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Abstract. Historically, multivariate public key cryptography has been
less than successful at offering encryption schemes which are both se-
cure and efficient. At PQCRYPTO ’13 in Limoges, Tao, Diene, Tang,
and Ding introduced a promising new multivariate encryption algorithm
based on a fundamentally new idea: hiding the structure of a large matrix
algebra over a finite field. We present an attack based on subspace differ-
ential invariants inherent to this methodology. The attack is a structural
key recovery attack which is asymptotically optimal among all known
attacks (including algebraic attacks) on the original scheme and its gen-
eralizations.
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1 Introduction

In the mid 1990s, Peter Shor developed efficient algorithms for factoring and
computing discrete logarithms with quantum computers [1]. Since that time,
the state-of-the-art of quantum computing has changed significantly, indicating
that large scale quantum computing may become an eventual reality. In the
years since Shor’s discovery, there has emerged a rapidly growing community
dedicated to the task of constructing algorithms resistant to cryptanalysis with
quantum computers.

Multivariate Public Key Cryptography(MPKC) is one among a few serious
candidates to have risen to prominence as post-quantum options. The appeal of
MPKC is due to several factors. The fundamental problem of solving a system
of quadratic equations is known to be NP-hard, and so in the worst case, solving
a system of generic quadratic equations is unfeasible for a classical computer;
neither is there any indication that the task is easier in the quantum computing
paradigm. Furthermore, experience indicates that this problem is hard even in
the average case; thus multivariate cryptosystems at least have a chance of being
difficult to break. Secondly, multivariate cryptosystems are often very efficient,
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see [2–4]. Finally, such cryptosystems can be very amenable to the user demands,
with multiple parameters hidden within the system which can be altered by the
user to achieve different performance goals.

Though MPKC has a turbulent history with many schemes failing against
only a few attack techniques, there are still some entirely usable and trust-
worthy quantum-resistant multivariate signature schemes. Specifically, UOV [5],
HFE- [6], and HFEv- [7] are noteworthy in this regard. Moreover, some of these
schemes have optimizations which have strong theoretical support or have stood
unbroken in the literature for some time. Specifically, UOV has a cyclic variant
[8] which reduces the key size dramatically, and QUARTZ, an HFEv- scheme,
has had its parameters tweaked [9] due to greater confidence in the complexity
of algebraically solving the underlying system of equations [10].

Where MPKC has failed more directly has been encryption. There is a striking
lack of reliable multivariate encryption schemes in the literature. Many attempts,
see [11, 12] for example, have been shown to be weak based on rank or differential
weaknesses. The most recent and promising attempt, by Tao et al., see [13],
uses a fundamentally new structure for the derivation of an encryption system.
Specifically, the scheme masks matrix multiplication to generate a system of
structured quadratic equations.

In this article, we present a structural attack which is the asymptotically op-
timal attack on this matrix encryption scheme, having a complexity on the order
of qs+4, where s is the dimension of the matrices in the scheme. This technique
uses a differential invariant property of the core map to perform a key recovery
attack. We reevaluate some of the security analysis from the original ABC specifi-
cation and conclude that this attack is asymptotically optimal among structural
attacks. In fact, the attack uses a property which uniquely distinguishes the
isomorphism class of the core map from that of a random collection of formu-
lae. This attack asymptotically defeats algebraic attacks as well, though falling
short of the benchmark established by generic algebraic attacks for the original
parameters. This result supports the security claims of the designers (modulo
decryption failure).

The paper is organized as follows. In the next section, we present the struc-
ture of the original ABC encryption scheme. The following section reviews some
of the previous cryptanalyses of the scheme, and clarifies some of the previous
attacks. In the subsequent section, we recall differential invariants. The differ-
ential invariant structure of the ABC scheme is then presented and the effect of
this structure on minrank calculations is derived. In the following section, the
complexity of the full attack is calculated and compared to the complexity of
other valid structural attacks. Finally, we review these results and discuss the
implications for the practical security of the ABC scheme.

2 The ABC Matrix Encryption Scheme

In [13], Tao et al. introduce the ABC Matrix encryption scheme. For the simplic-
ity of the exposition, we will analyze the original scheme noting that all results
carry over exactly as stated to the updated version, see [14].
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The scheme depends on an initial parameter s ∈ N. The public key consists
of n = s2, variables taking values in a fixed finite field k = Fq, and m =
2s2 equations. The system utilizes the butterfly construction, creating a private
collection of formulaeQ, and deriving a public key P by composing two invertible
linear transformations U ∈ GLn(k) and T ∈ GLm(k), so that P = T ◦ Q ◦ U .
What makes the system unique is the derivation of the map Q. For ease of
analysis later, we will denote plaintext by x̄ = (x1, . . . , xn) ∈ kn, ciphertext by
ȳ = (y1, . . . , ym) ∈ km, and the input and output of Q by ū = (u1, . . . , un) =
U(x1, . . . , xn) ∈ kn and v̄ = (v1, . . . , vm) = T−1(y1, . . . , ym) ∈ km, respectively.
The construction begins by defining three s×smatrices A, B, and C. Specifically,
we have:

A =

⎡
⎢⎢⎢⎣

u1 u2 · · · us

us+1 us+2 · · · u2s

...
...

. . .
...

us2−s+1 us2−s+2 · · · us2

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

b1 b2 · · · bs
bs+1 bs+2 · · · b2s
...

...
. . .

...
bs2−s+1 bs2−s+2 · · · bs2

⎤
⎥⎥⎥⎦ ,

and

C =

⎡
⎢⎢⎢⎣

c1 c2 · · · cs
cs+1 cs+2 · · · c2s
...

...
. . .

...
cs2−s+1 cs2−s+2 · · · cs2

⎤
⎥⎥⎥⎦ .

Here the bi and ci are linear combinations of the ui chosen independently and
uniformly at random from the collection of all possible k-linear combinations of
the ui.

Next, the s× s matrices E1 = AB and E2 = AC are constructed. Since all of
A, B, and C are linear in ui, E1 and E2 are quadratic in the ui. Finally, setting
Q(l−1)s2+(i−1)s+j to be the (i, j)th element of El, we have the private key T,Q,U
and the public key P = T ◦Q ◦ U .

Encryption with this system is standard: given a plaintext (x1, . . . , xn), com-
pute (y1, . . . , ym) = P (x1, . . . , xn). Decryption is somewhat more complicated.

To decrypt, one inverts each of the private maps in turn: apply T−1, invert
Q, and apply U−1. To “invert” Q, one assumes that A is invertible, and forms
a matrix

A−1 =

⎡
⎢⎢⎢⎣

w1 w2 · · · ws

ws+1 ws+2 · · · w2s

...
...

. . .
...

ws2−s+1 ws2−s+2 · · · ws2

⎤
⎥⎥⎥⎦ ,

where the wi are indeterminants. Then using the relations A−1E1 = B and
A−1E2 = C, we have m = 2s2 linear equations in 2n = 2s2 unknowns wi and ui.
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(We note here that it would be more correct to say A−1(ū)E1(ū) = B(ū) and
A−1(ū)E2(ū) = C(ū), since the values of these matrices depend on ū.) Using,
for example, Gaussian elimination one can eliminate all of the variables wi and
most of the ui. The resulting relations can be substituted back into E1(ū) and
E2(ū) to obtain a large system of equations in very few variables which can be
solved efficiently in a variety of ways.

In [14], the scheme is revised, replacing the square matrices A, B, and C
with matrices of dimension s × r, r × u, and r × v, respectively, where r < s.
In addition, the matrix A consists of random linear forms just as B and C in
the improved scheme. The public key is constructed in the exact same way, and
encryption is performed by evaluating the public polynomials at the plaintext.
Decryption is analogous to the original scheme, except now, since A is s × r,
only a left inverse of A on kr is needed, so the matrix W , a left inverse, is r × s
such that WA = Ir , the r × r identity matrix. Such a W plays the role of A−1

in the decryption, and decryption proceeds as above.

3 Security Claims, Revisions, and Corrections

3.1 Decryption Failure

In [13], it was claimed in error that the probability of decryption failure in
the ABC scheme is very small, depending specifically on the probability that
dim(ker(A)) ≤ 2. This mistake was corrected in [14], revealing that the proba-
bility is approximately q−1, where |k| = q. Also in [14], the scheme was general-
ized so that decryption can be accomplished as long as A (reparametrized as an
s × r matrix) merely has a left inverse as a function on kr, which occurs with
high probability, roughly 1− qr−s−1 when s > r.

3.2 HOLEs Attack

In [13], HOLEs attack analysis against the scheme was presented. Consider the
equation

BE−1
1 E2 = C. (1)

For B,C,E1, E2 ∈ Ms(k), we can consider the characteristic polynomial f(x) =
xs + as−1x

s−1 + · · · + a1x + a0 of E1, and then we have that E1(−Es−1
1 −

as−1E
s−2
1 + · · · − a1I) = det(E1)I by the Cayley-Hamilton theorem. In fact, the

set of all polynomials evaluating to this scalar matrix at E1 is a0 + 〈mink(E1)〉,
where mink(E1) is the minimal polynomial of E1. Let xg(x) ∈ a0 + 〈mink(E1)〉
be a polynomial of smallest degree with constant coefficient zero. Since det(E1)I
is a scalar matrix, it is in the center of GLs(k), and so multiplying equation (1)
on the left by −E1g(E1) = det(E1)I, we obtain

Bg(E1)E2 = det(E1)C. (2)

In this equation, g clearly depends onE1, which for the purposes of the HOLEs
attack is a function of ȳ. Thus to create a similar relation for plaintext/ciphertext
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pairs requires us to consider B(x̄), C(x̄) ∈ Ms(k[x1, . . . , xn]) & E1(ȳ), E2(ȳ) ∈
Ms(k[y1, . . . , ym]), where k[·, . . . , ·] is a polynomial ring in the indeterminants
x1, . . . , xn and y1, . . . , ym, respectively. Then by the invertibility of T we have
that the minimal polynomial of E1(ȳ) is equal to the characteristic polynomial.
Thus there is a polynomial g(z) ∈ k(y1 . . . , ym)[z] of degree s − 1 (specifically
(−mink(y1,...,ym)(E1(ȳ))+det(E1(ȳ)))/z) such that zg(z) = det(E1(ȳ)). Clearly,
if E1(ȳ) is singular then equation (1) is invalid; however, equation (2) still holds
since

Bg(E1)E2 = Bg(AB)AC = BAg(BA)C = 0,

with the last equality due to the fact that the characteristic polynomials of AB
and BA are identical. We may then obtain the relation (2). Notice that if U and
T are linear as in the original description of the scheme then this equation is
homogeneous of degree s+ 1, specifically:

n∑
i=1

m∑
j1,...,js=1

αi,j1,...,jsxiyj1 · · · yjs = 0. (3)

Even in this more manageable situation, the complexity of finding a nontrivial

solution is immense. First, the adversary must generate O(n
(
m
s

)
) = O(s2

(
2s2

s

)
)

plaintext/ciphertext pairs, and then solve a system of roughly s2
(
2s2

s

)
equations

in s2
(
2s2

s

)
variables. The complexity of this operation is roughly (s2

(
2s2

s

)
)ω where

ω = 2.3766 operations. In the more realistic scenario of having a nonhomoge-
neous system, the analysis in [13] indicates that the complexity of the HOLEs

attack is O((s2
(
2ss+s

s

)
+ 2s2 + 1)ω).

Remark 1. It is important to note that the HOLEs attack fails in the general-
ization [14] because the matrices are no longer square.

3.3 Rank Attacks

Rank attacks use linear maps associated with the public key to detect abnormal
behavior. In the context of the ABC scheme, we may look at the associated
quadratic forms of the public and private keys, or more or less equivalently, at
the differentials of these maps. The MinRank attack searches for maps of low
rank when viewed as matrices. We will discuss the MinRank attack in greater
detail as well as a variant of the high rank attack not considered in [13] in
Sections 5 and 6. The dual rank attack searches for a small subspace of the
plaintext space which is in the kernel of a large subspace of the span of the
maps.

In [13], it was stated that the task of finding a subspace of dimension n− 2s
of the associated quadratic forms which share a common nonzero element in
their kernels is of complexity O(n6q2s). This claim is overcautious. Given an
element Q0 in the first row of either E1(ū) or E2(ū), the formula is derived
from the product of the first row of A(ū) and some column of B(ū) or C(ū)
respectively. Since these columns are independent of one another and follow the
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uniform distribution on the set of all column vectors (the joint distribution is
inherited from the i.i.d. entries of B and C), Q0 has rank 2s with near certainty.
Since Q0 has a matrix representation in the block form:

Q0 =

⎡
⎢⎢⎢⎣

R1 R2 · · · Rs

Rs+1

... 0
R2s−1

⎤
⎥⎥⎥⎦ ,

where each Ri is an s × s matrix, any element z̄ in the kernel of Q0 has an

s-dimensional leading block of zeros with probability
∏s−1

j=0
qs

2−qj

qs2
which is ex-

tremely close to one. The first s rows of Q0 put a further s constraints on z̄.
Given that the condition of being in the kernel of s such maps of the same
structure results in an expected solution space of dimension 0, it is clear that
there is no nontrivial element in the kernel of any large subspace of the span of
the associated matrices. Thus the dual rank attack is nonexistent for the ABC
scheme.

3.4 Algebraic Attacks

Based on an analysis of the degree of regularity for the ABC scheme the designers
computed a degree of regularity dreg = 9, and given the formula from [15] they
estimated the complexity of the algebraic attack to be approximately

(
n+ dreg
dreg

)2.3766

=

(
73

9

)2.3766

≈ 286.

4 Subspace Differential Invariants

Let f : kn → km be an arbitrary fixed function on kn. Consider the differential
Df(a, x) = f(a + x) − f(a) − f(x) + f(0). We can express the differential as
an n-tuple of differential coordinate forms in the following way: [Df(a, x)]i =
aTDfix, where Dfi is a symmetric matrix representation of the action on the
ith coordinate of the bilinear differential.

In [16], the following definition of a differential invariant was provided:

Definition 1. A differential invariant of a map f : kn → km is a subspace
V ⊆ kn with the property that there exists a W ⊆ kn of dimension at most
dim(V ) for which simultaneously AV ⊆ W for all A ∈ Spani(Dfi).

The motivation for the definition is to capture the behaviour of a nonlinear
function which acts linearly on a subspace.

We note that any simultaneous invariant of all Spani(Dfi) satisfies the above
definition, as well as invariants in the balanced oil and vinegar primitive, which
are found in the product of an element and the inverse of another element in
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Spani(Dfi). A differential invariant is thus a more general construct than a
simultaneous invariant among all differential coordinate forms.

A natural generalization of the notion of a differential invariant is a subspace
differential invariant.

Definition 2. A subspace differential invariant of a map f : kn → km with
respect to a subspace X ⊆ km is a subspace V ⊆ kn with the property that there
exists a W ⊆ kn of dimension at most dim(V ) such that simultaneously AV ⊆ W
for all A =

∑m
i=1 xiDfi where (x1, . . . , xm) ∈ X, i.e. A ∈ SpanX(Dfi).

While the motivation for the differential invariant is to detect the linear action of
a function on a subspace, the motivation for the subspace differential invariant
is to detect the linear action of a subspace of the span of the public polynomials
on a subspace of the plaintext space.

5 The Differential Invariant Structure of the ABC
scheme

5.1 Prototypical Band-Spaces

Each component of the central Q(ū) = E1(ū)||E2(ū) map may be written as:

Q(i−1)s+j =

s∑
l=1

u(i−1)s+lb(l−1)s+j , (4)

for the E1 equations, and likewise, for the E2 equations:

Qs2+(i−1)s+j =

s∑
l=1

u(i−1)s+lc(l−1)s+j (5)

where i and j run from 1 to s.
Note that these 2s2 component equations may be grouped into s sets, indexed

by i, of 2s equations. In particular note that the only quadratic monomials
contained in Q(i−1)s+j and Qs2+(i−1)s+j are those involving at least one factor
of the variables u(i−1)s+1, . . . , u(i−1)s+s. Moreover, since the coefficients of the
linear polynomials br(u) and cr(u) are uniformly random and independent, the
nonzero coefficents are uniformly random and independent within each set of 2s
equations.

Definition 3. The ith band-space of maps Bi is the 2s-dimensional space of
quadratic forms given by

Bi = Span{Q(i−1)s+1, Q(i−1)s+2, . . . , Qis, Qs2+(i−1)s+1, Qs2+(i−1)s+2, . . . , Qs2+is}.

In particular, the ith band-space is the span of the maps in the private key derived
from the product of the ith row of A with the columns of B and C.
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Any map Q0 in the ith band-space has a differential in block form:

DQ0 =

⎡
⎢⎢⎢⎢⎣

0 R1 0
RT

1 R2 R3

0 RT
3 0

⎤
⎥⎥⎥⎥⎦

(6)

having a band of nonzero values restricted to the ith s-dimensional block column
and ith S-dimensional block row, hence the name. Notice that any vector ū of
the form:

(u1, . . . , u(i−1)s, 0, . . . , 0, uis+1, . . . , us2)
T

is mapped to a vector v̄ of the form:

(0, . . . , 0, v(i−1)s+1, . . . , vis−1, 0, . . . , 0)
T

by the differential of any map in Bi. Therefore, the space of all such ū is a
subspace differential invariant of Q with respect to Bi.

5.2 Generalized Band-Spaces

A critical observation is that the band-spaces associated with the rows of A are
not the only band-spaces corresponding to a subspace differential invariant.

Definition 4. Fix an arbitrary vector v in the rowspace of A, i.e. v =
∑s

d=1

λdAd where Ad is the dth row of A. The 2s-dimensional space of quadratic forms
Bv given by the span of the columns of vB and vC is called the generalized band-
space generated by v.

Theorem 1. There is a subspace V ⊆ kn which is a subspace differential invari-
ant with respect to Bv for all v in the rowspace of A. Moreover, rank(DQ) ≤ 2s
for all Q ∈ Bv.

Proof. We prove the result for v = λ1A1+λ2A2, an arbitrary linear combination
of the first two rows of A. The general result follows from an analogous argument.

Any quadratic form in Bv is a linear combination of the columns of vB and
vC, Q0 =

∑s
l=1 γlvBl +

∑s
l=1 δlvCl. This quantity can be rewritten as Q0 =

v(
∑s

l=1 γlBl +
∑s

l=1 δlCl). Since each of the entries of B and C are independent
and random linear combinations in the coefficients of ū, each entry of the linear
combination of the column vectors is itself a fixed but arbitrary such linear

combination. Expressing the ith entry in this column vector as
∑s2

j=1 ζi,juj ,
and using the fact that v = [λ1u1 + λ2us+1, λ1u2 + λ2us+2, . . . , λ1us + λ2u2s]
we obtain:
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Q0 = v(

s∑
l=1

γlBl +

s∑
l=1

δlCl)

=

s∑
i=1

(λ1ui + λ2us+i)

s2∑
j=1

ζi,juj

=

s∑
i=1

s2∑
j=1

(λ1ζi,juiuj + λ2ζi,jus+iuj).

(7)

Let M be the s2× s2 matrix obtained from this sum by setting the (i, j)th entry
equal to the coefficient of uiuj, the (s + i, j)th entry equal to the coefficient of
us+iuj , and all other entries zero:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1ζ1,1 λ1ζ1,2 . . . λ1ζ1,s2
...

...
. . .

...
λ1ζs,1 λ1ζs,2 . . . λ1ζs,s2
λ2ζ1,1 λ2ζ1,2 . . . λ2ζ1,s2

...
...

. . .
...

λ2ζs,1 λ2ζs,2 . . . λ2ζs,s2
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Notice that the differential of Q0 is exactly the sum of M and MT : DQ0 =
M + MT . Since M has rank at most s, MT has rank at most s. Thus by the
subadditivity of rank, the rank of DQ0 is at most 2s. By the randomness of the
coefficients of B and C the rank of DQ0 is 2s with overwhelming probability
(roughly qs−s2−1).

Consider performing column operations on MT . In particular, consider op-
erations such as subtracting λ2λ

−1
1 times column 1 from column s + 1. It is

clear that these operations can be used to eliminate the entries in columns s+1
through 2s of MT . Let R be the matrix representing these column operations.
Then MTR only has nonzero entries in the first s columns. Similarly, RTM only
has nonzero entries in the first s rows.

Finally, consider the action RTDQ0R. By distributivity we have RTDQ0R =
RTMR + RTMTR, and by associativity, we have (RTM)R + RT (MTR). In
the first summand column operations are performed on a matrix with nonzero
entries in only the first s rows, resulting in a matrix with entries in only the top
s rows. The second summand is the transpose of the first. Therefore, we see that
RTDQ0R has the form:
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RTDQ0R =

⎡
⎢⎢⎣
D1 D2

DT
2 0

⎤
⎥⎥⎦ ,

where D1 is s × s and D2 is s × s2 − s. Thus RTDQ0R maps the subspace
V ′ consisting of column vectors with the first s entries zero to its orthogonal
complement. Consequently DQ0 maps RV ′ to an s dimensional space. Further,
notice that the row and column operations depend only on v, and not on the
fixed but arbitrary Q0 ∈ Bv. Therefore DQ maps RV ′ to an s dimensional space
for all Q ∈ Bv. Thus RV ′ is a subspace differential invariant with respect to Bv.

Remark 2. We note that a subspace differential invariant V with respect to a
generalized band-space Bv is special in that V , of dimension s2 − s, is mapped
to a subspace W of dimension s by any differential of a band-space map. Thus,
given two such subspace differential invariants, V and V ′ with respect to Bv and
Bv′ , we can find another subspace differential invariant V ∩ V ′ with respect to
Span(Bv,Bv′). In this manner we can generate subspace differential invariants
with respect to spaces containing differentials of even full rank. In particular,
if one manages to find a linear combination of the public differentials which is
of rank s2 − 2s, the kernel reveals some information about the structure of the
scheme. Given the invariant structure of the ABC scheme, this task amounts
to finding a linear combination that avoids any equation derived from a s+2

2
dimensional subspace of the rowspace of A.

This technique forms the foundation of a high rank version of a differential
invariant attack. The complexity of recovering such a map is on the order of
q3s/2, and more information is still needed to constitute a full attack; therefore,
we conclude that the ABC scheme is safe from the high rank side.

6 The Effect of Invariant Structure on the Complexity of
MinRank

The Minrank attack searches for a low rank linear combination ofm n×n bilinear
forms over k = Fq, B1, . . . , Bm. In the case of Ding’s ABC scheme, m = 2s2,
n = s2, and the Bi maps are the public differentials DPi. The attack proceeds
by randomly choosing �m

n � vectors, xk, setting

(
m∑
i=1

t̄iDPi

)
xk = 0 (8)

and solving for the t̄i. The attack succeeds when all of the xk are in the kernel
of the target map. Simple rank analysis suggests that the probability of success
per iteration is q−r�m

n � where r is the rank of the target map. In the case of the
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ABC scheme, the target maps are those within a band space, which typically
have rank 2s. Therefore, if we consider the rank of the target maps alone, we
should expect a complexity on the order of q4s. A more careful rank analysis
reveals that the kernels of the band-space maps are interlinked in the sense
given in [17]. Computing via a crawling process as described in [17], we see
that the best estimate from a rank perspective has expected complexity roughly
q2s, since there are roughly sq2s such kernels. However, the actual complexity
of this process is on the order of qs, due to the subspace differential invariant
structure, as will be demonstrated in this section. To emphasize the advantage
the differential invariant structure provides, we note that the recovery of maps
of rank r = 2s is accomplished with this attack in time roughly qr/2.

This demonstation proceeds by defining the “band kernel”, an s2 − s dimen-
sional subspace of ks

2

, corresponding to each generalized band-space, Bv. We
then show that with probability q−1, if x1 and x2 fall within band kernel j, then
they are both in the kernel of some band-space differential

DQ =
∑

Qi∈Aj

τiDQi,

where the Qi in the sum form a basis Av of the band-space generated by v, Bv.

Definition 5. Let u1 . . . us2 be the components of Ux̄ and fix an arbitrary vector
v in the rowspace of A, i.e. v =

∑s
d=1 λdAd where Ad is the dth row of A. An s2

dimensional vector, x̄ is in the band kernel generated by v iff
∑s

d=1 λduds+k = 0
for k = 1 . . . s.

Theorem 2. If x1 and x2 fall within band kernel generated by v, then they
are both in the kernel of some generalized band-space differential DQ =∑

Qi∈Bv
τiDQi with probability approximately q−1.

Proof. A DQ meeting the above condition exists iff there is a nontrivial solution
to the following system of equations

∑
Qi∈Bv

τiDQix1
T = 0

∑
Qi∈Bv

τiDQix2
T = 0

(9)

Expressed in a basis where the first s basis vectors are chosen to be outside
the band kernel, and the remaining s2 − s basis vectors are chosen from within
the band kernel, the band-space differentials take the form:

DQi =

⎡
⎢⎢⎣
Si Ri

RT
i 0

⎤
⎥⎥⎦ (10)
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where Ri is a random s × s2 − s matrix and Si is a random symmetric s × s
matrix. Likewise x1 and x2 take the form (0| xk ). Thus removing the redundant
degrees of freedom we have the system of 2s equations in 2s variables:

2s∑
i=1

τiRix1
T = 0

2s∑
i=1

τiRix2
T = 0

(11)

This has a nontrivial solution precicely when the following matrix is singular:

⎡
⎢⎢⎢⎢⎢⎢⎣

| | |
R1x1

T R2x1
T . . . R2sx1

T

| | |
| | |

R1x2
T R2x2

T . . . R2sx2
T

| | |

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)

As the Ri are random and independent, this is simply a random matrix over
k = Fq, which is singular with probability approximately q−1, for practical
parameters.

The band space differentials DQi for the private maps Qi ∈ Bv generate
a subspace of the space generated by public differentials DPi, the solutions∑

Qi∈Bv
τiDQi of equation (9) form a subspace of the solutions

∑2s2

i=1 t̄iDPi of
equation (8). The condition on x1 for membership in the band kernel of Bv for
some v is that the matrix A, formed as in equation (13) from the components
u1 . . . us2 of Ux1, is singular.

A =

⎡
⎢⎢⎢⎣

u1 u2 · · · us

us+1 us+2 · · · u2s

...
...

. . .
...

us2−s+1 us2−s+2 · · · us2

⎤
⎥⎥⎥⎦ (13)

This occurs with probability approximately q−1. Given x1 is in some band
kernel, x2 has a probability of q−s of being chosen within the same band kernel.
Given that x1 and x2 are in the same band kernel, the probability that they are
in the kernel of the same band-space map is q−1. Thus, a generalized band space
map may be found among the solutions of equation (8) with probability q−(s+2).

Equation (8) is a system of 2s2 equations in 2s2 variables, one might ex-
pect it to generally have a 0-dimensional space of solutions. There are, how-
ever, linear dependencies among the equations, due to the fact that the DQi

are symmetric matrices. In odd characteristic, the only linear dependency is
x1DQix2

T −x2DQix1
T = 0, thus we should expect a 1-dimensional space of so-

lutions. However, in even characteristic there are two more linear dependencies:
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x1DQix1
T = 0 and x2DQix2

T = 0. Thus, in even characteristic, we expect a 3-
dimensional solution space for equation (8). Finding the expected 1-dimensional
space of band-space solutions in this 3-dimensional space costs q2+q+1 rank op-
erations, which in turn cost (s2)3 field operations. Thus the total cost of finding a
band-space map using MinRank is approximately qs+4s6 for even characteristic
and qs+2s6 for odd characteristic.

We ran a series of experiments to determine the number of trials required for
randomly selected x1 and x2 to lie in the kernel of a differential of rank 2s. The
experiments were performed using toy examples of the scheme with q = 3, 5 and
s = 4, 5, 6, 7, 8. In each of these cases the data support the theoretical complexity
of O(qs+2).

7 Complexity of Invariant Attack

While the detection of a low rank map in the space generated by the public differ-
entials already constitutes a distinguisher from a random system of equations, it
still falls short of a full key extraction. However, once two low rank differentials,
DQ1 andDQ2, from the same generalized band space are found, the attacker can
use similar methods to those used to attack balanced oil and vinegar. Recall that
oil and vinegar can be broken by computing a product matrix M = M−1

1 M2 and
searching for large invariant subspaces. One complication arises, however which
is that neither DQ1 nor DQ2 will be invertible, only having rank 2s. This can be
overcome by simply restricting DQ1 and DQ2 to act on random 2s dimensional
subspace, W , of kn. As long as the restrictions DQ1(W ), DQ2(W ) are full rank
in W , then DQ1(W )−1DQ2(W ) will have an s dimensional invariant subspace,
whose generators are also generators of the band kernel associated with DQ1

and DQ2.
Note that once we’ve found DQ1 in Bv, finding DQ2 is approximately q times

less costly. Since DQ1 is known to contain in its kernel two vectors x1 and x2

from the band kernel generated by v, we simply need to find a rank 2s map,
DQ2, in the space of public differentials, whose kernel contains x1 and another
vector x3. With overwhelming probability the only way this will occur is if x3 is
in the band kernel generated by v and DQ2 is in Bv.

Given bases for s independent band kernels generated by v1, . . . , vs we can
reconstruct a private key of the same structure as that of the original ABC
scheme, which has the same public differentials as the instance we are attacking.
To see this, first note that there exists a U ′ for which the generalized band spaces
Bv1 . . .Bvs take the form of ordinary band spaces (i.e. for which (U ′−1)TDQU ′−1
takes the form given in equation (6) when DQ is in Bvi .) U

′ is simply given by
U ′ = V U , where V obeys

A(V u) =

⎡
⎢⎢⎢⎣

v1(u)
v2(u)
...

vs(u)

⎤
⎥⎥⎥⎦ .
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Moreover there exists a B′ C′ and T ′ corresponding to U ′, that will give the
same public key as U , B, C and T . These are given by:

B′(V u) = B(u) i.e. B′(u′) = B(V −1u′)

C′(V u) = C(u) i.e. C′(u′) = C(V −1u′)

T ′(e′1, e
′
2) = T (V −1e′1, V

−1e′2).

Thus, there exists an ABC private key, whose prototypical band spaces are
equal to the generalized band spaces found by our attack. The task then re-
mains to find it, or something equivalent. First note that the elements of row
j of A(U ′x), which we will denote as Āj(U

′x), are are in the band kernel gen-
erated by vi for all i = j. The intersection of the band kernels generated by
v1, . . . , vj−1, vj+1, . . . , vs is readily computable, given what we already have, and
it has dimension s, and is therefore identical to the space generated by the
elements of Āj(U

′x).
This allows us to compute a map U ′′ which mostly mimics the action of U ′.

Specifically U ′′ only differs from U ′ by mixing the elements within the rows of the
matrix A. i.e. Āj(U

′′x) = ΩjĀj(U
′x), where Ωj is a nonsingular linear operator

on s variables. U ′′ may also be extended into a full private key, U ′′, B′′, C′′, T ′′

for the target public key. The choice of B′′ and C′′ is straightforward:

B′′(u′′) = B′(U ′U ′′−1u′′)

C′′(u′′) = C′(U ′U ′′−1u′′)

All that remains is the choice of T ′′. To demonstrate that a choice is possible
note that

Āj(U
′′x)B′′(U ′′x) = [ΩjĀj(U

′x)]B′′(U ′′x)
= Ωj [Āj(U

′x)B′′(U ′′x)]
= Ωj(Āj(U

′x)B′(U ′x))

And similarly:

Āj(U
′′x)C′′(U ′′x) = Ωj(Āj(U

′x)C′(U ′x)).

Thus, the components of E′(U ′x) = (A(U ′x)B′(U ′x), A(U ′x)C′(U ′x)) are
linearly related to the components of E′′(U ′′x) = (A(U ′′x)B′′(U ′′x), A(U ′′x)C′′

(U ′′x)) by the invertible maps Ωj . There therefore exists an invertible T ′′ such
that T ′′E′′(U ′′x) = T ′E′(U ′x) = TE(Ux).

All that remains is to solve for T ′′, B′′, and C′′, given our U ′′. This can be
done by solving linear equations in the coefficients of B′′, C′′ and T ′′−1:

Dk(A(x)B
′′(x), A(x)C ′′(x)) =

∑
l

T ′′−1
kl (U ′′−1)TDyl(x)U

′′−1

where the yl are the components of the public map TE(Ux).
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The primary cost of the attack involves finding the s independent band ker-
nels. Thus, the cost of a full private key extraction is qs+4s7 for even character-
istic and qs+2s7 for odd characteristic.

Remark 3. The full key recovery attack for the improved ABC scheme of [14]
(using an s× r A and n variables) requires sqr+4n3 operations for even charac-
teristic and sqr+2n3 operations for odd characteristic.

8 Conclusion

The ABC scheme offers a promising new idea for the development of multivariate
encryption schemes. Although the original presentation of the scheme contained
errors— most significantly in the estimated probability of decryption failure—
the scheme is easily generalized to nonsquare matrices and these anomalies are
inconsequential in this context. In particular, the HOLEs attack is nonexistent
when A, B, and C are replaced with rectangular matrices.

The attack outlined in this article exploits the subspace differential invariant
structure inherent to the ABC methodology. The attack method works both for
the original scheme and when applied to the updated scheme. With the original
parameters, the attack is asymptotically the most efficient structural attack, with
bit complexity scaling linearly with s, the square root of the number of variables.
In the improved scheme, the attack scales in bit complexity in proportion to the
parameter r which is less than the square root of the number of variables. This
analysis is tighter than any relevant rank analysis in the literature, with the
most appropriate technique in [17] scaling in bit complexity linearly with 2s. In
comparison, even the bit complexity of algebraic attacks scale superlinearly in
s, though the break-even point for the two attacks is slightly beyond the 120-bit
security threshold. Taking both time and memory into consideration, however,
the differential invariant attack may be the more practical.

A remarkable fact about the attack outlined in this article is that it exploits
characteristics which uniquely distinguish the public polynomials in the ABC
scheme or its improvement from random formulae, namely, the existence of the
s subspace differential invariants. The existence of the differential invariants
relative to the band spaces is equivalent to the property of being isomorphic to
a product of matrices of linear forms as in the central map of the ABC scheme;
indeed, the attack produces such an isomorphism. In this sense, it is hard to
imagine any key recovery attack on such a scheme designed for 80-bit security
which is significantly more efficient in terms of time than the algebraic attack,
directly solving the system via Gröbner Bases, or an XL variant such as the
Mutant XL algorithms, see [18–20].

On the other hand, it is worthwhile mentioning Gröbner basis techniques for
solving MinRank problems using minors modeling as in [21], and perhaps most
notably exemplified in [22]. Assuming no additional structure in the MinRank
instances arising from the cryptanalysis of the ABC scheme generic, the degree of
regularity of the resulting MinRank polynomial systems is 2s+1 for small values
of s, and so the complexity of this approach is immense. The actual MinRank
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instances arising from the ABC scheme, however, hold some of the structure of
the central map and so there is some hope for improvement in this area, though
this remains an open problem.

While it is clear that the decryption failure issue of the ABC scheme can be
fixed by inflating the field size and/or by making the core matrices rectangular,
the scalability of the scheme is an issue. The public key size of the original
scheme scales with the sixth power of s. If we take into consideration security
requirements beyond 80 bits, the ABC scheme becomes problematic; increasing s
by one more than doubles the key size. While the evidence seems to suggest that
the enhanced ABC scheme, despite having such a distinct differential structure,
may ironically be secure, the task of turning the scheme into a more finely
tuneable technology is still an open question.
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linear matrices using gröbner bases and applications to cryptology. In: Koepf, W.
(ed.) ISSAC, pp. 257–264. ACM (2010)

22. Bettale, L., Faugère, J.C., Perret, L.: Cryptanalysis of hfe, multi-hfe and variants
for odd and even characteristic. Des. Codes Cryptography 69, 1–52 (2013)

23. Gaborit, P. (ed.): PQCrypto 2013. LNCS, vol. 7932. Springer, Heidelberg (2013)


	An Asymptotically Optimal Structural Attack on the ABC Multivariate Encryption Scheme
	1 Introduction
	2 The ABC Matrix Encryption Scheme
	3 Security Claims, Revisions, and Corrections
	3.1 Decryption Failure
	3.2 HOLEs Attack
	3.3 Rank Attacks
	3.4 Algebraic Attacks

	4 Subspace Differential Invariants
	5 The Differential Invariant Structure of the ABC scheme
	5.1 Prototypical Band-Spaces
	5.2 Generalized Band-Spaces

	6 The Effect of Invariant Structure on the Complexity of MinRank
	7 Complexity of Invariant Attack
	8 Conclusion
	References




