
On the Efficiency of Provably Secure NTRU

Daniel Cabarcas1, Patrick Weiden2, and Johannes Buchmann2

1 Universidad Nacional de Colombia sede Medelĺın, Medelĺın, Colombia
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Abstract. It is still a challenge to find a lattice-based public-key en-
cryption scheme that combines efficiency (as e.g. NTRUEncrypt) with
a very strong security guarantee (as e.g. the ring-LWE based scheme
of Lyubashevsky, Peikert, and Regev LPR-LWE). Stehlé and Steinfeld
(EUROCRYPT 11) presented a provably secure variant of NTRUEn-
crypt (pNE), perhaps the first step towards addressing the challenge. In
this paper we thoroughly assess the efficiency of pNE, and investigate
whether it can meet those presumed extremes. We show how to select
parameters that provide a given security level and we explain how to
instantiate pNE. As we compare our instantiation of pNE to NTRUEn-
crypt and LPR-LWE, we find that pNE is still inferior to both due to
the very wide Gaussian distribution used in its key generation.

Keywords: Public-Key Encryption, Efficiency, NTRUEncrypt, Lattice,
Learning With Errors, and Discrete Gaussian Distribution.

1 Introduction

Public-key encryption (PKE) based on lattice problems has attracted a lot of
attention in the last decade. This is in part due to the need for alternatives
to traditional PKE. Most PKE schemes in use today rely on the hardness of
either factoring or computing discrete logarithms. However, the trustworthiness
of these assumptions has been eroding by improvements in factoring algorithms
and by polynomial time quantum algorithms that solve both problems.

The success of lattice-based PKE has also its own virtues. Among lattice-
based encryption schemes one can find NTRUEncrypt, which is competitive in
terms of practical efficiency with well established PKEs like RSA [17]. Although
the most efficient attacks against NTRUEncrypt use lattice algorithms, there
exists no formal proof relating the security of the scheme to a lattice problem.

There are also lattice-based PKE schemes such as Regev’s [32], that allow
for a worst- to average-case reduction from well established lattice problems.
Regev proposed a scheme that is secure as long as the learning with errors
problem (LWE) is hard on average, and he shows that the LWE problem is as
hard as solving a well established lattice problem in its worst case. His original
reduction was a quantum reduction, yet more recently it was shown that a
classical reduction is also possible [5]. These worst- to average-case reductions
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have also been used to prove other related problems hard, such as the ring-LWE
problem [25] and small parameter variants [26], and subsequently, other provably
secure PKE schemes have been proposed [36,13,25,23,8]. In any case, the worst-
to average-case reduction is considered a very strong security guarantee because
it proves that breaking a randomly chosen instance of the scheme is as hard as
solving the hardest instance of a well established lattice problem.

The construction of a lattice-based PKE scheme that has both properties
—strong security and practical efficiency— is still an interesting challenge. At
Eurocrypt 2011, Stehlé and Steinfeld made a first step towards solving this
challenge by presenting a provably secure NTRU-variant [35], which we refer to as
pNE. The pNE scheme permits a worst- to average-case reduction. Its similarity
to NTRUEncrypt raises the questions of how efficient pNE is and of how far the
scheme closes the efficiency gap between NTRUEncrypt and a provably secure
scheme. Although the authors of pNE state that an instantiation of pNE is likely
to be less efficient than NTRUEncrypt, it is still important to determine how
much it closes this gap. Moreover, a recent homomorphic implementation of
pNE [4] seem to suggest that pNE can be rather efficient.

The pNE and NTRUEncrypt schemes are structurally very similar. Opera-
tions take place in the quotient ring Rq = Zq[x]/Φ(x), where q is a moderately
large integer and Φ(x) is a degree n polynomial. The secret key f is sampled
from Rq and the public key h is computed as h = pg/f ∈ Rq, where p is a
small integer and g is also sampled from Rq. Then a message m ∈ Rp is en-
crypted by sampling small elements e, e′ in Rq, and computing the ciphertext
c := he+ pe′ +m ∈ Rq. The main difference between pNE and NTRUEncrypt
is the distribution used to sample f and g. Stehlé and Steinfeld show that if f
and g are sampled from a discrete Gaussian distribution with a large parame-
ter σ, instead of being sampled uniformly at random from a set of small norm
polynomials, the public key h is statistically close to uniform [35]. They then
show that the ciphertext is indistinguishable from random assuming the hard-
ness of the LWE problem on average. Finally, they rely on Regev’s [32] worst- to
average-case reduction from well established lattice problems to conclude that
pNE is secure as long as some lattice problems are hard in the worst case.

Our Contribution. In this paper we answer the question of how efficient pNE
is and of how far the scheme closes the efficiency gap between NTRUEncrypt and
a provably secure scheme. We do so by presenting a thorough assessment of the
efficiency of pNE. In order to achieve this, we address five important problems
that are of interest in their own right.

1. We show how to select parameters that provide an expected security level.
We do not rely on the worst-case hardness in this context because it is
unknown how tight the worst- to average-case reduction is. We rather analyze
a well-known attack against the average-case problem underlying pNE and
deduce the corresponding security level. For example, a lattice dimension of
2048 is required for a bit security level of 144. Although the security level is
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not grounded on the worst- to average-case reduction, we make sure it holds
for the chosen parameters.

2. Next, we explain how to implement pNE. In particular, we discuss how to
adapt best known discrete Gaussian samplers to fit the needs of pNE and
we compare their efficiency.

3. We present experimental data on the performance of pNE. It shows that our
pNE implementation is over 100 times slower and requires 24 times larger
keys than an implementation of NTRUEncrypt by Security Innovation Inc.
We consider this gap too large to be overcome through optimization alone.

4. We then move on to compare pNE with the ring-LWE based scheme of
Lyubashevsky, Peikert, and Regev [25] (LPR-LWE). We chose LPR-LWE be-
cause it appears to be one of the most efficient provably secure lattice-based
PKE schemes, based on the parameter selection by Lindner and Peikert [23]
and its implementation by Göttert et al. [15]. In order to allow for a fair com-
parison, we use an analogous method to derive the LPR-LWE parameters
and we implement it using the same procedures as in the pNE implemen-
tation. This is possible because pNE and LPR-LWE are structurally similar
and rely on the same security assumption. It turns out that LPR-LWE is
still superior over pNE. LPR-LWE is more than 5 times faster than pNE
and pNE uses keys more than 12 times larger than LPR-LWE.

5. Finally, through a careful analysis, we conclude that the main reason pNE
is still less efficient than the other schemes is the very wide Gaussian distri-
bution used in key generation, and the unexpected influence this has on the
practical security of the scheme.

Related Work. In a related work, Bos et al. [4] analyze the efficiency of a
leveled homomorphic encryption scheme based on pNE. We discuss their results
in more detail at the end of Section 4. In this paper we do not analyze the
performance of NTRUEncrypt since several works highlight its efficiency, see
for example [17,29,20]. There has been less scrutiny over LPR-LWE. Although
Göttert et al. [15] tested it in software and hardware, the parameters they con-
sider do not support a worst- to average-case reduction (see [23]). In this paper
we analyze LPR-LWE’s efficiency for a parameter set that does support such
a reduction. Finally, we compare the efficiency of four Gaussian samplers over
the integers to use the best for our implementation of pNE. The samplers we
consider were proposed by Gentry et al. [14], Peikert [30], Knuth and Yao [22]
(adapted in [12]), and Buchmann et al. [7]. The samplers of Ducas et al. [11] and
(a discrete variant) of Karney [21] we did not consider in this paper due to their
less practical efficiency as stated by the authors.

Organization. This paper is organized as follows. Section 2 introduces notation
and background material. Section 3 explains how to select parameters that pro-
vide an expected security level. Section 4 briefly describes our implementation
of pNE, presents experimental data on its performance, and compares it with
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both NTRUEncrypt and LPR-LWE. Finally, Section 5 analyzes the efficiency of
pNE and draws a conclusion about its main source of inefficiency.

2 Preliminaries

In this section we recall some of the background necessary to support the re-
mainder of the paper. We first describe the assumed hard problem that the
pNE scheme relies on, namely the ring-LWE problem. Next, we describe Gaus-
sian sampling techniques, an important building block for implementing pNE.
Finally, we describe the pNE scheme itself.

2.1 The Ring-LWE Problem

The security of pNE relies on the assumption that the learning with errors prob-
lem over rings (ring-LWE) is hard. The ring-LWE problem was introduced by
Lyubashevsky, Peikert and Regev [25] as an adaptation of the LWE problem [32]
to ideal lattices.

The decisional ring-LWE problem is parametrized by a positive integer q, a
polynomial Φ(x) ∈ Z[x], and a noise distribution χ on Rq = Zq[x]/(Φ(x)). For
s ∈ Rq, define As to be the distribution of pairs (a,b), where a is uniformly
chosen in Rq and b = as + e, with e sampled from χ. The decisional ring-
LWE problem is defined as follows: For a uniformly random s ∈ Rq (which is
kept secret) and given arbitrarily many samples (a,b), determine whether the
samples come from As, or whether they are uniformly distributed in Rq × Rq.
The search variant is to determine s given arbitrarily many samples from As.
For certain parameters, there is a quantum reduction from worst-case classical
lattice problems over ideal lattices to the average-case ring-LWE problem [25].

Several algorithms have been proposed to solve the LWE and ring-LWE prob-
lems, see for example [27,23,2,1,24]. Some of these algorithms rely on lattice-basis
reductions by algorithms such as BKZ [33] or BKZ 2.0 [9]. Another approach
is based on the BKW algorithm [3], a method for solving the learning parity
with noise problem. Pruned-enumeration has also been proved to be a viable
option [24]. Some algorithms take advantage of the ring structure (e.g. [31]),
others are oblivious to it.

In this paper we base all practical security estimates on the well established
distinguishing attack [27] using BKZ. Although other attacks might be more
effective, it is outside the scope of this paper to compare the effectiveness of
the different attacks. Lindner and Peikert [23] heuristically estimate that the
running time of the distinguishing attack using BKZ is

log(tε) = 1.8/ log(δε)− 110 , (1)

where δε is the so called Hermite factor (see Appendix A for more details.) The
expression log(δε) is polynomial in n, thus log(tε) is also polynomial in n, and
therefore tε is exponential in n. It is also worth noticing that log(tε) is of the
order of 1/ log(q), a fact that will play an important role in Section 5, where we
analyze pNE’s efficiency.
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2.2 Sampling Discrete Gaussians

For a vector v ∈ R
n, a positive real σ, and a lattice L ⊂ R

n, let DL,v,σ denote
the n-dimensional discrete Gaussian distribution over L, centered at v, with
parameter σ. For x ∈ L, DL,v,σ assigns probability

DL,v,σ(x) :=
ρv,σ(x)∑

z∈L
ρv,σ(z)

with ρv,σ(x) = exp
(
− 1

2 ‖x− v‖2 /σ2
)
. For brevity we writeDL,σ forDL,0,σ and

ρσ for ρ0,σ.
1 For practical reasons, we will use a spheric Gaussian distribution,

where each coordinate is sampled independently according to the discrete Gaus-
sian distribution DZ,σ over the integers, and we rely on the fact that

∑
z∈Z

ρσ(z)
is constant and hence DZ,σ is proportional to ρσ.

Several methods have been proposed to sample values from DZ,σ. We consider
the following sampling algorithms: rejection sampling [14], inverting the cumu-
lative distribution function (CDF) [30], the Knuth-Yao algorithm [22,12], and
the Ziggurat algorithm [7]. Besides those, there have been developed two other
methods quite recently [11,21], which we omit here since the authors state that
their methods are slower in practice than existing ones.

We briefly recall the different methods listed above. Let k be some positive real
number.2 In the rejection sampling method, one samples points (x, y) inside the
rectangleB := [−kσ, kσ)∩Z×[0, 1) uniformly at random and outputs x whenever
(x, y) is below the graph of ρσ.

3 The Ziggurat algorithm is a more advanced
rejection sampling algorithm in B. In a precomputation step, one divides the
graph of ρσ into a partition of horizontal rectangles. Then, one first chooses one
of the rectangles and samples a point (x, y) with integer x-coordinate inside this
rectangle next (both uniformly at random). Depending on the location inside
the rectangle, either x is directly output, rejection sampling is needed or the
process is restarted. In the inverse CDF method one precomputes the CDF values
pz = Pr[DZ,σ ≤ z] for all integers z ∈ [−kσ, kσ). Then, one samples y uniformly
at random in [0, 1) and outputs x ∈ [−kσ, kσ) ∩ Z such that y ∈ [px−1, px).
In the Knuth-Yao algorithm one constructs in advance a tree using the binary
expansion of the probabilities ρσ(z) for z ∈ [−kσ, kσ)∩Z up to some predefined
precision. During the sampling process, one walks down the binary tree, using

1 Some authors use a slightly different definition ρv,s(x) = exp
(−π ‖x− v‖2 /s2). The

two definitions are equivalent with s =
√
2π · σ.

2 The parameter k affects the distribution and the running time: A larger k yields a
better fit to DZ,σ, but increases both storage and rejection rate (and thus running
time). Gentry et al. proved that the rejection rate (see description of rejection sam-
pling) is proportional to k and independent of σ [14]. Moreover, they showed that
for k = ω(

√
log(n)) the output distribution is statistically close to DZ,σ.

3 An equivalent view is that one first samples an integer x uniformly at random in
the interval [−kσ, kσ). Then, with probability ρσ(x) one outputs x, otherwise one
restarts.
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one uniformly chosen bit at each step to decide which child to move to, and
finally outputs the integer of the reached leaf.

2.3 Stehlé and Steinfeld’s pNE Scheme

We briefly recall Stehlé and Steinfeld’s provably secure encryption scheme
pNE [35], which is specified by the following public parameters:

– dimension n > 8, a power of 2, which determines the cyclotomic polynomial
Φ(x) = xn + 1 and the quotient ring R = Z[x]/Φ(x),

– a prime q > 5 such that q ≡ 1 mod 2n, which determines the ciphertext
space Rq = Zq[x]/Φ(x),

– a polynomial p ∈ R such that p is invertible in Rq and has small coefficients
(typically p = 2, p = 3 or p = x + 2), which determines the message space
P = R/pR,

– a ring-LWE noise distribution χ,
– and a positive real σ that determines the (n-dimensional sperical) discrete

Gaussian distribution DZn,σ used in key generation.

The scheme pNE = (KeyGen,Encrypt,Decrypt) is defined as follows.

KeyGen: Sample f ′ ← DZn,σ, let f = pf ′+1 mod q; if f /∈ R×
q resample. Sample

g ← DZn,σ; if g /∈ R×
q resample. The secret key is f and the public key is

h := pg/f ∈ Rq.
Encrypt(h,m): Sample e, e′ ← χ, and return the ciphertext c := he+pe′+m ∈

Rq.
Decrypt(f , c): Compute c′ := f · c ∈ Rq and return c′ mod p.

Stehlé and Steinfeld show that pNE is secure as long as some classical lattice
problems are hard to solve on quantum computers [35]. First they show that for
certain parameter choices, the public key h is statistically close to uniform. Then,
they show that he+pe′ is basically a sample from a ring-LWE distribution, and
hence an IND-CPA attack on pNE can be used to solve ring-LWE. Then, by the
worst- to average-case quantum reduction [25], the hardness result follows.4

Stehlé and Steinfeld also show that there exist parameter choices for which
decryption correctly recovers the plaintext [35]. Let c′′ = p(ge+ e′f) + fm ∈ R.
If ‖c′′‖∞ < q/2, no wrapping around q occurs, and thus c′ = c′′ mod q = c′′ and
decryption recovers the message m always.

For pNE to be both secure and correct, the parameters need to be chosen
carefully. On the one hand, for the public key h to be statistically close to uni-
form, a large parameter σ is required. On the other hand, a large σ increases the
size of c′′ and hence forces a larger modulus q for decryption to work. Balancing
this conflicting forces is an important achievement of the authors of pNE. This
balancing act is also decisive for pNE’s efficiency as we will show in the following
sections.
4 Here we rely on the original security proof by Stehlé and Steinfeld [35]. However,
Brakerski et al. [5] quite recently established a classical worst- to average-case re-
duction that might apply in this case.
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3 Parameter Selection for pNE

We propose concrete parameters for pNE so that it is both correct and secure.
For correctness, we name a range of values for the modulus q that guarantee a
negligible error rate. Next, we show how to select parameters that provide an
expected security level.

– Fix n to be a power of two.
– Fix p = 2. This choice provides a useful message space and causes the least

possible expansion on the noise.
– Set χ to be the discrete Gaussian distribution DZn,r for some real r (see be-

low). Elements can be efficiently drawn from this distribution and moreover,
with n a power of two and Φ(x) = xn + 1, the ring-LWE noise distribution
can be spherical, and the worst-case reduction still holds [25].

– Set r =
√
2n/π, so that ring-LWE is as hard as lattice problems in the

worst-case (see [25] for details).
– Set σ = 2n

√
ln(8nq)q. With this, the public key is statistically close to

uniform, thus an IND-CPA attack implies solving an instance of ring-LWE
[35].

– Choose a prime q ∈ [dn6 ln(n), 2dn6 ln(n)], such that q ≡ 1 mod 2n. We show
in Lemma 3 below that d = 25830 guarantees correctness of the scheme.
Experimentally, we obtain a lower value d = 29.

Table 1 shows some sets of parameter values computed as described above.

Table 1. Parameter values for pNE, security and error rate estimates. For given values
of n, columns two through four show values for parameters q, σ and r that specify an
instance of pNE. For a given set of parameters, column seven shows the estimated run-
ning time of a distinguishing attack, and columns five and six show the advantage and
corresponding Hermite factor, respectively, under which such running time is achieved.
Column eight shows the equivalent bit security and column nine the error rate.

Parameters Advantage Hermite Attack time Equiv. bit Error
n log q log σ r log(1/ε) factor δε log(T ) [s] security rate

1024 71,90 49,89 25,53 2,72 1,0102 16 38 O(2−n)
2048 77,28 53,63 36,11 4,63 1,0055 122 144 O(2−n)
4096 83,30 57,70 51,06 7,85 1,0030 315 338 O(2−n)

The following two results will be used to prove the correctness of pNE for the
proposed parameters.

Lemma 1 ([35], Lemma 11). Let n ≥ 8 be a power of two such that Φ(x) =
xn+1 splits into n linear factors modulo a prime q ≥ 8n. Let σ ≥√

2n ln(6n)/π ·
q1/n and let p = 2. The polynomials f and g, generated by the KeyGen algorithm,
satisfy, with probability ≥ 1− 2−n+3,

‖f‖ ≤ 8
√
n · σ and ‖g‖ ≤ √n · σ .
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Lemma 2 ([28], Lemma 3.1). Let n ∈ N. For any real r = ω(
√
log(n)), the

probability that a polynomial e chosen according to DZn,r has norm ‖e‖ > r
√
n

is ≤ 2−n+1.

The following lemma establishes the correctness of pNE for the proposed
parameters.

Lemma 3. Let p = 2, n a power of two s.t. log(n) ≥ 3, r =
√
2n/π, χ = DZn,r,

σ = 2n
√
ln(8nq)q, and d ≥ 25830. If q is a prime in [dn6 ln(n), 2dn6 ln(n)], then

pNE correctly recovers plaintexts with probability greater or equal to 1− 2−n+6.

Proof. Let c′′ = p(ge+ e′f) + fm ∈ R. Decryption recovers m if ‖c′′‖∞ < q/2.
From Lemma 1, we have that ‖g‖2 ≤ √n ·σ and ‖f‖2 ≤ 8

√
n ·σ with probability

≥ 1 − 2−n+3. Furthermore, it is ‖pg‖2 ≤
√
2n · σ and ‖pf‖2 ≤ 8

√
2n · σ, both

with probability ≥ 1− 2−n+3. We also have that

‖pge‖∞ ≤ ‖pge‖2 ≤
√
n‖pg‖2‖e‖2 .

Since e is drawn from DZn,r, it follows from Lemma 2 that ‖e‖2 ≤ √n · r with
probability ≥ 1 − 2−n+1. It follows that ‖pge‖∞ ≤

√
2n · nσr with probability

≥ 1 − 2−n+4. Similarly, ‖pe′f‖∞ ≤ 8
√
2n · nσr with probability ≥ 1 − 2−n+4.

Also, ‖fm‖∞ ≤ ‖fm‖2 ≤ √n‖f‖2‖m‖2 = √n‖2f ′ + 1‖2‖m‖2. Since f ′ ← DZn,σ,
‖2f ′ + 1‖2 ≤

√
2n · σ with probability ≥ 1− 2−n+1. Since m ∈ R2, ‖m‖2 ≤ √n.

Thus ‖fm‖∞ ≤
√
2n · nσ with probability ≥ 1− 2−n+1. Then

‖c′′‖∞ ≤
√
2n · nσ(9r + 1),

with probability ≥ 1− 2−n+6 .
(2)

Assuming log(n) ≥ 3 and with r =
√
2n/π, we have that

(9r + 1)2 ≤ αn with α =
(
9
√
2/π + 1/

√
23
)2

. (3)

Now, suppose dn6 ln(n) ≤ q ≤ 2dn6 ln(n) for some d ≥ 1. Then

ln(8nq) ≤ ln(16n8d) ≤ β(d) ln(n),

with β(d) = 8 +
ln(16) + ln(d)

ln(23)
.

(4)

Then, from (2), (3) and (4), it follows that

‖2c′′‖2∞ ≤
(
2
√
2n · nσ(9r + 1)

)2

≤ 8n3σ2αn

≤ 32αβ(d)n6 ln(n)q .

Since β(d) = O(ln(d)), there exists D ≥ 0 such that for d ≥ D, 32αβ(d) ≤ d,
and thus ‖2c′′‖2∞ ≤ dn6 ln(n)q ≤ q2, and the result follows. We compute the
smallest such D by numerical means to be approximately 25830, and it follows
that for any d ≥ 25830 the bound holds. ��
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Next, for each set of parameters, we calculate a bit security level, based on
the distinguishing attack against LWE described in Appendix A. Notice that we
do not rely on the worst-case hardness to determine the bit security level of the
scheme. This is because it is unknown how tight the worst- to average-case reduc-
tion is. We rather analyze the efficiency of the distinguishing attack against the
average-case problem underlying pNE. We acknowledge that this approach does
not imply that those worst-case lattice problems are hard. However, it provides
a plausible estimate for the practical hardness of the average-case problem.

The running time tε of the distinguishing attack in (1) depends on the desired
advantage ε. Since an adversary can choose ε within a reasonable range, we define
the total time of an attack as

T = min{tε/ε | ε ∈ (2−80, 1)},
which we approximate numerically.

From the total time of an attack, we then compute a bit security level b,
following the methodology of Howgrave-Graham [19]. Note that the attack time
described in Appendix A was estimated by Lindner and Peikert on a 2.3 GHz
PC [23]. Assuming that a single block-cipher encryption takes 500 clock cycles,
it would take 2b · 500

2.3×109 seconds to attack a b-bit block-cipher using brute-force.
From this, we obtain that the bit security of a cryptosystem, that can be attacked
in no less than T seconds, is given by

b = log(T ) + log
(
2.3× 109

)− log(500).

Table 1 shows the bit security level for each set of parameters, as well as the
distinguishing advantage and corresponding Hermite factor that minimizes the
total attack time.

4 Instantiation and Performance of pNE

In this section we first briefly describe our implementation of pNE, then we
present experimental data on its performance, and finally we compare pNE with
both NTRUEncrypt and LPR-LWE.

We implemented pNE in C++ using the Number Theory Library (NTL, [34])
for arithmetic in Rq together with the GNU Multiple Precision Arithmetic Li-
brary (GMP, [16]) for large integer arithmetic. NTL uses the fast Fourier trans-
form (FFT) for multiplication in the ring Rq. All experiments were performed on
a Sun XFire 4440 server with 16 Quad-Core AMD Opteron(tm) Processor 8356
CPUs running at 2.3GHz, having 64GB of memory and running 64bit Debian
7.1. For our experiments we only used one of the 16 cores. We compiled our
implementations using GCC v4.7.2-5, NTL v5.5.2-2, and GMP v2:5.0.5+dfsg-2.

In key generation of pNE we must check that f and g are invertible in Rq.
This is done by choosing f ,g uniformly at random from Rq and using the native
GCD implementation of NTL to test their invertibility. Lemma 10 in [35] proves
that the “resample rate” is less or equal to n/q. Our experiments confirm that
the resample rate is very small (< 1/1000) for our choice of parameters.
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Besides Rq arithmetic, the main challenge for implementing pNE is instanti-
ating the Gaussian sampler used in key generation and encryption. We imple-
mented the methods listed in Section 2.2 or adapted provided source code, where
available, and tested the implementations in terms of memory size and speed.
We also considered two variants of rejection sampling, namely computing ρσ on
demand and precomputing all possible values of ρσ. First, we tested the methods
for the rather small value r =

√
2n/π of the Gaussian parameter used in the

ring-LWE noise distribution χ = DZn,r in pNE’s Encrypt function. From Table 2,
which shows timings and storage requirements for this setting, the Knuth-Yao
algorithm appears to be the most efficient algorithm regarding speed. Second,
for the much larger value σ ≈ 28n4 ln2(n) in pNE’s KeyGen algorithm, the only
method suitable is rejection sampling with ρσ computed on demand due to its
minimalist storage requirement.

Table 2. Experimental comparison of discrete Gaussian sampling techniques for pa-
rameter σ =

√
2n/π. For each dimension n and each method, the table shows running

time in milliseconds and storage in kilobytes. For all n, we used the same Ziggurat with
8192 rectangles in regard to experiments in [7], and for Knuth-Yao we used a precision
of 128 bits.

Parameters Rej. on-demand Rej precomp. Inv. CDF Knuth-Yao Ziggurat

n σ time storage time storage time storage time storage time storage

1024 25.53 149 0 2.60 4.09 1.07 4.09 0.56 16.47 1.92 262.21
2048 36.11 437 0 6.86 6.36 1.98 6.36 1.03 50.97 2.42 262.21
4096 51.06 1200 0 19.66 9.80 4.04 9.80 2.04 78.69 7.03 262.21

In the remainder of this section we present experimental data on the perfor-
mance of pNE and compare it to NTRUEncrypt and LPR-LWE’s. Table 3 shows
timings and sizes for our implementation of pNE.

Table 3. Experimental performance of pNE. For a given set of parameters, column
seven shows public key, secret key and ciphertext size in kilobytes, and column eight
shows the ciphertext to plaintext ratio. Columns nine to eleven show the running times
for KeyGen, Encrypt, and Decrypt in milliseconds, respectively.

Parameters Sizes [kB] Running times [ms]

n log q log σ r bit sec err rate pk = sk = ct ct/pt KeyGen Encrypt Decrypt

1024 71.90 49.89 25.53 38 O(2−n) 9.22 72 763 5.60 4.12
2048 77.28 53.63 36.11 144 O(2−n) 19.97 78 1731 12.09 9.51
4096 83.30 57.70 51.06 338 O(2−n) 43.01 84 3820 26.70 21.37
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For comparison, we collected recent figures about NTRUEncrypt in the liter-
ature, and we present them in Table 4 (see also Figure 1 for a comparison with
pNE and LPR-LWE).

Table 4. Security and performance of NTRUEncrypt with q = 2048 and p = 3 on
a 2GHz CPU. Security estimates were taken from [18] and efficiency measures were
provided in private communication by William Whyte of Security Innovation Inc.

Sizes [kB] Running times [ms]

n bit sec pk sk pt ct/pt Encrypt Decrypt

401 112 0.55 0.20 0.10 11 0.09 0.19
439 128 0.60 0.22 0.11 11 0.10 0.20
743 256 1.02 0.37 0.19 11 0.20 0.40

Fig. 1. Encryption running time and public key size against bit security for pNE,
NTRUEncrypt and LPR-LWE (parameters as in Tables 3, 4 and 6)

Our pNE implementation is more than 100 times slower and requires 24 times
larger keys than an implementation of NTRUEncrypt by Security Innovation Inc.
We consider this gap too large to be overcome through optimization of pNE’s
implementation.

We then move on to compare pNE to the ring-LWE based scheme of Lyuba-
shevsky, Peikert, and Regev [25] (LPR-LWE), which appears to be the most
efficient provably secure lattice-based PKE scheme [15]. In order to obtain com-
parable data, we adapted the implementation by Göttert et al. [15] so as to make
it as close as possible to our implementation of pNE. In particular, we use the
same Gaussian sampler and the same library for polynomial arithmetic. Table 5
summarizes the results.

Comparing our implementations of pNE with that of LPR-LWE, we conclude
that LPR-LWE is significantly more efficient. Take for example pNE with n =
2048 which offers 144 bit security and LPR-LWE with n = 256 which offers
151 bit security. The public key of pNE is 26 times larger and the secret key 52
times larger. Moreover, key generation of pNE is over 1000 times slower than
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Table 5. Experimental performance of LPR-LWE with parameters as proposed by
Lindner and Peikert [23]

Parameters Sizes [kB] Running times [ms]

n q s bit sec error rate pk = ct sk ct/pt KeyGen Encrypt Decrypt

192 4093 8.87 100 1% 0.58 0.29 12 0.79 1.25 0.49
256 4093 8.35 151 1% 0.77 0.38 12 0.98 1.52 0.59
320 4093 8.00 199 1% 0.96 0.48 12 1.40 2.25 0.92

that of LPR-LWE, encryption is over 7 times slower and decryption over 15
times slower.

There are two caveats to this apparently disproportionate difference between
pNE and LPR-LWE. First, the error rate of LPR-LWE is very high, at around
1%, while the error rate of pNE is negligible. A 1% error rate could be problem-
atic in a realistic deployment. Second, the Gaussian parameter s in LPR-LWE is
small.5 The worst- to average-case reduction requires s ≥ 2

√
n. Moreover, values

of s below
√
n lead to subexponential attacks [2] (see also [10] for other attacks

for bounded distribution).6

In order to provide a more fair comparison between pNE and LPR-LWE,
we computed parameters that guarantee negligible error rate and the worst-
to average-case reduction to hold. We follow a methodology adapted from [23]
to setup the parameters. We fix n, set s = 2

√
n and δ = 2−n. Then we find

c > 1 such that c · exp ((1− c2)/2
)
= 1/2. We then choose the smallest prime q

greater than 4cs2
√
n ln(2/δ)/(

√
2 · π). These choices guarantee negligible error

rate. Finally, we calculate security based on the distinguishing attack as we did
for the pNE scheme.

Table 6. Experimental performance of LPR-LWE with conservative parameters that
guarantee negligible error rate and the worst- to average-case reduction to hold

Parameters Sizes [kB] Running times [ms]

n q s bit sec error rate pk = ct sk ct/pt KeyGen Encrypt Decrypt

256 378353 32.00 92 O(2−n) 1.22 0.61 19 1.02 1.56 0.59
320 590921 35.77 126 O(2−n) 1.60 0.80 20 1.46 2.36 0.92
512 1511821 45.25 223 O(2−n) 2.69 1.34 21 2.09 3.29 1.16

Table 6 summarizes the results. It shows parameters that provide low, medium,
and high levels of security, as well as experimental data on storage requirements
and running times. Although these results show a narrower gap between pNE

5 In order to be consistent with the notation in [23], here s is the Gaussian parameter
for ρs(x) = exp

(−π ‖x‖2 /s2) (see Section 2.2).
6 This is true despite recent results showing the LWE problem hard for small param-
eters [26], because LPR-LWE does not meet the requirements of the new results [8].
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and LPR-LWE, a significant difference in favor of LPR-LWE persists. This dif-
ference can also be seen in Figure 1, which depicts encryption running time and
public key size against bit security for pNE, LPR-LWE and NTRUEncrypt.

On a recent paper, Bos et al. [4] analyze the efficiency of a leveled homomor-
phic encryption scheme based on pNE, call it H-pNE. It is difficult to derive
a conclusion about pNE’s efficiency from the single measurement of their re-
lated scheme. However, their results seem to indicate that H-pNE’s efficiency is
competitive to that of other provably secure ring-LWE homomorphic encryption
schemes. We claim that this does not contradict our findings. They report that
their H-pNE implementation is about ten times faster than an implementation
of a scheme by Brakerski and Vaikuntanathan [6], which is closely related to
LPR-LWE. They justify the performance increase partially on better hardware
and an optimized implementation. But there are two more factors they do not
mention. First, in order to allow homomorphic operations, one must choose a
large modulus q to allow additional noise growth. This is true for a homomorphic
version of pNE as well as for a homomorphic version of other schemes. Thus,
they are comparing schemes with equally high modulus q, while in our analysis
we compare to an instance of LPR-LWE with a much smaller q. This means
that, while a homomorphic variant of pNE might be comparatively efficient,
pNE is less efficient as a stand-alone encryption scheme. The second factor is
that the parameter choices they highlight allow for a single multiplicative level
of H-pNE, against four levels for the scheme by Brakerski and Vaikuntanathan.
This asymmetry is not discussed in the paper by Bos et al.

5 Efficiency Analysis of pNE

We have seen in Section 4 that pNE is less efficient than LPR-LWE or NTRU-
Encrypt. In this section we analyze why this is the case.

The size of pNE’s public key, secret key and ciphertext is given by n �log q�
bits, which is the space required to store one element of Rq. The ciphertext to
plaintext ratio is given by �log q� because a plaintext is encoded into an element
of Rp = R2 which stores up to n bits and it is encrypted into an element of Rq

of size n �log q�.
In order to better understand the running time of pNE we run experiments

for log(n) = 4, . . . , 16. The results presented in Figure 2 seem to indicate that
the running time of the KeyGen, Encrypt and Decrypt algorithms is proportional
to n log(n) log(q). Actually, we found a strong correlation between their running
time and n log(n) log(q) in our experiments (Pearson product moment correlation
coefficient r > 0.999). This confirms that polynomial multiplication and division
can be performed in O(n log n) scalar operations using FFT.

Table 7 shows a breakdown of the running time of key generation, encryption
and decryption into their most time-consuming subroutines. The table shows
that close to 90% of key generation is spent sampling f and g according to a
discrete Gaussian distribution, while computing h takes around 10% of the time.
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Fig. 2. Running time in milliseconds of pNE’s KeyGen, Encrypt and Decrypt versus
n log(n) log(q), for log(n) = 4, . . . , 16, respectively

For encryption the tendency is reversed, with little under 20% of the total time
spent on sampling Gaussian elements, while computing the ciphertext c takes
a little bit over 80% of the time. This is in part thanks to the efficiency of the
Knuth-Yao sampler, which is not possible to be used in key generation. In the
case of decryption, the operations in Rq take more than 90% of the time, while
the reduction mod p only takes around 5%.

Table 7. Running time breakdown of pNE

Key Generation Encryption Decryption

n sampling arithmetic sampling arithmetic arithmetic mod p reduction

1024 90.10% 9.90% 18.71% 81.29% 93.83% 6.17%
2048 89.71% 10.29% 16.16% 83.84% 93.65% 6.35%
4096 89.30% 10.70% 14.63% 85.37% 95.39% 4.61%

Although efficiency improvements are certainly possible, the gap between pNE
and the other two schemes is too large to be surmounted by optimization alone.
In order to understand why this gap is so large we take a closer look at the
schemes. The only differences between pNE and NTRUEncrypt are:

i) Operations are performed modulo xn + 1 instead of xn − 1.
ii) The integer modulus q is chosen to be a prime instead of a power of 2.
iii) The secret key polynomials f and g are sampled from a discrete Gaussian

distribution with parameter σ = 2n
√
ln(8nq)q instead of being sampled

uniformly at random from a set of small norm polynomials.
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iv) The ciphertext is c = he + pe′ + m with e, e′ sampled from a discrete
Gaussian distribution with parameter r =

√
2n/π, instead of c = hφ +m

with φ sampled uniformly at random from a set of small norm polynomials.

Differences i), ii), and iv) cannot be decisive because they are features of LPR-
LWE as well, and the latter is much more efficient than pNE. We argue that the
main source of inefficiency lays on difference iii). More precisely, efficiency of pNE
is hampered in several ways by the large value of σ required to make the public
key statistically close to uniform. As shown in the proof of Lemma 3, a large σ
induces a large modulus q to allow correct decryption. A large q directly impacts
the running times of KeyGen, Encrypt and Decrypt, as they are all proportional
to n log(n) log(q), as well as it impacts the key sizes, which are proportional to
n log(q).

But large q has an even more decisive negative effect on practical security.
From the equations in Appendix A, one can conclude that the running time t of
the distinguishing attack depends on q as log(t) = O(1/ log(q)). Thus, a large
q makes the scheme less secure, forcing a large dimension n to obtain a given
security level. A large n has an even more dramatic effect on the efficiency of the
cryptosystem. Table 8 illustrates the effect of the parameter σ on the efficiency
of pNE.

Table 8. Efficiency and security measures of pNE for different values of the parameter
σ. Bit security is calculated based on the distinguishing attack and does not take into
consideration attacks that may exploit the departure from the security proof.

Parameters Sizes [kB] Running times [ms]

n log(σ) log(q) bit sec pk = sk = ct ct/pt KeyGen Encrypt Decrypt

512 49 69.22 -22 4.48 70 336 2.58 2.00
512 29 49.71 10 3.20 50 320 2.20 1.59
512 9 29.37 103 1.92 30 305 1.79 1.21

1024 49 71.90 38 9.22 72 759 5.63 4.13
1024 29 51.99 98 6.66 52 737 4.88 3.43
1024 9 31.24 265 4.10 32 689 3.73 2.42

The negative effect that a “wide” Gaussian has on the security of pNE seems
counterintuitive as one would expect that a larger key space improves security.
Yet, it is the main force dragging pNE’s efficiency. It is unclear to us at the
moment whether this can be improved while preserving pNE’s strong security
guarantee —its worst- to average-case reduction.
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A Distinguishing Attack

For the sake of simplicity we will consider the distinguishing attack only against
LWE, and not against ring-LWE. In LWE, the samples are constructed as (A, b)
with b = A�s + e, where A ← Z

n×m
q and s ← Z

n
q are chosen uniformly at

random. The ring-LWE problem can be seen as a variant of LWE in which the
matrix A has a special structure, where the structure depends on the first part
of the ring-LWE samples a and the underlying ring Rq. We assume that the
distinguishing attack does not take advantage of this special structure.

The bottleneck of the distinguishing attack is the computation of a short
vector in the lattice

Λ⊥
q (A) := {y ∈ Z

m | Ay ≡ 0 mod q}.

If the distribution χ is a discrete Gaussian, then the advantage of the distinguish-
ing attack is close to ε = exp(−2(πcr/q)2), where c is the length of the shortest
vector the adversary is able to find, and r is the parameter of the discrete Gaus-
sian distribution [23]. The shortest vectors are of length δmqn/m, where δ is the
so called Hermite factor. This length is minimized for m =

√
n log(q)/ log(δ);

thus, the shortest vectors we can expect to produce are of length 22
√

n log(q) log(δ).
The running time of state-of-the-art lattice reduction algorithms (e.g. BKZ)

is determined by the Hermite factor δ. In order to obtain an advantage greater
or equal to ε we need to be able to compute vectors of length less or equal to

cε =
q

πr

√
ln(1/ε)

2
,

for which we require a Hermite factor not greater than

δε = 2
log2(cε)
4n log q .

Lindner and Peikert [23] heuristically estimate that the running time of the
distinguishing attack using BKZ is

log(tε) = 1.8/ log(δε)− 110 .
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