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Abstract. Hidden Markov models (HMMs) are known for their ability to well
model and easily handle variable length time-series. Their use in the case of pro-
portional data modeling has been seldom mentioned in the literature. However,
proportional data are a common way of representing large data in a compact fash-
ion and often arise in pattern recognition applications frameworks. HMMs have
been first developed for discrete and Gaussian data and their extension to propor-
tional data through the use of Dirichlet distributions is quite recent. The Dirichlet
distribution has its limitations and is a special case of the more general general-
ized Dirichlet (GD) distribution that suffers from less restrictions on the modeled
data. We propose here to derive the equations and the methodology of a GD-
based HMM and to assess its superiority over a Dirichlet-based HMM (HMMD)
through experiments conducted on both synthetic and real data.

Keywords: Hidden Markov models, generalized Dirichlet, mixtures, machine
learning, EM-algorithm.

1 Introduction

HMMs are probabilistic generative models used in various fields such as speech pro-
cessing [18], object and gesture classification [3,9] or anomaly detection [2,14]. Their
use has been popularized by [18], and numerous extensions and adaptations to specific
applications have been developed along the years.

Among the extensions developed for HMMs, the study of time-series generated from
multiple processes and/or involving dynamics at different scales led to the development
of factorial HMMs [11]. In this framework, each state is decomposed into a collection of
sub-states, often assumed independent at each time step in order to reduce algorithmic
complexity.

Classic HMMs naturally embed a geometric distribution as for state duration, i.e.
state self-transitioning, with parameter depending on the state transition matrix [10].
Variable Duration HMMs have been a first attempt to modify the state duration proba-
bility distribution [17]. At each state transition, the duration of the new state is drawn
from a probability mass function and the corresponding number of observations is gen-
erated before drawing a new state accordingly to the state transition matrix. An alternate
approach that explicitly introduces the time variable into the state transition matrix is
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proposed in [10]. Known as Non-Stationary HMMs, they have been shown equivalent
to Variable Duration HMMs, though allowing an easier and computationally more effi-
cient parameter estimation [10].

The most widely used estimation algorithm for HMMs is the so-called Baum-Welch
algorithm, though its iterative nature can be prohibitive in some applications. [12] pro-
posed a non-iterative method for parameters estimation. Based on subspace estimation,
the idea has been theoretically derived in [1] and provides, under few conditions, a
computationally fast method to estimate HMMs with finite alphabet output.

HMMs have been initially developed for discrete and Gaussian data [18]. The multi-
plication of applications in domains such as weather forecast or medical studies raised
the need to modify the original HMM algorithm so it can efficiently work with new data
types [13,15]. Longitudinal or panel data are time-series collected from multiple enti-
ties. Example of these data in the context of a medical study could be the evolution of
some disease characteristics evaluated every day for a given period of time on a number
of patients (see [16] for concrete example). At the entity level, data heterogeneity is in-
volved by the presence of multiple data sources. HMMs have been shown to be able to
model this heterogeneity by introducing a random variable in the model, known as the
random effect, that follows a predefined probability distribution. Doing so, the condi-
tional independence of the observed data given the latent states assumption is relaxed.
[15] provides a review of the use of these HMMs that are known in the literature as
Mixed HMMs. [13] discusses circular data processing, i.e data taking cyclic values (e.g.
directions, angles,...). Von Mises, Wrapped Normal and Wrapped Cauchy are proposed
as state emission probability distributions to handle such data. A Maximum-Likelihood
estimation algorithm is derived and applied to circular time-series.

Proportional data (i.e. positive data that sum up to 1) results from numerous pat-
tern recognition pre-processing procedures, the most common being histograms. Their
use in an HMM framework has been first studied in [8] where Dirichlet mixtures are
used as emission probability functions, involving a deep modification of the M-step of
the Expectation-Maximization algorithm (EM) for Dirichlet parameters estimation. The
limitation of the Dirichlet distribution has been brought to light by [5] and we propose
here to derive the equations of an HMM based on mixtures of GD distributions (HM-
MGD). This model is expected to be more general and versatile as the GD distribution
embeds the Dirichlet distribution as a special case.

Section 2 fully develops the HMMGD derivation, Section 3 presents experimental
work on synthetic data, and Section 4, on real data. We conclude and explain our future
work in Section 5.

2 HMM Based on Generalized Dirichlet Mixtures

Based on [18], a first-order HMM is a probabilistic model assuming an ordered obser-
vation sequence O = {O1, ..., OT } to be generated by some hidden states, each of them
associated with a probability distribution governing the emission of the observed data.
The hidden states H = {h1, ..., hT }, hj ∈ [1,K], with K the number of states, are
assumed to form a Markov chain.

At each time t, a new state is entered based on a transition matrix B = {Bij =
P (ht = j|ht−1 = i)} that specifies the transition probabilities between states. Once in
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the new state, an observation is made following its associated probability distribution.
For discrete observation symbols taken from a vocabulary V = {v1, ..., vS}, the emis-
sion matrix is defined as D = {Dj(k) = P (Ot = vk|ht = j)}, [t, k, j] ∈ [1, S] ×
[1,M ]× [1,K]. For continuous observation vectors, emission probability distributions
are usually taken as Gaussian mixtures [2,3,18] defined by their mean and covariance
matrices, denoted θ. In the latter case, a matrix C = {Ci,j = P (mt = i|ht = j)},
i ∈ [1,M ], is defined with M the number of mixture components associated with
state j (which can be assumed to be the same for all states without loss of general-
ity). An initial probability distribution π controls the initial state. We denote an HMM
as λ = {B,D, π} or {B,C, θ, π}.

HMMs are well fit for classification tasks that rely on the probability of an obser-
vation sequence given a model λ, computed using a forward-backward procedure [18].
Model training consists in the estimation of the parameters that maximize the proba-
bility of a given set of observations and is addressed with the Baum-Welch algorithm,
an Expectation-Maximization process [18]. Finally finding the most probable sequence
of states and mixture components that generated a series of observations can be solved
with the Viterbi algorithm [18].

The number of hidden states and the parameters initial values have to be a priori
set. Both are strongly linked to model’s performance. Indeed, the former is a trade-
off between performance and complexity [9], while the latter leads the Baum-Welch
procedure to converge towards the closest local maximum of the likelihood function,
not guaranteed to be the global one given its high modality [3].

In this paper we propose to develop HMMs with mixtures of GD as emission prob-
ability distributions. [8] derived the equations for HMMs with Dirichlet mixtures, yet
these distributions have one main limitation residing in the fact that data covariance is
always negative. Therefore, they might not be adapted to model all types of propor-
tional data. The GD distribution overcomes this limitation and embeds the Dirichlet
distribution as a special case.

2.1 Expected Complete-Data Log-Likelihood Equation Setting

An N -dimensional generalized Dirichlet distribution is defined as

GD(x|α, β) =
N∏

n=1

Γ (αn + βn)

Γ (αn)Γ (βn)
xαn−1
n

(
1−

n∑

r=1

xr

)νn

, (1)

where Γ denotes the Gamma function and α = [α1, ..., αN ] and β = [β1, ..., βN ] the
GD parameters, with α ∈ R

N
+ , β ∈ R

N
+ , x ∈ R

N
+ , and

∑N
n=1 xn < 1. For n ∈

[1, N − 1], νn = βn − αn+1 − βn+1, and νN = βN − 1.
This change of probability distribution involves modifications in the EM parameters

estimation process. The rest of the HMM algorithm is unchanged. We set notations
for the quantities γt

ht,mt
� p(ht,mt|x0, ..., xT ) and ξtht,ht+1

� p(ht, ht+1|x0, ..., xT ),
that represent the estimates of the states and mixture components, and of the local states
sequence given the whole observation set, respectively. The E-step leads to γt

ht,mt
and

ξtht,ht+1
estimates for all t ∈ [1, T ]. These two quantities are obtained using the initial
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parameters at step 1 and the result of the last M-step then. They are computed using a
forward-backward procedure (not detailed here) as in HMM with mixtures of Gaussian.

The M-step aims at maximizing the data log-likelihood by maximizing its lower
bound. If Z represents the hidden variables and X the data, the data likelihood L(θ|X)
= p(X |θ) can be expressed as

E(X, θ)−R(Z) =
∑

Z

p(Z|X) ln(p(X,Z))−
∑

Z

p(Z|X) ln(p(Z|X))

=
∑

Z

p(Z|X) ln(p(X)) (Bayes’ rule)

= ln(p(X))
∑

Z

p(Z|X) = ln(p(X)) = L(θ|X) , (2)

with θ, representing all the HMM parameters, omitted on the given variables side of all
the quantities involved. E(X, θ) is the value of the complete-data log-likelihood with
the true/maximized parameters θ. R(Z) is the log-likelihood of the hidden data given
the observations and has the form of an entropy representing the amount of information
brought by the hidden data itself (see eq. (12) for the detailed form of R(Z)). As we
estimate the complete-data log-likelihood using non-optimized parameters, we have
E(X, θ, θold) ≤ E(X, θ), and hence E(X, θ, θold)−R(Z) is a lower bound of the data
likelihood.

The key quantity for data likelihood maximization is the expected complete-data
log-likelihood which directly depends on the data and is written as

E(X, θ, θold) =
∑

Z

p(Z|X, θold) ln(p(X,Z|θ)) . (3)

The complete-data likelihood of an observation (the case of multiple observation
sequences is addressed later) can be expanded as (eq. 4) that leads by identification to
eq. (5).

p(X,Z|θ) = p(h0)

T−1∏

t=0

p(ht+1|ht)×
T∏

t=0

p(mt|ht)p(xt|ht,mt) , (4)

p(X,Z|θ) = πh0

T−1∏

t=0

Bht,ht+1

T∏

t=0

Cht,mtGD(xt|ht,mt) . (5)

We substitute eq. (1) into eq. (5) and take the logarithm of the expression. Using the
logarithm sum-product property the complete-data log-likelihood is split up into eight
terms:
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ln(p(X,Z|θ)) = ln(πh0) +

T∑

t=0

ln(Cht,mt) +

T−1∑

t=0

ln(Bht,ht+1)

+

T∑

t=0

N∑

n=1

{
ln(Γ (αht,mt,n + βht,mt,n)) + (αht,mt,n − 1) ln(xt

n)

+ νht,mt,n ln(1−
n∑

r=1

xt
r)− ln(Γ (αht,mt,n))− ln(Γ (βht,mt,n))

}
.

(6)

Using eq. (6) into eq. (3), the expected complete-data log-likelihood can then be
written:

E(X, θ, θold) =
K∑

k=1

M∑

m=1

γ0
k,m ln(πk) +

T∑

t=0

K∑

k=1

M∑

m=1

γt
k,m ln(Ck,m)

+

T−1∑

t=0

K∑

i=1

K∑

j=1

ξti,j ln(Bi,j) + L(α, β) , (7)

with,

L(α, β) =

T∑

t=0

N∑

n=1

K∑

k=1

M∑

m=1

{
γt
k,m ln(Γ (αk,m,n + βk,m,n))

+ γt
k,m(αk,m,n − 1) ln(xt

n) + γt
k,m(νk,m,n ln(1−

n∑

r=1

xt
r))

− γt
k,m ln(Γ (αk,m,n))− γt

k,m ln(Γ (βk,m,n))

}
. (8)

To set eq. (7) we make use of the two following properties, in which we omit the
mention θold in the given variables side of the probabilities involved. Using the indepen-
dence of ht and mt from ht+1, we get p(Z|X) = p(ht = k,mt = m|X)p(ht+1 = k′)
with

∑K
k′=1 p(ht+1 = k′) = 1. Similar steps bring p(Z|X) = p(ht = k, ht+1 =

k′|X,mt = m)p(mt = m), with
∑M

m=1 p(mt = m) = 1.
Furthermore, if D ≥ 1 observations are available, all can be used to avoid overfitting.

In (7), a sum over d ∈ [1, D] has to be added in front of the entire formula. The sum
over time goes then from 0 to Td, the length of the d-th observation sequence.

2.2 Update Equations of HMM and GD Parameters

Maximization of the expectation of the complete-data log-likelihood with respect to
π, B, and C is solved introducing Lagrange multipliers in order to take into account
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the constraints due to the stochastic nature of these parameters. The resulting update
equations are:

πnew
k ∝

D∑

d=1

M∑

m=1

γ0,d
k,m , Bnew

i,j ∝
D∑

d=1

Td−1∑

t=0

ξt,dk,k′ , Cnew
k,m ∝

D∑

d=1

Td∑

t=0

γt,d
k,m , (9)

where k and k′ are in the range [1,K], and m, in the range [1,M ].
GD distributions parameters update is less straightforward. Indeed, a direct method

would lead to maximize L(α, β). Instead of going through heavy computations, we
propose to use a practical property of the GD distribution that reduces the estimation
of a N -dimensional GD to the estimation of N Dirichlet distributions. The latter is a
known problem and can be solved using a Newton method [8,19]. Using this property
calls the need for the problem to be expressed in a transformed space that we refer to as
the W-space. The data is transformed from its original space into its W-space by [5,20]:

Wl =

{
xl for l = 1

xl

/(
1−∑l−1

i=1 xi

)
for l ∈ [2, N ] .

(10)

In the transformed space, eachWl follows a Beta distribution with parameters (αl, βl),
which is a 2-dimensional Dirichlet distribution. The estimation of the N Beta distribu-
tions governing the N Wl clearly leads to the complete characterization of the GD dis-
tribution governing the observation vector x. In the M-step of the HMMGD algorithm,
the update of the GD distribution parameters can thus be done using N times a process
similar to the one used in [8], considering the transformed data instead of the original
one. Other parameters (B, C, π, γ, ξ) are estimated from the original data.

The initialization of the HMM parameters has been shown in [8] to be intractable
as soon as the product KM grows up, if computed accurately. Following their frame-
work, KM single Generalized Dirichlet distributions are initialized with a method of
moments that uses the transformed data (detailed in [6]) and are then assigned to the
HMM states. The parameters π, C, and B, are randomly initialized. Any EM-algorithm
is iterative and thus needs a stop parameter. As the data log-likelihood is maximized
by the means of its lower bound, convergence of this bound can be used as such. This
lower bound is given by E(X, θ, θold)−R(Z) (see eqs. (2) and (7)) and R(Z) is derived
using Bayes’ rule:

p(Z|X) = p(h0)p(m0|h0)

T∏

t=1

p(ht|ht−1)p(mt|ht)

= p(h0)
p(m0, h0)

p(h0)

T∏

t=1

p(ht, ht−1)p(mt, ht)

p(ht−1)p(ht)
. (11)

Denoting ηt � p(ht|X) and using the independence properties set earlier, the fol-
lowing expression is derived (see detail in [8], this expression is valid for any type of
emission function):
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R(Z) =

K∑

k=1

[
η0k ln(η

0
k) + ηTk ln(ηTk )− 2

T∑

t=0

ηtk ln(η
t
k)

]

+
T∑

t=0

M∑

m=1

K∑

k=1

γt
k,m ln(γt

k,m) +
T−1∑

t=0

K∑

k=1

K∑

k′=0

ξti,j ln(ξ
t
i,j) . (12)

This stands for a unique observation sample, if more are used, a summation over
them has to be added in front of the whole expression and the index T has to be adapted
to the length of each sequence. At each iteration, the difference between the former and
current data likelihoods is computed. Once it goes below a predefined threshold, the
algorithm stops and the current parameters values are kept to define the HMMGD. This
threshold, empirically fixed to 10−6 in our experiments, is a trade-off between estimates
precision and computational time.

3 Experiments on Synthetic Data

3.1 Process Description

We propose here to assess the superiority of HMMGD over HMMD with synthetic
data. 1000 observations sequences of length randomly taken in the range [10, 20] are
generated from a known HMMGD with randomly chosen parameters. The generation
of GD samples is described in [20]. The generative state and mixture component are
recorded for each sample. As in [8], performance is computed as the proportion of
states and mixture components correctly retrieved by an HMM trained on the gener-
ated data. Multiple experiments are run varying the number of states K , the number of
mixture components M , and the data dimension N . The study of the influence of N is
of particular importance as with proportional data, the greater N , the smaller the ob-
servation values. Too small values, through numerical processing, can lead to matrices
invertibility issues which is not desirable for accurate estimation.

As stated earlier, the GD distribution relaxes the constraint on the sign of the data
correlation coefficients. The proposed model is then expected to give a more accurate
representation of the data in the case of data mostly positively correlated. On the other
hand, with mostly negatively correlated data, HMMD should provide as good results
with a reduced complexity. To verify this, we generate data from known HMMGDs and
attempt to retrieve the state and mixture component that generated every sample using
an HMMGD and an HMMD. We noticed that data generaed from HMMGDs with pa-
rameters randomly and uniformly drawn in the range [1, 60], are quasi-automatically
mostly positively correlated. To overcome this point we imposed some of the HMM
parameters to follow a Dirichlet distribution expressed in the form of a GD distribution.
We used the three following scenarii: 1- Data generated from HMMDs only, 2- Data
generated from an hybrid HMM with on each state half of the components being Dirich-
let and half GD distributions, 3- Data generated from HMMGDs only. Extensive testing
confirmed our expectations. Results are illustrated in Figure 1 using a correlation ratio
which is the number of positively correlated variables (minus the autocorrelations) over
the number of negatively correlated ones. A ratio greater than 1 means the variables are
mostly positively correlated and vice versa.
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Fig. 1. Gain of accuracy using HMMGD compared to HMMD in function of the variables corre-
lation ratio. The gain of accuracy is computed as the difference between the two models’ perfor-
mance.

Experiments have been led with K = 3 and M = 2. For scenario 1, HMMGD has a
85.3 % accuracy and HMMD 84.9%, confirming that both work equally well. For sce-
narii 2 and 3, HMMGD has an accuracy of 81.2% and 89.7%, respectively, and HMMD
of 77.6% and 80.1%, respectively. As soon as some data are positively correlated, HM-
MGD outperforms HMMD. We observe that in scenario 2 (correlation ratio close to 1),
for unclear reasons, it is more difficult for the HMMs to retrieve the correct state and
component the sample comes from. Finally, the retrieval rate for data with a correlation
ratio greater than 1 is of 86.1% for HMMGD and of 78.4% for HMMD, and of 84.8%
and 83.2%, respectively, for correlation ratios smaller than 1. This shows HMMGDs
overcome the weakness of HMMDs for positively correlated data.

Table 1 reports the results of experiments led fixing N = 10, generating 100 se-
quences only (because of time constraint), and letting K and M vary. According to the
previous results, we only consider here mostly positively correlated data. For any com-
bination (K,M), HMMGD achieves better results than HMMD showing the benefit of
using HMMGD when proportional data is processed. As the productKM increases, the
retrieval rate decreases which can be explained considering that the more distributions,
the closer to each other they are, and the more difficult it is to clearly assign a sample
to a distribution.

Table 1. HMMGD and HMMD retrieval rates with various (K,M) combinations

Parameters (K,M ) (2,2) (2,3) (3,2) (2,4) (4,2) (3,3) (3,4) (4,3) (4,4) (5,5) (10,5)
Product KM 4 6 6 8 8 9 12 12 16 25 50

HMMD retrieval rate (%) 84.2 75.9 82.0 82.0 86.2 81.2 72.9 73.3 61.9 66.0 52.4
HMMGD retrieval rate (%) 90.9 92.8 87.8 89.8 91.5 89.1 88.9 85.2 76.6 68.8 62.2

A bad initialization of the distribution parameters can give low retrieval rates. It can
find its origin in the convergence of the clustering algorithm, used as the first step of the
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method of moments, towards local extrema. To overcome this issue, the initialization
process can be run several times and the comparison of the lower bound of the data
likelihood with these initial parameters be used to choose the best ones. However, this
requires extra computations and does not guarantee a good convergence of the clus-
tering procedure, even within several attempts. As we are only interested here in the
relative performance of HMMGD compared to HMMD we did not use this option. In-
stead, in order not to introduce any bias from this issue, a unique clustering algorithm
is used for both initializations.

Figure 2 reports the results of experiments in which we fixed K = 3 and M = 2 and
let N increase until retrieval rates degrade dramatically. For scenario 1, equivalent re-
sults are obtained with both HMMs, HMMGD giving sometimes slightly better results
at the cost of extra computations (not reported on Figure 2). In other cases, HMMGD
systematically outperforms HMMD up to the point data dimension is too high to per-
form calculations accurately (intermediate matrices become singular). Fluctuations in
the overall results are due to bad initializations that involve retrieval rates to dramat-
ically drop on some isolated runs. The general shape of the curves and their relative
distance clearly shows that, within an HMM framework, mixtures of GD distributions
give the best results and allow working with data of higher dimension than Dirichlet
ones. This performance improvement is obtained at the cost of a more complex model
involving (2N − 2) parameters to be estimated for every GD distribution compared to
only N parameters for a Dirichlet one. These results are essential to target real applica-
tions for which HMMGD could be a potentially efficient tool.

Fig. 2. Retrieval rate (%) of HMMGD (in black) and HMMD (in blue) against data dimension for
scenarii 2 (dash lines) and 3 (solid lines)
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4 Application to Real Data

We now compare the results of HMMGD and HMMD on real data. We base our exper-
iments on the Weizmann Action Recognition data set [4] which is composed of video
sequences representing 10 different actions (such as walk, run, jump,...) performed by
9 subjects. The features we use are Histograms of Oriented Optical Flow [7] and 10-
bin histograms are built, with each bin representing a range of optical flow angles with
respect to the horizontal axis. The optical flow magnitude weights the contribution of
each pixel to the histogram. [7] showed that good classification results could be ob-
tained with features of dimension higher than 30 however, we choose to use features of
dimension 10 as, within our HMM-based framework, we did not find any improvement
when using more bins. Finally, time savings, we divided the frame rate of the video
sequences by 2.

Experiments are led using a Leave-One-Out cross validation, the results are averaged
over 10 runs, and analyzed in terms of rank statistics. We empirically determined the
optimal values K = M = 4 for both HMMs. With these parameters, the HMMD
method achieves a 44.0% accuracy while the HMMGD achieves 54.8%. Though these
results are low [7], they show the out-performance of HMMGD over HMMD. The rank
statistics of order 2 are 71.3% and 82.0% for HMMD and HMMGD, respectively. Here
again it is clear that the use of the GD model leads to higher likelihood than the Dirichlet
one and is thus much more adapted for real proportional data modeling. Given the small
size of the feature vectors (dimension 10) and the huge gap between the rank statistics
of order 1 and 2, HMMGD seems to have the potential to perform accurate classification
with a parameters fine tuning and the addition of a well-chosen prior.

This last point is supported by the results of the following experiment: we added a
very simple prior over the actions of the data set and combined the prior with the already
obtained HMMGD results. For each video sequence, the greatest optical flow magnitude
is computed. The prior is then based on the average μOF and standard deviation σOF of
the optical flow magnitude maximum values of the set of video sequences available for
each class (i.e. action type). Its computation is totally data-driven, calculated from the
training videos available. We make the assumption that, for a given class, this maximal
value follows a Gaussian distribution of parameters μOF and σOF . As a new video
sequence has to be classified, its optical flow maximum magnitude m is computed. The
prior is computed as a distance with the following expression:

dprior = |CDF(m,μOF , σOF )− 0.5| , (13)

where CDF(m,μOF , σOF ) denotes the cumulative distribution function of the Gaus-
sian with parameters μOF and σOF . The smallest the value, the highest the prior. The
classification is obtained combining this prior result with the HMMGD ones.

Therefore, for a new video sequence, the quantity dprior is computed for each class
and a first classification result is obtained and stored. Then, a second classification result
is obtained from the HMMGD method described in Section 2. For each class, we add up
its rank in the HMMGD and prior results. We then assign the video sequence to the class
with the lowest score (i.e. best cumulative rank). This simple prior used alone leads to
a classification accuracy less than 50% however, combined with HMMGD results, the
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algorithm ends up with a 72.6% accuracy. The rank statistics of order 2 shows an even
greater potential as it reaches 91.9%. Better results could be undoubtedly obtained with
a more complex prior. However, the study of the best tuning and prior choice is out of
the scope of this work that strives at showing the superior performance of HMMGD
over HMMD. Figure 3 reports the rank statistics for the three studied methods.

Fig. 3. Rank statistics of HMMD, HMMGD, and of the combination of HMMGD with a prior

5 Conclusion and Future Work

In this paper we theoretically derived a new HMM model for proportional data mod-
eling based on mixtures of GD distributions. We then illustrated how this new model
overcomes the limitations of Dirichlet-based HMMs in the case of positively correlated
data using synthetic data. An extensive study of the impact of a number of parame-
ters on the model’s performance have been presented. Finally, we attempted to use this
model on real data for action recognition. Though the first rank classification results are
quite low, the study of rank statistics show a certain potential if a fine tuning is found
and an appropriate prior used. The dramatic increase in classification accuracy observed
when adding a very simple data-driven prior to the HMMGD framework reinforces this
assessment. The HMMGD constitutes a new promising alternative when working with
proportional data and has definitely to be used over HMMD methods for optimal re-
sults. Future work includes the study of HMMGD tuning for better performance and its
application to other real-world tasks such as anomaly detection in crowded environment
or texture classification.
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