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Preface

PQCrypto 2014, the 6th International Workshop on Post-Quantum Cryptogra-
phy was held in Waterloo, Ontario, Canada, during 1–3 October 2014.

On the 20th anniversary of Shor’s algorithms for breaking factoring and dis-
crete log based cryptosystems, there is a new landscape of quantum tools and
intensifying efforts worldwide to build large-scale quantum computers. The aim
of PQCrypto is to serve as a forum for researchers to present results and exchange
ideas on the topic of cryptography in an era with large-scale quantum computers.
The workshop was preceded by a summer school from 29–30 September 2014.

The workshop attracted 37 submissions, of which the Program Committee
selected 16 for publication in the workshop proceedings. The accepted papers
dealt with the topics of code-based cryptography, lattice-based cryptography,
multivariate-cryptography, isogeny-based cryptography, security proof frame-
works, cryptanalysis, and implementations. The Program Committee included
26 subject-matter experts from 10 countries.

The workshop included four invited talks by Lily Chen (NIST), Nicolas Gisin
(Université de Genève), Matteo Mariantoni (University of Waterloo), and Vinod
Vaikuntanathan (MIT), tours of the experimental facilities at the Institute for
Quantum Computing, and a recent results session.

I am very grateful to all the ProgramCommittee members for generously con-
tributing their time, knowledge and expertise. Many thanks also to the external
reviewers who assisted in the process.

I wish to thank the generous sponsors and partners of PQCrypto 2014 who
made it possible to host this event and support the invited speakers and other
participants.

Profound thanks are also due to Alfred Menezes for his organizational effort
and general guidance as the general chair and to Kim Simmermaker and the
Institute for Quantum Computing staff for their logistical support.

July 2014 Michele Mosca
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Claude Crépeau McGill University, Canada
Jintai Ding University of Cincinnati, USA
Philippe Gaborit University of Limoges, France
Tanja Lange Technische Universiteit Eindhoven,

The Netherlands
Daniele Micciancio University of California at San Diego, USA
Michele Mosca University of Waterloo, Canada
Nicolas Sendrier Inria, France
Shigeo Tsujii Chuo University, Japan
Bo-Yin Yang Academia Sinica, Taiwan

Program Committee

Paulo Barreto University of São Paulo, Brazil
Daniel J. Bernstein University of Illinois at Chicago, USA and TU

Eindhoven, The Netherlands
Johannes Buchmann TU Darmstadt, Germany
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Sealing the Leak on Classical NTRU Signatures

Carlos Aguilar Melchor1, Xavier Boyen2, Jean-Christophe Deneuville1,
and Philippe Gaborit1

1 XLIM-DMI, Université de Limoges, France
2 QUT, Brisbane, Australia

Abstract. Initial attempts to obtain lattice based signatures were closely
related to reducing a vector modulo the fundamental parallelepiped of
a secret basis (like GGH [9], or NTRUSign [12]). This approach leaked
some information on the secret, namely the shape of the parallelepiped,
which has been exploited on practical attacks [24]. NTRUSign was an ex-
tremely efficient scheme, and thus there has been a noticeable interest
on developing countermeasures to the attacks, but with little success [6].

In [8] Gentry, Peikert and Vaikuntanathan proposed a randomized
version of Babai’s nearest plane algorithm such that the distribution
of a reduced vector modulo a secret parallelepiped only depended on
the size of the base used. Using this algorithm and generating large,
close to uniform, public keys they managed to get provably secure GGH-
like lattice-based signatures. Recently, Stehlé and Steinfeld obtained a
provably secure scheme very close to NTRUSign [26] (from a theoretical
point of view).

In this paper we present an alternative approach to seal the leak of
NTRUSign. Instead of modifying the lattices and algorithms used, we do
a classic leaky NTRUSign signature and hide it with gaussian noise us-
ing techniques present in Lyubashevky’s signatures. Our main contribu-
tions are thus a set of strong NTRUSign parameters, obtained by taking
into account latest known attacks against the scheme, a statistical way
to hide the leaky NTRU signature so that this particular instantiation of
CVP-based signature scheme becomes zero-knowledge and secure against
forgeries, based on the worst-case hardness of the Õ(N1.5)-Shortest In-
dependent Vector Problem over NTRU lattices. Finally, we give a set of
concrete parameters to gauge the efficiency of the obtained signature
scheme.

Keywords: Lattice-based Cryptography, Digital Signatures, NTRUSign,
Provable Security, SIS.

1 Introduction

Lattice based cryptography has met growing interest since the seminal work of
Ajtai [1] which introduced the so called worst-case to average-case reductions.
Based upon this work, a long list of cryptographic primitives such as One Way
Functions, Collision-Resistant Hash Functions, Digital Signatures, or Identifi-
cation schemes have been revisited to provide more confidence about security.

M. Mosca (Ed.): PQCrypto 2014, LNCS 8772, pp. 1–21, 2014.
© Springer International Publishing Switzerland 2014



2 C. Aguilar Melchor et al.

The most efficient known digital signature scheme provably secure is BLISS [5]1

which leads to signatures of about 5kb2 for a security level of 128 bits.
Digital signatures have shown great promise since 1997, when was introduced

GGH [9]. The most famous particular instantiation of GGH is NTRUSign, which
uses convolution modular lattices. The particularity of those schemes is their lack
of strong worst-case to average-case security reductions, but they offer amazing
performances regarding classical schemes based on number theory or discrete
logarithm. For instance, for a 128 bit security level, a NTRUSign signature would
be only 1784 bits long (see [11]).

NTRUSign, first known as NSS [13], was first introduced at EuroCrypt’01 by
Hoffstein, Pipher and Silverman. It was amazingly fast and benefited from small
keys due to the cyclic structure of the underlying convolution modular lattices
that were used. The authors were aware that their scheme was vulnerable to
transcript attacks i.e. wasn’t zero-knowledge, but unfortunately they overesti-
mated its length, and Nguyen and Regev succeeded in breaking the scheme in
2006 [24] by a nice gradient descent over the even moment polynomials. Initially,
their attack required about 100.000 NTRU signatures to recover the hidden par-
allelepiped that reveals the secret basis, but still due to the cyclic structure of
convolution modular lattices, they were able to shrink this threshold to about
only 400 signatures for a claimed security level of 80 bits. In order to tackle
this issue, several heuristical countermeasures were proposed such as the use of
perturbations [12] and the deformation of the fundamental parallelepiped [15],
but none of them were capable to resist to the improved attack by Ducas and
Nguyen [6].

1.1 Our Contribution

We revisit NTRUSign in order to provide it with a zero-knowledge proof. Our
technique is inspired from Lyubashevsky’s scheme [19], where the secret key

S consists of a matrix in {−d, . . . , d}m×k, the message is hashed to a vector

c ← {−1, 0, 1}k such that ‖c‖1 ≤ κ, and the signature consists of Sc shifted

by a mask y
$← Dm

σ where Dm
σ represents the discrete gaussian distribution in

dimension m with standard deviation σ.
Instead of hiding Sc, we get a leaky signature from NTRUSign, and then use

this signature as the secret and hide it with a well chosen y. The critical techni-
cality resides in the choice of the dimension N and the standard deviation σ : if
it was chosen too small, the secret isn’t properly hidden, and our modification
doesn’t seal any leak, if σ is too big, so will be our signatures and our scheme
loses in efficiency and practicality.

We note that unlike other provably secure signature schemes such as GPV [8]
or [25], we do not modify the initial NTRU signature scheme, except by choosing
public parameters more conservatively, and thus keep its inherent size and com-
putational efficiency. Of course masking the signature in a second step comes at

1 Which improves [19] with a better rejection sampling.
2 For the space-optimized version, see Table 3 of [5] for more details.
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a price, but we manage to get signature of size ≈ 10kb together with public and
secret keys respectively around 7000 and 1500 kb.

We choose to hide NTRU signatures with a noise based on the assumption
that the leak in the signatures is exploitable but that there are no structural
attacks against the public NTRU key (and thus we suppose that sealing the leak is
enough to secure the scheme). This is based on the observation that the research
community has published no noticeable structural attacks on NTRU lattices in
the last decade and that problems such as SIS do not seem to be easier than
in random lattices (if we take into account the gap induced by the small secret
key).

1.2 Organization of the Paper

In section 2, we present the basic elements and notations used in NTRUSign and
Lyubashevsky’s signature scheme, then describe these schemes respectively in
sections 3 and 4. Finally, we present the scheme we propose in section 5 along
with its security proofs and sets of parameters.

2 Background and Problems

In this section, we introduce basics of lattice-based cryptography. Nevertheless,
due to space restriction, some of them will be omitted and we refer the reader
to [23] for further details and proofs.

2.1 Notation

Sets. Throughout this paper, Z will denote the set of integer numbers, and for
q ∈ Z, Zq will denote the set of integers taken modulo q, in the set

[
− q

2 ;
q
2

)
. We

will make heavy use of the notation Rq to represent Zq[X ]/(XN − 1), the ring
of polynomials of degree less than N , modulo q and XN − 1. Vectors and/or
polynomials will be represented with bold-face letters, for any x ∈ Rq, we will

use either its polynomial notation x =
∑N−1

i=0 xi . X
i or its vector representation

x = (x0, x1, . . . , xN−1)t. Matrices such as the public key will be represented with
bold-face capital letters A ∈ ZN×2N

q .
In section 3, the NTRUSign secret polynomials f ,g will be sampled from a

particular subset T (d) of Rq, which consists of polynomials f of degree strictly
less that N , with exactly d + 1 coefficients equal to 1, d equal to −1 and the
N − 2d − 1 others equal to 0. All logarithms will be based 2 unless explicitly
mentioned.

Norms. For any s, t ∈ Rq, we will make use of several norms :

– The centered norm : ‖s‖2c =
∑N−1

i=0 s2i − 1
N

(∑N−1
i=0 si

)2
= N .Variance(si)

– The balanced norm : ‖(s, t)‖2ν = ‖s‖2c + ν2 . ‖t‖2c
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– The euclidian norm : ‖s‖22 =
∑N−1

i=0 s2i , or just ‖s‖2 for simplicity as this
norm is the most standard in lattice-based cryptography

The first and second norms are somehow typical to NTRU, and don’t give
many intuition on the actual length of a vector, in the common (euclidian)
sense. Therefore, we describe a method to experimentally translate a balanced
norm into a euclidian one with arbitrary desired probability. As ‖s‖c = σs

√
N

where σs is the standard deviation of the sis, each si is approximately σs, and
by lemma 2.3.2 we have

‖s‖2 ≤ α . σs

√
N with probability 1− 2−k

where k is the security parameter and the corresponding α can be read in table
1. Even if the sis are not sampled according to a gaussian, it is possible to upper
bound ‖s‖2 during the NTRU signing process. This allows us to set two versions
of parameters in our scheme, a speed-optimized one and a size-optimized one.

2.2 Digital Signatures

For completeness, we recall the definition of a Digital Signature scheme.

Definition 2.2.1 (Signature Scheme). A signature scheme is composed of 3
polynomial-time algorithms (K,S, V ) :

1. KeyGen K : which given a security parameter 1k as input returns a couple
of keys (pk, sk)

2. Sign S : which given the secret key sk and a message μ returns a signature
s of this message

3. Verify V : which given the public key pk, the signature s and the message
μ, ensures that this signature was indeed generated using sk

such that for any (pk, sk)← K(1k), Pr[V (pk, μ, S(sk, μ)) = 1] = 1.

There are two ways to attack a signature scheme, either try to create a sig-
nature from other couples (μ, s) and the public key pk, or recover the secret key
sk directly from pk and eventually some signed messages. The former idea leads
to the following definition :

Definition 2.2.2 (Forgery). A signature scheme (K,S, V ) is said to be secure
against forgeries, if for any polynomial-time adversary A who has access to pk
and couples (μ1, s1), . . ., (μn, sn) of its choosing, A only has a negligible prob-
ability (depending on the security parameter k) to create a couple (μ �= μi, s

′)
such that V (pk, μ, s′) = 1, that is to say a valid signature.

2.3 Discrete Normal Distribution

In this section, we define the Discrete Normal Distribution and describe some of
its desirable properties, that fit particularly well with lattices.
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Definition 2.3.1 (Continuous Normal Distribution). The Continuous
Normal Distribution over R2N centered at v with standard deviation σ is de-
fined by

ρ2Nv,σ(x) = (
1

σ
√
2π

)2N . exp(−‖x− v‖22
2σ2

).

In order to make this distribution fitting with lattices and obtain a probability
function, we need to scale this distribution by the lattice quantity ρ2N0,σ(Z

2N ) =∑
x∈Z2N ρ2N0,σ(x). This quantity does not depend on the choice of the vector.

Definition 2.3.2 (Discrete Normal Distribution). The Discrete Normal
Distribution over Z2N centered at v with standard deviation σ is defined by
D2N

v,σ(x) = ρ2Nv,σ(x)/ρ
2N
v,σ(Z

2N ).

The next lemma gives us an idea of how big the standard deviation must
be to ensure that the inner product of two vectors doesn’t overflow a certain
amount. This lemma is crucial to determine our signature size in table 3 with
overwhelming probability.

Lemma 2.3.1 ([19]).

∀v ∈ R2N , ∀σ, r > 0,we have Pr
[
| 〈x,v〉 | > r;x

$← D2N
σ

]
≤ 2e

− r2

2‖v‖2σ2 .

Optimally, we will set r = α . ‖v‖σ. Table 1 shows how big α should be to
ensure k bits of security. We also need a few more material to prove that our
NTRU signature will be correctly hidden by our mask. This material is given by
the following lemma.

Lemma 2.3.2 ([19]).

1. ∀α > 0,Pr
[
|x| > ασ;x

$← D1
σ

]
≤ 2e−

α2

2

2. ∀η ≥ 1,Pr
[
‖x‖ > ησ

√
2N ;x

$← D2N
σ

]
< η2NeN(1−η2))

3. ∀x ∈ Z2N and σ ≥ 3√
2π

, we have D2N
σ (x) ≤ 2−2N

Table 1. α = �
√

2(k + 1)ln(2) � as a function of the security level k

Security parameter k 80 100 112 128 160

Gap factor α 11 12 13 14 15

For our purposes, as the mask y is sampled from a Discrete Normal Distribu-
tion, we might have to re-sample several times before obtaining a valid signature,
but still, we want our signature procedure to terminate, in a reasonable (polyno-
mial) time. This is ensured by the next lemma, whose proof is essentially detailed
in [19] for a security level of k = 100 bits. We extend the proof of this lemma
(in appendix A.1) to make it fitting better with different security levels.
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Lemma 2.3.3 ([19] extended). For any v ∈ Z2N and σ = ω(‖v‖2
√
log2(2N)),

we have

Pr
[
D2N

σ (x)/D2N
v,σ(x) = O(1);x

$← D2N
σ

]
= 1− 2−ω(log2(2N))

and more concretely, ∀v ∈ Z2N , if σ = α‖v‖ for some positive α, then

Pr
[
D2N

σ (x)/D2N
v,σ(x) < e1+1/(2α2);x

$← D2N
σ

]
> 1− 2−k

This lemma ensures us that Lyubashevsky’s layer of the signing procedure will
be called at mostM = e1+1/(2α2) times with probability at least 1−2−k. Keeping
this repetition rate down is of major importance especially as this layer involves
a NTRUSign procedure which is itself also a loop. In table 3, we provide two
versions of parameters for each security level. In the first one, the NTRUSign part
is generated in only one round with overwhelming probability, before applying
the rejection step with M ≈ 2.8, leading to a speed-optimized version. In the
second one, we allow the generation of the NTRU signature to take at most 5
rounds whilst reducing its norm. This implies more rejection steps (M ≈ 7.5)
but allows us to shrink the signature sizes by approximately 15%.

To prove the security of our scheme, we also need the following rejection
sampling lemma, which will be used in the proof of theorem 2.3.5 that will help
us getting our security reduction to SIS.

Lemma 2.3.4 ([19]). For any set V , and probability distributions h : V → R

and f : Z2N → R, if gv : Z2N → R is a family of probability distributions indexed

by v ∈ V such that ∃M ∈ R / ∀v ∈ V, Pr[Mgv(z) ≥ f(z); z
$← f ] ≥ 1 − ε then

the outputs of algorithms A and F
Algorithm A Algorithm F
1: v

$← h 1: v
$← h

2: z
$← gv 2: z

$← f

3: output (z, v) with probability min
(

f(z)
Mgv(z)

, 1
)

3: output (z, v) with probability 1/M

are within statistical distance ε/M .

The next theorem is a direct consequence of lemmas 2.3.3 and 2.3.4 by re-
placing V by the subset of Z2N of vector v of length at most T , f by D2N

σ and
gv by D2N

v,σ.

Theorem 2.3.5 ([19]) Let V =
{
v ∈ Z2N ; ‖v‖ ≤ T

}
, σ = ω(T

√
log 2N) ∈ R

and h : V → R a probability distribution. Then ∃M = O(1) such that distri-

butions of algorithms A and F below are within statistical distance 2−ω(log 2N)

M .

Moreover, A outputs something with probability at least 1−2−ω(log 2N)

M

Algorithm A Algorithm F
1: v

$← h 1: v
$← h

2: z
$← gv 2: z

$← f

3: output (z,v) with probability min

(
f(z)

Mgv(z)
, 1

)
3: output (z, v) with probability 1/M
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2.4 Average-Case SIS Problems

Problems. The last part of this background section describes the main average-
case lattice problem we will base our signature scheme upon, namely the Short
Integer Solution (SIS) Problem, which is a least as hard as the worst-case of
Shortest Independent Vector Problem (SIVP) [1] up to a polynomial approxi-
mation factor.

Definition 2.4.1 (�2-SISq,N,2N,β problem). For any A ∈ ZN×2N
q , the �2-

SISq,N,2N,β problem consists in finding a vector v ∈ Z2N
q \ {0} such that Av = 0

and ‖v‖2 ≤ β.

Relations between parameters q,N and β will be discussed later in this section
as they condition the length of the shortest expected vector, but we can already
mention that for a �2-SISq,N,2N,β solution to exist, we need to set β ≥

√
2Nq.

Definition 2.4.2 (SISq,N,2N,d distribution). Given a matrix A ∈ ZN×2N
q ,

and a random v ∈ Z2N
q , output (A,Av mod q).

Definition 2.4.3 (Search SISq,N,2N,d). Given (A, t) ∈ ZN×2N
q × ZN

q , find

v ∈ {−d, . . ., 0, . . ., d}2N such that Av = t.

Definition 2.4.4 (Decisional SISq,N,2N,d). Given (A, t) ∈ ZN×2N
q ×ZN

q , de-
cide whether it comes from the SISq,N,2N,d distribution or the uniform distribu-
tion over ZN×2N

q × ZN
q with non-negligible advantage.

Relations between These Problems. We now recall existing relations be-
tween the problems described above, together with relationships between their
parameters which somehow strengthen or weaken these problems. First, it is
rather intuitive that the smaller d, the harder the problem, but this remark
doesn’t take the modulus q into account. We can see the matrix multiplication
by A ∈ ZN×2N

q as a linear map whose domain is Z2N
q (of size q2N ) and range is

ZN
q (of size qN ). So by constraining the domain to Z2N

d , we need d to be of order√
q for domain and range to be in one-to-one correspondence (even if it is not

a sufficient condition). As a consequence, when d � √
q there will be only one

v ∈ {−d, . . . , 0, . . . , d}2N satisfying Av = t with high probability, which makes
it easier to distinguish between the SISq,N,2N,d distribution and the uniform one.
On the other hand, increasing d far beyond

√
q leaves room for multiple solu-

tions to the Search SISq,N,2N,d Problem with high probability. Therefore, we can
reasonably expect the hardest SISq,N,2N,d instances to rely where d ≈ √q.

Besides relationships between those parameters, there are reductions from
some of these problems to others. For instance, as it is often the case between
search and decisional problems, one can build a distinguisher from an oracle
solving Decisional SISq,N,2N,d to solve the search version, and that is what the
following theorem states :

Theorem 2.4.6 ([16, 21]) For any d ∈ O(N), there is a polynomial-time re-
duction from solving Search SISq,N,2N,d to solving Decisional SISq,N,2N,d.
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Actually, the best (known) way to solve the search version of SIS appears to
be solving the decisional version. However, the next lemma gives us confidence
about the hardness of the decisional SIS problem when the solution is allowed
to be larger and larger, which translates the fact that the SIS distribution comes
closer and closer to the uniform distribution.

Lemma 2.4.7 ([19]). For any α ≥ 0 such that gcd(2α + 1, q) = 1, there is a
polynomial-time reduction from solving Decisional SISq,N,2N,d to solving Deci-
sional SISq,N,2N,(2α+1)d+α.

As mentioned in [23], when the dimension equals twice the rank (m = 2N),
and above all if β is small enough, the actual best known way to solve Decisional
SISq,N,2N,d is to solve the �2-SISq,N,2N,β problem.

Lemma 2.4.8 ([23]). If 4dβ ≤ q, there is a polynomial-time reduction from
solving Decisional SISq,N,2N,d to solving �2-SISq,N,2N,β.

As a consequence, it has been shown in [22, 19] that for �2-SISq,N,2N,β to be
hard, one has to ensure that the following inequality is satisfied for any desired
security level k :

2β

√
N . d(d+ 1)

3
>

q

π

√
k . ln(2) (1)

This lemma already gives us a first restriction for setting the parameters.

Indeed, by rewriting the above inequality, we have 4 .
(

dβ
q

)2
. N(d+1)π2

3 ln(2) > k, and

as 4π2

3 ln(2) ≈ 42 and 4dβ
q ≤ 1, this condition means that N .(d+1) is greater than k

by some multiplicative gap. We now discuss about another kind of restriction due
to the expected length of “the” shortest vector in a given convolution modular
lattice (i.e Gaussian Heuristic) relatively to lattice basis reduction techniques.

Since its introduction in 1982 by Lenstra, Lenstra and Lovász [17] with the
LLL algorithm, lattice reduction has known great applications and generaliza-
tions. Among all those techniques lives a perpetual trade-off between the running
time of the reduction algorithm and the quality of the (eventual) output, which
is gauged by the Hermit Factor δ. This factor plays a crucial role in the hard-
ness of the �2-SISq,N,2N,β problem in the sense that lattice reduction algorithms
can find vectors v ∈ Z2N

q such that Av = 0 and ‖v‖2 ≤ δ2N
√
q [7]. Even if

δ ≈ 1.007 seems to be a lower bound for reasonable future [4], deepest explo-
rations on this factor have been made in [18], and more precise approximations
have been extrapolated for different security levels. Parameter δ in table 4 has
been set sticking to these extrapolations.

Further analysis led Micciancio and Regev [23] to the conclusion that the
SIS problem does not become that harder by increasing the number of columns.
Actually, they show that one can find a lattice vector v such that

‖v‖ ≈ min
(
q, 22

√
N log q log δ

)
(2)

and Av = 0 using only
√
N log q/ log δ of the 2N columns of the matrix A. This

bound will gives us another restriction when setting our parameters in section 5.
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3 General Overview of NTRUSign

In this section, we briefly describe the NTRUSign scheme. For a complete descrip-
tion of the scheme, we refer the reader to [10, 11]. The basic set for NTRUSign is
Rq = Zq/(X

N−1) with addition and polynomial multiplication modulo XN−1,
also known as convolution product and denoted by ∗ :

(f ∗ g) (X) =

N−1∑
k=0

⎛
⎝ ∑

i+j≡k mod N

figi

⎞
⎠Xk (3)

The public and private keys will be matrices P, and S defined by :

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 h0 hN−1 . . . h1

0 1 . . . 0 h1 h0 . . . h2

...
...
. . .

...
...

...
. . .

...
0 0 . . . 1 hN−1 hN−2 . . . h0

0 0 0 0 q 0 . . . 0
0 0 0 0 0 q . . . 0
...
...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0 fN−1 . . . f1 F0 FN−1 . . . F1

f1 f0 . . . f2 F0 FN−1 . . . F1

...
...

. . .
...

...
...

. . .
...

fN−1 fN−2 . . . f0 FN−1 FN−2 . . . F0

g0 gN−1 . . . g1 G0 GN−1 . . . G1

g1 g0 . . . g2 G0 GN−1 . . . G1

...
...

. . .
...

...
...

. . .
...

gN−1 gN−2 . . . g0 GN−1 GN−2 . . . G0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

where h = f−1 ∗ g mod q for f ,g ∈ Rq, F,G ∈ Rq are given by the keyGen
algorithm 1, and verify f ∗G− g ∗ F =q. As operations are performed modulo
q and as (F,G) can be obtained efficiently from (f ,g) using [12], we will denote
P = (1 h) and S = (f g) for short. The NTRU lattice is :

Λq(A) = {(y1,y2)/y2 = y1 ∗ h mod q} (5)

Algorithms. We now recall the algorithms used in NTRUSign. More sophisti-
cated versions of this signature scheme have been elaborated, such as the one
with perturbations [12] or the deformation of the fundamental parallelepiped
[15] to counter the attack of [24], but all these upgrades have been broken with
the later improved attack of [6]. Therefore, we will further use the basic instan-
tiation of NTRUSign for our scheme, which offers greater performances together
with smaller keys. We will discuss the security of our scheme in section 5.

Key generation and signing procedures are described respectively in algo-
rithms 1 and 2. The NTRU signature s ∈ Rq is a simple Babäı’s round-off [2]
of the target (0,m) using the secret key sk, where m = H(μ) is the hash of
the message μ to be signed by H : {0, 1}∗ → Rq. In order to process this
round-off, for any x ∈ R we will denote by �x� the nearest integer to x so that
{x} = x − �x� ∈ (− 1

2 ,
1
2 ]. By extension, for any x ∈ Rq, {x} will denote the

previous operation applied to every xi. Due to the particular structure of the
NTRU lattice and to the fact that the NTRU signature is a lattice vector, giving s
as the signature suffices to reconstruct the right part using the public key. This
trick permits to save half of the space needed to represent the NTRU signature.
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Algorithm 1: KeyGen(N , q, d,
N , ν)

Input: N , q, d, N , and ν
Output: pk = h = f−1 ∗ g mod q

and sk = f ,g
begin

repeat

f
$← T (d), g $← T (d);

until f is invertible in Rq;
h = g ∗ f−1;

return pk =

(
1 h
0 q

)
,

sk =

(
f F
g G

)
;

Algorithm 2: NTRUSign(pk, sk, μ)

Input: Public and private keys, and
μ ∈ {0, 1}∗ the message to
sign

Output: s the NTRU signature
begin

cpt← 0;
repeat

cpt← cpt+ 1;
m← H(μ, cpt) ∈ Rq ;

(x,y) = (0,m) .
(
G −F
−g f

)
/q;

s = −{x} ∗ f − {y} ∗ g;
until ‖(s, s ∗ h−m)‖ν ≤ N ;
return (s, cpt);

Algorithm 3: Verify(pk = h, s, cpt, μ)

Input: Public key pk, the signature s, and the message μ ∈ {0, 1}∗
Output: true if and only if s is a valid signature of μ
begin

m = H(μ, cpt);
if ‖(s, s ∗ h−m)‖ν ≤ N then

return true;

else
return false;
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Polynomials F and G in algorithm 1 can be obtained efficiently using the
technique described in [12], but as we are using the transpose NTRU lattice,
those polynomials are not even used for signing nor verifying the signature. So
in the case of a constrained environment, one can just skip this computation.
Nevertheless, F and G play a role in the size of the error when rounding-off the
target. The technique of [12] permits to find those polynomials in such a way

that ‖F‖ ≈ ‖G‖ ≈
√

N
12‖f‖ so that the error when signing using sk is of size

approximately (
√

N
6 +ν N

6
√
2
)‖f‖. As a comparison, a invalid signer trying to sign

using pk instead of sk would generate an error of magnitude ν
√

N
12q.

Table 2. New NTRUSign parameters, ρ = 1, no perturbation

k N d q ν N ωcmb c ωlk ωfrg γ ωlf R L

100 431 34 210 0.16686 141 167 3.714 187 172 0.0516 415 131 180

112 479 42 210 0.15828 165 200 4.232 209 137 0.0558 470 157 200

128 541 61 211 0.14894 211 269 3.711 239 329 0.0460 541 207 226

160 617 57 211 0.13946 217 269 3.709 272 360 0.0431 627 210 258

Parameters. Setting concrete NTRUSign parameters for a given security level
seems to be an unclear task to perform. Nevertheless, the authors of [10] provide
a generic algorithm to generate such parameters, given the security parame-
ter k, the signing tolerance ρ3, and an upper bound Nmax on the degree of
the polynomials f and g. Even if this algorithm doesn’t take into account best
known attacks, it can provide one with a hint of how the parameters should
look like, relatively to one another. Therefore we will use it to get N , q, d,
N , and ν, and then check that best known attacks are out of range. We will
not care about the transcript length as the fix we propose hides the leaky part
of the signature, and an adversary would not learn anything more from issued
signatures.

4 General Overview of Lyubashevsky’s Scheme

In this section, we recall briefly the signature scheme presented by Lyubashevsky
at EuroCrypt’12, and refer the reader to the original paper [19] for more details.
The most efficient instantiations of this scheme rely on the average-case hard-
ness of two problems : the SISq,n,m,d decisional problem and the �2-SISq,n,m,β

problem, which are at least as hard as the worst-case of the O(n1.5)-SIVP [1].

3 If E is the expected size of a signature, the verifying process should fail for every
signature whose size is greater than ρE . Notice that the author also use one in [19],
namely η. We will be tempted to set ρ = η in next sections.
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Algorithm 4: KeyGen(n,m, k, q)

Input: n,m, k, q
Output: pk = (A,T) ∈

Zn×m
q × Zn×k

q and
sk = S ∈ Zm×k

q

begin

S
$← {−d, . . . , 0, . . . , d}m×k;

A
$← Zn×m

q ;
T← AS;
return pk = (A,T), sk = S;

Algorithm 5: Sign(pk, sk, μ)

Input: Public and private keys, and
μ ∈ {0, 1}∗ the message to
sign

Output: (z, c) the signature
begin

y
$← Dm

σ ;
c← H(Ay, μ);
z← Sc+ y;
return (z, c) with probability

min
(

Dm
σ (z)

M .Dm
Sc,σ

(z)
, 1
)
;

Algorithm 6: Verify(pk, (z, c), μ)

Input: Public key, message μ, and the signature (z, c) to check
Output: true if and only if (z, c) is a valid signature of μ
begin

if H(Az−Tc, μ) = c and ‖z‖ ≤ ησ
√
m then

return true;

else
return false;

As mentioned by the author, key sizes can be shrunk by a factor k us-
ing more structured matrices and relying on the ring version of the SIS prob-
lem, but we will skip this detail in this section for simplicity. Public and pri-
vate keys are respectively uniformly random matrices A ∈ Zn×m

q and S ∈
{−d, . . . , 0, . . . , d}m×k and the signature process invokes a random oracle H :

{0, 1}∗ →
{
v : v ∈ {0, 1}k , ‖v‖1 ≤ κ

}
. A signature (z, c) of a message μ corre-

sponds to a combination of the secret key and the hash of this message, shifted
by a commitment value also used in the random oracle.

5 Description of Our Scheme

5.1 Putting the Pieces Together

Before exposing our scheme, we want to recall an important property over the
NTRU lattice that we will make use of. We denote :

Λ⊥
q (P) =

{
(y1,y2)/(1 h) .(y1 y2)

t = 0 mod q
}
=

{
(−h ∗ x mod q,x),x ∈ Z

N
q

}
(6)

Then one can see Λ⊥q (P) = q . Λq(P)∗, and Λq(P) = q . Λ⊥q (P)∗. If we borrow
the notation from code-based cryptography, if Λq(P) is generate by P = (1,h)
then Λ⊥q (P) is generated by (h,−1).
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As the key generation part of our scheme is exclusively constituted by the
NTRUSign key generation process, we use the algorithm described in [10] to get
N , q, d, N , and ν, then invoke algorithm 1 for our keyGen procedure, to get the
public and private matrices P and S as depicted in algorithm 7.

To sign a message μ ∈ {0, 1}∗, we will need a regular random oracle H :
{0, 1}∗ → Rq. To add some randomness to our signature, the oracle’s input
will be an element of Rq represented under a bit string concatenated with our
message μ. We then NTRUSign the oracle’s output to get our leaky sample, which
we shift by a mask (y1,y2) large enough to statistically hide this leak. Finally,
we apply a rejection sampling step to ensure that the overall signature follows
the expected distribution.

Algorithm 7: KeyGen(N , q, d,
N , and ν)

Input: N , q, d, N , and ν
Output: pk = h = g ∗ f−1 mod q

and sk = f ,g
begin

repeat

f
$← T (d), g $← T (d);

until f is invertible in Rq;
h = g ∗ f−1;
return P = (−h,1), S = (f , g);

Algorithm 8: Sign(P,S, μ)

Input: Public and private keys, and
μ ∈ {0, 1}∗ the message to
sign

Output: (x1,x2), e the signature
begin

y1
$← DN

σ , y2
$← DN

σ ;
e = H(P(y1,y2), μ) =
H(y2 − h ∗ y1, μ);
(s, t) = NTRUSignS(0, e);
(x1,x2) =
(0, e)− (s, t) + (y1,y2);

return (x1,x2), e with probability

min

(
D2N

σ (x)

M .D2N
(−s,e−t),σ

(x)
, 1

)
;

Algorithm 9: Verify(P, (x1,x2), e, μ)

Input: Public key P, a signature (x1,x2), e, and a message μ
Output: true if and only if (x1,x2), e is a valid signature of μ
begin

if ‖(x1,x2)‖2 ≤ ησ
√
2N and H(P .(x1,x2)− e, μ) = e then

return true;

else
return false;

We insist on the fact that in the original scheme with perturbations, the aim
was to sign the message μ enough times so that the transcript an adversary
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could collect with couples of messages and signatures is short enough to make all
secret key recovery techniques fail. The main difference in our scheme consists in
hiding the leaky part with something larger so that it becomes indistinguishable,
whether than sign it again and again. In other words, the leaky part of NTRUSign
plays the role of the secret key in [19].

5.2 Sets of Parameters

Hereafter is a set of parameters for our signature scheme, given different security
levels. One interesting aspect of those sets is that we had to raise q and N for our
NTRUSign part to be secure, but due to the small norm of our NTRU signature,
this q is not raised as much as in [19]. This results in the nice property of lowering
key and signature sizes.

Table 3. Parameters, signature and key sizes for our scheme, given the security
level k

Security parameter (bits) k 100 100 112 112 128 128 160 160

Optimized for Size Speed Size Speed Size Speed Size Speed

N 431 431 479 479 541 541 617 617

d 34 34 42 42 61 61 57 57

log2(q) 16 16 16 16 16 16 16 16

η (lemma 2.3.2) 1.296 1.296 1.297 1.297 1.299 1.299 1.314 1.314

ν 0.16686 0.16686 0.15828 0.15828 0.14894 0.14894 0.13946 0.13946

N 109 139 128 165 160 213 165 218

α (lemma 2.3.1) 6 12 6.5 13 7 14 7.5 15

σ = ηαN 848 2162 1080 2783 1455 3874 1627 4297

M = e1+1/(2α2) (lemma 2.3.3) 7.492 2.728 7.477 2.726 7.465 2.725 7.455 2.724

signature size (bits) ≈ 2N log2(ασ) 10700 12700 12300 14600 14500 17100 16800 19800

pk size (bits) ≈ N log2(q) 6900 6900 7700 7700 8700 8700 9900 9900

sk size (bits) ≈ 2N log2(3) 1400 1400 1550 1550 1750 1750 2000 2000

5.3 Security of Our Scheme

In this section, k will represent the security parameter, typically k = 80 for a
“toy” security, k = 100 or 112 for a current security, and k = 128 to 160 for a
“strong” security. Due to space restrictions, we will only mention the different
known kinds of attack the reader can find in the literature. For further details,
we refer to [11, 20, 6, 14] for the NTRUSign part, and to [19, 18, 23] for Lyuba-
shevsky’s scheme. Due to the hybridness of our scheme, potential attacks could
be of three types, that we exposed in what follows, before tackling them.

The first one consists in attacking the NTRU lattice by trying to find back the
private key (f ,g) only from the public key h = g ∗ f−1 (and eventually some
signatures after Lyubashevsky’s layer). Even if there is no theoretical proof on
the intractability of this attack, there hasn’t been (to the best of our knowledge)
any efficient way to do so neither. Parameters given in table 3 have been chosen so
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that someone succeeding in doing so would achieve a lattice reduction with better
Hermit factors than those described in 4 respectively to the security parameter
k. Such a good algorithm could obviously be used to solve worst-case of lattice
problems on general convolution modular lattices. A second way to break our
signature scheme, still by finding out the secret key, could be trying to isolate the
NTRU signature inside our signature to find enough leaky parts to then proceed
to a [6]-like attack. This issue is addressed by Theorem 2.3.5. Finally, we show
that if an adversary succeed in creating a forgery in polynomial-time, then we
can use this forgery to solve the SIS problem, which is the main theorem (5.3.1)
of this section.

Regarding attacks against the NTRUSign, all parameters have been heighten
so they ensure way more than k bits of security. We are aware that some attacks
might lower the security level [20, 7, 14, 6], but also due to our lack of knowl-
edge on how to benefit from the singular structure of NTRU lattices, we take a
conservative gap between claimed and effective security. Nevertheless, all param-
eters given in table 2 were set in such a way that lattice reduction techniques are
meant to fail, either by finding a short vector too long, either by a computational
complexity blow up. Also due to recent attacks such as [14, 7, 6], the NTRUSign

parameters presented in [11] don’t reach the claimed security. Therefore, we ran
the Baseline Parameter Generation Algorithm of [10], and integrated the most
recent known attacks. As one can notice, we intentionally took a “huge” degree
N , and a big q for two reasons. It first gives more confidence about the security
of the underlying NTRU lattice, and it was also necessary for proofs to work after
applying Lyubashevsky’s layer to our scheme.

As far as we know, lattice-reduction over Λ⊥q (A) is the most efficient tech-
nique to solve random instances of knapsack problems. Experiments in [7] led
to the ability of finding a vector v ∈ Λ⊥q (A) whose norm is at most ‖v‖2 ≤
δ2N .√q, for δ depending on the lattice-reduction algorithm which is used (see
below). Experiments from Micciancio and Regev [23] conducted to a minimum

of δm . qn/m ≈ min(q, 22
√

N log2(q) log2(δ)) for m ≈
√
N log2(q)/ log2(δ).

In 2011, Lindner and Peikert [18] achieved to give an approximation of the
best δ reachable for a given security level k, using a conservative approximation
on BKZ’s running time :

tBKZ(δ) = log2(TBKZ(δ)) = 1.8/ log2(δ)− 110 (7)

where TBKZ(δ) is the running time of BKZ in second, on their machine. So
assuming one can achieve 230 operations per second on a “standard” computer,
to determine δ given the security parameter k, we have :

log2(δ) :=
1.8

log2(
TBKZ (δ)

230 ) + 110
=

1.8

k − 30 + 110
=

1.8

k + 80
(8)

This equation gives us a way to get δ as a function of the security parameter k, see
table 4. Similarly to [19], in order to hide properly our leaky part (0, e)− (s, t),
we will use Lemmas 2.3.1 and 2.3.2 to get a proper α.
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Table 4. δ and α as a function of the security level k

k 100 112 128 160

δ 1.00696 1.00652 1.00602 1.00521

α 12 13 14 15

Against Forgeries. In this section, we give a short overview of the material that
will be needed to base our signature scheme upon the SIS problem over random
NTRU lattices. This leads to a signature scheme based on the worst-case hardness
of the Õ(N1.5)-SIVP problem over general convolutional modular lattices.

Hybrid 1

Sign(P,S, μ)

1. y1
$← DN

σ , y2
$← DN

σ

2. e
$← Rq

3. (s, t) = NTRUSignS(0,e)
4. (x1,x2) = (0, e)− (s, t) + (y1,y2)

5. with probability min(
D2N

σ (x)

M .D2N
(−s,e−t),σ

(x)
, 1) :

– Output (x1,x2), e
– Program H(P .(x1,x2)− e, μ) = e

Hybrid 2

Sign(P,S, μ)

1. e
$← Rq

2. (x1,x2)
$← D2N

σ
3. with probability 1/M :

– Output (x1,x2), e
– Program H(P .(x1,x2)− e, μ) = e

Fig. 1. Signing Hybrids

We now expose the core of the reduction, which allows us to base the security
of our signature scheme upon the �2-SISq,N,2N,β Problem of general NTRU lattices.
Our main theorem will be proved by two lemmas, mostly proved in [19], but
revisited in appendix A in some of the details in order to fit best with our sets
of parameters.

Theorem 5.3.1 ([19] revisited) Assume there is polynomial-time forger F ,
which makes at most s (resp. h) queries to the signing (resp. random) ora-
cle, who breaks our signature scheme (with parameters such those in Table 3),
then there is a polynomial-time algorithm to solve the �2-SISq,N,2N,β Problem

for β = 2ησ
√
2N with probability ≈ δ2

h+s . Moreover, the signing algorithm 8 pro-

duces a signature with probability ≈ 1
M and the verifying algorithm 9 accepts the

signature produced by an honest signer with probability at least 1− 2−2N .

Proof. We begin the proof by showing that our signature algorithm 8 is statis-

tically close (within distance ε = s(h + s) . 2−N+1 + s . 2−ω(log2 2N)

M by Lemma
5.3.2) to the one in Hybrid 2 in Figure 1. Given that Hybrid 2 outputs some-
thing with probability 1/M , our signing algorithm will output something too
with probability (1 − ε)/M . Then by Lemma 5.3.3, we show that if a forger F
succeeds in forging with probability δ when the signing algorithm is replaced
by the one in Hybrid 2, then we can use F to come up with a non-zero lat-
tice vector v such that ‖v‖ ≤ 2ησ

√
2N and Pv = 0 with probability at least(

δ − 2−k
) (

δ−2−k

h+s − 2−k
)
. ��
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Lemma 5.3.2 ([19] revisited). Let D be a distinguisher who can query the
random oracle H and either the actual signing algorithm 8 or Hybrid 2 in Figure
1. If he makes h queries to H and s queries to the signing algorithm that he
has access to, then for all but a e−Ω(N) fraction of all possible matrices P, his
advantage of distinguishing the actual signing algorithm from the one in Hybrid

2 is at most s(h+ s) . 2−N+1 + s . 2
−ω(log2 2N)

M .

Lemma 5.3.3 ([19] revisited). Suppose there exists a polynomial-time forger
F who makes at most h queries to the signer in Hybrid 2, s queries to the
random oracle H, and succeeds in forging with probability δ. Then there exists

an algorithm of the same time-complexity as F that for a given P
$← ZN×2N

q

finds a non-zero v such that ‖v‖2 ≤ 2ησ
√
2N and Pv = 0 with probability at

least (
δ − 2−k

)(δ − 2−k

h+ s
− 2−k

)
.

6 Conclusion

In this work, we described a method for sealing NTRUSign signatures’ leak, based
on the worst-case hardness of standard problems over ideal lattices. This method
differs from existing heuristic countermeasures such the use of perturbations [12]
or the deformation of the parallelepiped [15] - both broken [6] - but also from
provably secure modifications of NTRUSign like [26] which uses gaussian sampling
techniques in order to not disclose the secret basis [8]. Moreover, this technique
seems to be sufficiently generic to be applied on GGH signatures. Details on this
will be provided in a longer version of this paper.

We show that it is actually possible to use the rejection sampling technique
from [19] instead of gaussian sampling to achieve zero-knowledgeness, while keep-
ing most of NTRUSign’s efficiency. Moreover, parameter refinements allowed us
to lower the rejection rate, leading to performance improvements regarding [19],
together with smaller signature and secret key sizes.

It might be possible to improve the rejection sampling procedure even more
using techniques such those in [5], but it seems necessary to break the public
key’s particular shape to do so. Therefore, it is still an open question whether
the resulting benefit in the signature size would worth the key sizes growth.

Acknowledgment. The authors thank Léo Ducas for helpful discussions on
rejection sampling, and the anonymous PQCrypto reviewers for their valuable
comments.
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A Proofs

A.1 Section 2

Most of the lemmas of Section 2 are proved in [19]. We therefore refer the reader
to the original paper for these proofs. Nevertheless, we adapted lemma 2.3.3
to make bounds tighter with respect to different security levels. We prove the
correctness of our modification :

Proof.

D2N
σ (x)/D2N

v,σ(x) = ρ2N
σ (x)/ρ2N

v,σ(x) = exp

(
‖x− v‖2 − ‖x‖2

2σ2

)
= exp

(
‖v‖2 − 2〈x,v〉

2σ2

)

By lemma 2.3.1 and using the fact that σ = ω(‖v‖
√
log(2N)), with probability

1− 2−ω(log(2N)) we have

exp

(
‖v‖2 − 2〈x,v〉

2σ2

)
< exp

(
‖v‖2 + ω(σ‖v‖

√
log(2N))

2σ2

)
= O(1).

And more precisely, by setting r = α‖v‖σ in lemma 2.3.1 with α determined by
the security parameter k in table 1, we obtain with probability 1− 2−k that

exp

(
‖v‖2 − 2〈x,v〉

2σ2

)
< exp

(
‖v‖2 + 2α‖v‖σ

2σ2

)
= exp

(
‖v‖2
2σ2

+
α‖v‖
σ

)
σ=α‖v‖

= e1+1/(2α2).

��

http://eprint.iacr.org/
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A.2 Proofs of Section 5

We begin with the proof of lemma 5.3.2, which states that our actual signing
algorithm 8 is indistinguishable from Hybrid 2 depicted in Figure 1, using Hybrid
1 as an intermediate step.

Proof. First, let us prove that D has an advantage of at most s(h + s) . 2−N+1

of distinguishing between the actual signature scheme 8 and Hybrid 1. The only
difference between those algorithms is the output of the random oracle H . It
is chosen uniformly at random from Rq in Hybrid 1, rather than according to

H(Py, μ) for y
$← D2N

q in the real signing algorithm. Random oracle in Hybrid
1 is then programmed to answer H(Px− e, μ) = H(Py, μ) without checking
whether (Py, μ) was already queried or not. Since D calls H (resp. algorithm 8)
h (resp s) times, at most s+ h values of (Py, μ) will be set. We now bound the
probability of generating such an already set value. Using lemma 2.3.2, we can
see that for any

t ∈ ZN
q ,

Pr[Py = t; y
$←D

2N
q ] = Pr[y1 = (t − h ∗ y0);y

$← D
2N
q ] ≤ max

t′∈ZNq

Pr[y1 = t
′
;y1

$← D
N
q ] ≤ 2

−N
.

Therefore, if Hybrid 1 is called s times with the probability of getting a collision
begging less than (s + h) . 2−N+1 for each call, then the probability of coming
up with a collision after s calls is at most s(s+ h) . 2−N+1.

We pursue by showing that the outputs of Hybrids 1 and 2 are statistically

within distance 2−ω(log2 2N)

M . As noticed in [19], this is an almost straightforward
consequence of theorem 2.3.5 : assuming both Hybrids output (x, (−s, e− t))

with respective probabilities min

(
D2N

σ (x)

M .D2N
(−s,e−t),σ

(x)
, 1

)
for Hybrid 1 and 1/M

for Hybrid 2, they respectively play the role of A and F (with T = ηαN ). Even
if both Hybrids only output e, this does not increase the statistical distance
because given e, one can generate (−s, e− t) such that P(−s, e− t) = e simply
by NTRUSigning (0, e), and this will have the exact same distribution as the e
in both Hybrids. Finally, as the signing oracle is called s times, the statistical

distance between the two Hybrids is at most s . 2
−ω(log2 2N)

M , or more concretely

s . 2
−k

M . The claim in the lemma is obtained by summing both distances. ��

We now prove lemma 5.3.3, which provides us with a �2-SISq,N,2N,β solver using
a polynomial-time successful forger.

Proof. Let t = h+ s be the number of calls to the random oracle H during F ’s
attack. H can be either queried by the forger or programmed by the signing
algorithm when F asks for some message to be signed. We pick random coins
φ (resp. ψ) for the forger (resp. the signer), along with r1, . . . , rt ← Rq, which
will correspond to the H ’s responses. We now consider a subroutine A, which
on input (P,φ, ψ, r1, . . . , rt) initializes F by giving it P and φ and run it. Each
time F asks for a signature, A runs Hybrid 2 using the signer’s coins ψ to get a
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signature, andH is programmed to answer with the first unused ri ∈ (r1, . . . , rt).
A keeps track of the answered ri in case F queries the same message to be signed
again. Similarly, if F queries directly the random oracle, H will answer with the
first unused ri ∈ (r1, . . . , rt), unless the query was already made. When F ends
and eventually come up with an output (with probability δ), A simply forwards
F ’s output.

With probability δ, F succeeds in forging, coming up with (x, e) satisfying
‖x‖ ≤ ησ

√
2N and H(Px− e, μ) = e for some message μ. If H was not queried

nor programmed on some input w = Px − e, then F has only a 1/|Rq| = q−N

(i.e. negligible) chance of generating a e such that e = H(w, μ). Therefore, F
has at least a δ− q−N chance of succeeding in a forgery with e being one of the
ri’s. Assume e = rj , we are left with two cases : rj is a response to a random
oracle query made by F , or it was program during the signing procedure invoked
by A.

Let first assume that the random oracle was programmed to answer H(Px′−
e, μ′) = e on input μ′. If F succeeds in forging (x, e) for some (possibly different)
message μ, then H(Px′ − e, μ′) = H(Px− e, μ). If μ �= μ′ or Px′ − e �= Px− e,
then F found a pre-image of rj . Therefore, μ = μ′ and Px′ − e = Px − e, so
that P(x − x′) = 0. We know that x− x′ �= 0 (because otherwise (x, e) and
(x′, e) sign the same message μ), and since ‖x‖2, ‖x′‖2 ≤ ησ

√
2N , we have that

‖x− x′‖ ≤ 2ησ
√
2N .

Let now assume that rj was a response of the random oracle invoked by
F . We start by recording F ’s output (x, rj) for the message μ, then gener-
ate fresh random elements r′j , . . . , r

′
t ← Rq. We then run A again with input

(P, φ, ψ, r1, . . . , rj−1, r′j , . . . , r
′
t), and by the General Forking Lemma [3], we ob-

tain that the probability that r′j �= rj and the forger uses the random oracle
response r′j (and the query associated to it) in its forgery is at least(

δ − 1

|Rq |

)(
δ − 1/|Rq|

t
− 1

|Rq|

)
,

and thus with the above probability, F outputs a signature (x′, r′j) of the message

μ and Px− e = Px′− e′ where we let e = rj and e′ = r
′
j . By rearranging terms

in the above equality we obtain

P(x − x′)−

P((0,e)−(0,e′)−((s,t)−(s′,t′)))︷ ︸︸ ︷
(e− e′) = 0

P (y − y′) = 0 (9)

But since H(Py, μ) = e = rj �= r′j = e′ = H(Py′, μ), necessarily y �= y′,
and as ‖y‖2, ‖y′‖2 ≤ ησ

√
2N , we finally have that ‖y − y′‖2 ≤ 2ησ

√
2N with

probability (
δ − 2−k

)(δ − 2−k

h+ s
− 2−k

)
.

��
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Abstract. It is still a challenge to find a lattice-based public-key en-
cryption scheme that combines efficiency (as e.g. NTRUEncrypt) with
a very strong security guarantee (as e.g. the ring-LWE based scheme
of Lyubashevsky, Peikert, and Regev LPR-LWE). Stehlé and Steinfeld
(EUROCRYPT 11) presented a provably secure variant of NTRUEn-
crypt (pNE), perhaps the first step towards addressing the challenge. In
this paper we thoroughly assess the efficiency of pNE, and investigate
whether it can meet those presumed extremes. We show how to select
parameters that provide a given security level and we explain how to
instantiate pNE. As we compare our instantiation of pNE to NTRUEn-
crypt and LPR-LWE, we find that pNE is still inferior to both due to
the very wide Gaussian distribution used in its key generation.

Keywords: Public-Key Encryption, Efficiency, NTRUEncrypt, Lattice,
Learning With Errors, and Discrete Gaussian Distribution.

1 Introduction

Public-key encryption (PKE) based on lattice problems has attracted a lot of
attention in the last decade. This is in part due to the need for alternatives
to traditional PKE. Most PKE schemes in use today rely on the hardness of
either factoring or computing discrete logarithms. However, the trustworthiness
of these assumptions has been eroding by improvements in factoring algorithms
and by polynomial time quantum algorithms that solve both problems.

The success of lattice-based PKE has also its own virtues. Among lattice-
based encryption schemes one can find NTRUEncrypt, which is competitive in
terms of practical efficiency with well established PKEs like RSA [17]. Although
the most efficient attacks against NTRUEncrypt use lattice algorithms, there
exists no formal proof relating the security of the scheme to a lattice problem.

There are also lattice-based PKE schemes such as Regev’s [32], that allow
for a worst- to average-case reduction from well established lattice problems.
Regev proposed a scheme that is secure as long as the learning with errors
problem (LWE) is hard on average, and he shows that the LWE problem is as
hard as solving a well established lattice problem in its worst case. His original
reduction was a quantum reduction, yet more recently it was shown that a
classical reduction is also possible [5]. These worst- to average-case reductions

M. Mosca (Ed.): PQCrypto 2014, LNCS 8772, pp. 22–39, 2014.
c© Springer International Publishing Switzerland 2014
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have also been used to prove other related problems hard, such as the ring-LWE
problem [25] and small parameter variants [26], and subsequently, other provably
secure PKE schemes have been proposed [36,13,25,23,8]. In any case, the worst-
to average-case reduction is considered a very strong security guarantee because
it proves that breaking a randomly chosen instance of the scheme is as hard as
solving the hardest instance of a well established lattice problem.

The construction of a lattice-based PKE scheme that has both properties
—strong security and practical efficiency— is still an interesting challenge. At
Eurocrypt 2011, Stehlé and Steinfeld made a first step towards solving this
challenge by presenting a provably secure NTRU-variant [35], which we refer to as
pNE. The pNE scheme permits a worst- to average-case reduction. Its similarity
to NTRUEncrypt raises the questions of how efficient pNE is and of how far the
scheme closes the efficiency gap between NTRUEncrypt and a provably secure
scheme. Although the authors of pNE state that an instantiation of pNE is likely
to be less efficient than NTRUEncrypt, it is still important to determine how
much it closes this gap. Moreover, a recent homomorphic implementation of
pNE [4] seem to suggest that pNE can be rather efficient.

The pNE and NTRUEncrypt schemes are structurally very similar. Opera-
tions take place in the quotient ring Rq = Zq[x]/Φ(x), where q is a moderately
large integer and Φ(x) is a degree n polynomial. The secret key f is sampled
from Rq and the public key h is computed as h = pg/f ∈ Rq, where p is a
small integer and g is also sampled from Rq. Then a message m ∈ Rp is en-
crypted by sampling small elements e, e′ in Rq, and computing the ciphertext
c := he+ pe′ +m ∈ Rq. The main difference between pNE and NTRUEncrypt
is the distribution used to sample f and g. Stehlé and Steinfeld show that if f
and g are sampled from a discrete Gaussian distribution with a large parame-
ter σ, instead of being sampled uniformly at random from a set of small norm
polynomials, the public key h is statistically close to uniform [35]. They then
show that the ciphertext is indistinguishable from random assuming the hard-
ness of the LWE problem on average. Finally, they rely on Regev’s [32] worst- to
average-case reduction from well established lattice problems to conclude that
pNE is secure as long as some lattice problems are hard in the worst case.

Our Contribution. In this paper we answer the question of how efficient pNE
is and of how far the scheme closes the efficiency gap between NTRUEncrypt and
a provably secure scheme. We do so by presenting a thorough assessment of the
efficiency of pNE. In order to achieve this, we address five important problems
that are of interest in their own right.

1. We show how to select parameters that provide an expected security level.
We do not rely on the worst-case hardness in this context because it is
unknown how tight the worst- to average-case reduction is. We rather analyze
a well-known attack against the average-case problem underlying pNE and
deduce the corresponding security level. For example, a lattice dimension of
2048 is required for a bit security level of 144. Although the security level is
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not grounded on the worst- to average-case reduction, we make sure it holds
for the chosen parameters.

2. Next, we explain how to implement pNE. In particular, we discuss how to
adapt best known discrete Gaussian samplers to fit the needs of pNE and
we compare their efficiency.

3. We present experimental data on the performance of pNE. It shows that our
pNE implementation is over 100 times slower and requires 24 times larger
keys than an implementation of NTRUEncrypt by Security Innovation Inc.
We consider this gap too large to be overcome through optimization alone.

4. We then move on to compare pNE with the ring-LWE based scheme of
Lyubashevsky, Peikert, and Regev [25] (LPR-LWE). We chose LPR-LWE be-
cause it appears to be one of the most efficient provably secure lattice-based
PKE schemes, based on the parameter selection by Lindner and Peikert [23]
and its implementation by Göttert et al. [15]. In order to allow for a fair com-
parison, we use an analogous method to derive the LPR-LWE parameters
and we implement it using the same procedures as in the pNE implemen-
tation. This is possible because pNE and LPR-LWE are structurally similar
and rely on the same security assumption. It turns out that LPR-LWE is
still superior over pNE. LPR-LWE is more than 5 times faster than pNE
and pNE uses keys more than 12 times larger than LPR-LWE.

5. Finally, through a careful analysis, we conclude that the main reason pNE
is still less efficient than the other schemes is the very wide Gaussian distri-
bution used in key generation, and the unexpected influence this has on the
practical security of the scheme.

Related Work. In a related work, Bos et al. [4] analyze the efficiency of a
leveled homomorphic encryption scheme based on pNE. We discuss their results
in more detail at the end of Section 4. In this paper we do not analyze the
performance of NTRUEncrypt since several works highlight its efficiency, see
for example [17,29,20]. There has been less scrutiny over LPR-LWE. Although
Göttert et al. [15] tested it in software and hardware, the parameters they con-
sider do not support a worst- to average-case reduction (see [23]). In this paper
we analyze LPR-LWE’s efficiency for a parameter set that does support such
a reduction. Finally, we compare the efficiency of four Gaussian samplers over
the integers to use the best for our implementation of pNE. The samplers we
consider were proposed by Gentry et al. [14], Peikert [30], Knuth and Yao [22]
(adapted in [12]), and Buchmann et al. [7]. The samplers of Ducas et al. [11] and
(a discrete variant) of Karney [21] we did not consider in this paper due to their
less practical efficiency as stated by the authors.

Organization. This paper is organized as follows. Section 2 introduces notation
and background material. Section 3 explains how to select parameters that pro-
vide an expected security level. Section 4 briefly describes our implementation
of pNE, presents experimental data on its performance, and compares it with
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both NTRUEncrypt and LPR-LWE. Finally, Section 5 analyzes the efficiency of
pNE and draws a conclusion about its main source of inefficiency.

2 Preliminaries

In this section we recall some of the background necessary to support the re-
mainder of the paper. We first describe the assumed hard problem that the
pNE scheme relies on, namely the ring-LWE problem. Next, we describe Gaus-
sian sampling techniques, an important building block for implementing pNE.
Finally, we describe the pNE scheme itself.

2.1 The Ring-LWE Problem

The security of pNE relies on the assumption that the learning with errors prob-
lem over rings (ring-LWE) is hard. The ring-LWE problem was introduced by
Lyubashevsky, Peikert and Regev [25] as an adaptation of the LWE problem [32]
to ideal lattices.

The decisional ring-LWE problem is parametrized by a positive integer q, a
polynomial Φ(x) ∈ Z[x], and a noise distribution χ on Rq = Zq[x]/(Φ(x)). For
s ∈ Rq, define As to be the distribution of pairs (a,b), where a is uniformly
chosen in Rq and b = as + e, with e sampled from χ. The decisional ring-
LWE problem is defined as follows: For a uniformly random s ∈ Rq (which is
kept secret) and given arbitrarily many samples (a,b), determine whether the
samples come from As, or whether they are uniformly distributed in Rq × Rq.
The search variant is to determine s given arbitrarily many samples from As.
For certain parameters, there is a quantum reduction from worst-case classical
lattice problems over ideal lattices to the average-case ring-LWE problem [25].

Several algorithms have been proposed to solve the LWE and ring-LWE prob-
lems, see for example [27,23,2,1,24]. Some of these algorithms rely on lattice-basis
reductions by algorithms such as BKZ [33] or BKZ 2.0 [9]. Another approach
is based on the BKW algorithm [3], a method for solving the learning parity
with noise problem. Pruned-enumeration has also been proved to be a viable
option [24]. Some algorithms take advantage of the ring structure (e.g. [31]),
others are oblivious to it.

In this paper we base all practical security estimates on the well established
distinguishing attack [27] using BKZ. Although other attacks might be more
effective, it is outside the scope of this paper to compare the effectiveness of
the different attacks. Lindner and Peikert [23] heuristically estimate that the
running time of the distinguishing attack using BKZ is

log(tε) = 1.8/ log(δε)− 110 , (1)

where δε is the so called Hermite factor (see Appendix A for more details.) The
expression log(δε) is polynomial in n, thus log(tε) is also polynomial in n, and
therefore tε is exponential in n. It is also worth noticing that log(tε) is of the
order of 1/ log(q), a fact that will play an important role in Section 5, where we
analyze pNE’s efficiency.
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2.2 Sampling Discrete Gaussians

For a vector v ∈ Rn, a positive real σ, and a lattice L ⊂ Rn, let DL,v,σ denote
the n-dimensional discrete Gaussian distribution over L, centered at v, with
parameter σ. For x ∈ L, DL,v,σ assigns probability

DL,v,σ(x) :=
ρv,σ(x)∑

z∈L
ρv,σ(z)

with ρv,σ(x) = exp
(
− 1

2 ‖x− v‖2 /σ2
)
. For brevity we writeDL,σ forDL,0,σ and

ρσ for ρ0,σ.
1 For practical reasons, we will use a spheric Gaussian distribution,

where each coordinate is sampled independently according to the discrete Gaus-
sian distribution DZ,σ over the integers, and we rely on the fact that

∑
z∈Z ρσ(z)

is constant and hence DZ,σ is proportional to ρσ.
Several methods have been proposed to sample values from DZ,σ. We consider

the following sampling algorithms: rejection sampling [14], inverting the cumu-
lative distribution function (CDF) [30], the Knuth-Yao algorithm [22,12], and
the Ziggurat algorithm [7]. Besides those, there have been developed two other
methods quite recently [11,21], which we omit here since the authors state that
their methods are slower in practice than existing ones.

We briefly recall the different methods listed above. Let k be some positive real
number.2 In the rejection sampling method, one samples points (x, y) inside the
rectangleB := [−kσ, kσ)∩Z×[0, 1) uniformly at random and outputs x whenever
(x, y) is below the graph of ρσ.

3 The Ziggurat algorithm is a more advanced
rejection sampling algorithm in B. In a precomputation step, one divides the
graph of ρσ into a partition of horizontal rectangles. Then, one first chooses one
of the rectangles and samples a point (x, y) with integer x-coordinate inside this
rectangle next (both uniformly at random). Depending on the location inside
the rectangle, either x is directly output, rejection sampling is needed or the
process is restarted. In the inverse CDF method one precomputes the CDF values
pz = Pr[DZ,σ ≤ z] for all integers z ∈ [−kσ, kσ). Then, one samples y uniformly
at random in [0, 1) and outputs x ∈ [−kσ, kσ) ∩ Z such that y ∈ [px−1, px).
In the Knuth-Yao algorithm one constructs in advance a tree using the binary
expansion of the probabilities ρσ(z) for z ∈ [−kσ, kσ)∩Z up to some predefined
precision. During the sampling process, one walks down the binary tree, using

1 Some authors use a slightly different definition ρv,s(x) = exp
(
−π ‖x− v‖2 /s2

)
. The

two definitions are equivalent with s =
√
2π · σ.

2 The parameter k affects the distribution and the running time: A larger k yields a
better fit to DZ,σ, but increases both storage and rejection rate (and thus running
time). Gentry et al. proved that the rejection rate (see description of rejection sam-
pling) is proportional to k and independent of σ [14]. Moreover, they showed that
for k = ω(

√
log(n)) the output distribution is statistically close to DZ,σ.

3 An equivalent view is that one first samples an integer x uniformly at random in
the interval [−kσ, kσ). Then, with probability ρσ(x) one outputs x, otherwise one
restarts.
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one uniformly chosen bit at each step to decide which child to move to, and
finally outputs the integer of the reached leaf.

2.3 Stehlé and Steinfeld’s pNE Scheme

We briefly recall Stehlé and Steinfeld’s provably secure encryption scheme
pNE [35], which is specified by the following public parameters:

– dimension n > 8, a power of 2, which determines the cyclotomic polynomial
Φ(x) = xn + 1 and the quotient ring R = Z[x]/Φ(x),

– a prime q > 5 such that q ≡ 1 mod 2n, which determines the ciphertext
space Rq = Zq[x]/Φ(x),

– a polynomial p ∈ R such that p is invertible in Rq and has small coefficients
(typically p = 2, p = 3 or p = x + 2), which determines the message space
P = R/pR,

– a ring-LWE noise distribution χ,
– and a positive real σ that determines the (n-dimensional sperical) discrete

Gaussian distribution DZn,σ used in key generation.

The scheme pNE = (KeyGen,Encrypt,Decrypt) is defined as follows.

KeyGen: Sample f ′ ← DZn,σ, let f = pf ′+1 mod q; if f /∈ R×q resample. Sample
g ← DZn,σ; if g /∈ R×q resample. The secret key is f and the public key is
h := pg/f ∈ Rq.

Encrypt(h,m): Sample e, e′ ← χ, and return the ciphertext c := he+pe′+m ∈
Rq.

Decrypt(f , c): Compute c′ := f · c ∈ Rq and return c′ mod p.

Stehlé and Steinfeld show that pNE is secure as long as some classical lattice
problems are hard to solve on quantum computers [35]. First they show that for
certain parameter choices, the public key h is statistically close to uniform. Then,
they show that he+pe′ is basically a sample from a ring-LWE distribution, and
hence an IND-CPA attack on pNE can be used to solve ring-LWE. Then, by the
worst- to average-case quantum reduction [25], the hardness result follows.4

Stehlé and Steinfeld also show that there exist parameter choices for which
decryption correctly recovers the plaintext [35]. Let c′′ = p(ge+ e′f) + fm ∈ R.
If ‖c′′‖∞ < q/2, no wrapping around q occurs, and thus c′ = c′′ mod q = c′′ and
decryption recovers the message m always.

For pNE to be both secure and correct, the parameters need to be chosen
carefully. On the one hand, for the public key h to be statistically close to uni-
form, a large parameter σ is required. On the other hand, a large σ increases the
size of c′′ and hence forces a larger modulus q for decryption to work. Balancing
this conflicting forces is an important achievement of the authors of pNE. This
balancing act is also decisive for pNE’s efficiency as we will show in the following
sections.
4 Here we rely on the original security proof by Stehlé and Steinfeld [35]. However,
Brakerski et al. [5] quite recently established a classical worst- to average-case re-
duction that might apply in this case.
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3 Parameter Selection for pNE

We propose concrete parameters for pNE so that it is both correct and secure.
For correctness, we name a range of values for the modulus q that guarantee a
negligible error rate. Next, we show how to select parameters that provide an
expected security level.

– Fix n to be a power of two.
– Fix p = 2. This choice provides a useful message space and causes the least

possible expansion on the noise.
– Set χ to be the discrete Gaussian distribution DZn,r for some real r (see be-

low). Elements can be efficiently drawn from this distribution and moreover,
with n a power of two and Φ(x) = xn + 1, the ring-LWE noise distribution
can be spherical, and the worst-case reduction still holds [25].

– Set r =
√
2n/π, so that ring-LWE is as hard as lattice problems in the

worst-case (see [25] for details).
– Set σ = 2n

√
ln(8nq)q. With this, the public key is statistically close to

uniform, thus an IND-CPA attack implies solving an instance of ring-LWE
[35].

– Choose a prime q ∈ [dn6 ln(n), 2dn6 ln(n)], such that q ≡ 1 mod 2n. We show
in Lemma 3 below that d = 25830 guarantees correctness of the scheme.
Experimentally, we obtain a lower value d = 29.

Table 1 shows some sets of parameter values computed as described above.

Table 1. Parameter values for pNE, security and error rate estimates. For given values
of n, columns two through four show values for parameters q, σ and r that specify an
instance of pNE. For a given set of parameters, column seven shows the estimated run-
ning time of a distinguishing attack, and columns five and six show the advantage and
corresponding Hermite factor, respectively, under which such running time is achieved.
Column eight shows the equivalent bit security and column nine the error rate.

Parameters Advantage Hermite Attack time Equiv. bit Error
n log q log σ r log(1/ε) factor δε log(T ) [s] security rate

1024 71,90 49,89 25,53 2,72 1,0102 16 38 O(2−n)
2048 77,28 53,63 36,11 4,63 1,0055 122 144 O(2−n)
4096 83,30 57,70 51,06 7,85 1,0030 315 338 O(2−n)

The following two results will be used to prove the correctness of pNE for the
proposed parameters.

Lemma 1 ([35], Lemma 11). Let n ≥ 8 be a power of two such that Φ(x) =
xn+1 splits into n linear factors modulo a prime q ≥ 8n. Let σ ≥

√
2n ln(6n)/π ·

q1/n and let p = 2. The polynomials f and g, generated by the KeyGen algorithm,
satisfy, with probability ≥ 1− 2−n+3,

‖f‖ ≤ 8
√
n · σ and ‖g‖ ≤

√
n · σ .
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Lemma 2 ([28], Lemma 3.1). Let n ∈ N. For any real r = ω(
√
log(n)), the

probability that a polynomial e chosen according to DZn,r has norm ‖e‖ > r
√
n

is ≤ 2−n+1.

The following lemma establishes the correctness of pNE for the proposed
parameters.

Lemma 3. Let p = 2, n a power of two s.t. log(n) ≥ 3, r =
√
2n/π, χ = DZn,r,

σ = 2n
√
ln(8nq)q, and d ≥ 25830. If q is a prime in [dn6 ln(n), 2dn6 ln(n)], then

pNE correctly recovers plaintexts with probability greater or equal to 1− 2−n+6.

Proof. Let c′′ = p(ge+ e′f) + fm ∈ R. Decryption recovers m if ‖c′′‖∞ < q/2.
From Lemma 1, we have that ‖g‖2 ≤

√
n ·σ and ‖f‖2 ≤ 8

√
n ·σ with probability

≥ 1 − 2−n+3. Furthermore, it is ‖pg‖2 ≤
√
2n · σ and ‖pf‖2 ≤ 8

√
2n · σ, both

with probability ≥ 1− 2−n+3. We also have that

‖pge‖∞ ≤ ‖pge‖2 ≤
√
n‖pg‖2‖e‖2 .

Since e is drawn from DZn,r, it follows from Lemma 2 that ‖e‖2 ≤
√
n · r with

probability ≥ 1 − 2−n+1. It follows that ‖pge‖∞ ≤
√
2n · nσr with probability

≥ 1 − 2−n+4. Similarly, ‖pe′f‖∞ ≤ 8
√
2n · nσr with probability ≥ 1 − 2−n+4.

Also, ‖fm‖∞ ≤ ‖fm‖2 ≤
√
n‖f‖2‖m‖2 =

√
n‖2f ′+ 1‖2‖m‖2. Since f ′ ← DZn,σ,

‖2f ′ + 1‖2 ≤
√
2n · σ with probability ≥ 1− 2−n+1. Since m ∈ R2, ‖m‖2 ≤

√
n.

Thus ‖fm‖∞ ≤
√
2n · nσ with probability ≥ 1− 2−n+1. Then

‖c′′‖∞ ≤
√
2n · nσ(9r + 1),

with probability ≥ 1− 2−n+6 .
(2)

Assuming log(n) ≥ 3 and with r =
√
2n/π, we have that

(9r + 1)2 ≤ αn with α =
(
9
√
2/π + 1/

√
23
)2

. (3)

Now, suppose dn6 ln(n) ≤ q ≤ 2dn6 ln(n) for some d ≥ 1. Then

ln(8nq) ≤ ln(16n8d) ≤ β(d) ln(n),

with β(d) = 8 +
ln(16) + ln(d)

ln(23)
.

(4)

Then, from (2), (3) and (4), it follows that

‖2c′′‖2∞ ≤
(
2
√
2n · nσ(9r + 1)

)2
≤ 8n3σ2αn

≤ 32αβ(d)n6 ln(n)q .

Since β(d) = O(ln(d)), there exists D ≥ 0 such that for d ≥ D, 32αβ(d) ≤ d,
and thus ‖2c′′‖2∞ ≤ dn6 ln(n)q ≤ q2, and the result follows. We compute the
smallest such D by numerical means to be approximately 25830, and it follows
that for any d ≥ 25830 the bound holds. ��
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Next, for each set of parameters, we calculate a bit security level, based on
the distinguishing attack against LWE described in Appendix A. Notice that we
do not rely on the worst-case hardness to determine the bit security level of the
scheme. This is because it is unknown how tight the worst- to average-case reduc-
tion is. We rather analyze the efficiency of the distinguishing attack against the
average-case problem underlying pNE. We acknowledge that this approach does
not imply that those worst-case lattice problems are hard. However, it provides
a plausible estimate for the practical hardness of the average-case problem.

The running time tε of the distinguishing attack in (1) depends on the desired
advantage ε. Since an adversary can choose ε within a reasonable range, we define
the total time of an attack as

T = min{tε/ε | ε ∈ (2−80, 1)},

which we approximate numerically.
From the total time of an attack, we then compute a bit security level b,

following the methodology of Howgrave-Graham [19]. Note that the attack time
described in Appendix A was estimated by Lindner and Peikert on a 2.3 GHz
PC [23]. Assuming that a single block-cipher encryption takes 500 clock cycles,
it would take 2b · 500

2.3×109 seconds to attack a b-bit block-cipher using brute-force.
From this, we obtain that the bit security of a cryptosystem, that can be attacked
in no less than T seconds, is given by

b = log(T ) + log
(
2.3× 109

)
− log(500).

Table 1 shows the bit security level for each set of parameters, as well as the
distinguishing advantage and corresponding Hermite factor that minimizes the
total attack time.

4 Instantiation and Performance of pNE

In this section we first briefly describe our implementation of pNE, then we
present experimental data on its performance, and finally we compare pNE with
both NTRUEncrypt and LPR-LWE.

We implemented pNE in C++ using the Number Theory Library (NTL, [34])
for arithmetic in Rq together with the GNU Multiple Precision Arithmetic Li-
brary (GMP, [16]) for large integer arithmetic. NTL uses the fast Fourier trans-
form (FFT) for multiplication in the ring Rq. All experiments were performed on
a Sun XFire 4440 server with 16 Quad-Core AMD Opteron(tm) Processor 8356
CPUs running at 2.3GHz, having 64GB of memory and running 64bit Debian
7.1. For our experiments we only used one of the 16 cores. We compiled our
implementations using GCC v4.7.2-5, NTL v5.5.2-2, and GMP v2:5.0.5+dfsg-2.

In key generation of pNE we must check that f and g are invertible in Rq.
This is done by choosing f ,g uniformly at random from Rq and using the native
GCD implementation of NTL to test their invertibility. Lemma 10 in [35] proves
that the “resample rate” is less or equal to n/q. Our experiments confirm that
the resample rate is very small (< 1/1000) for our choice of parameters.
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Besides Rq arithmetic, the main challenge for implementing pNE is instanti-
ating the Gaussian sampler used in key generation and encryption. We imple-
mented the methods listed in Section 2.2 or adapted provided source code, where
available, and tested the implementations in terms of memory size and speed.
We also considered two variants of rejection sampling, namely computing ρσ on
demand and precomputing all possible values of ρσ. First, we tested the methods
for the rather small value r =

√
2n/π of the Gaussian parameter used in the

ring-LWE noise distribution χ = DZn,r in pNE’s Encrypt function. From Table 2,
which shows timings and storage requirements for this setting, the Knuth-Yao
algorithm appears to be the most efficient algorithm regarding speed. Second,
for the much larger value σ ≈ 28n4 ln2(n) in pNE’s KeyGen algorithm, the only
method suitable is rejection sampling with ρσ computed on demand due to its
minimalist storage requirement.

Table 2. Experimental comparison of discrete Gaussian sampling techniques for pa-
rameter σ =

√
2n/π. For each dimension n and each method, the table shows running

time in milliseconds and storage in kilobytes. For all n, we used the same Ziggurat with
8192 rectangles in regard to experiments in [7], and for Knuth-Yao we used a precision
of 128 bits.

Parameters Rej. on-demand Rej precomp. Inv. CDF Knuth-Yao Ziggurat

n σ time storage time storage time storage time storage time storage

1024 25.53 149 0 2.60 4.09 1.07 4.09 0.56 16.47 1.92 262.21
2048 36.11 437 0 6.86 6.36 1.98 6.36 1.03 50.97 2.42 262.21
4096 51.06 1200 0 19.66 9.80 4.04 9.80 2.04 78.69 7.03 262.21

In the remainder of this section we present experimental data on the perfor-
mance of pNE and compare it to NTRUEncrypt and LPR-LWE’s. Table 3 shows
timings and sizes for our implementation of pNE.

Table 3. Experimental performance of pNE. For a given set of parameters, column
seven shows public key, secret key and ciphertext size in kilobytes, and column eight
shows the ciphertext to plaintext ratio. Columns nine to eleven show the running times
for KeyGen, Encrypt, and Decrypt in milliseconds, respectively.

Parameters Sizes [kB] Running times [ms]

n log q log σ r bit sec err rate pk = sk = ct ct/pt KeyGen Encrypt Decrypt

1024 71.90 49.89 25.53 38 O(2−n) 9.22 72 763 5.60 4.12
2048 77.28 53.63 36.11 144 O(2−n) 19.97 78 1731 12.09 9.51
4096 83.30 57.70 51.06 338 O(2−n) 43.01 84 3820 26.70 21.37
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For comparison, we collected recent figures about NTRUEncrypt in the liter-
ature, and we present them in Table 4 (see also Figure 1 for a comparison with
pNE and LPR-LWE).

Table 4. Security and performance of NTRUEncrypt with q = 2048 and p = 3 on
a 2GHz CPU. Security estimates were taken from [18] and efficiency measures were
provided in private communication by William Whyte of Security Innovation Inc.

Sizes [kB] Running times [ms]

n bit sec pk sk pt ct/pt Encrypt Decrypt

401 112 0.55 0.20 0.10 11 0.09 0.19
439 128 0.60 0.22 0.11 11 0.10 0.20
743 256 1.02 0.37 0.19 11 0.20 0.40

Fig. 1. Encryption running time and public key size against bit security for pNE,
NTRUEncrypt and LPR-LWE (parameters as in Tables 3, 4 and 6)

Our pNE implementation is more than 100 times slower and requires 24 times
larger keys than an implementation of NTRUEncrypt by Security Innovation Inc.
We consider this gap too large to be overcome through optimization of pNE’s
implementation.

We then move on to compare pNE to the ring-LWE based scheme of Lyuba-
shevsky, Peikert, and Regev [25] (LPR-LWE), which appears to be the most
efficient provably secure lattice-based PKE scheme [15]. In order to obtain com-
parable data, we adapted the implementation by Göttert et al. [15] so as to make
it as close as possible to our implementation of pNE. In particular, we use the
same Gaussian sampler and the same library for polynomial arithmetic. Table 5
summarizes the results.

Comparing our implementations of pNE with that of LPR-LWE, we conclude
that LPR-LWE is significantly more efficient. Take for example pNE with n =
2048 which offers 144 bit security and LPR-LWE with n = 256 which offers
151 bit security. The public key of pNE is 26 times larger and the secret key 52
times larger. Moreover, key generation of pNE is over 1000 times slower than
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Table 5. Experimental performance of LPR-LWE with parameters as proposed by
Lindner and Peikert [23]

Parameters Sizes [kB] Running times [ms]

n q s bit sec error rate pk = ct sk ct/pt KeyGen Encrypt Decrypt

192 4093 8.87 100 1% 0.58 0.29 12 0.79 1.25 0.49
256 4093 8.35 151 1% 0.77 0.38 12 0.98 1.52 0.59
320 4093 8.00 199 1% 0.96 0.48 12 1.40 2.25 0.92

that of LPR-LWE, encryption is over 7 times slower and decryption over 15
times slower.

There are two caveats to this apparently disproportionate difference between
pNE and LPR-LWE. First, the error rate of LPR-LWE is very high, at around
1%, while the error rate of pNE is negligible. A 1% error rate could be problem-
atic in a realistic deployment. Second, the Gaussian parameter s in LPR-LWE is
small.5 The worst- to average-case reduction requires s ≥ 2

√
n. Moreover, values

of s below
√
n lead to subexponential attacks [2] (see also [10] for other attacks

for bounded distribution).6

In order to provide a more fair comparison between pNE and LPR-LWE,
we computed parameters that guarantee negligible error rate and the worst-
to average-case reduction to hold. We follow a methodology adapted from [23]
to setup the parameters. We fix n, set s = 2

√
n and δ = 2−n. Then we find

c > 1 such that c · exp
(
(1− c2)/2

)
= 1/2. We then choose the smallest prime q

greater than 4cs2
√
n ln(2/δ)/(

√
2 · π). These choices guarantee negligible error

rate. Finally, we calculate security based on the distinguishing attack as we did
for the pNE scheme.

Table 6. Experimental performance of LPR-LWE with conservative parameters that
guarantee negligible error rate and the worst- to average-case reduction to hold

Parameters Sizes [kB] Running times [ms]

n q s bit sec error rate pk = ct sk ct/pt KeyGen Encrypt Decrypt

256 378353 32.00 92 O(2−n) 1.22 0.61 19 1.02 1.56 0.59
320 590921 35.77 126 O(2−n) 1.60 0.80 20 1.46 2.36 0.92
512 1511821 45.25 223 O(2−n) 2.69 1.34 21 2.09 3.29 1.16

Table 6 summarizes the results. It shows parameters that provide low, medium,
and high levels of security, as well as experimental data on storage requirements
and running times. Although these results show a narrower gap between pNE

5 In order to be consistent with the notation in [23], here s is the Gaussian parameter
for ρs(x) = exp

(
−π ‖x‖2 /s2

)
(see Section 2.2).

6 This is true despite recent results showing the LWE problem hard for small param-
eters [26], because LPR-LWE does not meet the requirements of the new results [8].
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and LPR-LWE, a significant difference in favor of LPR-LWE persists. This dif-
ference can also be seen in Figure 1, which depicts encryption running time and
public key size against bit security for pNE, LPR-LWE and NTRUEncrypt.

On a recent paper, Bos et al. [4] analyze the efficiency of a leveled homomor-
phic encryption scheme based on pNE, call it H-pNE. It is difficult to derive
a conclusion about pNE’s efficiency from the single measurement of their re-
lated scheme. However, their results seem to indicate that H-pNE’s efficiency is
competitive to that of other provably secure ring-LWE homomorphic encryption
schemes. We claim that this does not contradict our findings. They report that
their H-pNE implementation is about ten times faster than an implementation
of a scheme by Brakerski and Vaikuntanathan [6], which is closely related to
LPR-LWE. They justify the performance increase partially on better hardware
and an optimized implementation. But there are two more factors they do not
mention. First, in order to allow homomorphic operations, one must choose a
large modulus q to allow additional noise growth. This is true for a homomorphic
version of pNE as well as for a homomorphic version of other schemes. Thus,
they are comparing schemes with equally high modulus q, while in our analysis
we compare to an instance of LPR-LWE with a much smaller q. This means
that, while a homomorphic variant of pNE might be comparatively efficient,
pNE is less efficient as a stand-alone encryption scheme. The second factor is
that the parameter choices they highlight allow for a single multiplicative level
of H-pNE, against four levels for the scheme by Brakerski and Vaikuntanathan.
This asymmetry is not discussed in the paper by Bos et al.

5 Efficiency Analysis of pNE

We have seen in Section 4 that pNE is less efficient than LPR-LWE or NTRU-
Encrypt. In this section we analyze why this is the case.

The size of pNE’s public key, secret key and ciphertext is given by n �log q�
bits, which is the space required to store one element of Rq. The ciphertext to
plaintext ratio is given by �log q� because a plaintext is encoded into an element
of Rp = R2 which stores up to n bits and it is encrypted into an element of Rq

of size n �log q�.
In order to better understand the running time of pNE we run experiments

for log(n) = 4, . . . , 16. The results presented in Figure 2 seem to indicate that
the running time of the KeyGen, Encrypt and Decrypt algorithms is proportional
to n log(n) log(q). Actually, we found a strong correlation between their running
time and n log(n) log(q) in our experiments (Pearson product moment correlation
coefficient r > 0.999). This confirms that polynomial multiplication and division
can be performed in O(n log n) scalar operations using FFT.

Table 7 shows a breakdown of the running time of key generation, encryption
and decryption into their most time-consuming subroutines. The table shows
that close to 90% of key generation is spent sampling f and g according to a
discrete Gaussian distribution, while computing h takes around 10% of the time.
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Fig. 2. Running time in milliseconds of pNE’s KeyGen, Encrypt and Decrypt versus
n log(n) log(q), for log(n) = 4, . . . , 16, respectively

For encryption the tendency is reversed, with little under 20% of the total time
spent on sampling Gaussian elements, while computing the ciphertext c takes
a little bit over 80% of the time. This is in part thanks to the efficiency of the
Knuth-Yao sampler, which is not possible to be used in key generation. In the
case of decryption, the operations in Rq take more than 90% of the time, while
the reduction mod p only takes around 5%.

Table 7. Running time breakdown of pNE

Key Generation Encryption Decryption

n sampling arithmetic sampling arithmetic arithmetic mod p reduction

1024 90.10% 9.90% 18.71% 81.29% 93.83% 6.17%
2048 89.71% 10.29% 16.16% 83.84% 93.65% 6.35%
4096 89.30% 10.70% 14.63% 85.37% 95.39% 4.61%

Although efficiency improvements are certainly possible, the gap between pNE
and the other two schemes is too large to be surmounted by optimization alone.
In order to understand why this gap is so large we take a closer look at the
schemes. The only differences between pNE and NTRUEncrypt are:

i) Operations are performed modulo xn + 1 instead of xn − 1.
ii) The integer modulus q is chosen to be a prime instead of a power of 2.
iii) The secret key polynomials f and g are sampled from a discrete Gaussian

distribution with parameter σ = 2n
√
ln(8nq)q instead of being sampled

uniformly at random from a set of small norm polynomials.
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iv) The ciphertext is c = he + pe′ + m with e, e′ sampled from a discrete
Gaussian distribution with parameter r =

√
2n/π, instead of c = hφ +m

with φ sampled uniformly at random from a set of small norm polynomials.

Differences i), ii), and iv) cannot be decisive because they are features of LPR-
LWE as well, and the latter is much more efficient than pNE. We argue that the
main source of inefficiency lays on difference iii). More precisely, efficiency of pNE
is hampered in several ways by the large value of σ required to make the public
key statistically close to uniform. As shown in the proof of Lemma 3, a large σ
induces a large modulus q to allow correct decryption. A large q directly impacts
the running times of KeyGen, Encrypt and Decrypt, as they are all proportional
to n log(n) log(q), as well as it impacts the key sizes, which are proportional to
n log(q).

But large q has an even more decisive negative effect on practical security.
From the equations in Appendix A, one can conclude that the running time t of
the distinguishing attack depends on q as log(t) = O(1/ log(q)). Thus, a large
q makes the scheme less secure, forcing a large dimension n to obtain a given
security level. A large n has an even more dramatic effect on the efficiency of the
cryptosystem. Table 8 illustrates the effect of the parameter σ on the efficiency
of pNE.

Table 8. Efficiency and security measures of pNE for different values of the parameter
σ. Bit security is calculated based on the distinguishing attack and does not take into
consideration attacks that may exploit the departure from the security proof.

Parameters Sizes [kB] Running times [ms]

n log(σ) log(q) bit sec pk = sk = ct ct/pt KeyGen Encrypt Decrypt

512 49 69.22 -22 4.48 70 336 2.58 2.00
512 29 49.71 10 3.20 50 320 2.20 1.59
512 9 29.37 103 1.92 30 305 1.79 1.21

1024 49 71.90 38 9.22 72 759 5.63 4.13
1024 29 51.99 98 6.66 52 737 4.88 3.43
1024 9 31.24 265 4.10 32 689 3.73 2.42

The negative effect that a “wide” Gaussian has on the security of pNE seems
counterintuitive as one would expect that a larger key space improves security.
Yet, it is the main force dragging pNE’s efficiency. It is unclear to us at the
moment whether this can be improved while preserving pNE’s strong security
guarantee —its worst- to average-case reduction.
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A Distinguishing Attack

For the sake of simplicity we will consider the distinguishing attack only against
LWE, and not against ring-LWE. In LWE, the samples are constructed as (A, b)
with b = A�s + e, where A ← Zn×m

q and s ← Zn
q are chosen uniformly at

random. The ring-LWE problem can be seen as a variant of LWE in which the
matrix A has a special structure, where the structure depends on the first part
of the ring-LWE samples a and the underlying ring Rq. We assume that the
distinguishing attack does not take advantage of this special structure.

The bottleneck of the distinguishing attack is the computation of a short
vector in the lattice

Λ⊥q (A) := {y ∈ Zm | Ay ≡ 0 mod q}.

If the distribution χ is a discrete Gaussian, then the advantage of the distinguish-
ing attack is close to ε = exp(−2(πcr/q)2), where c is the length of the shortest
vector the adversary is able to find, and r is the parameter of the discrete Gaus-
sian distribution [23]. The shortest vectors are of length δmqn/m, where δ is the
so called Hermite factor. This length is minimized for m =

√
n log(q)/ log(δ);

thus, the shortest vectors we can expect to produce are of length 22
√

n log(q) log(δ).
The running time of state-of-the-art lattice reduction algorithms (e.g. BKZ)

is determined by the Hermite factor δ. In order to obtain an advantage greater
or equal to ε we need to be able to compute vectors of length less or equal to

cε =
q

πr

√
ln(1/ε)

2
,

for which we require a Hermite factor not greater than

δε = 2
log2(cε)
4n log q .

Lindner and Peikert [23] heuristically estimate that the running time of the
distinguishing attack using BKZ is

log(tε) = 1.8/ log(δε)− 110 .

http://dx.doi.org/10.1007/978-3-642-10366-7_36
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1 Introduction

Let q be a power of a prime number and Fq the finite field of q elements. For
natural numbers n,m, let f1, . . . , fm be a set of quadratic polynomials over Fq:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x1, . . . , xn) =
∑

1≤i≤j≤n
a1,i,jxixj +

∑
1≤i≤n

b1,ixi + c1,

f2(x1, . . . , xn) =
∑

1≤i≤j≤n
a2,i,jxixj +

∑
1≤i≤n

b2,ixi + c2,

...

fm(x1, . . . , xn) =
∑

1≤i≤j≤n
am,i,jxixj +

∑
1≤i≤n

bm,ixi + cm,

where ai,j,k, bi,j , and ci are in Fq. The “MQ problem” of solving m multivariate
quadratic equations in n variables over Fq is the problem of finding a set of Fq

roots (x̃1, . . . , x̃n) ∈ Fn
q such that f1(x̃1, . . . , x̃n) = · · · = fm(x̃1, . . . , x̃n) = 0.

It is well-known that if m ≈ n, then such a problem is NP-complete for ran-
dom polynomial equations over a finite field [10]. This result has many applica-
tions, e.g., it is a basis for the security of Multivariate Public Key Cryptography
(MPKC). Starting from the seminal work by Matsumoto and Imai [13], MPKC
has attracted a lot of attention in the cryptologic research community. There
has been success in constructing encryption schemes such as HFE [16]; signature
schemes such as UOV [11], TTS [22], and Rainbow [6]; as well as identification
schemes such as the Sakumoto-Shirai-Hiwatari scheme [17]. Moreover, to this
date we do not know the existence of any quantum algorithms that can solve
the MQ problem for the case of m ≈ n in polynomial time, which makes MPKC
a candidate for post-quantum cryptography.

Certainly, polynomials used in MPKC must have trapdoors to allow, e.g.,
efficient decryption by a private-key holder and hence cannot be random. In fact,
we have seen several (and will most likely continue to see more) successful attacks
that exploit structural weaknesses in these trapdoors, such as the Patarin attack
on the original Matsumoto-Imai scheme [15], as well as rank attacks [12] and the
derivatives. The history of MPKC has been marked by sequences of attempts
and failures, through which we develop more confidence on those schemes that
have survived.

In contrast to structural attacks, algorithms that attempt to directly solve
the MQ problem present a generic attack to MPKC. For example, there have
been successes on HFE [9] and QUAD [21] using Gröbner-basis solvers [7,8,4].
Determining the complexity of such algorithms is important because it can deter-
mine the security of “well-designed” MPKC schemes. Here by well-designedness
we mean that solving the MQ problem can be reduced to breaking such a
scheme from a theoretical point of view. Or, alternatively, we believe that such
a scheme can withstand all structural attacks from a practical point of view.
In either case, direct solvers are arguably the only feasible attack against such
a well-designed MPKC scheme. Furthermore, such direct solvers are also an
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important subroutine in cryptanalysis of MPKC, and better understanding of
their complexity often leads to insight into, e.g., security of schemes with certain
special structures [5].

As a result, there have been several studies on the complexity of solving
the MQ problem. Such complexity certainly depends on the relation between
m and n. A simple case is that if the system is heavily overdetermined, e.g.,
m ≥ n(n+1)/2 over F2, then we can simply linearize and solve it in polynomial
time. On the other end of the spectrum, if the system is heavily underdeter-
mined, e.g., n ≥ m(m+ 1) over F2, then we also have efficient polynomial-time
solvers such as Kipnis-Patarin-Goubin [11], Courtois-Goubin-Meier-Tacier [3],
and Miura-Hashimoto-Takagi [14]. Although it is unlikely that we can use any
of these algorithms to break a realistic MPKC scheme, they are certainly inter-
esting and can help us better understand the nature of solving the MQ problem.
The interested reader is referred to Figure 4 on page 15 of Thomae’s PhD dis-
sertation [19] for a nice graph showing the complexities of solving 11 equations
with various numbers of variables over F2k for large enough k using the F5 al-
gorithm [8]. We can clearly see a pattern of rise and fall of complexities as we
move from underdetermined to overdetermined systems.

The situation is, however, quite different when it comes to fields of odd char-
acteristics. For example, the Courtois-Goubin-Meier-Tacier algorithm can have
polynomial time complexity, in which case we require that there are exponen-
tially many variables than there are equations [3]. Alternatively, if we require a
polynomial relation between the number of variables and that of equations, then
the best running time is still exponential by using Kipnis-Patarin-Goubin [11],
Thomae-Wolf [20], or Miura-Hashimoto-Takagi [14]. To help see the big picture,
we summarize several recent results in the current literature in Table 1.

Table 1. Comparison of the applicable ranges and time complexities of several recent
results over fields of odd characteristics

Algorithm Applicable range Complexity

Kipnis-Patarin-Goubin [11] n ≥ m(m+ 1) Exponential

Courtois-Goubin-Meier [3] n ≥ 2m/7m(m+ 1) Polynomial

Courtois-Goubin-Meier [3] n ≥ 2m/7(m+ 1) Exponential
Thomae-Wolf [20] n > m Exponential
Miura-Hashimoto-Takagi [14] n ≥ m(m+ 3)/2 Exponential
This work n ≥ m(m+ 1)/2 Polynomial

Clearly, there is a significant gap between the cases over fields of even vs. odd
characteristics. In this paper, we attempt to close this gap by focusing on solv-
ing polynomially underdetermined MQ problem over fields of odd characteristics.
Currently, the best result is obtained by the Miura-Hashimoto-Takagi algorithm,
as asymptotically it requires the least degree of underdeterminedness while avoid-
ing the use of expensive, generic Gröbner-basis solver. As we shall discuss in more
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detail in Section 2, the algorithm can essentially be viewed as a way of obtaining
a generalization of row echelon form for MQ problem. Our main contributions
include that we can further improve the applicable range of the algorithm to
n ≥ m(m + 1)/2 essentially for free. Furthermore, we show how to allow a cer-
tain degree of trade-off between applicable range and running time. Last but
not least, the running time of the improved algorithm is actually polynomial
in number of equations and variables if we are allowed to use a linear amount
of extra memory. To the best of our knowledge, this is the first result showing
that this class of polynomially underdetermined MQ problem over fields of odd
characteristics can be solved in polynomial time.

2 The Miura-Hashimoto-Takagi Algorithm Revisited

In this section, we give an overview of the state-of-the-art Miura-Hashimoto-
Takagi algorithm for the sake of completeness. We begin by recalling that a
nondegenerate system of m linear equations in m variables over a field is in row
echelon form if it has the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x1, . . . , xm) = x1 +
∑

2≤i≤m
b1,ixi,

...

fm−2(x1, . . . , xm) = xm−2 + bm−2,m−1xm−1 + bm−2,mxm,

fm−1(x1, . . . , xm) = xm−1 + bm−1,mxm,

fm(x1, . . . , xm) = xm.

Such a form allows efficient solution by recursively solving the last equation
and back-substituting. The Miura-Hashimoto-Takagi algorithm can essentially
be viewed as a way of obtaining a generalization of row echelon form for quadratic
equations. Recall that in the algorithm, the top-left m ×m submatrices of the
quadratic coefficients have the following forms at the end of Step m [14]:

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0

0
. . .

0
*

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
. . .

0
*

*

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
. . .

0
*

*

⎞
⎟⎟⎟⎟⎟⎟⎠

, . . . ,

⎛
⎜⎜⎜⎜⎜⎜⎝

*

*

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(1)
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At this point, the entire system may look like:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x1, . . . , xn) = x2
m +

∑
1≤i≤m

xiL1,i(xm+1, . . . , xn) +Q1,2(xm+1, . . . , xn),

f2(x1, . . . , xn) = x2
m−1 +Q2,1(xm)

+
∑

1≤i≤m
xiL2,i(xm+1, . . . , xn) +Q2,2(xm+1, . . . , xn),

f3(x1, . . . , xn) = x2
m−2 +Q3,1(xm−1, xm)

+
∑

1≤i≤m
xiL3,i(xm+1, . . . , xn) +Q3,2(xm+1, . . . , xn),

...

fm(x1, . . . , xn) = x2
1 +Qm,1(x2, . . . , xm)

+
∑

1≤i≤m
xiLm,i(xm+1, . . . , xn) +Qm,2(xm+1, . . . , xn),

(2)
where Li,j and Qi,j are some linear and quadratic polynomials, respectively.
Note that some equations may have xi instead of x2

i as the leading term, which
happens roughly with probability 1/q [14].

Next in Step m + 1, {Li,j : ∀1 ≤ i ≤ m, 1 ≤ j < i} are further eliminated by
appropriate choice of xm+1, . . . , xn, resulting in⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
m − λ1 = 0,

x2
m−1 + Q̃2(xm)− λ2 = 0,

x2
m−2 + Q̃3(xm−1, xm)− λ3 = 0,

...

x2
1 + Q̃m(x2, . . . , xm)− λm = 0,

(3)

which is then recursively solved in Step m + 2 by solving from the top and
back-substituting.

In the case of linear equations, one can simply perform Gaussian elimination to
obtain a matrix in row echelon form. This does not work for quadratic equations
because there are more coefficients than can be eliminated by straightforward
Gaussian elimination. Instead, in Steps 1 through m of the Miura-Hashimoto-
Takagi algorithm, one performs a series of change-of-variable transformations on
the system to be solved. This is equivalent to performing a series of elementary
row/column operations simultaneously on the matrices of quadratic coefficients
and bringing them to the forms as shown in Equation (1), which is possible as
long as the system is sufficiently underdetermined [14].

A Toy Example. Here we give a toy example to help understand how the
Miura-Hashimoto-Takagi algorithm works. Let us consider the following system
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over F7:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x1, . . . , x6) =3x2
1 + 6x1x3 + x1x4 + 3x1x5 + 5x1x6 + 4x2

2 + 4x2x3

+ 6x2x4 + 2x2x5 + 3x2x6 + 4x2
3 + x3x4 + 6x3x6

+ 6x2
4 + 4x4x5 + 3x4x6 + 6x2

5 + 4x5x6 + 2x2
6 = 0,

f2(x1, . . . , x6) =2x2
1 + 3x1x2 + 3x1x3 + x1x4 + 6x1x5 + 2x1x6 + x2

2

+ 4x2x3 + 5x2x4 + x2x5 + 2x2
3 + 2x3x4 + 6x3x5

+ x2
4 + 4x4x5 + 2x4x6 + 2x2

5 + 5x5x6 + 6x2
6 = 0.

The quadratic coefficients of f1 and f2 can be expressed by matrices F1 and F2,
respectively:

F1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

3 0 6 1 3 5
0 4 4 6 2 3
0 0 4 1 0 6
0 0 0 6 4 3
0 0 0 0 6 4
0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

, F2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 3 3 1 6 2
0 1 4 5 1 0
0 0 2 2 6 0
0 0 0 1 4 2
0 0 0 0 2 5
0 0 0 0 0 6

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We can then proceed as follows.

Step 1.

F1 �→ F1 − 5F2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 6 5 3 1 2
0 6 5 2 4 3
0 0 1 5 5 6
0 0 0 1 5 0
0 0 0 0 3 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Step 2. Consider the following change-of-variable transformation:

T2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 a1,2 0 0 0 0
0 1 0 0 0 0
0 a3,2 1 0 0 0
0 a4,2 0 1 0 0
0 a5,2 0 0 1 0
0 a6,2 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

With T2 applied to both f1 and f2, we require that

{
5a3,2 + 3a4,2 + a5,2 + 2a6,2 + 6 = 0,

4a1,2 + 3a3,2 + a4,2 + 6a5,2 + 2a6,2 + 3 = 0.
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There are many solutions, among which we can take, e.g., (a1,2, a3,2, a4,2, a5,2,
a6,2) = (4, 3, 0, 0, 0). In this case, T2 transforms F1 and F2 as follows:

F1 �→

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 5 3 1 2
0 2 0 1 2 1
0 3 1 5 5 6
0 0 0 1 5 0
0 0 0 0 3 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, F2 �→

⎛
⎜⎜⎜⎜⎜⎜⎝

2 6 3 1 6 2
1 6 1 1 1 1
0 6 2 2 6 0
0 0 0 1 4 2
0 0 0 0 2 5
0 0 0 0 0 6

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and f1 and f2 become:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2x2
2 + x1(5x3 + 3x4 + x5 + 2x6) + x2(3x3 + x4 + 2x5 + x6) + x2

3

+ 5x3x4 + 5x3x5 + 6x3x6 + x2
4 + 5x4x5 + 3x2

5 = 0,

2x2
1 + 6x2

2 + x1(3x3 + x4 + 6x5 + 2x6) + x2(x4 + x5 + x6) + 2x2
3

+ 2x3x4 + 6x3x5 + x2
4 + 4x4x5 + 2x4x6 + 2x2

5 + 5x5x6 + 6x2
6 = 0.

Step 3. Now we need to solve:⎧⎪⎨
⎪⎩

5x3 + 3x4 + x5 + 2x6 = 0,

3x3 + x4 + 2x5 + x6 = 0,

3x3 + x4 + 6x5 + 2x6 = 0.

Again there are many solutions, among which we can take, e.g., (x3, x4, x5, x6) =
(1, 3, 3, 2) and arrive at: {

2x2
2 + 5 = 0,

2x2
1 + (6x2

2 + x2) + 1 = 0.

Step 4. From the first equation we see that x2
2 = 1, solving which gives

x2 = 1 or 6. If we pick x2 = 6 and substitute it into the second equation,
then we get x2

1 = 4, again solving which gives x1 = 2 or 5. This can immedi-
ately give a solution (x1, x2, x3, x4, x5, x6) = (2, 6, 1, 3, 3, 2), from which we can
obtain a solution (x1, x2, x3, x4, x5, x6) = (5, 6, 5, 3, 3, 2) to the original system
by reversing T2.

3 A First Improvement and Complexity Analysis

In this section, we first present an efficient time-memory trade-off for the Miura-
Hashimoto-Takagi algorithm over fields of odd characteristics. We then prove
that the proposed improvement has polynomial running time in number of equa-
tions and variables while using only linear amount of extra memory.
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3.1 Root Finding on a Search Tree

Over fields of odd characteristics, the Miura-Hashimoto-Takagi algorithm was
claimed to have an exponential time complexity O(2mnwm(log q)2), where 2 ≤
w ≤ 3 is the exponent of Gaussian elimination’s time complexity, because the
success probability of solving a system like Equation (3) is 2−m(1−q−m) [14]. We
note that this explanation is indeed true if we use a näıve root finding algorithm
in solving Equation 3. That is, whenever a resulted univariate equation in the
process of solving Equation (3) has one or more roots in Fq, we simply pick a
random one, substitute it into all subsequent equations, and continue solving.
Take the toy example in Section 2 as an example. There the equation x2

2 = 1 has
two roots in F7, namely, 1 and 6. Had we taken x2 = 1 instead, we would not
have been able to solve the system because this root would have led to x2

1 = 3,
which does not have any roots in F7. Since such a decision in solving xi can
change whether we can solve xj for j > i, the success probability of solving the
entire system of m equations drops exponentially in m, assuming such influence
is essentially random.

Alternatively, we can conceptually collect all those Fq roots that we iteratively
obtain and arrange them in a search tree, as shown in Figure 1.

xm =
√
λ1

xm−1 =
√

λ2 − Q̃2(xm)

.

.

.

xm−1 = −
√

λ2 − Q̃2(xm)

xm−2 =
√

λ3 − Q̃3(xm−1, xm)

xm−3 = λ4 − Q̃4(xm−2, xm−1, xm)

.

.

.

.

.

.

xm = −√λ2

.

.

. p
.
.
.

Fig. 1. Part of an example search tree formed by the Fq roots found in iteratively
solving Equation (3)
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We note that in this particular example, the fourth equation is degenerate, having
xm−3 instead of x2

m−3. In such a tree, we immediately see that the solution
obtained at a child node depends on those at all its ancestors. With this in mind,
we can then perform a depth-first search on this tree, as shown in Algorithm 1.
If the tree has depth greater than m, then there exists a path from the root node
to a leaf node of length at least m, meaning that we have found a solution for all
x1, . . . , xm. We declare a failure only when the tree does not have depth greater
than m, which we will find out only after visiting all nodes in the tree.

Algorithm 1. Depth-first search on the tree formed by the Fq roots found in
iteratively solving Equation (3)

1: procedure dfs({f1(xk), f2(xk−1, xk), . . . , fk(x1, . . . , xk)})
2: if k = 0 then
3: return SUCCESS
4: else
5: solve f1(xk)
6: if f1 has no Fq roots at all then
7: return FAILURE
8: else if f1 has one Fq root x̃ then
9: substitute xk = x̃ into f2, . . . , fk
10: return dfs({f2, . . . , fk})
11: else  f1 has two Fq roots x̃1 and x̃2

12: substitute xk = x̃1 into f2, . . . , fk and get g2, . . . , gk
13: if dfs({g2, . . . , gk})=SUCCESS then
14: return SUCCESS
15: else
16: substitute xk = x̃2 into f2, . . . , fk
17: return dfs({f2, . . . , fk})
18: end if
19: end if
20: end if
21: end procedure

3.2 Proof of Polynomial Running Time

How likely will we succeed in finding a solution for all x1, . . . , xm? As we will
show below, this success probability actually drops like O(1/m) as m increases.

Lemma 1. Assume that λ1, λ2, . . . , and Q̃2, Q̃3, . . . in the search tree shown in
Figure 1 are random. Let f(n) denote the probability that the depth of this tree
is greater than n. Then 1/f ∈ O(n).

Proof. First, we will recursively analyze p(n) = 1 − f(n), the probability that
the height of the tree is smaller or equal to n, as follows. At the root node,
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there is a 1/q probability that the quadratic coefficient vanishes, and the Miura-
Hashimoto-Takagi algorithm will make sure that the linear coefficient is nonzero.
Hence, we will always be able to find a root and continue downward, in which
case the probability of having a tree of height n is the same as that of n− 1. In
the other cases, there is a 1/2 probability that the resulting univariate quadratic
equation does not have any roots in Fq, as well as 1/2 probability that it has
two roots in Fq. In the latter case, in order to have a tree no taller than n, we
will need to have two subtrees no taller than n− 1. Therefore, p must satisfy a
(nonlinear) recurrence relation

p(n+ 1) =
q − 1

2q
+

1

q
p(n) +

q − 1

2q
p2(n).

Substituting p(n) = 1− f(n), we get the following recurrence relation for f :

f(n+ 1) = f(n)− q − 1

2q
f2(n), with f(1) = 1− p(1) =

q + 1

2q
. (4)

Now we will show that 1/f ∈ O(n) by showing that limn→∞ nf(n) exists and
is a nonzero constant. Let g(n) = q−1

2q nf(n). Then g satisfies

g(n+ 1) =
n+ 1

n
g(n)

(
1− 1

n
g(n)

)
, with 0 < g(1) =

q2 − 1

4q2
<

1

2
. (5)

We will show that g(n) is appropriately bounded and monotonically increasing,
and hence limn→∞ g(n) = c for some nonzero constant c.

First, the boundedness of g(n) can be shown by induction. We claim that for
all natural numbers n,

0 < g(n) <
n

n+ 1
. (6)

This is clearly true for n = 1 because 0 < g(1) < 1/2. Now we assume that
0 < g(n) < n/(n+1). The right-hand side of Equation (5) is a quadratic formula
h(x) = n+1

n x(1− x/n). For 0 ≤ x ≤ n/(n+ 1), the minimum of h(x) is 0, which
is achieved if and only if x = 0. Similarly, the maximum is

n+ 1

n

n

n+ 1

(
1− 1

n

n

n+ 1

)
=

n

n+ 1
<

n+ 1

n+ 2
,

which is achieved if and only if x = n/(n + 1). Therefore, 0 < g(n + 1) <
(n+ 1)/(n+ 2), and we can conclude that 0 < g(n) < n/(n+ 1) for all natural
numbers n.

Secondly, we can show that g(n) is monotonically increasing by combining
Equations (5) and (6):

g(n+ 1)

g(n)
=

n+ 1

n

(
1− 1

n
g(n)

)
>

n+ 1

n

(
1− 1

n

n

n+ 1

)
= 1.

Therefore, we can further refine the bounds:

q2 − 1

4q2
= g(1) ≤ g(n) <

n

n+ 1
< 1 for all natural numbers n.
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It follows that g(n) must converge to some nonzero constant as n goes to infinity.

Next, we will also need to compute ν(n), the average number of nodes that
we need to visit per solving attempt, in order to determine the overall time
complexity. From the proof, we see that ν must satisfy the following recurrence
relations:

ν(n+ 1) =
q − 1

2q
+

1

q
(ν(n) + 1) +

q − 1

2q
(2ν(n) + 1) = 1 + ν(n).

Since ν(1) = 1, this means that ν(n) = n. Putting it together, we conclude that
the overall time complexity of the improved Miura-Hashimoto-Takagi algorithm
is polynomial, as will be summarized in Theorem 1 in the next section.

Finally, the space complexity of depth-first search is linear in the longest path
length searched, which will never exceedm+1 in our case. Therefore, the amount
of extra memory used by Algorithm 1 is at most linear in m compared with that
used the näıve root finding algorithm in the Miura-Hashimoto-Takagi algorithm,
making our first improvement an efficient form of time-memory trade-off.

4 Two More Extensions in Applicable Range

In this section, we discuss how far we can push the applicable range of the Miura-
Hashimoto-Takagi algorithm. That is, how underdetermined is sufficient over
fields of odd characteristics? It has been shown that there are two determining
factors [14]:

1. In Step 1 ≤ t ≤ m, we need to eliminate B1(t) =
∑m

i=1 min(i, t − 1) coeffi-
cients using change-of-variable transformations by the other n− 1 variables;
Obviously the most stringent requirement here is B1(m) ≤ n − 1, which in
turn requires that n ≥ m(m+ 1)/2.

2. In Step m+ 1, we need to make Lt,i = 0 for all t ≤ i ≤ m in ft. This means
that in total, we need to make B2 =

∑m
t=1(m − t + 1) linear polynomials

in n − m variables vanish simultaneously. That is, we require that n ≥
m(m+ 3)/2.

Together, we have the requirement that n ≥ m(m+ 3)/2.
Our first insight is that we can actually have a slightly more relaxed require-

ment for n. Observe that, compared with solving Equation (2), it should be
equally easy to solve the following system of quadratic equations in a field of
odd characteristics :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
m + L1,mxm + λ1 = 0,

x2
m−1 + L2,m−1xm−1 + λ2 + Q̃2(xm) = 0,

x2
m−2 + L3,m−2xm−2 + λ3 + Q̃3(xm−1, xm) = 0,

...

x2
1 + Lm,1x1 + λm + Q̃m(x2, . . . , xm) = 0.

(7)



A Polynomial-Time Algorithm 51

This means that instead of
∑m

t=1(m− t+1), we just need to cancel
∑m

t=1(m− t)
linear polynomials. Therefore, the requirement on B2 can be relaxed to B2 =∑m

i=1 m(m− t) ≤ n−m, or equivalently, n ≥ m(m+ 1)/2, matching that from
B1.

Furthermore, we observe that we can further relax this requirement to n ≥
m(m+1)/2− b(b− 1)/2 at a cost superpolynomial in b. This can be achieved by
making the following two modifications. First, in Step 1 ≤ t ≤ m, we eliminate
B1(t) =

∑m
i=1 min(i, t− 1,m− b) coefficients using change-of-variable transfor-

mations by the other n−1 variables. As a result, the top-left m×m submatrices
of the quadratic coefficients will have the following forms at the end of Step m:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
. . .

0

*

*

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
. . .

0

*

*

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
b

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
. . .

*

*

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

*

*

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
m−b

.

Again the limiting factor will be B1(m) if b is relatively small compared with
m, in which case we have B1(m) = m(m+ 1)/2− b(b+ 1) ≤ n− 1. Secondly, in
Step m + 1, we make Lt,i = 0 for all max(t, b) < i ≤ m in ft. This means that
in total, we need to make B2 =

∑m
t=1(m−max(t, b)) = m(m− 1)/2− b(b− 1)/2

linear polynomials in n − m variables vanish simultaneously. Combining both
requirements, we have n ≥ m(m+ 1)/2 − b(b − 1)/2, and we will need to solve
the following system of quadratic equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q̃1(xm−b+1, . . . , xm) = 0,

...

Q̃b(xm−b+1, . . . , xm) = 0,

x2
m−b + Lb+1,m−bxm−b + λb+1 + Q̃b+1(xm−b+1, . . . , xm) = 0,

...

x2
1 + Lm,1x1 + λm + Q̃m(x2, . . . , xm) = 0.

We can use, for example, a Gröbner-basis solver to solve the first b generic-
looking quadratic equations in b variables [23,1], but unfortunately the solving
time is at least exponential in b.

Combining with the result of polynomial running time, we see that the ex-
tended Miura-Hashimoto-Takagi algorithm can actually provide better asymp-
totic performance than Thomae-Wolf. The latter also uses a Gröbner-basis solver
to solve a system of b′ = m−�n/m� quadratic equations in as many variables [20].
We see that in the range where n ≈ m2/2, b′ ≈ m/2, and solving such a large
system can be much more expensive than solving a system of b generic-looking
quadratic equations in as many variables with b � m. Furthermore, it remains
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so even when we take b ≈ m/2, in which case n � 3/8m2, whereas the Thomae-
Wolf algorithm will need to solve systems of b′ ≈ 5/8m equations in as many
variables.

Finally, we are ready to state the main result of this paper in the following
theorem.

Theorem 1. For solving m multivariate quadratic equations in n variables over
a finite field Fq of odd characteristics, the extended Miura-Hashimoto-Takagi
algorithm has a time complexity O(g(b)m3nw(log q)2), where m,n, b are natural
numbers with n ≥ m(m+1)/2−b(b−1)/2, g(·) accounts for the time complexity of
a Gröbner-basis solver, and 2 ≤ w ≤ 3 is the exponent of Gaussian elimination’s
time complexity.

5 Preliminary Experimental Results and Concluding
Remarks

We implemented both the original and the extended Miura-Hashimoto-Takagi
algorithm over fields of odd characteristics in Magma [2] and Sage [18], respec-
tively. We first summarize the experimental result of our Magma implementa-
tion of the original algorithm in Table 2. Here the experiments were carried
out on an Intel Celeron processor running at 1.80 GHz with 4 GB of RAM us-
ing Magma V2.17-9 running on Microsoft Windows 8 (64-bit). The average was
taken over 100,000 runs. We can see that in Table 2, the success probabilities
indeed drop rather quickly even for n slightly larger than m(m+ 3)/2.

Table 2. Running time and success probabilities of the original Miura-Hashimoto-
Takagi algorithm over F7

m n Avg. time Suc. prob. O(2−m) O(1/m)

4 16 3.25 ms 25.37% 6.25% 25.00%
11 84 183.56 ms 3.68% 4.88 × 10−4 9.09%
28 434 32.23 sec 0.01% 3.73 × 10−9 3.57%

In Table 3, we report the success probabilities of the extended
Miura-Hashimoto-Takagi algorithm implemented in Sage for the cases of solving
x equations in x(x + 3)/2 variables over F7, where x = 1, . . . , 10. The second
column in the table shows the probabilities predicted by Equation (4), whereas
each of the entries in the third column represents the statistics obtained from
solving 1,000 randomly generated systems. From this preliminary experimental
result, it seems that Equation (4) does a fairly good job in predicting the success
probability, which is strong evidence for our claim of polynomial running time
for the extended Miura-Hashimoto-Takagi algorithm.

To conclude, the extended Miura-Hashimoto-Takagi algorithm closes a gap
between solving a class of underdetermined MQ problem over fields of even
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Table 3. Success probabilities of Step m+2 in the extended Miura-Hashimoto-Takagi
algorithm when solving x equations in x(x+ 3)/2 variables over F7

x f(x) Exp. Diff.

1 0.571 0.562 -2%
2 0.431 0.404 -6%
3 0.352 0.318 -10%
4 0.299 0.284 -5%
5 0.260 0.252 -3%
6 0.231 0.215 -7%
7 0.208 0.215 3%
8 0.190 0.156 -18%
9 0.174 0.168 -4%

10 0.161 0.141 -13%

vs. odd characteristics. Now as long as n ≥ m(m + 1)/2, we have polynomial-
time solvers for both the even and odd cases. This boundary, symmetric with the
case of overdetermined MQ problem, seems tight. We suspect that any further
breakthrough in time complexity beyond the extended Miura-Hashimoto-Takagi
algorithm may require an entirely different approach.
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A An Example Implementation in Magma

A.1 The Implementation

Step 1–m

Trans_step:=function(k,n,m,F);

T:=AssociativeArray(); Step:=1;

while Step le m do;

if Step ge 2 then;

CoeA:=AssociativeArray(); countA:=0;

Coeb:=AssociativeArray(); countb:=0;

for l:=1 to Step-1 do;

for j:=1 to m-l+1 do;

for i:=1 to n do;

if i ne Step then; countA:=countA+1;

CoeA[countA]:=F[j][l,i]+F[j][i,l];

else; countb:=countb+1;

Coeb[countb]:=F[j][l,Step]+F[j][Step,l];

end if;

end for;

end for;

end for;

A:=Matrix(k,countb,n-1,[CoeA[i]:i in [1..countA]]);

b:=Matrix(k,1,countb,[(-1)*Coeb[i]:i in [1..countb]]);

x:=Solution(Transpose(A),b);

T[Step]:=ScalarMatrix(k,n,1);

for i:=1 to Step-1 do;

T[Step][i,Step]:=x[1,i];

end for;

for i:=Step+1 to n do;

T[Step][i,Step]:=x[1,i-1];

end for;

"T[",Step,"]="; T[Step];

for i:=1 to m do;

F[i]:=Transpose(T[Step])*F[i]*T[Step];

end for;

end if;

if Step lt m then; c:=AssociativeArray();

for i:=1 to m-Step do;

c[i]:=F[i][Step,Step]/F[m-Step+1][Step,Step];

F[i]:=F[i]-c[i]*F[m-Step+1];

end for;

end if;

Step:=Step+1;

end while;

for i:=1 to m do; "F[",i,"]="; F[i]; end for;
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return F,T;

end function;

Step m + 1

Linear_step:=function(k,n,m,F);

Lin:=AssociativeArray();

count:=0;

for i:=1 to m do;

for j:=1 to m-i+1 do;

for l:=m+1 to n do;

count:=count+1;

Lin[count]:=F[i][j,l]+F[i][l,j];

end for;

end for;

end for;

NumOfLin:=IntegerRing()!(count/(n-m));

LE:=Matrix(k,NumOfLin,n-m,[Lin[i]:i in [1..count]]);

L:=Kernel(Transpose(LE));

x:=BasisElement(L,1);

x:=Matrix(n-m,1,x);

"a Solution of Linear Equations is"; Transpose(x);

return F,x;

end function;

Step m + 2

Root_step:=function(k,n,m,F,G,T,x);

P<[y]>:=PolynomialRing(k,m);

vec:=AssociativeArray();

for i:=1 to n do;

if i le m then; vec[i]:=y[i];

else; vec[i]:=x[i-m,1]; end if;

end for;

Y:=Matrix(P,n,1,[vec[i]:i in[1..n]]);

for i:=1 to m do; G[i]:=ChangeRing(G[i],P); end for;

count:=0; i:=1;

while i le m do;

H:=Transpose(Y)*G[i]*Y;

a:=(G[i][m-i+1,m-i+1]*y[m-i+1]^2-H[1,1])/G[i][m-i+1,m-i+1];

if IsSquare(a) eq false then;

if i ne 1 then;

if count eq 0 then;

i:=i-1; Y[m-i+1,1]:=(-1)*Y[m-i+1,1];

"Y[",m-i+1,"]=",Y[m-i+1,1]; count:=1;

else; "error"; break;
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end if;

else; "error"; break;

end if;

else;

Y[m-i+1,1]:=Sqrt(a);

"Y[",m-i+1,"]=",Y[m-i+1,1];

count:=0;

end if;

i:=i+1;

end while;

"Y=",Transpose(Y);

T[1]:=&*[T[i]:i in[2..m]]; T[1]:=ChangeRing(T[1],P);

X:=T[1]*Y; "X=",Transpose(X);

// Verification

for i:=1 to m do;

F[i]:=ChangeRing(F[i],P); F[i]:=Transpose(X)*F[i]*X;

end for;

Check:=Matrix(P,1,m,[F[i][1,1]: i in[1..m]]);

if IsZero(Check) eq true then;

return "OK."; else return "Failed."; end if;

end function;

A.2 Example Calculation

System Parameters

k:=GF(7); n:=6; m:=2; F:=AssociativeArray();

F[1]:=Matrix(k,[[3,0,6,1,3,5],[0,4,4,6,2,3],[0,0,4,1,0,6],

[0,0,0,6,4,3],[0,0,0,0,6,4],[0,0,0,0,0,2]]);

F[2]:=Matrix(k,[[2,3,3,1,6,2],[0,1,4,5,1,0],[0,0,2,2,6,0],

[0,0,0,1,4,2],[0,0,0,0,2,5],[0,0,0,0,0,6]]);

Example Output

> G,T:=Trans_step(k,n,m,F);

T[ 2 ]=

[1 4 0 0 0 0]

[0 1 0 0 0 0]

[0 3 1 0 0 0]

[0 0 0 1 0 0]

[0 0 0 0 1 0]

[0 0 0 0 0 1]

F[ 1 ]=

[0 0 5 3 1 2]

[0 2 0 1 2 1]

[0 3 1 5 5 6]

[0 0 0 1 5 0]

[0 0 0 0 3 0]

[0 0 0 0 0 0]

F[ 2 ]=

[2 6 3 1 6 2]

[1 6 1 1 1 1]

[0 6 2 2 6 0]

[0 0 0 1 4 2]

[0 0 0 0 2 5]

[0 0 0 0 0 6]

> G,y:=Linear_step(k,n,m,G);

a Solution of Linear Equations is

[1 3 3 2]

> Root_step(k,n,m,F,G,T,y);
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Y[ 2 ]= 1

Y[ 2 ]= 6

Y[ 1 ]= 2

Y=[2 6 1 3 3 2]

X=[5 6 5 3 3 2]

OK.
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Abstract. Multivariate Public Key Cryptography (MPKC) has been
put forth as a possible post-quantum family of cryptographic schemes.
These schemes lack provable security in the reduction theoretic sense,
and so their security against yet undiscovered attacks remains uncertain.
The effectiveness of differential attacks on various field-based systems
has prompted the investigation of differential properties of multivariate
schemes to determine the extent to which they are secure from differ-
ential adversaries. Due to its role as a basis for both encryption and
signature schemes we contribute to this investigation focusing on the
HFE cryptosystem. We derive the differential symmetric and invariant
structure of the HFE central map and that of HFE− and provide a
collection of parameter sets which make these HFE systems provably
secure against a differential symmetric or differential invariant attack.

1 Introduction and Outline

Along with the discovery of polytime quantum algorithms for factoring and com-
puting discrete logarithms, see [1], came a rising interest in “quantum-resistant”
cryptographic protocols. For the last two decades this interest has blossomed
into a large international effort to develop post-quantum cryptography, a term
which elicits visions of a post-apocalyptic world where quantum computing ma-
chines reign supreme. While progress in quantum computing indicates that such
devices are not precluded by the laws of physics, it is not at all clear when
we may see large-scale quantum computing devices becoming a cryptographic
threat. Nevertheless, the potential and the uncertainty of the situation clearly
establish the need for secure post-quantum options.

One of a few reasonable candidates for security in a quantum computing world
is multivariate cryptography. We already rely heavily on the difficulty of invert-
ing nonlinear systems of equations in symmetric cryptography, and we quite
reasonably suspect that that security will remain in the quantum paradigm.
Multivariate Public Key Cryptography (MPKC) has the added challenge of re-
sisting quantum attack in the asymmetric setting.
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While it is difficult to be assured of a cryptosystems’s post-quantum security
in light of the continual evolution of the relatively young field of quantum al-
gorithms, it is reasonable to start by developing schemes which resist classical
attack and for which there is no known significant weakness in the quantum
realm. Furthermore, the establishment of security metrics provide insight which
educate us about the possibilities for attacks and the correct strategies for the
development of cryptosystems.

In this vein, some classification metrics are introduced in [2,3] which can
be utilized to rule out certain classes of attacks. While not reduction theoretic
attacks, reducing the task of breaking the scheme to a known (or often suspected)
hard problem, these metrics can be used to prove that certain classes of attacks
fail or to illustrate specific computational challenges which an adversary must
face to effect an attack.

Many attacks on multivariate public key cryptosystems can be viewed as dif-
ferential attacks, in that they utilize some symmetric relation or some invariant
property of the public polynomials. These attacks have proved effective in appli-
cation to several cryptosystems. For instance, the attack on SFLASH, see [4], is
an attack utilizing differential symmetry, the attack of Kipnis and Shamir [5] on
the oil-and-vinegar scheme is actually an attack exploiting a differential invari-
ant, even Patarin’s initial attack on C∗ [6] can be viewed as an exploitation of
a trivial differential symmetry, see [3]. These attacks are evidence that the work
in [2,3] is worthy of continuation and further development.

This task leads us to an investigation of the HFE family of schemes, see [7],
and a characterization of the differential properties of some variants. Results
similar to those of [2,3] will allow us to make conclusions about the differential
security of HFE-derived schemes, and, in particular, provide some insight into
the properties of some of its important variants such as HFE− and HFEv−,
see [8] and [9].

To this end, we derive the differential symmetry and differential invariant
structure of the central map of HFE. Specifically, we are able to bound the
probability that an HFE or HFE− primitive has a nontrivial differential struc-
ture and to provide parameter sets for which these schemes are provably secure
against a restricted differential adversary. This result on the HFE and HFE−

primitives, in conjunction with degree of regularity results such as [10,11] pro-
vide a strong argument for the security of the HFE− and HFEv− signature
schemes, though more work is required to verify that the differential structure
is not weakened by the vinegar modifier for practical parameters.

We note explicitly that the provided proof of security against a differential
adversary for HFE is not an endorsement of HFE, a scheme thoroughly broken
in [12,13]. The proof indicates that HFE cannot be broken by “differential
means.” The attack of [12] is a decidedly “rank” attack, referring to the fact
that it relies heavily and necessarily on rank analysis. Furthermore, since rank
methods have remained ineffective in breaking the general HFE− and HFEv−

schemes, the proofs provided for parameter sets of HFE− schemes have greater
significance.
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The paper is organized as follows. First, we describe the notion of a differential
adversary and discuss differential security. We then recall the HFE scheme from
[7] and some of its history. In the following section, we examine linear differential
symmetric relations for both the HFE and HFE− schemes, deriving param-
eters to ensure the non-existence of such relations. We next review the notion
of a differential invariant and a method of classifying differential invariants. We
continue, analyzing the differential invariant structure of the HFE and HFE−

systems and providing parameters precluding the existence of a nontrivial dif-
ferential invariant in the general case. Finally, we conclude, noting parameters
which provide provable differential security.

2 The Differential Adversary

The discrete differential of a field map f : Fn
q → Fm

q is given by:

Df(y, x) = f(x+ y)− f(x)− f(y) + f(0).

It is simply a normalized difference equation with variable interval. Several
prominent cryptanalyses in the history of MPKC have utilized a symmetric
relation of the discrete differential of the core map or subspaces which are left
invariant under some action of the differential of the core map. Simple exam-
ples include the linearization equations attack of [7], which can be viewed as
exploiting the relation Df(f(x), f(x)) = 0; the attack on balanced Oil-Vinegar,
see [14,5]; and the SFLASH attack of [4]. Along with rank attacks, differential
attacks have made the greatest impact on MPKC among structural key recovery
attacks.

For the purpose of progress in security analysis in MPKC, we propose a model
for a differential adversary. This model strives to capture the behaviors employed
in all differential attacks and will hopefully be improved with time.

We will say that a restricted differential adversary A is a probabilistic Turing
machine with access to a public key P which computes either

1. an affine map L such that DP (Ly, x) +DP (y, Lx) = ΛLDP (y, x), or
2. a pair of subspaces V and W with dim(V ) + dim(W ) ≥ n the number of

variables, such that DP (y, x) = 0 for all x ∈ V and y ∈W ,

and uses the solution to derive an equivalent private key.
An unrestricted differential adversary A is a probabilistic Turing machine

with access to a public key P which computes either

1. a subspace Z ⊆ Fm
q of dimension at least two wherem is the number of public

equations and an affine map L such that A(Ly, x) + A(y, Lx) = ΛLA(y, x)

for all A =
∑m−1

i=0 ziDPi where (z0, z1, . . . , zm−1) ∈ Z, i.e. A ∈ SpanZ(DPi),
or

2. a subspace Z ⊆ Fm
q of dimension at least two and a pair of subspaces V

and W with dim(V ) + dim(W ) ≥ n the number of variables, such that
A(y, x) = 0 for all x ∈ V , y ∈ W , and A ∈ SpanZ(DPi),
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and uses the solution to derive an equivalent private key.
We note here a few things. Item number two in the definition of the un-

restricted differential adversary has no meaning if the subspace Z is one di-
mensional. The significance of the subspace Z is that it allows the unrestricted
differential adversary to target subspaces of the span of the public polynomials
which were constructed in different ways, having different differential properties,
see [15] for a particular example of such an attack. A proof of security against
an unrestricted differential adversary is very challenging, however there is little
interest in the distinction between an unrestricted differential adversary and a
restricted differential adversary if the private polynomials of a scheme were not
constructed with different methods, since trivial structure for proper subspaces
Z is a generic property.

In the case of the restricted differential adversary it specifically suffices to
prove that a core map f has no such L and no such (V,W ) to guarantee that the
restricted differential adversary’s advantage for the cryptosystem with primitive
f is zero. Item 1 of the restricted differential adversary above is discussed in
more detail in Section 5 and item 2 in Section 6.

3 Useful Background Algebraic Results

For completeness, we present a collection of useful propositions and definitions
which make the later proofs more streamlined.

Proposition 1. If A,B are two m × n matrices, then rank(A) = rank(B) if
and only if there exist nonsingular matrices C,D, such that A = CBD.

Proof. Let A be anm×nmatrix of rank r. With row operations (P,m×m) we can
get A into row echelon form, PA. Then we can use column operations (Q,n×n)
to “zero-out” the remaining nonleading elements and permute the leading 1’s
to the first r columns. Thus PAQ is the m × n matrix with the r × r identity
matrix in the upper-left region, and zeros everywhere else. Denote this matrix
as I ′. Thus PAQ = I ′. We can also do this with B, so that P ′BQ′ = I ′ = PAQ.
Thus A = (P−1P ′)B(Q′Q−1), with P−1P ′ and Q′Q−1 nonsingular.

From this point forward we fix a finite field Fq and a finite extension K of
degree n.

Definition 1. We define the minimal polynomial of a subspace V ⊆ K as

MV (x) =
∏
v∈V

(x− v)

The term “minimal polynomial” is used since this is the polynomial of minimal
degree of which every element of V is a root. We note that the equationMV (x) =
0 is an Fq-linear equation.

Suppose that V has Fq-dimension d, so that |V | = qd. ThenMV (x) has degree
qd and must have the form

xqd + bd−1xqd−1

+ · · ·+ b2x
q2 + b1x

q + b0x bi ∈ K (1)
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Proposition 2. Let T : K→ K be an Fq-linear map. Let π : K→ K be defined

by πx =Mker(T )(x). There exists a nonsingular Fq-linear map T̃ : K→ K such

that Tx = T̃ πx.

Proof. Clearly, π is an Fq-linear map. Also clear is the fact that ker(π) = ker(T ).
Since π and T are additive homomorphisms, each is constant on cosets of the
kernel. Therefore we may define T̃ x = Tπ−1(x) where π−1(x) is the preimage of
x (a coset of the common kernel) under π. Evidently, T̃ is well-defined. Finally,
T̃ π(x) = Tπ−1(πx) = T (x+ ker(T )) = Tx.

In addition, we can characterize all functions from V to K (analogous to the
coordinate ring K[x]/ 〈MV (x)〉):

Proposition 3. Let FV be the ring of all functions from the Fq-subspace V of
K to K. Then FV is isomorphic to K[x]/ 〈MV (x)〉.

Proof. The ring of all functions from K to itself is K[x]/
〈
xqn − x

〉
. Suppose

that f, g ∈ K[x]/
〈
xqn − x

〉
are identical on V . Then for all v ∈ V , v is a root

of (f − g)(x). Thus (x − v) is a linear factor of (f − g)(x) for all v ∈ V . Thus
MV (x)|(f − g)(x). Consequently, 〈MV (x)〉 is the ideal of functions which send
V to zero. Thus K[x]/

〈
xqn − x,MV (x)

〉
is the ring of nontrivial functions from

V to K. Since MV (x) splits in K, MV (x)|xqn − x. To see that all functions

from V to K are polynomials note that there are (qn)q
d

functions from V (of

Fq-dimension d) to K, and |K[x]/ 〈MV (x)〉 | = (qn)q
d

.

4 HFE

The Hidden Field Equations (HFE) scheme was first presented by Patarin in [7]
as a method of avoiding his linearization equations attack on the C∗ scheme of
Matsumoto and Imai, see [6] and [16]. The basic idea of the system is to use the
butterfly construction to hide an easily invertible polynomial over an extension
field.

More specifically, let Fq be a finite field and let K be a degree n extension
of Fq. Given an easily invertible “quadratic” map f : K → K, quadratic in
the sense that f is a sum of products of pairs of Fq-linear functions of x, one
constructs a system of quadratic formulae over Fq by composing two Fq-affine
transformations T, U : K → K thusly, P = T ◦ f ◦ U , and then expressing the
composition over the base field, Fq. Explicitly any such “core” map f has the
form:

f(x) =
∑
i≤j

qi+qj<D

αi,jx
qi+qj +

∑
i

qi<D

βix
qi + γ,

with the degree bound D established to allow for easy inversion.
To encrypt given the public key P (x), one simply evaluates every public poly-

nomial at the plaintext vector x ∈ Fn
q ≈ K. Decryption is accomplished by
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inverting each of the three private components individually. The most interest-
ing inversion is that of f , which is inverted via a polynomial system solver such
as the Berlekamp algorithm.

In [7], Patarin presented a couple ofHFE challenges to be used as benchmarks
for progress in cryptanalyzing HFE and HFE−. HFE challenge 1 was broken
in 2003, see [17], via an algebraic attack which allows the direct inversion of
the system of equations. This attack was specialized in the sense that it took
advantage of the choices of the coefficients of f as well as the characteristic of
Fq.

In 2011, HFE was broken for all characteristics altogether in [12], in a vast
improvement of the Kipnis-Shamir attack of [18]. The attack breaks the original
HFE for all practical parameters as well as several variants, including projected
HFE and Multi-HFE, by what amounts to a sophisticated rank analysis of
the central map via the public polynomials. Notably, the attack can not break
HFE− or HFEv−.

5 Linear Differential Symmetry

5.1 Symmetry for HFE

In [4], the SFLASH signature scheme was broken by exploiting a symmetric
relation of the differential of the public key. This relation was inherited from
the core map of the scheme. Specifically, a linear differential symmetry is an
equation in which linear maps are applied to the differential in such a way that
the equation is linear in the unknown coefficients of the linear maps. We can
always express the symmetry in the following form:

Df(My, x) +Df(y,Mx) = ΛMDf(y, x), (2)

where M and ΛM are linear maps. To evaluate the potential for a differential
symmetric attack on HFE, we consider conditions for the existence of a linear
differential symmetry on the core map f of an HFE scheme.

Consider the differential of the core map:

Df(y, x) =
∑
i≤j

qi+qj<D

αi,j(y
qixqj + yq

j

xqi). (3)

Df is a K-bilinear form. We choose a convenient representation for K:

x �→

⎡
⎢⎢⎢⎣

x
xq

...

xqn−1

⎤
⎥⎥⎥⎦ .

Under this representation we can express Df as the n × n symmetric matrix
with (i, j)th and (j, i)th entries αi,j for i �= j and (i, i)th entry 2αi,i (which may
be zero depending on the characteristic of K).
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Since any linear map M : K → K can be written Mx =
∑n−1

i=0 mix
qi , under

our representation M can be expressed:

M =

⎡
⎢⎢⎢⎣

m0 m1 . . . mn−1
mq

n−1 mq
0 . . . mq

n−2
...

...
. . .

...

mqn−1

1 mqn−1

2 . . . mqn−1

0

⎤
⎥⎥⎥⎦ .

In this representation, we have the formula

Df(My, x) +Df(y,Mx) = y(MTDf +DfM)x. (4)

Consider the action of ΛM on Df . ΛMDf(y, x) =
∑n−1

k=0 λkDf(y, x)q
k

. Notice

specifically that in our representation the matrix for Df qk is the same as the
matrix representing Df shifted to the right and down k units with all entries
raised to the qkth power. This shift is due to the fact that

Df(y, x)q
k

=
∑
i≤j

qi+qj<D

αqk

i,j(y
qi+k

xqj+k

+ yq
j+k

xqi+k

).

Specifically, the (i, j)th entry of Df qk is αqk

i−k,j−k if i �= j, and (i, i)th entry

(2αi−k,i−k)q
k

= 2αqk

i−k,i−k (0 in characteristic two).
Thus the possibility of a differential symmetry can be deduced simply by

setting the matrix MTDf + DfM equal to the matrix ΛMDf . With certain
constraints it is easy to deduce whether there exists a solution.

Theorem 1. Let f(x) be an HFE polynomial (in particular f is not a mono-
mial function). Suppose that f has the following properties:

1. no power of q is repeated among the exponents of f , and
2. the difference of the powers of q in each exponent is unique.

Then f has no nontrivial differential symmetry.

Proof. First consider computing DfM . From the condition on the monomials
of f , Df has at most a single nonzero entry in any row or column. Therefore
each row of DfM is a multiple of a row in M . In particular, if αi,jx

qi+qj is a
monomial of f , then the ith row of DfM is[

αi,jm
qj

−j αi,jm
qj

1−j . . . αi,jm
qj

−1−j
]
,

and the jth row is [
αi,jm

qi

−i αi,jm
qi

1−i . . . αi,jm
qi

−1−i

]
.
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Fig. 1. Graphical representation of the equation MTDf+DfM = ΛMDf for theHFE

polynomial f(x) = αi,jx
qi+qj + αr,sx

qr+qs . Horizontal and vertical lines represent
nonzero entries in MTDf + DfM while diagonal lines represent nonzero entries in
ΛMDf . Solid lines correspond to the (i, j) monomial while dotted lines correspond to
the (r, s) monomial.

Consider the ith row ofMTDf+DfM . For all k not occurring as a power of q in

f , the (i, k)th entry is αi,jm
qj

k−j . Consider the (i, j)th entry of MTDf +DfM .
This quantity is the sum of the (i, j)th entry of DfM and the (j, i)th entry,

specifically αi,j(m
qi

0 +mqj

0 ). Let αr,sx
qr+qs be another monomial of f . Then the

(i, r)th entry of MTDf +DfM is αi,jm
qj

r−j +αr,sm
qs

i−s, and the (i, s)th entry is

αi,jm
qj

s−j + αr,sm
qr

i−r.

In ΛMDf , for all αi,jx
qi+qj a monomial in f , the (i+k, j+k)th entry is equal

to the (j+ k, i+ k)th entry and takes the value αqk

i,jλk while all other entries are
zero.

Therefore consider the elements in the ith row of the equation MTDf +
DfM = ΛMDf . For every monomial αr,sx

qr+qs in f , we have that the s−r+ith
element and the r − s + ith element of row i in ΛMDf are nonzero. All other
entries of that row are zero. Therefore, for all k not occurring as a power of q
in f or as a difference of the powers of q in an exponent of a monomial in f
plus i, mk−j = 0. Given the condition that the differences of powers of q in the
exponents are unique, and the equations mk−t = 0 for all other t occurring as
powers of q, we obtain mi = 0 for all i �= 0. Therefore M is a multiplication map.
But as proven in Theorem 2 in [19], if m0 �∈ Fq this implies that the polynomial
is a C∗ monomial, a contradiction. Thus M is simply multiplying by a scalar
which induces a symmetry for every map g : K → K. Thus f has no nontrivial
differential symmetry.
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5.2 Symmetry for HFE−

We can extend the result of the previous section to reveal the differential sym-
metric structure of HFE−. The specific difference in the proof is merely placing
the operator π, a projection on to a subspace, in (4).

π
[
MTDf +DfM

]
= ΛM [Df ] . (5)

We handle the general case of a codimension r projection explicitly.

Theorem 2. Let K be a prime extension of Fq and let π : K→ K be a codimen-
sion r projection. Let f : K → K be a nontrivial HFE polynomial with degree
bound D < qn/2, let Pf be the multiset of powers of q occurring in the exponents
of f , and let Sf be the multiset of differences of the powers of q in the exponent
of each monomial summand of f . Suppose that f has the following properties:

1. Pf is a set,
2. Sf is a set, and
3. for all i ∈ Pf the Lee distance between (i+Sf ) \Pf and Pf is at least r+1.

Then if D(π ◦ f)(My, x)+D(π ◦ f)(y,Mx) = ΛMDf(y, x), then Mx = m0x for
some m0 ∈ Fq. Thus π ◦ f has no nontrivial differential symmetry.

s

i

r

ji r s

j

Fig. 2. Graphical representation of the equation π
[
MTDf +DfM

]
= ΛMDf for the

HFE polynomial f(x) = αi,jx
qi+qj +αr,sx

qr+qs , where πx = ax+bxq+xq2 . Horizontal
and vertical lines represent nonzero entries in π

[
MTDf +DfM

]
while diagonal lines

represent nonzero entries in ΛMDf . Solid lines correspond to the (i, j) monomial while
dotted lines correspond to the (r, s) monomial.

Proof. Due to the effect of T and by Proposition 2, we may without loss of

generality assume that πx =
∑r

b=0 abx
qb with ar = 1. Therefore, the matrix form

of π
[
MTDf +DfM

]
is easily derived from the matrix form of MTDf +DfM .



68 T. Daniels and D. Smith-Tone

The action of raising to the power of q results in each element of the matrix
raised to the power of q and transposed one row down and one column to the
right.

Let αi,jx
qi+qj be a monomial summand of f . We observe that the (i, k)th

entry of π
[
MTDf +DfM

]
for k �∈ Pf ∪ (1 + Pf ) ∪ · · · ∪ (r + Pf ) ∪ (i + Sf ) is

mqj

k−j while the corresponding entry of ΛMDf is zero. Therefore mk = 0 for all
k ∈ (−j+Pf )∪(1−j+Pf )∪· · ·∪(r−j+Pf )∪(i−j+Sf ). The remaining entries

of π
[
MTDf +DfM

]
produce the relations 2mi−j = 0, mqj

i−j+1 +mqj+1

i−j−1 = 0,
and so on corresponding to the (i, k)th entry for k ∈ Pf ∪ (1 + Pf ) ∪ · · · ∪ (r +
Pf )∪ (i+Sf ). From these we derive that mk = 0 for all k �∈ (i− j+ [Sf ∪ {0}]).

By symmetry, we have that mk = 0 for all k �∈ (r − s + [Sf ∪ {0}]) for all
monomial summands αr,sx

qr+qs . We search for an element g ∈ Zn where n is
prime by hypothesis such that g is in every such set. Since for every a ∈ Sf we
have that −a ∈ Sf , a necessary condition is that Sf is closed under addition
by g. Since every nonzero g is a generator of Zn, we must have that g = 0,
since otherwise we contradict the fact that D < qn/2. Thus Mx = m0x, and we
may apply Theorem 2 from [19] in the case m0 �∈ Fq to conclude that π ◦ f is
a quadratic monomial map. Since f is a nontrivial HFE polynomial, we have
that m0 ∈ Fq.

We note that the conditions of the above theorem are very easy to check,
though for very small D they may be difficult to satisfy and there may be
some issues regarding a lack of entropy in the private key space. With proper
selection of the extension, however, it is unlikely that this adjustment will lead to
a successful attack based on the morphism of polynomials problem, in a similar
vein to [20].

6 Differential Invariants

The discrete differential Df is a symmetric, bilinear function on Fn
q (using the

vector space representation of K), but each coordinate of Df is a symmetric,
bilinear form on K. Because of this, we may express each coordinate of Df ,
[Df(y, x)]i as

[Df(y, x)]i = yTDfix.

Maintaining our definitions of K and f , we define a “first order differential
invariant” of f .

Definition 1. Let f : K → K be a function. A differential invariant of f is a
subspace V ⊆ K with the property that there is a subspace W ⊆ K such that
dim(W ) ≤ dim(V ) and ∀A ∈ SpanFq(Dfi), AV ⊆W .

Informally speaking, a function has a differential invariant if the image of a sub-
space under all differential coordinate forms lies in a fixed subspace of dimension
no larger. This definition captures the notion of simultaneous invariants, sub-
spaces which are simultaneously invariant subspaces of Dfi for all i, and detects
when large subspaces are acted upon linearly.
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If we assume the existence of a first order differential invariant V , we can
define a corresponding subspace V ⊥ as the set of all elements x ∈ K such that
the dot product 〈x,Av〉 = 0 ∀v ∈ V, ∀A ∈ Span(Dfi). This is not quite the
usual definition of an orthogonal complement. V ⊥ is not the set of everything
orthogonal to V , but rather everything orthogonal to AV , which may or may
not be in V .

With our definitions of V and V ⊥, we can establish the following useful result.
Assume there is a first order differential invariant V ⊆ K, and pick a linear
projection M : K→ V and another linear projection M⊥ : K→ V ⊥. Examining
one of the differential coordinate-forms,

[Df(M⊥y,Mx)]i = (M⊥y)T (Dfi(Mx)) (6)

Since M⊥y is in V ⊥, and DfiMx ∈ AV , we must then have that

[Df(M⊥y,Mx)]i = (M⊥a)T (Dfi(Mx)) = 0 (7)

The “i” in Dfi did not matter, meaning that for all i (from 1 to n), i.e. for all
coordinates of Df , the above equation is true. We can then simply say that:

∀y, x ∈ K, Df(M⊥y,Mx) = 0 or equivalently, Df(M⊥K,MK) = 0 (8)

This fact will restrict what M and M⊥ can be. We can make our investigation of
M,M⊥ easier by employing Proposition 1. Our idea is to express M⊥ = SMT ,
where S may be singular, but T is nonsingular (or vice versa if rank(M) <
rank(M⊥)).

Without loss of generality, due to the symmetry of Df , we may assume that
rank(M⊥) ≤ rank(M). If the ranks are equal, then we may apply Proposition
1 and write M⊥ = SMT , with S and T nonsingular. If rank(M⊥) < rank(M),
composeM with a singular matrixX so that rank(XM) = rank(M⊥), and then
apply the result so that M⊥ = S(XM)T . Then we can express M⊥ = S′MT ,
where S′ is singular. The matrix T is included to ensure that the kernels of
M,M⊥ are properly aligned. Restating our differential result (8) in this manner,
we have that if M⊥ = SMT , and M : K→ V , then

∀x, y ∈ K, Df(SMTy,MTx) = 0 (9)

7 Differential Invariant Structure

7.1 HFE

If f has non-trivial invariant V we know that ∀A ∈ Span(Dfi), dim(AV ) ≤
dim(V ). Since the dot-product is non-degenerate on K, and remembering that
V ⊥ is defined slightly differently, we can say dim(V ⊥)+dim(AV ) = n. This fact
implies that dim(V ⊥)+dim(V ) ≥ n, so either dim(V ⊥) ≥ n/2 or dim(V ) ≥ n/2,
possibly both.
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If dim(V ) ≥ n/2, we maintain MT : K→ V and characterize S : V → V ⊥. If
we deduce S maps V to {0}, that is, V ⊥ = {0}, this would mean dim(AV ) = n
and consequently AV = K. If V �= K, we contradict dim(AV ) ≤ dim(V ), and if
V = K, we contradict the non-triviality of V .

If dim(V ⊥) ≥ n/2, we take M ′T ′ : K → V ⊥ instead and characterize S′ :
V ⊥ → V . If S′ is the zero map on V ⊥, i.e. S′V ⊥ = V = {0}, then we contradict
the non-triviality of V .

Without loss of generality we assume dim(V ) ≥ n/2 because the following
analysis and results can be achieved just as easily if we have dim(V ⊥) ≥ n/2.

For notational convenience, we now fix MTx = x̂, MTy = ŷ, MTK = V , and
d = dim(V ). Starting with the core map

f(x) =
∑
i≤j

qi+qj<D

αi,jx
qi+qj +

∑
i

qi<D

βix
qi + γ,

we compute:

Df(Sŷ, x̂) =
∑
i≤j

qi+qj<D

αi,j

[
(Sŷ)q

i

x̂qj + (Sŷ)q
j

x̂qi
]
. (10)

For practical parameters, D is far smaller than |V |, see for example [7], and so

for Df(Sŷ, x̂) = 0, every coefficient of x̂qj must be in 〈MV (ŷ)〉. Expanding (10)
we obtain:

Df(Sŷ, x̂) =
∑
i≤j

qi+qj<D

αi,j

[
(Sŷ)

qi
x̂qj + (Sŷ)

qj
x̂qi
]

=
∑
i,j

qi+qj<D

[
(αi,j + αj,i) (Sŷ)

qi
]
x̂qj ,

(11)

where we specifically note in the last expression that if i �= j exactly one of αi,j

and αj,i may be nonzero. Thus for each j such that qj < D we have the following
polynomial: ∑

i:qi+qj<D

(αi,j + αj,i)(Sŷ)
qi . (12)

The membership of the jth polynomial of the form (12) in 〈MV (ŷ)〉 provides
the relation ∑

i:qi+qj<D

(αi,j + αj,i)(Sŷ)
qi = 0. (13)

Relation (13) has � = �logq(D)� degrees of freedom on S as a linear action
on V . Therefore, there are d − � Fq-linearly independent relations on S from a
single monomial of (11). For a practically chosen D, two linearly independent
relations of this form on S force S to be the zero map on V . Consequently, we
have that V ⊥ = {0}, a contradiction. Specifically, the probability that two such
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given relations are independent is approximately 1 − q−n�; thus with very high
probability f has no differential invariant structure.

In particular, we provide a specific strategy for provably eliminating differen-
tial invariants.

Theorem 3. Let f be an HFE polynomial with degree bound D < qn/2. If there
is a power of q which is unique, f has no non-trivial invariant structure.

Proof. Assume by way of contradiction that f has a non-trivial differential in-
variant. Let j be the unique power of q occurring in an exponent in f . By the
above discussion it suffices to analyze membership of the jth polynomial of the
form (12) in 〈MV (ŷ)〉. Given the condition on j, this polynomial has the form
(αrj +αjr)(Sŷ)

qr . If this polynomial is in 〈MV (ŷ)〉, then so is Sŷ, sinceMV (ŷ)
has no repeated factors, and we have SV = {0}, a contradiction.

7.2 HFE−

Deriving the differential invariant structure for HFE− follows a nearly identical
line of reasoning. The clear distinction is that since the definition of the differen-
tial invariant depends on the span of the differentials of the public polynomials,
there is greater freedom to have an invariant when there are fewer public poly-
nomials. For specificity, we analyze the case in which a single public equation is
removed, though importantly, a very similar though notationally messy analysis
is easy to derive in the general case.

Once again, considering the effects of T and Proposition 2, it suffices to analyze
π ◦ f where πx = x+ xq. Notice that we have:

π ◦ f(x) =
∑
i≤j

qi+qj<D

αi,jx
qi+qj +

∑
i

qi<D

βix
qi + γ

+
∑
i≤j

qi+qj<D

αq
i,jx

qi+1+qj+1

+
∑
i

qi<D

βq
i x

qi+1

+ γq,
(14)

and therefore,

D(π ◦ f)(Sŷ, x̂) =
∑
i≤j

qi+qj<D

αi,j

[
(Sŷ)q

i

x̂qj + (Sŷ)q
j

x̂qi
]

+
∑
i≤j

qi+qj<D

αq
i,j

[
(Sŷ)q

i+1

x̂qj+1

+ (Sŷ)q
j+1

x̂qi+1
]
.

(15)

Again, we may collect terms with respect to the powers of x̂, and obtain poly-
nomials in Sŷ.

D(π ◦ f)(Sŷ, x̂) =
∑
j

pj(Sŷ)x̂
qj . (16)
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Setting this quantity equal to zero, we see that a differential invariant is only
possible when pj(Sŷ) ∈ 〈MV (ŷ)〉 for all j. Here we note that an equation of the
form (16) occurs for any projection π, though the structure of the polynomials
pj depend on the corank of π and the structure of f .

Despite the added difficulty of the minus modifier, we can prove the nonexis-
tence of nontrivial differential invariants forHFE− under conditions very similar
to those provided in the previous subsection.

Theorem 4. Let f be an HFE polynomial with degree bound D < qn/2. Let π

be the codimension r projection πx =
∑r

b=0 abx
qb where ar = 1. If there is a

power k of q which is unique and k−1, k−2, . . . , k−r does not occur as a power
of q in any quadratic monomial summand, π ◦ f has no non-trivial invariant
structure.

Proof. By the above condition, there is a power k such that the “coefficient” of

x̂qk in (16) is pk. Moreover, the condition on k that k − 1, k − 2, . . . , k − r do
not occur implies that pk is derived from a single summand in (15). Applying
the argument from Theorem 3, we have that SV = {0}, and therefore there is
no nontrivial differential invariant of π ◦ f .

As an immediate corollary, we can derive a very easy condition for the nonex-
istence of nontrivial differential invariants for practical HFE− schemes.

Corollary 1. Let f be an HFE polynomial with degree bound D < qn/2. If r <
n/2 public equations are removed and the smallest power of q in any quadratic
monomial summand of f occurs only once, the public key has no non-trivial
differential invariant structure.

Proof. Apply Theorem 4 with k the specified smallest power of q.

It is easy to see that the result if also valid if we replace the word “smallest”
by “largest.” Informally, the important condition is that logq(D) + r < n.

8 IP, Degree of Regularity, Other Factors

The restrictions suggested in Theorems 1, 2, 3, and 4 reduce the entropy of
the private key space, which might raise concerns about vulnerability to attacks
based on a “guess-then-IP” strategy, to direct inversion via Gröbner bases. As
it turns out, for even modest parameters these issues are not realized. More-
over, the theorems are not “tight,” meaning that they are merely simple ways
of eliminating differential symmetric and invariant weakness. Given a private
HFE polynomial, one can check directly for conditions which guarantee the
nonexistence of a differential symmetry or invariant.

Consider, for example, using the parameter set for HFE Challenge 2; specifi-
cally, we have q = 16, n = 36, r = 4, and D = 4352 = 162+163. Thus K = F1636 ,
and our HFE map must have the form :
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f(x) =
∑

i≤j≤3,i�=3

αi,jx
qi+qj +

∑
i≤3

βix
qi + γ

We may choose α1,2 and α0,3 to be the only non-zero α, therefore we obtain
the distinct powers of q Pf = {0, 1, 2, 3} and differences Sf = {−3,−1, 1, 3}. By
Corollary 1, f has no nontrivial differential invariant structure. One may also
consider the system of equations arising from setting πx = xq4 + axq3 + bxq2 +
cxq + dx in (5). Using similar analysis as in Theorem 2, we derive that the only
possible solution is when Mx = m0x for m0 ∈ Fq; therefore, f has no nontrivial
differential symmetric structure and thus this instantiation of HFE− is secure
against a restricted differential adversary. The private key space is reduced from
containing q13n HFE polynomials to only containing q7n such maps, though
qn(qn − 1) of these may be seen to be equivalent keys (counting equivalence
classes of keys intersected with polynomials of this form), via the additive and
big sustainers of [21]. Therefore, there are roughly q5n nonequivalent polynomials
with only α1,2 and α0,3 nonzero among the α.

For weak parameters, in particular when the αi,j are chosen from the base
field, an attack based on the IP problem is presented in [20]. The symmetries
used in that method, however, are not present when both α1,2 and α0,3 are
chosen randomly from K. While we may consider the coefficient of α1,2 to be
“absorbed” by the affine map T , the effect of the remaining coefficient breaks
the symmetry. Without the commutativity of the Frobenius map with the HFE
polynomial, the parameters supplied are out of range for an IP-based attack.

Another concern is that the rank of the scheme may be so low as to make
the scheme susceptible to attack via Gröbner basis methods. However, using the
theorem from [22], we compute the degree of regularity of the adjusted scheme
to be:

(16− 1)4

2
+ 2 = 32,

based on the fact that the rank of the central map is only four. Using the formula
from [23], we obtain an estimated complexity of(

36 + 32

32

)ω

where ω = 2.3766. Thus, we estimate the complexity of directly inverting this
concrete example to be O(2153). Note, the attack of [12] is not feasible here since
this is an HFE− scheme, see section 8.1 in [12].

9 Conclusion

For eighteen years, HFE has been studied, influencing cryptanalysis, symbolic
computation, and the development of new cryptographic schemes. Though the
originalHFE scheme is broken for all practical parameters, as a platform for the
development of various signature schemes, HFE has excelled, utilizing several
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modifiers to spawn new systems, some of which are leading candidates for secure
post-quantum signatures.

Our analysis contributes to the HFE legacy, elucidating the differential
structure inherent to the core map. The results indicate that given practical
parameters, many HFE-derived systems lack non-trivial differential invariant
structure. Further, we have established that with a simple choice of parameters
we can provably eliminate non-trivial differential symmetric and invariant struc-
ture while maintaining security against attacks exploiting a diminished private
key space. In particular, there is a parameter space for which HFE− is provably
secure against a restricted differential adversary.
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Abstract. In this paper, we propose an improved version of the Sim-
ple Matrix encryption scheme of PQCrypto2013. The main goal of our
construction is to build a system with even stronger security claims. By
using square matrices with random quadratic polynomials, we can claim
that breaking the system using algebraic attacks is at least as hard as
solving a set of random quadratic equations. Furthermore, due to the
use of random polynomials in the matrix A, Rank attacks against our
scheme are not feasible.

Keywords: Multivariate Cryptography, Simple Matrix Encryption Scheme,
Provable Security.

1 Introduction

Cryptographic techniques are an essential tool to guarantee the security of com-
munication in modern society. Today, the security of nearly all of the crypto-
graphic schemes used in practice is based on number theoretic problems such as
factoring large integers and solving discrete logarithms. The best known schemes
in this area are RSA [20], DSA and ECC. However, schemes like these will be-
come insecure as soon as large enough quantum computers arrive. The reason
for this is Shor’s algorithm [21], which solves number theoretic problems such as
integer factorization and discrete logarithms in polynomial time on a quantum
computer. Therefore, one needs alternatives to those classical public key schemes
which are based on mathematical problems not affected by quantum computer
attacks.

Besides lattice, code and hash based cryptosystems, multivariate cryptogra-
phy is one of the main candidates for this [1]. Multivariate schemes are very fast
and require only modest computational resources, which makes them attractive
for the use on low cost devices like smart cards and RFID chips [2,4]. How-
ever, while there exist many practical multivariate signature schemes [9,13,18],
the number of efficient and secure multivariate encryption schemes is somewhat
limited.

M. Mosca (Ed.): PQCrypto 2014, LNCS 8772, pp. 76–87, 2014.
c© Springer International Publishing Switzerland 2014
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At PQCrypto 2013, Tao et al. proposed a new MPKC for encryption called
Simple Matrix (or ABC) encryption scheme, which resists all known attacks
against multivariate schemes. However, decryption errors occur with non negli-
gible probability.

In this paper, we propose an improved version of the ABC scheme. The main
goal of our approach is to increase the security of the scheme even further. We
achieve this by using square matrices with random quadratic polynomials, by
which we obtain a cubic map as the public key. We claim that an algebraic attack
on our scheme is at least as hard as solving a random quadratic system of the
same size. Furthermore, due to the use of random polynomials in the matrix A,
the matrices associated to the central map are of high rank, which prevents the
use of Rank attacks against our scheme.

The rest of this paper is organized as follows. In Section 2 we describe the
basic ABC encryption scheme as proposed in [22]. Section 3 introduces our cubic
version of the ABC scheme. In Section 4 we discuss the security of our scheme,
whereas Section 5 proposes concrete parameter sets for the cubic ABC encryption
scheme. In Section 6 we describe shortly a technique to decrease the probability
of decryption failures. Finally, Section 7 concludes the paper.

2 The Basic ABC Encryption Scheme

In this section we introduce the ABC encryption scheme as proposed by Tao et
al. in [22]. Before we come to the description of the scheme itself, we start with
a short overview of the main concepts of multivariate cryptography.

2.1 Multivariate Cryptography

The basic objects of multivariate cryptography are systems of multivariate
quadratic polynomials (see equation (1)).

p(1)(x1, . . . , xn) =

n∑
i=1

n∑
j=i

p
(1)
ij · xixj +

n∑
i=1

p
(1)
i · xi + p

(1)
0

p(2)(x1, . . . , xn) =

n∑
i=1

n∑
j=i

p
(2)
ij · xixj +

n∑
i=1

p
(2)
i · xi + p

(2)
0

...

p(m)(x1, . . . , xn) =

n∑
i=1

n∑
j=i

p
(m)
ij · xixj +

n∑
i=1

p
(m)
i · xi + p

(m)
0 . (1)
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The security of multivariate schemes is based on the

Problem MQ:Givenmmultivariate quadratic polynomials p(1)(x), . . . , p(m)(x)
as shown in equation (1), find a vector x̄ = (x̄1, . . . , x̄n) such that
p(1)(x̄) = . . . = p(m)(x̄) = 0.
The MQ problem (for m ≈ n) is proven to be NP-hard even for quadratic poly-
nomials over the field GF(2) [12].

To build a public key cryptosystem based on the MQ problem, one starts with
an easily invertible quadratic map F : Fn → Fm (central map). To hide the
structure of F in the public key, one composes it with two invertible affine (or
linear) maps L1 : Fn → Fn and L2 : Fm → Fm.
The public key is therefore given by F̄ = L2 ◦ F ◦ L1.
The private key consists of L1, F and L2 and therefore allows to invert the public
key.

In this paper we concentrate on multivariate encryption schemes. The stan-
dard encryption/decryption process works as shown in Figure 1.

Encryption

d ∈ Fn �F̄
c ∈ Fm

�

L−1
1

y ∈ Fn z ∈ Fm� F−1 �

L−1
2

Decryption

Fig. 1. General workflow of multivariate encryption schemes

Encryption: To encrypt a message d ∈ Fn, one simply computes c = F̄(d). The
ciphertext of the message d is c ∈ Fm.

Decryption: To decrypt the ciphertext c ∈ Fm, one computes recursively z =
L−12 (c), y = F−1(z) and d = L−11 (y). d ∈ Fn is the plaintext corresponding to
the ciphertext c.

Since, for multivariate encryption schemes, we have m ≥ n, the preimage of
the vector z under the central map F and therefore the decrypted plaintext is
unique.

An overview of existing multivariate schemes can be found in [8].
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2.2 The ABC Encryption Scheme of [22]

The original Simple Matrix encryption scheme as proposed by Tao et al. can be
described as follows.

Key Generation: Let F be a finite field with q elements. For a parameter s ∈ N

we set n = s2 and m = 2 · n and define three matrices A, B and C of the form

A =

( x1 ... xs

...
...

x(s−1)·s+1 ... xn

)
, B =

(
b1 ... bs
...

...
b(s−1)·s+1 ... bn

)
, C =

( c1 ... cs
...

...
c(s−1)·s+1 ... cn

)
.

Here, x1, . . . , xn are the linear monomials of the multivariate polynomial ring
F[x1, . . . , xn], whereas b1, . . . , bn and c1, . . . , cn are randomly chosen linear com-
binations of x1, . . . , xn.

One computes E1 = A ·B and E2 = A · C. The central map F of the scheme
consists of the m components of E1 and E2.

The public key of the scheme is the composed map F̄ = L2 ◦F ◦L1 : Fn → Fm

with two randomly chosen invertible linear maps L2 : Fm → Fm and L1 : Fn →
Fn, the private key consists of the matrices B and C and the linear maps L1

and L2.

Encryption: To encrypt a message d ∈ Fn, one simply computes c = F̄(d) ∈ Fm.

Decryption: To decrypt a ciphertext c ∈ Fm, one has to perform the follow-
ing three steps.

1. Compute z = L−12 (c). The elements of the vector z ∈ Fm are written into
matrices Ē1 and Ē2 as follows.

Ē1 =

( z1 ... zs
...

...
z(s−1)·s+1 ... zn

)
, Ē2 =

( zn+1 ... zn+s

...
...

zn+(s−1)·s+1 ... zm

)
.

2. In the second step one has to find a vector y = (y1, . . . , yn) such that F(y) =
z. To do this, one has to distinguish four cases:
• If Ē1 is invertible, one considers the equation B · Ē−11 · Ē2 − C = 0.
Therefore one gets n linear equations in the n variables y1, . . . , yn.

• If Ē1 is not invertible, but Ē2 is invertible, one considers the equation
C · Ē−12 · Ē1 −B = 0. One gets n linear equations in the n variables.

• If none of Ē1 and Ē2 is invertible, but Ā = A(y) is invertible, one
considers the relations Ā−1 · Ē1 − B = 0 and Ā−1 · Ē2 − C = 0. One
interprets the elements of Ā−1 as new variables w1, . . . , wn and therefore
gets m linear equations in the m variables w1, . . . , wn, y1, . . . , yn.

• If none of Ē1, Ē2 and Ā is invertible, there occurs a decryption failure.
3. Finally, one computes the plaintext by d = L−11 (y1, . . . , yn).
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The probability of a decryption failure occurring in the second step is about 1
q .

It might happen that the linear systems in the second step of the decryption
process have multiple solutions y(1), . . . ,y(�) . In this case one has to perform
the third step for each of these solutions to get a set of possible plaintexts
d(1), . . . ,d(�). By encrypting these plaintexts one can test which of them corre-
sponds to the given ciphertext c.

3 The New Cubic Encryption Scheme

The new cubic Simple Matrix encryption scheme can be described as follows.

Key Generation: Let F be a finite field with q elements. For a parameter s ∈ N

we set n = s2 and m = 2 · n and define three matrices A, B and C of the form

A =

( p1 ... ps

...
...

p(s−1)·s+1 ... pn

)
, B =

(
b1 ... bs
...

...
b(s−1)·s+1 ... bn

)
, C =

( c1 ... cs
...

...
c(s−1)·s+1 ... cn

)
.

Here, p1, . . . , pn are random quadratic polynomials, whereas b1, . . . , bs and c1, . . . ,
cn are randomly chosen linear combinations of x1, . . . , xn.

One computes E1 = A ·B and E2 = A · C. The central map F of the scheme
consists of the m components of E1 and E2.

The public key of the scheme is the composed map F̄ = L2 ◦F ◦L1 : Fn → Fm

with two randomly chosen invertible linear maps L2 : Fm → Fm and L1 : Fn →
Fn, the private key consists of the matrices B and C and the linear maps L1

and L2.

Encryption: To encrypt a message d ∈ Fn, one simply computes c = F̄(d) ∈ Fm.

Decryption: To decrypt a ciphertext c ∈ Fm, one has to perform the follow-
ing three steps.

1. Compute z = L−12 (c). The elements of the vector z ∈ Fm are written into
matrices Ē1 and Ē2 as follows.

Ē1 =

( z1 ... zs
...

...
z(s−1)·s+1 ... zn

)
, Ē2 =

( zn+1 ... zn+s

...
...

zn+(s−1)·s+1 ... zm

)
.
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2. In the second step one has to find a vector y = (y1, . . . , yn) such that F(y) =
z. To do this, one has to distinguish four cases:

• If Ē1 is invertible, one considers the equation B · Ē−11 · Ē2 − C = 0.
Therefore one gets n linear equations in the n variables y1, . . . , yn.

• If Ē1 is not invertible, but Ē2 is invertible, one considers the equation
C · Ē−12 · Ē1 −B = 0. One gets n linear equations in the n variables.

• If none of Ē1 and Ē2 is invertible, but Ā = A(y) is invertible, one
considers the relations Ā−1 · Ē1 − B = 0 and Ā−1 · Ē2 − C = 0. One
interprets the elements of Ā−1 as new variables w1, . . . , wn and therefore
gets m linear equations in the m variables w1, . . . , wn, y1, . . . , yn.

• If none of Ē1, Ē2 and Ā is invertible, there occurs a decryption failure.

3. Finally, one computes the plaintext by d = L−11 (y1, . . . , yn).

The probability of a decryption failure occurring in the second step is about 1
q .

It might happen that the linear systems in the second step have multiple so-
lutions y(1), . . . ,y(�) . In this case one has to perform the third step of the
decryption process for each of these solutions to get a set of possible plaintexts
d(1), . . . ,d(�). By encrypting these plaintexts one can test which of them corre-
sponds to the given ciphertext c.

4 Security Analysis

4.1 Rank Attacks

Rank attacks are one of the major threats against multivariate encryption
schemes. There are two different versions of this attack. The first one is called
the MinRank attack or LowRank attack as proposed by Goubin et al. in [11].
The other one is called the HighRank Attack [5].

The goal of the MinRank attack is to find a linear combination of the com-
ponents of the public key of minimal rank r. In the context of e.g. HFE such
a polynomial of low rank corresponds to a central polynomial. By finding those
linear combinations of low rank an attacker can recover the linear map L2 and
therefore the secret key of the scheme.

In the High Rank Attack, the attacker tries to find linear combinations cor-
responding to variables which appear in the central polynomials the smallest
number of times. In a scheme like Rainbow these are the oil variables of the last
layer. By repeating this attack for the other layers, the attacker can recover the
linear map L1 and therefore the secret key of the scheme.

However, in the case of the cubic Simple Matrix encryption scheme, the ele-
ments of the matrix A are randomly chosen multivariate quadratic polynomials.
Therefore, their rank is close to n and all variables appear in each of the cen-
tral polynomials approximately the same number of times. This shows that rank
attacks can not be used to attack the cubic Simple Matrix encryption scheme.
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4.2 Algebraic Attacks

In a direct attack (message recovery attack) the attacker tries to solve the public
system F(d) = c for the plaintext d. To achieve this, the attacker can use either
a Gröbner Basis method such as F4[10] or a system solving algorithm like XL
or one of its variants like mutant XL [6,7,17,16].

When attacking our scheme, the attacker is faced with a system of m = 2n
multivariate cubic polynomials in n variables. As described in the section above,
this system was obtained by multiplying a matrix A containing randomly cho-
sen multivariate quadratic polynomials with matrices B and C containing linear
ones (when neglecting the linear transformations L1 and L2). We make the fol-
lowing claim:

Claim: Solving the cubic public system of our scheme is asymptotically at least
as hard as solving a multivariate quadratic system with randomly chosen coef-
ficients.

To justify this claim, let us assume that an attacker wants to solve the equation
E2(x) = y, where E2 = A · C and y is some matrix in Fs×s. Let us further
assume that an oracle O gives the attacker the values of the elements of C
(without revealing the inner structure of this matrix), i.e. the oracle gives him
a matrix C̄ ∈ Fs×s with C̄ = C(x). So the attacker obtains a system of linear
combinations in the elements of the matrix A. By solving this system by Gaus-
sian elimination, the attacker finally gets a system A(x) = y · C̄−1. But to get
the values of (x1, . . . , xn), the attacker still has to solve a system of multivariate
quadratic equations with randomly chosen coefficients.

A much more interesting heuristic argument goes as follows.
Let us denote the polynomial entries of the matrix A by Aij(x) and similarly

the polynomial entries of E1 and E2 by E1,ij(x) and E2,ij(x). And we denote
the entries of B and C by Bij(x) and Cij(x) respectively. Clearly we have that

E1,ij(x) =

s∑
l=1

Ail(x) ·Blj(x),

E2,ij(x) =

s∑
l=1

Ail(x) · Clj(x).

In the case of quadratic systems, it is a common assumption that the complexity
of solving the system is actually determined by the structure of the ideal gen-
erated by the homogeneous part of highest degree, namely the degree 2 part of
the polynomials.

In our case this means that the complexity of solving the system

Aij(x) = Dij ,
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is actually determined by the structure of the ideal generated by the homoge-
neous polynomials Āij(x), which are the quadratic part of Aij(x). We call this
ideal IA.

Now let us look at the system E1,ij(x) = D1,ij , and E2,ij(x) = D2,ij . In this
case the complexity should be dominated by the structure of the homogeneous
part of degree 3, which is given by

Ē1,ij(x) =

s∑
l=1

Āil(x) · B̄lj(x) and

Ē2,ij(x) =

s∑
l=1

Āil(x) · C̄lj(x),

where B̄ij and C̄ij are the homogeneous linear parts of Bij and Cij respec-
tively. We call this ideal IE . If we now look that the generators of this ideal, we
immediately reach the conclusion that

IE ⊂ IA.

Furthermore, the generators of IE are nothing but elements in the space spanned
by the elements generated in the first step of the XL algorithm if applied to IA,
since B̄ij(x) and C̄ij(x) are nothing but linear functions. From this perspective,
we therefore speculate that in general or precisely asymptotically (when s is too
small it might be different), the complexity of solving the public systems of the
cubic Simple Matrix encryption scheme should be harder or at least as hard as
solving a quadratic system with randomly chosen coefficients of size n× n.

This heuristic analysis is very speculative, however it is very exciting in the
sense that it actually hints that maybe we can derive a certain form of provable
security for our new system, which is something we have never seen before.

Additionally to these theoretical considerations, we carried out a number
of experiments with MAGMA, which contains an efficient implementation of
Faugeres F4 algorithm [10]. For this, we created, for different parameter sets,
the public system of both the cubic Simple Matrix encryption scheme and the
original ABC scheme of [22] and solved these systems using the MAGMA com-
mand Variety. We repeated each of these experiments ten times.
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Table 1. Direct attack against the cubic Simple Matrix encryption scheme

GF(28) GF(216)
(s,m,n) (2, 4, 8) (3, 9, 18) (4, 16, 32) (5, 25, 50) (2, 4, 8) (3, 9, 18) (4, 16, 32) (5, 25, 50)

our scheme

dreg 5 6 7 - 5 6 7 -
time(s) 0.8 15.4 - - 1.2 23.7 - -

memory(MB) 5.2 18.3 ooM 1 - 8.4 27.1 ooM 1 -

ABC dreg - 4 5 6 - 4 5 6
scheme time(s) - 0.02 3.5 17,588 - 0.1 5.7 23,264
of [22] memory(MB) - 3.4 8.1 1,112 - 7.4 23.1 3,214

1) out of memory

As we see from the table, for the same value of s the degree of regularity is at
least higher by two than that of the original Simple Matrix encryption scheme.
Therefore, to obtain the same security level, we can decrease the value of s by 2
(compared to [22]).

Here we would like to point out that, due to the fact that we can only perform
experiments for very small s, we can not really say anything precise about our
speculations.

5 Parameter Proposals

Based on our security analysis presented in the previous section, we propose
the following parameters for our cubic version of the Simple Matrix encryption
scheme. For the fields GF(28) and GF(216), to be on the conservative side, we
suggest

• s = 7 for a security level of 80 bit and
• s = 8 for a security level of 100 bit

These parameter proposals are obtained by the following analysis:
As Table 1 shows, the degree of regularity of solving the public system in-

creases linearly with s. We can therefore assume that for s = 7 the degree of
regularity is greater or equal to 10, while for s = 8 it is given by 11. We can
therefore (for s = 7) estimate the number of homogeneous monomials of highest
degree in the solving step of F4 by

T =

(
n+ dreg
dreg

)
≥ 235.8.

The number of non-zero monomials in every polynomial is given by

τ =

(
n+ 3

3

)
≥ 214.4.

Therefore we can estimate the complexity of a direct attack against the cubic
Simple Matrix Encryption scheme by

Complexitydirect attack(s = 7) ≥ 3 · τ · T 2 ≥ 288. (2)
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For s = 8 we get T ≥ 242.2, τ ≥ 215.5 and therefore

Complexitydirect attack(s = 8) ≥ 3 · τ · T 2 ≥ 2102. (3)

Table 2 shows for our 4 parameter sets key sizes of the cubic Simple Matrix
encryption scheme as well as the probability of a failure occurring during the
decryption process.

Table 2. Parameters and key sizes of the cubic Simple Matrix encryption scheme

security parameters input output public key private key probability of
level (bit) (F, s, n,m) size (bit) size (bit) size (kB) size(kB) decryption failure

80
(GF(28),7,49,98) 392 784 2,115 72.7 2−8

(GF(216,7,49,98) 784 1,568 4,230 145.4 2−16

100
(GF (28),8,64,128) 512 1,024 5,988 154 2−8

(GF(216,8,64,128) 1,024 2,048 11,976 308 2−16

Here, we would like to further speculate actually that even for the case of
s = 5 and s = 6, the scheme might provide a good security level for practical
applications. But this needs much better support evidence, which we still do not
have.

6 Decreasing the Probability of Decryption Failures

As Table 2 shows, the probability of failures occuring during the decryption pro-
cess of our scheme is non negligible. To decrease this probability, we can use the
technique presented in [23]. The basic idea of this is to use non square matrices
for A, B and C. In particular, A is chosen to be an r × s (r < s) matrix con-
taining random quadratic polynomials, while the matrices B and C (containing
linear combinations of x1, . . . , xn) are of size s×u. Decryption remains possible,
as long as the rank of the matrix A is at least r. The probability of this is given
by

Pr(Rank(A) ≥ r) = 1−
(
1− 1

qs

)
·
(
1− 1

qs−1

)
· . . . ·

(
1− 1

qs−r+1

)
≈ 1

qs−r+1
.

By choosing the parameters r and s of the scheme in an appropriate way, it is
possible to decrease the probability of decryption failures arbitrarily.
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In [23] it was shown that by this strategy the security of the scheme against
known attacks is not weakened. However, as it comes to provable security, we
do not exactly know what happens. In this field, there has still much work to be
done.

However, there are other ways to reduce the probability of decryption fail-
ures. For example, we can simply encrypt the message twice. In the second run,
we encode the message with a public invertible affine transformation over the
ring Z256 (integers mod 256) and then encrypt the encoded message with our
scheme. Since an affine transformation over the ring Z256 is algebraically com-
plicated with respect to the Galois field GF(256), we can not join these two
encryptions as a larger low-degree algebraic system. If necessary, one can even
encrypt the message several times. We will demonstrate the ways to reduce de-
cryption failures in our further work.

7 Conclusion and Future Work

In this paper we proposed a cubic version of the Simple Matrix encryption scheme
of PQCrypto 2013 [22]. By using a matrix A whose elements are randomly cho-
sen multivariate quadratic polynomials, we increase the security of the original
Simple Matrix scheme even further. Our construction completely eliminates the
possibility of Rank attacks against our scheme. Furthermore, we speculate that
breaking our scheme using direct attacks is as least as hard as solving a quadratic
system with randomly chosen coefficients. Future work includes decreasing the
probability of decryption failures and a formal proof of our security claim.
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Abstract. In this paper we propose a new approach to code-based sig-
natures that makes use in particular of rank metric codes. When the
classical approach consists in finding the unique preimage of a syndrome
through a decoding algorithm, we propose to introduce the notion of
mixed decoding of erasures and errors for building signature schemes. In
that case the difficult problem becomes, as is the case in lattice-based
cryptography, finding a preimage of weight above the Gilbert-Varshamov
bound (case where many solutions occur) rather than finding a unique
preimage of weight below the Gilbert-Varshamov bound. The paper de-
scribes RankSign: a new signature algorithm for the rank metric based on
a new mixed algorithm for decoding erasures and errors for the recently
introduced Low Rank Parity Check (LRPC) codes. We explain how it is
possible (depending on choices of parameters) to obtain a full decoding
algorithm which is able to find a preimage of reasonable rank weight
for any random syndrome with a very strong probability. We study the
semantic security of our signature algorithm and show how it is possible
to reduce the unforgeability to direct attacks on the public matrix, so
that no information leaks through signatures. Finally, we give several
examples of parameters for our scheme, some of which with public key
of size 11, 520 bits and signature of size 1728 bits. Moreover the scheme
can be very fast for small base fields.

Keywords: post-quantum cryptography, signature algorithm, code-
based cryptography, rank metric.

1 Introduction

In recent years there has been a burst of activity regarding post-quantum cryp-
tography, the attractiveness of which has become even more obvious since the
recent attacks on the discrete logarithm problem in small characteristic [4]: it
shows that the emergence of new attacks on classical cryptographic systems is
always a possibility and that it is important to seriously consider alternatives to
existing cryptosystems.
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Among potential candidates for alternative cryptography, lattice-based and
code-based cryptography are strong candidates; in this paper we consider the
signature problem for code-based cryptography and especially rank metric based
cryptography. The problem of finding an efficient signature algorithm has been
a major challenge for code-based cryptography since its introduction in 1978
by McEliece. Signing with error-correcting codes can be achieved in different
ways: the CFS algorithm [7] considers extreme parameters of Goppa codes to
obtain a class of codes in which a non-negligeable part of random syndromes
are invertible. This scheme has a very small signature size, however it is rather
slow and the public key is very large. Another possibility is to use the Fiat-
Shamir heuristic to turn a zero-knowledge authentication scheme (like the Stern
authentication scheme [32]) into a signature scheme. This approach leads to very
small public keys of a few hundred bits and is rather fast, but the signature size
in itself is large (about 100,000b), so that overall no wholly satisfying scheme is
known.

Classical code-based cryptography relies on the Hamming distance but it is
also possible to use another metric: the rank metric. This metric introduced in
1985 by Gabidulin [12] is very different from the Hamming distance. The rank
metric has received in recent years a very strong attention from the coding com-
munity because of its relevance to network coding. Moreover, this metric can
also be used for cryptography. Indeed it is possible to construct rank-analogues
of Reed-Solomon codes: the Gabidulin codes. Gabidulin codes inspired early
cryptosystems, like the GPT cryposystem ([13]), but they turned out to be in-
herently vulnerable because of the very strong structure of the underlying codes.
More recently, by considering an approach similar to NTRU [21](and also MDPC
codes [27]) constructing a very efficient cryptosystem based on weakly structured
rank codes was shown to be possible [14]. However, in terms of signatures based
on the rank metric, only systems that use Fiat-Shamir are presently known [15].
Overall the main appeal of rank-metric based cryptography is that the com-
plexity of the best known attack grows very fast with the size of parameters:
contrary to (Hamming) code-based and to lattice-based cryptography, it is pos-
sible to obtain a general instance of the rank decoding problem with size only a
few thousands bits for a (say) 280 security, when such sizes of parameters can be
obtained only with additional structure (quasi-cyclic for instance) for code-based
or lattice based cryptography.

An interesting point in code-based cryptography is that in general the secu-
rity of the protocols relies on finding small weight vectors below the Gilbert-
Varshamov bound (the typical minimum weight of a random code). This is
noticeably different from lattice based cryptography for which it is very com-
mon for the security of a signature algorithm [20,26] to rely on the capacity to
approximate a random vector far beyond its closest lattice vector element (the
Gap-CVP problem).

Traditionally, this approach was not developed for code-based cryptogra-
phy since no decoding algorithm is known that decodes beyond the Gilbert-
Varshamov bound: since this problem implies many solutions for decoding, it is
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somewhat marginal for the coding community for which the goal is almost always
to find the most probable codeword or a short list of most likely codewords.

Our Contribution
The main contribution of this paper is the introduction of a new way of consid-
ering code-based signatures, by introducing the idea that it is possible to invert
a random syndrome not below the Gilbert-Varshamov bound, but above it. The
approach is similar in spirit to what is done in lattice-based cryptography. We
describe a new algorithm for LRPC codes, a recently introduced class of rank
codes, the new algorithm permits in practice decoding both errors and (general-
ized) rank erasures. This new algorithm enables us to approximate a syndrome
beyond the Gilbert-Varshamov bound. The algorithm is a unique decoder (not a
list decoder) but can give different solutions depending on the choice of the era-
sure. We explain precisely in which conditions one can obtain successful decoding
for any given syndrome and give the related probabilistic analysis. Based on this
error/erasure algorithm we propose a new signature scheme RankSign. We give
conditions for which no information leakage is possible from real signatures ob-
tained through our scheme. This point is very important since information leak-
ing from real signatures was the weakness through which the NTRUSign scheme
came to be attacked [22,8,30]. Finally, we give examples of parameters: they are
rather versatile, and their size depends on a bound on the amount of potentially
leaked information. In some cases one obtains public keys of size 11,000 bits with
signatures of length 1728 bits, moreover the scheme is rather fast.

The paper is organized as follows: Section 2 recalls basic facts on the rank met-
ric, Section 3 introduces LRPC codes and describes a new mixed algorithm for
decoding (generalized) erasures and errors, and studies its behaviour, Section 4
shows how to use them for cryptography, and lastly, Section 5 and 6 consider
security and parameters for these schemes.

2 Background on Rank Metric Codes and Cryptography

2.1 Definitions and Notation

Notation: Let q be a power of a prime p, m an integer and let Vn be a n
dimensional vector space over the finite field GF(qm). Let β = (β1, . . . , βm) be a
basis of GF (qm) over GF (q). Let Fi be the map from GF (qm) to GF (q) where
Fi(x) is the i-th coordinate of x in the basis β.

To any v = (v1, . . . , vn) in Vn we associate the matrix v ∈ Mm,n(Fq) in
which vi,j = Fi(vj). The rank weight of a vector v can be defined as the rank of
the associated matrix v. If we name this value rank(v) we can define a distance
between two vectors x, y through the formula dr(x, y) = rank(x−y). Isometry for
rank metric: in a context of rank metric codes, the notion of isometry is different
from Hamming distance: when for Hamming distance isometries are permutation
matrices, for rank metric the isometries are invertible n×n matrices on the base
field GF (q) (indeed these matrices, usually denoted by P , do not change the
rank of a codeword). We refer to [24] for more details on codes for the rank
distance.
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A rank code C of length n and dimension k over GF (qm) is a subspace of
dimension k of GF (qm) viewed as a (rank) metric space. The minimum rank
distance of the code C is the minimum rank of non-zero vectors of the code. In
the following, C is a rank metric code of length n and dimension k over GF (qm).
The matrix G denotes a k × n generator matrix of C and H one of its parity
check matrices.

Definition 1. Let x = (x1, x2, · · · , xn) ∈ GF (qm)n be a vector of rank r. We
denote E the GF (q)-sub vector space of GF (qm) generated by x1, x2, · · · , xn.
The vector space E is called the support of x.

Remark 1. The notions of support of a code word for the Hamming distance and
that introduced in definition 1 are different but they share a common principle:
in both cases, suppose one is given a syndrome s and that there exists a low
weight vector x such that H.xt = s, then, if the support of x is known, it is
possible to recover all the coordinate values of x by solving a linear system.

Definition 2. Let e be an error vector of rank r and error support space E.
We call generalized erasure of dimension t of the error e, a subspace T of
dimension t of its error support E.

The notion of erasure for Hamming distance corresponds to knowing a particu-
lar position of the error vector (hence some partial information on the support),
in the rank distance case, the support of the error being a subspace E, the
equivalent notion of erasure (also denoted generalized erasure) is therefore the
knowledge of a subspace T of the error support E.

2.2 Bounds for Rank Metric Codes

The classical bounds for the Hamming metric have straightforward rank metric
analogues, since two of them are of interest for the paper we recall them below.

Rank Gilbert-Varshamov Bound. [GVR] The number of elements S(m, q, t)
of a sphere of radius t in GF (qm)n, is equal to the number ofm×n q-ary matrices
of rank t. For t = 0 S0 = 1, for t ≥ 1 we have (see [24]):

S(n,m, q, t) =

t−1∏
j=0

(qn − qj)(qm − qj)

qt − qj

From this we deduce the volume of a ball B(n,m, q, t) of radius t in GF (qm)
to be:

B(n,m, q, t) =

t∑
i=0

S(n,m, q, i)

In the linear case the Rank Gilbert-Varshamov bound GV R(n, k,m, q) for a
[n, k] linear code over GF (qm) is then defined as the smallest integer t such that
B(n,m, q, t) ≥ qm(n−k).
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The Gilbert-Varshamov bound for a rank code C with dual matrix H , corre-
sponds to the smallest rank weight r for which, for any syndrome s, there exists
on the average a word x of rank weight r such that H.xt = s. To give an idea
of the behaviour of this bound, it can be shown that, asymptotically in the case

m = n ([24]): GVR(n,k,m,q)
n ∼ 1−

√
k
n .

Singleton Bound. The classical Singleton bound for a linear [n, k] rank code
of minimum rank r over GF (qm) works in the same way as for linear codes (by
finding an information set) and reads r ≤ 1+n−k: in the case when n > m this

bound can be rewritten as r ≤ 1 + � (n−k)mn � [24]. Codes achieving this bound
are called Maximum Rank Distance codes (MRD).

2.3 Cryptography and Rank Codes

The main use of rank codes in the cryptographic context is through the rank
analogue of the classical syndrome decoding problem.

Rank Syndrome Decoding Problem (RSD). Let H be a (n−k)×n matrix
over GF (qm) with k ≤ n, and let s ∈ GF (qm)n−k and an integer r. The problem
is: does there exist an element x ∈ GF (qm)n such that rank(x) ≤ r and Hxt = s.

Progress on computational complexity of this problem, which was stayed un-
known for more than 20 years, was recently provided in [17] in which the authors
give a randomized reduction to the Syndrome Decoding problem in Hamming
distance: more precisely they prove that if there exists a polynomial algorithm
which solves the RSD problem, then NP = RP , which is very unlikely. Their
results also extend to the case of the approximation of the rank distance of a
code by a constant.

Besides the theoretical hardness of the RSD problem, practical attacks on the
problem have a complexity which increases very fast with the parameters.

There exist several types of generic attacks on the problem:

- Combinatorial Attacks: these attacks are usually the best ones for small
values of q (typically q = 2) and when n and k are not too small (typically 30
and more), when q increases, the combinatorial aspect makes them less efficient.
The first non-trivial attack on the problem was proposed by Chabaud and Stern
[6] in 1996, then in 2002 Ourivski and Johannson [28] improved the previous
attack and proposed a new attack, meanwhile these two attacks did not take
into account the value of n in the exponent. Very recently the two previous

attacks were generalized in [16] by Gaborit et al. in (n − k)3m3q(r−1)�
(k+1)m

n �))
and take the value of n into account and were used to break some repaired
versions of the GPT cryposystem.

- Algebraic Attacks and Levy-Perret Attack: the particular nature of the
rank metric makes it a natural field for algebraic attacks and solving by Groeb-
ner basis, since these attacks are largely independent of the value of q and in
some cases may also be largely independent of m. There exist different types of
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algebraic equation settings: the first one by Levy and Perret [23] in 2006 consid-
ers a quadratic setting by taking as unknowns the support E of the error and
the error coordinates regarding E, there is also the Kernel attack by [9] and the
minor approach which consists in considering multivariate equations of degree
r + 1 obtained from minors of matrices [10], and more recently the annulator
setting by Gaborit et al. in [16] (which is valid on certain type of parameters
but may not be independent on m). In our context for some of the parameters
considered in the end of the paper, the Levy-Perret attack is the most efficient
one to consider. The attack works as follows: suppose one starts from a [n, k]
rank codes over GF (qm) and we want to solve the RSD problem for an error
e of rank weight r, the idea of the attack is to consider the support E of e as
unknowns together with the error coordinates, it gives nr+m(r− 1) unknowns
and m(2(n − k) − 1) equations from the syndrome equations. One obtains a
quadratic system, on which one can use Groebner basis. All the complexities for
Grobner basis attacks are estimated through the very nice program of L. Bettale
[5]. In practice this attack becomes too costly whenever r ≥ 4 for not too small
n and k.

The Case of More Than One Solution: Approximating Beyond the
GVR Bound
In code based cryptography there is usually only one solution to the syndrome
problem (for instance for the McEliece scheme), now in this situation we are
interested in the case when there are a large number of solutions. This case
is reminiscent of lattice-based cryptography when one tries to approximate as
much as possible a given syndrome by a word of weight as low as possible.

Even though the recent results of [17] show that the problem of approximation
of the rank distance remains hard, there are cases for which the problem is easy,
that we want to consider.

It is helpful to first consider the situation of a binary linear [n, k] Hamming
metric code. Given a random element of length n − k of the syndrome space,
we know that with high probability there exists a word that has this particular
syndrome and whose weight is on the GV bound. This word is usually hard to
find, however. Now what is the lowest minimum weight for which it is easy to
find such a word ? A simple approach consists in taking n−k random columns of
the parity-check matrix (a potential support of the solution word) and inverting
the associated matrix, multiplying by the syndrome gives us a solution of weight
(n − k)/2 on average. In fact it is difficult to do better than this without a
super-polynomial increase in complexity.

Now for the rank metric, one can apply the same approach: suppose one starts
from a random [n, k] code over GF (qm) and that one searches for a word of
small rank weight r with a given syndrome. One fixes (as in the Hamming case)
a potential support for the word - here a subspace of dimension r of GF (qm)-
and one tries to find a solution. Let x = (x1, · · · , xn) be a solution vector, so
that H.xt = s. If we consider the syndrome equations induced in the small field
GF (q), there are n.r unknowns and m.(n − k) equations. Hence it is possible
(with a good probability) to solve the system whenever nr ≥ m(n−k), therefore
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it is possible to find in probabilistic polynomial time a solution to a typical

instance of the RSD problem whenever r ≥ �m(n−k)
n �, which corresponds to the

Singleton bound. This proves the following proposition:

Proposition 1. There is a probabilistic polynomial time algorithm that solves

random instances of the RSD problem in polynomial time when r ≥ �m(n−k)
n �.

For a rank weight r below this bound, the best known attacks are, as in the
Hamming distance case, obtained by considering the cost of finding a word of

rank r divided by the number of potential solutions: B(n,k,m,q)

qm(n−k) . In practice the

complexity we find is coherent with this.

3 Approximating a Random Syndrome Beyond the GVR
Bound with LRPC Codes

3.1 Decoding Algorithm in Rank Metric

The rank metric has received a lot of attention in the context of network coding
[31]. There exist very few algorithms, however, for decoding codes in the rank
metric. The most well known [n, k] codes which are decodable are the Gabidulin
codes [12]. These codes can correct up to n−k

2 errors, and have been proposed
for encryption: but since they cannot decode up to the GVR bound, they do
not seem suitable for full decoding in the spirit of [7] for signature algorithms.
Another more recent family of decodable codes are the LRPC codes [14], these
codes are defined through a low rank matrix.

Definition 3. A Low Rank Parity Check (LRPC) code of rank d, length n and
dimension k over GF (qm) is a code defined by an (n−k)×n parity check matrix
H = (hij), such that all its coordinates hij belong to the same GF (q)-subspace
F of dimension d of GF (qm). We denote by {F1, F2, · · · , Fd} a basis of F .

These codes can decode with a good probability up to n−k
d errors, they can

be used for encryption [14], but since they can decode only up to n−k
2 errors at

best, they also seems unsuitable for signature algorithms.

3.2 Using LRPC Codes to Approximate a Random Syndrome
Beyond the GVR Bound

High Level Overview. The traditional approach for decoding random syn-
dromes, that is used by the CFS scheme for instance, consists in taking advan-
tage of the decoding properties of a code (e.g. a Goppa code) and considering
parameters for which the proportion of decodable vectors – the decodable den-
sity – is not too low. For the Hamming metric, this approach leads to very flat
dual matrices, i.e, codes with high rate and very low Hamming distance. In the
rank metric case, this approach leads to very small decodable densities and does
not work in practice. However, it is possible to proceed otherwise. It turns out
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that the decoding algorithm of LRPC codes can be adapted so that it is possible
to decode not only errors but also (generalized) erasures. This new decoding al-
gorithm allows us to decode more rank errors since the support is then partially
known. In that case since the size of the balls depends directly on the dimension
of the support, it leads to a dramatic increase of the size of the decodable balls.
Semantically, what happens is that the signer can fix an erasure space, which
relaxes the condition for finding a preimage. This approach works because in the
particular case of our algorithm, it is possible to consider the erasure space at
no cost in terms of error correction: to put it differently, the situation for LRPC
codes is different from traditional Hamming metric codes for which “an error
equals two erasures”.

In practice it is possible to find parameters (not flat at all) for which it is
possible to decode a random syndrome with the constraint that its support
contains a fixed random subspace. Fixing part of the rank-support of the error,
(the generalized erasure) allows us more rank-errors. For suitable parameters,
the approach works then as follows: for a given random syndrome-space element
s, one chooses a random subspace T of fixed dimension t (a generalized erasure of
Definition 2), and the algorithm returns a small rank-weight word, whose rank-
support E contains T , and whose syndrome is the given element s. Of course,
there is no unicity of the error e since different choices of T lead to different
errors e, which implies that the rank of the returned error is above the GVR
bound: it is however only just above the GVR bound for the right choice of
parameters.

LRPC Decoding with Errors and Generalized Erasures

Setting: Let an [n, k] LRPC code be defined by an (n − k) × n parity-check
matrix H whose entries lie in a space F ⊂ GF (qm) of small dimension d. Let t
and r′ be two parameters such that

r′ ≤ n− k

d
.

Set r = t+ r′. Given an element of the syndrome space s, we will be looking for
a rank r vector e of GF (qm)n with syndrome s. We first look for an acceptable
subspace E of dimension r of GF (qm) and then solve the linear system H.et = s
where e ∈ En. To this end we choose a random subspace T of dimension t of
GF (qm) and impose the condition T ⊂ E.

The subspace T being fixed, we now describe the set of decodable elements of
the syndrome space. We will then see how to decode them.

Definition 4. Let F1 and F2 be two fixed linearly independent elements of the
space F . We shall say that an element s ∈ GF (qm)n−k of the syndrome space
is T -decodable if there exists a rank r subspace E of GF (qm) satisfying the
following conditions.
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(i) dim〈FE〉 = dimF dimE,
(ii) dim(F−11 〈FE〉 ∩ F−12 〈FE〉) = dimE,
(iii) the coordinates of s all belong to the space 〈FE〉 and together with the

elements of the space 〈FT 〉 they generate the whole of 〈FE〉.

Decoding Algorithm. We now argue that if a syndrome s is T -decodable, we can
effectively find e of rank r such that H.et = s. We first determine the required
support space E. Since the decoder knows the subspaces F and T , he has access
to the product space 〈FT 〉. He can then construct the subspace S generated by
〈FT 〉 and the coordinates of s. Condition (iii) of T -decodability ensures that the
subspace S is equal to 〈FE〉 for some E, and since

F−11 〈FE〉 ∩ F−12 〈FE〉 ⊃ E,

condition (ii) implies thatE is uniquely determined and that the decoder recovers
E by computing the intersection of subspaces F−11 S ∩ F−12 S.

It remains to justify that once the subspace E is found, we can always find e
of support E such that H.et = s. This will be the case if the mapping

En → 〈FE〉n−k (1)

e �→ H.et

can be shown to be surjective. Extend {F1, F2} to a basis {F1, · · · , Fd} of F
and let {E1, · · · , Er} be a basis of E. Notice that the system H.et = s can
be rewritten formally as a linear system in the small field GF (q) where the
coordinates of e and the elements of H are written in the basis {E1, · · · , Er}
and {F1, · · · , Fd} respectively, and where the syndrome coordinates are written
in the product basis {E1.F1, · · · , Er.Fd}. We therefore have a linear system with
n.r unknowns and (n−k).rd equations over GF (q) that is defined by an (n.r)×
(n− k)rd formal matrix Hf (say) whose coefficients depend only on H (see [14]
for more details on how to obtain Hf from H).

We now see that the matrix H can be easily chosen so that the matrix Hf is
of maximal rank n.r, which makes the mapping (1) surjective, for any subspace
E of dimension d satisfying condition (i) of T -decodability.

Remark 2

1. For applications, we will consider only the case where nr = (n−k)rd, mean-
ing that the mapping (1) is always one-to-one.

2. The system H.et = s can be formally inverted through the matrix Hf and
stored in a pre-processing phase, so that the decoding complexity is only
the complexity of multiplication by the preprocessed square matrix H−1f of
dimension nr × nr, rather than the cubic cost of a matrix inersion for each
decoding.

3. In principle, the decoder could derive the support E by computing

E = F−11 S ∩ · · · ∩ F−1d S (2)
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rather than simply E = F−11 S∩F−12 S, and the procedure would work in the
same way in cases when (2) holds but not the simpler condition (ii). This
potentially increases the set of decodable syndromes, but the gain is some-
what marginal and condition (ii) makes the forthcoming analysis simpler.
For similar reasons, when conditions (i)–(iii) are not all satisfied, we do not
attempt to decode even if there are cases when it stays feasable.

4. In term of computation, the elements of the extension field GF (qm) are
represented as polynomials of degree m − 1 and all operations are done
modulo a fixed irreducible polynomial. Since GF (qm) is a m-dimensional
vectr space over GF (q) it is possible to fix a GF (q)-basis β = (β1, · · · , βm)
ofGF (qm). AGF (q)-subspace ofGF (qm) of dimension d consists in d vectors
of length m over GF (q), such a subspace can be seen as a d×m matrix over
GF (q).

Figure 1 summarizes the decoding algorithm. Note that the decoder can easily
check conditions (i)–(iii), and that a decoding failure is declared when they are
not satisfied.

Input: T = 〈T1, · · · , Tt〉 a subspace of GF (qm) of dimension t, H an (n−k)×n matrix
with elements in a subspace F = 〈F1, · · · , Fd〉 of dimension d, and s ∈ GF (qm)n−k.
Output: a vector e = (e1, . . . en) such that s = H.et, with ei ∈ E, E a subspace of
dimension dimE = r = t+ n−k

d
satisfying T ⊂ E.

1. Syndrome computations
a) Compute a basis B = {F1T1, · · · , FdTt} of the product space 〈F.T 〉.
b) Compute the subspace S = 〈B ∪ {s1, · · · , sn−k}〉.

2. Recovering the support E of the error
Compute the support of the error E = F−1

1 S ∩ F−1
2 S, and compute a basis

{E1, E2, · · · , Er} of E.

3. Recovering the error vector e = (e1, . . . , en)
For 1 ≤ i ≤ n, write ei =

∑n
i=1 eijEj , solve the system H.et = s, where the

equations H.et and the syndrome coordinates si are written as elements of the
product space P = 〈E.F 〉 in the basis {F1E1, · · · , F1Er, · · · , FdE1, · · · , FdEr}.
The system has nr unknowns (the eij) in GF (q) and (n − k).rd equations from
the syndrome.

Fig. 1. Algorithm 1: a general errors/erasures decoding algorithm for LRPC codes

Complexity of the Decoding Algorithm of Fig. 1. Steps 1 and 2 of the
decoding algorithm are simple linear algebra computations overGF (q) (moreover
the values of F−1i can be preprocessed since the Fi are fixed), whose cost is
dominated by Step 3. The cost of Step 3 is the cost of solving a linear algebra
system with n.r unknowns in GF (q), for a n.r × n.r matrix Hf obtained from
the matrix H . The a priori cost is then O((nr)3) operations in GF (q), but in
fact, it is possible to use the same trick as in [14] and to write the matrix Hf

of the system formally, so that the matrix Hf of the system to solve is always
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the same and hence the matrix H−1f can be preprocessed. Therefore the cost
of the inversion is just the cost a matrix-vector product with the preprocessed
matrix H−1f for a complexity of O((nr)2) operations in GF (q), (see details of
this approach in [14]).

3.3 Proportion of Decodable Syndromes for Unique Decoding of
LRPC Codes

Signature algorithms based on codes all inject the message space in some way
into the syndrome space and then decode them to form a signature. We should
therefore estimate the proportion of decodable syndromes. The classical decoding
approach tells us to look for a preimage by H that sits on the Gilbert-Varshamov
bound: for typical random codes, a preimage typically exists and is (almost)
unique. Computing such a preimage is a challenge, however. In our case, we are
looking for a preimage above the Gilbert-Varshamov bound, for which many
preimages exist, but for a fixed (erasure) subspace T , decoding becomes unique
again. In the following, we count the number of T -decodable syndromes and
show that for some adequate parameter choices, their proportion can be made
to be close to 1. It will be convenient to use the following notation.

Definition 5. For a subspace T of GF (qm) of dimension t, denote by E(T ) the
number of subspaces of dimension r = r′ + t that contain T .

Lemma 1. We have

E(T ) =
r′−1∏
i=0

(
qm−t−i − 1

qi+1 − 1

)

Proof. Consider the case where r = t+1, we need to construct distinct subspaces
of dimension t + 1 containing T . This can be done by adjoining an element of
GF (qm) modulo the subspace T , which gives (qm − qt)/(qt+1 − qt) = (qm−t −
1)/(q − 1) possibilities. Now any subspace of dimension t+ 1 contains qt+1 − 1
supspaces of dimension t containing T . A repetition of this approach r′−1 times
gives the formula. (see also [25] p.630). ��

Theorem 1. The number T (t, r, d,m) of T -decodable syndromes satisfies the
upper bound:

T (t, r, d,m) ≤ E(T )qrd(n−k).
Furthermore, under the conditions r(2d− 1) ≤ m and

dim〈FT 〉 = dimF dimT, (3)

dim(F−11 F + F−12 F ) = 2 dimF − 1 = 2d− 1, (4)

we also have the lower bound:(
1− 1

q − 1

)2

E(T )qrd(n−k) ≤ T (t, r, d,m).



RankSign: An Efficient Signature Algorithm Based on the Rank Metric 99

Note that condition (4) depends only on the subspace F and can be ensured
quite easily when designing the matrix H . Random spaces F with random el-
ements F1 and F2 will typically have this property. Condition (3) depends on
the choice of the subspace T : for a random subspace T condition (3) holds with
probability very close to 1.

The proof of Theorem 1 will be given in the full version of this paper.

Remark 3

1. It can be shown with a finer analysis that the term (1 − 1(q − 1))2 in the
lower bound can be improved to a quantity close to 1− 1(q − 1).

2. For large q, Theorem 1 shows that, for most choices of T , the density of
T -decodable syndromes essentially equals

E(T )qrd(n−k)
qm(n−k) ≈ q(r−t)(m−r)+(n−k)(rd−m). (5)

Remarkably, it is possible to choose sets of parameters (m, t, r, d), with (n−
k) = d(r − t), such that the exponent in (5) equals zero, which gives a density
very close to 1.

Example of Parameters with Density Almost 1: For q = 28,m = 18, n =
16, k = 8, t = 2, r′ = 4, the algorithm decodes up to r = t + r′ = 6 for a fixed
random partial support T of dimension 2. The GVR bound for a random [16, 8]
code with m = 18 is 5, the Singleton bound is 8, we see that the decoding radius
6 is therefore just above the GVR bound at 5 and smaller than the Singleton
bound at 8. Moreover one can notice that if parameters (m, t, r, d) satisfy the
two equations (r − t)(m− r) + (n− k)(rd−m) = 0 and (n− k) = d(r − t) (the
case for which the density is almost 1), then for any integer α greater than 1,
the parameter set (αm,αt, αr, d) satisfies the same equations, and hence for a
given d one obtains an infinite family of parameters with density almost 1.

Decoding in Practice. In practice it is simple to find sets of parameters for
which the density of decodable syndromes is very close to 1, i.e. such that (r −
t)(m− r) + (n− k)(rd −m) = 0.

4 RankSign, a Signature Scheme for Rank Metric Based
on Augmented LRPC Codes

We saw in the previous section how to construct a matrix H of an LRPC code,
with a unique support decoding, which opens the way for a signature algorithm.
In practice the best decoding results are obtained for d = 2: the natural strategy
is to define for the public key a matrix H ′ = AHP , where A is a random
(n− k)× (n− k) invertible matrix in the extension field and P is an invertible
n× n matrix in the small field. However, it is easily possible for a cryptanalyst
to recover the words of small weight d = 2 in H ′ and it is therefore necessary
to hide the matrix H in another way. In what follows we present a simple type
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of masking: RankSign which consists in adding a few random columns to H .
Other more complex types of masking are also possible, which will be described
in the full version of the paper.

Suppose one has a fixed support T of dimension t. We consider the public
matrix H ′ = A(R|H)P with R a random (n − k) × t′ matrix in GF (qm). We
will typically take t′ = t but one could envisage other values of t′. We denote by
augmented LRPC codes such codes with parity-check matrices H ′ = A(R|H)P .

Starting from a partial support T that has been randomly chosen and is
then fixed, the signature consists in decoding not a random s but the syndrome
s′ = s−R.(e1, · · · , et)t for ei random independent elements of T .

The overall rank of the solution vector e is still r = t+r′. the masking gives us
that the minimum rank-weight of the code generated by the rows of H ′ is t+ d
rather than purely d: therefore recovering the hidden structure involves finding
relatively large minimum weight vectors in a code. In practice we consider d = 2
and H is a n/2 × n matrix with all coordinates in a space F of dimension 2.
Moreover for {F1, F2} a basis of F , we choose the matrix H such that when H is
written in the basis {F1, F2}, one obtains a n× n invertible matrix (of maximal
rank) over GF (q). It can be done easily. Figure 2 describes the scheme, where ||
denotes concatenation.

1. Secret key: an augmented LRPC code over GF (qm) with parity-check matrix
(R|H) of size (n−k)×(n+t) which can decode r′ errors and t generalized erasures:
a randomly chosen (n − k) × (n − k) matrix A that is invertible in GF (qm) a
randomly chosen (n+ t)× (n+ t) matrix P invertible in GF (q).

2. Public key: the matrix H ′ = A(R|H)P , a small integer value l, a hash function
hash.

3. Signature of a message M :
a) initialization: seed ← {0, 1}l, pick t random independent elements (e1, · · · , et)
of GF (qm)
b) syndrome: s← hash(M ||seed) ∈ GF (qm)n−k

c) decode by the LRPC matrix H , the syndrome s′ = A−1.sT − R.(e1, · · · , et)T
with erasure space T = 〈e1, · · · , et〉 and r′ errors by Algorithm 1.
d) if the decoding algorithm works and returns a word (et+1, · · · , en+t) of weight
r = t+ r′, signature=((e1, · · · , en+t).(P

T )−1, seed), else return to a).
4. Verification: Verify that Rank(e) = r = t+ r′ and H ′.eT = s = hash(M ||seed).

Fig. 2. The RankSign signature algorithm

Parameters: Public key size: (k + t)(n− k)mLog2(q) Signature size: (m+ n+
t)rLog2(q).

Complexity of the Signature Algorithm

Signature Complexity: The main step of the signature algorithm consists in de-
coding the value s′. The cost of the signature can therefore be separated in two
parts: the computation of s′ and the cost of the decoding of s′. The cost of the
computation of s′ is dominated by the cost of the matrix-vector product A−1.sT :
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(n− k)× (n+ t) operations in GF (qm). The cost of the decoding algorithm de-
scribed in Section 3.2 is O((r.(n + t))2) operations in GF (q). Overall the cost
of the computation of s′ is dominant and the overall cost of the signature is
(n−k)× (n+ t) operations in GF (qm). Notice that the cost of multiplications in
GF (qm) which can be computed trivially in O(m2) operations over GF (q) can
be optimized in mLog2(m)Log2(Log2(m)) operations over GF (q) ([18]).

Verification Complexity: The cost of the verification is the cost of a syndrome
computation and the cost of checking the weight of the signature, hence (n −
k)× (n+ t) operations in GF (qm).

The length l of the seed can be taken as 80
Log2(q)

for instance.

5 Security Analysis of the Scheme

5.1 Security of Augmented LRPC Codes

In the previous section we defined augmented-LRPC with dual matrix H ′ =
A(R|H)P , we now formulate the problem Ind-LRPC codes (Ind-LRPC) on the
security of these codes:

Problem [Ind-LRPC]. Given an augmented LRPC code, is it possible to dis-
tinguish it from a random code with the same parameters ?

We now make the following assumption on the problem that we discuss in the
following:

Assumption: the Ind-LRPC problem is difficult to solve

Discussion on the Assumption: The family of augmented LRPC codes is not
of course a family of random codes, but they are weakly structured codes: the
main point being that they have a parity-check matrix one part of which consists
only in low rank coordinates the other part consisting in random entries. The
attacker never has direct access to the LRPC matrix H , which is hidden by the
augmented part.

The minimum weight of augmented LRPC codes is smaller than the GVR
bound, hence natural attacks consist in trying to use their special structure to
attack them. There exist general attacks for recovering the minimum weight
of a code (see Section 2.3) but these attacks have a fast increasing complexity
especially when the size of the base field GF (q) increases. We first list obvious
classical attack for recovering the structure of the augmented-LRPC codes and
then describe specific attacks.

• Previously Known Structural Attacks for Rank Codes. The main struc-
tural attack for the rank metric is the Overbeck attack on the GPT cryp-
tosystem [29], the attack consists in considering concatenated public matrices

Gq, Gq2 , ..., Gqn−k−1

, in that case the particular structure of Gabidulin codes en-
ables one to find a concatenated matrix with a rank default; this is due to the
particular structure of the Gabidulin codes and the fact that for Gabidulin codes
Gqi is very close to Gqi+1

. In the case of LRPC codes, since the rows are taken
randomly in a small space, this attack makes no sense, and cannot be generalized.
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• Dual Attack: Attack on the Dual Matrix H ′: another approach consists in
finding directly words of small weight induced by the structure of the code, from
which one can hope to recover the global structure. For augmented LRPC codes,
the rank of the minimum weight words is d+t: d for LRPC and t for the masking.
This attack becomes very hard when t increases, even for low t. For instance for
t = 2 and d = 2 it gives a minimum weight of 4, which for most parameters n
and k is already out of reach of the best known attacks on the rank syndrome
decoding (see Section 2).

• Attack on the Isometry Matrix P: remember that for rank metric codes, the
isometry matrix is not a permutation matrix but an invertible matrix on the base
field GF (q). The attacker can then try to guess the action of P on H , since d is
usually small negating this action may permit to attack directly a code of rank
d. Since d is small it is enough to guess the resulting action of P on n − k + 3
columns by considering only the action of P coming from the first t columns of
the matrix R - the only columns which may increase the rank-, it means guessing
(n − k + 3) × t elements of GF (q) (since coordinates of P are in GF (q), hence
a complexity of q(n−k+3)t. In general this attack is not efficient, as soon as q is
not small (for instance q = 256).

• Attack on Recovering the Support: an attacker may also try to recover directly
an element of the support, for instance in the case of d = 2, for F the error
support generate by {F1, F2}, up to a constant, one can rewrite F as generated
by 1 and F2.F

−1
1 . Then the attacker can try to guess the particular element

F2.F
−1
1 , recover F and solve a linear system in the coordinates of the elements

of H . The complexity of this attack is hence qm.(nd)3, in the most favourable
case when d = 2, this attack is exponential and becomes infeasible for q not too
small.

• Differential Support Attack: it is also possible to search for attacks, directly
based on the specific structure of the augmented LRPC codes. The general idea
of the differential support attack is to consider the vector space V on the base
field GF (q) generated by the elements of a row of the augmented matrix H ′ and
to find a couple (x, x′) of elements of V such that x′

x ∈ F the support of the

LRPC code. The complexity of the attack is at least q(n−k)(d−1)+t, the detail
of the attack will be described in the full version of the paper. In practice this
exponential attack is often the best attack to recover the structure of the code
and distinguish the augmented LRPC code from a random code.

Conclusion on the Hardness of the Ind-LRPC Problem
We saw that there were many ways to attack the Ind-LRPC problem, in par-
ticular because of the rich structure of the rank metric, meanwhile the previous
analysis of general known attacks shows that these attacks are all exponen-
tial with a strong dependency on the size of q. Moreover we also considered
very specific attack (like the differential support attack) related to the partic-
ular structure of the augmented LRPC codes which deeply uses the structure
of the code. This analysis seems to show that the Ind-LRPC problem is indeed
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difficult, with all known attacks being exponential. In practice it is easy to find
parameters which resist to all these attacks.

5.2 Information Leakage

We considered in previous attacks the case where no additional information was
known besides the public parameters. Often the most efficient attacks on signa-
tures is to recover the hidden structure of the public key by using information
leaking from real signatures. This for instance is what happened in the case of
NTRUSign: the secret key is not directly attacked, but the information leaked
from real signatures enables one to recover successfully the hidden structure. We
show in the following that with our masking scheme no such phenomenon can
occur, since we prove that, if an attacker can break the signature scheme for
public augmented matrices with the help of information leaking from a number
of (approximately) q real signatures, then he can also break the scheme just as
efficiently *without* any authentic signatures.

Theorem 2 below states the unleakibility of signatures. It essentially states
that valid signatures leak no information on the secret key. More precisely, under
the random oracle model, there exists a polynomial time algorithm that takes as
input the public matrix H ′ and, produces couples (m,σ), where m is a message
and σ a valid signature for m when one’s only access to the hashing oracle is
through the simulator, and this with the same probability distribution as those
output by the authentic signature algorithm. Therefore whatever forgery can be
achieved from the knowledge of H ′ and a list of valid signed messages, can be
simulated and reproduced with the public matrix H ′ as only input.

Theorem 2. For any algorithm A that leads to a forged signature using N ≤ q/2
authentic signatures, there is an algorithm A′ with the same complexity that
leads to a forgery using only the public key as input and without any authentic
signatures.

Proof. (main idea) the main idea of the proof is that it is possible to prove that it
is possible to simulate couples (x′, y′) where x′ is a hashed value of a message M
and y′ is the associated signature, so that an attacker cannot distinguish between
real (message,signature) obtained from the signer and simulated couples. The
proof relies on the fact that parameters of the signature are chosen such that
any random syndrome value has a unique preimage with probability 1/q. The
full version of the proof will be given in the long version of the paper. ��

5.3 Unforgeability

Corollary 1. The RankSign signature scheme is secure in the ROM against
existential forgery with adaptive chosen-message attack under the Ind-LRPC as-
sumption.

Proof. Our main Theorem 2 and its proof, show that with the sole knowledge
of the public key it is possible to simulate new (message,signature) couples with
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the same success probability as when given valid (message,signature) couples
whenever the number of such couples is less than q/2. Hence it means that given
less than q/2 signatures (chosen or given), an attacker cannot do better than an
attacker who knows only the public key (the matrix of a code). And in that case,
under the Ind-LRPC indistinguishability assumption of augmented LRPC codes
with random codes, it implies that forging a false signature in the ROM (ie:
being able to approximate a random syndrome for the augmented LRPC class
of codes) means being able to decode a random rank code. Parameters of the
scheme are hence chosen with large q and suitable code parameters for which it
is difficult to decode a random code and to distinguish augmented LRPC codes
from random codes. ��

6 Practical Security, Parameters and Implementation

6.1 Parameters Setting

The parameters have to be chosen so that the LRPC code considered is decodable
for errors and erasures as in Section 3.2, and such that the parameters correspond
to a proportion of decodable syndromes which is almost 1, as explained in Sec-
tion 3.3. Parameters (m, t, r, d, n, k) have hence to fulfill the conditions given by
results of Section 3.2 and 3.3. Notice that as explained in Section 3.3, for a given
set of parameters (m, t, r, d) which fulfills the conditions, the set (αm,αt, αr, d)
for α an integer, will also fulfill the conditions. Moreover for a given set of pa-
rameters, it is possible to consider different fields GF (q) without modifying the
fact that the density of decodable syndromes is almost 1. Moreover the set of
parameters have to be resistant to all known attacks described in Section 5.

6.2 Examples of Parameters

In the following we give in Table 1 some examples of parameters. The parameters
are adjusted to resist all previously known attacks. The security reduction holds
for up to q/2 signatures, hence if one considers q = 240 it means we are protected
against leakage for up to 240 obtained authentic signatures. such an amount of
signatures is very difficult to obtain in real life, moreover if one multiplies by
the amount of time necessary to obtain a signature (about 230 for q = 240) we
clearly see that obtaining such a number of authentic signatures is out of reach,
and it justifies our security reduction.

We also give parameters for q lower than 240: in that case the reduction is
weaker in the sense that it does not exclude an information leakage attack for
sufficiently many signatures. However, such an information leakage attack seems
difficult to obtain anyway, and these parameters can be seen as challenges for
our system.

In the table the considered codes are [n+t, k+t] codes which give a signature of
rank r. The dual code H ′ is a [n+t, n−k] code which contains words of rank d+t.
In the table ’LP’ stands for the logarithmic complexity of the algebraic Levy-
Perret attack, for instance in the case n = 16, one gets a [18, 8] code in which one
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searches for words of rank 4, it gives 270 quadratic equations for 126 unknowns,
with a theoretical complexity of 2120 from [5] (remember that for a random
quadratic system over GF (2) with n unknowns and 2n equations the complexity
is roughly 2n operations inthe base field GF (2). The complexity of a direct attack
for searching low weight words of weight d + t with combinatorial attacks (see
section 2.3) is given in ’Dual’. At last ’DS’ stands for the differential support
attack of section 5.1 and ’DA’ stands for the direct attack on the signature in
which one searches directly for a forgery for a word of weight r in a [n+ t, k+ t]
code. In the table the number of augmented columns is usually t except for the
last example for which one adds 2 columns rather than t = 5.

The analysis of the security complexities shows that the best attack (in bold
in the table) depends on the given parameters: when q is large the algebraic
attacks are better since they do not really depends on q, when d increases the
decoding algorithm is less efficient and then one get closer from the Singleton
bound and direct forgery for the signature becomes easier. For other parameters,
usually the specific structural attack differential support attack DS is better.

Table 1. Examples of parameters for the RankSign signature scheme

n n-k m q d t r’ r GVR Sing pk sign LP Dual DS DA

16 8 18 240 2 2 4 6 5 8 57600 8640 130 1096 400 776

16 8 18 28 2 2 4 6 5 8 11520 1728 110 233 80 168

16 8 18 216 2 2 4 6 5 8 23040 3456 120 448 160 320

20 10 24 28 2 3 5 8 6 10 24960 3008 190 370 104 226

27 9 20 26 3 2 3 5 4 7 23328 1470 170 187 120 129

48 12 40 24 4 5 3 8 6 10 78720 2976 > 600 340 164 114

50 10 42 24 5 5 2 7 5 9 70560 2800 > 600 240 180 104

6.3 Implementation Results

We implemented our scheme on a Intel Core i5-4200U CPU 1.60GHz processor,
in a non optimized way for two sets of parameters over GF (28) of Table 1 for
security 280 and 2104, in the C language (with the MPFQ library for finite fields
computations), the results were as follows:

Table 2. Implementation time for two sets of parameters

n n-k m q d signature time (ms) verification time (ms) security (bits)

16 8 18 28 2 2.75 4.4 80

20 10 24 28 2 6.13 12 104

The results obtained follow the complexity of Section 4 and compare very well
to other signatures.
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7 Conclusion

In this paper we introduced a new approach to devising signatures with coding
theory and in particular in the rank metric, by proposing to decode both erasures
and errors rather than simply errors. This approach enables one to return a
small weight word beyond the Gilbert-Varshamov bound rather than below. We
proposed a new efficient algorithm for decoding LRPC codes which makes this
approach possible. We then proposed a signature scheme based on this algorithm
and the full decoding of a random syndrome beyond the Gilbert-Varshamov
bound. We also showed that it was possible to protect our system against leakage
from authentic signatures. Overall we propose different types of parameters, some
of which are rather small. The parameters we propose compares very well to other
existing signature schemes on coding theory as the CFS scheme for instance.
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Abstract. In PQCrypto 2013, Yasuda, Takagi and Sakurai proposed a
new signature scheme as one of multivariate public key cryptosystems
(MPKCs). This scheme (called YTS) is based on the fact that there are
two isometry classes of non-degenerate quadratic forms on a vector space
with a prescribed dimension. The advantage of YTS is its efficiency. In
fact, its signature generation is eight or nine times faster than Rainbow
of similar size. For the security, it is known that the direct attack, the
IP attack and the min-rank attack are applicable on YTS, and the run-
ning times are exponential time for the first and the second attacks and
subexponential time for the third attack. In the present paper, we give a
new attack on YTS using an approach similar to the diagonalization of
a matrix. Our attack works in polynomial time and it actually recovers
equivalent secret keys of YTS having 140-bits security againt min-rank
attack in several minutes.

Keywords: multivariate public key cryptosystems, signature scheme,
quadratic forms, post-quantum cryptography.

1 Introduction

AMultivariate Public Key Cryptosystem (MPKC) is a cryptosystem whose pub-
lic key is a set of multivariate quadratic polynomials over a finite field. It is known
that the problem of solving systems of randomly chosen multivariate quadratic
equations over a finite field is NP-hard [14]. Then MPKC is considered as one
of candidates of public key cryptosystems which can resist against the quantum
attacks. MPKC also has advantage for efficiency compared with RSA and ECC.
In fact, Chen et al. [5] presented several MPKC implementations on modern x86
CPUs which are more efficint than RSA and ECC. Until now, various MPKCs
have been proposed, e.g. MI [24], HFE [27], Sflash [1], UOV [20], Rainbow [7],
TTS [29]. On the other hand, various attacks on MPKCs (e.g. the direct attacks
[9,10,2], the rank attacks [6,11,16,18,21,29], the differential attacks [8,12,13] and
the UOV attacks [20,22]) also have been proposed, and some MPKCs were shown
to be insecure against (one of) these attacks [26,22,9,8].

Recently in PQCrypto 2013, Yasuda, Takagi and Sakurai [30] proposed a new
signature scheme as one of MPKCs. This scheme (called YTS) is based on the
fact that there are two isometry classes of non-degenerate quadratic forms on
a vector space with a prescribed dimension [28]. There have been no MPKCs
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similar to YTS. The advantage of YTS is that its signature generation is fast. In
fact, it is eight or nine times faster than Rainbow of similar size. For the security,
it is known that the direct attack [9,10,2], the IP attack [27] and the min-rank
attack [29] are applicable on YTS and the running times are exponential times
for the first and the second attacks and subexponential time for the third attack
[30]. Then (at the time of PQCrypto 2013), YTS was considered to be secure
enough under suitable parameter selections.

The aim in the present paper is to study the structure of YTS in detail and
propose a new attack on YTS. The coefficient matrices of the quadratic forms in
the central map of YTS are described by extensions of sparse smaller matrices.
Then, taking two linear sums of coefficient matrices of quadratic forms in the
public key and multiplying the one and the inversion of the other, the attacker
gets a matrix conjugate to a matrix extended from a smaller matrix. By us-
ing an approach similar to the diagonalization of this matrix, the attacker can
recover partial information of the secret keys. After that, taking several elemen-
tary operations in linear algebra, the attacker can recover equivalent secret keys
in polynomial time. Actually, we experimentally succeed to recover equivalent
secret keys of YTS having 140-bits security against the min-rank attacks [30] in
several minutes (see Section 5). This means that YTS is not secure at all and it
must be repaired for practical use.

2 Notations

Throughout in this paper, we use the following notations.

q: a power of odd prime.
k: a finite field of order q.

For an integer r ≥ 1,

Mr(k): the set of r × r matrices of k-entries.

SMr(k): the set of r × r symmetric matrices of k-entries.

Ir ∈Mr(k): the identity matrix.

For a matrix A,

At: the transpose of A.

For 1 ≤ i, j ≤ r,

Eij ∈ SMr(k): the symmetric matrix whose (i, j), (j, i) entries are 1 and other
entries are 0, namely

E11 :=

⎛
⎝1

⎞
⎠ , E12 :=

⎛
⎝ 1
1

⎞
⎠ , . . . , Err :=

⎛
⎝

1

⎞
⎠ .

For L1 ∈Mr1(k), . . . , Lu ∈ Mru(k),
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L1 ⊕ · · · ⊕ Lu :=

⎛
⎜⎝
L1

. . .

Lu

⎞
⎟⎠ ∈Mr1+···+ru(k),

L⊕u1 := L1 ⊕ · · · ⊕ L1︸ ︷︷ ︸
u

∈ Mr1u(k).

For A =

⎛
⎜⎝

a11 · · · a1r1
...

. . .
...

ar11 · · · ar1r1

⎞
⎟⎠ ∈ Mr1(k) and B ∈Mr2(k),

A⊗B :=

⎛
⎜⎝

a11B · · · a1r1B
...

. . .
...

ar11B · · · ar1r1B

⎞
⎟⎠ ∈Mr1r2(k).

For a monic polynomial g(t) := c0 + c1t+ · · ·+ cr−1tr−1 + tr of degree r,

C(g) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−c0), (r = 1),⎛
⎜⎜⎜⎜⎝
0 · · · 0 −c0
1 0 −c1
. . .

...

0 1 −cr−1

⎞
⎟⎟⎟⎟⎠ , (r ≥ 2).

For A =

⎛
⎜⎝
a11 · · · a1r
...

. . .
...

ar1 · · · arr

⎞
⎟⎠ ∈ Mr(k) and B =

⎛
⎜⎝
b11 · · · br1
...

. . .
...

br1 · · · brr

⎞
⎟⎠ ∈ SMr(k),

φ(A) := (a11, a21, . . . , ar1, a12, . . . , . . . , arr)
t ∈ kr

2

,

ψ(B) := (b11, b21, . . . , br1, b22, . . . , . . . , brr)
t ∈ kr(r+1)/2.

3 The Signature Scheme YTS

In this section, we give a short survey of the signature scheme YTS [30].

3.1 Construction of the Scheme

In a multivariate public key cryptosystem (MPKC), the public key is a set of
multivariate quadratic polynomials

f1(x1, · · · , xn) =
∑

1≤i≤j≤n
a
(1)
ij xixj +

∑
1≤i≤n

b
(1)
i xi + c(1),

...

fm(x1, · · · , xn) =
∑

1≤i≤j≤n
a
(m)
ij xixj +

∑
1≤i≤n

b
(m)
i xi + c(m),
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over a finite field. The quadratic polynomials for YTS [30] are constructed as
follows.
� The signature scheme YTS �

Let r ≥ 1 be an integer and denote n := r2,m := r(r+1)/2. ForX ∈ Mr(k),
put

U1(X) := XtIrX(= XtX), Uδ(X) := Xt

(
Ir−1

δ

)
X,

where δ is an element in k such that δ �= α2 for any α ∈ k.
Secret Keys: Two invertible affine transforms S : kn → kn, T : km → km

and an invertible matrix B ∈ Mr(k). Note that, for x ∈ kn and y ∈ km,
S(x) and T (y) are given by

S(x) = S0x+ s, T (y) = T0y + t (1)

where S0 ∈ Mn(k), T0 ∈ Mm(k) are invertible matrices and s ∈ kn, t ∈ km

are vectors.

Public Keys: Two quadratic maps V1 := T ◦ ψ ◦ U1 ◦ φ−1 ◦ S and Vδ :=
T ◦ ψ ◦ Uδ ◦B ◦ φ−1 ◦ S.

V1 :kn
S−→ kn

φ−1

−−→ Mr(k)
U1−−→ SMr(k)

ψ−→ km
T−→ km

Vδ :kn
S−→ kn

φ−1

−−→ Mr(k)
B−→ Mr(k)

Uδ−−→ SMr(k)
ψ−→ km

T−→ km

Signature generation: For a message y ∈ km, the signature is generated
as follows.

Step 1. Compute z := T−1(y) and put Z := ψ−1(z).
Step 2. Find X ∈ Mr(k) satisfying either

U1(X) = Z or Uδ(BX) = Z,

and put x := φ(X).

Step 3. Compute w := S−1(x). The signature for y ∈ km is w.

Signature verification: Check whether V1(w) = y or Vδ(w) = y holds.
� �

For Step 2 of the signature generation, the following lemma is known.

Lemma 1. ([28,30]) For any Y ∈ SMr(k), there exists X ∈ Mr(k) satisfying
either

U1(X) = Y or Uδ(X) = Y.

Furthermore, such a matrix X can be found in time O(r4). ��
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See [30] for the detail algorithm finding X . Due to the lemma above, one can
compute X in time O(n2).

3.2 Quadratic Forms in YTS

In this subsection, we explain the structure of quadratic forms in V1.

For X = (xij)1≤i,j≤r ∈Mr(k), let

xj :=(x1j , . . . , xrj)
t ∈ kr,

x :=φ(X) = (x11, . . . , xr1, x12, . . . , . . . , xrr)
t ∈ kn.

By the definition of U1, we have

U1(X) = XtX =

⎛
⎜⎝
xt
1x1 · · · xt

1xr

...
. . .

...
xt
rx1 · · · xt

rxr

⎞
⎟⎠ ,

namely the entries in U1(X) are as follows.

(1, 1)-entry: x11x11 + x21x21 + · · ·+ xr1xr1 = xt

⎛
⎝Ir

⎞
⎠x,

(1, 2)-entry: x11x12 + x21x22 + · · ·+ xr1xr2 = xt

⎛
⎝ 1

2Ir
1
2Ir

⎞
⎠x,

...

(r, r)-entry: x1rx1r + x2rx2r + · · ·+ xrrxrr = xt

⎛
⎝

Ir

⎞
⎠x,

Then the (i, j)-entry of Uij(x) is given by

Uij(x) =

⎧⎨
⎩
xt(Eij ⊗ Ir)x, (i = j),
1

2
xt(Eij ⊗ Ir)x, (i �= j).

(2)

Thus, by the construction of the public key, the quadratic map

V1(x) = (V11(x), . . . , Vrr(x))
t

is described as follows.

Vij(x) =xtSt
0(Tij ⊗ Ir)S0x+ st(Tij ⊗ Ir)S0x+ xtSt

0(Tij ⊗ Ir)s

+ st(Tij ⊗ Ir)s+ tij , (3)

where S0, s are given in (1) and Tij ∈ SMr(k), tij ∈ k are respectively derived
from T0, t.
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3.3 Efficiency and Security of YTS

Based on the results in [30], we list the number of operations for signature
generation/verification, the size of keys and the security against known attacks.

Signature Generation: O(n2 · log q).
Signature Verification: Almost same to other schemes in MPKC with the
same q,m, n.

Key Size: O(n3 · log q).
Security against Min-Rank Attack: O(q

√
n · n3) for recovering T (see also

[29]).

Security against IP Attack: O(q2n/3) for recovering S, T (see also [26]).

Security against Gröbner Basis Attack: O(2m(3.31−3.62/ log2 q)) for generat-
ing a dummy signature under the assumption that log2 q � m and the quadratic
forms in V1(x)− y or Vδ(x)− y with the public keys V1, Vδ and a given message
y ∈ km is “semi-regular” (see [9,10,2,3]).

4 Proposed Attack on YTS

In this section, we propose a new attack on YTS. We first show how to recover
the contributions of the vectors s ∈ kn, t ∈ km in the secret keys S, T (see (1)).

4.1 Recovering s and t

� Algorithm 1 �

Input: The public key V1(x).

Output: Vectors s′ ∈ kn, t′ ∈ km such that all quadratic forms in
V1(x+ s′)− t′ are homogeneous.

Step 1. Find ŝ ∈ kn such that all coefficients of the linear terms of the
quadratic forms in V1(x+ ŝ) are zero by the Gaussian elimination.

Step 2. Put t̂ ∈ km the set of constant terms in V1(x+ ŝ).

Step 3. Output s′ = ŝ and t′ = t̂.
� �

Due to (3), we have

Vij(x+ ŝ) =xtSt
0(Tij ⊗ Ir)S0x+ (s+ S0ŝ)

t(Tij ⊗ Ir)S0x

+ xtSt
0(Tij ⊗ Ir)(s+ S0ŝ) + (s+ S0ŝ)

t(Tij ⊗ Ir)(s+ S0ŝ) + tij .
(4)

Since S0 is invertible and the linear terms of Vij(x+ ŝ) are given by the second
and the third terms in the right hand side of (4), all linear terms of Vij(x + ŝ)
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vanish for any i, j if and only if

s+ S0ŝ ∈
⋂

1≤i,j≤r
Ker(Tij ⊗ Ir).

Such a vector ŝ can be found by the Gaussian elimination, and once such ŝ is
recovered, we have

Vij(x + ŝ) =xtSt
0(Tij ⊗ Ir)S0x+ tij .

Then t̂ = t. ��
Complexity. This algorithm uses the Gaussian elimination for linear equations
of n variables. Then the complexity is � n3 = r6.

Thanks to the algorithm above, we can suppose, without loss of generality,
that both S and T are linear maps. In such cases, Vij(x) is a homogeneous
quadratic form. Then, in the discussions later, we interpret Vij as the n × n
symmetric matrix with

Vij(x) = xtVijx.

4.2 Weak Keys

In this subsection, we show that, when

S =(Q⊗ Ir)(L1 ⊕ · · · ⊕ Lr) =

⎛
⎜⎝
q11Ir · · · q1rIr
...

. . .
...

qr1Ir · · · qrrIr

⎞
⎟⎠
⎛
⎜⎝
L1

. . .

Lr

⎞
⎟⎠ (5)

for some invertible r × r matrices Q =

⎛
⎜⎝
q11 · · · q1r
...

. . .
...

qr1 · · · qrr

⎞
⎟⎠ , L1, . . . , Lr ∈ Mr(k), the

attacker can recover matrices S′ ∈Mn(k) and T ′ ∈ Mm(k) with

T ′(V1(S
′(x))) = (U1 ◦ φ−1)(x) =

⎛
⎜⎝
xt(E11 ⊗ Ir)x

...
xt(Err ⊗ Ir)x

⎞
⎟⎠ . (6)

It is obvious that, once such S′, T ′ are recovered, the attacker can generate
dummy signatures.

The algorithm to recover S′, T ′ is as follows.
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� Algorithm 2 �

Input: The public key V1(x) when

S = (Q⊗ Ir)(L1 ⊕ · · · ⊕ Lr)

for some invertible matrices Q,L1, . . . , Lr ∈ Mr(k).

Output: Invertible matrices S′ ∈ Mn(k) and T ′ ∈ Mm(k) such that

T ′(V1(S
′x)) = (U1 ◦ φ−1)(x).

Step 1. Choose (i, j) arbitrary and denote Vij =

⎛
⎜⎝
M11 · · · M1r

...
. . .

...
Mr1 · · · Mrr

⎞
⎟⎠ with

M11, . . . ,Mrr ∈ Mr(k). For 2 ≤ u ≤ r, choose 1 ≤ lu ≤ r such that both
Mlu1,Mluu are invertible and put

Ru := M−1luu
Mlu1.

If there are no such pair (Mlu1,Mluu), try it again for another (i, j).

Step 2. Calculate

V̂ij := (Ir ⊕R2 ⊕ · · · ⊕Rr)
tVij(Ir ⊕R2 ⊕ · · · ⊕Rr).

Step 3. Find L ∈Mr(k) such that

(L⊕r)tV̂ijL
⊕r = Dij ⊗ Ir

for some Dij ∈ SMr(k) by the algorithm for Lemma 1.

Step 4. Find T̂ ∈Mm(k) such that

T̂

⎛
⎜⎝
D11

...
Drr

⎞
⎟⎠ =

⎛
⎜⎝
E11

...
Err

⎞
⎟⎠ (7)

by the Gaussian elimination.

Step 5. Output S′ = (Ir ⊕R2 ⊕ · · · ⊕Rr)L
⊕r and T ′ = T̂ .

� �
When S = (Q⊗ Ir)(L1 ⊕ · · · ⊕ Lr), we have

Vij =(L1 ⊕ · · · ⊕ Lr)
t((QtTijQ)⊗ Ir)(L1 ⊕ · · · ⊕ Lr)

=

⎛
⎜⎝
q̃11L

t
1L1 · · · q̃1rLt

1Lr

...
. . .

...
q̃r1L

t
rL1 · · · q̃rrLt

rLr

⎞
⎟⎠ =:

⎛
⎜⎝
M11 · · · M1r

...
. . .

...
Mr1 · · · Mrr

⎞
⎟⎠
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where q̃11, . . . , q̃rr ∈ k are the entries of QtTijQ. Then Ru in Step 2 is a constant
multiple of L−1u L1 and we get

V̂ij =(Ir ⊕R2 ⊕ · · · ⊕Rr)
tVij(Ir ⊕ R2 ⊕ · · · ⊕Rr)

=
(
(1⊕ α2 ⊕ · · · ⊕ αr)Q

tTijQ (1⊕ α2 ⊕ · · · ⊕ αr)
)
⊗ (Lt

1L1)

=:(Q̂tTijQ̂)⊗ (Lt
1L1) (8)

for some α1, . . . , αr ∈ k. This means that any r × r block in V̂ij for any (i, j) is
a constant multiple of Lt

1L1. It is easy to see that L in Step 3 can be found due
to Lemma 1.

Since L(Lt
1L1)L = βIr for some β ∈ k, we have

Dij = βQ̂tTijQ̂. (9)

By the definition of Tij , we see that

⎛
⎜⎝
D11

...
Drr

⎞
⎟⎠ = βT

⎛
⎜⎝
Q̂tE11Q̂

...

Q̂tErrQ̂

⎞
⎟⎠ .

The entries in the right hand side are r × r symmetric matrices and any r × r
symmetric matrix is expressed by a linear combination of E11, . . . , Err. Then
there exists Λ ∈ Mm(k) such that

⎛
⎜⎝
Q̂tE11Q̂

...

Q̂tErrQ̂

⎞
⎟⎠ = Λ

⎛
⎜⎝
E11

...
Err

⎞
⎟⎠ .

The matrix Λ is known as the “symmetric square” of Q̂ and the determinant of
Λ is a power of that of Q̂ (its proof is complicated; see the discussions in Chap.
2 of [23]). Thus, there always exists T̂ = (βTΛ)−1 satisfying (7) and such T̂ can
be found by the Gaussian elimination. ��
Complexity. In Step 1, we take inversions and multiplications of r× r matrices
r times. Then Step 1 is in time O(r4). Step 2 is for multiplications of special
type matrices 2m times. We see that the complexity of each multiplication is
� r5. Then Step 2 is in time O(r7). In Step 3, we use the algorithm for Lemma
1. Then Step 3 is in time O(r4). In Step 4, we use the Gaussian elimination for
m ×m matrices and its complexity is � m3 = r6. We thus conclude that the
total complexity of Algorithm 2 is � r7.

4.3 On Conjugations of Matrices

In this subsection, we give the following lemma for conjugations of matrices to
explain our attack on YTS.
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Lemma 2. Let r, d ≥ 1 be integers, G ∈ Md(k) and g(t) := det(t · Id − G).
Suppose that g(t) is square free and is factored by g(t) = g1(t) · · · gl(t) over k.
Put d1 := deg g1(t), . . . , dl := deg gl(t). Then it holds that
(i) there exists P ∈Mrd(k) such that

P−1(G⊗ Ir)P = (C(g1)⊕ · · · ⊕ C(gl))⊗ Ir , (10)

(ii) if P1, P2 ∈Mrd(k) satisfy

P−11 (G⊗ Ir)P1 = P−12 (G⊗ Ir)P2 = (C(g1)⊕ · · · ⊕ C(gl))⊗ Ir,

there exist B1 ∈ Mrd1(k), . . . , Bl ∈Mrdl
(k) such that

P−12 P1 = B1 ⊕ · · · ⊕Bl. (11)

Proof. (i) Recall that the characteristic polynomial g(t) of G is square free. It is
known (see e.g. [17]) that, in this case, there exists A1 ∈ Md(k) such that

A−11 GA1 = C(g).

Since C(g1)⊕ · · ·⊕C(gl) also has the same characteristic polynomial g(t), there
exists A2 ∈Md(k) such that

A−12 (C(g1)⊕ · · · ⊕ C(gl))A2 = C(g).

Thus P := (A1A
−1
2 )⊗ Ir satisfies (10).

(ii) It is easy to see that B := P−12 P1 satisfies

((C(g1)⊕ · · · ⊕ C(gl))⊗ Ir)B = B((C(g1)⊕ · · · ⊕ C(gl))⊗ Ir). (12)

Divide B by B =

⎛
⎜⎝
B11 · · · B1l

...
. . .

...
Bl1 · · · Bll

⎞
⎟⎠, where Bab is a dar × dbr matrix. Then the

equation (12) gives

(C(ga)⊗ Ir)Bab = Bab(C(gb)⊗ Ir), (1 ≤ a, b ≤ l). (13)

We now describe the diagonalization of C(ga)⊗ Ir by

C(ga) = D−1a (α
(a)
1 Ir ⊕ · · · ⊕ α

(a)
l Ir)Da, (14)

where α
(a)
1 , . . . , α

(a)
l are elements in an extension field of k andDa is an invertible

da × da matrix over an extension field of k. Combining (13) and (14), we have

(α
(a)
1 Ir ⊕ · · · ⊕ α

(a)
da

Ir)(DaBabDb) = (DaBabDb)(α
(b)
1 Ir ⊕ · · · ⊕ α

(b)
db

Ir).

Since g(t) is square free, the eigenvalues α
(a)
1 , . . . , α

(a)
da

, α
(b)
1 , . . . , α

(b)
db

are distinct
to each other if a �= b. This means that DaBabDb = 0 and then Bab = 0 for
a �= b. Thus (11) holds with B1 = B11, . . . , Bl = Bll. ��
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The matrix P in (i) of Lemma 2 is computed as follows.

� Algorithm 3 �

Input: Integers d, r ≥ 1 and a matrix H ∈Mdr(k) given by

H = B−1(G⊗ Ir)B

for some matrices B ∈ Mdr(k) and G ∈ Md(k). Suppose that the charac-
teristic polynomial g(t) := det(t · Id −G) = g1(t) · · · gl(t) is square free.

Output: A matrix P ∈Mdr(k) such that

P−1HP = (C(g1)⊕ · · · ⊕ C(gl))⊗ Ir.

Step 1. Compute g1(H), g2(H), . . . , gl(H).

Step 2. For 1 ≤ u ≤ l, choose an dr× r matrix Yu such that gu(H)Yu = 0.

Step 3. Put

P̂ :=(Y1, HY1, H
2Y1, . . . , H

d1−1Y1, Y2, HY2, . . . , H
d2−1Y2, . . . ,

. . . , Yl, HYl, . . . , H
dl−1Yl),

where d1 := deg g1(t), . . . , dl := deg gl(t). If P̂ is invertible then P = P̂ . If
not, go to Step 2 and choose other Yu’s.

� �
Due to Lemma 2, there always exists such P . It is easy to check that HP̂ and

P̂ ((C(g1)⊕ · · · ⊕ C(gl))⊗ Ir) coincides with each other. ��
Complexity. In Step 1, we compute at most d-th power of H . Then the com-
plexity is � d4r3. In Step 2, each Yu is found in time O(d3r3). Then Step 2 is
in time � l · d3r3 � d4r3. In Step 3, we take at most d times multiplications
between dr × dr matrix and dr × r matrix. Then the complexity of Step 3 is
� d3r3. We thus conclude that the total complexity of Algorithm 3 is � d4r3.

4.4 For General S

In §4.2, we give Algorithm 2 to recover equivalent keys when S is a weak key
given in the form (5). In this subsection, we study the case that S is randomly
chosen and we propose algorithms to recover a matrix S̃ ∈ Mn(k) such that

SS̃ = (Q⊗ Ir)(L1 ⊕ · · · ⊕ Lr)

for some Q,L1, . . . , Lr ∈Mr(k). Once such a matrix S̃ is recovered, the attacker
can recover equivalent keys by Algorithm 2. We first give the following algorithm
based on Algorithm 3 to recover S̃ partially.
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� Algorithm 4 �

Input: Integers r, d ≥ 1 and m = r(r+1)/2 matrices F11, . . . , Frr ∈Mdr(k)
given by

Fij = St(Gij ⊗ Ir)S, (1 ≤ i ≤ j ≤ r)

for some Gij ∈ SMr(k) and an invertible S ∈ Mdr(k).

Output: An integer 1 ≤ l ≤ r, a set of positive integers {d1, . . . , dl} with
d1 + · · ·+ dl = d and an invertible P ∈Mdr(k) satisfying

SP = (Q ⊗ Ir)(S1 ⊕ · · · ⊕ Sl) (15)

for some invertible matrices Q ∈Md(k), S1 ∈Md1r(k), . . . , Sl ∈ Mdlr(k).

Step 1. If d = 1, output l = 1, d1 = 1 and P = Idr. If not, go to the next
step.

Step 2. Take two linear sums W1,W2 of {Fij}i,j such that W2 is invertible.

Step 3. Compute W := W−12 W1 and its characteristic polynomial
w(t) := det(t · Idr −W ) of W .

Step 4. Factor w(t) and let w0(t) be a polynomial of degree d such that
w(t) = w0(t)

r. If w0(t) is irreducible or has a square factor, go back to
Step 2 and change W1 and W2. If not, let w0(t) = w1(t) · · ·wl(t) be the
factorization of w(t) and go to the next step.

Step 5. Find P ∈ Mdr(k) such that

P−1WP = (C(w1)⊕ · · · ⊕ C(wl))⊗ Ir (16)

by Algorithm 3.

Step 6. Output 2 ≤ l ≤ r, d1 := degw1(t), . . . , dl := degwl(t) and P .

� �

Since both W1,W2 are in the form St(G ⊗ Ir)S for some G ∈ Mr(k), the
matrix W is given by

W = S−1(W0 ⊗ Ir)S (17)

for some W0 ∈ Md(k). Then there exists a polynomial w0(t) of degree d with
w(t) = w0(t)

r . It is known that the probability that a randomly chosen poly-
nomial over k of degree d is irreducible is d−1 + O(d−1q−d/2) (see e.g. [19])
and the probability that a randomly chosen polynomial has a square factor is
q−1 (see [25]). Then the success probability of Step 4 is considered to be about
1 − d−1 − O(q−1). Remark that we need more delicate discussions to conclude
that the success probability is in this way since W0 is a product of symmetric
matrices and the probability that a randomly chosen such a matrix has a given
characteristic polynomial is not necessarily uniformly distributed. Table 1 shows
the probabilities by 1000 times experiments that the characteristic polynomials
of such W0’s satisfy the conditions of Step 4 for q = 31, 257 and 6781. These
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Table 1. Success probability (%) of Step 4 in Algorithm 4 by experiments

r 2 3 4 5 6 7 8 9 10 11 12

q = 31 51.3 65.3 71.9 76.7 81.0 82.4 82.6 86.4 87.1 87.8 88.3

q = 257 48.1 67.5 76.6 80.3 86.2 84.6 88.5 89.7 88.8 91.6 91.1

q = 6781 49.9 65.7 74.8 79.8 85.5 86.0 86.3 87.8 91.2 89.9 92.9

probabilities are close to 1−d−1−q−1 and we can consider that it is high enough
in practice.

Due to (17), we have

P−1WP = (SP )−1(W0 ⊗ Ir)(SP ).

Thus, thanks to (ii) of Lemma 3, we see that there exists P ∈Mdr(k) with (16)
and such a matrix P satisfies the property (15). ��
Complexity. Step 2 is for summations of matrices and checking invertibility,
and Step 3 is for inversion/multiplication of matrices and calculating the char-
acteristic polynomial. Then the complexities of Step 2 and 3 are � d3r3. Step 4
is for factoring a polynomial. It is roughly estimated by � d3r3 (see e.g. [15]).
According to Table 1, we see that the probability that w0(t) passes Step 4 is
≥ 1/3 in practice. Then Step 4 is repeated less than three times on average.
Step 5 uses Algorithm 3 and then its complexity is � d4r3. Thus we conclude
that the total complexity of Algorithm 4 is � d4r3.

Repeating Algorithm 4 in several times, we can recover S̃ as follows.

� Algorithm 5 �

Input: An integer r ≥ 1 and the public key V1(x) = {xtVijx}.
Output: An invertible matrix S̃ ∈Mn(k) such that

SS̃ = (Q⊗ Ir)(L1 ⊕ · · ·Lr)

for some invertible matrices Q,L1, . . . , Lr ∈ Mr(k).

Step 1. Use Algorithm 4 for an input

{r; d = r;V11, . . . , Vrr}

and get its output
{l; d1, . . . , dl;P}.

Let
Fij := P tVijP.

Step 2. If l = r then output S̃ = P and finish. If not, go to the next step.
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Step 3. Let F
(1)
ij ∈ Mrd1(k), . . . , F

(l)
ij ∈Mrdl

(k) be matrices given by

Fij =

⎛
⎜⎜⎝
F

(1)
ij ∗

. . .

∗ F
(l)
ij

⎞
⎟⎟⎠ .

Use Algorithm 4 for inputs

{r; d1;F (1)
11 , . . . , F (1)

rr }, . . . , {r; dl;F (l)
11 , . . . , F

(l)
rr }

and get their outputs

{l1; d1,1, . . . , d1,l1 ;P1}, . . . , {ll; dl,l, . . . , dl,ll ;Pl}.

Step 4. Replace l with l1 + · · · + ll, {d1, . . . , dl} with {d1,1, . . . , d1,l1 ,
d2,1, . . . , . . . , dl,ll}, Fij with (P1 ⊕ · · · ⊕ Pl)

tFij(P1 ⊕ · · · ⊕ Pl) and P with
P (P1 ⊕ · · · ⊕ Pl). Go to Step 2.

� �

Due to (16), the matrix P satisfies

SP = (Q ⊗ Ir)(S1 ⊕ · · · ⊕ Sl)

for some Q ∈ Mr(k), S1 ∈ Mrd1(k), . . . , Sl ∈ Mrdl
(k). Then the matrix F

(u)
ij

(1 ≤ u ≤ l) is given by

F
(u)
ij = St

u(G
(u)
ij ⊗ Ir)Su

for some G
(u)
ij ∈ SMdu(k). Thus Algorithm 4 works for an input {r; du;F (u)

11 ,

. . . , F
(u)
rr }.

If its output is {lu; du,1, . . . , du,lu ;Pu}, it holds

SuPu = (Qu ⊗ Ir)(Su,1 ⊕ · · · ⊕ Su,lu)

for some Qu ∈Mdu(k), Su,1 ∈Mrdu,1 , . . . , Su,lu ∈ Mrdu,lu
(k), and then

(P1 ⊕ · · · ⊕ Pl)
tFij(P1 ⊕ · · · ⊕ Pl)

=(S1P1 ⊕ · · · ⊕ SlPl)
t((QtGijQ)⊗ Ir)(S1P1 ⊕ · · · ⊕ SlPl)

=(S1,1 ⊕ · · · ⊕ S1,l1 ⊕ S2,1 ⊕ · · · · · · ⊕ Sl,ll)
t

·
((
(Q1 ⊕ · · · ⊕Ql)

tQtGijQ(Q1 ⊕ · · · ⊕Ql)
)
⊗ Ir

)
· (S1,1 ⊕ · · · ⊕ S1,l1 ⊕ S2,1 ⊕ · · · · · · ⊕ Sl,ll)

Thus, changing l, {d1, . . . , dl}, Fij , P as in Step 4, we can take Step 2-4 again.
Since l1 + · · · + ll is greater than l unless l = r (equivalently {d1, . . . , dl} =
{1, . . . , 1}), this algorithm finishes after at most r − 1 times repeats. ��
Complexity. Step 1 is Algorithm 4 for d = r. Then Step 1 is in time � r7. In
Step 3, we use Algorithm 4 for d = d1, . . . , d = dl. Then the complexity of Step
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3 is � d41r
3 + · · · d4l r3 � (d1 + · · ·+ dl)

4r3 = r7. Since Step 2-4 are repeated at
most r − 1 times, the total complexity of Algorithm 5 is � r8.

4.5 Summary of the Proposed Attack

We summarize our attack on YTS in this subsection.
� Proposed attack on YTS �

Input: The public key V1(x) of YTS.

Output: Affine maps S′ : kn → kn and T ′ : km → km such that

T ′(V1(S
′(x))) = (U1 ◦ φ−1)(x).

Step 1. Find vectors s̃ ∈ kn and t̃ ∈ km such that V1(x + s̃) − t̃ is homo-
geneous by Algorithm 1.

Step 2. Find S̃ ∈ Mn(k) such that

S0S̃ = (Q⊗ Ir)(L1 ⊕ · · ·Lr)

for some Q,L1, . . . , Lr ∈Mr(k) by Algorithm 5.

Step 3. Find S1 ∈Mn(k) and T1 ∈Mm(k) such that

T1(V1(ŜS1(x+ s̃))− t̃) = (U1 ◦ φ)(x)

by Algorithm 2. Output affine maps S′, T ′ given by

S′(x) = S̃S1(x + s̃), T ′(y) = T1(y − t̃).
� �

Note that Algorithm 4 is included in Algorithm 5 and Algorithm 3 is in
Algorithm 4.

Summing up the complexities of Algorithm 1,5 and 2 estimated in §4.1, 4.4
and 4.2 respectively, we can claim that our attack recovers equivalent secret keys
in time O(r8) = O(n4). Once affine maps S′, T ′ are recovered by our attack,
the attacker can generate dummy signatures for arbitrary messages. Thus we
conclude that the scheme YTS is insecure.

5 Experiments

We made experiments of our attack in 20 times for YTS of (q, r) = (6781, 11),
which has at least 140-bits security against the min-rank attack [30]. These
experiments are carried out under Windows 7, Core-i7 2.67GHz and Magma
ver.2.15-10 [4]. For every experiments, we succeeded to recover equivalent secret
keys S′, T ′ and to generate dummy signatures. The running times to recover
equivalent secret keys are 240 ∼ 450 seconds. Note that, in our experiments,
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the running times mainly depend on how many times one tries Step 4 in Algo-
rithm 4 for large d. We pick up the following three cases to show the relation
between the running times and how {di} changes in Algorithm 5.

Case 1
{di} : {11} → {1, 2, 8} → {1, . . . , 1︸ ︷︷ ︸

5

, 2, 4} → {1, . . . , 1︸ ︷︷ ︸
8

, 3} → {1, . . . , 1︸ ︷︷ ︸
11

}.

Running time: about 301 seconds.

Case 2
{di} : {11} → {1, 1, 1, 2, 3, 3}→ {1, . . . , 1︸ ︷︷ ︸

7

, 2, 2} → {1, . . . , 1︸ ︷︷ ︸
11

}.

Running time: about 240 seconds.

Case 3
{di} : {11} → {2, 2, 3, 4} → {1, . . . , 1︸ ︷︷ ︸

8

, 3} → {1, . . . , 1︸ ︷︷ ︸
9

, 2} → {1, . . . , 1︸ ︷︷ ︸
11

}.

Running time: about 443 seconds.

In Case 1 and Case 2, we passed Step 4 in Algorithm 4 for d = 11 at the first
trial, but in Case 3, we passed it at the second trial. Then the running time of
Case 3 is largest in these three cases. In Case 1, “8” appears in the second {di}.
Then the running time of Case 1 is a little larger than that of Case 2.

The results of our experiments show that YTS of (q, r) := (6781, 11) which
had been considered to be secure in [30] can be broken in several minutes and
then it is not secure at all.

6 Conclusion

In PQCrypto 2013, a new multivariate signature scheme YTS [30] was presented.
Its signature generation is fast enough and its structure is quite different to other
known MPKCs. Then YTS had been expected as a new idea to build secure and
efficient MPKCs. However, the present paper shows that YTS is not secure at
all. YTS must be repaired for practical use.
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for Young Scientists (B) no. 26800020. He would like to thank the shepherd and
anonymous reviewers for giving helpful comments to improve this paper.
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Abstract. In this work, we describe the first implementation of an in-
formation set decoding (ISD) attack against code-based cryptosystems
like McEliece or Niederreiter using special-purpose hardware. We show
that in contrast to other ISD attacks due to Lee and Brickel [7], Leon [8],
Stern [15] and recently [9] (May et al.) and [2] (Becket et al.), reconfig-
urable hardware requires a different implementation and optimization
approach: Proposed time-memory trade-off techniques are not possible
in the desired parameter sets. We thus derive new parameter sets from
all steps involved in the ISD attack, taking a near cycle-accurate runtime
estimation as well as the communication overhead into account.

Finally, we present the implementation of a hardware/software co-
design – based on the Stern’s attack –, evaluate it against the challenges
from the Wild-McEliece website[5], discuss its shortcomings and possible
enhancements.

Keywords: Special-purpose hardware, Implementation, McEliece, Nieder-
reiter, Challenge, Information Set Decoding.

1 Introduction

The majority of the currently deployed asymmetric cryptosystems work on the
basis of either the discrete logarithm or the integer factorization problem as
the underlying mathematical problem. Shor’s Algorithm [14] in combinination
with upcoming advances in quantum computing pose a severe threat to these
primitives.

The McEliece cryptosystem – introduced by McEliece in 1978 [10] – is one of
the alternative code-based cryptosystems unaffected by the known weaknesses
against quantum computers. Like most other systems, its key size needs to be
doubled to withstand Grovers algorithms [6,12]. The same holds for Niederre-
iter’s variant [11], proposed in 1986. The best know attacks on these promising
code-based cryptosystems are decoding-attacks based on information set decod-
ing (ISD) [13,7,8,15,9,2].

So far, all proposed ISD-variants and the single public implementation we are
aware of [3] optimize the parameters for CPU-based software implementations.
As code-based systems mature over time, it is important to know if and how

M. Mosca (Ed.): PQCrypto 2014, LNCS 8772, pp. 126–141, 2014.
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these attacks scale when using not only CPUs, but incorporating also dedicated
hardware accelerators. This allows a more realistic estimation of the true attack-
ing costs and attack efficiency than the analysis of an algorithm’s asymptotic
behaviour.

The base field of most proposed code-based systems is GF (2), which is
favourable for hardware implementations. The authors of [4] published a wide
range of challenges [5] – including binary codes, which we target in this work
with a hardware attack.

Contribution of This Work: In this paper, we describe the first hardware accel-
erated ISD-attack using special-purpose hardware. Starting with Stern’s vari-
ant [15], analyze the possibilities and restrictions of dedicated hardware, present
a way of mapping collision search techniques to hardware and derive parameter
sets for binary codes. We also present a nearly cycle-accurate runtime estimation
targeting different FPGA families for a wide range of parameter sets from [5]
and discuss the drawbacks of the attack and possible ways to build upon these
results.

Outline: In Section 2, we give the necessary background regarding code-based
cryptosystems and describe the basic ISD-variants. We explain the different op-
timization strategies and hardware restrictions in Section 3. Then, we present
our implementation of the hardware optimized attack in Section 4 and finish
with a discussion of the results and conclusions in Sections 5 and 6.

2 Background

In this section, we briefly discuss the background required for the remainder of
this work. We start with a very short introduction into code-base cryptography
including McEliece, Niederreiter and Information Set Decoding, followed by a
short overview on reprogrammable hardware.

2.1 Code-Based Cryptography

Definition 1. Let Fq denote a finite field of q elements and Fn
q a vector space

of n tuples over Fq. An [n,k]-linear code C is a k-dimensional vector subspace of
Fn
q . The vectors (a1, a2, . . . , aqk) ∈ C are called codewords of C.

Definition 2. The Hamming distance d(x, y) between two vectors x, y ∈ Fn
q is

defined to be the number of positions at which corresponding symbols xi, yi,
∀1 ≤ i ≤ n are different. The Hamming weight wt(x) of a vector x ∈ Fn

q is
defined as Hamming distance d(x, 0) between x and the zero-vector.

Definition 3. A matrix G ∈ Fk×n
q is called generator matrix for an [n,k]-code

C if its rows form a basis for C such that C = {x · G | x ∈ Fk
q}. In general

there are many generator matrices for a code. An information set of C is a set
of coordinates corresponding to any k linearly independent columns of G while
the remaining n− k columns of G form the redundancy set of C.
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If G is of the form [Ik|Q], where Ik is the k× k identity matrix, then the first
k columns of G form an information set for C. Such a generator matrix G is said
to be in standard (systematic) form.

Definition 4. For any [n,k]-code C there exists a matrix H ∈ Fn−k×n
q with

(n− k) independent rows such that C = {y ∈ Fn
q | H · yT = 0}. Such a matrix H

is called parity-check matrix for C. In general, there are several possible parity-
check matrices for C.

McEliece. The secret key of the McEliece cryptosystem consists of a linear code
C over Fq of length n and dimension k capable of correction w errors. A generator
matrix G, an n×n permutation P and an invertible k×k matrix S are randomly
generated and form the secret key. The public key consists of the k × n matrix
Ĝ = SGP and the error weight w. A message m of length k is encrypted as
y = mĜ+e, where e has Hamming weight w. The decryption works by computing
yP−1 = mSG + eP−1 and using a decoding algorithm for C to find mS and
finally m.

Niederreiter. The secret key of the Niederreiter cryptosystem consists of a linear
code C over Fq of length n and dimension k capable of correction w errors. A
parity check matrix H , an n× n permutation P and an invertible n− k× n− k
matrix S are randomly generated and form the secret key. The public key is the
n × n − k matrix Ĥ = SHP and the error weight w. To encrypt, the message
m of length n and Hamming weight w is encrypted as y = ĤmT. To decrypt,
compute S−1y = HPmT and use a decoding algorithm for C to find PmT and
finally m.

Information Set Decoding. Attacks based on information set decoding were in-
troduced by Prange in [13]. They are the best known algorithms, which do not
rely on any specific structure in the code, which is the case for code-based cryp-
tography, i. e., an attacker deals with a random-looking code without a known
structure. In its simplest form, an attacker tries to find a subset of generator
matrix columns that is error-free and where the submatrix composed by this
subset is invertible. The message can then be recovered by multiplying the code-
word by the inverse of this submatrix. Several improvements of the attack were
published, including [7] (Lee and Brickel), [8] (Leon), [15] (Stern) and recently
[9] (May et al.) and [2] (Becket et al.).

The latest and – to the best of our knowledge – only publicly available imple-
mentation is [3]. The authors present an improved attack based on Stern’s variant
that broke the originally proposed parameters (a binary (1024,524) Goppa code
with 50 errors added) of the McEliece system. The attack ran for 1400 days on
a single 2.4 GHz Core2 Quad CPU or 7 days on a cluster of 200 CPUs.

We now give a short introduction into the classical ISD-variants based on
[12]. Given a word y = c+ e with c ∈ C, the basic idea is to find a word e with
Hamming weight of e ≤ w. The ISD-algorithms differ in the assumption on the
distribution of 1s in e. If a given matrix G does not successfully find a solution,
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Algorithm 1. Information set decoding for parameter p
Input: k × n matrix G, Integer w
Output: a non-zero codeword c of weight ≤ w
1: repeat
2: pick a n× n permutation P .
3: compute G′ = UGP = (ID|R) (w.l.o.g we assume the first k positions from an

information set).
4: compute all the sums s of ≤ p rows of G′

5: until Hamming weight of s ≤ w
6: return s

Table 1. Weight profile of the codewords searched for by the different algorithms.
Numbers in boxes are Hamming weight of the tuples. Derived from [12].

n←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Brute force w

k←−−−−−−−−−−−−−−−−−−−−→ n− k←−−−−−−−−−−−−−−−−−−−−−−−−→
Lee-Brickel p w − p

l←−−−−−−−−−→ n− k − l←−−−−−−−−−−−−−−−→
Leon p 0 w − p

Stern p/2 p/2 0 w − p

the matrix is randomized, swapping columns and converting the result back into
reduced row-echelon form by Gauss-Jordan elimination. As each of these column
swaps also transforms the positions of the error vector e, there is a chance that
it now matches the assumed distribution. The trade-off is between the success
probability of one iteration of Algorithm 1 (or, in other words, the number of
required randomizations) and the cost of a single iteration of this algorithm.
Stern’s algorithm is special as it allows a collision search in the two p/2 sized
windows by a birthday attack technique.

The latest improvements from [9] and [2] extend this technique, but are out
of scope of this work because they introduce large tables highly unsuitable for
hardware implementations. For the sake of completeness, Table 1 on page 4 in
[9] shows the time and memory complexities of the different ISD-variants.

2.2 Reprogrammable Hardware

Compared to general-purpose CPUs (and also GPUs as a many-core architec-
ture), application-specific integrated circuits (ASICs) – chips designed for exactly
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one task – are much more efficient in terms of area- and power consumption.
There are none of the architectural limitations like fixed register-width or data-
busses: you have full control over the design and data paths, e. g., if you need to
store matrix columns of 139 bits, you may operate natively on them. The full
power and potential of ASICs comes at a price: once produces, the chip can be
used for one tasks only, e. g., reusing it for 141-bit columns is not possible.

An effort to balance the two approaches leads to reconfigurable hardware,
i. e., Field-Programmable Gate Arrays (FPGAs), allowing rapid hardware pro-
totyping at the cost of a reconfiguration overhead. These chips provide a large
number of lookup-tables (LUTs) and storage elements (FF) and combine them
with dedicated hardware cores, e. g., fast dual-port memory or digital signal pro-
cessing (DSP) cores. The designer builds upon these resources and creates a chip
with an application-specific architecture, but can reprogram it on demand.

3 Modified Hardware Attack

In this section, we will describe the modified algorithms for the hardware-based
attack. We will highlight the main differences to a pure software attack, the limi-
tations posed by the hardware and the solutions to circumvent these restrictions.
We will end with the parameters generated for selected challenges.

3.1 From Software to Hardware

As this is the first hardware implementation of the attacks, we need to figure out
the best basis and tweak the parameters for the underlying hardware platforms.
It is important to keep in mind that we are mostly restricted by the memory
consumption of the matrices and that this is a hard limitation on FPGAs. Thus,
we cannot precompute collision tables of several gigabytes to speed up the attack.

We evaluated the choices of parameters of the attacks for hardware suitabil-
ity. As starting point, we chose Stern’s ISD variant without the requirement of
splitting the p-sized windows into two equal sized halves. The main problem
we identified in this process were the l-bit collision-search proposed in [15] and
the different choices for splitting p into p1 and p2 to gain the most from this
search. To take advantage of the birthday-like attack strategy, while at the same
time reducing memory consumption to a hardware friendly level, we developed
a hash-table like memory structure called collision memory (CMEM). Please
note that this construction fixes p1 = 1 and thus p2 = p− 1.

Before we explain the different hardware modules required for an ISD-attack,
we need to define the parts of the matrix we use in each step. Figure 1 shows
the full matrix including the identity part and the notation we use: The last k2
columns of the matrix of n − k bits each form the submatrix HK2, where the
enumerator computes all sums of p2 = p− 1 columns. In the middle, k1 columns
form HK1 of n − k − l bits each. CMEM contains all information about the
integer representation of the remaining lower l bits of these k1 columns.
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H =

1 0 · · · 0 0 1 0 1 0 1
0 1 0 0 0 0 1 0 1 0

0 0
. . . 0 1 0 1 1 1 0

0 0 0 1 0 1 1 0 1 1

0 0 0 0 1 0 1 0 0 1

0 0 0 0 1 1 0 1 0 1

1 0 · · · 0
0 1 0 0

0 0
. . . 0

0 0 0 1

ID

n− k − l

n− k − l

0 0 0 0

0 0 0 0
ZERO
0 0

l

0 1 0
0 0 1

1 0 1

0 1 1

HK1

k1

1 0 1
1 1 0
CMEM

0

1 0 1
0 1 0

1 1 0

0 1 1

0 0 1

1 0 1

HK2

k2

w − p p1 p2

Fig. 1. Splitting of the public key into memory segments. Values under the arrows
denote the assumed Hamming weight distribution of the error e.

3.2 Enumerator

The most expensive step in the attacks is the computation of the
(
k2

p2

)
sums of p2

columns each. As n− k bits per column usually do not match the register sizes
of CPUs [3], we may need even more operations for each addition to update
all registers involved. To reduce the costs, only the sum of the lower l bits is
computed. In case of a collision with the p1-sums from the first part of the
columns, more bits are used for the sum and checked for the final Hamming
weight, where usually early-abort techniques reduce the number of times the full
check is done.

Please note that – as long as we store the full matrix on the FPGA – we can
perform the full n−k bit addition of two columns in one clock cycle in hardware,
regardless of the parameters. This allows us to perform the full iteration on the
FPGA without further post-computations, e. g., to sum up remaining bits.

This has another advantage: instead of computing the sums from scratch for
each intermediate step, we can modify the previous sum (of p2 columns) by
utilizing a gray-code approach: we add one new column and remove one old
column in one step. That way, we keep the number of p2 columns in the sum
constant and minimize the effort - given that this enumeration process is fast
enough.

3.3 Collision Search

As we outlined before, collision search is tricky in hardware. The approach of a
large precomputed memory is not possible within the restricted device. We use a
CMEM construction, consisting of of 2l × (�log2(k1)�+1) bits, which prepares
the relevant information for fast access in hardware: for a given l-bit integer, we
can find out (a) if at least one of the k1 columns contains this bit sequence in the
last l positions, (b) how many matches exist and (c) the position in the memory
of these columns – all in one clock cycle.

In order to remove additional wait cycles and minimize the memory consump-
tion, we generate the part denoted as CMEM in Figure 1 in two steps during
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the matrix generation. First, we sort the k1 columns according to the integer
representation of the last l bits. Please note that the cost for the column swaps
are negligible, as the matrix is stored in column representation. Afterwards, we
generate the 2l elements of the new structure: for index i, the MSB of CMEM [i]
is set only if the integer was present in the k1 columns. The remaining l bits
contain the position of its first occurrence.

Example: In the following example, we use l = 3, k1 = 6. Each line represents a
step in the generation process: (1) contains the integer representation of the last
l = 3 bits of the k1 = 6 columns, while (2) consists of the sorted column list and
(2) of the (larger) memory content of CMEM .

1 [ 0, 1, 0, 4, 3, 6 ]
2 [ 0, 0, 1, 3, 4, 6 ]
3 [ 1|0, 1|2, 0|3, 1|3, 1|4, 0|5, 1|5, 0|6 ]

When checking for a collision with i, we simply check the MSB of CMEM [i].
As we are able to use two ports simultaneously, we can directly derive the number
of collisions from the subtraction of CMEM [i+ 1]− CMEM [i] and only need
one multiplexer for the special case i = k1 − 1. The base address is provided by
the last l bits of CMEM [i].

3.4 Determining Hamming Weight

For all collisions found by the collision search, a column from HK1 is added to
the current sum computed from the HK2 columns and the Hamming weight of
the result is checked against w − p.

The Hamming weight check in hardware needs to be a fully pipelined adder-
tree, automatically generated for the target FPGA: the size of the internal look-
up tables are used as a parameter during this process. More recent FPGAs with
6-input LUTs can benefit from this.

4 Implementation

In this section, we will present our hardware-implementation of the modified
attack and start from a algorithmic description of the attack before we describe
the software and hardware parts in more detail.

The hardware design was carefully build to work on different types of FPGAs –
in this case the Xilinx Spartan-3, Spartan-6 and Virtex-6 Familiy – and integrate
well into the RIVYERA FPGA cluster. Algorithm 2 describes the combination
of the FPGA and the host-CPU for pre- and post-processing: the iteration on
the FPGAs is computed in parallel to the generation step (CPU) and the CPU
may utilize multiple parallel cores for the matrix randomization.



Attacking Code-Based Cryptosystems with Information 133

Algorithm 2. Modified HW/SW algorithm
Input: Challenge Parameters and the optimal attack configuration

Challenge Parameters: n, k, w, public key matrix, ciphertext
Attack Parameters: FPGA bitstream, #FPGAs, #cores, p, l, k1

Output: Valid solution to the challenge
1: Program all available FPGAs with the provided bitstream
2: repeat
3: for all cores do
4: Randomize matrix
5: Generate collision memory
6: Store HK1,HK2, CMEM in datastream
7: Store permutation
8: end for
9: Evaluate FPGA success flag of previous iteration

10: if success then
11: Read columns of successful FPGA
12: else
13: Burst-Transfer datastream to FPGAs
14: FPGAs: compute iteration on all datasets in parallel
15: end if
16: until success flag is set
17: Recover solution on challenge

4.1 Software Part

As mentioned in Section 3, the complete randomization step is done in software.
After the challenge file and actual attack parameter are read in, as many data
sets as cores available are generated. The data sets are generated using the
OpenMP library in parallel. Each thread takes the original public key matrix
and processes as described in Algorithm 3.

Algorithm 3. Randomization Step
Input: Public key matrix, r=#columns to swap
Output: Randomized matrix in reduced row echelon form
1: while less than r columns swapped do
2: Choose a column i from the identity part at random
3: Choose a random column j from the redundant part, but ensure that the bit at

position (i, j) is one.
4: Swap columns i and j
5: Eliminate by optimized Gauss-Jordan
6: end while
7: Construct the collision memory(CMEM)
8: Store HK1,HK2 and CMEM in memory.
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As the FPGA expects the data in columns, the matrix is also organized in
columns in memory. Thus, pointer swaps reflect the column swaps. The Gauss-
Jordan elimination is optimized taking advantage of the following facts: Only
one column in the identity part has changed and the pivot bit in this column
is one by definition, therefore only this column is important during elimination.
Thus, only the k+ l rightmost bits of each row (which are in the redundant part)
must be added to other rows, as the leftmost n − k − l bits (except the pivot
column) remain unchanged.

The performed column swaps during randomization and CMEM construction
are stored in a separate memory. This is necessary to recover the actual matrix
the successful FPGA core was working on, as the randomized matrices are not
stored. Once an FPGA sends back the p1 = 1 column from CMEM and the p2
columns from the enumerator, the low weight word is recomputed locally after
applying all previous permutations to the original matrix, followed by a Gauss-
Jordan elimination. In a final step, the remaining w − p 1s in the plaintext are
recovered.

4.2 Hardware Part

As it is not possible to generate an optimized design inherently suitable for all
matrices, the ISD attack requires a flexible hardware design, where we traded
some hand-optimizations for a more generic design. This allows us to generate
custom configurations for every parameter set with a close to optimal config-
uration in terms of area utilization and the number of parallel cores. These
parameters are included into the source code as a configuration package and de-
fine constants used throughout the design. Thus, we can adjust the parameters
very easily and automatically create valid bitstreams for the challenges.

The basic layout is the same for all FPGAs types. We use a fast interface to
read incoming data, distribute it to multiple ISD-cores and initialize the local
memory cores. After this initialization, all ISD-cores compute the iteration steps
in parallel.

The iteration step consists of three major parts: the gray-code enumeration,
the collision search and the Hamming weight computation.

Algorithm 4 describes the iteration process of each core on the FPGA. First,
the different memories are initialized from the transferred data. Afterwards,
the columns from the enumeration step provide the intermediate sum, which is
used in the collision check step. If a collision is found on the lower l bits, the
corresponding column from HK1 is added to the sum and the Hamming weight
is computed.

Enumeration Step. For the enumeration process, we implemented a generic,
optimized, constant-weight gray-code enumerator as described in Section 3.2. It
starts with the initial state of [0, 1, . . . , p2 − 1] and keeps track of the columns
used to build the current column-sum. Aside from the internal state necessary
to recover the solutions, it provides the memory core with two addresses to
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modify the sum. With this setup, we can compute a new valid sum of p2 columns
in exactly one clock cycle. The timing is independent of the parameters, even
though the area consumption is determined by the p2 registers of log2 k2 bits. The
enumerator is automatically adjusted to these parameters and always provides
the optimal implementation for the given FPGA and Challenge.

Algorithm 4. Iteration Step in Hardware
Input: Memory content for HK1, HK2, CMEM , Parameters n, k, l, w, p2, k1, k2
Output: On success: 1 column index from HK1, p2 column indices from HK2

1: Initialize HK1: (k1 × (n− k − l))-bit memory (BRAM)
2: Initialize HK2: (k2 × (n− k)-bit memory (BRAM)
3: Initialize CMEM : (2l × (�log2 k1�+ 1))-bit memory (BRAM or LUT)
4: while (not enumeration_done) and (not successful) do
5: Enumerate columns in HK2 and update sum
6: for all collisions of sum (last l-bit) in CMEM do
7: Update sum (upper part) with column from HK1

8: if HammingWeight(sum) = w then
9: Set success flag and column indices

10: Set done flag and terminate
11: end if
12: end for
13: end while

Collision Search. After the enumerator provides a sum of p2 columns from
HK2, we check the lower l bits for collisions with CMEM for valid candidates.
Due to the memory restrictions on FPGAs, we keep the parameter l smaller
than in software-oriented attacks. If storage in distributed memory (in constrast
to a BRAM memory core) requires only small area, we automatically evaluate
if an additional core may be placed when using LUTs instead of BRAMs and
configure the design accordingly.

The additional logic surrounding the memory triggers the Hamming weight
check in case a match was found and provides the column addresses to access
HK1.

Hamming Weight Computation. The final part of the implementation is
the computation of the Hamming weight. To speed up the process at a minimal
delay, we split the resulting (n − k − l)-bit word into an adder-tree of depth
log2(n − k − l) − 1 and compute the Hamming weight of the different parts in
parallel. These intermediate results are merged afterwards with a delay equal to
the depth of the tree. The circuit is automatically generated from the parameters
and uses multiple registers as pipeline steps, i. e., we can start a new Hamming
weight computation in each clock cycle.
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4.3 Pipeline and Routing

To maximize the effect of the hardware attack, the design is build as a fully
pipelined implementation: All modules work independently and store the inter-
mediate values in registers.

enum
HK2

Memory

HK1

Memory

sum

CMEM

HW
check

Fig. 2. Overview of the different modules inside one iteration core

Figure 2 illustrates this pipeline structure. Every memory provides an implicit
stage and the HW check is automatically pipelined. In addition, the figure shows
that the single most important resource for the attack is the on-chip memory.

Due to the large amount of free area in terms of logic, i. e., not memory
hardcores, the routing is usually unproblematic. In theory, we could also use
parts of the free logic resources as memory and add to the dedicated memory
cores. This complicates the automated generation process and does not guarantee
a successful build for all parameters. Thus, we did not utilize these resources and
used them to relax the routing process.

5 Results

In this section, we present the results of our analysis. The hardware results
are based on Xilinx ISE Foundation 14 for synthesis and place and route. We
compiled the software part using GCC 4.1.21 and the OpenMP library for multi-
threading and ran the tests on the i7 CPU integrated in the RIVYERA cluster.

5.1 Runtime Analysis

Based on the partition of the public key matrix (see Figure 1) and the distribu-
tion of errors necessary for a successful attack, the number of expected iterations
is

#it =

⌈ (
n
w

)
(
k1

p1

)
×
(
k2

p2

)
×
(
n−k−l
w−p

)
⌉
.

1 Please note that the version is due to the LTS system and mentioned only for com-
pleteness. While better compiler optimizations may increase software speed, the
speed-up for the overall hardware attack is negligible.
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As the hardware layout is very straight-forward and is fully pipelined, we can
determine the amount of cycles per iteration as

#c = cenum + cpipe + cpopcount + ccollision

with

cenum =

(
k2
p2

)
cpipe = 4

cpopcount = log2 (n− k − l)− 1

ccollision =
cenum
2l

× 1

#mcols

All operations of the iteration are computed in exactly one clock cycle. After
a constant pipeline delay, every clock cycle generates an iteration result. Thus,
we have an almost equal running time for all iterations with one exception: The
only part, which may vary from iteration to iteration is the collision search. If
we find more than one candidate using CMEM , we need to process them before
continuing with the next enumeration step. Thus, we need to add the number
of multiple column candidates to the total number of clock cycles.

We can estimate the expected number of collisions inside CMEM - which is
the amount of multiple column candidates to test - as

#mcols = k1 × (1− (1− 1

2l
)k1−1).

5.2 Optimal Parameters

We will now derive the optimal parameter sets for selected challenges taken
from [5] and provide the expected number of iterations on different FPGA fam-
ilies: the Xilinx Spartan-3, Spartan-6 and Virtex-6. The first two are integrated
into the RIVYERA framework, which features 128 Spartan-3 5000 (RIVYERA-
S3) and 64 Spartan-6 LX150 (RIVYERA-S6) FPGAs, respectively. During the
tests with the RIVYERA framework we noticed that the transfer time of the
randomized data exceeds the generation time.

To measure the impact of the transfer speed on the overall performance, we
added a single Virtex-6 LX240T evaluation board offering PCIe interface in-
cluding DMA transfer. The PCIe engine based on [16,1,17,18] is, depending on
the data block size, capable of transferring at 0.014Mbps, 181Mbps, 792Mbps,
1412Mbps, 2791Mbps for block sizes of 128 byte, 100 Kbyte, 500 Kbyte, 1 Mbyte,
4 Mbyte, respectively.2

2 As only a single device was available and a completely different interface must be
used, the actual attack is not performed using these device.
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We use a Sage script to generate the optimal parameters for all challenge and
provide the script and the output online3. Table 4 in the Appendix contains
the results for the selected challenges. Given the bottleneck of the data transfer
time, the script optimizes the parameters l, p and k1 in such a way that the iter-
ation step requires approximately as much time as transferring the data for all
cores. The number of cores per FPGA depends on the challenge and the avail-
able memory and takes the area and memory consumption of the data transfer
interface into account.

As the challenges from [5] are sorted according to there public key size, we
selected four challenges as examples. These are the binary field challenges with
public key sizes of 5Kbyte, 20KByte, 62Kbyte and 168Kbyte. The last two cor-
respond roughly to 80 and 128 bit symmetric security, respectively[3]. All solved
challenges will be send to the authors of [5] and hopefully published on their site
after verification. The related parameters of the challenges C1 to C4 are given
in Table 2 and the implementation related data in Table 3.

Table 2. Parameters of C1 to C4

C1 C2 C3 C4

n 414 848 1572 2752

k 270 558 1132 2104

w 16 29 40 54

Table 3. HW settings of C1toC4

RIV-S3 RIV-S6 V6 LX240T

clk (MHz) 75 125 250

data rate (Mbps) 240 640 up to 2791

5.3 Discussion

We also implemented the complete algorithm in software to generate testvectors
and to compare the runtime of the FPGA version against the CPU implemen-
tation – for small challenges – on a CPU cluster. As the algorithm operates on
the full columns, the software version was extremely slow compared to both the
FPGA implementation and other software implementations. Usually, only small
parts of the columns (fitting into native register sizes) are added up before the
collision search. Afterwards – for the candidates found in the previous step –
more the sum on more register-sized parts is updates and the Hamming weight
is checked, making additional use of early-abort techniques to increase the speed
as well. This makes a comparison of the algorithm difficult, as neither the pa-
rameters nor the assumptions on the distribution target asymptotic behaviour.

The FPGA implementation is very fast on small challenges. Please note that
one hardware iteration includes the iteration step for all cores on all FPGAs in
parallel, as the parameters take the full transfer time into account. Neverthe-
less, for larger challenges, the implementation performs less well: the memory
requirements for the matrices then reduce the number of parallel cores drasti-
cally and thus remove the advantage of the dedicated hardware. This makes a
3 http://fs.crypto.rub.de/isd

http://fs.crypto.rub.de/isd
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software attack with a large amount of memory the better choice, as it also has
the advantage of larger collision tables.

To circumvent these problems, we can also implement trade-offs in hardware
as described for software implementations. To increase the number of parallel
cores, we can store smaller parts of the columns, which fit the BRAM cores
better and utilize the early-abort techniques. The drawback is that this approach
further increases the I/O communication, as a post-processing step per iteration
is necessary to check all candidates off-chip. As the communication was the
bottleneck in our implementation, we did not implement this approach.

A different approach and a way to minimize the I/O communication up the
process might be to generate the randomization on-chip. While the column swaps
are easy to implement in one clock cycle, we need more algorithms on the device:
We need both a pseudo-random number generator to identify the columns to
swap and also a dedicated Gauss-Jordan elimination and also add control logic
to the design so that we may reuse them by sequentially updating the cores. In
addition, this approach will enforce the storage of the full matrix on the FPGA.

These restrictions and drawbacks lead to another interesting platform for ISD
attacks: recent GPUs combine a large amount of parallel cores at high clock
frequency and large memory. Even though the memory structure imposes re-
strictions, an optimized GPU implementation may prove superior to both CPUs
and FPGAs. This is especially true when attacking non-binary codes, which are
not optimal for FPGAs.

6 Conclusions

We presented the first hardware implementation of ISD-attacks on binary Wild
McEliece challenges. Our results show that it is possible to create optimized
hardware, mapping the ideas from previously available software approaches into
the hardware domain and derived hardware-optimized parameters. We verified
the results first in simulation and ran an unoptimized version on the FPGA
cluster.

While software attacks benefit from the huge amount of available memory,
CPUs are not inherently suited for the underlying operations, e. g., as the columns
exceed the register sizes or as the precomputed lookup tables exceed the CPU
cache. Nevertheless, a lot of effort was already invested into improvements of
these software attacks.

We showed that the strength of a fully pipelined hardware implementation -
the computation of all operations including memory access per iteration in ex-
actly one clock cycle - does not lead to the expected massive parallelism, e. g., as
hardware clusters have done in case of DES, and does not weaken the security
of code-based cryptography dramatically: the benefit is restricted not only by
the data bus latency but - far more importantly - by the memory requirements
of the attacks.

These results should be considered as a proof-of-concept and the basis for up-
coming hardware/software attacks trying different implementation approaches
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and evaluating other algorithmic choices. We discussed the benefits and draw-
backs of potential techniques for on-chip implementation of the ISD-attacks and
stressed the need of an optimized GPU implementation for a better security
analysis.
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A Appendix

Table 4. Optimal Parameter Set for selected Challenges

C1 C2 C3 C4

R
iv

ye
ra

-S
3

cores/FPGA 12 5 2 1
p 5 4 4 4
l 7 7 9 11
k1 113 127 511 1424
k2 164 438 630 691
#cycles / iterations (log2)1 24.79 23.73 25.31 25.71
#expected iterations (log2) 10.58 29.53 55.76 94.32

R
iv

ye
ra

-S
6

cores/FPGA 32 15 7 2
p 5 4 4 4
l 7 7 9 11
k1 126 127 502 1525
k2 151 438 639 590
#cycles / iterations (log2)1 24.31 23.73 25.37 25.02
#expected iterations (log2) 10.9 29.53 55.72 94.90

V
ir

te
x-

62

cores/FPGA 43 21 14 6
p 3 3 3 3
l 6 8 10 11
k1 63 204 642 1578
k2 213 362 500 537
#cycles / iterations (log2)1 17.72 16.55 18.58 19.50
#expected iterations (log2) 13.82 33.40 59.95 94.96

1 Please note that the amount of cycles is the total cycle count to perform #cores×
#FPGAs iterations, as they start after receiving data and finish all iterations
within the transfer time frame of the other FPGAs.
2 As the data transfer rate is significantly higher for the Virtex-6 device, the sage
script does not optimize correctly as it neglects the - in this case - relevant pre-
processing time in software and assumes zero delay.
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Abstract. We introduce a class of lattice-based digital signature schemes
based on modular properties of the coordinates of lattice vectors. We also
suggest a method of making such schemes transcript secure via a rejection
sampling technique of Lyubashevsky (2009). A particular instantiation
of this approach is given, using NTRU lattices. Although the scheme is
not supported by a formal security reduction, we present arguments for
its security and derive concrete parameters based on the performance of
state-of-the-art lattice reduction and enumeration techniques.

1 Introduction

In the GGH and NTRUSign signature schemes [4, Sections 7.4,7.5] a document
to be signed is thought of as a point m in Zn. A lattice L has a private basis,
known only to the signer, that is reasonably short and close to orthogonal. The
signer uses the private basis to solve a CVP and locate a point s ∈ L that
lies reasonably close to m. A verifier of the signature checks that s is indeed
a point in the lattice L, and that the Euclidean distance between s and m is
shorter than some pre-specified bound. The security assumption underlying the
acceptance of the signature is that it is hard to find a point in L that is close to
m unless one knows the private short basis for L.

A major difficulty with these signature schemes is the fact that when the
private basis is used to locate s, the difference s−m has the form

s−m =

n∑
i=1

εivi,

where v1, . . . ,vn is the private basis and where each |εi| ≤ 1/2. Thus s −m
is a point in the interior of the fundamental parallelepiped associated to the
private basis. If the signature is obtained by, say, Babai’s rounding approach,
the εi will be randomly and uniformly distributed in the interval (−1/2, 1/2).
A long transcript of signatures then corresponds to a large collection of points
randomly and uniformly distributed inside the parallelepiped, and a sufficiently

M. Mosca (Ed.): PQCrypto 2014, LNCS 8772, pp. 142–159, 2014.
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long transcript eventually reveals the vertices of the parallelepiped, and the
secret basis. This was demonstrated successfully in [11, 12, 1].

It has been proposed that such an attack could be thwarted by carefully
signing in such a way that the distribution of the εi was controlled, and it was
proved that using such methods it is possible to construct signing protocols
where the transcript contains no information pertaining to the private basis [2].
While effective at preventing information leakage, this process of controlling the
distribution of the εi is computationally expensive.

The present work introduces a similar technique which does not require sam-
pling complicated distributions.

Very roughly, the idea is as follows. Fix a public small prime p, and, rather
than taking m to be a point in Zn, consider it instead to be a point mp ∈
(Z/pZ)n. Fix also a specific public region R in Zn. The region R should be
sufficiently large that the volume of R, which we denote by |R|, satisfies

|R|
pn

> Cn,

for a sufficiently large C. Precise examples will be given below. A signature on
mp is a point s ∈ L ∩R, with s ≡mp (mod p).

Signing is accomplished as follows. To sign mp ∈ (Z/pZ)n, a random point
s0 ∈ L ∩R is chosen. Let M be a matrix whose rows are the private basis, and
let Mp be the reduction of this basis modulo p. Use Mp to find vp ∈ (Z/pZ)n

such that
s0 + vp ·Mp ≡mp (mod p).

Let v be the lift of vp to Z
n with coefficients chosen from the interval (−p/2, p/2).

Then as M is a short basis and p is small, the vector v ·M will also be short,
and s = s0 + v ·M will satisfy s ≡mp (mod p). Also, as s0 was chosen to lie in
L∩R, and v ·M is short, there is a reasonable chance that s will also lie in L∩R.
The algorithm of choosing s0 and solving for s is repeated until s ∈ L ∩R.

Any lattice point s satisfying s ≡mp (mod p) is a valid signature, and such
points will be well distributed throughout R. Anyone can use a public basis to
find a point in L with the desired properties modulo p, and if R is sufficiently
large it is easy, using a short basis, to find points of L ∩R, but if one does not
know a short basis, then it is hard to satisfy both criteria simultaneously.

To create a collection of s−s0, an attacker must also locate the nearby lattice
point s0, However, for any s ∈ L ∩R, there will be many potential s′0 that are
close to s. In fact, if it is not only required that s ∈ L∩R, but also that s lies at
least a certain distance inside the boundary of R, then it can be shown that with
equal probability any s′0 within a fixed radius of s could have been the actual
s0 used in the signing process. This idea can be used to give a proof that the
transcript contains no information about the private basis. This aspect of the
approach is inspired by a rejection sampling technique of Lyubashevsky [7–9].

Another contribution of this paper is a particular, efficient, instantiation of
this idea using NTRU lattices. We make this choice for two reasons. First, there
is a natural dimension doubling: the dimension is n = 2N , where N is the
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number of coordinates needed to determine a point. Second, the lattice can be
sufficiently well described using only half of a complete basis, and this half can be
made quite short and sufficiently orthogonal. We will refer to this new signature
scheme as an NTRU Modular Lattice Signature Scheme, or NTRUMLS for short.

2 Description of NTRUMLS

2.1 Notation

We work in the ring

R = RN =
Z[x]

〈xN − 1〉 .

We implicitly identify each element of R with the unique polynomial of degree
less than N in its congruence class. Having done this, we identify a polynomial
with its vector of coefficients in ZN . Writing an element f ∈ R as

f =
N−1∑
i=0

aix
i,

we set
‖f‖ = max

0≤i<N
|ai|,

and we define the restriction of R to the max-norm ball of radius k as

R(k) = {f ∈ R : ‖f‖ ≤ k}.

So that, for example, R(3/2) is the set of trinary polynomials.
We will frequently work in the quotient ring R/qR with q ∈ Z. We set the

convention that when lifting an element ofR/qR to R(q/2) the lifted coefficients
are chosen to satisfy −q/2 ≤ ai < q/2 when q is even, and −�q/2� ≤ ai ≤ �q/2�
when q is odd.

2.2 System Parameters

N dimension parameter
p a small odd prime
q an integer larger, and relatively prime to, p

Bs, Bt norm constraints

The Bs and Bt parameters serve primarily to fine tune the balance between
security and performance. Reducing Bs and Bt may, for instance, allow one to
choose a smaller q, but this may come at the expense of making it difficult for
an honest party to compute a signature. Typical values of Bs and Bt satisfy
Bs = pBt, and

‖a ∗ b‖ ≤ Bt for all a, b ∈ R
(p
2

)
.
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Smaller Bs and Bt may be used provided that the signer performs an additional
check during signature generation.

There will be further conditions on (N, p, q) to prevent search and lattice
attacks, while still making it possible to find valid signatures; see Sections 4
and 5 for details.

2.3 Private Key

Choose polynomials

f
$←− pR(3/2) and g

$←− R(p/2).

Writing f = pF , so F is trinary, check that both g and F are invertible modulo q
and modulo p. Sample a new pair if they are not. (We remark that the probability
of g and F being invertible is quite high if (xN − 1)/(x− 1) does not have low
degree factors when reduced modulo p and q.)

The private signing key is the pair (f , g).

2.4 Public Key

The public verification key is the polynomial

h ≡ f−1 ∗ g (mod q).

Also let
Lh =

{
(s, t) ∈ R2 : t ≡ h ∗ s (mod q)

}
be the usual NTRU lattice associated to h.

We will often consider subsets of Lh consisting of vectors of bounded norm.
This will be denoted by

Lh(k1, k2) = Lh ∩
(
R(k1)×R(k2)

)
.

2.5 Document Hashes and Valid Signatures

A document hash is a 2N -vector

(sp, tp) ∈ R(p/2)×R(p/2),

i.e., ∥∥(sp, tp)∥∥ = max
{
‖sp‖, ‖tp‖

}
≤ p/2.

We fix a hash function

Hash : R(q/2)× {0, 1}∗ −→ R(p/2)×R(p/2).

A valid signature on the document hash (sp, tp) for the signing key h is a 2N -
vector (s, t) ∈ R2 satisfying:

(a) (s, t) ∈ Lh

(q
2
−Bs,

q

2
−Bt

)
.

(b) (s, t) ≡ (sp, tp) (mod p).
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2.6 Algorithms

Algorithm 1. NTRUMLS Signature Algorithm

Input: (f , g,h, μ), where (f , g) is a private key, h is the corresponding public key,
and μ ∈ {0, 1}∗ is a document to be signed.

1: (sp, tp)←− Hash
(
h, μ

)
2: repeat

3: r
$←− R

(⌊
q

2p
+

1

2

⌋)

4: s0 ←− sp + pr
5: t0 ←− h ∗ s0 (mod q) with t0 ∈ R(q/2)
6: a←− g−1 ∗ (tp − t0) (mod p) with a ∈ R(p/2)
7: (s, t)←− (s0, t0) + (a ∗ f ,a ∗ g)
8: until

∥∥a ∗ f∥∥ ≤ Bs and
∥∥a ∗ g∥∥ ≤ Bt and

∥∥s∥∥ ≤ q

2
−Bs and

∥∥t∥∥ ≤ q

2
−Bt

Output: (s, t, μ)

Remark 1. Notice the rejection criterion in Step 8 of the signing algorithm. We
compute a potential signature (s, t), but then we reject it if it, or the cor-
rection (a ∗ f ,a ∗ g), is too big; specifically, we reject (s, t) if it falls outside
of Lh

(
q
2 −Bs,

q
2 −Bt

)
, or if (a ∗ f ,a ∗ g) falls outside Lh (Bs, Bt).

Remark 2. Since t ≡ h ∗ s (mod q) it does not need to be published explicitly.
Furthermore since s ≡ sp (mod p) and sp can be obtained by hashing h with
the message, the signer can simply publish (s − sp)/p as the signature. The
resulting signature is of length N�log2 q/p� bits.

Algorithm 2. NTRUMLS Verification Algorithm

Input: (s, t, μ,h)
1: valid←− yes
2: (sp, tp)←− Hash(h, μ)
3: if t �≡ h ∗ s (mod q) then
4: valid←− no
5: end if
6: if ‖s‖ > q

2
−Bs or ‖t‖ > q

2
−Bt then

7: valid←− no
8: end if
9: if (s, t) �≡ (sp, tp) (mod p) then
10: valid←− no
11: end if
Output: valid

Proposition 1. The Signing Algorithm produces signatures that are verified as
valid by the Verification Algorithm.

Proof. This is an easy exercise.
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3 Transcript Security

In this section we prove that, under a reasonable assumption, a transcript of
signatures created using the signing algorithm contains no information that is
not already available to someone who knows the public verification key h. We
do this by showing that an honest signer produces signatures that are uniformly
distributed on Lh

(
q
2 −Bs,

q
2 −Bt

)
. We are able to show that for any document

hash, (sp, tp), the signer’s distribution is precisely the uniform distribution on
the subset of signature points in (sp, tp) + pZ2N (proposition 2). For uniformity
on the entire signature region we must assume that each coset of pZ2N contains
roughly the same number of signature points (assumption 1).

We further show that a party who knows h alone can produce a transcript of
pairs

(Valid Signaturei,Document Hashi)i=1,2,3,...

that is statistically indistinguishable from an analogous transcript produced us-
ing the signing algorithm and the private key (f , g). Specifically, the signature
points produced by such a party are uniform on Lh

(
q
2 −Bs,

q
2 −Bt

)
, and the

document hashes (obtained by reducing the signature coefficients modulo p), are
uniform on R(p/2).

We start by analyzing the transcript created using the signing algorithm
and (f , g). We note that the rejection sampling condition is what allows us to
prove that the resulting signatures are uniformly distributed in a certain space
of allowable signatures.

We assume that our hash function outputs document hashes

(sp, tp) ∈ R(p/2)2

that are uniformly distributed on R(p/2)2. We use Steps 3 through 7 of the
Signing Algorithm to define a signing function

(s, t) = σ′(f , g, sp, tp, r).

Thus σ′ is a map

σ′ :

private key (f , g)︷ ︸︸ ︷
pR
(
3

2

)
×R

(p
2

)
×

document hash (sp, tp)︷ ︸︸ ︷
R
(p
2

)
×R

(p
2

)
×

random element r︷ ︸︸ ︷
R
(⌊

q

2p
− 1

2

⌋)

−→ Lh

(q
2
+Bs,

q

2
+Bt

)
︸ ︷︷ ︸
potential signature (s, t)

given explicitly by

σ′(f , g, sp, tp, r) = (s0 + a ∗ f , t0 + a ∗ g), (1)
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where

s0 = sp + pr, (2)

t0 ≡ h ∗ s0 (mod q) with t0 ∈ R(q/2), (3)

a ≡ g−1 ∗ (tp − t0) (mod p) with a ∈ R(p/2). (4)

We will write

Ω′ = pR
(
3

2

)
×R

(p
2

)
×R

(p
2

)
×R

(p
2

)
×R

(⌊
q

2p
− 1

2

⌋)

for the domain of σ′.
We now introduce rejection sampling by defining

ΩBs,Bt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(f , g, sp, tp, r) ∈ Ω′ :

(s, t) := σ′(f , g, sp, tp, r)
= (s0 + a ∗ f , t0 + a ∗ g),∥∥s∥∥ ≤ q
2 −Bs,

∥∥t∥∥ ≤ q
2 −Bt,∥∥a ∗ f∥∥ ≤ Bs,

∥∥a ∗ g∥∥ ≤ Bt

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

The restriction of σ′ to ΩBs,Bt , which we denote by σ, is then a map

σ : ΩBs,Bt −→ Lh

(q
2
−Bs,

q

2
−Bt

)
.

To ease notation, we let

A =

⌊
q

2p
+

1

2

⌋
,

so by Step 3 of the Signing Algorithm, the random element r used to generate a
signature is chosen uniformly from the set R(A). The following proposition says
that every signature that is valid for the document hash (sp, tp) has the same
number of preimages in R(A).

Proposition 2. The signature function σ has the following property: For a
given

private key (f , g) ∈ pR×R,

document hash (sp, tp) ∈ R
(p
2

)
×R

(p
2

)
,

the output of σ, when queried on uniformly random r ∈ R(A), is uniformly
distributed over the set{

(s, t) ∈ Lh

(q
2
−Bs,

q

2
−Bt

)
: (s, t) ≡ (sp, tp) (mod p)

}
.

of valid signatures for (sp, tp). Equivalently, the size of the set

{r ∈ R(A) : σ(f , g, sp, tp, r) = (s, t)}

is the same for all

(s, t) ∈ Lh

(q
2
−Bs,

q

2
−Bt

)
satisfying (s, t) ≡ (sp, tp) (mod p).



Transcript Secure Signatures Based on Modular Lattices 149

Proof. Since we know from Proposition 1 that σ(f , g, sp, tp, r) is congruent
to (sp, tp) modulo p, it is clear that there is zero probability of generating the
signature (s, t) if (s, t) �≡ (sp, tp) (mod p). So we assume henceforth that

(s, t) ≡ (sp, tp) (mod p). (5)

The random element r used to generate a signature is chosen uniformly from
the set R(A), so there are (2A+1)N possible choices for r. Hence the probability
of obtaining (s, t) as a signature on (sp, tp) is equal to (2A + 1)−N times the
number of elements in the set

Σ(f , g, s, t) =
{
r ∈ R(A) : σ(f , g, sp, tp, r) = (s, t)

}
. (6)

The key to counting the size of the set Σ(f , g, s, t) is the bijection described in
the following lemma.

Lemma 1. Let

C =
{
b ∈ R

(p
2

)
:
∥∥b ∗ f∥∥ ≤ Bs and

∥∥b ∗ g∥∥ ≤ Bt

}
,

and let

(s, t) ∈ Lh

(q
2
−Bs,

q

2
−Bt

)
satisfy (s, t) ≡ (sp, tp) (mod p).

Then there is a well-defined bijection of sets

φ : C −→ Σ(f , g, s, t),

b �−→ s− sp
p

− b ∗ f

p
. (7)

Proof. First, since the coefficients of s− sp are multiples of p, and similarly f ∈
pR(3/2) has coefficients divisible by p, we see that the polynomial on the right-
hand side of (7) has coefficients in Z.

We next need to show that φ(b) ∈ Σ(f , g, s, t), which by the definition of
Σ(f , g, s, t) means showing that φ(b) ∈ R(A) and

σ
(
f , g, sp, tp, φ(b)

)
= (s, t).

First note that because s ∈ R
(
q
2 −Bs

)
, sp ∈ R

(
p
2

)
, and b ∈ C, the triangle

inequality gives

∥∥φ(b)∥∥ = ∥∥∥∥1p (s− sp − b ∗ f)
∥∥∥∥ ≤

⌊ q
2 −Bs +

p
2 +Bs

p

⌋
= A.

The use of the floor function is justified by noting that φ(b) has integer coeffi-
cients. This establishes that φ(b) ∈ R (A).
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Next we use the four formulas (1)–(4) to compute the signature σ
(
f , g, sp,

tp, φ(b)
)
:

s0 = sp + pφ(b)

= sp + p

(
s− sp

p
− b ∗ f

p

)
= s− b ∗ f , (8)

t0 ≡ h ∗ s0 (mod q)

≡ h ∗ (s− b ∗ f) (mod q)

≡ h ∗ s− b ∗ g (mod q) since h ≡ f−1 ∗ g (mod q),

≡ t− b ∗ g (mod q) since (s, t) ∈ Lh. (9)

Since (s, t) ∈ Lh

(
q
2 −Bs,

q
2 −Bt

)
and b ∈ C, we have

∥∥s0∥∥ ≤ ∥∥s∥∥+ ∥∥b ∗ f∥∥ = q

2
−Bs +Bs =

q

2
,∥∥t0∥∥ ≤ ∥∥t∥∥+ ∥∥b ∗ g∥∥ = q

2
−Bt +Bt =

q

2
,

i.e. (9), similar to (8), is an equality, not just a congruence. Continuing with the
computation of σ

(
f , g, sp, tp, φ(b)

)
, we use (5) to compute

a ≡ g−1 ∗ (tp − t0) ≡ b (mod p).

(Note that t ≡ tp (mod p) from (4).) Since both a and b are in R(p/2), this
tells us that a = b.

We now use (1) to compute the signature

σ
(
f , g, sp, tp, φ(b)

)
= (s0 + a ∗ f , t0 + a ∗ g) definition of σ,

= (s− b ∗ f + a ∗ f , t− b ∗ g + a ∗ g)
from (8) and (9),

= (s, t) since a = b.

Hence directly from the definition (6) of the set Σ(f , g, s, t), we see that

φ(b) ∈ Σ(f , g, s, t).

We next fix an r ∈ Σ(f , g, s, t) and compute how many b ∈ C satisfy φ(b) = r.
Since all coefficients of the polyomials s − sp and f are divisible by p, to ease
notation we write

s− sp = pS and f = pF .

We recall that by assumption, the polynomial F is invertible modulo p. We have

φ(b) = r ⇐⇒ S − b ∗ F = r

⇐⇒ b ≡ F−1 ∗ (S − r) (mod p) and ‖b‖ ≤ p

2
.
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There is thus exactly one value of b in C satisfying φ(b) = r, namely the unique
element of C that is congruent modulo p to F−1 ∗ (S − r). This shows that φ is
bijective, which concludes the proof of Lemma 1.

Resuming the proof of Proposition 2, we have, for all (s, t) ≡ (sp, tp) (mod p),

Probr←R(A)

(
signature
is (s, t)

∣∣∣ private key is (f , g) and
document hash is (sp, tp)

)

=
#Σ(f , g, s, t)

#R(A)
=

#C
#R(A)

,

where the penultimate equality follows from Lemma 1. This completes the proof
of Proposition 2.

To give a complete proof of transcript security we need a slightly stronger
version of Proposition 2 to be true:

Proposition 3. The distribution of signatures produced by querying σ on uni-
formly random (sp, tp) ∈ R(p/2)2 and uniformly random r ∈ R(A) is indistin-
guishable from the uniform distribution on Lh

(
q
2 −Bs,

q
2 −Bt

)
.

Proposition 3 is an immediate consequence of proposition 2 under the assump-
tion that, for any given h, the number of lattice vectors of bounded norm in each
coset of pZ2N is essentially constant. This certainly fails to be the case for some
lattices, for instance h = 1 has vectors in only pN distinct cosets. However, it
seems likely that assumption 1 holds for the lattices used in NTRUMLS.

Assumption 1. There are constants C, ε such that ε = 1/poly(N) and for all
(sp, tp) ∈ R(p/2)

(1− ε)C ≤
∣∣∣Lh

( q
2
−Bs,

q

2
−Bt

)
∩ ((sp, tp) + pZ2N ))

∣∣∣ ≤ (1 + ε)C.

We conclude this section by noting that any party with access to h can sample
the uniform distribution on Lh

(
q
2 −Bs,

q
2 −Bt

)
. One simply generates random

s ∈ R( q2 − Bs) until h ∗ s ∈ R( q2 − Bt). Since the signing region contains a
large fraction of Lh

(
q
2 ,

q
2

)
(at least 30% for the parameter sets we consider),

this suceeds after a small number of iterations. A transcript of

((s, t)i, (sp, tp)i)i=1,2,3,...

where (s, t)i is produced in this manner and (sp, tp)i = (s, t)i (mod p) is uni-
formly distributed on Lh

(
q
2 −Bs,

q
2 −Bt

)
×R(p/2) by assumption 1. By propo-

sition 3, and the assumption that the output of Hash is uniform on R(p/2)2, this
transcript is indistinguishable from one produced by an honest signer. The only
difference between the two transcripts is that the party who used h alone does
not know messages, μi, such that Hash(h, μi) = (sp, tp)i.
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4 Probability of Generating a Valid Signature

To simplify our analysis we let B = �p2N/4� and take

Bs = Bt = B.

With this assumption there is zero probability of rejecting a candidate signature
due to

∥∥a ∗ s∥∥ > Bs or
∥∥a ∗ t∥∥ > Bt, but the probability of rejection due to

non-inclusion in R(q/2−B)×R(q/2−B) is significant. Regardless, we can show
that the probability of generating a valid signature is approximately e−8/k, which
is still practical. Further, the probability of rejection can be made significantly
lower by fine-tuning Bs and Bt; our proposed parameters in section 6 reflect this
optimization.

For this section we assume that the various parameters satisfy the conditions
given in Table 1.

Table 1. Parameter guidelines

N a moderate sized prime, say 200 < N < 5000
p a small prime chosen so that N log2(p) is greater

than the desired bit security
B ≤ �p2N/4�
k a small constant, say 2 ≤ k ≤ 50
q an integer coprime with p and satisfying

q ≈ kNB ≈ kp2N2/4

The rejection criterion says that we only accept signatures whose norm is
smaller than q/2 − B, so we want q to be a lot larger than B, or it will be too
hard to find an acceptable signature. We consider the sup norm of a potential
signature

(s, t) = (s0, t0) + (a ∗ f ,a ∗ g)

produced in Step 7 of the signing algorithm. The coefficients of s0 and t0 are
in R(q/2), the coefficents of a ∗ f are in R(p2N/4), and the coefficients of a ∗ g
are inR(pN/2). Hence the coefficients of an (s, t) pair produced by Step 7 satisfy

∥∥(s, t)∥∥ ≤ q

2
+B. (10)

We will make the simplifying assumption1 that the coefficients of s and t are
equally likely to take on each of the values in the interval (10). The rejection cri-
terion says that we only accept signatures whose coefficents are at most q/2−B.

1 In actuality, the coefficients of the products a ∗ f and a ∗ g tend to cluster more
towards 0, since they are more-or-less hypergeometrically distributed.
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Since we need all 2N of the coefficients of (s, t) to satisfy this condition, we find
that

Prob
(
(s, t) is accepted

)
≈
(
q/2−B

q/2 +B

)2N

.

Using the chosen value

q ≈ kp2N2

4
≈ kNB

from Table 1, we find that

Prob
(
(s, t) is accepted

)
≈
(
1− 2B/q

1 + 2B/q

)2N

≈
(
1− 2/kN

1 + 2/kN

)2N

≈ e−8/k,

where for the last equality we use the estimate (1 + t/n)n ≈ et, valid when t is
small and n is large.

5 Lattice Problems Associated to NTRUMLS

In this section we consider the lattice problems underlying signature keys and
signature forgery. We note that shortest and closest vector problems (SVP and
CVP) are analyzed using the L2-norm, not the L∞-norm. We write

‖v‖2 =
√
v21 + v22 + · · ·

for the L2-norm of the vector v = (v1, v2, . . .).
We will use the following elementary lattice result, whose proof we defer to

Section A of the appendix.

Proposition 4. Let L1 ⊂ Zr and L2 ⊂ Zr be lattices of rank r, let t1, t2 ∈ Zr

be arbitrary vectors, and let

M = (L1 + t1) ∩ (L2 + t2)

be the intersection of the indicated translations of L1 and L2. We make the
following assumptions:

(i) gcd
(
det(L1), det(L2)

)
= 1.

(ii) Either t1 /∈ L1 or t2 /∈ L2 (or both), so in particular M �= L1 ∩ L2.

Then the following are true:

(a) det(L1 ∩ L2) = det(L1) · det(L2).
(b) M �= ∅.



154 J. Hoffstein et al.

(c) For every w0 ∈M , the map

L1 ∩ L2 −→M, v �−→ v +w0 (11)

is a bijection.
(d) Let w0 ∈M , and let w′ ∈M be a shortest non-zero vector in M . Then w0−

w′ solves the the closest vector problem in L1∩L2 for the vector w0. (This
is true for any norm on Zr, so in particular it is true for both the L∞ norm
and the L2 norm.)

We recall two key quantities associated to lattice problems.

Heuristic 1. The Gaussian heuristic says that the likely L2-size of a solution
to SVP or CVP in a “random” lattice L of reasonably large dimension is ap-
proximately

γ(L) =

√
dimL

2πe
· det(L)1/ dim(L).

In other words, for “most” lattices L and “most” target vectors v0,

min
v∈L�0

‖v‖2 ≈ γ(L) and min
v∈L

‖v − v0‖2 ≈ γ(L).

Heuristic 2. Let L ⊂ Zn be a lattice for which we want to solve either τ-appr-
SVP or τ-appr-CVP. In other words, let v0 ∈ Zn, and suppose that we want to
find a vector v ∈ L satisfying either

0 < ‖v‖2 ≤ τ or ‖v − v0‖2 ≤ τ.

We call τ the target length of the problem. The Gaussian defect of the problem
is the ratio

ρ(L, τ) =
τ

γ(L)
.

Let 0 < δ < 2. The δ-LLL heuristic, which has been confirmed in numerous
experiments, says that solving the τ-appr-SVP or τ-appr-CVP problem is (expo-
nentially) hard as a function of dim(L), provided that the Gaussian defect ρ(L, τ)
is no more than a small multiple of dim(L)δ.

We consider the problem of forging a signature. The forger needs to find a
vector (s, t) ∈ Lh satisfying:

Congruence Condition : (s, t) = (sp, tp) (mod p). (12)

Norm Condition :
∥∥s∥∥ ≤ q

2
−Bs (13)∥∥t∥∥ ≤ q

2
−Bt. (14)

N.B. The norm condition (13) is an L∞-norm condition.
The vectors sp, tp ∈ R(p/2) are given, so the congruence condition (12) may

be rephrased as saying that the target vector (s, t) is in the translation of the
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lattice pZ2N by the vector (sp, tp). Thus the forger is looking for an L∞-short
vector in the intersection

(s, t) ∈ Lh ∩
(
pZ2N + (sp, tp)

)
.

The determinants

det(Lh) = qN and det(pZ2N ) = p2N

are relatively prime, so we can use Proposition 4(a) to conclude that

det(Lh ∩ pZ2N ) = p2NqN .

Then Proposition 4(d) tells us that finding a short vector in the intersection
Lh ∩

(
pZ2N + (sp, tp)

)
is equivalent to solving an appr-CVP problem in the

lattice Lh ∩ pZ2N . Since the Gaussian heuristic of Lh ∩ pZ2N is

γ(Lh ∩ pZ2N ) =

√
N

πe
(p2NqN )1/2N =

√
p2qN

πe
,

it only remains to estimate the target length.
The rejection criterion in the signature algorithm says that a valid signa-

ture (s, t) has sup norm at most q/2−min(Bs, Bt). Hence in particular a valid
signature satisfies the L2-norm bound

∥∥(s, t)∥∥
2
≤
(q
2
−min(Bs, Bt)

)√
2N, (15)

but not every vector in Lh satisfying the L2-norm condition (15) and the con-
gruence condition (12) will be a valid signature. We are going to simplify the
life of a potential forger and assume that she only needs to satisfy the L2-norm
condition (15), rather than the more stringent L∞-norm condition (13). Fur-
thermore we will assume, again in the forger’s favor, that Bs = Bt = 0, so that
the she need only find a vector in R( q2 )×R( q2 ). This gives a target length

τ = q
√
N/2.

Hence the Gaussian defect for our appr-CVP problem is

ρ =
q
√
N/2√

p2qN/2πe
,

and using the relations in Table 1 between the various parameters, a little bit of
algebra yields

ρ = N

√
kπe

8
.

Thus ρ is a small multiple of dim(Lh ∩ pZ2N ), so the LLL-heuristic says that
solving the associated appr-CVP is a hard problem provided that the dimension
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is chosen appropriately. Of course, in practice one needs to do experiments with
current LLL technology to obtain extrapolated estimates for the actual running
time when N is moderately large, say in the range from 500 to 5000.

We next briefly consider the problem of finding the private key (f , g) from
the public key h. The attacker knows that f = pF , and standard methods allow
him to reduce to the problem of finding the shorter vector (F ,g). Then, since
on average we have

‖F ‖2 ≈
√
N and ‖g‖2 ≈

1

2
p
√
N,

the corresponding lattice problem needs to be balanced, also a well-known pro-
cedure. See for example [3, 5, 10] for details. For all of the proposed parameter
sets in Section 6, the parameters have been chosen so that the difficulty of the
private key lattice problem is roughly equal to that of the lattice forgery prob-
lem, taking into account the heuristic fact that solving unique-SVP tends to be
a bit easier in practice than it is in theory.

6 Proposed Parameter Sets and Implementation

We have implemented NTRUMLS and made it available at
https://github.com/NTRUOpenSourceProject/NTRUMLS. The parameter sets
we have implemented are listed in Tables 2 and 3.

The only feature of our implementation not documented above is the use of
product form polynomials for f and g. Precisely we specify three small integers
d1, d2, and d3 and take

f = p(F 1 ∗ F 2 + F 3 + 1), and

g = G1 ∗G2 +G3 + 1

Table 2. Sample NTRUMLS Parameters

Set #1 Set #2 Set #3 Set #4

N 401 439 593 743

p 3 3 3 3

log2 q 18 19 19 20

Bs 240 264 300 336

Bt 80 88 100 112

d1, d2, d3 8,8,6 9, 8, 5 10, 10, 8 11, 11, 15

Key & signature
size (bytes)

853 988 1335 1765

≈ Prob[accept] 38% 55% 41% 53%

≈ bit security 112 128 192 256

https://github.com/NTRUOpenSourceProject/NTRUMLS
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Table 3. Performance results. Average time for each operation, in microseconds, over
10000 iterations. Code was run on an Intel Core i7-2640M. More extensive benchmarks
on a variety of machines are available at http://bench.cr.yp.to/.

Set #1 Set #2 Set #3 Set #4

KeyGen (μs) 2431 2928 5183 7855

Sign (μs) 575 436 1033 1000

Verify (μs) 92 102 179 231

where the polynomials F i and Gi have exactly di coefficients equal to +1 and di
coefficients equal to −1. The extra constant terms are to ensure that f(1) �= 0
and g(1) �= 0. Product form keys were introduced to NTRUEncrypt in [6].
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A Short Vectors in Intersections of Translated Lattices

In this appendix we prove Proposition 4, which relates the problem of finding
short vectors in intersections of translated lattices to the problem of finding
close vectors in the associated intersection of lattices. We applied this result in
Section 5 to the intersection of an NTRU lattice Lh and the lattice pZ2N .

Proof (Proof of Propostion 4). (a) The fact that the determinants multiply is a
standard fact from the theory of lattices.
(b) We let Di = det(Li) for i = 1, 2. We use the fact that for any lattice L ⊂ Zr

of determinant D, we have DZr ⊂ L. The assumption that gcd(D1, D2) = 1
means that we can find (x, y) ∈ Z such that

xD1 + yD2 = 1.

We let
e1 = yD2 = 1− xD1, e2 = xD1 = 1− yD2.

We now consider the vector

t = e1t1 + e2t2.

Then

t− t1 = (e1 − 1)t1 + e2t2 = −xD1t1 + xD1t2 ∈ D1Z
r ⊂ L1,

and similarly,

t− t2 = e1t1 + (e2 − 1)t2 = yD2t1 − yD2t2 ∈ D2Z
r ⊂ L2.

Hence t is in M , so M �= ∅.
(c) In order to prove that (11) is a bijection, we will show that

v ∈ L1 ∩ L2 =⇒ v +w0 ∈M (16)

and
w ∈M =⇒ w −w0 ∈ L1 ∩ L2. (17)

For (16), we know that w0 ∈M , so by definition of M ,

w0 = v1 + t1 = v2 + t2 with vi ∈ L1 and v2 ∈ L2.

Then

v +w0 = (v + v1)︸ ︷︷ ︸
in L1

+t1 = (v + v2)︸ ︷︷ ︸
in L2

+t2,

so v +w0 ∈M . For (17), we write the given w ∈M as

w = v′1 + t1 = v′2 + t2 with v′i ∈ L1 and v′2 ∈ L2.
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Then
w −w0 = v′1 − v1︸ ︷︷ ︸

in L1

= v′2 − v2︸ ︷︷ ︸
in L2

,

so w −w0 ∈ L1 ∩ L2.
(d) We are given that w0,w

′ ∈M and that

‖w′‖2 = min
w∈M�0

‖w‖2.

To ease notation, we set
v′ = w0 −w′.

We know from (c) that w′−w0 ∈ L1∩L2, and L1∩L2 is a lattice, so v
′ ∈ L1∩L2.

We estimate

‖v′ −w0‖2
= ‖w′‖2 by definition of v′,
= min

w∈M�0
‖w‖2 by definition of w′,

= min
v∈(L1∩L2)�w0

‖ − v +w0‖2 since (c) says M = (L1 ∩ L2) +w0.

Hence if w0 /∈ L1 ∩ L2, then we have shown that

‖v′ −w0‖2 = min
v∈(L1∩L2)

‖v −w0‖2,

which is the desired result.
Finally, suppose that w0 ∈ L1 ∩ L2. Since also

w0 ∈M = (L1 + t1) + (L2 + t2),

we can write

w0 = v1 + t1 and w0 = v2 + t2 with v1 ∈ L1 and v2 ∈ L2.

But then t1 = w0 − v1 ∈ L1 and t2 = w0 − v2 ∈ L2, contradicting the initial
assumption on t1 and t2. Hence w0 /∈ L1 ∩ L2, which completes the proof of
Proposition 4.
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Abstract. We propose an undeniable signature scheme based on el-
liptic curve isogenies, and prove its security under certain reasonable
number-theoretic computational assumptions for which no efficient quan-
tum algorithms are known. Our proposal represents only the second
known quantum-resistant undeniable signature scheme, and the first such
scheme secure under a number-theoretic complexity assumption.

Keywords: undeniable signatures, elliptic curves, isogenies.

1 Introduction

Many current cryptographic schemes are based on mathematical problems that
are considered difficult with classical computers, but can easily be solved using
quantum algorithms. To prepare for the emergence of quantum computers, we
aim to design cryptographic primitives for common operations such as encryption
and authentication which resist quantum attacks. One family of such primitives,
proposed by De Feo, Jao, and Plût [13,20], uses isogenies between supersingular
elliptic curves to construct cryptographic protocols for public-key encryption,
key exchange, and entity authentication which are believed to be quantum-
resistant. To date, however, this protocol family lacks comprehensive techniques
for achieving data authentication, although certain limited capabilities, such as
isogeny-based strong designated verifier signatures, are available [30].

In this article, we present a new construction of quantum-resistant undeniable
signatures based on the difficulty of computing isogenies between supersingular
elliptic curves. Few such constructions are known, and indeed the only other
proposed quantum-resistant undeniable signature scheme in the literature is the
code-based scheme of Aguilar-Melchor et al. [1]. Our scheme uses a completely
different approach and is based on completely different assumptions, making it a
useful alternative in the event that some breakthrough arises in the cryptanalysis
of code-based systems.

1.1 Related Work

Mainstream post-quantum cryptosystems can be categorized into several broad
families: lattice-based systems [17,25] and learning with errors [26], code-based
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systems [2,7,24], hash-based signatures [6,11], and systems based on multivariate
polynomials [3,34]. Isogeny-based cryptosystems represent an interesting alter-
native to the above because they are based on a (relatively) naturally occurring
number-theoretic computational problem, namely, the problem of computing
isogenies between elliptic curves. These systems thus constitute one of the only
families of quantum-resistant cryptosystems based on a number-theoretic as-
sumption (depending on whether one counts solutions to multivariate polyno-
mials as a number-theoretic problem).

Generally speaking, lattice-based systems are more naturally suited to
encryption, with lattice-based signature schemes being less mature than the cor-
responding encryption schemes, whereas hash functions and multivariate poly-
nomials more readily yield signature schemes compared to encryption schemes.
Isogeny-based cryptosystems to date have dealt primarily with encryption, with
the exception of the entity authentication protocol of [13, §3.1]. We remark that,
although entity authentication in the classical setting enables data authentica-
tion via the Fiat-Shamir transformation [14], the Fiat-Shamir transformation
fails against a quantum adversary [10]. This work, together with Sun et al.’s
construction of strong designated verifier signatures [30], provides some evidence
that isogenies can also be used as the basis for signatures and data authentication
in the post-quantum setting.

We emphasize again that quantum-safe undeniable signatures seem to be dif-
ficult to construct by any means. The only known prior quantum-resistant un-
deniable signature scheme is by Aguilar-Melchor et al. [1], using linear codes.

2 Background

Due to space constraints, we cannot provide here a full treatment of the necessary
background information. For further details on the mathematical foundations of
isogenies, we refer the reader to [13,20,28].

Given two elliptic curves E1 and E2 over some finite field Fq of cardinality q,
an isogeny φ is an algebraic morphism from E1 to E2 of the form

φ(x, y) =

(
f1(x, y)

g1(x, y)
,
f2(x, y)

g2(x, y)

)
,

such that φ(∞) =∞ (here f1, f2, g1, g2 are polynomials in two variables, and ∞
denotes the identity element on an elliptic curve). Equivalently, an isogeny is an
algebraic morphism which is a group homomorphism. The degree of φ, denoted
deg(φ), is its degree as an algebraic morphism. Two elliptic curves are isogenous
if there exists an isogeny between them.

Given an isogeny φ : E1 → E2 of degree n, there exists another isogeny
φ̂ : E2 → E1 of degree n satisfying φ◦ φ̂ = φ̂◦φ = [n] (where [n] is the multiplica-
tion by n map). It follows that the relation of being isogenous is an equivalence

relation. The isogeny φ̂ is called the dual isogeny of φ. Section 6 (Remark 6.1)
describes how to compute dual isogenies in our application.
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For any natural number n, we define E[n] to be the subgroup

E[n] = {P ∈ E(F̄q) : nP =∞}.

In other words, E[n] is the kernel of the multiplication by n map over the al-
gebraic closure F̄q of Fq. The group E[n] is isomorphic to (Z/nZ)2 as a group
whenever n and q are relatively prime [28]. We define the endomorphism ring
End(E) to be the set of all isogenies from E to itself defined over the algebraic
closure F̄q of Fq. The endomorphism ring is a ring under the operations of point-
wise addition and functional composition. If dimZ(End(E)) = 2, then we say
that E is ordinary; otherwise dimZ(End(E)) = 4 and we say that E is supersin-
gular. Two isogenous curves are either both ordinary or both supersingular. All
elliptic curves used in this work are supersingular.

The isogeny φ : E1 → E2 is defined to be separable if the function field ex-
tension Fq(E1)/φ

∗(Fq(E2)) is separable. In this work, we will only consider sep-
arable isogenies. An important property of a separable isogeny is that the size
of the kernel of that isogeny is equal to the degree of that isogeny (as an alge-
braic map) [28, III.4.10(c)]. The kernel K of φ uniquely defines the isogeny φ
up to isomorphism [28, III.4.12]; for this reason, we use the notation E1/K to
denote the codomain E2 of the isogeny φ. Methods for computing and evaluat-
ing isogenies are given in [5,13,20,21,32]. All the isogenies that we use have the
property that the kernels are cyclic groups, and knowledge of the kernel, or any
single generator of the kernel, allows for efficient evaluation of the isogeny (up
to isomorphism); conversely, the ability to evaluate the isogeny via a black box
allows for efficient determination of the kernel (cf. Remark 3.1). Thus, in our
application, the following are equivalent: knowledge of the isogeny, knowledge of
the kernel, or knowledge of any generator of the kernel.

3 Quantum-Resistant Elliptic Curve Cryptography

The term “elliptic curve cryptography” typically encompasses cryptographic
primitives and protocols whose security is based on the hardness of the discrete
logarithm problem on elliptic curves. Against quantum computers, this hard-
ness assumption is invalid [27]. Hence, traditional elliptic curve cryptography is
not a viable foundation for constructing quantum-resistant cryptosystems. As a
result, alternative elliptic curve cryptosystems based on hardness assumptions
other than discrete logarithms have been proposed for use in settings where
quantum resistance is desired. One early proposal by Stolbunov [29], based on
isogenies between ordinary elliptic curves, was subsequently shown by Childs et
al. [8] to offer only subexponential difficulty against quantum computers.1

Following these developments, De Feo et al. [13,20] proposed a new collec-
tion of quantum-resistant public-key cryptographic protocols for entity authen-
tication, key exchange, and public-key cryptography, based on the difficulty of

1 An essentially identical scheme had also been proposed earlier by Couveignes in an
unpublished manuscript [9], although not with quantum resistance as a motivation.
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C D
Input: C,D, sID Input: D

mA, nA ∈R Z/�eAA Z mB, nB ∈R Z/�eBB Z

φA : E → E/〈[mA]PA + [nA]QA〉 φB : E → E/〈[mB]PB + [nB ]QB〉
A,sID

φA(PB),
φA(QB),

EA−−−−−−→
B,sID

φB(PA),
φB(QA),

EB←−−−−−−
EAB := EBA :=
EB/〈[mA]φB(PA)+[nA]φB(QA)〉 EA/〈[mB ]φA(PB)+[nB]φA(QB)〉
Output: j(EAB), sID Output: j(EBA), sID

Fig. 1. Key-exchange protocol using isogenies on supersingular curves

computing isogenies between supersingular elliptic curves. We review here the
operation of the most fundamental protocol in the collection, the key exchange
protocol, since it contains several critical ideas upon which our undeniable sig-
nature scheme is based.

3.1 Parameter Generation

Fix a prime p of the form �eAA �eBB ·f±1 where �A and �B are small primes, eA and
eB are positive integers, and f is some (typically very small) cofactor. Also, fix a
supersingular curve E defined over Fp2 such that #E(Fp2) has order divisible by
(�eAA �eBB )2, and bases {PA, QA} and {PB, QB} which generate E[�eAA ] and E[�eBB ]
respectively, so that 〈PA, QA〉 = E[�eAA ] and 〈PB , QB〉 = E[�eBB ]. Methods for
performing these computations are given in [13, Section 4.1].

3.2 Key Exchange

Suppose Carol and Dave wish to establish a secret key. Carol chooses two random
elements mA, nA ∈R Z/�eAA Z, not both divisible by �A. The values of mA and
nA constitute Carol’s secret information. (Since Carol and Dave’s roles might
be reversed in another session, in practice each user requires two sets of val-
ues, one for �A and one for �B.) On input E and mA · PA + nA · QA, Carol
computes using the method of [13, Section 4.2.2] a curve EA and an isogeny
φA : E → EA whose kernel KA is equal to 〈[mA]PA + [nA]QA〉 (the cyclic sub-
group of E generated by mA · PA + nA ·QA). Carol also computes the auxiliary
points {φA(PB), φA(QB)} ⊂ EA obtained by applying her secret isogeny φA to
the basis {PB, QB} for E[�eBB ], and sends these points to Dave together with EA.
Similarly, Dave selects random elements mB, nB ∈R Z/�eBB Z and computes an
isogeny φB : E → EB having kernel KB := 〈[mB]PB + [nB]QB〉, along with the
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auxiliary points {φB(PA), φB(QA)}. Upon receipt of EB and φB(PA), φB(QA) ∈
EB from Dave, Carol computes an isogeny φ′A : EB → EAB having kernel equal
to 〈[mA]φB(PA) + [nA]φB(QA)〉; Dave proceeds mutatis mutandis. Carol and
Dave can then use the common j-invariant of

EAB = φ′B(φA(E)) = φ′A(φB(E)) = E/〈[mA]PA+[nA]QA,[mB ]PB+[nB ]QB〉

to form a secret shared key.
The full protocol is given in Figure 1. We denote by A and B the identifiers

of Carol and Dave, and use sID to denote the unique session identifier.

Remark 3.1. Carol’s auxiliary points {φA(PB), φA(QB)} allow Dave (or any
eavesdropper) to compute Carol’s isogeny φA on any point in E[�eBB ]. This ability
is necessary in order for the scheme to function, since Dave needs to compute
φA(KB) as part of the scheme. However, Carol must never disclose φA(PA) or
φA(QA) (or more generally any information that allows an adversary to evalu-
ate φA on E[�eAA ]), since disclosing this information would allow the adversary
to solve a system of discrete logarithms in E[�eAA ] (which are easy since E[�eAA ]
has smooth order) to recover KA.

4 Undeniable Signatures from Isogenies

In this section, we present a new construction of an undeniable signature scheme
from isogenies. An undeniable signature can be verified by any party, but verifica-
tion requires interaction with the signer. To distinguish between invalid (forged)
signatures and valid signatures that the verifier refuses to verify, an undeniable
signature scheme also includes a mechanism for the signer to prove (interactively)
that an invalid signature is forged. Our construction uses a three-prime variant
of the original two-prime protocol given in Section 3.2. As a consequence, the re-
sulting commutative diagrams for zero-knowledge proofs become 3-dimensional
rather than 2-dimensional.

4.1 Definition

We were unable to find any prior publications containing a definition and security
model for undeniable signatures incorporating quantum computation. For this
reason, we make a first attempt at addressing this gap in this section. Our
definition of an undeniable signature scheme is the same as that of Kurosawa
and Furukawa [22], except for those changes necessary for achieving security in
the quantum setting. We caution that our proposed security model is preliminary
and may not represent a perfect resolution for this issue.

An undeniable signature scheme [22] consists of a key generation algorithm,
a signing algorithm, a validity check, a signature simulator, a confirmation pro-
tocol πcon and a disavowal protocol πdis. The role of the confirmation protocol
πcon is for the signer to prove to the verifier that the signature is valid. The role
of the disavowal protocol πdis is for a valid signer to be able to prove to the
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verifier that the signature that the verifier has received is not valid. Quantum
(entangled) information may be transmitted between any two parties which are
both capable of quantum computation, or within a single quantum computa-
tion, but not between two classical-only parties, or a classical-only party and a
quantum-capable party.

In what follows, we make the simplifying assumption that all parties except
possibly the adversary are limited to classical computation only; the adversary
is permitted to perform quantum computation. This assumption is not part of
our security definition; rather, it is merely a simplifying assumption to make our
task of analyzing our scheme easier.

Unforgeability is defined using the following game between a challenger and
an adversary A.

1. The challenger generates a key pair (vk, sk) randomly, and gives the verifi-
cation key vk to A.

2. For i = 1, 2, . . . , qs for some qs, A queries the signing oracle adaptively with
a message mi and receives a signature σi.

3. Eventually, A outputs a forgery (m∗, σ∗).

We allow the adversaryA to submit pairs (mj , σj) to the confirmation/disavowal
oracle adaptively in step 2, where the confirmation/disavowal oracle responds as
follows:

– If (mj , σj) is a valid pair, then the oracle returns a bit μ = 1 and proceeds
with the execution of the confirmation protocol πcon with A.

– Otherwise, the oracle returns a bit μ = 0 and proceeds with the execution
of the disavowal protocol πdis with A.

We say that A succeeds in producing a strong forgery if (m∗, σ∗) is valid and
(m∗, σ∗) is not among the pairs (mi, σi) generated during the signing queries.
The signature scheme is strongly unforgeable if the probability that A succeeds
in producing a strong forgery is negligible for any PPT adversary A in the above
game.

Invisibility is defined using the following game between a challenger and an
adversary A.

1. The challenger generates a key pair (vk, sk) randomly, and gives the verifi-
cation key vk to A.

2. A is permitted to issue a series of signing queries mi to the signing oracle
adaptively and receive a signature σi.

3. At some point, A chooses a message m∗ and sends it to the challenger.
4. The challenger chooses a random bit b. If b = 1, then he computes the real

signature for m∗ using sk and sets it to be σ∗. Otherwise he computes a fake
signature m∗ using vk and sets it to be σ∗. He sends σ∗ to A.

5. A performs some signing queries again.
6. At the end of this game, A outputs a guess b′.
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We allow the adversaryA to submit pairs (mj , σj) to the confirmation/disavowal
oracle adaptively in step 2 and in step 5. However, A is not allowed to submit
the challenge (m∗, σ∗) to the confirmation/disavowal oracle in step 5. Also, A
is not allowed to submit m∗ to the signing oracle. We say that the signature
scheme is invisible if no PPT adversary A has non-negligible advantage in this
game.

For an undeniable signature scheme to be secure, it must satisfy unforgeability
and invisibility. In addition, the confirmation πcon and disavowal πdis protocols
must be complete, sound, and zero-knowledge.

4.2 Protocol

Let p be a prime of the form �eAA �eMM �eCC · f ± 1, and fix a supersingular curve
E over Fp2 such that #E(Fp2) is divisible by (�eAA �eMM �eCC )2, together with bases
{PA, QA}, {PM , QM} and {PC , QC} of E[�eAA ], E[�eMM ] and E[�eCC ] respectively.
The design of the protocol is such that, generally speaking, points in 〈PA, QA〉
are used for key material, points in 〈PM , QM 〉 are used for message data, and
points in 〈PC , QC〉 correspond to commitment data.

To generate such primes p, fix a choice of �eAA , �eMM , and �eCC , and test random
values of f until a value is found for which �eAA �eMM �eCC ·f ± 1 is prime. The prime
number theorem in arithmetic progressions (specifically, the effective version of
Lagarias and Odlyzko [23]) guarantees that only O(log p) trials are needed in ex-
pectation before a suitable prime is found. For any prime p, Bröker’s algorithm
for constructing supersingular curves [4] can efficiently produce a supersingular
curve E over Fp2 having any admissible cardinality, namely any cardinality of
the form p2 +1− t where t satisfies the Hasse-Weil bound t ≤ 2p and the super-
singularity condition t ≡ 0 (mod p). If we take the admissible value t = ±2p in
Bröker’s algorithm, then we obtain a supersingular elliptic curve of cardinality
(p∓ 1)2 = (�eAA �eMM �eCC · f)2, as desired. We remark that in the event E happens
to be defined over Fp, the cardinality of E over Fp2 is necessarily (p+ 1)2.

The signer generates two secret random integers mA, nA ∈ Z/�eAA Z, obtains
KA = [mA]PA + [nA]QA and computes EA = E/〈KA〉. Let φA be an isogeny
from E to EA.

Public Parameters: p,E, {PA, QA}, {PM , QM}, {PC , QC}, and a hash func-
tion H : {0, 1}∗ → Z.

Public Key: EA, φA(PC), φA(QC).
Private Key: mA, nA.

To sign a message M , we compute the hash h = H(M). Let KM = PM +
[h]QM . Then the signer computes the isogenies

– φM : E → EM = E/〈KM 〉
– φM,AM : EM → EAM = EM/〈φM (KA)〉
– φA,AM : EA → EAM = EA/〈φA(KM )〉
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Fig. 2. Signature generation
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Fig. 3. Confirmation protocol

along with the auxiliary points φM,AM (φM (PC)) and φM,AM (φM (QC)). The
signer then presents these two auxiliary points along with EAM as the signature.
(See Figure 2.)

The confirmation protocol proceeds as follows. We must confirm EAM without
revealing the isogenies used to produce it. We do so by “blinding” EAM using
φC and disclosing the blinded isogenies (see Figure 3).

1. The signer secretly selects random integers mC , nC ∈ Z/�eCC Z, and computes
the point KC = [mC ]PC + [nC ]QC together with the curves and isogenies
in Figure 3. Here EC = E/〈KC〉, EMC = EM/〈φM (KC)〉 = EC/〈φC(KM )〉,
EAC = EA/〈φA(KC)〉 = EC/〈φC(KA)〉, and EAMC = EMC/〈φC,MC(KA)〉.

2. The signer outputs EC , EAC , EMC , EAMC , and ker(φC,MC) as the commit-
ment.

3. The verifier randomly selects b ∈ {0, 1}.
4. If b = 0, the signer outputs ker(φC). Using the signer’s public key, the verifier

computes ker(φA,AC). Using knowledge of ker(φM ), the verifier computes
φM,MC . Using the auxiliary points given as part of the signature, the verifier
can compute φAM,AMC . The verifier checks that each isogeny maps between
the corresponding two curves specified in the commitment. Using knowledge
of ker(φC), the verifier also independently re-computes φC,MC and checks
that it matches the commitment.

5. If b = 1, the signer outputs ker(φC,AC). The verifier computes φMC,AMC and
φAC,AMC , and checks that each of φC,AC , φMC,AMC , and φAC,AMC maps
between the corresponding two curves specified in the commitment.

We now describe the disavowal protocol. Suppose the signer is presented with a
falsified signature (EF , FP , FQ) for a message M , where EF is the falsified EAM ,
and {FP , FQ} are the falsified auxiliary points corresponding to φM,AM (φM (PC))
and φM,AM (φM (QC)) respectively. We must disavow EF without disclosing
EAM . To do this, we blind EAM as before to obtain EAMC , and disclose enough
information to allow the verifier to compute EFC and check that EFC �= EAMC .

1. The signer secretly selects random integers mC , nC ∈ Z/�eCC Z, and computes
KC = [mC ]PC + [nC ]QC along with all the curves and isogenies in Figure 4.
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2. The signer outputs EC , EAC , EMC , EAMC , and ker(φC,MC) as the commit-
ment.

3. The verifier randomly selects b ∈ {0, 1}.
4. If b = 0, the signer outputs ker(φC). The verifier computes φC , φM,MC ,

φA,AC , and φF : EF → EFC = EF /〈[mC ]FP + [nC ]FQ〉, and checks that
each isogeny maps between the corresponding two curves specified in the
commitment. The verifier independently re-computes φC,MC and checks that
it matches the commitment. The verifier also checks that EFC �= EAMC .

5. If b = 1, the signer outputs ker(φC,AC). The verifier computes φAC,AMC and
φMC,AMC , and checks that these isogenies map to EAMC .

EA EAC

E EC

EAM EAMC EF EFC

EM EMC

φA,AC

φA,AM

φAC,AMC

φA

φC

φM φAM,AMC

φM,AM

φM,MC

φMC,AMC

φC,MC

φC,AC

φF

Fig. 4. Disavowal protocol

5 Complexity Assumptions

As before, let p be a prime of the form �eAA �eBB �eCC · f ± 1, and fix a supersingular
curve E over Fp2 together with bases {PA, QA}, {PB, QB}, and {PC , QC} of
E[�eAA ], E[�eBB ], and E[�eBB ] respectively. In analogy with [13,20], we define the
following computational problems, which we assume are quantum-infeasible:

Problem 5.1 (Decisional Supersingular Isogeny (DSSI) problem).
Let EA be another supersingular curve defined over Fp2 . Decide whether EA is
�eAA -isogenous to E.

Problem 5.2 (Computational Supersingular Isogeny (CSSI) problem).
Let φA : E → EA be an isogeny whose kernel is 〈[mA]PA + [nA]QA〉, where mA

and nA are chosen at random from Z/�eAA Z and not both divisible by �A. Given
EA and the values φA(PB), φA(QB), find a generator RA of 〈[mA]PA + [nA]QA〉.

We remark that given a generator RA = [mA]PA + [nA]QA, it is easy to solve
for (mA, nA), since E has smooth order and thus extended discrete logarithms
are easy in E [31].

Problem 5.3 (Supersingular Computational Diffie-Hellman (SSCDH) problem).
Let φA : E → EA be an isogeny whose kernel is equal to 〈[mA]PA + [nA]QA〉,
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and let φB : E → EB be an isogeny whose kernel is 〈[mB ]PB + [nB]QB〉, where
mA, nA (respectively mB, nB) are chosen at random from Z/�eAA Z (respectively
Z/�eBB Z) and not both divisible by �A (respectively �B). Given the curves EA,
EB and the points φA(PB), φA(QB), φB(PA), φB(QA), find the j-invariant of

E/〈[mA]PA + [nA]QA, [mB]PB + [nB ]QB〉.

Problem 5.4 (Supersingular Decision Diffie-Hellman (SSDDH) problem).
Given a tuple sampled with probability 1/2 from one of the following two dis-
tributions:

– (EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EAB), where EA, EB , φA(PB),
φA(QB), φB(PA), and φB(QA) are as in the SSCDH problem and

EAB
∼= E/〈[mA]PA + [nA]QA, [mB]PB + [nB]QB〉,

– (EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EC), where EA, EB, φA(PB),
φA(QB), φB(PA), and φB(QA) are as in the SSCDH problem and

EC
∼= E/〈[m′A]PA + [n′A]QA, [m

′
B]PB + [n′B]QB〉,

where m′A, n
′
A (respectively m′B, n

′
B) are chosen at random from Z/�eAA Z

(respectively Z/�eBB Z) and not both divisible by �A (respectively �B),

determine from which distribution the tuple is sampled.

Problem 5.5 (Decisional Supersingular Product (DSSP) problem).
Given an isogeny φ : E → E3 of degree �eAA and a tuple sampled with probability
1/2 from one of the following two distributions:

– (E1, E2, φ
′), where the product E1 × E2 is chosen at random among those

�eBB -isogenous to E × E3, and where φ′ : E1 → E2 is an isogeny of degree
�eAA , and

– (E1, E2, φ
′), where E1 is chosen at random among the curves having the

same cardinality as E, and φ′ : E1 → E2 is a random isogeny of degree �eAA ,

determine from which distribution the tuple is sampled.

Our security proofs also make use of the following additional modified as-
sumptions not stated in [13,20].

Problem 5.6 (Modified Supersingular Computational Diffie-Hellman (MSSCDH)
problem). With notation as in the SSDDH problem, given EA, EB , and ker(φB),
determine EAB. Note that no auxiliary points for φA are given.

An equivalent formulation of the MSSCDH problem is: Given EA, mB, and
nB, determine EAB .

Problem 5.7 (Modified Supersingular Decision Diffie-Hellman (MSSDDH) prob-
lem). With notation as in the SSDDH problem, given EA, EB , EC , and ker(φB),
determine whether EC = EAB. Note that no auxiliary points for φA are given.
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Problem 5.8 (One-sided Modified Supersingular Computational Diffie-Hellman
problem (OMSSCDH)). For fixed EA and EB, given an oracle to solve MSSCDH
for any EA, EB′ , ker(φB′) where EB′ �∼= EB, solve MSSCDH for EA, EB, and
ker(φB).

Problem 5.9 (One-sided Modified Supersingular Decision Diffie-Hellman prob-
lem (OMSSDDH)). For fixed EA, EB, and EC , given an oracle to solve MSS-
CDH for any EA, EB′ , ker(φB′ ) where EB′ �∼= EB, solve MSSDDH for EA, EB ,
EC , and ker(φB).

We conjecture that these problems are computationally infeasible, in the sense
that for any polynomial-time solver algorithm, the advantage of the algorithm
is a negligible function of the security parameter log p. The resulting security
assumptions are referred to as the DSSI assumption, CSSI assumption, etc.

We also need a heuristic assumption concerning the distribution of blinded
false signatures:

Assumption 5.10. Fix a supersingular elliptic curve E, an �eAA -isogeny φA, an
�eBB -isogeny φB, and a curve EF , not isomorphic to EAB. For any pair of points
{FP , FQ} in EF , only a negligibly small fraction of integer pairs mC , nC satisfy
EF /〈mCFP + nCFQ〉 = EAB/〈φB,AB(φB(mCPC + nCQC))〉.

5.1 Hardness of the Underlying Assumptions

All of our unmodified complexity assumptions (those not containing “Modified”
in the name) are identical to the corresponding assumptions from [13,20], except
that our assumptions are formulated using primes of the form p = �eAA �eBB �eCC ·
f ± 1, rather than primes of the form p = �eAA �eBB · f ± 1. We have no reason
to believe that this alteration would affect the validity of these assumptions. A
close analogy to this situation is the comparison between three-prime RSA and
two-prime RSA.

Our modified assumptions are needed in order to prove the security of our un-
deniable signature scheme. The MSSCDH and MSSDDH assumptions are com-
plementary to the SSCDH and SSDDH assumptions, with the main difference
being that the input consists of a kernel but not two pairs of auxiliary points
(rather than the other way around). The standard algorithm for computing the
commuting isogeny from EB to EAB requires knowing both the values of the
kernel of φB and the auxiliary points for φA. Similarly, the standard algorithm
for computing the commuting isogeny from EA to EAB requires knowing both
the values of the kernel of φA and the auxiliary points for φB . In SSCDH (say),
the two sets of auxiliary points are known, but the kernels are not known. In
MSSCDH, we break the symmetry, giving the attacker the kernel (and hence
also the auxiliary points) for φB , but no secret information about φA. This kind
of asymmetry is unavoidably necessary for any sort of isogeny-based signature
scheme, since one isogeny somewhere will invariably be message-based, and this
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isogeny can have no secrets. Nevertheless, it is clear that the standard algo-
rithm is not able to solve the modified problems, and we are not aware of any
alternative algorithm which would be able to solve the modified problems using
only the information given. Indeed, despite extensive study of these problems,
we have not managed to devise any plausible approach to these problems other
than the claw-finding attack against CSSI originally proposed in [13, Section
5.1]. This attack does not utilize the auxiliary points, and hence works equally
well against our modified assumptions, with a running time of 4

√
p (respectively

6
√
p) on a classical (respectively quantum) computer. Other potential strategies

discussed in [13, Section 5.1], such as algebraic approaches based on ideal classes
in the endomorphism rings, fail in this setting for the same reasons as in [13].
Based on these considerations, we feel that some confidence can be ascribed
to the MSSCDH and MSSDDH assumptions. The OMSSCDH and OMSSDDH
assumptions are somewhat more artificial, and more study will be needed to jus-
tify confidence in them. They arise naturally in the analysis of our undeniable
signature scheme.

Our heuristic assumption (Assumption 5.10) seems quite natural, and we
have conducted numerous empirical experiments for random choices of triplets
(EF , FP , FQ) without finding any violations at cryptographic parameter sizes.
For artificially small parameter sizes, our experiments found that for any fixed
choice of (E, φA, φB, EF , FP , FQ), equality occurs with probability around 1/N
over all pairs of integers (mC , nC), where N = p+1

12 + O(1) is the number of
isomorphism classes of supersingular curves in characteristic p. Based on these
experiments, we have no reason to suspect that the assumption would fail to
hold. However, we have not yet succeeded in finding a proof of the assumption.

6 Security Proofs

To prove the security of our scheme, we must show that the confirmation and
disavowal protocols are complete, sound and zero-knowledge, and that the over-
all scheme satisfies the unforgeability and invisibility properties. In this section
we consider a classical adversary; the case of quantum adversaries will be con-
sidered in Section 7.

The basic principle behind the proofs is that, as was the case in the basic key-
exchange protocol (Section 3.2), knowledge of (the kernels of) any two opposite-
side isogenies lying in a given cube face reveals no information about the other
edges in the cube, by the DSSI and DSSP assumptions. On the other hand,
knowledge of any two adjacent isogenies in a given commutative square yields
full information about all the isogenies in the square. It does not matter which
direction the arrows point, since one can reverse the direction of any arrow using
dual isogenies (Section 2).

Remark 6.1. To compute the dual isogeny of an isogeny φ : E → EA = E/〈A〉
whose kernel is generated by a point A, pick any point B ∈ E \ 〈A〉, and com-
pute φ(B). Then φ(B) generates a kernel subgroup whose corresponding isogeny



172 D. Jao and V. Soukharev

φ′ : EA → E = EA/〈φ(B)〉 is isomorphic to the dual isogeny φ̂. In general,
EA/〈φ(B)〉 is isomorphic but not equal to E, so we also need to compute the
appropriate isomorphism, but computing isomorphisms in general is known to
be easy [16].
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Fig. 5. Proof of soundness (confirmation)
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Fig. 6. Proof of soundness (disavowal)
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EA EAC

E EC

EAMC

EM EMC

φAC,AMC

φM

φMC,AMC

φC,MC

φC,AC

Fig. 10. Disavowal (b = 1 case)
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6.1 Confirmation Protocol

We need to prove three things: completeness, soundness and zero-knowledge. We
apply classical techniques from [12,18].

Proof (Proof of completeness). Completeness for this protocol is obvious. Us-
ing the algorithm presented in Section 4.2, the signer can always compute the
diagram in Figure 3 and make the verifier accept.

Proof (Proof of soundness). Let Charles be a cheating prover that is able to
convince the verifier to accept an invalid signature with non-negligible probabil-
ity. In order for Charles to be able to provide correct answers to both possible
challenges in the confirmation protocol, there must exist a commutative diagram
as in Figure 5 with all the edges filled in with actual isogenies. However, the ex-
istence of even a single such diagram implies that the signature must actually
have been valid, since any three edges of a cube face determine the fourth edge.
It follows that isogenies exist between E,EA, EM , and EAM to fill in the left face
of the cube, rendering the signature valid. Hence soundness holds even against
an infinitely powerful malicious prover.

Proof (Proof of zero-knowledge). To prove that this scheme is zero knowledge we
construct a simulator. Our simulator S makes uniformly random guesses about
what the verifier’s challenge will be. Regardless of the guess, S chooses random
integers mC , nC ∈ Z/�eCC Z and computes

φC : E → EC = E/〈mCPC + nCQC〉.

If S guesses b = 0, it computes the diagram given in Figure 7. The simulator
can now answer any cheating verifier’s challenge in the case b = 0. The simula-
tor’s response is indistinguishable from, and indeed identical to, that of the real
prover.

If S guesses b = 1, it chooses some random isogeny φC,AC : EC → EAC ,
and computes the diagram given in Figure 8. The simulator uses this diagram
to answer the cheating verifier’s challenge in the case b = 1. In this diagram,
the curves EC and EMC are genuine, and the curves EAC and EAMC are fake.
However, the cheating verifier cannot tell that these curves are fake, or else one
would be able to solve DSSP for the top face of the cube. Hence the simulator’s
response is indistinguishable from that of the real prover.

Remark 6.2. The indistinguishability portion of the above proof of the zero-
knowledge property holds in the quantum setting as well as in the classical
setting. Specifically, if we presume the existence of some quantum cheating ver-
ifier (CV) which can perform some quantum computation to distinguish the
real transcript from the simulated transcript, then one could use this quantum
cheating verifier to obtain a quantum algorithm for solving DSSP simply by
alternately supplying the CV with either real curves EAC and EAMC (i.e. the
real transcript), or with falsified curves EAC and EAMC (i.e. the simulated tran-
script), and seeing whether the CV’s desired computation performs differently
in the two cases.
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6.2 Disavowal Protocol

As before, we prove completeness, soundness and zero-knowledge.

Proof (Proof of completeness). Suppose first that EF is not equal to EAM . Us-
ing the algorithm presented in Section 4.2, the signer can always compute the
diagram in Figure 3 and make the verifier accept. Assumption 5.10 guarantees
that the verifier will always accept except with negligible probability. Note that
the assumption is formulated without regard to whether the putative auxiliary
points FP and FQ are compatible with EF or not.

Now suppose that EF is equal to EAM . In this case, completeness can only fail
if EF = EAM contains two distinct cyclic subgroups K1 = 〈mCP + nCQ〉 and
K2 = 〈φB,AB(φB(mCPC + nCQC))〉 of cardinality �eCC in EAB[�

eC
C ] such that

EAM/K1 = EAM/K2. But then EAM would be a branch point in the covering
space of the modular curve X0(�

eC
C ) over the upper half plane, and the only such

non-cusp branch points are the elliptic curves of j-invariant equal to 0 or 1728.
The chance of EAM being equal to such a curve is negligibly small. Indeed, there
are only two problematic j-invariants, and there are cryptographically many (e.g.
2768) non-problematic j-invariants. A failure probability of 2 in 2768 represents
no cause for concern, since an adversary could simply guess the private key by
brute force with higher success probability. Note that the j-invariant of EAM

is determined by a combination of A’s public key and the value of the hash
h = H(M) of the message M , and this value is never at any point under the
control of an adversary. Likewise, the honest user has no control over EAM—its
value is completely determined from the user’s public key and the message.

Proof (Proof of soundness). Let Charles be a cheating prover that is able to
convince the verifier with non-negligible probability that a valid signature is
invalid. In order for Charles to be able to provide correct answers to both possible
challenges in the confirmation protocol, there must exist a commutative diagram
as in Figure 6 with all the edges filled in with actual isogenies. However, in
this case, the forged isogeny φF is computed using exactly the same inputs as
the corresponding isogeny φAM,AMC for the valid signature in the confirmation
protocol, and hence necessarily has codomain EF equal to EAMC . Equality of
EF and EAMC causes the disavowal protocol to fail. Hence soundness holds even
against an infinitely powerful malicious prover.

Proof (Proof of zero-knowledge). To prove that this scheme is zero knowledge
we construct a simulator. The simulator S makes uniformly random guesses
about what the verifier’s challenge will be. The simulator S first chooses random
integers mC , nC ∈ Z/�eCC Z and computes

φM,MC : EM → EMC = EM/〈mCφM (PC) + nCφM (QC)〉.

If S guesses b = 0, it computes the diagram given in Figure 9. Here the curves
EC , EMC , and EAC are genuine, and the curves EAM and EAMC are fake. The
simulator uses the diagram to answer the cheating verifier’s challenge in the case
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b = 0. The simulator’s response is indistinguishable from the real prover, since
otherwise one could solve DSSP for the bottom face of the cube.

If S guesses b = 1, it chooses some random isogeny φC,AC : EC → EAC , and
computes the diagram given in Figure 10. The simulator uses this diagram to
answer the cheating verifier’s challenge in the case b = 1. In this diagram, the
curves EC and EMC are genuine, and the curves EAC and EAMC are fake.
However, the cheating verifier cannot tell that these curves are fake, or else one
would be able to solve DSSP for the top face of the cube. Hence the simulator’s
response is indistinguishable from that of the real prover.

Remark 6.3. The indistinguishability portion of the above proof of the zero-
knowledge property holds in the quantum setting as well as in the classical
setting. Specifically, if we presume the existence of some quantum cheating ver-
ifier (CV) which can perform some quantum computation to distinguish the
real transcript from the simulated transcript, then one could use this quantum
cheating verifier to obtain a quantum algorithm for solving DSSP simply by
alternately supplying the CV with either real curves EAC and EAMC (i.e. the
real transcript), or with falsified curves EAC and EAMC (i.e. the simulated tran-
script), and seeing whether the CV’s desired computation performs differently
in the two cases.

6.3 Unforgeability and Invisibility

Finally, we prove that the protocol satisfies the unforgeability and invisibility
properties from Section 4.1.

Proof (Proof of unforgeability). To prove unforgeability, we must show that after
making a polynomial number of queries to a signing oracle, an adversary is
still unable to generate a valid signature. Note that we have shown that the
confirmation and disavowal protocols are zero-knowledge. Forging signatures is
then equivalent to solving OMSSCDH.

Proof (Proof of invisibility). To prove invisibility, we must show that after mak-
ing a polynomial number of queries to a signing oracle, an adversary will still be
unable to decide whether a given signature is valid. This problem is equivalent
to OMSSDDH.

7 Quantum-Resistant Undeniable Signatures

Under our simplifying assumption from Section 4.1, all parties except possibly
the adversary are restricted to classical computation only. In this setting, all the
security proofs in Section 6 other than those for the zero-knowledge proofs hold
without modification, since none of these proofs ever at any point involves two
quantum parties, and hence we do not need to consider quantum interactions.

By contrast, for zero-knowledge proofs, a classical security proof is not always
automatically valid against quantum attacks, since there is the possibility of a
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nontrivial quantum interaction: a quantum cheating verifier could conceivably
perform some quantum computation on an auxiliary input containing entangled
state which is not accessible to the verifier or simulator [33]. Nevertheless, by
Hallgren et al. [19], any classical zero-knowledge proof secure against classical
honest verifiers can be transformed into a classical zero knowledge proof se-
cure against quantum cheating verifiers at the cost of doubling the number of
messages, under the mild condition that the real message transcripts are quan-
tum computationally indistinguishable from the simulated message transcripts.
By Remarks 6.2 and 6.3, the real message transcripts are quantum computa-
tionally indistinguishable from the simulated message transcripts, for both the
confirmation and disavowal protocols, under the assumption that the various
computational problems of Section 5 are infeasible on a quantum computer.
Therefore the Hallgren et al. transformation can be applied to our confirmation
and disavowal protocols to obtain protocols which are zero-knowledge against
quantum cheating verifiers. We remark that the prior work of Aguilar-Melchor
et al. [1] does not specifically discuss the case of quantum adversaries, and may
also require this transformation in order to achieve security against quantum
adversaries.

8 Parameter Sizes

As stated in [13,20], the fastest known quantum isogeny finding algorithms in
our setting require O(n1/3) running time, where n is the size of the kernel. Based
on this figure, we obtain the following parameter sizes and signature sizes for
various levels of security:

Security level log2 p Signature size

80 bits 720 5760 bits
112 bits 1008 8064 bits
128 bits 1152 9216 bits

These numbers compare favorably with those of the only other prior quantum-
resistant undeniable signature scheme, that of Aguilar-Melchor et al. [1]. For
example, at the 128-bit security level, the scheme of [1] requires a signature size
of 5000 bits for the code-based portion plus an additional “roughly 40k Bytes” [1,
p. 116] for the conventional digital signature portion.

Regarding performance, a comparison is difficult because [1] does not pro-
vide any performance numbers. For isogeny computations, recent implementa-
tion work of De Feo et al. [13, Table 3] and Fishbein [15, Figure 4.1] demonstrates
that a single 1024-bit isogeny computation can be performed in 120 ms on a desk-
top PC, and in under 1 second on an Android device. Our protocol requires three
such computations for signing, up to eight for confirmation, and up to nine for
disavowal.
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9 Conclusion

In this paper we present a quantum-resistant undeniable signature scheme based
on the hardness of computing isogenies between supersingular elliptic curves. Our
scheme represents the first quantum-resistant undeniable signature scheme based
on a number-theoretic computational assumption, and compares well with the
only prior undeniable quantum-resistant signature scheme (a code-based scheme)
in terms of performance and bandwidth. Future work may entail developing new
protocols such as digital signature schemes or more efficient schemes based on
weaker assumptions.
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Abstract. Historically, multivariate public key cryptography has been
less than successful at offering encryption schemes which are both se-
cure and efficient. At PQCRYPTO ’13 in Limoges, Tao, Diene, Tang,
and Ding introduced a promising new multivariate encryption algorithm
based on a fundamentally new idea: hiding the structure of a large matrix
algebra over a finite field. We present an attack based on subspace differ-
ential invariants inherent to this methodology. The attack is a structural
key recovery attack which is asymptotically optimal among all known
attacks (including algebraic attacks) on the original scheme and its gen-
eralizations.

Keywords: multivariate public key cryptography, differential, invari-
ant, encryption.

1 Introduction

In the mid 1990s, Peter Shor developed efficient algorithms for factoring and
computing discrete logarithms with quantum computers [1]. Since that time,
the state-of-the-art of quantum computing has changed significantly, indicating
that large scale quantum computing may become an eventual reality. In the
years since Shor’s discovery, there has emerged a rapidly growing community
dedicated to the task of constructing algorithms resistant to cryptanalysis with
quantum computers.

Multivariate Public Key Cryptography(MPKC) is one among a few serious
candidates to have risen to prominence as post-quantum options. The appeal of
MPKC is due to several factors. The fundamental problem of solving a system
of quadratic equations is known to be NP-hard, and so in the worst case, solving
a system of generic quadratic equations is unfeasible for a classical computer;
neither is there any indication that the task is easier in the quantum computing
paradigm. Furthermore, experience indicates that this problem is hard even in
the average case; thus multivariate cryptosystems at least have a chance of being
difficult to break. Secondly, multivariate cryptosystems are often very efficient,
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see [2–4]. Finally, such cryptosystems can be very amenable to the user demands,
with multiple parameters hidden within the system which can be altered by the
user to achieve different performance goals.

Though MPKC has a turbulent history with many schemes failing against
only a few attack techniques, there are still some entirely usable and trust-
worthy quantum-resistant multivariate signature schemes. Specifically, UOV [5],
HFE- [6], and HFEv- [7] are noteworthy in this regard. Moreover, some of these
schemes have optimizations which have strong theoretical support or have stood
unbroken in the literature for some time. Specifically, UOV has a cyclic variant
[8] which reduces the key size dramatically, and QUARTZ, an HFEv- scheme,
has had its parameters tweaked [9] due to greater confidence in the complexity
of algebraically solving the underlying system of equations [10].

Where MPKC has failed more directly has been encryption. There is a striking
lack of reliable multivariate encryption schemes in the literature. Many attempts,
see [11, 12] for example, have been shown to be weak based on rank or differential
weaknesses. The most recent and promising attempt, by Tao et al., see [13],
uses a fundamentally new structure for the derivation of an encryption system.
Specifically, the scheme masks matrix multiplication to generate a system of
structured quadratic equations.

In this article, we present a structural attack which is the asymptotically op-
timal attack on this matrix encryption scheme, having a complexity on the order
of qs+4, where s is the dimension of the matrices in the scheme. This technique
uses a differential invariant property of the core map to perform a key recovery
attack. We reevaluate some of the security analysis from the original ABC specifi-
cation and conclude that this attack is asymptotically optimal among structural
attacks. In fact, the attack uses a property which uniquely distinguishes the
isomorphism class of the core map from that of a random collection of formu-
lae. This attack asymptotically defeats algebraic attacks as well, though falling
short of the benchmark established by generic algebraic attacks for the original
parameters. This result supports the security claims of the designers (modulo
decryption failure).

The paper is organized as follows. In the next section, we present the struc-
ture of the original ABC encryption scheme. The following section reviews some
of the previous cryptanalyses of the scheme, and clarifies some of the previous
attacks. In the subsequent section, we recall differential invariants. The differ-
ential invariant structure of the ABC scheme is then presented and the effect of
this structure on minrank calculations is derived. In the following section, the
complexity of the full attack is calculated and compared to the complexity of
other valid structural attacks. Finally, we review these results and discuss the
implications for the practical security of the ABC scheme.

2 The ABC Matrix Encryption Scheme

In [13], Tao et al. introduce the ABC Matrix encryption scheme. For the simplic-
ity of the exposition, we will analyze the original scheme noting that all results
carry over exactly as stated to the updated version, see [14].
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The scheme depends on an initial parameter s ∈ N. The public key consists
of n = s2, variables taking values in a fixed finite field k = Fq, and m =
2s2 equations. The system utilizes the butterfly construction, creating a private
collection of formulaeQ, and deriving a public key P by composing two invertible
linear transformations U ∈ GLn(k) and T ∈ GLm(k), so that P = T ◦ Q ◦ U .
What makes the system unique is the derivation of the map Q. For ease of
analysis later, we will denote plaintext by x̄ = (x1, . . . , xn) ∈ kn, ciphertext by
ȳ = (y1, . . . , ym) ∈ km, and the input and output of Q by ū = (u1, . . . , un) =
U(x1, . . . , xn) ∈ kn and v̄ = (v1, . . . , vm) = T−1(y1, . . . , ym) ∈ km, respectively.
The construction begins by defining three s×smatrices A, B, and C. Specifically,
we have:

A =

⎡
⎢⎢⎢⎣

u1 u2 · · · us

us+1 us+2 · · · u2s

...
...

. . .
...

us2−s+1 us2−s+2 · · · us2

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

b1 b2 · · · bs
bs+1 bs+2 · · · b2s
...

...
. . .

...
bs2−s+1 bs2−s+2 · · · bs2

⎤
⎥⎥⎥⎦ ,

and

C =

⎡
⎢⎢⎢⎣

c1 c2 · · · cs
cs+1 cs+2 · · · c2s
...

...
. . .

...
cs2−s+1 cs2−s+2 · · · cs2

⎤
⎥⎥⎥⎦ .

Here the bi and ci are linear combinations of the ui chosen independently and
uniformly at random from the collection of all possible k-linear combinations of
the ui.

Next, the s× s matrices E1 = AB and E2 = AC are constructed. Since all of
A, B, and C are linear in ui, E1 and E2 are quadratic in the ui. Finally, setting
Q(l−1)s2+(i−1)s+j to be the (i, j)th element of El, we have the private key T,Q,U
and the public key P = T ◦Q ◦ U .

Encryption with this system is standard: given a plaintext (x1, . . . , xn), com-
pute (y1, . . . , ym) = P (x1, . . . , xn). Decryption is somewhat more complicated.

To decrypt, one inverts each of the private maps in turn: apply T−1, invert
Q, and apply U−1. To “invert” Q, one assumes that A is invertible, and forms
a matrix

A−1 =

⎡
⎢⎢⎢⎣

w1 w2 · · · ws

ws+1 ws+2 · · · w2s

...
...

. . .
...

ws2−s+1 ws2−s+2 · · · ws2

⎤
⎥⎥⎥⎦ ,

where the wi are indeterminants. Then using the relations A−1E1 = B and
A−1E2 = C, we have m = 2s2 linear equations in 2n = 2s2 unknowns wi and ui.
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(We note here that it would be more correct to say A−1(ū)E1(ū) = B(ū) and
A−1(ū)E2(ū) = C(ū), since the values of these matrices depend on ū.) Using,
for example, Gaussian elimination one can eliminate all of the variables wi and
most of the ui. The resulting relations can be substituted back into E1(ū) and
E2(ū) to obtain a large system of equations in very few variables which can be
solved efficiently in a variety of ways.

In [14], the scheme is revised, replacing the square matrices A, B, and C
with matrices of dimension s × r, r × u, and r × v, respectively, where r < s.
In addition, the matrix A consists of random linear forms just as B and C in
the improved scheme. The public key is constructed in the exact same way, and
encryption is performed by evaluating the public polynomials at the plaintext.
Decryption is analogous to the original scheme, except now, since A is s × r,
only a left inverse of A on kr is needed, so the matrix W , a left inverse, is r × s
such that WA = Ir , the r × r identity matrix. Such a W plays the role of A−1

in the decryption, and decryption proceeds as above.

3 Security Claims, Revisions, and Corrections

3.1 Decryption Failure

In [13], it was claimed in error that the probability of decryption failure in
the ABC scheme is very small, depending specifically on the probability that
dim(ker(A)) ≤ 2. This mistake was corrected in [14], revealing that the proba-
bility is approximately q−1, where |k| = q. Also in [14], the scheme was general-
ized so that decryption can be accomplished as long as A (reparametrized as an
s × r matrix) merely has a left inverse as a function on kr, which occurs with
high probability, roughly 1− qr−s−1 when s > r.

3.2 HOLEs Attack

In [13], HOLEs attack analysis against the scheme was presented. Consider the
equation

BE−11 E2 = C. (1)

For B,C,E1, E2 ∈Ms(k), we can consider the characteristic polynomial f(x) =
xs + as−1xs−1 + · · · + a1x + a0 of E1, and then we have that E1(−Es−1

1 −
as−1Es−2

1 + · · · − a1I) = det(E1)I by the Cayley-Hamilton theorem. In fact, the
set of all polynomials evaluating to this scalar matrix at E1 is a0 + 〈mink(E1)〉,
where mink(E1) is the minimal polynomial of E1. Let xg(x) ∈ a0 + 〈mink(E1)〉
be a polynomial of smallest degree with constant coefficient zero. Since det(E1)I
is a scalar matrix, it is in the center of GLs(k), and so multiplying equation (1)
on the left by −E1g(E1) = det(E1)I, we obtain

Bg(E1)E2 = det(E1)C. (2)

In this equation, g clearly depends onE1, which for the purposes of the HOLEs
attack is a function of ȳ. Thus to create a similar relation for plaintext/ciphertext
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pairs requires us to consider B(x̄), C(x̄) ∈ Ms(k[x1, . . . , xn]) & E1(ȳ), E2(ȳ) ∈
Ms(k[y1, . . . , ym]), where k[·, . . . , ·] is a polynomial ring in the indeterminants
x1, . . . , xn and y1, . . . , ym, respectively. Then by the invertibility of T we have
that the minimal polynomial of E1(ȳ) is equal to the characteristic polynomial.
Thus there is a polynomial g(z) ∈ k(y1 . . . , ym)[z] of degree s − 1 (specifically
(−mink(y1,...,ym)(E1(ȳ))+det(E1(ȳ)))/z) such that zg(z) = det(E1(ȳ)). Clearly,
if E1(ȳ) is singular then equation (1) is invalid; however, equation (2) still holds
since

Bg(E1)E2 = Bg(AB)AC = BAg(BA)C = 0,

with the last equality due to the fact that the characteristic polynomials of AB
and BA are identical. We may then obtain the relation (2). Notice that if U and
T are linear as in the original description of the scheme then this equation is
homogeneous of degree s+ 1, specifically:

n∑
i=1

m∑
j1,...,js=1

αi,j1,...,jsxiyj1 · · · yjs = 0. (3)

Even in this more manageable situation, the complexity of finding a nontrivial

solution is immense. First, the adversary must generate O(n
(
m
s

)
) = O(s2

(
2s2

s

)
)

plaintext/ciphertext pairs, and then solve a system of roughly s2
(
2s2

s

)
equations

in s2
(
2s2

s

)
variables. The complexity of this operation is roughly (s2

(
2s2

s

)
)ω where

ω = 2.3766 operations. In the more realistic scenario of having a nonhomoge-
neous system, the analysis in [13] indicates that the complexity of the HOLEs

attack is O((s2
(
2ss+s

s

)
+ 2s2 + 1)ω).

Remark 1. It is important to note that the HOLEs attack fails in the general-
ization [14] because the matrices are no longer square.

3.3 Rank Attacks

Rank attacks use linear maps associated with the public key to detect abnormal
behavior. In the context of the ABC scheme, we may look at the associated
quadratic forms of the public and private keys, or more or less equivalently, at
the differentials of these maps. The MinRank attack searches for maps of low
rank when viewed as matrices. We will discuss the MinRank attack in greater
detail as well as a variant of the high rank attack not considered in [13] in
Sections 5 and 6. The dual rank attack searches for a small subspace of the
plaintext space which is in the kernel of a large subspace of the span of the
maps.

In [13], it was stated that the task of finding a subspace of dimension n− 2s
of the associated quadratic forms which share a common nonzero element in
their kernels is of complexity O(n6q2s). This claim is overcautious. Given an
element Q0 in the first row of either E1(ū) or E2(ū), the formula is derived
from the product of the first row of A(ū) and some column of B(ū) or C(ū)
respectively. Since these columns are independent of one another and follow the
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uniform distribution on the set of all column vectors (the joint distribution is
inherited from the i.i.d. entries of B and C), Q0 has rank 2s with near certainty.
Since Q0 has a matrix representation in the block form:

Q0 =

⎡
⎢⎢⎢⎣

R1 R2 · · · Rs

Rs+1

... 0
R2s−1

⎤
⎥⎥⎥⎦ ,

where each Ri is an s × s matrix, any element z̄ in the kernel of Q0 has an

s-dimensional leading block of zeros with probability
∏s−1

j=0
qs

2−qj
qs2

which is ex-

tremely close to one. The first s rows of Q0 put a further s constraints on z̄.
Given that the condition of being in the kernel of s such maps of the same
structure results in an expected solution space of dimension 0, it is clear that
there is no nontrivial element in the kernel of any large subspace of the span of
the associated matrices. Thus the dual rank attack is nonexistent for the ABC
scheme.

3.4 Algebraic Attacks

Based on an analysis of the degree of regularity for the ABC scheme the designers
computed a degree of regularity dreg = 9, and given the formula from [15] they
estimated the complexity of the algebraic attack to be approximately

(
n+ dreg
dreg

)2.3766

=

(
73

9

)2.3766

≈ 286.

4 Subspace Differential Invariants

Let f : kn → km be an arbitrary fixed function on kn. Consider the differential
Df(a, x) = f(a + x) − f(a) − f(x) + f(0). We can express the differential as
an n-tuple of differential coordinate forms in the following way: [Df(a, x)]i =
aTDfix, where Dfi is a symmetric matrix representation of the action on the
ith coordinate of the bilinear differential.

In [16], the following definition of a differential invariant was provided:

Definition 1. A differential invariant of a map f : kn → km is a subspace
V ⊆ kn with the property that there exists a W ⊆ kn of dimension at most
dim(V ) for which simultaneously AV ⊆W for all A ∈ Spani(Dfi).

The motivation for the definition is to capture the behaviour of a nonlinear
function which acts linearly on a subspace.

We note that any simultaneous invariant of all Spani(Dfi) satisfies the above
definition, as well as invariants in the balanced oil and vinegar primitive, which
are found in the product of an element and the inverse of another element in
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Spani(Dfi). A differential invariant is thus a more general construct than a
simultaneous invariant among all differential coordinate forms.

A natural generalization of the notion of a differential invariant is a subspace
differential invariant.

Definition 2. A subspace differential invariant of a map f : kn → km with
respect to a subspace X ⊆ km is a subspace V ⊆ kn with the property that there
exists a W ⊆ kn of dimension at most dim(V ) such that simultaneously AV ⊆W
for all A =

∑m
i=1 xiDfi where (x1, . . . , xm) ∈ X, i.e. A ∈ SpanX(Dfi).

While the motivation for the differential invariant is to detect the linear action of
a function on a subspace, the motivation for the subspace differential invariant
is to detect the linear action of a subspace of the span of the public polynomials
on a subspace of the plaintext space.

5 The Differential Invariant Structure of the ABC
scheme

5.1 Prototypical Band-Spaces

Each component of the central Q(ū) = E1(ū)||E2(ū) map may be written as:

Q(i−1)s+j =

s∑
l=1

u(i−1)s+lb(l−1)s+j , (4)

for the E1 equations, and likewise, for the E2 equations:

Qs2+(i−1)s+j =

s∑
l=1

u(i−1)s+lc(l−1)s+j (5)

where i and j run from 1 to s.
Note that these 2s2 component equations may be grouped into s sets, indexed

by i, of 2s equations. In particular note that the only quadratic monomials
contained in Q(i−1)s+j and Qs2+(i−1)s+j are those involving at least one factor
of the variables u(i−1)s+1, . . . , u(i−1)s+s. Moreover, since the coefficients of the
linear polynomials br(u) and cr(u) are uniformly random and independent, the
nonzero coefficents are uniformly random and independent within each set of 2s
equations.

Definition 3. The ith band-space of maps Bi is the 2s-dimensional space of
quadratic forms given by

Bi = Span{Q(i−1)s+1, Q(i−1)s+2, . . . , Qis, Qs2+(i−1)s+1, Qs2+(i−1)s+2, . . . , Qs2+is}.

In particular, the ith band-space is the span of the maps in the private key derived
from the product of the ith row of A with the columns of B and C.
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Any map Q0 in the ith band-space has a differential in block form:

DQ0 =

⎡
⎢⎢⎢⎢⎣

0 R1 0
RT

1 R2 R3

0 RT
3 0

⎤
⎥⎥⎥⎥⎦ (6)

having a band of nonzero values restricted to the ith s-dimensional block column
and ith S-dimensional block row, hence the name. Notice that any vector ū of
the form:

(u1, . . . , u(i−1)s, 0, . . . , 0, uis+1, . . . , us2)
T

is mapped to a vector v̄ of the form:

(0, . . . , 0, v(i−1)s+1, . . . , vis−1, 0, . . . , 0)T

by the differential of any map in Bi. Therefore, the space of all such ū is a
subspace differential invariant of Q with respect to Bi.

5.2 Generalized Band-Spaces

A critical observation is that the band-spaces associated with the rows of A are
not the only band-spaces corresponding to a subspace differential invariant.

Definition 4. Fix an arbitrary vector v in the rowspace of A, i.e. v =
∑s

d=1

λdAd where Ad is the dth row of A. The 2s-dimensional space of quadratic forms
Bv given by the span of the columns of vB and vC is called the generalized band-
space generated by v.

Theorem 1. There is a subspace V ⊆ kn which is a subspace differential invari-
ant with respect to Bv for all v in the rowspace of A. Moreover, rank(DQ) ≤ 2s
for all Q ∈ Bv.

Proof. We prove the result for v = λ1A1+λ2A2, an arbitrary linear combination
of the first two rows of A. The general result follows from an analogous argument.

Any quadratic form in Bv is a linear combination of the columns of vB and
vC, Q0 =

∑s
l=1 γlvBl +

∑s
l=1 δlvCl. This quantity can be rewritten as Q0 =

v(
∑s

l=1 γlBl +
∑s

l=1 δlCl). Since each of the entries of B and C are independent
and random linear combinations in the coefficients of ū, each entry of the linear
combination of the column vectors is itself a fixed but arbitrary such linear

combination. Expressing the ith entry in this column vector as
∑s2

j=1 ζi,juj ,
and using the fact that v = [λ1u1 + λ2us+1, λ1u2 + λ2us+2, . . . , λ1us + λ2u2s]
we obtain:
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Q0 = v(

s∑
l=1

γlBl +

s∑
l=1

δlCl)

=

s∑
i=1

(λ1ui + λ2us+i)

s2∑
j=1

ζi,juj

=

s∑
i=1

s2∑
j=1

(λ1ζi,juiuj + λ2ζi,jus+iuj).

(7)

Let M be the s2× s2 matrix obtained from this sum by setting the (i, j)th entry
equal to the coefficient of uiuj, the (s + i, j)th entry equal to the coefficient of
us+iuj , and all other entries zero:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1ζ1,1 λ1ζ1,2 . . . λ1ζ1,s2
...

...
. . .

...
λ1ζs,1 λ1ζs,2 . . . λ1ζs,s2
λ2ζ1,1 λ2ζ1,2 . . . λ2ζ1,s2

...
...

. . .
...

λ2ζs,1 λ2ζs,2 . . . λ2ζs,s2
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Notice that the differential of Q0 is exactly the sum of M and MT : DQ0 =
M + MT . Since M has rank at most s, MT has rank at most s. Thus by the
subadditivity of rank, the rank of DQ0 is at most 2s. By the randomness of the
coefficients of B and C the rank of DQ0 is 2s with overwhelming probability
(roughly qs−s

2−1).
Consider performing column operations on MT . In particular, consider op-

erations such as subtracting λ2λ
−1
1 times column 1 from column s + 1. It is

clear that these operations can be used to eliminate the entries in columns s+1
through 2s of MT . Let R be the matrix representing these column operations.
Then MTR only has nonzero entries in the first s columns. Similarly, RTM only
has nonzero entries in the first s rows.

Finally, consider the action RTDQ0R. By distributivity we have RTDQ0R =
RTMR + RTMTR, and by associativity, we have (RTM)R + RT (MTR). In
the first summand column operations are performed on a matrix with nonzero
entries in only the first s rows, resulting in a matrix with entries in only the top
s rows. The second summand is the transpose of the first. Therefore, we see that
RTDQ0R has the form:
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RTDQ0R =

⎡
⎢⎢⎣
D1 D2

DT
2 0

⎤
⎥⎥⎦ ,

where D1 is s × s and D2 is s × s2 − s. Thus RTDQ0R maps the subspace
V ′ consisting of column vectors with the first s entries zero to its orthogonal
complement. Consequently DQ0 maps RV ′ to an s dimensional space. Further,
notice that the row and column operations depend only on v, and not on the
fixed but arbitrary Q0 ∈ Bv. Therefore DQ maps RV ′ to an s dimensional space
for all Q ∈ Bv. Thus RV ′ is a subspace differential invariant with respect to Bv.

Remark 2. We note that a subspace differential invariant V with respect to a
generalized band-space Bv is special in that V , of dimension s2 − s, is mapped
to a subspace W of dimension s by any differential of a band-space map. Thus,
given two such subspace differential invariants, V and V ′ with respect to Bv and
Bv′ , we can find another subspace differential invariant V ∩ V ′ with respect to
Span(Bv,Bv′). In this manner we can generate subspace differential invariants
with respect to spaces containing differentials of even full rank. In particular,
if one manages to find a linear combination of the public differentials which is
of rank s2 − 2s, the kernel reveals some information about the structure of the
scheme. Given the invariant structure of the ABC scheme, this task amounts
to finding a linear combination that avoids any equation derived from a s+2

2
dimensional subspace of the rowspace of A.

This technique forms the foundation of a high rank version of a differential
invariant attack. The complexity of recovering such a map is on the order of
q3s/2, and more information is still needed to constitute a full attack; therefore,
we conclude that the ABC scheme is safe from the high rank side.

6 The Effect of Invariant Structure on the Complexity of
MinRank

The Minrank attack searches for a low rank linear combination ofm n×n bilinear
forms over k = Fq, B1, . . . , Bm. In the case of Ding’s ABC scheme, m = 2s2,
n = s2, and the Bi maps are the public differentials DPi. The attack proceeds
by randomly choosing �mn � vectors, xk, setting(

m∑
i=1

t̄iDPi

)
xk = 0 (8)

and solving for the t̄i. The attack succeeds when all of the xk are in the kernel
of the target map. Simple rank analysis suggests that the probability of success
per iteration is q−r�

m
n � where r is the rank of the target map. In the case of the
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ABC scheme, the target maps are those within a band space, which typically
have rank 2s. Therefore, if we consider the rank of the target maps alone, we
should expect a complexity on the order of q4s. A more careful rank analysis
reveals that the kernels of the band-space maps are interlinked in the sense
given in [17]. Computing via a crawling process as described in [17], we see
that the best estimate from a rank perspective has expected complexity roughly
q2s, since there are roughly sq2s such kernels. However, the actual complexity
of this process is on the order of qs, due to the subspace differential invariant
structure, as will be demonstrated in this section. To emphasize the advantage
the differential invariant structure provides, we note that the recovery of maps
of rank r = 2s is accomplished with this attack in time roughly qr/2.

This demonstation proceeds by defining the “band kernel”, an s2 − s dimen-
sional subspace of ks

2

, corresponding to each generalized band-space, Bv. We
then show that with probability q−1, if x1 and x2 fall within band kernel j, then
they are both in the kernel of some band-space differential

DQ =
∑

Qi∈Aj

τiDQi,

where the Qi in the sum form a basis Av of the band-space generated by v, Bv.

Definition 5. Let u1 . . . us2 be the components of Ux̄ and fix an arbitrary vector
v in the rowspace of A, i.e. v =

∑s
d=1 λdAd where Ad is the dth row of A. An s2

dimensional vector, x̄ is in the band kernel generated by v iff
∑s

d=1 λduds+k = 0
for k = 1 . . . s.

Theorem 2. If x1 and x2 fall within band kernel generated by v, then they
are both in the kernel of some generalized band-space differential DQ =∑

Qi∈Bv
τiDQi with probability approximately q−1.

Proof. A DQ meeting the above condition exists iff there is a nontrivial solution
to the following system of equations

∑
Qi∈Bv

τiDQix1
T = 0

∑
Qi∈Bv

τiDQix2
T = 0

(9)

Expressed in a basis where the first s basis vectors are chosen to be outside
the band kernel, and the remaining s2 − s basis vectors are chosen from within
the band kernel, the band-space differentials take the form:

DQi =

⎡
⎢⎢⎣
Si Ri

RT
i 0

⎤
⎥⎥⎦ (10)
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where Ri is a random s × s2 − s matrix and Si is a random symmetric s × s
matrix. Likewise x1 and x2 take the form (0| xk ). Thus removing the redundant
degrees of freedom we have the system of 2s equations in 2s variables:

2s∑
i=1

τiRix1
T = 0

2s∑
i=1

τiRix2
T = 0

(11)

This has a nontrivial solution precicely when the following matrix is singular:

⎡
⎢⎢⎢⎢⎢⎢⎣

| | |
R1x1

T R2x1
T . . . R2sx1

T

| | |
| | |

R1x2
T R2x2

T . . . R2sx2
T

| | |

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)

As the Ri are random and independent, this is simply a random matrix over
k = Fq, which is singular with probability approximately q−1, for practical
parameters.

The band space differentials DQi for the private maps Qi ∈ Bv generate
a subspace of the space generated by public differentials DPi, the solutions∑

Qi∈Bv
τiDQi of equation (9) form a subspace of the solutions

∑2s2

i=1 t̄iDPi of
equation (8). The condition on x1 for membership in the band kernel of Bv for
some v is that the matrix A, formed as in equation (13) from the components
u1 . . . us2 of Ux1, is singular.

A =

⎡
⎢⎢⎢⎣

u1 u2 · · · us

us+1 us+2 · · · u2s

...
...

. . .
...

us2−s+1 us2−s+2 · · · us2

⎤
⎥⎥⎥⎦ (13)

This occurs with probability approximately q−1. Given x1 is in some band
kernel, x2 has a probability of q−s of being chosen within the same band kernel.
Given that x1 and x2 are in the same band kernel, the probability that they are
in the kernel of the same band-space map is q−1. Thus, a generalized band space
map may be found among the solutions of equation (8) with probability q−(s+2).

Equation (8) is a system of 2s2 equations in 2s2 variables, one might ex-
pect it to generally have a 0-dimensional space of solutions. There are, how-
ever, linear dependencies among the equations, due to the fact that the DQi

are symmetric matrices. In odd characteristic, the only linear dependency is
x1DQix2

T −x2DQix1
T = 0, thus we should expect a 1-dimensional space of so-

lutions. However, in even characteristic there are two more linear dependencies:
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x1DQix1
T = 0 and x2DQix2

T = 0. Thus, in even characteristic, we expect a 3-
dimensional solution space for equation (8). Finding the expected 1-dimensional
space of band-space solutions in this 3-dimensional space costs q2+q+1 rank op-
erations, which in turn cost (s2)3 field operations. Thus the total cost of finding a
band-space map using MinRank is approximately qs+4s6 for even characteristic
and qs+2s6 for odd characteristic.

We ran a series of experiments to determine the number of trials required for
randomly selected x1 and x2 to lie in the kernel of a differential of rank 2s. The
experiments were performed using toy examples of the scheme with q = 3, 5 and
s = 4, 5, 6, 7, 8. In each of these cases the data support the theoretical complexity
of O(qs+2).

7 Complexity of Invariant Attack

While the detection of a low rank map in the space generated by the public differ-
entials already constitutes a distinguisher from a random system of equations, it
still falls short of a full key extraction. However, once two low rank differentials,
DQ1 andDQ2, from the same generalized band space are found, the attacker can
use similar methods to those used to attack balanced oil and vinegar. Recall that
oil and vinegar can be broken by computing a product matrix M = M−11 M2 and
searching for large invariant subspaces. One complication arises, however which
is that neither DQ1 nor DQ2 will be invertible, only having rank 2s. This can be
overcome by simply restricting DQ1 and DQ2 to act on random 2s dimensional
subspace, W , of kn. As long as the restrictions DQ1(W ), DQ2(W ) are full rank
in W , then DQ1(W )−1DQ2(W ) will have an s dimensional invariant subspace,
whose generators are also generators of the band kernel associated with DQ1

and DQ2.
Note that once we’ve found DQ1 in Bv, finding DQ2 is approximately q times

less costly. Since DQ1 is known to contain in its kernel two vectors x1 and x2

from the band kernel generated by v, we simply need to find a rank 2s map,
DQ2, in the space of public differentials, whose kernel contains x1 and another
vector x3. With overwhelming probability the only way this will occur is if x3 is
in the band kernel generated by v and DQ2 is in Bv.

Given bases for s independent band kernels generated by v1, . . . , vs we can
reconstruct a private key of the same structure as that of the original ABC
scheme, which has the same public differentials as the instance we are attacking.
To see this, first note that there exists a U ′ for which the generalized band spaces
Bv1 . . .Bvs take the form of ordinary band spaces (i.e. for which (U ′−1)TDQU ′−1
takes the form given in equation (6) when DQ is in Bvi .) U

′ is simply given by
U ′ = V U , where V obeys

A(V u) =

⎡
⎢⎢⎢⎣
v1(u)
v2(u)
...

vs(u)

⎤
⎥⎥⎥⎦ .
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Moreover there exists a B′ C′ and T ′ corresponding to U ′, that will give the
same public key as U , B, C and T . These are given by:

B′(V u) = B(u) i.e. B′(u′) = B(V −1u′)

C′(V u) = C(u) i.e. C′(u′) = C(V −1u′)

T ′(e′1, e
′
2) = T (V −1e′1, V

−1e′2).

Thus, there exists an ABC private key, whose prototypical band spaces are
equal to the generalized band spaces found by our attack. The task then re-
mains to find it, or something equivalent. First note that the elements of row
j of A(U ′x), which we will denote as Āj(U

′x), are are in the band kernel gen-
erated by vi for all i �= j. The intersection of the band kernels generated by
v1, . . . , vj−1, vj+1, . . . , vs is readily computable, given what we already have, and
it has dimension s, and is therefore identical to the space generated by the
elements of Āj(U

′x).
This allows us to compute a map U ′′ which mostly mimics the action of U ′.

Specifically U ′′ only differs from U ′ by mixing the elements within the rows of the
matrix A. i.e. Āj(U

′′x) = ΩjĀj(U
′x), where Ωj is a nonsingular linear operator

on s variables. U ′′ may also be extended into a full private key, U ′′, B′′, C′′, T ′′

for the target public key. The choice of B′′ and C′′ is straightforward:

B′′(u′′) = B′(U ′U ′′−1u′′)

C′′(u′′) = C′(U ′U ′′−1u′′)

All that remains is the choice of T ′′. To demonstrate that a choice is possible
note that

Āj(U
′′x)B′′(U ′′x) = [ΩjĀj(U

′x)]B′′(U ′′x)
= Ωj [Āj(U

′x)B′′(U ′′x)]
= Ωj(Āj(U

′x)B′(U ′x))

And similarly:

Āj(U
′′x)C′′(U ′′x) = Ωj(Āj(U

′x)C′(U ′x)).

Thus, the components of E′(U ′x) = (A(U ′x)B′(U ′x), A(U ′x)C′(U ′x)) are
linearly related to the components of E′′(U ′′x) = (A(U ′′x)B′′(U ′′x), A(U ′′x)C′′

(U ′′x)) by the invertible maps Ωj . There therefore exists an invertible T ′′ such
that T ′′E′′(U ′′x) = T ′E′(U ′x) = TE(Ux).

All that remains is to solve for T ′′, B′′, and C′′, given our U ′′. This can be
done by solving linear equations in the coefficients of B′′, C′′ and T ′′−1:

Dk(A(x)B
′′(x), A(x)C ′′(x)) =

∑
l

T ′′−1kl (U ′′−1)TDyl(x)U
′′−1

where the yl are the components of the public map TE(Ux).
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The primary cost of the attack involves finding the s independent band ker-
nels. Thus, the cost of a full private key extraction is qs+4s7 for even character-
istic and qs+2s7 for odd characteristic.

Remark 3. The full key recovery attack for the improved ABC scheme of [14]
(using an s× r A and n variables) requires sqr+4n3 operations for even charac-
teristic and sqr+2n3 operations for odd characteristic.

8 Conclusion

The ABC scheme offers a promising new idea for the development of multivariate
encryption schemes. Although the original presentation of the scheme contained
errors— most significantly in the estimated probability of decryption failure—
the scheme is easily generalized to nonsquare matrices and these anomalies are
inconsequential in this context. In particular, the HOLEs attack is nonexistent
when A, B, and C are replaced with rectangular matrices.

The attack outlined in this article exploits the subspace differential invariant
structure inherent to the ABC methodology. The attack method works both for
the original scheme and when applied to the updated scheme. With the original
parameters, the attack is asymptotically the most efficient structural attack, with
bit complexity scaling linearly with s, the square root of the number of variables.
In the improved scheme, the attack scales in bit complexity in proportion to the
parameter r which is less than the square root of the number of variables. This
analysis is tighter than any relevant rank analysis in the literature, with the
most appropriate technique in [17] scaling in bit complexity linearly with 2s. In
comparison, even the bit complexity of algebraic attacks scale superlinearly in
s, though the break-even point for the two attacks is slightly beyond the 120-bit
security threshold. Taking both time and memory into consideration, however,
the differential invariant attack may be the more practical.

A remarkable fact about the attack outlined in this article is that it exploits
characteristics which uniquely distinguish the public polynomials in the ABC
scheme or its improvement from random formulae, namely, the existence of the
s subspace differential invariants. The existence of the differential invariants
relative to the band spaces is equivalent to the property of being isomorphic to
a product of matrices of linear forms as in the central map of the ABC scheme;
indeed, the attack produces such an isomorphism. In this sense, it is hard to
imagine any key recovery attack on such a scheme designed for 80-bit security
which is significantly more efficient in terms of time than the algebraic attack,
directly solving the system via Gröbner Bases, or an XL variant such as the
Mutant XL algorithms, see [18–20].

On the other hand, it is worthwhile mentioning Gröbner basis techniques for
solving MinRank problems using minors modeling as in [21], and perhaps most
notably exemplified in [22]. Assuming no additional structure in the MinRank
instances arising from the cryptanalysis of the ABC scheme generic, the degree of
regularity of the resulting MinRank polynomial systems is 2s+1 for small values
of s, and so the complexity of this approach is immense. The actual MinRank
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instances arising from the ABC scheme, however, hold some of the structure of
the central map and so there is some hope for improvement in this area, though
this remains an open problem.

While it is clear that the decryption failure issue of the ABC scheme can be
fixed by inflating the field size and/or by making the core matrices rectangular,
the scalability of the scheme is an issue. The public key size of the original
scheme scales with the sixth power of s. If we take into consideration security
requirements beyond 80 bits, the ABC scheme becomes problematic; increasing s
by one more than doubles the key size. While the evidence seems to suggest that
the enhanced ABC scheme, despite having such a distinct differential structure,
may ironically be secure, the task of turning the scheme into a more finely
tuneable technology is still an open question.
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Abstract. In recent years, lattice-based cryptography has been recog-
nized for its many attractive properties, such as strong provable secu-
rity guarantees and apparent resistance to quantum attacks, flexibility
for realizing powerful tools like fully homomorphic encryption, and high
asymptotic efficiency. Indeed, several works have demonstrated that for
basic tasks like encryption and authentication, lattice-based primitives
can have performance competitive with (or even surpassing) those based
on classical mechanisms like RSA or Diffie-Hellman. However, there still
has been relatively little work on developing lattice cryptography for
deployment in real-world cryptosystems and protocols.

In this work we take a step toward that goal, by giving efficient and
practical lattice-based protocols for key transport, encryption, and au-
thenticated key exchange that are suitable as “drop-in” components for
proposed Internet standards and other open protocols. The security of
all our proposals is provably based (sometimes in the random-oracle
model) on the well-studied “learning with errors over rings” problem,
and hence on the conjectured worst-case hardness of problems on ideal
lattices (against quantum algorithms).

One of our main technical innovations (which may be of independent
interest) is a simple, low-bandwidth reconciliation technique that allows
two parties who “approximately agree” on a secret value to reach exact
agreement, a setting common to essentially all lattice-based encryption
schemes. Our technique reduces the ciphertext length of prior (already
compact) encryption schemes nearly twofold, at essentially no cost.

1 Introduction

Recent progress in lattice cryptography, especially the development of efficient
ring-based primitives, puts it in excellent position for use in practice. In partic-
ular, the short integer solution over rings (ring-SIS) problem [49,55,44] (which

� This material is based upon work supported by the National Science Foundation
under CAREER Award CCF-1054495, by DARPA under agreement number FA8750-
11-C-0096, and by the Alfred P. Sloan Foundation. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation, DARPA or
the U.S. Government, or the Sloan Foundation. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon.

M. Mosca (Ed.): PQCrypto 2014, LNCS 8772, pp. 197–219, 2014.
c© Springer International Publishing Switzerland 2014



198 C. Peikert

was originally inspired by the NTRU cryptosystem [31]) has served as a founda-
tion for practical collision-resistant hash functions [46,3] and signature schemes
[45,29,43,50,26], while the learning with errors over rings (ring-LWE) problem
[47,48] is at the heart of many kinds of encryption schemes. Much like their less
efficient integer-based counterparts SIS [2,52,29] and LWE [58,54,13], both ring-
SIS and ring-LWE enjoy strong provable hardness guarantees: they are hard on
the average as long as the Shortest Vector Problem is hard to approximate (by
quantum computers, in the case of ring-LWE) on so-called ideal lattices in the
corresponding ring, in the worst case. These results provide good theoretical evi-
dence that ring-SIS and ring-LWE are a solid foundation on which to design cryp-
tosystems, which is reinforced by concrete cryptanalytic efforts (e.g., [19,41,42]).
(We refer the reader to [49,55,44,47,48] for further details on these problems’
attractive efficiency and security properties.)

By now there is a great deal of theoretical work constructing a broad range of
powerful cryptographic objects from (ring-)SIS and (ring-)LWE. However, far less
attention has been paid to lower-level, “workhorse” primitives like key exchange
and key transport protocols, which are widely used on real-world networks like
the Internet. Indeed, almost all asymmetric cryptography standards are still
designed around traditional mechanisms like Diffie-Hellman [22] and RSA [59].

1.1 Our Contributions

Toward the eventual goal of broader adoption and standardization of efficient
lattice-based cryptography, in this work we give efficient and practical lattice-
based protocols for central asymmetric tasks like encryption, key encapsula-
tion/transport, and authenticated key exchange (AKE). Our proposals can all
be proved secure (in some cases, in the random oracle model [8]) in strong, com-
monly accepted attack models, based on the presumed hardness of the ring-LWE
problem plus other generic assumptions (e.g., signatures and message authenti-
cation codes).

Because our goal is to obtain primitives that are suitable for real-world net-
works like the Internet, we seek designs that adhere as closely as possible to
the abstract protocols underlying existing proposed standards, e.g., IETF RFCs
like [32,57,30,33,34]. This is so that working code and other time-tested solutions
to engineering challenges can be reused as much as possible. Existing proposals
are built around classical mechanisms like Diffie-Hellman and RSA, and ideally
we would just be able to substitute those mechanisms with lattice-based ones
without affecting the protocols’ surrounding structure. However, lattice problems
have very different mathematical properties than RSA and Diffie-Hellman, and
many protocols are not easily adapted to use lattice-based mechanisms, or can
even become insecure if one does so. Fortunately, we are able to show that in
certain cases, existing protocols can be generalized so as to yield secure lattice-
based instantiations, without substantially affecting their overall form or security
analysis.

In the rest of this introduction we give an overview of our proposals.



Lattice Cryptography for the Internet 199

Encryption and key transport. We first consider the task of asymmetric key
encapsulation (also known as key transport), where the goal is for a sender
to transmit a random cryptographic key K using the receiver’s public key, so
that K can be recovered only by the intended receiver. This task is central
to the use of “hybrid” encryption, in which the parties later encrypt and/or
authenticate bulk data under K using symmetric algorithms. Of course, one way
to accomplish this goal is for the sender to choose K and simply encrypt it under
the receiver’s public encryption key. However, it is conceptually more natural
(and can offer better efficiency and security bounds) to use a key encapsulation
mechanism (KEM), in which the key K is produced as an output of the sender’s
“encapsulation” algorithm, which is run on the receiver’s public key alone.

Our first technical contribution is a new ring-LWE-based KEM that has bet-
ter bandwidth (i.e., ciphertext length) than prior compact encryption/KEM
schemes [47,48] by nearly a factor of two, at essentially no cost in security or other
efficiency measures. The improvement comes from our new, simple “reconcilia-
tion” technique that allows the sender and receiver to (noninteractively) reach
exact agreement from their approximate or “noisy” agreement on a ring element.
(See Section 3 for details.) Compared to the encryption schemes of [47,48], this
technique allows us to replace one of the two ring elements modulo q = poly(n)
in the ciphertext with a binary string of the same dimension n, thus nearly halv-
ing the ciphertext length. (See Section 4 for details.) We mention that going back
at least to the public-key cryptosystem of [54], it has been known that one can
improve ciphertext length by simply “rounding,” i.e., dropping less-significant
bits. However, the resulting modulus must still remain larger than the norm of
the secret key—in particular, polynomial in n—whereas our technique is able to
“round” (in a certain way) all the way to a modulus of two. We also remark that
approximate agreement is common to essentially all lattice-based encryption and
key-agreement protocols, and our reconciliation technique is general enough to
apply to all of them.

The KEM described above is passively secure, i.e., secure against passive eaves-
droppers that see the public keys and ciphertexts, but do not create any of their
own. Many applications require a much stronger form of security against active
attackers, or more formally, security against adaptive chosen-ciphertext attacks.
The literature contains several actively secure encryption/KEM schemes (some-
times in the random oracle model), obtained either via generic or semi-generic
transformations from simpler objects (e.g., [24,9,61,27,28]), or more directly from
particular algebraic structures and assumptions (e.g., [21,20,12,56]). For various
reasons, most of these construction paradigms turn out to be unsuitable for ob-
taining highly efficient, actively secure lattice-based KEM/encryption schemes
(see Section 5.3 for discussion). One method that does work well, however, is
the Fujisaki-Okamoto transformation [28]. In Section 5 we apply it to obtain an
actively secure encryption and KEM scheme that is essentially as efficient as our
passively secure KEM. This can be used as an alternative to, e.g., RSA-based
actively secure key encapsulation as in the proposed standard [57].
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Authenticated key exchange (AKE). An AKE protocol allows two parties to gen-
erate a fresh, mutually authenticated secret key, e.g., for use in setting up a secure
point-to-point channel. Formal attack models, security definitions, and protocols
for AKE have been developed and refined in several works, e.g.,
[7,10,37,5,60,16,18,17,40,39]. In this work we focus on the strong notion of “SK-
security” [16] in the “post-specified peer” model [17]. This model is particularly
relevant to the Internet because it allows the identity of the peering party to be
discovered during the protocol, rather than specified in advance. It also ensures
other desirable properties like perfect forward secrecy.

We give a generalization of an AKE protocol of Canetti and Krawczyk [17],
which inherits from Krawczyk’s SIGMA family of protocols [38], and which un-
derlies the Internet Key Exchange (IKE) proposed standard [30,33,34]. All these
protocols are built specifically around the (unauthenticated) Diffie-Hellman key-
exchange mechanism. We show that the Canetti-Krawczyk protocol can be gener-
alized to instead use any passively secure KEM—in particular, our lattice-based
one—with only minor changes to the proof of SK-security in the post-specified
peer model. Again, we view the relative lack of novelty in our protocol and its
analysis as a practical advantage, since it should eventually allow for the reuse
of existing code and specialized knowledge concerning the real-world implemen-
tation of these protocols.

2 Preliminaries

For x ∈ R, define �x� = �x + 1
2� ∈ Z. For an integer q ≥ 1, let Zq denote the

quotient ring Z/qZ, i.e., the ring of cosets x + qZ with the induced addition
and multiplication operations. For any two subsets X,Y of some additive group,
define −X = {−x : x ∈ X} and X + Y = {x+ y : x ∈ X, y ∈ Y }.

Due to space constraints, we assume familiarity with the syntax and standard
security notions for public-key cryptosystems (PKCs) and key-encapsulation
mechanisms (KEMs), and we give only the minimal mathematical background
related to subgaussian random variables and cyclotomic rings. This will be suf-
ficient to describe how our schemes operate, but their analysis requires many
more details; these are given in the full version.

2.1 Subgaussian Random Variables

We define and analyze “error” distributions using the standard notion of sub-
gaussian random variables, relaxed slightly as in [50]. For any δ ≥ 0, a random
variable X (or its distribution) over R is δ-subgaussian with parameter r > 0 if
for all t ∈ R, we have

E[exp(2πtX)] ≤ exp(δ) · exp(πr2t2).

A standard fact is that any B-bounded centered random variableX (i.e., E[X ] =
0 and |X | ≤ B always) is 0-subgaussian with parameter B

√
2π.
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Extending to vectors, a random real vectorX is δ-subgaussian with parameter
r if for all real unit vectors u, the random variable 〈u, X〉 ∈ R is δ-subgaussian
with parameter r. More generally, X and u may be taken from any real inner
product space, such as Cn.

2.2 Cyclotomic Rings

For a positive integer index m, let K = Q(ζm) and R = Z[ζm] ⊂ K denote
the mth cyclotomic number field and ring (respectively), where ζm denotes an
abstract element having order m. Then K has degree n = ϕ(m) as a field
extension of Q, and similarly for R over Z. In this work we are largely agnostic
to how K and R are represented, except when analyzing “error” terms, in which
case we use the decoding basis of R, described below. For any integer modulus
q ≥ 1, let Rq denote the quotient ring R/qR.

For any p|m, let ζp = ζ
m/p
m ∈ R (which has order p), and define

g =
∏

odd prime p|m
(1− ζp) ∈ R.

Also define m̂ = m/2 if m is even, and m̂ = m otherwise. We recall a standard
fact about these elements (see, e.g., [48, Section 2.5.4]).

Fact 1. The element g divides m̂ in R, and is coprime in R with all integer
primes except the odd primes p dividing m.

The canonical embedding σ from K (and hence also R ⊂ K) into Cn yields
a natural geometry on cyclotomic fields/rings. We extend geometric notions,
such as norms and subgaussianity, to K by identifying its elements with their
canonical embeddings. In particular, the �2 (Euclidean) and �∞ norms on K
are defined by ‖e‖p := ‖σ(e)‖p for p ∈ {2,∞}. Similarly, we say that e ∈ K is
δ-subgaussian with parameter r if σ(e) ∈ Cn is.

Decoding Basis. A central object in the definition and usage of ring-LWE
is the fractional “codifferent” ideal R∨ = (m̂/g)−1R ⊂ K. In [48, Section 6]
it is shown that a certain Z-basis of R∨ (and hence Q-basis of K), called the
decoding basis, has essentially optimal error tolerance (e.g., for decryption) and
admits fast sampling of error terms from appropriate distributions.

In this work, for convenience we avoid the codifferent ideal R∨ = (m̂/g)−1R,
and instead give an alternative (but equivalent) definition of the decoding basis,
by multiplying by m̂/g ∈ R to map R∨ to R. In particular, we define the decoding
basis of R to be m̂/g times the elements of the decoding basis of R∨. Then by
linearity, the coefficient vector of any e∨ ∈ K with respect to the “true” decoding
basis (of R∨) is identical to that of e = (m̂/g)e∨ with respect to the decoding
basis of R.
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We note that multiplying by m̂/g can significantly distort an element’s canon-
ical embedding. However, multiplying by g ∈ R undoes this distortion, because
σ(g · e) = m̂ · σ(e∨). So, we typically deal with error terms e ∈ R where g · e is
subgaussian, and analyze the coefficients of e itself with respect to the decoding
basis of R. The following is a reformulation of [48, Lemma 6.6] to our definition
of decoding basis.

Lemma 1. Let e ∈ K be such that g · e is δ-subgaussian with parameter m̂ · r,
and let e′ ∈ K be arbitrary. Then every decoding-basis coefficient of e · e′ is
δ-subgaussian with parameter r · ‖e′‖2.

Error Distributions. In the context of ring-LWEwe work with certain Gaussian-
like error distributions over the number field K, and discretized to R. For r > 0,
the Gaussian distribution Dr over R with parameter r has probability distri-
bution function exp(−πx2/r2)/r. For convenience, but with a slight abuse of
formality, we also define the Gaussian distribution Dr over the number field K
to output an element a ∈ K for which 〈σ(a),u〉 has distribution Dr for all unit
vectors u in the span of σ(K) ⊂ Cn.1

In our applications we use error distributions of the form ψ = (m̂/g) · Dr

over K; the extra m̂/g factor corresponds to the translation from R∨ to R as
described above in Section 2.2. We also discretize such distributions to the ring R,
denoting the resulting distribution by χ = �ψ�, by sampling an element a ∈ K
from ψ and then rounding each of its rational decoding-basis coefficients to their
nearest integers. We rely on the following facts from [48].

Fact 2. Let e← χ where χ = �ψ� for ψ = (m̂/g) ·Dr. Then:

1. g · e is δ-subgaussian with parameter m̂ ·
√
r2 + 2π rad(m)/m for some δ ≤

2−n.
2. ‖g · e‖2 ≤ m̂ · (r +

√
rad(m)/m) · √n except with probability at most 2−n.

2.3 Ring-LWE

We now recall the ring-LWE probability distribution and (decisional) computa-
tional problem. For simplicity and convenience for our applications, we present
the problem in its discretized, “normal” form, where all quantities are from R
or Rq = R/qR, and the secret is drawn from the (discretized) error distribution.
(See [47] for a more general form.)

Definition 1 (Ring-LWE Distribution). For an s ∈ R and a distribution χ
over R, a sample from the ring-LWE distribution As,χ over Rq ×Rq is generated
by choosing a ← Rq uniformly at random, choosing e ← χ, and outputting
(a, b = a · s+ e).

1 This is an abuse because σ(K) is not equal to H , but is merely dense in it. Since in
practice Gaussians can only be sampled with finite precision, in this work we ignore
such subtleties.
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Definition 2 (Ring-LWE, Decision). The decision version of the ring-LWE
problem, denoted R-DLWEq,χ, is to distinguish with non-negligible advantage be-
tween independent samples from As,χ, where s ← χ is chosen once and for
all, and the same number of uniformly random and independent samples from
Rq ×Rq.

Theorem 3 ([47]). Let R be the mth cyclotomic ring, having dimension n =
ϕ(m). Let α = α(n) <

√
logn/n, and let q = q(n), q = 1 mod m be a poly(n)-

bounded prime such that αq ≥ ω(
√
logn). There is a poly(n)-time quantum

reduction from Õ(
√
n/α)-approximate SIVP (or SVP) on ideal lattices in R to

solving R-DLWEq,χ given only �− 1 samples, where χ = �ψ� and ψ is the Gaus-
sian distribution (m̂/g) ·Dξq for ξ = α · (n�/ log(n�))1/4.

Note that the above worst-case hardness result deteriorates with the number
of samples �; fortunately, all our applications require only a small number of
samples.

In addition to the above theorem, a plausible conjecture is that the search
version of ring-LWE is hard for the fixed error distribution ψ = (m̂/g) · Dαq,
where αq ≥ ω(

√
logn).2 (Informally, the search problem is to find the secret s

given arbitrarily many ring-LWE samples; see [47] for a precise definition.) Un-
fortunately, for technical reasons it is not known whether this is implied by
the worst-case hardness of ideal lattice problems in R, except for impractically
large q and small α. However, it is proved in [47, Theorem 5.3] that the decision
version with error distribution ψ (or its discretization �ψ�) is at least as hard
as the search version. Note that unlike Theorem 3, this results avoids the extra
(n/ logn)1/4 factor in the error distribution for the decision version, which leads
to better parameters in applications.

3 New Reconciliation Mechanism

As mentioned in the introduction, one of our contributions is a more bandwidth-
efficient method for two parties to agree on a secret bit, assuming they “approx-
imately agree” on a (pseudo)random value modulo q. This is based on a new
reconciliation mechanism that we describe in this section.

We remark that a work of Ding et al. [23] proposes a different reconciliation
method for lower-bandwidth “approximate agreement,” in the context of a key
exchange against a passive adversary. However, we observe that the agreed-upon
bit produced by their protocol is necessarily biased, not uniform, so it should not
be used directly as a secret key (and the protocol as described does not satisfy
the standard definition of passive security for key exchange). A nearly uniform
key can be obtained via some post-processing, e.g., by applying an extractor,
but this reduces the length of the usable key. By contrast, our method directly
produces an unbiased key.

2 The conjecture seems plausible even for the weaker bound αq ≥ 1. However, when
αq = o(1), the search problem can be solved in subexponential 2o(n) time, given a
sufficiently large number of samples [4].
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For an integer p that divides q (where typically p = 2), we define the modular
rounding function �·�p : Zq → Zp as �x�p := �pq · x�, and similarly for �·�p. Note
that the function is well-defined on the quotient rings because p

q · qZ = pZ.

For now we have restricted to the case p|q so that the rounding function is
unbiased. In Section 3.2 below we lift this restriction, using randomness to avoid
introducing bias.

3.1 Even Modulus

Here we define the reconciliation mechanism where p = 2 and the modulus q ≥ 2
is even. The mechanism is depicted in Figure 1 at the end of this subsection.

Define disjoint intervals I0 := {0, 1, . . . , � q4�−1}, I1 := {−� q4�, . . . ,−1} mod q
consisting of � q4� and �

q
4� (respectively) cosets in Zq. Observe that these intervals

form a partition of all the elements v ∈ Zq such that �v�2 = 0 (where we identify
0 and 1 with their residue classes modulo two). Similarly, q

2 + I0 and q
2 + I1

partition all the v such that �v�2 = 1.
Now define the cross-rounding function 〈·〉2 : Zq → Z2 as

〈v〉2 := � 4q · v� mod 2.

Equivalently, 〈v〉2 is the b ∈ {0, 1} such that v belongs to the disjoint union
Ib ∪ ( q2 + Ib); hence the name “cross-rounding.” If v is uniformly random, then
〈v〉2 is uniformly random if and only if q/2 is even; otherwise, 〈v〉2 is biased
toward zero. Regardless of this potential bias, however, the next claim shows
that 〈v〉2 hides �v�2 perfectly.

Claim 1. For even q, if v ∈ Zq is uniformly random, then �v�2 is uniformly
random given 〈v〉2.

Proof. For any b ∈ {0, 1}, if we condition on 〈v〉2 = b, then v is uniform over
Ib∪ ( q2 + Ib). As already observed, if v ∈ Ib then �v�2 = 0, whereas if v ∈ ( q2 + Ib)
then �v�2 = 1, so �v�2 is uniformly random given 〈v〉2.

We now show that if v, w ∈ Zq are sufficiently close, then we can recover �v�2
given w and 〈v〉2. Define the set E := [− q

8 ,
q
8 ) ∩ Z, and define the reconciliation

function rec : Zq × Z2 → Z2 as

rec(w, b) :=

{
0 if w ∈ Ib + E (mod q)

1 otherwise.

Claim 2. For even q, if w = v + e mod q for some v ∈ Zq and e ∈ E, then
rec(w, 〈v〉2) = �v�2.

Proof. Let b = 〈v〉2 ∈ {0, 1}, so v ∈ Ib ∪ ( q2 + Ib). Then �v�2 = 0 if and only if
v ∈ Ib. This in turn holds if and only if w ∈ Ib + E, because ((Ib + E) − E) ⊆
Ib + (− q

4 ,
q
4 ) and ( q2 + Ib) are disjoint (modulo q). The claim follows.



Lattice Cryptography for the Internet 205

0

1

2

3
45

6

7

8

9

10

11
12

13 14
15

16

17

v
w

0

1

2

3
45

6

7

8

9

10

11
12

13 14
15

16

17

Fig. 1. (Cross-)rounding and reconciliation intervals for q = 18; solid arcs denote 0,
while dashed arcs denote 1. The rounding function �·�2 simply partitions each circle into
its left and right halves. The outermost circles show the values of the cross-rounding
function 〈·〉2. The innermost circles on the left and right show the values of the recon-
ciliation functions rec(·, 0) and rec(·, 1), respectively. On the left, the example values
v, w show how the reconciliation function ensures rec(w, 0) = �v�2 = 1 even though
�w�2 = 0.

3.2 Odd Modulus

All of the above applies when q is even, but in applications of ring-LWE this is
often not the case. (For instance, it is often desirable to let q be a sufficiently large
prime, for efficiency and security reasons.) When q is odd, while it is possible to
use the above methods to agree on a bit derived by rounding a uniform v ∈ Zq,
the bit will be biased, and hence not wholly suitable as key material. Here we
show how to avoid such bias by temporarily “scaling up” to work modulo 2q,
and introducing a small amount of extra randomness.

Define the randomized function dbl : Zq → Z2q that, given a v ∈ Zq, outputs
v̄ = 2v − ē ∈ Z2q for some random ē ∈ Z that is uniformly random modulo two
and independent of v, and small in magnitude (e.g., bounded by one).3 The first
of these properties imply that if v is uniformly random in Zq, then so is v̄ in Z2q,
and hence the following extension of Claim 1 holds:

Claim 3. For odd q, if v ∈ Zq is uniformly random and v̄ ← dbl(v) ∈ Z2q, then
�v̄�2 is uniformly random given 〈v̄〉2.
Moreover, if w, v ∈ Zq are close, then so are 2w, dbl(v) ∈ Z2q, i.e., if w =
v+ e (mod q) for some (small) e, then 2w = v̄+(2e+ ē) (mod 2q). Therefore, to
(cross-)round from Zq to Z2, we simply apply dbl to the argument and then apply
the appropriate rounding function from Z2q to Z2. Similarly, to reconcile some
w ∈ Zq we apply rec to 2w ∈ Z2q; note that this process is still deterministic.

3 For example, we could simply take ē to be uniform over {0, 1}. However, it is often
more analytically convenient for ē to be zero-centered and hence subgaussian. To
achieve this we can take ē = 0 with probability 1/2, and ē = ±1 each with probability
1/4.
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3.3 Extending to Cyclotomic Rings

We extend (cross-)rounding and reconciliation to cyclotomic rings R using the
decoding basis. For even q, the rounding functions �·�2, 〈·〉2 : Rq → R2 are ob-
tained by applying their integer versions (from Zq to Z2) coordinate-wise to
the input’s decoding-basis Zq-coefficients. Formally, if D = {dj} ⊂ R denotes
the decoding basis and v =

∑
j vj · dj ∈ Rq for coefficients vj ∈ Zq, then

�v�2 :=
∑

j�vj�2 · dj ∈ R2, and similarly for 〈·〉2. The reconciliation func-
tion rec : Rq × R2 → R2 is obtained from its integer version as rec(w, b) =∑

j rec(wj , bj) · dj , where w =
∑

j wj · dj and b =
∑

j bj · dj .
For odd q, we define the randomized function dbl : Rq → R2q which applies its

(randomized) integer version independently to each of the input’s decoding-basis
coefficients. The (cross-)rounding functions from Rq to R2 are defined to first
apply dbl to the argument, then (cross-)round the result from R2q to R2. To
reconcile w ∈ Rq we simply reconcile 2w ∈ R2q.

4 Passively Secure KEM

In this section we construct, based on ring-LWE, an efficient key encapsulation
mechanism (KEM) that is secure against passive (i.e., eavesdropping) attacks. In
later sections this will be used as a component of actively secure constructions.
Specifically, we use the KEM as part of an authenticated key exchange protocol,
and we use the induced passively secure encryption scheme to obtain actively
secure encryption/KEM schemes via the Fujisaki-Okamoto transformation.

Our KEM is closely related to the compact ring-LWE cryptosystem from [48,
Section 8.2] (which generalizes the one sketched in [47] to arbitrary cyclotomics),
with two main changes: first, we avoid using the “codifferent” ideal R∨ using the
approach described in Section 2.2; second, we use the reconciliation mechanism
from Section 3 to improve ciphertext length. A third minor difference is that
the system is constructed explicitly as a KEM (not a cryptosystem), i.e., the
encapsulated key is not explicitly chosen by either party. Instead, the sender
and receiver “approximately agree” on a pseudorandom value in Rq using ring-
LWE, and use the reconciliation technique from Section 3 to derive the ephemeral
key from it.

As compared with the previous most efficient ring-LWE cryptosystems and
KEMs, the new reconciliation mechanism reduces the ciphertext length by nearly
a factor of two, because it replaces one of the ciphertext’s two Rq elements with
anR2 element. So the ciphertext length is reduced from 2n log q bits to n(1+log q)
bits, where n is both the dimension of R and the length of the agreed-upon key.
In terms of security, the reconciliation technique requires a ring-LWE error rate
that is half as large as in prior schemes, but this weakens the concrete security
only very slightly. (The reason for the smaller error rate is that we need the
error term’s decoding-basis coefficients to be bounded by q/8 instead of by q/4;
see Claim 2.) Of course, if necessary we can compensate for this security loss by
increasing the parameters (and hence the key size) very slightly. For practical
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purposes, the improvement in ciphertext length seems to outweigh the small loss
in security or key size.

4.1 Construction

The KEM is parameterized by:

– A positive integer m specifying the mth cyclotomic ring R of degree n =
ϕ(m).

– A positive integer modulus q which is coprime with every odd prime dividing
m, so that g ∈ R is coprime with q (see Fact 1). For efficiency and provable
security, we typically take q to be prime and 1 modulo m (or if necessary, a
product of such primes), which implies the coprimality condition.

– A discretized error distribution χ = �ψ� over R, where ψ = (m̂/g) · Dr is
over K (see Section 2.2), for some parameter r > 0.

The ciphertext space is C = Rq × R2, and the key space is K = R2. We can
identify elements in K = R2 with bit strings in {0, 1}n = Zn

2 in some canonical
way, e.g., the jth bit of the string is the jth decoding-basis coefficient of the
element in R2.

In what follows we assume that q is odd (since this will typically be the case
in practice), and use the randomized function dbl : Zq → Z2q and (deterministic)
reconciliation function rec: Zq × Z2 → Z2 from Section 3.4 In dbl we take the
random term ē to be 0 with probability 1/2, and ±1 each with probability 1/4,
so that ē is uniform modulo two (as needed for security) and 0-subgaussian with
parameter

√
2π. We also extend dbl and rec to cyclotomic rings as described in

Section 3.3.

The algorithms of the KEM are as follows.

– KEM1.Setup(): choose a← Rq and output pp = a.
– KEM1.Gen(pp = a): choose s0, s1 ← χ, let b = a · s1 + s0 ∈ Rq, and output

public key pk = b and secret key sk = s1.
– KEM1.Encaps(pp = a, pk = b): choose independent e0, e1, e2 ← χ. Let u =

e0 · a+ e1 ∈ Rq and v = g · e0 · b+ e2 ∈ Rq. Let v̄ ← dbl(v) and output the
encapsulation c = (u, v′ = 〈v̄〉2) ∈ Rq ×R2 and key μ = �v̄�2 ∈ R2.

– KEM1.Decaps(sk = s1, c = (u, v′)): compute w = g · u · s1 ∈ Rq and output
μ = rec(w, v′) ∈ R2.

The proofs of the following lemmas can be found in the full version.

Lemma 2 (Security). KEM1 is IND-CPA secure, assuming the hardness of
R-DLWEq,χ given two samples.

4 If q is even, then the Encaps and Decaps algorithms can be simplified by using the de-
terministic (cross-)rounding and associated reconciliation functions from Section 3.1.
Lemmas 2 and 3 then remain true as stated, with essentially the same (but somewhat
simpler) proofs.
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Lemma 3 (Correctness). Suppose ‖g · si‖2 ≤ � for i = 0, 1 (where si are the
secret values chosen by KEM1.Gen), and

(q/8)2 ≥ (r′2 · (2�2 + n) + π/2) · ω2

for some ω > 0, where r′2 = r2 + 2π rad(m)/m. Then KEM1.Decaps decrypts
correctly except with probability at most 2n exp(3δ−πω2) over the random choices
of KEM1.Encaps, for some δ ≤ 2−n.

4.2 Instantiating the Parameters

We now instantiate the parameters to analyze their asymptotic behavior and
the underlying (worst-case) hardness guarantees. These calculations work for
arbitrary choices of m and error parameter r ≥ 1, and can therefore be slightly
loose by small constant factors. Very sharp bounds can easily be obtained for
particular choices of m and r using Lemma 3.

Since rad(m)/m ≤ 1, by Item 2 of Fact 2 we have that each ‖g · si‖2 ≤
m̂ · (r + 1) ·

√
n except with probability at most 2−n. Similarly, r′2 ≤ r2 + 2π.

Therefore, by taking ω =
√
ln(2n/ε)/π and

q ≥ 8
√
(r2 + 2π)(2m̂2 · (r + 1)2 + 1) · n · ω = O(m̂ · r2 ·

√
n) · ω,

we obtain a probability of decryption failure bounded by ≈ ε. Thus we may take
q = O(r2 · n3/2 logn) in the typical case where m̂ = O(n) and, say, ε = 2−128.

To applyTheorem3 for � = 2 samples, we let r = ξq and ξ = α·(3n/ log(3n))1/4,
where

– r = (3n/ log(3n))1/4 · ω(
√
logn) to guarantee αq ≥ ω(

√
logn), and

– q = O(r2 · n3/2 logn) = Õ(n2) is a sufficiently large prime congruent to one
modulo m.

Then we obtain that R-DLWEq,χ is hard (and hence the KEM is IND-CPA secure,
by Lemma 2) assuming that SVP on ideal lattices in R is hard to approximate
to within Õ(

√
n/α) = Õ(

√
n · q) = Õ(n5/2) factors for quantum algorithms.

Alternatively, we may conjecture that the search version of ring-LWE with
error distribution ψ = Dr is hard for r ≥ ω(

√
logn) (or even r ≥ 1), which

by [47, Theorem 5.3] implies that R-DLWEq,χ is hard as well. This lets us use a

modulus as small as q = Õ(n3/2), and implies a smaller modulus-to-noise ratio
of q/r = Õ(n3/2), rather than Õ(n7/4) as when invoking Theorem 3 above. A
smaller modulus-to-noise ratio provides stronger concrete security against known
attacks, so this parameterization may be preferred in practice.

5 Actively Secure KEM

In this section we construct an actively secure (i.e., secure under chosen-ciphertext
attack) encryption scheme, using the passively secure encryption derived from
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KEM1 as a component. As noted in the preliminaries, actively secure encryp-
tion immediately yields an actively secure KEM or key transport protocol. Our
construction may be seen as an alternative to proposed Internet standards for
RSA-based key transport, such as [32,57].

5.1 Overview

The literature contains many constructions of actively secure encryption, both
in the standard and random-oracle models, and from both general assump-
tions and specific algebraic or structural ones (including lattices and LWE),
e.g., [24,8,9,11,27,28,53,1,21,20,12,56,54,50]. Since our focus here is on efficiency,
we allow for the use of the random-oracle heuristic as well as potentially strong
(but plausible) non-standard assumptions. However, even with this permissive
approach, it turns out that most known approaches for obtaining active security
are either insecure when applied to our KEM (and other lattice-based encryp-
tion schemes more generally), or are unsuitable for other reasons. See Section 5.3
for further discussion on this point.

Considering all the options from the existing literature, we conclude that
the best choice appears to be the second Fujisaki-Okamoto transformation [28],
which converts any passively secure encryption scheme into one which is provably
actively secure, in the random-oracle model. (Note that the transformation re-
quires an encryption scheme, and cannot be applied directly to a KEM.) Among
the reasons for our choice are that the original passively secure scheme can have a
minimally small plaintext space, and the resulting scheme is a “hybrid” one, i.e.,
it symmetrically encrypts a plaintext of arbitrary length. However, the transfor-
mation does have one important efficiency and implementation disadvantage in
our setting: the random oracle’s output is used as the randomness for asymmetric
encryption, and the decryption algorithm re-runs the encryption algorithm with
the same randomness to check ciphertext validity. This is somewhat unnatural
in the (ring-)LWE setting, where encryption uses many random bits to gener-
ate high-precision Gaussians.5 We therefore slightly modify the construction so
that the random oracle’s output is used as the seed of a cryptographic pseudo-
random generator (sometimes also called a stream cipher), which produces the
randomness for asymmetric encryption.

We remark that another approach is to use a different transformation, such
as one like OAEP [9,61] or REACT [53], in which the asymmetric encryption
randomness is “freely chosen.” In our context, these transformations require
the use of an injective trapdoor function. Such functions can be constructed
reasonably efficiently based on (ring-)LWE [56,29,50], but it is not clear whether
they can offer efficiency and bandwidth comparable to that of our passively

5 This disadvantage could be mitigated by using uniformly random error terms from a
small interval, rather than Gaussians. When appropriately parameterized, the (ring-)
LWE problem does appear to be hard with such errors, and there is some theoretical
evidence of hardness as well [25,51]. However, the theoretical bounds are rather weak,
and more investigation of concrete security is certainly needed.
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secure KEM. An interesting open problem is to devise a passive-to-active security
transformation that does not suffer any of the above-discussed drawbacks.

5.2 Construction

Our (actively secure) encryption scheme PKC2 is parameterized by:

– an integer N , the bit length of the messages that PKC2 will encrypt, such
that 2−N is negligible in λ;

– an asymmetric encryption scheme PKC with message space {0, 1}n, where
PKC.Enc uses at most L uniformly random bits (i.e., PKC.Enc(pp, pk, · ; r) is
a deterministic function on {0, 1}n for any fixed pp, pk, and coins r ∈ {0, 1}L),
e.g., the encryption scheme induced by KEM1;

– a cryptographic pseudorandom generator PRG : {0, 1}� → {0, 1}L, for some
seed length �;

– hash functions G : {0, 1}n → {0, 1}N and H : {0, 1}n+N → {0, 1}�, modelled
as independent random oracles.

PKC2 is defined as follows:

– PKC2.Setup(): let pp← PKC.Setup() and output pp.
– PKC2.Gen(pp): let (pk, sk) ← PKC.Gen(pp) and output public key pk and

secret key sk.
– PKC2.Enc(pp, pk, μ): choose σ ← {0, 1}n, let c = PKC.Enc(pp, pk, σ;PRG
(H(σ‖μ))) and w = G(σ) ⊕ μ, and output the ciphertext c‖w.

– PKC2.Dec(sk, (c, w)): compute σ = PKC.Dec(sk, c) and μ = G(σ)⊕w, and

check whether c
?
= PKC.Enc(pp, pk, σ;PRG(H(σ‖μ))). If so, output μ, other-

wise output ⊥.

Theorem 4. PKC2 is IND-CCA secure, assuming that PKC is IND-CPA se-
cure, PRG is a secure pseudorandom generator, and G and H are modeled as
random oracles.

A few remarks on the above security theorem are in order.

– The only difference between our construction and the one from [28] (spe-
cialized to use the one-time pad as symmetric encryption) is in the use of
the pseudorandom generator; the corresponding modification to the security
proof is standard and straightforward.

– Fujisaki and Okamoto actually prove, under the weaker assumption that
PKC is one-way secure and “γ-uniform” for some negligible γ, that PKC2
is both IND-CPA secure and “plaintext aware” (PA), which implies (but is
not necessarily implied by) IND-CCA security by the results of [6]. The PA
property is proved in [28, Lemma 11] by demonstrating a suitable “knowledge
extractor.”

– The proof of the PA property implicitly assumes that the underlying cryp-
tosystem PKC has zero probability of decryption error on honestly generated
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ciphertexts. However, in our setting PKC may only be statistically correct,
i.e., there may be a nonzero but negligible probability of decrypting to a dif-
ferent message than the encrypted one. This has only a minor effect on the
proof, namely, it merely decreases the knowledge extractor’s success proba-
bility by at most the probability of decryption error.

– Concrete bounds relating the PA and IND-CCA security of PKC2 to the
security of PKC are given in [28, Section 5]. In our setting they need only
be modified slightly to account for the use of the pseudorandom generator
and the probability of decryption error.

5.3 Alternatives

We considered several other known methods for obtaining active security. Unfor-
tunately, most of them are either insecure when instantiated with our KEM1,
or suffer from other costly drawbacks. For example:

– Constructions in the spirit of “hashed ElGamal,” such as DHIES [11,1] or
variants [21, Section 10], in which the key from the passively secure KEM
(and possibly ciphertext as well) are hashed by a random oracle to derive the
final output key, are not actively secure when instantiated with our KEM1 or
others like it. Briefly, the reason is related to the search/decision equivalence
for (ring-)LWE: the adversary can query the decryption oracle on specially
crafted ciphertexts for which the random oracle input is one of only a small
number of possibilities (and depends on only a small portion of the secret
key), and can thereby learn the entire secret key very easily.

– For similar reasons, applying the REACT transformation [53] to our KEM
does not yield an actively secure scheme, because the KEM is not one-way
under a “plaintext checking attack” (OW-PCA) due to the search/decision
equivalence.

– The Bellare-Rogaway [8] and OAEP transformations [9,61] cannot be applied
to our KEM, because they require a trapdoor permutation (or an injective
trapdoor function). We remark that injective trapdoor functions can be con-
structed from (ring-)LWE [56,29,50], and the most recent constructions are
even reasonably efficient. However, it is not clear whether they can compete
with the efficiency and bandwidth of our KEM.

– The first Fujisaki-Okamoto transformation [27] does yield actively secure
encryption when instantiated with our KEM’s associated encryption scheme.
However, it has the big disadvantage that the message length of the resulting
scheme is substantially shorter than that of the original one, by (say) at
least 128 bits for reasonable security bounds. Since our KEM’s plaintext-to-
ciphertext expansion is somewhat large, it is important to keep the size of
the plaintext as small as possible.

6 Authenticated Key Exchange

In this section we give a protocol for authenticated key exchange which may be
instantiated using our passively secure KEM from Section 4, together with other
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generic cryptographic primitives like signatures, which may also be instantiated
with efficient ring-based constructions, e.g., [29,50,43,26].

6.1 Overview

Informally, a key-exchange protocol allows two parties to establish a common
secret key over a public network. The first such protocol was given by Diffie
and Hellman [22]. However, it is well-known that this protocol can only be se-
cure against a passive adversary who only reads the network traffic, but does
not modify it or introduce messages of its own. An authenticated key exchange
(AKE) protocol authenticates the parties’ identities to each other, and provides
a “consistent view” of the completed protocol to the peers, even in the presence
of an active adversary who may control the network entirely (e.g., it may delete,
delay, inject, or modify messages at will). Moreover, an AKE protocol may pro-
vide various security properties even if the adversary compromises some of the
protocol participants and learns their local secrets. For example, “perfect for-
ward secrecy” ensures the security of secret keys established by prior executions
of the protocol, even if the long-term secrets of one or both parties are exposed
later on. An excellent in-depth (yet still informal) discussion of these issues, and
of the design considerations for AKE protocols, may be found in [38].

Formal attack models, security definitions, and abstract protocols for AKE
have been developed and refined in several works, e.g., [7,10,37,5,60,16,18,17,40,39].
Of particular relevance to this work is the notion of “SK-security” due to Canetti
and Krawczyk [16], which was shown to be sufficient for the prototypical appli-
cation of constructing secure point-to-point channels. However, this model is not
entirely appropriate for networks like the Internet, where peer identities are not
necessarily known at the start of the protocol execution, and where identity con-
cealment may be an explicit security goal. With this motivation in mind, Canetti
and Krawczyk then gave an alternative formalization of SK-security which is
more appropriate in such settings, called the “post-specified peer” model [17],
and gave a formal analysis of an instance of the “SIGn-and-MAc” (SIGMA)
family of protocols due to Krawczyk [38]. (In [18] they also investigated the re-
lationship between SK-security, key exchange, and secure channels in Canetti’s
“universal composability” model [15,14].) The formal definitions of SK-security
and the post-specified peer models are somewhat lengthy and we will not need
them here, so we refer the reader to [16,17] for the details.

Regarding real-world protocols, the Internet Key Exchange (IKE) protocols
[30,33,34] define an open standard for authenticated key exchange as part of the
Internet Protocol Security (IPsec) suite [35,36]. IKE’s signature-based authen-
tication mode follows the design of the SIGMA protocols from [38] that were
formally analyzed in [17].

Our Contribution. In the next subsection we give a protocol, calledΣ′0, which is a
slight generalization of the Σ0 protocol from [17], which itself follows the SIGMA
design [38] underlying the IKE protocol. The only difference between Σ′0 and Σ0

is that we replace the (unauthenticated) Diffie-Hellman key-agreement steps in
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Σ0 with an abstract IND-CPA-secure KEM (which can be instantiated by our
lattice-based KEM1 from Section 4). Such a replacement is possible because the
Diffie-Hellman steps in Σ0 are used only to establish the common secret key
(whereas the other steps provide authentication), and because the protocol has
designated “initiator” and “responder” roles. In particular, the responder gets
the initiator’s start message before having to prepare its response, so the start
message can contain a (fresh) KEM public key and the responder can run the
encapsulation algorithm using this key. The security proof for Σ′0 is also just a
slight variant of the one for Σ0, because the latter proof uses only the KEM-like
features of Diffie-Hellman, and not any of its other algebraic properties.

As mentioned in the introduction, from a practical perspective we believe the
relatively minor differences between Σ′0 and Σ0 (and their security proofs) to
be an advantage: it should lessen the engineering burden required to implement
the protocol correctly and securely, and may facilitate migration from, and co-
existence with, existing Diffie-Hellman-based implementations.

6.2 The Protocol

The protocol Σ′0 is parameterized by an (IND-CPA-secure) a digital signature
scheme SIG, a key-encapsulation mechanism KEM with key space K, a pseu-
dorandom function F : K × {0, 1} → K′, and a message authentication code
MAC with key space K′ and message space {0, 1}∗. A successful execution of
the protocol outputs a secret key in K′.

As in [17], we assume that each party has a long-term signing key for SIG
whose corresponding verification key is registered and bound to its identity ID,
and is accessible to all other parties. This may be achieved in a standard way
using certificate authorities. We also assume that trusted public parameters pp
for KEM have been generated by a trusted party using KEM.Setup, and are
available to all parties. As noted in the preliminaries, if no trusted party is
available then KEM.Setup can be folded into KEM.Gen.

1. Start message. (I → R): (sid, pkI).
The protocol is activated by the initiator IDI with a session identifier sid,
which must be distinct from all those of prior sessions initiated by IDI . The
initiator generates a fresh keypair (pkI , skI)← KEM.Gen(pp), stores it as the
state of the session (IDI , sid), and sends the above message to the responder.

2. Response message. (R → I): (sid, c, IDR, SIG.SignR(1, sid, pkI , c),MAC.
Tagk1

(1, sid, IDR)).
When a party IDR receives a start message (sid, pkI), if the session identi-

fier sid was never used before at IDR, the party activates session sid as respon-
der. It generates an encapsulation and key (c, k) ← KEM.Encaps(pp, pkI),
derives k0 = Fk(0) and k1 = Fk(1), and erases the values pkI and k from its
memory, storing (k0, k1) as the state of the session. It generates and sends the
above response message, where SIG.SignR is computed using its long-term
signing key, and MAC.Tag is computed using key k1.
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3. Finish message. (I → R): (sid, IDI , SIG.SignI(0, sid, c, pkI),MAC.Tagk1

(0, sid, IDI)).
When party IDI receives the (first) response message (sid, c, IDR, σR, τR)

having session identifier sid, it looks up the state (pkI , skI) associated with
session sid and computes k = KEM.Decaps(skI , c) and k0 = Fk(0), k1 =
Fk(1). It then retrieves the signature verification key of IDR and uses that
key to verify the signature σR on the message tuple (1, sid, pkI , c), and also
verifies the MAC tag τR on the message tuple (1, sid, IDR) under key k1.
If either verification fails, the session is aborted, its state is erased, and
the session output is (abort, IDI , sid). If both verifications succeed, then IDI

completes the session as follows: it generates and sends the above finish
message where SIG.SignI is computed using its long-term signing key, and
MAC.Tag is computed using key k1. It then produces public session output
(IDI , sid, IDR) and session secret output k0, and erases the session state.

4. Responder completion. when party IDR receives the (first) finish message
(sid, IDI , σI , τI) having session identifier sid, it looks up the state (k0, k1)
associated with session sid. It then retrieves the signature verification key
of IDI and uses that key to verify the signature σI on the message tu-
ple (0, sid, c, pkI), and also verifies the MAC tag τI on the message tuple
(0, sid, IDI) under key k1. If either verification fails, the session is aborted,
its state is erased, and the session output is (abort, IDr, sid). If both verifi-
cations succeed, then IDR completes the session with public session output
(IDR, sid, IDI) and secret session output k0, and erases the session state.

6.3 Security

Theorem 5. The Σ′0 protocol is SK-secure in the post-specified peer model of [17],
assuming that SIG and MAC are existentially unforgeable under chosen-message
attack, that KEM is IND-CPA secure, and that F is a secure pseudorandom
function.

The proof of Theorem 5 follows by straightforwardly adapting the one from [17].
Because the changes are simple and affect only small parts of the proof, we do
not duplicate the whole proof here, but only describe the differences.

According to the definition of SK-security in the post-specified peer model
from [17], we need to show two properties: property P1 is essentially “correct-
ness,” or more precisely, equality of the secret outputs when two
uncorrupted parties IDI , IDR complete matching sessions with respective pub-
lic outputs (IDI , sid, IDR), (IDR, sid, IDI). Property P2 is essentially “secrecy,” or
more precisely, that no efficient attacker (in the post-specified peer model) can
distinguish a real response to a test-session query from a uniformly random
response, with non-negligible advantage.

Property P1 follows by adapting the proof in [17, Section 4.2, full version]. It
suffices to show that both parties compute the same decapsulation key k. This is
guaranteed by the correctness of KEM and the security of the signature scheme,
which ensures that the key k is obtained by decapsulating the appropriate ci-
phertext. (Security of MAC or the PRF is not needed for this property.)



Lattice Cryptography for the Internet 215

Property P2 follows by adapting the proof in [17, Section 4.3, full version].
While the proof is several pages long, very little of it is specific to the Diffie-
Hellman mechanism or the DDH assumption. For example, the proof does not
use any algebraic properties of the Diffie-Hellman problem beyond its assumed
pseudorandomness. In the proof from [17], a distinguisher for the DDH problem
is constructed, i.e., it gets as input a tuple (g, gx, gy, gz) where either z = xy or z
is uniformly random modulo the order of the group generated by g. In our setting,
we instead construct a distinguisher for the IND-CPA security of KEM, i.e., it
gets as input a tuple (pp, pk, c, k) where either k is the decapsulation of ciphertext
c, or is uniformly random in the key space K. To modify the proof from [17],
throughout it we syntactically replace the components of the DDH tuple with the
corresponding ones of the KEM tuple (replacing gxy by the real decapsulation key
k, and gz for uniform and independent z by a uniformly random and independent
key k∗ ∈ K). With these and corresponding other syntactic changes to the
component lemmas, the proof from [17] remains valid.

6.4 Variants and IKE

As in [17], we can consider variants of Σ′0 that extend its functionality or security
properties, and also some important differences in the real IKE protocol that
affect the analysis.

Perhaps most importantly, the signatures modes of the IKE protocol do not
actually include the special distinguishing values 0,1 in the signed/MAC-tagged
response and finish messages. (These values were included in Σ0 for “symmetry
breaking,” to ease the analysis.) The Σ0 protocol remains secure even without
these values, as shown in [17, Section 5.1, full version] via a more involved anal-
ysis. The analysis also carries over to the corresponding Σ′0 variant, based on
the negligible “collision” probabilities of two uncorrupted parties generating the
same KEM public key pk, or an equal public key and KEM ciphertext. Passive
security immediately implies that such collision probabilities are negligible.

Another important difference with the IKE signature mode is that in the
response and finish messages of the latter, the MAC tag is not sent separately,
but instead is treated as the message to be signed. (Because of this, the MAC
tag is computed on a tuple of all the values that are either signed or tagged in
Σ0.) In order to handle this, we need the MAC.Tag algorithm to be deterministic,
which is standard. Then the analysis in [17, Section 5.2, full version] goes through
unchanged, as it relies only on the security of the MAC and signature schemes.
The resulting protocol (also without the 0,1 values) essentially corresponds to
IKE’s “aggressive mode of signature authentication.”

Other changes include offering identity concealment via encryption; a pro-
tocol corresponding to IKE’s “main mode with signature authentication;” and
more. These are all analyzed in [17, Sections 5.3-5.4], and that analysis also goes
through essentially unchanged for Σ′0.
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Abstract. Recently, several promising approaches have been proposed
to reduce keysizes for code based cryptography using structured, but
non-algebraic codes, such as quasi-cyclic (QC) Moderate Density Parity
Check (MDPC) codes. Biasi et al. propose further reducing the keysizes
of code-based schemes using cyclosymmetric (CS) codes. While Biasi
et al. analyze the complexity of attacking their scheme using standard
information-set-decoding algorithms, the research presented here shows
that information set decoding algorithms can be improved, by choosing
the columns of the information set in a way that takes advantage of the
added symmetry. The result is an attack that significantly reduces the
security of the proposed CS-MDPC schemes to the point that they no
longer offer an advantage in keysize over QC-MDPC schemes of the same
security level. QC-MDPC schemes are not affected by this paper’s result.

Keywords: information set decoding, code-based cryptography, mod-
erate density parity check (MDPC) codes, cyclosymmetric.

1 Introduction

The McEliece cryptosystem [1] is one of the oldest and most studied candidates
for a postquantum cryptosystem. However, its keysizes, on the order of a million
bits, are a major drawback. The most aggressive approaches to keysize reduction
have focused on imposing structure on the public generator and parity check
matrices such that they consist of cyclic [2] or dyadic [3] blocks, each of which
can be represented using only the top row of the block.

However, these matrices have significant algebraic structure, and when the
private code is itself an algebraic code, like the Goppa codes used in the original
McEliece cryptosystem, such schemes tend to be open to algebraic attack[4]. A
promising solution to this problem is to use nonalgebraic codes. In particular
Misoczki et al. proposed [5] using moderate density parity check (MDPC) codes
with quasicyclic structure (QC-MDPC).

A typical approach to attacking a scheme based on MDPC codes is to use
information set decoding techniques to find low weight codewords in the dual
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code space (i.e. the row space of the public parity check matrix.) The concept of
information set decoding originates with Prange [6]. Further optimizations were
subsequently proposed by Lee and Brickell [7], Leon [8] and Stern [9].

Biasi et al. [10] attempt further keysize reduction by replacing blockwise cyclic
structure with blockwise cyclosymmetric (CS) structure. The advantage of such
matrices is that they can be represented by only half of the elements of their
top rows. Indeed, a cyclosymmetric matrix consisting of smaller cyclosymmet-
ric blocks can be represented using only a quarter of the elements in its top
row, which would seem to provide significant opportunities for keysize reduction
above and beyond what can be achieved using cyclic matrices. This further opti-
mization was suggested by Biasi et al. in earlier versions of their paper[11],[12],
but not in the published version, for reasons discussed in Section 4.

This paper demonstrates that information set decoding techniques can be
improved by restricting the selection of information set columns to take advan-
tage of CS symmetry. The complexity of the resulting attacks on a blockwise
cyclosymmetric code is almost identical to the complexity of attacking a similar
blockwise cyclic code with half the dimension, and half the row weight.

2 Cyclosymmetric Matrices

Ordinary cyclic matrices are those of the form:

A =

⎡
⎢⎢⎢⎣

a0 a1 . . . ar−1
ar−1 a0 . . . ar−2
...

...
. . .

...
a1 a2 . . . a0

⎤
⎥⎥⎥⎦ . (1)

Each row is the right-cyclic rotation of the row above it. When their entries
are elements of a field F, cyclic matrices form a commutative ring under matrix
multiplication and addition, isomorphic to the polynomial ring F[x]/(xr − 1).
(In most code-based-cryptography applications, including the scheme attacked
in this paper, F is F2.)

Cyclosymmetric matrices are further restricted to be symmetric matrices, i.e.
equal to their transpose. Using the commutativity of the ring of cyclic matrices
we can show that the cyclosymmetric matrices are closed under multiplication
and therefore form a subring of the cyclic matrices:

(AB)T = BTAT = BA = AB. (2)

A relevant fact about cyclosymmetric matrices is that � r−12 � pairs of entries
in the top row of a cyclosymmetric matrix are constrained by symmetry to be
equal:

∀x|1 ≤ x <
r − 1

2
: ax = ar−x. (3)
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3 MDPC Cryptosystems

The scheme of Biasi et al. [10] modifies an earlier proposal by Misoczki et al. [5].
Both schemes are variants of the Niederreiter[13] cryptosystem : The public key,
Hpub is a (n− k)×n parity check matrix for a binary linear code, in systematic
form —[M |I]. The plaintext, m, is encoded as an n-bit vector of Hamming
weight at most t. The ciphertext is Hpubm

T . In the language of coding theory,
the plaintext is the error vector, while the ciphertext is the syndrome. As in all
variants of the Neiderreiter cryptosystem, the private key consists of trapdoor
information that allows the owner to efficiently reconstruct the error vector m
from the syndrome Hpubm

T

In the case of MDPC cryptosystems, the private key is a low density parity
check matrix H sharing the same codespace as Hpub. The cryptographic scheme
is described as using a moderate density parity check (MDPC) code, in contrast
to the related low density parity check (LDPC) codes used for error correc-
tion in telecommunications applications. LDPC codes employ a significantly less
dense parity check matrix and they correct more errors than the codes used in
the proposed cryptographic scheme. The quasicyclic and cyclosymmetric vari-
ants of the MDPC encryption scheme construct the matrix H from n0 cyclic or
cyclosymmetric blocks each with row weight dv, but otherwise randomly chosen:

H =
[
H0 H1 . . . Hn0−1

]
. (4)

Once a private parity check matrix is chosen as above, the public key is con-
structed from it as follows:

Hpub = H−1n0−1H =
[
H−1n0−1H0 | H−1n0−1H1 | . . . | H−1n0−1Hn0−2 | I

]
. (5)

4 Dimension Reduction for Cyclosymmetric Matrices

In their paper [10], Biasi et al. note that there is a more compact representation of
the ring of cyclosymmetric matrices than that given in equation 1. For example,
matrices of the form:

M(a, b, c, d) =

⎡
⎢⎢⎢⎢⎢⎢⎣

a b c d c b
b a b c d c
c b a b c d
d c b a b c
c d c b a b
b c d c b a

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

obey exactly the same multiplication rules as matrices of the form

M ′(a, b, c, d) =

⎡
⎢⎢⎣
a 2b 2c d
b a+ c b+ d c
c b+ d a+ c b
d 2c 2b a

⎤
⎥⎥⎦ . (7)
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The problem of finding a low weight basis for the row space of a matrix, made
up of blocks of the form M , can therefore be reduced to the problem of finding
a low weight basis for the row space of a smaller matrix, made up of blocks of
the form M ′.

This however does not completely break the scheme. While, this observation
allows the attacker to reduce the dimension of the scheme being attacked by
a factor of 2 for large matrices, it does so at the cost of reducing the sparsity
(increasing the row weight) of the target private matrix by a factor of 2. This
observation forced Biasi et al. to make their parameter choices less aggressive,
but it did not force them to abandon the possibility of keysize reduction through
cyclosymmetric matrices altogether.

5 Improving Information Set Decoding

The goal of the attack presented in this paper is to extract the private key H ,
from the public key Hpub. As is clear from equations 4 and 5, the rows of H are
linear combinations of the rows of Hpub. In particular, as will become relevant
later in this section, h = hn0−1Hpub, where h and hn0−1 represent the top rows
of the matrices H and Hn0−1 respectively. The rows of H are distinguished from
other linear combinations of the rows of Hpub in that they are sparse. As it
happens, finding sparse linear combinations of the rows of a binary matrix is
precisely the application for which classical information set decoding algorithms
were invented.

All information set decoding algorithms follow the same basic script1:

1. Permute the columns of Hpub :

H ′pub = HpubP. (8)

2. Check that the first r columns of the new matrix, H ′pub, form an invertible
matrix A. These columns are referred to as the “information set.” If A is not
invertible go back to step 1.

3. Left-multiply by A−1, resulting in a matrix of the form:

M = A−1H ′pub =
[
Ir | Q

]
. (9)

4. Search for low weight row-vectors among linear combinations involving small
subsets of the rows of M . If none are found, go back to step 1. If a low weight
vector x′ = vM is found, return x = vMP−1. The return value x will be
precisely the sought-after low-weight element of the row space of Hpub.

1 The variable names are chosen to reflect the scheme being attacked. For example
the matrix being attacked is represented as a parity check matrix Hpub rather than
a generator matrix G, and its dimensions are given as r × n0r rather than k × n.
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Most optimizations to information set decoding algorithms, for example that
of Stern [9], involve step 4. However, the special blockwise cyclosymmetric form
of Hpub allows us to make a much larger improvement, based on the choice of
the permutation P in step 1. To see how this works, we need to understand the
significance of the row vector v in step 4: In particular, since the first r columns
of M form an identity matrix, the first r bits of the candidate low weight row
vector x′ are equal to v. Moreover:

Theorem 1. When computed by an information set decoding algorithm as out-
lined by steps 1-4 above, x′ is the unique element of the rowspace of H ′pub whose
first r bits equal v.

Proof. Suppose there were another element of the rowspace ofH ′pub, yH
′
pub whose

first r bits equalled v. Then, since yH ′pub expands as:

yH ′pub = yAM = yA|yAQ. (10)

We may rewrite our requirement as

yA = v. (11)

Since A is invertible, this implies y = vA−1 and therefore, yH ′pub = vA−1H ′pub =
vM = x′.

Thus, given the existence of a low weight vector x in the rowspace of Hpub, v
represents a guess of all the bits of x within the information set. Since the most
probable value of a bit contained within a sparse vector is zero, the choice of
v with the highest probability of success is the guess which contains as many
zeroes as possible. (Note that v must contain at least one nonzero bit, since
we’re looking for a nontrivial solution.) As it happens, the best strategy involves
checking multiple guesses of v for each choice of P , since checking a guess is
computationally cheaper than inverting a matrix, but the point remains that our
probability of success relies on the probability that we will choose an information
set, such that the restriction v of x to the information set is significantly sparser
than x itself.

This is where the choice of permutation helps us. We are much more likely to
get x to be oversparse on the information set, if the bits we are guessing are not
independent. As it happens, the top row, h of the private parity check matrix is
a sparse vector, consisting of subvectors, h0 . . . hn0−1, whose bits come in pairs
obeying the relation given in equation 3. x = h will then be the target of our
attack. If we restrict the permutation P to either leave both elements of such
linked pairs outside of the information set, or to bring both elements in, then
the probability of h matching one of our oversparse guesses v on the information
set is significantly higher than it would be if P were chosen randomly.

An example may be given, based on the parameters [10] given by Biasi et al.
for 128-bit security. The parameters are as follows: n0 = 3, r = 7232, and the
row/column weight, dv, of the submatrices H0, H1, and H2, is 98 (i.e. the row
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weight for the whole matrix H is 294.) For a random choice of P , the probability
that the vector consisting of the first r bits of hP , (i.e. Truncate(r, hP )), has
weight 2 is: (

7232
2

)(
2·7232
292

)
(
3·7232
294

) = 2−160.

However, for a choice of P restricted to bring mirrored pairs of bits into the
information set together, the probability is(

3616
1

)(
2·3616
146

)
(
3·3616
147

) = 2−80.

Thus, a (rather poorly optimized) information set decoding algorithm, which
tried all the values of v with weight 2, would require 2160 matrix inversions
on average to succeed if P were chosen randomly. Our improvement brings the
complexity down to 280 matrix inversions, which, even accounting for the non-
trivial complexity of the matrix inversion step, is already well below the claimed
security level of the scheme.

6 Improved Stern Algorithm

In this section we present a variant of Stern’s algorithm modified to find the
top row, h of the private parity check matrix of the CS-MDPC scheme of Biasi
et al. The other rows of H may then be trivially computed as rotations of h.
The attacker is given Hpub generated from H as in equation 5. Both H and
Hpub have dimensions r × n0r, and consist of r × r cyclosymmetric blocks. H
has column weight dv and row weight n0dv. The algorithm is parametrized by
integers p and l.

1. Permute the columns of Hpub :

H ′pub = HpubP (12)

choosing P with the restriction that cyclosymmetry forces:

(hP )2i = (hP )2i+1 for i = 0 . . . �r/2�+ l. (13)

2. Check that the first r columns of the new matrix, H ′pub, form an invertible
matrix A. If A is not invertible go back to step 1.

3. Left-Multiply by A−1, resulting in a matrix of the form:

M = A−1H ′pub =
[
Ir | Q

]
. (14)

4. Search for low-weight row-vectors among linear combinations involving small
subsets of the rows ofM . In particular these will involve 2p of the first r

2 rows
and 2p of the remaining rows. The search will succeed if hP has weight 2p on
its first r

2 bits, weight 2p on the next r/2 bits, and weight 0 on the next l bits.
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(a) Sum paired rows and compile in two equal length lists, i.e.:
for 0 ≤ i < r

4
xi = row2i(M) + row2i+1(M) (15)

and for r
4 ≤ j < r

2

yi = row2j(M) + row2j+1(M) (16)

(b) compute all the sums of p xis and all the sums of p yis and check for
collisions on bits r . . . r + 2l − 1

bitsr...r+2l+1(xi1 + . . .+ xip) = bits(r . . . r+2l+1, yj1 + . . .+ yjp) (17)

(c) When such a collision is found, check the total weight of the sum w of
the 2p colliding row vectors.

w = xi1 + . . .+ xip + yj1 + . . .+ yjp . (18)

If the weight of any such w is less than or equal to n0dv retrurn wP .
Otherwise, go back to step 1.

7 Attack Complexity for Suggested Parameters

The major contributions to the overall complexity of each iteration of the mod-
ified Stern’s algorithm above may be approximated as: n0r

3 for the matrix in-
version (step 3), 2(p− 1)n0r

( r
4
p

)
for the construction of hash tables for collision

search (step 4b), and
n0r(

r
4
p)

2

2l
for testing candidate low-weight vectors, w (step

4c). However, the units for these complexity figures are single-bit addition op-
erations. Since legitimate parties do computations on the order of n0r

2 during
both public and private-key operations, it is reasonable to divide this factor out
leaving a per iteration complexity estimate of:

r +
2(p− 1)

r

( r
4

p

)
+

1

2lr

( r
4

p

)2

. (19)

The expected number of iterations is the inverse probability of success per
iteration, which is:

( n0r
2

n0dv

2

)( r
4

p

)−2( (n0−1)r
2 − l

n0dv

2 − 2p

)−1
. (20)

Note that the iteration count (equation 20) is identical to the iteration count
of an unmodified Stern’s algorithm applied to a code with r′ = r

2 and d′v = dv

2 ,
and the per iteration cost (equation 19) is identical up to polynomial factors
in r/r′ = 2 (The discrepancy is due to the fact that linear algebra operations
are being performed on a larger matrix.) Thus, our attack may be thought of as
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reducing the security of a cyclosymmetric MDPC scheme with block dimension
r and private row density dv

r to that of a corresponding cyclic scheme which
with dimension r

2 and the same private row density.
Table 1 gives the results of our attack when applied to the parameters sug-

gested by Biasi et al. For all parameter choices, the security level allowed by this
attack is significantly lower than the claimed security level.

Table 1. Claimed security levels and the results of the modified Stern’s algorithm
attack for parameters given in [10]

Claimed Security Attack Complexity
(bits) n0 r dv (bits) p l

80 3 3072 53 46 2 20
112 3 5376 75 63 2 20
128 3 7232 97 81 2 22
160 3 19200 109 93 2 25

As our attack brings the security of Biasi et al.’s proposed 128-bit parameters
down to nearly exactly 80 bits of security, it is informative to compare these
parameters to the 80-bit security parameters of Misoczki et al.’s QC-MDPC
scheme. Here we find that there is no longer any advantage to the cyclosymmetric
scheme, either in public key size or cryptogram size:

Table 2. Comparison of proposed CS-MDPC and QC-MDPC parameters at 80 bits
of security given this paper’s attack.

CS-MDPC [10] QC-MDPC [5]

Public Key Length 7232 4801
Cryptogram Size 21696 9602

8 Conclusion

While the idea of using cyclosymmetric codes to reduce keysize beyond what
is possible with blockwise cyclic codes seemed promising, the added structure
appears to be as useful to the attacker as to the legitimate parties. In particular,
information set decoding algorithms can be modified to take full advantage of
the knowledge that the rows of the private parity check matrix of such a scheme
are structured. It may be the case that cyclic MDPC codes are as far as we can
go in keysize reduction for code-based cryptography.
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Abstract. In this paper we propose a new multivariate public key en-
cryption scheme named ZHFE. The public key is constructed using as
core map two high rank HFE polynomials. The inversion of the pub-
lic key is performed using a low degree polynomial of Hamming weight
three. This low degree polynomial is obtained from the two high rank
HFE polynomials, by means of a special reduction method that uses
Hamming weight three polynomials produced from the two high rank
HFE polynomials. We show that ZHFE is relatively efficient and that
it is secure against the main attacks that have threatened the security
of HFE. We also propose parameters for a practical implementation of
ZHFE.

Keywords: Multivariate cryptography, HFE polynomials, HFE cryp-
tosystem, trapdoor functions, Zhuang-zi algorithm.

1 Introduction

Post-Quantum Cryptography stands for those cryptosystems which have the
potential to resist possible future quantum computer attacks [3]. Multivariate
public key cryptosystems (MPKCs) are an interesting option in Post-Quantum
Cryptography [12]. Their main ideas come from algebraic geometry and usually
the computations over these cryptosystems are very efficient.

The public key of an MPKC consists of a set of multivariate quadratic poly-
nomials over a finite field. Thus, the security of an MPKC is related to the fact
that solving a randomly system of multivariate quadratic polynomial equations
over a finite field is an NP-hard problem [15]. Moreover, it seems that quan-
tum computers have no advantage over the traditional computers to solve this
problem.
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1.1 Hidden Field Equations

One of the most important MPKCs is named Hidden Field Equations (HFE),
proposed by Patarin in 1996 [18]. To describe HFE, let us fix a finite field k of
size q and a positive integer n. Next, we choose a degree n irreducible polynomial
g(y) ∈ k[y], and consider the field extension K = k[y]/ (g(y)) and the isomor-
phism ϕ : K → kn defined by ϕ

(
u1 + u2y + . . .+ uny

n−1) = (u1, u2, . . . , un).
We say that a polynomial has Hamming weight W if the maximum of the

q-Hamming weights of all its exponents is W . The q-Hamming weight of a non-
negative integer is the sum of the q-digits of its q-nary expansion. Let F : K → K
be a Hamming weight two polynomial of the form

F (X) =

n−1∑
0≤j≤i

aijX
qi+qj +

n−1∑
i=0

biX
qi + c ,

where the coefficients aij , bi, c are chosen randomly in K. Such a polynomial F
will be called an HFE polynomial. If in addition, we require that deg(F ) ≤ D,
where D is a fixed positive integer, we will say that F is an HFE polynomial
with bound D.

We now randomly choose an HFE polynomial F : K → K with bound D. The
public key of HFE is P (x1, · · · , xn) = T ◦ ϕ ◦ F ◦ ϕ−1 ◦ S(x1, · · · , xn), where S
and T are two invertible affine transformations over kn. The private key consists
of the core map F together with the transformations S and T . We denote by
HFE(q, n,D) an HFE scheme with the described parameters q, n and D. The
degree D of the core polynomial F cannot be too large because the decryption
process would be very slow. This restriction over HFE introduces a vulnerability
against certain attacks like the direct algebraic attack [14] and the KS MinRank
attack [17].

1.2 Previous Work

In [19] we proposed a special reduction method to construct new candidates
for multivariate trapdoor functions using HFE polynomials of high degree and
high rank. The idea of the construction is inspired by the first steps of the
Zhuang-Zi algorithm [11]. Given a finite field k of size q and a degree n extension
field K, we consider two high degree HFE polynomials over K of the form
F (X) =

∑
aijX

qi+qj +
∑

biX
qi + c and F̃ (X) =

∑
ãijX

qi+qj +
∑

b̃iX
qi + c̃,

where the coefficients aij , bi, c, ãij , b̃i, c̃ ∈ K are to be determined. The idea
behind the method is to construct a low degree polynomial Ψ of Hamming weight
three of the form

Ψ =X
(
α1F0 + · · ·+ αnFn−1 + β1F̃0 + · · ·+ βnF̃n−1

)
+

Xq
(
αn+1F0 + · · ·+ α2nFn−1 + βn+1F̃0 + · · ·+ β2nF̃n−1

)
,

where F0, F1, · · · , Fn−1 are the Frobenius powers of F , and F̃0, F̃1, · · · , F̃n−1 are
the Frobenius powers of F̃ .
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To obtain such a polynomial Ψ we need to determine the coefficients of F and
F̃ , also the scalars αi and βi, such that the degree of Ψ is less than or equal
to a fixed positive integer D0, which is chosen such that we can easily invert Ψ
using Berlekamp’s algorithm. The method that we proposed in [19] consists in
randomly choosing values for the scalars αi and βi, and producing with them
a linear system whose solution provides the coefficients of F and F̃ . Once the
scalars αi and βi are randomly chosen, the linear system that is obtained has
more variables than equations, and thus we can guarantee nontrivial solutions
for it. One could be tempted to randomly choose the variables coming from the
coefficients of F and F̃ , and then try to solve the linear system for the variables
coming from the scalars, with the intention of having generic core polynomials
F and F̃ . However, this approach produces a linear system with more equations
than variables, and hence, in general, this system has no nontrivial solutions.

The new multivariate trapdoor function is built similarly to the way in which
HFE is constructed, except that now the core map is replaced by the map
G = (F, F̃ ). The most-consuming-time task during the inversion of the trapdoor
function is the inversion of the core map G. But this is an easy task according
to the following proposition, which is proved in [19], and the use of Berlekamp’s
algorithm.

Proposition 1. Let (Y1, Y2) be an element in Im(G) ⊆ K ×K. Then the set of
pre-images of (Y1, Y2) under the map G = (F, F̃ ) is a subset of the roots of the
low degree polynomial

Ψ ′ = Ψ −
2∑

j=1

Xqj−1
n∑

i=1

αi+n(j−1)Y
qi−1

1 + βi+n(j−1)Y
qi−1

2 .

1.3 Contribution of this Paper

Some variants of HFE have been proposed as encryption schemes, but all of them
have been proven to be insecure. The reason for this fact is that the polynomials
used as core maps for these systems have been of low degree, and hence they
have had low rank. This situation leads to the following question:

– Is there any way to enlarge the degree of an HFE polynomial used as core
map for an encryption scheme, without affecting the efficiency of the decryp-
tion process?

We give here an affirmative answer to this question. We construct a new mul-
tivariate public key encryption scheme using the multivariate trapdoor function
built in [19]. Since the new scheme utilizes as core map two HFE polynomials
and the basic idea for the construction comes from the Zhuang-Zi algorithm [11],
we call this new encryption scheme ZHFE. We give theoretical and experimental
arguments to show that the encryption and decryption processes for ZHFE are
relatively efficient. After performing the main known attacks that can threaten
the security of these kind of schemes –the direct algebraic and the MinRank
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attacks–, we propose parameters for ZHFE. We also give values for the main
features of ZHFE for the suggested parameters.

This paper is organized as follows. In Sect. 2 we describe the new encryption
scheme ZHFE, including a toy example and a suggestion of parameters for a
practical implementation. In Sect. 3 we carry out a security analysis of ZHFE
with respect to the direct algebraic and MinRank attacks. In Sect. 4 we give
some conclusions and in the Appendix we provide additional information about
the security analysis.

2 The New Encryption Scheme ZHFE

We use the new multivariate trapdoor function constructed in [19] to build
ZHFE, utilizing two HFE polynomials of high degree and high rank. The main
reason for using these high degree and high rank HFE polynomials is to resist the
MinRank attack. However, the use of high degree HFE polynomials makes the
decryption process almost impossible, unless those polynomials are constructed
in such a way that the decryption is easy, regardless of the high degree of those
polynomials. To accomplish this, we produce a low degree polynomial which we
will use to decrypt. In addition, since we are utilizing high degree HFE polynomi-
als for the core map, we expect that the public key has high degree of regularity,
very different from what was observed by Faugère and Joux [14] for a system of
quadratic equations derived from a single HFE polynomial with low degree. We
will develop this point in Sect. 3.

One drawback of ZHFE is the generation time of the private key. The com-
plexity of the reduction method introduced in [19] to produce the private key
is polynomial: O

((
n3
)ω)

. Here 2 ≤ ω ≤ 3 is a constant that depends on the
elimination algorithm used to solve the sparse linear system derived from the
reduction method. In this reduction method we have to deal with huge matrices
to reach large values of n. On the plus side we have that these matrices are
sparse, which is an advantage in terms of efficiency.

2.1 Description of ZHFE

Let k be a finite field of size q. Fix a positive integer n and choose a degree n
irreducible polynomial g(y) ∈ k[y]. Consider the field extension K = k[y]/ (g(y))
and the isomorphism ϕ : K → kn defined by ϕ

(
u1 + u2y + . . .+ uny

n−1) =

(u1, u2, . . . , un) . Let F , F̃ and Ψ be three polynomials in K [X ] /
(
Xqn −X

)
constructed using the method described in Sect. 1.2, i.e., F and F̃ are two high
degree HFE polynomials and Ψ is a low degree q-weight three polynomial which
allows us to invert the map G = (F, F̃ ). Then we select two invertible affine
transformations S : kn → kn and T : k2n → k2n. The public map of ZHFE is
the multivariate trapdoor function

P (x1, · · · , xn) = T ◦ (ϕ× ϕ) ◦G ◦ ϕ−1 ◦ S(x1, · · · , xn) .

Notice that P is a map from kn to k2n (see Fig. 1).
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K
G �� K ×K

ϕ×ϕ

��

kn S ��

P

��kn ��

ϕ−1

��

k2n T �� k2n

Fig. 1. Public key of ZHFE

Public Key. The public key of ZHFE includes:

– The field k and its structure.
– The trapdoor function P (x1, · · · , xn) = T ◦ (ϕ×ϕ)◦G◦ϕ−1 ◦S(x1, · · · , xn).

Private Key. The private key of ZHFE includes:

– The low degree polynomial Ψ .
– The two invertible affine transformations S and T .
– The scalars α1, · · · , α2n, β1, · · · , β2n.

Encryption: To encrypt a plaintext (x1, · · · , xn) ∈ kn we simply plug this
plaintext into the public key P = T ◦ (ϕ× ϕ) ◦ G ◦ ϕ−1 ◦ S to obtain the
ciphertext

(y1, · · · , y2n) = P (x1, · · · , xn) ∈ k2n .

Decryption: To recover the plaintext from the ciphertext we must invert each
part of P . We perform the following steps:

– We first compute (w1, · · · , w2n) = T−1 (y1, · · · , y2n).
– We next calculate (Y1, Y2) =

(
ϕ−1 (w1, · · · , wn) , ϕ

−1 (wn+1, · · · , w2n)
)
.

– At this step we must invert the map G =
(
F, F̃

)
, i.e., we have to solve the

equation G (X) = (Y1, Y2). The solutions of this equation are part of the
roots of the low degree polynomial Ψ ′, obtained from Ψ and (Y1, Y2) as in
Proposition 1. Let Z be the set

Z = {X ∈ K/Ψ ′ (X) = 0} .

We must now determine which elements of Z are solutions of the polynomial
equation G (X) = (Y1, Y2). In our extensive experiments we always got that
only one element of Z was a solution for this equation.

– For each solution X ∈ Z of the equation G (X) = (Y1, Y2), we compute the
vector ϕ (X) ∈ kn.

– Finally, we apply the transformation S−1 to each vector found in the previous
step and these vectors are the candidates to be the plaintext. To determine
which of these is the original plaintext, some redundant information must
be added to the plaintext1.

1 In all our extensive experiments for each ciphertext, there was only one candidate
to be the plaintext.
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2.2 Toy Example

This example shows how the ZHFE scheme works. Set q = 3 and n = 3,
and consider the field with three elements k = GF (3). We select the irre-
ducible polynomial g(y) = y3 + 2y + 1 ∈ k[y]. A degree n extension field
of k is K = k[y]/ (g(y)). We can choose a generator b ∈ K of the multi-
plicative group of K such that g(b) = 0, and we use this element to write
the elements of K as powers of it. Let us take D0 = 5. We now randomly
choose the scalars (α1, · · · , α6) = (b23, b9, b22, b16, b24, b22) and (β1, · · · , β6) =
(b5, b10, b16, 0, b17, b14). Then, as explained in Sect. 1.2, we construct the polyno-
mials F (X) = b23X18+b16X12+b10X10+b23X9+b21X6+b24X4+b24X3+b2X2+
bX , F̃ (X) = b15X18+b25X12+b19X10+b14X9+bX6+b2X4+b11X3+b5X2+b14X
and Ψ(X) = b16X5 + b7X4 + b25X3 + b9X2. We also select the invertible affine
transformations

S(x1, x2, x3) =

⎛
⎝1 2 0
1 1 1
0 1 1

⎞
⎠
⎛
⎝x1

x2

x3

⎞
⎠+

⎛
⎝0
2
2

⎞
⎠

and

T (x1, x2, x3, x4, x5, x6) =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 2 2 0 2 1
1 1 0 2 1 0
2 0 0 2 0 1
1 0 1 0 2 2
1 2 0 1 0 1
2 1 0 1 2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
2
2
0
2
1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The core map is G (X) =
(
F (X), F̃ (X)

)
. The composition P (x1, x2, x3) =

T ◦ (ϕ× ϕ) ◦G ◦ ϕ−1 ◦ S(x1, x2, x3) yields the public key polynomials

p1(x1, x2, x3) =2x2
1 + x1x2 + x1x3 + x1 + x3 + 2,

p2(x1, x2, x3) =2x2
1 + x1x2 + x1 + x2

2 + x2x3 + x2 + 2x3,

p3(x1, x2, x3) =x2
1 + x1 + x2 + x2

3 + 1,

p4(x1, x2, x3) =2x2
1 + 2x1x3 + x1 + x2

2 + 2x2x3 + x2 + x2
3 + 2,

p5(x1, x2, x3) =x2
1 + 2x1x2 + 2x1 + x2

2 + 2x2 + x3 + 1,

p6(x1, x2, x3) =x1x2 + x1x3 + 2x2
2 + x2x3 + x2

3.

We now illustrate the encryption and decryption processes. Let (x1, x2, x3) =
(0, 1, 1) be a plaintext. After plugging this plaintext into the public key, we
obtain the ciphertext

(y1, y2, y3, y4, y5, y6) = (0, 2, 0, 1, 2, 1) .

In order to recover the plaintext from the ciphertext we first compute

(w1, · · · , w6) = T−1 (0, 2, 0, 1, 2, 1) = (0, 0, 1, 1, 1, 2) .
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We then calculate

(Y1, Y2) =
(
ϕ−1 (w1, w2, w3) , ϕ

−1 (w4, w5, w6)
)

=
(
ϕ−1 (0, 0, 1) , ϕ−1 (1, 1, 2)

)
=
(
b2, b20

)
.

As explained in Proposition 1, we now create the low degree polynomial Ψ ′ using
the low degree polynomial Ψ , the scalars α1, · · · , α6, β1, · · · , β6 and the vector
(Y1, Y2) =

(
b2, b20

)
:

Ψ ′ = b16X5 + b7X4 + b9X2 + b15X .

The set of roots of Ψ ′ is2 Z =
{
0, b11

}
. The only element of Z which is solution

of the equation G (X) = (Y1, Y2) =
(
b2, b20

)
is X = b11. If we apply the isomor-

phism ϕ we get ϕ
(
b11
)
= (2, 1, 1). We next apply the transformation S−1 and

then we recover the plaintext S−1(2, 1, 1) = (0, 1, 1).

The main part of the decryption process is the computation of roots of the
polynomial Ψ ′. For this task we use Berlekamp’s algorithm. This algorithm has
complexity O

(
nD2 logq D +D3

)
, where D is the degree of the univariate poly-

nomial. According to this complexity, it is expected that the degree of Ψ ′, which
is determined by the parameter D0, has the greatest impact on the decryption
time. This fact was confirmed by our experiments. Table 1 shows some aver-
age encryption and decryption times for several choices of the parameters (q, n,
D0). For each parameter choice we encrypted and decrypted 100 messages. To
perform the experiments we used the software Magma V2.20-2 on an Intel Core
i5-3210M CPU 2.50 GHz × 4 with 12 GB of memory installed.

Table 1. Encryption and decryption time for ZHFE, 100 messages were tested per key

q n D0
Average

encryption time [s]
Average

decryption time [s]

7 35 57 0.006 0.089
7 55 105 0.024 0.427
11 35 33 0.003 0.043
11 35 253 0.005 0.760

2.3 Suggestion of Parameters for a Practical Implementation

In this section we propose values for the parameters (q, n,D0) for a realistic ap-
plication of ZHFE. We base our choices on the data collected with the extensive
experiments of encryption and decryption time, and with the security analysis
that we perform in Sects. 3.1 and 3.2.

2 These roots are found using the Magma implementation of Berlekamp’s algorithm.
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Our suggestion is (q, n,D0) = (7, 55, 105), and let us denote the associated
scheme by ZHFE(7,55,105). This means that the finite field k has size q = 7, the
number of variables of the public polynomials is n = 55, and the polynomial Ψ
has degree D0 = 105. The public map is P : k55 → k110 and then the public key
has 2n = 110 quadratic polynomials with 55 variables. To store the coefficients
of these polynomials we need about 66 KB.

A plaintext is a tuple (x1, · · · , x55) ∈ k55 with 165 bits of length and a ci-
phertext is a tuple (y1, · · · , y110) ∈ k110 with 330 bits of length.

The private key comprises the low degree polynomial Ψ , the scalars αi and βi

and the transformations S : k55 → k55 and T : k110 → k110. The polynomial Ψ
has at most 14 terms. The coefficients of Ψ and the scalars αi and βi are in an
extension field of k of degree 55. Thus, to store the private key we need about
11 KB.

In terms of efficiency, we now compare ZHFE to HFE Challenge 1 proposed
by Patarin [18]. This system was broken in [14] by means of the direct algebraic
attack. We focus on the most-consuming-time task for this kind of schemes,
that is, the decryption process. Challenge 1 is the instance HFE(2,80,96). In
2008 Ding, Schmidt and Werner [13] proposed the instance HFE(11,89,132),
but this was also broken by Faugère et al. [4]. Compared to Patarin’s Chal-
lenge 1, HFE(11,89,132) takes about twice the time to decrypt. Decryption for
ZHFE(7,55,105) is faster than HFE(11,89,132) because all the parameters are
smaller. Therefore, in terms of efficiency, ZHFE(7,55,105) is comparable with
Patarin’s Challenge 1.

Based on the security analysis that we will explain in Sects. 3.1 and 3.2, we
conclude that our choice of parameters gives a security level greater than 280.

3 Security Analysis

There are two attacks that have broken the security of HFE type schemes: the
direct algebraic attack and the KS MinRank attack. Since ZHFE belongs to the
HFE scheme family, we must consider these attacks against our new encryption
scheme.

3.1 Direct Algebraic Attack

Let us briefly review the direct algebraic attack. Suppose that someone, who
does not know the private trapdoor information, wants to invert the public key
P : kn → k2n of the new encryption scheme (P = (p1, . . . , p2n)). She wants to
find the pre-images of an element (y1, . . . , y2n) ∈ Im(P ) ⊆ k2n. This person only
has access to the public key P . In order to accomplish this, she tries to solve the
system of quadratic equations

p1(x1, . . . , xn)− y1 = 0, · · · , p2n(x1, . . . , xn)− y2n = 0 . (1)

Solving the system (1) directly is known as the direct algebraic attack. One way
to solve this system is finding a Gröbner basis for the ideal of k[x1, · · · , xn]
generated by the polynomials p1 − y1, · · · , p2n − y2n.
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The F4 function of MAGMA, [5], is the most efficient implementation of the
Gröbner basis F4 algorithm that is currently available. We ran extensive experi-
ments using the F4 algorithm of MAGMA to perform the direct algebraic attack
for several choices of the parameters (q, n, D0). We show here the results of our
experiments for q = 7. For each choice of the parameters we used 10 different
sets of quadratic equations to run the experiments.

In Table 2 and Fig. 2 we can observe that the time needed to solve the
equations coming from the public key of ZHFE has an exponential growth in
n. We can also see this behaviour with the memory used by the F4 algorithm.
This situation is different from the one observed by Faugere and Joux in [14].
The difference lies on the fact that in [14] the quadratic equations are produced
using a polynomial of fixed low degree as core map in the HFE cryptosystem,
and in our new cryptosystem the quadratic equations are generated via two
high degree polynomials. In our experiments, in general, these two high degree
polynomials have full degree D = 2qn−1, so in particular this degree increases
as n increases. This is the fundamental security improvement of ZHFE, when
compared to traditional HFE type schemes in which D is a fixed positive integer.

Table 2. Algebraic attack against ZHFE for q = 7 and D0 = 105. Ten systems were
tested for each choice of parameters.

n Average time
[s]

Minimum time
[s]

Maximum time
[s]

Memory
[MB]

⌊
logq D

⌋
12 0.071 0.06 0.09 32 11
14 0.289 0.28 0.31 32 13
16 5.564 5.5 5.64 64 15
18 31.392 31.01 32.19 128 17
20 148.208 143.69 160.73 288 19
22 942.269 663.62 988.45 681 21
24 18114.05 18099.43 18128.67 8334 23

Another evidence that the complexity of the algebraic attack against ZHFE
is exponential, is that the degree of regularity of the trapdoor function increases
as n increases. This behaviour can be observed in Fig. 3. This trend can also be
explained by the fact that D = 2qn−1 for ZHFE.

In order to compare ZHFE to the MQ-problem, we chose systems of random
quadratic equations of the same dimensions (kn → k2n) and performed the
algebraic attack against these systems too. For each system of random equations,
we found that the time needed to solve such equations using Gröbner bases is
essentially the same that the one needed to solve the quadratic equations from
the public key of ZHFE. These data are shown in Table 3. Notice that the
degree of regularity is the same in both cases. Figure 4 shows graphically the
time comparison for the two systems. In that graph we can observe that the two
curves are indistinguishable.

The reader might think that the low degree of the Hamming weight three
polynomial Ψ could introduce a possible weakness to ZHFE against the direct
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Fig. 3. Algebraic attack against ZHFE for q = 7 and D0 = 105

algebraic attack. However, as it was shown in [13,7,8,2], the use of odd char-
acteristic fields in HFE type schemes, provides a resistance against a Gröbner
bases attack, regardless of the degree of the core polynomials used to construct
the public key. The vulnerability of the schemes proposed in [13,7,8,2] is not
against the direct algebraic attack, but against the MinRank attack [4]. The
novelty of the present paper is that with the ZHFE cryptosystem we overcome
this weakness. We will develop this idea in the next section.

3.2 Kipnis-Shamir MinRank Attack (KS Attack)

In 1999 Kipnis and Shamir [17] proposed a key-recovery attack against HFE
that takes advantage of the low rank of the matrix associated to the core map.
The KS attack exploits the structure behind the construction of HFE and it
links the cryptanalysis of HFE with a linear algebra problem known as the
MinRank Problem. Although we are using high degree and high rank polynomials
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Table 3. Algebraic attack comparison between ZHFE and a system of random
equations for q = 7 and D0 = 105

(a) ZHFE

n Average time
[s]

Memory
[MB]

Dreg

16 5.564 64 5
18 31.392 128 5
20 148.208 288 5
22 942.269 681 5
24 18114.05 8334 6

(b) Random equations

n Average time
[s]

Memory
[MB]

Dreg

16 5.6 64 5
18 32.19 128 5
20 144.09 288 5
22 991.72 681 5
24 18012.19 8334 6
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Fig. 4. Algebraic attack comparison between ZHFE and a system of random equations
for q = 7 and D0 = 105

as the core map in ZHFE, this attack could work if there was a low rank linear
combination of their Frobenius powers. Because of this, we have to carefully
consider this attack for our new cryptosystem.

The MinRank Problem. Let L be a finite field and consider m matrices
M1, · · · ,Mm over L of size t× t. Given an integer r ≤ t, the problem is to find,
if they exist, scalars λ1, · · · , λm, not all zero, such that

Rank

(
m∑
i=1

λiMi

)
≤ r .

This is in general an NP-hard problem [6]. However for small r, which is the
case in HFE, this problem is not too hard. There exist two algebraic ways to
attack this problem: the Kipnis-Shamir and the Minors Models (see Appendix).

We now test ZHFE against the KS attack, by performing extensive computer
experiments for the case of odd characteristic. For characteristic 2 the attack
is slightly different, and we did not perform experiments for this case. All the
computations of this section were run using Magma V2.20-2 on a Sun X4440
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server, with four Quad-Core AMD OpteronTM Processor 8356 CPUs and 128
GB of main memory (each CPU is running at 2.3 GHz).

The main part of the KS attack, with respect to the complexity, is to solve
the MinRank problem. The original version of the KS attack was not as efficient
as its authors claimed [16], because the derived MinRank problem worked with
matrices with entries in the big field K. Recently, Faugère et al. [4] improved and
generalized the KS attack, and were able to break HFE and its generalization
Multi-HFE [7] for all practical choices of their parameters. Their main improve-
ment was to restate the MinRank problem with the matrices associated to the
public key, whose entries are in the small field k. This makes the improved KS
attack significantly faster than the original version.

Let us explain how the KS attack is performed. We begin by noticing that the
new trapdoor function P , which is part of the public key of ZHFE, can be seen
as a particular case of the public key of an unbounded Multi-HFE cryptosystem
as presented in [4], with N = 2 (for unbounded we mean that the core polyno-
mials have no restrictions for their degrees). Because of this, in this section we
perform the KS attack as it was done in [4] for a Multi-HFE scheme. For given
parameters q, n and D0, we generate the 2n public key polynomials p1, · · · , p2n
of the new encryption scheme ZHFE (P = (p1, · · · , p2n)). Then, we compute
the symmetric matrix Mi associated to the quadratic part of each public key
polynomial pi, i = 1, · · · , 2n. Let Q-Rank(P ) be the minimal rank of elements
in the K-linear space generated by the matricesM1, · · · ,M2n. In [4] they showed
that Q-Rank(P ) coincides with the minimal quadratic rank of elements in the
K-linear space generated by the Frobenius powers of the core polynomials F
and F̃ . The KS attack is successful against Multi-HFE when Q-Rank(P ) is low
(see [4]). The main purpose of this section is to show that Q-Rank(P ) increases
as n increases for ZHFE, and therefore the KS attack will not work against this
new cryptosystem.

As it has been proved in [4] for a Multi-HFE scheme, in order to accelerate
the solution of the MinRank problem, we can randomly fix N = 2 of the scalars
λ1, · · · , λ2n ∈ K, not all to zero. In our experiments we fixed λn−1 = 0 and
λn = 1, and we used the Kipnis-Shamir modelling for solving this MinRank
problem. The reason to choose this modelling is that the minors modelling uses
considerably more memory than the KS option.

We now use the MinRank problem to determine the Q-Rank(P ) for different
combinations of the parameters (q, n,D0). For each n we start by taking r = 1
and then use the KS modelling. We utilize the Magma implementation of the
F4 algorithm to solve the equations produced by this modelling. Table 4 shows
the results obtained for q = 7 and D0 = 1053. If for r = 1 the solution set of the
MinRank problem is empty, then we set r = r + 1 and repeat this process until
a solution is found. For example, in Table 4 the expression “> 3” means that for

3 The instances n = 8 and n = 10 for r = 4 did not terminate since the processes had a
50 GB memory limitation. When this limit was reached the processes automatically
stopped after more than 10 days of running time.
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r ∈ {1, 2, 3} the solution set obtained for the MinRank problem was empty, so
Q-Rank(P ) > 3 for that case.

Table 4. KS attack against ZHFE, for q = 7 and D0 = 105

n Q-Rank(P ) Average time Maximum memory

2 1 0.010 s 32
4 1 0.010 s 32
6 2 1.340 s 32
8 > 3 > 10 days > 50 GB3

10 > 3 > 10 days > 50 GB3

In Table 5 we show the time and memory needed to find the solution set for
the MinRank problem for (q, n,D0) = (7, 8, 110) and different values of r. The
same situation is observed for other combinations of the parameters. We can see
how fast those values increase as r increases. The results in Tables 4 and 5 lead
us to think that the larger Q-Rank(P ) is the less feasible to solve the MinRank
problem is.

Table 5. Time and memory needed to find the solution set for the KS attack against
ZHFE, for q = 7, n = 8 and D0 = 105

r Average Time Maximum memory

1 0.040 s 32
2 0.510 s 32 MB
3 297.410 s 462 MB
4 > 10 days > 50 GB3

Now, for a fixed pair (q, n) we randomly choose a set of 2n quadratic equations
in n variables, and perform the same process that we just used with ZHFE, in
order to compare with the results that we obtained for ZHFE. The results are
summarized in Table 6. We notice that we get exactly the same results for both
cases. We also see that, for ZHFE, the value of Q-Rank(P ) is independent of the
value of D0.

Another interesting experiment is to compare the performance of the KS
attack against ZHFE with the performance of that attack against a system built
in a similar way, but with low rank core polynomials F and F̃ , i.e., a standard
(bounded) Multi-HFE scheme. Table 7 shows these results for q = 7 and several
values of n. We can observe that for the standard Multi-HFE the KS MinRank
attack succeeds, while for the new encryption scheme ZHFE (Table 4) it does
not. According to Tables 4, 6 and 7, we think that the quadratic rank Q-Rank(P )
grows as n grows.

According to our experiments and the fact that we are using high rank core
polynomials to construct the public key, we believe that ZHFE behaves as if it
were a set of random equations with respect to the KS MinRank attack.
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Table 6. Q-Rank(P ) comparison between ZHFE and random equations for q = 7

(a) ZHFE

n D0 = 105 D0 = 399 D0 = 2751

2 1 1 1
4 1 1 1
6 2 2 2
8 > 3 > 3 > 3
10 > 3 > 3 > 3

(b) Random equations

n Q-Rank(P )

2 1
4 1
6 2
8 > 3
10 > 3

Table 7. KS attack against a bounded Multi-HFE scheme for q = 7 and
⌊
logq D

⌋
= 2

n Q-Rank(P ) Average time
[s]

Maximum Memory
[MB]

2 1 0.050 32
4 1 0.100 32
6 2 1.135 32
8 2 1.190 32
10 2 6.090 32
12 2 23.080 64
14 2 67.500 138
16 2 192.850 211
18 2 479.150 363
20 2 885.720 711

4 Conclusions

We have constructed a new multivariate public key encryption scheme called
ZHFE. The core map of ZHFE consists of two high rank HFE polynomials.
Until now, no one had proposed any idea of how to use high degree polynomials
for the core map in HFE or any of its variants, since we always had the problem
of the inversion of such core polynomials. Our novel idea has allowed us to
invert a map built with two high degree HFE polynomials by means of a third
polynomial of low degree.

We showed that the encryption and decryption processes for ZHFE are rela-
tively efficient. Moreover, we showed that the attacks that have threatened the
security of HFE, the direct algebraic and the Kipnis-Shamir MinRank attacks,
do not work against ZHFE. We gave theoretical and experimental arguments to
show that ZHFE behaves as if it were a system of random quadratic equations
against these attacks.

We performed numerous computer experiments to test the security and mea-
sure the encryption/decryption times for several sets of parameters of ZHFE.
The data we collected guided our choices for the parameters (q, n and D0) for
plausible schemes.

What we present in this paper is the beginning of a new idea and it is necessary
to explore more deeply the different features and parameters of ZHFE, in order
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to achieve a better understanding of its behaviour and security. For instance, in
Sect. 2.3 we chose D0 = 105 so that the polynomial Ψ does not have too few
terms, with the intention to avoid having an extremely simple polynomial Ψ .
Although this seems reasonable, we will have to study more carefully the effect
of the parameter D0 and the shape of the polynomial Ψ on the security of the
new encryption scheme ZHFE.

In principle there seems to be no obvious way to recover the private poly-
nomial Ψ (F , F̃ and the scalars αi, βi are secret) from the public key. This is
an important point in the study of the security of ZHFE and we will have to
consider this aspect more carefully in the future. We also want to study ways of
speeding up the reduction method to construct the trapdoor functions. Speed-
ing up the reduction method will also allow us to reach larger values of n and
therefore we will be able to implement plausible schemes with smaller values of
q, for example q = 2.
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Appendix: More about the KS MinRank Attack

Kipnis-Shamir Modeling. Kipnis and Shamir [17] proposed to bind the MinRank
Problem to the problem of solving an algebraic quadratic system of equations.
They noted that, if the matrix M = λ1M1+ · · ·+λmMm has rank at most r, its
left kernel {x ∈ Lt : xM = 0} has at least t − r linearly independent vectors.
Therefore, solving the MinRank problem is equivalent to solving the system that
comes from vanishing the entries of the matrix⎛

⎜⎝
1 x1,1 · · · x1,r

. . .
...

...
1 xt−r,1 · · · xt−r,r

⎞
⎟⎠
(

m∑
i=1

λiMi

)
.

This yields an overdetermined quadratic system with t(t − r) equations and
t(t − r) + m variables. The authors in [17] proposed a method for solving this
system which they called relinearization. Later on, in [10], it has been shown
that this method can be seen as a special case of the XL algorithm. In fact,
the XL algorithm can be viewed as a redundant variant of the Gröbner basis
algorithm F4 [1]. Therefore, this system is usually solved using Gröbner basis
tools like F4.

Minors Modeling. Courtois proposed another way to solve the MinRank Prob-
lem [9]. Since the matrix λ1M1 + · · ·+λmMm has rank at most r, all its minors

of order (r + 1) × (r + 1) must be zero. In this way we get a system of
(

t
r+1

)2
polynomial equations in the m variables λi. Notice that this system has many
more equations than the system coming from the Kipnis-Shamir Modeling, but
the equations have degree r + 1.
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Abstract. Shor’s quantum factoring algorithm and a few other efficient quantum
algorithms break many classical crypto-systems. In response, people proposed
post-quantum cryptography based on computational problems that are believed
hard even for quantum computers. However, security of these schemes against
quantum attacks is elusive. This is because existing security analysis (almost)
only deals with classical attackers and arguing security in the presence of quan-
tum adversaries is challenging due to unique quantum features such as no-cloning.

This work proposes a general framework to study which classical security
proofs can be restored in the quantum setting. Basically, we split a security proof
into (a sequence of) classical security reductions, and investigate what security re-
ductions are “quantum-friendly”. We characterize sufficient conditions such that
a classical reduction can be “lifted” to the quantum setting.

We then apply our lifting theorems to post-quantum signature schemes. We
are able to show that the classical generic construction of hash-tree based signa-
tures from one-way functions and and a more efficient variant proposed in [10]
carry over to the quantum setting. Namely, assuming existence of (classical) one-
way functions that are resistant to efficient quantum inversion algorithms, there
exists a quantum-secure signature scheme. We note that the scheme in [10] is a
promising (post-quantum) candidate to be implemented in practice and our result
further justifies it. Actually, to obtain these result, we formalize a simple crite-
ria, which is motivated by many classical proofs in the literature and is straight-
forward to check. This makes our lifting theorem easier to apply, and it should
be useful elsewhere to prove quantum security of proposed post-quantum cryp-
tographic schemes. Finally we demonstrate the generality of our framework by
showing that several existing works (Full-Domain hash in the quantum random-
oracle model [47] and the simple hybrid arguments framework in [23]) can be
reformulated under our unified framework.

1 Introduction

Advances in quantum information processing and quantum computing have brought
about fundamental challenges to cryptography. Many classical cryptographic construc-
tions are based on computational problems that are assumed hard for efficient classical
algorithms. However, some of these problems, such as factoring, discrete-logarithm and
Pell’s equation, can be solved efficiently on a quantum computer [39,22]. As a result,
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a host of crypto-systems, e.g, the RSA encryption scheme that is deployed widely over
the Internet, are broken by a quantum attacker.

A natural countermeasure is to use quantum-resistant assumptions instead. Namely,
one can switch to other computational problems which appear hard to solve even on
quantum computers, and construct cryptographic schemes based on them. Examples
include problems in discrete lattices [33,36] and hard coding problems [38]. We can
also make generic assumptions such as the existence of one-way functions that no ef-
ficient quantum algorithms can invert. This leads to the active research area termed
post-quantum cryptography [6]. Nonetheless, quantum-resistant assumptions alone do
not immediately imply quantum security of a scheme, due to other fundamental issues
that could be subtle and easily overlooked.

First of all, we sometimes fail to take into account possible attacks unique to a quan-
tum adversary . In other words, classical definition of security may not capture the right
notion of security in the presence of quantum attackers1. For example, many signature
schemes are designed in the random-oracle (RO) model, where all users, including
the attacker, can query a truly random function. This is meant to capture an ideal-
ized version of a hash function, but in practice everyone instantiate it by him/herself
with a concrete hash function. As a result, when we consider quantum attacks on these
schemes, there seems no reason not to allow a quantum adversary to query the random-
oracle in quantum superposition. This leads to the so called quantum random-oracle
model [8], in which we need to reconsider security definitions (as well as the analysis
consequently) [47,46,9].

A more subtle issue concerns security proofs, which may completely fall through
in the presence of quantum attacks. Roughly speaking, one needs to construct a re-
duction showing that if an efficient attacker can successfully violate the security re-
quirements of a scheme then there exists an efficient algorithm that breaks some com-
putational assumption. However, a classical reduction may no longer work (or make
sense at all) against quantum adversaries. A key classical technique, which encoun-
ters fundamental difficulty in the presence of quantum attackers, is called rewinding.
Loosely speaking, rewinding arguments consist of a mental experiment in which an
adversary for a scheme is executed multiple times using careful variations on its in-
put. This usually allows us to gain useful information in order to break the computa-
tional assumption. As first observed by van de Graaf [19], rewinding seems impossible
with a quantum adversary since running it multiple times might modify the entangle-
ment between its internal state and an outside reference system, thus changing the sys-
tem’s overall behavior. This issue is most evident in cryptographic protocols for zero-
knowledge proofs and general secure computation. There has been progress in recent
years that develops quantum rewinding techniques in some special cases [44,43], and a
few classical protocols are proven quantum-secure [13,29,23]. Hallgren et al. [23] also
formalized a family of classical security proofs against efficient adversaries that can be
made go through against efficient quantum adversaries under reasonable computational

1 Although our focus is security against computationally bounded attackers, this issue is also
relevant in the statistical setting. There are classical schemes, which are proven secure against
unbounded classical attackers, broken by attackers using quantum entanglement [12].
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assumptions. Despite these efforts, however, still not much is known in general about
how to make classical security proofs go through against quantum attackers.

This note revisits these issues for post-quantum cryptography based on computa-
tional assumptions, focusing on simple primitives such as signatures, encryptions and
identifications, where constructions and analysis are usually not too complicated (com-
pared to secure computation protocols for example). In this setting, the issues we have
discussed seem less devastating. For instance, rewinding arguments appear only oc-
casionally, for example in some lattice-based identification schemes [30,31]. Usually
rewinding is not needed for the security proof. Nonetheless, it is still crucial to pinning
down proper security definitions against quantum attacks, as illustrated in the quantum
random-oracle example above. In addition, just because there are no rewinding argu-
ments, does not mean that we can take for granted that the security reduction automati-
cally holds against quantum attackers. Very often in the literature of post-quantum cryp-
tography, a construction based on some quantum-resistant assumption is given together
with a security proof for classical attackers only. The construction is then claimed to be
quantum-secure without any further justification. In our opinion, this is not satisfying
and quantum security of these schemes deserves a more careful treatment.

CONTRIBUTIONS. The main contribution of this note is a general framework to study
which classical security proofs can be restored in the quantum setting. A security proof
can be split into (a sequence of) classical security reductions, and we investigate what
reductions are “quantum-friendly”. Recall that informally a reduction transforms an
adversary of one kind to another. We distinguish two cases, game-preserving and game-
updating reductions.

A game-preserving reduction is one such that the transformation still makes sense,
i.e., syntacticly well-defined, for quantum adversaries. In this case we propose the no-
tion of class-respectful reductions which ensures in addition that the adversary obtained
from the transformation indeed works (e.g., it is an efficient quantum algorithm and suc-
cessfully solves some problem). Motivated by the structure of security reductions that
occur in many post-quantum cryptographic schemes, we further characterize a sim-
ple criteria, which is straightforward to check. This makes the lifting theorem easier
to apply, and should be useful to prove quantum security for many other schemes not
restricted to the applications we show later in this note.

On the other hand, a game-updating reduction captures the case that the classical
reduction no longer makes sense, as illustrated by the quantum random-oracle model.
This is usually more difficult to analyze. We propose translatable reductions, which
essentially reduces the problem to the game-preserving case. The basic idea is to intro-
duce an “interpreter”, so that the classical reduction becomes applicable to a quantum
adversary with the translation by the interpreter. In both cases, we show in our lifting
theorems that a reduction can be constructed in the quantum setting if there is a classical
reduction that is respectful or translatable respectively.

We apply our framework to prove quantum security of some hash-based signature
schemes. Specifically, we show that the classical generic construction of hash-tree based
signature schemes from one-way functions carries over to the quantum setting, assum-
ing the underlying one-way function is quantum-resistant. This is also true for a more
efficient variant proposed in [10] assuming quantum-resistant pesudorandom functions,
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which in turn can be based on quantum-resistant one-way functions from known results.
This scheme is a promising (post-quantum) candidate to be implemented in practice
and our result further justifies it. Moreover, we give an alternative proof for the se-
curity of a general construction of signatures based on trapdoor permutations called
Full-Domain hash in the quantum random-oracle model. We also show that an ex-
isting framework in the context of cryptographic protocols that characterizes a class
of “quantum-friendly” classical security proofs (simple hybrid augments [23]) fits our
framework. These demonstrate the generality of our framework.

REMARKS. Our framework (e.g., definitions of games and reductions) should look nat-
ural to people familiar with the provable-security paradigm. It should also be straight-
forward (or even obvious for experts) to verify the characterizations of “quantum-
friendly” reductions in our lifting theorems. The purpose of this note, however, is to
at least make people become more serious and cautious and to encourage further re-
search, in addition to suggesting one possible formal framework to reason about the
security of post-quantum cryptography against quantum attacks. Likewise, it may be
just a tedious exercise to work though the classical proof for hash-based signatures and
convince oneself it is indeed quantum-secure. Nonetheless, this can be done in a more
abstract and rigorous way using our framework. We hope that our framework can be
applied elsewhere to analyze quantum security of other post-quantum cryptographic
constructions. Ideally, in some easy cases, it would serve as a tool to automate the rou-
tine parts, so that whoever designs a new scheme should be able to make some simple
checks and conclude its quantum security.

OTHER RELATED WORKS. There are a few works that study systematically what clas-
sical proofs or statements can be “lifted” to the quantum setting in the context of multi-
party secure computation. Unruh in [42] showed that any classical protocol that is se-
cure in the statistical setting, i.e., against computationally unbounded adversaries, un-
der a strong universal-composable notion is also statistically secure in an analogous
quantum universal-composable model. Fehr et al. [14] considered reducibility between
two-party cryptographic tasks in the quantum setting. For example, one can ask if there
is a secure protocol for oblivious transfer assuming two parties can perform bit com-
mitments securely. They showed that in most cases, the reducibility landscape remains
unchanged in the quantum setting under the very same classical protocols. However,
there are cases that classical reducibility no longer holds quantumly, and sometimes
new relations can be established using quantum protocols.

The formalization of games, reductions and other terms in this note is influenced
by a lot of classical literatures on game-playing proofs [17,45,27,5,40,21]. Recent de-
velopments, especially the framework of code-based game-playing proofs [21,5] have
motivated automated tools for proving security [7,3,41,2]. Our treatment of computa-
tional assumptions is also inspired by the line of works classifying complexity-theoretic
intractability assumptions [34,20,35,15].

2 Preliminary

BASIC NOTATIONS. For m ∈ N, [m] denotes the set {1, . . . , m}. We use n ∈ N

to denote a security parameter. The security parameter, represented in unary, is an
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implicit input to all cryptographic algorithms; we omit it when it is clear from the con-
text. Quantities derived from protocols or algorithms (probabilities, running times, etc)
should be thought of as functions of n, unless otherwise specified. A function f (n) is
said to be negligible if f = o(n−c) for any constant c, and negl(n) is used to denote an
unspecified function that is negligible in n. We also use poly(n) to denote an unspeci-
fied function f (n) = O(nc) for some constant c. When D is a probability distribution,
the notation x ← D indicates that x is a sample drawn according to D. When D is a fi-
nite set, we implicitly associate with it the uniform distribution over the set. If D(·) is a
probabilistic algorithm, D(y) denotes the distribution over the output of D correspond-
ing to input y. We will sometimes use the same symbol for a random variable and for its
probability distribution when the meaning is clear from the context. Let X = {Xn}n∈N

and Y = {Yn}n∈N be two ensembles of binary random variables. We call X, Y indis-
tinguishable, denoted X ≈ Y, if |Pr(Xn = 1)− Pr(Yn = 1)| ≤ negl(n).

MACHINE MODELS. We model classical parties as interactive Turing machines, which
are probabilistic polynomial-time (PPT) by default. Quantum machines are modelled
following that of [23]. A quantum interactive machine (QIM) M is an ensemble of
interactive circuits {Mn}n∈N. For each value n of the security parameter, Mn consists

of a sequence of circuits {M(i)
n }i=1,...,�(n), where M(i)

n defines the operation of M in
one round i and �(n) is the number of rounds for which Mn operates (we assume for
simplicity that �(n) depends only on n). We omit the scripts when they are clear from
the context or are not essential for the discussion. M (or rather each of the circuits that it
comprises) operates on three registers: a state register S used for input and workspace;
an output register O; and a network register N for communicating with other machines.

The size (or running time) t(n) of Mn is the sum of the sizes of the circuits M(i)
n .

We say a machine is polynomial time if t(n) = poly(n) and there is a deterministic

classical Turing machine that computes the description of M(i)
n in polynomial time on

input (1n, 1i). When two QIMs M and M′ interact, their network register N is shared.

The circuits M(i)
n and M′(i)

n are executed alternately for i = 1, 2, ..., �(n). When three
or more machines interact, the machines may share different parts of their network
registers (for example, a private channel consists of a register shared between only two
machines; a broadcast channel is a register shared by all machines). The order in which
machines are activated may be either specified in advance (as in a synchronous network)
or adversarially controlled.

3 Defining Games and Reductions

This section introduces a formal definition of reductions, which captures the type of
security reductions that we care mostly about. It builds upon a basic notion of games.

We use game G to denote a general probabilistic process between two players: the
challenger C initiates the interaction with the other player, call it an adversaryA. After
several rounds of communication, C outputs one bit succ or fail indicting success or fail-
ure of the game. We define the game value of G with an adversaryA to be the probabil-
ity that C outputs succ, and denote it ωG(A). Typically in a game G, C is efficient, i.e., a
poly-time classical or quantum machine. Very often we want to analyze the game when
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the adversary is restricted to a class of machines C (e.g., poly-time classical machines).
We write G(C) to indicate this case, and define ωG(C) := max{ωG(A) : A ∈ C}.
Sometimes we denote Ĝ to stress a game defined for quantum machines. We describe
below as an example the standard forgery game of existentially unforgeable signatures
under (adaptive) chosen-message-attacks (EU-CMA) [18,26].

Existential-Forgery Game GFOR

Signature scheme: Π = (KGen, Sign, Vrfy).

– C generates (pk, sk)← KGen(1n). Send pk to adversary A.
– A can query signatures on messages {mi}. C returns σi := Sign(sk, mi). These messages

can be chosen adaptively by A.
– A outputs (m∗, σ∗). If Vrfy(pk, (σ∗, m∗)) = 1 and m∗ /∈ {mi}, C outputs succ. Other-

wise output fail.

There are many variants of this game which will be used later in this note. For exam-
ple, we denote the game in whichA is allowed to query at most one signature GOT-FOR.
GRO-FOR denotes the game where a random-oracle is available to both parties, and if the
random-oracle can be accessed in quantum superposition we denote the game GQRO-FOR.

We define a reductionR as a 3-tuple (Gext, T , Gint). There are an external (explicit)
game Gext and an internal (implicit) game Gint, and an additional party T called the
transformer. Loosely speaking, T transforms an adversaryA in Gint to an adversary in
Gext. Specifically, T takes an adversary’s machine A as input and outputs the descrip-
tion of an adversary in Gext. We distinguish black-box and non-black-box reductions,
with a focus on black-box reductions. In a black-box reduction, A is provided as a
black-box, which means that the transformation does not look into the codes and inner
workings of the adversary. Whereas in a non-black-box reduction, R has the explicit
description of A. We denote T (A) as the resulting adversary in Gext that is “trans-
formed” from A by T . In the black-box setting, the output of T will always be of the
form TA, i.e., an oracle machine with access to A. Note that T is the same for all A,
and it emulates an execution of Gint with A. However, in general T needs not to run
the game as in a real interaction. For instance, it can stop in the middle of the game and
start over (i.e., rewind).

PROPERTIES OF A REDUCTION. To make a reduction meaningful, we describe below
a few properties that we may want a reduction to hold. Let A and B be two classes of
machines.

– A-compatible reductions. We say R is A-compatible, if ∀A ∈ A, Gint(A) and
Gext(T (A)) are well defined. Namely A and T (A) respect the specifications of
the games.

– (A,B)-consistent reductions. We sayR is (A,B)-consistent, ifR is A-compatible
and ∀A ∈ A, T (A) ∈ B. When we write a reduction as (Gext(B), T , Gint(A))
orR(A,B) in short, the reduction is assumed to be (A,B)-consistent. Note that if
R is black-box, it must hold that TA ⊆ B.

– Value-dominating. We sayR is value-dominating if ωGext(T (A)) = ωGext(T (B))
whenever ωGint(A) = ωGint(B).
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– (αsucc,A)-effective reductions. Let αsucc : R+ → R+ be some function. We say
R is αsucc-effective on A if ωGext(T (A)) ≥ αsucc(ωGint(A)). If this holds for
anyA ∈ A, we callR (αsucc,A)-effective

– (αtime,A)-efficient reductions. Let αtime : R+ → R+ be some function. We say
R is αtime-efficient if TIME(T (A)) ≤ αtime(TIME(A)) for anyA ∈ A.

Effective and efficient reductions are often used in combination, especially when we
are concerned with tightness of a reduction. In that case, αsucc and αtime may depend
on both TIME(A) and ωGint(A). This paper will focus on effectiveness only. We often
abuse notation and use αsucc as a scalar if this causes no confusion. We stress that these
properties talk about the output machine of T onA (e.g., T (A) lies in a specific class,
or it runs in time comparable to that ofA), however we do not restrict the computational
power of T , though it is typically efficient. The reason is that for our purpose, we only
need to show existence of an adversary for Gext with nice properties.

4 Quantum-Friendly Security Reductions: A General Framework

In this section, we attempt to propose a general framework to study which classical
proofs still hold when the adversaries become quantum. Consider a classical cryp-
tographic scheme Π. To analyze its security against efficient classical attacks (in the
provable-security paradigm), one typically proceeds as follows:

1. Formalizing some security requirement by a game Gint. Typically we are concerned
about security against a particular class of attackers (e.g., PPT machines), so we
restrict the game Gint to a class A. We also associate a value εA ∈ (0, 1] with the
game, which upper bounds the success probability that any adversary in A wins the
game. Namely we require that ωGint(A) ≤ εA. We denote this security requirement
as (Gint(A), εA)

2.
2. Formalizing some computational assumption by another game Gext. Similarly the

assumption is assumed to hold against a specific class of machines, so we restrict
the game to a class B, and require that ωGext(B) ≤ εB ∈ (0, 1]. Denote the
computational assumption as (Gext(B), εB).

3. Constructing an (A,B)-consistent reduction R = (Gext(B), T , Gint(A)). Secu-
rity follows if the reduction is in addition αsucc-effective with αsucc ≥ εB/εA.
This implies if there exists an A ∈ A with ωGint(A) > εA (i.e.. A breaks the
security requirement), there is an adversary T (A) ∈ B such that ωGext(T (A)) ≥
αsucc · ωGint(A) > εB (i.e., it breaks the computational assumption).

Now we want to know if the classical security reductions are “quantum-friendly”
so that we can claim that the scheme is secure against quantum attacks. We need to
reconsider each step of the classical analysis in the quantum setting (See Table 1 for
a comparison between classical provable-security and quantum provable-security for a
scheme.). Let (Â, B̂) be two classes of quantum machines. We adapt Gint and define

2 Sometime we write (Gint(A), εA)Π to emphasize the specific scheme we are dealing with,
though it is usually clear from the context.
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(Ĝint(Â), εÂ). It is supposed to capture some security requirement against quantum
attackers in Â, and we require that ωĜint(Â) ≤ εÂ. Likewise, we adapt Gext to a game
Ĝext, which should formalize a reasonable computational assumption (Ĝext(B̂), εB̂)
against quantum adversaries. Then we can ask the fundamental question (still informal):

Can we “lift” R to the quantum setting?
Namely, is there a reduction R̂(Â, B̂) that preserves similar properties asR(A,B)?

To answer this question, we distinguish two cases. In the simpler case, Ĝ are syn-
tactically identical to G. Namely, Ĝext(B̂) (resp. Ĝint(Â)) is just Gext (resp. Gint)
restricted to the quantum class B̂ (resp. Â). In particular, this means that Gext and Gint

are still the right games that capture a computational assumption and some security
requirement. We call this case game-preserving. In contrast, as illustrated by the quan-
tum random-oracle example, Ĝ may change and this leads to a more complicated case
to analyze. We call it game-updating. In the following subsections, we investigate in
each case what reductions can be lifted to the quantum setting, and hence are quantum-
friendly.

Table 1. Components of classical and quantum provable-security for a classical construction

Classical Provable-Security Quantum Provable-Security
Security Requirement (Gint(A), εA) (Ĝint(Â), εÂ)

Computational Assumption (Gext(B), εB) (Ĝext(B̂), εB̂)

Reduction R(A,B)
?−→ R̂(Â, B̂)

4.1 Lifting Game-Preserving Reductions

Let R(A,B) = (Gext(B), T , Gint(A)) be a classical reduction. Let Ĝext(B̂) and
Ĝint(Â) be extended games in the quantum setting that are restricted to classes of quan-
tum machines B̂ and Â. We consider the case that Ĝ and G are the same in this section.
We want to know if there is a reduction R̂(Â, B̂) that preserves nice properties of R.
Since we are dealing with the same games applied to different classes of machines, one
may expect that simple tweaks onR should work. This intuition is indeed true to some
extend, which we formalize next.

Definition 1 (G-equivalent machines). Two machines M and N are called G-equiv-
alent if ωG(M) ≡ ωG(N).

Definition 2 ([G,C]-realizable classical machines). A classical machine M is called
[G,C]-realizable, if there is a machine N ∈ C s.t. ωG(M) = ωG(N). We denote
EG(C) as the collection of classical machines that are [G,C]-realizable.

We put forward class-respectful reductions as a template for quantum-friendly re-
ductions in the game-reserving case.

Definition 3 (β-(Â, B̂)-respectful reductions). LetR be a classical reduction
(Gext(B), T , Gint(A)). We say R is β-(Â, B̂)-respectful for some β ∈ R+ if the
following hold:
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1. (β, Â)-extendable:R is EGint(Â)-compatible and (β, EGint(Â))-effective. That is,
∀A ∈ EGint(Â), Gext(T (A)) and Gint(A) are well-defined3, and ωGext(T (A))
≥ β(ωGint(A)).

2. (Â, B̂)-closed: R is (EGint(Â), EGext(B̂))-consistent. Namely, ∀A ∈ EGint(Â),
T (A) ∈ EGext(B̂).

The theorem below follows (almost) immediately from this definition.

Theorem 1 (Quantum lifting for game-preserving reductions). If R(A,B) is β-
(Â, B̂)-respectful, then there exists an (Â, B̂)-consistent reduction R̂(Â, B̂) :=
(Gext(B̂), T̂ , Gint(Â)) that is (β, Â)-effective.

Proof. Consider any Â ∈ Â. Let A be a classical machine such that A is Gext-
equivalent to Â. Since R is (Â, B̂)-closed, we know that T (A) ∈ EGext(B̂) and
hence there is a machine NÂ ∈ B̂ s.t. ωGint(NÂ) = ωGint(T (A)). Define T̂ to be
a quantum machine such that, given Â ∈ Â, outputs NÂ. Namely T̂ (Â) := NÂ.
Let R̂ := (Gext(B̂), T̂ , Gint(Â)). Clearly R̂ is (Â, B̂)-consistent due to the way
we defined T̂ . It is also (β, Â)-effective because ωGext(T̂ (Â)) = ωGext(T (A)) ≥
β(ωGint(A)) = β(ωGint(Â)).

To apply the theorem, we need to check the two conditions of respectful reductions.
The “extendability” condition is usually easy to verify. However, the “closure” property
can be challenging and subtle, depending on the classes of players we care about. We
will be mostly interested in poly-time machines. Namely let A = B be poly-time clas-
sical machines and Â = B̂ be the collection of poly-time quantum machines, denote it
byQ. In this case, we propose a simple criteria that is easy to check in existing classical
security reductions. When combined with a few other easily verifiable conditions, we
can show class-respectful reductions. This in a way justifies a common belief that most
post-quantum schemes are indeed quantum-secure, due to some simple form in their
classical security reductions which seem “quantum-friendly”.

Let R = (Gext, T , Gint) be a classical black-box reduction. We say that R is
straight-line if the output machine of T on A, which as before is denoted TA, runs
A in straight-line till completion. Namely, other than the flexibility of choosing A’s
random tape, T behaves exactly like a honest challenger in Gint when it invokes A.
This type of reduction, due to its simple structure, is amenable to getting lifted.

Theorem 2 (Straight-line reduction: a useful condition for class-closure). LetR =
(Gext(B), T , Gint(A)) be a classical reduction with A and B both being classical
poly-time machines. Let Â = B̂ be quantum poly-time machines. If R is black-box
straight-line, Â-compatible and value-dominating, thenR is (Â, B̂)-closed.

Proof. For any A ∈ EGint(Â), let Â ∈ Â be such that A and Â are Gint-equivalent.

We argue that TA and TÂ are Gext-equivalent and hence TA ∈ EGext(B̂). SinceA and

Â are Gint-equivalent and R is value-dominating, ωGext(TÂ) = ωGext(TA). TÂ ∈
3 Most classical games we deal with are actually well-defined for all machines. But we explicitly

state this requirement in case of some artificial examples.
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B̂, i.e., it is quantum poly-time, since T is classical poly-time, and runs any oracle in
straight-line. Finally, note that we need the compatibility condition so that all objects
above are well-defined.

Combine the extendibility condition, we get the corollary below from Theorem 1.

Corollary 1. LetR be a classical black-box reduction for classical poly-time players.
Let Â = B̂ be quantum poly-time machines. If R is (β, Â)-extendible, straight-line,
and value-dominating, then R is β-(Â, B̂)-respectful. As a consequence, there is a
reduction R̂(Â, B̂) that is (β, Â)-effective.

Note that in this scenario, R̂ is also straight-line and T̂ (Â) = TÂ. Loosely speak-
ing, the very same reduction carries over to the quantum setting.

4.2 Lifting Game-Updating Reductions

Sometimes we need to update Ĝext or Ĝint or both, in order to capture the right com-
putational assumption and the security property against quantum players. In this case,
the classical transformation procedure may become totally inappropriate and give little
clue about how to restore a quantum reduction (if there exists one).

We view this issue as a matter of “language-barrier”. One way to establish a reduction
R̂(Â, B̂) is to introduce an interpreter Î that translates the “languages” between the
players in the original (classical) and updated (quantum) games. Namely, Î translates an
adversary Â in Ĝint to an adversary Â′ in the classical game Gint. Then we can reduce
the issue to the game-preserving case and consider a class of quantum adversaries Â′ :=
Î(Â). Suppose we can lift the classical reduction to work with adversaries in Â′, then
we end up with a quantum adversary in game Gext. Next, by the same token, Î translates
the adversary into a quantum one compatible in Ĝext. This procedure gives a quantum
transformer T̂ := Î ◦ T̂0 ◦ Î that operates as follows

Â ∈ Â
Î−→ Â′ T̂0−→ T̂0(Â′)

Î−→ B̂ ∈ B̂ .

We formalize this idea, and propose class-translatable reductions as a template for
quantum-friendly reductions in the game-updating case. For simplicity, we assume only
Gint is updated to Ĝint and Gext stays the same. We want to investigate if a reduction
of the form (Gext(B̂), T̂ , Ĝint(Â)) can be derived. It is straightforward to adapt the
treatment to the scenario where Gext (or both) gets updated.

Definition 4 ((β, β′)-(Â, B̂)-translatable reductions). LetR be a classical reduction
(Gext(B), T , Gint(A)) and β, β′ be two functions. Let Ĝint be a quantum game, and
(Â, B̂) be classes of quantum machines. We say R is (β, β′)-(Â, B̂)-translatable, if
there exists a machine (i.e. Interpreter) Î , such that the following hold:

– R is β-(B̂, Â′)-respectful, where Â′ := Î(Â).
– (Gint, Î , Ĝint) is a (β′, Â)-effective reduction. Namely ∀Â ∈ Â, ωGint(Î(Â)) ≥

β′(ωĜint(Â)).
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Theorem 3 (Quantum lifting for game-updating reductions). IfR(A,B) is (β, β′)-
(Â, B̂)-translatable, then there exists an (Â, B̂)-consistent reduction R̂(Â, B̂) :=
(Gext(B̂), T̂ , Ĝint(Â)) that is (β · β′, Â)-effective.

Proof. By the hypothesis, we know there is an interpreter Î . Since R is β-(B̂, Â′)-
respectful, by Theorem 1, there is a T̂0 s.t. (Gext(B̂), T̂0, Gint(Â′)) is (β, Â′)-effective.
Define T̂ := T̂0 ◦ Î and R̂ := (Gext, T̂ , Ĝint). Clearly, R̂ is (Â, B̂)-consistent be-
cause for any Â ∈ Â, T̂ (Â) = T̂0(Î(Â)) ∈ B̂. On the other hand, for any Â ∈ Â it
holds that ωGext(T̂ (Â)) ≥ β · ωGint(Î(Â)) ≥ ββ′ ·ωĜint(Â).

In contrast to the game-preserving setting, applying lifting theorem for game-updating
reductions typically needs non-trivial extra work. The main difficulty comes from show-
ing existence of an interpreter Î with the desired properties. In Sect. 5.2, we give an
example that demonstrates potential applications of Theorem 3.

5 Applications

We give a few examples to demonstrate our framework for “quantum-friendly” reduc-
tions. In the game-preserving setting (Section 5.1), we show two versions of quantum-
secure hash-based signatures schemes assuming quantum-resistant one-way functions.
One follows the generic construction that builds upon Lamport’s OTS and Merkle’s
original hash-tree idea. The other is an efficient variant proposed in [10] that uses a
more compact one-time signature scheme and a more sophisticated tree structure. In
the game-updating setting (Section 5.2), we give an alternative proof for Full-Domain
Hash (FDH) in the Quantum RO model as shown in [47]. We stress that this proof is
meant to illustrate how our lifting theorem can be potentially applied, as apposed to pro-
viding new technical insights. Unless otherwise specified, all players are either classical
or quantum poly-time machines.

5.1 Quantum Security for Hash-based Signatures

Classically, there are generic constructions (and efficient variants) for EU-CMA-secure
signature schemes based on one-way functions. We show that security reductions there
can be lifted easily, using our class-respecful characterization. It follows that there are
classical signature schemes that are secure against quantum attacks, merely assuming
existence of quantum-resistant one-way functions.

Generic Hash-Tree Signature Schemes. A generic approach for constructing EU-CMA-
secure signature scheme from OWFS goes as follows:

– A one-time signature (OTS) is constructed based on OWFS. There are various ways
to achieve it. We consider Lamport’s construction (L-OTS) here [28].

– A family of universal one-way hash functions (UOWHFS) is constructed based on
OWFS. This was shown by Rompel [37] and we denote the hash family R-H.
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– An OTS scheme is converted to a full-fledged (stateful) signature scheme using
UOWHFS. The conversion we consider here is essentially Merkle’s original hash-
tree construction [32].

We show next that each step can be “lifted” to the quantum setting using our lifting
theorem for game-preserving reductions (Theorem 1) and the straight-line characteri-
zation (Theorem 2). Note that we do not intend to optimize the construction here. For
instance, one can use a pseudorandom function to make the signature scheme stateless.
Verifying whether these still hold in the quantum setting is left as future work, though
we believe it is the case, following the framework and tools we have developed.

LAMPORT’S OTS. Consider the (classical) reductionR := (GINV, T , GOT-FOR), where
GINV is the inversion game and GOT-FOR is the one-time forgery game. It is straight-
line and value-dominating. Both games are compatible with Q and ωGext(TA) ≥ β ·
ωGint(A) for anyA with β(x) = 1

2�(n)x and �(n) a polynomial representing the length

of the messages. HenceR is (β,Q)-effective as well. Thus we claim that:

Proposition 1. (GINV, εQ = negl(n))OWF implies (GOT-FOR, εQ = negl(n))L-OTS.
Namely, assuming quantum-resistant OWFS, there exists EU-CMA-secure OTS against
quantum attackers Q.

UOWHFS FROM OWFS. Rompel’s construction is complicated and the proof is technical
(or rather tedious). However, the key ingredients in which security reductions are cru-
cial are actually not hard to check. Basically, there are four major components in the
construction:

1. From a given OWF f 0, construct another OWF f with certain structure. Basically,
f is more “balanced” in the sense that sampling a random element in the range
of f and then sub-sampling its pre-images is not much different from sampling a
random element in the domain directly.

2. From f , construct H = {hs} such that for any x, it is hard to find a collision in
the so called “hard-sibling” set. The hard-sibling set should comprise a noticeable
fraction of all possible collisions.

3. Amplifying the hard-sibling set so that finding any collision of a pre-determined x
is hard.

4. Final refinements such as making the hash functions compressing.

The second step is the crux of the entire construction. There are three reductions
showing that finding a hard-sibling is as hard as inverting f which we will discuss in
a bit detail below, whereas showing that the hard-sibling set is noticeably large is done
by a probabilistic analysis and holds information-theoretically. Other steps either do
not involve a security reduction and relies purely on some probabilistic analysis, or the
reductions are clearly liftable.

The three reduction in step 2 involve four games: GINV–the standard inversion game
for OWFS; GINV’–a variant of GINV in which y is sampled according to another distri-
bution, as opposed to sampling a domain element x uniformly at random and setting
y := f (x); GCOL’, a variant of the collision game for UOWHFS, in which an adversary
is supposed to find a collision x′ in a special set (we don’t specify it here); and GCOL”,
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which further modifies GCOL’ in the distribution that s is sampled (instead of uniformly
at random). Then R1 = (GINV, T1, GINV’), R2 := (GINV’, T2, GCOL”) and R3 =
(GCOL”, T3, GCOL’) are constructed.R1 andR3 essentially follow from the “balanced”
structure of f , andR2 comes from the construction ofH = {hs}. All three reductions
are black-box straight-line, value-dominating, and (βi,Q)-effective with βi ≥ 1/pi(n)
for some polynomial pi, i ∈ {1, 2, 3}. For concreteness, we can set p1 = �′(n)–the
length of the input string of f 0, p2 = 3 a constant, and p3(n) = 5�′(n)+ log �′(n)+ 2.
Our exposition here and parameter choices are adapted from [25].

Proposition 2. (GINV, εQ = negl(n))OWF implies (GCOL, εQ = negl(n))R-H. Namely,
assuming quantum-resistant OWFS, there exist UOWHFS secure against quantum attack-
ers Q.

HASH-TREE: CONVERTING OTS TO FULL-FLEDGED SIGNATURES. Once a family of
UOWHFS and an OTS are at hand, we can get a full-fledged signature scheme based
on Merkle’s hash-tree construction. Basically, one constructs a depth-k binary tree
and each leaf corresponds to a message. Each node in the tree is associated with a
key-pair (pkw, skw) of the OTS scheme. The signature of a message m consists of
σm := Sign(skm, m) and an authentication chain. For each node w along the path
from the root to the message, we applyH = {hs} to the concatenation of its children’s
public keys and then sign the resulting string with its secret key skw. The authentica-
tion chain contains all these (pkw0, pkw1, σw := Sign(skw, pkw0‖pkw1)). Let M-TREE

be the resulting tree-based scheme and GFOR be the forgery game. The classical secu-
rity analysis builds upon two reductions (GCOL, T , GFOR) and (GOT-FOR, T ′, GFOR). It
is easy to check that both satisfy the conditions in Corollary 1.

Proposition 3. (GCOL, εQ = negl(n))UOWHFS and (GOT-FOR, εQ = negl(n))OTS imply
(GFOR, εQ = negl(n))M-TREE. Namely, assuming quantum-resistant UOWHFS and OTS,
there exist an EU-CMA-secure signature scheme against quantum attackers Q.

Combining Propositions 1, 2, and 3, we get

Theorem 4. Assuming quantum-resistant OWFS, there exists EU-CMA-secure signature
schemes against quantum poly-time attackers Q.

XMSS: an efficient variant. The XMSS scheme [10] can be seen an efficient instan-
tiation of the generic construction above. It uses a different one-time signature scheme
called Winternitz-OTS (W-OTS for short), which can be based on a family of pseudo-
random functions, which in turn exists from the “minimal” assumption that OWFS exist.
The hash-tree (which is called XMSS-tree in [10]) also differs slightly. We now show
that both the security of W-OTS and the conversion by XMSS-tree are still valid against
quantum adversaries.

QUANTUM SECURITY OF W-OTS. Classically, existence of OWF imply the EU-CMA-
security of W-OTS. This is established in three steps: 1) By standard constructions, a
pseudorandom generator (PRG) can be constructed from OWFS [24], and then one can
construct a pseudo-random function (PRF) from a PRG [16]. 2) A PRF is shown to be
also key-one-way (KOW, defined later). 3) Show that KOW implies EU-CMA-security of
W-OTS by a reduction.
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The first step is known to be true in the presence of quantum adversaries [46]4.
Informally the game for KOW of a function family F goes as follows: C samples a
random function fk ∈R F and a random element x in the domain. (x, y := fk(x)) is
sent to an adversary A, who tries to find k′ such that fk′(x) = y. The PRF to KOW

reduction is straight-line and value-dominating. Extendibility is trivial. Therefore it is
Q-respectful. This is also the case in the KOW to EU-CMA-security of W-OTS reduction.
In addition β is 1 for both reductions, which means that the effectiveness (i.e., tightness
in terms of success probability) in the classical analysis carries over unchanged to the
quantum setting.

Proposition 4. (GPRF, εQ = negl(n)) implies (GOT-FOR, εQ = negl(n))W-OTS. Namely,
assuming a quantum-resistant PRF, W-OTS is one-time EU-CMA-secure against quan-
tum attackers Q.

XMSS-TREE. The XMSS-tree modifies Merkle’s hash-tree construction with an XOR-
technique. Loosely speaking, each level of the tree is associated with two random
strings, which mask the two children nodes before we apply the hash function to pro-
duce an authentication of a node. This tweak allows one to use a second-preimage
resistant (SPR) hash function, instead of collision-resistant hash functions or UOWHFS.
Theoretically universal one-way implies second-preimage resistance. But in practice
people typically test second-preimage resistance when a hash function is designed. De-
spite this change, the security proof is not much different. Reductions are given that
convert a forger either to a forger for W-OTS or to an adversary that breaks SPR-hash
functions. They are straight-line, value-dominating and (1,Q)-extendible. By Corol-
lary 1, we have

Proposition 5. (GSPR, εQ = negl(n)) and (GOT-FOR, εQ = negl(n))W-OTS imply
(GFOR, εQ = negl(n))XMSS. Namely, assuming quantum-resistant PRF and SPR hash
functions, XMSS signature is EU-CMA-secure against quantum attackers Q.

As mentioned above, UOWHFS are by definition second-preimage resistant. As a
result, quantum-resistant SPR hash functions can be constructed from quantum-resistant
OWFS as well. Thus, we obtain that the XMSS signature scheme is EU-CMA-secure
against efficient quantum attackersQ, assuming quantum-resistant OWFS.

5.2 Full-Domain Hash in Quantum Random-Oracle Model

Full domain hash (FDH) is a generic approach of constructing signature schemes based
on trapdoor permutations (TDPs) in the RO model [4]. The classical proof cleverly “pro-
grams” the random-oracle, so that a challenge of inverting a TDP gets embedded as one
output value of the random-oracle. However when we consider FDH in the quantum
random-oracle (QRO) model, in which one can query the random-oracle in superposi-
tion, we lose the “programable” ability in the proof. Zhandry [47] resolved this issue

4 It is easy to verify that the security reduction from PRG to PRF in GMM construction is quan-
tum friendly. The security analysis in the HILL PRF construction from OWFS is much more
complicated. To the best of our knowledge, no rigorous argument has appeared in the literature.
It would be a nice exercise to apply our framework and give a formal proof.
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by some quantum “programing” strategy, which built upon lower bounds on quantum
query complexity. This is summarized as follows.

Theorem 5 ([47, Theorem 5.3]). Let F be a quantum-resistant trapdoor permutation.
If we model H as a quantum random-oracle, then Π is quantum EU-CMA-secure.

We note that Zhandry’s proof fits our framework for lifting game-updating reduc-
tions. Namely, let GTDP the inversion game for a TDP. We can construct an interpreter
Î for any adversary in the forgery game GQRO-FOR, and show that the classical reduc-
tion (GTDP, T , GRO-FOR) is translatable. Applying Theorem 3 proves the theorem here.
We describe a proof in Appendix A for completeness. This illustrates how to apply our
framework and get (in our opinion) more modular security analysis.

5.3 Quantum Security of Classical Cryptographic Protocols

So far, we have been focusing on basic cryptographic primitives such as UOWHFS and
signatures. However, our framework is not limited to these scenarios, and actually can
be applied to analyzing more complicated cryptographic protocols as well. Specifically
an abstraction called simple-hybrid arguments, which characterize a family of classical
proofs for two-party secure computation protocols in the computational setting that go
through against quantum adversaries [23], can be derived easily in our framework. We
defer the details in Appendix B.

6 Discussions

We have proposed a general framework to study which security reductions are quantum-
friendly. The lifting theorems we developed can be used to analyze security against
computationally bounded quantum adversaries for post-quantum cryptography. As an
application, we have shown the quantum security of a generic hash-tree based signa-
ture scheme and an efficient variant (which is a promising candidate for post-quantum
signature schemes to be implemented in practice).

However, this note concerns mostly the feasibility of lifting classical security proofs
to the quantum setting, and there are many important aspects missing and many in-
teresting directions to be investigated. For example, we did not consider much about
the “quality” of the resulting proofs for quantum adversaries. Say, can we preserve the
tightness of the classical reduction when we lift it? Tightness of security reduction is of
great practical impact. Not only it affects how to set the parameters in implementations,
it may render security meaningless in some cases [11]. Interestingly, there are also ex-
amples where we get tighter reduction in the quantum setting, as demonstrated in the
quantum Goldreich-Levin theorem [1]. This is also a nice example of game-updating
reductions beyond the QRO model. Along the same line, another game-updating re-
duction that is fundamental in cryptography arises from constructing a pseudorandom
permutation (PRP) from a pseudorandom function (PRF). It is not clear if the classical
construction remains valid if the game defining PRP allows superposition queries to
distinguish it from a truly random permutation.

There are many concrete questions left for quantum-secure signature schemes as
well. We showed a quantum EU-CMA-secure signature scheme based on quantum-
resistant OWFS. Can we make it strongly-unforgeable? The XMSS scheme is also known
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to be forward-secure. Is it still true against quantum adversaries? We believe both an-
swers are positive, by similar analysis from this note. Moreover, there are generic trans-
formations that augments a signature scheme with stronger security guarantees (e.g.,
from EU-CMA-secure to SU-CMA-secure). Do they hold in the quantum setting? We
also note that the applications we have shown in the game-updating case are not very
exciting in the sense that designing an interpreter appears no easier than coming up with
a quantum reduction directly. It is helpful to further explore along this line to find more
interesting applications.

Finally, we remark that quantum attacks could reduce the security level of a system,
using for example Grover’s quantum search algorithm. Although not covered in this
note, this issue needs to be addressed with care as well.
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13. Damgård, I., Lunemann, C.: Quantum-secure coin-flipping and applications. In: Matsui, M.
(ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 52–69. Springer, Heidelberg (2009)

14. Fehr, S., Katz, J., Song, F., Zhou, H.-S., Zikas, V.: Feasibility and completeness of cryp-
tographic tasks in the quantum world. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785,
pp. 281–296. Springer, Heidelberg (2013)

15. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable as-
sumptions. In: Proceedings of the Forty-Third Annual ACM Symposium on Theory of Com-
puting, pp. 99–108. ACM (2011)

16. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Journal of the
ACM (JACM) 33(4), 792–807 (1986)

17. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sci-
ences 28(2), 270–299 (1984)

18. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988)

19. van de Graaf, J.: Towards a formal definition of security for quantum protocols. PhD thesis,
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A (Alternative) Proof of Theorem 5: FDH in QRO

We first review a technical tool in [47] called semi-constant distribution. Loosely speak-
ing, it allows us to “program” a function, which still looks like a random function even
to a quantum observer.

Definition 5 (Semi-Constant Distribution [47, Definition 4.1]). Let X and Y be sets
and denoteHX,Y the set of functions from X to Y. The semi-constant distribution SCλ

is defined as the distribution overHX,Y resulting from the following process:

– Pick a random element y from Y.
– For each x ∈ X, set H(x) = y wth probability λ. Otherwise set H(x) to be a

random element in Y.

Theorem 6 ( [47, Corollary 4.3]). The distribution of the output of a quantum algo-
rithm making qH queries to an oracle drawn from SCλ is at most a distance 8

3 q4
Hλ2

away from the case when the oracle is drawn uniformly fromHX,Y.



264 F. Song

We are now ready to give a proof for Theorem 5 using our framework for game-
updating reductions.

Proof. Classically there isR = (GTDP, T , GRO-FOR) that inverts the TDP with a forger
for the FDH-Sign scheme. We construct an interpreter Î as follows, and show thatR is
(Â, B̂)-translatable with Â = B̂ = Q.

Interpreter Î
Input: Adversary Â for a quantum EU-CMA-game. Let qS and aH be upper bounds on the
number of signing queries and hash queries of Â.
Output: An adversary Â′ := Î(Â) that operates as follows:

1. Receive pk from a challenger, which indexes a permeation fpk.
2. Pick an arbitrary message a. Query H(·) and get b := H(a).
3. Emulate (internally) a quantum EU-CMA-game with Â.

– Use b to create an oracle Ĥ from a semi-constant distribution SCλ which handles
(quantum) hash queries from Â. Specifically, let O2 be a random oracle outputting
1 with probability λ and O1 be a random oracle mapping a message to an input of
fpk. Let Ĥ(x) = b if O2(x) = 1 and Ĥ(x) = fpk(O1(x)) otherwise.

– On signing query mi, if O2(mi) = 1 abort. Otherwise respond with σi := O1(mi).
4. On output (m∗, σ∗) from Â, if O2(m∗) = 1 output (a, σ∗).

Fig. 1. Construction of the Interpreter

Clearly, Â′ is a well-defined (quantum) adversary for the original forgery game
GRO-FOR (i.e., the hash queries are classical). If Â outputs a valid forgery (m∗, σ∗)
such that Ĥ(m∗) = fpk(σ

∗) and O2(m∗) = 1, we know that Ĥ(m∗) = b = H(a)
and hence (a, σ∗) forms a valid forgery in the classical forgery game. Note that the
view of Â in Â′ differs from a true interaction with a challenger in game GQRO-FOR in
two places: a truly random oracle is replaced by Ĥ drawn from SCλ and the signing
query fails with probability λ. By picking λ a proper inverse polynomial in qH and qS,
we can obtain from Theorem 6 that ωGRO-FOR (Î(Â)) ≥ ω2

GQRO-FOR (Â)/p(n) for some
polynomial p(·). Thus (GRO-FOR, Î , GQRO-FOR) forms a (β′,Q)-effective reduction for
a suitable β′. Since the two random oracles (O1,O2) can be simulated efficiently by k-
wise indecent functions (C.f. [47, Theorem 6.1]),R is clearly β-(Q, Î(Q))-respectful
with β = 1. Therefore we obtain that R is (Q,Q)-translatable, which by Theorem 3
can be lifted to a reduction (GTDP(Q), T̂ , GQRO-FOR(Q)). This shows that the FDH-
Signature scheme is quantum EU-CMA-secure, assuming quantum-resistant trapdoor
permutations.

B Details on Sect. 5.3

Security definitions in this setting usually follows the simulation paradigm. In partic-
ular, there is not a simple game capturing them5. Roughly speaking, we require the

5 In some sense, the security definitions we discussed earlier that are specified by games are
falsifiable, which does not seem to be so here.
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existence of an imaginary entity (called the simulator) with certain properties for any
possible adversary. The main ingredient of a security proof is often a hybrid argument,
in which a sequence of imaginary experiments (a.k.a. hybrids) are defined in terms of
an adversary and the simulator. The goal is to show each adjacent pair of hybrids is
indistinguishable. Whenever this is done by a reduction of breaking a computational
assumption, we can define a distinguishing game (as our internal game) and study if the
reduction can be lifted using our framework.

Consider zero-knowledge proof protocols as a concrete example. Zero-knowledge
property requires that for any dishonest verifier V∗, there is a simulator S , such that
the output of S is indistinguishable from the view of V∗ in real protocol with honest
prover. At this moment, it looks quite alien to our framework. However, once we start
the security proof, it naturally fits our framework. Basically, if we fix a dishonest V∗,
and a specific construction of a simulator, showing that the simulator works can be
thought of as a distinguishing game.

ZK Distinguishing Game GZK
V∗ ,S

Two parties: Challenger C and distiguisher D.

– C flips a random coin b ∈R {0, 1}. If b = 0 simulates an execution of the ZK protocol
and sends D the view of V∗. If b = 1, run the simulator S and sends D the output of S .

– D receives the message from C, generate one bit b′ and send it to C.
– C outputs succ if b = b′ and fail otherwise.

The security proof will then proceed in the familiar fashion. Namely a reduction
(Gext, T , Gint := GZK

V∗,S ) is constructed for some computational assumption captured
by Gext. We can then ask if we can “lift” the reduction to the quantum setting. One
subtlety, however, is that the distinguishing game is specific to V∗ and S . Because of
issues like rewinding, we have to update the games. The challenge then lies in con-
structing a simulator Ŝ for any dishonest quantum verifier V̂∗, which gives the updated
distinguishing game ĜZK

V̂∗,Ŝ in the presence of quantum verifiers.
Sometimes we end up in the simpler game-preserving case. A concrete example is

an abstraction proposed in [23], called simple-hybrid arguments (SHA).

SIMPLE HYBRID ARGUMENTS. SHA formalizes a family of classical proofs that can
go through against quantum adversaries in the computational UC model. The essence
is a simple observation: if two adjacent hybrids only differs by a small change such as
chaining the plaintext of an encryption, then quantum security immediately follows as
long as computational assumptions are made quantum-resistant. Using our framework,
each adjacent pair of hybrid induce a distinguishing game Gint that can be defined
similarly to GZK

V∗,S , and a classical reductionR := (Gext, T , Gint) is already at hand for
some computational assumption defined by Gext. The conditions in SHA, e.g., changing
only the plaintext, ensure that R satisfy the definition of (Â, B̂)-respectful reductions
with Â = B̂ = Q. As a result, these reductions can be lifted by Theorem 1.
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Abstract. Recent advances in code-based cryptography paved new ways
for efficient asymmetric cryptosystems that combine decent performance
with moderate key sizes. In this context, Misoczki et al. recently proposed
the use of quasi-cyclic MDPC (QC-MDPC) codes for the McEliece cryp-
tosystem. It was shown that these codes can provide both compact key
representations and solid performance on high-end computing platforms.
However, for widely used low-end microcontrollers only slow implemen-
tations for this promising construction have been presented so far.

In this work we present an implementation of QC-MDPC McEliece
encryption providing 80 bits of equivalent symmetric security on low-cost
ARM Cortex-M4-based microcontrollers with a reasonable performance
of 42ms for encryption and 251-558ms for decryption. Besides practi-
cal issues such as random error generation, we demonstrate side-channel
attacks on a straightforward implementation of this scheme and finally
propose timing- and instruction-invariant coding strategies and counter-
measures to strengthen it against timing attacks as well as simple power
analysis.

Keywords: Code-based cryptography, public key encryption, side-
channel attacks, software, microcontroller, post-quantum cryptography.

1 Introduction

Although it is well-known that factoring or the discrete logarithm problem can be
solved in polynomial time by Shor’s quantum computing algorithm [17], they still
found the basis for virtually all public key cryptosystems used today. Needless to
say that alternative cryptosystems which (a) provide the same security services
at (b) a comparable level of computational efficiency and (c) similar costs for
storing keys, are urgently required.

In this context, code-based cryptosystems introduced by McEliece [12] and
Niederreiter [15] are among the most promising alternative public key cryp-
tosystems. Having been regarded for a long time as impractical for memory-
constrained platforms due to their large key sizes, recent advances showed that
reducing the key-sizes to practical levels is possible. Using (QC-)MDPC codes
in the McEliece cryptosystem was first proposed in [13] and was later published
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with small changes in the parameter sets in [14]. Yet it needs to be investigated
if all requirements of constrained platforms can be met with QC-MDPC codes.

The first implementations of this scheme appeared in [8] for AVR microcon-
trollers and Xilinx FPGAs along with some optimized decoding techniques, fol-
lowed by a lightweight FPGA implementation [22]. Cyclosymmetric (CS-)MDPC
codes in combination with the Niederreiter cryptosystem were recently proposed
in [4], including an implementation for a small PIC microcontroller.

The results from [8] indicated that it seems to be a hard challenge to provide
a reasonably fast implementation of QC-MDPC codes on low-cost 8-bit AVR
ATxmega256A3 microcontrollers. The authors reported that their code for this
platform runs the encryption and decryption in 830ms and 2.7 s, based on the
former 80-bit secure parameter set (n0 = 2, n = 9600, r = 4800, w = 90, t = 84).
In particular, decryption is obviously too slow to be of any practical interest for
most real-world applications.

Despite sufficient performance, other highly relevant properties need further
investigation as well to enable the deployment of QC-MDPC McEliece in
practical systems. First, QC-MDPC on-chip key-generation has never been im-
plemented on constrained devices. Second, McEliece as a probabilistic scheme
requires a secure random number generator capable of producing error vectors
of a certain Hamming weight during the encryption operation which has not
been considered yet. Third, the parameter set was recently updated by [14] as
shown in Sect. 2.2 due to advances in cryptanalysis. Fourth, the timing and the
instruction flow of all previously presented implementations of the encryption
and decryption operations depend on secret data. Fifth, all microcontroller im-
plementations of QC-MDPC McEliece encryption reported so far have not been
investigated with regard to side-channel attacks.

Side-channel attacks on the McEliece cryptosystem have mostly targeted
Goppa codes and exploited differences in the timing behavior [18,20,21]. Im-
proved timing attacks and corresponding countermeasures were presented in [2].
First practical power analysis attacks on Goppa-code McEliece implementations
for 8-bit microcontrollers were presented in [7]. A very recent work investigated
differential side-channel attacks on a lightweight QC-MDPC FPGA implemen-
tation [5].

Contribution. In this work, we intend to address the aforementioned problems.
We present an implementation of QC-MDPC McEliece encryption providing 80
bits of equivalent symmetric security on a low-cost ARM Cortex-M4-based mi-
crocontroller with a reasonable performance of 42ms for encryption and 251-
558ms for decryption (1). The parameter set we considered for implementation
takes latest advances in cryptanalysis into account (2). We briefly discuss how to
employ true random number generation for McEliece encryption (3). We demon-
strate side-channel attacks on a straightforward implementation of this scheme
and finally propose coding strategies and countermeasures to harden it against
timing attacks (4) and simple power analysis (5).
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Outline. Our work is outlined as follows. We summarize the background on
QC-MDPC McEliece encryption in Sect. 2 and describe improvements in imple-
menting the scheme in Sect. 3. Side-channel attacks on QC-MDPC McEliece are
demonstrated on two microcontroller platforms in Sect. 4. We propose counter-
measures to strengthen our implementations against these attacks and provide
implementation results in Sect. 5. We conclude our work in Sect. 6.

2 Background on QC-MDPC McEliece

An in-depth description of McEliece based on (QC-)MDPC codes is given in [14].
Here, we give a short summary of the cryptosystem and its underlying code.

2.1 (QC-)MDPC Codes

A binary linear [n, k] error-correcting code C of length n is a subspace of Fn
2 of

dimension k and co-dimension r = n − k. Code C can either be defined by a
generator matrix or by a parity-check matrix. The generator matrix G ∈ Fk×n

2

defines the code as C = {mG ∈ Fn
2 |m ∈ Fk

2} and the parity-check matrix
H ∈ Fr×n

2 defines the code as C = {c ∈ Fn
2 | cHT = 0r}. The syndrome s ∈ Fr

2

of a vector x ∈ Fn
2 is defined as s = HxT . It follows that if x ∈ C then s = 0r

otherwise s �= 0r.
If there exists some integer n0 such that every cyclic shift of a codeword

c ∈ C by n0 positions results in another codeword c′ ∈ C then code C is called
quasi-cyclic (QC). If n = n0p for some integer p, both generator and parity-
check matrix are composed of p× p circulant blocks. It suffices to store one row
(usually the first) of each circulant block to completely describe the matrices.

A (n, r, w)-MDPC code is a binary linear [n, k] code defined by a parity-check
matrix with constant row weight w. A (n, r, w)-QC-MDPC code is a (n, r, w)-
MDPC code that is quasi-cyclic with n = n0r.

2.2 The QC-MDPC McEliece Cryptosystem

In this section we describe the key-generation, encryption and decryption of the
McEliece cryptosystem based on a t-error correcting (n, r, w)-QC-MDPC code.
The following parameters are proposed for a 80-bit security level in [14]:

n0 = 2, n = 9602, r = 4801, w = 90, t = 84.

With these parameters a 4801-bit plaintext block is encoded into a 9602-
bit codeword to which t = 84 errors are added. The parity-check matrix H
has constant row weight w = 90 and consists of n0 = 2 circulant blocks, the
redundant part Q of the generator matrix G consists of n0 − 1 = 1 circulant
block. The public key has a size of 4801-bit and the secret key has a size of 9602-
bit which can be compressed to 1440 bit since it is very sparse. For a detailed
discussion of the security of this scheme we refer to [14].
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Key-Generation. Key-Generation is equal to generating a (n, r, w)-QC-MDPC
code with n = n0r. The public key is the generator matrix G and the secret key
is the parity-check matrix H .

In order to generate a (n, r, w)-QC-MDPC code with n = n0r, select the
first rows h0, . . . , hn0−1 of the n0 parity-check matrix blocks H0, . . . , Hn0−1 with

weight
∑n0−1

i=0 wt(hi) = w uniformly at random. The parity-check matrix blocks
H0, . . . , Hn0−1 are then generated by r − 1 quasi-cyclic shifts of h0, . . . , hn0−1.
A horizontal concatenation forms the parity-check matrix H = H0, . . . , Hn0−1.

Generator matrix G = [Ik|Q] is computed from H in row reduced echelon
form by concatenating the identity matrix Ik and matrix

Q =

⎛
⎜⎜⎝

(H−1n0−1 ·H0)
T

(H−1n0−1 ·H1)
T

· · ·
(H−1n0−1 ·Hn0−2)T

⎞
⎟⎟⎠ .

Since both matrices are quasi-cyclic, it suffices to store their first rows instead
of the full matrices. Note, when using a CCA2 conversion such as [10,16], G is
allowed to be of systematic form without reducing the security of the scheme.

Encryption. Given a message m ∈ Fk
2 , generate a random error vector e ∈ Fn

2

with wt(e) ≤ t and compute x = mG+ e.

Decryption. Given a ciphertext x ∈ Fn
2 , compute mG← ΨH(x) using a t-error

correcting (QC-)MDPC decoder ΨH . Since G is of systematic form, plaintext m
can be extracted from the first k positions of mG.

2.3 Decoding (QC-)MDPC Codes

Compared to the simple operations involved in encryption (i.e., a vector-matrix
multiplication followed by an addition), decoding is the more complex operation.
Several decoders have been proposed for (QC-)MDPC codes in [3,6,8,9,14]. Here,
we refer to the results obtained in [8] where an optimized bit-flipping decoder
based on [6] was identified as the most suitable for the constrained computing
environment of microcontrollers. This decoder works as follows:

1. Compute the syndrome of the received ciphertext s = HxT .
2. Count the unsatisfied parity-checks for every ciphertext bit.
3. If the number of unsatisfied parity-checks for a ciphertext bit exceeds a

precomputed threshold, flip the ciphertext bit and update the syndrome.
4. If s = 0r, the codeword was decoded successfully. If s �= 0r, go to Step 2. or

abort after a defined maximum of iterations with a decoding error.

The precomputed thresholds are derived from the code parameters as pro-
posed by [6].
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3 Platform and Implementation Details

The STM32F4 Discovery board is equipped with a STM32F407 microcontroller
which features a 32-bit ARM Cortex-M4F CPU with 1Mbyte flash memory,
192Kbytes SRAM and a maximum clock frequency of 168MHz. It sells at
roughly the same price of USD 5-10 as the AVR ATxmega256A3, depending on
the ordered quantity. It is based on a 32-bit instead of a 8-bit architecture, can be
clocked at higher frequencies, offers more flash and SRAM storage, comes with
DSP and floating point instructions, provides communication interfaces such as
CAN-, USB-/ and Ethernet controllers, and has a built-in true random number
generator (TRNG).

3.1 Implementing QC-MDPC McEliece for the STM32F407

Our implementations of the QC-MDPC McEliece cryptosystem for the
STM32F407 microcontroller cover key-generation, encryption, and decryption
and aim for a reasonable time/memory trade-off.

Key-Generation. Secret key generation starts by selecting a first row candi-
date for Hn0−1 with w/n0 set bits. The indexes in the range of 0 ≤ i ≤ r − 1
at which bits are set are generated using the microcontroller’s TRNG. Since
r = 4801 is not a power of two, we sample error indexes ei with �log2(r)� = 13
bits from the TRNG and only use them if ei ≤ r − 1 holds (i.e., rejection sam-
pling).

The public key computation requires that H−1n0−1 exists. Hence, we apply the
extended Euclidean algorithm to the first row candidate and xr−1. If the inverse
does not exist, we select a new first row candidate for Hn0−1 and repeat. If the
inverse exists, the first row of Hn0−1 is converted into a sparse representation
where w/n0 counters point to the positions of set bits.

Next, we randomly select first rows for H0, . . . , Hn0−2 as described for Hn0−1,
convert and store them in their sparse representation, and compute (H−1n0−1Hi)

T ,
0 ≤ i ≤ n0 − 2. Note, since the matrices involved are quasi-cyclic, the result is
quasi-cyclic as well. The resulting generator matrix is not sparse and hence its
first row is stored in full length.

Encryption. Encryption is divided into encoding a message and adding an
error of weight t to the resulting codeword. To compute the redundant part of
the codeword, set bits in message m select rows of the generator matrix G that
have to be XORed. Starting from the first row of the generator matrix, we parse
m bit-by-bit and decide whether or not to XOR the current row to the redundant
part. Then the next row is generated by rotating it one bit to the right and the
following message bit is processed. This implementation approach was originally
introduced in [8].

After computing the redundant part of the codeword, we append it to the
message and generate t random indexes at which we flip bits (i.e., the error
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addition) to transform the codeword into a ciphertext. We retrieve the required
randomness directly from the microcontroller’s internal TRNG and again use
rejection sampling, this time with �log2(n)� = 14-bit random numbers, to get a
uniform distribution of error positions.

In Sect. 4.2 we describe the shortcomings of this implementation approach
with regard to side-channel attacks and present countermeasures in Sect. 5.1.

Decryption. We implement the decoder as described in Sect. 2.3 to decrypt
ciphertexts. First, the syndrome is computed, which is a similar operation to
encoding a message, except for the fact that the secret key is stored in a sparse
representation. The ciphertext is split into n0 parts that correspond to the n0

blocks of the parity-check matrix. The ciphertext blocks are processed in parallel
bit-by-bit. If a ciphertext bit is set, the corresponding row of the parity-check
matrix is added to the syndrome otherwise the syndrome remains unchanged.
The following rows of the parity-check matrix blocks are generated directly in
the sparse representation by incrementing the counters.

If the computed syndrome s �= 0r then we proceed by counting how many
parity-check equations are violated by a ciphertext bit. This is given by the
number of bits that are set in both the syndrome and the row of the parity-
check matrix block that corresponds to the ciphertext bit. If the number of
unsatisfied parity-check equations exceeds a precomputed threshold bi, then the
ciphertext bit is flipped and the row of the parity-check matrix block is added
to the syndrome.

If the syndrome is zero after a decoding iteration, decoding was successful.
Otherwise we continue with further iterations until we reach a defined maximum
upon which a decoding error is returned. In Sect. 4.3 we describe the shortcom-
ings of such an implementation with regard to side-channel attacks and present
corresponding countermeasures in Sect. 5.2.

4 Side-Channel Attacks

In the following we present power analysis attacks on the QC-MDPC McEliece
cryptosystem and describe how we modified two development boards to al-
low meaningful power measurements. We used the freely available source code
from [8] and compiled it for the Atmel AVR XMEGA-A1 Xplained board. The
board features a 8-bit Atmel ATxmega128A1 microcontroller that can be clocked
at a maximum frequency of 32MHz and which is technically equivalent to the
ATxmega256A3 used in [8] except for less flash and SRAM memory.

Power analysis attacks exploit the fact that when cryptographic operations
are executed on a physical device, information about the processed data and the
executed instructions may be recovered from the consumed electrical energy at
different points in time. Simple power analysis (SPA) attacks [11] are based on
the idea that certain operations can be distinguished from each other by visual
inspection or pattern recognition.
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In this work we target and distinguish two side-channel attack (SCA) sce-
narios: first a message recovery attack demonstrates that an on-chip generated,
secret message (e.g., a secret key for hybrid encryption) can be easily obtained
using its significant SCA-leakage during encryption. Second, we investigate an
SCA-attack on the leakage obtained during the decryption operation to identify
the private key.

4.1 Preparation of the Evaluation Boards

Since our goal is to observe power traces from the respective microcontroller,
we modified the boards to allow unfiltered power measurements as explained
below. Note, we only modified external components on the board, leaving the
microcontrollers untouched.

For our measurements we use a PicoScope 5203 with two channels that can
obtain 500MS/s for each channel sampling a bandwidth of 250MHz. One probe
measures the power consumptions at an inserted measurement resistor in the
VDD path, the other probe is used to signal the beginning and end of the
cryptographic operation via an I/O pin of the respective microcontroller (i.e., a
trigger signal).

Atmel AVR XMEGA-A1 Xplained Board. We removed all capacitors1

connected between the microcontroller’s VCC and GND and we placed a 2.7Ω
resistor onto the power supply measurement header that connects the board’s
3.3V to the VCC pins of the microcontroller. Furthermore, we added three ca-
pacitors in parallel (100μF, 100nF, 10 nF) right before our measurement resistor
between the board’s 3.3V and GND to account for the removed capacitors. The
modified AVR board is shown in Fig. 1a.

STM32F4 Discovery Board. Again, we removed all capacitors and coils2 that
are connected between the microcontroller’s VDD pins and GND and placed a
2.7Ω resistor onto the power supply measurement header (IDD) that connects
the board’s 3V to the VDD pins of the microcontroller. Similarly, we added
three capacitors in parallel (100μF, 100nF, 10 nF) right before our measurement
resistor between the board’s 3V and GND. The modified STM board is shown
in Fig. 1b.

4.2 Message Recovery Attack

Imagine an implementation in which the microcontroller generates a symmetric
key to encrypt bulk data. The symmetric key is encrypted under the public
key of the intended receiver using asymmetric encryption. After exchanging the

1 A total of ten 100nF capacitors (C102-C111) were removed, cf. [1].
2 One coil (L1) and 16 capacitors (C21-C26,C28-C37) were removed, cf. [19].
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(a) Modified Atmel AVR XMEGA-A1
Xplained board with connected probes

(b) Modified STM32F4 Discovery board
with connected probes

Fig. 1. Measurement setups for our side-channel attacks

symmetric key, all communication is encrypted using symmetric encryption for
performance reasons.

If an attacker is able to perform a message recovery attack on the asymmetric
encryption, he is in possession of the symmetric (session-) key which allows him
to decrypt and forge symmetric ciphertexts until the symmetric key is updated.
Although this attack is not considered in many SCA-related works, it has indeed
a high practical relevance.

General Considerations. Recall that when encrypting a message m using
QC-MDPC McEliece, the message is multiplied with the generator matrix G
and an error e is added to the result.

x = m ·G+ e

Messagem selects rows of G which are accumulated to compute the redundant
part of the codeword. A message recovery attack is successful if it is possible to
detect if a certain row of G is accumulated or not, since each accumulation can
be directly mapped to a specific message bit.

The implementations under test perform QC-MDPC McEliece encryptions
as follows: if a message bit is set, the corresponding row of G is added to the
redundant part, otherwise this step is skipped. Afterwards, the next row of G is
generated and the process is repeated for the following message bit. The addition
of one row of G to the redundant part involves hundreds of load, xor, and store

operations on both platforms.
Hence, our goal is to detect if this memory-intense operation is being executed

or not by inspection of the power trace.

Experiment on the AVR. We recorded a power trace while encrypting a
randomly selected message that begins with 0x8F402 under a valid public key
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(a) Plain power trace (b) Power trace with marked message bits

Fig. 2. Power trace of the encryption of a message starting with 0x8F402 on an
ATxmega128A1 microcontroller

on an ATxmega128A1 microcontroller. The power trace as shown in Fig. 2a
allows to distinguish three reoccurring patterns. Two of these patterns can be
attributed to the performed or skipped row accumulation from G, the third
pattern corresponds to the generation of the next row of G. Since the addition
of a row of G corresponds to a set message bit, the message that is encrypted
can be read more or less directly from a single power trace. We highlighted the
different patterns and message bits in Fig. 2b. Note, this attack is independent
of the public key under which the message is encrypted.

Experiment on the STM. We repeated the attack on the STM32F407 mi-
crocontroller with the same message and public key as before. The power trace
is shown in Fig. 3a. Here, the patterns cannot be identified as clear as on the
ATxmega, but there is still an observable difference in the power trace when a
row of G is added to the redundant part of the codeword. We highlighted the
repeating pattern in Fig. 3b and map the corresponding message bits to the
power trace. Since in this case there is no visible pattern for a message bit being
zero, we use the distance between two set message bits to determine how many
zeros lie in-between. This is done by cross-correlating the ”one”-pattern with
the recorded power trace and then dividing the distance from peak to peak by
the time it takes to skip one accumulation and generate the next row of G. The
exact duration of skipping one accumulation was obtained in a profiling phase
and only has to be done once.

4.3 Secret Key Recovery Attack

For the secret key recovery attack we assume that we are given a device that
decrypts some known ciphertext (knowledge of the corresponding plaintext is
not required) and that we are able to observe the power consumption of the
device during decryption. The goal is to recover the secret key of the device
from this information.
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(a) Plain power trace (b) Power trace with marked message bits

Fig. 3. Power trace of the encryption of a message starting with 0x8F402 on an
STM32F407 microcontroller

General Considerations. Recall that at the beginning of a QC-MDPC
McEliece decryption, the syndrome s of the received ciphertext x is computed
by multiplying the secret parity-check matrix H with xT .

s = H · xT

Since we are in a quasi-cyclic setting with n0 = 2, the first rows of the two
parity-check matrix blocks define the parity-check matrix. Following the imple-
mentation in [8], each row of the secret key is stored using a series of counters
that point to the positions of set bits (here: 2×45 counters). To generate the next
row, all counters are incremented by one. If a counter exceeds r, it overflowed
and has to be reset to zero (equal to the carry bit of a rotated row).

Using SPA, at least two things should be observable from a power trace that
is recorded during syndrome computation:

1. A set ciphertext bit determines if a row of the secret key is being added to the
syndrome or not (similar to the message recovery attack described before).
But since the ciphertext usually is assumed to be known to an attacker,
recovering the ciphertext from a power trace is not a meaningful attack.

2. Incrementing the counters that resemble (parts of) the secret key must in-
clude an overflow check so that the counter is reset to zero if necessary. If it
is possible to detect such an overflow, this reveals the positions of set bits in
the secret key and can be used for full key recovery.

Both implementations store the position of the secret key bits in counters
which are incremented to generate the next row of the quasi-cyclic parity-check
matrix blocks. The counters are ordered such that the last counter stores the
position of the most significant bit in the secret key. When rotating a row of the
secret key, there is a conditional branch depending on whether the last counter
overflowed or not. If an overflow occurred, all counter values are moved to the
next counter and the first counter is reset. This reduces the overall complexity
to testing only the last counter on an overflow condition.

We set the ciphertext to the all-zero vector in our experiments to remove the
influence of additions of secret key rows to the syndrome on the power trace. Our
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(a) Plain power trace. (b) Power trace with marked secret key bits

Fig. 4. Power traces recorded during syndrome computation on an ATxmega128A1
microcontroller. The secret key in this example starts with (1101000 . . . )2.

attack still works if any other ciphertext is used and would require to profile how
long it takes to add a row of the secret key to the syndrome which to be done
only once. Another option would be to just set bits at the end of the ciphertext,
extract the secret key up to this point and then find the remaining secret key
bits by smart brute-force (cf. [5]). Note that our attacks are independent of
the implemented decoding algorithm since we attack the syndrome computation
that all decoders share as a first step.

Experiment on the AVR. A power trace of the first few rounds of the syn-
drome computation is shown in Fig. 4a for a secret key starting with
(1101000 . . . )2 on the ATxmega128A1 microcontroller.

Two different repeating patterns can be distinguished in the power trace. Our
experiments showed that the first pattern occurs when the device is checking
whether the current ciphertext bit is set (which does not happen when we set
the ciphertext to the all-zero vector) and all counters are incremented by one.
The second pattern can only be detected in the power trace if the highest counter
overflowed. Hence, we can distinguish if an overflow occurred or not. In case both
patterns appear after each other, the highest counter overflowed. If only the first
pattern appears, the highest counter did not overflow.

An overflow means that the most significant bit of the secret key was set.
Since the secret key is rotated bit-by-bit, every bit of the secret key will be the
most-significant bit at some point during the syndrome computation. Hence, it
is possible to recover the secret key from a power trace as shown in Fig. 4b where
we highlight the two patterns and mark the corresponding secret key bits.

Experiment on the STM. Fig. 5a shows the beginning of a power trace that
was recorded during syndrome computation on the STM32F407 microcontroller.
The first two set bits of the secret key in this example are at positions 4790 and
4741.

Again, two different patterns can be distinguished. Both patterns are negative
peaks in the power trace which differ in length compared to reoccurring shorter
peaks. Our experiments showed that the short peaks appear when there is no
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(a) Plain power trace. (b) Power trace with marked secret key bits

Fig. 5. Power traces recorded during syndrome computation on a STM32F407 micro-
controller. The secret key starts with set bits at positions 4790 and 4741.

counter overflow and the long peaks appear when there is an overflow. Thus, it
is again possible to map the power trace to bits of the secret key. We highlight
the two set bits at positions 4790 and 4741 in Fig. 5b. In between the two set
bits there are 49 small peaks, which translate to 49 zeros in the secret key.

5 Countermeasures and Implementation Results

In this section we describe countermeasures that mitigate the attacks described
in Sect. 4 and take other possible information leaks into account. The coun-
termeasures are implemented for the STM32F4 microcontroller using the ARM
Thumb-2 assembly language to have full control over the timings and the in-
struction flow.

5.1 Protecting the Encryption

As shown in Sect. 4.2, the encrypted message can be recovered from a single
power trace if it is possible to decide whether a row of G is being accumulated
or not.

Our proposed countermeasure is to always perform an addition to the re-
dundant part, independent of whether the corresponding message bit is set. Of
course we cannot simply accumulate all rows of the generator matrix, as this
would map all messages to the same codeword.

Since the addition of a row of G to the redundant part is done in 32-bit steps
on the ARM microcontroller, we use the current message bit mi to compute a
32-bit mask (0 −mi). If mi = 0, then the mask is zero, otherwise all 32 bits of
the mask are set. Before the 32-bit blocks of the current row of G are XORed to
the redundant part, we compute the logical AND of them with the mask. This
either results in the current row being added if the message bit is set, or in zero
being added if the message bit was not set.

This countermeasure leads to a runtime that is independent of the message
and the public key. Furthermore, as the same instructions are executed for set
and cleared message bits, a constant program flow is achieved. Hence, it is not
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(a) Power trace of the protected encryption
on the STM32F407 microcontroller. The
message starts with 0x8F402, the first bits
are given as reference.

(b) Power trace of the protected syndrome
computation on the STM32F407 microcon-
troller. The secret key starts with set bits
at positions 4790 and 4741

Fig. 6. Power traces recorded during encryption and decryption with enabled counter-
measures

possible anymore to extract the message bits from a power trace by means of a
SPA attack (cf. Fig 6a).

5.2 Protecting the Decryption

As shown in Sect. 4.3, the secret key leaks while it is being rotated in an unpro-
tected implementation. A possible countermeasure would be to simply refrain
from rotating the rows of the secret key and instead to store the full parity-check
matrix in memory. However, storing H would require 2 × (4801 × 4801) bit =
5.5 Mbyte. Since this is infeasible on the platform under investigation, we are
left with protecting the rotation of a row of the secret key.

To protect the secret key rotation, we still use counters that point to set
bits in the secret key, but we remove the concept of having ordered counters
and thus get rid of the need to copy the counter values on an overflow. After
incrementing a counter, we check for an overflow by comparing the counter value
to the maximum r. We load the negative flag N from the program status register,
use it to compute a 32-bit mask (0−N), and store the logical AND of the counter
value and the mask back to the counter. If the counter value is smaller than r,
the N flag is set and the incremented counter value is stored. If the counter value
is greater or equal to r, the N flag is zero and the counter is reset to zero.

The introduced countermeasure removes timing dependencies based on over-
flowed counters and executes the same program flow independent of whether a
counter is reset or not. Fig. 6b shows the same part of the syndrome computation
as was shown for the unprotected version in Fig. 5b.

With the leakage mitigation of the secret key rotation one important step
towards SPA-resistant implementations was achieved. However, there are more
dependencies on secret data when decoding. Even though we are currently not
aware of a way to exploit these dependencies we want to avoid them in the first
place.
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After syndrome computation and after every decoding iteration the 4801-bit
syndrome has to be compared to zero to check whether decoding was successful.
This comparison should be done in constant-time, as an early abort of the com-
parison could leak information about the current state of the syndrome (e.g.,
about the first non-zero positions). We implemented the comparison by com-
puting the OR of all 32-bit blocks of the syndrome and then check whether the
result is zero or not.

Counting unsatisfied parity-check equations for a ciphertext bit is equal to
counting how many bits are set at the same positions in both the current row
of the secret key and the syndrome. Since we know the position of set bits in
the secret key from the counters that represent the current row of the secret
key, we extract the bits of the syndrome at the same positions and accumulate
them. We do this by loading the 32-bit part of the syndrome which holds the bit
the counter is pointing to and by shifting and masking the 32-bit part so that
the bit in question is singled out and moved to the least significant bit position.
We then accumulate the result which is either 0 or 1. As we use 16-bit counters
for the secret key and operate on a 32-bit architecture, the upper 11-bit can
be used to address a 32-bit memory cell of the syndrome. The remaining 5 bits
point to the bit position within the cell. This approach computes the number of
unsatisfied parity-check equations with an instruction flow (and hence a timing)
that is independent of the syndrome and the current row of the secret key.

Comparing the number of unsatisfied parity-check equations to the threshold
for the current iteration is implemented as a function

ge u32(x, y) = (1 ⊕ ((x⊕ ((x ⊕ y)|((x− y)⊕ y))) >> 31))

which returns 1 if x is greater or equal to y and 0 otherwise in constant time. The
result of this comparison decides whether we have to flip a ciphertext bit and to
update the syndrome with the current row of the secret key or not. If an attacker
would be able to trace the points in time when these operations are executed,
he likely would be able to recover the error that was added to the codeword and
hence to reconstruct the plaintext. To circumvent this possible leakage, we always
XOR the ciphertext bit at the current position with the result of the comparison
which is either 1 or 0. In addition we always perform the syndrome update, in
which we XOR the bit that resulted from the comparison to the positions of the
syndrome which are stored in the secret key counters. Since an XOR of a value
with zero results in the same value, we actually do not change the ciphertext
and the syndrome in case the number of unsatisfied parity-check equations is
below the decoding threshold but still execute the exact same instructions.

Last but not least, the decoding algorithm can take a variable number of
iterations before it terminates. In most cases decoding is finished after either 2
or 3 decoding iterations (on average 2.4 iterations, cf. [8]) and in rare cases it
requires up to a fixed maximum of five iterations. We remark that it is unclear
yet if it is possible to recover secret data only from the number of decoding
iterations. This needs to be investigated in future work. To be on the safe side
we propose an implementation where we simply do not test the syndrome for zero
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after a decoding iteration. The decoding algorithm always performs the specified
maximum number of iterations where it stops modifying the ciphertext once the
syndrome becomes zero. In combination with the techniques introduced above
this leads to a fully constant time implementation of the bit-flipping decoder.

5.3 Implementation Results

The results of our implementations are listed in Tab. 1. Encrypting a messages
takes 42ms and decrypting a ciphertext takes 558ms in a fully constant-time im-
plementation. Key-generation takes 884ms on average, but usually key-
generation performance is not an issue on small embedded devices since they
generate few (if even more than one) key-pairs in their lifetime. The combined
code of key-generation, encryption, and decryption, requires 5.7 kByte (0.6%)
flash memory and 2.7 kByte (1.4%) SRAM, including the public and the secret
key. Since w << r for all QC-MDPC parameter sets, storing the secret key in
a sparse representation saves memory and at the same time allows fast row ro-
tations. For the 80-bit parameter set with n0 = 2 we only need w = 90 16-bit
counters to store the secret key (1440 bit instead of 9602 bit).

Compared to the vulnerable C implementation of the encryption, we were
able to achieve a speed up of 50%, to make its execution time and instruction
flow independent of secret data, and to add a true random error.

Our hardened implementations of the decoder are between 1.1-2.5 times slower
than the vulnerable C implementation but mitigate the side-channel attacks from
Sect. 4 and take further possible information leaks into account. Version ct3 is
completely constant-time independent of the ciphertext and secret key. Version
ct2 accelerates the first syndrome computation by skipping accumulations if ci-
phertext bits are not set. As discussed in Sect. 4.3, the computation only depends
on set bits in the ciphertext (selecting which rows of the parity-check matrix are
XORed) which is usually assumed to be known to an attacker anyways. Version
ct1 of the decoder tests the syndrome for zero after each decoding iteration and
exits if decoding was successful before reaching the maximum iterations.

Compared to the QC-MDPC McEliece implementation in [8], our encryption
function is 20 times faster and includes a true random error addition. Decryption
performance is improved to a much more realistic 251-558ms instead of 2.7 s. Fur-
thermore, our implementations are protected against timing and simple power
analysis attacks. Please note that the microarchitecture of the STM32F407 used
in this work and the ATxmega256 in [8] are completely different – but similarly
expensive in terms of cost (which is usually a most relevant factor for practical
applications). The implementations are made available online to allow indepen-
dent refinement and verification of our results3.

6 Conclusion

In this work we presented implementations of QC-MDPC McEliece encryption
providing 80 bits of equivalent symmetric security on low-cost ARM Cortex-M4-

3 http://www.sha.rub.de/research/projects/code/

http://www.sha.rub.de/research/projects/code/
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Table 1. Results of our QC-MDPC microcontroller implementations. The compiler
optimization level was set to -O2. A combined implementation of key generation, en-
cryption, and decryption occupies 5.7 kByte flash and 2.7 kByte SRAM.

Scheme Platform Cycles/Op Time

This work [enc] STM32F407 16,771,239 100ms
This work [dec] STM32F407 37,171,833 221ms

This work [enc, ct] STM32F407 7,018,493 42ms
This work [dec, ct1] STM32F407 42,129,589 251ms
This work [dec, ct2] STM32F407 85,571,555 509ms
This work [dec, ct3] STM32F407 93,745,754 558ms

This work [keygen] STM32F407 148,576,008 884ms

McEliece [enc] [8] ATxmega256 26,767,463 836ms
McEliece [dec] [8] ATxmega256 86,874,388 2,71 s

based microcontrollers with a reasonable performance for encryption and decryp-
tion, respectively. We demonstrated side-channel attacks on a straightforward
implementation of this scheme and finally proposed timing- and instruction-
invariant coding strategies and countermeasures to strengthen it against timing
attacks and simple power analysis. Future work includes differential power anal-
ysis (DPA) as well as investigations with respect to fault-injection attacks.
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