : Y →
Rm

R (F , Y ) = sup
y,y′∈Y, y �=y′

E sup
f∈F

〈γ, f (y) − f (y′)〉
‖y − y′‖ .

R (F) is itself a supremum of Gaussian averages. For y,y′ ∈ Y let ΔF (y,y′) ⊆
Rm be the set of quotients

ΔF (y,y′) =

{
f (y)− f (y′)

‖y − y′‖ : f ∈ F
}
.

It follows from the definition that R (F , Y ) = supy,y′∈Y, y �=y′ G (ΔF (y,y′)). We
record some simple properties. Recall that for a set S in a real vector space the
convex hull Co (S) is defined as

Co (S) =

{
n∑

i=1

αizi : n ∈ N, zi ∈ S, αi ≥ 0,
∑
i

αi = 1

}
.

Theorem 5. Let Y ⊆ Rn and let F and H be classes of functions f : Y → Rm.
Then

(i) If F ⊆ H then R (F , Y ) ≤ R (H, Y ).
(ii) If Y ⊆ Y ′ then R (F , Y ) ≤ R (F , Y ′).
(iii) If c ≥ 0 then R (cF , Y ) = cR (F , Y ) .
(iv) R (F +H, Y ) ≤ R (F , Y ) +R (H, Y ).
(v) R (F , Y ) = R (Co (F) , Y ).
(vi) If Z ⊆ RK and φ : Z → Rn has Lipschitz constant L (φ) and the members

of F are defined on φ (Z), then R (F ◦ φ, Z) ≤ L (φ)R (F , φ (Z)).
(vii) R (F) ≤ L (F)

√
2 ln |F|.

Remarks:
1. From (ii) we get R (F , Y ) ≤ R (F ,Rn). In applications where Y = H (x)

the quantity R (F ,H (x)) is data-dependent, but R (F ,Rn) is sometimes easier
to bound.

2. We see that the properties of R (F) largely parallel the properties of the
Gaussian averages themselves, except for the inequality G (φ (Y )) ≤ L (φ)G (Y ),
for which there doesn’t seem to be an analogous property of R (F). Instead we
have a ’backwards’ version of it with (vi) above, with a rather trivial proof below.

3. Of course (vii) is relevant only when ln |F| is reasonably small and serves
the comparison of Theorem 2 to alternative bounds.

Proof. (i)-(iii) are obvious from the definition. (iv) follows from linearity of the
inner product and the triangle inequality for the supremum. To see (v) first note
that R (F) ≤ R (Co (F)) follows from (i), while the reverse inequality follows
from
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sup
αi≥0,

∑
αi=1

sup
f1,f2,...∈F

〈
γ,
∑
i

αifi (y)−
∑
i

αifi (y
′)

〉
= sup

αi≥0,
∑

αi=1

sup
f1,f2,...∈F

∑
i

αi 〈γ, fi (y) − fi (y
′)〉

≤ sup
αi≥0,

∑
αi=1

∑
i

αi sup
f∈F

〈γ, f (y) − f (y′)〉

= sup
f∈F

〈γ, f (y)− f (y′)〉 .

For (vi) we may chose y and y′ such that φ (y) �= φ (y′), since otherwise both
sides of the inequality to be proved are zero. But then

E sup
f∈F◦φ

〈γ, f (y) − f (y′)〉
‖y − y′‖ =

‖φ (y) − φ (y′)‖
‖y − y′‖ E sup

f∈F

〈γ, f (φ (y))− f (φ (y′))〉
‖φ (y) − φ (y′)‖

≤ L (φ)E sup
f∈F

〈γ, f (φ (y))− f (φ (y′))〉
‖φ (y)− φ (y′)‖ .

To see (vii) note that for every y and y′ and every f ∈ F it follows from Gaussian
concentration (Theorem 4) that

Pr

{
〈γ, f (y)− f (y′)〉

‖y − y′‖ > s

}
≤ e−s2/2L2

.

The conclusion then follows from standard estimates (e.g. [4], section 2.5). �

3.2 A Double Layer Kernel Machine

We use the chain rule to bound the complexity of a double-layer kernel machine.
The corresponding optimization problem is clearly non-convex and we are not
aware of an efficient optimization method. The model is chosen to illustrate the
application of Theorem 2. It is defined as follows.

Assume the data to lie in Rm0 and fix two real numbers Δ1 and B1. On
Rm0 × Rm0 define a (Gaussian radial-basis-function) kernel κ by

κ (z, z′) = exp

(
−‖z − z′‖2

2Δ2
1

)
, z, z′ ∈ Rm0 ,

and let φ : Rm0 → H be the associated feature map, where H is the associated
RKHS with inner product 〈., .〉H and norm ‖.‖H (for kernel methods see . Now
we let H be the class of vector valued functions h : Rm0 → Rm1 defined by

H =

{
z ∈ Rm0 /→ (〈w1, φ (z)〉H , ..., 〈wm1 , φ (z)〉H) :

∑
k

‖wk‖2H ≤ B2
1

}
.

This can also be written as H = {z ∈ Rm0 /→ Wφ (z) : ‖W‖HS ≤ B1}, where
‖W‖HS is the Hilbert-Schmidt norm of an operator W : H → Rm1 .
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For the function class F , which we wish to compose with H, we proceed
in a similar way, defining an analogous kernel of width Δ2 on Rm1 × Rm1 , a
corresponding feature map ψ : Rm1 → H and a class of real valued functions

F = {z ∈ Rm1 /→ 〈v, ψ (z)〉H : ‖vl‖H ≤ B2} .

We now want high probability bounds on the estimation error for functional
compositions f ◦ h, uniform over F ◦ H. To apply our result we should really
restrict to finite subsets of F and H a requirement which we simply ignore. In
machine learning we could of course always restrict all representations to some
fixed, very high but finite precision.

Fix a sample x ∈ Rnm0 . Then Y = H (x) ⊂ Rnm1 . To use Theorem 2 we
define a class F ′ of functions from Rnm1 to Rn by

F ′ = {(y1, ..., yn) ∈ Rnm1 /→ (f (y1) , ..., f (yn)) ∈ Rn : f ∈ F} .

Since the first feature map φ maps to the unit sphere of H we have

D (H (x)) ≤ 2B1

√
n and

G (H (x)) = E sup
W

∑
ik

γik 〈wk, φ (xi)〉H ≤ B1
√
nm1.

The feature map corresponding to the Gaussian kernelΔ2 has Lipschitz constant
Δ−1

2 . For y,y′ ∈ Rnm1 we obtain

sup
v

(∑
i

(〈v, φ (yi)〉H − 〈v, φ (y′i)〉H)
2

)1/2

≤ B2

(∑
i

‖φ (yi)− φ (y′i)‖
2
H

)1/2

≤ B2Δ
−1
2 ‖y − y′‖ ,

so we have L (F ′,Rnm1) ≤ B2Δ
−1
2 .

On the other hand

E sup
v

∑
i

γi (〈v, φ (yi)〉H − 〈v, φ (y′i)〉H) ≤ B2E

∥∥∥∥∥
n∑

i=1

γi (φ (yi)− φ (y′
i))

∥∥∥∥∥
≤ B2

(∑
i

‖φ (yi)− φ (y′i)‖
2
H

)1/2

≤ B2Δ
−1
2 ‖y − y′‖ ,

so we have R (F ′,Rnm1) ≤ B2Δ
−1
2 . Furthermore

G (F ′ (h0 (x))) ≤ B2

√
n,

similar to the bound for G (H (x)).
For the composite network Theorem 2 gives us the bound

G (F ′ (H (x))) ≤ C1B1B2Δ
−1
2

√
nm1 + 2C2B1B2

√
nΔ−1

2 +B2

√
n.
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Dividing by n and appealing to Theorem 1 one obtains the uniform bound: with
probability at least 1− δ we have for every h ∈ H and every f ∈ F that

Ef (h (X)) ≤ 1

n

∑
f (h (Xi)) +

+

√
2π

n
B2

(
B1Δ

−1
2 (C1

√
m1 + 2C2) + 1

)
+

√
9 ln 2/δ

2n
.

Remarks.
1. One might object that the result depends heavily on the intermediate di-

mension m1 so that only a very classical relationship between sample size and
dimension is obtained. In this sense our result only works for intermediate rep-
resentations of rather low dimension. The mapping stages of H and F however
include nonlinear maps to infinite dimensional spaces.

2. Clearly the above choice of the Gaussian kernel is arbitrary. Any positive
semidefinite kernel can be used for the first mapping stage, and the application
of the chain rule requires only the Lipschitz property for the second kernel in
the definition of F . The Gaussian kernel was only chosen for definiteness.

3. Similarly the choice of the Hilbert-Schmidt norm as a regularizer for W in
the first mapping stage is arbitrary, one could equally use another matrix norm.
This would result in different bounds for G (H (x)) and D (H (x)), incurring a
different dependency of our bound on m1.

3.3 Multitask Learning

As a second illustration we modify the above model to accommodate multitask
learning [2][3]. Here one observes a T ×n sample x =(xti : 1 ≤ t ≤ T, 1 ≤ i ≤ n)
∈ XnT , where (xti : 1 ≤ i ≤ n) is the sample observed for the t-th task. We
consider a two layer situation where the bottom-layer H consists of functions
h : X → Rm, and the top layer function class is of the form

FT =
{
x ∈ Rm1 /→ f (x) = (f1 (x) , ..., fT (x)) ∈ RT : ft ∈ F

}
,

where F is some class of functions mapping Rm1 to R. The functions (or rep-
resentations) of the bottom layer H are optimized for the entire sample, in the
top layer each function ft is optimized for the represented data corresponding
to the t-th task. In an approach of empirical risk minimization one selects the
composed function f̂ ◦ ĥ which minimizes the task-averaged empirical loss

min
f∈Fn,h∈H

1

nT

n∑
i=1

T∑
t=1

ft (h (xit)) .

We wish to give a general explanation of the potential benefits of this method
over the separate learning of functions from F ◦ H, as studied in the previous
section. Clearly we must assume that the tasks are related in the sense that
the above minimum is small, so any possible benefit can only be a benefit of
improved estimation.
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For the multitask model a result analogous to Theorem 1 is easily obtained
(see e.g. [7]). Let X =(Xti) be a vector of independent random variables with
values in X , where Xti is iid to Xtj for all ijt, and let Xt be iid to Xti. Then
with probability at least 1− δ we have for every f ∈ Fn and every h ∈ H

1

T

∑
t

Eft (h (Xt)) ≤
1

nT

∑
ti

ft (h (Xti)) +

√
2π

nT
G
(
FT ◦ H (X)

)
+

√
9 ln 2/δ

2nT
.

Here the left hand side is interpreted as the task averaged risk and

G
(
FT ◦ H (x)

)
= E sup

f∈FT ,h∈H

∑
ti

γtift (h (xti)) .

For a definite example we take H and F as in the previous section and observe
that now there is an additional factor T on the sample size. This implies the
modified bounds G (H (x)) ≤ B1

√
Tnm1 and D (H (x)) ≤ 2B1

√
Tn. Also for

y,y′ ∈ RTnm1 with yti, y
′
ti ∈ Rm1

sup
f∈FT

∑
ti

(ft (yti)− ft (y
′
ti))

2 ≤
∑
t

sup
f∈F

∑
i

(ft (yti)− ft (y
′
ti))

2

≤ L2 (F ,Rnm1)
∑
t

∑
i

‖yti − y′ti‖
2
,

so

L
(
FT ,RTnm1

)
= L (F ,Rnm1) . (4)

Therefore L
(
FT ,RTnm1

)
≤ B2Δ

−1
2 . Similarly

E sup
f∈FT

∑
ti

γti (ft (yti)− ft (y
′
ti))

=
∑
t

E sup
f∈F

∑
i

γti (ft (yti)− ft (y
′
ti))

≤
√
T

⎛⎝∑
t

(
E sup

f∈F

∑
i

γti (ft (yti)− ft (y
′
ti))

)2
⎞⎠1/2

≤
√
T

(∑
t

R2 (F ,Rnm1)
∑
i

‖yti − y′ti‖
2

)1/2

=
√
TR (F ,Rnm1) ‖y − y′‖ .

We conclude that

R
(
FT ,RnmT

)
≤
√
TR (F ,Rnm) , (5)

in the given case

R
(
FT ,RnmT

)
≤
√
TB2Δ

−1
2 .
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Also

G
(
FT (h0 (x))

)
= E sup

f∈FT

∑
ti

γtift (h0 (xti))

=
∑
t

E sup
f∈F

∑
i

γtif (h0 (xti))

≤ TG (F (h0 (x))) , (6)

so that here G
(
FT (h0 (x))

)
≤ B2T

√
n. The chain rule then gives

G (F ◦ H (x)) ≤ C1B1B2Δ
−1
2

√
Tnm1 +

(
2C2B1Δ

−1
2 + 1

)
B2T

√
n,

where the first term represents the complexity of H and the second that of FT .
Dividing by nT we obtain as the dominant term for the estimation error

C1B1B2Δ
−1
2

√
m1

nT
+

(
2C2B1Δ

−1
2 + 1

)
B2√

n
.

This reproduces a general property of multitask learning [3]: in the limit T →
∞ the contribution of the common representation (including the intermediate
dimension m1) to the estimation error vanishes. There remains only the cost of
estimating the task specific functions in the top layer.

We have obtained this result for a very specific model. The relations (4), (5)
and (6) for L

(
FT
)
, R
(
FT
)
and G

(
FT (h0 (x))

)
are nevertheless independent

of the exact model, so the chain rule could be made the basis of a fairly general
result about multitask feature learning.

3.4 Iteration of the Bound

We apply the chain rule to multi-layered or ”deep” learning machines, a subject
which appears to be of some current interest. Here we have function classes
F1, ...,FK , where Fk consists of functions f : Rnk−1 → Rnk and we are interested
in the generalization properties of the composite class

FK ◦ ... ◦ F1 = {x ∈ Rn0 /→ fK (fK−1 (... (f1 (x)))) : fk ∈ Fk} .

To state our bound we are given some sample x in Rn0 and introduce the notation

Y0 = x

Yk = Fk (Yk−1) = Fk ◦ ... ◦ F1 (x) ⊆ Rnk , for k > 0

Gk = min
y∈Yk−1(x)

G (Fk (y)) .

Under the convention that the product over an empty index set is 1, induction
shows that

G (YK) ≤
K∑

k=1

⎛⎝CK−k
1

K∏
j=k+1

L (Fj)

⎞⎠ (C2D (Yk−1)R (Fk) +Gk) .
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Clearly the large constants are prohibitive for any useful quantitative prediction
of generalization, but qualitative statements are possible. Observe for exam-
ple that, apart from C1 and the Lipschitz constants, each layer only makes an
additive contribution to the overall complexity. More specifically, for machine
learning with a sample of size n, we can make the assumptions nk = nmk, where
mk is the dimension of the k-th intermediate representations, and it is reason-
able to postulate max {Gk, D (Yk)R (Fk)} ≤ Cnp, where C is some constant not
depending on n and p is some exponent p < 1 (for multi-layered kernel machines
with Lipschitz feature maps we would have p = 1/2 - see above). Then the above
expression is of order np and Theorem 1 yields a uniform law of large numbers for
the multi-layered class, with a uniform bound on the estimation error decreasing
as np−1.

4 Proof of Theorem 3

Talagrand has proved the following result ([14]).

Theorem 6. There are universal constants r ≥ 2 and C such that for every
finite Y ⊂ Rn there is an increasing sequence of partitions Ak of Y and a
probability measure μ on Y , such that, whenever A ∈ Ak then D (A) ≤ 2r−k

and

sup
y∈Y

∞∑
k>k0

r−k

√
ln

1

μ (Ak (y))
≤ C G (Y ) ,

where Ak (y) denotes the unique member of Ak which contains y, and k0 is the
largest integer k satisfying

2r−k ≥ D (Y ) = sup
y,y′∈Y

‖y − y′‖

Observe that 2r−k0 ≥ D (Y ), so we can assume Ak0 = {Y }. As explained in
[14], the above Theorem is equivalent to the existence of a measure μ on Y such
that

sup
y∈Y

∫ ∞

0

√
ln

1

μ (B (y,ε))
dε ≤ C G (Y ) ,

where C is some other universal constant and B (y,ε) is the ball of radius ε
centered at y. The latter is perhaps the more usual formulation of the majorizing
measure theorem.

We will use Talagrand’s theorem to prove Theorem 3, but before please note
the inequality

D (Y ) ≤
√
2πG (Y ) , (7)

which follows from

sup
y,y′∈Y

‖y − y′‖ =

√
π

2
sup
y,y′

E |〈γ,y − y′〉|

≤
√

π

2
E sup

y,y′
|〈γ,y − y′〉| =

√
π

2
E sup

y,y′
〈γ,y − y′〉 .
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In the first equality we used the fact that ‖v‖ =
√
π/2E |〈γ, v〉| for any vector v.

Proof (of Theorem 3.). Let μ and Ak be as determined for Y by Theorem 6.
First we claim that for any δ ∈ (0, 1)

Pr

{
∃y ∈ Y : Xy −Xy0 >

∑
k>k0

r−k+1

√
8 ln

(
2k−k0K

μ (A (y)) δ

)}
< δ. (8)

For every k > k0 and every A ∈ Ak let π (A) be some element chosen from A.
We set π (Y ) = y0. We denote πk (y) = π (Ak (y)). This implies the chaining
identity:

Xy −Xy0 =
∑
k>k0

(
Xπk(y) −Xπk−1(y)

)
.

For k > k0 and A ∈ Ak use Â to denote the unique member of Ak−1 such that

A ⊆ Â. Since for A ∈ Ak both π (A) and π
(
Â
)

are members of Â ∈ Ak−1

we must have
∥∥∥π (A)− π

(
Â
)∥∥∥ ≤ 2r−k+1. Also note πk−1 (y) = π

(
Âk (y)

)
=

π ((Ak (πk (y))) ˆ). For k ≥ k0 we define a function ξk : Ak → R+ as follows:

ξk (A) = r−k+1

√
8 ln

(
2k−k0K

μ (A) δ

)
.

To prove the claim we have to show that

Pr

{
∃y ∈ Y : Xy −Xy0 −

∑
k>k0

ξk (Ak (y)) > 0

}
< δ.

Denote the left hand side of this inequality with P . By the chaining identity

P ≤ Pr

{
∃y :

∑
k>k0

(
Xπk(y) −Xπk−1(y) − ξk (Ak (y))

)
> 0

}
.

If the sum is positive, at least one of the terms has to be positive, so

P ≤ Pr
{
∃y, k > k0 :

(
Xπk(y) −Xπk−1(y) − ξk (Ak (y))

)
> 0
}
.

The event on the right hand side can also be written as{
∃k > k0, ∃A ∈ Ak : Xπ(A) −Xπ(Â) > ξk (A)

}
,

and a union bound gives

P ≤
∑
k>k0

∑
A∈Ak

Pr
{
Xπ(A) −Xπ(Â) > ξk (A)

}

≤
∑
k>k0

∑
A∈Ak

K exp

⎛⎜⎝ −ξk (A)
2

2
∥∥∥π (A)− π

(
Â
)∥∥∥2

⎞⎟⎠
≤
∑
k>k0

∑
A∈Ak

K exp

(
−ξk (A)

2

2 (2r−k+1)
2

)
,
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where we used the bound (3) in the second and the bound on
∥∥∥π (A)− π

(
Â
)∥∥∥ in

the third inequality. Using the definition of ξk (A) the last expression is equal to

δ
∑
k>k0

1

2k−k0

∑
A∈Ak

μ (A) = δ
∑
k>k0

1

2k−k0
= δ,

because μ is a probability measure. This establishes the claim.
Now, using

√
a+ b ≤

√
a+

√
b for a, b ≥ 0, with probability at least 1− δ

sup
y

Xy −Xy0 ≤ r
∑
k>k0

r−k

√
8 ln

(
1

μ (Ak (y))

)

+ r−k0+1
∑
k>0

r−k+1

√
8 ln

(
2kK

δ

)

≤
√
8rC G (Y ) +

√
8r−k0+1

∑
k>0

√
kr−k+1

√
ln

(
2K

δ

)
,

where we used Talagrand’s theorem and the fact that K > 1. By the definition
of k0 we have r−k0+1 ≤ r2D (Y ) /2, so this is bounded by

C′′′G (Y ) + C′′′′D (Y )

√
ln

(
2K

δ

)
,

with C′′′ =
√
8rC and C′′′′ =

√
8
(
r2/2

)∑
k>0

√
kr−k+1. Converting the last

bound into a tail bound and integrating we obtain

E

[
sup
y

Xy −Xy0

]
≤ C′′′G (Y ) + C′′′′D (Y )

(√
ln 2K +

√
π

2

)
≤ C′′′G (Y ) + 3C′′′′D (Y )

√
ln 2K

≤
(
C′′′ + 3

√
2π ln 2C′′′′

)
G (Y ) + 3C′′′′D (Y )

√
lnK,

where we again usedK ≥ 1 in the second inequality and (7) in the last inequality.
This gives the conclusion with C′ = C′′′ + 3

√
2π ln 2C′′′′ and C′′ = 3C′′′′. �
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Abstract. This paper presents the first generalization bounds for
time series prediction with a non-stationary mixing stochastic process.
We prove Rademacher complexity learning bounds for both average-
path generalization with non-stationary β-mixing processes and path-
dependent generalization with non-stationary φ-mixing processes. Our
guarantees are expressed in terms of β- or φ-mixing coefficients and a nat-
ural measure of discrepancy between training and target distributions.
They admit as special cases previous Rademacher complexity bounds
for non-i.i.d. stationary distributions, for independent but not identi-
cally distributed random variables, or for the i.i.d. case. We show that,
using a new sub-sample selection technique we introduce, our bounds
can be tightened under the natural assumption of convergent stochas-
tic processes. We also prove that fast learning rates can be achieved
by extending existing local Rademacher complexity analysis to non-i.i.d.
setting.

Keywords: Generalization bounds, time series, mixing, stationary pro-
cesses, fast rates, local Rademacher complexity.

1 Introduction

Given a sample ((X1, Y1), . . . , (Xm, Ym)) of pairs in Z = X × Y, the standard
supervised learning task consists of selecting, out of a class of functions H , a
hypothesis h : X → Y that admits a small expected loss measured using some
specified loss function L : Y×Y → R+. The common assumption in the statistical
learning theory and the design of algorithms is that samples are drawn i.i.d.
from some unknown distribution and generalization in this scenario has been
extensively studied in the past. However, for many problems such as time series
prediction, the i.i.d. assumption is too restrictive and it is important to analyze
generalization in the absence of that condition. A variety of relaxations of this
i.i.d. setting have been proposed in the machine learning and statistics literature.
In particular, the scenario in which observations are drawn from a stationary
mixing distribution has become standard and has been adopted by most previous
studies [1, 10, 11, 12, 18, 20]. In this work, we seek to analyze generalization

P. Auer et al. (Eds.): ALT 2014, LNAI 8776, pp. 260–274, 2014.
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under the more realistic assumption of non-stationary data. This covers a wide
spectrum of stochastic processes considered in applications, including Markov
chains, which are non-stationary.

Suppose we are given a doubly infinite sequence of Z-valued random variables
{Zt}∞t=−∞ jointly distributed according to P. We will write Zb

a to denote a vector
(Za, Za+1, . . . , Zb) where a and b are allowed to take values−∞ and∞. Similarly,
Pb

a denotes the distribution of Zb
a. Following [4], we define β-mixing coefficients

for P as follows. For each positive integer a, we set

β(a) = sup
t
‖Pt

−∞ ⊗P∞
t+a −Pt

−∞ ∧P∞
t+a‖TV , (1)

where Pt
−∞ ∧ P∞

t+a denotes the joint distribution of Zt
−∞ and Z∞

t+a. Recall
that the total variation distance ‖ · ‖TV between two probability measures P
and Q defined on the same σ-algebra of events G is given by ‖P − Q‖TV =
supA∈G |P (A) − Q(A)|. We say that P is β-mixing (or absolutely regular) if
β(a) → 0 as a → ∞. Roughly speaking, this means that the future has a
sufficiently weak dependence on the distant past. We remark that β-mixing co-
efficients can be defined equivalently as follows:

β(a) = sup
t

EZt
−∞

[
‖P∞

t+a(·|Zt
−∞)−P∞

t+a‖TV

]
, (2)

where P(·|·) denotes conditional probability measure [4]. Another standard mea-
sure of the dependence of the future on the past is the ϕ-mixing coefficient defined
for any a > 0 by

ϕ(a) = sup
t

sup
B∈Ft

‖P∞
t+a(·|B)−P∞

t+a‖TV , (3)

where Ft is the σ-algebra generated by Zt
−∞. A distribution P is said to be

ϕ-mixing if ϕ(a) → 0 as a → ∞. Note that β(a) ≤ ϕ(a), so any ϕ-mixing
distribution is necessarily β-mixing. We also recall that a sequence of random
variables Z∞

−∞ is (strictly) stationary provided that, for any t and any non-

negative integers m and k, Zt+m
t and Zt+m+k

t+k have the same distribution.
Unlike the i.i.d. case where E[L(h(X), Y )] is used to measure the generaliza-

tion error of h, in the case of time series prediction, there is no unique measure
commonly used to assess the quality of a given hypothesis h. One approach con-
sists of seeking a hypothesis h that performs well in the near future, given the
observed trajectory of the process. That is, we would like to achieve a small
path-dependent generalization error

LT+s(h) = EZT+s [L(h(XT+s), YT+s)|ZT
1 ], (4)

where s ≥ 1 is fixed. To simplify the notation, we will often write �(h, z) =
L(h(x), y), where z = (x, y). For time series prediction tasks, we often receive
a sample YT

1 and wish to forecast YT+s. A large class of (bounded-memory)
auto-regressive models uses q past observations YT

T−q+1 to predict YT+s. Our
scenario includes this setting as a special case where we take X = Yq and
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Zt+s = (Yt
t−q+1, Yt+s).

1 The generalization ability of stable algorithms with
error defined by (4) was studied by Mohri and Rostamizadeh [12].

Alternatively, one may wish to perform well in the near future when being on
some “average” trajectory. This leads to the averaged generalization error:

L̄T+s(h) = EZT
1
[LT+s(h)] = EZT+s [�(h, ZT+s)]. (5)

We note that L̄T+s(h) = LT+s(h) when the training and testing sets are inde-
pendent. The pioneering work of Yu [20] led to VC-dimension bounds for L̄T+s

under the assumption of stationarity and β-mixing. Later, Meir [10] used that to
derive generalization bounds in terms of covering numbers of H . These results
have been further extended by Mohri and Rostamizadeh [11] to data-dependent
learning bounds in terms of the Rademacher complexity of H .

Most of the generalization bounds for non-i.i.d. scenarios that can be found
in the machine learning and statistics literature assume that observations come
from a (strictly) stationary distribution. The only exception that we are aware of
is the work of Agarwal and Duchi [1], who present bounds for stable on-line learn-
ing algorithms under the assumptions of suitably convergent process.2 The main
contribution of our work is the first generalization bounds for both LT+s and
L̄T+s when the data is generated by a non-stationary mixing stochastic process.
These results provide a sufficient condition for the predictive PAC learnability
of Pestov [3, 14]. Next, we strengthen our assumptions and give generalization
bounds for convergent processes. In doing so, we establish sufficient conditions
for the predictive PAC learnability of Shalizi and Kontorovich [17]. These re-
sults are algorithm-agnostic analogues of the algorithm-dependent bounds of
Agarwal and Duchi [1]. In [1], Agarwal and Duchi also prove fast convergence
rates when a strongly convex loss is used. Similarly, Steinwart and Christmann
[18] showed that regularized learning algorithms admit faster convergence rates
under the assumptions of mixing and stationarity. We conclude this paper by
showing that this is in fact a general phenomenon. We use local Rademacher
complexity techniques [2] to establish faster convergence rates for stationary or
convergent mixing processes.

A key ingredient of the bounds we present is the notion of discrepancy between
two probability distributions that was used by Mohri and Muñoz Medina [13]
to give generalization bounds for sequences of independent (but not identically
distributed) random variables. In our setting, discrepancy can be defined as

d(t1, t2) = sup
h∈H

|Lt1(h)− Lt2(h)| (6)

and similarly we can define d̄(t1, t2), where we replace Lt with L̄t. Discrepancy is
a natural measure of the non-stationarity of a stochastic process with respect to

1 Observe that if Y is β-mixing, then so is Z and βZ(a) = βY(a− q). Similarly, the
ϕ-mixing assumption is also preserved. It is an open problem (posed by Meir [10])
to derive generalization bounds for unbounded-memory models.

2 Agarwal and Duchi [1] additionally assume that distributions are absolutely contin-
uous and that the loss function is convex and Lipschitz.
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the hypothesis classH and a loss function L. For instance, if the process is strictly
stationary then d̄(t1, t2) = 0 for all t1, t2 ∈ Z. As a more interesting example,
consider a weakly stationary stochastic process,3 together with a squared loss
L and a set of linear hypothesis H = {YT

t−q+1 /→ w ·YT
t−q+1 : w ∈ Rq}. It can

be shown that in this case we again have d̄(t1, t2) = 0 for all t1, t2 ∈ Z. An
additional advantage of the discrepancy measure is that it can be replaced by
an upper bound that, under mild conditions, can be estimated from data [8, 6].

The rest of this paper is organized as follows. In Section 2 we discuss the main
technical tool used to derive our bounds. Section 3 and Section 4 present learning
guarantees for averaged and path-dependent errors respectively. In Section 5 we
analyze generalization with convergent processes. We conclude with fast learning
rates for the non-i.i.d. setting in Section 6.

2 Independent Blocks and Sub-sample Selection

The first step towards our generalization bounds is to reduce the setting of a
mixing stochastic process to a simpler scenario of a sequence of independent ran-
dom variables, where we can take advantage of the known concentration results.
One way to achieve this is via the independent block technique introduced by
Yu [20] which we now describe.

We can divide a given sample ZT
1 into 2m blocks such that each block has size

ai and we require T =
∑2m

i=1 ai. In other words, we consider a sequence of random

vectors Z(i) = Z
u(i)
l(i) , i = 1, . . . , 2m where l(i) = 1+

∑i−1
j=1 aj and u(i) =

∑i
j=1 aj .

It will be convenient to refer to even and odd blocks separately. We will write
Zo = (Z(1),Z(3) . . . ,Z(2m − 1)) and Ze = (Z(2),Z(4), . . . ,Z(2m)). In fact, we
will often work with blocks that are independent.

Let Z̃o = (Z̃(1), . . . , Z̃(2m− 1)) where Z̃(i), i = 1, 3, . . . , 2m− 1, are indepen-

dent and each Z̃(i) has the same distribution as Z(i). We construct Z̃e in the
same way. The following result due to Yu [20] enables us to relate sequences of
dependent and independent blocks.

Proposition 1. Let g be a real-valued Borel measurable function such that
−M1 ≤ g ≤M2 for some M1,M2 ≥ 0. Then, the following holds:

|E[g(Z̃o)]− E[g(Zo)]| ≤ (M1 +M2)

m−1∑
i=1

β(a2i).

The proof of this result is given in [20], which in turn is based on [5] and [19].
We present a sketch of the main steps of the proof as these will be useful for us
as stand-alone results.

3 A process Z is weakly stationary if E[Zt] is a constant function of t and E[Zt1Zt2 ]
only depends on t1 − t2.
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Lemma 1. Let Q and P be probability measures on (Ω,F) and let h : Ω → R
be a Borel measurable function such that −M1 ≤ h ≤ M2 for some M1,M2 ≥ 0.
Then

|EQ[h]− EP [h]| ≤ (M1 +M2)‖P −Q‖TV .

The proof of Lemma 1 can be found in [5, 19, 20]. Lemma 1 extended via
induction yields the following result. See [5] for further details.

Lemma 2. Let m ≥ 1 and (
∏m

k=1 Ωk,
∏m

k=1 Fk) be a measure space with P a

measure on this space and Pj the marginal on (
∏j

k=1 Ωk,
∏j

k=1 Fk). Let Qj be a
measure on (Ωj ,Fj) and define

βj = E

[∥∥∥∥Pj+1

(
· |

j∏
k=1

Fk

)
−Qj+1

∥∥∥∥
TV

]
.

Then, for any Borel measurable function h :
∏m

k=1 Ωk → R such that −M1 ≤
h ≤M2 for some M1,M2 ≥ 0, the following holds

|EP [h]− EQ[h]| ≤ (M1 +M2)

m−1∑
j=1

βj

where Q = Q1 ⊗Q2 ⊗ . . .⊗Qm.

Proposition 1 now follows from Lemma 2 by taking Qj to be the marginal of
P on (Ωj ,Fj) and applying it to the case of independent blocks.

Proposition 1 is not the only way to relate mixing and independent cases.
Next, we present another technique that we term sub-sample selection, which
is particularly useful when the process is convergent. Suppose we are given a
sample ZT

1 . Fix a ≥ 1 such that T = ma for some m ≥ 1 and define a sub-
sample Z(j) = (Z1+j , . . . , Zm−1+j), j = 0, . . . , a− 1. An application of Lemma 2
yields the following result.

Proposition 2. Let g be a real-valued Borel measurable function such that
−M1 ≤ g ≤M2 for some M1,M2 ≥ 0. Then

|E[g(Z̃Π)]− E[g(Z(j))]| ≤ (M1 +M2)(m− 1)β(a),

where Z̃Π is an i.i.d. sample of size m from a distribution Π and β(a) =
supt E[‖Pt+a(·|Zt

1)−Π‖TV ].

Proposition 2 is commonly applied with Π being the stationary probability
measure of a convergent process.
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3 Generalization Bound for the Averaged Error

In this section, we derive a generalization bound for averaged error L̄T+s. Given
a sample ZT

1 generated by a (β-)mixing process,4 we define Φ(ZT
1 ) as follows:

Φ(ZT
1 ) = sup

h∈H

(
L̄T+s(h)−

1

T

T∑
t=1

�(h, Zt)

)
. (7)

We will also use I1 to denote the set of indices of the elements from the sample
ZT
1 that are contained in the odd blocks. Similarly, I2 is used for elements in the

even blocks.
We establish our bounds in a series of lemmas. We start by proving a concen-

tration result for dependent non-stationary data.

Lemma 3. Let L be a loss function bounded by M and H an arbitrary hy-
pothesis set. For any a1, . . . , a2m > 0 such that T =

∑2m
i=1 ai, partition the

given sample ZT
1 into blocks as described in Section 2. Then, for any ε >

max(E[Φ(Z̃o)],E[Φ(Z̃e)]), the following holds:

P(Φ(ZT
1 ) > ε) ≤ P(Φ(Z̃o)−E[Φ(Z̃o)] > ε1)+P(Φ(Z̃e)−E[Φ(Z̃e)] > ε2)+

m−1∑
i=2

β(ai),

where ε1 = ε− E[Φ(Z̃o)] and ε2 = ε − E[Φ(Z̃e)].

Proof. By convexity of the supremum Φ(ZT
1 ) ≤ |I1|

T Φ(Zo) + |I2|
T Φ(Ze). Since

|I1| + |I2| = T , for |I1|
T Φ(Zo) + |I2|

T Φ(Ze) to exceed ε at least one element of
{Φ(Zo), Φ(Ze)} must be greater than ε. Thus, by the union bound, we can write

P(Φ(ZT
1 ) > ε) ≤ P(Φ(Zo) > ε) + P(Φ(Ze) > ε)

= P(Φ(Zo)− E[Φ(Z̃o)] > ε1) + P(Φ(Ze)− E[Φ(Z̃e)] > ε2).

We apply Proposition 1 to the indicator functions of the events {Φ(Zo)−E[Φ(Z̃o)]

> ε1} and {Φ(Ze)− E[Φ(Z̃e)] > ε2} to complete the proof. ��

Lemma 4. Under the same assumptions as in Lemma 3, the following holds:

P(Φ(ZT
1 ) > ε) ≤ exp

(
−2T 2ε21
‖ao‖22M2

)
+ exp

(
−2T 2ε22
‖ae‖22M2

)
+

m−1∑
i=2

β(ai),

where ao = (a1, a3, . . . , a2m−1) and ae = (a2, a4, . . . , a2m).

Proof. We apply McDiarmid’s inequality [9] to the sequence of independent

blocks. We note that if Z̃o and Z̃ are two sequences of independent (odd) blocks

4 All the results of this section hold for a slightly weaker notion of β-mixing with
β(a) = supt E‖Pt+a(·|Zt

−∞)−Pt+a‖TV .
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that differ only by one block (say block i) then Φ(Z̃o) − Φ(Z̃) ≤ ai
M
T and it

follows from McDiarmid’s inequality that

P(Φ(Z̃o)− E[Φ(Z̃o)] > ε1) ≤ exp

(
−2T 2ε21
‖ao‖22M2

)
.

Using the same argument for Z̃e finishes the proof of this lemma. ��

The next step is to bound max(E[Φ(Z̃o)],E[Φ(Z̃e)]). The bound that we give
is in terms of block Rademacher complexity defined by

R(Z̃o) =
1

|I1|
E

[
sup
h∈H

m∑
i=1

σi l
(
h,Z(2i− 1)

)]
, (8)

where σi is a sequence of Rademacher random variables and l(h,Z(2i − 1)) =∑
t∈I1∩Z(2i−1) �(h, Zt). Below we will show that if the block size is constant (i.e.

ai = a), then the block complexity can be bounded in terms of the regular
Rademacher complexity.

Lemma 5. For j = 1, 2, let Δj = 1
|Ij |
∑

t∈Ij
d̄(t, T + s), which is an average

discrepancy. Then, the following bound holds:

max(E[Φ(Z̃o)],E[Φ(Z̃e)]) ≤ 2max(R(Z̃o),R(Z̃e)) + max(Δ1, Δ2). (9)

Proof. In the course of this proof Zt, denotes a sample drawn according to the
distribution of Z̃o (and not that of Zo). Using the sub-additivity of the supremum
and the linearity of expectation, we can write

E

[
sup
h∈H

L̄T+s(h)−
1

|I1|
∑
t∈I1

�(h, Zt)

]

= E

[
sup
h∈H

L̄T+s(h)−
1

|I1|
∑
t∈I1

L̄t(h) +
1

|I1|
∑
t∈I1

L̄t(h)−
1

|I1|
∑
t∈I1

�(h, Zt)

]

≤ E

[
sup
h∈H

L̄T+s(h)−
1

|I1|
∑
t∈I1

L̄t(h) + sup
h∈H

1

|I1|
∑
t∈I1

L̄t(h)−
1

|I1|
∑
t∈I1

�(h, Zt)

]

=
1

|I1|
∑
t∈I1

sup
h∈H

∣∣L̄T+s(h)− L̄t(h)
∣∣+ 1

|I1|
E

[
sup
h∈H

∑
t∈I1

L̄t(h)−
∑
t∈I1

�(h, Zt)

]

= Δ1 +
1

|I1|
E

[
sup
h∈H

m∑
i=1

E[l(h, Z̃(2i− 1))]− l(h, Z̃(2i− 1))

]
.

The second term can be written as

A =
1

|I1|
E

[
sup
h∈H

m∑
i=1

Ai(h)

]
,
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with Ai(h) = E[l(h, Z̃(2i − 1))] − l(h, Z̃(2i − 1)) for all i ∈ [1,m]. Since the
terms Ai(h) are all independent, the same proof as that of the standard i.i.d.
symmetrization bound in terms of the Rademacher complexity applies and A
can be bounded by R(Z̃o). Using the same arguments for even blocks completes
the proof. ��

Combining Lemma 4 and Lemma 5 leads directly to themain result of this section.

Theorem 1. With the assumptions of Lemma 3, for any δ >
∑m−1

i=2 β(ai), with
probability 1− δ, the following holds for all hypotheses h ∈ H:

L̄T+s(h) ≤
1

T

T∑
t=1

�(h, Zt) + 2max(R(Z̃o),R(Z̃e)) + max(Δ1, Δ2)

+M max(‖ae‖2, ‖ae‖2)

√
log 2

δ′

2T 2
,

where δ′ = δ −
∑m−1

i=2 β(ai).

The learning bound of Theorem 1 indicates the challenges faced by the learner
when presented with data drawn from a non-stationary stochastic process. In
particular, the presence of the term max(Δ1, Δ2) in the bound shows that gen-
eralization in this setting depends on the “degree” of non-stationarity of the
underlying process. The dependency in the training instances reduces the ef-
fective size of the sample from T to (T/(‖ae‖2 + ‖ae‖2))2. Observe that for a
general non-stationary process the learning bounds presented may not converge
to zero as a function of the sample size, due to the discrepancies between the
training and target distributions. In Section 5 and Section 6, we will describe
some natural assumptions under which this convergence does occur.

When the same size a is used for all the blocks considered in the analy-
sis, thus T = 2ma, then the block Rademacher complexity terms can be re-
placed with standard Rademacher complexities. Indeed, in that case, we can
group the summands in the definition of the block complexity according to sub-
samples Z(j) and use the sub-additivity of the supremum to find that R(Z̃o) ≤
1
a

∑a
j=1 Rm(Z̃(j)), where Rm(Z̃(j)) = 1

mE[suph∈H

∑
i=1 σi�(h, Zi,j)] with (σi)i

a sequence of Rademacher random variables and (Zi,j)i,j a sequence of inde-
pendent random variables such that Zi,j is distributed according to the law of
Za(2i−1)+j from ZT

1 . This leads to the following perhaps more informative but
somewhat less tight bound:

L̄T+s(h) ≤
1

T

T∑
t=1

�(h, Zt) +
2

a

2a∑
j=1

Rm(Z(j)) +
2

T

T∑
t=1

d̄(t, T + s) +M

√
log 2

δ′

8m
.

If the process is stationary, then we recover as a special case the generalization
bound of [11]. If ZT

1 is a sequence of independent but not identically distributed
random variables, we recover the results of [13]. In the i.i.d. case, Theorem 1
reduces to the generalization bounds of Koltchinskii and Panchenko [7].
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4 Generalization Bound for the Path-Dependent Error

In this section we give generalization bounds for a path-dependent error LT+s

under the assumption that the data is generated by a (ϕ-)mixing non-stationary
process.5 In this section, we will use Φ(ZT

1 ) to denote the same quantity as in
(7) except that L̄T+s is replaced with LT+s.

The key technical tool that we will use is the version of McDiarmid’s inequal-
ity for dependent random variables, which requires a bound on the differences
of conditional expectations of Φ (see Corollary 6.10 in [9]). We start with the
following adaptation of Lemma 1 to this setting.

Lemma 6. Let ZT
1 be a sequence of Z-valued random variables and suppose that

g : Zk+j → R is a Borel-measurable function such that −M1 ≤ g ≤M2 for some
M1,M2 ≥ 0. Then, for any z1, . . . , zk ∈ Z, the following bound holds:

|E[g(Z1, . . . , Zk, ZT−j+1, . . . , ZT )|z1, . . . , zk]− E[g(z1, . . . , zk, ZT−j+1, . . . , ZT )]|
≤ (M1 +M2)ϕ(T + 1− (k + j)).

Proof. This result follows from an application of Lemma 1:

|E[g(Z1, . . . , Zk, ZT−j+1, . . . , ZT )|z1, . . . , zk]− E[g(z1, . . . , zk, ZT−j+1, . . . , ZT )]|
≤ (M1 +M2)‖PT

T−j+1(·|z1, . . . , zk)−PT
T−j+1‖TV

≤ (M1 +M2)ϕ(T + 1− (k + j)),

where the second inequality follows from the definition of ϕ-mixing coefficients.
��

Lemma 7. For any z1, . . . , zk, z
′
k ∈ Z and any 0 ≤ j ≤ T − k with k > 1, the

following holds:∣∣E[Φ(ZT
1 )|z1, . . . , zk]− E[Φ(ZT

1 )|z1, . . . , z′k]
∣∣ ≤ 2M( j+1

T + γϕ(j + 2) + ϕ(s)),

where γ = 1 iff j + k < T and 0 otherwise. Moreover, if LT+s(h) = L̄T+s(h),
then the term ϕ(s) can be omitted from the bound.

Proof. First, we observe that using Lemma 6 we have |LT+s(h) − L̄T+s(h)| ≤
Mϕ(s). Next, we use this result, the properties of conditional expectation and
Lemma 6 to show that E[Φ(ZT

1 )|z1, . . . , zk] is bounded by

E

[
sup
h∈H

(
L̄T+s(h)−

1

T

T∑
t=1

�(h, Zt)

)∣∣∣∣z1, . . . , zk]+Mϕ(s)

≤ E

[
sup
h∈H

(
L̄T+s(h)−

1

T

T∑
t=k+j

�(h, Zt)−
1

T

k−1∑
t=1

�(h, Zt)

)∣∣∣∣z1, . . . , zk]+ η

≤ E

[
sup
h∈H

(
L̄T+s(h)−

1

T

T∑
t=k+j

�(h, Zt)−
1

T

k−1∑
t=1

�(h, zt)

)]
+Mγϕ(j + 2) + η,

5 As in Section 3, we can weaken the notion of ϕ-mixing by using ϕ(a) =
supt supB∈Ft

‖Pt+a(·|B)−Pt+a‖TV .



Generalization Bounds for Time Series Prediction 269

where η = M( j
T +ϕ(s)). Using a similar argument to bound E[Φ(ZT

1 )|z1, . . . , z′k]
from below by −M(γϕ(j + 2) + j

T + ϕ(s)) and taking the difference completes
the proof. ��

The last ingredient that we will need to establish a generalization bound for
LT+s is a bound on E[Φ]. The bound we present is in terms of a discrepancy
measure and the sequential Rademacher complexity introduced in [15].

Lemma 8. The following bound holds

E[Φ(ZT
1 )] ≤ E[Δ] + 2Rseq

T−s(H�) +M
s− 1

T
,

where Rseq
T−s(H�) is the sequential Rademacher complexity of the function class

H� = {z /→ �(h, z) : h ∈ H} and Δ = 1
T

∑T−s
t=1 d(t+ s, T + s).

Proof. First, we write E[Φ(ZT
1 )] ≤ E

[
suph∈H(LT+s(h)− 1

T

∑T
t=s �(h, Zt))

]
+

M s−1
T . Using the sub-additivity of the supremum, we bound the first term by

E

[
sup
h∈H

1

T

T−s∑
t=1

(Lt+s(h)− �(h, Zt+s))

]
+ E

[
sup
h∈H

1

T

T−s∑
t=1

(LT+s(h)− Lt+s(h))

]
.

The first summand above is bounded by 2Rseq
T−s(H�) by Theorem 2 of [16]. Note

that the result of [16] is for s = 1 but it can be extended to an arbitrary s. The
second summand is bounded by E[Δ] by the definition of the discrepancy. ��

McDiarmid’s inequality (Corollary 6.10 in [9]), Lemma 7 and Lemma 8 com-
bined yield the following generalization bound for path-dependent error LT+s(h).

Theorem 2. Let L be a loss function bounded by M and let H be an arbitrary
hypothesis set. Let d = (d1, . . . , dT ) with dt =

jt+1
T + γtϕ(jt + 2) + ϕ(s) where

0 ≤ jt ≤ T − t and γt = 1 iff jt + t < T and 0 otherwise (in case training and
testing sets are independent we can take dt =

jt+1
T + γtϕ(jt +2)). Then, for any

δ > 0, with probability at least 1− δ, the following holds for all h ∈ H:

LT+s(h) ≤
1

T

T∑
t=1

�(h, Zt) + E[Δ] + 2Rseq
T−s(H�) +M‖d‖2

√
2 log

1

δ
+M

s− 1

T
.

Observe that for the bound of Theorem 2 to be nontrivial the mixing rate is
required to be sufficiently fast. For instance, if ϕ(log(T )) = O(T 2), then taking
s = log(T ) and jt = min{t, logT } yields ‖d‖2 = O(

√
(logT )3/T ). Combining

this with an observation that by Lemma 6, E[Δ] ≤ 2ϕ(s) + 1
T

∑T
t=1 d̄(t, T + s)

one can show that for any δ > 0 with probability at least 1 − δ, the following
holds for all h ∈ H :

LT+s(h) ≤
1

T

T∑
t=1

�(h, Zt) + 2Rseq
T−s(H�) +

1

T

T∑
t=1

d̄(t, T + s) +O

(√
(logT )3

T

)
.

As commented in Section 3, in general, our bounds are convergent under some
natural assumptions examined in the next sections.
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5 Convergent Processes

In Section 3 and Section 4 we observed that, for a general non-stationary pro-
cess, our learning bounds may not converge to zero as a function of the sample
size, due to the discrepancies between the training and target distributions. The
bounds that we derive suggest that for that convergence to take place, training
distributions should “get closer” to the target distribution. However, the issue
is that as the sample size grows, the target “is moving”. In light of this, we
consider a stochastic process that converges to some stationary distribution Π .
More precisely, we define

β(a) = sup
t

E
[
‖Pt+a(·|Zt

−∞)−Π‖TV

]
(10)

and define φ(a) in a similar way. We say that a process is β- or φ-mixing if
β(a) → 0 or φ(a) → 0 as a → ∞ respectively. We remark that this is precisely
the mixing assumption used by Agarwal and Duchi [1]. Note that the notions
of β- and φ-mixing are strictly stronger than the necessary mixing assump-
tions in Section 3 and Section 4. Indeed, consider a sequence Zt of independent
Gaussian random variables with mean t and unit variance. It is immediate that
this sequence is β-mixing but it is not β-mixing. On the other hand, if we use
finite-dimensional mixing coefficients, then the following holds:

β(a) = sup
t

E
[
‖Pt+a(·|Zt

−∞)−Pt+a‖TV

]
≤ sup

t
E
[
‖Pt+a(·|Zt

−∞)−Π‖TV

]
+ sup

t
sup
A

|E[Et+a[1A|Zt
−∞]]−Π |

≤ 2β(a).

However, note that a stationary β-mixing process is necessarily β-mixing with
Π = P0. We define the long-term loss or error LΠ(h) = EΠ [�(h, Z)] and observe
that L̄T (h) ≤ LΠ(h)+Mβ(T ) since by Lemma 1 the following inequality holds:

|L̄T (h)− LΠ(h)| ≤ M‖PT −Π‖TV ≤ ME
[
‖PT (·|F0)−Π‖TV

]
≤ sup

t
E
[
‖PT+t(·|Ft)−Π‖TV

]
= Mβ(T ).

Similarly, we can show that the following holds: LT+s(h) ≤ LΠ(h) + Mφ(s).
Therefore, we can use LΠ as a proxy to derive our generalization bound. With
this in mind, we consider Φ(ZT

1 ) defined as in (7) except L̄T+s is replaced by
LΠ . Using the sub-sample selection technique of Proposition 2 and the same
arguments as in the proof of Lemma 3, we obtain the following result.

Lemma 9. Let L be a loss function bounded by M and H any hypothesis set.
Suppose that T = ma for some m, a > 0. Then, for any ε > E[Φ(Z̃Π)], the
following holds:

P(Φ(ZT
1 ) > ε) ≤ aP(Φ(Z̃Π)− E[Φ(Z̃Π)] > ε′) + a(m− 1)β(a), (11)

where ε′ = ε− E[Φ(Z̃Π )] and Z̃Π is an i.i.d. sample of size m from Π.
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Using a Rademacher complexity bound [7] for P(Φ(Z̃Π) − E[Φ(Z̃Π )] > ε′)
yields the following result.

Theorem 3. With the assumptions of Lemma 9, for any δ > a(m − 1)β(a),
with probability 1− δ, the following holds for all hypothesis h ∈ H:

LΠ(h) ≤ 1

T

T∑
t=1

�(h, Zt) + 2Rm(H,Π) +M

√
log a

δ′

2m
,

where δ′ = δ − a(m − 1)β(a) and Rm(H,Π) = 1
mE[suph∈H

∑m
i=1 σi�(h, Z̃Π,i)]

with σi a sequence of Rademacher random variables.

Note that our bound requires the confidence parameter δ to be at least a(m−
1)β(a). Therefore, for the bound to hold with high probability, we need to require
Tβ(a) → 0 as T → ∞. This imposes restrictions on the speed of decay of β.
Suppose first that our process is algebraically β-mixing, that is β(a) ≤ Ca−d

where C > 0 and d > 0. Then Tβ(a) ≤ C0Ta
−d for some C0 > 0. Therefore,

we would require a = Tα with 1
d < α ≤ 1, which leads to a convergence rate

of the order
√
T (α−1) logT . Note that we must have d > 1. If the processes

is exponentially β-mixing, i.e. β(a) ≤ Ce−da for some C, d > 0, then setting
a = log T 2/d leads to a convergence rate of the order

√
T−1(logT )2.

Finally, we remark that, using the same arguments, it is possible to replace
Rm(H,Π) by its empirical counterpart 1

mE[suph∈H

∑T
t=1 σt�(h, Zt)|ZT

1 ] leading
to data-dependent bounds.

6 Fast Rates for Non-i.i.d. Data

For stationary mixing6 processes, Steinwart and Christmann [18] have estab-
lished fast convergence rates when a class of regularized learning algorithms is
considered. Agarwal and Duchi [1] also show that stable on-line learning algo-
rithms enjoy faster convergence rates if the loss function is strictly convex. In
this section, we present an extension of the local Rademacher complexity results
of [2] that imply that under some mild assumptions on the hypothesis set (that
are typically used in i.i.d. setting as well) it is possible to have fast learning rates
when the data is generated by a convergent process.

The technical assumption that we will exploit is that the Rademacher com-
plexity Rm(H�) of the function class H� = {z /→ �(h, z) : h ∈ H} is bounded
by some sub-root function ψ(r). A non-negative non-decreasing function ψ(r)
is said to be sub-root if ψ(r)/

√
r is non-increasing. Note that in this section

Rm(F ) always denotes the standard Rademacher complexity with respect to

distribution Π defined by Rm(F ) = E[supf∈F
1
m

∑m
i=1 σif(Z̃i)] where Z̃i is an

i.i.d. sample of size m drawn according to Π . Observe that one can always find

6 In fact, the results of Steinwart and Christmann hold for α-mixing processes which
is a weaker statistical assumption then β-mixing.
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a sub-root upper bound on Rm({f ∈ F : E[f2] ≤ r}) by considering a slightly
enlarged function class. More precisely,

Rm({f ∈ F: E[f2] ≤ r}) ≤ Rm({g : E[g2] ≤ r, g = αf, α ∈ [0, 1], f ∈ F}) = ψ(r)

and ψ(r) can be shown to be sub-root (see Lemma 3.4 in [2]). The following
analogue of Theorem 3.3 in [2] for the i.i.d. setting is the main result of this
section.

Theorem 4. Let T = am for some a,m > 0. Assume that the Rademacher
complexity Rm({g ∈ H� : E[g2] ≤ r}) is upper bounded by a sub-root function
ψ(r) with a fixed point r∗.7 Then, for any K > 1 and any δ > a(m − 1)β(a),
with probability at least 1− δ, the following holds for all h ∈ H:

LΠ(h) ≤
(

K

K − 1

)
1

T

T∑
t=1

�(h, Zt) + C1r
∗ +

C2 log
a
δ′

m
(12)

where δ′ = δ − a(m− 1)β(a), C1 = 704K/M , and C2 = 26MK + 11M .

Before we prove Theorem 4, we discuss the consequences of this result. Theo-
rem 4 tells us that with high probability, for any h ∈ H , LΠ(h) is bounded by a
term proportional to the empirical loss, another term proportional to r∗, which
represents the complexity of H , and a term in O( 1

m ) = O(2aT ). Here, m can be
thought of as an “effective” size of the sample and a the price to pay for the
dependency in the training sample. In certain situations of interest, the complex-
ity term r∗ decays at a fast rate. For example, if H� is a class of {0, 1}-valued
functions with finite VC-dimension d, then we can replace r∗ in the statement
of the Theorem with a term of order d log m

d /m at the price of slightly worse
constants (see Corollary 2.2, Corollary 3.7, and Theorem B.7 in [2]).

Note that unlike standard high probability results, our bound requires the
confidence parameter δ to be at least a(m − 1)β(a). Therefore, for our bound
to hold with high probability, we need to require Tβ(a) → 0 as T → ∞ which
depends on mixing rate. Suppose that our process is algebraically mixing, that is
β(a) ≤ Ca−d where C > 0 and d > 0. Then, we can write Tβ(a) ≤ CTa−d and
in order to guarantee that Tβ(a) → 0 we would require a = Tα with 1

d < α ≤ 1.
On the other hand, this leads to a rate of convergence of the order Tα−1 logT
and in order to have a fast rate, we need 1

2 > α which is possible only if d > 2. We
conclude that for a high probability fast rate result, in addition to the technical
assumptions on the function class H�, we may also need to require that the
process generating the data be algebraically mixing with exponent d > 2. We
remark that if the underlying stochastic process is geometrically mixing, that
is β(a) ≤ Ce−da for some C, d > 0, then a similar analysis shows that taking
a = log T 2/d leads to a high probability fast rate of T−1(logT )2.

We now present the proof of Theorem 4.

7 The existence of a unique fixed point is guaranteed by Lemma 3.2 in [2].
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Proof. First, we define Φ(ZT
1 ) = suph∈H

(
LΠ(h)− K

K−1
1
T

∑T
t=1 �(h, Zt)

)
. Using

the sub-sample selection technique of Proposition 2, we obtain that P(Φ(ZT
1 ) >

ε) ≤ aP(Φ(Z̃Π) > ε)+a(m− 1)β(a), where Z̃Π is an i.i.d. sample of size m from

Π . By Theorem 3.3 of [2], if ε = C1r
∗+

C2 log
a
δ′

m , then aP(Φ(Z̃Π) > ε) is bounded
above by δ − a(m− 1)β(a), which completes the proof. Note that Theorem 3.3
requires that there exists B such that EΠ [g2] ≤ BEΠ [g] for all g ∈ H�. This
condition is satisfied with B = M since each g ∈ H� is a bounded non-negative
function. ��

We remark that, using similar arguments, most of the results of [2] can be
extended to the setting of convergent processes. Of course, these results also
hold for stationary β-mixing processes since, as we pointed out in Section 5,
these are just a special case of convergent processes. However, we note that a
slightly tighter bound can be derived for stationary β-mixing processes by using
the independent block technique directly instead of relying on the sub-sample
selection method.

7 Conclusion

We presented a series of generalization guarantees for learning in presence of non-
stationary stochastic processes in terms of an average discrepancy measure that
appears as a natural quantity in our general analysis. Our bounds can guide the
design of time series prediction algorithms that would tame non-stationarity in
the data by minimizing an upper bound on the discrepancy that can be computed
from the data [8, 6]. The learning guarantees that we present strictly generalize
previous Rademacher complexity guarantees derived for stationary stochastic
processes or a drifting setting. We also presented simpler bounds under the
natural assumption of convergent processes. In doing so, we have introduced a
new sub-sample selection technique that can be of independent interest. Finally,
we proved new fast rate learning guarantees in the non-i.i.d. setting. The fast
rate guarantees presented can be further expanded by extending in a similar way
several of the results of [2].
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Abstract. This paper studies sample compression of maximum multi-
label concept classes for various notions of VC-dimension. It formu-
lates a sufficient condition for a notion of VC-dimension to yield labeled
compression schemes for maximum classes of dimension d in which the
compression sets have size at most d. The same condition also yields a
so-called tight sample compression scheme, which we define to generalize
Kuzmin and Warmuth’s unlabeled binary scheme to the multi-label case.
The well-known Graph dimension satisfies our sufficient condition, while
neither Pollard’s pseudo-dimension nor the Natarajan dimension does.

Keywords: Multi-label class, sample compression, Graph dimension.

1 Introduction

A sample compression scheme (SCS) for a concept class C compresses every set S
of labeled examples for some concept in C to a subset, which is decompressed to
some concept that is consistent with S [7]. The size of the SCS is the cardinality
of its largest compressed set. Since this size yields sample bounds for a PAC-
learner for C [7], the question arises whether the smallest possible size of an SCS
for C is bounded linearly in the VC-dimension (VCD) of C [3]. This question
has become a long-standing open problem in computational learning theory.

Floyd and Warmuth [3] resolved this question positively for maximum C [3],
i.e., any C meeting Sauer’s upper bound on the size of classes with a given
VCD [11], and thus implictly for all classes of VCD 1 (their SCSs have size equal
to the VCD). An astonishing observation was made by Kuzmin and Warmuth,
who proved that each maximum class of VCD d even has an unlabeled SCS of
size d, i.e., an SCS in which the compression sets have no label information [6].

Recently, the study of SCSs was extended to the case of multi-label (instead
of binary) concept classes [10], which is justified by the fact that Littlestone and
Warmuth’s PAC bounds in the size of an SCS are immediately transferred to
the multi-label case. It was proven that, for a specific notion of VCD for multi-
label classes, every maximum class of such dimension d has a labeled SCS of size
d, and that the same is true for all classes of dimension 1 [10]. The proof for
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maximum classes extends Floyd and Warmuth’s scheme to the multi-label case,
and crucially relies on a specific property of the studied notion of VCD.

The main contributions of this paper are the following:
(1) We revisit the crucial property used in [10], which we henceforth call the

reduction property. We observe that not only the very specific notion of VCD
studied in [10] allows for generalizing the Floyd-Warmuth scheme to the multi-
label case, but that generally every notion of VCD from a broad and natural
class does so, as long as it fulfills the reduction property.

(2) We show that Kuzmin and Warmuth’s result on unlabeled compression for
maximum classes finds a natural extension to the multi-label case. This is not
trivial, since unlabeled SCSs of size VCD cannot exist for maximum multi-label
C for any known notion of VCD—simply because the size of C is larger than
the number of unlabeled sets of size VCD. To generalize Kuzmin and Warmuth’s
unlabeled SCSs for maximum classes, we observe that they fulfill a property we
call tightness. As opposed to the Floyd-Warmuth scheme and its extension to
the multi-label case, a tight SCS uses exactly as many compression sets as there
are concepts in C (trivially, it is impossible to use fewer sets, since each concept
needs a different compression set—hence the term “tight”). Our main result is
the following: for every notion of VCD in a broad and natural category, the
reduction property is sufficient for proving that each multi-label class of VCD d
has a tight SCS (i.e., an extension of the Kuzmin-Warmuth SCS) of size d.

(3) We prove that the well-known Graph-dimension [8] fulfills the reduc-
tion property and thus that each maximum class of Graph-dimension d has
a tight SCS of size d. Neither Pollard’s pseudo-dimension [9] nor the Natarajan-
dimension [8] satisfies the reduction property.

2 Preliminaries

Let N+ be the set of all positive integers. For m ∈ N+, let [m] = {1, . . . ,m}.
For m ∈ N+, the set X = {X1, . . . , Xm} is called an instance space, where each
instance Xi is associated with the value set Xi = {0, . . . , Ni}, Ni ∈ N+, for all
i ∈ [m]. We call c ∈

∏m
i=1Xi a (multi-label) concept on X , and a (multi-label)

concept class C is a set of concepts on X , i.e., C ⊆
∏m

i=1 Xi. For c ∈ C, let c(Xi)
denote the ith coordinate of c. We will always implicitly assume that a given
concept class C is a subset of

∏m
i=1 Xi for somem ∈ N+, whereXi = {0, . . . , Ni},

Ni ∈ N+. When Ni = 1 for all i ∈ [m], C is a binary concept class. .
A sample is a set of labeled examples, i.e., of pairs (Xt, �) ∈ X × N. For a

sample S, we define X(S) = {Xi ∈ X | (Xi, �) ∈ S for some �}. For t ∈ [m]
and C′ ⊆

∏m
i=1, i�=t Xi, a concept c ∈ C is an extension of a concept c′ ∈ C′ iff

c = c′ ∪ {(Xt, l)}, for some l ∈ Xt. Then c′ is extended to c with (Xt, l).
For Y = {Xi1 , . . . , Xik} ⊆ X with i1 < · · · < ik, we denote the restriction of

a concept c to Y by c|Y and define it as c|Y = (c(Xi1), . . . , c(Xik)). Similarly,
C|Y = {c|Y | c ∈ C} denotes the restriction of C to Y . We also denote c|X\{Xt}
and C|X\{Xt} by c−Xt and C−Xt, respectively. In the binary case, the reduction
CXt of C w.r.t. Xt ∈ X consists of all concepts in C−Xt that have both possible
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extensions to concepts in C, i.e., CXt = {c ∈ C −Xt | c× {0, 1} ⊆ C}. It is not
obvious how the definition of reduction should be extended to the multi-valued
case. One could consider the class of concepts in C −Xt that have at least two
distinct extensions, or of those that have all Nt +1 extensions to concepts in C.
We denote the former with [C]Xt

≥2 and the latter with CXt .

In the binary case, Y ⊆ X is shattered by C iff C|Y =
∏

Xi∈Y Xi = {0, 1}|Y |.
The size of the largest set shattered by C is the VC-dimension of C, denoted
VCD(C). The literature offers a variety of VCD notions for the non-binary case
[1, 8, 12, 9, 4]. Gurvits’ framework [4] generalizes over many of these notions:

Definition 1. [4] Let Ψi, 1 ≤ i ≤ m, be a family of mappings ψi : Xi → {0, 1}.
Let Ψ = Ψ1×· · ·×Ψm. We denote the VC-dimension of C w.r.t. Ψ by VCDΨ(C)
and define it by VCDΨ(C) = maxψ∈Ψ VCD(ψ(C)).

Specific families of mappings yield specific notions of dimension. The most
general case is the family Ψ∗ of all m-tuples (ψ1, . . . , ψm) with ψi : Xi → {0, 1}.

The term Graph-dimension [8] refers to VCDΨG , where ΨG = ΨG1 ×· · ·×ΨGm

and for all i ∈ [m], ΨGi = {ψG,k : k ∈ Ni} and ψG,k(x) = 1 if x = k, ψG,k(x) = 0
if x �= k. By Pollard’s pseudo-dimension [9] we refer to VCDΨP , where ΨP =
ΨP1 × · · · × ΨPm and for all i ∈ [m], ΨPi = {ψP,k : k ∈ Ni} and ψP,k(x) = 1 if
x ≥ k, ψP,k(x) = 0 if x < k. The term Natarajan-dimension [8] refers to VCDΨN ,
where ΨN = ΨN1 × · · ·×ΨNm and for all i ∈ [m], ΨNi = {ψN,k,k′ : k, k′ ∈ Ni, k �=
k′} and ψN,k,k′(x) = 1 if x = k, ψN,k,k′(x) = 0 if x = k′, ψN,k,k′(x) = ∗,
otherwise. (Here technically, ψi maps to {0, 1, ∗}, where ∗ is a null element to
be ignored when computing the VC-dimension.)

Clearly, VCDΨ∗ upper-bounds all VCD notions. Also, VCDΨP ≥ VCDΨN and
VCDΨG ≥ VCDΨN [5]. However, VCDΨP and VCDΨG are incomparable [2].

Let Ψi be a family of mappings ψi : Xi → {0, 1}. Ψi is spanning on Xi iff any
real-valued function on Xi is a linear combination of mappings from Ψi.

Gurvits [4] showed that the quantity Φd(N1, . . . , Nm) = 1 +
∑

1≤i≤mNi +∑
1≤i1<i2≤mNi1Ni2+ · · · +

∑
1≤i1<i2<···<id≤mNi1Ni2 · · ·Nid is an upper bound

on |C| if VCDΨ(C) = d, assuming that Ψ = Ψ1×· · ·×Ψm where each Ψi, 1 ≤ i ≤
m, is a spanning family of mappings. This bound is tight for allm, d,N1, . . . , Nm.

Note that, for a spanning families of mappings, the finiteness of the resulting
VCDΨ-value of a multi-label class C guarantees that C is PAC-learnable [2].

As in the binary case [3], a forbidden labeling of C with VCDΨ(C) = d < |X |,
is a set of d + 1 examples that is inconsistent with all concepts in C. For Y =
{Xi1 , . . . , Xid+1

} ⊆ X , Forb(C, Y ) = Xi1×· · ·×Xid+1
\C|Y is the set of forbidden

labelings on Y and Forb(C) =
⋃

Y⊆X, |Y |=d+1 Forb(C, Y ) is the set of forbidden

labelings of size d+ 1. For d = |X |, we define Forb(C, Y ) = Forb(C) = ∅.
For binary classes, the smallest possible size of a sample compression scheme

yields sample bounds for PAC-learning [7, 3] and an open question is whether
this parameter is linear in the VC-dimension. The proof that (in the binary
case) a sample compression scheme yields a successful PAC-learner with bounds
expressed in terms of its size [7] immediately generalizes to the multi-label case.
The notion of sample compression trivially generalizes to the multi-label case:
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Definition 2. [7] A sample compression scheme for C is a pair (f, g) of map-
pings as follows. Given any sample S that is consistent with some concept in C,
one requires (i) f(S) ⊆ S, and (ii) g(f(S)) = (l1, . . . , lm), where (Xi, �i) ∈ S
implies �i = li, for all i ∈ [m]. The size of (f, g) is the maximum cardinality of
a set f(S), taken over all samples S consistent with some concept in C.

Every binary maximum class C with VCD(C) = d (i.e., |C| =
∑d

i=0

(
m
i

)
,

which is the largest possible size [11]) has a compression scheme of size d [3].
This result was strengthened by showing the existence of unlabeled schemes (in
which the compression sets are subsets of X without label information) of size
VCD [6]. Both results rely on the fact that, for d < m, restrictions and reductions
of binary maximum classes w.r.t. a single instance are maximum of VCD d and
d− 1, resp. [13]. We focus on multi-label maximum classes, i.e., classes with the
largest size among all classes of the same VCDΨ, for a fixed Ψ .

Consider the following geometric example of a class that is maximum of
VCDΨ∗ 2 and VCDΨG 2. X corresponds to m lines in general position on the
plane, i.e., no two lines are parallel and no three lines share a common point.
Then (i) the number of regions is 1 +m +m(m− 1)/2; (ii) the number of seg-
ments and rays is m2; (iii) the number of intersection points is m(m − 1)/2.
Summing these numbers yields 1 + 2m2 = Φ2(2, . . . , 2). All regions, segments,
rays and intersection points form a natural multi-label class concept class that is
VCDΨ∗ -maximum and VCDΨG-maximum of dimension 2. Each instance takes
values in {−1, 0,+1}, depending on which side of the line the concept is on (and
0 if the concept is contained within the line itself). Each region is a concept
with instance values −1 or +1. Each segment/ray is a concept with value 0 in
one particular instance and values −1 or +1 in all the other instances. Each
intersection point is a concept with value 0 on exactly two instances. One can
verify that no set of three instances is shattered using any label mapping to a
binary class.

3 The Reduction Property and Tight Compression
Schemes

We next define a core notion of our work, namely the reduction property. It
provides a sufficient condition for maximum classes of VCDΨ d to have a sample
compression scheme of size d, provided that Ψ is based on spanning families.

Definition 3. Let m > 1 and Ψi, 1 ≤ i ≤ m, be a family of mappings. Let
Ψ = Ψ1 × · · · × Ψm. VCDΨ fulfills the reduction property iff for any VCDΨ-
maximum class C ⊆

∏m
i=1Xi, for any t ∈ [m] and for any concept c ∈ C −Xt,

|{c ∈ C | c−Xt = c}| ∈ {1, Nt + 1} (i.e., [C]Xt

≥2 = CXt).

Recently, Samei et al. [10] extended the Floyd-Warmuth sample compression
scheme [3] to VCDΨ∗ -maximum concept classes by showing that VCDΨ∗ fulfills
the reduction property. Inspecting their proofs reveals that the Floyd-Warmuth
scheme can be extended to maximum classes for a broad class of VCD notions.
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Theorem 1. Let Ψi, 1 ≤ i ≤ m, be a spanning family of mappings. Let Ψ =
Ψ1×· · ·×Ψm. If VCDΨ fulfills the reduction property then any VCDΨ-maximum
class C has a labeled sample compression scheme of size VCDΨ(C).

As discussed before, for all notions of VCDΨ mentioned above, unlabeled
compression schemes of size d for a VCDΨ-maximum class C of VCDΨ d cannot
exist, as the number of concepts in C is larger than the number of subsets of
the instance space of size at most VCDΨ(C). Here, we generalize the unlabeled
compression scheme for VCD-maximum classes by Kuzmin and Warmuth [6]
to VCDΨ-maximum classes, where VCDΨ fulfills the reduction property and is
based on spanning families of mappings, by first observing its tightness.

Definition 4. Let C be a VCDΨ-maximum class with VCDΨ(C) = d. A sample
compression scheme of size d for C is tight iff (i) there are exactly |C| many
compression sets in the scheme, (ii) each compression set represents a unique
concept c in the class, which is consistent with the compression set, (iii) each
sample of a concept contains exactly one compression set that represents a con-
cept consistent with the sample.

For illustration, consider the class C and the representatives shown in Table 1,
which yield a tight scheme. As required in (i), no concept can have more than
one compression set. Condition (ii) forces the one-to-one correspondence between
the concepts and the compression sets. Without Condition (iii), one might map
c2 to (X4, 0) instead of (X3, 1) and the scheme would still satisfy (i) and (ii),
while the sample {(X2, 0), (X4, 0)} could be compressed to either (X4, 0) or ∅.

Our main result strengthens Theorem 1 and generalizes Kuzmin-Warmuth’s
unlabeled scheme (which is a tight labeled scheme) to the multi-label case:

Theorem 2. Let Ψi, 1 ≤ i ≤ m, be a spanning family of mappings. Let Ψ =
Ψ1×· · ·×Ψm. If VCDΨ fulfills the reduction property then any VCDΨ-maximum
class C has a tight sample compression scheme of size VCDΨ(C).

The critical point exploited in our tight scheme is the property of missing
labelings in the compression sets, that is, for each set of at most VCDΨ(C)
instances {Xi1 , . . . , Xik}, there is a tuple of labels (li1 , . . . , lik) ∈

∏
1�j�k Xij ,

such that for each compression set S with X(S) = {Xi1 , . . . , Xik} and for all
j ∈ {1, . . . , k}, (Xij , lij ) /∈ S. In the binary case, our scheme exactly coincides
with the Kuzmin-Warmuth scheme, which also exploits the non-trivial property
of missing labelings. If one adds labels to the compression sets in the Kuzmin-
Warmuth scheme, each set S ⊆ X of size k ∈ {1, . . . ,VCD(C)} has exactly one
missing labeling, and thus 2k − 1 assignments of 0 and 1 to the k instances in S
are not used as compression sets. But then there is only one possible assignment
of labels to the instances in S left, which is why the scheme is in fact unlabeled.

Our proof has the same structure as that of Kuzmin and Warmuth for the
binary case. However, various technical barriers have to be overcome for the
multi-label case. Because of space constraints, many proof details are omitted.

In [6] a representation mapping r for a VCD-maximum class C ⊆ 2X is a
bijection between C and the set of all subsets of X of size at most VCD(C)
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Labeled Representatives Construction Algorithm
Input: the set Rep≤d(X) = {Y ⊆ X | 0 ≤ |Y | ≤ d}
Output: a set of labeled representatives from Rep≤d(X)

1. Set LRep≤d(X) ← {∅}.
2. For each Y = {Xi1 , . . . , Xik

} ∈ Rep≤d(X) \ {∅} do

Set Rep≤d(X) ← Rep≤d(X) \ {Y }
Pick some LY = (lY1 , . . . , lYk ) ∈

∏
1≤j≤k Xij

Set LabeledRep(Y, LY ) ←
∏

1≤j≤k(Xij
\ {lYj })

Set LRep≤d(X) ← LRep≤d(X) ∪ LabeledRep(Y, LY ).

Algorithm 1. Constructing a set of representatives

such that for any c, c′ ∈ C, c|(r(c)∪r(c′)) �= c′|(r(c)∪r(c′)), that is, c and c′ do
not clash w.r.t. r. The non-clashing property for a representation mapping is
equivalent to having a unique representative for each sample consistent with
some concept in C [6]. Kuzmin and Warmuth showed that, given a representation
mapping r for a class C, for any sample S of a concept from C with |S| ≥
VCD(C), there is some concept c ∈ C that is consistent with S for which, S
can be mapped to r(c) ⊆ X(S) and for any c′ ∈ C, c′ �= c, consistent with S,
r(c′) � X(S).

For the rest of this section, let C ⊆
∏

1≤i≤m Xi be VCDΨ-maximum of dimen-
sion d, where VCDΨ has the reduction property and Ψ is the direct product of
spanning families of mappings. Note that |C| = Φd(N1, . . . , Nm), and, if d < m,
C −Xt and CXt are maximum of VCDΨ d and d− 1, resp. [4, 10].

As we need to use labels in the compression sets, we modify the definition
of representation mapping. For a set Y = {Xi1 , . . . , Xik} ⊆ X , let LY always
denote a tuple of labels LY = (lY1 , . . . , l

Y
k ) ∈

∏
1≤j≤k Xij . Consider the set

Rep≤d(X) = {Y ⊆ X | 0 ≤ |Y | ≤ d}. We construct a set of labeled representa-
tives LRep≤d(X) from Rep≤d(X) using Algorithm 1.

For each Y = {Xi1 , . . . , Xik} with k ≤ d, C|Y =
∏

1≤j≤k Xij . So, for any out-
put LRep≤d(X) from Algorithm 1, and for any representative S ∈ LRep≤d(X),
there is a c ∈ C with S ⊆ c. Further, |LRep≤d(X)| = Φd(N1, . . . , Nm) = |C|.

We say that a bijection r between C and some LRep≤d(X) is consistent, if
for each c ∈ C, r(c) ⊆ c. We also say that the concepts c, c′ ∈ C, c �= c′, clash
w.r.t. a consistent bijection r, if r(c) ⊆ c′ and r(c′) ⊆ c.

Definition 5. A representation mapping for C is a consistent bijection r be-
tween C and some representative set LRep≤d(X) in which no two concepts clash.

Essentially, we want to find a representation mapping for VCDΨ-maximum
classes with a fixed VCDΨ. As in the binary case [6], the following lemma shows
how the non-clashing property is useful for finding unique labeled representatives
for samples in the multi-label case.

Lemma 1. Let r be a consistent bijection between C and a set of labeled repre-
sentatives LRep≤d(X). Then the following two statements are equivalent:
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1. No two concepts clash w.r.t. r.
2. For any sample S that is consistent with at least one concept in C, there is

exactly one concept c ∈ C that is consistent with S and r(c) ⊆ S.

Lemma 1 helps us to construct a compression scheme of size VCDΨ for a
VCDΨ-maximum class C from a representation mapping r. For compression, a
sample S is compressed to r(c) ⊆ S, where c is consistent with S. For recon-
struction, r(c) is mapped to c ⊇ S, as r is a consistent bijective mapping.

We showed that a representation mapping can be used as a compression-
reconstruction function for the concepts in a VCDΨ-maximum class C. In the
next corollary, we use such a mapping to derive a compression scheme of size d
for C|Y , for any Y ⊆ X with |Y | > d. For any c̄ ∈ C|Y , define rY (c̄) := r(c)
where c is the unique concept in C with c|Y = c̄ and r(c) ⊆ c̄.

Corollary 1. Let r be a representation mapping for C. Let Y ⊆ X with |Y | > d.
Then rY is a representation mapping for C|Y .

At this point, the crucial notion of tail comes into play. As in the binary case,
we define the tail of a concept class C on an instance Xt ∈ X as the set of
all concepts c ∈ C such that c − Xt ∈ (C − Xt) \ CXt [6]. This corresponds
to the set of concepts in C − Xt that do not have all extensions onto X , or
equivalently (by the reduction property), that have a unique extension onto X .
That is, for any c ∈ tailXt(C), there exists only one label l ∈ {0, 1, . . . , Nt} such
that (c−Xt) ∪ {(Xt, l)} ∈ C. Note that C = CXt ×Xt ∪ tailXt(C).

As in the binary case, we establish a connection between tail concepts and for-
bidden labelings. By assumption, for Xp ∈ X , every concept in C−Xp has either
a unique or all possible extensions to concepts in C. So, each concept in tailXp(C)
corresponds to a concept in C−Xp that has only one extension ontoXp. That is,
|tailXp(C)| = |tailXp(C)−Xp|. Further, C−Xp = CXp ∪ (tailXp(C)−Xp) where
CXp and (tailXp(C) −Xp) are disjoint. Since, for d < m, C −Xp and CXp are
VCDΨ-maximum of dimensions d and d− 1 resp. [4, 10], we have |tailXp(C)| =
|tailXp(C) −Xp| = |C −Xp| − |CXp | =

∑
1≤i1<···<id≤m, ij �=pNi1 · · ·Nid .

For Y = {Xi1 , . . . , Xid+1
}, C|Y is VCDΨ-maximum of dimension d and thus

|Forb(C, Y )| = (Ni1 + 1) · · · (Nid+1
+ 1)− Φd(Ni1 , . . . , Nid+1

) = Ni1 · · ·Nid+1
.

As in the binary case, it is easy to see that every concept in tailXp(C) con-
tains some forbidden labeling of CXp of size d and each such forbidden labeling
occurs in at least one tail concept. Note that CXp is a VCDΨ-maximum class of
dimension d−1 and for each set of d instances Y = {Xi1 , . . . , Xid} ⊆ (X \{Xp}),
|Forb(CXp , Y )| = Ni1 · · ·Nid . So, |Forb(CXp)| =

∑
1≤i1<···<id≤m,ij �=pNi1 · · ·Nid

= |tailXp(C)|. First, adding any concept in tailXp(C)−Xp to CXp increases the
VCDΨ of CXp due to the maximum size property of CXp . So, each concept in
tailXp(C) contains at least one forbidden labeling of CXp . Second, C − Xp =
CXp ∪ (tailXp(C)−Xp) where the reduction class and the tail class are disjoint.
Next, for each set of d instances Y ⊆ (X \{Xp}), (C−Xp)|Y =

∏
Xi∈Y Xi, since

C is VCDΨ-maximum class of dimension d. That is, CXp |Y ∪(tailXp(C)−Xp)|Y =∏
Xi∈Y Xi and (tailXp(C) − Xp)|Y = Forb(CXp , Y ) =

∏
Xi∈Y Xi \ CXp |Y .
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In other words, all forbidden labelings of CXp on Y are in (tailXp(C) −Xp)|Y .
Since Y was chosen arbitrarily, we conclude that all forbidden labelings of CXp

appear in tailXp(C).
The Kuzmin-Warmuth scheme finds representatives for C by partitioning C

into CXi ×Xi and tailXi(C) for some Xi ∈ X . It identifies the representatives
for CXi recursively, and extends them to representatives for C. That is, for any
concept c ∈ CXi with a representative r(c), r(c ∪ (Xi, 0)) := r(c) and r(c ∪
(Xi, 1)) := r(c) ∪ Xi. Next, it finds representatives for the remaining concepts,
i.e., those in tailXi(C) by assigning each of them a forbidden labeling of the
class CXi of size d. Since the representative for each concept in tailXi(C) is a
forbidden labeling of the class CXi , the non-clashing property between tailXi(C)
and CXi is guaranteed.

As in the Kuzmin-Warmuth scheme, we establish a recursive structure for
tails. We introduce some notation, first. For p, q ∈ [m], with p < q and a concept
c̄ ∈ C|X\{Xp,Xq}, let ic̄, c̄j and ic̄j denote c̄ ∪ {(Xp, i)}, c̄ ∪ {(Xq, j)} and c̄ ∪
{(Xp, i), (Xq, j)}, respectively.

Lemma 2. Let p, q ∈ [m] with p �= q. Then the following statements are true.

1. For each c ∈ tailXp(C
Xq ) there are at least Nq labels l1, . . . , lNq ∈ Xq such

that c× {l1, . . . , lNq} ⊆ tailXp(C). If c ∈ tailXp(C
Xq ) \ tailXp(C −Xq), then

there are exactly Nq such labels.
2. For each c ∈ tailXp(C − Xq) there is at least one label l ∈ Xq such that

c × {l} ∈ tailXp(C). If c ∈ tailXp(C − Xq) ∩ tailXp(C
Xq ), then c × Xq ⊆

tailXp(C).
3. Each concept in tailXp(C) is an extension of either a concept in tailXp(C

Xq )
or a concept in tailXp(C −Xq).

Proof. W.l.o.g., assume p < q. We omit the proof of Statement 2.
Proof of Statement 1. W.l.o.g., let c = 0c̄ ∈ tailXp(C

Xq ). We show that
for some set {l1, . . . , lNq} ⊂ Xq, 0c̄j ∈ tailXp(C), j ∈ {l1, . . . , lNq}. Clearly,
tailXp(C

Xq ) ⊆ CXq , so 0c̄ ∈ CXq and thus 0c̄0, . . . , 0c̄Nq ∈ C. We need to show
that Nq concepts 0c̄j, j ∈ {l1, . . . , lNq}, belong to tailXp(C). For purposes of
contradiction, assume that 0c̄0, 0c̄1 /∈ tailXp(C), that is, c̄0, c̄1 ∈ CXp . Since
CXp is VCDΨ-maximum, c̄ has Nq+1 extensions to concepts in CXp . Therefore,

c̄0, c̄1, . . . , c̄Nq ∈ CXp ⇒

⎧⎪⎨⎪⎩
0c̄0, 1c̄0, . . . , Npc̄0 ∈ C
...
0c̄Nq, 1c̄Nq, . . . , Npc̄Nq ∈ C

i.e., 0c̄, . . . , Npc̄ ∈ CXq and c̄ ∈ (CXq )Xp . So, 0c̄ /∈ tailXp(C
Xq )—a contradiction.

We need to show that if 0c̄ ∈ tailXp(C
Xq ) \ tailXp(C−Xq), there is an l ∈ Xq

for which 0c̄l /∈ tailXp(C). Assume that for all j ∈ Xq, 0c̄j ∈ tailXp(C), i.e.,
c̄j /∈ CXp . That is, for all j ∈ Xq, 0c̄j ∈ C and c̄j has only one extension on Xp

to concepts in C, namely with (Xp, 0). So, for all i ∈ Xp \ {0} and all j ∈ Xq,
ic̄j /∈ C, and thus ic̄ /∈ C −Xq. This would imply 0c̄ ∈ tailXp(C −Xq).
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Proof of Statement 3. First one can show that |tailXp(C)| = Nq|tailXp(C
Xq )|

+|tailXp(C−Xq)|. Second, from Statements 1 and 2, any concept in tailXp(C
Xq )

can be mapped to Nq concepts in tailXp(C), and any concept in tailXp(C −Xq)
can be mapped to 1 concept in tailXp(C). Hence, each concept in tailXp(C) is an
extension of either a concept in tailXp(C

Xq ) or a concept in tailXp(C −Xq). ��

The next lemma states that the reduction and restriction operations are in-
terchangeable in the order in which they are applied.

Lemma 3. For any p, q ∈ [m], with p �= q, CXp −Xq = (C −Xq)
Xp .

Corollary 2. Forb((C −Xq)
Xp) ⊆ Forb(CXp).

Lemma 4. Any forbidden labeling for (CXp)Xq can be extended to Nq forbidden
labelings for CXp .

Proof. Let VCDΨ(C) = d. We show that for any set of d instances Y ⊆ X \{Xp}
with Xq ∈ Y , there are Nq forbidden labelings Si = S ∪ {(Xq, li)}, 1 ≤ i ≤ Nq

and li ∈ Xq, for C
Xp such that X(Si) = Y , X(S) = Y \Xq, and S is a forbidden

labeling of size d− 1 for (CXp)Xq .
Let Y = {Xi1 , . . . , Xid−1

, Xq} ⊆ X \ {Xp}, X(S) = {Xi1 , . . . , Xid−1
}, and

let S1 = S ∪ {(Xq, l1)} be a forbidden labeling for CXp . We first prove by
contradiction that S is a forbidden labeling for (CXp)Xq . Assume that S is
not a forbidden labeling for (CXp)Xq , and thus is consistent with some concept
c ∈ (CXp)Xq . Since c×Xq ⊆ CXp , we conclude that each sample S ∪ {(Xq, j)},
j ∈ Xq, is consistent with some concept in CXp . Thus, S ∪ {(Xq, l1)} is not a
forbidden labeling for CXp—a contradiction.

We next show that there are Nq−1 more forbidden labels Si = S∪{(Xq, li)},
2 ≤ i ≤ Nq, li ∈ Xq for C

Xp , i.e., for any concept c̄ ∈ CXp with c̄|{Xi1 ,...,Xid−1
} =

S, c̄(Xq) = l for some l ∈ Xq \ {l1, . . . , lNq}. Note that CXp is VCDΨ-maximum
of dimension d − 1 so that CXp |{Xi1 ,...,Xid−1

} =
∏

j∈{1,...,d−1}Xij , and thus

S ∈ CXp |{Xi1 ,...,Xid−1
}. For any c̄ ∈ CXp with c̄|{Xi1 ,...,Xid−1

} = S, it is clear

that c̄(Xq) �= l1, as S ∪ {(Xq, l1)} is a forbidden labeling for CXp . That is, for
any c′ ∈ CXp |Y with c′ − Xq = S, c′(Xq) �= l1. So, C

Xp |Y does not have all
extensions of S and thus, CXp |Y has a unique extension of S on Xq, as C

Xp |Y is
a VCDΨ-maximum class of dimension d− 1 on Y . So, there is only one concept
c′ ∈ CXp |Y with c′ −Xq = S and c′(Xq) = l, for some l ∈ Xq \ {l1, . . . , lNq}.

Now, we need to show that CXp has a unique extension of S onXq, namely S∪
{(Xq, l)}. Assume that there are concepts c̄1, c̄2 ∈ CXp with c̄1|{Xi1 ,...,Xid−1

} =

c̄2|{Xi1 ,...,Xid−1
} = S and c̄1(Xq) �= c̄2(Xq). Let c̄1(Xq) = l and c̄2(Xq) = l′.

Since c̄1|Y �= c̄2|Y and c̄1|Y , c̄2|Y ∈ CXp |Y , we conclude that CXp |Y has two
extensions of S with (Xq, l) and (Xq, l

′)—a contradiction. So, for any c̄ ∈ CXp

with c̄|{Xi1 ,...,Xid−1
} = S, c̄(Xq) = l. In other words, each sample S ∪ {(Xq, li)},

1 ≤ i ≤ Nq is a forbidden labeling for CXp .
Since C is VCDΨ-maximum of dimension d, CXp and (CXp)Xq are both

VCDΨ-maximum of dimension d− 1 and d− 2, resp. [4, 10]. One can then show
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Labeled Tail Matching Function (LTMF)
Input: a VCDΨ-maximum multi-label concept class C, X with |X| ≥ 1
Output: a mapping r assigning representatives to all concepts in C

r = LTMF(C,X)
If VCDΨ(C) = 0 then r(c) := ∅; (since C = {c})
Else { pick any Xp ∈ X; r̃ = LTMF(CXp , X \ {Xp});

For each c̄ ∈ CXp do {
For i = 1 to Np do

r(c̄ ∪ {(Xp, i)}) := r̃(c̄) ∪ {(Xp, i)};
r(c̄ ∪ {(Xp, 0)}) := r̃(c̄); }

Set r ← r ∪ LTS(C, X, Xp);} (see Algorithm 3 for LTS)
return r;

Algorithm 2. Recursively constructing labeled compression sets for concepts

|Forb(CXp)| = Nq|Forb((CXp )Xq )|+ |Forb((C−Xq)
Xp)|. So, |Forb((CXp)Xq )| =

1
Nq

|Forb(CXp , Y )|, for all Y ⊆ X \ {Xp} with |Y | = d and Xq ∈ Y .

Therefore, any set of Nq forbidden labelings Si = S ∪ {(Xq, li)}, 1 ≤ i ≤ Nq

for CXp can be mapped to one forbidden labeling S for (CXp)Xq . By counting
the number of forbidden labelings for CXp that contain Xq (as done above),
we conclude that any forbidden labeling for (CXp)Xq can be extended to Nq

forbidden labelings for CXp . ��

The next lemma now follows from Corollary 2 and Lemma 4.

Lemma 5. Each forbidden labeling of CXp is an extension of either a forbidden
labeling of (CXp )Xq or forbidden labeling of CXp −Xq.

The following lemma is crucial in connecting the set of forbidden labelings
to a labeled set of representatives. While its statement is obvious in the binary
case, it is not trivial in the multi-label case.

Lemma 6. For any set Y = {Xi1 , . . . , Xid} ⊆ X \ {Xp} with |Y | = d, there is
a tuple (l1, . . . , ld) ∈

∏
1≤j≤d Xij such that Forb(CXp , Y ) =

∏
1≤j≤d(Xij \ {lj}).

Proof. (sketch) Let m = |X |. The case m = 1 (d = 0) is obvious. One can
also prove by induction on m that the claim is true for d = m − 1; details are
omitted. For the general case, i.e. a VCDΨ-maximum class on m instances with
VCDΨ(C) = d < m, the proof is by induction on m. The base case is m = d+1
or equivalently d = m− 1. Assume that the claim is true for any m′ < m. Pick
Xq ∈ X \ {Xp}. By Lemma 5, each forbidden labeling of CXp is an extension of
a forbidden labeling of either (CXp)Xq or CXp −Xq.

By Lemma 3, CXp −Xq = (C−Xq)
Xp and thus Forb(CXp −Xq) = Forb((C−

Xq)
Xp). C − Xq is VCDΨ-maximum on m − 1 instances and of VCDΨ d. So,

by induction hypothesis, for any set Y = {Xi1 , . . . , Xid} ⊆ X \ {Xp, Xq},
there is a tuple (l1, . . . , ld) ∈

∏
1≤j≤d Xij such that Forb((C − Xq)

Xp , Y ) =∏
1≤j≤d(Xij \ {lj}) and hence Forb(CXp − Xq, Y ) =

∏
1≤j≤d(Xij \ {lj}). For-

bidden labelings of CXp −Xq are exactly all forbidden labelings of CXp the do
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Labeled Tail Subroutine (LTS)
Input: a VCDΨ-maximum multi-label concept class C over X, Xp ∈ X
Output: a mapping r assigning representatives to all concepts in tailXp(C)

r=LTS(C,X,Xp)

1. If VCDΨ(C) = 0 then r(c) := ∅; (since C = tailXp (C) = {c})
Else if VCDΨ(C) = |X| then r := ∅; (since C =

∏
Xi∈X Xi and tailXp (C) = ∅)

(∗) Else {pick q �= p; r1 =LTS(CXq ,X \ {Xq},Xp); r2 =LTS(C − Xq ,X \ {Xq},Xp);

2. For each c̄ ∈ tailXp (C
Xq ) \ tailXp (C − Xq) do

For each c ∈ tailXp (C) do
For i = 0 to Nq do

If c = c̄ ∪ {(Xq, i)} then r(c) := r1(c̄) ∪ {(Xq , i)};
3. For each c̄ ∈ tailXp (C − Xq) \ tailXp (C

Xq ) do

For each c ∈ tailXp (C) do { If c − Xq = c̄ then r(c) := r2(c̄); }
4. For each c̄ ∈ tailXp (C

Xq ) ∩ tailXp (C − Xq) do

For each c ∈ tailXp (C) do
For i = 0 to Nq do

If c = c̄ ∪ {(Xq, i)} then

If r1(c̄) ∪ {(Xq, i)} inconsistent with all ĉ ∈ CXp \ {c} then
r(c) := r1(c̄) ∪ {(Xq, i)};

Else r(c) := r2(c̄); } (end of (∗) Else) return r;

Algorithm 3. Recursively finding representatives for the tail concepts

not contain Xq. Therefore, for each Y = {Xi1 , . . . , Xid} ⊆ X \ {Xp, Xq}, there
is a tuple (l1, . . . , ld) ∈

∏
1≤j≤d Xij with

Forb(CXp , Y ) =
∏

1≤j≤d
(Xij \ {lj}). (1)

Moreover, (CXp)Xq = (CXq )Xp , and thus Forb((CXp)Xq ) = Forb((CXq )Xp).
CXq is VCDΨ-maximum on m−1 instances and of VCDΨ d−1. So, by induction
hypothesis, for each set Y = {Xi1 , . . . , Xid−1

} ⊆ X \ {Xp, Xq}, there is a tuple
(l1, . . . , ld−1) ∈

∏
1≤j≤d−1Xij such that Forb((CXq )Xp , Y ) =

∏
1≤j≤d−1(Xij \

{lj}), and hence Forb((CXp)Xq , Y ) =
∏

1≤j≤d−1(Xij \ {lj}). By Lemma 4, any

forbidden labeling on Y for (CXp)Xq , is extended to Nq forbidden labelings on
Y ∪{Xq} for CXp . That is, for some lq ∈ Xq, (Xq, lq) never occurs in a forbidden
labeling on Y ∪{Xq}. Therefore, for each Y ′ = {Xi1 , . . . , Xid−1, Xq} ⊆ X\{Xp},
there is a tuple (l1, . . . , ld−1, lq) ∈ (

∏
1≤j≤d−1Xij )×Xq such that

Forb(CXp , Y ′) = (
∏

1≤j≤d−1
(Xij \ {lj}))× (Xq \ {lq}). (2)

Now, we need to show that if the claim holds for CXp − Xq and (CXq )Xp

then it also holds for CXp . Note that Forb(CXp) can be partitioned into the set
of forbidden labelings on Y ⊆ X \ {Xp, Xq}, and the set of forbidden labelings
on Y ′ ⊆ X \ {Xp}, with Xq ∈ Y ′. By combining this fact with (1) and (2),
we conclude that for each Y = {Xi1 , . . . , Xid} ⊆ X \ {Xp}, there is a tuple
(l1, . . . , ld) ∈

∏
1≤j≤d Xij such that Forb(CXp , Y ) =

∏
1≤j≤d(Xij \ {lj}). ��
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Theorem 3. For any Xp ∈ X, there is a bipartite graph between tailXp(C)
and Forb(CXp), with an edge between a concept and a forbidden labeling if this
forbidden labeling is contained in the concept. All such graphs have a unique
matching.

Proof. (sketch) Let m = |X | and VCDΨ(C) = d. The proof is by double in-
duction on m and d. For m = d, there is nothing to prove as tailXp(C) =
Forb(CXp) = ∅, for all p ∈ {1, . . . ,m}. Also, for d = 0, C contains a single
concept which is always in the tail and gets matched to the empty set.

Suppose that the claim is true for all d′ and m′ such that d′ ≤ d, m′ ≤ m and
m′ + d′ < m+ d. Pick Xp, Xq ∈ X . First, by Lemma 5, each forbidden labeling
of CXp is an extension of a forbidden labeling of either (CXp)Xq or CXp −Xq.
Second, by Lemma 2.(3), any concept in tailXp(C) is an extension of either a
concept in tailXp(C

Xq ) or a concept in tailXp(C − Xq). Also, tailXp(C
Xq ) is

a VCDΨ-maximum class of dimension d − 1 and tailXp(C − Xq) is a VCDΨ-
maximum class of dimension d; both on the instance space X \ {Xq}. So, by
induction hypothesis there exists a unique matching between tailXp(C − Xq)
and Forb((C −Xq)

Xp), and also, between tailXp(C
Xq ) and Forb((CXp )Xq ). We

combine these two matchings to form a matching for tailXp(C). This is done in
steps 2, 3 and 4 in Algorithm 3. We omit the details as well as the verification
of the uniqueness of the thus obtained matching. ��

Let LRepd(X) ⊂ LRep≤d(X) denote the set of labeled representatives of size d
that are constructed from Algorithm 1. The following corollary shows that there
is a representation mapping between tailXp(C) and LRepd(X \ {Xp}). Omitted
proof uses Lemma 6.

Corollary 3. Algorithm 3 returns a representation mapping between tailXp(C)
and some LRepd(X \ {Xp}).

The following theorem can be proven by induction on d, using Corollary 3.

Theorem 4. Algorithm 2 returns a representation mapping between the VCDΨ-
maximum class C on X with VCDΨ(C) = d and some LRep≤d(X).

Now we have all the pieces in place for verfying Theorem 2.

Proof of Theorem 2. By Theorem 4, there exists a representation mapping r
for C, i.e., a consistent bijection between C and some LRep≤d(X) in which no two
concepts clash. Condition (i) of Definition 4 is then obvious as |LRep≤d(X)| =
|C|. Condition (ii) follows from the consistency and bijection properties of r.
Condition (iii) follows from the non-clashing property of r and Lemma 1. ��

Table 1 shows the representatives computed for a VCDΨG-maximum class
(we will see later that VCDΨG has the reduction property). Note the missing
labeling property and the tightness of the scheme. To illustrate Steps 2 and 3
of Algorithm 3, see Table 2. Assume we want representatives for tailX2(C

X1)
and we recursively found the representative r(c11) = ∅ for the (only) concept
in tailX2((C

X1 )X3). r(c11) is extended to r(c31) for c31 ∈ CX1 , that is, r(c31) =
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Table 1. VCDΨG -maximum class and representatives resulting from Algorithm 2

c X1 X2 X3 X4 r(c)
c1 0 0 0 0 ∅
c2 0 0 1 0 (X3, 1)
c3 0 0 2 0 (X3, 2)
c4 0 0 1 1 (X4, 1)
c5 0 0 1 2 (X4, 2)
c6 0 1 0 0 (X2, 1)
c7 0 2 0 0 (X2, 2)
c8 1 0 0 0 (X1, 1)
c9 2 0 0 0 (X1, 2)
c10 1 0 1 0 (X1, 1), (X3, 1)
c11 1 0 2 0 (X1, 1), (X3, 2)
c12 2 0 1 0 (X1, 2), (X3, 1)
c13 2 0 2 0 (X1, 2), (X3, 2)
c14 1 0 1 1 (X1, 1), (X4, 1)
c15 2 0 1 1 (X1, 2), (X4, 1)
c16 1 0 1 2 (X1, 1), (X4, 2)
c17 2 0 1 2 (X1, 2), (X4, 2)

c X1 X2 X3 X4 r(c)
c18 1 1 0 0 (X1, 1), (X2, 1)
c19 1 2 0 0 (X1, 1), (X2, 2)
c20 2 1 0 0 (X1, 2), (X2, 1)
c21 2 2 0 0 (X1, 2), (X2, 2)
c22 0 1 0 1 (X3, 0), (X4, 1)
c23 0 1 0 2 (X3, 0), (X4, 2)
c24 0 1 1 0 (X2, 1), (X3, 1)
c25 0 1 2 0 (X2, 1), (X3, 2)
c26 0 2 1 0 (X2, 2), (X3, 1)
c27 0 2 2 0 (X2, 2), (X3, 2)
c28 0 1 1 1 (X2, 1), (X4, 1)
c29 0 2 1 1 (X2, 2), (X4, 1)
c30 0 1 2 1 (X3, 2), (X4, 1)
c31 0 1 1 2 (X2, 1), (X4, 2)
c32 0 2 1 2 (X2, 2), (X4, 2)
c33 0 1 2 2 (X3, 2), (X4, 2)

Table 2. Illustration of Steps 2 and 3 of Algorithm 3

c ∈ tailX2 ((C
X1)X3 ) X2 X4 r(c)

c11 0 0 ∅

c ∈ tailX2 (C
X1 − X3) X2 X4 r(c)

c21 0 1 {(X4, 1)}
c22 0 2 {(X4, 2)}

c ∈ tailX2(C
X1 ) X2 X3 X4 r(c)

c31 0 1 0 r(c11) ∪ {(X3, 1)} = {(X3, 1)}
c32 0 2 0 r(c11) ∪ {(X3, 2)} = {(X3, 2)}
c33 0 1 1 r(c21) = {(X4, 1)}
c34 0 1 2 r(c21) = {(X4, 2)}

r(c11) ∪ {(X3, 1)} = {(X3, 1)} because c31 = c11 ∪ {(X3, 1)}. Similarly, r(c11) is
extended to r(c32) for c32 ∈ CX1 , that is, r(c32) = r(c11) ∪ {(X3, 2)} = {(X3, 2)}
because c32 = c11∪{(X3, 2)}. Next assume we want representatives for tailX2(C

X1)
and we recursively found the representatives for tailX2(C

X1 − X3). r(c
2
1) for

c21 ∈ CX1 −X3 is extended to r(c33) for c
3
3 ∈ CX1 because c33−X3 = c21. Similarly,

r(c22) for c
2
2 ∈ CX1 −X3 is extended to r(c34) for c

3
4 ∈ CX1 because c34−X3 = c22.

4 Which Notions of VCD Fulfill the Reduction Property?

Theorems 1 and 2 raise the question which notions of VCD fulfill the reduc-
tion property. We know that VCDΨ∗ has the reduction property [10]. Here,
we show that the same is true for the Graph-dimension, but not for Pollard’s
pseudo-dimension or the Natarajan-dimension. Since ΨG is the direct product
over spanning families of mappings, Theorems 1 and 2 then apply to VCDΨG .

Theorem 5. VCDΨG fulfills the reduction property. In particular, each VCDΨG-
maximum class C has a tight sample compression scheme of size VCDΨG(C).

A challenging part of the proof of Theorem 5 is to establish the following
crucial lemma. The rest of the proof is analogous to that in [10].
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Lemma 7. Let Xi = {0, 1}, for i ∈ [m − 1], Xm = {0, . . . , Nm}, Nm ≥ 2. Let
Ψ = id1 × · · · × idm−1 × ΨG and C ⊆

∏m
i=1Xi be VCDΨ-maximum of VCDΨ

m− 1. Then for all c ∈ C −Xm, |{c ∈ C | c−Xm = c}| ∈ {1, Nm + 1}.

Proof. We show that if some c ∈ C − Xm has more than one but fewer than
Nm + 1 extensions in C, then VCDΨ(C) = m. To do this, we first partition C
into Nm + 1 classes Ci = {c ∈ C | c(Xm) = i}, for 0 ≤ i ≤ Nm. We claim that

2m−1 − 1 ≤ |Ci| ≤ 2m−1, for all i ∈ {0, . . . , Nm}. (3)

|Ci| ≤ |C −Xm| = 2m−1 yields the upper bound. For the lower bound, assume
|Ct| = 2m−1 − k, k ≥ 2, for some t ∈ Xm. Then one can show |C \ Ct| ≥
(2m−1 − 1)Nm + 2. So, by the pigeonhole principle and by |Ci| ≤ 2m−1, at least
two Cl, Cl′ ⊆ (C \ Ct) satisfy |Cl| = |Cl′ | = 2m−1 and Cl −Xm = Cl′ −Xm =
{0, 1}m−1. Thus, any tuple in ΨG that maps l and l′ to different values makes
C shatter X—a contradiction.1 Hence, for all i ∈ {0, . . . , Nm}, |Ci| ≥ 2m−1 − 1.
We claim

(a) There exists some t ∈ Xm, such that |Ct| = 2m−1.
(b) |Ci| = 2m−1 − 1 for all i ∈ Xm \ {t}.

Assume that for all i ∈ Xm, |Ci| = 2m−1 − 1. Then |C| =
∑Nm

i=0 |Ci| =
(Nm + 1)(2m−1 − 1) = 2m−1 + 2m−1Nm −Nm − 1 < 2m−1 + 2m−1Nm −Nm =
Φm−1(1, . . . , 1, Nm). So, there is at least one concept class Ct ⊆ C such that
|Ct| > 2m−1 − 1, that is, |Ct| = 2m−1 from (3), which proves (a). Consequently,∑Nm

i=0, i�=t |Ci| = |C|− |Ct| = 2m−1+2m−1Nm−Nm− 2m−1 = 2m−1Nm−Nm =

(2m−1 − 1)Nm. Since |Ci| ≥ 2m−1 − 1, for all 0 ≤ i ≤ Nm, we conclude that
|Ci| = 2m−1 − 1, for all i ∈ Xm \ {t}, i.e., we have proven (b).

Now let 1 ≤ k < Nm. Suppose there is a c ∈ C−Xm with |{c ∈ C | c−Xm =
c}| = k + 1. Let c0, . . . , ck ∈ C with ci �= cj and ci −Xm = cj −Xm = c, for all
i, j ∈ {0, . . . , k}, i �= j. W.l.o.g., ci(Xm) = i for i ∈ {0, . . . , k}. On the one hand,

ci = c× {i} ∈ Ci for each i ∈ {0, . . . , k}. (4)

On the other hand, for c ∈ C with c − Xm = c, c(Xm) �= l, for all l ∈ {k +
1, . . . , Nm}. Thus, for all l ∈ {k + 1, . . . , Nm}, c× {l} /∈ C and c× {l} /∈ Cl. So,
Cl ⊆ ({0, 1}m−1 × {l}) \ {c × {l}}, for l ∈ {k + 1, . . . , Nm} and thus, from (3),
|Cl| = 2m−1− 1 and Cl = ({0, 1}m−1×{l}) \ {c×{l}}, for l ∈ {k+1, . . . , Nm}.
Consequently, from (a), for some t ∈ {0, . . . , k}, |Ct| = 2m−1.

We show VCDΨ(C) = m. Let ψ = (id1, . . . , idm−1, ψm), where ψm(x) = 1 if
x = t, else ψm(x) = 0. First, ψ(Ct) = {0, 1}m−1×{1}. Second, c×{k+1} /∈ Ck+1,
so ψ(Ck+1) = ({0, 1}m−1×{0}) \ {c×{0}}. Hence, {0, 1}m \ {c×{0}} ⊆ ψ(C).
By (4), c× {0} ∈ ψ(Ci), for all i ∈ {0, . . . , k} \ {t}, so ψ(C) = {0, 1}m. ��

For VCDΨP and VCDΨN , we give counterexamples to the reduction property.
First, Table 3 witnesses the following claim (proof details are omitted).

Proposition 1. There is a VCDΨP-maximum class C of VCDΨP 2 such that,
for some Xt ∈ X and some c ∈ C −Xt, |{c ∈ C | c−Xt = c}| = 2 ≤ Nt.
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Table 3. Maximum class C of VCDΨP 2 used in the proof of Proposition 1

c X1 X2 X3

c1 0 0 0
c2 0 0 1
c3 0 1 0
c4 0 1 1

c X1 X2 X3

c5 1 0 0
c6 1 0 1
c7 1 1 1
c8 0 2 0

c X1 X2 X3

c9 0 2 1
c10 0 2 2
c11 2 0 0
c12 2 0 1

c X1 X2 X3

c13 2 0 2
c14 2 1 1
c15 2 1 2
c16 2 2 1

c X1 X2 X3

c17 2 2 2
c18 1 2 1
c19 1 2 2

Table 4. Maximum class C of VCDΨN 1 used in the proof of Proposition 2

c X1 X2 X3

c1 0 0 0
c2 0 0 1

c X1 X2 X3

c3 0 1 0
c4 1 0 0

c X1 X2 X3

c5 1 2 2
c6 2 1 2

c X1 X2 X3

c7 2 2 1
c8 2 2 2

c X1 X2 X3

c9 2 0 0
c10 2 0 2

The class in Table 3 does not stay VCDΨP -maximum when applying either
definition of reduction w.r.t. X3, yet it does have a tight compression scheme.
Details are omitted. For VCDΨN , the class in Table 4 witnesses Proposition 2.

Proposition 2. There is a VCDΨN -maximum class C of VCDΨN 1 such that,
for some Xt ∈ X and some c ∈ C −Xt, |{c ∈ C | c−Xt = c}| = 2 ≤ Nt.

The reduction of the class in Table 4 is not VCDΨN -maximum under either
definition of reduction. Interestingly, this class has no tight compression scheme.
Note that the Natarajan-dimension violates both premises of Theorems 1 and
2—it violates the reduction property, and it is not based on a spanning family.
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Abstract. We examine the robustness and privacy of Bayesian infer-
ence, under assumptions on the prior, and with no modifications to the
Bayesian framework. First, we generalise the concept of differential pri-
vacy to arbitrary dataset distances, outcome spaces and distribution fam-
ilies. We then prove bounds on the robustness of the posterior, introduce
a posterior sampling mechanism, show that it is differentially private and
provide finite sample bounds for distinguishability-based privacy under
a strong adversarial model. Finally, we give examples satisfying our as-
sumptions.

1 Introduction

Significant research challenges for statistical learning include efficiency, robust-
ness to noise (stochasticity) and adversarial manipulation, and preserving train-
ing data privacy. In this paper we study techniques for meeting these challenges
simultaneously, through a simple unification of Bayesian inference, differential
privacy and distinguishability. In particular, we examine the following problem.

Summary of Setting. A Bayesian statistician (B) wants to communicate re-
sults about some data x to a third party (A ), but without revealing the data x
itself. (x could be a single datum, or a sample of data.) More specifically:

(i) B selects a model family (FΘ) and a prior (ξ).
(ii) A is allowed to see FΘ and ξ and is computationally unbounded.
(iii) B observes data x and calculates the posterior ξ(θ|x) but does not reveal

it. Instead, B responds to queries at times t = 1, . . . as follows.
(iv) A sends a query qt to B.
(v) B responds qt(θt) where θt is drawn from the posterior: θt ∼ ξ(θ|x).

We show that if FΘ or ξ are chosen appropriately, the resulting posterior-
sampling mechanism satisfies generalized differential privacy and indistinguisha-
bility properties. The intuition is that robustness and privacy are linked via
smoothness. Learning algorithms that are smooth mappings—their output (e.g.,
a spam filter) varies little with perturbations to input (e.g., similar training
corpora)—are robust: outliers have reduced influence, and adversaries cannot
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easily discover unknown information about the data. This suggests that robust-
ness and privacy can be simultaneously achieved and perhaps are deeply linked.
We show that under mild assumptions this is indeed true for the posterior dis-
tribution, suggesting a differentially-private mechanism for Bayesian inference.

Our contributions. (i) We generalise differential privacy to arbitrary dataset dis-
tances, outcome spaces, and distribution families. (ii) Under certain regularity
conditions on the prior distribution ξ or likelihood family FΘ, we show that
the posterior distribution is robust : small changes in the dataset result in small
posterior changes; (iii) We introduce a novel posterior sampling mechanism that
is private. Unlike other common mechanisms, our approach sits squarely in the
non-private (Bayesian) learning framework without modification; (iv) We intro-
duce the notion of dataset distinguishability for which we provide finite-sample
bounds for our mechanism (v) We provide examples of conjugate-pair distribu-
tions where our assumptions hold.

Paper organisation. Section 1.1 discusses related work. Section 2 specifies the
setting and our assumptions. Section 3 proves results on robustness of Bayesian
learning. Section 4 proves privacy results. Examples where our assumptions hold
are given in Section 5. We present a discussion of our results in Section 6. Ap-
pendix A contains proofs of the main theorems. Proofs of the examples and a
discussion on matching lower bounds are given in a technical report [8].

1.1 Related Work

In Bayesian statistical decision theory [1, 2, 7], learning is cast as a statistical
inference problem and decision-theoretic criteria are used as a basis for assess-
ing, selecting and designing procedures. In particular, for a given cost function,
the Bayes-optimal procedure minimises the Bayes risk under a particular prior
distribution.

In an adversarial setting, this is extended to a minimax risk, by assuming
that the prior distribution is selected arbitrarily by nature. In the field of ro-
bust statistics, the minimax asymptotic bias of a procedure incurred within an
ε-contamination neighbourhood is used as a robustness criterion giving rise to
the notion of a procedure’s influence function and breakdown point to charac-
terise robustness [17, 18]. In a Bayesian context, robustness appears in several
guises including minimax risk, robustness of the posterior within ε-contamination
neighbourhoods, and robust priors [1]. In this context Grünwald and Dawid [15]
demonstrated the link between robustness in terms of the minimax expected
score of the likelihood function and the (generalized) maximum entropy princi-
ple, whereby nature is allowed to select a worst-case prior.

Differential privacy, first proposed by Dwork et al. [12], has achieved promi-
nence in the theory of computer science, databases, and more recently learning
communities. Its success is largely due to the semantic guarantee of privacy it
formalises. Differential privacy is normally defined with respect to a randomised
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mechanism for responding to queries. Informally, a mechanism preserves differ-
ential privacy if perturbing one training instance results in a small change to the
mechanism’s response distribution. Differential privacy is detailed in Section 2.

A popular approach for differential privacy is the exponential mechanism [19]
which generalises the Laplace mechanism of adding Laplace noise to released
statistics [12]. This mechanism releases a response with probability exponential
in a score function measuring distance to the non-private response. An alternate
approach, employed for privatising regularised ERM [6], is to alter the inferential
procedure itself, in that case by adding a random term to the primal objective.
Further results on the accuracy of the exponential mechanism with respect to
the Kolmogorov-Smirnov distance are given in [23]. Unlike previous studies, our
mechanisms do not require modification to the underlying learning framework.

In a different direction, Duchi et al. [9] provided information-theoretic bounds
for private learning, by modelling the protocol for interacting with an adversary
as an arbitrary conditional distribution, rather than restricting it to specific
mechanisms. In a similar vein Chaudhuri and Hsu [5] drew a quantitative connec-
tion between robust statistics and differential privacy by providing finite sample
convergence rates for differentially private plug-in statistical estimators in terms
of the gross error sensitivity, a common measure of robustness. These bounds
can be seen as complementary to ours because our Bayesian estimators do not
have private views of the data but use a suitably-defined prior instead.

Little research in differential privacy focuses on the Bayesian paradigm, and
to our knowledge, none has established differentially-private Bayesian inference.
Williams and McSherry [25] applied Bayesian inference to improve the utility of
differentially private releases by computing posteriors in a noisy measurement
model. In a similar vein, Xiao and Xiong [26] used Bayesian credible intervals to
respond to queries with as high utility as possible, subject to a privacy budget.
In the PAC-Bayesian setting, Mir [20] showed that the Gibbs estimator [19] is
differentially private. While their algorithm corresponds to a posterior sampling
mechanism, it is a posterior found by minimising risk bounds; by contrast, our
results are purely Bayesian and come from conditions on the prior.

Smoothness of the learning map, achieved here for Bayesian inference by ap-
propriate concentration of the prior, is related to algorithmic stability which is
used in statistical learning theory to establish error rates [3]. Rubinstein et al.
[22] used the γ-uniform stability of the SVM to calibrate the level of noise for us-
ing the Laplace mechanism to achieve differential privacy for the SVM. Hall et al.
[16] extended this technique to adding Gaussian process noise for differentially
private release of infinite-dimensional functions lying in an RKHS.

Finally, Dwork and Lei [11] made the first connection between (frequentist) ro-
bust statistics and differential privacy, developing mechanisms for the interquar-
tile, median and B-robust regression. While robust statistics are designed to
operate near an ideal distribution, they can have prohibitively high global,
worst-case sensitivity. In this case privacy was still achieved by performing a
differentially-private test on local sensitivity before release [13]. Little further
work has explored robustness and privacy, and no general connection is known.
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2 Problem Setting

We consider the problem of a Bayesian statistician (B) communicating with an
untrusted third party (A ). B wants to convey useful information to the queries
of A (e.g., how many people suffer from a disease or vote for a particular party)
without revealing private information about the original data (e.g., whether a
particular person has cancer). This requires communicating information in a
way that strikes a good balance between utility and privacy. In this paper, we
study the inherent privacy and robustness properties of Bayesian inference and
explore the question of whether B can select a prior distribution so that a
computationally unbounded A cannot obtain private information from queries.

2.1 Definitions

We begin with our notation. Let S be the set of all possible datasets. For example,
if X is a finite alphabet, then we might have S =

⋃∞
n=0 Xn, i.e., the set of all

possible observation sequences over X .

Comparing datasets. Central to notions of privacy and robustness, is the concept
of distance between datasets. Firstly, the effect of dataset perturbation on learn-
ing depends on the amount of noise as quantified by some distance. Secondly,
the amount that an attacker can learn from queries can be quantified in terms
of the distance of his guesses to the true dataset. To model these situations, we
equip S with a pseudo-metric1 ρ : S × S → R+. Using pseudo-metrics, we con-
siderably generalise previous work on differential privacy, which considers only
the special case of Hamming distance. We note that a similar generalisation has
been developed in parallel and independently by Chatzikokolakis et al. [4].

Bayesian inference. This paper focuses on the Bayesian inference setting, where
the statistician B constructs a posterior distribution from a prior distribution ξ
and a training dataset x. More precisely, we assume that data x ∈ S have been
drawn from some distribution Pθ∗ on S, parametrised by θ∗, from a family of
distributions FΘ. B defines a parameter set Θ indexing a family of distributions
FΘ on (S,SS), where SS is an appropriate σ-algebra on S:

FΘ � {Pθ : θ ∈ Θ } , (1)

and where we use pθ to denote the corresponding densities2 when necessary.
To perform inference in the Bayesian setting, B selects a prior measure ξ on
(Θ,SΘ) reflecting B’s subjective beliefs about which θ is more likely to be true,
a priori; i.e., for any measurable set B ∈ SΘ, ξ(B) represents B’s prior belief
that θ∗ ∈ B. In general, the posterior distribution after observing x ∈ S is:

ξ(B | x) =
∫
B
pθ(x) dξ(θ)

φ(x)
, (2)

1 Meaning that ρ(x, y) = 0 does not necessarily imply x = y.
2 I.e., the Radon-Nikodym derivative of Pθ relative to some dominating measure ν.
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where φ is the corresponding marginal density given by:

φ(x) �
∫
Θ

pθ(x) dξ(θ) . (3)

While the choice of the prior is generally arbitrary, this paper shows that its
careful selection can yield good privacy guarantees.

Privacy. We first recall the idea of differential privacy [10]. This states that on
similar datasets, a randomised query response mechanism yields (pointwise) sim-
ilar distributions. We adopt the view of mechanisms as conditional distributions
under which differential privacy can be seen as a measure of smoothness. In our
setting, conditional distributions conveniently correspond to posterior distribu-
tions. These can also be interpreted as the distribution of a mechanism that uses
posterior sampling, to be introduced in Section 4.2.

Definition 1 ((ε, δ)-differential privacy). A conditional distribution P (· | x)
on (Θ,SΘ) is (ε, δ)-differentially private if, for allB ∈ SΘ and for anyx ∈ S = Xn

P (B | x) ≤ eεP (B | y) + δ,

for all y in the hamming-1 neighbourhood of x. That is, there is at most one
i ∈ {1, . . . , n} such that xi �= yi.

As a first step, we generalise this definition to arbitrary dataset spaces S that are
not necessarily product spaces. To do so, we introduce the notion of differential
privacy under a pseudo-metric ρ on the space of all datasets.

Definition 2 ((ε, δ)-differential privacy under ρ.). A conditional distribu-
tion P (· | x) on (Θ,SΘ) is (ε, δ)-differentially private under a pseudo-metric
ρ : S × S → R+ if, for all B ∈ SΘ and for any x ∈ S, then:

P (B | x) ≤ eερ(x,y)P (B | y) + δρ(x, y) ∀y .

Remark 1. If S = Xn and ρ(x, y) =
∑n

i=1 I {xi �= yi} is the Hamming distance,
this definition is analogous to standard (ε, δ)-differential privacy. When consid-
ering only (ε, 0)- differential privacy or (0, δ)-privacy, it is an equivalent notion.3

Proof. For (ε, 0)-DP, let ρ(x, z) = ρ(z, y) = 1; i.e., they only differ in one ele-
ment. Then, from standard DP, we have P (B | x) ≤ eεP (B | z) and so obtain
P (B | x) ≤ e2εP (B | y) = eρ(x,y)εP (B | y). By induction, this holds for any
x, y pair. Similarly, for (0, δ)-DP, by induction we obtain P (B | x) ≤ P (B |
x) + δρ(x, y).

Definition 1 allows for privacy against a very strong attacker A , who attempts
to match the empirical distribution induced by the true dataset by querying

3 Making the definition wholly equivalent is possible, but results in an unnecessarily
complex definition.
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the learned mechanism and comparing its responses to those given by distri-
butions simulated using knowledge of the mechanism and knowledge of all but
one datum—narrowing the dataset down to a hamming-1 ball. Indeed the re-
quirement of differential privacy is sometimes too strong since it may come at
the price of utility. Our Definition 2 allows for a much broader encoding of the
attacker’s knowledge via the selected pseudo-metric.

2.2 Our Main Assumptions

In the sequel, we show that if the distribution family FΘ or prior ξ is such that
close datasets x, y ∈ S, result in posterior distributions that are close. In that
case, it is difficult for a third party to use such a posterior to distinguish the
true dataset x from similar datasets.

To formalise these notions, we introduce two possible assumptions one could
make on the smoothness of the family FΘ with respect to some metric d on R+.
The first assumption states that the likelihood is smooth for all parameteriza-
tions of the family:

Assumption 1 (Lipschitz continuity). Let d(·, ·) be a metric on R. There
exists L > 0 such that, for any θ ∈ Θ:

d(pθ(x), pθ(y)) ≤ Lρ(x, y), ∀x, y ∈ S . (4)

However, it may be difficult for this assumption to hold uniformly over Θ.
This can be seen by a counterexample for the Bernoulli family of distributions.
Consequently, we relax it by only requiring that B’s prior probability ξ is con-
centrated in the parts of the family for which the likelihood is smoothest:

Assumption 2 (Stochastic Lipschitz continuity[21]). Let d(·, ·) be a met-
ric on R and let

ΘL �
{
θ ∈ Θ : sup

x,y∈S

{
d(pθ(x), pθ(y))− Lρ(x, y)

}
≤ 0
}

(5)

be the set of parameters for which Lipschitz continuity holds with Lipschitz con-
stant L. Then there is some constant c > 0 such that, for all L ≥ 0:

ξ(ΘL) ≥ 1− exp(−cL) . (6)

By not requiring uniform smoothness, this weaker assumption is easier to meet
but still yields useful guarantees. In fact, in Section 5, we demonstrate that this
assumption is satisfied by many important example distribution families.

To make our assumptions concrete, we now fix the distance function d to be
the absolute log-ratio,

d(a, b) �
{
0 if a = b = 0∣∣ln a

b

∣∣ otherwise
, (7)
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which is a proper metric on R+ ×R+. This particular choice of distance yields
guarantees on differential privacy and indistinguishability.

We next show that verifying our assumptions for a distribution of a single
random variable lifts to a corresponding property for the product distribution
on i.i.d. samples.

Lemma 1. If pΘ satisfies Assumption 1 (resp. Assumption 2) with respect to
pseudo-metric ρ and constant L (or c), then, for any fixed n ∈ N, pnΘ({ xi }) =∏n

i=1 pΘ(xi) satisfies the same assumption with respect to:

ρn({ xi } , { yi }) =
∑n

i=1 ρ(xi, yi)

and constant L · n (or c
n). Further, if {xi } and { yi } differ in at most k items,

the assumption holds with the same pseudo-metric but with constant L ·k (or c
k )

instead.

3 Robustness of the Posterior Distribution

We now show that the above assumptions provide guarantees on the robustness
of the posterior. That is, if the distance between two datasets x, y is small, then
so too is the distance between the two resulting posteriors, ξ(· | x) and ξ(· | y).
We prove this result for the case where we measure the distance between the
posteriors in terms of the well-known KL-divergence:

D (P ‖ Q) =

∫
S

ln
dP

dQ
dP . (8)

The following theorem shows that any distribution family FΘ and prior ξ sat-
isfying one of our assumptions is robust, in the sense that the posterior does
not change significantly with small changes to the dataset. It is notable that our
mechanisms are simply tuned through the choice of prior.

Theorem 1. When d : R+ ×R+ → R+ is the absolute log-ratio distance (7), ξ
is a prior distribution on Θ and ξ(· | x) and ξ(· | y) are the respective posterior
distributions for datasets x, y ∈ S, the following results hold:

(i) Under a metric ρ and L > 0 satisfying Assumption 1,

D (ξ(· | x) ‖ ξ(· | y)) ≤ 2Lρ(x, y) (9)

(ii) Under a metric ρ and c > 0 satisfying Assumption 2,

D (ξ(· | x) ‖ ξ(· | y)) ≤ κ

c
· ρ(x, y) (10)

where κ is constant (see Appendix A); κ ≈ 4.91081.

Note that the second claim bounds the KL divergence in terms of B’s prior
belief that L is small, which is expressed via the constant c. The larger c is, the
less prior mass is placed in large L and so the more robust inference becomes.
Of course, choosing c to be too large may decrease efficiency.
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4 Privacy Properties of the Posterior Distribution

We next examine the differential privacy of the posterior distribution. We show
in Section 4.1 that this can be achieved under either of our assumptions. The
result can also be interpreted as the differential privacy of a posterior sampling
mechanism for responding to queries, which is described in Section 4.2. Finally,
Section 4.3 introduces an alternative notion of privacy: dataset distinguishability.
We prove a high-probability bound on the sample complexity of distinguishabil-
ity under our assumptions.

4.1 Differential Privacy of Posterior Distributions

We consider our generalised notion of differential privacy for posterior distribu-
tions (Definition 2); and show that the type of privacy exhibited by the posterior
depends on which assumption holds.

Theorem 2. Using the log-ratio distance (as in Theorem 1),

(i) Under Assumption 1, for all x, y ∈ S, B ∈ SΘ:

ξ(B | x) ≤ exp{2Lρ(x, y)}ξ(B | y) (11)

i.e., the posterior ξ is (2L, 0)-differentially private under pseudo-metric ρ.
(ii) Under Assumption 2, for all x, y ∈ S, B ∈ SΘ:

|ξ(B | x) − ξ(B | y)| ≤
√

κ

2c
ρ(x, y)

i.e., the posterior ξ is
(
0,
√

κ
2c

)
-differentially private under pseudo-metric√

ρ.

4.2 Posterior Sampling Query Model

Given that we have a full posterior distribution, we use it to define an algorithm
achieving privacy. In this framework, we allow the adversary to submit a set of
queries { qk } which are mappings from parameter space Θ to some arbitrary
answer set Ψ ; i.e.,, qk : Θ → Ψ . If we know the true parameter θ, then we would
reply to any query with qk(θ). However, since θ is unknown, we must select a
method for conveying the required information. There are three main approaches
that we are aware of. The first is to marginalise θ out. The second is to use the
maximum a posteriori value of θ. The final, which we employ here, is to use
sampling; i.e., to reply to each query qk using a θk sampled from the posterior.

This sample-based interactive query model is presented in Algorithm 1. First,
the algorithm calculates the posterior distribution ξ(· | x). Then, for the kth re-
ceived query qk, the algorithm draws a sample θk from the posterior distribution
and responds with qk(θk).
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Algorithm 1. Posterior sampling query model

1. Input prior ξ, data x ∈ S
2. Calculate posterior ξ(· | x).
3. for k = 1, . . . do
4. Observe query qk : Θ → Ψ .
5. Sample θk ∼ ξ(· | x).
6. Return qk(θk).
7. end for

In this context, Theorem 2 can be interpreted as proving differential privacy
for the posterior sampling mechanism for the case when the response set is the
parameter set; i.e., Ψ = Θ and qk(θ) = θ. Due to the data-processing inequal-
ity, this also holds for all query functions. As an example, consider querying
conditional expectations:

Example 1. Let each model Pθ in the family define a distribution on the product
space S =

⋃∞
n=1 Xn, such for any x = (x1, . . . , xn) ∈ Xn, Pθ(x) =

∏
i Pθ(xi).

In addition, let X = Y × Z (with appropriate algebras SX ,SY ,SZ) and write
xi = (xi,Y , xi,Z) for point xi and its two components. A conditional expectation
query would require an answer to the question:

Eθ(x|Y | x|Z),

where the parameter θ is unknown to the questioner. In this case, the answer
set Ψ would be identical to Y, while k would index the values in Z.

4.3 Distinguishability of Datasets

A limitation of the differential privacy framework is that it does not give us
insight on the amount of effort required by an adversary to obtain private infor-
mation. In fact, an adversary wishing to breach privacy, needs to distinguish x
from alternative datasets y. Within the posterior sampling query model, A has
to decide whether B’s posterior is ξ(· | x) or ξ(· | y). However, he can only do so
within some neighbourhood ε of the original data. In this section, we bound his
error in determining the posterior in terms of the number of queries he performs.
This is analogous to the dataset-size bounds on queries in interactive models of
differential privacy [12].

Let us consider an adversary querying to sample θk ∼ ξ(· | x). This is the
most powerful query possible under the model shown in Algorithm 1. Then, the
adversary needs only to construct the empirical distribution to approximate the
posterior up to some sample error. By bounds on the KL divergence between
the empirical and actual distributions we can bound his power in terms of how
many samples he needs in order to distinguish between x and y.

Due to the sampling model, we first require a finite sample bound on the
quality of the empirical distribution. The adversary could attempt to distinguish
different posteriors by forming the empirical distribution on any sub-algebra S.
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Lemma 2. For any δ ∈ (0, 1), let M be a finite partition of the sample space S,
of size m ≤ log2

√
1/δ, generating the σ-algebra S = σ(M ). Let x1, . . . , xn ∼ P

be i.i.d. samples from a probability measure P on S, let P|S be the restriction of

P on S and let P̂n
|S be the empirical measure on S. Then, with probability at

least 1− δ: ∥∥∥P̂n
|S − P|S

∥∥∥
1
≤
√

3

n
ln

1

δ
. (12)

Of course, the adversary could choose any arbitrary estimator ψ to guess x. The
accompanying technical report [8] describes how to apply Le Cam’s method to
obtain matching lower bound rates in this case, by defining dataset estimators.
This is however is not essential for the remainder of the paper.

We can combine this bound on the adversary’s estimation error with Theo-
rem 1’s bound on the KL divergence between posteriors resulting from similar
data to obtain a measure of how fine a distinction between datasets the adversary
can make after a finite number of draws from the posterior:

Theorem 3. Under Assumption 1, the adversary can distinguish between data
x, y with probability 1− δ if:

ρ(x, y) ≥ 3

4Ln
ln

1

δ
. (13)

Under Assumption 2, this becomes:

ρ(x, y) ≥ 3c

2κn
ln

1

δ
. (14)

Consequently, either smoother likelihoods (i.e., decreasing L), or a larger con-
centration on smoother likelihoods (i.e., increasing c), both increases the effort
required by the adversary and reduces the sensitivity of the posterior. Note that,
unlike the results obtained for differential privacy of the posterior sampling mech-
anism, these results have the same algebraic form under both assumptions.

5 Examples Satisfying Our Assumptions

In what follows we study, for different choices of likelihood and corresponding
conjugate prior, what constraints must be placed on the prior’s concentration to
guarantee a desired level of privacy. These case studies closely follow the pattern
in differential privacy research where the main theorem for a new mechanism are
sufficient conditions on (e.g., Laplace) noise levels to be introduced to a response
in order to guarantee a level ε of ε-differential privacy.

For exponential families, we have pθ(x) = h(x) exp
{
η�θ T (x)−A(ηθ)

}
, where

h(x) is the base measure, ηθ is the distribution’s natural parameter corresponding
to θ, T (x) is the distribution’s sufficient statistic, and A(ηθ) is its log-partition
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function. For distributions in this family, under the absolute log-ratio distance,
the family of parameters ΘL of Assumption 2 must satisfy, for all x, y ∈ S:∣∣∣ln h(x)

h(y) + η�θ (T (x)− T (y))
∣∣∣ ≤ Lρ(x, y). If the left-hand side has an amenable

form, then we can quantify the set ΘL for which this requirement holds. Particu-
larly, for distributions where h(x) is constant and T (x) is scalar (e.g., Bernoulli,

exponential, and Laplace), this requirement simplifies to |T (x)−T (y)|
ρ(x,y) ≤ L

ηθ
. One

can then find the supremum of the left-hand side independent from θ, yielding
a simple formula for the feasible L for any θ. Here are some examples, whose
proofs can be found in [8].

Lemma 3 (Exponential conjugate prior). For the case of an exponential
distribution Exp(θ) with exponential conjugate prior θ ∼ Exp(λ), λ > 0 satisfies
Assumption 2 with parameter c = λ and metric ρ(x, y) = |x− y|.

Lemma 4 (Laplace conjugate prior). The Laplace distribution Laplace(θ)
and Laplace conjugate prior θ ∼ Laplace(μ, s, λ), μ ∈ R, s ≥ L, λ > 0 satisfies
Assumption 2 with parameters c = λ and metric ρ(x, y) = |x− y|

Lemma 5 (Beta-Binomial conjugate prior). The Binomial distribution
Binom(θ, n), with Binomial prior θ ∼ Beta(α, β), α = β > 1 satisfies Assump-
tion 2 for c = O(α) and metric ρ(x, y) = |x− y|.

Lemma 6 (Normal distribution). The normal distribution N(μ, σ2) with an
exponential prior σ2 ∼ Exp(λ) satisfies Assumption 2 with parameter c = λ and
metric ρ(x, y) =

∣∣x2 − y2
∣∣+ 2 |x− y|.

Lemma 7 (Discrete Bayesian networks). Consider a family of discrete
Bayesian networks on K variables, FΘ = {Pθ : θ ∈ Θ }. More specifically, each

member Pθ, is a distribution on a finite space S =
∏K

k=1 Sk and we write
Pθ(x) for the probability of any outcome x = (x1, . . . , xK) in S. We also let

ρ(x, y) �
∑K

k=1 I {xk �= yk} be the distance between x and y. If ε is the smallest
probability assigned to any one sub-event, then Assumption 1 is satisfied with
L = ln 1/ε.

The above examples demonstrate that our assumptions are reasonable. In
fact, for several of them we recover standard choices of prior distributions.

6 Conclusion

We have presented a unifying framework for private and secure inference in a
Bayesian setting. Under simple but general assumptions, we have shown that
Bayesian inference is both robust and private in a certain formal sense. In par-
ticular, our results establish that generalised differential privacy can be achieved
while using only existing constructs in Bayesian inference. Our results merely
place concentration conditions on the prior. This allows us to use a general pos-
terior sampling mechanism for responding to queries.
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Due to its relative simplicity on top of non-private inference, our framework
may thus serve as a fundamental building block for more sophisticated, general-
purpose Bayesian inference. As an additional step towards this goal, we have
demonstrated the application of our framework to deriving analytical expressions
for well-known distribution families, and for discrete Bayesian networks. Finally,
we bounded the amount of effort required of an attacker to breach privacy when
observing samples from the posterior. This serves as a principled guide for how
much access can be granted to querying the posterior, while still guaranteeing
privacy.

We have not examined how privacy concerns relate to learning. While larger
c improves privacy, it also concentrates the prior so much that learning would
be inhibited. Thus, c should be chosen to optimise the trade-off between privacy
and learning. However, we leave this issue for future work.
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viewers for their comments on the paper. This work was partially supported by
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A Proofs of Main Theorems

Proof (Proof of Lemma 1). For Assumption 1, the proof follows directly from
the definition of the absolute log-ratio distance; namely,

d(pnΘ({ xi }), pnΘ({ yi })) = n
∑n

i=1 d(pΘ(xi), pΘ(yi))

≤ L · n
∑n

i=1 d(xi, yi) .

This can be reduced from n to k if only k items differ since d(pΘ(xi), pΘ(yi)) = 0
if xi = yi.

For Assumption 2, the same argument shows that the ΘL from Eq. (5) be-
comes ΘL·n (or ΘL·k for the k differing items case) for the product distribution.
Hence, the same prior can be used to give the bound required by Eq. (6) if
parameter c

n (or c
k ) is used.

Proof (Proof of Theorem 1). Let us now tackle claim (1.i). First, we can decom-
pose the KL-divergence D (ξ(· | x) ‖ ξ(· | y)) into two parts:∫

Θ

ln
dξ(θ | x)
dξ(θ | y) dξ(θ) =

∫
Θ

ln
pθ(x)

pθ(y)
dξ(θ) +

∫
Θ

ln
φ(y)

φ(x)
dξ(θ)

≤
∫
Θ

∣∣∣∣ln pθ(x)

pθ(y)

∣∣∣∣ dξ(θ) + ∫
Θ

ln
φ(y)

φ(x)
dξ(θ) ≤ Lρ(x, y) +

∣∣∣∣ln φ(y)

φ(x)

∣∣∣∣ . (15)

From Ass. 1, pθ(y) ≤ exp(Lρ(x, y))pθ(x) for all θ so:

φ(y) =

∫
Θ

pθ(y) dξ(θ) ≤ exp(Lρ(x, y))

∫
Θ

pθ(x) dξ(θ) = exp(Lρ(x, y))φ(x).

(16)
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Combining this with (15) we obtain D (ξ(· | x) ‖ ξ(· | y)) ≤ 2Lρ(x, y).
Claim (1.ii) is dealt with similarly. Once more, we can break down the distance

in parts. Let Θ[a,b] � Θb \ Θa. Then ξ(Θ[a,b]) = ξ(Θb) − ξ(Θa) ≤ e−ca, as
Θb ⊃ Θa, while ξ(Θb) ≤ 1 and ξ(Θa) ≥ 1 − e−ca from Ass 2. We can partition
Θ into uniform intervals [(L − 1)α,Lα) of size α > 0 indexed by L. We bound
the divergence on each partition and sum over L.

D (ξ(· | x) ‖ ξ(· | y))

≤
∞∑

L=1

{∫
Θ[(L−1)α,Lα)

∣∣∣∣ln pθ(x)

pθ(y)

∣∣∣∣ dξ(θ) + ∫
Θ[(L−1)α,Lα]

ln
φ(y)

φ(x)
dξ(θ)

}

≤2ρ(x, y)α

∞∑
L=1

Le−c(L−1)α = 2ρ(x, y)α
(
1− e−cα

)−2
, (17)

via the geometric series. This holds for any size parameter α > 0 and is convex
for α > 0, c > 0. Thus, there is an optimal choice for α that minimizes this
bound. Differentiating w.r.t α and setting the result to 0 yields α� = ω

c where
ω is the unique non-zero solution to eω = 2ω + 1. The optimal bound is then

D (ξ(· | x) ‖ ξ(· | y)) ≤ 2ω
(1−e−ω)2 ·

ρ(x,y)
c As the ω ≈ 1.25643 is the unique positive

solution to eω = 2ω + 1, and we define κ = 2ω
(1−e−ω)2 ≈ 4.91081.

Proof (Proof of Theorem 2). For part (2.i), we assumed that there is an L > 0

such that ∀x, y ∈ S,
∣∣∣log pθ(x)

pθ(y)

∣∣∣ ≤ Lρ(x, y), thus implying pθ(x)
pθ(y)

≤ exp{Lρ(x, y)}.
Further, in the proof of Theorem 1, we showed that φ(y) ≤ exp{Lρ(x, y)}φ(x)
for all x, y ∈ S. From Eq. 2, we can then combine these to bound the posterior
of any B ∈ SΘ as follows for all x, y ∈ S:

ξ(B | x) =
∫
B

pθ(x)
pθ(y)

pθ(y) dξ(θ)

φ(y)
· φ(y)
φ(x)

≤ exp{2Lρ(x, y)}ξ(B | y) .

For part (2.ii), note that from Theorem (1.ii) that the KL divergence of the
posteriors under assumption is bounded by κρ(x, y)/c. Now, recall Pinsker’s
inequality [cf. 14]:

D (Q‖P ) ≥ 1

2
‖Q − P‖21 . (18)

Using it, this bound yields: |ξ(B | x)− ξ(B | y)| ≤
√

1
2D (ξ(· | x) ‖ ξ(· | y)) ≤√

κρ(x, y)/2c

Proof (Proof of Lemma 2). We use the inequality due to Weissman et al. [24] on
the �1 norm, which states that for any multinomial distribution p with m out-
comes, the �1 deviation of the empirical distribution p̂n satisfies: P(‖p̂n − p‖1 ≥
ε) ≤ (2m−2)e−

1
2nε

2

. The right hand side is bounded by em ln 2− 1
2nε

2

. Substituting

ε =
√

3
n ln 1

δ :
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P(‖p̂n − p‖1 ≥
√

3

n
ln

1

δ
) ≤ em ln 2− 3

2 ln 1
δ

≤ elog2
√

1
δ ln 2− 3

2 ln 1
δ = e

1
2 ln 1

δ−
3
2 ln 1

δ = δ. (19)

where the second inequality follows from m ≤ log2
√
1/δ.

Proof (Proof of Theorem 3). Recall that the data processing inequality states
that, for any sub-algebra S:∥∥Q|S − P|S

∥∥
1
≤ ‖Q− P‖1 . (20)

Using this and Pinsker’s inequality (18) we get:

2Lρ(x, y) ≥ 2Lε ≥ D (ξ(· | x)‖ξ(· | y))

≥ 1

2
‖ξ(· | x)− ξ(· | y)‖21 ≥

1

2

∥∥ξ|S(· | x) − ξ|S(· | y)
∥∥2
1
. (21)

On the other hand, due to (12) the adversary’s �1 error in the posterior distribu-

tion is bounded by
√

3
n ln 1

δ with probability 1− δ. Using the above inequalities,

we can bound the error in terms of the distinguishability of the real dataset x
from an arbitrary set y as: 4Lρ(x, y) ≥ 3

n ln 1
δ . Rearranging, we obtain the re-

quired result. The second case is treated similarly to obtain: 2κρ(x, y)/c ≥ 3
n ln 1

δ .
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Abstract. We study the convex relaxation of clustering and hamming
embedding, focusing on the asymmetric case (co-clustering and asym-
metric hamming embedding), understanding their relationship to LSH
as studied by Charikar (2002) and to the max-norm ball, and the differ-
ences between their symmetric and asymmetric versions.
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1 Introduction

Convex relaxations play an important role in designing efficient learning and
recovery algorithms, as well as in statistical learning and online optimization.
It is thus desirable to understand the convex hull of hypothesis sets, to obtain
tractable relaxation to these convex hulls, and to understand the tightness of
such relaxations.

In this paper we consider convex relaxations of two important problems,
namely clustering and hamming embedding, and of their asymmetric variants:
co-clustering (e.g. Dhillon et al. (2003); Banerjee et al. (2004)) and asymmetric
hamming embedding Neyshabur et al. (2013). We show how these two problems
(clustering and hamming embedding) are highly related, how hamming embed-
ding can be viewed as a generalization of clustering, and how the convex hull of
both corresponds to a generalization of Locality Sensitive Hashing (LSH).

Our main conclusion is that the convex hull of co-clustering and asymmetric
hamming embedding is tightly captured by a shift-invariant modification of the
max-norm—a tractable SDP-representable relaxation (Theorem 2 in Section 5).
We contrast this with the symmetric clustering and hamming embedding, in
which the corresponding SDP relaxation is not tight, highlighting an important
distinction between symmetric and asymmetric clustering, embedding and LSH.

To set the stage, we begin by formally introducing clustering and hamming
embeddings and the relationship between them (Section 2). We then relate these
concepts to Locality Section Hashing (LSH) as studied by Charikar (2002), as
well as to more generalized notions of LSH (Section 3). Next, in Section 4, we turn
to the asymmetric variants of all three notions, introducing also the appropriate
generalization of asymmetric LSH. Finally, in Section 5 we formalize the notion
of tightness of a convex relaxation and state our main results about the tightness
of SDP relaxations in the symmetric and asymmetric cases.
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2 Clustering and Hamming Embedding

In this Section we introduce the problems of clustering and hamming embedding.
We provide a unified view of both problems, viewing hamming embedding as a
direct generalization of clustering. Our starting point for both problems is an
input similarity function sim : S × S → [−1,+1] over a (possibly infinite) set
of objects S. “Clustering”, as we think of it here, is the problem of partitioning
the elements of S into disjoint clusters so that items in the same cluster are
similar while items in different clusters are not similar. “Hamming Embedding”
is the problem of embedding S into a space of short strings such that similarity
is approximated by the hamming distance between strings.

2.1 Clustering

We represent a clustering of S as a mapping h : S → Γ , where Γ is a discrete
alphabet representing the different clusters. We can think of h as a function that
assigns a cluster identity to each element, where the meaning of the different
identities is arbitrary. The alphabet Γ might have a fixed finite cardinality |Γ | =
k, if we would like to have a clustering with a specific number of clusters. E.g.,
a binary alphabet corresponds to standard graph partitioning into two clusters.
If |Γ | = k, we can assume that Γ = [k]. The alphabet Γ might be infinitely
countable (e.g. Γ = N), in which case we are not constraining the number of
clusters.

The cluster incidence function κh : S×S → {±1} associated with a clustering
h is defined as κh(x, y) = 1 if h(x) = h(y) and κh(x, y) = −1 otherwise. For a
finite space S of cardinality n = |S| we can think of κh ∈ {±1}n×n as a permuted
block-diagonal matrix, with +1s on the diagonal blocks, and −1s outside these
blocks. We denote the set of all valid cluster incidence functions over S with an
alphabet of size k (i.e. with at most k clusters) as MS,k = {κh | h : S → [k]},
where k = ∞ is allowed.

With this notion in hand, we can think of clustering as a problem of
finding a cluster incidence function κh that approximates a given similar-
ity sim, as quantified by objectives such as minEx,y[|κh(x, y)− sim(x, y)|] or
maxEx,y[sim(x, y)κh(x, y)] (this is essentially the correlation clustering objec-
tive). Both of these objectives are convex in κ, but the computational difficulty
of clustering arises from the non-convex constraint that κ is a valid cluster inci-
dence function. A possible approach is therefore to relax the constraint that κ is
a valid cluster incidence function, or in the finite case, a cluster incidence matrix.
This is the approach taken by, e.g. Jalali et al. (2011); Jalali and Srebro (2012),
who relax the constraint to a trace-norm and max-norm constraint respectively.
One of the questions we will be exploring here is whether this is the tightest
relaxation possible, or whether there is a significantly tighter relaxation.

2.2 Hamming Embedding and Binary Matrix Factorization

In the problem of binary hamming embedding (also known as binary hashing),
we want to find a mapping from each object x ∈ S to a binary string b(x) ∈
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{±1}d such that the similarity between strings is approximated by the hamming
distance between their images:

sim(x, y) ≈ 1− 2δHam(b(x), b(y))

d
(1)

Calculating the hamming distance of two binary hashes is an extremely fast
operation, and so such a hash is useful for very fast computation of simi-
larities between massive collections of objects. Furthermore, hash tables can
be used to further speed up retrieval of similar objects Gionis et al. (1999);
Indyk and Motwani (1998); Andoni and Indyk (2006).

Binary hamming embedding can be seen as a generalization of clustering as
follows: For each position i = 1, . . . , d in the hash, we can think of bi(x) as a
clustering into two clusters (i.e. with Γ = {±1}). The hamming distance is then
an average of the d cluster incidence functions:

1− 2δHam(b(x), b(y))

d
=

1

d

d∑
i=1

κbi(x, y).

Our goal then is to approximate a similarity function by an average of d binary
clusterings. For d = 1 this is exactly a binary clustering. For d > 1, we are
averaging multiple binary clusterings.

Since we have 〈b(x), b(y)〉 = d − 2δHam(b(x), b(y)), we can formulate the bi-
nary hashing problem as a binary matrix factorization where the goal is to
approximate the similarity matrix by a matrix of the form RR�, where R is a
d-dimensional binary matrix:

min
R

∑
ij

err(sim(i, j), X(i, j))

s.t X = RR�

R ∈ {±1}n×d

(2)

where err(x, y) is some error function such as err(x, y) = |x− y|.
Going beyond binary clustering and binary embedding, we can consider ham-

ming embeddings over larger alphabets. That is, we can consider mappings
b : S → Γ d, where we aim to approximate the similarity as in (1), recalling
that the hamming distance always counts the number of positions in which the
strings disagree. Again, we have that the length d hamming embeddings over
a (finite or infinitely countable) alphabet Γ correspond to averages of d cluster
incidence matrices over the same alphabet Γ .

3 Locality Sensitive Hashing Schemes

Moving on from a finite average of clusterings, with a fixed number of compo-
nents, as in hamming embedding, to an infinite average, we arrive at the notion
of LSH as studied by Charikar (2002).
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Given a collection S of objects, an alphabet Γ and a similarity function sim :
S × S → [−1, 1] such that for any x ∈ S we have sim(x, x) = 1, we define
a locality sensitive hashing scheme (LSH) as a probability distribution on the
family of clustering functions (hash functions) H = {h : S → Γ} such that1

Eh∈H[κh(x, y)] = sim(x, y). (3)

The set of all locality sensitive hashing schemes with an alphabet of size k is
nothing but the convex hull of the set MS,k of cluster incidence matrices.

The importance of an LSH, as an object in its own right as studied by Charikar
(2002), is that a hamming embedding can be obtained from an LSH by randomly
generating a finite number of hash functions from the distribution over the family
H. In particular, if we draw h1, . . . , hd i.i.d. from an LSH, then the length-d
hamming embedding b(x) = [h1(x), . . . , hd(x)] has expected square error

E[(sim(x, y)− 1

d

∑
κhd

(x, y))2] ≤ 1

d
,

where the expectation is w.r.t. the sampling, and this holds for all x, y, and so
also for any average over them.

3.1 α-LSH

If the goal is to obtain a low-error embedding, the requirement (3) might be too
stringent. We can tolerate an affine relationship between the embedding and the
target similarity, and instead require that

αEh∈H[κh(x, y)]− θ = sim(x, y). (4)

where α, θ ∈ R, α > 0. Note that α and θ go hand-in-hand: if sim(x, x) = 1,
then we must have θ = α− 1.

A distribution over h that obeys (4) is called an α-LSH. We can now verify
that, for h1, . . . , hd drawn i.i.d. from an α-LSH, and any x, y ∈ S:

E

[(
sim(x, y)− (

α

d

∑
κhd

(x, y)− θ)
)2]

≤ α2

d
.

The length of the LSH required to achieve accurate approximation of a similarity
function thus scales quadratically with α, and it is therefor desirable to obtain
an α-LSH with as low an α as possible.

Unfortunately, the requirement (4) might be too difficult to attain, even with
a very large α. As we formalize in the following Claim, which is based on Lemmas
2 and 3 of Charikar (2002), having an α-LSH is equivalent to being embeddable
to hamming space with no distortion:

1 Charikar (2002) discuss similarity functions with a range of [0, 1], rather than [−1, 1],
and so require Ph∈H[h(x) = h(y)] = sim(x, y). The definition (3) is equivalent, when
applied to the transformed similarity function 2sim(x, y)− 1.
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Claim 1. For any finite or countable alphabet Γ , k = |Γ | ≥ 2, a similarity
function sim(x, y) has an α-LSH over Γ for some α if and only if δsim(x, y) =
1−sim(x,y)

2 is embeddable to hamming space with no distortion.

Proof. We first show that if there exist an α-LSH for function sim(x, y) then
1−sim(x,y)

2 is embeddable to hamming space with no distortion. An α-LSH for

function sim(x, y) corresponds to an LSH for function 1 − 1−sim(x,y)
α . Using

lemma 3 in Charikar (2002), we can say that 1−sim(x,y)
α is isometrically embed-

dable in the Hamming cube which means 1 − sim(x, y) can be embedded in
Hamming cube with no distortion.

We now prove that existence of a Hamming embedding with no distortion is
a sufficient condition for existence of α-LSH. Let f be the map function from set
S to the Hamming space with no distortion is, i.e. there exist β > 0 such that
for any x, y ∈ S, δsim(x, y) = βδHam(x, y). We have that:

Eh∼H[κh(x, y)] = 2Ph∼H[h(x) = h(y)]− 1

= 1− 2Ph∼H[h(x) �= h(y)]

= 1− 2δHam(x, y)

= 1− 2δsim(x, y)

β

= 1− 1− sim(x, y)

β

=
sim(x, y) + (β − 1)

β

which gives us an α-LSH based on equation (4) by setting α = β and θ =
β − 1.

As a result of Claim 1, it can be shown that given any large enough set of low
dimensional unit vectors, there is no α-LSH for the Euclidian inner product.

Claim 2. Let {x(1), . . . , x(n)} be an arbitrary set of distinct unit vectors in the
unit sphere. Let Z be a matrix whose entries are Zij = 〈x(i), x(j)〉 for 1 ≤ i, j ≤ n.
If d < log2 n, then there is no α-LSH for Z.

Proof. According to Danzer and Grünbaum (1962) (see also Buchok (2010)), if
d < log2 n then in any set of n points in d-dimensional Euclidian space, there
exist at least three points that form an obtuse triangle. Equivalently, there exist
three vectors x, y and z in any set of n different d-dimensional unit vectors such
that:

〈z − x, z − y〉 < 0

We rewrite the above inequality as:

(1− 〈z, x〉) + (1− 〈z, y〉) < (1− 〈x, y〉)
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The above inequality implies that the distance measure Δij = (1−Zij)/2 is not
a metric. Consequently, according to Claim 1 since Δij = (1 − Zij)/2 is not a
metric, there is no α-LSH for the matrix Z.

We can unfortunately conclude that there is no α-LSH for several important
similarity measures such as the Euclidian inner product, Overlap coefficient and
Dice’s coefficient. In fact, we see that we might not have an α-LSH even for
a similarity matrix based on a finite positive semidefinite matrix, such as the
matrix Z in Claim 2. It might therefore be desirable to consider even more
relaxed notions of locality sensitive hashing.

3.2 Generalized α-LSH

In the following section, we will see how to break the barrier imposed by Claim 1
by allowing asymmetry, highlighting the extra power asymmetry affords us. But
before doing so, let us consider a different attempt at relaxing the definition of anα-
LSH, motivated by to the work of Charikar and Wirth (2004) and Alon and Naor
(2006): in order to uncouple the shift θ from the scalingα, we will allow for a differ-
ent, arbitrary, shift on the self-similarities sim(x, x) (i.e. on the diagonal of sim).

We say that a probability distribution over H = {h : S → Γ} is a General-
ized α-LSH, for α > 0 if there exist θ, γ ∈ R such that for all x, y:

αEh∈H[κh(x, y))] = sim(x, y) + θ + γ1x=y

With this definition, then any symmetric similarity function, at least over a finite
domain, admits a Generalized α-LSH, with a sufficiently large α:

Claim 3. For a finite set S, |S| = n, for any symmetric sim : S × S → [−1, 1]
with sim(x, x) = 1, there exists a Generalized α-LSH over a binary alphabet Γ
(|Γ | = 2) where α = O((1−λmin) logn)-LSH, and λmin is the smallest eigenvalue
of the matrix sim.

Proof. We observe that sim − λminI is a positive semidefinite matrix. Accord-
ing to Charikar and Wirth (2004), if a matrix Z with unit diagonal is positive
semidefinite, then there is a probability distribution over a family H of hash
functions such that for any x �= y:

Eh∈H[h(x)h(y)] =
Z(x, y)

C logn
.

We let Z(x, y) = (sim(x, y) − λmin1x=y)/(1 − λmin). Matrix Z is positive semi-
definite and has unit diagonal. Hence, there is a probability distribution over a
family H of hash functions such that

Eh∈H[h(x)h(y)] =
sim(x, y)− λmin1x=y

C(1− λmin) logn
,

equivalently

C(1 − λmin) lognEh∈H[κh(x, y))] = sim(x, y)− λmin1x=y.
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It is important to note that λmin could be negative, and as low as λmin = −Ω(n).
The required α might therefore be as large as Ω(n), yielding a terrible LSH.

4 Asymmetry

In order to allow for greater power, we now turn to Asymmetric variants of
clustering, hamming embedding, and LSH.

Given two collections of objects S, T , which might or might not be identi-
cal, and an alphabet Γ , an asymmetric clustering (or co-clustering Dhillon et al.
(2003)) is specified by pair of mappings f : S → Γ and g : T → Γ and is cap-
tured by the asymmetric cluster incidence matrix κf,g(x, y) where κf,g(x, y) = 1
if f(x) = g(y) and κf,g(x, y) = −1 otherwise. We denote the set of all valid
asymmetric cluster incidence functions over S, T with an alphabet of size k as
M(S,T ),k = {κf,g | f : S → [k], g : T → [k]}, where we again also allow k = ∞ to
correspond to a countable alphabet Γ = N.

Likewise, an asymmetric binary embedding of S, T with alphabet Γ consists of
a pair of functions f : S → Γ d, g : T → Γ d, where we approximate a similarity as:

sim(x, y) ≈ 1− 2δHam(f(x), g(y))

d
=

1

d

d∑
i=1

κfi,gi(x, y). (5)

That is, in asymmetric hamming embedding, we approximate a similarity as an
average of d asymmetric cluster incidence matrices from M(S,T ),k.

In a recent work, Neyshabur et al. (2013) showed that even when S = T
and the similarity function sim is a well-behaved symmetric similarity function,
asymmetric binary embedding could be much more powerful in approximating
the similarity, using shorter lengths d, both theoretically and empirically on
datasets of interest. That is, these concepts are relevant and useful not only
in an a-priori asymmetric case where S �= T or sim is not symmetric, but also
when the target similarity is symmetric, but we allow an asymmetric embedding.
We will soon see such gaps also when considering the convex hulls of MS,k and
M(S,T ),k, i.e. when considering LSHs. Let us first formally define an asymmetric
α-LSH.

Given two collections of objects S and T , an alphabet Γ , a similarity function
sim : S×T → [−1, 1], and α > 0, we say that an α-ALSH is a distribution over
pairs of functions f : S → Γ , g : T → Γ , or equivalently over M(S,T ),|Γ |, such
that for some θ ∈ R and all x ∈ S, y ∈ T :

αE(f,g)∈F×G [κf,g(x, y))]− θ = sim(x, y). (6)

To understand the power of asymmetric LSH, recall that many symmetric sim-
ilarity functions do not have an α-LSH for any α. On the other hand, any simi-
larity function over finite domains necessarily has an α-ALSH:

Claim 4. For any similarity function sim : S × T → [−1, 1] over finite S, T ,
there exists an α-ALSH with α ≤ min{|S|, |T |}.
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This is corollary of Theorem 2 that will be proved later in section 5. The proof
follows from Theorem 2 and the following upper bound on the max-norm:

‖Z‖max ≤ rank(Z).‖Z‖2∞
where ‖Z‖2∞ = maxx,y |Z(x, y)|.

In section 3, we saw that similarity functions that do not admit an α-LSH,
still admit Generalized α-LSH. However, the gap between the α required for
a Generalized α-LSH and that required for an α-ALSH might be as large as
Ω(|S|):

Theorem 1. For any even n, there exists a set S of n objects and a similarity
Z : S × S → R such that

– there is a binary 3KR-ALSH for Z, where KR ≈ 1.79 is Krivine’s constant;
– there is no Generalized α-LSH for any α < n− 1.

Proof. Let S = [n] and Z be the following similarity matrix:

Z = 2In×n +

[
−1n

2 ×n
2

1n
2 ×n

2

1n
2 ×n

2
−1n

2 ×n
2

]
Now we use Theorem 2, which we will prove later (our proof of Theorem 2 does
not rely on the proof of this theorem). Using triangle inequality property of the
norm, we have ‖Z‖max ≤ ‖Z− 2In×n‖max+ ‖2In×n‖max = 3; and by Theorem 2
there is a 3KR-ALSH for Z. Looking at the decomposition of Z, it is not difficult
to see that the smallest eigenvalue of Z is 2 − n. So in order to have a positive
semidefinite similarity matrix, we need γ to be at least n−2 and θ to be at least
−1 (otherwise the sum of elements of Z + θ+(n− 2)I will be less than zero and
so Z + θ + (n − 2)I will not be positive semidefinite). So α = θ + γ is at least
n− 1.

5 Convex Relaxations, α-LSH and Max-Norm

After setting the stage we will now turn to our two main questions, which we
will see are essentially the same question: can we get a tight convex relaxation
of the set M(S,T ),k of (asymmetric) clustering incidence functions? And can we
characterize the values of α for which we can get an α-ALSH for a particular
similarity measure? We just stated the questions for the asymmetric case, which
will be the main focus of this Section, but in Sub-Section 5.3 we will also return
to the symmetric case and ask the same questions there.

For notational simplicity,wewill nowfixS andT anduseMk to denoteM(S,T ),k.

5.1 The Ratio Function

The tightest possible convex relaxation of Mk is simply its convex hull convMk.
Assuming P �= NP, it seems that convMk is not polynomially tractable2.

2 convM2 is not polynomially tractable Alon and Naor (2006).
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What we ask here is whether we have a tractable tight relaxation of convMk.
To measure tightness of some convex B ⊇ Mk, for each Z ∈ B, we will bound
its cluster ratio:

ρk(Z) = min{r|Z ∈ r convMk} = min{r|Z/r ∈ convMk}.

In fact, the function ρk is Minkowski gauge of convMk Thompson (1996). That
is, by how much do we have to inflate Mk so that includes Z ∈ B. The supremum
ρk(B) = supZ∈B ρk(Z) is then the maximal inflation ratio between convMk and
B, i.e. such that convMk ⊆ B ⊆ ρk convMk. Similarly, we define the centralized
cluster ratio as:

ρ̂k(Z) = min
θ∈R

min{r|Z − θ ∈ r convMk}.

This is nothing but the lowest α for which we have an α-ALSH:

Claim 5. For any similarity function sim(x, y), ρ̂k(sim) is equal to the smallest
α s.t. there exists an α-ALSH for sim over alphabet of cardinality k.

Proof. We write the problem of minimizing α in α-ALSH as:

min
θ∈R,α∈R+

α

s.t. sim(x, y) = αE(f,g)∈F×G [κf,g(x, y)]− θ
(7)

We know that:

E(f,g)∈F×G [κf,g(x, y)] =
∑

f∈MS,k

∑
g∈MT,k

κf,g(x, y)p(f, g)

where p(f, g) is the joint probability of hash functions f and g. Define μ(f, g) =
αp(f, g) and write:

α = α
∑

f∈MS,k

∑
g∈MT,k

p(f, g) =
∑

f∈MS,k

∑
g∈MT,k

αp(f, g) =
∑

f∈MS,k

∑
g∈MT,k

μ(f, g)

We have:

α
∑

f∈MS,k

∑
g∈MT,k

κf,g(x, y)p(f, g)− θ =
∑

f∈MS,k

∑
g∈MT,k

κf,g(x, y)μ(f, g)− θ

Substituting the last two equalities into formulation (7) gives us the formulation
for centralized cluster ratio.

Our main goal in this section is to obtain tight bounds on ρk(Z) and ρ̂k(Z).



Clustering, Embedding, LSH and the Max Norm 315

The Ratio Function and Cluster Norm The convex hull convMk is related to
the cut-norm, and its generalization the cluster-norm. Although the two are not
identical, it is worth understanding the relationship.

For k = 2, the ratio function is a norm, and is in fact the dual of a modified
cut-norm:

ρ∗2(W ) = ‖W‖C,2 = max
u:S→{±1},v:T→{±1}

∑
x∈S,y∈T

W (x, y)u(x)v(y)

The norm ‖W‖C,2 is a variant of the cut-norm, and is always within a factor of
four from the cut-norm as defined by Alon and Naor (2006). The set convM2 in
this case is the unit ball of the modified cut-norm.

For k > 2, the ratio function is not a norm, since Mk, for k > 2, is not
symmetric about the origin: we might have Z ∈ Mk but −Z �∈ Mk and so
ρk(Z) �= ρk(−Z). A ratio function defined with respect to the symmetric convex
hull conv(Mk∪−Mk), is a norm, and is dual to the following cluster norm, which
is a generalization of the modified cut-norm:

‖W‖C,k = max
u:S→Γ,v:T→Γ

∑
x∈S,y∈T

W (x, y)κu,v(x, y)

5.2 A Tight Convex Relaxation Using the Max-Norm

Recall that the max-norm (also known as the γ2 : �1 → �∞ norm) of a matrix is
defined as Srebro and Shraibman (2005):

‖Z‖max = min
UV �=Z

max(‖U‖22,∞, ‖V ‖22,∞)

where ‖U‖2,∞ is the maximum �2 norm of rows of the matrix U . The max-
norm is SDP representable and thus tractable Srebro et al. (2005). Even when
S and T are not finite, and thus sim is not a finite matrix, the max-norm can
be defined as above, where now U and V can be thought of as mappings from
S and T respectively into a Hilbert space, with sim(x, y) = (UV � = Z)(x, y) =
〈U(x), V (y)〉 and ‖U‖2,∞ = supx ‖U(x)‖.

We also define the centralized max-norm, which, even though it is not a norm,
we denote as:

‖Z‖m̂ax = min
θ∈R

‖Z − θ‖max

The centralized max-norm is also SDP-representable.
Our main result is that the max-norm provides a tight bound on the ratio

function:

Theorem 2. For any similarity function sim : S × T → R we have that:

1

2
‖sim‖m̂ax ≤

1

2
ρ̂2(sim) ≤ ρ̂(sim) ≤ ρ̂k(sim) ≤ ρ̂2(sim) ≤ K‖sim‖m̂ax

and also

1

3
‖sim‖max ≤ ρ(sim) ≤ ρk(sim) ≤ ρ2(sim) ≤ K‖sim‖max
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where all inequalities are tight and we have 1.67 ≤ KG ≤ K ≤ KR ≤ 1.79 (KG

is Grothendieck’s constant and KR is Krivine’s constant).

We can interpret Theorem 2 in two ways: a “primal” interpretation in terms
of tightness of an SDP approximation to co-clustering and asymmetric hamming
embedding, and a “dual” view in terms of α-ALSH.

Taking the primal view, we see that the SDP relaxation given by the max-norm
provides for a very tight relaxation for co-clustering and asymmetric hamming
embeddings: it is only a factor of less than 6 from the best possible convex
relaxation (namely the convex hull) of Mk:

{Z | ‖Z‖max ≤ 1/K} ⊆ convMk ⊆ {Z | ‖Z‖max ≤ 3} (8)

where recall K < 1.79. Allowing an additive shift, we obtain an even tighter
tractable relaxation, with an inflation ratio of less than 4.

Considering the dual view of Theorem 2, and recalling Claim 5, we can also
interpret the first line of inequalities as providing a tight characterization of the
smallest α for which we can obtain an α-ALSH: the SDP-representable central-
ized max-norm gives us the smallest such α up to a factor of less than 4. In
particular, since the centralized max-norm is always defined and finite for every
finite matrix (and bounded by the dimensionality of the matrix), we see that for
any pair S, T of finite domains, we always have an α-ALSH for some finite α,
bounded by the cardinality of the domains—as claimed Theorem 1.

Interestingly, we see that the effect of the alphabet size k on the existence
of α-ALSH is very small—the difference between an unbounded alphabet size
and a binary alphabet size is at most a factor of two difference in α. Back to
the “primal” view, this also means that the number of clusters allowed does
not significantly affect the convex hull: taking a convex relaxation of correlation
clustering with an unbounded number of clusters and of graph partitioning is
separated by only a constant multiplicative factor (the quality of rounding might
of course be different).

5.3 The Symmetric Case

It is not difficult to show that the lower bounds for α-LSH are the same as for
α-ALSH and the inequalities are tight. However, there are no upper bounds for α-
LSH similar to those for α-ALSH. Specifically, let α̂ and α̂g be the smallest values
of α such that there is a (symmetric) α-LSH for sim and there is a generalized
(symmetric) α-LSH for sim, respectively. Note that for some similarity functions
sim there is no α-LSH at all; that is, α̂ = ∞ and ‖sim‖max < ∞. Also, as
Theorem 1 shows, there is a similarity function sim such that

‖sim‖max = O(1) but α̂g ≥ n− 1.

Moreover, it follows from the result of Arora et al. (2005) that there is no effi-
ciently computable upper bound β for α̂g such that

β

logc n
≤ α̂g ≤ β
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(under a standard complexity assumption that NP �⊆ DTIME(nlog3 n)). That
is, neither the max-norm nor any other efficiently computable norm of sim gives
a constant factor approximation for α̂g.

In the remainder of this section we prove a series of lemmas corresponding to
the inequalities in Theorem 2.

5.4 Proofs

Lemma 1. For any two sets S and T of objects and any function sim : S×T →
R, we have that ρ̂2(sim) ≤ 2ρ̂(sim) and the inequality is tight.

Proof. Using Claim 5, all we need to do is to prove that given the function sim,
if there exist an α-ALSH with arbitrary cardinality, then we can find a binary
2α−ALSH . In order to do so, we assume that there exists an α-ALSH for family
F and G of hash functions such that:

αE(f,g)∈F×G [κf,g(x, y)] = sim(x, y) + θ

where f : S → Γ and g : T → Γ are hash functions. Now let H be a family
of pairwise independent hash functions of the form Γ → {±1} such that each
element γ ∈ Γ , has the equal chance of being mapped into -1 or 1. Now, we have
that:

2αEh∈H,(f,g)∈F×G[κhof,hog(x, y)] = 2αEh∈H,(f,g)∈F×G[κhof,hog(x, y)]

= 2αEh∈H,(f,g)∈F×G[h(f(x))h(g(y))]

= 2α(2Ph∈H,(f,g)∈F×G[h(f(x)) = h(g(y))]− 1)

= 2αP(f,g)∈F×G [f(x) = g(y)]

= sim(x, y) + θ + α

= sim(x, y) + θ̃

The tightness can be demonstrated by the example sim(x, y) = 2x=y − 1 when
S is not finite.

Lemma 2. For any two sets S and T of objects and any function sim : S×T →
R, we have that ‖sim‖max ≤ ρ2(sim) and the inequality is tight.

Proof. Without loss of generality, we assume that Γ = {±1}. We want to solve
the following optimization problem:

ρ2(sim) = min
μ:MS,2×MT,2→R+

∑
f∈MS,2

∑
g∈MT,2

μ(f, g)

s.t. sim(x, y) =
∑

f∈MS,2

∑
g∈MT,2

κf,g(x, y)μ(f, g)
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For any x ∈ S and y ∈ T , we define two new function variables �x : MS,2 ×
MT,2 → R and ry : MS,2 ×MT,2 → R:

�x(f, g) =
√
μ(f, g)f(x)

ry(f, g) =
√
μ(f, g)g(y)

Since cluster incidence matrix can be written as κf,g(x, y) = f(x)g(y), we have
sim(x, y) = 〈�x, ry〉 and ‖�x‖22 =

∑
f∈MS,2

∑
g∈MT,2

μ(f, g). Therefore, we rewrite
the optimization problem as:

ρ2(sim) = min
t,�,r,μ:MS,2×MT,2→R+

t

s.t. 〈lx, ry〉 = sim(x, y)

‖�x‖22 ≤ t

‖ry‖22 ≤ t

�x(f, g) =
√
μ(f, g)f(x)

ry(f, g) =
√
μ(f, g)g(y)

Finally, we relax the above problem by removing the last two constraints:

‖sim‖max = min
t,�,r

t

s.t. 〈lx, ry〉 = sim(x, y) (9)

‖�x‖22 ≤ t

‖rx‖22 ≤ t

The above problem is a max-norm problem and the solution is ‖sim‖max. There-
fore, ‖sim‖max ≤ ρ2(sim). Taking the function sim(x, y) to be a binary cluster
incidence function will indicate the tightness of the inequality.

Lemma 3. (Krivine’s lemma Krivine (1977)) For any two sets of unit vectors
{ui} and {vj} in a Hilbert space H, there are two sets of unit vectors {u′

i} and
{v′j} in a Hilbert space H ′ such that for any ui and vj, sin(c〈ui, vj〉) = 〈u′

i, v
′
j〉

where c = sinh−1(1).

Lemma 4. For any two sets S and T of objects and any function sim : S×T →
R, we have that ρ2(sim) ≤ K‖sim‖max where 1.67 ≤ KG ≤ K ≤ KR ≤ 1.79
(KG is Grothendieck’s constant and KR is Krivine’s constant).

Proof. A part of the proof is similar to Alon and Naor (2006). Let �x and ry
be the solution to the max-norm formulation (9). If we use Lemma 3 on the
normalized �x/‖�x‖2 and ry/‖ry‖2 in Hilbert spaceH and we call the new vectors
�′x and r′y in Hilbert space H ′, we have that:

sin

(
cZ(x, y)

‖�x‖2‖rx‖2

)
= 〈�′x, r′y〉
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If z is a random vector chosen uniformly from H ′, by Lemma 3, we have:

E
[
sign(〈�′x, z〉)sign(〈r′y , z〉)

]
=

2

π
arcsin(〈�′x, r′y〉)) =

2c

π‖�x‖2‖ry‖2
sim(x, y)

Now if we set the hashing function f(x) = s(x)sign(〈�′x, z〉) where s(x) = 1 with

probability 1
2 + ‖�x‖2

2
√
t

and s(x) = −1 with probability 1
2 −

‖�x‖2

2
√
t

we have that:

E[f(x)sign(〈r′y , z〉)] =
(
1

2
+

‖�x‖2
2
√
t

)
2c

π‖�x‖2‖ry‖2
sim(x, y)

−
(
1

2
− ‖�x‖2

2
√
t

)
2c

π‖�x‖2‖ry‖2
sim(x, y)

=
2c

π
√
t‖ry‖2

sim(x, y)

If we do the same procedure on g(y) = s′(x)sign(〈r′y, z〉), we will have:

E[f(x)g(y)] =
2c

tπ
sim(x, y)

By setting μ(f, g) = π‖sim‖max

2c p(f, g) where p(f, g) is the probability distribution
over the defined f and g, we can see that such μ(f, g) is a feasible solution for
the formulation of cluster ratio and we have:

ρ2(sim) ≤
∑

f∈MS,2

∑
g∈MT,2

μ(f, g) =
π

2c
‖sim‖max = KR‖sim‖max

The inequality KG ≤ K is known due to Alon and Naor (2006).
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Indefinitely Oscillating Martingales
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Abstract. We construct a class of nonnegative martingale processes
that oscillate indefinitely with high probability. For these processes, we
state a uniform rate of the number of oscillations for a given magnitude
and show that this rate is asymptotically close to the theoretical upper
bound. These bounds on probability and expectation of the number of
upcrossings are compared to classical bounds from the martingale lit-
erature. We discuss two applications. First, our results imply that the
limit of the minimum description length operator may not exist. Sec-
ond, we give bounds on how often one can change one’s belief in a given
hypothesis when observing a stream of data.1

Keywords: Martingales, infinite oscillations, bounds, convergence
rates, minimum description length, mind changes.

1 Introduction

Martingale processes model fair gambles where knowledge of the past or choice
of betting strategy have no impact on future winnings. But their application is
not restricted to gambles and stock markets. Here we exploit the connection be-
tween nonnegative martingales and probabilistic data streams, i.e., probability
measures on infinite strings. For two probability measures P and Q on infi-
nite strings, the quotient Q/P is a nonnegative P -martingale. Conversely, every
nonnegative P -martingale is a multiple of Q/P P -almost everywhere for some
probability measure Q.

One of the famous results of martingale theory is Doob’s Upcrossing Inequality
[Doo53]. The inequality states that in expectation, every nonnegative martingale
has only finitely many oscillations (called upcrossings in the martingale litera-
ture). Moreover, the bound on the expected number of oscillations is inversely
proportional to their magnitude. Closely related is Dubins’ Inequality [Dur10]
which asserts that the probability of having many oscillations decreases expo-
nentially with their number. These bounds are given with respect to oscillations
of fixed magnitude.

In Section 4 we construct a class of nonnegative martingale processes that
have infinitely many oscillations of (by Doob necessarily) decreasing magnitude.

1 In Theorem 4, Q needs to be absolutely continuous with respect to P on cylinder
sets. In Theorem 6, Corollary 7, Corollary 8, and Corollary 13, P needs to have
perpetual entropy. See technical report [LH14].

P. Auer et al. (Eds.): ALT 2014, LNAI 8776, pp. 321–335, 2014.
c© Springer International Publishing Switzerland 2014
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These martingales satisfy uniform lower bounds on the probability and the ex-
pectation of the number of upcrossings. We prove corresponding upper bounds
in Section 5 showing that these lower bounds are asymptotically tight. Moreover,
the construction of the martingales is agnostic regarding the underlying proba-
bility measure, assuming only mild restrictions on it. We compare these results
to the statements of Dubins’ Inequality and Doob’s Upcrossing Inequality and
demonstrate that our process makes those inequalities (in Doob’s case asymptot-
ically) tight. If we drop the uniformity requirement, asymptotics arbitrarily close
to Doob and Dubins’ bounds are achievable. We discuss two direct applications
of these bounds.

The Minimum Description Length (MDL) principle [Ris78] and the closely
related Minimal Message Length (MML) principle [WB68] recommend to se-
lect among a class of models the one that has the shortest code length for the
data plus code length for the model. There are many variations, so the following
statements are generic: for a variety of problem classes MDL’s predictions have
been shown to converge asymptotically (predictive convergence). For continuous
independently identically distributed data the MDL estimator usually converges
to the true distribution [Grü07, Wal05] (inductive consistency). For arbitrary
(non-i.i.d.) countable classes, the MDL estimator’s predictions converge to those
of the true distribution for single-step predictions [PH05] and ∞-step predic-
tions [Hut09]. Inductive consistency implies predictive convergence, but not the
other way around. In Section 6 we show that indeed, the MDL estimator for
countable classes is inductively inconsistent. This can be a major obstacle for
using MDL for prediction, since the model used for prediction has to be changed
over and over again, incurring the corresponding computational cost.

Another application of martingales is in the theory of mind changes [LS05].
How likely is it that your belief in some hypothesis changes by at least α > 0
several times while observing some evidence? Davis recently showed [Dav13]
using elementary mathematics that this probability decreases exponentially. In
Section 7 we rephrase this problem in our setting: the stochastic process

P ( hypothesis | evidence up to time t )

is a martingale bounded between 0 and 1. The upper bound on the probability of
many changes can thus be derived from Dubins’ Inequality. This yields a simpler
alternative proof for Davis’ result. However, because we consider nonnegative but
unbounded martingales, we get a weaker bound than Davis.

Omitted proofs can be found in the extended technical report [LH14].

2 Strings, Measures, and Martingales

We presuppose basic measure and probability theory [Dur10, Chp.1]. Let Σ be a
finite set, called alphabet. We assume Σ contains at least two distinct elements.
For every u ∈ Σ∗, the cylinder set

Γu := {uv | v ∈ Σω}
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is the set of all infinite strings of which u is a prefix. Furthermore, fix the σ-algebras

Ft := σ
(
{Γu | u ∈ Σt}

)
and Fω := σ

( ∞⋃
t=1

Ft

)
.

(Ft)t∈N is a filtration: since Γu =
⋃

a∈Σ Γua, it follows that Ft ⊆ Ft+1 for every
t ∈ N, and all Ft ⊆ Fω by the definition of Fω. An event is a measurable set
E ⊆ Σω. The event Ec := Σω \ E denotes the complement of E.

Definition 1 (Stochastic Process). (Xt)t∈N is called (R-valued) stochastic
process iff each Xt is an R-valued random variable.

Definition 2 (Martingale). Let P be a probability measure over (Σω,Fω). An
R-valued stochastic process (Xt)t∈N is called a P -supermartingale (P -submartin-
gale) iff

(a) each Xt is Ft-measurable, and
(b) E[Xt | Fs] ≤ Xs (E[Xt | Fs] ≥ Xs) almost surely for all s, t ∈ N with s < t.

A process that is both P -supermartingale and P -submartingale is called P -
martingale.

We call a supermartingale (submartingale) process (Xt)t∈N nonnegative iff Xt ≥
0 for all t ∈ N.

A stopping time is an (N ∪ {ω})-valued random variable T such that {v ∈
Σω | T (v) = t} ∈ Ft for all t ∈ N. Given a supermartingale (Xt)t∈N, the stopped
process (Xmin{t,T})t∈N is a supermartingale [Dur10, Thm. 5.2.6]. If (Xt)t∈N is
bounded, the limit of the stopped process,XT , exists almost surely even if T = ω
(Martingale Convergence Theorem [Dur10, Thm. 5.2.8]). We use the following
variant on Doob’s Optional Stopping Theorem for supermartingales.

Theorem 3 (Optional Stopping Theorem [Dur10, Thm. 5.7.6]). Let
(Xt)t∈N be a nonnegative supermartingale and let T be a stopping time. The
random variable XT is almost surely well defined and E[XT ] ≤ E[X0].

We exploit the following two theorems that state the connection between
probability measures on infinite strings and martingales. For any two probability
measures P andQ on (Σω,Fω), the quotientQ/P is a nonnegative P -martingale.
Conversely, for every nonnegative P -martingale there is a probability measure
Q on (Σω,Fω) such that the martingale is P -almost surely a multiple of Q/P .

Theorem 4 (Measures → Martingales [Doo53, II§7 Ex. 3]). Let Q and
P be two probability measures on (Σω,Fω). The stochastic process (Xt)t∈N,
Xt(v) := Q(Γv1:t)/P (Γv1:t) is a nonnegative P -martingale with E[Xt] = 1.

Theorem 5 (Martingales→ Measures [LH14]). Let P be a probability mea-
sure on (Σω,Fω) and let (Xt)t∈N be a nonnegative P -martingale with E[Xt] = 1.
There is a probability measure Q on (Σω,Fω) such that for all v ∈ Σω and all
t ∈ N with P (Γv1:t) > 0, Xt(v) = Q(Γv1:t)/P (Γv1:t).
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3 Martingale Upcrossings

Fix c ∈ R, and let (Xt)t∈N be a martingale over the probability space
(Σω,Fω, P ). Let t1 < t2. We say the process (Xt)t∈N does an ε-upcrossing be-
tween t1 and t2 iff Xt1 ≤ c − ε and Xt2 ≥ c + ε. Similarly, we say (Xt)t∈N

does an ε-downcrossing between t1 and t2 iff Xt1 ≥ c+ ε and Xt2 ≤ c− ε. Ex-
cept for the first upcrossing, consecutive upcrossings always involve intermediate
downcrossings. Formally, we define the stopping times

T0(v) := 0,

T2k+1(v) := inf{t > T2k(v) | Xt(v) ≤ c− ε}, and

T2k+2(v) := inf{t > T2k+1(v) | Xt(v) ≥ c+ ε}.

The T2k(v) denote the indices of upcrossings. We count the number of upcross-
ings by the random variable UX

t (c− ε, c+ ε), where

UX
t (c− ε, c+ ε)(v) := sup{k ≥ 0 | T2k(v) ≤ t}

and UX(c − ε, c + ε) := supt∈N U
X
t (c − ε, c + ε) denotes the total number of

upcrossings. We omit the superscript X if the martingale (Xt)t∈N is clear from
context.

The following notation is used in the proofs. Given a monotone decreasing
function f : N → [0, 1) and m, k ∈ N, we define the events EX,f

m,k that denote
that there are at least k-many f(m)-upcrossings:

EX,f
m,k :=

{
v ∈ Σω | UX(1− f(m), 1 + f(m))(v) ≥ k

}
.

For all m, k ∈ N we have EX,f
m,k ⊇ EX,f

m,k+1 and EX,f
m,k ⊆ EX,f

m+1,k. Again, we omit
X and f in the superscript if they are clear from context.

4 Indefinitely Oscillating Martingales

t

Xt

1

1 + f(Mt)

1− f(Mt)

Fig. 1. An example evaluation of the mar-
tingale defined in the proof of Theorem 6

In this section we construct a class
of martingales that has a high prob-
ability of doing an infinite number of
upcrossings. The magnitude of the up-
crossings decreases at a rate of a given
summable function f (a function f is
called summable iff it has finite L1-
norm, i.e.,

∑∞
i=1 f(i) < ∞), and the

value of the martingale Xt oscillates
back and forth between 1−f(Mt) and
1+f(Mt), whereMt denotes the num-
ber of upcrossings so far. The process has a monotone decreasing chance of
escaping the oscillation.
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Theorem 6 (An Indefinitely Oscillating Martingale). Let 0 < δ < 2
3 and

let f : N → [0, 1) be any monotone decreasing function such that
∑∞

i=1 f(i) ≤ δ
2 .

For every probability measure P with P (Γu) > 0 for all u ∈ Σ∗ there is a
nonnegative martingale (Xt)t∈N with E[Xt] = 1 and

P [∀m. U(1− f(m), 1 + f(m)) ≥ m] ≥ 1− δ.

Proof. We assume Σ = {0, 1} by grouping symbols into two groups. Since
P (Γu0 | Γu)+P (Γu1 | Γu) = 1, we can define a function a : Σ∗ → Σ that assigns
to every string u ∈ Σ∗ a symbol au := a(u) such that pu := P (Γuau | Γu) ≤ 1

2 .
By assumption, we have pu > 0.

We define the following stochastic process (Xt)t∈N. Let v ∈ Σω and t ∈ N be
given and define u := v1:t. Let

Mt(v) := 1 + argmax
m∈N

{
∀k ≤ m. UX

t (1− f(k), 1 + f(k)) ≥ k
}
,

i.e., Mt is 1 plus the number of upcrossings completed up to time t. Define

γt(v) :=
pu

1−pu
(1 + f(Mt(v)) −Xt(v)).

For t = 0, we set X0(v) := 1, otherwise we distinguish the following three cases.

(i) For Xt(v) ≥ 1:

Xt+1(v) :=

{
1− f(Mt(v)) if vt+1 �= au,

Xt(v) +
1−pu

pu
(Xt(v)− (1− f(Mt(v)))) if vt+1 = au.

(ii) For 1 > Xt(v) ≥ γt(v):

Xt+1(v) :=

{
Xt(v)− γt(v) if vt+1 �= au,

1 + f(Mt(v)) if vt+1 = au.

(iii) For Xt(v) < γt(v) and Xt(v) < 1:
let dt(v) := max{0,min{ pu

1−pu
Xt(v),

1−pu

pu
γt(v)− 2f(Mt(v))}};

Xt+1(v) :=

{
Xt(v) + dt(v) if vt+1 �= au,

Xt(v) − 1−pu

pu
dt(v) if vt+1 = au.

We give an intuition for the behavior of the process (Xt)t∈N. For all m, the
following repeats. First Xt increases while reading au’s until it reads one symbol
that is not au and then jumps down to 1 − f(m). Subsequently, Xt decreases
while not reading au’s until it falls below γt or reads an au and then jumps up
to 1 + f(m). If it falls below 1 and γt, then at every step, it can either jump up
to 1 − f(m) or jump down to 0, whichever one is closest (the distance to the
closest of the two is given by dt). See Figure 1 for a visualization.
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For notational convenience, in the following we omit writing the argument v
to the random variables Xt, γt, Mt, and dt.

Claim 1: (Xt)t∈N is a martingale. Each Xt+1 is Ft+1-measurable, since it
uses only the first t+1 symbols of v. Writing out cases (i), (ii), and (iii), we get

E[Xt+1 | Ft]
(i)
= (1− f(Mt))(1 − pu) +

(
Xt +

1−pu

pu
(Xt − (1− f(Mt)))

)
pu = Xt,

E[Xt+1 | Ft]
(ii)
=
(
Xt − pu

1−pu
((1 + f(Mt))−Xt)

)
(1− pu) + (1 + f(Mt))pu = Xt,

E[Xt+1 | Ft]
(iii)
= (Xt + dt)(1− pu) + (Xt − 1−pu

pu
dt)pu = Xt.

Claim 2: Xt ≥ 0 and E[Xt] = 1. The latter follows from X0 = 1. Regarding
the former, we use 0 ≤ f(Mt) < 1 to conclude

(i �=) 1− f(Mt) ≥ 0,
(i=) 1−pu

pu
(Xt − (1− f(Mt))) ≥ 0 for Xt ≥ 1,

(ii �=) Xt − γt ≥ 0 for Xt ≥ γt,
(ii=) 1 + f(Mt) ≥ 0,
(iii�=) Xt + dt ≥ 0 since dt ≥ 0, and
(iii=) Xt − 1−pu

pu
dt ≥ 0 since dt ≤ pu

1−pu
Xt.

Claim 3: Xt ≤ 1− f(Mt) or Xt ≥ 1+ f(Mt) for all t ≥ T1. We use induction
on t. The induction start holds with XT1 ≤ 1 − f(Mt). The induction step is
clear for (i) Xt ≥ 1 and (ii) 1 > Xt ≥ γt since γt ≥ 0. In case (iii) we have either
dt = 0 or dt ≤ 1−pu

pu
γt − 2f(Mt) and since Xt < γt,

Xt+1 ≤ Xt + dt ≤ Xt + (1 + f(Mt)−Xt)− 2f(Mt) = 1− f(Mt).

Claim 4: If Xt ≥ 1− f(Mt) then Xt > γt. In this case

γt =
pu

1−pu
(1 + f(Mt)−Xt) ≤ 2 pu

1−pu
f(Mt),

and thus with pu ≤ 1
2 and f(Mt) ≤

∑∞
k=1 f(k) ≤ δ

2 < 1
3 ,

Xt − γt ≥ 1− f(Mt)− 2 pu

1−pu
f(Mt) = 1− 1+pu

1−pu
f(Mt) ≥ 1− 3f(Mt) > 0.

Claim 5: If Xt > 0 and (f(Mt) > 0 or Xt < 1) then Xt+1 �= Xt.

(i) Assume Xt ≥ 1. Then either Xt+1 = 1 − f(Mt) < 1, or 1−pu

pu
(Xt − (1 −

f(Mt))) > 0 since Xt > 1− f(Mt).
(ii) Assume 1 > Xt ≥ γt. Then either Xt+1 = 1 + f(Mt) ≥ 1 > Xt, or

1+ f(Mt)−Xt ≥ 1−Xt > 0, hence γt > 0 and thus Xt+1 = Xt− γt < Xt.
(iii) Assume 0 < Xt < γt and Xt < 1. From Claim 4 follows Xt < 1 − f(Mt),

thus 1−pu

pu
γt − 2f(Mt) = 1− f(Mt)−Xt > 0. By assumption, pu

1−pu
Xt > 0

and therefore dt > 0. Hence Xt + dt > Xt and Xt − 1−pu

pu
dt < Xt.

Claim 6: For all m ∈ N, if Em,m−1 �= ∅ then P (Em,m | Em,m−1) ≥ 1 −
2f(m). Let v ∈ Em,m−1 and let t0 ∈ N be a time step such that exactly m− 1
upcrossings have been completed up to time t0, i.e.,Mt0(v) = m. The subsequent
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downcrossing is completed eventually with probablity 1: we are in case (i) and
in every step there is a chance of 1 − pu ≥ 1

2 of completing the downcrossing.
Therefore we assume without loss of generality that the downcrossing has been
completed, i.e., that t0 is such that Xt0(v) = 1 − f(m). We will bound the
probability p := P (Em,m | Em,m−1) that Xt rises above 1 + f(m) after t0 to
complete the m-th upcrossing.

Define the stopping time T : Σω → N ∪ {ω},

T (v) := inf{t ≥ t0 | Xt(v) ≥ 1 + f(m) ∨ Xt(v) = 0},

and define the stochastic process Yt = 1 + f(m) − Xmin{t0+t,T}. Because
(Xmin{t0+t,T})t∈N is martingale, (Yt)t∈N is martingale. By definition, Xt always
stops at 1 + f(m) before exceeding it, thus XT ≤ 1 + f(m), and hence (Yt)t∈N

is nonnegative. The Optional Stopping Theorem yields E[YT−t0 | Ft0 ] ≤ E[Y0 |
Ft0 ] and thus E[XT | Ft0 ] ≥ E[Xt0 | Ft0 ] = 1 − f(m). By Claim 5, Xt does not
converge unless it reaches either 0 or 1 + f(m), and thus

1− f(m) ≤ E[XT | Ft0 ] = (1 + f(m)) · p+ 0 · (1 − p),

hence P (Em,m | Em,m−1) = p ≥ 1− f(m)(1 + p) ≥ 1− 2f(m).
Claim 7: Em+1,m = Em,m and Em+1,m+1 ⊆ Em,m. By definition of Mt, the

i-th upcrossings of the process (Xt)t∈N is between 1 − f(i) and 1 + f(i). The
function f is monotone decreasing, and by Claim 3 the process (Xt)t∈N does not
assume values between 1 − f(i) and 1 + f(i). Therefore the first m f(m + 1)-
upcrossings are also f(m)-upcrossings, i.e., Em+1,m ⊆ Em,m. By definition of
Em,k we have Em+1,m ⊇ Em,m and Em+1,m+1 ⊆ Em+1,m.

Claim 8: P (Em,m) ≥ 1 −
∑m

i=1 2f(i). For P (E0,0) = 1 this holds trivially.
Using Claim 6 and Claim 7 we conclude inductively

P (Em,m) = P (Em,m ∩ Em,m−1) = P (Em,m | Em,m−1)P (Em,m−1)

= P (Em,m | Em,m−1)P (Em−1,m−1)

≥ (1− 2f(m))

(
1−

m−1∑
i=1

2f(i)

)
≥ 1−

m∑
i=1

2f(i).

From Claim 7 follows
⋂m

i=1 Ei,i = Em,m and therefore P (
⋂∞

i=1Ei,i) =
limm→∞ P (Em,m) ≥ 1−

∑∞
i=1 2f(i) ≥ 1− δ. ��

Theorem 6 gives a uniform lower bound on the probability for many up-
crossings: it states the probability of the event that for all m ∈ N, U(1 −
f(m), 1 + f(m)) ≥ m holds. This is a lot stronger than the nonuniform bound
P [U(1− f(m), 1+ f(m)) ≥ m] ≥ 1− δ for all m ∈ N: the quantifier is inside the
probability statement.

As an immediate consequence of Theorem 6, we get the following uniform
lower bound on the expected number of upcrossings.

Corollary 7 (Expected Upcrossings). Under the same conditions as in The-
orem 6, for all m ∈ N,

E[U(1 − f(m), 1 + f(m))] ≥ m(1− δ).
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Proof. From Theorem 6 and Markov’s inequality. ��

By choosing the slowly decreasing but summable function f by setting
f−1(ε) := 2δ( 1

ε(ln ε)2 −
e2

4 ), we get the following concrete results.

Corollary 8 (Concrete Lower Bound). Let 0 < δ < 1. For every probability
measure P with P (Γu) > 0 for all u ∈ Σ∗, there is a nonnegative martingale
(Xt)t∈N with E[Xt] = 1 such that

P

[
∀ε > 0. U(1− ε, 1 + ε) ∈ Ω

(
δ

ε(ln 1
ε )

2

)]
≥ 1− δ and

E[U(1 − ε, 1 + ε)] ∈ Ω
(

1

ε(ln 1
ε )

2

)
.

Moreover, for all ε < 0.015 we get E[U(1− ε, 1 + ε)] > δ(1−δ)

ε(ln 1
ε )

2 and

P

[
∀ε < 0.015. U(1− ε, 1 + ε) > δ

ε(ln 1
ε )

2

]
≥ 1− δ.

The concrete bounds given in Theorem 8 are not the asymptotically optimal
ones: there are summable functions that decrease even more slowly. For example,
we could multiply f−1 with the factor

√
ln(1/ε) (which still is not optimal).

5 Martingale Upper Bounds

In this section we state upper bounds on the probability and expectations of
many upcrossings (Dubins’ Inequality and Doob’s Upcrossing Inequality). We
use the construction from the previous section to show that these bounds are
tight. Moreover, with the following theorem we show that the uniform lower
bound on the probability of many upcrossings guaranteed in Theorem 6 is
asymptotically tight.

Every function f is either summable or not. If f is summable, then we can scale
it with a constant factor such that its sum is smaller than δ

2 , and then apply
the construction of Theorem 6. If f is not summable, the following theorem
implies that there is no uniform lower bound on the probability of having at
least m-many f(m)-upcrossings.

Theorem 9 (Upper Bound on Upcrossing Rate). Let f : N → [0, 1) be a
monotone decreasing function such that

∑∞
t=1 f(t) = ∞. For every probability

measure P and for every nonnegative P -martingale (Xt)t∈N with E[Xt] = 1,

P [∀m. U(1− f(m), 1 + f(m)) ≥ m] = 0.

Proof. Define the events Dm :=
⋃m

i=1E
c
i,i = {∀i ≤ m. U(1− f(i), 1+ f(i)) ≥ i}.

Then Dm ⊆ Dm+1. Assume there is a constant c > 0 such that c ≤ P (Dc
m) =

P (
⋂m

i=1 Ei,i) for all m. Let m ∈ N, v ∈ Dc
m, and pick t0 ∈ N such that the

process X0(v), . . . , Xt0(v) has completed i-many f(i)-upcrossings for all i ≤ m
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and Xt0(v) ≤ 1 − f(m + 1). If Xt(v) ≥ 1 + f(m + 1) for some t ≥ t0, the
(m+1)-st upcrossing for f(m+1) is completed and thus v ∈ Em+1,m+1. Define
the stopping time T : Σω → (N ∪ {ω}),

T (v) := inf{t ≥ t0 | Xt(v) ≥ 1 + f(m+ 1)}.

According to the Optional Stopping Theorem applied to the process (Xt)t≥t0 ,
the random variable XT is almost surely well-defined and E[XT | Ft0 ] ≤ E[Xt0 |
Ft0 ] = Xt0 . This yields 1 − f(m + 1) ≥ Xt0 ≥ E[XT | Ft0 ] and by taking the
expectation E[ · | Xt0 ≤ 1− f(m+ 1)] on both sides,

1− f(m+ 1) ≥ E[XT | Xt0 ≤ 1− f(m+ 1)]

≥ (1 + f(m+ 1))P [XT ≥ 1 + f(m+ 1) | Xt0 ≤ 1− f(m+ 1)]

by Markov’s inequality. Therefore

P (Em+1,m+1 | Dc
m) = P [XT ≥ 1 + f(m+ 1) | Xt0 ≤ 1− f(m+ 1)]

· P [Xt0 ≤ 1− f(m+ 1) | Dc
m]

≤ P [XT ≥ 1 + f(m+ 1) | Xt0 ≤ 1− f(m+ 1)]

≤ 1−f(m+1)
1+f(m+1) ≤ 1− f(m+ 1).

Together with c ≤ P (Dc
m) we get

P (Dm+1 \Dm) = P
(
Ec

m+1,m+1 ∩Dc
m

)
= P

(
Ec

m+1,m+1 | Dc
m

)
P (Dc

m) ≥ f(m+ 1)c.

This is a contradiction because
∑∞

i=1 f(i) = ∞:

1 ≥ P (Dm+1) = P

(
m⊎
i=1

(Di+1 \Di)

)
=

m∑
i=1

P (Di+1 \Di) ≥
m∑
i=1

f(i+ 1)c →∞.

Therefore the assumption P (Dc
m) ≥ c for all m is false, and hence we get

P [∀m. U(1− f(m), 1 + f(m)) ≥ m] = P (
⋂∞

i=1Ei,i) = limm→∞ P (Dc
m) = 0. ��

By choosing the decreasing non-summable function f by setting f−1(ε) :=
−a

ε(ln ε) − b for Theorem 9, we get that U(1 − ε, 1 + ε) /∈ Ω( 1
ε log(1/ε) ) P -almost

surely.

Corollary 10 (Concrete Upper Bound). Let P be a probability measure and
let (Xt)t∈N be a nonnegative martingale with E[Xt] = 1. Then for all a, b > 0,

P
[
∀ε > 0. U(1− ε, 1 + ε) ≥ a

ε log(1/ε) − b
]
= 0.

Theorem 11 (Dubins’ Inequality [Dur10, Ex.5.2.14]). For every nonneg-
ative P -martingale (Xt)t∈N and for every c > 0 and every ε > 0,

P [U(c− ε, c+ ε) ≥ k] ≤
(

c−ε
c+ε

)k
E
[
min

{
X0

c−ε , 1
}]

.
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Dubins’ Inequality immediately yields the following bound on the probability
of the number of upcrossings.

P [U(1− f(m), 1 + f(m)) ≥ k] ≤
(

1−f(m)
1+f(m)

)k
.

The construction from Theorem 6 shows that this bound is asymptotically tight
for m = k → ∞ and δ → 0: define the monotone decreasing function f : N →
[0, 1),

f(t) :=

{
δ
2k , if t ≤ k, and

0, otherwise.

Then the martingale from Theorem 6 yields the lower bound

P [U(1− δ
2k , 1 +

δ
2k ) ≥ k] ≥ 1− δ,

while Dubins’ Inequality gives the upper bound

P [U(1− δ
2k , 1 +

δ
2k ) ≥ k] ≤

(
1− δ

2k

1 + δ
2k

)k

=

(
1− 2δ

2k + δ

)k
k→∞−−−−→ exp(−δ).

As δ approaches 0, the value of exp(−δ) approaches 1− δ (but exceeds it since
exp is convex). For δ = 0.2 and m = k = 3, the difference between the two
bounds is already lower than 0.021.

The following theorem places an upper bound on the rate of expected upcross-
ings.

Theorem 12 (Doob’s Upcrossing Inequality [Xu12]). Let (Xt)t∈N be a
submartingale. For every c ∈ R and ε > 0,

E[Ut(c− ε, c+ ε)] ≤ 1
2εE[max{c− ε−Xt, 0}].

Asymptotically, Doob’s Upcrossing Inequality states that with ε → 0,

E[U(1 − ε, 1 + ε)] ∈ O
(
1
ε

)
.

Again, we can use the construction of Theorem 6 to show that these asymptotics
are tight: define the monotone decreasing function f : N → [0, 1),

f(t) :=

{
δ

2m , if t ≤ m, and

0, otherwise.

Then for δ = 1
2 , Theorem 7 yields a martingale fulfilling the lower bound

E[U(1− 1
4m , 1 + 1

4m )] ≥ m

2

and Doob’s Upcrossing Inequality gives the upper bound

E[U(1 − 1
4m , 1 + 1

4m )] ≤ 2m,
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which differs by a factor of 4.
The lower bound for the expected number of upcrossings given in Theorem 8

is a little looser than the upper bound given in Doob’s Upcrossing Inequality.
Closing this gap remains an open problem. We know by Theorem 9 that given
a non-summable function f , the uniform probability for many f(m)-upcrossings
goes to 0. However, this does not necessarily imply that expectation also tends
to 0; low probability might be compensated for by high value. So for expectation
there might be a lower bound larger than Theorem 7, an upper bound smaller
than Doob’s Upcrossing Inequality, or both.

If we drop the requirement that the rate of upcrossings to be uniform,
Doob’s Upcrossing Inequality is the best upper bound we can give [LH14].

6 Application to the MDL Principle

Let M be a countable set of probability measures on (Σω,Fω), called environ-
ment class. Let K : M → [0, 1] be a function such that

∑
Q∈M 2−K(Q) ≤ 1,

called complexity function on M. Following notation in [Hut09], we define for
u ∈ Σ∗ the minimal description length model as

MDLu := argmin
Q∈M

{
− logQ(Γu) +K(Q)

}
.

That is, − logQ(Γu) is the (arithmetic) code length of u given model Q, and
K(Q) is a complexity penalty for Q, also called regularizer. Given data u ∈ Σ∗,
MDLu is the measure Q ∈ M that minimizes the total code length of data and
model.

The following corollary of Theorem 6 states that in some cases the limit
limt→∞ MDLv1:t does not exist with high probability.

Corollary 13 (MDL May not Converge). Let P be a probability measure on
the measurable space (Σω,Fω). For any δ > 0, there is a set of probability mea-
sures M containing P , a complexity function K : M→ [0, 1], and a measurable
set Z ∈ Fω with P (Z) ≥ 1− δ such that for all v ∈ Z, the limit limt→∞ MDLv1:t

does not exist.

Proof. Fix some positive monotone decreasing summable function f (e.g., the one
given in Theorem 8). Let (Xt)t∈N be the P -martingale process from Theorem 6.
By Theorem 5 there is a probability measure Q on (Σω,Fω) such that

Xt(v) =
Q(Γv1:t)

P (Γv1:t)
.

Choose M := {P,Q} with K(P ) := K(Q) := 1. From the definition of MDL
and Q it follows that

Xt(u) < 1 ⇐⇒ Q(Γu) < P (Γu) =⇒ MDLu = P, and

Xt(u) > 1 ⇐⇒ Q(Γu) > P (Γu) =⇒ MDLu = Q.



332 J. Leike and M. Hutter

For Z :=
⋂∞

m=1Em,m Theorem 6 yields

P (Z) = P [∀m. U(1− f(m), 1 + f(m)) ≥ m] ≥ 1− δ.

For each v ∈ Z, the measure MDLv1:t alternates between P and Q indefinitely,
and thus its limit does not exist. ��

Crucial to the proof of Theorem 13 is that not only does the process Q/P
oscillate indefinitely, it oscillates around the constant exp(K(Q) − K(P )) = 1.
This implies that the MDL estimator may keep changing indefinitely, and thus
it is inductively inconsistent.

7 Bounds on Mind Changes

Suppose we are testing a hypothesis H ⊆ Σω on a stream of data v ∈ Σω. Let
P (H | Γv1:t) denote our belief in H at time t ∈ N after seeing the evidence v1:t.
By Bayes’ rule,

P (H | Γv1:t) = P (H)
P (Γv1:t | H)

P (Γv1:t)
=: Xt(v).

Since Xt is a constant multiple of P ( · | H)/P and P ( · | H) is a probability
measure on (Σω,Fω), the process (Xt)t∈N is a P -martingale with respect to the
filtration (Ft)t∈N by Theorem 4. By definition, (Xt)t∈N is bounded between 0 and
1. Let α > 0. We are interested in the question how likely it is to often change
one’s mind about H by at least α, i.e., what is the probability for Xt = P (H |
Γv1:t) to decrease and subsequently increase m times by at least α. Formally, we
define the stopping times T ′

0,ν(v) := 0,

T ′
2k+1,ν(v) := inf{t > T ′

2k,ν(v) | Xt(v) ≤ XT ′
2k,ν(v)

(v)− να},
T ′
2k+2,ν(v) := inf{t > T ′

2k+1,ν(v) | Xt(v) ≥ XT ′
2k+1,ν(v)

(v) + να},

t

Xt

c

c+ α
2

c− α
2

Fig. 2. This example process has two up-
crossings between c − α/2 and c + α/2
(completed at the time steps of the vertical
orange bars) and four α-alternations (com-
pleted when crossing the horizontal blue
bars)

and T ′
k := min{T ′

k,ν | ν ∈ {−1,+1}}.
(In Davis’ notation,XT ′

0,ν
, XT ′

1,ν
, . . . is

an α-alternating W-sequence for ν =
1 and an α-alternating M-sequence for
ν = −1 [Dav13, Def. 4].) For any t ∈
N, the random variable

AX
t (α)(v) := sup{k ≥ 0 | T ′

k(v) ≤ t},

is defined as the number of α-alter-
nations up to time t. Let AX(α) :=
supt∈NA

X
t (α) denote the total num-

ber of α-alternations.
Setting α = 2ε, the α-alternations

differ from ε-upcrossings in three ways: first, for upcrossings, the process de-
creases below c − ε, then increases above c + ε, and then repeats. For alterna-
tions, the process may overshoot c− ε or c+ ε and thus change the bar for the
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subsequent alternations, causing a ‘drift’ in the target bars over time. Second,
for α-alternations the initial value of the martingale is relevant. Third, one up-
crossing corresponds to two alternations, since one upcrossing always involves a
preceding downcrossing. See Figure 2.

To apply our bounds for upcrossings on α-alternations, we use the following
lemma by Davis. We reinterpret it as stating that every bounded martingale
process (Xt)t∈N can be modified into a martingale (Yt)t∈N such that the proba-
bility for many α-alternations is not decreased and the number of alternations
equals the number of upcrossings plus the number of downcrossings [LH14].

Lemma 14 (Upcrossings and Alternations [Dav13, Lem. 9]). Let
(Xt)t∈N be a martingale with 0 ≤ Xt ≤ 1. There exists a martingale (Yt)t∈N

with 0 ≤ Yt ≤ 1 and a constant c ∈ (α/2, 1 − α/2) such that for all t ∈ N and
for all k ∈ N,

P [AX
t (α) ≥ 2k] ≤ P [AY

t (α) ≥ 2k] = P [UY
t (c− α/2, c+ α/2) ≥ k].

Theorem 15 (Upper Bound on Alternations). For every martingale pro-
cess (Xt)t∈N with 0 ≤ Xt ≤ 1,

P [A(α) ≥ 2k] ≤
(
1− α

1 + α

)k

.

Proof. We apply Theorem 14 to (Xt)t∈N and (1 − Xt)t∈N to get the processes
(Yt)t∈N and (Zt)t∈N. Dubins’ Inequality yields

P [AX
t (α) ≥ 2k] ≤ P [UY

t (c+ − α
2 , c+ − α

2 ) ≥ k] ≤
(
c+ − α

2

c+ + α
2

)k

=: g(c+) and

P [A1−X
t (α) ≥ 2k] ≤ P [UZ

t (c− − α
2 , c− − α

2 ) ≥ k] ≤
(
c− − α

2

c− + α
2

)k

= g(c−)

for some c+, c− ∈ (α/2, 1−α/2). Because Theorem 14 is symmetric for (Xt)t∈N

and (1−Xt)t∈N, we have c+ = 1−c−. Since P [AX
t (α) ≥ 2k] = P [A1−X

t (α) ≥ 2k]
by the definition of AX

t (α), we have that both are less than min{g(c+), g(c−)} =
min{g(c+), g(1−c+)}. This is maximized for c+ = c− = 1/2 because g is strictly
monotone increasing for c > α/2. Therefore

P [AX
t (α) ≥ 2k] ≤

( 1
2 −

α
2

1
2 + α

2

)k

=

(
1− α

1 + α

)k

.

Since this bound is independent of t, it also holds for P [AX(α) ≥ 2k]. ��

The bound of Theorem 15 is the square root of the bound derived by
Davis [Dav13, Thm. 10 & Thm. 11]:

P [A(α) ≥ 2k] ≤
(
1− α

1 + α

)2k

(1)
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This bound is tight [Dav13, Cor. 13].
Because 0 ≤ Xt ≤ 1, the process (1 − Xt)t∈N is also a nonnegative martin-

gale, hence the same upper bounds apply to it. This explains why the result in
Theorem 15 is worse than Davis’ bound (1): Dubins’ bound applies to all nonneg-
ative martingales, while Davis’ bound uses the fact that the process is bounded
from below and above. For unbounded nonnegative martingales, downcrossings
are ‘free’ in the sense that one can make a downcrossing almost surely successful
(as done in the proof of Theorem 6). If we apply Dubins’ bound to the process
(1−Xt)t∈N, we get the same probability bound for the downcrossings of (Xt)t∈N

(which are upcrossings of (1 −Xt)t∈N). Multiplying both bounds yields Davis’
bound (1); however, we still require a formal argument why the upcrossing and
downcrossing bounds are independent.

The following corollary to Theorem 15 derives an upper bound on the expected
number of α-alternations.

Theorem 16 (Upper Bound on Expected Alternations). For every mar-
tingale (Xt)t∈N with 0 ≤ Xt ≤ 1, the expectation E[A(α)] ≤ 1

α .

Proof. By Theorem 15 we have P [A(α) ≥ 2k] ≤
(

1−α
1+α

)k
, and thus

E[A(α)] =
∞∑
k=1

P [A(α) ≥ k]

= P [A(α) ≥ 1] +

∞∑
k=1

(
P [A(α) ≥ 2k] + P [A(α) ≥ 2k + 1]

)
≤ 1 +

∞∑
k=1

2P [A(α) ≥ 2k] ≤ 1 + 2

∞∑
k=1

(
1− α

1 + α

)k

=
1

α
. ��

We now apply the technical results of this section to the martingale process
Xt = P ( · | H)/P , our belief in the hypothesis H as we observe data. The
probability of changing our mind k times by at least α decreases exponentially
with k (Theorem 15). Furthermore, the expected number of times we change our
mind by at least α is bounded by 1/α (Theorem 16). In other words, having to
change one’s mind a lot often is unlikely.

Because in this section we consider martingales that are bounded between
0 and 1, the lower bounds from Section 4 do not apply here. While for the
martingales constructed in Theorem 6, the number of 2α-alternations and the
number of α-up- and downcrossings coincide, these processes are not bounded.
However, we can give a similar construction that is bounded between 0 and 1
and makes Davis’ bound asymptotically tight.

8 Conclusion

We constructed an indefinitely oscillating martingale process from a summable
function f . Theorem 6 and Theorem 7 give uniform lower bounds on the prob-
ability and expectation of the number of upcrossings of decreasing magnitude.
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In Theorem 9 we proved the corresponding upper bound if the function f is not
summable. In comparison, Doob’s Upcrossing Inequality and Dubins’ Inequality
give upper bounds that are not uniform. In Section 5 we showed that for a cer-
tain summable function f , our martingale makes these bounds asymptotically
tight as well.

Our investigation of indefinitely oscillating martingales was motivated by two
applications. First, in Theorem 13 we showed that the minimum description
length operator may not exist in the limit: for any probability measure P we can
construct a probability measure Q such that Q/P oscillates forever around the
specific constant that causes limt→∞ MDLv1:t to not converge.

Second, we derived bounds for the probability of changing one’s mind about
a hypothesis H when observing a stream of data v ∈ Σω. The probability
P (H | Γv1:t) is a martingale and in Theorem 15 we proved that the probability
of changing the belief in H often by at least α decreases exponentially.

A question that remains open is whether there is a uniform upper bound on
the expected number of upcrossings tighter than Doob’s Upcrossing Inequality.

References

[Dav13] Davis, E.: Bounding changes in probability over time: It is unlikely that
you will change your mind very much very often. Technical report (2013),
https://cs.nyu.edu/davise/papers/dither.pdf

[Doo53] Doob, J.L.: Stochastic Processes. Wiley, New York (1953)
[Dur10] Durrett, R.: Probability: Theory and Examples, 4th edn. Cambridge Univer-

sity Press (2010)
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Abstract. Kolmogorov complexity (K) is an incomputable function. It
can be approximated from above but not to arbitrary given precision and
it cannot be approximated from below. By restricting the source of the
data to a specific model class, we can construct a computable function κ
to approximate K in a probabilistic sense: the probability that the error
is greater than k decays exponentially with k. We apply the same method
to the normalized information distance (NID) and discuss conditions that
affect the safety of the approximation.

The Kolmogorov complexity of an object is its shortest description, considering
all computable descriptions. It has been described as “the accepted absolute
measure of information content of an individual object” [1], and its investigation
has spawned a slew of derived functions and analytical tools. Most of these tend
to separate neatly into one of two categories: the platonic and the practical.

On the platonic side, we find such tools as the normalized information distance
[2], algorithmic statistics [1] and sophistication [3, 4]. These subjects all deal with
incomputable “ideal” functions: they optimize over all computable functions, but
they cannot be computed themselves.

To construct practical applications (ie. runnable computer programs), the
most common approach is to take one of these platonic, incomputable functions,
derived from Kolmogorov complexity (K), and to approximate it by swapping
K out for a computable compressor like GZIP [5]. This approach has proved
effective in the case of normalized information distance (NID) [2] and its ap-
proximation, the normalized compression distance (NCD) [6]. Unfortunately,
the switch to a general-purpose compressor leaves an analytical gap. We know
that the compressor serves as an upper bound to K—up to a constant—but
we do not know the difference between the two, and how this error affects the
error of derived functions like the NCD. This can cause serious contradictions.
For instance, the normalized information distance has been shown to be non-
approximable [7], yet the NCD has proved its merit empirically [6]. Why this
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should be the case, and when this approach may fail has, to our knowledge, not
yet been investigated.

We aim to provide the first tools to bridge this gap. We will define a com-
putable function which can be said to approximate Kolmogorov complexity, with
some practical limit to the error. To this end, we introduce two concepts:

– We generalize resource-bounded Kolmogorov complexity (Kt) to model-
bounded Kolmogorov complexity, which minimizes an object’s description
length over any given enumerable subset of Turing machines (a model class).
We explicitly assume that the source of the data is contained in the model
class.

– We introduce a probabilistic notion of approximation. A function approxi-
mates another safely, under a given distribution, if the probability of them
differing by more than k bits, decays at least exponentially in k.1

While the resource-bounded Kolmogorov complexity is computable in a technical
sense, it is never computed practically. The generalization to model bounded Kol-
mogorov complexity creates a connection to minimum description length (MDL)
[8, 9, 10], which does produce algorithms and methods that are used in a prac-
tical manner. Kolmogorov complexity has long been seen as a kind of platonic
ideal which MDL approximates. Our results show that MDL is not just an upper
bound to K, it also approximates it in a probabilistic sense.

Interestingly, the model-bounded Kolmogorov complexity itself—the smallest
description using a single element from the model class—is not a safe approxi-
mation. We can, however, construct a computable, safe approximation by taking
into account all descriptions the model class provides for the data.

The main result of this paper is a computable function κ which, under a model
assumption, safely approximates K (Theorem 3). We also investigate whether a
κ-based approximation of NID is safe, for different properties of the model class
from which the data originated (Theorems 5, 6 and 7).

1 Turing Machines and Probability

Turing Machines

Let B = {0, 1}∗. We assume that our data is encoded as a finite binary string.
Specifically, the natural numbers can be associated to binary strings, for instance
by the bijection: (0, ε), (1, 0), (2, 1), (3, 00), (4, 01), etc, where ε is the empty
string. To simplify notation, we will sometimes conflate natural numbers and
binary strings, implicitly using this ordering.

We fix a canonical prefix-free coding, denoted by x, such that |x| ≤ |x| +
2 log |x|. See [11, Example 1.11.13] for an example. Among other things, this
gives us a canonical pairing function to encode two strings x and y into one: xy.

1 This consideration is subject to all the normal drawbacks of asymptotic approaches.
For this reason, we have foregone the use of big-O notation as much as possible, in
order to make the constants and their meaning explicit.
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We use the Turing machine model from [11, Example 3.1.1]. The following prop-
erties are important: the machine has a read-only, right-moving input tape, an
auxiliary tape which is read-only and two-way, two read-write two-way work-
tapes and a read-write two-way output tape.2 All tapes are one-way infinite. If
a tape head moves off the tape or the machine reads beyond the length of the
input, it enters an infinite loop. For the function computed by TM i on input
p with auxiliary input y, we write Ti(p | y) and Ti(p) = Ti(p | ε). The most
important consequence of this construction is that the programs for which a
machine with a given auxiliary input y halts, form a prefix-free set [11, Exam-
ple 3.1.1]. This allows us to interpret the machine as a probability distribution
(as described in the next subsection).

We fix an effective ordering {Ti}. We call the set of all Turing machines C .
There exists a universal Turing machine, which we will call U , that has the
property that U(ıp | y) = Ti(p | y) [11, Theorem 3.1.1].

Probability

We want to formalize the idea of a probability distribution that is computable:
it can be simulated or computed by a computational process. For this purpose,
we will interpret a given Turing machine Tq as a probability distribution pq:
each time the machine reads from the input tape, we provide it with a random
bit. The Turing machine will either halt, read a finite number of bits without
halting, or read an unbounded number of bits. pq(x) is the probability that this
process halts and produces x: pq(x) =

∑
p:Tq(p)=x 2

−|p|. We say that Tq samples

pq. Note that if p is a semimeasure, 1−
∑

x p(x) corresponds to the probability
that this sampling process will not halt.

We model the probability of x conditional on y by a Turing machine with y
on its auxiliary tape: pq(x | y) =

∑
p:Tq(p|y)=x 2

−|p|.

The lower semicomputable semimeasures [11, Chapter 4] are an alternative
formalization. We show that it is equivalent to ours:

Lemma 1. �� The set of probability distributions sampled by Turing machines
in C is equivalent to the set of lower semicomputable semimeasures.

The distribution corresponding to the universal Turing machine U is called m:
m(x) =

∑
p:U(p)=x 2

−|p|. This is known as a universal distribution. K and m

dominate each other, ie. ∃c∀x : |K(x)− logm(x)| < c [11, Theorem 4.3.3].

2 Model-Bounded Kolmogorov Complexity

In this section we present a generalization of the notion of resource-bounded
Kolmogorov complexity. We first review the unbounded version:

2 Multiple work tapes are only required for proofs involving resource bounds.
�� Proof in the appendix.
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Definition 1. Let k(x | y) = arg minp:U(p|y)=x |p|. The prefix-free, conditional
Kolmogorov complexity is

K(x | y) = |k(x | y)|

with K(x) = K(x | ε).

Due to the halting problem, K is not computable. By limiting the set of Turing
machines under consideration, we can create a computable approximation.

Definition 2. A model class C ⊆ C is a computably enumerable set of Turing
machines. Its members are called models. A universal model for C is a Turing
machine UC such that UC(ıp | y) = Ti(p | y) where i is an index over the
elements of C.

Definition 3. For a given C and UC we have KC(x) = min
{
|p| : UC(p) = x

}
,

called the model-bounded Kolmogorov complexity.

KC , unlike K, depends heavily on the choice of enumeration of C. A notation
like KUC or Ki,C would express this dependence better, but for the sake of
clarity we will use KC .

We define a model-bounded variant of m asmC(x) =
∑

p:UC(p)=x 2
−|p|, which

dominates all distributions in C:

Lemma 2. For any Tq ∈ C, mC(x) ≥ cqpq(x) for some cq independent of x.

Proof.

mC(x) =
∑

i,p:UC(ıp)=x

2−|ıp| ≥
∑

p:UC(qp)=x

2−|q|2−|p| = 2−|q|pq(x) .
��

Unlike K and − logm, KC and − logmC do not dominate one another. We can

only show that − logmC bounds KC from below (
∑

UC(p)=x 2
−|p| > 2−|kC(x)|).

In fact, as shown in Theorem 1, − logmC and KC can differ by arbitrary
amounts.

Example 1 (Resource-Bounded Kolmogorov Complexity [11, Ch. 7]).
Let t(n) be some time-constructible function.3Let T t

i be the modification of Ti ∈ C
such that at any point in the computation, it halts immediately if more than k cells
have been written to on the output tape and the number of steps that have passed is
less than t(k). In this case, whatever is on the output tape is taken as the output of
the computation. If this situation does not occur, Ti runs as normal. Let U t(ıp) =

T t
i (p). We call this model class Ct. We abbreviate KCt

as Kt.
Since there is no known means of simulating U t within t(n), we do not know

whether U t ∈ Ct. It can be run in ct(n) log t(n) [11, 12], so we do know that U t ∈
Cct log t.

Other model classes include Deterministic Finite Automata, Markov Chains, or
the exponential family (suitably discretized). These have all been thoroughly
investigated in coding contexts in the field of Minimum Description Length [10].

3 Ie. t : N → N and t can be computed in O(t(n)) [13].
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3 Safe Approximation

When a code-length function like K turns out to be incomputable, we may try
to find a lower and upper bound, or to find a function which dominates it.
Unfortunately, neither of these will help us. Such functions invariably turn out
to be incomputable themselves [11, Section 2.3].

To bridge the gap between incomputable and computable functions, we require
a softer notion of approximation; one which states that errors of any size may
occur, but that the larger errors are so unlikely, that they can be safely ignored:

Definition 4. Let f and fa be two functions. We take fa to be an approxima-
tion of f . We call the approximation b-safe (from above) for a distribution (or
adversary) p if for all k and some c > 0:

p(fa(x)− f(x) ≥ k) ≤ cb−k .

Since we focus on code-length functions, usually omit “from above”. A safe func-
tion is b-safe for some b > 1. An approximation is safe for a model class C if it
is safe for all pq with Tq ∈ C.

While the definition requires this property to hold for all k, it actually suffices
to show that it holds for k above a constant, as we can freely scale c:

Lemma 3. If ∃c∀k:k>k0 : p(fa(x) − f(x) ≥ k) ≤ cb−k, then fa is b-safe for f
against p.

Proof. First, we name the k below k0 for which the ratio between the bound and
the probability is the greatest: km = arg maxk∈[0,k0]

[
p(fa(x) − f(x) ≥ k)/cb−k

]
.

We also define bm = cb−km and pm = p(fa(x) − f(x) ≥ km). At km, we have
p(fa(x) − f(x) ≥ km) = pm = pm

bm
cb−km . In other words, the bound c′b−k with

c′ = pm

bm
c bounds p at km, the point where it diverges the most from the old

bound. Therefore, it must bound it at all other k > 0 as well. ��

Safe approximation, domination and lowerbounding form a hierarchy:

Lemma 4. Let fa and f be code-length functions. If fa is a lower bound on f ,
it also dominates f . If fa dominates f , it is also a safe approximation.

Proof. Domination means that for all x: fa(x)−f(x) < c, if fa is a lower bound,
c = 0. If fa dominates f we have ∀p, k > c : p(fa(x)− f(x) ≥ k) = 0. ��

Finally, we show that safe approximation is transitive, so we can chain together
proofs of safe approximation; if we have several functions with each safe for the
next, we know that the first is also safe for the last.

Lemma 5. The property of safety is transitive over the space of functions from
B to B for a fixed adversary.
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KC(x)

C(x) =
 -log mC(x)

C(x) =
 -log mC(x) -log m(x)

K(x)

computable approximable

dominates

unsafe

bounds

2-safe

dominates

bounds

bounds

incomputable

dominates

dominates

Fig. 1. An overview of how various code-length functions relate to each other in terms
of approximation safety. These relations hold under the assumption that the data is
generated by a distribution in C and that C is sufficient and complete.

Proof. Let f , g and h be functions such that

p(f(x)− g(x) ≥ k) ≤ c1b1
−k and

p(g(x)− h(x) ≥ k) ≤ c2b2
−k .

We need to show that p(f(x)− h(x) ≥ k) decays exponentially with k. We start
with

p (f(x)− g(x) ≥ k ∨ g(x)− h(x) ≥ k) ≤ c1b1
−k + c2b2

−k .

{x : f(x)− h(x) ≥ 2k} is a subset of {x : f(x)− g(x) ≥ k ∨ g(x)− h(x) ≥ k}, so
that the probability of the first set is less than that of the second:

p (f(x)− h(x) ≥ 2k) ≤ c1b1
−k + c2b2

−k .

Which gives us

p (f(x) − h(x) ≥ 2k) ≤ cb−k with b = min(b1, b2) and c = max(c1, c2) ,

p (f(x) − h(x) ≥ k′) ≤ cb′−k′
with b′ =

√
b . ��

4 A Safe, Computable Approximation of K

Assuming that our data is produced from a model in C, can we construct a
computable function which is safe for K? An obvious first choice is KC . For it
to be computable, we would normally ensure that all programs for all models
in C halt. Since the halting programs form a prefix-free set, this is impossible.
There is however a property for prefix-free functions that is analogous. We call
this sufficiency:

Definition 5. A sufficient model T is a model for which every infinite binary
string contains a halting program as a prefix. A sufficient model class contains
only sufficient models.
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We can therefore enumerate all inputs for UC from short to long in series to find
kC(x), so long as C is sufficient. For each input, UC either halts or attempts to
read beyond the length of the input.

In certain cases, we also require that C can represent all x ∈ B (ie. mC(x) is
never 0). We call this property completeness :

Definition 6. A model class C is called complete if for any x, there is at least
one p such that UC(p) = x.

We can now say, for instance, that KC is computable for sufficient C. Unfortu-
nately, KC turns out to be unsafe:

Theorem 1. There exist model classes C so that KC(x) is an unsafe approxi-
mation for K(x) against some pq with Tq ∈ C.

Proof. We first show that KC is unsafe for − logmC .
Let C contain a single Turing machine Tq which outputs x for any input of

the form xp with |p| = x and computes indefinitely for all other inputs.
Tq samples from pq(x) = 2−|x|, but it distributes each x’s probability mass

uniformly over many programs much longer than |x|.
This gives us KC(x) = |x| + |p| = |x| + x and − logmC(x) = |x|, so that

KC(x) + logmC(x) = x. We get

mC(KC(x) + logmC(x) ≥ k) = mC(x ≥ k) =∑
x:x≥k

2−|x| ≥
∑

x:x≥k

2−2 log x ≥ k−2

so that KC is unsafe for − logmC .
It remains to show that this implies that KC is unsafe for K. In Theorem 2,

we prove that − logmC is safe for K. Assuming that KC is safe for K (which
dominates − logmC) implies KC is safe for − logmC , which gives us a contra-
diction. ��

Note that the use of a model class with a single model is for convenience only. The
main requirement for KC to be unsafe is that the prefix tree of UC ’s programs
distributes the probability mass for x over many programs of similar length. The
greater the difference between KC and − logmC , the greater the likelihood that
KC is unsafe.

Our next candidate for a safe approximation of K is − logmC . This time, we
fare better. We first require the following lemma, called the no-hypercompression
theorem in [10, p103]:

Lemma 6. Let pq be a probability distribution. The corresponding code-length
function, − log pq, is a 2-safe approximation for any other code-length function
against pq. For any pr and k > 0: pq(− log pq(x) + log pr(x) ≥ k) ≤ 2−k.

Theorem 2. − logmC(x) is a 2-safe approximation of K(x) against any ad-
versary from C.
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Proof. Let pq be some adversary in C. We have

pq(− logmC(x)−K(x) ≥ k)

≤ cmC(− logmC(x)−K(x) ≥ k) by Lemma 2,

≤ c2−k by Lemma 6. ��

While we have shownmC to be safe forK, it may not be computable, even if C is
sufficient (since it is an infinite sum). We can, however, define an approximation,
which, for sufficient C, is computable and dominates mC .

Definition 7. Let the model class D be the union of C and some arbitrary
sufficient and complete distribution from C .

Let mC
c (x) be the function computed by the following algorithm: Dovetail the

computation of all programs on UD(x) in cycles, so that in cycle n, the first n
programs are simulated for one further step. After each such step we consider
the probability mass s of all programs that have stopped (where each program p
contributes 2−|p|), and the probability mass sx of all programs that have stopped
and produced x. We halt the dovetailing and output sx if sx > 0 and the following
stop condition is met:

1− s

sx
≤ 2c − 1 .

Note that if C is sufficient so is D, so that s goes to 1 and sx never decreases.
Since all programs halt, the stop condition must be reached. The addition of a
complete model is required to ensure that sx does not remain 0 indefinitely.

Lemma 7. If C is sufficient, mC
c (x) dominates mC with a constant multiplica-

tive factor 2−c (ie. their code-lengths differ by at most c bits).

Proof. Wewill first show thatmC
c dominatesmD. Note thatwhen the computation

ofmC
c halts, we havemC

c (x) = sx and mD(x) ≤ sx + (1− s). This gives us:

mD(x)

mC
c (x)

≤ 1 +
1− s

sx
≤ 2c .

Since C ⊆ D, mD dominates mC (see Lemma 9 in the appendix) and thus, mC
c

dominates mC . ��

The parameter c in mC
c allows us to tune the algorithm to trade off running

time for a smaller constant of domination. We will usually omit it when it is not
relevant to the context.

Putting all this together, we have achieved our aim:

Theorem 3. For a sufficient model class C, − logmC is a safe, computable
approximation of K(x) against any adversary from C

Proof. We have shown that, under these conditions, − logmC safely approx-
imates − logm which dominates K, and that − logmC dominates − logmC .
Since domination implies safe approximation (Lemma 4), and safe approxima-
tion is transitive (Lemma 5), we have proved the theorem. ��
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Figure 1 summarizes this chain of reasoning and other relations between the
various code-length functions mentioned.

The negative logarithm of mC will be our go-to approximation of K, so we
will abbreviate it with κ:

Definition 8. κC(x) = − logmC(x) and κC(x) = − logmC(x).

Finally, if we violate our model assumption we lose the property of safety. For
adversaries outside C, we cannot be sure that κC is safe:

Theorem 4. There exist adversaries pq with Tq /∈ C for which neither κC nor
κC is a safe approximation of K.

Proof. Consider the following algorithm for sampling from a computable distri-
bution (which we will call pq):

– Sample n ∈ N from some distribution s(n) which decays polynomially.
– Loop over all x of length n return the first x such that κC(x) ≥ n.

Note that at least one such x must exist by a counting argument: if all x of
length n have − logmC(x) < n we have a code that assigns 2n different strings
to 2n − 1 different codes.

For each x sampled from q, we know that κ(x) ≥ |x| and K(x) ≤ − log pq(x)+
cq. Thus:

pq(κ
C(x)−K(x) ≥ k) ≥ pq(|x|+ log pq(x) − cq ≥ k)

= pq(|x|+ log s(|x|) − cq ≥ k) =
∑

n:n+log s(n)−cq≥k
s(n) .

Let n0 be the smallest n for which 2n > n + log s(n) − cq. For all k > 2n0 we
have ∑

n:n+log s(n)−cq≥k
s(n) ≥

∑
n:2n≥k

s(n) ≥ s
(
1
2k
)
. ��

For Ct (as in Example 1), we can sample the pq constructed in the proof in
O(2n · t(n)). Thus, we know that κt is safe for K against adversaries from Ct,

and we know that it is unsafe against C2t .

5 Approximating Normalized Information Distance

Definition 9 ([2, 6]). The normalized information distance between two strings
x and y is

NID(x, y) =
max [K(x | y),K(y | x)]

max [K(x),K(y)]
.

The information distance (ID) is the numerator of this function. The NID is
neither lower nor upper semicomputable [7]. Here, we investigate whether we
can safely approximate either function using κ. We define IDC and NIDC as the
ID and NID functions with K replaced by κC . We first show that, even if the
adversary only combines functions and distributions in C, IDC may be an unsafe
approximation.
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Definition 10. 4A function f is a (b-safe) model-bounded one-way function
for C if it is injective, and for some b > 1, some c > 0, all q ∈ C and all k:

pq
(
κC(x) − κC (x | f(x)) ≥ k

)
≤ cb−k .

Theorem 5. �� Under the following assumptions:

– C contains a model T0, with p0(x) = 2−|x|s(|x|), with s a distribution on N
which decays polynomially or slower,

– there exists a model-bounded one-way function f for C,

– C is normal, ie. for some c and all x: κC(x) < |x|+ c

IDC is an unsafe approximation for ID against an adversary Tq which samples
x from p0 and returns xf(x).

If x and y are sampled from C independently, we can prove safety:

Theorem 6. �� Let Tq be a Turing machine which samples x from pa, y from

pb and returns xy. If Ta, Tb ∈ C, IDC(x, y) is a safe approximation for ID(x, y)
against any such Tq.

The proof relies on two facts:

– κC(x | y) is safe for K(x | y) if x and y are generated this way.

– Maximization is a safety preserving operation: if we have two functions f
and g with safe approximations fa and ga, max(fa(x), ga(x)) is a safe ap-
proximation of max(f(x), g(x)).

For normalized information distance, which is dimensionless, the error k in bits
as we have used it so far does not mean much. Instead, we use f/fa as a measure
of approximation error, and we introduce an additional parameter ε:

Theorem 7. �� We can approximate NID with NIDC with the following bound:

pq

(
NID(x, y)

NIDC(x, y)
/∈
(
1− k

c
, 1 +

k

c

))
≤ c′b−k + 2ε

with

pq(ID
C(x, y) ≥ c) ≤ ε and pq

(
max

[
κC(x), κC(y)

]
≥ c
)
≤ ε

for some b > 1 and c′ > 0, assuming that pq samples x and y independently from
models in C.

4 This is similar to the Kolmogorov one-way function [14, Definition 11].
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6 Discussion

We have provided a function κC(x) for a given model class C, which is com-
putable if C is sufficient. Under the assumption that x is produced by a model
from C, κC(x) approximates K(x) in a probabilistic sense. We have also shown
that KC(x) is not safe. Finally, we have given some insight into the conditions
on C and the adversary, which can affect the safety of NCD as an approximation
to NID.

Since, as shown in Example 1, resource-bounded Kolmogorov complexity is
a variant of model-bounded Kolmogorov complexity, our results apply to Kt as
well: Kt is not necessarily a safe approximation of K, even if the data can be
sampled in t and κt is safe if the data can be sampled in t. Whether Kt is safe
ultimately depends on whether a single shortest program dominates among the
sum of all programs, as it does in the unbounded case.

For complex model classes, κC may still be impractical to compute. In such
cases, we may be able to continue the chain of safe approximation proofs. Ideally,
we would show that a model which is only locally optimal, found by an iterative
method like gradient descent, is still a safe approximation of K. Such proofs
would truly close the circuit between the ideal world of Kolmogorov complexity
and modern statistical practice.
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[1] Gács, P., Tromp, J., Vitányi, P.M.B.: Algorithmic statistics. IEEE Transactions
on Information Theory 47(6), 2443–2463 (2001)

[2] Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.M.B.: The similarity metric. IEEE
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A Appendix

A.1 Turing Machines and lsc. Probability Semimeasures (Lemma 1)

Definition 11. A function f : B → R is lower semicomputable (lsc.) iff there
exists a total, computable two-argument function f ′ : B × N → Q such that:
limi→∞ f ′(x, i) = f(x) and for all i, f ′(x, i+ 1) ≥ f ′(x, i).

Lemma 8. If f is an lsc. probability semimeasure, then there exists a a function
f∗(x, i) with the same properties of the function f ′ from Definition 11, and the
additional property that all values returned by f∗ have finite binary expansions.

Proof. Let xj represent x ∈ D truncated at the first j bits of its binary expansion
and xj the remainder. Let f∗(x, i) = f ′(x, i)i. Since f

′(x, i)− f∗(x, i)i is a value
with i+1 as the highest non-zero bit in its binary expansion, limi→∞ f∗(x, i) =
lim f ′(x, i) = f(x).

It remains to show that f∗ is nondecreasing in i. Let x ≥ y. We will show that
xj ≥ yj , and thus xj+1 ≥ yj. If x = y the result follows trivially. Otherwise, we
have xj = x−xj > y−xj = yj+yj−xj ≥ yj−2−j. Substituting x = f ′(x, i+1)
and y = f ′(x, i) tells us that f∗(x, i+ 1) ≥ f∗(x, i) ��

Theorem 8. Any TM, Tq, samples from an lsc. probability semimeasure.

Proof. We will define a program computing a function p′q(x, i) to approximate
pq(x): Dovetail the computation of Tq on all inputs x ∈ B for i cycles.

Clearly this function is nondecreasing. To show that it goes to p(x) with i, we
first note that for a given i0 there is a j such that, 2−j−1 < pq(x)−pq(x, i0) ≤ 2−j .
Let {pi} be an ordering of the programs producing x, by increasing length,
that have not yet stopped at dovetailing cycle i0. There is an m such that∑m

i=1 2
−|pi| ≥ 2−j−1, since

∑∞
i=1 2

−|pi| > 2−j−i. Let i1 be the dovetailing cycle
for which the last program below pm+1 halts. This gives us pq(x) − pq(x, i1) ≤
2−j−1. Thus, by induction, we can choose i to make p(x) − p′(x, i) arbitrarily
small. ��
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Theorem 9. Any lsc. probability semimeasure can be sampled by a TM.

Proof. Let p(x) be an lsc. probability semimeasure and p∗(x, i) as in Lemma 8.
We assume—without loss of generality—that p∗(x, 0) = 0. Consider the following
algorithm:
initialize s ← ε, r ← ε
for c = 1, 2, . . .:
for x ∈ {b ∈ B : |b| ≤ c}
d ← p∗(x, c− i+ 1)− p∗(x, c− i)
s ← s+ d
add a random bit to r until it is as long as s
if r < s then return x

The reader may verify that this program dovetails computation of p∗(x, i) for
increasing i for all x; the variable s contains the summed probability mass that
has been encountered so far. Whenever s is incremented, mentally associate the
interval (s, s+ d] with outcome x. Since p∗(x, i) goes to p(x) as i increases, the
summed length of the intervals associated with x goes to p(x) and s itself goes
to s =

∑
x p(x). We can therefore sample from p by picking a number r that

is uniformly random on [0, 1] and returning the outcome associated with the
interval containing r. Since s must have finite length (due to the construction of
p∗), we only need to know r up to finite precision to be able to determine which
interval it falls in; this allows us to generate r on the fly. The algorithm halts
unless r falls in the interval [s, 1], which corresponds exactly to the deficiency of
p: if p is a semimeasure, we expect the non-halting probability of a TM sampling
it to correspond to 1−

∑
x p(x). ��

Theorems 8 and 9 combined prove that the class of distributions sampled by
Turing machines equals the lower semicomputable semimeasures (Lemma 1).

A.2 Domination of Model Class Supersets

Lemma 9. Let C and D be model classes. If C ⊆ D, then mD dominates mC :

mD(x)

mC(x)
≥ α

for some constant α independent of x.

Proof. We can partition the models of D into those belonging to C and the
rest, which we’ll call C. For any given enumeration of D, we get mD(x) =

αmC(x) + (1− α)mC(x). This gives us:

mD(x)

mC(x)
= α+ (1− α)

mC(x)

mC(x)
≥ α .

��



A Safe Approximation for Kolmogorov Complexity 349

A.3 Unsafe Approximation of ID (Theorem 5)

Proof.

pq
(
IDC(x, y)− ID(x, y) ≥ k

)
=

p0
(
max

[
κC(x | f(x)), κC(f(x) | x)

]
−max [K(x | f(x)),K(f(x) | x))] ≥ k

)
.

pq
(
|x| − IDC(x, y) ≥ 2k

)
≤ p0

(
|x| − κC(x | f(x)) ≥ 2k

)
≤ p0

(
|x| − κC(x) ≥ k ∨ κC(x)− κC(x | f(x)) ≥ k

)
≤ p0

(
|x| − κC(x) ≥ k

)
+ p0

(
κC(x)− κC(x | f(x)) ≥ k

)
≤ 2−k + cb−k .

K can invert f(x), so

ID(x, y) = max [K(x | f(x)),K(f(x) | x)] = max [|f∗|, |f∗
inv|] < cf

where f∗ and f∗
inv are the shortest program to compute f on U and the shortest

program to compute the inverse of f on U respectively.

pq
(
IDC(x, y)− ID(x, y) ≥ k

)
+ pq

(
|x| − IDC(x, y) ≥ k

)
≥ pq

(
IDC(x, y)− ID(x, y) ≥ k ∨ |x| − IDC(x, y) ≥ k

)
≥ pq (|x| − ID(x, y) ≥ k) ≥ p0 (|x| − cf ≥ k) =

∑
i≥k−cf

s(i) .

Which gives us:

pq
(
IDC(x, y)− ID(x, y) ≥ k

)
≥ −pq(|x| − IDC ≥ k) +

∑
i≥k−|f |

s(i) ≥ −cb−k +
∑

i≥k−|f |
s(i)

≥ s(k − |f |)− cb−k ≥ c′s(k) for the right c′. ��

Corollary 1 Under the assumptions of Theorem 5, κC(x | y) is an unsafe ap-
proximation for K(x | y) against q.

Proof. Assuming κC is safe, then since max is safety-preserving (Lemma 11),
IDC should be safe for ID. Since it isn’t, κC cannot be safe. ��

A.4 Safe Approximation of ID (Theorem 6)

Lemma 10. If q samples x and y independently from models in C, then κC(x | y)
is a 2-safe approximation of − logm(x | y) against q.

Proof. Let q sample x from pr and y from ps.

pq(− logmC(x | y) + logm(x | y) ≥ k) = pq(m(x | y)/mC(x | y) ≥ 2k)

≤ 2−kE
[
m(x | y)/mC(x | y)

]
= 2−k

∑
x,y

ps(y)m(x | y) pr(x)

mC(x | y)

≤ c2−k
∑
x,y

ps(y)m(x | y)m
C(x | y)

mC(x | y) ≤ c2−k
∑
x,y

ps(y)m(x | y) ≤ c2−k .
��
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Since m and K mutually dominate, − logmC is 2-safe for K(x | y), as is κ(x | y).
Lemma 11. If fa is safe for f against q, and ga is safe for g against q, then
max(fa, ga) is safe for max(f, g) against q.5

Proof. We first partition B into sets Ak and Bk:

Ak = {x : fa(x)− f(x) ≥ k ∨ ga − g(x) ≥ k} Since both fa and ga are safe, we
know that pq(Ak) will be bounded above by the sum of two inverse expo-
nentials in k, which from a given k0 is itself bounded by an exponential in
k.

Bk = {x : fa(x) − f(x) < k ∧ ga − g(x) < k} We want to show that B contains
no strings with error over k. If, for a given x the left and right max func-
tions in max (fa, ga) − max (f, g) select the outcome from matching func-
tions, and the error is below k by definition. Assume then, that a different
function is selected on each side. Without loss of generality, we can say that
max(fa, ga) = fa and max(f, g) = g. This gives us: max(fa, ga)−max(f, g) =
fa − g ≤ fa − f ≤ k.

We now have p(Bk) = 0 and p(Ak) ≤ cb−k, from which the theorem follows.
��

Corollary 2 IDC is a safe approximation of ID against sources that sample x
and y independently from models in C.

A.5 Safe Approximation of NID (Theorem 7)

Lemma 12. Let f and g be two functions, with fa and ga their safe approxima-
tions against adversary pq. Let h(x) = f(x)/g(x) and ha(x) = fa(x)/ga(x).
Let c > 1 and 0 < ε 2 1 be constants such that pq(fa(x) ≥ c) ≤ ε and
pq(ga(x) ≥ c) ≤ ε. We can show that for some b > 1 and c > 0

pq

(∣∣∣∣ h(x)ha(x)
− 1

∣∣∣∣ ≥ k

c

)
≤ cb−k + 2ε .

Proof. We will first prove the bound from above, using fa’s safety, and then the
bound from below using ga’s safety.

pq

(
h

ha
≤ 1− k

c

)
≤ pq

(
h

ha
≤ 1− k

c
& c < fa

)
+ ε ≤ pq

(
h

ha
≤ 1− k

fa

)
+ ε

= pq

(
f

fa

ga
g

≤ 1− k

fa

)
+ ε ≤ pq

(
f

fa
≤ 1− k

fa

)
+ ε

= pq

(
f + k

fa
≤ 1

)
+ ε = pq (fa − f ≥ k) + ε ≤ cfbf

−k + ε .

The other bound we prove similarly. Combining the two, we get

pq (h/ha /∈ (k/c− 1, k/c+ 1)) ≤ cfbf
−k + cgbg

−k + 2ε ≤ c′b′−k + 2ε . ��
Theorem 7 follows as a corollary.

5 We will call such operations safety preserving.
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