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Preface

This volume contains the papers presented at the 6th IAPR TC3 Workshop
on Artificial Neural Networks for Pattern Recognition (ANNPR 2014), held at
the Concordia University, Montreal, Canada during October 6–8, 2014. ANNPR
2014 follows the success of the ANNPR workshops of 2003 (Florence), 2006
(Ulm), 2008 (Paris), 2010 (Cairo), and 2012 (Trento). The series of ANNPR
workshops has acted as a major forum for international researchers and practi-
tioners from the communities of pattern recognition and machine learning based
on neural networks.

The Program Committee of the ANNPR 2014 workshop selected 24 papers
out of 37 for the scientific program, organized in regular oral presentations and
a poster session. Three IAPR Invited Sessions given by Dr. Yoshua Bengio, Uni-
versity of Montreal, Canada, Dr. Michael J. Herrmann, University of Edinburgh,
United Kingdom, and Dr. Zhi-Hua Zhou Nanjing University, China enriched the
workshop.

This workshop would not have been possible without the help of many people
and organizations. First of all, we are grateful to all the authors who submitted
their contributions to the workshop. We thank the members of the Program
Committee and the additional reviewers for performing the difficult task of se-
lecting the best papers from a large number of high-quality submissions. We
hope that readers of this volume may enjoy it and be inspired by its contribu-
tions. ANNPR 2014 was supported by the International Association for Pattern
Recognition (IAPR), by the IAPR Technical Committee on Neural Networks
and Computational Intelligence (TC3), by the University of Ulm, Germany, by
Concordia University, Montreal, Canada, and by IMDS (International Medias
Data Services), Montreal, Canada. Special thanks to the people of the local
organization, in particular to Marleah Blom, Leila Kosseim, and Nicola Nobile.

Finally, we wish to express our gratitude to Springer for publishing our work-
shop proceedings within their LNCS/LNAI series.

July 2014 Neamat El Gayar
Friedhelm Schwenker

Ching Suen
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Markus Kächele, Sascha Meudt, Martin Schels, and
Miriam Schmidt

A Reinforcement Learning Algorithm to Train a Tetris Playing
Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Patrick Thiam, Viktor Kessler, and Friedhelm Schwenker

Bio-Inspired Optic Flow from Event-Based Neuromorphic Sensor
Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Stephan Tschechne, Roman Sailer, and Heiko Neumann

Applications

Prediction of Insertion-Site Preferences of Transposons Using Support
Vector Machines and Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . 183

Maryam Ayat and Michael Domaratzki

Automatic Bridge Crack Detection – A Texture Analysis-Based
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Sukalpa Chanda, Guoping Bu, Hong Guan, Jun Jo, Umapada Pal,
Yew-Chaye Loo, and Michael Blumenstein

Part-Based High Accuracy Recognition of Serial Numbers in Bank
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Bo-Yuan Feng, Mingwu Ren, Xu-Yao Zhang, and Ching Y. Suen

Comparative Study of Feature Selection for White Blood Cell
Differential Counts in Low Resolution Images . . . . . . . . . . . . . . . . . . . . . . . . 216

Mehdi Habibzadeh, Adam Krzyżak, and Thomas Fevens
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Large Margin Distribution Learning

Zhi-Hua Zhou

National Key Laboratory for Novel Software Technology
Nanjing University, Nanjing 210023, China

zhouzh@lamda.nju.edu.cn

Abstract. Support vector machines (SVMs) and Boosting are possibly
the two most popular learning approaches during the past two decades. It
is well known that the margin is a fundamental issue of SVMs, whereas
recently the margin theory for Boosting has been defended, establish-
ing a connection between these two mainstream approaches. The recent
theoretical results disclosed that the margin distribution rather than a
single margin is really crucial for the generalization performance, and
suggested to optimize the margin distribution by maximizing the mar-
gin mean and minimizing the margin variance simultaneously. Inspired
by this recognition, we advocate the large margin distribution learning, a
promising research direction that has exhibited superiority in algorithm
designs to traditional large margin learning.

1 Introduction

Support vector machines (SVMs) and Boosting have both been very popular
during the past two decades. SVMs belong to the family of large margin methods
[18] whereas Boosting belongs to the family of ensemble methods [22]. The former
roots in the statistical learning theory [19], exploiting the kernel trick explicitly
to handle nonlinearity with linear classifiers; the latter comes from the proof
construction [13] to the theoretical problem that whether weakly learnable equals
strongly learnable [8]. It is clearly that these two approaches were born with
apparent differences.

The margin [19] is a fundamental issue of SVMs as an intuitive understanding
of the behavior of SVMs is to search for a large margin separator in a RKHS
(reproducing kernel Hilbert space). It is worth noting that there is also a long
history of research trying to explain Boosting with a margin theory. Though
there were twists and turns in this line of studies, recently the margin theory for
Boosting has finally been defended [5], establishing a connection between these
two mainstream learning approaches. It is interesting that in contrast to large
margin methods that focus on the maximization of a single margin, the recent
theoretical results disclosed that the margin distribution rather than a single
margin is really crucial for the generalization performance, and suggested to op-
timize the margin distribution by maximizing the margin mean and minimizing
the margin variance simultaneously. Inspired by this recognition, we advocate
large margin distribution learning, a promising research direction that has al-
ready exhibited superiority in algorithm designs [21].

N. El Gayar et al. (Eds.): ANNPR 2014, LNAI 8774, pp. 1–11, 2014.
c© Springer International Publishing Switzerland 2014



2 Z.-H. Zhou

In this article, we will first briefly introduce the efforts on establishing the
margin theory of Boosting, and then explain the basic idea of large margin
distribution learning. After that, we will show some simple implementation of
large margin distribution learning, followed by concluding remarks.

2 The Long March of Margin Theory for Boosting

Overfitting is among the most serious obstacles for learning approaches to achieve
strong generalization performances, and great efforts have been devoted to mech-
anisms that help reduce overfitting risk, such as decision tree pruning, neural
networks early stopping, minimum description length constraint, structural risk
minimization, etc. It is typically believed that when the training error reaches
zero (even much before that), the training process should be terminated because
the further training will unnecessarily increase the model complexity and there-
fore, leading to overfitting. Indeed, according to the Occam’s razor, if we have
multiple hypotheses consistent with observations, then the simpler, the better.

However, for AdaBoost, the most famous representative of Boosting, it has
been observed that the generalization performance can be improved further if
the training process continues even after the training error reaches zero, though
the ensemble model becomes more complicated owing to the inclusion of more
base learners. This seems contradictory to previous knowledge, and thus, to
understand why AdaBoost seems resistant to overfitting is the most fascinating
fundamental theoretical issue in Boosting studies.

To explain this phenomenon, Schapire et al. [14] presented the margin theory
for Boosting. Let X and Y denote the input and output spaces, respectively.
A training set of size m is an i.i.d. sample S = {(x1, y1), · · · , (xm, ym)} drawn
according to D, an unknown underlying probability distribution over X × Y.
Denote PrD[·] and PrS [·] as the probability w.r.t. D and w.r.t. uniform distri-
bution over S, respectively. Let H be a hypothesis space, and a base learner is a
function h : X → Y. Here, we focus on binary classification, i.e., Y = {+1,−1}.
Let C(H) denote the convex hull of H, i.e., the ensemble model f ∈ C(H) is of
the form

f =
∑

i
αihi with

∑
i
αi = 1 and αi ≥ 0. (1)

We call this ensemble model a voting classifier because the base learners are
combined via voting (also called additive model in statistical literatures). Given
an example (x, y), themargin w.r.t. the voting classifier f =

∑
αihi(x) is defined

as yf(x); in other words,

yf(x) =
∑

i : y=hi(x)

αi −
∑

i : y �=hi(x)

αi, (2)

which shows the difference between the weights of base learners that classify
(x, y) correctly and the weights of base learners that classify (x, y) incorrectly.

Based on the concept of margin, Schapire et al. [14] proved the first margin
theorem for AdaBoost and upper bounded the generalization error as follows,
where θ > 0 is a threshold of margin over the training sample S.
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Theorem 1. (Schapire et al., 1998) For any δ > 0 and θ > 0, with probability
at least 1 − δ over the random choice of sample S with size m, every voting
classifier f ∈ C(H) satisfies the following bound:

Pr
D
[yf(x) < 0] ≤ Pr

S
[yf(x) ≤ θ] +O

(
1√
m

(
lnm ln |H|

θ2
+ ln

1

δ

)1/2)
. (3)

This theorem implies that, when other variables are fixed, the larger the margin
over the training sample, the better the generalization performance; this offers
an explanation to why AdaBoost tends to be resistant to overfitting: It is able
to increase the margin even after the training error reaches zero.

The margin theory looks intuitive and reasonable, and thus, it attracted a
lot of attention. Notice that Schapire et al.’s bound (3) depends heavily on the
smallest margin, because PrS [yf(x) ≤ θ] will be small if the smallest margin is
large. Thus, Breiman [3] explicitly considered the minimum margin, ŷ1f(x̂1) =
mini∈{1..m}{yif(xi)}, and proved the following margin theorem:

Theorem 2. (Breiman, 1999) For any δ > 0, if θ = ŷ1f(x̂1) > 4
√

2
|H| and R ≤

2m, with probability at least 1− δ over the random choice of sample S with size
m, every voting classifier f ∈ C(H) satisfies the following bound:

Pr
D
[yf(x) < 0] ≤ R

(
ln(2m) + ln

1

R
+ 1
)
+

1

m
ln

|H|
δ

, (4)

where R = 32 ln 2|H|
mθ2 .

Breiman’s minimum margin bound (4) is in O(lnm/m), sharper than Schapire
et al.’s bound (3) that is in O(

√
lnm/m). Thus, it was believed that the mini-

mum margin is essential. Breiman [3] designed the arc-gv algorithm, a variant
of AdaBoost, which directly maximizes the minimum margin. The margin theory
would appear to predict that arc-gv should perform better than AdaBoost; how-
ever, empirical results show that though arc-gv does produce uniformly larger
minimum margin than AdaBoost, its generalization error increases drastically
in almost every case.1 Thus, Breiman raised serious doubt about the margin
theory, and almost sentenced the margin theory to death.

Seven years later, Reyzin and Schapire [12] found that, amazingly, Breiman
had not controlled the model complexity well in experiments. To study the mar-
gin, one must fix the model complexity of base learners as it is meaningless to
compare the margins of models with different complexities. In his experiments,
Breiman [3] used CART decision trees, and considering that each decision tree
leaf corresponds to an equivalent class in the instance space, Breiman tried to
fix the model complexity by using trees with fixed number of leaves. Reyzin
and Schapire found that the trees of arc-gv are generally deeper than that

1 Similar empirical evidences have been reported by other researchers such as [7].
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of AdaBoost, and they argued that trees with different heights may be with
different model complexities. Then, they repeated Breiman’s experiments using
decision stumps with two leaves and observed that, comparing to AdaBoost,
arc-gv is with larger minimum margin but smaller margin distribution. Thus,
they claimed that the minimum margin is not essential, while the margin distri-
bution characterized by the average or median margin is important.

Though Reyzin and Schapire showed that the empirical attack of Breiman
is not deadly, it is far from validating the essentiality of margin distribution,
because Breiman’s generalization bound based on the minimum margin is quite
tight. To enable the margin theory to gets renascence, it is crucial to have a
sharper bound based on margin distribution.

For this purpose, Wang et al. [20] presented a sharper bound in term of the

Emargin, i.e., arg infq∈{q0,q0+ 1
m ,··· ,1} KL−1(q;u[θ̂(q)]), as follows:

Theorem 3. (Wang et al., 2008) For any δ > 0, if 8 < |H| < ∞, with proba-
bility at least 1 − δ over the random choice of sample S with size m > 1, every
voting classifier f ∈ C(H) satisfies the following bound:

Pr
D
[yf(x) < 0] ≤ ln |H|

m
+ inf

q∈{q0,q0+ 1
m ,··· ,1}

KL−1(q;u[θ̂(q)]), (5)

where q0 = PrS

[
yf(x) ≤

√
8/|H|
]
< 1, u[θ̂(q)] = 1

m

(
8 ln |H|
θ̂2(q)

ln 2m2

ln |H| + ln |H| +

ln m
δ

)
, θ̂(q) = sup

{
θ ∈
(√

8/|H|, 1
]
: PrS [yf(x) ≤ θ] ≤ q

}
.

Here KL−1(q;u) = infw {w : w ≥ q and KL(q||w) ≥ u} is the inverse of the KL
divergence KL(q||·) for a fixed q. Notice that the factors considered by (5) are
different from that considered by (3) and (4). Though (5) was believed to be
a generalization bound based on margin distribution, the Emargin is too un-
intuitive to inspire algorithm design.

Several years later, Gao and Zhou [5] revealed that both the minimum margin
and Emargin are special cases of the k-th margin, which is still a single mar-
gin. Fortunately, they proved a sharper generalization bound based on margin
distribution as follows by considering the same factors as in (3) and (4).

Theorem 4. (Gao and Zhou, 2013) For any δ > 0, with probability at least
1−δ over the random choice of sample S with size m ≥ 5, every voting classifier
f ∈ C(H) satisfies the following bound:

Pr
D
[yf(x) < 0] ≤ 2

m
+ inf

θ∈(0,1]

[
Pr
S
[yf(x) < θ] +

7μ+ 3
√
3μ

3m
+

√
3μ

m
Pr
S
[yf(x) < θ]

]
,

(6)

where μ = 8
θ2 lnm ln(2|H|) + ln 2|H|

δ .
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Fig. 1. A simple illustration of linear separators optimizing the minimum margin,
margin mean and margin distribution, respectively

This result proves the essentiality of margin distribution to generalization per-
formance. Thus, the margin theory for Boosting finally stands.2

Now, it is clear that the margin distribution can be improved further even af-
ter the training error reaches zero, and therefore, the generalization performance
of AdaBoost can be improved further if the training process continues. This also
implies that overfitting will finally occur, although very late, since the margin
distribution cannot be improved endlessly. As for the contradictory to the Oc-
cam’s razor, now our understanding is that the complexity of ensemble models
is related to not only the number of learners but also the structural relation
between the learners; thus, including more base learners in an ensemble does not
necessarily lead to a higher model complexity. This is likely to be relevant to
the diversity issue of ensemble methods [22], and theoretical exploration of this
point may offer model complexity some new comprehension.

3 Optimizing Margin Distribution

Fig. 1 provides a simple illustration. Suppose we are trying to separate two cat-
egories of data points, i.e., red circles and blue triangles. For simplicity, consider

2 Notice that instead of considering the whole function space, there are some stud-
ies about data-dependent margin-based generalization bounds, based on techniques
such as the empirical cover number [15], empirical fat-shattering dimension [2] and
Rademacher and Gaussian complexities [9,10]. Some of these bounds are proven to
be sharper than (3), but hard to show sharper than (4)-(6). Moreover, they fail to
explain the resistance of AdaBoost to overfitting.
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the separable case. First, we can see that classifiers maximizing the minimum
margin, the margin mean3 and the margin distribution, respectively, are usually
significantly different. For example, in Fig. 1 the classifier trying to maximize the
minimum margin will favor the separator hmin, the classifier trying to maximize
the margin mean will favor the separator hmean, whereas the classifier trying to
maximize the margin distribution will favor hdist. Second, the classifier optimiz-
ing the margin distribution can be intuitively better as the predictive confidence
of hdist on most data points are larger than the predictive confidence of hmin

and hmean.
Fig. 2 shows a more complicated case where there are outliers or noisy data

points. If we insist on optimizing the minimum margin, in Fig. 2 the classifier
will almost be dominated by the outliers or noisy data points. If we try to
optimize the margin distribution instead, the influence of the outliers or noisy
data points will diminish automatically. In other words, classifiers optimizing the
margin distribution will be more robust than classifiers optimizing the minimum
margin. Moreover, optimizing the margin distribution can also accommodate
class imbalance and unequal misclassification costs naturally.

Fig. 2. Another illustration of linear separators with outliers or noisy data points

Notice that though the theoretical results proving the essentiality of margin
distribution in Section 3 were derived for Boosting, the implications are far be-
yond Boosting. There are many learning approaches trying to optimize actually
a single margin, particularly the minimum margin; the most famous representa-
tives are SVMs.

For SVMs, f(x) = w�φ(x) where w is a linear predictor, φ(x) is a feature
mapping of x induced by a kernel k, i.e., k(xi,xj) = φ(xi)

�φ(xj). Given an
example (x, y), similar to that in Section 2, the margin γ w.r.t. f is defined as
yf(x) [4, 19]:

γ = yf(x) = yw�φ(x). (7)

3 Notice that the mean instances are not necessarily observed in training data.
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The SVMs formulation for separable case (hard-margin SVMs) is indeed a
maximization of the minimum margin, i.e., min{γi}mi=1:

min
w

1

2
w�w (8)

s.t. yiw
�φ(xi) ≥ 1

i = 1, · · · ,m.

The formulation for non-separable case (soft-margin SVMs) introduces the slack
variables ξ = [ξ1, · · · , ξm]� to measure the losses of different instances, where C
is a trading-off parameter:

min
w,ξ

1

2
w�w + C

m∑
i=1

ξi (9)

s.t. yiw
�φ(xi) ≥ 1− ξi,

ξi ≥ 0, i = 1, · · · ,m.

There exists a constant C̄ such that (9) can be equivalently reformulated as
follows, showing that the soft-margin SVMs are maximizing the k-th margin
(i.e., the k-th smallest margin) [5]:

max
w

γ0 − C̄
∑m

i=1
ξi (10)

s.t. γi ≥ γ0 − ξi,

ξi ≥ 0, i = 1, · · · ,m.

Hence, both hard-margin and soft-margin SVMs are indeed trying to optimize
a single margin. It is very likely that they can be improved by replacing the
optimization of a single margin by the optimization of margin distribution, while
keeping the other parts of their solution strategies unchanged; this also applies
to other large margin methods. Thus, the large margin distribution learning
offers a promising way to derive more powerful learning approaches by simple
adaptations.

To accomplish large margin distribution learning, we need to understand how
to optimize the margin distribution. Reyzin and Schapire [12] suggested to max-
imize the average or median margin, and there are also efforts on maximizing
the average margin or weighted combination margin [1,6,11]. These arguments,
however, are all heuristics without theoretical justification.

In addition to (6), Gao and Zhou [5] proved anther form of their margin
theorem, disclosing that the average or median mean is not enough, and to
characterize the margin distribution, it is important to consider not only the
margin mean but also the margin variance. This suggests a new direction for
algorithm design, i.e., to optimize the margin distribution by maximizing the
margin mean and minimizing the margin variance simultaneously. This argument
has got supported empirically by some recent Boosting studies [16, 17].
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4 A Simple Implementation of Large Margin Distribution
Learning

For a straightforward implementation of large margin distribution learning, as
an example, we adapt the simple SVMs formulation (8) to the optimization of
margin distribution [21].

Denote X = [φ(x1), · · · , φ(xm)] as the matrix whose i-th column is φ(xi),
y = [y1, · · · , ym]�, and Y as a m×m diagonal matrix whose diagonal elements
are y1, · · · , ym. According to the definition in (7), the margin mean is

γ̄ =
1

m

m∑
i=1

yiw
�φ(xi) =

1

m
(Xy)�w, (11)

and the margin variance is

γ̂ =
1

m2

m∑
i=1

m∑
j=1

(yiw
�φ(xi)− yjw

�φ(xj))
2

=
2

m2
(mw�XX�w −w�Xyy�X�w).

(12)

By incorporating into (8) the maximization of margin mean and the mini-
mization of margin variance simultaneously, we get the hard-margin LDM (Large
Margin distribution Machine) formulation [21]:

min
w

1

2
w�w + λ1γ̂ − λ2γ̄ (13)

s.t. yiw
�φ(xi) ≥ 1

i = 1, · · · ,m,

where λ1 and λ2 are trading-off parameters. It is evident that (8) is a special
case of (13) when λ1 and λ2 equal zero.

Similarly, we have the soft-margin LDM which degenerates to (10) when λ1

and λ2 equals zero:

min
w,ξ

1

2
w�w + λ1γ̂ − λ2γ̄ + C

m∑
i=1

ξi (14)

s.t. yiw
�φ(xi) ≥ 1− ξi,

ξi ≥ 0, i = 1, · · · ,m.

Notice that in (14) the influence of the C
∑m

i=1 ξi term can be subsumed by the
λ1 and λ2 terms, whereas we keep it to let (14) and (10) look similar such that
it is easy to perceive that adapting the soft-margin SVMs to the optimization
of margin distribution is quite straightforward.
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Solving (13) and (14) is not difficult. For example, by substituting (11)-(12),
(14) leads to a quadratic programming problem:

min
w,ξ

1

2
w�w +

2λ1

m2
(mw�XX�w −w�Xyy�X�w)

− λ2
1

m
(Xy)�w + C

m∑
i=1

ξi (15)

s.t. yiw
�φ(xi) ≥ 1− ξi, (16)

ξi ≥ 0, i = 1, · · · ,m.

A dual coordinate descent method for kernel LDM and an average stochastic
gradient descent method for large-scale linear kernel LDM have been developed,
with details in [21]. Table 1 shows some experimental results of comparing LDM
to SVM, where it can be seen that LDM is significantly better on more than
half of the experimental datasets and never worse than SVM. Such a simple
implementation of large margin distribution learning also exhibits superior per-
formance to many other related methods [1, 6, 11] in experiments [21].

Table 1. Comparing predictive accuracy (mean±std.) of SVM and LDM. •/◦ indicates
the performance of LDM is significantly better/worse than SVM (paired t-tests at 95%
significance level). The win/tie/loss counts are summarized in the last row.

Data sets Linear kernel RBF kernel
SVM LDM SVM LDM

promoters .723±.071 .721±.069 .684±.100 .715±.074•
planning-relax .683±.031 .706±.034• .708±.035 .707±.034
colic .814±.035 .832±.026• .822±.033 .841±.018•
parkinsons .846±.038 .865±.030• .929±.029 .927±.029
colic.ORIG .618±.027 .619±.042 .638±.043 .641±.044
sonar .725±.039 .736±.036 .842±.034 .846±.032
vote .934±.022 .970±.014• .946±.016 .968±.013•
house .942±.015 .968±.011• .953±.020 .964±.013•
heart .799±.029 .791±.030 .808±.025 .822±.029•
breast-cancer .717±.033 .725±.027• .729±.030 .753±.027•
haberman .734±.030 .738±.020 .727±.024 .731±.027
vehicle .959±.012 .959±.013 .992±.007 .993±.006
clean1 .803±.035 .814±.019• .890±.020 .891±.024
wdbc .963±.012 .968±.011• .951±.011 .961±.010•
isolet .995±.003 .997±.002• .998±.002 .998±.002
credit-a .861±.014 .864±.013• .858±.014 .861±.013
austra .857±.013 .859±.015 .853±.013 .857±.014•
australian .844±.019 .866±.014• .815±.014 .854±.016•
fourclass .724±.014 .723±.014 .998±.003 .998±.003
german .711±.030 .738±.016• .731±.019 .743±.016•
w/t/l (SVM vs. LDM) 0/8/12 0/10/10
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5 Conclusion

Recently the margin theory for Boosting has been defended [5], showing that
the margin is not only a fundamental issue of SVMs but also an essential factor
of Boosting. In contrast to previous belief on single margins such as the mini-
mum margin optimized by SVMs, the recent theoretical results disclosed that the
margin distribution rather than a single margin is crucial for the generalization
performance. Inspired by this recognition, in this article we advocate large mar-
gin distribution learning. We also briefly introduce how the SVMs can be easily
adapted to large margin distribution learning by maximizing the margin mean
and minimizing the margin variance simultaneously, while such a simple imple-
mentation leads to the LDMs that exhibit superior performance to SVMs [21].
Overall, large margin distribution learning exhibits a promising direction to de-
rive powerful learning approaches.

Acknowledgments. This article summarizes the author’s keynote talk at the
ANNPR’2014, Montreal, Canada. The author was supported by the National
Science Foundation of China (61333014, 61321491).
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2. Antos, A., Kégl, B., Linder, T., Lugosi, G.: Data-dependent margin-based gener-
alization bounds for classification. Journal of Machine Learning Research 3, 73–98
(2002)

3. Breiman, L.: Prediction games and arcing classifiers. Neural Computation 11(7),
1493–1517 (1999)

4. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995)

5. Gao, W., Zhou, Z.-H.: On the doubt about margin explanation of boosting. Arti-
ficial Intelligence 199-200, 22–44 (2013) (arXiv:1009.3613, September 2010)

6. Garg, A., Roth, D.: Margin distribution and learning algorithms. In: Proceedings
of the 20th International Conference on Machine Learning, Washington, DC, pp.
210–217 (2003)

7. Grove, A.J., Schuurmans, D.: Boosting in the limit: Maximizing the margin of
learned ensembles. In: Proceedings of the 15th National Conference on Artificial
Intelligence, Menlo Park, CA, pp. 692–699 (1998)

8. Kearns, M., Valiant, L.G.: Cryptographic limitations on learning boolean formulae
and finite automata. In: Proceedings of the 21st Annual ACM Symposium on
Theory of Computing, Seattle, WA, pp. 433–444 (1989)

9. Koltchinskii, L., Panchanko, D.: Empirical margin distributions and bounding the
generalization error of combined classifiers. Annuals of Statistics 30(1), 1–50 (2002)

10. Koltchinskii, L., Panchanko, D.: Complexities of convex combinations and bound-
ing the generalization error in classification. Annuals of Statistics 33(4), 1455–1496
(2005)



Large Margin Distribution Learning 11

11. Pelckmans, K., Suykens, J., Moor, B.D.: A risk minimization principle for a class
of parzen estimators. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S. (eds.) Ad-
vances in Neural Information Processing Systems 20, pp. 1137–1144. MIT Press,
Cambridge (2008)

12. Reyzin, L., Schapire, R.E.: How boosting the margin can also boost classifier com-
plexity. In: Proceeding of 23rd International Conference on Machine Learning,
Pittsburgh, PA, pp. 753–760 (2006)

13. Schapire, R.E.: The strength of weak learnability. Machine Learning 5(2), 197–227
(1990)

14. Schapire, R.E., Freund, Y., Bartlett, P.L., Lee, W.S.: Boosting the margin: A
new explanation for the effectives of voting methods. Annuals of Statistics 26(5),
1651–1686 (1998)

15. Shawe-Taylor, J., Williamson, R.C.: Generalization performance of classifiers in
terms of observed covering numbers. In: Proceedings of the 4th European Con-
ference on Computational Learning Theory, Nordkirchen, Germany, pp. 153–167
(1999)

16. Shen, C., Li, H.: Boosting through optimization of margin distributions. IEEE
Transactions on Neural Networks 21(4), 659–666 (2010)

17. Shivaswamy, P.K., Jebara, T.: Variance penalizing AdaBoost. In: Shawe-Taylor, J.,
Zemel, R.S., Bartlett, P.L., Pereira, F.C.N., Weinberger, K.Q. (eds.) Advances in
Neural Information Processing Systems 24, pp. 1908–1916. MIT Press, Cambridge
(2011)

18. Smola, A.J., Bartlett, P.L., Schölkopf, B., Schuurmans, D. (eds.): Advances in
Large Margin Classifiers. MIT Press, Cambridge (2000)

19. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
20. Wang, L., Sugiyama, M., Yang, C., Zhou, Z.-H., Feng, J.: On the margin expla-

nation of boosting algorithm. In: Proceedings of the 21st Annual Conference on
Learning Theory, Helsinki, Finland, pp. 479–490 (2008)

21. Zhang, T., Zhou, Z.-H.: Large margin distribution machine. In: Proceedings of the
20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, New
York, NY (2014)

22. Zhou, Z.-H.: Ensemble Methods: Foundations and Algorithms. CRC Press, Boca
Raton (2012)



A Decorrelation Approach for Pruning

of Multilayer Perceptron Networks

Hazem M. Abbas

The German University in Cairo
Faculty of Media Engineering and Technology

New Cairo, Cairo, Egypt
hazem.abbas@guc.edu.eg,

http://met.guc.edu.eg

Abstract. In this paper, the architecture selection of a three–layer non-
linear feedforward network with linear output neurons and sigmoidal
hidden neurons is carried out. In the proposed method, the conventional
back propagation (BP) learning algorithm is used to train the network by
minimizing the representation error. A new pruning algorithm employ-
ing statistical analysis can quantify the importance of each hidden unit.
This is accomplished by providing lateral connections among the neurons
of the hidden layer and minimizing the variance of the hidden neurons.
Variance minimization has resulted in decorrelated neurons and thus the
learning rule for the lateral connections in the hidden layer becomes a
variation of the anti-Hebbian learning. The decorrelation process mini-
mizes any redundant information transferred among the hidden neurons
and therefore enables the network to capture the statistical properties of
the required input-output mapping using the minimum number of hidden
nodes. Hidden nodes with least contribution to the error minimization
at the output layer will be pruned. Experimental results show that the
proposed pruning algorithm correctly prunes irrelevant hidden units.

Keywords: Neural Networks, Backpropagation Learning, Optimal Net-
work Architecture, Pruning Algorithms, Statistical Learning.

1 Introduction

Finding an optimal architecture of feedforward neural networks is a very impor-
tant issue for both classification and approximation problems. A small architec-
ture will be unable to capture the internal representation required to perform
the required input-output mapping. On the other hand, a large architecture will
tend to over-fit the training data which leads to poor generalization capabilities
of the designed network. It is therefore necessary to design the network with the
smallest architecture and still can perform satisfactorily with unseen data. The
generalization of a neural network architecture can be assessed by changing the
the network size, i.e., the number of nodes and/or weights. There are many ap-
proaches to tackle the network design problem. Network construction algorithms
starts with a small number of hidden nodes and then grows additional hidden

N. El Gayar et al. (Eds.): ANNPR 2014, LNAI 8774, pp. 12–22, 2014.
c© Springer International Publishing Switzerland 2014
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nodes and/or weights until a satisfactory design is found [1, 2, 3, 4]. Pruning
algorithms start with a seemingly large network that is trained until an accept-
able performance is achieved. Based on certain criteria, some hidden units or
weights can be removed if they are considered useless [5, 6, 7, 8, 9, 10]. A recent
survey on pruning methods can be found in [11] and older ones in [12, 13]. The
third approach employs regularization techniques, which involves the addition of
a penalty term to the objective function to be minimized [14, 15, 16, 17]. Algo-
rithms that combine both constructive and pruning methods have been proposed
in [18, 19].

The algorithm proposed in this work belongs to the pruning algorithms family.
Normally, individual weights, hidden units and/or input units are the parame-
ters that can be considered for removal. Two methods are normally employed
to remove any of these candidate parameters: sensitivity analysis and role in-
terpretation of the node. Sensitivity analysis techniques quantify the relevance
of a network parameter as how important a slight deviation in a network pa-
rameter on the network performance [20, 21, 22]. The sensitivity measures could
fail to identify possible correlations among nodes and possess high computa-
tional complexity. Node pruning techniques are post-training algorithms where
the correlations among nodes in the hidden and output layers are exploited to
decide which node to remove [23, 24, 9].

In this paper, a pruning method for a three-layer feedforward network is pro-
posed. The method relies on reducing the variance of hidden layer nodes. Lateral
connections among the hidden nodes are provided to accommodate such vari-
ance minimization. By doing so, the resulting updating rule will provide a kind
of anti-Hebbian learning mechanism that will eventually lead to removal of nodes
with least variance or contribution to the network mapping performance.

The paper is organized as follows. Section 2 introduces the proposed network
architecture. The proposed decorrelational cost function and the learning rules
required to train the network are presented in Section 3. Some necessary condi-
tions on the nature of the node activation functions are discussed in Section 4.
The training and pruning algorithm is detailed in Section 5. In Section 6, some
simulation results of applying the proposed network and the conventional BP
net to some benchmark problems are analyzed.

2 Network Structure

The neural network structure we are concerned with here is the three-layer net-
work: an input layer, I, a hidden layer, H , and an output layer, O (Fig. 1). The
neurons in the hidden layer have the sigmoid function while the output layer can
have either sigmoidal or linear neurons. Neurons of the input layer can feed into
neurons in the following layer through linking weights. Lateral connections are
introduced in the hidden layer to decorrelate the output of its neurons. The net
input to each node is the sum of the weighted outputs of the nodes feeding into
this node.
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Fig. 1. The proposed network structure

The net input to the ith node in the output layer is calculated as

net
(O)
i =

H∑
j

ω
(O)
ij a

(H)
i + ω

(O)
i0 (1)

where ω
(O)
ij is the weight connecting the jth hidden node and the ith output

node, ω
(O)
i0 is the threshold (bias) of the node and a

(H)
j is the output of the jth

node in the hidden layer. Similarly, the net input to the jth node in the hidden
layer is

net
(H)
j =

I∑
i

ω
(H)
ji a

(I)
i + ω

(H)
j0 +

H∑
k<j

Ω
(H)
jk a

(H)
k (2)

where Ω
(H)
jk is a lateral connection from the kth hidden node to the jth hidden

node. It should be noted that lateral connections in the hidden layer are only
allowed from lower order to higher order nodes as indicated in the second sum-
mation. This is to ensure that the network is strictly feedforward. The output
of sigmoidal node, j is

a
(H)
j = f (netj) =

1

2

(
1− e−netj

1 + e−netj

)
(3)

whereas the activation of the linear output nodes is simply

a
(O)
j = netj.
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3 Cost Functions and Training Method

Assume that there are P distinct training patterns, each consisting of a pair of
input and target patterns

{
a(I,p), t(O,p)

}
. The network connections, {ω(H), ω(O),

Ω(H)}, are to be adjusted in order to satisfy two objectives:

1. all the input/output pairs are mapped within a certain acceptable represen-
tation error

2. the variance of hidden nodes are minimized so that neurons with smallest
influence on the representation error can be removed

Hence, the overall cost function, J , that needs to be minimized can be expressed
as follows:

J = Jo + Jh (4)

The mapping cost function, Jo is defined as

Jo(ω
(H), ω(O), Ω(H)) =

1

P

P∑
p

O∑
k

(
tO,p
k − aO,p

k

)2
(5)

where tO,p
k is the kth target component and aO,p

k is the output of the kth node of
the output layer when the p pattern pair is presented. The hidden layer variance
cost function, Jh is defined as

Jh(ω
(H), Ω(H)) =

1

P

P∑
p

H∑
i

(
aH,p
i − aH,p

i

)2
(6)

where aH,p
i is the average value of hidden node i. The gradient descent learning

rule is used to update the all weights of this network, i.e., the weight γkj is
updated along the gradient direction using the equation

Δγij = −ηγ
∂J
∂γij

where γij ∈ {ω(H), ω(O), Ω(H)} and ηγ is a suitable learning rate that might
differ with the type of γkj . It is evident that the backpropagation (BP) learning
rules [25] can be applied to the three sets of weights when the Jo is minimized.
Therefore, and dropping the variable p, the BP algorithm is applied as follows:

Δγij = −ηγ
∂Jo

∂γij
= −ηγ

∂Jo

∂neti
· ∂neti
∂γij

= ηγ δi aj (7)

where ηγ is the learning rate and δi = − ∂Jo

∂neti
which is defined as

δi =

⎧⎨
⎩
(
t
(O)
i − a

(O)
i

)
f

′
(
net

(O)
i

)
if i is an output node

f
′
(
net

(H)
i

) ∑
l δ

(O)
l ω

(O)
li if i is a hidden node.

(8)
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In addition, the two sets of weights, {ω(H), Ω(H)}, will be also updated to min-
imize the hidden layer cost function, Jh. Assuming that φ ∈ {ω(H), Ω(H)}, the
update rule for φ is defined as

Δφij = −ηφ
∂Jh

∂φij
= −ηφ

∂Jh

∂a
(H)
i

· ∂a
(H)
i

∂net
(H)
i

· ∂net
(H)
i

∂φij
= −ηφ a

(H)
i f

′ (
net

(H)
i

)
a
(H/I)
j (9)

Here, a
(H/I)
j is either the output of an input node, j ∈ I or a hidden node with

j ∈ H, and j < i.
Although the BP rules (7,8) will reduce the system error to one of its local

minima, it does not guarantee that the smallest number of hidden nodes will
be employed in the representation task. Actually the error reduction task at the
hidden layer is distributed over the all nodes and different nodes can contribute
to the same task. Nothing in the BP rules imply that the correlation between the
nodes is minimized. By inspecting the update rule, (9), one can observe that the
weight update is proportional to the negative product of pre- and post-synaptic
activations of the two nodes. This is a form of the anti-Hebbian learning rule [26]
that is normally employed to decorrelate the output of two neurons. This rule
has been employed in networks that extract the principal components of the pre-
sented data [27]. An anti-Hebbian learning rule can accomplish this decorrelation
process. Hebb [28] had suggested that an excitatory connection between two neu-
rons be strengthened if their activities are correlated and weakened otherwise.
Similarly, an inhibitory connection will be strengthened if the activities were
uncorrelated and weakened otherwise. This leads to the anti-Hebbian learning
rule

ΔΩ
(H)
ij ∝ −β a

(H)
i a

(H)
j . (10)

Ideally, at convergence, when the average change in Ω
(H)
ij is zero, i.e., E{ΔΩ

(H)
ij }

→ 0, the correlation, E{a(H)
i a

(H)
j }, must vanish. This ensures that the hidden

layer activations are orthogonal. The rule (10) differs from the conventional Hebb
rule only in the sign before its learning rate, β.

4 Conditions on the Neuron Activations and Network
Stability

The application of this decorrelation rule (9) dictates that the neurons are of a
certain sigmoidal shape. Also, since the network employs lateral connections in
the hidden layer, the stability of the performance should be investigated.

If the hidden layer were composed of sigmoidal neurons whose activation val-
ues take any real positive value in the range [0, 1], then the condition (9) will
be satisfied only when all hidden neurons activations are at zero level, i.e., the
trivial solution of this function minimization. Hence, there will be no internal
representation at the hidden layer and thus the system error, J , will be at a
very poor local minimum. This makes it necessary that the hidden nodes should
produce both positive and negative values. Therefore, a bioploar sigmoid should
be utilized.
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The major problem with Hebbian learning is that the weights can grow indef-
initely. This has led some researchers to modify the Hebb rule either by doing
weight normalization [28] or by adding a forgetting factor [29]. Fortunately, the
anti-Hebbian rule, (10), is stable without providing any modification and the
weights, {Ω}, will be bounded. This can be shown as follows. Assume that
the weight Ωij increases, then using (2) and (3), the activation of node i, will
increase. By virtue of the updating rule, (10), Ωij will decrease.

It should be also noted that decorrelation process performed at the hidden
layer is similar to the Gram-Schmidt (GS) orthogonalization [30] applied to net-
work pruning [31, 32]. However, there are many differences both in architecture
and learning procedure. The GS nets generate a decorrelated version of the
hidden layer output by introducing another layer after the hidden layer. The
proposed architecture directly generates a decorrelated hidden layer output by
simply adding and training lateral connections. Also, the GS orthogonalization
is carried out using linear mapping. In this work, the anti-Hebbian decorrelation
is embedded into the nonlinear operation of the sigmoid. Moreover, the plain
BP rules cannot be applied directly with the GS nets due to the existence of the
decorrelation layers.

5 The Training and Pruning Algorithm

The Algorithm (1) describes the procedure of training the network using the BP
algorithm and how to select hidden neurons to remove from the hidden layer.
First, the weights and biases of an (n−m−r) three–layer network are initialized
to small random values. Here, n,m and r stand for the number of neurons in the
three layers, respectively. Then, the BP learning algorithm is applied to perform
the training task. After every sweep of the whole set of data patterns, the error,
Jo (7), is calculated and compared to the error threshold, ε. If, Jo > ε, the
training phase should be resumed till the error becomes less than ε.

At this point, the network is able to find the set of weights that can represent
the required input-output mapping within a certain threshold. There are two
possibilities regarding the hidden layer. The first is that all hidden neurons are
fully utilized in mapping process. The other possibility is that the number of ac-
tive hidden neurons could be reduced without (probably) violating the specified
error threshold. A selection criterion needs to be applied to choose which neuron
to remove or to become inactive. A reasonable criterion is to excise the hidden
node which has the least contribution in the error reduction process. Alterna-
tively, it is the node which, if removed, will result in the smallest error increase.
A suitable way to perform this is to calculate the average correlation coefficient,
ρi, between the ith hidden neuron and the error at the output layer provided
that the ith hidden neuron is not contributing to the output. The correlation
coefficient, ρ(i, j), between the output of ith hidden node, hi, and the error el-
ement at jth output neuron, ei = ti − oi, assuming that neuron i is inactive, is
defined as:

ρ(i, j) =
cov (i, j)√

[var(i) var(j)]
(11)
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Algorithm 1. Backpropagation Training and Pruning Algorithm

Initialize the network weights with small random value
while Minimum hidden nodes is not reached do

repeat
for Pattern = 1 : P do

1. Present input pattern at the input layer
2. Starting from the input layer, use Eqns. (1,2,3) to compute
the activities of the neurons at each layer.
3.Calculate the error, Jo, at the output layer
4. Compute the variable, δi (8), for all nodes in

the ouput and hidden layer, respectively.
5. Compute the change of weights of the three set of weights using

Δω
(O)
ij = ηγδ

(O)
i a

(H)
j

Δω
(H)
ij = ηγδ

(H)
i a

(I)
j − ηφ a

(H)
i a

′ (H)

i a
(I)
j

ΔΩ
(H)
ij = ηγδ

(H)
i a

(H)
j − ηφa

(H)
i a

′ (H)

i a
(I)
j

6. Updates the weights
end for
Calculate Representation error, Jo, after the update

until Representation error is within threshold, Jo < ε
Calculate the contribution of each hidden node in reducing Jo

Remove the hidden node with the least contribution, ρi (12)
end while

where cov (i, j) = E {([tj − oj ] + ωjihi) (hi)} , with var (i) = E
{
h2
i

}
and var

(j) = E
{
([tj − oj ] + ωjihi)

2
}
. The average correlation coefficient, ρi, then be-

comes

ρi =
1

n

r∑
j=1

ρ(i, j). (12)

The criterion guarantees that the neurons with maximal error reduction will be
left intact, while improving the convergence by removing the less contributing
neurons. It should be noted that the removal of hidden nodes requires a read-
justment of the bias vector of the remaining nodes. Thus, an increase in Jo will
be noticed for the first few sweeps after the excision. However, further training
will fix this problem.

6 Simulation Results

In this section, we present some simulations of the conventional BP algorithm
and the proposed model when they were applied to two benchmark problems:
the XOR and the three-bit parity problems. For both models, a momentum term
was added to the weight change formula, (7), i.e.,

Δωkj(l) = η δk(n) aj(l) + α Δωkj(l − 1)
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where α is the momentum factor and l is the current iteration number. To
compare the performance of the two networks, they had to be initialized to the
same values. The parameters of each network were updated after every training
epoch, a sweep of the presentation of the entire training set. The learning is
considered complete when the performance index, Jo, went below 0.0001.

6.1 The XOR Problem

Using a conventional BP algorithm,it was found that only two hidden nodes were
needed to solve the XOR classification. Hence, the weights of a larger network
with a 2–4–1 structure was initialized with small random values. The network is
trained using the proposed BP Pruning algorithm. Learning rates were set to:

ηγ = 0.7, α = 0.2, and ηφ = 0.3. The initial values of Ω
(H)
ij were set to zero in

order to ensure the proposed network will have the same initial start as the BP
network. The network was allowed to train till the error threshold was reached
after 354 epochs. The calculated values of ρi, i = 1, · · · , 4 for the 4 hidden nodes
were reported to be +0.2260,+0.0032,+0.5714, and +0.7889, respectively. The
correlation matrix, CH = E{(h− h̄)(h− h̄)}, with h being the activation values
of hidden layer nodes, is found to be⎛

⎜⎜⎝
0.0139 0 0 0
+0.0001 0.0000 0 0
−0.0046 −0.0004 0.0068 0
−0.0015 +0.0005 −0.0036 0.0054

⎞
⎟⎟⎠

When the last step in Algorithm (1) is reached and decision about which node to
remove, it is quite obvious that node 2 with variance equal to zero and minimum
ρ2 is to be removed. The matrix clearly shows that the hidden nodes were highly
decorrelated. When the algorithm is resumed after removing the second hidden
node, the target error was reached after further 26 epochs of training. The ρi
values are (0.2307, 0,+0.6184,+0.7513) and

CH =

⎛
⎜⎜⎝

0.0139 0 0 0
0 0 0 0

−0.0038 0 0.0069 0
−0.0010 0 −0.0043 0.0043

⎞
⎟⎟⎠

Here, node 1 will have the least effect on reducing the representation error and is
chosen to be excised. After training for extra for extra 400 epochs, the reported
values were ρi = (0, 0,+0.4317,+0.9020) and

CH =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0.0131 0
0 0 +0.0035 0.0289

⎞
⎟⎟⎠

Evidently, the variance of the two remaining nodes have increased to account
for the lost representation by the removed node while the anti-Hebbian sort of
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learning kept the remaining two nodes largely uncorrelated. A very important
observation has been reported when a conventional BP network is trained. While
the BP network tends to almost equally distribute the internal representation
task between the hidden nodes (nearly equal autocorrelation values), the pro-
posed network, on the other hand, forced the hidden nodes to discover only the
necessary features. This is represented by the unequal autocorrelation values in
CH . It is worth mentioning that in implementing the algorithm, no matrix cal-
culation is required. The computation of the correlation coefficients, ρ(i, j), is
carried out using local information and can be easily performed in a recursive
fashion. The matrices, CH , shown above are for sole purpose of demonstrating
the decorrelation capabilities of the proposed method.

6.2 The 3-Bit Parity Problem:

A 3-bit parity problem needs only a two hidden nodes to accomplish a 100% cor-
rect mapping. A 3-7-1 network was initialized and trained using the proposed BP
pruning algorithm with the same learning parameters used with the XOR prob-
lem. After 1600 epochs, the correlation variable ρi had the following values for
the 7 nodes: +0.1428,+0.9469,+0.2721,+0.0019,+0.0866,+0.0381,+0.0046.
Clearly, nodes 7 and 10 have the least contribution and both have zero variance.
Node 10 was chosen to be removed. At this point, both nodes could have been
removed simultaneously, but selecting one node at a time will help to better
understand the learning behaviour. As expected, further training for 100 epochs
resulted in removing node 7. Correlation between the removed node and its pre-
decessors are all null which suggests total independence between the nodes in
solving the problem. Continuing with the training and pruning process, nodes 9,
8, and 5 were excised at epoch 1786, 2030, and 2155, respectively. The remaining
two nodes had a very small correlation value of 0.0004.

The algorithm still needs to be tested with a larger classification data set
such as the UCI Machine Learning database and be compared with other prun-
ing algorithms mentioned in Section 1. Also, the generalization capabilities of
the resulting network has to be assessed and compared with the a network of
the same size that is trained with the conventional BP algorithm. Finally, the
proposed method needs to be compared to a simple cross-validation approach
in terms of complexity and performance, i.e., how the resulting optimal NN
structure, trained on a subset of the data, will perform over the majority of the
subsets.

7 Conclusions

In this work, a pruning algorithm for the hidden neurons of a three–layer network
was investigated. The network has linear output neurons and bipolar sigmoidal
hidden neurons. The algorithm works by providing lateral connection among the
hidden nodes in such a way that the nodes are only connected to earlier ones
in the same hidden layer. Minimizing the variance of hidden nodes resulted in
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a learning rule that is of anti-Hebbian nature. This anti-Hebbian learning rule
has been used to train these lateral connections to orthogonalize the outputs
of all hidden nodes. The BP rules have been employed to train all forward
connections. Test results indicate that the proposed method managed to find
the optimal number of hidden nodes for both the XOR and 3-parity problems
which fully decorrelates the hidden layer outputs.
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Abstract. Manual annotation of the training data of information ex-
traction models is a time consuming and expensive process but
necessary for the building of information extraction systems. Active
learning has been proven to be effective in reducing manual annotation
efforts for supervised learning tasks where a human judge is asked to
annotate the most informative examples with respect to a given model.
However, in most cases reliable human judges are not available for all
languages. In this paper, we propose a cross-lingual unsupervised ac-
tive learning paradigm (XLADA) that generates high-quality automat-
ically annotated training data from a word-aligned parallel corpus. To
evaluate our paradigm, we applied XLADA on English-French and
English-Chinese bilingual corpora then we trained French and Chinese in-
formation extraction models. The experimental results show that XLADA
can produce effective models without manually-annotated training data.

Keywords: Information extraction, named entity recognition, cross-
lingual domain adaptation, unsupervised active learning.

1 Introduction

Named Entity Recognition (NER) is an information extraction task that iden-
tifies the names of locations, persons, organizations and other named entities
in text, which plays an important role in many Natural Language Processing
(NLP) applications such as information retrieval and machine translation. Nu-
merous supervised machine learning algorithms such as Maximum Entropy, Hid-
den Markov Model and Conditional Random Field (CRF) [1] have been adopted
for NER and achieved high accuracy. They usually require large amount of man-
ually annotated training examples. However, it is time-consuming and expensive
to obtain labeled data to train supervised models. Moreover, in sequence mod-
eling like NER task, it is more difficult to obtain labeled training data since
hand-labeling individual words and word boundaries is really complex and need
professional annotators. Hence, the shortage of annotated corpora is the obsta-
cle of supervised learning and limits the further development, especially for lan-
guages for which such resources are scarce. Active learning is the method which,

N. El Gayar et al. (Eds.): ANNPR 2014, LNAI 8774, pp. 23–34, 2014.
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instead of relying on random sampling from the large amount of unlabeled data,
it reduces the cost of labeling by actively participates in the selection of the most
informative training examples then an oracle is asked for labeling the selected
sample. There are two settings depending on the oracle type: supervised setting
[2] where requires human annotators as oracle for manual annotation and the
unsupervised setting where the oracle is an automation process. Using different
settings, active learning may determine much smaller and most informative sub-
set from the unlabeled data pool. The difference between unsupervised active
learning and semi-supervised learning [3] is that the former depends on an ora-
cle to automatically annotate the most informative examples with respect to the
underlying model. The later depends on the underlying model to automatically
annotate some unlabeled data, to alleviate mislabeling noise the model selects
the most confident examples.

For language-dependent tasks such as information extraction, to avoid the
expensive re-labeling process for each individual language, cross-lingual adapta-
tion, is a special case of domain adaptation, refers to the transfer of classification
knowledge from one source language to another target language.

In this paper, we present a framework for incorporating unsupervised active
learning in the cross-lingual domain adaptation paradigm (XLADA) that learns
from labeled data in a source language and unlabeled data in the target lan-
guage. The motivation of XLADA is to collect large-scale training data and to
train an information extraction model in a target language without manual an-
notation but with the help of an effective information extraction system in a
source language, bilingual corpus and word-level alignment model.

2 Related Work

Yarowsky et al. [4] used word alignment on parallel corpora to induce several
text analysis tools from English to other languages for which such resources are
scarce. An NE tagger was transferred from English to French and achieved good
classification accuracy. However, Chinese NER is more difficult than French and
word alignment between Chinese and English is also more complex because of
the difference between the two languages.

Some approaches have exploited Wikipedia as external resource to gener-
ate NE tagged corpus. Kim et al. [5] build on prior work utilizing Wikipedia
metadata and show how to effectively combine the weak annotations stemming
from Wikipedia metadata with information obtained through English-foreign
language parallel Wikipedia sentences. The combination is achieved using a novel
semi-CRF model for foreign sentence tagging. The model outperforms both stan-
dard annotation projection methods and methods based solely on Wikipedia
metadata. XLADAdoes not leverage Wikipedia because its content is poor in
some languages like Chinese.

Fu et al. [6] presents an approach to generate large-scale Chinese NER training
data from an English-Chinese discourse level aligned parallel corpus. It first
employs a high performance NER system on one side of a bilingual corpus.
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And then, it projects the NE labels to the other side according to the word level
alignment. At last, it selects labeled sentences using different strategies and
generate an NER training corpus. This approach can be considered as passive
domain adaptation while XLADA is active learning framework that filters out
the auto-labeled data and selects the most informative training sentences.

Muslea et al. [7] introduced Co-Testing, a multi-view active learning frame-
work, where two models are trained on two independent and sufficient sets of
features. The most informative sentences are the points of disagreement between
the two models that could improve their performance and a human judge is asked
for labeling them. On the other hand, XLADA looks for the most informative
sentences for the target model and we don’t have judges.

Jones et al. [3] adapted semi-supervised learning Co-EM to information ex-
traction tasks to learn from both labeled and unlabeled data that makes use
of two distinct feature sets (training document’s noun phrases and context). It
is interleaved in the supervised active learning framework Co-Testing. XLADA
differs in that cross-lingual label propagation on a parallel corpus is interleaved
for automatic annotation instead of using Co-EM approach and that it adopts
an unsupervised active learning strategy.

XLADA is more practical than the framework proposed by Li et al. [8] that
depends on cross-lingual features extracted from the word-aligned sentence pair
in training the target language CRF model. Hence, it isn’t possible to extract
named entities from a sentence in the target language unless it is aligned with a
sentence in the source language.

3 Algorithmic Overview

The architecture of the proposed combination of cross-lingual domain adaptation
and active learning paradigm XLADA is shown in Figure 1.

3.1 Initial Labeling

Source Language NER. An effective source language NER is applied on the
source-side of the bilingual corpus US to identify named entities such as person,
location, organization names, denote the output LS . In our experiments, the
source language is English and English Stanford NER1 is used. The system is
based on linear chain CRF [1] sequence models that can recognize three types
of named entities (Location, Person and Organization).

Word Alignment of Parallel Corpus. Sentence alignment and word align-
ment is performed on the given unlabeled bilingual corpus US and UT . First,
sentence level alignment is performed then we applied word dependent transi-
tion model based HMM (WDHMM) for word alignment [9].

1 http://nlp.stanford.edu/software/CRF-NER.shtml

http://nlp.stanford.edu/software/CRF-NER.shtml
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Fig. 1. Architecture of cross-lingual active domain adaptation (XLADA)

Label Propagation. We project the NE labels to the target side of the parallel
corpus to automatically annotate target language sentences, according to the
result of word alignment, as shown in Figure 2. The output is a set of candidate
training sentences. A target sentence is filtered out from the set of candidate
training sentences if the number of named entities after label propagation is less
than the number of named entities in the source sentence.

3.2 Unsupervised Active Learning

The amount of auto-labeled sentences in the target language training is too huge
to be used for training the information extraction model. Also they are noisy
because of the errors in source language NER or word-level alignment. Unsu-
pervised active learning is adopted for selecting high quality training sentences
used to train CRF model. The manual annotation of the selected sentences by
human judges is replaced with the alignment-based automatic annotation.

We randomly select a set of auto-labeled training sentences LT . An initial
CRF model is trained with LT . Since a random set of auto-labeled sentences
is not sufficient to train a good prediction model in the target language, addi-
tional labeled data is required to reach a reasonable prediction model. Afterward,
XLADA will proceed in an iterative manner.

A pool CPT of the large amount of auto-labeled sentences is selected. There
are two ways to select the sentences in the pool, either a random sample or by
assigning a score for each target sentence and finally choose sentences with the
highest score (most confident sentences).
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Fig. 2. Projection of named-entity tags from English to Chinese and French sentences

The score of each target sentence depends on the score given to its corre-
sponding source sentence in the parallel corpus, as follows:

score(S) = min
wi∈S

max
cj∈classes

P (cj |wi, θsrc) (1)

The source NER model θsrc assigns probability for each token of how likely it
belongs to each entity type: person, location, organization or otherwise. Then, the
entity type for each token is the class with maximum probability P (cj |wi, θsrc).
We apply the forward-backward algorithm to compute them.

In each round of active learning, the current target NER model θtgt tags each
target sentence in the auto-labeled pool CPT . The critical challenge lies in how
to select the most informative sentences for labeling. Based on different mea-
surements of target sentence informativeness, we propose the following metric
to measure how informative is a given sentence S.

inform(S) =
1

N(S)

∑
wi∈S

ŷ(wi)P (ŷtgt(wi)|wi, θtgt) (2)

where ŷ(wi) = I(ŷsrc(wi) 	= ŷtgt(wi)) the indicator boolean function between

ŷsrc(wi) = arg max
cj∈classes

P (cj |wi, θsrc) (3)

the NE label propagated from the source NER model θsrc through alignment
information and

ŷtgt(wi) = arg max
cj∈classes

P (cj |wi, θtgt) (4)

the NE tag assigned by the current target NER model θtgt to the ith word in S.
The most informative sentences are the ones that the target NER model θtgt

didn’t learn yet (least confident on its NE prediction) and mismatch with the
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source NER model θsrc where N(S) is the number of tokens in S the two models
disagree. Then we select the top N sentences or the ones less than a predefined
threshold, add them to LT with the automatic labels propagated from the source
NER model θsrc and remove them from the pool CPT . After new labels being
acquired, the target model is retrained on the updated LT .

3.3 Conditional Random Field

Conditional Random Fields (CRFs) [10], similar to the Hidden Markov Models
(HMMs) [11] , are a type of statistical modeling method used for labeling or
parsing of sequential data, such as natural language text and computer vision.
CRF is a discriminative undirected probabilistic graphical model that calculates
the conditional probability of output values for a given observation sequence.
HMMs made strong independence assumption between observation variables, in
order to reduce complexity, which hurts the accuracy of the model while CRF
does not make assumptions on the dependencies among observation variables.

Figure 3 shows the graphical representation of liner chain CRFs. Because of
its linear structure, linear chain CRF is frequently used in natural language
processing to predict sequence of labels Y for a given observation sequence X .
The inference of a linear-chain CRF model is that given an observation sequence
X , we want to find the most likely sequence of labels Y . The probability of Y
given X is calculated as follows:

P (Y |X) =
1

Z(X)
exp(

T∑
t=1

n∑
i=1

wifi(yt−1, yt, X, t)) (5)

where

Z(X) =
∑
Y ′

exp(

T∑
t=1

n∑
i=1

wifi(y
′
t−1, y

′
t, X, t)) (6)

In the equation, the observation sequenceX = (x1, . . . , xT ), the label sequence
Y = (y1, . . . , yT ) where yt is the label for position t, state feature function is
concerned with the entire observation sequence, the transition feature between
labels of position t−1 and t on the observation sequence is also considered. Each
feature fi can either be state feature function or transition feature function. The
coefficients wis are the weights of features and can be estimated from training
data. Z(X) is a normalization factor.

4 Experiments

4.1 Datasets

The performance of XLADA is evaluated on the unsupervised learning of Chi-
nese and French NER for named entity recognition of three entity types, person
(PER), location (LOC) and organization (ORG). To achieve this goal, unlabeled
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Fig. 3. Graphical representation of linear-chain CRF

training data set and labeled test data set is required for each target language.
As unlabeled training data, two bilingual parallel corpora is used. The English-
Chinese corpus is 20 million parallel sentences and the English-French corpus
contains 40 million parallel sentences. The corpora involve a variety of publicly
available data sets including United Nations proceedings2, proceedings of the Eu-
ropean Parliament3, Canadian Hansards4 and web crawled data. Both sides of
each corpus were segmented (in Chinese) and tokenized (in English and French).

Table 1. Corpora used for performance evaluation

test set Chinese French

#sentences 5,633 9,988

#Person 2,807 3,065

#Location 7,079 3,153

#Organization 3,827 1,935

Table 1 shows a description of the corpora used as labeled test data for
XLADA. One is the Chinese OntoNotes Release 2.0 corpus 5 and the second
is a French corpus manually labeled using crowd sourcing. A group of five hu-
man annotators was asked to label each sentence then the majority NE tag is
assigned to each token.

4.2 Setup

A widely used open-source NER system, Stanford Named Entity Recognizer is
employed to detect named entities in the English side of the English-Chinese
and English-French parallel corpora.The number of sentences that has at least
one named entity detected by the Stanford NER is around 4 million sentences
for Chinese and 10 million sentences for French. The features used to train the
CRF model are shown in Figure 2. It’s worth mentioning that the trainer used
here is a local implementation of CRF (not Stanford’s implementation) since
Stanford’s implementation is very slow and memory consuming.

2 http://catalog.ldc.upenn.edu/LDC94T4A
3 http://www.statmt.org/europarl/
4 http://www.isi.edu/natural-language/download/hansard/
5 http://catalog.ldc.upenn.edu/LDC2008T04

http://catalog.ldc.upenn.edu/LDC94T4A
http://www.statmt.org/europarl/
http://www.isi.edu/natural-language/download/hansard/
http://catalog.ldc.upenn.edu/LDC2008T04
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Table 2. Features used for Named Entity Recognition CRF model

type extracted features

Shape Features
WordString, WordShape, StartsWithCapital, AllCapital
Character N-Grams, Shape Character N-Grams

Brown Clusters [12] Levels 0, 4, 8, 12

Bags of Words Date Tokens, Punctuations, Personal Titles, Stop Words

Contextual Previous 3 words and next 2 word features

As baselines for comparison, we have studied the following data selection
techniques:

– random sample: The first NER model was trained on randomly sample of
340,000 and 400,000 sentences from the four million auto-labeled sentences
and ten million sentences for Chinese and French language, respectively.
(upper horizontal dashed lines in Figure 4)

– most confident sample: the second NER model was trained on the set of
the top 340,000 and the top 400,000 most confident sentences (based on
the min-max score function defined on section 3) for Chinese and French,
respectively. (lower horizontal dashed lines in Figure 4)

For active learning, we have randomly chosen 100,000 auto-labeled sentences
to train the initial NER for Chinese and French, respectively. And then, we have
created a pool(set) of two million sentences where we have two experiments:

– random pool: one with a pool of randomly chosen sentences regardless of
tagging confidence.

– most confident pool: another experiment with a pool of target sentences cor-
responding to the most confident source sentences selected by min-max score
function.

The initial NER is applied on the pool and the informativeness of each sentence
is measured using the function defined in section 3.

– informative addition: The most informative sentences are the sentences with
score less than 0.9. At the end of the first iteration, the labeled training set
is augmented with the newly-selected most informative sentences and the
target NER is re-trained, this process is repeated for 20 iterations where the
final NER for Chinese and French has been trained on 340,000 sentences and
400,000 sentences, respectively.

– random addition: another baseline for comparison where in each iteration, a
number of auto-labeled sentences in the target language, Chinese or French,
is randomly selected, equals to the number of most informative sentences
selected in the same iteration at the informative addition experiment.

4.3 Results

The performance of unsupervised Chinese and French NER systems is reported
in Table 4 and Table 3, respectively where the best performing data selection
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Table 3. The performance of unsupervised French NER models trained using XLADA
compared to baselines

selection XLADA Baseline
method informative addition random addition most random

Entity Pool most random most random confident sample
type type confident confident sample

PER
Precision 78.1 79.7 78.6 79.0 77.9 77.0
Recall 82.0 79.6 78.8 75.4 71.9 76.2
F1 80.0 79.7 78.7 77.1 74.7 76.6

LOC
Precision 82.9 82.9 83.2 83.8 73.0 84.6
Recall 65.9 66.6 64.0 64.9 59.2 63.8
F1 73.4 73.9 72.3 73.2 65.4 72.7

ORG
Precision 54.1 50.1 52.0 51.7 59.1 49.5
Recall 50.0 52.2 48.7 49.6 25.0 48.1
F1 51.9 51.1 50.3 50.6 35.2 48.8

technique is bold faced. Figure 4 shows the learning curve of target NER models
using the different training data selection techniques for Chinese and French,
respectively. The F1 measure of both random sample NER and most confident
sample NER is drawn as a horizontal dashed line.The results show that XLADA
outperforms the random sample baseline.

For Chinese NER. For person NE, XLADA with informative addition using
most confident pool achieves the highest F1-score 80.4% compared to 59.5% for
most confident sample and 75.1% for random sample. This is attributed to the
increase in person recall from 43.6% and 63.2% to 69.7% and 68.0% respectively.
For location NE, XLADA with informative addition using most confident pool
achieves the highest F1-score 83.1% compared to 73.3% formost confident sample
and 81.7% for random sample. This is attributed to the increase in location recall
from 64.6% and 74.0% to 76.4% and 75.0% respectively. For organization NE,
XLADA with informative addition using random pool achieves the highest F1-
score 65.9% compared to 44.5% for most confident sample and 62.6% for random
sample. This is attributed to the increase in organization recall from 29.4% and
50.3% to 55.2%, respectively.

For French NER. For person NE, XLADA with informative addition using
most confident pool achieves the highest F1-score 80.0% compared to most con-
fident sample with 74.7% and random sample with 76.6% . This is attributed
to the increase in person recall from 71.9% and 76.2% to 82.0%. For location
NE, XLADA with informative addition using random pool achieves the highest
F1-score 73.9% compared to domain adaptation without active learning: most
confident sample of 65.4% and random sample of 72.7%. This is attributed to the
increase in location recall from 59.2% and 63.8% to 66.6%. For organization NE,
XLADA with informative addition using most confident pool achieves the highest
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Table 4. The performance of unsupervised Chinese NER models trained using XLADA
compared to baselines

selection XLADA Baseline
method informative addition random addition most random

Entity Pool most random most random confident sample
type type confident confident sample

PER
Precision 94.9 93.5 92.9 91.8 93.4 92.4
Recall 69.7 68.0 62.7 65.0 43.6 63.2
F1 80.4 78.8 74.9 76.1 59.5 75.1

LOC
Precision 91.1 92.2 90.9 91.1 84.9 91.1
Recall 76.4 75.0 73.6 73.9 64.6 74.0
F1 83.1 82.7 81.3 81.6 73.3 81.7

ORG
Precision 80.8 81.7 87.2 78.6 91.4 83.0
Recall 51.9 55.2 47.7 51.6 29.4 50.3
F1 63.2 65.9 61.6 62.3 44.5 62.6

F1-score 51.9% compared to most confident sample of 35.2% and random sample
of 48.8%. This is attributed to the significant improvement of organization recall
from 25.0% and 48.1% to 50.0%.

4.4 Discussion

The improvement in recall means increase in the coverage of the trained NER
model. This is attributed to the high quality of the training sentences selected
by the proposed selective sampling criterion compared to random sampling. In
addition, it is better than selecting target sentences where the English NER
model is most confident about their corresponding English ones. The reason is
that although the English NER model is most confident, this does not alleviate
the passive nature of the target NER model as it has no control on the selection
of its training data based on its performance. That is, it implies that the selected
sentences do not carry new discriminating information with respect to the tar-
get NER model. In all cases, the random sample outperforms the most confident
sample. The reason that selecting only the most confident sentences tends to nar-
row the coverage of the constructed NER. Figure 4 shows that XLADA achieves
the most significant performance improvement in the early iterations, then the
learning curve starts to saturate.

In general, the results of organization NE type are lower than the results of
Person and Location. The reason is that ORG names are more complex than
Person and Location names. They usually consist of more words, which may
result in more word alignment errors and then lead to more training sentences
being filtered out. Another reason behind this is that ORG names mostly consist
of a combination of common words. gNot only for French and Chinese but also
English ORG entity recognition is more difficult, which also results in more noise
among the ORG training sentences.
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(a) chinese person (b) french person

(c) chinese location (d) french location

(e) chinese organization (f) french organization

Fig. 4. Performance of unsupervised Chinese and French NER

5 Conclusions

The manual annotation of training sentences to build an information extrac-
tion system for each language is expensive, error-prone and time consuming.
We introduced an unsupervised variant of active learning in the cross-lingual
automatic annotation framework that replaces the manual annotation with the
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alignment-based automatic annotation. It depends on the existence of high qual-
ity source language NER model, bilingual parallel corpus and word-level align-
ment model. A modified score function is proposed as the criterion for selecting
the most informative training sentences from the huge amount of automatically
annotated sentences. Although the reported results are on the recognition of
three entity types, the framework can be generalized to any information extrac-
tion task.
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Abstract. For a small sample problem with a large number of fea-
tures, feature selection by cross-validation frequently goes into random
tie breaking because of the discrete recognition rate. This leads to inferior
feature selection results. To solve this problem, we propose using a least
squares support vector regressor (LS SVR), instead of an LS support
vector machine (LS SVM). We consider the labels (1/-1) as the targets
of the LS SVR and the mean absolute error by cross-validation as the
selection criterion. By the use of the LS SVR, the selection and ranking
criteria become continuous and thus tie breaking becomes rare. For eval-
uation, we use incremental block addition and block deletion of features
that is developed for function approximation. By computer experiments,
we show that performance of the proposed method is comparable with
that with the criterion based on the weighted sum of the recognition
error rate and the average margin error.

Keywords: Backward feature selection, feature ranking, forward fea-
ture selection, incremental feature selection, pattern classification, sup-
port vector machines, support vector regressors.

1 Introduction

To realize a classifier with high generalization ability, feature selection, which
eliminates redundant and irrelevant features, is especially important for a small
sample problem with a large number of features (SSPLF). In such a problem,
to avoid deleting important features for classification, wrapper methods [1–3],
which use recognition rate-based criteria, are preferable to filter methods, which
use more simpler criteria [4–6].

For kernel-based classifiers, imbedded methods, in which feature selection and
training are done simultaneously are also used [7, 8].

For wrapper methods, forward selection and backward selection are often used.
In forward selection, a feature is sequentially added to an initially empty set, and
in backward selection, a feature is sequentially deleted from the set initialized
with all the features. Because forward selection is faster than backward selection
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if the number of selected features is small, but less stable, the combination of
forward selection and backward selection is also used [3, 9–11].

There are several approaches to speed up wrapper methods: some feature
selection methods combine filter methods and wrapper methods and use filter
methods as a preselector [12–14]. In [3], instead of sequential forward selection
and backward selection, block addition (BA) of features followed by block dele-
tion (BD) of features is proposed.

Incremental selection has also been proposed [15–19] to speed up feature se-
lection. In [19], BABD for input variable selection is extended to incremental
selection and speedup was shown for the small sample problems with a large
number of input variables (SSPLV).

In applying a wrapper method to an SSPLF, frequently we need to break ties
in feature selection and feature ranking, because the feature selection/ranking
criterion is discrete. In addition, the number of selected features is very small
because the 100% recognition rate is easily obtained for the validation data set.
This worsens the generalization ability. To avoid this, we used the weighted sum
of the recognition error rate and the average margin error [3]. This led to more
stable feature selection for microarray data sets.

In this paper, instead of the weighted sum of error rate and the average margin
error used in [3], we propose using the mean absolute error by the least squares
support vector regressor (LS SVR), assuming the labels (1/− 1) as the targets
of regression. Because, unlike the regular SVM, for the LS SVM, classifiers and
regressors have the same form, training for the LS SVM and that for the LS
SVR are the same. The only difference is whether the recognition error is calcu-
lated or the mean absolute error is calculated. Thus, a classification problem is
easily converted into the associated regression problem, whose absolute error is
continuous. Therefore, unlike the LS SVM, tie breaking rarely happens for the
LS SVR.

The procedure for feature selection is based on incremental block addition and
block deletion [3, 19]. Starting from the empty set, we repeat adding multiple
features at a time to the set. We stop addition when the generalization ability of
the set is no longer improved. Then from the set of selected features, we delete
multiple features at a time until the generalization ability is not improved.

In Section 2, we discuss the idea of feature selection and selection criteria.
Then in Section 3 we discuss the proposed methods based on incremental block
addition and block deletion, and in Section 4, we show the results of computer
experiments using two-class benchmark data sets including microarray data sets.

2 Idea of Feature Selection and Selection Criteria

For an SSPLF such as microarray data sets, the optimal set of features that
realizes the generalization ability comparable to that of the original set of fea-
tures is usually not so large. In such a situation, forward selection is faster than
backward selection. Therefore, by forward selection we select a set of features
whose generalization ability is comparable to that of the original set of features.
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But because an added feature may become redundant after another feature is
added, we perform backward selection for the set of features selected by forward
selection.

To speedup feature selection, we use multiple feature addition (block addi-
tion) and multiple feature deletion (block deletion) and combine BABD with
incremental feature selection.

To avoid frequent tie breaking in feature selection and feature ranking, we use
a continuous selection criterion.

Let the decision function for a two class problem be

z = f(x) = w�φ(xi) + b, (1)

where x and z are the feature vector and the decision output, respectively, w is
the coefficient vector of the separating hyperplane in the feature space, φ(x) is
the mapping function that maps x into the feature space, and b is the bias term.

For M training input-output pairs {xi, yi} (i = 1, . . . ,M), the LS SVM is
given by

minimize
1

2
w�w +

C

2

M∑
i=1

ξ2i (2)

subject to yi f(xi) = 1− ξi for i = 1, . . . ,M, (3)

where C is the margin parameter, yi = 1 for Class 1 and −1 for Class 2, and ξi
is the slack variable associated with xi.

Multiplying yi to both sides of (3) and replacing yi ξi with ξi, we obtain

minimize
1

2
w�w +

C

2

M∑
i=1

ξ2i (4)

subject to f(xi) = yi − ξi for i = 1, . . . ,M. (5)

The above LS SVM is the same as the LS SVR.
In a wrapper method, we use the recognition error rate EC. For the training

data set it is given by

EC =
1

M

M∑
i=1

ei for ei =

{
0 for yi f(xi) ≥ 0,
1 for yi f(xi) < 0.

(6)

Because the recognition error rate is discrete, for an SSPLF, frequent tie breaking
occurs for feature selection and feature ranking. Therefore, in [3] we proposed
the following MM criterion:

EMC = EC + r EM, (7)

where r is a positive parameter and r = 1/M , and EM is the mean margin error
given by

EM =
1

M

M∑
i=1

ξi where ξi =

{
0 for yi f(xi) ≥ 1,

1− yi f(xi) for yi f(xi) < 1.
(8)
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Because the LS SVM can also be used as a regressor, we consider the classi-
fication problem as a function approximation problem: we assume that the class
labels (1/−1) are target values of a function approximation problem. Then,
training the LS SVM is equivalent to training the associated LS SVR.

Thus, instead of (7), we consider using the mean absolute error:

EMAE =
1

M

M∑
i=1

|yi − f(xi)|. (9)

Because yi = 1 or−1, minimization of (9) leads to minimization of the recogni-
tion error. But model selection by cross-validation using (9) does not necessarily
lead to the same model obtained by cross-validation using the recognition error
or the MM criterion given by (7).

3 Feature Selection by Incremental Block Addition
and Block Deletion

We use incremental BABD for function approximation discussed in [19]. The
algorithm for pattern classification is essentially the same. In the following we
explain incremental BABD.

In incremental BABD, initially we select a subset from the set of initial fea-
tures and select features from the subset by BABD. Then we add features that
are not yet processed to the set of selected features and repeat BABD until all
the features are processed. This procedure is called one-pass incremental BABD.

By this method, important features may be discarded before the new features
are added. To prevent this, we repeat one-pass BABD until no further improve-
ment in the selection criterion is obtained. This procedure is called multi-pass
incremental BABD.

Now we explain incremental BABD more in detail referencing the correspond-
ing steps in Algorithm 1, which is an extension of iterative BABD discussed in
[20].

Let Im = {1, . . . ,m} be the set of the original m features. Initially, we select
the set of m′ features, Im

′
, from Im as the initial set of features (Step 1), and

calculate the MAE for Im
′
, Em′

, by cross-validation. This is used as the threshold
of feature selection for Im

′
, Tm′

(Step 2):

Tm′
= Em′

. (10)

By BA, we iterate feature ranking and feature addition until

Ej ≤ Tm′ ≤ Ej + εM (11)

is satisfied, where εM is a positive value, Ij is the set of selected j features,
j ≤ m′, and Ij ⊆ Im

′
. The right-hand side inequality is to control the number

of selected features, and as the value of εM is decreased, the number of selected
features is increased. Then if Ej < Tm′

, we update the threshold by

Tm′
= Ej . (12)



Incremental Feature Selection by BABD Using LS SVRs 39

In the feature ranking we rank features in Im
′
in the ascending order of

MAEs, which are evaluated by temporarily adding a feature to the set of selected
features. Then we add, to the set of selected features, from the top ranked to the
2kth ranked features, where k = 1, . . . , 2A and A is a user defined parameter, and
evaluate the MAE by cross-validation (Step 3). If the minimum MAE for k ∈
{1, . . . , 2A} is smaller than or equal to Tm′

, we permanently add the associated
features, and update the threshold. If the right-hand side inequality in (11) is
satisfied, finish BA. If not, repeat BA. Otherwise, if the minimumMAE is smaller
than that at the previous BA step, we permanently add the associated features,
update the threshold, and repeat BA. Otherwise, we add the top ranked feature
and repeat BA (Step 4).

Because redundant features may be added by BA, we delete these features by
BD repeating feature ranking and deletion of features.

For each feature in Ij we evaluate the MAE by cross-validation temporarily
deleting the feature (Step 5).

We generate set Sj that includes features whose MAE is not larger than Tm′
.

If Sj is empty we terminate BD. If only one element is in Sj, delete this feature
and iterate BD (Step 6). Otherwise, we temporarily delete all the features in
Sj and evaluate the MAE by cross-validation. If it is not larger than Tm′

, we
permanently delete these features and update j, and repeat BD (Step 7). If not,
we rank features in Sj and temporarily delete the top half and evaluate the MAE
by cross-validation. We repeat this until feature deletion is succeeded (Step 8).

After BD is succeeded, Ej for the resulting set of features Ij satisfies

Ej ≤ Tm′
. (13)

Then we update the threshold by Tm′
= Ej and repeat BD.

The above procedure guarantees that the MAE for the selected features is not
larger than that for Im

′
, i.e., Ej ≤ Em′

.
Let iInc be the number of features that are added at the incremental step. We

add iInc features from Im − Im
′
to Ij ,

Let the resulting set of features be Ij+iInc . Then the MAE for Ij+iInc is Ej+iInc .
We set the threshold Tm′+iInc by Tm′+iInc = Ej+iInc . Here, we must notice that

Tm′+iInc ≤ Tm′
. (14)

is not always satisfied.
We iterate the above BABD for Ij+iInc . Let the resulting set of features be

Io, where o ≤ j + iInc. Then

Eo ≤ Tm′+iInc (15)

is satisfied. If (14) is satisfied,

Eo ≤ Tm′
(16)

is also satisfied. But otherwise, there is no guarantee that the above inequality
is satisfied.
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If (16) is satisfied, we repeat BABD adding the variables not processed. Oth-
erwise, we consider that the BABD for this step failed and undo the feature
selection at this step; namely, we restart BABD with threshold Tm′

and Ij , and
add remaining features to Ij .

In one-pass incremental BABD, we repeat the BABD until all the variables
are processed. In multi-pass incremental BABD, to reduce the absolute error
further, we repeat the above procedure until the selection criterion does not
change (Step 9).

Algorithm 1 (Incremental BABD).

Initialization
Step 1 Set Im

′
(⊆ Im), j = 0, and Ej = ∞.

Block Addition
Step 2 Calculate Em′

for Im
′
. Set Tm′

= Em′
.

Step 3 Add feature i in Im
′ − Ij temporarily to Ij , calculate Ej

iadd
, where iadd

denotes that feature i is temporarily added, and generate feature ranking
list V j . Set k = 1.

Step 4 Calculate Ej+k (k = 1, 21, . . . , 2A). If Ej+k < Tm′
, set j ← j+k, Tm′ ←

Ej . And if Tm′ ≤ Ej + εM, go to Step 5; if not, go to Step 3. Otherwise,
if Ej+k < Ej is satisfied, set j ← j + k and go to Step 3. Otherwise, if
Ej ≤ Tm′

, go to Step 5; otherwise, set j ← j + 1, Tm′ ← Ej and go to Step
3.

Block Deletion
Step 5 Delete temporarily feature i in Ij and calculate Ej

idel
, where idel denotes

that feature i is temporarily deleted.
Step 6 Calculate Sj. If Sj is empty, Io = Ij and go to Step 9. If only one

feature is included in Sj , set Ij−1 = Ij − Sj , set j ← j − 1 and go to Step
5. If Sj has more than two features, generate V j and go to Step 7.

Step 7 Delete all the features in V j from Ij : Ij
′
= Ij −V j , where j′ = j− |V j |

and |V j| denotes the number of elements in V j . Then, calculate Ej′ and if
Ej′ > Tm′

, go to Step 8. Otherwise, update j with j′, Tm′ ← Ej′ , and go
to Step 5.

Step 8 Let V
′j include the upper half elements of V j . Set Ij

′
= Ij − {V ′j},

where {V ′j} is the set that includes all the features in V
′j and j′ = j −

|{V ′j}|. Then, if Ej′ ≤ Tm′
, delete features in V

′j and go to Step 5 updating
j with j′ and Tm′

with Ej′ . Otherwise, update V j with V
′j and iterate Step

8 until Ej′ < Tm′
is satisfied.

Step 9 If Eo is larger than Tm′
in the previous step, undo current BABD.

If some features in Im are not added, Im
′
= Io ∪ IiInc , m′ ← o + iInc,

j = 0, Ej = ∞, and go to Step 2. Otherwise, if one-pass, terminate feature
selection; otherwise if Tm′

decreases from previous Tm′
, go to Step 1. If not,

stop feature selection.

4 Performance Evaluation

Because feature selection based on the EC criterion performed poorly for a large
number of features [3], in this section, we compare the MAE criterion with the
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MM criterion and incremental BABD with batch BABD using two kinds of data
sets: data sets with small numbers of features and microarray data sets with
large numbers of features. We set A = 5 and εM = 10−5 as in [3]. In incremental
feature selection, we set m′ = iInc and add features from the first to the last.

4.1 Data Sets with Small Numbers of Features

We used the ionosphere and WDBC data sets [21]. We divided each data set
randomly into training and test data sets and generated 20 pairs.

For these data sets, in [3] we showed that the recognition rates of the test data
sets and the numbers of selected features by batch BABD were comparable to
those shown in [2, 8, 13]. Therefore, here, we only compare the proposed method
with batch BABD.

We used the RBF kernels: K(x,x′) = φ�(x)φ(x′) = exp(−γ||x− x′||2/m),
where γ is a positive parameter. Using all the features we determined the γ and C
values by fivefold cross-validation changing γ = {0.001, 0.01, 0.5, 1.0, 5.0, 10, 15,
20, 50, 100} and C = {1, 10, 50, 100, 500, 1000, 2000}. During and after feature
selection we fixed the γ and C values to the determined values.

We measured the average feature selection time per data set using a personal
computer with 3GHz CPU and 2GB memory.

Table 1 shows the results for the ionosphere and WDBC data sets. The upper
part for each data set shows the result for the MM criterion and the lower part,
the MAE criterion. In the “Data (Tr/Te/In)” column, the first row of each data
set shows the name of the data set followed by the numbers of training data, test
data, and features. The first column also includes performance with the standard
deviation using all the features: the recognition rates for the test data sets and
those for the validation data sets in the parentheses. For the MAE criterion,
MAEs are shown in the parentheses.

In the second column, MM denotes batch BABD with the MM criterion and
MAE, that with the MAE criterion. And for instance “20” denotes the one-
pass incremental BABD with 20 features added, and “m” in 20m denotes the
multi-pass incremental BABD. The third column shows the recognition (ap-
proximation) performance after feature selection. And the fourth and the fifth
columns show the number of selected features and the feature selection time,
respectively.

For each performance measure, the best performance is shown in bold face.
From the table, except for two cases by one-pass incremental BABD, the

recognition rates (MAEs) by cross-validation were improved by feature selection,
but for the test data sets, the recognition rates were decreased. This was caused
by overfitting.

Now compare the MM and MAE criteria. Using all the features, the recogni-
tion rates of the test data sets by the MAE criterion were better for both data
sets. This means that different γ and C values were selected by cross-validation.
But the differences including those after feature selection were small.

As for the effect of incremental BABD, although multi-pass incremental BABD
improved the recognition rates (MAEs) by cross-validation, in some cases
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Table 1. Comparison of selection methods

Data (Tr/Te/In) Method Test Rate (CV Rate/MAE) Selected Time [s]

Ionosphere (281/70/34) MM 93.93±2.59(97.10±0.80) 15.20±5.0 14.70±2.12
94.21±1.89(95.57±0.67) 20 92.64±3.07(96.57±0.84) 13.9±3.3 15.55±2.82

20m 92.79±2.73(97.12±0.55) 13.1±3.7 37.80±13.06
10 91.86±3.50(96.51±0.86) 11.3±3.1 17.70±1.31
10m 92.29±3.04(97.17±0.71) 11.4±3.3 45.15±17.36
1 91.29±2.78(95.14±1.51) 5.7±1.7 35.90±5.84
1m 91.71±3.55(96.05±1.63) 7.2±2.3 142.9±66.60

95.29±2.31(0.2640±1.16) MAE 94.21±2.57(0.2278±0.0120) 13.5±2.4 13.75±1.41
20 93.14±3.25(0.2315±0.0134) 10.7±2.7 14.15±1.42
20m 93.43±3.33(0.2267±0.0127) 10.9±2.6 33.95±9.86
10 92.21±2.77(0.2321±0.0145) 7.8±2.9 15.80±1.29
10m 92.14±3.11(0.2274±0.0145) 8.6±3.2 34.45±9.46
1 91.50±3.85(0.2406±0.0140) 4.8±0.7 32.90±3.99
1m 91.36±3.51(0.2344±0.0112) 5.4±1.2 91.90±41.29

WDBC(455/114/30) MM 97.11±1.15(98.41±0.33) 16.6±4.4 40.45±8.99
97.41±0.98(98.09±0.34) 20 97.02±1.09(98.32±0.38) 14.4±2.7 41.50±6.34

20m 96.93±1.13(98.57±0.24) 14.7±3.6 100.5±27.00
10 97.06±1.01(98.26±0.35) 13.2±3.4 42.90±4.38
10m 96.71±1.24(98.56±0.34) 12.7±3.4 126.5±25.51
1 96.14±1.02(98.01±0.38) 6.6±1.4 114.3±9.81
1m 95.96±1.16(98.33±0.34) 7.5±2.0 381.7±134.0

97.72±1.22(0.2335±0.0067) MAE 96.14±1.40(0.1622±0.0058) 5.3±1.0 30.45±2.42
20 96.10±1.43(0.1622±0.0058) 5.2±1.0 34.20±2.27
20m 95.92±1.62(0.1619±0.0058) 5.0±1.2 62.10±9.72
10 96.10±1.43(0.1622±0.0058) 5.2±1.0 35.55±2.31
10m 95.92±1.62(0.1619±0.0058) 5.0±1.2 71.25±10.50
1 96.19±1.60(0.1617±0,0051) 4.2±1.0 86.05±8.23
1m 96.05±1.58(0.1616±0.0052) 4.4±1.2 366.7±810.1

one-pass incremental BABD showed better recognition rates for the test data
sets. Except for the WDBC data set with the MAE criterion, the recognition
rates for the test data sets decreased as iInc was decreased.

The numbers of selected features decreased as iInc was decreased and they
were minimum when iInc = 1 both for one- and multi-pass feature selection.

Feature selection time by batch BABD was shortest for all four cases. This
means that because the numbers of features were not so large, incremental fea-
ture selection did not contribute in speeding up feature selection.

4.2 Microarray Data Sets

We compared BABD with the MM criterion and BABD with the MAE crite-
rion for microarray data sets (see [22] for details of data sets), each of which
consisted of 100 pairs of training and test data sets. Because microarray data
sets have a small number of samples and a large number of features, they are
linearly separable and overfitting occurs easily. Therefore, we used linear kernels:
K(x,x′) = x� x′ and fixed C = 1.
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To measure feature selection time, we used a personal computer with 3.4GHz
CPU and 16GB memory.

To determine the number of added features (iInc), we carried out incremental
BABD with the MAE criterion for the breast cancer data set (1) changing iInc.
Figure 1 shows the result for one- and multi-pass BABD. As shown in Fig. (a),
the MAE for the training data by multi-pass BABD was better than that by one-
pass BABD. But there was not much difference in the recognition rates of the
test data by one- and multi-pass BABD (Fig. (b)), although by one-pass BABD
the feature selection time was shorter and the number of selected features was
smaller. From Figs. (b) and (c), we set iInc = 500 in the following experiments.
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Fig. 1. Feature selection for the breast cancer (1) data set

Table 2 shows the results. In the table if 100% recognition rates were obtained,
they are not shown. The triplet in the “Summary” row shows from the left the
numbers that the best/second best/third performance were obtained. In the
“Selected” and “Time” columns, the average value with the asterisk shows that
it is statistically significant between the values for the MM criterion and one-
pass incremental method with iinc = 500 by the Welch t-test with the confidence
interval of 95%.

Comparing the results for the MM and MAE criteria, there is not much differ-
ence of the recognition rates of the test data sets (statistically comparable). In
some cases (e.g., the breast cancer (3) and hepatocellular carcinoma data sets),
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Table 2. Performance comparison of incremental BABD and batch BABD

Data (Tr/Te/In) Method Test Rate (CV Rate/MAE) Selected Time [s]

B. cancer (1) (14/8/3226) MM 80.50±11.36 40.5∗±11.9 4.04±2.08
73.87±11.47 (76.50±7.09) 500 78.25±10.55 44.7±8.3 2.20∗±0.57

500m 79.25±10.93 47.7±7.3 6.71±2.58
73.87±11.47(0.6215±0.0709) MAE 79.12±9.85(0.0843±0.0104j 43.1±9.0 5.85±1.88

500 80.63±11.37(0.0875±0.0101) 42.1±6.7 2.51∗±0.59
500m 79.25±12.15(0.0816±0.0102) 45.8±7.7 8.98±3.52

B. cancer (2) (14/8/3226) MM 83.38±13.12 43.9∗±12.4 4.34±2.08
91.88±10.21(83.50±7.93) 500 82.63±13.45 50.1±7.9 2.39∗±0.63

500m 82.13±13.02 55.0±9.7 7.45±2.60
91.88±10.21(0.6356±0.0729) MAE 82.00±11.64(0.0950±0.0138) 49.9±12.8 7.16±2.35

500 83.50±12.10(0.0982±0.0117) 47.9±9.3 3.21∗±0.65
500m 83.87±12.03(0.0904±0.0117) 52.9±10.8 10.21±3.69

B. Cancer (3) (78/19/24188) MM 63.37±9.93 70.7∗±15.5 847.0±358.0
67.32±9.42(66.96±4.58) 500 62.95±9.29 82.6±8.5 555.4∗±74.74

500m 64.58±10.28 84.6±8.1 1999±673.8
67.32±9.42(0.8167±0.0474) MAE 63.47±10.39(0.1547±0.0122) 115.8±15.8 3557±915.2

500 62.05±8.82(0.1701±0.0095) 94.3∗±12.0 1463∗±107.4
500m 62.79±11.25(0.1576±0.0117) 97.7±11.8 5595±1724

B. cancer (s) (14/8/3226) MM 67.00±13.17 39.5∗±12.4 3.85±2.09
69.12±10.82(72.79±9.30) 500 68.87±11.92 46.5±7.9 2.31∗±0.69

500m 68.75±12.69 50.9±7.5 7.47±2.61
69.13±10.82(0.7248±0.0816) MAE 67.37±13.33(0.1051±0.0149) 46.0±10.5 6.56±2.39

500 67.50±12.75(0.1110±0.0139) 43.9±7.8 3.03∗±0.67
500m 69.13±13.16(0.1012±0.0121) 49.3±8.8 10.25±4.30

C. cancer (40/20/2000) MM 81.05±6.68(99.53±1.10) 91.8±35.7 47.22±43.42
79.64±6.54(79.67±6.21) 500 80.82±7.06(99.70±0.89) 84.1±23.4 30.17∗±11.83

500m 80.86±7.05(99.95±0.35) 87.0±16.2 73.55±45.44
79.64±6.54(0.6819±0.0880) MAE 81.82±6.49(0.2423±0.0319) 66.1∗±19.9 28.17±10.93

500 81.50±6.40(0.2357±0.0268) 71.1±15.6 22.68∗±4.68
500m 81.23±6.88(0.2223±0.0275) 76.9±13.7 72.78±26.70

H. Carcinoma (33/27/7129) MM 64.63±7.45 53.0∗±14.4 42.21±20.45
67.96±7.00(66.21±7.34) 500 64.70±7.81 61.0±8.8 26.52∗±3.84

500m 64.74±7.80 66.4±8.2 84.05±28.07
67.96±7.00(0.8263±0.0708) MAE 63.56±8.14(0.1538±0.0196) 65.3±13.9 101.5±34.46

500 65.04±8.24(0.1601±0.0192) 63.5±9.6 45.64∗±5.34
500m 64.78±7.99(0.1480±0.0176) 66.4±9.0 153.3±56.05

H. glioma (21/29/12625) MM 70.07±8.46 49.6∗±13.6 78.66±36.30
75.59±7.58(72.71±10.23) 500 70.38±8.39 61.6±9.7 22.66∗±3.03

500m 70.52±8.58 66.3±9.4 79.46±27.45
75.59±7.58(0.7718±0.0124) MAE 71.17±8.63(0.1364±0.0232) 52.5±12.9 131.1±38.38

500 70.10±8.60(0.1409±0.0217) 54.6±10.2 30.74∗±4.26
500m 70.41±9.13(0.1286±0.0192) 58.9±9.2 110.6±40.56

Leukemia (38/34/7129) MM 94.38±3.88 47.9∗±12.2 43.76±20.11
94.44±4.70(92.45±3.32) 500 94.41±3.87 56.6±8.6 25.93∗±4.94

500m 94.29±3.90 62.3±7.3 74.31±24.85
94.44±4.70(0.4866±0.0392) MAE 94.06±3.58(0.0883±0.0129) 66.3±14.5 126.3±42.17

500 94.32±3.80(0.0896±0.0110) 62.1∗±10.0 66.78∗±7.83
500m 94.59±3.83(0.0829±0.0095) 64.9±10.5 196.6±59.68

P. cancer (102/34/12600) MM 84.65±6.08(99.18±1.64) 350.5±243.8 33970±34855
87.03±4.56(88.52±2.27) 500 83.74±6.75(99.77±0.44) 251.3∗±134.1 9625∗±5279

500m 84.29±6.54(99.88±0.32) 288.2±115.6 39593±36943
87.03±4.56(0.8757±0.0429) MAE 80.68±6.30(0.4039±0.0385) 105.4∗±26.4 2490±1037

500 82.62±6.18(0.3988±0.0235) 135.3±21.8 1974∗±176.6
500m 83.38±6.45(0.3662±0.0213) 153.7±20.3 9157±3141

MM 7/2/9 10/4/4 0/17/1
Summary 500 4/8/6 8/10/0 18/0/0

500m 7/8/3 0/4/14 0/1/17
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the MAE criterion selected more features and thus feature selection time was
longer. But for the colon cancer data sets, the opposite was true. The above
results confirm that the MAE criterion is comparable to the MM criterion.

From the “Summary” rows, we found that multi-pass incremental BABD
showed the best recognition rates for the test data sets, but the numbers of
selected features were the largest and also feature selection was slowest. The
recognition rates by one-pass incremental BABD were comparable with those by
batch BABD and feature selection was the fastest, but the numbers of selected
features were the second to batch BABD. Therefore, one-pass BABD can be an
alternative to the batch BABD.

The reason why one-pass BABD performed well for the microarray data sets
although it was not for the ionosphere and WDBC data sets is as follows: because
the numbers of features are very large and the number of training samples are
very small, there exist many alternative subsets of features that realize best
generalization performance. In addition, because the number of added features
was usually much larger than the number of selected features, during incremental
BABD, optimal features were not deleted, or even if deleted, alternative features
remained.

5 Conclusions

In this paper, we proposed using the MAE (mean absolute error) criterion in
selecting features of small sample problems with a large number of features.
Setting class labels (1/−1) as the targets of regression, we train the least squares
SVM and calculate the MAE. Because the MAE is continuous, tie breaking,
which is a problem for a discrete criterion, does not occur frequently. Therefore,
feature selection is stabilized.

We evaluate the MAE criterion by incremental block addition and block dele-
tion (BABD) using the microarray data sets. The results show that the MAE
criterion is comparable with the MM criterion, which is the weighted sum of the
recognition error rate and the average margin error, and that the one-pass in-
cremental BABD is comparable in generalization abilities to batch BABD with
faster feature selection.
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Abstract. Many Data Analysis tasks deal with data which are presented in 
high-dimensional spaces, and the ‘curse of dimensionality’ phenomena is often 
an obstacle to the use of many methods, including Neural Network methods, for 
solving these tasks. To avoid these phenomena, various Representation learning 
algorithms are used, as a first key step in solutions of these tasks, to transform 
the original high-dimensional data into their lower-dimensional representations 
so that as much information as possible is preserved about the original data re-
quired for the considered task. The above Representation learning problems are 
formulated as various Dimensionality Reduction problems (Sample Embedding, 
Data Manifold embedding, Data Manifold reconstruction and newly proposed 
Tangent Bundle Manifold Learning) motivated by various Data Analysis tasks. 
A new geometrically motivated algorithm that solves all the considered Dimen-
sionality Reduction problems is presented. 

Keywords: Machine Learning, Representation Learning, Dimensionality Re-
duction, Manifold Learning, Tangent Learning, Tangent Bundle Manifold 
Learning, Kernel methods. 

1 Introduction 

The goal of Data Analysis, which is a part of Machine Learning, is to extract pre-
viously unknown information from a dataset. Thus, it is supposed that information is 
reflected in the structure of a dataset which must be discovered from the data. Many 
Data Analysis tasks, such as Pattern Recognition, Classification, Clustering, Progno-
sis, Function reconstruction, and others, which are challenging for machine learning 
algorithms, deal with real-world data that are presented in high-dimensional spaces, 
and the ‘curse of dimensionality’ phenomena is often an obstacle to the use of many 
methods for solving these tasks.  

To avoid these phenomena, various Representation learning algorithms are used as 
a first key step in solutions of these tasks. Representation learning (Feature extraction) 
algorithms transform the original high-dimensional data into their lower-dimensional 
representations (or features) so that as much information as possible is preserved 
about the original data required for the considered Data Analysis task. 

After that, the initial Data Analysis task may be reduced to the corresponding  
task for the constructed lower-dimensional representation of the original dataset.  



48 A. Bernstein and A. Kuleshov 

 

Of course, construction of the low-dimensional data representation for subsequent 
using in specific Data Analysis task must depend on the considered task, and success 
of machine learning algorithms generally depends on the data representation [1]. 

Representation (Feature) learning problems that consist in extracting a low-
dimensional structure from high-dimensional data can be formulated as various Di-
mensionality Reduction (DR) problems, whose different formalizations depend on 
Data Analysis tasks considered further. 

This paper is about DR problems in Data Analysis tasks. We describe a few key 
Data Analysis tasks that lead to different formulations of the DR: Sample Embedding 
for Clustering, Data Space (Manifold) embedding for Classification, Manifold Learn-
ing for Forecasting, etc. We also present a new geometrically motivated algorithm 
that solves all the considered DR problems. 

The rest of the paper is organized as follows. Sections 2-5 contain definitions of 
various DR problems motivated by their subsequent using in specific Data Analysis 
tasks. The proposed DR solution is described in Section 6. 

2 Sample Embedding Problem 

One of the key Data Analysis tasks related to unsupervised learning is Clustering, 
which consists in discovering groups and structures in data that contain ‘similar’ (in 
one sense or another) sample points. Constructing a low-dimensional representation 
of original high-dimensional data for subsequent solution of the Clustering problem 
may be formulated as a specific DR problem, which will be referred to as the Sample 
Embedding problem and is as follows: Given an input dataset  

 Xn = {X1, X2, … , Xn} ⊂ Х  

randomly sampled from an unknown Data Space (DS) Х embedded in a p-
dimensional Euclidean space Rp, find an ‘n-point’ Embedding mapping 

 h(n): Xn ⊂ Rp → Yn = h(n)(Xn) = {y1, y2, … , yn} ⊂ Rq (1) 

of the sample Xn to a q-dimensional dataset Yn (feature sample), q < p, which ‘faith-
fully represents’ the sample Xn while inheriting certain subject-driven data properties 
like preserving the local data geometry, proximity relations, geodesic distances, an-
gles, etc. 

If the term ‘faithfully represents’ in the Sample Embedding problem corresponds 
to the ‘similar’ notion in the initial Clustering problem, we can solve the reduced 
Clustering problem for the constructed low-dimensional feature dataset Yn. After that, 
we can obtain some solution of the initial Clustering problem: clusters in the initial 
problem are images of clusters discovered in the reduced problem by using a natural 
inverse mapping from Yn to the original dataset Xn. 

The term ‘faithfully represents’ is not formalized in general, and in various Sample 
Embedding methods it is different due to choosing some optimized cost function 
L(n)(Yn|Xn) which defines an ‘evaluation measure’ for the DR and reflects desired 
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properties of the n-point Embedding mapping h(n) (1). As is pointed out in some pa-
pers, a general view on the DR can be based on the ‘concept of cost functions.’ 

There exist a number of methods (techniques) for the Sample Embedding. Linear 
methods are well known and use such techniques as the PCA [2]. Various nonlinear 
techniques are based on Auto-Encoder Neural Networks [3, 4, 5], Kernel PCA [6], 
and others.  

A newly emerging direction in the field of the Sample Embedding, which has been 
a subject of intensive research over the last decades, consists in constructing a family 
of algorithms based on studying the local structure of a given sampled dataset that 
retains local properties of the data with the use of various cost functions. Examples of 
such ‘local’ algorithms are: Locally Linear Embedding (LLE), Laplacian Eigenmaps 
(LE), Hessian Eigenmaps, ISOMAP, Local Tangent Space Alignment (LTSA), etc., 
described in [7, 8, 9] and other works. Some of these algorithms (LLE, LE, ISOMAP) 
can be considered in the same framework based on the Kernel PCA applied to various 
data-based kernels. 

Note that Sample Embedding algorithms are based on the sample only, and no as-
sumptions about the DS X are required for their descriptions. However, the study of 
properties of the algorithms is based on assumptions about both the DS and a way for 
extracting the sample from the DS. 

3 Data Space (Manifold) Embedding problem 

Another key Data Analysis task related to supervised learning concerns the Classifica-
tion problem in which the original dataset consists of labeled examples: outputs (la-
bels) Λn = {λ1, λ2, … , λn} are known for the corresponding inputs {X1, X2, … , 
Xn} sampled from the DS X; each label λ belongs to a finite set {1, 2, … , m} with 
m ≥ 2. The problem is to generalize a function or mapping from inputs to outputs 
which can then be used to generate an output for a previously unseen input X ∈ X. 

In the case of high-dimensional original inputs Xn, it is possible to construct low-
dimensional features {y1, y2, … , yn} (1) by using the Sample Embedding algorithm. 
After that, we can consider the reduced sample [Yn, Λn] instead of the sample [Xn, 
Λn]. For the possibility of using the solution of the reduced classification problem 
built for the reduced dataset, it is necessary to construct a lower-dimensional repre-
sentation for a new unseen (usually called Out-of-Sample, OoS) input X ∈ X / Xn. 
Thus, it is necessary to consider another specific DR problem which is an extension of 
the Sample Embedding and can be referred to as the Data Space Embedding (Parame-
terization) problem: Given an input dataset (sample) Xn from the DS X ⊂ Rp, con-
struct a low-dimensional parameterization of the DS which produces an Embedding 
mapping 

 h: X ⊂ Rp → Y = h(X) ⊂ Rq (2) 

from the DS X, including the OoS points, to the Feature Space (FS) Y ⊂ Rq, q < p, which 
preserves specific properties of the DS X. The term ‘preserves specific properties’ is not 
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formalized in general and can be different due to choosing various cost functions reflect-
ing specific preserved data properties.  

The definition of the Data Space Embedding problem uses values of the Embed-
ding mapping h (2) at the OoS points too. Thus, to justify the problem solution and 
study properties of the solution, we must define a Data Model describing the DS and a 
Sampling Model offering a way for extracting both the sample Xn and the OoS points 
from the DS. The most popular models in the DR are Manifold Data Models, see [7, 
8, 9] and others works, in which the DS X is a q-dimensional manifold embedded in 
an ambient p-dimensional Euclidean space Rp, q < p, and referred to as the Data Ma-
nifold (DM). In most studies, DM is modeled using a single coordinate chart. 

The Sampling Model is typically defined as a probability measure μ on the DM X 
whose support Supp(μ) coincides with the DM X. In accordance with this model, the 
dataset Xn and OoS points X ∈ Х / Xn are selected from the DM Х independently of 
each other according to the probability measure μ. 

A motivation for using the Manifold Data model consists in the following empiri-
cal fact: as a rule, high-dimensional real-world data lie on or near some unknown  
low-dimensional Data Manifold embedded in an ambient high-dimensional ‘obser-
vation’ space. This assumption is usually referred to as the Manifold assumption.  

Various non-linear DR problems applied to the data which are described by the 
Manifold Data Model are usually referred to as the Manifold Learning (ML) problem 
[7, 8, 9]; the above-defined Data Space Embedding problem under the Manifold Data 
Model will be referred to as the Manifold Embedding problem. In the introduced 
terms, the Manifold Embedding problem is to construct a parameterization of the DM 
(global low-dimensional coordinates on the DM) from a finite dataset sampled from 
the DM. Note that there is no generally accepted definition for the ML. 

Manifold assumption allowed constructing a family of algorithms based on study-
ing the local structure of a given sampled dataset that retains local properties of the 
data with the use of various cost functions. Examples of such ‘local’ algorithms are 
described in [7, 8, 9] and other works; an ‘OoS extension’ for some local algorithms 
has been found in [10].  

4 Manifold Learning Problem as Data Manifold Reconstruction 

Manifold Embedding is usually a first step in various Data Analysis tasks in which 
reduced q-dimensional features y = h(X) are used in the reduced learning procedures 
instead of initial p-dimensional vectors X. If the Embedding mapping h in the Mani-
fold Embedding preserves only specific properties of high-dimensional data, then 
substantial data losses are possible when using a reduced vector y = h(X) instead of 
the initial vector X. To prevent these losses, the mapping h must preserve as much as 
possible available information contained in the high-dimensional data [11]. Thus, it is 
necessary to consider the Manifold Embedding problem, in which the term ‘faithfully 
represents’ has a specified meaning reflecting the possibility for reconstructing the 
initial vector X ∈ X from the feature y = h(X) with small reconstruction error. Note 
that this error can be considered as a valid evaluation measure (‘universal quality 
criterion’) for Manifold Embedding procedures describing a measure of preserving 
information contained in the high-dimensional data [11]. 
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There is a natural reconstruction of the vector X ∈ X from its lower-dimensional 
feature y = h(X) for feature sample points y ∈ Yn. But in some tasks there may arise 
the problem of accurately reconstructing the points X ∈ X from their low-dimensional 
features y = h(X) for Feature-Out-of-Sample, FOoS, points y = h(X) ∈ h(X) / Yn. This 
possibility is directly required in various Data Analysis tasks such as multidimen-
sional time series prognosis [12], data-based approximation of function with high-
dimensional inputs [13], etc.  

As an example, consider the problem of Electricity price curve forecasting [12] 
which is as follows. Electricity ‘daily-prices’ are described by a multidimensional 
time series (electricity price curve) Хt = (Хt1, Хt2, … , Хt,24)

T ∈ R24 consisting of 
‘hour-prices’ in the course of day t. Based on given vectors X1:T = {Х1, Х2, … , ХT} ⊂ 
R24, it is required to construct a forecast X෡Tାଵ for ХT+1. The forecasting algorithm 
[12] uses replacement of the vectors Xt by their low-dimensional features Yt = h(Xt) ∈ 
Rq (the LLE method is used; the value q = 4 is selected as an appropriate dimension of 
the features). Then the forecast Y෡Tାଵ for YT+1 = h(XT+1) based on the feature sample 
Y1:T = h(X1:T) in the reduced low-dimensional problem is constructed by using stan-
dard forecasting techniques. But then it is necessary to reconstruct the daily-price 
forecast X෡Tାଵ from the feature forecast Y෡Tାଵ which is the FOoS point in the general 
case. 

A newly direction in the field of Machine Learning is meta-modeling in which da-
ta-based models (called meta-models [14] or surrogate models [15]) are constructed 
by learning on a set of input and output data prototypes obtained as a result of full-
scale and/or computational experiments with some original complicated time-
consuming models. As a rule, surrogate models have higher computational efficiency 
and can be used to replace original complicated models for further study (forecasting, 
optimization, etc.) [14, 15].  

Input data which are original descriptions of objects under modeling can have high 
dimensionality, and the DR technique in meta-modeling is used for constructing re-
duced ‘low-dimensional’ surrogate models [16]. Thereafter, optimization or forecast-
ing problems for the ‘full-dimensional’ model amounts to the corresponding reduced 
problems in the low-dimensional Feature space.  

For example, meta-modeling is used in the wing shape optimization problem in 
aircraft designing [17], in which the DR is used to construct a low-dimensional wing 
airfoil parameterization [13]. In this problem the FOoS points appear as a result of 
solving optimization problems in the Feature space; thus, the reconstruction possibili-
ty is required in the DR.  

However, the most of popular Manifold Embedding methods have a common 
drawback: they do not allow reconstructing high-dimensional points X from low-
dimensional features h(X). Thus, it is necessary to formulate the ML problem in such 
a way that its solution does not have the above drawbacks. In other words, a corre-
sponding ML procedure must reconstruct the unknown DM together with its low-
dimensional parameterization from the sample. 

We consider the ML problem called the Data Manifold Reconstruction problem, in 
which a low-dimensional representation of the DM allows accurate reconstruction of 
the DM [18, 19].  
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A strict definition is as follows: Given an input dataset Xn sampled from a  
q-dimensional DM X embedded in an ambient p-dimensional space Rp, q < p, and 
covered by a single chart, construct an ML-solution θ = (h, g) consisting of two inter-
related mappings: an Embedding mapping h (2) and a Reconstruction mapping  

 g: Y ⊂ Rq → Rp, 

which determine a reconstructed value rθ(X) = g(h(X)) as a result of successively 
applying the embedding and reconstruction mappings to a vector Х ∈ Х. The solution 
must ensure the approximate equality 

 g(h(X)) ≈ X   for all   Х ∈ Х, (3) 

and the Reconstruction error δθ(X) = |X - rθ(X)| is a measure of quality of the solution 
θ at a point Х ∈ Х. 

The Reconstruction mapping g must be defined not only on the feature sample Yn 
(with an obvious reconstruction), but also on the FOoS features y = h(X) ∈ Y / Yn 
obtained by embedding the OoS points X. 

The solution θ determines also a q-dimensional Reconstructed Manifold (RM) 

 Хθ = {X = g(y) ∈ Rp: y ∈ Yθ ⊂ Rq} (4) 

embedded in Rp and parameterized by the chart g defined on the FS Yθ = h(Х). The 
approximate equalities (3) can be considered as the Manifold proximity property 

 Xθ ≈ Х,  (5) 

meaning that the RM Xθ = rθ(Х) accurately reconstructs the DM X from the sample. 
Note that the Data manifold reconstruction solution θ = (h, g) allows reconstructing 

the unknown DM X by the parameterized RM Xθ, whereas the Embedding Manifold 
solution h reconstructs a parameterization of the DM only. 

From the statistical point of view, the defined Data manifold reconstruction prob-
lem may be considered as a Statistical Estimation Problem: Given a finite dataset 
randomly sampled from a smooth q-dimensional Data Manifold X covered by a single 
chart, estimate X by data-based q-dimensional manifold also covered (parameterized) 
by a single chart.  

It is natural to evaluate the quality of the estimator Хθ (4) (sample-based q-
dimensional manifold in Rp also covered by a single chart) by the Hausdorff distance 
H(Хθ, X) between the DM and RM [20]; the following relation between the qualities 
of the Data Manifold Reconstruction and Estimation problems takes a place: 

 H(Хθ, X) ≤ supХ ∈ Хδθ(X). 

Note that the defined Data Manifold Reconstruction problem differs from the Ma-
nifold approximation problem, in which an unknown manifold embedded in a high-
dimensional ambient space must be approximated by some geometrical structure with 
close geometry, without any ‘global parameterization’ of the structure. For the latter 
problem, some solutions are known such as approximations by a simplicial complex 
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[21], by finitely many affine subspaces called ‘flats’ [22], tangential Delaunay com-
plex [23], k-means and k-flats [24], and others. However, the Manifold approximation 
methods have a common drawback: they do not find a low-dimensional representation 
(parameterization) of the DM approximation; such parameterization is usually re-
quired in Machine Learning tasks with high-dimensional data. 

There are some (though limited number of) methods for reconstruction of the DM 
X from the FS h(X). For a specific linear DM, the reconstruction can easily be made 
with the PCA. For a nonlinear DM, Auto-Encoder Neural Networks [3, 4, 5] deter-
mine both the embedding and reconstruction mappings. The LLE and LTSA methods 
also allow some reconstruction of the original vectors from their features. 

5 Tangent Bundle Manifold Learning 

The Reconstruction error δθ(X) can be directly computed at sample points Х ∈ Хn; for 
an OoS point X it describes the generalization ability of the considered Data Manifold 
Reconstruction solution θ at a specific point X. Local lower and upper bounds are 
obtained for the maximum reconstruction error in a small neighborhood of an arbi-
trary point X ∈ Х [19]; these bounds are defined in terms of the distance between the 
tangent spaces L(X) and Lθ(rθ(X)) to the DM Х and the RM Хθ at the points X and 
rθ(X), respectively. It follows from the bounds that the greater the distances between 
these tangent spaces, the lower the local generalization ability of the solution θ. Thus, 
it is natural to require that the MR-solution ensures not only Manifold proximity (5) 
but also Tangent proximity 

 L(X) ≈ Lθ(rθ(X))       for all Х ∈ Х (6) 

between these tangent spaces in some selected metric on the Grassmann manifold 
Grass(p, q) consisting of all q-dimensional linear subspaces in Rp (the tangent spaces 
are treated as elements of the Grass(p, q)).  

The requirement of the Tangent proximity for the Data Manifold Reconstruction 
solution arises also in various applications in which the MR is an intermediate step 
for Intelligent Data Analysis problem solution. For example, to ensure closeness be-
tween specific iterative optimization processes in the original and reduced design 
spaces, which are induced by the same optimization gradient-based method, it is ne-
cessary to guarantee accurate reconstruction of not only the DM (design space) X  but 
also its tangent spaces. In Image Analysis, Data (Image) manifold may be very curved 
in an ambient space [25], and accurate reconstruction of the differential structure of 
the Image manifold (first of all, reconstruction of the tangent spaces) is required [26]. 

A statement of the extended Data Manifold Reconstruction problem, which in-
cludes an additional requirement of the tangent spaces proximity, has been proposed 
in [18, 19] and is described below. 

The set TB(X) = {(X, L(X)): Х ∈ Х} composed of points X of the manifold X 
equipped by tangent spaces L(X) at these points, is known in the Manifold theory as 
the Tangent Bundle of the manifold X. Thus, accurate reconstruction of the DM X 
from the sample, which ensures accurate reconstruction of its tangent spaces too, can 
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be considered as reconstruction of the Tangent Bundle ТB(Х). Therefore, the amplifi-
cation of the ML consisting in accurate reconstruction of the tangent bundle ТB(Х) 
from the sample Xn may be referred to as the Tangent Bundle Manifold Learning. 

A strict definition of the TBML is as follows: Given dataset Xn sampled from a q-
dimensional DM X embedded in an ambient p-dimensional Euclidean space Rp, q < p, 
construct TBML-solution θ = (h, g) which provides Tangent Bundle proximity con-
sisting in the Manifold proximity (5) and the Tangent proximity (6), where Lθ(rθ(X)) = 
Span(Jg(h(X))) is the tangent space to the RM Хθ at a point rθ(X) spanned by columns 
of the Jacobian Jg(y) of the mapping g(y) at a point y = h(X) ∈ Yθ. 

The TBML-solution θ determines the Reconstructed tangent bundle 

 RТBθ(Xθ) = {(g(y), Span(Jg(y))): y ∈ Yθ} (7) 

of the RM Xθ, which is close to the TB(X), and the q-dimensional submanifold 

 Lθ = {Span(Jg(y)): y ∈ Yθ} ⊂ Grass(p, q) 

of the Grassmann manifold which reconstructs the Tangent Manifold  

 L = {L(X): X ∈ X} ⊂ Grass(p, q). 

The next section briefly describes the TBML-solution called the Grassmann & 
Stiefel Eigenmaps (GSE) algorithm [18, 19], which also gives new solutions for all 
the DR problems specified in Sections 2-4 above. 

6 Tangent Bundle Manifold Learning Solution 

The GSE algorithm consists of three successively performed steps: Tangent Manifold 
Learning, Manifold Embedding, and Tangent Bundle reconstruction. 

In the Tangent Manifold Learning Step, a sample-based family H = {H(X), X ∈ 
X} consisting of p×q matrices H(X) smoothly depending on X ∈ X is constructed to 
meet the relations  

 LH(X) ≈ L(X)   for all   X ∈ Х; 

here LH(X) are q-dimensional linear spaces in Rp spanned by columns H(1)(X), 
H(2)(X), ... , H(q)(X) of the matrices H(X).  

The family H is constructed in such a way as to provide the additional property: 
vector fields H(1)(X), H(2)(X), ... , H(q)(X) ∈ Lθ(rθ(X)) must be potential and, therefore, 
meet the following relations 

۶ሺ౟ሻ۶ሺ୨ሻሺXሻ׏  ൌ  ۶ሺౠሻ۶ሺ୧ሻሺXሻ (8)׏

for i, j = 1, 2, … , q; here ∇H denotes covariant differentiation with respect to the 
vector field H(X) ∈ Lθ(rθ(X)). 

Let us briefly describe the Tangent Manifold Learning Step of the GSE. At first, 
the tangent space L(X) for the points X ∈ X are estimated by the q-dimensional linear 
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space LPCA(Х) which is a result of the PCA applied to sample points from an εn-ball in 
Rp centered at X; here εn = O(n-1/(q+2)) is a small parameter.  

The data-based kernel K(X, X′), X′, X ∈ X, is constructed as a product  

 KE(X, X′) × KG(Х, Х′),  

where KE is the Euclidean ‘heat’ kernel introduced in the LE algorithm [27] and  

 KG(Х, Х′) = KBC(LPCA(Х), LPCA(Х′))  

is the Binet–Cauchy kernel [28] on the Grass(p, q); this aggregate kernel reflects not 
only geometrical nearness between the points Х and X′ but also nearness between the 
linear spaces LPCA(Х) and LPCA(X′), whence comes nearness between the tangent 
spaces L(Х) and L(X′). 

The set Hn consisting of explicitly written p×q matrices Hi that approximate the 
matrices H(Xi), meet the constraints Span(Hi) = LPCA(Xi) and satisfy the conditions 
(8) written in a form of finite differences, is constructed to minimize the quadratic 
form 

 ΔH,n(Hn) = 
ଵଶ ∑ K൫X୧, X୨൯ ൈ ฮH୧ െ H୨ฮFଶ୬୧,୨ୀଵ , (9) 

under the normalizing condition ∑ KሺX୧ሻ ൈ ൫H୧T ൈ H୧൯ ൌ I୯୬୧ୀଵ  required to avoid a 

degenerate solution; here K(X) =  ∑ K൫X, X୨൯୬୨ୀଵ  and K = ∑ KሺX୧ሻ.୬୧ୀଵ  
Given Hn, the p×q matrix H(X) for an arbitrary point X ∈ Х is chosen to  

minimize the form ΔH(H, X) = ( ) ( ) ×=
n

1j
2

Fjj H - ХHХ Х,K  under the specified linear 

conditions. 
The exact solution of the minimizing problem (9) under the conditions (8) is ob-

tained as a solution of specified generalized eigenvector problems. The matrix 
H(X) which minimizes the quadratic form ΔH(H, X) is written in an explicit form. 

This Step gives a new solution for the Tangent Manifold Learning problem of es-
timating the tangent spaces L(X) in the form of a smooth function of the point X ∈ X, 
which was considered in some previous works. The matrices whose columns approx-
imately span the tangent spaces were constructed using Artificial Neural Networks 
with one hidden layer [29] or Radial Basis Functions [30]. The constructed linear 
spaces {LH(Xi)} are the result of an alignment of the PCA-based linear spaces 
{LPCA(Xi)}; a similar alignment problem was studied in the LTSA [31] with using a 
cost function which differs from our cost function (9). 

The mappings h and g will be constructed in the next parts to provide the prox-
imities  

 g(h(X)) ≈ Х   and      Jg(h(X)) ≈ H(Х), (10) 

whence comes the Tangent Bundle proximity (5), (6).  
In the Manifold Embedding Step, given the family H already constructed, the Em-

bedding mapping h(X) is constructed for X ∈ X. 
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Taylor series expansions g(y′) – g(y) ≈ Jg(y) × (y′ – y) for near points y, y′,  
under the desired equalities (10) for mappings h and g specified further, imply the 
equalities: 

 Х′ – Х ≈ H(X) × (h(X′) – h(X)) (11) 

for near points X, Х′ ∈ X.  
Under the family H already constructed, these approximate equalities can be con-

sidered as regression equations for the features h(X). First, consider equations (11) 
written for near sample points, and compute a preliminary vector set Yn = {y1, 
y2, … , yn} as a standard least squares solution, which minimizes the weighted 
residual 

 ∑ K൫X୧, X୨൯ ൈ หX୨ െ X୧ െ Hሺx୧ሻ ൈ ሺy୨ െ y୧ሻหଶ୬୧,୨ୀଵ  

under the normalizing condition y1 + y2 + … + yn = 0. 
Then, based on Yn, choose a value y = h(X) for an arbitrary point X ∈ Х by 

minimizing over y the weighted residual 

 ∑ K൫X, X୨൯ ൈ หX୨ െ X െ HሺXሻ ൈ ሺy୨ െ yሻหଶ୬୨ୀଵ .  

Thus, under Yn, the value h(X) for an arbitrary point X ∈ Х (including sample 
points) is written as  

 h(X) = hKNR(X)+ vିଵሺXሻ ൈ QPCAT (X)× τ(X), 

here v(X) = QPCAT (X) × H(Х), τ(X) = 
ଵKሺXሻ ∑ KሺX, X୨ሻ ൈ ሺX െ X୨ሻ ୬୨ୀଵ  and 

 hKNR(Х) = 
ଵKሺXሻ ∑ KሺX, X୨ሻ ൈ y୨ ୬୨ୀଵ  

is standard Kernel Non-parametric Regression estimator for h(X) based on the prelim-
inary values yj ∈ Yn of the vector h(X) at the sample points.   

The constrained mapping h determines the Feature space Yθ = h(X). This Step 
gives a new solution for the Manifold Embedding problem. 

In the Tangent Bundle reconstruction step, given the family H and the mapping h 
already constructed, the mapping g is constructed to meet the proximities (3) and (6). 
This step gives a new solution for the Data Manifold Reconstruction.  

The data-based kernel k(y, y′) on Yθ and the linear spaces L*(y) ∈ Grass(p, q) 
depending on y ∈ Yθ are constructed to provide the equalities  

 k(h(Х), h(X′)) ≈ K(Х, X′)   

and L*(h(Х)) ≈ LPCA(Х) for near points X ∈ Х and X′ ∈ Хn. 
The reconstruction function g(y) is constructed with using kernel nonparametric 

regression technique based on known values Xi = g(yi) at the points yi = h(Xi) with 
taking into account the known values Jg(yi) = H(Xi), i = 1, 2, … , n. 
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In the as asymptotic n → ∞ and under an appropriate choice of the algorithm pa-
rameters, the rate in proximities (3) and (6) is O(n-2/(q+2)) and O(n-1/(q+2)), respectively 
[32]; the first rate coincides with the asymptotically minimax lower bound [20] for the 
Hausdorff distance between the DM X and RM Хθ. Thus, the RM Хθ estimates the 
DM Х with the optimal rate of convergence.  
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Abstract. In Dynamic Ensemble Selection (DES), only the most competent clas-
sifiers are selected to classify a given query sample. A crucial issue faced in DES
is the definition of a criterion for measuring the level of competence of each base
classifier. To that end, a criterion commonly used is the estimation of the compe-
tence of a base classifier using its local accuracy in small regions of the feature
space surrounding the query instance. However, such a criterion cannot achieve
results close to the performance of the Oracle, which is the upper limit perfor-
mance of any DES technique. In this paper, we conduct a dissimilarity analysis
between various DES techniques in order to better understand the relationship be-
tween them and as well as the behavior of the Oracle. In our experimental study,
we evaluate seven DES techniques and the Oracle using eleven public datasets.
One of the seven DES techniques was proposed by the authors and uses meta-
learning to define the competence of base classifiers based on different criteria.
In the dissimilarity analysis, this proposed technique appears closer to the Oracle
when compared to others, which would seem to indicate that using different bits
of information on the behavior of base classifiers is important for improving the
precision of DES techniques. Furthermore, DES techniques, such as LCA, OLA,
and MLA, which use similar criteria to define the level of competence of base
classifiers, are more likely to produce similar results.

Keywords: Ensemble of classifiers, dynamic ensemble selection, dissimilarity
analysis, meta-learning.

1 Introduction

In recent years, ensembles of Classifiers (EoC) have been widely studied as an alter-
native for increasing efficiency and accuracy in pattern recognition [1,2]. Classifier en-
sembles involve two basic approaches, namely, classifier fusion and dynamic ensemble
selection. With classifier fusion approaches, each classifier in the ensemble is used, and
their outputs are aggregated to give the final prediction. However, such techniques [1,3]
present two main problems: they are based on the assumption that the base classifiers
commit independent errors, which rarely occurs to find in real pattern recognition ap-
plications.
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On the other hand, Dynamic Ensemble Selection (DES) techniques [4] rely on the
assumption that each base classifier1 is an expert in a different local region of the fea-
ture space. DES techniques work by measuring the level of competence of each base
classifier, considering each new test sample. Only the most competent(s) classifier(s)
is(are) selected to predict the class of a new test sample. Hence, the key issue in DES
is defining a criterion for measuring the level of competence of a base classifier. Most
DES techniques [5,6,7,8] use estimates of the classifier’s local accuracy in small regions
of the feature space surrounding the query instance as search criteria to carry out the
ensemble selection. However, in our previous work [7], we demonstrated that this crite-
rion is limited, and cannot achieve results close to the performance of the Oracle, which
represents the best possible result of any combination of classifiers [2]. In addition, as
reported by Ko et al. [5], addressing the behavior of the Oracle is much more complex
than applying a simple neighborhood approach, and the task of figuring out its behavior
based merely on the pattern feature space is not an easy one.

To tackle this issue, in [9] we proposed a novel DES framework in which multi-
ple criteria regarding the behavior of a base classifier are used to compute its level of
competence. In this paper, we conduct a dissimilarity analysis between different DES
techniques in order to better understand their relationship. The analysis is performed
based on the difference between the levels of competence of a base classifier estimated
by the criterion embedded in each DES technique. All in all, we compare the DES cri-
teria of seven state-of-the-art DES techniques, including our proposed meta-learning
framework. In addition, we also formalize the Oracle as an ideal DES technique (i.e., a
DES scheme which selects only the classifiers of the pool that predict the correct class
for the query instance) to be used in the analysis.

The dissimilarities between different DES criteria are computed in order to generate
a dissimilarity matrix, which is then, used to project each DES technique onto a two-
dimensional space, called the Classifier Projection Space (CPS) [10]). In the CPS, each
DES technique is represented by a point, and the distance between two points corre-
sponds to their degree of dissimilarity. Techniques that appear close together present
similar behavior (i.e., they are more likely to produce the same results), while those
appearing far apart in the two-dimensional CPS can be considered different. Thus, a
spatial relationship is achieved between different techniques. The purpose of the dis-
similarity analysis is twofold: to understand the relationship between different DES
techniques (i.e., whether or not the criteria used by DES techniques present a similar
behavior), and in order to determine which DES technique presents a behavior that is
closer to the behavior of the ideal DES scheme (Oracle).

This paper is organized as follows: Section 2 introduces the DES techniques from the
literature that are used in the dissimilarity analysis. The proposed meta-learning frame-
work is described in Section 3. Experiments are conducted in Section 4, and finally, our
conclusion is presented in the last section.

1 The term base classifier refers to a single classifier belonging to an ensemble or a pool of
classifiers.
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2 Dynamic Ensemble Selection Techniques

The goal of dynamic selection is to find an ensemble of classifiers, C′ ⊂ C contain-
ing the best classifiers to classify a given test sample xj . This is different from static
selection, where the ensemble of classifiers C′ is selected during the training phase,
and considering the global performance of the base classifiers over a validation dataset.
In dynamic selection, the classifier competence is measured on-the-fly for each query
instance xj .

The following DES techniques are described in this section: Overall Local Accuracy
(OLA) [6], Local Classifier Accuracy (LCA) [6], Modified Local Accuracy (MLA) [8],
KNORA-Eliminate [5], K-Nearest Output Profiles (KNOP) [11] and Multiple Classifier
Behavior (MCB) [12].

For the definitions below, let θj = {x1, . . . ,xK} be the region of competence of the
test sample xj (K is the size of the region of competence), defined on the validation
data, ci a base classifier from the pool C = {c1, . . . , cM} (M is the size of the pool),
wl the correct label of xj and δi,j the level of competence of ci for the classification of
the input instance xj .

Overall Local Accuracy (OLA)

In this method, the level of competence δi,j of a base classifier ci is simply computed
as the local accuracy achieved by ci for the region of competence θj . (Equation 1). The
classifier with the highest level of competence δi,j is selected.

δi,j =

K∑
k=1

P (wl | xk ∈ wl, ci) (1)

Local Classifier Accuracy (LCA)

This rule is similar to the OLA, with the only difference being that the local accuracy of
ci is estimated with respect to the output classes; wl (wl is the class assigned for xj by
ci) for the whole region of competence, θj (Equation 2). The classifier with the highest
level of competence δi,j is selected.

δi,j =

∑
xk∈wl

P (wl | xk, ci)∑K
k=1 P (wl | xk, ci)

(2)

Modified Local Accuracy (MLA)

The MLA technique works similarly to the LCA. The only difference is that each in-
stance xk belonging to the region of competence θj is weighted by its Euclidean dis-
tance to the query sample xj . The classifier with the highest level of competence δi,j is
selected.
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KNORA-Eliminate (KNORA-E)

Given the region of competence θj , only the classifiers that achieved a perfect score,
considering the whole region of competence, are considered competent for the classi-
fication of xj . Thus, the level of competence δi,j is either "competent", δi,j = 1 or
"incompetent", δi,j = 0. All classifiers considered competent are selected.

Multiple Classifier Behavior (MCB)

Given the query pattern xj , the first step is to compute its K-Nearest-Neighborsxk, k =
1, . . . ,K . Then, the output profiles of each neighbor x̃k are computed and compared
to the output profile of the test instance x̃j according to a similarity metric DOutProf .
If DOutProf > threshold, the pattern is removed from the region of competence.
The level of competence δi,j is measured by the recognition performance of the base
classifier ci over the filtered region of competence. The classifier with the highest level
of competence δi,j is selected.

K-Nearest Output Profiles (KNOP)

This rule is similar to the KNORA technique, with the only difference being that KNORA
works in the feature space while KNOP works in the decision space using output profiles.
First, the output profiles’ transformation is applied over the input xj , giving x̃j . Next,
the similarity between x̃j and the output profiles from the validation set is computed and
stored in the setφj. The level of competence δi,j of a base classifier ci for the classification
of xj is defined by the number of samples in φj that are correctly classified by ci.

Oracle

The Oracle is classically defined in the literature as a strategy that correctly classifies
each query instance xj if any classifier ci from the pool of classifiers C predicts the
correct label for xj . In this paper, we formalize the Oracle as the ideal DES technique
which always selects the classifier that predicts the correct label xj and rejects other-
wise. The Oracle as a DES technique is defined in Equation 3:{

δi,j = 1, if ci correctly classifies xj

δi,j = 0, otherwise
(3)

In other words, the level of competence δi,j of a base classifier ci is 1 if it predicts
the correct label for xj , or 0 otherwise.

3 Dynamic Ensemble Selection Using Meta-Learning

A general overview of the proposed meta-learning framework is depicted in Figure 1.
It is divided into three phases: Overproduction, Meta-training and Generalization. Each
phase is detailed in the following sections.



Analyzing Dynamic Ensemble Selection Techniques Using Dissimilarity Analysis 63

Test

Xj,Train  
Xj,Test

Sample Selection

Meta-Feature 
Extraction Process

Data Generation Process

Classifier 
Generation 

Process

Xj,Train

Pool of 
classifiers

C = {c
1 , …

, c
M }

Xj,DSEL

Meta-Feature 
Extraction Process

Majority Vote

Generalization Phase

Training

Training

Meta Training 
Process

wl

Meta-Training Phase

Overproduction

DSEL
Selection

hc
K
Kp

Selector
 

Dynamic Selection
 

vi,j

vi,j

C’

Fig. 1. Overview of the proposed framework. It is divided into three steps 1) Overproduction 2)
Meta-training and 3) Generalization. [Adapted from [9]]

3.1 Overproduction

In this step, the pool of classifiers C = {c1, . . . , cM}, where M is the pool size, is
generated using the training dataset T . The Bagging technique [13] is used in this work
in order to build a diverse pool of classifiers.

3.2 Meta-Training

In this phase, the meta-features are computed and used to train the meta-classifier λ.
As shown in Figure 1, the meta-training stage consists of three steps: sample selection,
the meta-features extraction process and meta-training. A different dataset Tλ is used in
this phase to prevent overfitting.

Sample Selection. We focus the training of λ on cases in which the extent of consensus
of the pool is low. Thus, we employ a sample selection mechanism based on a threshold
hC , called the consensus threshold. For each xj,trainλ

∈ Tλ, the degree of consensus
of the pool, denoted by H (xj,trainλ

, C), is computed. If H (xj,trainλ
, C) falls below

the threshold hC , xj,trainλ
is passed down to the meta-features extraction process.

Meta-Features Extraction. In order to extract the meta-features, the region of com-
petence of xj,trainλ

, denoted by θj = {x1, . . . ,xK} must be first computed. The re-
gion of competence is defined in the Tλ set using the K-Nearest Neighbor algorithm.
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Then, xj is transformed into an output profile, x̃j by applying the transformation T ,
(T : xj ⇒ x̃j), where xj ∈ �D and x̃j ∈ ZM [11]. The output profile of a pattern xj

is denoted by x̃j = {x̃j,1, x̃j,2, . . . , x̃j,M}, where each x̃j,i is the decision yielded by
the classifier ci for xj . The similarity between x̃j and the output profiles of the instances
in Tλ is obtained through the Euclidean distance. The most similar output profiles are
selected to form the set φj =

{
x̃1, . . . , x̃Kp

}
, where each output profile x̃k is associ-

ated with a label wl,k . Next, for each base classifier ci ∈ C, five sets of meta-features
are calculated:

f1 - Neighbors’ hard classification: First, a vector with K elements is created. For
each instance xk, belonging to the region of competence θj , if ci correctly classifies
xk, the k-th position of the vector is set to 1, otherwise it is 0. Thus,K meta-features
are computed.

f2 - Posterior probability: First, a vector with K elements is created. Then, for each
instance xk, belonging to the region of competence θj , the posterior probability
of ci, P (wl | xk) is computed and inserted into the k-th position of the vector.
Consequently, K meta-features are computed.

f3 - Overall local accuracy: The accuracy of ci over the whole region of competence
θj is computed and encoded as f3.

f4 - Output profiles classification: First, a vector withKp elements is generated. Then,
for each member x̃k, belonging to the set of output profiles φj , if the label produced
by ci for xk is equal to the label wl,k of x̃k , the k-th position of the vector is set to
1, otherwise it is 0. A total of Kp meta-features are extracted using output profiles.

f5 - Classifier’s Confidence: The perpendicular distance between the input sample
xj,trainλ

and the decision boundary of the base classifier ci is calculated and en-
coded as f5. f5 is normalized to a [0− 1] range using the Min-max normalization.

A vector vi,j = {f1 ∪ f2 ∪ f3 ∪ f4 ∪ f5} is obtained at the end of the process. It
is important to mention that a different vector vi,j is generated for each base classifier
ci. If ci correctly classifies xj,trainλ

, the class attribute of vi,j , αi,j = 1 (i.e., vi,j
corresponds to the behavior of a competent classifier), otherwise αi,j = 0. vi,j is stored
in the meta-features dataset (Figure 1).

Training. With the meta-features dataset, T ∗
λ , on hand, the last step of the meta-training

phase is the training of the meta-classifier λ. The dataset T ∗
λ is divided on the basis

of 75% for training and 25% for validation. A Multi-Layer Perceptron (MLP) neural
network with 10 neurons in the hidden layer is considered as the selector λ. The training
process for λ is performed using the Levenberg-Marquadt algorithm, and is stopped if
its performance on the validation set decreases or fails to improve for five consecutive
epochs.

3.3 Generalization

Given an input test sample xj,test from the generalization dataset G, first, the region of
competence θj and the set of output profiles φj , are calculated using the samples from
the dynamic selection dataset DSEL (Figure 1). For each classifier ci ∈ C, the five
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subsets of meta-features are extracted, returning the meta-features vector vi,j . Next, vi,j
is passed down as input to the meta-classifier λ, which decides whether ci is competent
enough to classify xj,test. In this case, the posterior probability obtained by the meta-
classifier λ is considered as the estimation of the level of competence δi,j of the base
classifier ci in relation to xj,test.

After each classifier of the pool is evaluated, the majority vote rule [2] is applied over
the ensemble C′, giving the label wl of xj,test. Tie-breaking is handled by choosing the
class with the highest a posteriori probability.

4 Experiments

We evaluated the generalization performance of the proposed technique using eleven
classification datasets, nine from the UCI machine learning repository, and two artifi-
cially generated using the Matlab PRTOOLS toolbox2. The experiment was conducted
using 20 replications. For each replication, the datasets were randomly divided on the
basis of 25% for training (T ), 25% for meta-training Tλ, 25% for the dynamic selection
dataset (DSEL) and 25% for generalization (G). The divisions were performed while
maintaining the prior probability of each class. The pool of classifiers was composed of
10 Perceptrons. The values of the hyper-parameters K , Kp and hc were set as 7, 5 and
70%, respectively. They were selected empirically based on previous publications [7,9].

4.1 Results

Table 1. Mean and standard deviation results of the accuracy obtained for the proposed meta-
learning framework and the DES systems in the literature. The best results are in bold. Results
that are significantly better (p < 0.05) are underlined.

Database Proposed KNORA-E MCB LCA OLA MLA KNOP Oracle
Pima 77.74(2.34) 73.16(1.86) 73.05(2.21) 72.86(2.98) 73.14(2.56) 73.96(2.31) 73.42(2.11) 95.10(1.19)

Liver Disorders 68.83 (5.57) 63.86(3.28) 63.19(2.39) 62.24(4.01) 62.05(3.27) 57.10(3.29) 65.23(2.29) 90.07(2.41)
Breast Cancer 97.41(1.07) 96.93(1.10) 96.83(1.35) 97.15(1.58) 96.85(1.32) 96.66(1.34) 95.42(0.89) 99.13(0.52)

Blood Transfusion 79.14(1.88) 74.59(2.62) 72.59(3.20) 72.20(2.87) 72.33(2.36) 70.17(3.05) 77.54(2.03) 94.20(2.08)
Banana 90.16(2.09) 88.83(1.67) 88.17(3.37) 89.28(1.89) 89.40(2.15) 80.83(6.15) 85.73(10.65) 94.75(2.09)
Vehicle 82.50(2.07) 81.19(1.54) 80.20(4.05) 80.33(1.84) 81.50(3.24) 71.15(3.50) 80.09(1.47) 96.80(0.94)

Lithuanian Classes 90.26(2.78) 88.83(2.50) 89.17(2.30) 88.10(2.20) 87.95(1.85) 77.67(3.20) 89.33(2.29) 98.35 (0.57)
Sonar 79.72(1.86) 74.95(2.79) 75.20(3.35) 76.51(2.06) 74.52(1.54) 74.85(1.34) 75.72(2.82) 94.46(1.63)

Ionosphere 89.31(0.95) 87.37(3.07) 85.71(2.12) 86.56(1.98) 86.56(1.98) 87.35(1.34) 85.71(5.52) 96.20(1.72)
Wine 96.94(4.08) 95.00(1.53) 95.55(2.30) 95.85(2.25) 96.16(3.02) 96.66(3.36) 95.00(4.14) 100.00(0.21)

Haberman 76.71(3.52) 71.23(4.16) 72.86(3.65) 70.16(3.56) 72.26(4.17) 65.01(3.20) 75.00(3.40) 97.36(3.34)

In Table 1, we compare the recognition rates obtained by the proposed meta-learning
framework against dynamic selection techniques explained in this paper: Overall Local
Accuracy (OLA) [6], Local Classifier Accuracy (LCA) [6], Modified Local Accuracy
(MLA) [8], KNORA-Eliminate [5], K-Nearest Output Profiles (KNOP) [11] and the
Multiple Classifier Behavior (MCB) [12]. We compare each pair of results using the

2 www.prtools.org

www.prtools.org
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Kruskal-Wallis non-parametric statistical test with a 95% confidence interval. The re-
sults of the proposed framework over the Pima, Liver Disorders, Blood Transfusion,
Vehicle, Sonar and Ionosphere datasets are statistically superior to the result of the best
DES from the literature. For the other datasets, Breast, Banana and Lithuanian, the re-
sults are statistically equivalent.

4.2 Dissimilarity Analysis

In this section, we conduct a dissimilarity analysis between distinct DES techniques.
The analysis is performed based on the difference between the level of competence δi,j
estimated by each DES technique for a given base classifier ci, for each query sample xj

(Section 2). The goal of the dissimilarity analysis is twofold: to understand the behavior
of different DES techniques (i.e., whether or not the criterion used by DES techniques
present a similar behavior), and in order to see which DES criterion is closer to the
behavior of the criterion used by the ideal DES scheme (Oracle) for the estimation of
the competence level of a base classifier.

Given 8 dynamic selection techniques, the first step of the dissimilarity analysis is
to compute the dissimilarity matrix D. This matrix D is an 8 × 8 symmetrical matrix,
where each element dA,B represents the dissimilarity between two different DES tech-
niques, A and B. Given that δAi,j and δBi,j are the levels of competence of ci in relation
to xj for the techniques A and B, respectively, the dissimilarity dA,B is calculated by
the difference between δAi,j and δBi,j (Equation 4).

dA,B =
1

NM

N∑
j=1

M∑
i=1

(
δAi,j − δBi,j

)2
(4)

where N and M are the size of the validation dataset and the pool of classifiers, respec-
tively.

For each dataset considered in this work, a dissimilarity matrix (e.g., DPima, DLiver

) is computed, with the mean dissimilarity values over 20 replications. Then, the average
dissimilarity matrix D̄ is obtained by computing the mean and standard deviation of the
eleven dissimilarity matrices. Table 2 shows the average dissimilarity matrix D̄. Both
the average and the standard deviation values are presented. Each line or column of the
dissimilarity matrix can be seen as one axe in the 8th dimensional space. Each axe in
this space represents the distance to a specific DES technique, for instance, the first axe
represents the distance to the proposed meta-learning framework; the second represents
the distance to the KNORA technique and so forth.

Classifier Projection Space. The next step is to project the dissimilarity matrix D̄
onto the Classifier Projection Space (CPS) for a better visualization of the relationship
between all techniques. The CPS is an Rn space where each technique is represented
as a point and the Euclidean distance between two techniques is equal to their dis-
similarities [10]. Techniques that are similar to one another appear closer in the CPS
while those with a higher dissimilarity are more distant. Thus, it is possible to obtain
a spatial representation of the dissimilarity between all techniques. A two-dimensional
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Table 2. The average dissimilarity matrix D̄. The values are the mean and standard deviation
computed over the eleven dissimilarity matrix.

Meta-Learning KNORA MCB LCA OLA MLA KNOP Oracle
Meta-Learning 0 0.36(0.06) 0.46(0.15) 0.40(0.07) 0.36(0.06) 0.40(0.04) 0.53(0.08) 0.54(0.03)

KNORA 0.36(0.06) 0 0.89(0.06) 0.42(0.01) 0.44(0.01) 0.71(0.04) 0.74(0.11) 0.68(0.01)
MCB 0.46(0.15) 0.89(0.06) 0 0.58(0.01) 0.89(0.06) 1.06(0.07) 0.75(0.03) 0.72(0.08)
LCA 0.40(0.07) 0.42(0.01) 0.58(0.01) 0 0.42(0.01) 0.45(0.02) 0.31(0.04) 0.60(0.06)
OLA 0.36(0.06) 0.44(0.01) 0.89(0.06) 0.42(0.01) 0 0.71(0.04) 0.74(0.11) 0.68(0.11)
MLA 0.40(0.04) 0.71(0.04) 1.06(0.07) 0.45(0.02) 0.71(0.04) 0 0.54(0.01) 0.63(0.07)

KNOP 0.53(0.08) 0.74(0.11) 0.75(0.03) 0.31(0.04) 0.74(0.11) 0.54(0.01) 0 0.86(0.12)
Oracle 0.54(0.03) 0.68(0.01) 0.72(0.08) 0.60(0.06) 0.68(0.11) 0.63(0.07) 0.86(0.12) 0

CPS is used for better visualization. To obtain a two-dimensional CPS, a dimensionality
reduction of the dissimilarity matrix D̄ in the R8 to D̃ in the R2 is required. This reduc-
tion is performed using Sammon mapping [14]; that is, a non-linear Multidimensional
Scaling (MDS) projection onto a lower dimensional space such that the distances are
preserved [10,14].

Given the dissimilarity matrix D̄, a configuration X of m points in Rk, (k ≤ m)
is computed using a linear mapping, called classical scaling [14]. The process is per-
formed through rotation and translation, such that the distances after dimensionality
reduction are preserved. The projection X is computed as follows: first, a matrix of
the inner products is obtained by the square distances B = − 1

2JD
2J , where J =

I− 1
mUUT , and I and U are the identity matrix and unit matrix, respectively. J is used

as a normalization matrix such that the mean of the data is zero. The eigendecompo-
sition of B is then obtained as, B = QΛQT , where Λ is a diagonal matrix containing
the eigenvalues (in decreasing order) and Q is the matrix of the corresponding eigen-
vectors. The configuration of points in the reduced space is determined by the k largest
eigenvalues. Therefore, X is uncorrelated in the Rk, X = Qk

√
Λk space. In our case,

k = 2.
The CPS projection is obtained by applying Sammon mapping over the matrix X .

The mapping is performed by defining a function, called stress function S (Equation 5),
which measures the difference between the original dissimilarity matrix D̄ and the dis-
tance matrix of the projected configuration, D̃, where d̃(i, j) is the distance between the
classifiers i and j in the projection X .

S =
1∑m−1

i=1

∑m
j=i+1 d(i, j)

2

m−1∑
i=1

m∑
j=i+1

(d(i, j)− d̃(i, j)) (5)

The two-dimensional CPS plot is shown in Figure 2. Figure 2(a) shows the average
CPS plot obtained considering the average dissimilarity matrix D̄, while Figure 2(b)
shows an example of the CPS plot obtained for the Liver Disorders dataset DLiver.

An important observation that can be drawn from Figure 2(a) is that the LCA, OLA
and MLA appear close together in the dissimilarity space. Which means, that the cri-
teria used by these three techniques to estimate the level of competence of a base clas-
sifiers present similar behaviors when averaged over several classification problems.
Thus, they are very likely to achieve the same results [15]. This can be explained by
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Fig. 2. Two-dimensional CPS plot for the average dissimilarity matrix D̄ and for the dissimilarity
matrix obtained for the Liver disorders dataset DLiver . It is important to mention that the axes of
the CPS plot cannot be interpreted alone. Only the Euclidean distances between the points count.

the fact that these three techniques are based on the same information (the classification
accuracy over a defined local region in the feature space), with little difference regard-
ing the use of a posteriori information by the LCA technique or weights for the MLA
technique.

The meta-learning framework appears closer to the Oracle in the two-dimensional
CPS (Figures 2(a) and (b)). In addition, the meta-learning framework is also closer to
the techniques from the local accuracy paradigm (LCA, OLA and MLA) than to any
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other DES technique, which can be explained by the fact that three out of the five meta-
features comes from estimations of the local regions (f1, f2 and f3).

Table 3 presents the dissimilarity measure for each DES technique in relation to
the Oracle. Results show that the proposed meta-learning framework is closer to the
behavior of the Oracle as it presents the lowest dissimilarity value on average, 0.54.
The LCA technique comes closer, with an average dissimilarity value of 0.60. Thus, we
suggest that the use of multiple criteria to estimate the level of competence of a base
classifier results in a DES technique that obtains a estimation of the level of competence
of a base classifier closer to that provided by an ideal DES scheme (Oracle).

Table 3. Mean and standard deviation of the dissimilarity between each DES technique from the
Oracle for each classification problem. The smallest dissimilarity values are highlighted.

Database Meta-Learning KNORA-E MCB LCA OLA MLA KNOP
Pima 0.32(0.04) 0.43(0.01) 0.47(0.08) 0.36(0.06) 0.43(0.01) 0.44(0.07) 0.41(0.02)

Liver Disorders 0.50(0.04) 0.61(0.01) 0.67(.008) 0.56(0.06) 0.61(0.01) 0.60(0.07) 0.51(0.02)
Breast Cancer 0.59(0.35) 1.22(0.10) 1.20(0.10) 0.69(0.01) 1.20(0.10) 0.77(0.03) 1.20(0.10)

Blood Transfusion 0.33(0.03) 0.40(0.01) 0.46(0.01) 0.36(.003) 0.40(0.01) 0.44(0.08) 0.4(0.01)
Banana 0.33(0.10) 0.29(0.01) 0.36(0.01) 0.24(0.01) 0.29(0.01) 0.36(0.01) 0.34(0.01)
Vehicle 0.36(0.07) 0.49(0.01) 0.48(0.02) 0.36(0.04) 0.49(0.01) 0.37(0.05) 0.47(0.02)

Lithuanian Classes 0.47(0.14) 0.49(0.02) 0.56(0.02) 0.39(0.04) 0.49(0.02) 0.54(0.01) 0.51(0.03)
Sonar 0.58(0.10) 0.91(0.04) 0.88(0.01) 0.70(0.01) 0.91(0.04) 0.85(0.02) 0.84(0.06)

Ionosphere 0.62(0.22) 0.89(0.05) 0.88(0.06) 0.70(0.07) 0.89(0.05) 0.68(0.02) 0.88(0.06)
Wine 1.03(0.20) 0.88(0.11) 0.98(0.11) 0.73(0.02) 0.88(0.11) 0.93(0.06) 0.82(0.14)

Haberman 0.79(0.04) 0.89(0.05) 1.01(0.05) 0.82(0.02) 0.89(0.05) 0.92(0.04) 0.86(0.06)
Mean 0.54(0.05) 0.68(0.01) 0.72(0.08) 0.60(0.06) 0.68(0.11) 0.63(0.07) 0.86(0.12)

5 Conclusion

In this paper, we conducted a study about the dissimilarity between different DES tech-
niques. These dissimilarities are computed in order to generate a dissimilarity matrix.
Through Sammon Mapping, the dissimilarity matrix is embedded in a two-dimensional
space, called the Classifier Projection Space (CPS), where the Euclidean distance be-
tween two feature representations reflects their dissimilarity.

Based on the visual representation provided by the CPS, we can draw two conclu-
sions:

– The proposed technique is closer to the Oracle in the dissimilarity space, which
indicates that the use of different types of information about the behavior of base
classifiers is indeed necessary in order to achieve a DES technique that is closer to
the Oracle.

– Techniques that use the same kind of information to compute the level of com-
petence of the base classifiers, such as LCA, OLA and MLA, are more likely to
present the same results when their performance is averaged over several problems.

Future works in this topic include: i) The design of new sets of meta-features; ii) Car-
rying out a comparison of different meta-features vectors in order to achieve a set of fea-
tures that can better address the behavior of the Oracle; and, iii) Increasing the number
of classification problems in the analysis.
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Abstract. Hidden Markov models (HMMs) are known for their ability to well
model and easily handle variable length time-series. Their use in the case of pro-
portional data modeling has been seldom mentioned in the literature. However,
proportional data are a common way of representing large data in a compact fash-
ion and often arise in pattern recognition applications frameworks. HMMs have
been first developed for discrete and Gaussian data and their extension to propor-
tional data through the use of Dirichlet distributions is quite recent. The Dirichlet
distribution has its limitations and is a special case of the more general general-
ized Dirichlet (GD) distribution that suffers from less restrictions on the modeled
data. We propose here to derive the equations and the methodology of a GD-
based HMM and to assess its superiority over a Dirichlet-based HMM (HMMD)
through experiments conducted on both synthetic and real data.

Keywords: Hidden Markov models, generalized Dirichlet, mixtures, machine
learning, EM-algorithm.

1 Introduction

HMMs are probabilistic generative models used in various fields such as speech pro-
cessing [18], object and gesture classification [3,9] or anomaly detection [2,14]. Their
use has been popularized by [18], and numerous extensions and adaptations to specific
applications have been developed along the years.

Among the extensions developed for HMMs, the study of time-series generated from
multiple processes and/or involving dynamics at different scales led to the development
of factorial HMMs [11]. In this framework, each state is decomposed into a collection of
sub-states, often assumed independent at each time step in order to reduce algorithmic
complexity.

Classic HMMs naturally embed a geometric distribution as for state duration, i.e.
state self-transitioning, with parameter depending on the state transition matrix [10].
Variable Duration HMMs have been a first attempt to modify the state duration proba-
bility distribution [17]. At each state transition, the duration of the new state is drawn
from a probability mass function and the corresponding number of observations is gen-
erated before drawing a new state accordingly to the state transition matrix. An alternate
approach that explicitly introduces the time variable into the state transition matrix is

N. El Gayar et al. (Eds.): ANNPR 2014, LNAI 8774, pp. 71–82, 2014.
c© Springer International Publishing Switzerland 2014
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proposed in [10]. Known as Non-Stationary HMMs, they have been shown equivalent
to Variable Duration HMMs, though allowing an easier and computationally more effi-
cient parameter estimation [10].

The most widely used estimation algorithm for HMMs is the so-called Baum-Welch
algorithm, though its iterative nature can be prohibitive in some applications. [12] pro-
posed a non-iterative method for parameters estimation. Based on subspace estimation,
the idea has been theoretically derived in [1] and provides, under few conditions, a
computationally fast method to estimate HMMs with finite alphabet output.

HMMs have been initially developed for discrete and Gaussian data [18]. The multi-
plication of applications in domains such as weather forecast or medical studies raised
the need to modify the original HMM algorithm so it can efficiently work with new data
types [13,15]. Longitudinal or panel data are time-series collected from multiple enti-
ties. Example of these data in the context of a medical study could be the evolution of
some disease characteristics evaluated every day for a given period of time on a number
of patients (see [16] for concrete example). At the entity level, data heterogeneity is in-
volved by the presence of multiple data sources. HMMs have been shown to be able to
model this heterogeneity by introducing a random variable in the model, known as the
random effect, that follows a predefined probability distribution. Doing so, the condi-
tional independence of the observed data given the latent states assumption is relaxed.
[15] provides a review of the use of these HMMs that are known in the literature as
Mixed HMMs. [13] discusses circular data processing, i.e data taking cyclic values (e.g.
directions, angles,...). Von Mises, Wrapped Normal and Wrapped Cauchy are proposed
as state emission probability distributions to handle such data. A Maximum-Likelihood
estimation algorithm is derived and applied to circular time-series.

Proportional data (i.e. positive data that sum up to 1) results from numerous pat-
tern recognition pre-processing procedures, the most common being histograms. Their
use in an HMM framework has been first studied in [8] where Dirichlet mixtures are
used as emission probability functions, involving a deep modification of the M-step of
the Expectation-Maximization algorithm (EM) for Dirichlet parameters estimation. The
limitation of the Dirichlet distribution has been brought to light by [5] and we propose
here to derive the equations of an HMM based on mixtures of GD distributions (HM-
MGD). This model is expected to be more general and versatile as the GD distribution
embeds the Dirichlet distribution as a special case.

Section 2 fully develops the HMMGD derivation, Section 3 presents experimental
work on synthetic data, and Section 4, on real data. We conclude and explain our future
work in Section 5.

2 HMM Based on Generalized Dirichlet Mixtures

Based on [18], a first-order HMM is a probabilistic model assuming an ordered obser-
vation sequence O = {O1, ..., OT } to be generated by some hidden states, each of them
associated with a probability distribution governing the emission of the observed data.
The hidden states H = {h1, ..., hT }, hj ∈ [1,K], with K the number of states, are
assumed to form a Markov chain.

At each time t, a new state is entered based on a transition matrix B = {Bij =
P (ht = j|ht−1 = i)} that specifies the transition probabilities between states. Once in
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the new state, an observation is made following its associated probability distribution.
For discrete observation symbols taken from a vocabulary V = {v1, ..., vS}, the emis-
sion matrix is defined as D = {Dj(k) = P (Ot = vk|ht = j)}, [t, k, j] ∈ [1, S] ×
[1,M ]× [1,K]. For continuous observation vectors, emission probability distributions
are usually taken as Gaussian mixtures [2,3,18] defined by their mean and covariance
matrices, denoted θ. In the latter case, a matrix C = {Ci,j = P (mt = i|ht = j)},
i ∈ [1,M ], is defined with M the number of mixture components associated with
state j (which can be assumed to be the same for all states without loss of general-
ity). An initial probability distribution π controls the initial state. We denote an HMM
as λ = {B,D, π} or {B,C, θ, π}.

HMMs are well fit for classification tasks that rely on the probability of an obser-
vation sequence given a model λ, computed using a forward-backward procedure [18].
Model training consists in the estimation of the parameters that maximize the proba-
bility of a given set of observations and is addressed with the Baum-Welch algorithm,
an Expectation-Maximization process [18]. Finally finding the most probable sequence
of states and mixture components that generated a series of observations can be solved
with the Viterbi algorithm [18].

The number of hidden states and the parameters initial values have to be a priori
set. Both are strongly linked to model’s performance. Indeed, the former is a trade-
off between performance and complexity [9], while the latter leads the Baum-Welch
procedure to converge towards the closest local maximum of the likelihood function,
not guaranteed to be the global one given its high modality [3].

In this paper we propose to develop HMMs with mixtures of GD as emission prob-
ability distributions. [8] derived the equations for HMMs with Dirichlet mixtures, yet
these distributions have one main limitation residing in the fact that data covariance is
always negative. Therefore, they might not be adapted to model all types of propor-
tional data. The GD distribution overcomes this limitation and embeds the Dirichlet
distribution as a special case.

2.1 Expected Complete-Data Log-Likelihood Equation Setting

An N -dimensional generalized Dirichlet distribution is defined as

GD(x|α, β) =
N∏

n=1

Γ (αn + βn)

Γ (αn)Γ (βn)
xαn−1
n

(
1−

n∑
r=1

xr

)νn
, (1)

where Γ denotes the Gamma function and α = [α1, ..., αN ] and β = [β1, ..., βN ] the
GD parameters, with α ∈ R

N
+ , β ∈ R

N
+ , x ∈ R

N
+ , and

∑N
n=1 xn < 1. For n ∈

[1, N − 1], νn = βn − αn+1 − βn+1, and νN = βN − 1.
This change of probability distribution involves modifications in the EM parameters

estimation process. The rest of the HMM algorithm is unchanged. We set notations
for the quantities γt

ht,mt
� p(ht,mt|x0, ..., xT ) and ξtht,ht+1

� p(ht, ht+1|x0, ..., xT ),
that represent the estimates of the states and mixture components, and of the local states
sequence given the whole observation set, respectively. The E-step leads to γt

ht,mt
and

ξtht,ht+1
estimates for all t ∈ [1, T ]. These two quantities are obtained using the initial
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parameters at step 1 and the result of the last M-step then. They are computed using a
forward-backward procedure (not detailed here) as in HMM with mixtures of Gaussian.

The M-step aims at maximizing the data log-likelihood by maximizing its lower
bound. If Z represents the hidden variables and X the data, the data likelihood L(θ|X)
= p(X |θ) can be expressed as

E(X, θ)−R(Z) =
∑
Z

p(Z|X) ln(p(X,Z))−
∑
Z

p(Z|X) ln(p(Z|X))

=
∑
Z

p(Z|X) ln(p(X)) (Bayes’ rule)

= ln(p(X))
∑
Z

p(Z|X) = ln(p(X)) = L(θ|X) , (2)

with θ, representing all the HMM parameters, omitted on the given variables side of all
the quantities involved. E(X, θ) is the value of the complete-data log-likelihood with
the true/maximized parameters θ. R(Z) is the log-likelihood of the hidden data given
the observations and has the form of an entropy representing the amount of information
brought by the hidden data itself (see eq. (12) for the detailed form of R(Z)). As we
estimate the complete-data log-likelihood using non-optimized parameters, we have
E(X, θ, θold) ≤ E(X, θ), and hence E(X, θ, θold)−R(Z) is a lower bound of the data
likelihood.

The key quantity for data likelihood maximization is the expected complete-data
log-likelihood which directly depends on the data and is written as

E(X, θ, θold) =
∑
Z

p(Z|X, θold) ln(p(X,Z|θ)) . (3)

The complete-data likelihood of an observation (the case of multiple observation
sequences is addressed later) can be expanded as (eq. 4) that leads by identification to
eq. (5).

p(X,Z|θ) = p(h0)

T−1∏
t=0

p(ht+1|ht)×
T∏

t=0

p(mt|ht)p(xt|ht,mt) , (4)

p(X,Z|θ) = πh0

T−1∏
t=0

Bht,ht+1

T∏
t=0

Cht,mtGD(xt|ht,mt) . (5)

We substitute eq. (1) into eq. (5) and take the logarithm of the expression. Using the
logarithm sum-product property the complete-data log-likelihood is split up into eight
terms:
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ln(p(X,Z|θ)) = ln(πh0) +

T∑
t=0

ln(Cht,mt) +

T−1∑
t=0

ln(Bht,ht+1)

+

T∑
t=0

N∑
n=1

{
ln(Γ (αht,mt,n + βht,mt,n)) + (αht,mt,n − 1) ln(xt

n)

+ νht,mt,n ln(1−
n∑

r=1

xt
r)− ln(Γ (αht,mt,n))− ln(Γ (βht,mt,n))

}
.

(6)

Using eq. (6) into eq. (3), the expected complete-data log-likelihood can then be
written:

E(X, θ, θold) =
K∑

k=1

M∑
m=1

γ0
k,m ln(πk) +

T∑
t=0

K∑
k=1

M∑
m=1

γt
k,m ln(Ck,m)

+

T−1∑
t=0

K∑
i=1

K∑
j=1

ξti,j ln(Bi,j) + L(α, β) , (7)

with,

L(α, β) =

T∑
t=0

N∑
n=1

K∑
k=1

M∑
m=1

{
γt
k,m ln(Γ (αk,m,n + βk,m,n))

+ γt
k,m(αk,m,n − 1) ln(xt

n) + γt
k,m(νk,m,n ln(1−

n∑
r=1

xt
r))

− γt
k,m ln(Γ (αk,m,n))− γt

k,m ln(Γ (βk,m,n))

}
. (8)

To set eq. (7) we make use of the two following properties, in which we omit the
mention θold in the given variables side of the probabilities involved. Using the indepen-
dence of ht and mt from ht+1, we get p(Z|X) = p(ht = k,mt = m|X)p(ht+1 = k′)
with
∑K

k′=1 p(ht+1 = k′) = 1. Similar steps bring p(Z|X) = p(ht = k, ht+1 =

k′|X,mt = m)p(mt = m), with
∑M

m=1 p(mt = m) = 1.
Furthermore, if D ≥ 1 observations are available, all can be used to avoid overfitting.

In (7), a sum over d ∈ [1, D] has to be added in front of the entire formula. The sum
over time goes then from 0 to Td, the length of the d-th observation sequence.

2.2 Update Equations of HMM and GD Parameters

Maximization of the expectation of the complete-data log-likelihood with respect to
π, B, and C is solved introducing Lagrange multipliers in order to take into account
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the constraints due to the stochastic nature of these parameters. The resulting update
equations are:

πnew
k ∝

D∑
d=1

M∑
m=1

γ0,d
k,m , Bnew

i,j ∝
D∑

d=1

Td−1∑
t=0

ξt,dk,k′ , Cnew
k,m ∝

D∑
d=1

Td∑
t=0

γt,d
k,m , (9)

where k and k′ are in the range [1,K], and m, in the range [1,M ].
GD distributions parameters update is less straightforward. Indeed, a direct method

would lead to maximize L(α, β). Instead of going through heavy computations, we
propose to use a practical property of the GD distribution that reduces the estimation
of a N -dimensional GD to the estimation of N Dirichlet distributions. The latter is a
known problem and can be solved using a Newton method [8,19]. Using this property
calls the need for the problem to be expressed in a transformed space that we refer to as
the W-space. The data is transformed from its original space into its W-space by [5,20]:

Wl =

{
xl for l = 1

xl

/(
1−
∑l−1

i=1 xi

)
for l ∈ [2, N ] .

(10)

In the transformed space, eachWl follows a Beta distribution with parameters (αl, βl),
which is a 2-dimensional Dirichlet distribution. The estimation of the N Beta distribu-
tions governing the N Wl clearly leads to the complete characterization of the GD dis-
tribution governing the observation vector x. In the M-step of the HMMGD algorithm,
the update of the GD distribution parameters can thus be done using N times a process
similar to the one used in [8], considering the transformed data instead of the original
one. Other parameters (B, C, π, γ, ξ) are estimated from the original data.

The initialization of the HMM parameters has been shown in [8] to be intractable
as soon as the product KM grows up, if computed accurately. Following their frame-
work, KM single Generalized Dirichlet distributions are initialized with a method of
moments that uses the transformed data (detailed in [6]) and are then assigned to the
HMM states. The parameters π, C, and B, are randomly initialized. Any EM-algorithm
is iterative and thus needs a stop parameter. As the data log-likelihood is maximized
by the means of its lower bound, convergence of this bound can be used as such. This
lower bound is given by E(X, θ, θold)−R(Z) (see eqs. (2) and (7)) and R(Z) is derived
using Bayes’ rule:

p(Z|X) = p(h0)p(m0|h0)

T∏
t=1

p(ht|ht−1)p(mt|ht)

= p(h0)
p(m0, h0)

p(h0)

T∏
t=1

p(ht, ht−1)p(mt, ht)

p(ht−1)p(ht)
. (11)

Denoting ηt � p(ht|X) and using the independence properties set earlier, the fol-
lowing expression is derived (see detail in [8], this expression is valid for any type of
emission function):
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R(Z) =

K∑
k=1

[
η0k ln(η

0
k) + ηTk ln(ηTk )− 2

T∑
t=0

ηtk ln(η
t
k)

]

+
T∑

t=0

M∑
m=1

K∑
k=1

γt
k,m ln(γt

k,m) +
T−1∑
t=0

K∑
k=1

K∑
k′=0

ξti,j ln(ξ
t
i,j) . (12)

This stands for a unique observation sample, if more are used, a summation over
them has to be added in front of the whole expression and the index T has to be adapted
to the length of each sequence. At each iteration, the difference between the former and
current data likelihoods is computed. Once it goes below a predefined threshold, the
algorithm stops and the current parameters values are kept to define the HMMGD. This
threshold, empirically fixed to 10−6 in our experiments, is a trade-off between estimates
precision and computational time.

3 Experiments on Synthetic Data

3.1 Process Description

We propose here to assess the superiority of HMMGD over HMMD with synthetic
data. 1000 observations sequences of length randomly taken in the range [10, 20] are
generated from a known HMMGD with randomly chosen parameters. The generation
of GD samples is described in [20]. The generative state and mixture component are
recorded for each sample. As in [8], performance is computed as the proportion of
states and mixture components correctly retrieved by an HMM trained on the gener-
ated data. Multiple experiments are run varying the number of states K , the number of
mixture components M , and the data dimension N . The study of the influence of N is
of particular importance as with proportional data, the greater N , the smaller the ob-
servation values. Too small values, through numerical processing, can lead to matrices
invertibility issues which is not desirable for accurate estimation.

As stated earlier, the GD distribution relaxes the constraint on the sign of the data
correlation coefficients. The proposed model is then expected to give a more accurate
representation of the data in the case of data mostly positively correlated. On the other
hand, with mostly negatively correlated data, HMMD should provide as good results
with a reduced complexity. To verify this, we generate data from known HMMGDs and
attempt to retrieve the state and mixture component that generated every sample using
an HMMGD and an HMMD. We noticed that data generaed from HMMGDs with pa-
rameters randomly and uniformly drawn in the range [1, 60], are quasi-automatically
mostly positively correlated. To overcome this point we imposed some of the HMM
parameters to follow a Dirichlet distribution expressed in the form of a GD distribution.
We used the three following scenarii: 1- Data generated from HMMDs only, 2- Data
generated from an hybrid HMM with on each state half of the components being Dirich-
let and half GD distributions, 3- Data generated from HMMGDs only. Extensive testing
confirmed our expectations. Results are illustrated in Figure 1 using a correlation ratio
which is the number of positively correlated variables (minus the autocorrelations) over
the number of negatively correlated ones. A ratio greater than 1 means the variables are
mostly positively correlated and vice versa.
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Fig. 1. Gain of accuracy using HMMGD compared to HMMD in function of the variables corre-
lation ratio. The gain of accuracy is computed as the difference between the two models’ perfor-
mance.

Experiments have been led with K = 3 and M = 2. For scenario 1, HMMGD has a
85.3 % accuracy and HMMD 84.9%, confirming that both work equally well. For sce-
narii 2 and 3, HMMGD has an accuracy of 81.2% and 89.7%, respectively, and HMMD
of 77.6% and 80.1%, respectively. As soon as some data are positively correlated, HM-
MGD outperforms HMMD. We observe that in scenario 2 (correlation ratio close to 1),
for unclear reasons, it is more difficult for the HMMs to retrieve the correct state and
component the sample comes from. Finally, the retrieval rate for data with a correlation
ratio greater than 1 is of 86.1% for HMMGD and of 78.4% for HMMD, and of 84.8%
and 83.2%, respectively, for correlation ratios smaller than 1. This shows HMMGDs
overcome the weakness of HMMDs for positively correlated data.

Table 1 reports the results of experiments led fixing N = 10, generating 100 se-
quences only (because of time constraint), and letting K and M vary. According to the
previous results, we only consider here mostly positively correlated data. For any com-
bination (K,M), HMMGD achieves better results than HMMD showing the benefit of
using HMMGD when proportional data is processed. As the productKM increases, the
retrieval rate decreases which can be explained considering that the more distributions,
the closer to each other they are, and the more difficult it is to clearly assign a sample
to a distribution.

Table 1. HMMGD and HMMD retrieval rates with various (K,M) combinations

Parameters (K,M ) (2,2) (2,3) (3,2) (2,4) (4,2) (3,3) (3,4) (4,3) (4,4) (5,5) (10,5)
Product KM 4 6 6 8 8 9 12 12 16 25 50

HMMD retrieval rate (%) 84.2 75.9 82.0 82.0 86.2 81.2 72.9 73.3 61.9 66.0 52.4
HMMGD retrieval rate (%) 90.9 92.8 87.8 89.8 91.5 89.1 88.9 85.2 76.6 68.8 62.2

A bad initialization of the distribution parameters can give low retrieval rates. It can
find its origin in the convergence of the clustering algorithm, used as the first step of the
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method of moments, towards local extrema. To overcome this issue, the initialization
process can be run several times and the comparison of the lower bound of the data
likelihood with these initial parameters be used to choose the best ones. However, this
requires extra computations and does not guarantee a good convergence of the clus-
tering procedure, even within several attempts. As we are only interested here in the
relative performance of HMMGD compared to HMMD we did not use this option. In-
stead, in order not to introduce any bias from this issue, a unique clustering algorithm
is used for both initializations.

Figure 2 reports the results of experiments in which we fixed K = 3 and M = 2 and
let N increase until retrieval rates degrade dramatically. For scenario 1, equivalent re-
sults are obtained with both HMMs, HMMGD giving sometimes slightly better results
at the cost of extra computations (not reported on Figure 2). In other cases, HMMGD
systematically outperforms HMMD up to the point data dimension is too high to per-
form calculations accurately (intermediate matrices become singular). Fluctuations in
the overall results are due to bad initializations that involve retrieval rates to dramat-
ically drop on some isolated runs. The general shape of the curves and their relative
distance clearly shows that, within an HMM framework, mixtures of GD distributions
give the best results and allow working with data of higher dimension than Dirichlet
ones. This performance improvement is obtained at the cost of a more complex model
involving (2N − 2) parameters to be estimated for every GD distribution compared to
only N parameters for a Dirichlet one. These results are essential to target real applica-
tions for which HMMGD could be a potentially efficient tool.

Fig. 2. Retrieval rate (%) of HMMGD (in black) and HMMD (in blue) against data dimension for
scenarii 2 (dash lines) and 3 (solid lines)



80 E. Epaillard and N. Bouguila

4 Application to Real Data

We now compare the results of HMMGD and HMMD on real data. We base our exper-
iments on the Weizmann Action Recognition data set [4] which is composed of video
sequences representing 10 different actions (such as walk, run, jump,...) performed by
9 subjects. The features we use are Histograms of Oriented Optical Flow [7] and 10-
bin histograms are built, with each bin representing a range of optical flow angles with
respect to the horizontal axis. The optical flow magnitude weights the contribution of
each pixel to the histogram. [7] showed that good classification results could be ob-
tained with features of dimension higher than 30 however, we choose to use features of
dimension 10 as, within our HMM-based framework, we did not find any improvement
when using more bins. Finally, time savings, we divided the frame rate of the video
sequences by 2.

Experiments are led using a Leave-One-Out cross validation, the results are averaged
over 10 runs, and analyzed in terms of rank statistics. We empirically determined the
optimal values K = M = 4 for both HMMs. With these parameters, the HMMD
method achieves a 44.0% accuracy while the HMMGD achieves 54.8%. Though these
results are low [7], they show the out-performance of HMMGD over HMMD. The rank
statistics of order 2 are 71.3% and 82.0% for HMMD and HMMGD, respectively. Here
again it is clear that the use of the GD model leads to higher likelihood than the Dirichlet
one and is thus much more adapted for real proportional data modeling. Given the small
size of the feature vectors (dimension 10) and the huge gap between the rank statistics
of order 1 and 2, HMMGD seems to have the potential to perform accurate classification
with a parameters fine tuning and the addition of a well-chosen prior.

This last point is supported by the results of the following experiment: we added a
very simple prior over the actions of the data set and combined the prior with the already
obtained HMMGD results. For each video sequence, the greatest optical flow magnitude
is computed. The prior is then based on the average μOF and standard deviation σOF of
the optical flow magnitude maximum values of the set of video sequences available for
each class (i.e. action type). Its computation is totally data-driven, calculated from the
training videos available. We make the assumption that, for a given class, this maximal
value follows a Gaussian distribution of parameters μOF and σOF . As a new video
sequence has to be classified, its optical flow maximum magnitude m is computed. The
prior is computed as a distance with the following expression:

dprior = |CDF(m,μOF , σOF )− 0.5| , (13)

where CDF(m,μOF , σOF ) denotes the cumulative distribution function of the Gaus-
sian with parameters μOF and σOF . The smallest the value, the highest the prior. The
classification is obtained combining this prior result with the HMMGD ones.

Therefore, for a new video sequence, the quantity dprior is computed for each class
and a first classification result is obtained and stored. Then, a second classification result
is obtained from the HMMGD method described in Section 2. For each class, we add up
its rank in the HMMGD and prior results. We then assign the video sequence to the class
with the lowest score (i.e. best cumulative rank). This simple prior used alone leads to
a classification accuracy less than 50% however, combined with HMMGD results, the
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algorithm ends up with a 72.6% accuracy. The rank statistics of order 2 shows an even
greater potential as it reaches 91.9%. Better results could be undoubtedly obtained with
a more complex prior. However, the study of the best tuning and prior choice is out of
the scope of this work that strives at showing the superior performance of HMMGD
over HMMD. Figure 3 reports the rank statistics for the three studied methods.

Fig. 3. Rank statistics of HMMD, HMMGD, and of the combination of HMMGD with a prior

5 Conclusion and Future Work

In this paper we theoretically derived a new HMM model for proportional data mod-
eling based on mixtures of GD distributions. We then illustrated how this new model
overcomes the limitations of Dirichlet-based HMMs in the case of positively correlated
data using synthetic data. An extensive study of the impact of a number of parame-
ters on the model’s performance have been presented. Finally, we attempted to use this
model on real data for action recognition. Though the first rank classification results are
quite low, the study of rank statistics show a certain potential if a fine tuning is found
and an appropriate prior used. The dramatic increase in classification accuracy observed
when adding a very simple data-driven prior to the HMMGD framework reinforces this
assessment. The HMMGD constitutes a new promising alternative when working with
proportional data and has definitely to be used over HMMD methods for optimal re-
sults. Future work includes the study of HMMGD tuning for better performance and its
application to other real-world tasks such as anomaly detection in crowded environment
or texture classification.
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Abstract. In this work, a method is presented to overcome the difficul-
ties posed by imbalanced classification problems. The proposed algorithm
fits a data description to the minority class but in contrast to many other
algorithms, awareness of samples of the majority class is used to improve
the estimation process. The majority samples are incorporated in the op-
timization procedure and the resulting domain descriptions are generally
superior to those without knowledge about the majority class. Extensive
experimental results support the validity of this approach.

Keywords: Imbalanced classification, One-class SVM, Kernel methods.

1 Introduction and Related Work

Real world machine learning tasks can exhibit several problems that render
solving them a severe challenge. Such problems include the unreliability of la-
bels (such as incorrect or missing ones), degraded input data (e.g. by noise or
unreliable preprocessing), a very high number of feature dimensions and only a
few training samples, and imbalanced training sets, where there are much more
samples of one class than the other. In this work, a possible solution for the
classification of imbalanced training sets is proposed. Imbalanced datasets are a
common problem in machine learning because for many applications, the ease
of collecting data from different classes is not equal for each class. For example
in medical tasks such as segmentation of cells, the process of collecting samples
from healthy patients can be much easier than from patients with a more or less
common illness.

The problem with unbalanced datasets is that classifiers that are trained with
them usually only learn the larger class (the majority class) because the a-priori
probability of a sample belonging to it is much higher than to the other class.
A reason for that is that the measure that is usually optimized is classification
accuracy, which can already be relatively high by only recognizing the majority
class. To overcome this problem, many different solutions have been proposed.
The solutions can be grouped into sampling methods, cost-sensitive methods
and one-class methods. Sampling methods rebalance the training set by either
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oversampling the minority class [5] or subsampling the majority class [18] (or
combinations of both [7]). Subsampling has the advantages that the original data
is not changed and that training is faster because of the reduced training set.
However the disadvantage that information is thrown away (i.e. samples from the
majority class). This issue can be resolved by training more than one classifier
and applying ensemble methods on the results [6,12] however with the cost of
training additional classifiers.

Oversampling, on the other hand, has the advantage that no information is
lost and every sample is used for training. However, in order to enlarge the mi-
nority class, synthetic samples have to be generated. This process is critical and
care has to be taken when choosing a hypothesis (or data model) to generate
novel samples from. If the model is too close to the original data, the possibility
of overtraining arises, however if the model is too general, the underlying distri-
bution is lost. A well known algorithm of this category is Chawla et. al’s synthetic
minority over-sampling technique (SMOTE) [5], in which artificial samples are
generated along the connecting lines between neighbouring samples. Many ex-
tensions and modifications to the original algorithm have since been proposed.
BorderlineSMOTE [9] for example focuses on oversampling of samples that are
suspected to be near the decision border. KernelSMOTE (KSMOTE) [20] is an
extension that works by finding neighbouring samples in kernel space and then
computing new samples using the pre-images in input space.

Other methods exist, that do not alter the training set in any way and
rather change the algorithmic treatment of the different classes. Class specific
weights/penalty factors can for example be used to instruct the optimization
procedure to compensate for classes of different sizes. One way to do this is to
introduce class specific boxconstraints for the SVM [15,14,1]. Another possibil-
ity is to directly encode the imbalance of the dataset into the creation of the
classifier using different loss-metrics [10].

Another possibility are one-class methods, which are used to estimate the
support of the minority class and to then generate samples from the inferred
model. Popular model choices are Gaussian mixture models or One-class SVMs
[17,16]. In [14], this approach has been successfully employed.

A closely related methodology can be found in the field of support vector
candidate selection, in which samples are found that will most likely become
support vectors in a later classification task (examples that lie near the class
boundary for example). This way, the dataset is reduced by discarding unin-
formative samples and leaving only (potentially) informative ones (for further
information, the reader is referred to [13,8]).

In this work, an oversampling method is presented that is based on estimat-
ing the support of the minority class using support vector domain description
(SVDD). However, the original formulation is modified such that the model is
aware of nearby majority class samples by incorporating them in the optimiza-
tion function using negative weights. In the resulting domain description, regions
with a large of number majority class samples but also isolated samples that lie
near minority class samples are avoided by adapting the hyperplane to position
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them outside of the estimated domain. The domain description is then used to
generate new samples to balance the classification problem.

The remainder of this work is organized as follows. In the next section the
modified SVDD description is introduced. The sampling algorithm is explained
in Section 3. Experimental results are presented in Section 4 together with a
discussion, before the work is concluded in the last section.

2 Majority Class Aware Support Vector Domain
Description

As in Tax and Duin’s original SVDD formulation [17], the task is to find the min-
imum enclosing ball of radius R of the training samples xi ∈ R

d to an unknown
center a. In order to be insensitive to outliers, analogously to the definition of the
SVM by Vapnik [19], so called slack variables ξi are introduced. The parameter
C controls the trade-off between accuracy of the model (amount of samples in-
side the sphere) and generalization (tight fit of underlying distribution; outliers
should be identified as such). The original objective was to minimize

F (R, a, ξi) = R2 + C
∑
i

ξi (1)

under the constraints (x − a)T (x − a) ≤ R2 + ξi and ∀i, ξi ≥ 0. Since the task
here does not only consist of learning a data distribution but also the generation
of new samples of a given class with a later classification experiment in mind,
the material at hand (the samples of the minority class) is extended by negative
examples (samples of the majority class), that should be avoided in the model
learning task. In order to prevent problems that arise when the much larger
majority class is included, an individual weight wi for each sample is introduced.
This way, they can either be switched on or off when needed, or weighted down
to prevent domination of the minimization process. The constraints therefore
change to:

wi(R
2 − (xi − a)T (xi − a)) + ξi ≥ 0 ∀i, ξi ≥ 0 (2)

where wi ∈ R are the sample weights. The constraint is built such that a weight
wi < 0 indicates that a sample should be outside the sphere and analogously
wi > 0 enforces the placement of the sample inside the sphere. Combining eq. 1
with the constraints and Lagrange multipliers αi and γi leads to

L(R, a, αi, ξi) = R2 + C
∑
i

ξi −
∑
i

γiξi

−
∑
i

αi

[
wi(R

2 −
{
x2
i − 2 〈a, xi〉+ a2

}
) + ξi
] (3)

Determining the partial derivatives with respect to R, a and ξi and setting
them to 0 yields:

∂L

∂R
= 2R−

∑
i

αiwi2R
!
= 0 ⇒

∑
i

αiwi = 1 (4)
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and

∂L

∂a
= −
[∑

i

2αiwixi − 2αiwia

]
!
= 0

⇒ a =

∑
i αiwixi∑
i αiwi

(4)⇒ a =
∑
i

αiwixi

(5)

and
∂L

∂ξi
= C − αi − γi

!
= 0 ⇒ 0 ≤ αi ≤ C (6)

Substitution of Equations 4, 5 and 6 into Equation 3 and rearrangement yields

L(R, a, αi, ξi) =
∑
i

αiwix
2
i − 2
∑
i

αiwixi(
∑
j

αjwjxj) + (
∑
j

αjwjxj)
2 (7)

which leads to the dual form of the original problem:

L(R, a, αi, ξi) =
∑
i

αiwi 〈xi, xi〉 −
∑
ij

αiαjwiwj 〈xi, xj〉 (8)

The dual form has to be maximized under the constraints 0 ≤ αi ≤ C and∑
i αiwi = 1. This is a convex function and can be optimized using quadratic

programming.
By incorporating a mapping function φ : S → F from the domain of the samples
to a high dimensional feature space F , the dot products in Equation 8 can be
replaced by 〈φ(xi), φ(xj)〉, which in turn can be substituted for a kernel function
K(xi, xj) using the kernel trick [3] to achieve non-linear models.

In Figure 1 the effect of the weights on the hyperplane is illustrated. One
sample is selected and its weight is gradually decreased until it becomes negative
so that the hyperplane starts to bend around the sample to exclude it.

3 Oversampling Using Modified Support Vector Domain
Description

In contrast to SMOTE or KernelSMOTE, the proposed algorithm consists of
the two phases (1) model building and (2) sample generation:

Phase 1: Model Building

The sample distribution is estimated using support vector domain description.
The difference to the original one is that samples of the majority class are
weighted negatively in order to keep them outside of the hypersphere. This is
done to prevent that samples are generated near negative examples and therefore
rendering them contradicting to the original training set. The weights should be
determined based on the task at hand either manually or using cross validation.
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Fig. 1. Effect of sample weights on the hyperplane. By decreasing the weight for the
red sample the hyperplane is bent such that the sample begins to traverse the border
and resides outside the hypersphere in the end. In this manner, samples can be forced
to be on either side of the hyperplane with a distance dependent on the magnitude of
the weight.

The use of a suitable kernel function might be beneficial to create more complex
domain boundaries and thus to allow a better fit of the underlying data distri-
bution. In order to decrease training time, a preprocessing step can be applied
to filter majority class samples that are nowhere near minority class samples.

Phase 2: Sample Generation

After the domain description is fit, it is used to infer novel samples. This step
can be done using various methods. One possibility is to use rejection sampling
to generate new samples by repeatedly drawing random numbers from the re-
spective range of each feature dimension and then checking if the new sample
is inside the hypersphere or not. This method has the advantage that it is sim-
ple to implement and can also be used to generate samples in regions inside
the hypersphere where no minority sample directly resides (i.e. regions that are
not directly connected to those regions that hold the original samples). A dis-
advantage is that the cost of producing new samples is tightly linked to the
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dimensionality of the features and also the complexity of the learned model.
Possibly a large amount of random numbers will be used to generate the desired
number of samples.

Another possibility is to perform a random walk starting from the samples
of the minority class and to terminate randomly or when the path leaves the
sphere. This algorithm has the advantage that it starts inside the boundary and
therefore avoids sampling the empty space around the domain description. The
disadvantage is that the area is not sampled uniformly and depending on the
termination criterion of the random walk, densely populated regions will attract
more samples than sparsely populated ones.

Using one of those methods, the minority class is resampled to approximately
the same size as the majority class.

Fig. 2. Estimated sample distribution without and with negatively weighted majority
class. In the centers of the figures, the differences are most dominant. On the left side,
the model overlaps with the majority class to a great extent, while the center on the
right side is constrained to the circle where only the positive samples reside. If the
weight is continually increased, the optimization will try to exclude bordering points
even more, narrowing the corridor on the outside and the circle in the inside.

4 Experimental Results

Experimental validation of the proposed algorithm has been carried out on a
number of freely available, imbalanced datasets and is compared with four dif-
ferent algorithms. The algorithms were selected so, that they cover a broad
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spectrum of varieties from simple subsampling over cost-sensitive learning to
oversampling. The experiments consisted of classifying imbalanced datasets of
different size and with different imbalance ratios. For an overview, the reader is
referred to Table 1. The comparison algorithms were:

• Support vector machine with randomly subsampled training sets
• Support vector machine with class specific boxconstraint
• SMOTE
• KernelSMOTE

Table 1. Overview of datasets with their characteristics. The datasets were selected
so that a wide range of input dimensionalities, number of instances and imbalance
ratios can be found. The datasets diabetes, ecoli and glass are part of the UCI machine
learning repository (http://archive.ics.uci.edu/ml/).

Name Dimensionality Number of instances Imbalance ratio

diabetes 8 768 1.9
ecoli 7 336 3.4
glass 9 214 4.6
ring 2 1170 3.3

As classification algorithm for SMOTE, KSMOTE and the algorithm pro-
posed here, SVMs were chosen. The experimental setup consisted of stratified
k-fold cross validation to obtain different imbalanced subsets (an exception to
this was the random subsampling for the first comparison algorithm). Based
on those subsets, the methods were trained on k − 1 subsets by oversampling
the minority class to the same size as the majority class and then validated
using the remaining subset. Parameter selection involved the boxconstraint of
the SVM and the kernel parameter γ of the RBF kernel and was carried out
using a grid search with a cross validation on a randomly selected subset of the
whole dataset of approximately half of the original size. Each experiment was
repeated 10 times. To evaluate the performances, the gmean measure as defined
in Equation 9 was used

gmean =
√
acc+ ∗ acc− (9)

where acc+ and acc− stand for the rates of true positives and true negatives,
respectively. In Table 2 the results are summarized.

As can be seen, the proposed algorithm achieves competitive results and ranks
first, together with KSMOTE. The experiments were conducted once with nega-
tively weighted majority samples and once without. The variant with the weights
clearly outperforms the one without. Only for the ring dataset the results with-
out weights were better (and only slightly worse than KSMOTE in this case). To
see the effects of the weights on the generated hyperplanes, the reader is referred
to Figure 2.

http://archive.ics.uci.edu/ml/
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Table 2. Summary of experimental results. The values denote the averaged gmean of
the classification results from a 3-fold cross-validation for every dataset. To minimize
statistical outliers, each experiment was repeated 10 times. As can be seen, the pro-
posed algorithm exhibits superior performance over the remaining algorithms, except
for KSMOTE, which performs approximately equally well. The weighted version of the
SVDD sampling outperforms the unweighted version in almost every case.

Name diabetes ecoli glass ring

SVM (bagging) 0.705 0.791 0.913 0.940
SVM (cost) 0.641 0.823 0.918 0.978
SMOTE 0.691 0.882 0.850 0.940
KSMOTE 0.731 0.891 0.913 0.957
Proposed (w/o weights) 0.696 0.851 0.841 0.956
Proposed (w/ weights) 0.723 0.905 0.945 0.922

5 Discussion

In comparison to other algorithms such as SMOTE or KSMOTE, the proposed
algorithm has the advantage that not only a local neighbourhood is used to infer
the new samples. As with other one-class mechanisms, the underlying distribu-
tion is estimated and as a result, hypotheses are constructed that can be used to
generate new samples. A major advantage of the algorithm as proposed here is
that samples of the majority class are also considered in the model fitting phase.
Overgeneral minority distributions can be avoided as well as regions where pos-
itive and negative samples overlap. If (a subset of) the negative samples are
weighted strongly enough, the optimization procedure seeks to put such regions
outside the sphere (thereby potentially cutting holes into the domain). The argu-
ment that SVM classifiers are able to deal with overlapping regions on their own
(even in the same way, since both techniques are very similar) can be extenuated
because samples can also be generated for other classification algorithms such
as random forests [4] or multi-layer perceptrons. Another advantage is that the
samples can effortlessly be generated with accompanying confidence values that
indicate how certain a sample belongs to the class. This can be achieved using
the distance to the hyperplane. A drawback of the approach is that the support
vector domain description is parametrized by (usually at least) two parameters,
namely a kernel parameter such as γ and the boxconstraint C. However this
poses only a minor problem that can be solved using a grid search in the param-
eter space. In the experimentation process, the search for proper weights was
not critical (i.e. there was no need for an extra cross validation for the weights).
It mostly made a difference whether weights were used or not, but their exact
value was less important (the reader is again referred to Figure 2).

6 Conclusion and Future Work

In this paper, a method was presented to solve the classification of imbalanced
data by sampling the minority class using majority class aware support vector
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domain description. First, the data distribution of the class samples is estimated
by the algorithm. Then, novel samples are generated using the proposed random
sampling techniques. Sampling of new data points in overlapping or bordering
regions can be avoided using individual weights that can for example be set
negatively for majority class samples. Contrary, important regions can also be
highlighted by giving them higher positive weights. Experimental validation was
presented to emphasize the feasibility of the proposed mechanism. In future ex-
periments, the applicability of the weighted SVDD for uncertainly labeled data,
such as affect in human-computer interaction scenarios [11] will be investigated.
The idea is that by incorporating uncertainty in the form of confidence values
or fuzzy labels, more reliable models will emerge from the training process. An-
other idea could be to use the modified SVDD in Co-training like scenarios [2]
to iteratively learn different classes and then reweight them using the gained
knowledge to extract compact class descriptions.
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Abstract. The presence of missing data in time series is big impedi-
ment to the successful performance of forecasting models, as it leads to a
significant reduction of useful data. In this work we propose a multiple-
imputation-type framework for estimating the missing values of a time
series. This framework is based on iterative and successive forward and
backward forecasting of the missing values, and constructing ensembles of
these forecasts. The iterative nature of the algorithm allows progressive
improvement of the forecast accuracy. In addition, the different forward
and backward dynamics of the time series provide beneficial diversity for
the ensemble. The developed framework is general, and can make use of
any underlying machine learning or conventional forecasting model. We
have tested the proposed approach on large data sets using linear, as well
as nonlinear underlying forecasting models, and show its success.

Keywords: Time series prediction, missing data, ensemble prediction.

1 Introduction

Time series forecasting has become an important decision making tool [1]. Its
application to many domains such as weather prediction [2], stock market fore-
casting [3], electric load estimation [4], river flow forecasting [5], economic
forecasting [6], and sales prediction [7] has had a big impact on the profitability,
utilization, risk mitigation, and efficiency of these processes. Time series forecast-
ing can essentially be considered as a modeling problem. Some of the dominant
approaches in the literature include linear models, such as autoregressive (AR),
ARMA, [8] and exponential smoothing [9]. Recognizing that in many real-world
situations the data generation process (DGP) may not follow a simple linear
model, nonlinear models such as neural networks [10], support vector machines
[10]), vector quantization [11], and nonlinear basis selection [44] have become
another prominent group of models.

In ideal circumstances the time series is sampled with constant frequency and
all samples are present. However, in real situations some samples are missing
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due to human error or lapse in data collection. The missing data problem affects
the performance of forecasting models in ways far beyond the amount of missing
data.

In this paper we present a framework for missing value estimation for time
series, based on the concept of ensembles. The framework that we propose is
summarized as follows. We train the underlying forecasting model to forecast
forward in time using the available or existing data as training data. In the second
step we train the underlying forecasting model to forecast backward in time
”backcast” using the available data as training set. Naturally, the training data in
these two steps may not be sufficient to produce good forecasts in case there are
many portions in the data missing. In the third step we apply the trained forward
forecasting model and backward forecasting model to predict all missing values
in the time series. Subsequently, we average both forecasts, to obtain the first
ensemble forecast. We continue in this manner for a number of iterations, until
no further improvements are expected. The advantage of the proposed model
is that it utilizes the power of ensembles, and makes use of an iterative self-
improving process, whereby each iteration is expected to improve its estimates
over the previous iteration. It works akin to a consecutive sequence of ”reflecting
waves” of forward forecasting and backward forecasting. The proposed approach
applies to the ”missing completely at random (MCAR)” situation. This means
that the fact that a record is missing does not depend on the underlying value
of any of the data, it is purely by chance.

The paper is organized as follows. Next section presents a literature review.
Section 3 presents the proposed procedure to estimate missing data; Section
4 presents the details of the simulation set-up. In section 5, the results and
discussion are presented and section 6 includes conclusion and future work.

2 Related Work

The problem of missing data has been studied in the conventional statistics
literature [12]. The most straightforward method, but at the same time least
effective one, is the case-wise deletion method (CWD). It is based on simply
removing the training patterns that have some missing values. Of course this
leads to an unjustified loss of precious data. A more effective group of methods
is the single imputation strategy. In this approach, instead of completely deleting
the pattern, we impute (compute) a value for it, and use the resulting completed
data set for training the prediction model.

A more involved group of methods is the so-called multiple imputation strat-
egy [14] [15]. A more modern group of approaches uses some probabilistic con-
cepts. The main approaches in this group are the maximum likelihood approach,
and the expectation maximization (EM) approach [16].

Denk and Weber [17] describe the specific nature of missing value estima-
tion for time series, and the differences from missing value for regular regres-
sion. They also investigate missing data patterns and categories, according to
the type of the time series, whether cross-sectional, uni-variate, or multi-variate.
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In addition, they provide an informative review concerning the dependency struc-
ture of the missingness of the variables (i.e. about the well-known concepts of
missing completely at random MCAR, missing at random MAR, and missing
not at random MNAR). The mean substitution method for conventional data
sets (i.e. replacing a missing value by the mean of that variable) becomes in-
feasible for the time series case. In its place the ”Carry Last Value Forward”
method is practical and feasible. In this strategy a missing value is replaced by
the most recent available value. On the other hand, imputation methods based
on K-nearest neighbor matching are applicable for the time series case. In that
approach, a missing portion of the time series is filled according to the K patterns
that are closest to the considered pattern, based on the non-missing variable por-
tion comparison [18]. Other pattern matching approaches have been proposed
by Chiewchanwattana et al. [19]. Deterministic imputation approaches have also
been considered in the literature. For example, spline smoothing or other curve
fitting approaches could be used to fill in a missing portion of the time series [20]
[21]. Velicer and Colby [22] provide a review of a number of methods, including
CWD, mean substitution, mean of adjacent time series values, and maximum
likelihood estimation. They provide a comparison between these methods using
synthetic time series.

Some of the approaches intertwine the time series modeling with the missing
value imputation. Bermudez [23] present a new approach for the prediction of
time series with missing data based on an alternative formulation for Holt’s
exponential smoothing model. Also Huo et al [24] develop the so-called two-
directional exponential smoothing. Ferreiro [25] apply a similar approach for the
case of autoregressive processes, where optimal values of the missing data points
are derived in the context of the AR process. Durbin and Koopman [26] consider
another such approach for state space time series models. There has also been
work based on machine learning models. Uysal [27] proposes the use of radial
basis functions for the missing value imputation. Eltoft and Kristiansen [28] use
independent component analysis (ICA) and the dynamical functional artificial
neural network (D-FANN) for filling the gaps in multivariate time series. Gupta
and Lam [29] compare neural network prediction of missing values in the context
of regression, and show that it consistently beat traditional approaches such as
moving averages and regression. Kihoro et al. [30] apply neural networks for
missing values in time series, and compare it with seasonal ARIMA forecasting.
Pearl [31] uses Bayesian belief networks, as a probabilistic mechanism to estimate
missing value distribution.

Some researchers considered neural network ensembles for the missing value
problem, but in the context of regression, not time series prediction [33] [34].
The only studies that we have found in the literature on using ensembles for
time series missing values are the following. Chiewchanwattana et al. [35] use
an ensemble of FIR neural networks, where each one is trained to predict the
missing values using a different target (obtained by other missing value meth-
ods). Sorjamaa and Lendasse [36] use an ensemble of self-organizing maps to
predict missing values. They obtain the combination weights of the ensemble
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predictions using the nonnegative least squares algorithm. Sorjamaa and
Lendasse [37] also consider the combination of self-organizing maps and a linear
model for missing value imputation. Alternatively, Ahmed et al. [45] use the
concept of semi-supervised co-training for the time series missing value problem.
A similar approach was previously developed for classification but is adapted
here for prediction whereby different networks in an ensemble boost each other’s
training performance. This work also examines the use of different base learners
in the ensemble, and different confidence measures to accurately combine the
predictions.

Viewing the approach proposed in this work in the context of the existing ap-
proaches, one can observe that it is of a multiple imputation type. It generalizes
the multiple imputation and the iterative concepts of imputation to the case of
time series, and at the same time combines these approaches with the concept
of ensembles.

3 The Proposed Framework

For the problem of missing data in time series prediction, we propose two fore-
casting models that act on different dynamics of the time series, therefore pos-
sessing the beneficial diversity, and to combine them in an ensemble. There is
a certain dynamic governing the forward flow of information, and allowing time
series values to relate to previous time series values. There is also the backward
dynamic that allows time series values to be expressed in terms of the future
values. Both dynamics are different, and will therefore add diversity of the en-
semble. Assume that the time series has a missing portion from t = M + 1 to
t = M+J . We consider the forward forecasting model that forecasts the missing
values in terms of the lagged previous values, i.e to estimate missing value at
time t=M+1 we use xM−L−1, ˙..., xM as input to our model. We also design the
backward forecasting model ”backcaster”, that forecasts the missing values in
terms of the subsequent time series values, i.e to estimate missing value at time
t=M+J we use xM+J+1, ˙..., xM+J+L as inpit to our models. Then, an ensemble
is constructed, consisting of the forecaster and the backcaster. But this is only
the first step. Once we have filled the missing values we create an augmented
training set (consisting of the original training patterns, and new patterns that
are available after estimating the missing values of time series). So we use this
more complete training set to retrain the forward forecasting system, and the
backcasting system, to obtain better models. We continue in this iterative man-
ner, until the extra improvement tapers off. Typically three or four steps of this
iteration should be sufficient. Note that a deseasonalization step may be needed
if the time series is deemed to possess seasonality. See Figure 1 for a detailed
structure of the proposed framework.

We have a number of observations concerning the proposed method:

– There is some aspect of co-training in this approach. Co-training is a method-
ology, developed in the pattern classification field, whereby two or more
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models’ predictions are incorporated in each other’s training data [38]. Sub-
sequent retraining should lead to improved performance.

– The proposed approach is a general framework, and could apply to any
underlying forecasting model, whether conventional, linear, neural networks,
or other.

– It is well-known that the success of ensemble approaches hinges on the di-
versity of the constituent models [13] [39]. We can make the point that the
forward forecasting process and the backward forecasting process possess
fairly different and complementary dynamics. This is because how the past
affects the future is generally different from how one can infer the past from
the future or present. Both forecasters also use different and generally widely
spaced input variables.

1. Given time series with missing data
T = x1, x2, x3, ?, ?, x6, · · · · · · , x30, x31, ?, ?, ?, x35 · · · · · · xn

– Apply a seasonality test. If seasonality exists, apply a deseasonalization step.
– For iteration i=1 to N

(a) Use T to tune the model parameters by K-fold validation
(b) Train the model with the tuned parameters using T
(c) Use the trained model to estimate the missing values ”Forward Missing

Estimation” (FMEi)

FMEi = x1, x2, x3, x
′
4, x

′
5, x6 · · · · · · , x30, x31, x

′
32, x

′
33, x

′
34, x35 · · · · · · , xn

(d) Reverse the order of time series values T
RT = xn, x35, ?, ?, ?, x31, x30, x6, ?, ?, x3, x2, x1

(e) Use RT to tune the model parameters by K-fold validation
(f) Train model with tuned parameters using RT
(g) Use the trained model to estimate the missing values ”Backward Missing

Estimation” (BMEi)

BMEi = xn, ......x35, x
′
34, x

′
33, x

′
32, x31, x30....x6, x

′
5, x

′
4, x3, x2, x1

(h) Calculate the Average of the FMEi and BMEi to get AMEi

(i) Replace each missing value the calculated average one to get NT
NT = time series with estimated missing values

(j) T=NT

– End
2. Restore the seasonality if the time series was deseasonalized.
3. End

Fig. 1. Ensemble of Forward and Backward missing estimation

4 Experimental Setup

To test the proposed approach, we have applied it to the M3 and the NN3
competition data sets. The M3 competition is the latest in a sequel of M fore-
casting competitions [40]. It consists of 3003 business-type time series, covering
the types of economy, industry, finance, demographic, and others. It consists of
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yearly series (645 series), quarterly series (756 series) , monthly series (1428se-
ries) and others (174series). In this study we consider the ones that have at least
80 points. We ended up with 1020 time series. The NN3 competition [41] is a sim-
ilar competition, geared towards computational intelligence forecasting models.
The type of data is also mostly economics and business related. It consists of 111
monthly time series. We excluded the short ones, and therefore ended up with
65 time series. Both the M3 and the NN3 have become important benchmarks
for testing and comparing forecasting models. Having that many diverse time
series gives confidence into comparison results. All time series in these data sets
are complete, with no missing values. So we removed some values to artificially
create time series with missing values. We have considered missing ratios of 10%,
20%, 30%, 40%, and 50%. We have tested the proposed framework using three
different underlying forecasting models. This is needed in order to verify the gen-
erality of the proposed approach. We considered the following three forecasting
models, Feed Forward Neural Network as an example of a nonlinear model,
Holt’s Exponential Smoothing as an example of a linear model andMoving
Average as a simple model. We use the symmetric mean absolute percentage
error ”SMAPE”. It is a normalized error measure, and this feature is beneficial
in our study, since each data set has different time series from various sectors,
and they have therefore different value ranges. The SMAPE is defined as:

SMAPE =
1

M

∑ ∣∣∣y′
m − ym

∣∣∣
|y′

m|+|ym|
2

(1)

Time series often possess seasonal and trend components. An effective strat-
egy has been to deseasonalize the time series before applying the forecasting
model (e.g. a neural network). The study in [42] reports that deseasonalization
is beneficial, because it relieves the forecasting model from an undue burden
of predicting the seasonal cycle, in addition to its main job of forecasting the
time series. Another work [10] also shows that deseasonalization is useful. How-
ever, unlike [42], they mention that detrending was detrimental. Based on these
previous works’ consistently favoring deseasonalization, and the conflicting and
questionable benefit of detrending, we decided to apply deseasonalization, but
not detrending.

4.1 Parameter Setting

A critical step in any machine learning or forecasting model is the parameter
estimation process. In every model there are typically one or two key parameters
that affect the performance greatly, and must therefore be set with care. In this
work we use the K-fold validation approach for parameter selection. For single
hidden layer neural network, there are two critical parameters that have to be
tuned using K-fold validation: the number of input variables (the number of
lagged values) and the number of hidden neurons. For the number of lagged val-
ues, we consider the range [1,2,3,4,5] whereas for the number of hidden neurons,
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Fig. 2. MLP-NN3-SMAPE

Fig. 3. MLP-M3-SMAPE

we specify the range to be [0,1,3,5,7]. Note that 0 hidden neurons means that the
network is in effect a simple linear network. For Holt’s exponential smoothing
model the main parameters are α and γ. We search the following range for these
parameters: α , γ = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. For each α and
γ pair, we generate smoothed ”estimated” values of all the training time series
values, and calculate the mean square error (MSE) between the smoothed time
series values and true ones. We select the α and γ pair with minimum MSE. The
model parameter of the moving average model is the window size. We simply
test different window sizes to estimate missing values and select the window size
that results in the minimum MSE. Once we fix the window size for the moving
average model, more iterations will not change the accuracy of the missing value
estimation. So we just apply a single iteration when using the moving average
as a forecasting model.

5 Results and Discussion

Figures 2 and 3 show the SMAPE for the M3 data set and the NN3 data
set for the neural network forecasting model. Figures 4 and 5 show the corre-
sponding results for the Holt’s exponential smoothing model, while Figures 6
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Fig. 4. Expo-NN3-SMAPE

Fig. 5. Expo-M3-SMAPE

Fig. 6. MA-NN3-SMAPE
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Fig. 7. MA-M3-SMAPE

and 7 show the corresponding results of the moving average model. The fig-
ures compare between the performance in predicting the missing values for the
forward forecasting, the backward forecasting, and the ensemble of forward and
backward forecasting for each of the different iterations. The goal here is to
check if the ensembles of backward and forward forecasts, and if the successive
iterations show some gain. One can observe that the neural network exhibits
fairly consistent improvement up to the third iteration. For the Holt’s expo-
nential smoothing model there is an improvement up to the second iteration.
For the moving average model the ensemble provides considerable improvement.
Also, one can observe that in most cases the improvement is more significant for
larger percentages of missing values. This is understandable because for these
cases the impact will be larger, because more training patterns will be more
accurate. Overall, one can conclude that the use of successive iterations of for-
ward and backward forecasting, and their ensembles are a beneficial strategy.
Of course the largest gain comes from the first iteration. The reason is that
it leads to a large increase in the training set size, as missing value estimates
are now included. In subsequent iterations the gain stems mainly from having
more accurate estimates of the missing values in the training set, which leads to
a better training, and hence more accurate models. With successive iterations,
this added value diminishes, and there is not much more improvement to offer.
A prudent strategy is to use two or three iterations.

6 Conclusion and Future Work

In this work we have introduced a new approach to handle and estimate missing
data for time series forecasting. We used successive ensembles of forward and
backward forecasting models. The forward and the backward forecasting provide
useful and complementary diversity, and therefore their inclusion in an ensemble
is beneficial and adds value. In addition, successive application of this ensemble
provides some refinement for the estimates. Experiments have been conducted
on two large data sets each of which contains many time series with different
characteristics. The results show the beneficial effect of the proposed ensembles,
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and their successive iterations, for a number of underlying forecasting models.
We therefore believe that the proposed framework should be one of the useful
contenders for handling missing values.
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Abstract. Adapting classification systems according to new input data
streams raises several challenges in changing environments. Although
several adaptive ensemble-based strategies have been proposed to pre-
serve previously-acquired knowledge and reduce knowledge corruption,
the fusion of multiple classifiers trained to represent different concepts
can increase the uncertainty in prediction level, since only a sub-set of
all classifier may be relevant. In this paper, a new score-level fusion tech-
nique, called Swavgh , is proposed where each classifier is dynamically
weighted according to the similarity between an input pattern and the
histogram representation of each concept present in the ensemble. During
operations, the Hellinger distance between an input and the histogram
representation of every previously-learned concept is computed, and the
score of every classifier is weighted dynamically according to the resem-
blance to the underlying concept distribution. Simulation produced with
synthetic problems indicate that the proposed fusion technique is able
to increase system performance when input data streams incorporate
abrupt concept changes, yet maintains a level of performance that is
comparable to the average fusion rule when the changes are more grad-
ual.

Keywords: Pattern Classification, Multi-Classifier Systems, Adaptive
Systems, Dynamic Weighting, Score-Level Fusion, Change Detection.

1 Introduction

A challenge in many real-world pattern classification problems is processing data
sampled from underlying class distributions changing over time. In this case in-
put data may reflect various different concepts1 that re-occur during operations.

1 A concept can be defined as the underlying class distribution of data captured under
specific operating conditions.
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For example, in face recognition for video surveillance, the facial model of an in-
dividual of interest should be designed using representative reference data from
all the possible capture conditions under which it can be observed in the opera-
tional environments. These include variations in faces captured under different
pose angles, illuminations, resolution, etc. However, fully representative video
sequences or sets of reference stills are rarely available a priori for system de-
sign, although they may be provided over the time. In this paper, adaptive
ensembles methods are considered to perform supervised incremental learning
from new reference data that exhibit changes. In this context, different concepts
are learned gradually by training incremental learning classifiers using blocks of
reference data. It is assumed that classifiers are not selected from a pool, but
gradually initiated as new data concepts emerge in the reference data, and com-
bined into an ensemble. During operations, these ensembles process input data
streams that incorporate those different concepts.

To adapt a pattern classifier based on new reference data, several techniques
have been proposed in the literature, which can be characterized by their level
of the adaptation. Incremental learning classifiers (like ARTMAP [4] neural net-
works) are designed to adapt their internal parameters in response to new data,
while ensemble methods allow to adapt the generation (i.e. the internal param-
eters of base classifiers), selection and fusion of an ensemble of classifiers (EoC)
[10]. Incremental classifiers can be updated efficiently, but learning over the time
from reference data that represent significantly different concepts can corrupt
their previously acquired knowledge [5,16]. In addition to being more robust to
problems with a limited number of references, ensemble methods such as the
Learn++ algorithm [16] are well suited to prevent knowledge corruption when
adapted to new data. Indeed, previously acquired knowledge (i.e. concepts) can
be preserved by training a new classifier on new reference data.

Active approaches have been proposed in the literature to adapt classifica-
tion systems to data sampled from changing class distributions. They exploit
a change detection mechanism, such as the Diversity for Dealing with Drifts
[13], to drive incremental learning. Other methods such as the Just-in-Time ar-
chitecture use change detection to regroup reference templates per concept [1].
Recently, Pagano et al. [15] proposed an active approach based the Hellinger
drift detection method (HDDM) [7], where an ensemble of incremental learn-
ing classifiers is updated depending on the nature of the detected change. If
newly available data exhibit small or gradual changes w.r.t. previously-learned
concepts, the incremental classifier trained for the closest concept is updated.
Otherwise, a new classifier trained on the newly available data is added to the
ensemble. This method ensures that every classifier in the ensemble represents
a different concept.

Such adaptive ensemble methods may allow to mitigate knowledge corrup-
tion, since every concept encountered in reference data may be represented in
the ensemble. However, the fusion of classifiers during operations is a critical
mechanism to exploit this information. A fusion function for an EoC in chang-
ing environments should be robust to a growing number of classifiers, and adapt
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dynamically to changing concepts that appear in new reference data. Given
specific operating conditions, every member of the ensemble is susceptible to in-
corporate valuable knowledge to classify a given input pattern, but exploitation
of this information relies on the way the outputs are combined. For example,
to recognize faces captured in video feeds from a profile view, the knowledge of
the classifiers trained with profile views is more valuable than the ones trained
with frontal views. Depending on the operational input to the EoC, some classi-
fiers may provide more reliable predictions, and considering too many unrelated
classifiers can increase the uncertainty of the overall system [9].

In this paper, a concept-based dynamic weighting technique is proposed for
score-level fusion that accounts for concepts related to each pattern from an input
data stream. This weighted average fusion technique is referred to as Swavgh .
Assuming an adaptive ensemble system (such as presented in [15]), composed of
K classifiers {C1, ..., CK} associated to histogram representations {H1, ...,HK}
of reference data captured from the concept they incorporate. The adaptation
of the EoC to new reference data is guided by change detection using HDDM
[7]. Several dynamic selection methods have been proposed in the literature,
where a subset of classifiers is considered to be competent to classify a given
operational input. Although regions of competence can be evaluated dynamically,
additional training data is required, and their representativeness is crucial to
avoid over-training [3,10]. As the availability of such data may not be guaranteed,
Swavgh will rely on information available on the concepts represented in the
EoC, the histogram representations {H1, ...,HK}, to weight the decisions of each
classifiers.

To account for their possible limited representativeness, Swavgh proposes to
benefit from the diversity of opinion of the EoC, through a dynamic weighting of
every classifier of the ensemble instead of a subset selection. More precisely, dur-
ing operations, the proposed score-level fusion strategy will dynamically weight
classification scores si,k(q) (for i = 1, ..., N classes, and k = 1, ...,K classifiers
in the ensemble) for input pattern q, according on classifier relevance or knowl-
edge. The Hellinger distance between q and every concept representation Hk of
the data learned by the classifier Ck is computed, and used to weight its deci-
sion. This allows to dynamically favour the decision of classifiers trained with
reference data close to every input.

To evaluate the performance of the proposed fusion, an ensemble of incremen-
tal learning Probabilistic Fuzzy ARTMAP (PFAM) [12] classifiers is trained on
synthetic problems, providing reference data blocks over the time. The two prob-
lems generate reference input streams exhibiting gradual and abrupt patterns of
change, and testing input streams incorporating every possible concept.

2 Adaptive Ensembles Methods

Fig. 1 represents a block diagram of a generic active adaptive EoC system based
on change detection. New reference data for design and update is provided as
data blocks D[t] at time steps t = 1, ..., T . During the design of the classifier
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Fig. 1. An active adaptive ensemble system learning from a stream of data blocks

system, at each time step t, a new block of reference data D[t] is processed
by the training and update system. Depending on the nature of the change
(which can be detected using distribution models or classification rules [15]),
the classifiers of the ensemble, the selection and fusion rules and the decision
threshold can be updated. During operations, an input pattern q from an input
data stream is first processed by every classifier or the EoC to generate the scores
sik(q) (i = 1, ..., N , k = 1, ...,K). The overall scores Si(q) are then computed
using the fusion rules, and compared to the decision threshold Θ to generate the
final decisions di(q).

Several passive approaches to ensemble adaptation, with varied ensemble gen-
eration, selection and fusion strategies have been proposed in the literature,
adapting the fusion rule [2,17], the classifiers [8,6] or both at the same time [16].
Active approaches differ from the passive ones in their use of a change detection
mechanism to drive ensemble adaptation. For example Minku et al. [13] proposed
the Diversity for Dealing with Drifts algorithm, which maintains two ensembles
with different diversity levels, one low and one high, in order to assimilate a new
concept emerging in the observed data. When a significant change is detected
though the monitoring of the system’s error rate, the high diversity ensemble is
used to assimilate new data and converge to a low diversity ensemble, and a new
high diversity one is generated and maintained through bagging. Alippi et al.
[1] also proposed a Just-in-Time classification algorithm, using a density-based
change detection to regroup reference patterns per detected concept, and update
an on-line classifier using this knowledge when the observed data drifts toward
a known concept. More recently, Pagano et al. [15] proposed a ensemble genera-
tion strategy relying on a Hellinger drift detection method (HDDM) [7] change
detection process. It is composed of an EoC of K 2-class classifiers {C1, ..., CK},
associated to set of histogram representations {H1, ...,HK} of the data blocks
used to train them, as well as a decision threshold Θ. During training, at each
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time step t, the HDDM is used to detect whether the histogram representation
H of the reference data block D[t] represents an abrupt change w.r.t. all the
previously-learned data, represented by {H1, ...,HK}. If an abrupt change is de-
tected, a new classifier CK+1 is trained with the data from D[t] and added to
the ensemble, the corresponding histogram representation HK+1 = H is stored,
and the decision threshold Θ is updated. If no change is detected, the reference
patterns in D[t] are used to update to classifier Ck∗ corresponding to the closest
concept representation Hk∗ to H. This methodology ensures the generation of
an ensemble composed by classifiers representing different concepts.

These adaptive ensembles are generated to provide a diverse representation
of all the previously-encountered concepts. However, a fusion rule for these en-
sembles should also adapt to changing concepts that appear during operations.

3 Dynamic Weighting Based on Concepts

This paper focuses on active adaptive ensembles based on HDDM for change
detection [15]. It is assumed that, during design phases, each classifier has been
trained or adapted using reference data that corresponds to one concept. These
ensembles are composed of classifiers producing continuous scores s ∈ [0, 1].
During operations, a input pattern q is presented to the system, and the scores
{si1(q), ..., siK(q)} are produced by each classifier. Those are combined to gen-
erate the overall score Si(q). Then, the final decision di(q) is true for class i if
Si(q) ≥ Θ.

In this paper, a the score-level fusion technique Swavgh is proposed, where
each score is dynamically weighted based on a input pattern’s resemblance to
the corresponding classifier concept. Weights are defined by the Hellinger dis-
tance δh(q,Hk) between the pattern q and the histogram concept representation
Hk. Although representing different concepts, the classifiers of the ensemble are
somewhat correlated as they model a part of the underlying distribution. Fol-
lowing recommendations in [9], average score-level fusion rule should be used for
fusion. In order to account for the concept represented by each classifier, Swavgh

increases the influence of the classifiers representing the closest concept to q in
a weighted average following:

Si
wavgh

(q) =

K∑
k=1

(1− δh(q,Hk)) . s
i
k(q)∑K

k=1(1 − δh(q,Hk))
(1)

4 Experimental Methodology

In this paper, a class-modular architecture, with an adaptive ensemble per class,
is considered for proof of concept validation [14]. Two-class classifiers are trained
on patterns sampled from the target class, versus a random mixture of non-target
samples (from other and unknown classes). Following those considerations, only
one target class is considered in experiments, and the class subscript i is omitted.
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4.1 Simulation Scenario

Labelled blocks of data D[t] become available to the system for design and up-
date, at time t = 1, 2..., T . These blocks are comprised of reference patterns
from the target and the non-target classes, generated from two 2-class synthetic
classification problems represented in 2D space. For each problem, the introduc-
tion of the new data block D[t], t = 2, ..., T , represents a gradual or an abrupt
change w.r.t. to the patterns from the previous ones. These are sampled from a
different concept than the ones previously modelled by the system. Each block
has been completed with an equal number of non-target patterns to design the
classifiers. At each time step t, the systems are tested with the same database
dTestg containing a mixture of patterns from all the possible concepts.

4.2 Synthetic Problems

In order to evaluate the proposed fusion, two synthetic problems are considered:
(1) the rotating Gaussians problem, where new data blocks represents gradual
changes w.r.t. the previous ones, and (2), the checkerboard Gaussians, introduc-
ing more abrupt changes.

The Rotating Gaussians. Fig. 2 presents the rotating Gaussians problem,
inspired by the drifting Gaussians problem presented in [7]. Patterns are sampled
from two spherical Gaussian distributions originally centred on (0.25, 0.5) and
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Fig. 2. Rotating Gaussians problem. Green (light) points correspond to target patterns,
and red (dark) points to non-target ones. Abrupt changes between each block and the
previous ones have been detected using the Hellinger drift detection methods for an
histogram size of 15 bins, for 30 replications of random data generation.
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(0.75, 0.5) at t = 1, with a standard deviation of 0.15 in each direction, for
T = 4 blocks. From t = 2 to t = 4, the centers gradually rotate of π/2 around
(0.5, 0.5). This problem provides gradual changes between the data blocks in
order to evaluate the proposed fusion when classifiers are trained with close
concepts. The gradual nature of the changes is confirmed by the results of a
change detection performed for 30 replications (see Fig. 2), which didn’t detect
a new concept (abrupt change) in more than 50% of the replications for the data
blocks.

The Checkerboard Gaussian. Fig. 3 presents the checkerboard Gaussian
problem, providing patterns sampled from 16 Gaussian distributions with a stan-
dard deviation of 0.07, arranged in a 4x4 checkerboard. A concept is defined as
a group of two adjacent Gaussian distributions, which generates T = 8 different
training blocks. The presentation order of the 8 concepts has been randomized,
as shown on Fig. 3. This problem enables to evaluate the proposed fusion rule
when classifiers are trained with distinct concepts. Change detection performed
for 30 replications (see Fig. 3) detected a new concept (abrupt change) in more
than 50% of the replications for 4 data blocks.
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Fig. 3. Checkerboard Gaussian problem
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4.3 Protocol for Simulations

Adaptive ensembles are composed of Probabilistic Fuzzy ARTMAP (PFAM) [12]
classifiers. The DNPSO training strategy presented in [5] is used to train and
optimize the PFAM classifiers, using a training dataset dT rain[t] and validation
dataset dV al1[t], and the decision threshold Θ is selected based on ROC curve
produced by the full system over a second validation dataset dV al2[t], respecting
the operational constraint fpr ≤ 5%.

At each time step t, D[t] is thus composed by dT rain[t], dV al1[t] and dV al2[t],
with 25 patterns per class each. dTestg is composed of 50 patterns per class and
per concept, and is fixed for each time step. As the dataset is randomly gener-
ated from the sources, the simulations have been repeated for 30 replications,
and the performance is presented as average and standard deviations values com-
puted using a Student distribution and a confidence interval of 10%. Histogram
representation of concepts are computed using 15 bins.

4.4 Performance Measures and Reference Systems

To measure performance, systems are characterized in the precision-recall op-
erating characteristics curve (P-ROC) space. Precision is defined as the ratio
TP/(TP + FP ), with TP and FP the number of true and false positive, and
recall is another denomination of the true positive rate (tpr). The precision and
recall measures are also summarized using the scalar area under this P-ROC
(AUPROC), and the scalar F1 measure for a specific operational point (false
positive rate). Finally, ROC performance is also presented, in the form of nor-
malized partial area under the curve for a fpr ∈ [0, 0.05] (pAUC(5%))

The proposed score-level fusion technique Swavgh is compared to the following
score-level fusion strategies:

– Ensemble with Savg, the common average score-level fusion rule, following:

Savg(q) =
1

K

K∑
k=1

sk(q) (2)

– Ensemble with Smax, the maximum score-level fusion rule, following:

Smax(q) = sk∗(q), k∗ = argmax
k=1,...,K

sk(q) (3)

– Ensemble with Swavgc , the closest concept rule, following:

Swavgc (q) = sk∗(q), k∗ = argmin
k=1,...,K

δh(q,Hk) (4)

In addition, the EoC is also compared to a single incremental learning classifier
that is updated incrementally over time in response to new blocks D[t].

5 Simulation Results

Global pAUC(5%) and AUPROC performance is presented in Table 1a and b
for the Rotating Gaussians problem. In terms of pAUC(5%), it can be observed
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Table 1. ROC and PR performance of adaptive classification systems for the Rotating
Gaussians problem

(a) pAUC(5%) measure

Adaptive Time Step
classifiers 1 2 3 4

Incr.
classifier

0.23 ±
0.08

0.40 ±
0.06

0.47 ±
0.05

0.35 ±
0.05

E
n
se

m
b
le

w
it
h Smax 0.30 ±

0.07
0.35 ±
0.08

0.40 ±
0.08

0.37 ±
0.08

Savg 0.30 ±
0.07

0.48 ±
0.06

0.52 ±
0.06

0.52 ±
0.04

Savgh 0.30 ±
0.07

0.33 ±
0.10

0.43 ±
0.09

0.43 ±
0.09

Savgc 0.30 ±
0.07

0.23 ±
0.10

0.14 ±
0.05

0.08 ±
0.04

(b) AUPROC measure

Adaptive Time Step
classifiers 1 2 3 4

Incr.
classifier

0.77 ±
0.04

0.83 ±
0.05

0.89 ±
0.02

0.78 ±
0.04

E
n
se

m
b
le

w
it
h Smax 0.80 ±

0.04
0.80 ±
0.05

0.81 ±
0.04

0.77 ±
0.06

Savg 0.80 ±
0.04

0.92 ±
0.01

0.94 ±
0.01

0.93 ±
0.01

Savgh 0.79 ±
0.04

0.87 ±
0.03

0.91 ±
0.02

0.91 ±
0.03

Savgc 0.79 ±
0.04

0.78 ±
0.06

0.78 ±
0.05

0.73 ±
0.04

(c) F1 measure for a fpr ≤ 5% on validation data

Adaptive Time Step
classifiers 1 2 3 4

Incr.
classifier

0.74 ±
0.04

0.75 ±
0.06

0.83 ±
0.02

0.66 ±
0.07

E
n
se

m
b
le

w
it
h Smax 0.80 ±

0.03
0.78 ±
0.06

0.76 ±
0.08

0.64 ±
0.12

Savg 0.80 ±
0.03

0.82 ±
0.02

0.84 ±
0.03

0.80 ±
0.06

Savgh 0.80 ±
0.03

0.74 ±
0.07

0.77 ±
0.06

0.75 ±
0.10

Savgc 0.80 ±
0.03

0.71 ±
0.10

0.55 ±
0.14

0.22 ±
0.10

that the single incremental classifier and adaptive ensembles with Smax, Savg

and Swavgh have statistically similar performances at t = 2 and t = 3, signifi-
cantly higher than Swavgc . However, at t = 4, Savg and Swavgh remain stable,
while the single incremental classifier and Smax significantly decline. In terms of
AUPROC, Savg and Swavgh remain statistically higher than all the other sys-
tems, but cannot be differentiated. The same overall observations can be made
with the F1 performance at the selected operating point of fpr ≤ 5% (Table
1c). Savg and Swavgh performance remains significantly higher than the other
systems.

Results indicate a correlation between the classifiers. Although trained with
slightly different concepts, several classifiers still provide valuable information
to classify the input patterns, and relying only on the closest classifier (Swavgc)
or the maximum score (Smax) underperforms other approaches. In addition, it
can be observed that when dealing with small (or gradual) changes, Swavgh is
equivalent in performance to an average fusion rule.
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Table 2. ROC and PR performance of adaptive classification systems for the Checker-
board Gaussians problem

(a) pAUC(5%) measure

Adaptive Time Step
classifiers 1 2 3 4 5 6 7 8

Incr.
classifier

0.02 ±
0.00

0.04 ±
0.01

0.05 ±
0.01

0.03 ±
0.00

0.03 ±
0.01

0.03 ±
0.01

0.06 ±
0.01

0.09 ±
0.01

E
n
se

m
b
le

w
it
h Smax 0.03 ±

0.00
0.03 ±
0.00

0.03 ±
0.00

0.02 ±
0.00

0.02 ±
0.00

0.02 ±
0.00

0.02 ±
0.00

0.03 ±
0.00

Savg 0.03 ±
0.00

0.04 ±
0.01

0.05 ±
0.01

0.04 ±
0.01

0.04 ±
0.01

0.04 ±
0.01

0.04 ±
0.01

0.04 ±
0.01

Savgh 0.04 ±
0.01

0.04 ±
0.00

0.04 ±
0.01

0.05 ±
0.01

0.06 ±
0.01

0.07 ±
0.01

0.08 ±
0.01

0.14 ±
0.01

Savgc 0.03 ±
0.00

0.02 ±
0.00

0.02 ±
0.00

0.02 ±
0.00

0.03 ±
0.00

0.03 ±
0.01

0.02 ±
0.00

0.03 ±
0.00

(b) AUPROC measure

Adaptive Time Step
classifiers 1 2 3 4 5 6 7 8

Incr.
classifier

0.42 ±
0.02

0.51 ±
0.01

0.54 ±
0.01

0.50 ±
0.01

0.51 ±
0.01

0.52 ±
0.01

0.59 ±
0.02

0.64 ±
0.02

E
n
se

m
b
le

w
it
h Smax 0.43 ±

0.02
0.34 ±
0.02

0.31 ±
0.01

0.30 ±
0.01

0.28 ±
0.01

0.26 ±
0.01

0.26 ±
0.00

0.25 ±
0.00

Savg 0.43 ±
0.02

0.51 ±
0.01

0.54 ±
0.01

0.52 ±
0.01

0.51 ±
0.01

0.51 ±
0.01

0.51 ±
0.01

0.53 ±
0.01

Savgh 0.47 ±
0.01

0.51 ±
0.01

0.55 ±
0.01

0.58 ±
0.01

0.60 ±
0.01

0.61 ±
0.01

0.63 ±
0.01

0.67 ±
0.01

Savgc 0.43 ±
0.02

0.46 ±
0.01

0.48 ±
0.01

0.49 ±
0.01

0.52 ±
0.01

0.53 ±
0.01

0.51 ±
0.01

0.52 ±
0.01

(c) F1 measure for a fpr ≤ 5% on validation data

Adaptive Time Step
classifiers 1 2 3 4 5 6 7 8

Incr.
classifier

0.51 ±
0.04

0.44 ±
0.02

0.22 ±
0.03

0.40 ±
0.02

0.30 ±
0.02

0.18 ±
0.02

0.23 ±
0.02

0.21 ±
0.02

E
n
se

m
b
le

w
it
h Smax 0.53 ±

0.03
0.21 ±
0.05

0.11 ±
0.01

0.11 ±
0.01

0.10 ±
0.01

0.09 ±
0.00

0.09 ±
0.00

0.09 ±
0.00

Savg 0.53 ±
0.03

0.39 ±
0.04

0.21 ±
0.04

0.18 ±
0.02

0.16 ±
0.02

0.12 ±
0.02

0.12 ±
0.02

0.13 ±
0.02

Savgh 0.42 ±
0.03

0.44 ±
0.02

0.34 ±
0.02

0.39 ±
0.02

0.42 ±
0.02

0.38 ±
0.02

0.23 ±
0.02

0.36 ±
0.01

Savgc 0.53 ±
0.03

0.31 ±
0.05

0.26 ±
0.04

0.15 ±
0.03

0.10 ±
0.01

0.10 ±
0.01

0.09 ±
0.01

0.08 ±
0.01
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Global pAUC(5%) and AUPROC performance is presented in Table 2a and
b for the Checkerboard Gaussian problem. With both measures, it can be ob-
served that the single incremental classifier and adaptive ensembles with Savg

and Swavgh present statistically similar performances above the other systems,
up to t = 3. Then, from t = 4 until the end of the simulation, Swavgh sig-
nificantly outperforms the others. Similar observations can be made from the
F1 performance at the selected operating point of fpr ≤ 5% (Table 2c), where
Swavgh exhibits significantly better performance from t = 3 until the end of the
simulation.

As with the Rotating Gaussians problem, Swavgc exhibits considerably lower
performance, which underlings the importance of combining all the classifiers of
the EoC, even if they’ve been trained with different concepts. However, as the
Checkerboard Gaussians problem provides more numerous and distinct concepts,
the performance of Swavgh finally exceeded the average fusion rule, through a
dynamic adaptation of the influence of each classifier depending on the concept
which which they have been trained.

6 Conclusion

In this paper a new concept-based dynamically weighted score-level average fu-
sion technique is proposed for adaptive ensemble-based classification. Assuming
an adaptive ensemble system that grows to incrementally to learn different con-
cepts from blocks of input data, and which update rule relies on histogram-based
change detection, this fusion function dynamically update the weights of the clas-
sifiers based on the input pattern resemblance to each classifier concept. More
precisely, these weights are defined by the Hellinger distance between the input
pattern and the histogram representation of the concepts learned by the system.

Simulation results produced with synthetic problems indicate that the pro-
posed fusion outperforms the average score-level fusion rule when learning from
data streams incorporating abrupt concept changes. In addition, it maintains a
comparable level of performance when the changes are more gradual.

In this paper, a classification scenario only presenting changes in the input
stream of reference patterns is considered. In future work, pruning strategies
should be evaluated to deal with real-world changing operational environments.
Indeed, previously-learned concept might become irrelevant over time in those
conditions. In addition, the proposed fusion strategy should be tested with larger
problems incorporating more concepts, in order to evaluate its robustness when
the number of classifiers in the ensemble increases.
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Abstract. Graph edit distance (GED) is a powerful and flexible graph
dissimilarity model. Yet, exact computation of GED is an instance of a
quadratic assignment problem and can thus be solved in exponential time
complexity only. A previously introduced approximation framework re-
duces the computation of GED to an instance of a linear sum assignment
problem. Major benefit of this reduction is that an optimal assignment of
nodes (including local structures) can be computed in polynomial time.
Given this assignment an approximate value of GED can be immediately
derived. Yet, the primary optimization process of this approximation
framework is able to consider local edge structures only, and thus, the
observed speed up is at the expense of approximative, rather than exact,
distance values. In order to improve the overall approximation quality,
the present paper combines the original approximation framework with
a fast tree search procedure. More precisely, we regard the assignment
from the original approximation as a starting point for a subsequent
beam search. In an experimental evaluation on three real world data sets
a substantial gain of assignment accuracy can be observed while the run
time remains remarkable low.

1 Introduction

Graphs, which consist of a finite set of nodes connected by edges, are the most
general data structure in computer science. Due to the ability of graphs to rep-
resent properties of entities and binary relations at the same time, a growing
interest in graph-based object representation can be observed in various fields.
In bio- and chemoinformatics, for instance, graph based representations are in-
tensively used [1–3]. Another field of research where graphs have been studied
with emerging interest is that of web content and data mining [4, 5]. Image clas-
sification [6, 7], graphical symbol and character recognition [8, 9], and computer
network analysis [10] are further areas of research where graph based represen-
tations draw the attention.
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Various procedures for evaluating the similarity or dissimilarity of graphs –
known as graph matching – have been proposed in the literature [11]. The present
paper addresses the issue of processing arbitrarily structured and arbitrarily
labeled graphs. Hence, the graph matching method actually employed has to be
able to cope with directed and undirected, as well as with labeled and unlabeled
graphs. If there are labels on nodes, edges, or both, no constraints on the label
alphabet should compromise the representational power of the employed graphs.
Anyhow, the matching framework should in any case be flexible enough to be
adopted and tailored to certain problem specifications. As it turns out, graph edit
distance [12, 13] meets both requirements, viz. flexibility and expressiveness.

The major drawback of graph edit distance is its computational complexity
which is is exponential in the number of nodes of the involved graphs. Conse-
quently, exact edit distance can be computed for graphs of a rather small size
only. In recent years, a number of methods addressing the high computational
complexity of graph edit distance computation have been proposed (e.g. [14–
17]). The authors of the present paper also introduced an algorithmic framework
which allows the approximate computation of graph edit distance in a substan-
tially faster way than traditional methods [18]. Yet, the substantial speed-up in
computation time is at the expense of an overestimation of the actual graph edit
distance.

The reason for this overestimation is that the core of our framework is able
to consider only local, rather than global, edge structure. The main objective of
the present paper is to significantly reduce the overestimation of edit distances.
To this end, the distance approximation procedure of [18] is combined with a
fast (but suboptimal) tree search algorithm, namely beam search. Beam search
has been employed before as a stand-alone approximation scheme for graph
edit distance computation [17]. The present paper adapts this search algorithm
for the task of systemically improving the original node assignment and the
corresponding edit distance approximation.

The remainder of this paper is organized as follows. Next, in Sect. 2 the
concept and computation of graph edit distance as well as the original frame-
work for graph edit distance approximation [18] are summarized. In Sect. 3 the
combination of this framework with a beam search procedure is introduced. An
experimental evaluation on diverse data sets is carried out in Sect. 4, and in
Sect. 5 we draw some conclusions.

2 Graph Edit Distance Computation

2.1 Exact Computation Based on A*

Given two graphs, the source graph g1 and the target graph g2, the basic idea of
graph edit distance is to transform g1 into g2 using some distortion operations.
A standard set of distortion operations is given by insertions, deletions, and
substitutions of both nodes and edges. We denote the substitution of two nodes
u and v by (u → v), the deletion of node u by (u → ε), and the insertion of node
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v by (ε → v)1. A sequence υ = (e1, . . . , ek) of k edit operations that transform
g1 completely into g2 is called an edit path between g1 and g2.

Let Υ (g1, g2) denote the set of all possible edit paths between two graphs g1
and g2. To find the most suitable edit path out of Υ (g1, g2), one introduces a
cost c(ei) for each edit operation ei ∈ υ, measuring the strength of the cor-
responding operation. The idea of such a cost is to define whether or not an
edit operation represents a strong modification of the graph. Clearly, between
two similar graphs, there should exist an inexpensive edit path, representing low
cost operations, while for dissimilar graphs an edit path with high cost is needed.
Consequently, the edit distance of two graphs is defined by the minimum cost
edit path between two graphs:

d(g1, g2) = min
(e1,...,ek)∈Υ (g1,g2)

k∑
i=1

c(ei)

The exact computation of graph edit distance is usually carried out by means
of a tree search algorithm which explores the space of all possible mappings of
the nodes and edges of the first graph to the nodes and edges of the second
graph. A widely used method is based on the A* algorithm [19]. The basic idea
is to organize the underlying search space as an ordered tree. The root node
of the search tree represents the starting point of our search procedure, inner
nodes of the search tree correspond to partial edit paths, and leaf nodes represent
complete – not necessarily optimal – edit paths.

Such a search tree is constructed dynamically at runtime as follows. The nodes
of the source graph g1 are processed in a fixed order u1, u2, . . . , un. The deletion
(ui → ε) and all available substitutions {(ui → v(1)), . . . , (ui → v(t))} of a node
ui are thereby considered simultaneously. This produces (t+ 1) successor nodes
in the search tree. If all nodes of the first graph have been processed in an inner
node of the tree, the remaining nodes of the second graph are inserted in a single
step (which completes the edit path).

A set open of partial edit paths contains the search tree nodes to be processed
in the next steps. The most promising partial edit path υ ∈ open, i.e. the one
with minimal cost so far, is always chosen first (best-first search algorithm).
This procedure guarantees that the complete edit path found by the algorithm
first is always optimal in the sense of providing minimal cost among all possible
competing paths.

2.2 Bipartite Graph Edit Distance Approximation

A major drawback of the procedure described in the last section is its computa-
tional complexity. In fact, the problem of graph edit distance can be reformulated
as an instance of a Quadratic Assignment Problem (QAP) [20]. QAPs have been

1 For edges we use a similar notation.
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introduced in [21] and belong to the most difficult combinatorial optimization
problems for which only exponential run time algorithms are known to date2.

The graph edit distance approximation framework introduced in [18] reduces
the QAP of graph edit distance computation to an instance of a Linear Sum
Assignment Problem (LSAP) which can be – in contrast with QAPs – efficiently
solved.

In order to translate the problem of graph edit distance computation to an
instance of an LSAP, the graphs to be matched are subdivided into individ-
ual nodes plus local structures in a first step. Next, these independent sets of
nodes including local structures are optimally assigned to each other. Finally,
an approximate graph edit distance value is derived from this optimal node as-
signment. In the next paragraphs of this section, these three major steps of our
framework are discussed in greater detail.

Assume that the graphs to be matched consists of node sets V1 = {u1, . . . , un}
and V2 = {v1, . . . , vm}, respectively. A cost matrix C is then defined as follows:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 · · · c1m c1ε ∞ · · · ∞

c21 c22 · · · c2m ∞ c2ε
. . .

.

.

.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

. . . ∞
cn1 cn2 · · · cnm ∞ · · · ∞ cnε

cε1 ∞ · · · ∞ 0 0 · · · 0

∞ cε2
. . .

.

.

. 0 0
. . .

.

.

.

.

.

.
. . .

. . . ∞
.
.
.

. . .
. . . 0

∞ · · · ∞ cεm 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Entry cij thereby denotes the cost of a node substitution (ui → vj), ciε denotes
the cost of a node deletion (ui → ε), and cεj denotes the cost of a node insertion
(ε → vj).

Obviously, the left upper corner of the cost matrix represents the costs of all
possible node substitutions, the diagonal of the right upper corner the costs of
all possible node deletions, and the diagonal of the bottom left corner the costs
of all possible node insertions. Note that each node can be deleted or inserted at
most once. Therefore any non-diagonal element of the right-upper and left-lower
part is set to ∞. The bottom right corner of the cost matrix is set to zero since
substitutions of the form (ε → ε) should not cause any costs.

Note that the described extension of cost matrix C to dimension (n +m) ×
(n+m) is necessary since assignment algorithms for LSAPs expect every entry
of the first set to be assigned with exactly one entry of the second set (and vice
versa), and we want the optimal matching to be able to possibly include several
node deletions and/or insertions. Moreover, matrix C is by definition quadratic.
Consequently, standard algorithms for LSAPs can be used to find the minimum
cost assignment.

In order to integrate knowledge about the graph’s edge structure, to each
cost of a node edit operation cij the minimum sum of edge edit operation costs,

2 QAPs belong to the class of NP-complete problems. That is, an exact and efficient
algorithm for the graph edit distance problem can not be developed unless P = NP.
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implied by the corresponding node operation, is added. That is, we encode the
matching cost arising from the local edge structure in the individual entries of
matrix C.

The second step of our framework consists in applying an assignment algo-
rithm to the square cost matrix C in order to find the minimum cost assignment
of the nodes and their local edge structure of g1 to the nodes and their local
edge structure of g2. Note that this task exactly corresponds to an instance of
an LSAP and can thus be solved in polynomial time by means of Munkres’
algorithm [22], the algorithm of Volgenant-Jonker [23], or others [24]3.

Formally, LSAP optimization procedures operate on a cost matrix C = (cij)
and find a permutation (ϕ1, . . . , ϕn+m) of the integers (1, 2, . . . , (n + m)) that

minimizes the overall mapping cost
∑(n+m)

i=1 ciϕi . In our scenario, this permuta-
tion corresponds to a mapping

ψ = {(u1 → vϕ1), (u2 → vϕ2), . . . , (um+n → vϕm+n)}

of nodes. Note that mapping ψ includes node assignments of the form (ui → vj),
(ui → ε), (ε → vj), and (ε → ε) (the latter can be dismissed, of course). Mapping
ψ can also be interpreted as partial edit path considering edit operations on nodes
only.

In the third step of our framework the partial edit path ψ is completed ac-
cording to the node edit operations. Note that edit operations on edges are
implied by edit operations on their adjacent nodes, i.e. whether an edge is sub-
stituted, deleted, or inserted, depends on the edit operations performed on all
of its adjacent nodes. Hence, given the set of node operations in ψ the global
edge structures from g1 and g2 can be edited accordingly. The cost of the com-
plete edit path is finally returned as an approximate graph edit distance. We
denote the approximated distance value between graphs g1 and g2 according to
mapping ψ with d〈ψ〉(g1, g2) (or d〈ψ〉 for short).

Note that the edit path corresponding to d〈ψ〉(g1, g2) considers the edge struc-
ture of g1 and g2 in a global and consistent way while the optimal node mapping
ψ from step 2 is able to consider the structural information in an isolated way
only (single nodes and their adjacent edges). Hence, the distances found by this
approximation framework are – in the optimal case – equal to, or – in a subopti-
mal case – larger than the exact graph edit distance. Yet, the proposed reduction
of graph edit distance to an LSAP allows the approximate graph edit distance
computation in polynomial time complexity. For the remainder of this paper we
denote this graph edit distance approximation algorithm with BP (Bipartite).

3 Improving the Node Assignment Using Beam Search

In an experimental evaluation in [18] we observed that the overestimation of BP
is very often due to a few incorrectly assigned nodes in ψ. That is, only few node

3 In [18] Munkres’ algorithm is deployed, while in [25] also other algorithms have been
tested for graph edit distance approximation.
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assignments from the second step are responsible for additional (unnecessary)
edge operations in the third step (and the resulting overestimation of the true
edit distance). Our novel procedure ties in at this observation. That is, the node
assignment ψ of our framework is used as a starting point for a subsequent search
in order to improve the quality of the distance approximation (rather than using
the assignment for graph edit distance approximation directly).

The basic idea of our search procedure is that the original node assignment ψ
is systematically varied by swapping the target nodes vϕi and vϕj of two node
assignments (ui → vϕi) ∈ ψ and (uj → vϕj ) ∈ ψ. For each swap it is verified
whether (and to what extent) the derived distance approximation stagnates,
increases or decreases. For a systematic variation of mapping ψ a tree search
with ψ as the starting point is carried out.

The tree nodes in our search procedure correspond to triples (ψ, q, d〈ψ〉), where
ψ is a certain node assignment, q denotes the depth of the tree node in the search
tree and d〈ψ〉 is the approximate distance value corresponding to ψ. The root
node of the search tree refers to the optimal node assignment

ψ = {(u1 → vϕ1), (u2 → vϕ2), . . . , (um+n → vϕm+n)}

found by our former algorithm BP. Hence, the root node (with depth = 0) is
given by the triple (ψ, 0, d〈ψ〉). Subsequent tree nodes (ψ′, q, d〈ψ′〉) with depth
q = 1, . . . , (m + n) contain node assignments ψ′ with swapped element (uq →
vϕq ).

As usual in tree search based methods, a set open is employed that holds
all of the unprocessed tree nodes. We keep the tree nodes in open sorted in
ascending order according to their depth in the search tree (known as breadth-
first search). Thus, at position 1 of open the tree node with smallest depth
among all unprocessed tree nodes can be found. As a second order criterion
the approximate edit distance d〈ψ〉 is used. That is, if two tree nodes have same
depth in the search tree, they are queued in open according to ascending distance
values.

Note that a best-first search algorithm, where open is sorted in ascending
order according to the cost of the respective solution, would not be suitable for
the present task. Best-first search algorithms expect that the cost of a solution
increases monotonically with the increase of the depth in the search tree. Obvi-
ously, this is not the case in our scenario since for two tree nodes (ψ′, q′, d〈ψ′〉)
and (ψ′′, q′′, d〈ψ′′〉) with q′ < q′′, it must not necessarily hold that d〈ψ′〉 < d〈ψ′′〉.
This is due to the fact that each tree node in the search tree represents a com-
plete node mapping with the corresponding graph edit distance approximation
value (in contrast with exact computations of graph edit distance, where inner
tree nodes always refer to incomplete mappings).

The extended framework BP with the tree search based improvement is given
in Alg. 1 (the first three lines correspond to the three major steps of the original
approximation). Before the main loop of the search procedure starts, open is
initialized with the root node (line 4). As long as open is not empty, we retrieve
(and remove) the triple (ψ, q, d〈ψ〉) at the first position in open (the one with
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Algorithm 1. BP-Beam(g1, g2) (Meta Parameter: b)

1. Build cost matrix C = (cij) according to the input graphs g1 and g2
2. Compute optimal node assignment ψ = {u1 → vϕ1 , u2 → vϕ2 , . . . , um+n → vϕm+n

} on C

3. dbest = d〈ψ〉(g1, g2)
4. Initialize open = {(ψ, 0, d〈ψ〉(g1, g2))}
5. while open is not empty do
6. Remove first tree node in open: (ψ, q, d〈ψ〉(g1, g2))
7. for j = (q + 1), . . . , (m + n) do
8. ψ′ = ψ \ {uq+1 → vϕq+1

, uj → vϕj
} ∪ {uq+1 → vϕj

, uj → vϕq+1
}

9. Derive approximate edit distance d〈ψ′〉(g1, g2)
10. open = open ∪ {(ψ′, q + 1, d〈ψ′〉(g1, g2))}
11. if d〈ψ′〉(g1, g2) < dbest then

12. dbest = d〈ψ′〉(g1, g2)
13. end if
14. end for
15. while size of open > b do
16. Remove tree node with highest approximation value d〈ψ〉 from open

17. end while
18. end while

19. return dbest

minimal depth and minimal distance value), generate the successors of this spe-
cific tree node and add them to open (line 6 – 10). That is, similarly to exact
computation of the graph edit distance the search tree is dynamically built at
run time.

The successors of tree node (ψ, q, d〈ψ〉) are generated as follows. The assign-
ments of our original node matching ψ are processed according to the depth q
of the current search tree node. That is, at depth q the assignment uq → vϕq is
processed and swapped with other assignments. Formally, in order to build the
set of successor of node (ψ, q, d〈ψ〉) all pairs of node assignments (uq+1 → vϕq+1)
and (uj → vϕj ) with j = (q+1), . . . , (n+m) are individually regarded. For each
of these pairs, the target nodes vϕq+1 and vϕj are swapped resulting in two new
assignments (uq+1 → vϕj ) and (uj → vϕq+1). In order to derive node mapping ψ′

from ψ, the original node assignment pair is removed from ψ and the swapped
node assignment is added to ψ (see line 8). On line 9 the corresponding distance
value d〈ψ′〉 is derived and finally, the triple (ψ′, q + 1, d〈ψ′〉) is added to open
(line 10). Since index j starts at (q + 1) we also allow that a certain assignment
uq+1 → vϕq+1 remains unaltered at depth (q + 1) in the search tree.

Since every tree node in our search procedure corresponds to a complete solu-
tion and the cost of these solutions neither monotonically decrease nor increase
with growing depth in the search tree, we need to buffer the best possible dis-
tance approximation found during the tree search (lines 11 – 13 take care of that
by checking the distance value of every successor node that has been created).

Note that the algorithmic procedure described so far exactly corresponds to a
breadth-first search. That is, the procedure described above explores the space
of all possible variations of ψ through pairwise swaps and return the best pos-
sible approximation (which corresponds to the exact edit distance, of course).
However, such an exhaustive search is both unreasonable and intractable.
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In [17] a variant of an A*-algorithm, referred to as beam search, has been
used in order to approximate graph edit distance from scratch. The basic idea
of beam search is that only a fixed number b of nodes to be processed are kept
in open. This idea can be easily integrated in our search procedure as outlined
above. Whenever the for-loop on lines 7 – 14 has added altered assignments to
open, only the b assignments with the lowest approximate distance values are
kept, and the remaining tree nodes in open are removed. This means that not
the full search space is explored, but only those nodes are expanded that belong
to the most promising assignments (line 15 – 17). Note that parameter b can be
used as trade-off parameter between run time and approximation quality. That
is, it can be expected that larger values of b lead to both better approximations
and increased run time (and vice versa).

From now on we refer to this variant of our framework as BP-Beam with
parameter b.

4 Experimental Evaluation

For experimental evaluations three data sets from the IAM graph database repos-
itory4 for graph based pattern recognition and machine learning are used. The
first graph data set involves graphs that represent molecular compounds (AIDS),
the second graph data set consists of graphs representing fingerprint images (FP),
and the third data set consists of graphs representing symbols from architectural
and electronic drawings (GREC). For details about the underlying data and/or
the graph extraction processes on all data sets we refer to [26].

In Table 1 the achieved results are shown. On each data set and for each
graph edit distance algorithm two characteristic numbers are computed, viz. the
mean relative overestimation of the exact graph edit distance (�o) and the mean
run time to carry out one graph matching (�t). The algorithms employed are
A* and BP (reference systems) and six differently parametrized versions of our
novel procedure BP-Beam (b ∈ {5, 10, 15, 20, 50, 100}).

First we focus on the degree of overestimation. The original framework (BP)
overestimates the graph distance by 12.68% on average on the AIDS data, while
on the Fingerprint and GREC data the overestimations of the true distances
amount to 6.38% and 2.98%, respectively. These values can be reduced with
our extended framework on all data sets. For instance on the AIDS data, the
mean relative overestimation can be reduced to 1.93% with b = 5. With b =
5 also on the other data sets a substantial reduction of �o can be reported
(from 6.38% to 0.61% and from 2.98% to 0.49% on the FP and GREC data set,
respectively). Increasing the values of parameter b allows to further decrease the
relative overestimation. That is, with b = 100 the mean relative overestimation
amounts to only 0.87% on the AIDS data set. On the Fingerprint data the
overestimation can be heavily reduced from 6.38% to 0.32% with b = 100 and
on the GREC data set the mean relative overestimation is reduced from 2.98%
to 0.27% with this parametrization.

4 www.iam.unibe.ch/fki/databases/iam-graph-database
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The substantial improvement of the approximation accuracy can also be ob-
served in the scatter plots in Fig. 1. These scatter plots give us a visual rep-
resentation of the accuracy of the suboptimal methods on the AIDS data set5.
We plot for each pair of graphs their exact (horizontal axis) and approximate
(vertical axis) distance value. The reduction of the overestimation using our pro-
posed extension is clearly observable and illustrates the power of our extended
framework.

(a) BP (b) BP-Beam(5))

Fig. 1. Exact (x-axis) vs. approximate (y-axis) graph edit distance

Table 1. The mean relative overestimation of the exact graph edit distance (�o) and
the mean run time for one matching (�t in ms) using a specific graph edit distance
algorithm

Algorithm

Data Set

AIDS FP GREC

� o � t � o � t � o � t

A* (Exact) - 5629.53 - 5000.85 - 3103.76

BP 12.68 0.44 6.38 0.56 2.98 0.43

BP-Beam(5) 1.93 3.98 0.61 2.91 0.49 5.83

BP-Beam(10) 1.79 7.27 0.56 5.17 0.47 10.97

BP-Beam(15) 1.68 10.51 0.51 7.32 0.41 15.90

BP-Beam(20) 1.28 13.48 0.46 9.41 0.33 20.71

BP-Beam(50) 0.95 31.39 0.35 21.58 0.29 46.49

BP-Beam(100) 0.87 60.40 0.32 41.87 0.27 86.00

As expected, the run time of BP-Beam is clearly affected by parameter b.
That is, doubling the values for parameter b (from 5 to 10, 10 to 20, or 50 to 100)

5 On the other data sets similar results can be observed.
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approximately doubles the run time of our procedure. Comparing the mean run
time of BP-Beam(5) with the original framework, we observe that our extension
increases run time approximately by factor 9, 6, and 13 on the three data sets.
Yet, on all data sets the run time remains remarkable low (a few milliseconds
per matching on average only). Furthermore, even with b = 100 the average run
time lies below 0.1s per matching on every data set. Compared to the huge run
time for exact computation (3 or more seconds per matching), the increase of
the run time through our extension remains very small.

5 Conclusions

In the present paper we propose an extension of our previous graph edit dis-
tance approximation algorithm (BP). The major idea of our work is to combine
the bipartite approximation algorithm with a fast tree search algorithm. For-
mally, given the optimal assignments of nodes and local structures returned by
our approximation scheme, variations of this assignment are explored by means
of a fast, suboptimal tree search procedure (an exact tree search would be un-
reasonable, of course). Hence, the present work brings together two different
approximation paradigms for graph edit distance, viz. bipartite optimization of
local structures and fast beam search. With several experimental results we show
that this combination is clearly beneficial as it leads to a substantial reduction
of the overestimations typical for BP. Though the run times are increased when
compared to our former framework (as expected), they are still far below the
run times of the exact algorithm.

In the current version of our extension the node assignment (uq → vϕq ) to
be swapped at search step q are selected in fixed order. In future work we plan,
among other activities, to use heuristics for a more elaborated selection order of
the node operations to be swapped.
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Abstract. Exact computation of graph edit distance (GED) can be
solved in exponential time complexity only. A previously introduced ap-
proximation framework reduces the computation of GED to an instance
of a linear sum assignment problem. Major benefit of this reduction is
that an optimal assignment of nodes (including local structures) can be
computed in polynomial time. Given this assignment an approximate
value of GED can be immediately derived. Yet, since this approach con-
siders local – rather than the global – structural properties of the graphs
only, the GED derived from the optimal assignment is suboptimal. The
contribution of the present paper is twofold. First, we give a formal proof
that this approximation builds an upper bound of the true graph edit
distance. Second, we show how the existing approximation framework
can be reformulated such that a lower bound of the edit distance can be
additionally derived. Both bounds are simultaneously computed in cubic
time.

1 Introduction

Graph-based representations, which are used in the field of structural pattern
recognition, have found widespread applications in the last decades [1,2]. In
fact, graphs offer two major advantages over feature vectors. First, in contrast
with vectors graphs provide a direct possibility to describe structural relations
in the patterns under consideration. Second, while the size of a graph can be
adapted to the size and complexity of a given pattern, vectors are constrained
to a predefined length, which has to be preserved for all patterns encountered in
a particular application.

Graph matching refers to the task of evaluating the similarity of graphs.
A huge amount of graph matching methodologies have been developed in the
last four decades [1]. They include methods stemming from spectral graph the-
ory [3], relaxation labeling [4], or graph kernel theory [5], to name just a few.
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c© Springer International Publishing Switzerland 2014



130 K. Riesen, A. Fischer, and H. Bunke

Among the vast number of graph matching methods available, the concept of
graph edit distance [6] is in particular interesting because it is able to cope with
directed and undirected, as well as with labeled and unlabeled graphs. If there
are labels on nodes, edges, or both, no constraints on the respective label alpha-
bets have to be considered. Moreover, through the use of a cost function graph
edit distance can be adapted and tailored to various problem specifications.

A major drawback of graph edit distance is its computational complexity. In
fact, the problem of graph edit distance can be reformulated as an instance of a
Quadratic Assignment Problem (QAP). QAPs belong to the most difficult com-
binatorial optimization problems for which only exponential run time algorithms
are available to date.1

In recent years, a number of methods addressing the high complexity of graph
edit distance computation have been proposed. In [7], for instance, an efficient
algorithm for edit distance computation of planar graphs has been proposed.
Another approach described in [8] formulates the graph edit distance problem
as a binary linear programming problem. This reformulation is applicable to
graphs with unlabeled and undirected edges only, and determines lower and
upper bounds of graph edit distance in O(n7) and O(n3) time, respectively (n
refers to the number of nodes in the graphs). The authors of [9] propose the use
of continuous-time quantum walks for graph edit distance computation without
explicitly determining the underlying node correspondences.

Most of the approximation methods for graph edit distance restrict their ap-
plicability to special classes of graphs. In [10] the authors of the present paper
introduced an algorithmic framework for the approximation of graph edit dis-
tance which is applicable to any kind of graphs. The basic idea of this approach
is to reduce the difficult QAP of graph edit distance computation to a linear sum
assignment problem (LSAP) which can be efficiently solved. This approximation
framework builds the basis for the present work. In [10] the result of an initial
node assignment is used to derive a valid, yet suboptimal, edit path between
the graphs. In the present paper we give a formal prove that this approxima-
tion builds an upper bound of the true edit distance. Moreover, we show how
the same approximation framework can be exploited to instantly derive a lower
bound of the graph edit distance. Both bounds can be simultaneously computed
in O((n+m)3) time, where n and m refers to the number of nodes in the graphs
under consideration.

2 Exact Graph Edit Distance Computation

2.1 Graph Edit Distance

Let LV and LE be finite or infinite label sets for nodes and edges, respectively.
A graph g is a four-tuple g = (V,E, μ, ν), where V is the finite set of nodes,
E ⊆ V × V is the set of edges, μ : V → LV is the node labeling function, and
ν : E → LE is the edge labeling function.

1 Note that QAPs are known to be NP-complete, and therefore, an exact and efficient
algorithm for the graph edit distance problem can not be developed unless P = NP.
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Given two graphs, the source graph g1 = (V1, E1, μ1, ν1) and the target graph
g2 = (V2, E2, μ2, ν2), the basic idea of graph edit distance [6] is to transform g1
into g2 using some edit operations. A standard set of edit operations is given by
insertions, deletions, and substitutions of both nodes and edges. We denote the
substitution of two nodes u ∈ V1 and v ∈ V2 by (u → v), the deletion of node
u ∈ V1 by (u → ε), and the insertion of node v ∈ V2 by (ε → v), where ε refers
to the empty “node”. For edge edit operations we use a similar notation.

Definition 1. A sequence (e1, . . . , ek) of k edit operations ei that transform g1
completely into g2 is called a (complete) edit path λ(g1, g2) between g1 and g2. A
partial edit path, i.e. a subsequence of (e1, . . . , ek), edits proper subsets of nodes
and/or edges of the underlying graphs.

Note that in an edit path λ(g1, g2) each node of g1 is either deleted or uniquely
substituted with a node in g2, and analogously, each node in g2 is either inserted
or matched with a unique node in g1. The same applies for the edges. Yet, edit
operations on edges are always defined by the edit operations on their adja-
cent nodes. That is, whether an edge (u, v) is substituted, deleted, or inserted,
depends on the edit operations actually performed on both adjacent nodes u
and v.

Since edge edit operations are uniquely defined via node edit operations, it
is sufficient that edit operations ei ∈ λ(g1, g2) only cover the nodes from V1

and V2. That is, an edit path λ(g1, g2) explicitly describes the correspondences
found between the graphs’ nodes V1 and V2, while the edge edit operations are
implicitly given by these node correspondences.

Let Υ (g1, g2) denote the set of all admissible and complete edit paths between
two graphs g1 and g2. To find the most suitable edit path out of Υ (g1, g2), one
introduces a cost c(e) for every edit operation e, measuring the strength of the
corresponding operation. The idea of such a cost is to define whether or not
an edit operation e represents a strong modification of the graph. By means
of cost functions for elementary edit operations, graph edit distance allows the
integration of domain specific knowledge about object similarity. Furthermore,
if in a particular case prior knowledge about the labels and their meaning is not
available, automatic procedures for learning the edit costs from a set of sample
graphs are available as well [11].

Clearly, between two similar graphs, there should exist an inexpensive edit
path, representing low cost operations, while for dissimilar graphs an edit path
with high cost is needed. Consequently, the edit distance of two graphs is defined
as follows.

Definition 2. Let g1 = (V1, E1, μ1, ν1) be the source and g2 = (V2, E2, μ2, ν2)
the target graph. The graph edit distance dλmin(g1, g2), or dλmin for short, between
g1 and g2 is defined by

dλmin(g1, g2) = min
λ∈Υ (g1,g2)

∑
ei∈λ

c(ei) , (1)

where Υ (g1, g2) denotes the set of all complete edit paths transforming g1 into
g2, c denotes the cost function measuring the strength c(ei) of edit operation ei
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(including the cost of the implied edge edit operations), and λmin refers to the
minimal cost edit path found in Υ (g1, g2).

For our further investigations it will be necessary to subdivide any graph distance
value dλ(g1, g2) corresponding to a (not necessarily minimal) edit path λ ∈
Υ (g1, g2) into the sum of costs C

〈V 〉
λ for all node edit operations ei ∈ λ and the

sum of costs C
〈E〉
λ for all edge edit operations implied by the node operations

ej ∈ λ. That is,

dλ(g1, g2) = C
〈V 〉
λ + C

〈E〉
λ (2)

2.2 Exact Computation of Graph Edit Distance

Optimal algorithms for computing the edit distance dλmin(g1, g2) are typically
based on combinatorial search procedures that explore the space of all possible
mappings of the nodes and edges of g1 to the nodes and edges of g2 (i.e. the
search space corresponds to Υ (g1, g2)). Such an exploration is often conducted
by means of A* based search techniques [12].

The basic idea of A* based search methods is to organize the underlying search
space as an ordered tree. The root node of the search tree represents the starting
point of our search procedure, inner nodes of the search tree correspond to partial
edit paths, and leaf nodes represent complete – not necessarily optimal – edit
paths. Such a search tree is dynamically constructed at runtime by iteratively
creating successor nodes linked by edges to the currently considered node in the
search tree.

The search tree nodes, i.e. (partial or complete) edit paths λ, to be processed
in the next steps are typically contained in a set OPEN. In order to determine
the most promising (partial) edit path λ ∈ OPEN, i.e. the edit path to be
used for further expansion in the next iteration, an assessment function f(λ) =
g(λ)+h(λ) is usually used, which includes the accumulated cost g(λ) of the edit
operations ei ∈ λ plus a heuristic estimation h(λ) of the future cost to complete
λ. One can show that, given that the estimation of the future cost is lower than,
or equal to, the real cost, the algorithm is admissible. Hence, this procedure
guarantees that a complete edit path λmin found by the algorithm first is always
optimal in the sense of providing minimal cost among all possible competing
paths.

Note that the edge operations implied by the node edit operations can be de-
rived from every partial or complete edit path λ during the search procedure. The
cost of these implied edge operations are dynamically added to the corresponding
paths λ ∈ OPEN and are thus considered in the edit path assessment f(λ).

3 Bipartite Graph Matching

The computational complexity of exact graph edit distance is exponential in the
number of nodes of the involved graphs. That is considering m nodes in g1 and
n nodes in g2, Υ (g1, g2) contains O(mn) edit paths to be explored. This means
that for large graphs the computation of edit distance is intractable. The graph
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edit distance approximation framework introduced in [10] reduces the difficult
Quadratic Assignment Problem (QAP) of graph edit distance computation to
an instance of a Linear Sum Assignment Problem (LSAP). For solving LSAPs a
large number of algorithms exist [13]. The time complexity of the best performing
exact algorithms for LSAPs is cubic in the size of the problem. The LSAP is
defined as follows.

Definition 3. Given two disjoint sets S = {s1, . . . , sn} and Q = {q1, . . . , qn}
and an n×n cost matrix C = (cij), where cij measures the suitability of assign-
ing the i-th element of the first set to the j-th element of the second set. The
Linear Sum Assignment Problem (LSAP) is given by finding the minimum cost
permutation

(ϕ1, . . . , ϕn) = argmin
(ϕ1,...,ϕn)∈Sn

n∑
i=1

ciϕi ,

where Sn refers to the set of all n! possible permutations of n integers, and
permutation (ϕ1, . . . , ϕn) refers to the assignment where the first entity s1 ∈ S
is mapped to entity qϕ1 ∈ Q, the second entity s2 ∈ S is assigned to entity
qϕ2 ∈ Q, and so on.

By reformulating the graph edit distance problem to an instance of an LSAP,
three major issues have to be resolved. First, LSAPs are generally stated on
independent sets with equal cardinality. Yet, in our case the elements to be as-
signed to each other are given by the sets of nodes (and edges) with unequal
cardinality in general. Second, solutions to LSAPs refer to assignments of ele-
ments in which every element of the first set is assigned to exactly one element
of the second set and vice versa (i.e. a solution to an LSAP corresponds to a
bijective assignment of the the underlying entities). Yet, graph edit distance is
a more general assignment problem as it explicitly allows both deletions and
insertions to occur on the basic entities (rather than only substitutions). Third,
graphs do not only consist of independent sets of entities (i.e. nodes) but also
of structural relationships between these entities (i.e. edges that connect pairs
of nodes). LSAPs are not able to consider these relationships in a global and
consistent way. The first two issues are perfectly – and the third issue partially –
resolvable by means of the following definition of a square cost matrix whereon
the LSAP is eventually solved.

Definition 4. Based on the node sets V1 = {u1, . . . , un} and V2 = {v1, . . . , vm}
of g1 and g2, respectively, a cost matrix C is established as follows.

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 · · · c1m c1ε ∞ · · · ∞

c21 c22 · · · c2m ∞ c2ε
. . .

.

.

.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

. . . ∞
cn1 cn2 · · · cnm ∞ · · · ∞ cnε

cε1 ∞ · · · ∞ 0 0 · · · 0

∞ cε2
. . .

.

.

. 0 0
. . .

.

.

.

.

.

.
. . .

. . . ∞
.
.
.

. . .
. . . 0

∞ · · · ∞ cεm 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)
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Entry cij thereby denotes the cost of a node substitution (ui → vj), ciε denotes
the cost of a node deletion (ui → ε), and cεj denotes the cost of a node insertion
(ε → vj).

Note that matrix C = (cij) is by definition quadratic. Hence, the first issue
(sets of unequal size) is instantly eliminated. Obviously, the left upper corner of
the cost matrix C = (cij) represents the costs of all possible node substitutions,
the diagonal of the right upper corner the costs of all possible node deletions, and
the diagonal of the bottom left corner the costs of all possible node insertions.
Note that every node can be deleted or inserted at most once. Therefore any
non-diagonal element of the right-upper and left-lower part is set to ∞. The
bottom right corner of the cost matrix is set to zero since substitutions of the
form (ε → ε) should not cause any cost.

Given the cost matrix C = (cij), the LSAP optimization consists in finding
a permutation (ϕ1, . . . , ϕn+m) of the integers (1, 2, . . . , (n+m)) that minimizes

the overall assignment cost
∑(n+m)

i=1 ciϕi . This permutation corresponds to the
assignment

ψ = ((u1 → vϕ1), (u2 → vϕ2), . . . , (um+n → vϕm+n))

of the nodes of g1 to the nodes of g2. Note that assignment ψ includes node
assignments of the form (ui → vj), (ui → ε), (ε → vj), and (ε → ε) (the latter
can be dismissed, of course). Hence, the definition of the cost matrix in Eq. 3
also resolves the second issue stated above and allows insertions and/or deletions
to occur in an optimal assignment.

The third issue is about the edge structure of both graphs which cannot be
entirely considered by LSAPs. In fact, so far the the cost matrix C = (cij)
considers the nodes of both graphs only, and thus mapping ψ does not take any
structural constraints into account. In order to integrate knowledge about the
graph structure, to each entry cij , i.e. to each cost of a node edit operation (ui →
vj), the minimum sum of edge edit operation costs, implied by the corresponding
node operation, is added. That is, we encode the minimum matching cost arising
from the local edge structure in the individual entries cij ∈ C.

Formally, assume that node ui has adjacent edges Eui and node vj has ad-
jacent edges Evj . With these two sets of edges, Eui and Evj , an individual
cost matrix similarly to Eq. 3 can be established and an optimal assignment
of the elements Eui to the elements Evj using an LSAP solving algorithm can
be computed. Following this procedure, the assignment of adjacent edges is not
constrained by an assignment of adjacent nodes other than ui and vj . Therefore,
the estimated edge edit costs implied by (ui → vj) are less than, or equal to,
the costs implied by a complete edit path. These minimum edge edit costs are
eventually added to the entry cij . To entry ciε, which denotes the cost of a node
deletion, the cost of the deletion of all adjacent edges of ui is added, and to the
entry cεj , which denotes the cost of a node insertion, the cost of all insertions
of the adjacent edges of vj is added. This particular encoding of the minimal
edge edit operation cost enables the LSAP to consider information about the
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local, yet not global, edge structure of a graph. Hence, this heuristic procedure
partially resolves the third issue.

4 Upper and Lower Bounds of Graph Edit Distance

4.1 Upper Bound dψ

Given the node assignment ψ two different distance values approximating the ex-
act graph edit distance dλmin(g1, g2) can be inferred. As stated above, the LSAP
optimization finds an assignment ψ in which every node of g1 is either assigned
to a unique node of g2 or deleted. Likewise, every node of g2 is either assigned to
a unique node of g1 or inserted. Hence, mapping ψ refers to an admissible and
complete edit path between the graphs under consideration, i.e. ψ ∈ Υ (g1, g2).
Therefore, the edge operations, which are implied by edit operations on their
adjacent nodes, can be completely inferred from ψ. This gives us a first approx-
imation value dψ(g1, g2), or dψ for short, defined by (cf. Eq. 2)

dψ(g1, g2) = C
〈V 〉
ψ + C

〈E〉
ψ . (4)

Note that in case of dλmin the sum of edge edit cost C
〈E〉
λmin

is dynamically built
while the search tree is constructed and eventually added to every partial edit

path λ ∈ OPEN. Yet, the sum of edge costs C
〈E〉
ψ is added to the cost of the

complete edit path ψ only after the optimization process has been terminated.
This is because LSAP solving algorithms are not able to take information about
assignments of adjacent nodes into account during run time. In other words,
for finding the edit path ψ ∈ Υ (g1, g2) based on the cost matrix C = (cij) the
structural information of the graphs is considered in an isolated way only (single
nodes and their adjacent edges). This observation brings us to the following
Lemma.

Lemma 1. The distance dψ(g1, g2) derived from the node assignment ψ consti-
tutes an upper bound of the true graph edit distance dλmin(g1, g2). That is,

dψ(g1, g2) ≥ dλmin(g1, g2)

holds for every pair of graphs g1, g2.

Proof. We distinguish two cases.

1. ψ = λmin: That is, the edit path ψ returned by our approximation framework
is identical with the edit path λmin computed by an exact algorithm. It
follows that dψ = dλmin .

2. ψ 	= λmin: In this case the approximate edit distance dψ cannot be smaller
than dλmin . Otherwise an exact algorithm for graph edit distance compu-
tation, which exhaustively explores Υ (g1, g2), would return ψ as edit path
with minimal cost, i.e. ψ = λmin. Yet, this is a contradiction to our initial
assumption that ψ 	= λmin.
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4.2 Lower Bound d′
ψ

The distance value dψ(g1, g2) is directly used as an approximate graph edit
distance between graphs g1 and g2 in previous publications (e.g. in [10]). We now
define another approximation of the true graph edit distance based on mapping
ψ. As we will see below, this additional approximation builds a lower bound of
the true graph edit distance dλmin(g1, g2).

First, we consider the the minimal sum of assignment costs
∑(n+m)

i=1 ciϕi re-
turned by our LSAP solving algorithm. Remember that every entry ciϕi reflects
the cost of the corresponding node edit operation (ui → vϕi) plus the minimal
cost of editing the incident edges of ui to the incident edges of vϕi . Hence, the

sum
∑(n+m)

i=1 ciϕi can be – similarly to Eq. 4 – subdivided into costs for node
edit operations and costs for edge edit operations. That is,

(n+m)∑
i=1

ciϕi = C
〈V 〉
ψ + C〈E〉

ϕ . (5)

Analogously to Eq. 4, C
〈V 〉
ψ corresponds to the sum of costs for node edit

operations ei ∈ ψ. Yet, note the difference between C
〈E〉
ϕ and C

〈E〉
ψ . While C

〈E〉
ψ

reflects the costs of editing the edge structure from g1 to the edge structure of
g2 in a globally consistent way (with respect to all edit operations in ψ applied

on both adjacent nodes of every edge), the sum C
〈E〉
ϕ is based on the optimal

permutation (ϕ1, . . . , ϕ(n+m)) and in particular on the limited, because local,
information about the edge structure integrated in the cost matrix C = (cij).
Moreover, note that every edge (u, v) is adjacent with two individual nodes

u, v and thus the sum of edge edit costs C
〈E〉
ϕ considers every edge twice in

two independent edit operations. Therefore, we define our second approximation
value d′ψ(g1, g2), or d

′
ψ for short, by

d′ψ(g1, g2) = C
〈V 〉
ψ +

C
〈E〉
ϕ

2
(6)

Clearly, Eq. 6 can be reformulated as

d′ψ(g1, g2) = C
〈V 〉
ψ +

∑(n+m)
i=1 ciϕi − C

〈V 〉
ψ

2
(7)

and thus, d′ψ(g1, g2) only depends on quantities C
〈V 〉
ψ and

∑(n+m)
i=1 ciϕi , which are

already computed for dψ. Therefore, d
′
ψ can be derived without any additional

computations from the established approximation dψ.
Note that the approximation dψ corresponds to an admissible and complete

edit path with respect to the nodes and edges of the underlying graphs. Yet, the
second approximation d′ψ is not related to a valid edit path since the edges of
both graphs are not uniquely assigned to each other (or deleted/inserted at most
once). The following Lemma shows an ordering relationship between dψ and d′ψ .



Computing Upper and Lower Bounds of Graph Edit Distance in Cubic Time 137

Lemma 2. For the graph edit distance approximations dψ(g1, g2) (Eq. 4) and
d′ψ(g1, g2) (Eq. 6) the inequality

d′ψ(g1, g2) ≤ dψ(g1, g2)

holds for every pair of graphs g1, g2 and every complete node assignment ψ.

Proof. According to Eq. 4 and Eq. 6 we have to show that

C
〈E〉
ϕ

2
≤ C

〈E〉
ψ .

Assume that the node edit operation (ui → vj) is performed in ψ. Therefore,

the edges Eui incident to node ui are edited to the edges Evj of vj in C
〈E〉
ϕ as

well as in C
〈E〉
ψ .

The sum of edge costs C
〈E〉
ϕ considers the minimal cost edit path between

the edges Eui to the edges of Evj with respect to (ui → vj) only. In the case

of C
〈E〉
ψ , however, every edge in Eui and Evj is edited with respect to the node

operations actually carried out on both adjacent nodes of every edge (rather

than considering (ui → vj) only). Hence, C
〈E〉
ϕ is restricted to the best case,

while C
〈E〉
ψ considers the consistent case of editing the edge sets.

Note that C
〈E〉
ϕ is built on the minimized sum

∑(n+m)
i=1 ciϕi . Yet, the cost se-

quence c1ϕ1 , . . . , c(n+m)ϕ(n+m)
considers every edge (ul, uk) ∈ E1 twice, viz. once

in entry clϕl
and once in entry ckϕk

. The same accounts for the edges in E2.
The cost of edge operations considered in clϕl

as well as in ckϕk
refers to the

best possible case of editing the respective edge sets. The sum of cost of these

two best cases considered in C
〈E〉
ϕ are clearly smaller than, or equal to, twice the

actual cost considered in C
〈E〉
ψ .

We can now show that d′ψ constitutes a lower bound for dλmin .

Lemma 3. The distance d′ψ(g1, g2) derived from the node assignment ψ consti-
tutes a lower bound of the true graph edit distance dλmin(g1,g2). That is,

d′ψ(g1, g2) ≤ dλmin(g1, g2)

holds for every pair of graphs g1, g2.

Proof. We distinguish two cases.

1. ψ = λmin: An optimal algorithm would return ψ as optimal solution and thus
dψ = dλmin . From Lemma 2 we know that d′ψ ≤ dψ and thus d′ψ ≤ dλmin .

2. ψ 	= λmin: In this case ψ corresponds to a suboptimal edit path with cost
dψ greater than (or possibly equal to) dλmin . The question remains whether
or not dλmin < d′ψ might hold in this case. According to Lemma 2 we know
that d′λmin

≤ dλmin and thus assuming that dλmin < d′ψ holds, it follows that
d′λmin

< d′ψ. Yet, this is contradictory to the optimality of the LSAP solving
algorithm that guarantees to find the assignment ψ with lowest cost d′ψ .
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We can now conclude this section with the following theorem.

Theorem 1.

d′ψ(g1, g2) ≤ dλmin(g1, g2) ≤ dψ(g1, g2) ∀g1, g2

Proof. See Lemmas 1, 2, and 3.

5 Experimental Evaluation

In Table 1 the achieved results on three data sets from the IAM graph database
repository2 are shown. The graph data sets involve graphs that represent molecu-
lar compounds (AIDS), fingerprint images (FP), and symbols from architectural
and electronic drawings (GREC). On each data set and for both bounds two
characteristic numbers are computed, viz. the mean relative deviation of dψ and
d′ψ from the exact graph edit distance dλmin (�e) and the mean run time to carry
out one graph matching (�t).

Table 1. The mean relative error of the exact graph edit distance (�e) in percentage
and the mean run time for one matching (�t in ms)

Distance

Data Set

AIDS FP GREC

� e � t � e � t � e � t

dλmin
- 5629.53 - 5000.85 - 3103.76

dψ +12.68 0.44 +6.38 0.56 +2.98 0.43

d′
ψ -7.01 0.44 -0.38 0.56 -3.67 0.43

First we focus on the exact distances dλmin provided by A*. As dλmin refers to
the exact edit distance, the mean relative error �e is zero on all data sets. We ob-
serve that the mean run time for the computation of dλmin lies between 3.1s and
5.6s per matching. Using the approximation framework, a massive speed-up of
computation time can be observed. That is, on all data sets the the computation
of both distance approximations dψ and d′ψ is possible in less than or approxi-
mately 0.5ms on average (note that both distance measures are simultaneously
computed and thus offer the same matching time).

Regarding the overestimation of dψ and the underestimation of d′ψ we observe
the following. The original framework, providing the upper bound dψ, overesti-
mates the graph distance by 12.68% on average on the AIDS data, while on the
Fingerprint and GREC data the overestimations of the true distances amount
to 6.38% and 2.98%, respectively. On the GREC data, the upper bound dψ is a
more accurate approximation than the lower bound d′ψ , where the underestima-
tion amounts to 3.67%. Yet, the deviations of dψ are substantially reduced on

2 www.iam.unibe.ch/fki/databases/iam-graph-database
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(a) AIDS (b) FP) (c) GREC)

Fig. 1. Exact graph edit distance dλmin vs. upper bound dψ (gray points) and lower
bound d′ψ (black points) of the graph edit distance

the other two data sets by using the lower rather than the upper bound. That
is, using d′ψ rather than dψ the deviations can be reduced by 5.67% and 6.00%
on the AIDS and FP data set, respectively.

Note the remarkable improvement of the approximation accuracy on the FP
data set which can also be observed in the scatter plot in Fig. 1 (b). These
scatter plots give us a visual representation of the accuracy of the suboptimal
methods on all data sets. We plot for each pair of graphs their exact distance
dλmin and approximate distance values dψ and d′ψ (shown with gray and black
points, respectively).

6 Conclusions

The main focus of the present paper is on theoretical issues. First, we give a
formal prove that the existing approximation returns an upper bound of the
true edit distance. Second, we show how the same approximation scheme can
be used to derive a lower bound of the true edit distance. Both bounds are
simultaneously computed in O((n+m)3), where n and m refer to the number of
nodes of the graphs. In an experimental evaluation we empirically confirm our
theoretical investigations and show that the lower bound leads to more accurate
graph edit distance approximations on two out of three data sets.

In future work we aim at exploiting the additional lower bound in our ap-
proximation framework. For instance, a prediction of the true edit distance dλmin

based on dψ and d′ψ by means of regression analysis could be a rewarding avenue
to be pursued. Moreover, we aim at using both bounds in a pattern recognition
application (e.g. in database retrieval where both bounds can be beneficially
employed).

Acknowledgements. This work has been supported by the Hasler Foundation
Switzerland and the Swiss National Science Foundation project P300P2-151279.



140 K. Riesen, A. Fischer, and H. Bunke

References

1. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching
in pattern recognition. Int. Journal of Pattern Recognition and Artificial Intelli-
gence 18(3), 265–298 (2004)

2. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern
recognition in the last 10 years. Int. Journal of Pattern Recognition and Art. In-
telligence (2014)

3. Luo, B., Wilson, R., Hancock, E.: Spectral embedding of graphs. Pattern Recog-
nition 36(10), 2213–2223 (2003)

4. Torsello, A., Hancock, E.: Computing approximate tree edit distance using relax-
ation labeling. Pattern Recognition Letters 24(8), 1089–1097 (2003)
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Abstract. Linear classifiers are mainly discussed in terms of training
algorithms that try to find an optimal hyperplane according to a data
dependent objective. Such objectives might be the induction of a large
margin or the reduction of the number of involved features. The under-
lying concept class of linear classifiers is analyzed less frequently. It is
implicitly assumed that all classifiers of this function class share the same
common properties.

In this work we analyze the concept class of linear classifiers. We
show that it includes different subclasses that show beneficial properties
during the prediction phase. These properties can directly be derived
from the structural form of the classifiers and must not be learned in a
data dependent training phase.

We describe the concept class of contrasts, a class of linear functions
that is for example utilized in variance analyses. Models from this con-
cept class share the common property of being invariant against global
additive effects. We give a theoretical characterization of contrast classi-
fiers and analyze the effects of replacing general linear classifiers by these
new models in standard training algorithms.

1 Introduction

The limited availability of samples is one of the major challenges of the develop-
ment of diagnostic models for biomolecular data. Especially for high-dimensional
gene expression profiles as obtained from microarray experiments the low car-
dinality of a dataset can lead to non generalizable models. Possible reasons for
small sample sizes may be the rareness of a disease, high costs or technical bur-
dens. A possible strategy for enlarging a dataset can be to merge the samples of
different research groups. These collections might be affected by an additional
source of variation. Being geographically separated the experimental conditions
may not be identical in different labs. Environmental factors such as humidity
and temperature are likely to vary for different locations. They can affect all
simultaneous measurements of a sample (e.g. all measurements of a gene ex-
pression profile). These effects should be minimized during the development of
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a classification model. In this work we propose a linear classification model that
may be suitable for this scenario.

The research on linear classifiers mainly focuses on the development of train-
ing algorithms and optimization criteria [7]. Famous example are linear support
vector machines that maximize the margin between training samples [14] or the
nearest shrunken centroid classifier that utilizes embedded feature selection [13].
The structural properties of linear classifiers are often neglected. It is implic-
itly assumed that all classifiers of this function class share the same common
properties.

We recently showed that subclasses of linear classifiers exist which share com-
mon structural properties that induce an invariance against a certain type of
noise [8]. That is a classifier is guaranteed to be unaffected by this type of
data transformation, if chosen from this subclass. In this work we present an
additional subclass, which we call linear contrast classifiers. It consists of lin-
ear classifiers that are invariant against global transition. In the following we
will prove the invariance property of this subclass. We will also characterize the
benefit of contrast classifiers in different noise experiments.

2 Methods

In this work a classifier c will be seen as a function mapping that predicts the
class label y ∈ Y of an object according to a vector of measurements x ∈ X .
The components of a vector will be denoted as x = (x(1), . . . , x(n))T . In the
following we restrict ourselves to binary classification tasks (e.g. Y = {0, 1}) and
X ⊆ R

n. A classifier will be selected out of a concept class of functions sharing
some structural property (e.g. linear classifiers) c ∈ C. The selection or training
of a classifier is normally done according to a performance measure evaluated on
a set of labeled training examples Str = {(xi, yi)}mi=1. The generalization abil-
ity of the selected classifier is estimated on an independent set of test samples
Ste = {(x′

i, y
′
i)}m

′
i=1.

In the following the concept class of linear classifiers Clin is analyzed.

Clin =
{
I[〈w,x〉≥t]

∣∣w ∈ R
n, t ∈ R

}
(1)

A classifier c ∈ Clin can be interpreted as a linear hyperplane separating the
samples into two classes. It is typically parameterized by a weight vector w ∈
R

n determining its orientation and a threshold or offset t ∈ R determining its
distance to the origin (Figure 1).

2.1 Invariant Classification Models

Reducing the complexity of a concept class is not the only reason for searching
for structural subgroups. Another reason might be the gain of invariances that
allow to completely neglect a certain kind of influence on the label prediction.
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t
w

||w|| 2

w

||w|| 2

x(1)

x(2)

Fig. 1. Scheme of a linear classifier: The decision boundary of a linear classifier is
shown. The shade of the samples indicates the corresponding classification. Samples in
light gray are categorized as class 1 and samples in dark gray as class 0.

Definition 1. A classifier c : X → Y is called invariant against a parameterized
class of data transformations fθ : X → X if

∀ θ, ∀x ∈ X : c(fθ(x)) = c(x). (2)

A concept class C is called invariant against fθ if each c ∈ C is invariant against
fθ.

Choosing a classifier out of an invariant concept class ensures that a classifica-
tion result is completely unaffected by a misleading transformation fθ : X → X .
Invariant classifiers are especially beneficial if the measurements of an object are
known to be distorted by a technical process.

An example of an invariant concept class is the concept class of offset-free
linear classifiers C0.

C0 =
{
I[〈w,x〉≥0]

∣∣w ∈ R
n
}

(3)

These classifiers omit the adaption of an offset (t = 0) [8]. Offset-free linear
classifiers are invariant against the global scaling of the data fa(x) �→ ax, a ∈ R+.

The invariance of a concept class is also of interest for classifier ensembles E

∀ c ∈ E : X → Y, hE : Y |E| → Y (4)

More precisely Equation 4 describes a fusion strategy hE that operates on the
predicted class labels of the base classifiers c ∈ E (late aggregation) [12]. Choos-
ing all base classifiers from an invariant concept class E ⊂ C the fusion strategy
gets itself invariant against fθ.

hE
(
c1(fθ1(x)), . . . , c|E|(fθ|E|(x))

)
= hE (c1(x), . . . , ck(x)) (5)
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If the base classifiers operate on distinct feature spaces, the invariance prop-
erty is able to counteract local effects affecting only subgroups of measurements.

2.2 Contrast Classifiers

In this work we study an invariant subclass of linear classifiers Ccon ⊂ Clin

Ccon =

{
I[〈w,x〉≥t]

∣∣∣∣∣
n∑

i=1

w(i) = 0, w ∈ R
n, t ∈ R

}
. (6)

For these linear classifiers, the orientation of a hyperplane w is additionally
constraint by

∑n
i=1 w

(i) = 0. The choice of t is equal for Clin and Ccon. Linear
functions that fulfill this property are called contrasts in variation analysis [5].
We therefore call Ccon the concept class of (linear) contrast classifiers. They can
be shown to be invariant against global translation.

Theorem 1. The concept class of contrast classifiers Ccon as defined in Equa-
tion 6 is invariant against global translation. That is

∀ c ∈ Ccon, ∀ b ∈ R, ∀x ∈ X : c(fb(x)) = c(x), (7)

where fb �→ x+ b and b = (b, . . . , b)T , b ∈ R
n.

Proof (Theorem 1). For proofing Theorem 1, it is sufficient to show that global
translation does not affect the projection of a contrast.

〈w,x+ b〉 = 〈w,x〉+ 〈w,b〉 (8)

= 〈w,x〉+
n∑

i=1

w(i)b (9)

= 〈w,x〉+ b

n∑
i=1

w(i)

︸ ︷︷ ︸
=0

(10)

= 〈w,x〉 (11)

(12)

��

Figure 2 gives a two-dimensional example of a contrast classifier. In this low
dimensional space contrast classifiers are restricted to two possible orientations
w ∈ {(−1,+1)T , (+1,−1)T}. Only the threshold t can be modified. The ori-
entation of a contrast classifiers becomes more flexible in higher dimensions.
Figure 2a shows the invariance property of a contrast classifier. If a sample is
moved by a global transition, the sample is guarantied to receive the same class
label as before. Interestingly there exist some linear separable cases that can not
be separated by a linear contrast classifier (Figure 2b).
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a b
x(2)x(2)

x(1) x(1)

+b

−b

t = 0t = 2

t = −2

Fig. 2. Scheme of a linear contrast classifier: In a two-dimensional space a contrast
can only be adapted by modifying its threshold t (Panel a). The contrast classifier
is invariant against global transitions of type (x(1), x(2))T ± (b, b)T . Panel b indicates
the limitations of a linear contrast classifier. It shows an example of a linear separable
dataset that can not be separated by a linear contrast classifier in two dimensions.

3 Experiments

In order to investigate the properties of contrast classifiers we have conducted
experiments on artificial datasets (Section 3.2) and real datasets (Section 3.3).
In general all these experiments are performed with help of the TunePareto R
package [9].

3.1 Support Vector Machines

The influence of the contrast constraint is investigated in the context of training
linear support vector machines (SVM) [14]. Linear SVMs are linear classifiers
that optimize following objective:

min
w,t,ξ

1

r
‖w‖rr + C

n∑
i=1

ξli (13)

s.t. ∀i : yi(wTxi − t) ≥ 1− ξi (14)

∀i : ξi ≥ 0 (15)
n∑

i=1

w(i) = 0 (only contrasts) (16)

The objective mainly consists of two terms (Equation 13). The first one is a
regularization term based on a norm of w. The second one is a loss term that
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summarizes the losses ξi ∈ R+ of the constraints in Equation 14. Both terms are
combined via a tradeoff parameter C ∈ R+. The training algorithm for linear
SVMs can be modified to a training algorithm for linear contrasts by adding the
constraint of Equation 16.

We consider four different types of SVMs [1], which we denote by L1R2 (l =
1, r = 2), L2R2 (l = 2, r = 2), L1R1 (l = 1, r = 1), L2R1 (l = 2, r = 1). The l
parameter influences the effects of a single loss variable ξi. In contrast to a linear
weighting (l=1), a value of l = 2 increases the influence of large values (ξi > 1)
and decreases the influence of small values (ξi < 1). The r parameter defines
the norm utilized for regularization. A value of r = 2 corresponds to the original
support vector machine [14]. In this case the SVM training algorithm constructs a
large margin classifier that maximizes the distance between the training samples
and the hyperplane. A value of r = 1 leads to an embedded feature selection [2].
Smaller weights will directly be set to 0. In order to distinguish between SVMs
based on linear classifiers and linear contrasts, we will mark the linear contrasts
with the subscript con (e.g. L2R1con).

3.2 Experiments on Artificial Data

We compare the new contrast classifiers to the standard support vector machines
in sequences of experiments on artificial data. The datasets are generated by
drawing samples from two normal distributions N (cy , I), y ∈ Y. Here, cy ∈ R

n

denotes the class wise centroids and I ∈ R
n×n denotes the identity matrix. The

first centroid is chosen according to c1 ∼ N (0,1). The second one is calculated
by c0 = c1 + dw/‖w‖2, where w ∼ N (0,1). In this way, it is guaranteed that
‖c1 − c0‖2 = d.

We generated different training/test scenarios by varying the dimensional-
ity of the datasets n ∈ {2, 5, 10, 250, 500, 1000} and the distance between class
centriods d ∈ {1, 1.1, . . . , 5}. Each experiment is based on a training set of 50
samples per class. An independent test set of 2 × 50 samples is generated for
evaluating the classifier. Each combination of n and d is tested for 5 different
pairs of centroids.

3.3 Experiments on Real Data

The classifiers are also compared in experiments on real microarray datasets. The
utilized datasets are given in Table 1. In these experiments, the classifiers are
evaluated in an r×f cross validation [3]. That is, the data is split into f folds of
approximately equal size. One of the folds is removed from the dataset before a
classifier is trained. It is used for testing the classifier afterwards. The procedure
is repeated for each combination of folds. The cross validation is repeated on r
permutations of the original dataset. The error of the classifier is estimated by

Rcv =
1

rm

r∑
i=1

f∑
j=1

∑
(x,y)∈Si,j

te

I[
cSi,j

tr
(x) �=y

]. (17)
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Here Si,j
tr and Si,j

te denote the training set and test set of the ith run and the jth
split. We have chosen to set r = 10 and f = 10.

Besides the noise free experiment, we have also conducted experiments with
two different types of artificial noise.

NoisyTest Samples: In this setting the samples of a test set Ste = {(xi, yi)}m
′

i=1

are affected by a random global transition fb �→ x+ b.

S ′
te = {(fbi(xi), yi)}m

′
i=1, ∀i : bi ∼ U(−p, p) (18)

Here U denotes a uniform distribution. The upper and lower limit of bi is chosen
according to p ∈ {1, . . . , 5}.

Noisy Training Samples: Here we assume that the training set Str =
{(xi, yi)}mi=1 is affected by a global transition. We model an offset of the samples
of class 1.

S ′
tr = {(fbi(xi), yi)}mi=1, bi =

{
p if yi = 1

0 else
(19)

Table 1. The table summarizes the four analyzed microarray datasets. The number
of features n, the class-wise numbers of samples my, y ∈ {0, 1} and the analyzed
phenotypes are shown.

name n m1 m0 phenotypes

Buchholz [4] 169 37 25 pancreatic adenocarcinoma vs panctreatitis
Dyrskjøt [6] 7071 20 20 subclasses of bladder cancer
Pomeroy [10] 7071 9 25 classic vs desmoplastic medulloblastoma
Shipp [11] 7071 19 58 diffuse large B-cell lymphoma vs follicular lymphoma

4 Results

The results of the experiments on artificial data are shown in Figure 3. It can be
seen that the standard linear classifiers perform better than their contrast equiv-
alents in low dimensional spaces (n ∈ {2, 5}). If the dimensionality is increased
it can be seen that the results of the contrasts get closer to those of the standard
linear classifiers (n ∈ {10, 250}). For the datasets with highest dimensionality
(n ∈ {500, 1000}) no difference between the standard linear classifiers and their
corresponding contrasts can be observed.

For each combination of dimensionality and pair of standard linear classifier
and corresponding contrast a two-sided Wilcoxon test has been performed. The
resulting p-values are all greater 0.1308 for n ∈ {250, 500, 1000}.
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Fig. 3. Results of the artificial experiments. Each row shows the mean differences
in accuracy between a support vector machine (L1R1, L1R2, L2R1, L2R2) and the
corresponding contrast classifier (L1R1con, L1R2con, L2R1con, L2R2con). The single
columns show experiments with different dimensionality n ∈ {2, 5, 10, 250, 500, 1000}.
In each cell, the distance between the class centroids is varied d ∈ {1.0, 1.1, . . . , 5.0}. A
value above 0 indicates a better performance of the standard support vector machine.
A value below 0 indicates a better performance of the contrast classifier.

Table 2 shows the 10×10 cross-validation errors of the noise free experiments
on the real datasets. For each of the datasets, one of the contrast classifiers out-
performs all other models. Over all datasets the L2R1 support vector machines
perform better or equal than all other tested classifiers. Interestingly in most
of the cases the contrast classifiers outperform the standard linear classifiers.
Exceptions for this are the L1R1con on the Buchholz and the Pomeroy dataset.

The results for the experiments with noisy test samples are given in Figure 4.
While the contrast classifiers are not affected by the added noise the performance
of the standard linear classifiers varies. In most of the cases the error rates are
increased or equal compared to the zero noise cases. Only in a few combinations
the error rate is slightly decreased for the standard linear classifiers.

The results for noisy training samples are shown in Figure 5. It can be
seen that the results of the standard linear classifiers (except the L1R1 on the
Pomeroy dataset) become worse by an increasing noise level. The contrast classi-
fiers perform equally across all experiments and are not affected by noise.
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Fig. 4. Noisy test sample experiment on real data: The 10× 10 cross-validation errors
for different levels of noise are shown. Each cell includes the results for a combination
of dataset and pair of classifiers (standard vs corresponding contrast classifier).

Table 2. Results of the noise free 10 × 10 cross validation experiments on the real
datasets. The mean error rates are shown. Lowest errors per dataset are given in bold.

Buchholz [4] Dyrskjøt [6] Pomeroy [10] Shipp [11]

L1R1 25.16 10.25 24.70 4.94
L1R1con 27.58 9.00 25.59 4.03
L1R2 16.45 4.50 15.59 2.08
L1R2con 16.29 4.50 15.59 2.08
L2R1 15.65 4.50 15.59 2.08
L2R1con 15.32 4.50 15.59 1.95
L2R2 16.45 4.50 15.59 2.08
L2R2con 16.29 4.50 15.59 2.08

5 Conclusion

Contrast classifiers describe a functional subclass of linear classifiers that are
invariant against global transition. This property can directly be related to the
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Fig. 5. Noisy training sample experiment on real data: The 10 × 10 cross-validation
errors for different levels of noise are shown. Each cell includes the results for a combi-
nation of dataset and pair of classifiers (standard vs corresponding contrast classifier).

structure of a classifier and is independent from a particular training process or
a particular dataset.

Our experiments show that invariances can be beneficial, if the samples can
not be guaranteed to be affected by a unique source of noise. This is at least
the case, if a classifier is trained under well defined conditions and afterwards
applied in a real life scenario on noisy test samples. Invariances might also be
of interest for clinical multi center studies, which are based on data collected in
different laboratories. Here, global effects can also affect the training process of
a classifier. Our experiments suggest that biased training samples can be even
more corruptive for the prediction accuracy on further samples than noisy test
samples.

Nevertheless, an invariance property also reduces the flexibility of a classifier
and therefore decreases its complexity. In the case of contrast classifiers, our
experiments show that this is only an limitation in low-dimensional settings.
In high-dimensional spaces the accuracies of linear classifiers with and without
invariance properties are comparable. For lower dimensional settings it may be
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an option to develop classifier ensembles of contrast classifiers as they inherit
the invariance property of the base learners.
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Abstract. In this paper a novel approach to fuzzy support vector ma-
chines (SVM) in multi-class classification problems is presented. The
proposed algorithm has the property to benefit from fuzzy labeled data
in the training phase and can determine fuzzy memberships for input
data. The algorithm can be considered as an extension of the traditional
multi-class SVM for crisp labeled data, and it also extents the fuzzy
SVM approach for fuzzy labeled training data in the two-class classifica-
tion setting. Its behavior is demonstrated on three benchmark data sets,
the achieved results motivate the inclusion of fuzzy labeled data into the
training set for various tasks in pattern recognition and machine learn-
ing, such as the design of aggregation rules in multiple classifier systems,
or in partially supervised learning.

1 Introduction

In real-world applications such as medical diagnosis or affective computing in
an human-computer interaction scenario, the ground truth of the collected data
is not always clearly defined, and even human experts have their difficulties to
find a correct and unique class label, thus, labeling the collected data in such
scenarios is not only expensive and time consuming [4], actually, in some cases
it might be impossible to assign a unique label [10]. For instance, when asking
a group of medical doctors one by one to categorize the status of a patient,
these experts may disagree on the correct class label. Leaving out all such data
when designing a training set may lead to small training sets and to classifiers of
limited performance. One possible approach to avoid this, is to include all data
into the training set, and to express the uncertainty of the class information in
terms of fuzzy labels, so that a training set may be given by

S =
{
(xi,yi) | xi ∈ R

d, yi ∈ ΔL, i = 1, . . . ,m
}

where L is the number of classes and ΔL = {y ∈ [0, 1]L |
∑L

j=1 yj = 1} is the set

of possible fuzzy memberships. Components of yi ∈ ΔL are interpreted as class
memberships to the L classes. In this paper the aim is to demonstrate how fuzzy

N. El Gayar et al. (Eds.): ANNPR 2014, LNAI 8774, pp. 153–164, 2014.
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memberships can be incorporated into the overall learning process of support
vector machines in multi-class classification.

The paper is organized in the following way: In Section 2 we review the stan-
dard SVM approach for binary classification (in Section 2.1) and the multi-class
classification SVM (in Section 2.3). In Section 2.2) we report our previous work
on two-class fuzzy-input fuzzy-output SVM (F 2SVM) (see [12]), and in Section
2.4 the F 2SVM approach is extended to the multi-class classification setting.
In Section 3 we present a statistical evaluation of fuzzy SVM on three data sets
(two artificial and one from optical character recognition), finally we conclude
in Section 4.

2 SVM Learning with Fuzzy Labels

2.1 Review on Binary SVM Classification

Basic principles of SVM classification will be introduced before we consider fuzzy
SVM. Binary classification with crisp labels is the starting point for further
investigations on learning from fuzzy labeled data sets. In the crisp classification
framework, any given observation x ∈ X is associated with a corresponding
target label y ∈ Y . It is assumed that X is a compact subset of a real-valued
vector space (i.e., X ⊆ R

d), and that Y = {y1, . . . , yL} is the set of L class
labels. The training set is given by

S = {(xi,yi) |xi ∈ X,yi ∈ Y, i = 1, . . . ,m}

In case of binary SVM classification we have yi ∈ {−1, 1}. An introduction to
SVM may be found in [13] or [1]. A generalized linear discriminant function with
a fixed nonlinear transformation Φ : X �→ X ′

f(x) = sgn
(
wTΦ(x) + w0

)
(1)

classifies all data points correctly if the following conditions are satisfied

yi(w
TΦ(xi) + w0) ≥ 1 i = 1, . . . ,m. (2)

Here w is a weight vector in X ′ and w0 ∈ R is a bias parameter. The distance of
the transformed data points Φ(xi) to the separating hyperplane Hw,w0 := {x ∈
X |wTΦ(x)+w0 = 0} is given by 1/‖w‖2. In order to maximize this distance that
is the margin between the data points and the separating hyperplane, we seek for
a solution that is minimizing the cost function ϕ(w) := ‖w‖22/2 = wTw/2 under
the constraints given in Eq. (2). The original SVM the optimization problem is
then formulated as primal form:

LP (w, w0, α) =
wTw

2
−

m∑
i=1

αi(yi(w
TΦ(xi) + w0)− 1) (3)
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with Lagrange multipliers αi ≥ 0, i = 1, . . . ,m. Differentiating LP with respect
to w and w0 leads to the conditions w =

∑m
i=1 αiyiΦ(xi) and

∑m
i=1 αiyi = 0,

respectively. Substituting these conditions in Equation (3) leads to the dual form

LD(α) =
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjΦ(xi)
TΦ(xj) (4)

which must be maximized with respect to the constraints αi ≥ 0, i = 1, . . . ,m
and
∑m

i=1 αiyi = 0.
Once the multipliers αi ≥ 0 have been computed, the weight vector is given

by

w =
∑
i∈SV

αiyiΦ(xi), (5)

were SV is the set of indices of data points with αj 	= 0, the support vectors. From
the Karush-Kuhn-Tucker conditions αj(yj(w

TΦ(xj)+w0)−1) = 0, i = 1, . . . ,m,
the value w0 can be determined by averaging over all support vector equations,
with αj > 0: ∑

j∈SV
yj(w

TΦ(xj) + w0) = |SV| =: nSV (6)

and therefore

w0 =
1

nSV

⎛
⎝∑

j∈SV
yj −
∑
j∈SV

∑
i∈SV

αiyiΦ(xi)
TΦ(xj)

⎞
⎠ . (7)

The discriminant function is then determined by substituting Eqs. (5) and (7)
into the discriminant function (1).

Since the separations constraints in Eq. (2) can not be fulfilled in realistic
data sets they can be relaxed by introducing slack-variables ξi, i = 1, . . . ,m:

wTΦ(xi) + w0 ≥ 1− ξi for yi = 1

wTΦ(xi) + w0 ≤ −1 + ξi for yi = −1 (8)

ξi ≥ 0 i = 1, . . . ,m.

These soft-constraints are incorporated into the cost function ϕ(w) by adding
C
∑m

i=1 ξi, with a positive regularization parameter C > 0,

ϕ(w, ξ) :=
wTw

2
+ C

m∑
i=1

(ξ+i + ξ−i ). (9)

The primal form is defined through

LP (w, w0, ξ, α, r) =
wTw

2
+C

m∑
i=1

ξi−
m∑
i=1

αi(yi(w
TΦ(xi)+w0)−1+ξi)−

m∑
i=1

riξi

(10)
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here ri ≥ 0 and αi ≥ 0 are the Lagrange multipliers. Differentiating LP (w, w0, ξ,
α, r) with respect to w and w0 leads again to w =

∑m
i=1 αiyiΦ(xi) and

∑m
i=1

αiyi = 0, differentiating with respect to ξi gives the equations C − αi − ri = 0,
i = 1, . . . ,m. Substituting them into Eq. (10) yields the dual form:

LD(α, r) =

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjΦ(xi)
TΦ(xj) (11)

with constraints C ≥ αi ≥ 0, i = 1, . . . ,m and
∑m

i=1 αiyi = 0. Here the upper
bound C ≥ αi derived from the equations C − αi − ri = 0.

The bias term w0 can be computed as in Eq. (7) by averaging over all support
vector equations satisfying 0 < αj < C.

At this point it should be mentioned that the optimization of (11) as well as
the discriminating function relies only on dot products Φ(xi)

TΦ(xj) which can
be replaced in many cases by a kernel function K(xi,xj) = Φ(xi)

TΦ(xj). This
so-called kernel-trick makes the use of SVM very appealing.

2.2 Fuzzy SVM for the Two Class Classification Problem

In the fuzzy-input fuzzy-output Support Vector Machine fuzzy class member-
ships of the training data are used during training, and a fuzzy output is gener-
ated by using a logistic function [9,8,12]. For instance, in a two class classification
problem, the class memberships y+i and y−i := (1 − y+i ) for a data point xi are
incorporated in the SVM training in the following way.

ϕ(w, ξ) :=
wTw

2
+ C

m∑
i=1

(ξ+i y+i + ξ−i y−i ) (12)

using slack variables ξ−i , ξ+i and constraints

wTΦ(xi) + w0 ≥ 1− ξ+i i = 1, . . . ,m

wTΦ(xi) + w0 ≤ −1 + ξ−i i = 1, . . . ,m (13)

ξ−i ≥ 0, ξ+i ≥ 0 i = 1, . . . ,m

as in Eq.(8). This yields the primal form

LP (w, w0, ξ, α, r) =
wTw

2
+ C

m∑
i=1

(ξ+i y+i + ξ−i y−i )

−
m∑
i=1

α+
i (w

TΦ(xi) + w0 − 1 + ξ+i )−
m∑
i=1

r+i ξ
+
i

+

m∑
i=1

α−
i (w

TΦ(xi) + w0 + 1− ξ−i )−
m∑
i=1

r−i ξ
−
i (14)
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Differentiation of LP (w, w0, ξ, α, r) with respect to w and w0 yields

w =

m∑
i=1

(α+
i − α−

i )Φ(xi) and

m∑
i=1

(α+
i − α−

i ) = 0,

and differentiation with respect to ξ+ and ξ− gives Cy+i − r+i − α+
i = 0 and

Cy−i − r−i − α−
i = 0 for i = 1, . . . ,m. Thus the dual form is given by

LD(α) =

m∑
i=1

α+
i +

m∑
i=1

α−
i − 1

2

m∑
i=1

m∑
j=1

(α+
i − α−

i ) (α
+
j − α−

j )Φ(xi)
TΦ(xj) (15)

subject to

m∑
i=1

(α+
i − α−

i ) = 0, and 0 ≤ α+
i ≤ Cy+i , 0 ≤ α−

i ≤ Cy−i , i = 1, . . . ,m.

The fuzzy SVM approach given in Eq. (12), (14), and (15) reduces to the crisp
SVM Eq. (9), (10), and (11), in case of crisp labeled data.

2.3 Multi-class SVM for Crisp Labeled Data

The support vector optimization approach has been applied to the multi-class
classification scenario, see for example [13,5,6,2]. In the case of L classes one is
considering discriminant functions

fl(x) = sgn
(
wT

l Φ(x) + w0l

)
l = 1, . . . , L (16)

with the aim to compute wT
l and w0l for l = 1, . . . , L such that by using the

argmax-decision rule the training data is separated without error. The argmax-
decision rule says that a data point x is assigned to class ω if ω = argmaxlfl(x).
Such a solution satisfies the crisp separation conditions

wT
k Φ(xi) + w0k − (wT

l Φ(xi) + w0l) ≥ 1 (17)

for all data points xi where data point xi is from class k (denoted by xi ∈ Ck),
and for all classes l ∈ {1, . . . , L} with l 	= k. The maximal margin solution is
then computed by minimizing the cost function

ϕ(w1, . . . ,wL) =
1

2

L∑
k=1

wT
k wk (18)

For non-separable classification problems slack-variables ξk,li for all data points
i = 1, . . . ,m, and or all classes l = 1, . . . , L with l 	= k are introduced into the
separation constraints. This leads to pairwise soft-constraints:

(wT
k Φ(xi) + w0k)− (wT

l Φ(xi) + w0l) ≥ 1− ξk,li (19)
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for all data points xi from class ki, and for all classes j 	= ki. These slack-variables
ξki,l
i are then introduced into the cost function:

ϕ(w1, . . . ,wL) =
1

2

L∑
k=1

wT
k wk + C

L∑
k=1

L∑
l=1,l �=k

∑
xi∈Ck

ξk,li (20)

this leads to a primal from, which is then the starting point for further develop-
ments, e.g. derivation of the dural form. We stop at this point and will provide
more details for the multi-class SVM in in the fuzzy multi-class setting.

2.4 Fuzzy Multi-class SVM

In the next step we consider the multi-class classification problem with fuzzified
class labels, here it is assumed that a training data set is given

S =
{
(xi,yi) | xi ∈ Rd, yi ∈ ΔL, i = 1, . . . ,m

}
where ΔL = {y ∈ [0, 1]L |

∑L
j=1 y

j = 1} and L is the number of classes. Fol-
lowing the idea of the two-class fuzzy SVM [8,12] we incorporate the fuzzy class
memberships into the cost function in the following form.

For any data point xi the values of membership vector yi are considered,
we assume that they are given in descending order yk1

i ≥ yk2

i · · · ≥ ykL

i . Fuzzy
memberships can be incorporated into the multi-class optimization procedure
by pairwise constraints in the following way: For a given data points xi and all
classes such that j 	= k(= k1) (k = k1 denotes the class with the largest class
membership for xi) the following constraints are introduced:

(wT
k Φ(xi) + w0k)− (wT

j Φ(xi) + w0j) ≥ 1− ξk,ji (21)

Overall, for each data point L−1 constraints are defined, so m(L−1) constraints
in total. The fuzzy memberships can be introduced directly into the cost function:

ϕ(w, ξ) =
1

2

L∑
k=1

wT
k wk + C

L∑
k=1

∑
xi∈Ck

L∑
l=1,l �=k

ξk,li (yki − yli) (22)

note that yki − yli ≥ 0 for all possible combinations, because k denotes the class
with the highest membership for data point xi. The primal form of the fuzzy
multi-class SVM problem is then given by

LP (w, w0, ξ, α, r) =
1

2

L∑

k=1

wT
k wk (23)

+C

L∑

k=1

∑

xi∈Ck

L∑

l=1,l �=k

ξk,l
i (yk

i − yl
i) −

L∑

k=1

∑

xi∈Ck

L∑

l=1,l �=k

ξk,l
i rk,l

i

+

L∑

k=1

∑

xi∈Ck

L∑

l=1,l �=k

α
k,l
i (1 − ξ

k,l
i − ((w

T
k Φ(xi) + w0k) − (w

T
l Φ(xi) + w0l)))
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Considering the largest class membership is just one possible approach for
the fuzzy multi-class classification scenario. Another way to to take advantage
from the class member ships is to define a constraint for each pair of classes

kp, kq with y
kp

i ≥ y
kq

i . But this yields L(L − 1)/2 constraints per data point,
so overall mL(L− 1)/2 constraints. Differentiating with respect to wT

k and w0k

gives the same constraints for the crisp multi-class classification case.
Differentiating with respect to wT

k gives

wT
k =

L∑
l=1,l �=k

=:ul
k︷ ︸︸ ︷( ∑

xi∈Ck

αk,l
i Φ(xi)

)
︸ ︷︷ ︸

=:uk

−
L∑

l=1,l �=k

=:vk
l︷ ︸︸ ︷( ∑

xi∈Cl

αl,k
i Φ(xi)

)
︸ ︷︷ ︸

=:vk

k = 1, . . . , L.

(24)
Differentiating with respect to w0k leads to

0 =

L∑
l=1,l �=k

∑
xi∈Ck

αk,l
i −

L∑
l=1,l �=k

∑
xi∈Cl

αl,k
i k = 1, . . . , L. (25)

Differentiation with respect to ξk,li gives the conditions

C(yki − yli)− αk,l
i − rli = 0 fori = 1, . . . ,mwithl = 1, . . . , Landl 	= k. (26)

or as re-formulated as conditions to the αk,l
i

C(yki − yli) ≤ αk,l
i ≤ 0 fori = 1, . . . ,mwithl = 1, . . . , Landl 	= k. (27)

Now, substitution all these conditions and using shortcuts uk, v
k for k =

1, . . . , L and ul
k, v

k
l for k = 1, . . . , L and l = 1, . . . , L l 	= k and uk

l = vkl yields
to the corresponding dual from.

LD(α) =
L∑

k=1

L∑
l=1,l �=k

∑
xi∈Ck

αk,l
i

−1

2

L∑
k=1

(
(uk)

Tuk + (vk)T vk
)
−

L∑
k=1

(vk)uk (28)

here dot products given through the following equations.

(uk)
Tuk =

L∑
l=1,l �=k

L∑
l̃=1,l̃ �=k

∑
xi∈Ck

∑
xj∈Ck

αk,l
i αk,l̃

j (Φ(xi))
T
Φ(xj) (29)

(vk)T vk =
L∑

l=1,l �=k

L∑
l̃=1,l̃ �=k

∑
xi∈Cl

∑
xj∈Cl̃

αl,k
i αl̃,k

j (Φ(xi))
T Φ(xj) (30)
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(vk)Tuk =

L∑
l=1,l �=k

L∑
l̃=1,l̃ �=k

∑
xi∈Cl

∑
xj∈Ck

αl,k
i αk,l̃

j (Φ(xi))
T
Φ(xj) (31)

The dual form (28) has to be maximized with respect to the constraints (25)
and (27).

3 Numerical Evaluation on Benchmark Data Sets

3.1 Data Sets

In this section the numerical evaluation of the proposed fuzzy SVM approach
is presented on a realistic benchmark data set consisting of 20,000 hand-written
digits (2,000 instances for each class). These digits, normalized in height and
width, are represented through a 16 × 16 matrix G where the entries Gij ∈
{0, . . . , 255} are values taken from an 8 bit gray scale, see Figure 1. Previously,
this data set has been used for the evaluation of machine learning techniques in
the Statlog project and many other studies (see for instance [11]).

Fig. 1. Data set of hand-written digits. Each instance given through a 16 × 16 gray
scale image (8-bit resolution).

In order to control the degree of fuzziness in the numerical experiments two
different types of data sets have been prepared. For this, we define the ball of
radius r in R

d in l1-norm by B1
d(r) := {x ∈ R

d | ‖x‖1 :=
∑d

i=1 |xi| ≤ r}.
Data set A has been sampled according to the uniform distribution of set

B1
2(2) and fuzzy labels for the data points are assigned in the following way:

Given an instance x = (x1, x2) ∈ B1
2(2) then its corresponding fuzzy class label

l is set to the following two-dimensional vector, representing the memberships
of the two classes:

l :=

(
ed(x1+x2)

1 + ed(x1+x2)
,

1

1 + ed(x1+x2)

)
.

The parameter d ≥ 0 is used to control the degree of overlap between the data
of the two classes: For small values of parameter d the classes are overlapping,



Multi-class Fuzzy SVM 161

and for increasing d-values the data of the two classes becomes more more and
more separated, thus d is reflecting the distance between the data of the class
distributions. This data set is used to demonstrate how the fuzzy SVM works in
case of weak class memberships.
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Fig. 2. Results for the artificially generated data set A, shown are differences between
classification accuracy of crisp and fuzzy SVM for different values of distances d (see
text). A box plot shows the difference of classification accuracy between fuzzy SVM
and standard SVM; positive difference means that fuzzy SVM performs better than
standard SVM. For medium class overlap fuzzy labels are beneficial; for well separated
classes (d = 2.5) and for highly overlapping classes (d = 0) the SVM can not benefit
from the fuzzy labels.

Data set B is a four-class data set, and has been generated by four bi-variate
Gaussian distributions of spherical shape (σ2 = 1 in both directions), where each
distribution is located in one of the four corners of B1

2(2). The fuzzy labels are
generated by data clustering and fuzzification of the prototypes. The data set
is used to show how data set reduction by vector quantization and prototype
fuzzification can be applied in classification tasks of big data sets by utilizing
fuzzy SVM.

Learning classifiers in a big data application is a time consuming task, and
thus, instance selection or vector quantization might help to reduce the overall
complexity. Clustering or vector quantization are common approaches to com-
pute a small set of representative prototypes out of a larger data set. We ap-
plied fuzzy c-means clustering algorithm to compute representative prototypes,
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followed by Keller fuzzification [7] of the prototypes, then, the result of the proce-
dure is a small set of prototypes, where each prototype has a fuzzy label derived
from the crisp labels weighted by the cluster membership of the data points.

3.2 Numerical Results

First we present results for the artificial data set A. In Figure 2 classification
results for standard SVM and fuzzy SVM are presented for different settings
of the distance parameter d. A box plot shows the difference of the accuracy
between fuzzy SVM and standard SVM, so positive values stand for the situation
where the fuzzy SVM shows higher classification accuracy.

For very small d-values (d = 0) the data is hard to classify, both classifiers
show the same, but very low accuracy. For small distance values d (x-axis) the
data is highly meshed and classification by using fuzzy labels and fuzzy SVM
provides far better accuracy then crisp labels with standard SVM. All in all the
fuzzy classifier works far better when the label of the data is weak and hard
classifiers work better in the case of strong signals.

Result of data set B are given in Figure 3. Here the superior classification
performance of fuzzy SVM in comparison to standard SVM using crisp labels
is shown in settings where the data set is reduced to very few prototypes. The
results were obtained by calculating fuzzy C-means and Keller fuzzification on
the dataset to obtain fuzzy labels and after that the samples were reduced to a
fraction of the normal size.
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Fig. 3. Results for the artificially generated data set B, shown are differences between
classification accuracy of crisp and fuzzy SVM for different numbers of prototypes
p = 10, . . . , 250. A box plot shows the difference of classification accuracy between
fuzzy SVM and standard SVM; positive difference means that fuzzy SVM performs
better than standard SVM. Fuzzy SVM using fuzzy labels is beneficial for a wide range
of degree of data reduction.

Similar behavior of the classification performance can be observed in the digit
dataset (see Figure 4 for the results). It shows the same behavior as dataset B
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Fig. 4. Results for the digit data set, shown are differences between classification accu-
racy of crisp and fuzzy SVM for different numbers of prototypes p = 10, . . . , 250. A box
plot shows the difference of classification accuracy between fuzzy SVM and standard
SVM; positive difference means that fuzzy SVM performs better than standard SVM.
Fuzzy SVM using fuzzy labels is beneficial for a wide range of degree of data reduction.

in which for very few data samples the fuzzy approach has better generalization
compared to the crisp one. As described above the dataset contains 256 features,
corresponding to a grayscale image of a digit. The results were obtained by
fuzzification of the labels with the fuzzy-c-means method and for labels which
switched class we calculated the Keller algorithm. The digit data set is a real
milt-class classification benchmark where a sub set of data points are difficult to
classify, e.g. for instance data from the classes 0, 3, 8 or 9.

4 Conclusion

We proposed a new SVM approach dealing with fuzzy or soft labels in multi-
class classification applications. In contrast to other multi-class approaches we
introduced a new technique where the fuzzy memberships of all classes are in-
corporated in an overall cost function. To gain results between the crisp and the
fuzzy SVM we considered three datasets, in which two are artificial datasets. As
shown above in dataset one the fuzzy approach has a better accuracy than the
crisp one for some places were the signal level is weak. This could be helpful
in cases where the crisp SVM has problems figuring out the seperation between
classes. Furthermore the fuzzy SVM classifier has advantages over the crisp SVM
in applications with very few samples as shown in the results for dataset 2 and
3. In these cases a good fuzzification approach can lead to better accuracy be-
cause each data point is optimized for each class present. This could also be
useful for high dimension low sample size data, if the labels are fuzzified in a
suitable way. This could happen either by applying the fuzzy-c-means algorithm
or by obtaining the fuzzy labels by hand. In our benchmark data sets we could
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show that by using the fuzzy SVM one can benefit from fuzzy or soft labeled
data in scenarios where the recognition accuracies are in intermediate range, this
is a promising property for many machine learning applications, such as semi-
supervised classification [3], multiple classifier systems, or in general information
fusion systems [14].
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Abstract. In this paperwe investigate reinforcement learning approaches
for the popular computer gameTetris. User-defined reward functions have
been applied to TD(0) learning based on ε-greedy strategies in the stan-
dard Tetris scenario. The numerical experiments show that reinforcement
learning can significantly outperform agents utilizing fixed policies.

1 Introduction

Tetris is a popular computer game originally invented by the Russian mathe-
matician Alexey Pajitnov in the mid 1980’s, and nowadays it is implemented
on almost all operating systems and hardware platforms. The standard Tetris
board has a size of 200 cells (arranged in 10 columns and 20 rows), where each
cell has two states: free or occupied, and thus 2200 gaming board configurations
are possible. During the game, gaming pieces (shapes of four connected cells, also
called tetrominos) are dropped from the top of the gaming board into the board
and stacked upon occupied cells or the bottom line of the gaming board. In the
standard Tetris seven different tetrominos exist, and pieces to be dropped are
selected with equal probability. The player can select one out of the ten columns
and can rotate the current tetromino before dropping it. When a line of cells is
occupied the line is removed and all cells above it are moved down by one line.
Each removed line adds to the player’s score, and multiple lines can be removed
at the same time. The game is over when a cell in the top row is occupied by
the current tetromino. The goal is to maximize the score. Because of its complex
nature Tetris has been proven to be NP-complete [3]. The consequence of this
result is that it is not possible to find an optimal policy effectively, and thus
artificial intelligence methods could be of interest to find approximating solu-
tions. Because of its popularity, standard Tetris [8] as well as variations, such as
SZ-Tetris [7] have become popular benchmark tests for various machine learning
algorithms during the last years.

Neural networks have been successfully applied to numerous real world appli-
cations, for instance in pattern recognition, data mining, time series prediction.
In recent years several attempts have been made to train artificial neural net-
works for game playing tasks. For instance, Tesauro [10] has successfully applied
feedforward neural networks to play Backgammon. In this scenario artificial
neural networks are applied in conjunction with reinforcement learning (RL) al-
gorithms. Combinations of reinforcement learning with artificial neural networks

N. El Gayar et al. (Eds.): ANNPR 2014, LNAI 8774, pp. 165–170, 2014.
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and ensemble learning have been successfully applied to board games such as
Connect Four or English Draughts [6,4,5]. Here in this paper we apply temporal
difference learning - a well know RL algorithm - to train a Tetris playing agent.

The major goal of this work is to explore and evaluate the effectiveness of
reinforcement learning techniques to train a Tetris playing agent. The paper is
organized as follows: In Section 2 a brief introduction to RL is presented, then
in Section 3 the TD(0) implementation for the standard Tetris application is
described. The numerical experiments are shown in Section 4, and finally we
discuss results and draw conclusions in Section 5.

2 Introduction to Reinforcement Learning

A reinforcement learning scenario contains two interacting parties: an agent and
its environment. We assume that the environment can be completely observed,
so for any time step t the environment is in a particular state st. Given this sate,
the agent can select an action at out of a set of possible actions A(st). After
the agent has performed an action at the environment gives a particular reward
rt(at, st) to the agent and performs a state transition st �→ st+1.

The agent’s goal is to maximize the sum of rewards over time, for this, a state
value function (in the following denoted by V ) has to be estimated. Using this
information allows the agent to choose appropriate actions with respect to the
given task. A comprehensive guide on reinforcement learning can be found in [9].

The greedy action a∗t is determined by taking the one with a maximum sum
of reward and value of the following state.

a∗t := argmax
at∈A(st)

rt + γV (st+1)

here γ ∈ (0, 1) is some discounting factor.
The policy defines the strategy used by the agent to choose its next action.

Obviously, only these greedy actions are used for testing. In training, it is useful
to explore other states and actions. To allow other actions and states to be
reached, a random action is taken with a rate of ε. In this work an ε-greedy
policy will be use, with ε ∈ [0, 1). The agent plays a greedy action with a rate of
1− ε (exploitation) and a random action with a rate of ε (exploration).

In case a greedy action is chosen, the value of the current state V (st) has to
be adjusted according to the temporal difference learning rule (see Eq. 2). The
greedy action a∗t is determined by taking the one with a maximum sum of reward
and the weighted value of the following state rt+1 + γV (st+1). The reward is a
function that assesses the configuration of a state at each given time t giving it
a numerical valuation rt. This function is used to evaluate the next state st+1

and the value obtained rt+1 is used in combination with the weighted value of
the next state γV (st+1) as a comparison parameter to select the greedy action.

By modelling the reinforcement learning scenario as an Markov decision pro-
cess through Pa

ss′ , namely the propability of changing from state s to s′ under
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action a, and Ra
ss′ , the respective reward, one could formulate the relationship

between values of an optimal V -function:

V ∗ (s) = max
a∈A(s)

∑
s′∈S

Pa
ss′ (Ra

ss′ + γV ∗ (s′)) (1)

These conditions are called Bellman equations, please see [1] for a detailed math-
ematical analysis.

There are many approaches for estimating such optimal solutions. In this
work, we will use the simple temporal difference learning rule

V (st) := V (st) + α [rt + γV (st+1)− V (st)] (2)

where α > 0 is a small positive learning rate.

3 TD(0)-Learning for Tetris

It has been shown in [2] that Tetris cannot be won. Therefore it is less promising
to give some rewards at only at the end of the game. To avoid such weak rewards
to the agent, a heuristic evaluation function for all the possible states are defined
to get some more valuable rewards at any time step t.

The reward functions used in this work have been designed through linear
combinations of weighted features. The first two features consist of the value of
the highest used column (maxt

height) and the average of the heights of all used

columns (avgtheight) at each given time t. The next feature consists of the total

number of holes between pieces at each given time t (cnttholes). The last feature
consists of the quadratic unevenness of the profile (U t

Pro). This feature results
from summing the squared values of the differences of neighboring columns.

rt+1 = 5× (avgt+1
height − avgtheight) + 16× (cntt+1

holes − cnttholes) (3)

rt+1 = 5×(avgtheight−avgt+1
height)+16×(cnttholes−cntt+1

holes)+(U t
Pro−U t+1

Pro) (4)

Both reward functions take both next state st+1 and current state st into
consideration. They describe how good is the transition from the current state
to the next state, whereby the higher the returned value the better the state.
Furthermore the second reward function (cf. Eq. 4) uses the quadratic unevenness
as an additional feature. Later we will see the impact of this particular feature
in the performance of the agent.

A tabular representation of the V -Function is too large to be stored in any
available memory. Just take into account every one of the 200 cells is allowed
to be in 2 different states gives 2200 configurations. In order to tackle this prob-
lem and reduce the state space to a usable size, the height difference between
adjacent columns was used to encode each state. For a given state the height
difference between successive columns is computed. Prior to that, a threshold
is set to limit the maximum and minimum height difference. In this work the
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threshold was set to ±3. The possible height differences form a set of 7 values:
{+3,+2,+1, 0,−1,−2,−3}. All height differences outside this range are trun-
cated to ±3. Subsequently, each state is represented as a 9-tuple of values taken
from the previous set. Using this method results in reducing the state space to
79 ≈ 40× 106 possible states.
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Fig. 1. Learning curves of the RL agent trained through TD(0) with ε-greedy policy
and reward function as defined in Eq. (4) ε = 0.1 (green) vs ε = 0.01 (blue) vs ε =
0.001 (red)

4 Numerical Evaluation

Several experiments were undertaken to assess the performance of the imple-
mented agents. They consist primarily of alternating learning and test phases.
Prior to that, values for the learning rate α = 0.1 and the discount factor γ = 0.9
were set for the entire experiments. The total number of played gaming pieces per
game is used as the performance indicator. At first, the agent is trained through
a fixed number of games which depends on the experiment being undertaken.
Subsequently, a test phase follows in which the agent is tested by 1000 games.
These episodes of alternating learning and test phases are repeated several times
in order to achieve a robust estimate of the agent’s performance.

Figure 1 shows the performance of the reward function defined in Eq. (4). The
agent is trained through 37 episodes of 10000 games each. The total number of
played gaming pieces is collected for each played game. The median of these
values is plotted at the end of each learning phase. This experiment is repeated
for three different ε-values (0.1, 0.01, 0.001).

In order to perform a fair comparison between different ε-values a second ex-
periment was conducted. Here the agent’s performances are compared on the
basis of greedy played gaming pieces instead of the number of played games. A
test phase of 1000 games follows each training phase, and again the median value
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of the total number of played gaming pieces has been taken as performance mea-
sure. Figure 2 shows the performance of the second (cf. Eq. 4) reward function.
For this experiment a threshold of 108 greedy played gaming pieces is set. During
each training phase, the agent is trained with so many games until this threshold
is reached. The experiment is repeated for two different values of ε (0.1, 0.01).
The abscissas depict the total number of greedy played gaming pieces during
the training phase, and the ordinates depict the median value of played gaming
pieces during the test phase, whereby the value labeled zero shows the result of
the untrained agent. Untrained agents take actions according to the evaluation
function given in Eq. (4).
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Fig. 2. Test curves of the RL agent trained through TD(0) with ε-greedy policy (ε =
0.1 (blue) vs ε = 0.01 (green))

5 Discussion and Conclusion

After taking a closer look at the results plotted from the first experiment, it
is clear that exploration increases with increasing ε values. Thus the number
of played gaming pieces decreases. As the number of games per learning phase
is constant, the number of greedy played game pieces decreases with increasing
Epsilon. It follows that the agent needs to be trained with more games to achieve
results comparable with those obtained with lower ε values. However, it is not
possible through this experiment to determine the effect of ε on the learning
performance of the agent. The next experiment serves this purpose.

Through the second experiment a comparison is done between the number of
greedy played gaming pieces during the training phase and the number of played
gaming pieces during the test phase. This comparison depicts at which extend
the agent is able to learn when he follows solely its greedy policy. Thereby it is
also possible to determine the effect of the greedy parameter ε on the learning
performance of the agent. The results of the experiment for the second reward
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function (cf. Eq. 4), shows clearly that the agent yields better performances for
lower values of ε. Both plotted curves seem to reach a saturation point after
playing approximately 2.5 × 109 greedy gaming pieces. Consequently, Figure 3
seems to show that larger exploration doesn’t seem to help the agent play better.
At this point it has to be pointed out that the agent had not been trained
further due to the time consumption of both training and test phases. Thus this
observation could not be proven throughout further investigation.

For the first reward function given in Eq. 3 learning results are very poor (only
approximately 2000 pieces after training with 3.5 × 109 greedy gaming pieces)
at least in comparison with the reward function given in Eq. 4 (approximately
400, 000 pieces after training with 3.5×109 greedy gaming pieces). The untrained
agent using the second reward function reached a median value of 14000 played
gaming pieces, while this value lied by 60 played gaming pieces using the first
reward function. But in both cases, the overall performance has been significantly
improved through TD(0) learning utilizing ε-greedy policy. Ongoing research
focuses on time-depending exploration in TD(0) learning and applications to
real world scenarios.
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Abstract. Computational models of visual processing often use frame-
based image acquisition techniques to process a temporally changing
stimulus. This approach is unlike biological mechanisms that are spike-
based and independent of individual frames. The neuromorphic Dynamic
Vision Sensor (DVS) [Lichtsteiner et al., 2008] provides a stream of in-
dependent visual events that indicate local illumination changes, resem-
bling spiking neurons at a retinal level. We introduce a new approach for
the modelling of cortical mechanisms of motion detection along the dor-
sal pathway using this type of representation. Our model combines filters
with spatio-temporal tunings also found in visual cortex to yield spatio-
temporal and direction specificity. We probe our model with recordings
of test stimuli, articulated motion and ego-motion. We show how our
approach robustly estimates optic flow and also demonstrate how this
output can be used for classification purposes. 1

Keywords: Event-Vision, Optic Flow, Neural Model, Classification.

1 Introduction

Event-based representation of visual information differs from a frame-based ap-
proach by providing a continuous stream of changes in the recorded image instead
of full frames at fixed intervals. This approach provides numerous benefits: For
one, local changes are indicated with very low latency and temporal resolution
is immensely increased. The response to local relative luminance changes allows
the construction of sensors with an extremely high dynamics range. Simulta-
neously, data output is reduced to relevant information only, ignoring image
regions where no changes occur. Neural modellers profit from the biologically
inspired transmission of information based on events or spikes, which allows
new and more realistic models of visual processing, because the visual system
also operates with a series of spikes generated by light-sensitive retinal neurons.
This neural activity is integrated by neurons at subsequent processing stages

1 This work has been supported by grants from the Transregional Collaborative Re-
search Center SFB/TRR62 ’A Companion Technology for Cognitive Technical Sys-
tems’ funded by the German Research Foundation (DFG).
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utilizing increasingly larger receptive fields to build feature representations of
higher complexity. In the dorsal pathway of visual processing in cortex, neu-
rons are tuned to patterns of motion in the visual field while they are tuned to
static form patterns along the ventral pathway [Ungerleider and Haxby, 1994].
[Lichtsteiner et al., 2008, Liu and Delbrück, 2010] present a neuromorphic ap-
proach for a vision sensor that models the mechanisms of spike-generation of a
mammalian retina. Their Dynamic Vision Sensor (DVS) generates events when-
ever a local change of illumination occurs without being bound to temporal
frames. Events are marked with the spatial position, phase of illumination change
(on or off ) and time-stamp of appearance. This approach provides an energy-
efficient and temporally very accurate method to represent temporal changes.

In this work, we propose a novel approach to estimate the apparent motion
of visual features (optic flow) using the events generated by the DVS. We model
a simplified version of the initial stages of cortical processing along the visual
dorsal pathway in primates. In particular, initial responses are generated to rep-
resent movements in the spatio-temporal domain, corresponding to V1 direction
sensitive cells. This introduces a new approach how biologically inspired models
of motion estimation process input.

2 Previous Work

Several research investigations took advantage of the high-speed response
properties of event-based sensor design for applications in various domains
[Lichtsteiner et al., 2008]. For example, in an assisted living scenario a bank of
such sensors can successfully be utilized to detect and classify fast vertical mo-
tions as unintended occasional falls, indicative of an preemptive alarm situation
[Fu et al., 2008]. Tracking scenarios have been investigated to steer real-world in-
teraction [Delbrück, 2012] as well as in microbiology set-ups [Drazen et al., 2011].
Basic research investigations have been reported as well. For example, stereo
matching approaches have been suggested that consider partial depth estima-
tion on the basis of calibrated cameras and the associated epipolar geometry
constraints [Rogister et al., 2011]. Using monocular event-based sensing different
approaches to optical flow computation have been investigated. In
[Benosman et al., 2012] a standard optical flow integration mechanism has been
applied [Lucas and Kanade, 1981]. Their approach approximates spatial and
temporal derivatives from the event stream to estimate a least-squares solution
of flow vectors from intersection of constraint lines. The results show precise
tracking of sample inputs, like a bouncing ball or waving hands. More recently,
the authors propose to estimate flow directly by evaluating the event-cloud in the
spatio-temporal space [Benosman et al., 2014]. In a nutshell, the surface geome-
try of a small patch of a surface fitted to the cloud of sensor events is evaluated.
The local gradient information directly yields an estimate of the ratio of space-
time changes and, thus, a local speed measure. In sum, these approaches to
motion detection rely on mechanisms that eliminate outliers in order to get re-
liable speed estimates, either indirectly or directly. [Benosman et al., 2014] rely
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on local fitting of the data by planar patches such that, movement components
orthogonal to the grey value structure can be measured (aperture problem).

We, here, suggest an alternative approach to initial motion detection that is
motivated by the first stages of spatio-temporal processing in biological vision.
We make use of data about non-directional and directional cells in primary
visual cortex and how these generate a first representation of local movements
[De Valois et al., 2000]. Below, we outline the general mechanism that makes full
use of the event-based input. We demonstrate that the approach is capable to
generate spatio-temporal flow estimates for extended boundaries and for intrinsic
features. Such estimates can already be used to classify different motion patterns
in space and time without the need of sophisticated processing.

3 Methods

Estimation of Optical Flow Using Spatio-Temporal Filters. Spatio-
temporal changes of different speed generate oriented structure in x-y-t-space
with varying off-axis angles as measured against the temporal axis. These spatio-
temporal structures need to be analysed in order to estimate optic flow. The
method that we propose herein is inspired by mechanisms found in visual cor-
tex. Our contribution is the adaption of these principles to be compatible with
event-based represenation of visual events.

Movement detection in visual cortex is based on cells that are either direc-
tionally selective or non-selective [De Valois et al., 2000]. Directional selectivity
in cortical cells is generated by linear combination of spatial even-symmetric
bi-phasic and odd-symmetric mono-phasic cells as measured orthogonal to the lo-
cally oriented contrast. Based on theoretical considerations,
[Adelson and Bergen, 1985] have argued in favor of combining cells with even
and odd spatial symmetry each having different temporal band-pass character-
istics. The final calculation of the response energies lead to demonstrate that
such filtering is formally equivalent to spatio-temporal correlation detectors as
proposed by [Hassenstein and Reichard, 1956] as a model of motion detection in
the fly visual system. We focus here on the findings of [De Valois et al., 2000]
and apply a set of spatio-temporal filters on the event stream to yield a selec-
tivitiy to different motion speeds and directions while maintaining the sparse
representation provided by the address-event coding. Figure 2 shows the prin-
ciple of this estimation process. Two spatial filter functions of different class
(even and odd-symmetric) and two temporal filter functions (monophasic and
biphasic) are combined to build two different spatio-temporal filters. Those can
be added to generate a spatio-temporally tuned filter that is able to respond
to spatio-temporal structures. Parameters of the filters contribute to the speed-
and direction selectivity of the resulting filter. In the following we describe how
such filters are modelled and applied to the event-based representation.
Event Representation and Data Structure. A conventional camera projects
light onto an image sensor (CCD or CMOS) and reads out the measurement of all
light- and colour-sensitive pixels at a fixed frame rate. Several limitations concern-
ing the representation canbe identified:The temporal sampling rate is limited, thus
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when all pixel values are sampled in a fixed time interval, fast local changes are in-
tegrated and thus lost for further processing. The photo sensitivity of the sensor
is limited, thus different illumination conditions force the camera system to glob-
ally adapt the operating range using different exposure times or apertures. Finally,
from the perspective of sampling the plenoptic functionP (x, y, λ, t, V x, V y, V z)
[Adelson and Bergen, 1991] the corresponding continuous volume is regularly sam-
pled along the t-axis, irrespective of the structure along this dimension. In case that
no changes happen to occur redundant information is generated that is carried to
the subsequent processing steps.

In an event-based system individual pixels generate events in the moment they
measure a change in contrast. A single DVS event encodes the characteristic
phase of luminance change, namely on or off, the pixel coordinates of its origin
and a timestamp (in microseconds). In this way only luminance changes in the
observed scene are recorded and bandwidth can be saved while the dynamic
range can be increased [Lichtsteiner et al., 2008]. This happens with temporal
sampling rate that is orders of magnitude higher than those of a conventional
camera. The way it represents the captured information is referred to as address-
event representation [Lichtsteiner et al., 2008].

For the discrete implementation, we suggest the following simple buffering
structure to achieve an event-based sampling: On a basis of the x, y-resolution
of the sensor (128× 128 in case of the DVS) lists with space for PE timestamps
are managed in a first in, first out principle. Whenever a DVS event e (x, t) (with
x = (x, y)) occurs, its timestamp t is pushed to the list L(x,y) at the reference
grid-position. In case that PE elements are already held in L(x,y), the last (and
hence, oldest) event is pruned. The buffering structure subsequently holds the
last PE timestamps per DVS pixel in a chronological order at each point of time.

Generation of Spatio-Temporal Filters. To model spatial filters, we use
a population of rotated two-dimensional Gabor functions, that are calculated
using the common definition:

G(x, y) =
1

2πσ2
exp(−π

[
(x̂− x0)

2

σ2
+

(ŷ − y0)
2

σ2

]
) · exp(i[ξ0x+ ξ0y]) (1)

with

(
x̂
ŷ

)
=

(
cosθ −sinθ
sinθ cosθ

)(
x
y

)
(2)

Even and odd components of this function are used and parameterized to
generate 11×11 filter kernels (x, y ∈ [−2π..2π]) using standard deviation σ = 2.5,
frequency tuning ξ0 = 2π and rotation θ = [0, 14π, .., π]. Figure 2 depicts some
of the filters used. Temporal filter functions are generated using the following
equation:

ft = wm1 · exp(−
x− μ2

m1

2σ2
m1

)− wm2 · exp(−
x− μ2

m1

2σ2
m2

) for x ∈ [0..1] (3)

For monophasic temporal kernels T1 these values are set to [wm1 = 1.95
μm1 = 0.55, σm1 = 0.10, wm2 = 0.23, μm1 = 0.55, σm2 = 0.16. For biphasic
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temporal kernels T2 the values are set to wm1 = 0.83 μm1 = 0.44, σm1 = 0.12,
wm2 = −0.34, μm1 = 0.63, σm2 = 0.21. The resulting spatio-temporal filter is
then generated by F = G ·T1+G ·T2 and applied to incoming events. Due to the
sparse representation, a full convolution with the filter is not necessary. Weights
are only calculated for the events in the spatial and temporal neighborhood of
the newest event, thus saving computational power.

For each application of a spatio-temporal filter the model generates a confi-
dence for the occurrence of this motion direction and speed Cs,θ. To maintain
a single motion hypothesis, we generate a weighted sum of the fundamental N
directions using the estimated confidence value:(

u
v

)
=

N∑
s=1

2π∑
θ=0

Cs,θ ·
(

cos θ
−sin θ

)
(4)

Flow Features for Action Recognition. To demonstrate the usability of
event-based optic flow features for classification purposes, we perform a small
classification scenario. We train classifiers on features extracted from optic flow
for the classification of sequences of articulated motions. Our feature extrac-
tion roughly follows concepts proposed by [Escobar and Kornprobst, 2012]. Op-
tic flow is estimated using the methods developed in this paper, directly resulting
in hypotheses for 16 motion directions, which are binned into 8 directions for
classification. From this input, 12 spatial and 4 temporal regions of interest
(ROIs) are selected and flow is summed in these regions to calculate motion
available motion energy. We perform a principal component analysis (PCA) on
the feature vectors to identify the dominant dimensions of the distribution. En-
ergy responses are projected onto the first 10 eigenvectors for a more compact
representation. We trained four support vector machines (SVM), one for each
class using 32 training samples.
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Fig. 3. Left: Four actions used for classification demo: Butterfly, Jumpfrog, JumpJack
and Harvester. Right: Schematic of feature extraction. For the classification we extract
384 feature values from the sequences. Eight directional parts are extracted from the
motion estimation stage. These are subsequently split into 12 spatial and 4 temporal
ROIs, before a summation is performed.



Bio-Inspired Optic Flow from Event-Based Neuromorphic Sensor Input 177

4 Results

We recorded a set of different stimuli to test the performance of our model.
Probes were mounted on simple mechanical devices that produced linear or
rotational motion. The DVS sensor was mounted on a tripod and the sensor
surface aligned parallel and centered to the motion plane. The recorded event
streams were caused by translational and rotational motion as well as articulated
motion. The sensor as well as our algorithm does not process complete frames
but individual sensor events. Individual events cannot sensibly be visualized in
printed form. For this reason we integrate estimated motion events, however, over
a short period of time. All results presented here used an integration window of
T = 50 · 10−3s. T therefore lies within a range of commonly used integration
times (per frame) used in video technologies which is long enough to ensure that
also tiny structures produce enough DVS events for a rich flow visualization.
Where adequate we calculated an error measure for our results as follows: With
the type of motion known, we synthesize a ground truth vector field of a linear
or rotational motion for each sequence. The estimated error is the angular error
between 0◦and 180◦ between the synthetic vector field and the estimated motion
direction at this position.

Motion events are estimated whenever a new event is processed in our model,
in contrast to frame-based approaches where all pixels are processed for one syn-
chronised point in time. For illustration purposes, our model offers the freedom
to decide how often a visual output should be generated, ranging from outputs
visualising every motion event to an output integrating the events of a complete
sequence.

Translatory Motion. We selected three stimuli for tests with a translatory
motion, which we label in italic letters for future identification: (i) a black bar
that moved orthogonal to its longer side, (ii) a tilted black bar that was rotated
45◦ relative to its movement direction and (iii) a natural photography. The move-
ment speed was approximately 170mm · sec−1. Ground truth of this sequence is
a constant motion to the right. Results of our tests for translatory motion are
displayed in Fig. 4, Top. In the figure, we displayed a sketch of the stimulus, the
events used for the current motion estimation, ground truth and errors, with the
large image depicting the estimated motion vectors.

In orthogonal, the results correctly show motion vectors to the right. In the
tilted case the results shows that our mechanism suffers from the aperture prob-
lem because it processes motion events only in a local surround. Motion is only
estimated in a direction orthogonal to the contrast orientation in the absence
of intrinsically two-dimensional features. However, our algorithm produces cor-
rect motion vectors at the ends of the bar. The movement of photography shows
correct motion estimations but also spurious ones, which are caused by locally
tilted contrasts and aliasing problems due to the low resolution of the sensor.
The error measure reveals that many estimations are still correct.

Rotational Motion. The second test set was used to acquire events caused by
rotational motion. The stimuli were rotated with approx. 85deg · sec−1 using a
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orthogonal tilted photography

cross plaid mansion

Fig. 4. Processing results for six example stimuli. Each image contains the results of
flow detection (large image), a stimulus sketch, events used for the estimation, ground
truth and illustration of error.(small images, from top left to bottom right). Top: Three
test cases for translational motion: A bar moving orthogonal to its orientation, a tilted
bar and a photographic image. Bottom: Rotational motion for three test cases: cross,
plaid andmansion. Angular errors were estimated using an artificially generated ground
truth in all cases.
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jumping jackegomotionstart

Fig. 5. Test cases for complex motion. Left: Correct motion direction is estimated
at line endings and normal flow at lines in a complex translational pattern. Middle
Results for ego-motion. With increased distance to the center, flow quality increases.
Right: Snippets from a sequence containing articulated motion.

DC motor with adjustable speed. The image plane of the sensor was parallel
to the stimulus in a distance of 150mm. We selected two artificial stimuli, a
rotating plaid and a rotating cross as well as a natural photography of amansion.
We also generated a rotational vector field as ground truth. The results for
these patterns are more complex and desire more explanations. The arms of
the rotating cross move orthogonally to their orientation, which is depicted in
the figure. The structures of the moving plaid are excentric and thus motion
estimation locally again suffers from the aperture problem at some positions.
The rotating photography of the mansion is challenging for our algorithm due
to the high rotational speed and the large number of produced visual events.
Our model nevertheless achieves to estimate a number of correct estimates.
Complex Motion Sequences. The first sequence highlights the ability of our
algorithm to estimate to real flow for local image features. We generate sequences
of a moving star. At the line endings, the correct direction of optic flow is esti-
mated while normal flow is estimated along the boundaries.

For the second sequence, the event sensor was mounted on a mobile platform
and pushed across a hallway to imitate egomotion. Forward motion with parallel
optical axis causes an expansion field of optic flow, with the focus of expansion
centered in the image, see Fig. 5. Our results show that our model can estimate
such an expansion field reliably. However, the low spatial resolution of the sensor
seems inadequate to differentiate small expanding features close to the focus
of expansion. Here, local transitions of width cause spurious local expansion
patterns. To overcome these challenges we integrated motion events over the
complete sequence length. We applied a 3× 3 median filter on the results of this
sequence.
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The third sequence depicts a complex motion pattern of multiple speeds and
directions. Here, a person is performing a jumping jack action, consisting of huge
and fast movements of arms and legs. This causes a complex motion pattern with
multiple directions and speeds.
Classification Results. To round up our line of arguments, we show how we
use the optic flow output for classification of simple actions. We picked 64 record-
ings of people performing four different actions using the event based sensor and
used 32 of them for training. Tests were performed on the remaining sequences.
When none or more than one classifier voted for its class, we assigned one class
randomly. The evaluation was repeated 50 times. Table 1 shows the classifica-
tion results we achieved with our approach. We emphasize that even with this
simple approach, the classes are nicely separated. We want to highlight that our
main contribution is the biologically motivated estimation of optic flow, and the
classification is just a case study to demonstrate the richness of the extracted
features.

Table 1. Confusion matrix for a simple action recognition experiment using the es-
timated optic flow algorithm. We trained four classifiers on four different actions to
demonstrate the feasibility of the approach.

Detection

↓Signal butterfly jumpfrog jumpjack harvester

butterfly Action 100.0% 0.0% 0.0% 0.0%

jumpfrog Action 5.5% 73.0% 6.75% 14.75%

jumpjack Action 7.0% 0.0% 93.0% 12.5%

harvester Action 0.0% 0.0% 0.0% 100.0%

5 Discussion

In this work we presented a biologically inspired mechanism to estimate op-
tic flow using an event-based neuromorphic vision sensor. Our model imple-
ments mechanisms of motion detection reminiscent of early stages of processing
in visual cortex. Initial motion hypotheses are estimated by detectors tuned
to a set of directions. Their responses are integrated at a subsequent level to
yield a tuning in the spatio-temporal domain that allows estimation of mo-
tion in different directions with increased robustness. Many approaches exist
for detecting and integrating motion, among those are biologically motivated
[Hassenstein and Reichard, 1956, Adelson and Bergen, 1985] and other algori-
thms of error minimisation [Lucas and Kanade, 1981, Brox et al., 2004]. Our
model differs from other approaches in a number of ways. First, we make use
of the event-based representation of visual input instead of processing input in
a frame-based manner. This allows our model to generate responses with short
latency to the input, while other frame-based models process input at fixed
intervals given by the frame rate. In time-critical applications like robotics or
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mechatronics, immediate availability of flow signals clearly is beneficial. Second,
our model profits from the sparse representation that comes with an event-based
approach and only processes flow where visual changes occur in the image, leav-
ing those regions unconsidered in the first place where no optic flow is expected.
Third, our model incorporates detectors that allow a temporal tuning function
with an increased temporal resolution compared to a frame-based approach and
thus allows to model the temporal characteristics with increased precision.

Our model was evaluated with a series of stimuli and exhibited the desired
behaviour. The model robustly estimated visual motion in a series of test cases
with an identical parameter set. Along elongated visual features, the model esti-
mates normal flow due to the aperture problem, but at line endings it generates
the correct motion direction under certain conditions. These correct local motion
estimates have earlier been used to solve the aperture problem in a model of mo-
tion integration [Bayerl and Neumann, 2004] and the mechanisms used therein
can be used for our model as well. However, the limited spatial resolution of
the sensor handicaps the estimation of accurate optic flow in conditions where
shapes are sampled having small and many visual features and complex motions.
In many cases, sampling artefacts generate spurious estimations. This problem
is however not a conceptual one of our approach and will most likely be solved
with future versions of the vision sensor. Optic flow can be used to aquire an
enriched feature set because it provides the trace of temporal correspondences
of image features. It thus serves well for the extraction of more meaningful fea-
tures from a scene containing motion and has been used in many domains like
action recognition or navigational problems. With the event based processing
approach, our models builds the basis for more sophisticated processing models
where even the early processing stages have a high level of biologically plausi-
bility. We also briefly demonstrated the power of motion feature extraction for
classifying actions from articulated motions. The classification test case should
be seen as demonstration and feasibility study, a serious evaluation would un-
doubtly contain more than 64 samples in four classes.
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Abstract. Transposons are segments of DNA that are capable of mov-
ing from one location to another within the genome of a cell. Under-
standing transposon insertion-site preferences is critically important in
functional genomics and gene therapy studies. It has been found that
the deformability property of the local DNA structure of the integration
sites, called Vstep, is of significant importance in the target-site selection
process. We considered the Vstep profiles of insertion sites and developed
predictors based on Artificial Neural Networks (ANN) and Support Vec-
tor Machines (SVM), and trained them with a Sleeping Beauty transpo-
son dataset. We found that both ANN and SVM predictors are excellent
in finding the most preferred regions. However, the SVM predictor out-
performs the ANN predictor in recognizing preferred sites, in general.

1 Introduction

Transposons, or jumping genes [1], are short mobile DNA sequences that can
insert themselves into the genome of the cell (i.e., host genome) and replicate.
They are used in transferring genes of interest into the genome of the target
cell and have applications in discovering function of genes (especially those that
cause cancer) as well as in gene therapy (e.g., therapy of genetic disorders in
humans). However, the applicability of a transposon for these uses depend highly
on the target-site selection properties, which are not well understood. Predicting
hotspots, or most preferred insertion sites of transposons helps in determining
the risks of adverse effects that a transposon insertion may have.

There may be many factors that affect preferences in transposon integration
[2], but among the studied factors the local DNA structure has a more effective
role in the target-site selection process, as Liu et al. [3] showed for the Sleeping
Beauty transposon (SB). Liu et al. found that there is a relationship between the
natural deformability property of target sites, which is described by a parameter
called Vstep [4], and the mechanism of the target-site selection of the SB transpo-
son. The composite parameter Vstep represents the physical relationships of any
two planar base pairs in term of their relative displacements and angular orien-
tation in the 3D-structure of DNA [2]. It is a measure of dimer deformability:
the higher the Vstep value, the more deformable the dimer step is, where steps

N. El Gayar et al. (Eds.): ANNPR 2014, LNAI 8774, pp. 183–192, 2014.
c© Springer International Publishing Switzerland 2014
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Table 1. Vstep values for dimer steps

dimer AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

Vstep 2.9 2.3 2.1 1.6 9.8 6.1 12.1 2.1 4.5 4.0 6.1 2.3 6.3 4.5 9.8 2.9

refer to dinucleotides along a DNA sequence. Table 1 shows the Vstep values for
all possible dimer steps. For the details on Vstep calculations, see [3,4].

Based on the work done by Liu et al., Geurts et al. [5] analyzed integration-
site preferences of SB, piggyBac and Drosophila P-element transposons to detect
Vstep patterns for preferred sites. However, they did not succeed in finding con-
sistent Vstep pattern for all of the studied transposons. The main drawback of
Geurts et al.’s method, in our opinion, is in the way of developing the prefer-
ence rules, which is more ad-hoc than structured: first, they find the preferred
sites based on observations; then, they try to infer the general form of Vstep pat-
terns of a transposon preferred sites by visually comparing the Vstep diagrams of
observed integration sites. To resolve this weakness, we used machine learning
methods for predicting transposon insertion sites.

We considered the insertion site prediction problem as a classification problem,
and constructed two types of predictors: one based on Support Vector Machines
(SVMs) and the other based on Artificial Neural Networks (ANNs). Both SVMs
and ANNs have applications in classification and regression problems, and have
been widely used in bioinformatics [6,7]. We employed these predictors for iden-
tifying preferred regions (100 bp sequences) in a host genome based on the Vstep

profile of the individual insertion sites (12 bp sequences). To evaluate each pre-
dictor, we used a five-fold cross-validation on a SB transposon dataset. Finally,
we compared the results of SVM and ANN predictors to each other as well as
to Geurts et al.’s results.

2 Materials and Methods

2.1 Dataset

We used an SB transposon integration dataset for training and testing our pre-
dictors from the Hackett lab [8]. The main preference of the SB transposon is TA
dinucleotides sites in a host genome. We possessed a 7758 bp plasmid pFV/Luc
sequence, the actual SB transposon TA integration sites, and the number of hits
per integration site in the host sequence. Therefore, our dataset consisted of all
TA sites of the 7758 bp plasmid pFV/Luc sequence along with the insertion
frequencies. In the 7758 bp plasmid pFV/Luc sequence, there were 489 TA sites
with 193 total number of insertions in 97 sites. Similar to Geurts et al. [5], we
used the Vstep profile of a window of 12 bp, including 5 bp flanking each side
of a target TA dinucleotide. A Vstep vector has 11 elements, as there are 11
consecutive dinucleotides in a 12 bp subsequence.

We normalized the Vstep values and scaled them to the range [0, 1] using the
min-max normalization technique. Also, we normalized the integration frequen-
cies to the range [0, 1], since their actual values were very small (less than 0.05).
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2.2 Performance Measures

For each predictor, we measured sensitivity (SN), specificity (SP), and the overall
accuracy (ACC). They are defined as:

SN =
TP

TP + FN
,

SP =
TN

TN + FP
,

ACC =
TP + TN

TP + FP + TN + FN
,

where TP , FN , TN , and FP refer to the number of true positives, false nega-
tives, true negatives, and false positives, respectively.

To evaluate the strength of a classification, we also generated a Receiver Oper-
ating Characteristic (ROC) curve and computed the area under the ROC curve
(AUC). An AUC close to 1 indicates a strong test, and an AUC close to 0.5
represents a weak test.

2.3 Support Vector Machine

We used an SVM [9] with a Gaussian Radial Basis Function (RBF): K(xi,xj) =

e−γ(xi−xj)
2

. SVM is used in its basic form for binary classification, and a version
of SVM for function estimation from a set of training data is Support Vector Re-
gression (SVR) [10]. In an epsilon-SVR model the margin of error tolerance, i.e.,
ε, should be set as a parameter. Our designing model for predicting preferences
of transposon insertion sites has two phases. In the first phase, we construct the
best binary SVM for predicting preferred individual insertion sites, and in the
second phase, we construct an SVR with the same architecture as the best SVM
resulting from the first phase. This SVR predicts the insertion distribution along
the sequence bins (i.e., regions).

To implement our SVM predictior, we used the SVM package LIBSVM [11]
in MATLAB environment. In following, we illustrate the SVM architecture for
finding preferred individual sites and regions, respectively.

Preferred Individual Sites. In this case, the SVM-based tool predicts if a
given 12 bp insertion site is a preferred SB transposon integration site or not.
The input data for the SVM is the Vstep vector for an insertion site of 12 bp, and
the output is the label of the class, i.e., +1 or -1 corresponding to a preferred
or not-preferred insertion site. We used a binary SVM with a Gaussian kernel
for classification. In this architecture, there are two parameters: the soft margin
parameter C and the kernel parameter γ. We applied a grid-search [12] on C and
γ for selecting parameters. Using this method, we tried various pairs of (C, γ),
within the range 1 ≤ log2 C ≤ 5 and −3 ≤ log2 γ ≤ 1, and chose the one with the
best 5-fold cross-validation accuracy which we measured by the area under the
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ROC curve. We also set the parameter C for both positive and negative classes
by different weights due to having unbalanced data. The final Gaussian-kernel
SVM has the following configuration: the best parameters (C, γ) = (2.0, 0.25),
and weights for C in positive and negative classes (w+1, w−1) = (20, 1).

To find the best results, we also tried different definitions of preferred insertion
sites (i.e., positive class) in terms of the number of hits (i.e., the integration
frequency). The best results of SVM were obtained when we assumed a preferred
insertion site as a site with more than two integrations.

Preferred Regions. Assuming that we are given the Vstep scores of a sequence,
which is divided into bins of size 100 bp, the SVM predicts the most preferred
SB transposon insertion bins (i.e., it predicts the insertion distribution along the
sequence bins). In this case, we took advantage of support vector regression. We
constructed an epsilon-SVR, with a Gaussian kernel and the same parameters
we had found in the binary SVM, to model the relationship between the Vstep

vectors and integration frequencies of insertion sites. We also set the tolerance
criterion, ε, to 0.001. Then, we ran a 5-fold cross validation over all insertion
sites, and obtained the predicted frequency for each insertion site. Afterward,
we computed the summation of frequencies for each bin, scaled them to the
range [0,1], and obtained the distribution of predicted integration frequencies.

2.4 Radial Basis Function Neural Network

We took advantage of a three-layer RBF neural network [13] for prediction.
RBF networks are suited for pattern recognition problems such as this research
wherein the pattern dimension is sufficiently small. Similar to the SVM solution,
our designing model for predicting preferences of transposon insertion sites has
two phases. In the first phase, we construct the best RBF network for predicting
preferred individual insertion sites, and in the second phase, we obtain the in-
sertion distribution along the sequence bins based on the best RBF architecture
resulting from the first phase.

We constructed our ANN predictor using Open Desire package [14]. In fol-
lowing, we illustrate the ANN architecture for finding preferred individual sites
and regions, respectively.

Preferred Individual Sites. In this case, our RBF neural network predicts
if a given 12 bp insertion site is a preferred SB transposon insertion site or
not. The input data for the ANN is the Vstep vector for an insertion site of
12 bp, and the output is the insertion frequency which is converted to a binary
value 1/0 corresponding to a preferred or not-preferred site. For this purpose,
we constructed a set of RBF networks with different configurations and applied
a 5-fold cross validation over each to find the best neural network. Finding the
best RBF neural network requires searching for the optimal number of hidden
units, as well as the parameter σ (,or γ−0.5) in the radial basis function and the
threshold values. We used a destructive method in design. We started with a
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network with a maximal number of hidden units and connections, and gradually
deleted hidden units to reach the optimal network. Meanwhile, we tried to find
the best σ by a random selection for each network. We also benefited from ROC
curve analysis to find a threshold or cut-off for generating binary outputs. The
best RBF network has 262 hidden units and parameter σ = 2.75.

Similar to the SVM solution, we tried different definitions of preferred inser-
tion sites in terms of the number of hits. The best ANN was obtained from the
situation in which we defined a preferred insertion site as a site with more than
two integrations.

Preferred Regions. Having the Vstep scores of a sequence, which is divided into
100 bp bins, the ANN predicts the insertion distribution along the sequence bins
and recognizes the most preferred SB transposon insertion regions. Here, we used
the same constructed RBF neural network for individual sites, and ran a 5-fold
cross validation over all insertion sites, but we did not apply any threshold on
output frequencies. Instead, we computed the summation of frequencies for each
bin, scaled them to the range [0,1], and obtained the distribution of predicted
integration frequencies.

3 Results

3.1 SVM Results

In Individual Sites. Figure 1 shows the ROC curve for the final SVM predic-
tor. The cut-off point recognizes the best binary SVM which has 83% sensitivity
and 72% specificity. The area under the curve is 0.85, which indicates that the
SVM predictor has a good performance in finding preferred individual insertion
sites.

In Regions. Figure 3(a) shows a plot for comparing distribution of observed
and predicted insertion sites in the 7758 bp pFV/Luc sequence. The sequence is
divided into 77 bins of 100 bp. The plot illustrates an apparent overlap between
the two distributions. For example, it shows that the SVM could predict the four
most preferred bins (bins #16, #17, #47, and #69) successfully. Therefore, if
our concern is to predict the preferred regions in the sequence, then the epsilon-
SVR will produce better results compared to the binary SVM for individual
sites. Using ROC curve analysis, we found that the epsilon-SVR predictor has
100% SN, 94% SP, and AUC=0.97 in recognizing the most preferred insertion
regions. We considered the most preferred insertion regions in our observed data
as the bins in which the number of insertions is more than three (i.e., bins in
which the scaled insertion frequency is more than 0.4). Also, we found that the
epsilon-SVR predictor has 85% SN, 90% SP, and AUC=0.89 in recognizing the
preferred insertion regions, which we considered them in our observed data as
the bins in which the number of insertions is more than two (i.e., bins in which
the scaled insertion frequency is more than 0.3). The AUC values indicate an
excellent discriminatory power of the SVM in finding preferred insertion regions.



188 M. Ayat and M. Domaratzki

Fig. 1. ROC curve for the best Gaus-
sian kernel SVM in individual sites,
AUC=0.85

Fig. 2. ROC curve for the best RBF
network in individual sites, AUC=0.71

3.2 ANN Results

In Individual Sites. Figure 2 shows the generated ROC curve for the best
network. It revealed 78% SN and 71% SP for the cut-off point. The AUC is 0.71,
which shows the classifier has a fairly good discriminatory power.

In Regions. Figure 3(b) shows a plot for comparing distribution of observed
and predicted insertion sites in the 7758 bp pFV/Luc sequence. The sequence is
divided into 77 bins of size 100 bp. The plot illustrates an apparent overlap be-
tween the two distributions. For example, it shows that the neural network could
predict the four most preferred bins (bins #16, #17, #47, and #69) success-
fully. Therefore, if our concern is to predict the preferred regions in the sequence,
then our RBF neural network will produce better results compared to predict-
ing individual sites. Using ROC curve analysis, we found that the RBF network
predictor has 100% SN, 97% SP, and AUC=0.98 in recognizing the most pre-
ferred insertion regions (i.e., bins in which the scaled insertion frequency is more
than 0.4). Also, we found that the ANN predictor has 100% SN, 72% SP, and
AUC=0.90 in recognizing the preferred insertion regions (i.e., bins in which the
scaled insertion frequency is more than 0.3). Both AUCs indicate an excellent
discriminatory power of the network in finding preferred insertion regions.

4 Discussion

4.1 SVM versus ANN

We have summarized the performance measures of the ANN- and SVM-based
predictors for finding preferred individuals sites and regions in two different
tables. Table 2 contains the 5-fold cross-validation result of the predictors in
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(a) SVM-predicted insertion frequencies

(b) ANN-predicted insertion frequencies

Fig. 3. Distribution of observed versus distribution of SVM and ANN-predicted in-
sertion frequencies in the 7758 bp plasmid pFV/Luc. The sequence is divided into 77
bins of size 100 bp. Dashed lines show threshold values 0.3 and 0.4, used in defining
preferred and most preferred insertion bins in observed data, respectively.

individual sits. According to these results, the SVM-based predictor outperforms
the ANN-based predictor in identifying preferred individual insertion sites due
to having higher AUC, SN and SP. Table 3 contains the 5-fold cross-validation
result of the predictors in identifying preferred 100 bp insertion regions. Based on
these results, both predictors are excellent in recognizing most preferred insertion
regions (similar values for AUC, SN, and SP), but the SVM performs better in
identifying preferred regions (similar AUCs, but higher ACC).

Also, it is interesting that comparing the results of either of ANN or SVM
predictor in individual sites and regions shows that both ANN and SVM predic-
tors performs better in regions than individual sites. An explanation for this fact
might be that the amount of preferability of an insertion site not only depends
on the local sequence itself, but also depends on the region that encompasses
the insertion site. Therefore, it is worth considering larger sequences of insertion
sites than 12 bp as inputs for the ANN and SVM predictors, or adding some
region-related features (e.g., the number of TA sites in a region) to the current
models in the future.

4.2 Comparison with Related Work

Geurts et al. [5] developed rules for describing the insertion-site preferences of the
SB transposon. They did not report any SN, SP or ACC, neither for individual
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Table 2. ANN versus SVM predictor in identifying preferred individual sites

Predictor SN(%) SP(%) ACC(%) AUC

ANN 78 71 72 0.71
SVM 83 72 95 0.85

Table 3. ANN versus SVM predictor in identifying preferred 100 bp regions

Predictor Prediction SN(%) SP(%) ACC(%) AUC

ANN most preferred 100 97 96 0.98
preferred 100 72 75 0.90

SVM most preferred 100 94 94 0.97
preferred 85 90 89 0.89

sites nor for regions, as they had not made any predictor based on their rules.
These rules categorizes each 12 bp TA site into one of the three classes - basal,
semi-preferred and preferred - based on the graphical pattern of its Vstep profile
(e.g., if a Vstep profile of a site has 4 peaks in its diagram, it will be categorized
to the preferred class). To demonstrate the successfulness of their rules (for SB
transposon) in finding preferred the 7758 bp plasmid pFV/Luc insertion regions,
Geurts et al. classified all the TA sites based on their rules. Then, according to
the ratio of the actual number of insertions in each class to the number of TA
sites of that class in the sequence, they provided a formula for calculating the
total Vstep score of a bin of given length in the sequence. Next, they divided the
sequence into 100 bp bins, produced the distribution of total Vstep scores in bins,
and compared the result with the distribution of observed insertion sites. In this
way, Geurts et al. succeeded to identify the three most preferred bins (bins #17,
#47, and #69) in the sequence.

To be able to compare our results with Geurts et al.’s, we used the distribution
of total Vstep scores in the pFV/Luc sequence, and measured the classification
power of Geurts et al.’s rules. Consequently, similar to the SVM predictor in
regions, we benefited from ROC curve analysis and found that the rules have
100% SN, 89% SP, and AUC=0.97 in finding most preferred bins, and 85% SN,
91% SP and AUC=0.91 in finding preferred bins.

Based on these results, we conclude that:

1. Both SVM and ANN predictors identify the four most preferred bins, while
Geurts et al.’s rules recognized the three tops. Due to the higher SP, our
predictors perform better in recognizing most preferred regions, compared
to Geurts et al.’s rules; and

2. The SVM predictor performs as well as Geurts et al.’s rules in identifying
preferred regions.

5 Conclusion

In this paper, we demonstrated how machine learning methods such as SVMs
and ANNs can be used for predicting insertion sites of transposons based on
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the deformability property of the local DNA structure of the integration sites,
or their Vstep profiles. We constructed two predictors based on ANN and SVM
methods for identifying insertion-site preferences of SB transposon in a genome,
knowing that the main preference of SB trasposon is TA sites. Our model, either
for SVM or ANN predictor, had two phases for predicting. In the first phase,
we constructed a binary classifier for identifying preferred individual insertion
sites (12 bp sites), and in the second phase, we constructed a predictor with
the same architecture as the best classifier resulting from the first phase, but
this time for regression purposes, or in other words, for predicting the insertion
distribution along the sequence bins (100 bp regions). Using five-fold cross vali-
dation, we performed the parameter optimization process and evaluation of our
SB predictors. However, measuring the performance of the final predictors by
testing other host genomes remains as the next step.

We also compared our approach to Geurts et al.’s rule-based method. Our
results show that both ANN and SVM predictors outperform Geurts et al.’s
heuristic rules in finding the most SB preferred regions. Also, the SVM pre-
dictor outperforms the ANN predictor and is as good as Geurts et al.’s rules
in recognizing preferred sites in general. However, the main preference of ma-
chine learning solutions such as ANNs and SVMs over Geurts et al.’s rule-based
method is that these predictors are able to extract the rules, or the relations
between inputs and outputs, themselves. It is for this reason Geurts et al.’s
ad-hoc rules were not successful in identifying preferred insertion sites of the
other transposons in general. Moreover, ANN and SVM predictors are scalable,
so some other factors that may influence the insertion-site selection process can
easily be modeled in them as new features. Therefore, it is worth constructing
other transposon-specific predictors based on these methods as a future work.
Such predictors can help direct experiments by helping researchers focus on po-
tential regions of high likelihood of insertion before beginning experiments.
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Abstract. To date, identifying cracks in bridges and determining bridge condi-
tions primarily involve manual labour. Bridge inspection by human experts has 
some drawbacks such as the inability to physically examine all parts of the 
bridge, sole dependency on the expert knowledge of the bridge inspector. 
Moreover it requires proper training of the human resource and overall it is not 
cost effective. This article proposes an automatic bridge inspection approach 
exploiting wavelet-based image features along with Support Vector Machines 
for automatic detection of cracks in bridge images. A two-stage approach is fol-
lowed, where in the first stage a decision is made as whether an image should 
undergo a pre-processing step (depending on image characteristics), and later in 
the second stage, wavelet features are extracted from the image using a sliding 
window-based technique. We obtained an overall accuracy of 92.11% while 
conducting experiments even on noisy and complex bridge images. 

Keywords: Crack Detection, Wavelet-based Crack Detection, Automatic 
Bridge Inspection, SVMs. 

1 Introduction 

Physically investigating bridge conditions sometimes becomes unfeasible due to sev-
eral factors such as the physical surroundings of the bridge, lack of expert knowledge 
and human resources. Bridges for the purpose of for maintenance and repair requires 
timely decision-making. Many bridge authorities consult Bridge Management Sys-
tems (BMSs) to manage their routine inspection information and to decide on conse-
quent maintenance services. With the advent of sophisticated devices and powerful 
computers, an effort to automatically conduct bridge inspection has been noted in the 
recent past. Unfortunately, the proposed methods were not fully capable of addressing 
the challenges in automatic crack detection. The main difficulties encountered in au-
tomatic crack detection methods are variable lighting conditions, random cam-
era/view angles, and random resolution of bridge images. Moreover, we found that 
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automatic crack detection gets even harder where the background texture randomly 
changes and hence segmentation of background and foreground elements becomes 
very challenging. This article proposes a non-trivial method which addresses the 
above mentioned challenges efficiently. It relies on a two-stage approach. At first, 
upon initially analyzing the characteristics of the pixel values in ‘R’ , ‘G’ and ‘B’ 
channels, the image is identified as either a ‘complex image’ or a ‘simple image’. If 
the image is identified as a ‘complex image’ then we need to execute a pre-processing 
step, otherwise the image is directly processed for feature extraction. Using a non-
overlapping sliding window, texture analysis–based features are extracted from the 
image region beneath the sliding window. Later those features are passed to a Support 
Vector Machine (SVM) classifier to decide whether the region beneath the sliding 
window contains a crack or not. 

The rest of the article is organized as follows. In Section 2, we discuss related pub-
lished work, and in Section 3 we describe methodology including the data acquisition 
process and experimental framework. In Sections 4, the pre-processing step is dis-
cussed. Feature extraction and classification approaches are discussed in Section 5.  In 
Section 6 we discuss our experimental results, and finally Section 7 puts forward the 
conclusions of our paper.  

2 Related Work 

This section describes some of the existing works in automated crack detection using 
image processing and pattern recognition techniques. Lee et al. [1] proposed an algo-
rithm for automatic detection of cracks. Their proposed method consisted of crack 
detection and crack tracing using the difference between the intensity of a crack and 
its background. Ehrig et al. [2] introduced three different crack detection algorithms 
namely template matching, sheet filtering based on Hessian eigenvalues, and percola-
tion based on the phenomenon of liquid permeation. Their study focused on determin-
ing the suitability of each for crack detection. Mohajeri and Manning [5] proposed a 
method to identify cracks in concrete using directional filter. They stated that the 
crack is longitudinal if there is a high concentration of object pixels in a narrow inter-
val of x (transverse) coordinates, and it is transverse if there is a high number of  
object pixels in a narrow interval of y (longitudinal) coordinates. Tong et al. [6] de-
veloped a new method of crack image processing using a pre-processing step which 
separates crack pixels from the background of the image. Abdel-Qader et al. [3] com-
pared edge-detection algorithms in the context of bridge crack detection using a thre-
shold based approach.  Jahanshahi and Masri [4] proposed a morphological operations 
and Otsu’s thresholding based method for segmentation. The purpose of the segmen-
tation process was to reduce unnecessary data in the original image. The appropriate 
structural element size (in pixels)  for the morphological operation was set based on 
camera focal length, the distance from the object to the camera, camera sensor resolu-
tion and size, as well as crack thickness. Oh et al. [8] developed an automatic system 
for bridge inspection that used median filter in order to remove noise for effective 
crack detection. Later, morphological operations were applied to determine the  
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connections between crack segments. Lee et al. [9] developed a bridge inspection 
system that consisted of a robot transportation vehicle, a hydraulic transportation 
boom and a remote-controlled robot. The remote-controlled robot was used to acquire 
images of bridge slabs and girders. These images were then sent to an embedded 
computer for crack detection. Miyamoto et al. [10] developed an automatic crack 
recognition system to detect crack width on concrete surfaces, where the system could 
recognize the location and width of cracks. The crack width was computed using the 
information of difference in brightness in the cracked and non-cracked areas. Flash 
thermography was used for detecting cracks on concrete surfaces by Sham et al. [11].  
In this article we perform a comparative analysis between two different forms of tex-
ture analysis features for the purpose of bridge crack detection.  

3 Methodology  

3.1 Image Acquisition and Dataset Details  

We used 50 different images of bridges with a resolution of 5616 × 3744 (21 mega-
pixels), all with  random lighting conditions. Based on certain image characteristics 
those images can be categorized distinctly into two types- “Normal” and “Complex”. 
In “Normal” images we noticed a near consistent background all along the image with 
a high contrast between the foreground and the background. Whereas in “Complex” 
images we noted a rapid change in intensities in both foreground and background, or 
the background was fused with the foreground. We considered 1369 “window” re-
gions (image patches/sub-images) of type ‘crack’ and ‘non-crack’ from those images 
and our experiment was done on these 1369 sub-images. 

3.2 Method Overview 

At first using a heuristic we automatically try to determine whether an image is of 
type “normal” or “complex”. For “normal” images no further pre-processing is re-
quired but for “complex” images we had to perform certain pre-processing steps  
before features were extracted.  In order to analyse the bridge image locally, we dep-
loyed a sliding window strategy. For better computational efficiency, a non-
overlapping 30x40 pixel window is glided over the entire image and from the region 
beneath each window (we call them ‘window regions’)  wavelet (and also Gabor fil-
ter) features were extracted. Such feature from each window region is classified into a 
‘crack’ or ‘non-crack’ region by an SVM classifier. The size of the sliding window is 
set after an empirical analysis of the images. It is noted that the cracks in the images 
were approximately 25 pixels in width, so a ‘crack’ region is supposed to contain the 
crack with the background part, whereas the ‘non-crack’ region should have the back-
ground element only. 
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3.3 Challenges with “Complex” Image and Their Characteristics 

During initial experiments we noticed that our features were able to perform well 
when the images consisted of a near consistent background all along the image with a 
high contrast between the foreground and the background, which we term as ‘normal’ 
images. However, our features did not perform well with ‘complex’ images, which 
had a rapid change in intensities in both foreground and background, or when the 
images were dull in nature (where the background was fused with the foreground). 
We noticed that for the ‘normal’ images, the values of the ‘R’, ‘G’ and ‘B’ channels 
for a pixel were very close to each other (low standard deviation for all 3 values) and 
the range of those values was quite extensive. However for ‘complex’ images, the 
values of the ‘R’, ‘G’ and ‘B’ channels for a pixel were quite different to each other 
(high standard deviation for all 3 values) and the range of those values was quite nar-
row. Using this information (heuristic) we can easily cluster all input images broadly 
into two groups - ‘complex’ and ‘normal’. Example of a ‘complex’ and a ‘normal’ 
bridge image are shown in Figure 1. 
 

                                                        
(a)                        (b) 

Fig. 1. (a) A ‘complex’ bridge image (b) A ‘normal’ bridge image  

3.4 Motivation Behind Pre-processing Step 

After an image is categorized as a ‘complex’ image, we needed to further process it so 
that the crack mark became more prominent with respect to its surroundings. After 
undergoing a series of colour space conversions and filtering of values in various 
colour space channels, we could obtain an equivalent grey scale image of the complex 
image.  Further on we noticed that if we could process this grey scale equivalent im-
age of the ‘complex’ images by a contrast stretching algorithm then the same features 
becomes effective. So we took a two stage approach to deal with this process. In the 
first stage using our heuristics we decided whether an image is of type ‘complex’ or 
type ‘normal’. If ‘complex’ then we process the whole image using our pre-
processing methods and then forward it to the feature extraction process. If an image 
is ‘normal’ then we do not process it with any pre-processing method and directly 
start extracting features from it. Since at the current time we could not acquire a large 
number of bridge images, instead of dividing our entire corpus into training and test 
subsets we implemented a five-fold cross-validation scheme. The features extracted 
from all ‘crack’ and ‘non-crack’ windows were put together and then we divided all 
feature vectors into five sets; we used 4 sets for training and the remaining one for 
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testing. The process is repeated 4 more times so that each of the remaining 4 sets in 
the last training set is used for testing. We also noticed that if we implemented a five-
fold cross-validation scheme involving feature vectors from both ‘complex’ and 
‘normal’ images simultaneously then the accuracy diminishes. We investigated fur-
ther and found that mostly feature vectors from ‘complex’ images were being incor-
rectly classified. Even through tuning values of the SVM parameters the situation did 
not change. Only after removing all feature vectors that belonged to ‘complex’ im-
ages, the accuracy improved. However, upon implementing a five-fold cross-
validation scheme for feature vectors obtained exclusively from ‘complex’ images, 
we obtained almost similar accuracy as we achieved on ‘normal’ images. It is worth 
mentioning here that the best optimized parameters for feature vectors from two dif-
ferent types of images were quite different. 

4 Pre-processing 

We executed our pre-processing step on only those images that in our first stage were 
identified as ‘complex’ images. The images were in RGB format, but we transformed 
that to a HSV colour space. The reason behind this is in HSV space the image intensi-
ty can be separated from the colour information. Also this transformation for ‘com-
plex’ type images provided us robustness against lighting changes, and shadows. In 
the HSV colour space ‘Hue’ defines the colour component and ranges between 0-1.0 
(another scale is 0-360 degree), ‘Saturation’ describes how white the colour is; whe-
reas the ‘value’ defines the lightness component in a pixel (0 means white and 1 
means completely black). During our initial experiments we noticed that highlighting 
the crack can be achieved by analysing the Hue and Saturation channel value in the 
image, and then manipulating them to our desired values. If in a pixel the Hue value is 
>=0.9 and the corresponding Saturation value is <=0.2 then we change them to 
Hue=0.6, Saturation=1.0 and Value (intensity/brightness) =0.1; otherwise we set satu-
ration to 0.2 and keep the rest of the two channel values intact. With the first option 
we are ensuring that the crack pixels are labelled as a proper blue colour with a dark 
shade (see figure 2b; in the Hue axis 0.6 resembles blue and a Saturation of 1 ensures 
that the pixel can be visually perceived as the true blue, the low intensity value en-
sures darkness with respect to the surroundings). With the second option we try to 
ensure that rest of the pixels become a more grey-like shade by selecting a low satura-
tion value. From the final output image in figure 2(f) it is clearly evident that using 
our pre-processing step we can easily convert a ‘complex’ image type as shown in 
figure 2(a) to appear like a ‘normal’ image. If we compare figure 1(b) with figure 2(f), 
it is evident that they look visually similar. 

Our pre-processing steps can be outlined as follows: 
(i) RGB to HSV colour space transformation; 
(ii) Check the range of Hue and Saturation values of a pixel and set the values of 
         all H,S,V channels  accordingly. 
(iii) Conversion to RGB.  
(iv) Then convert the RGB to Grey scale. 



198 S. Chanda et al. 

(v) Enhance contrast  of the grey scale image by applying histogram equalization  
         technique on the grey scale image.  
(vi) Perform final filtering on grey scale values (fix all grey scale values above a 
          certain threshold to one particular high grey scale value) to get the desired  
         output image. 
 
 

                                      
(a)         (b)          (c)           (d)         (e)           (f) 

Fig. 2. (a) Extreme left - an original input image, (b)-(e) same image in various intermediate 
stages; (f) extreme right - corresponding final output image after pre-processing 

5 Feature Extraction and Classification 

We were keen to study and perform a comparative analysis between different texture 
analysis-based methods for the purpose of crack detection. All those different features 
were extracted from the sliding window that glided over the image. We experimented 
with two different texture-analysis based features, which included Gabor filter fea-
tures and Daubchies Wavelet features. Wavelet features outperformed the Gabor filter 
features in our experiments. Since description on all those features are easily available 
we are not describing them further vividly but only providing a short description of 
the Gabor and  wavelet feature.  

5.1 Gabor Filter 

The Gabor filters are band-pass filters which essentially do texture analysis. The re-
sponse of these filters is the product of a Gaussian envelope function multiplied with 
a complex oscillation [17].  

The Gabor filter response image with respect to a crack region and a non-crack re-
gion is shown in figure 3.  Details about Gabor filter can be found in [18]. 

5.2 Wavelet Features 

The wavelet transform is a useful technique used to analyze non-stationary signals in 
time-frequency domain. Daubechies wavelets are a family of orthogonal wavelets 
defining a discrete wavelet transform. This consists of 4 scaling function coefficients 
and 4 wavelet function coefficients. The four scaling function coefficients used in our 
experiments were as follows: 
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The sliding window is glided all over the grey scale image. The image region beneath 
each window is copied. We extracted features after size normalizing each such grey 
scale image regions obtained from the sliding windows to 32 x 32 dimensions. The 
wavelet response image with respect to a crack region and a non-crack region is 
shown in figure 4.  Details of the feature can be found in [14]. 

5.3 Classifier Details 

In our experiments, we have used Support Vector Machines (SVMs) for classifica-
tion. In our experiments, we noted that the Gaussian kernel SVM outperformed other 
non-linear SVM Kernels; hence we are reporting our classification results based on 
the Gaussian kernel only. The best Kernel parameters were selected for each class 
type by means of a series of validation experiments. The best optimized results were 
obtained when (1/2σ2) in the Gaussian kernel was set to values such as 80.00 (while 
dealing with ‘normal’ images) and 9.00 (while dealing with ‘complex’ images) with 
the penalty multiplier value set to1.  

 

                                                                  
                                                   (a)                (b) 

 

                                                   
                     (c)                 (d)  

Fig. 3. (a) Top left - an original input image with crack, (b) Corresponding Gabor response of 
crack image.(c) Bottom  left - an original input image without crack, (d) Corresponding Gabor 
response of non-crack image. 

                                                                    

(a)                    (b) 

                                                                     

(c)                    (d) 

Fig. 4. (a) Top left - an original input image with crack, (b) Corresponding Wavelet response of 
crack image.(c) Bottom  left - an original input image without crack, (d) Corresponding Wave-
let response of non-crack image. 
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6 Results and Discussion 

We did some analysis on our experimental results to provide more insight to our pro-
posed method. As we have mentioned earlier, when five-fold cross validation was 
implemented separately on feature vectors from ‘complex’ and ‘normal’ images we 
obtained higher accuracy compared to when we implemented five-fold cross valida-
tion on feature vectors from both window image types together. Here we are reporting 
accuracy only on Wavelet features. This fact is depicted in Table 1. We can see that 
we obtained 87.06% accuracy when feature vectors from ‘complex’ and ‘normal’ 
images were considered together. Similarly while considering feature vectors from 
only ‘normal’ images we obtained 93.26% (873 correctly classified considering 936 
samples from ‘normal’ images during five-fold cross validation) whereas while con-
sidering feature vectors from only ‘complex’ images (388 correctly classified consid-
ering 433 samples during cross validation) we obtained 89.60%. Thus the average 
accuracy of our systems becomes 92.11%. In Table 2 we try to inspect the perform-
ance of our system by training it using feature vectors exclusively obtained out of one 
particular image type (‘complex’/ ‘normal’) and testing it on the other image type. In 
Table 3 we provide a comparative analysis of two different features and followed by 
an error analysis in Sub-section 6.3. 

Table 1. Five-fold cross validation accuracy 

Image Type Accuracy 

Complex Image and  
Normal Image  

87.00% 

Only Normal Image 93.26%  
92.11% 

Only Complex Image  89.60% 

6.1 Effect on Performance Due to Complex (Normal) Images in Training 
(Test) Set 

We have mentioned earlier that our experiments involved two different types of im-
ages: ‘complex’ and ‘normal’. We were interested to see what happens when we only 
train our classifier with feature vectors of “crack” and “non-crack” image regions 
obtained from all ‘complex’ (‘normal’) regions and test them with “crack” and “non -
crack” image regions obtained from all ‘normal’ (‘complex’) images. Since during 
our earlier experiments we obtained the highest accuracy while using wavelet fea-
tures, we are reporting this experiment with the wavelet feature only. From the results 
we can conclude that ‘normal’ images turned out to be much better as a training set 
and provides us a more generalized learning model. 
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Table 2. Effect of training image types on accuracy 

Train set type Test Set type Accuracy 
Complex Image Normal Image 78.95% (739 

out of 936) 
Normal Image Complex  Image 87.06% 

(377 out of 
433) 

6.2 Comparison between Texture Analysis Based Features 

Here in Table 3 we provide a comparison between the two different feature extraction 
methods. Note here we are reporting the accuracy while dealing with all feature vec-
tors simultaneously irrespective of the image type (complex/normal). We obtained 
highest accuracy with Wavelet features. 

Table 3. Comparison between two different features 

Gabor Filter 74% 
Wavelet  87% 

6.3 Error Analysis 

Upon analyzing the errors we noticed that most of the time ‘window regions’ with a 
blurred appearance were misclassified to the wrong class. This happened to ‘window 
regions’ obtained from both ‘complex’ and ‘normal’ image types where the fore-
ground element was not prominent compared to the background element in the im-
ages and that they tend to fuse with each other. Nevertheless, it is worth mentioning 
here that in such images our contrast stretching algorithm did not perform well, which 
is one of the reasons behind not recognizing the cracks. An example of such an image 
is shown in figure 5. It should be noted that the region marked within the rectangular 
area highlights a crack mark, which is almost invisible there; however the crack mark 
is more visible in regions above the rectangular area. 

 

Fig. 5. An invisible crack mark within the rectangular region 

7 Conclusions and Future Works 

In this paper, we have investigated the problem of automatic bridge crack detection in 
bridge images. Two different features (Gabor filter and Wavelet) were evaluated for 
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this purpose. The novel issue with our proposed system is that we have obtained  
encouraging accuracy even while dealing with complex bridge image types with hete-
rogeneous background and foreground characteristics. However, the present pre-
processing is based on a threshold approach, which prevents it to be equally efficient 
under all kind of images. In future we shall look for a more robust technique to ac-
complish our objective. Further future work includes autonomous image data acquisi-
tion using devices such as robots or UAVs. Obtaining an image at a specific position 
in high precision is not a trivial task, when using an autonomous device. Various sen-
sors, such as optical, acoustic and magnetic sensors, may aid in this task. Multiple 
sensors, based on individual specialties, are commonly used in order to complement 
limitations imposed by certain sensors and thus enrich the perception of single sen-
sors. However, it is challenging to integrate the heterogeneous types of sensory in-
formation and produce useful results. A pilot study of the likelihood-based data fusion 
system has been implemented for robot positioning [15] [16]. This system integrates a 
Light Detection And Range (Lidar), a vision sensor (a webcam) and an Inertial Mea-
surement Unit (IMU). The implementation outcomes showed promising results [15]. 
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Abstract. This paper proposes a novel part-based character recognition
method for a new topic of RMB (renminbi bank note, the paper currency
used in China) serial number recognition, which is important for reduc-
ing financial crime and improving financial market stability and social
security. Given an input sample, we first generate a set of local image
parts using the Difference-of-Gaussians (DoG) keypoint detector. Then,
all of the local parts are classified by an SVM classifier to provide a
confidence vector for each part. Finally, three methods are introduced
to combine the recognition results of all parts. Since the serial number
samples suffer from complex background, occlusion, and degradation,
our part-based method takes advantage of both global and local char-
acter structure features, and offers an overall increase in robustness and
reliability to the entire recognition system. Experiments conducted on
a RMB serial number character database show that the test accuracy
boosted from 98.90% to 99.33% by utilizing the proposed method with
multiple voting based combination strategy. The part-based recognition
method can also be extended to other types of banknotes, such as Euro,
U.S. and Canadian dollars, or in character recognition applications with
complex backgrounds.

Keywords: RMB seiral number, part-based, character recognition, clas-
sifier outputs combination.

1 Introduction

In the community of handwriting recognition, much attention has been paid to
online and offline handwriting recognition and printed character recognition. As
RMB circulation management becomes a serious problem to China’s financial
industry in recent years, a high reliability RMB serial number recognition system
is needed. However, little research has been done on bank notes serial number
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Fig. 1. RMB images scanned by contact image sensor

recognition (e.g. [1] [2]). In this paper, we investigate the recognition of RMB
serial numbers which consist of 10 printed characters (including alphabetic and
numeru characters). Fig. 1 shows two scanned RMB images with serial numbers
(marked by red rectagles), which have been designed uniquely and used as the
identification of RMB.

In recent years, a few RMB character classification techniques have been pro-
posed to improve the recognition performance by artificial neural network (ANN)
and support vector machine (SVM). However, no previous study has achieved
high accuracy so far. In [1], the back propagation (BP) artificial neural network
based on genetic algorithm training method achieved the accuracy of 95%. The
serial number identification system based on SVM [2] yields high recognition
result on brand new printed RMB, however, the recognition of used RMB serial
number with complex background is much more complicated and not studied in
that paper.

To obtain RMB serial number characters, we proposed a RMB serial number
extraction method in [3]. First, the skew correction and orientation identification
are used to detect the region containing RMB serial number. Then we binarize
the text region and extract RMB characters by a local contrast average scheme.
Overlap recall rate of 79.68% and precision rate of 98.10% are achieved. Recently,
a RMB serial number database has been released [4]. In [4], we comprehensively
compared different types of feature extraction methods, classifiers, multiple clas-
sifier combination strategies, distortion methods, and rejection schemes on the
new database, and provided a large amount of experiment results, which could
greatly profit further research of RMB banknote recognition.

The character samples in the RMB serial number database contain complex
security texture and suffer from inaccurate extraction, various illumination and
contamination. Specifically, there are some small circles located around the char-
acter strokes, which will strongly affect the classification process and increase
the challenge on the recognition task. These color-marked circles shown in Fig. 2
called “EURion constellation” [5] are designed for the prevention of counter-
feiting using color photocopiers. As we observed, there are always some parts
in the character sample without circles or complex background textures which
can provide much more discriminative features for classification than the other
parts. It is possible to recognize the input sample by taking advantage of these
local parts.
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(a) Circles in serial number region.

(b) Circles in character samlpes.

Fig. 2. EURion constellation circles

In this paper, we present a novel part-based method for the recognition of
RMB serial number characters. For each training sample, a set of local image
parts are synthesized by Difference-of-Gaussians (DoG) keypoint detector [6].
We train an SVM classifier [7] with both the original and local-part images.
During the test, each part of the test sample is recognized by SVM, and the
final category is determined via combining the classification results of all parts.
Suen et al. [8] [9] proposed an alphanumeric handprints recognition method by
parts, in which they produce a more effective character recognizer based on the
probability of occurrence of the patterns. However, they manually choose the
local image parts instead of using an automatic interest point detector.

Compared with the previous part-based handwritten character recognition
methods [10] [11], our method has some advantages. First, given an interest
point, instead of describing the local part by complicated speeded-up robust fea-
tures (SURF) [12], we extract eight-direction gradient features directly from the
fixed-size local image, which is more effective. Second, to speed up the training
process, we only generate eight local image parts for each training sample, while
the method in [10] uses 60 local parts. Third, the structure of our recognition
system is more efficient. In the training step, we do not need to extract the SURF
feature vector and build a dictionary. Here, the generated local parts are simply
trained together with the original data. In the test step, the SVM model provides
a confidence vector for each image part, and the final category is produced by
considering all of these local recognition results.

The rest of the paper is organized as follows. In Section 2, we briefly in-
troduce the collected RMB character database. Section 3 details the strategy of
part-based character recognition. Section 4 summarizes the experimental results.
Finally, we conclude our paper in Section 5.

2 Database

To evaluate the performance of various algorithms for RMB serial number recog-
nition, we collect a database from daily-used RMB images. Scanned RMB images
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Fig. 3. NUST-RMB2013 dataset

(Fig. 1) are captured by the contact image sensor (CIS) which installed in the
money counting machine with an output resolution of 200×180 dpi. RMB serial
numbers are located on the bottom left corner of the scanned image and the
characters are extracted straightforward by variance contrast and normalized by
BMN [6] to the size of 36× 60. As the extraction process is not so accurate, we
manually choose the complete and human readable extraction results to compose
the RMB database.

We name our RMB serial number database as NUST-RMB2013 [4] which
represent all the different categories of RMB characters by separating into a
training set of about 500 samples for each of the 35 classes (numeral 0-9 and
alphabet A-Z except V) and a testing set of 200 samples for each class. Fig. 3
shows some RMB character samples containing circles in a complex background.

3 Part-Based Character Recognition

The flow of part-based character recognition approach is depicted in Fig. 4. The
recognition procedure has three main steps. We first utilize the DoG keypoint
detector to locate the interest points, and extract gradient features of the corre-
sponding local image parts. Then, the trained SVM provides a confidence vector
for each part. Finally, the recognition results of all parts are aggregated via
three types of combination strategies. In the following, the procedures of image
partition, feature extraction, and the integration of local parts are detailed.
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Fig. 4. Working flow of the proposed method

3.1 Image Partition and Feature Extraction

As we metioned, the character samples may contain a complex background, un-
even illumination, smear, and contamination. Specially, there are small circles
located around the distinctive part of character strokes, which makes these sam-
ples hard to be recognized. However, it is difficult to remove these circles from
character samples. In this paper, we propose an alternative way to solve this
problem by producing some “clean” local parts from the input samples.

In order to obtain some potential character parts which may not contain
circles, we employ DoG keypoint detector [6] to locate the interest points, which
are the scales-pace extremas in the convolutional result of Difference-of-Gaussian
function and the image.

DoG(x, y, σ) = (
1

2πkσ2
e−(x2+y2)/2kσ2

− 1

2πσ2
e−(x2+y2)/2σ2

)⊗ I(x, y), (1)

where I(x, y) is an input image, σ represents the standard deviation of the
Gaussian function, and k denotes a constant multiplicative factor. We estimate
σ and k according to paper [6]. The keypoints are the local maxima and minima
of DoG(x, y, σ), specifically, the sample point will be selected as keypoint only
if it is larger or smaller than its eight neighbors in the current image and nine
neighbors in the images of scale above and below. Fig. 5 shows some keypoints
detected in character samples.

Each training sample can generate W (depends on the internel structure of
character) keypoints, which could enlarge the size of the training dataset W
times. However, there are some keypoints located close to each other, and the
relevant synthetic parts are very similar. To remove those redundant interest
points and reduce the training time of SVM model, for each sample, we clus-
ter the number of keypoints to K using the k-means [13] clustering algorithm
(Fig. 5). Considering the trade-off between training cost and recognition rate, we
empirically set K as eight. In the experiment, we also tested K with larger values
such as 10 and 12, however, both of them barely provide any improvement.

The local image parts are extracted centered by the interest points. As we
aim to remove the circles while keeping the integrity of character strokes, the
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Fig. 5. Interest points detection and local parts generation

size of local parts can not be too small. We intentionally fixed it to 5/6 of the
original image (30× 50) by considering the size of characters and the circles in
the RMB database. For the interest points which are located at the corners of
the sample, we shift the extraction window according to the image boundries.
As shown in Fig. 5, some local parts without circles can be generated, which will
help to promote the recognition performance in the subsequent procedure. To
make sure the features extracted from each local part has the same dimension,
and also facilitate the classification process, we stretch all local parts to the same
size of 36× 60.

For each part of the image, the eight-direction gradient features are extracted
[14]. First, eight gradient direction feature maps of the input sample are obtained
by Sobel operator. Then, each gradient direction image is divided into 6 × 10
blocks. Gradient magnitude of each block is extracted by Gaussian blurring,
hence the feature dimensionality is 480 (60 × 8). The feature vector is reduced
to 34-dimensional (class number minus one) learned by Linear Discriminant
Analysis (LDA) [15].

3.2 Local Parts Combination

System Training. We trained the SVM classifier with eight direction gradient
features extracted from both the original and local images. The SVM models
with Linear and RBF kernel are tested for fair comparison and analysis. We im-
plemented the SVM via LibSVM software [16] which can provide the confidence
weight of each category for the test sample. As our database has 35 classes, the
output of SVM classifier is a 35-dimensional confidence vector.

Classifier Outputs Combination. The classifier combination applies on the
outputs of SVM without knowledge of the internal structure of classifiers and
their feature vectors. Given a test sample, we extract gradient features from
the local parts. By feeding these features to SVM, a 35-dimensional confidence
vector can be obtained from each part. We combine the classifier outputs of both
the original and local images at abstract and measurement levels [17].

Three methods are used to aggregate the output measurements, namely, max
rule, major voting, and multiple voting, respectively. For a test image x, assume
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M local image parts are obtained, together with the original image, we have
M + 1 input images in total. The SVM classifier provides an N-dimensional
confidence vector Vi = {vi1, vi2, . . . , viN}, N = 35 for each image part.

The max rule performs on the measurement level. It finds the maxinum con-
fidence value among all local parts for each class, then classifies the text sample
x to the corresponding category with the highest measurement.

x ∈ arg
N

max
j=1

{M+1
max
i=1

vij} (2)

The major voting strategy combines the outputs of classifier on abstract level.
Assuming each image part only belongs to one class, it counts the recognition
results of all parts, and sorts the sample to the class which has the maximum
votes. Let R = {r1, r2, . . . , rM+1} denotes the classification results for all local
parts, the value of ri is set between 1 to N. The major voting method can be
described as:

x ∈ arg
N

max
j=1

M+1∑
i=1

I(ri), (3)

where

I(·) =
{
1 if ri = j

0 else ·
(4)

Both of these two methods introduced above provide outstanding recognition
results in spite of their simplicity. As the local parts which are classified to the
correct category always belong to the side of the majority, the major voting can
restrain the influence of the circles by taking advantage of statistical distribution.
Meanwhile, the lower complexity combination approach will compensate for the
representational information lost during combinations.

The multiple voting method [11] can also be called as the sum rule strategy,
which intergrates the recognition results on measurement level. Unlike the major
voting method which assumes each part only belongs to one class, given a local
image, multiple voting method considers its distribution to all categories. In the
test, we obtain 35-dimensional confidence vectors Vi = {vi1, vi2, . . . , viN}, i =
1, 2, . . . ,M + 1 for the local parts of sample x. Then, the confidence weights of
different image parts are summed according to their categories. x belongs to the
class with the maximum sum.

x ∈ arg
N

max
j=1

{
M+1∑
i=1

vij} (5)

Individual recognition results of all image parts contribute to the final decision
by summing the confidence weights for each class. The benefit of using such
strategy is that it effectively suppresses the influences of circles and other factors
to the classification. For instance, the SVM classifier may have difficulties in
distinguishing the original sample contaminated by circles while some synthetic
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Table 1. Test accuracies (%) of local parts combination methods on NUST-RMB2013

Combination SVM kernel

Linear RBF

Conventional 98.90 99.31
Max rule 99.27 99.43
Major voting 99.07 99.30
Multiple voting 99.33 99.51

local parts may not. They can provide correct recognition results with high
confidence weights helping to find the proper category after sum operation.

4 Experiments

4.1 Baseline Recognition Results

Both the Linear and RBF kernel based SVM classifiers have been used to con-
struct the baseline classifier for the recognition of RMB serial number. Before
classification, the features were reduced to 34 dimensions by LDA. The hyper-
parameters of SVM were selected via cross-validation on the training data. The
NUST-RMB2013 database contains the serial number characters of 35 categories
with 17,262 training samples and 7000 testing samples in total. The recognition
rate on the original database using SVM is 98.90% with Linear kernel and 99.31%
with RBF kernel, respectively [4].

4.2 Part-Based Recognition Results

In the training process, the part-based method enlarged the training data about
eight times by generating eight local parts for each training sample. Along with
the original data, the total size of training dataset became 155,358.

Since a larger number of local parts implies a higher probability that there
exists some local images without circles, given a test sample, we created as
many local images as we can to ensure the robustness of our method. Eight-
direction gradient features of these local images were fed to SVM classifiers
(Linear and RBF kernel) to get the 35-dimensional confidence vectors. After
that, three combination methods aggregated the individual recognition results
to produce higher accuracies. Table 1 compares the performances of different
combination methods on NUST-RMB2013 database.

We find out that all of the part-based methods lead to approving results.
Multiple voting is the most competitive strategy, which achieves the highest
classification accuracy on SVM trained with both Linear and RBF kernels. The
accuracy on test data boosts by 0.43 % and 0.2% using Linear and RBF kernel,
respectively. The max rule also helps to improve the recognition rates to reach
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the accuracies of 99.27% and 99.43% by different SVM kernels. However, the
advantages of major voting is relatively inferior to the other methods. It merely
provides 0.17% improvement on the model trained by Linear SVM, and barely
works on the model with RBF kernel because the accuracy is identical to the
conventional recognition method.

4.3 Discussion

Since the max rule and multiple voting methods combine the outputs of the
SVM classifier on the measurement level by utilizing confidence weights of each
local part, it is reasonable that they outperform the major voting scheme which
assumes each local part only belongs to one category and intergrates the recogni-
tion results on the abstract level. The experimental results prove our part-based
method works well on the database which contains uneven illumination, contrast
variation, smear, and complex background texture. Especially, the misclassifica-
tion problem caused by the anti-counterfeiting circles appeared in the RMB
character samples are properly solved. The best recognition rate of 99.51% is
given by multiple voting combination method with the SVM model trained with
RBF kernel.

According to Table 1, the part-based strategies is less sensitive to noise than
the conventional recognition method. The reasons for the superior performance
are twofold. First, we train the SVM classifier with both the full-size and lo-
cal image part samples, which makes the SVM model considering not only the
global but also local character features. Second, the part-based method makes
capital of the statistical distribution of the recognition outputs obtained from
individual local parts. The various local parts generated from the test sample
can eliminate the influences caused by the circles and complex background, and
help the classfier to make the right determination.

The distortion method has been proved very helpful in [4] and [18]. Com-
pared with the distortion method which also expands the training dataset by
generating additional synthetic training samlpes, our part-based method has its
own merit. Since the elastic distortion randomly chooses its scaling and rotation
parameters, and the translation distortion shifts the input pattern one or two
pixels towards eight directions, neither of them considers the internal structure
of training sample. On the contrary, we make use of the samples’ characteristic
structure information by utilizing DoG keypoint detector to locate the interest
points and extracting the surrounding area as local parts. The distinctive prin-
ciple of the DoG detector helps to extract more distinguishing local parts than
distortion methods, which promises a higher recognition rate.

Fig. 6 demonstrates some samples misclassified by the part-based recogni-
tion method using multiple voting combination strategy. There are some circles
touching the distinctive part of character strokes, which makes these samples ex-
tremely hard to be recognized. We are not able to remove these circles even by
extracting the local parts. To deal with this problem, we plan to find a method
to detect the circles in character samples using image processing technique in
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Fig. 6. Misrecognition samples

furture studies. After removing the circles from the data samples, a new recog-
nition system with higher accuracy can be conducted on these “clean” character
samples.

4.4 Rejection

High reliability is required in the problem of RMB serial number recognition
which tolerates no classification error. Even a 0.1% error rate will cause signifi-
cant economic loss in the banking system. The reliability [19] is defined by:

Reliability =
Number of correct recognitions in accepted samples

Number of accepted samples
× 100%, (6)

We use the first two rank measurement (FTRM) rejection method to improve
the reliability by rejecting confusing patterns. The FTRM is based on the gap
between the top-2 outputs of classifiers. Fig. 7 shows the rejection tradeoff curves
of the recognition methods using conventional SVM and the part-based scheme
with multiple votiong combination strategy. It indicates that the part-based
method produces a higher reliability than the traditional recognition method,
which achieves 99.92% reliability with 2.91% rejection rate.

5 Conclusions

In this paper, a novel part-based character recognition approach for RMB serial
number recognition has been proposed. According to the characteristics of the
samples in RMB dataset, we automatically generate a set of local parts for
each input sample using the Difference-of-Gaussians (DoG) keypoint detector.
The feature vectors are extracted by eight-direction gradients and reduced to 34
dimensions by LDA. Both the original and local image parts are used to train
an SVM classifier. In the test step, we first obtain the confidence vector for each
part. Then, three different types of methods are investigated to combine the
recognition results of all image parts.

Experiments conducted on a large serial number character database named
NUST-RMB2013 show the superior performance of part-based character recog-
nition method. It exploits both the global and local character structure features,
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and offers an overall increase in robustness, performance and reliability to the
entire recognition system. Apart from its obvious advantages of simplicity and
completeness, it has been proved to be able to recognize the imprecisely extracted
characters which have lost their global structure by occlusion, decoration, con-
tamination, and other degradations (Fig. 3).

Three local parts combination methods have been compared and analysed.
Since the measurement level combination approaches such as max rule and mul-
tiple voting consider the confidence vectors of test samples, they show better per-
formances than the method based on abstract level (major voting). The highest
recognition rate 99.51% is achieved by the RBF kernel based SVM cooperating
with the multiple voting combination scheme. Compared to the conventional
recognition method, the error reduction rate is 39.09% and 28.99% using Linear
and RBF kernel based SVM, respectively. We find that the major voting is not
a promising solution to our problem since it only leads to a slight improvement
of the recognition accuracy.

What is more, the concepts of the proposed part-based character recogni-
tion method can also be used in other types of banknotes, such as Euro, U.S.
and Canadian dollar, or in the recognition of document character samples with
complex backgrounds.
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Abstract. Features that are widely used in digital image analysis and pattern
recognition tasks are from three main categories: shape, intensity, and texture
invariant features. For computer-aided diagnosis in medical imaging for many
specific types of medical problem, the most effective choice of a subset of these
features through feature selection is still an open problem. In this work, we con-
sider the problem of white blood cell (leukocyte) recognition into their five pri-
mary types: Neutrophils, Lymphocytes, Eosinophils, Monocytes and Basophils
using a Support Vector Machine classifier. For features, we use four main in-
tensity histogram calculations, set of 11 invariant moments, the relative area,
co-occurrence and run-length matrices, dual tree complex wavelet transform,
Haralick and Tamura features. Global sensitivity analysis using Sobol’s RS-HDMR
which can deal with independent and dependent input variables is used to assess
dominate discriminatory power and the reliability of feature models in presence
of high dimensional input feature data to build an efficient feature selection. Both
the numerical and empirical results of experiments are compared with forward
sequential feature selection. Finally, the results obtained from the preliminary
analysis of white blood cell classification are presented in confusion matrices
and interpreted using Cohen’s kappa (κ) with the classification framework being
validated with experiments conducted on poor quality white blood cell images.

1 Introduction and Complete Blood Count (CBC) Interpretation

The examination of peripheral blood smears represents the cornerstone of hematologic
diagnosis. Plainly, the examination of the peripheral blood smear is an important indi-
cator of haematological and other abnormal conditions that affect the body of an or-
ganism. Blood cells are classified as erythrocytes (Red Blood Cells), leukocytes (White
Blood Cells) or platelets (not considered real cells). In all mammals species including
human beings, leukocytes, which are less numerous than red blood cells, are divided
in two main categories: granulocytes and lymphoid cells. Granulocyte white blood cell
types are Neutrophil, Eosinophil (or acidophil) and Basophil. The lymphoid cells, are
separated in Lymphocytes and Monocytes. Expressing the number of white blood cells
(WBC) carries many quantitative and informative clues. For example, the increase or
decrease of leukocytes is very critical and may prompt detailed medical attention.

The first attempts to build automated laboratory equipment to perform complete
blood counts (CBC) was about 60 years ago, in the 1950-1960s [44]. Automatic count-
ing system have been available in the medical laboratories for the last 25 years.

N. El Gayar et al. (Eds.): ANNPR 2014, LNAI 8774, pp. 216–227, 2014.
© Springer International Publishing Switzerland 2014
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The instruments used for performing cell counts are based on mix of mechanical, elec-
tronic and chemical approaches. Current hematology analyzers used routinely in medi-
cal laboratories are such as Sysmex XE-series [35] and also in the Abbott CELL-DYN
range [11]. These known systems for white blood cell differential counts reveal good
correlation with the manual ground truth reference analysis for neutrophils, lympho-
cytes, and eosinophils (accuracies of 0.925, 0.922, and 0.877, respectively) and lower
accuracy for monocytes and basophils (accuracies of 0.756 and 0.763, respectively).
The commonly used approach across biological disciplines and the ground truth is
manual WBC counting and type sorting by a trained pathologist or skilled hematol-
ogy expert, looking at the shape, e.g, nucleus and cytoplasm, occlusion, and degree of
contact between cells.

Although the manual inspection method is adequate, it has three inevitable types of
error: statistical, distributional and also human error [5] such as may happen in poor
quality, low magnification view of the slides. Poor magnification and distribution of
leukocytes adversely affect the accuracy of the differential count in manual counting.
The computerized techniques are the best potential choices to carry out and moderate
the load of these regular clinical activities for more efficiency and also to describe the
frequency and spatial distribution, and portion of blood smear particles. Hematologists
and hematopathologists study and analyze blood smears by looking at cells under an op-
tical microscope. Accordingly, since haematology is a visual science, machine learning
and digital image processing have great potential to develop ways to improve haema-
tology research. Computer-aided diagnosis (CAD) also establish methods for accurate,
robust and reproducible measurements of blood smear particles status while reducing
human error and diminishing the cost of instruments and material used.

In this work, white blood cell analysis of an unfavourable low resolution data set
via a feature extraction and selection framework to classify the five mature types of
white blood cells is provided. There are no reliable and general comparative studies
of feature selection strategies in white blood smear detection with high dimensional
input feature data in particular and also in the presence of low quality and unfavourable
conditions. This work unifies and extends primary feature vector sets introduced in our
earlier work [12, 13], based on using the dual-tree complex wavelet transform (DT-
CWT) and few textural features, to high dimensional comprehensive invariant feature
sets that also include different invariant shape features such as 11 invariant moments,
different histogram calculations, different efficient textual feature such as Tamura and
so on. Furthermore, this paper critically examines and compares two feature selection
strategies, random sampling-high dimensional model representation (RS-HDMR) and
sequential forward selection (SFS), for the white blood cell classification problems in
presence of small number of sample set.

2 Background and Literature Survey

The first published paper on blood processing is leukocyte pattern recognition by Ba-
cusmber and Gose in 1972 [2]. In this primary work, classification of white blood cells
using some shape features and a multivariate Gaussian classifier into their categories are
presented. One decade after, the first fully automated processing of blood smear slides
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was introduced by Rowan [34] in 1986. The background on WBC classification by us-
ing computer vision concepts is substantial and involves feature extractors, classifiers,
quantitative and qualitative process. Ramoser et al. [31] used hue, saturation and lumi-
nance values to locate WBCs and then leukocytes are classified using a 26-dimensional
color feature vector and a classification polynomial support vector machine (SVM).
Xiao-min et al. [46] introduced method based on threshold segmentation followed by
mathematical morphology (TSMM). Sobrevilla et al. [40] used fuzzy logic to segment
white blood cells from a digital blood smear image. However, in both TSMM [46] and
fuzzy logic [40], parameter settings need to set by statistics and experience. Shitong et
al. [37] proposed white cell detection based on fuzzy cellular neural networks (FCNN).
Mukherjee et al. [26] proposed a leukocyte detection using image-level sets computed
via threshold decomposition. Further, Theera-Umpon et al. [43] used four white blood
cell nucleus features, and Bayes and artificial neural networks were the classifiers.

Ongun et al. [28] proposed an approach using active contours to track the boundaries
of white blood cells although occluded cells were not precisely handled. Lezoray [24]
introduced region-based white blood cells segmentation using extracted markers (or
seeds). Kumar [22] applied a novel cell edge detector while trying to perfectly deter-
mine the boundary of the nucleus. Sinha and Ramakrishnan [38] suggested a two-step
segmentation framework using k-means clustering of the data mapped to HSV color
space and a neural network classifier using shape, color and texture features. Further-
more, in other work, WBC segmentation was achieved by means of mean-shift-based
color segmentation in [7] by Comaniciu and Meer while in [19] Jiang et al. used water-
shed segmentation.

Ramesh et al. [8] proposed a two-step framework: segmentation and classification of
normal white blood cells in peripheral blood smears. Color information and morpho-
logical processing were basis functions for segmentation part which was almost close to
already published paper in [14]. Latter, WBC classification followed using 19 features
such as area, perimeter, convex area, and so on. To lessen the computational burden,
Fishers linear discriminant was also applied to trim a multi-dimensional set to six di-
mensions. In more recent work (2012) Dorini et al. [9] introduced automatic differential
cell system in two levels to segment WBC nucleus and identify the cytoplasm region. In
that work, five mature WBC types were classified using a K-Nearest Neighbor (K-NN)
classifier with geometrical shape features and a reasonable accuracy (78% performance
vs 85% classified manually by a specialist) was achieved. As a result, despite its long
history in cell classification, questions have been raised about the reliability and feature
selection in an appropriate white blood cell classification system. On the other hand,
one major drawback of these aforementioned approaches is that no general attempt was
made to quantify the association between low resolution cell appearance and their clas-
sification. Therefore, this latter work would have been more reliable if the framework
considered these concerns.

3 Primary Feature Extraction

Continuing previous work [12, 13], the process of feature extraction and parameter es-
timation is carried out in this extended work. These candidate descriptors have appro-
priate potential for dealing effectively with challenges and problem in multi-distortion
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data set such as blurred, noisy and low magnification of a white blood cell image where
internal white blood cell structure is not obvious to detect. All invariant features are
scaled to the [0 1] range to simplify computational complexity and have consistent in-
puts for measurement. As a result with all three main feature types in this case, final
features vector gives a total of 12140 coefficients for each white blood cell with 28×28
low image size. More details are addressed as below.

Intensity Features: This article examines the mean (μ), standard deviation (σ),
skewness (γ1), and kurtosis (K) in white blood cells classification. However, inten-
sity features may prove inadequate for specially low quality white blood cell data set.
A short mathematical background is addressed in our previous research [13]. Eventu-
ally, in this case, intensity features gives a total of 788 divided into 784 for raw gray
intensity value and 4 measures for histogram calculation feature coefficients for each
cell sample.

Shape Features: In terms of pattern recognition, shape descriptors can be classified
into two descriptors; contour-based and region-based shape signifiers. The contour-
based descriptors reviewed so far cannot represent ideally white blood cell shapes for
which the complete and continuous boundary information is not ideally available with
granular and non-uniform borders. Also, questions have been raised about the validity
and reliability concern under the constraint of translation, rotation and uniform-scaling
invariance properties. In reviewing the literature, the current study found that invariant
moment as a region-based calculation which can provide invariant characteristics under
different condition are likely occur in translation, changes in scale, also rotation and
unique characteristics of a white blood cell that represent its heterogenous shape. Al-
though moment algorithms and theory have been well established in mathematics, far
too little attention has been paid to use invariant moment in computer-aided diagnosis
(CAD) in medical imaging and for blood smear analysis in particular. This paper has
given an account the reasons for the widespread use of (11) different invariant moments
listed into: M1 with 332 elements which are moment coefficients for all combined 11
following different moments, M2 = 36 to Radial Tchebichef [27], M3 = 36 to Fourier-
Chebyshev magnitude [29], M4 = 36 to Gegenbauer [16], M5 = 36 to Fourier-Mellin
magnitude [36], M6 = 36 to Radial Harmonic Fourier magnitude [32], M7 = 36
belong to Generalized Pseudo-Zernike [45], M8 = 36 to Dual Hahn moments [21],
M9 = 7 belong to Hu set of invariant moments [17], M10 = 36 to Krawtchouk [47],
M11 = 36 to Legendre [10, 48], M12 = 1 to Zernike [25]. In following shape feature
category, the relative area (Ar) is also computed [13]. In conclusion, selective shape
features provides a total of 333 feature coefficients for each white blood cell sample
composed of (332) invariant moment coefficients and one measure for Ar.

Texture Features: This section extends the types of features considered in our ear-
lier work [12, 13]. The vector includes features associated with the Laplace transform,
gradient-based, flat texture features [33], and also co-occurrence matrix [15] which is
defined over a white blood cell image to be the distribution of co-occurring values at a
given offset. Various combinations of the matrix are taken to generate features called
Haralick features [15] (namely, the angular second moment, contrast, correlation, sum
of squares: variance, inverse difference moment, energy, and entropy). Afterwards, six
parameters approximating visual perception is used based on the Tamura feature [41].
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In addition, run-length is an another texture coarseness measurement at typical direc-
tions such as 0, 45, 90, and 135 degrees [42]. 11 features for a given gray-level for
each individual white blood cell image are extracted. Dual-tree complex wavelet is also
examined in this research. It calculates coefficients along rows and columns, and in six
directions and angles at each individual pixel. The setting, details and proposed frame-
work using DT-CWT is addressed to our previous work [12,13]. It follows that, textural
features gives a total of 11019 feature coefficients for each white blood cell sample.
This textural feature vector has been divided into seven aforementioned parts. The first
part deals with gradient, Laplacian and flat texture features with 784 for each of them
respectively. Then it will go on to Haralick vector and also Tamura textural features
with 13 and 6 elements respectively. Finally gray-level run length matrix in four ori-
entations provides 6296 coefficients where dual-tree complex wavelet in six directions
also gives a total of 2352 features for each sample.

4 Global Feature Sensitivity and Feature Selection

This work address feature selection algorithm to trace effectiveness of aforementioned
high dimensional invariant descriptors in white blood cell classification performance.
Feature selection and discriminatory power is achieved using high dimensional model
representation (RS-HDMR) and sequential forward feature selection (SFS) along with
support vector machine classifier (see section. 5).

RS-HDMR/ Sensitivity Feature Analysis: Lastly, we look at the effect of each in-
dividual three multiple features (see section 3) contribution upon the corresponding su-
pervised white blood cell classification. Several studies investigating high-dimensional
model representation (HDMR) [1] have been carried out on input and output relation-
ship analysis. High dimensional model representations (HDMR) is a statical approach
that depicts the individual or cooperative contributions of the aforementioned features
upon the corresponding white blood cell classes. To date, little evidence has been found
associating HDMR with image processing and pattern recognition such as Kaya et
al. research work [20]. Then, future studies on the current topic are therefore recom-
mended. In this work, RS-HDMR approach with a random sample input over the entire
domain is used where determination of expansion components is based on shifted Leg-
endre polynomials approximation and Monte Carlo integration [1, 30, 49]. Following
that, the influence of individual each input feature variables is computed using global
sensitivity approach in which Sobol index is the basis function of calculation [39].
Therefore, global sensitivity indices are denoted by: Si1,...,is where total of the sum-
mation

∑n
s=1 si1 +

∑n
1<i<j�n Sij , ... + S1,2,...,n is equal 1. The first order index Si

is fractional contribution of xi (each individual feature coefficient) to the variance of
f(x) (five main white blood cell classes) where the second order shows the interaction
power between xi and xj on the classification outcome and these sensitivity analysis
terms will be continued. Rabitz et al. [1] demonstrated that often the low order interac-
tions of input variables have the dominant impact upon the output assignment. It means
that quite often the high ranked global sensitivity feature variable input in mathematical
models are first order terms. In the current study, first order Si for all each individual
intensity, shape and texture coefficients are calculated to reach the most effective set.
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Sequential Feature Selection: Sequential Feature Selection is an iterative method
to select the most informative coefficient by choosing the next feature depending on
the already selected features. The method removes redundant and irrelevant features
while preserving the efficient features in order to optimize the subset combination of
features by considering their predictive efficiency with a given classifier. The method
has two distinctive variants: sequential forward selection (SFS), and in contrast, sequen-
tial backward selection (SBS) [18] where SFS is taken in this work. In SFS, new added
feature x+ should maximize J(Yk + x+) where new component combined with the
features Yk that have already been selected in an iterative and incremental procedure
(x+ = argx/∈Yk

max J(Yk + x+)). Despite its simplicity, questions have been raised
about the update procedure used by sequential feature selection. For example, SFS is
unable to revise optimal feature vector to remove feature variables after the addition of
other features. It’s also seen that its performance is related to an appropriate criterion
to determine the iterative stop point. In this work the optimum criterion value means
the minimum error rate in SVM supervised classification where each candidate feature
is placed in the new revised subset vector. Several studies investigating SFS have been
carried out on medical imaging [4, 6]

5 Discriminant Functions and Support Vector Machine

A linear SVM classifier [3] with 10-fold cross-validation is examined in this work. 10-
fold cross-validation is commonly used in presence of a small size (140 samples) of
the training and testing data set and with large number of parameters (12140 feature
coefficients) to avoid over fitting and to cover all observations for both training and
validation. The details of the proposed SVM settings and configuration are addressed
in our previous work [12].

6 Experimental Results and Classification

In this section, a set of 140 8−bit gray scale poor images with low magnification (28 ∗
28)px in five balanced dataset (see fig. 1) are used. We have randomly chosen the data
to construct the training set after removing almost 20% of the data to be used for testing
the SVM classifier.

Fig. 1. WBC testing data, each row, top to bottom: Basophil(B), Lymphocyte(L), Monocyte(M),
Neutrophil(N), and Eosinophil(E)

Sobol HDMR Analysis: In practice, in the initial configuration for this experiment
all 140 samples are used for the RS-HDMR accuracy test. Also, the maximum order for
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approximation of the first order {fi (xi)} terms is 5 where 3 is maximum assigned order
for second order {fij (xi, xj)}. Also a ratio control variate (see section 2.1 in [49]) to
supervise and regulate the Monte Carlo integration error with 10 iterations is set for
the first and second order RS-HDMR component functions. It also should be noted
that in the initial setting to ignore insignificant component functions from the HDMR
expansion where the current white blood cell classification system has a high number
of input features, a threshold mechanism set to 10% (see section 2.2 in [49]) is also
used. During sensitivity analysis, first an intensity feature vector with 788 members
composed of 1-784 raw gray scale intensity value, 785 mean, 786 standard deviation,
787 skewness, and 788 kurtosis features is considered. In this case, Si analysis shows
that 38 coefficient out of 788 are computed as non-zero. Sensitivity calculations indicate
that indices: 711, 443, 284, 191 and 456 (in range of gray scale intensity value) and 785
(mean value) out of 38 have the first five most discriminative power of Si = 0.38 in this
current input - output relationship. Secondly, a shape feature vector with 333 members
composed of 1-7 Hu set, 8 Zernike, 9-44 Hahn, 45-80 generalized pseudo-Zernike,
81-116 Chebyshev, 117-152 Legend, 153-188 Krawtchouk, 189-224 Fourier-Mellin,
225-260 Radial Harmonic Fourier, 261-296 Fourier-Chebyshev, 297-332 Gegenbauer,
and 333 for relative area is considered. Global Sobol - HDMR Sensitivity calculations
demonstrate that 18 of the above feature indices have the highest Si of 0.82 where
in that case, first six indices are: 44 (Hahn coefficient), 191,192 (in range of Fourier-
Mellin), 225, 226 (in range of Radial Harmonic Fourier) and 290 (in range of Fourier
Chebyshev).

Then a texture feature vector with 11019 members composed of 1-784 gradient,
785-1568 Laplacian, 1569-2352 flat texture, 2352-2365 Haralick texture features, 2365-
2371 Tamura, 2372-8667 Gray Level Run Length, and 8667-11019 for dual tree com-
plex wavelet transform features is considered. To provide in-depth analysis of the Sobol
index calculation, each of above individual ranges of features is used separately to esti-
mate global sensitivity values. In the case of the gradient features, it can be seen that 43
out of 784 elements have the highest Si = 0.44 where first five indices including 589,
185, 266, 658 and 659 have the most discriminatory power with total Si = 0.41. Next,
global sensitivity on the Laplacian features shows that just only 4 elements have non-
zero values where these are indices including 421, 309, 337 and 365 with Si = 0.17.
Further in flat texture feature analysis result revealed that 13 elements with Si equal
to 0.17 have the dominant power. This suggests that a weak link may exist between
Laplacian and flat texture features and the cell classes.

Further, a consequence of the analysis on Haralick features, Tamura shows 9 and
3 with Si = 0.7 and Si = 0.6 have most effective elements in feature - white blood
cell class relationship. In terms of Gray Level Run Length feature set, result labeled
the subset of 34 elements with Si = 0.62 provides the good predictive power in cur-
rent HDMR meta-modeling. Global sensitivity in dual tree complex wavelet transform
identifies adequate discriminatory power with 111 elements with Si = 0.64 as a ma-
jor effective subset among all these feature coefficients. In this work based on above
explanation 273 elements with exact addressed indices among all 12140 coefficients
(almost 2.2%) which are the most convincing set on HDMR input - output relationship
in current white blood cell classification system are selected (FVHDMR).
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Sequential Feature Selection: For comparison of the results of Sobol HDMR fea-
ture selection and to compare the performance on classification accuracy, sequential
forward selection (SFS) is used. Sequential forward selection initialized using 10-fold
cross-validation by repeatedly calling a criterion based SVM setting (see section 5)
with different training and testing subsets of xin and yout where selected feature are
saved into a logical matrix in which row (i) indicates the features selected at step (i)
with minimum criterion value. In connection with sequential forward selection, many
feature indices should be listed here but an exhaustive review is beyond the scope of
this current work. Eventually, to do a comparative sensitivity analysis, a feature vector
(FVSFS) with the exact number of (FVHDMR) is created. Therefore, this study may
leads a difference between classification performance rate (see table 1) for these feature
selection algorithms.

Confusion Matrices: A 5×5 confusion matrix is used to represent the different pos-
sibilities of the set of instances. The matrices are built on five rows and five columns:
Neutrophil; Monocyte; Lymphocyte; Eosinophil; and Basophil representing the known
WBC classes whereas for each matrix, each row the values are normalized to sum to 1.
Several standard performance terms such as true positive, false positive, true negative,
false negative rate, accuracy, precision have been extracted for the confusion matrix.
This work addresses kappa (κ) measure as it provides accuracy (AC) versus precision
(P ) interpretation across class categories [23]. Common Cohen’s unweighted κ inter-
pretation is: ≤ 0 ⇒ Poor , [0, 0.20] ⇒ Slight, [0.21, 0.40] ⇒ Fair, [0.41, 0.60] ⇒
Moderate, [0.61, 0.80] ⇒ Substantial, [0.81, 1.00]⇒ AlmostPerfect. The experi-
ments are categorized into set of named selected features (FVSFS and FVHDMR) also
with a total high dimensional feature vector with 12140 members (FVTotal).

Statistical performance measure is analyzed using analysis of confusion matrices for
each named feature & SVM summarized in tables 1a, 1b, and 1c. Further statistical tests
revealed that given a small number of input samples (140) in high dimensional feature
sets (= 12140) using non-linear SVM kernels leads to over-fitting. The result, as shown
in table 1, indicates that for normal low resolution white blood cells using linear SVM
& all feature vector FVTotal 85% of known white blood cells were classified as such,
with this classification rate decreasing to 83% for (FVHDMR) (see table 1c) where the
efficiency of (FVSFS) is also 81% which is less than proposed Sobol - HDMR with
83%. RS-HDMR classification performance with 273 elements is less and more similar
where classification accuracy is also found with all 12140 coefficients are selected. As
confusion matrix tables illustrate, in this poor imaginary database there is not a sig-
nificant difference between for example the all high dimensional data set and feature
selected group with RS-HDMR expansion. The results, as shown in confusion matrix
tables indicate that also HDMR results for almost each sub-group is more accurate
than SFS method where also sequential forward selection algorithm is too dependent
to classifier feedback as well. Also with compare with two ground truth groups, using
machines Sysmex XE-series and also Abbott CELL-DYN range (see section 1) it can
be seen from the data in confusion matrix tables that global sensitivity with Sobol on
RS-HDMR expansion reveals 91% accuracy for Neutrophil, 65% rate for Lymphocyte
and also 100% for Eosinophil while the expensive machines mentioned above provide
92.5%, 92.2%, and 87.7%, respectively in an ideal performance. It also provides 81%
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classification rate for Monocytes and 77% for Basophils where the results obtained from
machines are 75.6% and 76.3%. The following conclusions in regard to κ coefficient
can be also drawn from the present confusion matrices. The Cohen’s unweighted κ co-
efficient of the FVTotal, FVSFS , also FVHDMR are acceptable (0.81= almost perfect
and 0.77, 0.79 = substantial) in this low resolution WBC classification. Taken together,
the most obvious finding to emerge from feature selection and with RS- HDMR study in
particular is that all these two methods provide substantial performance where lessen
computational time and improve model interpret-ability to enhance generalization by
reducing over-fitting possibility as well.

Table 1. Confusion matrices (top to down: a,b,c) for SVM classifier, totals over testing images in
invariant features & linear SVM

Linear SVM (FVTotal): Assigned WBC classes
Known Basophil Eosinophil Lymphocyte Monocyte Neutrophil

Basophil 0.72 0 0.21 0.03 0.04
Eosinophil 0 1.00 0 0 0

Lymphocyte 0.17 0 0.68 0.13 0.02
Monocyte 0.01 0 0.04 0.90 0.05
Neutrophil 0 0 0 0.03 0.97

Linear SVM (FVSFS): Assigned WBC classes
Known Basophil Eosinophil Lymphocyte Monocyte Neutrophil

Basophil 0.72 0 0.24 0.04 0
Eosinophil 0.00 1.00 0.00 0.00 0.00

Lymphocyte 0.17 0 0.62 0.14 0.07
Monocyte 0.02 0 0.18 0.80 0.0
Neutrophil 0.01 0 0.01 0.04 0.94

Linear SVM (FVHDMR): Assigned WBC classes
Known Basophil Eosinophil Lymphocyte Monocyte Neutrophil

Basophil 0.77 0.01 0.17 0.01 0.04
Eosinophil 0 1.00 0 0 0

Lymphocyte 0.16 0.01 0.65 0.1 0.08
Monocyte 0.04 0 0.13 0.81 0.02
Neutrophil 0.02 0.01 0.01 0.05 0.91

7 Conclusions

A machine learning approach for white blood cell classification is effective and reli-
able, while working under different and even unfavourable and adverse conditions. In
this paper, these conditions include low resolution cytological images that are noisy dig-
ital white blood cell images. In this research, various approaches to the comprehension
and analysis of invariant three main features are presented and the use of these theories
is outlined. This work also concentrates on the literature concerning the usefulness of
feature selection in presence of big data with high dimensional 12140 invariant fea-
tures in connection with white blood cell classification. An account is provided of the
widespread use of sequential feature selection (SFS) set to recent development in ran-
dom sample High-dimensional model representation (RS-HDMR). It has conclusively
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been shown that these invariant feature collection sets are appropriate solutions as their
implementations are promising strategies for representing small distorted white blood
cell classifier system (see table 1a). These findings suggest that, in general, RS-HDMR
emerged as a reliable input-output relationship predictor of small distorted WBCs and
their own classes to allow the full feature sensitivity analysis based on Sobol sequences.
It is expected that classification accuracy will be further improved by extending the data
set size to reach higher performance in training and testing procedures. The findings are
expected to be persuasively supported by future work considering different underde-
veloped HDMR variations, i.e., Sobol HDMR using Quasi Monte Carlo, multiple sub-
domain random sampling HDMR, or Cut-HDMR. Briefly, the empirical findings in this
study provide a better understanding of invariant feature implementation and feature
selection. One of the more significant findings to emerge from this study is that the pos-
sibility of extending the use of this framework to entire field of haematology analysis
or other similar medical research.
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Abstract. Text segmentation is an essential pre-processing stage for many sys-
tems such as text recognition and word spotting. However, few methods have 
been published for Arabic text segmentation. In Arabic handwritten documents, 
separating text into words is challenging due to the enormous different Arabic 
handwriting styles. In this paper, we present a new segmentation methodology 
of an Arabic handwritten text line into words. Our proposed approach of text 
segmentation utilizes the knowledge of Arabic writing characteristics. This me-
thod shows promising results.  

Keywords: component, Arabic Handwritten Documents, segmentation, End-
Shape recognition. 

1 Introduction  

Extracting all the word images from a handwritten document is an essential pre-
processing step for two reasons [1]. First, for text recognition methods, which can be 
categorized into letter-based and word-based, there is a need to work on pre-extracted 
word images. Secondly, for word-spotting or content-based image retrieval tech-
niques, all the word images in the documents are required to be pre-segmented prop-
erly. Most of the techniques in handwritten document retrieval and recognition fail if 
the texts are wrongly segmented into words. 

Few methods have been published for Arabic text segmentation. In Arabic 
handwritten documents, separating text into words is challenging due to the enormous 
different Arabic handwriting styles. In this paper, we present a new segmentation 
methodology of an Arabic handwritten text line into words. Our proposed approach of 
text segmentation utilizes the knowledge of Arabic writing characteristics. 

In this Section, we provide some background of the Arabic characteristics and the 
previous works of text line segmentation into words. In addition, the challenges of 
Arabic handwritten text segmentation are given. Finally, the proposed approach is 
summarized with the rational of applying it and our overall methodology is explained. 
The secondary component removal technique is briefly explained in Section 2. The 
used metric-based segmentation method is explained in Section 3. The contribution of 
this paper is described in Section 4. The experiment is explained in Section 5. Finally 
the conclusion is given in Section 6. 
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1.3 Related Work  

Word segmentation is a critical step towards word spotting and text recognition. 
There are many word segmentation techniques in the literature [14].  Nevertheless, it 
is still a challenging problem in handwritten documents.  Word segmentation tech-
niques are based mainly on the analysis of the distance between adjacent CCs.  
The algorithms can be categorized into gap thresholding and metric classification. In 
the former, the threshold is determined to distinguish between gap types. In the latter, 
the gaps are classified into either inter or intra word gaps.  

There is little research for Arabic handwritten text segmentation. Some works ap-
ply to manual segmentation [13]. In [9], an online Arabic segmentation method was 
proposed. The gap types are classified based on local and global online features. The 
fusion of multi-classification decisions was used as a post-processing stage to verify 
the decisions. 

J. Alkhateeb et al. proposed a method for Arabic handwritten text segmentation in-
to words based on the distances between PAWs and words [6]. Vertical projection 
analysis was employed to calculate the distances. The statistical distribution was used 
to find the optimal threshold. Bayesian criteria of minimum classification error were 
used to determine the threshold. The technique was applied on a subset of the 
IFN/ENIT database. The correct segmentation of one-word and three-word images 
was 80.34% and 66.67% respectively.  

In [8], an offline handwritten Arabic text segmentation technique was introduced. 
First, the CCs of the images were detected based on the baseline. Their bounding 
boxes were determined. These boxes were extended to include the dots and any small 
CCs. The distances between adjacent PAWs were obtained. They assumed that the 
distance between words is larger than the distance between PAWs. Based on that 
assumption, a threshold approach was used. Two conditional probabilities were de-
termined by manually analyzing more than 200 images. A Bayesian histogram mini-
mum classification error criteria was used to find the optimal distance. They achieved 
85% of correct segmentation.  

M. Kchaou et al applied scaling space to segment Arabic handwritten documents 
into words [7]. The techniques that were used for segmentation were scaling space 
and feature extraction from horizontal and vertical profiles. Two documents written 
by five writers were used in their experiments. Segmentation errors varied between 
29.5% and 3.5%. They believe that the errors arising from different writer styles, 
coordinating conjunctions and distances between PAWs.  

In [18], the segmentation is based on extracting several features from the adjacent 
clusters. The main and secondary components are merged into clusters. Nine features 
were extracted. The neural network is used to classify the gaps between the words. 
Overall performance is about 60% correct segmentation. 

Due to the importance of text segmentation, four Handwriting Segmentation Con-
tests were organized: ICDAR 2007, ICDAR 2009, ICFHR 2010, and ICDAR 2013 
[15]. Therefore, a benchmarking dataset with an evaluation methodology were created 
to capture the efficiency of the methods. The total number of participants on these 
competitions was thirty research groups with different algorithms. In addition, there 
are plenty of methods for Latin-based languages in comparison to Arabic language 
that address this problem [14].   
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1.4 Proposed Approach  

The main difference with our segmentation approach from previous methods is utiliz-
ing the knowledge of Arabic writing by shape analysis. In [6], [9], and [8], the authors 
pointed out the importance of using the language specific knowledge for Arabic text 
segmentation. In addition, in [7], the authors claim that one of the problems of Arabic 
text segmentation is the inconsistent spacing between words and PAWs. Our ap-
proach for segmentation is a two-stage strategy: (1) metric-based segmentation, and 
(2) recognition-based segmentation.  

Utilizing the Knowledge of Arabic Writing. In the Arabic alphabet, twenty-two 
letters out of twenty-eight have different shapes when they are written at the end of a 
word as opposed to the beginning or middle. Two non-basic characters have different 
shapes at the end of a word. Therefore, analyzing these shapes can help to identify the 
end of a word. In fact, there are just fourteen main shapes that can be used to distin-
guish the end of a word, since the remaining characters have the same main part but 
have a different number and/or position of dots. Only NLC letter shapes, which cause 
the disconnection within a word, are written the same way at the beginning, the mid-
dle or the end of a word. Therefore NLC letters cannot identify the end of a word. 
Consequently, End Shape Letters (ESLs) can be categorized into two classes: end-
Word and nonEndWord. Figure 3 shows the shape of the letter Noon when it is writ-
ten at the beginning of the word, the middle and the end, and this letter is part of 
endWord class.   

 
 

        

 

Fig. 3. Letter Noon in different positions 

1.5 Our Methodology  

Our methodology is composed of two stages as mentioned earlier. The first stage is 
called metric-based segmentation. The second stage is named ESL-based segmenta-
tion. The input of our system is a binarized text line. A method that was proposed by 
M. Al-Khayat et al. [16] for text line segmentation was used. First, the Connected 
Components (CCs) of a text line were extracted. CCs by definition, consist of con-
nected black pixels. Normally, a PAW is composed of several CCs: a main compo-
nent, diacritics, and/or directional markings. Therefore, the first main step in segment-
ing an Arabic handwritten word is detecting and labeling its CCs. CC analysis is the 
most efficient approach since the Arabic script consists of several overlapping CCs. 
The 8-connectivity method was used. Second, the secondary components were re-
moved, which was explained in detail in Section 2. Then, metric-based and ESL-
based segmentation were applied. The ESL-based proposed method was provided in 
Section 4. The overall methodology is given as a block diagram in Figure 4.  

 

Middle   End Beginning   
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Fig. 4. Overall Methodology 

2 Removal of Secondary Components  

In this paper, the secondary components are removed to improve the performance of 
metric-based segmentation and to reduce the number of classes of Final Shape Letter 
recognition system. However, many algorithms also remove the secondary compo-
nents to facilitate skew correction and baseline estimation. Some methods also detect 
the secondary components to extract more features for recognition or spotting sys-
tems. We used secondary component removal using morphological reconstruction 
[12]. 

Mathematical morphology is an essential tool in image processing that is used to 
process images based on its shape information. Reconstruction is a morphological 
transformation that involves two images. The mask image constrains the transforma-
tion. The marker image is the starting point for the transformation. Using the morpho-
logical reconstruction method that is based on a thin horizontal line facilitates main 
component extraction. This line is defined below the middle of the image. The recon-
struction method is used to ascertain that only the main components are analyzed. We 
process only binary images. The word images are the masks. The marker is a generat-
ed binary image with the same size as the mask image and a horizontal line that is 
located below the middle of the image.  

CC Extraction

Text line  

Secondary Component Removal  

Metric-based Segmentation  ESL-based Segmentation  

Combination  

Segmented Text  
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3 Metric-Based Segmentation   

In this stage, the distance between adjacent components was computed using a gap 
metric. This method is somewhat like a writer dependent technique since the thre-
shold was estimated based on a given text line. In fact, since spaces between words 
are part of a writing style, this writer dependent technique provides better result [14]. 
Thus, a global threshold across all documents is an inadequate solution.  

3.1 Distance Computation  

After extracting the main components that are ordered from left-to-right, a bounding 
box for each component was calculated. Then all the overlapped bounding boxes were 
merged. The minimum horizontal distances between pairs of adjacent bounding boxes 
were measured. After that, all gap metrics of the text line were sorted.  

3.2 Threshold Estimation  

After identifying the largest space (determined based on empirical study) between the 
sorted values, the threshold was determined. The threshold is the minimum value of 
the largest group of gap metrics. If the spaces between the gap metrics are almost the 
same, the threshold is calculated to be the mean of the gap metrics. Finally, the text 
line is segmented into words based on this threshold. The algorithm is given below: 

 

Algorithm for Word Threshold Estimation  

For each text line 
Calculate the bounding boxes for each CC (Bci), i =1….. L 
Calculate the distance between Bci and Bci+1 
Find all gap metrics Gj 
Find spaces between Gj that is denoted by Si 
If a large space is found  
 The minimum value in the largest group is determined as a Threshold (T).  

T ⊂ Gi 
Else  
 The mean of the gap metrics is the threshold    
 T = mean(Gi) 

4 ESL-Based Segmentation   

In this stage, the main idea is to recognize the ESL that helps to specify the word 
segment. ESL can be isolated or part of a PAW. However, the end-shape needs to be 
detected first before recognition can begin. Each step is described in the following 
sub-sections. Our method is depicted in Figure 5. 
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4.1 ESL Detection  

At this stage, the main purpose is to detect the isolated letter or the last letter of a 
PAW. The last part will be extracted based on the height, width, and the baseline 
position.    

4.2 ESL Recognition 

At this stage, either the end-shape of the main component or the isolated letter is sent 
to an ESL recognizer. We created an ESL database and classifier to identify the end 
of a word. This recognizer classifies the end-shapes of main components and of an 
isolated letter.  

The ESL database contains the shape of letters at the final position (only in its iso-
lated form). The endWord set contains eleven classes and the nonEndWord set is 
composed of three classes. We used the CENPARMI Arabic isolated letter database 
[19]. To test the ESL recognition system before applying it to the documents, a testing 
model was generated using the testing set of the CENPARMI Arabic isolated letter 
database. We applied the method that was used by M. W. Sagheer [24]. This ESL 
recognizer consists of the following three phases: (1) Pre-processing, (2) Feature ex-
traction, and (3) Recognition. 

Since our concern is the main component of the letters, we removed all the second-
ary components that comprise less than half the area of the largest component. Then, 
the bounding box of the main component is calculated in order to eliminate all the 
white spaces around it. The image was normalized to two different sizes, 64 x 64 and 
128 x 128 pixels by using aspect ratio adaptive normalization strategy [22]. Two dif-
ferent sizes of the image were used for different feature extraction processes. In addi-
tion, the image was skeletonized to standardize the representation of the images and 
facilitate feature extraction. The Zhang and Suen thinning algorithm [23] was applied. 
We extracted gradient features and structural features. Several experiments were con-
ducted with different features to find the best combination of these features that pro-
duce the best results as shown in Table 1.  

Gradient Features Extraction. In our gradient feature extraction phase, each image 
of size 128 x 128 pixels was converted into a grayscale image. Robert’s filter masks 
were applied on the images.  

Let IM(x, y) be an input image; the horizontal gradient component (gx) and vertical 
gradient component (gy) were calculated as follows: 

gx = IM(x+1, y+1) - IM(x, y) 
gy= IM(x+1, y) - IM(x, y+1) 
• The gradient strength and direction of each pixel IM(x,y) were calculated as fol-

lows: 

 Strength: s(x, y) = ඥ݃ݔଶ ൅  ଶ (1)ݕ݃ 

 Direction: θ(x, y) = tan-1 (gy / gx) (2) 



 End-Shape Recognition for Arabic Handwritten Text Segmentation 235 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5. ESL-based segmentation method 

After calculating the gradient strength and direction for each pixel, the following steps 
were taken in order to calculate the feature vector: 

1. The direction of a vector (gx, gy) in the range of [π,-π]. These gradient directions 
were quantized to 32 intervals of π/16 each. 

2. The gradient image was divided into 81 blocks, with 9 vertical blocks and 9 hori-
zontal blocks. For each block, the gradient strength was accumulated in 32 direc-
tions. By applying this step, the total size of the feature set in the feature vector is 
(9 x 9 x 32) = 2592. 

3. To reduce the size of a feature vector, a 5 x 5 Gaussian filter was applied by down 
sampling the number of blocks from 9 x 9 to 5 x 5. The number of directions was 
reduced from 32 to 16 by down sampling the weight vector [1 4 6 4 1]. The size of 
the feature vector is 400 (5 horizontal blocks x 5 vertical blocks x 16 directions). 

4. A variable transformation (y = x0.4) was applied on all features to make the distri-
bution of features Gaussian-like. 

Structural Features Extraction. In addition to the gradient feature, other structural 
features were extracted. The additional features are: the number of black pixels, hori-
zontal and vertical histograms, end and intersection points, holes, and structure of the 
top part of the image. However, the horizontal and vertical features were removed 
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since they provide lower performance. Moreover, the upper profile features were used 
to capture the outline shape of the top part [17]. To extract the upper profile feature 
the following steps were followed: 

• Each image was converted into a two-dimensional array. 
• For each column, the distance was measured from the top of the image to the clos-

est black pixel. 

Feature Vector. After extracting the gradient and structural features from each im-
age, all the features were merged to make a feature vector of size of 468 (400 gradient 
features, 64 upper profile, 4 structural features). Then, this feature vector was passed 
to the classification phase. 

Recognition. A Support Vector Machine (SVM) is a technique in the field of statis-
tical learning. SVMs have shown to provide good results for both offline and online 
cursive handwriting recognition [21]. We used an open source library for the imple-
mentation of SVM called LibSVM [20]. The input of LibSVM is a feature matrix and 
the output is the classification result probabilities. LibSVM uses a Radial Basis Func-
tion (RBF) kernel for mapping a nonlinear sample into a higher sample space. RBF is 
given by: 

 K(Xi, Xj) = exp(-γ || Xi – Xj||2) , γ > 0 (3) 

For the K-class problem, K2 SVMs are trained by a pairwise approach. The proba-
bility is estimated for test sample x that belongs to class i. The probabilities are ob-
tained from a one-against-one class probability. The two optimal parameters γ and C 
were chosen by using v-fold cross validation. A training model was generated for the 
whole collection of images with their class labels. 

Table 1. Experimental Results with Different Features 
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Abstract. In this study, four neural networks (NN) ensemble systems are pre-
sented and compared for NASDAQ returns prediction. They are the conven-
tional feed-forward back-propagation neural network (FFNN) ensemble which 
widely used in the literature, time-delay neural network (TDNN) ensemble, 
nonlinear auto-regressive with exogenous inputs (NARX) ensemble and the 
radial basis neural network (RBFNN) ensemble. Each component of the NN en-
semble is used to learn specific patterns related to a given NASDAQ submarket. 
Based on the mean of absolute errors (MAE), the experiments show that en-
semble models based on advanced NN architectures such as TDNN, NARX, 
and RBFNN ensemble all achieve lower forecasting errors than traditional 
FFNN ensemble system. In addition, the RBFNN ensemble outperformed all 
other NN ensembles under study. 

Keywords: Neural networks, ensemble, stock market microstructure, forecast-
ing. 

1 Introduction  

Successful prediction models for stock market trading are of great interest for inves-
tors to make profits. Therefore, there is a need for effective stock price forecasting 
systems capable to limit personal bias and mistakes. However, the financial market is 
complex, evolutionary, and non-linear dynamical system [1,2]. As a result, financial 
market data are noisy and nonstationary [1,2].  

Financial market prediction  had received a large attention in the literature where 
different methods and algorithms for automated stock market prediction were pro-
posed; including artificial neural networks, fuzzy logic, and expert systems to name a 
few. Indeed, such studies were surveyed in Atsalakis and Valavanis [3] and Bahram-
mirzaee [4]. In general, the literature [3,4] used two broad classes to predict stock 
market prices [5]: fundamental analysis and technical analysis. The fundamental anal-
ysis depends on knowledge of microeconomics and macroeconomics factors, whilst 
technical analysis is based on historical patterns to predict market prices [5]. Howev-
er, fundamental analysis based knowledge is usually not readily available, and histori-
cal patterns are not always evident because of the noise [5].  
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The purpose of this study is to design a neural network (NN) committee (ensem-
ble) to model stock market microstructure and achieve better prediction accuracy of 
the market returns. Indeed, neural network ensemble systems were found to be effec-
tive in forecasting stock market [5-8], and also in other time series forecasting appli-
cations such as customer purchase behavior [9], drug dissolution [10], weather [11], 
climate [12], and software reliability [13].  

A neural network (NN) ensemble or committee is a learning paradigm where a col-
lection of several neural networks is trained for the same task. It is expected to pro-
vide the following advantages over the traditional neural network. First, a NN is an 
adaptive nonlinear soft computing system that can learn from patterns and capture 
hidden functional relationships in a given data even if the functional relationships are 
not known or difficult to identify [14]. Indeed, it is capable of parallel processing of 
the information with no prior assumption about the model form and the process that 
generates the data. In addition, it is robust to noisy data; hence the network is capable 
to model non-stationary and dynamic data [15]. Furthermore, a NN can theoretically 
approximate a continuous function to an arbitrary accuracy on any compact set  
[16-18]. Second, a NN ensemble or committee can produce even more accurate re-
sults than any of the individual neural networks by making up the ensemble and thus 
intensifying discriminant capability of neural networks [19]. Third, a NN is prone to 
overfitting when it is too closely adjusted to the training set [19]. Therefore, its gene-
ralization error tends to increase when it is applied to previously unseen samples [19]. 
As a solution, a committee or an ensemble approach can make base neural networks 
robust to overfitting and thus reduce generalization error [19]. Fourth, a NN commit-
tee is used to deal with sampling and modeling uncertainties that may otherwise im-
pair individual NN forecasting accuracy and robustness [20]. Fifth, previous works 
demonstrated the ability of NN based committee system in modeling and predicting 
various types of time series [5-13].  

All of the aforementioned studies [5-8] only consider single neural network type 
for financial time series prediction. However, the performance of a neural network 
system significantly depends on the type of NN used to design the committee system. 
For instance, previous studies relied on the well known feed-forward back-
propagation neural networks as basic systems. Indeed, although NN committees are 
essential for providing accurate forecasts the improvements in the construction of 
such committees is important by considering other type of neural networks.  

In this paper, the performance of the NN committee is investigated depending on 
the type NN used to form the ensemble. In particular, four different NN architectures 
are considered to form the NN committee and are compared. They are the conven-
tional feed-forward back-propagation neural network which widely used in the litera-
ture, time-delay neural network, nonlinear auto-regressive with exogenous inputs 
(NARX) network, and the radial basis neural network.  

Despite the potential benefits of using fundamental or technical analysis  
knowledge for ensemble training and prediction task, we rely on information from  
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microstructure of the stock market to train NN committees. In particular, we aim to 
model stock market returns based on the dynamics of each sub-market (component) 
that composes the whole stock market. In other words, our emphasis is on the impor-
tance of information related to price movements in each sub-market in determination 
of the overall stock market behavior. Indeed, we rely on microstructure information 
for two main reasons. First, price formation in each sub-market is key information 
that determines the stock market trend. Therefore, modeling the stock market micro-
structure from an informational point of view would be helpful to improve forecasting 
accuracy when predicting stock market future return. Second, unlike fundamental and 
technical analysis based information, microstructure information is always available 
and not affected with noisy information. 

The rest of this paper is organized as follows. Section 2 presents the committee 
system, and gives a brief introduction to each type of artificial neural network adopted 
to form the neural network committee. Section 3 presents the empirical results from 
the NASDAQ market data. The paper is concluded in Section 4. 

2 Methods 

In this section, we present the proposed system for stock market return prediction 
based on neural network ensembles based on market microstructure information. 
Neural network ensemble was proposed by originating Hansen and Salamon [21] as a 
learning paradigm where several neural networks are trained for the same task. The 
purpose is to improve the generalization performance of NN system in comparison 
with using a single neural network.  

The prediction system based on neural network ensemble (committee) is shown in 
Figure 1. The input of the system is the financial return of a given sub-market and the 
output of the system is the predicted return of the aggregate stock market. For in-
stance, each NN is used as the basic prediction system making up ensemble and each 
is trained with a sub-market specific price returns. Finally, the output NN is used to 
generate a single system to produce the output of the ensemble by combining the 
predictions of multiple neural networks.  

In this study, the neural network committee consists of K component neural net-
works where each component neural network is a three-layer single input single-
output NN with two nodes in the hidden layer. Each component neural network is 
trained with different initial weights connecting three-layers. The outputs of the com-
ponent neural networks are combined using the output NN as shown in Figure 1. In 
this study, a neural network (NN) could be the conventional feed-forward back-
propagation neural network which widely used in the literature, time-delay neural 
network, NARX network, or the radial basis neural network. They are described in 
next sub-sections. The accuracy of each single NN and the NN committee is eva-
luated based on the mean absolute error (MAE) statistic.   
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Fig. 1. A generic committee system for modeling and forecasting stock market returns 

2.1 Feed-Forward Back-Propagation Neural Network 

An artificial neural network (NN) [15] is a generic model for data process data that 
uses a brain metaphor. The feed-forward back-propagation neural network is a popu-
lar architecture that has one input layer with x predictive variables, one or more hid-
den layers that fulfill the input-output mapping, and an output layer with the predicted 
variable y. The output y is computed as: 
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where wij is a connecting weight from neural j to neural i, θ denotes the bias, and f (•) 
is an activation function employed to control the amplitude of the output. In this 
study, the commonly used sigmoid function is used for activation. It is given by:  

 
xe

xf −+
=

1

1
)(  (2) 

The neural network is trained with the Levenberg-Marquardt (L-M) algorithm [9][22] 
where weights are adjusted based on the gradient method as follows: 
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where J is the Jacobian matrix (first derivatives) of weights, I is the identity matrix, μ is an 
adaptive learning parameter arbitrarily set to 0.001, and e is a vector of network errors. 
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The neural network with this type of error training is often called back-propagation neural 
network [15] or multi-layer feed-forward neural network (FFNN). 

2.2 Time-Delay Neural Networks 

Unlike the conventional FFNN neural network, the time-delay neural network [22] is 
a recurrent neural network which is dynamic and possesses a memory to perform 
temporal processing of the input space. Like the FFNN, TDNN has feed forward con-
nections, but has multiple connections between the individual neurons: each neuron 
consists of the outputs of earlier neurons during both the current time epoch and fixed 
number of previous ones (t-1, t-2,…,t-n). Then, each neuron possesses a memory to 
remember previous layer outputs for n periods of time. Similar to the FFNN, the 
TDNN uses the back-propagation algorithm optimized based on the gradients method. 
The time delay n is set to three in this study. 

2.3 NARX Neural Network 

The Nonlinear Auto-Regressive with Exogenous inputs (NARX) neural network 
which was introduced by Leontaritis and Billings [23] is a class of discrete-time non-
linear systems that can represent a variety of nonlinear dynamic systems. In particu-
lar, the NARX network is a dynamic neural network that contains recurrent feedbacks 
from several layers of the network to the input layer. It can be mathematically 
represented as follows: 

 ( ) ( ) ( ) ( ) ( )( )Wdtutudtytyfty uy ;,,1;,,1 −−−=+   (4) 

where u(t) and y(t) are respectively the input and the output of the system at time t, 
du≥1, dy≥1, dy≥du, W is a weights matrix, and f is an unknown nonlinear function to be 
approximated by a FFNN neural network. As a result, the general NARX network 
equation can be written as: 
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where i = 1,...,du; j = 1,..., dy ;h = 1,..., Nh,  fh and fo are the hidden and output func-
tions, wih, wjh and who are the weights, and bh and bo are biases. In this study, the time 
delay d is set to three in this study. 

2.4 Radial Basis Function Neural Network 

The radial basis function neural network (RBFNN) [16] is suitable to model flexible 
in dynamic environment because of its ability to quickly learn data local complex  
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patterns and adapt to changes. The RBFNN system consists of three layers;  
namely the input, hidden and output layer. The input layer distributes the input  
data among the hidden nodes (units) which are fully connected to the previous  
layer. In other words, the input variables are each assigned to a node in the input layer 
and pass directly to the hidden layer without weights. The hidden nodes contain the 
radial basis functions (RBF) represented by Gaussian kernels and used as transfer 
functions to process information contained in input layer nodes. For instance, each 
neuron in hidden layer computes local response to its input. Finally, the neuron in  
the output layer only sums up the outputs of the hidden neurons. Mathematically,  
the output of the jth unit, Hj(x), in the hidden layer for an input xi is computed as  
follows: 

 ( ) ( ) ( )












 −−
=−=

2

2

2
exp

j

ji
jijj

cx
cxHxH

δ
 (6) 

where xi is the first difference of natural logarithm of market price (for example the 
market return defined as first difference of logarithmic price), cj represents the posi-
tion of the center of the jth Gaussian function, and δ is the width parameter control-
ling the smoothness of the Gaussian function. Finally, the output y of the system is 
calculated by a linear combination of the K radial basis functions plus the bias w0 as 
follows: 
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In this paper, the width of the Gaussian kernel is set to 0.55.  
In our study, the number of neurons in the input layer and hidden layer of a single 

NN (FFNN, TDNN, NARX, RBFNN) is set to one and two respectively. They are set 
to seven in both input and hidden layer in the case of the NN used to combine all 
forecasts. In all cases, the output layer has one neuron corresponding to the predicted 
return. 

2.5 Performance Measure 

Each single NN and NN committee accuracy is evaluated by computing the mean 
absolute error (MAE) which is defined as follows: 
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i ii py
m

MAE
1

1
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where y is the observed value, p is the predicted value, and m is the total  
number of observations in the testing data. The lower is the MAE, the better is the 
accuracy. 
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3 Data and Results 

The empirical study involved the prediction of the NASDAQ price return. Submarket 
set includes banking (first submarket), biotechnology (second submarket), insurance 
(third submarket), other finance (fourth submarket), Telecom (fifth submarket), trans-
port (sixth submarket), and computers (seventh submarket). The data were daily price 
values from 3 January 2007 to 15 November 2013. The purpose is to predict the ag-
gregate market (NASDAQ) return series. They are computed as first difference of 
log-price. Figures 2 to 8 provide banking, biotechnology, insurance, other finance, 
Telecom, transport, and computers submarket return series respectively. The aggre-
gate market NASDAQ return series are depicted in Figure 9. The learning phase con-
sisted of 80% of the observations, while the testing phase consisted of the remaining 
20%. All the obtained results were compared and evaluated by the mean absolute 
error (MAE) statistic. The empirical results are depicted in Table 1. It indicates that in 
all cases the NN ensemble (committee) generated the lowest errors than single NN. 
This result is in accordance with previous works found in the literature [5-13].  

Comparing accuracies between FFNN ensemble, TDNN ensemble, NARX ensem-
ble, and RBFNN ensemble, there are differences in favor of the latter when looking at 
MAE statistic. For instance, they respectively achieved 0.0036, 0.033, 0.0028, 0.0016 
MAE. This result indicates that TDNN ensemble, NARX ensemble, and RBFNN 
ensemble all outperformed the conventional FFNN ensemble used as the main refer-
ence NN ensemble. Thus, ensemble system composed of more advanced NN architec-
ture yield to lower prediction error. Among the NN ensembles considered in this 
study, the RBFNN achieved the lowest forecasting error. This could be explained by 
the fact that  

RBF neural networks have advantages of easy design, good generalization, strong 
tolerance to input noise, and online learning ability in comparison with traditional 
neural networks including sophisticated fuzzy inference systems [24]. In addition, 
contrary to the traditional neural networks trained with back-propagation algorithm 
each hidden unit of the RBFNN acts locally by computing a score for the match be-
tween the input vector and its centers. As a result, the basis units are highly specia-
lized to detect patterns in the underlying data.   
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Fig. 2. Banking sub-market return series 
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Fig. 3. Biotechnology sub-market return series 
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Fig. 4. Insurance sub-market return series 
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Fig. 5. Other finance sub-market return series 
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Fig. 6. Telecom sub-market return series 
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Fig. 7. Transport sub-market return series 
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Fig. 8. Computers sub-market return series 
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Fig. 9. NASDAQ return series 

Table 1. MAE results 

 FFNN TDNN NARX RBFNN 

Component 1 0.0152 0.0416 0.0080 0.0025 

Component 2 0.0189 0.0176 0.0325 0.0025 

Component 3 0.0379 0.0431 0.0095 0.0019 

Component 4 0.0248 0.0349 0.0084 0.0023 

Component 5 0.0220 0.0327 0.0410 0.0021 

Component 6 0.0279 0.0288 0.0063 0.0023 

Component 7 0.0192 0.0264 0.0252 0.0018 

Ensemble 0.0036 0.0033 0.0028 0.0016 

4 Conclusion 

This paper evaluates four neural network ensembles each with different neural net-
work architecture with application in forecasting NASDAQ returns. They are the 
conventional feed-forward back-propagation neural network which widely used in the 
literature, time-delay neural network, NARX network, and the radial basis neural 
network. Each ensemble component is used to model the relationship between 
NASDAQ returns and a given NASDAQ submarket returns and to provide a forecast. 
The outputs of the component neural networks are combined together by the combi-
nation module to produce the final output of the ensemble. The combination module 
is represented by a neural network. This result indicated that TDNN ensemble, NARX 
ensemble, and RBFNN ensemble all outperformed the conventional FFNN ensemble 
which was used as the main reference NN ensemble. In addition, the RBFNN 
achieved the lowest forecasting error. 

In summary, our findings are in accordance with those of the literature: ensemble 
neural networks perform better than single neural networks. In addition, this work dem-
onstrated that ensemble systems composed of more advanced NN architectures yield to 
lower prediction error than neural network ensemble composed of conventional  
feed-forward neural networks widely used in the literature. Indeed, such sophisticated 
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architectures provided significant improvement in the prediction accuracy of the 
NASDAQ return series.  

Future research directions include considering other types of time series forecast-
ing problems for better generalization of the results, and considering classification 
problems. 
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Abstract. In order to alleviate the influence of illumination, pose, expression 
and occlusion variations in face recognition, in this paper, an effective face rec-
ognition method based on discriminative sparse representation is proposed. To 
solve the problem of these variations, we extract discriminative features which 
represent for each of the training images, and propose a novel dictionary by 
learning discriminative features. Firstly, we decompose a test image by using 
nonsubsampled contourlet transform (NSCT), and then fuse the information ac-
cording to the features from each subband and their contributions. Finally, we 
obtain the discriminative features of training images and construct a discrimina-
tive dictionary. Fuse these multiple features can improve the efficiency and ef-
fectiveness of face recognition, especially when training samples are limited 
and the dimension of feature vector is low. Experimental results on two widely 
used face databases are presented to demonstrate the efficiency of the proposed 
approach. 

Keywords: Face recognition, Sparse representation, Discriminative, NSCT. 

1 Introduction 

Face recognition is always an attractive topic in computer vision and pattern recogni-
tion [1, 2]. For face recognition, image features are firstly extracted and then matched 
to those features in a gallery set. The task is to find the class to which a test sample 
belongs by given training samples from multiple classes. Recently, there has been an 
increasing interest in classification problem where the data across multiple classes 
comes from a collection of low dimensional linear subspace. An important method 
that deals with data on multiple subspaces relies on the notion of sparsity. During the 
past few years, sparse representation theories have been applied to face recognition 
and were paid much attention. It has been one of the most successful applications of 
image analysis and understanding. Although many technologies have been proposed 
to perform tasks of classifying facial images well, face recognition problem is still 
challenging. Wright et al. [3] used sparse representation for face recognition and the 
performance is impressive. This method constructs dictionary by training all kinds of 
samples, however, when the training samples are limited and the dimension of feature 
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vector is low, it becomes less efficient. Yang et al. [4] further extended SRC based 
framework to a sparsity constrained robust regression problem for handling outliers 
such as occlusions in facial images. In addition, low-rank representation method [5, 6] 
which has been established recently is based on the hypothesis that the data is approx-
imately spanned by some low-rank subspaces. Liu and Yan [5] further proposed a 
latent low-rank representation approach. In latent LRR, the hidden data can be re-
garded as the input data matrix after being transposed. This idea has been used to 
design a classifier for image classification [6]. Recently, some works considering 
multi-resolution information have been proposed for face recognition [7, 8]. Most of 
these methods realize multi-resolution face recognition by extracting Gabor features 
in different scales and orientations, which are fused to form multi-resolution features. 

Inspired by previous works, we aim to find a discriminative dictionary for face 
recognition. Most existing discriminative dictionary learning algorithms try to learn a 
common dictionary shared by all classes, as well as a classifier of coefficients for 
classification. However, the shared dictionary loses the correspondence between the 
dictionary atoms and the class labels, and hence performing classification based on 
the reconstruction error associated with each class is not allowed. Different from these 
works, Yang et al. [4] proposed a discriminative dictionary learning framework which 
employs fisher discrimination criterion to learn a structured dictionary. This method 
uses the reconstruction error associated with each class as the discriminative informa-
tion for classification, but it does not enforce discriminative information analysis in 
dictionary construction.  

Our method considers NSCT features of facial images in different scales and orien-
tations. NSCT is shift invariant and can reduce the effect of posture variations in the 
process of face recognition. In addition, in order to obtain robust features, we use 
contribution criterion calculated by structure similarity when fusing features from 
different scales and orientations. The structural similarity criterion is imposed on the 
latent feature images to make them discriminative. We try to propose a new discri-
minative dictionary by learning fused discriminative features to improve the classifi-
cation efficiency. 

The remainder of the paper is organized as follows. Preliminary works are pre-
sented in Section 2. Section 3 presents the proposed method. Section 4 is devoted to 
experimental results and analysis, and Section 5 concludes the paper. 

2 Multi-scale Geometry Analysis 

Contourlet transform offers a high directionality but due to the up-sampling and 
down-sampling, it is shift-variant. However, image analysis applications such as edge 
detection, image enhancement etc. requires a transform which is shift-invariant. This 
requirement is fulfilled by nonsubsampled contourlet transform (NSCT) [9, 10]. The 
NSCT consists of nonsubsampled pyramid (NSP) that ensures multiscale decomposi-
tion and nonsubsampled directional filter bank (NSDFB) that offers directionality. 
NSP is constructed by using a low pass filter and a high pass filter, and it can decom-
pose an image into a low frequency subband and a high frequency subband. NSDFB 
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3.2 Multilevel Discriminative Dictionary Construction 

In this section, we construct a multilevel discriminative dictionary by learning discri-
minative features. Define matrix Y as the entire training set which consists of n  
training samples from all c  different classes: [ ]1 2 3, , , ..., cY Y Y Y Y=  where 

* id n
iY R∈  is all the training samples from i -th class, d  is the dimension of sam-

ples, and in  is the sample from i -th class.  

We construct dictionary by training set, using NSCT analysis method. The training 
samples are decomposed by NSCT, and then using formula (2) and (3) to obtain fused 
discriminative features. We construct sub-dictionaries class by class, and finally form 
a dictionary 1 2[ , , ..., ] m N

kD D D D R ×= ∈ ,where iD  is the vector of discriminative 

features of face images in each class.   

Algorithm 1: Dictionary Construction  
Input: Training Sample Y 
Output: Dictionary D 
1. Decompose training sample Y by using NSCT. 
2. Obtain fused discriminative features by formula (2-3). 
3. Construct sub-dictionary of each class and gain  
dictionary D.  

3.3 Face Recognition Algorithm 

In practical, occlusion exists in both training and testing samples, the dictionary con-
structed via nonsubsampled contourlet transform can reduce this influence. Fig. 4 
shows the procedure of our face recognition algorithm. Constructing dictionary 

1 2[ , ,..., ]ND D D D= via Algorithm 1 on face database, where iD  is the constructed 

sub-dictionary of i -th class. Algorithm 2 below summarizes the complete recogni-
tion procedure. Assume that y  is a test sample, and we can get the sparse coeffi-

cients vector by solving: 

 2

2 1
arg min{ }

x

x y Dx xλ= − +  (4) 

Denoted by 1 2[ ; ;...; ]cx x x x= ,where ix  is the vector of coefficients in sub-

dictionary iD . We can calculate the residual associated with i -th class by: 

 
2
2|| ||i i ie y D x= −    (5) 

The identity of testing sample y is determined according to: 

 ( ) arg min i
i

identify y e=  { }   (6) 
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Algorithm 2: Face Recognition  
Input:  Dictionary D, a test sample y  
Output: ( ) arg min i

i

identify y e=  { }  

1. Decompose training sample y by using NSCT. 
2. Obtain contributions of subimages in each scale by 
formula (2).  
3. Fuse discriminative features by formula (3). 

4. Minimize ix  to problem (4). 

5. Compute the residual 2
2|| ||i i ie y D x= −  . 

 

 

Fig. 4. Face recognition algorithm 

4 Experiments and Analysis 

In this section, we conduct experiments on AR Database [14] and Extended Yale  
B Database [15] which are widely used to test the efficacy of our method. The  
experiments are implemented by MATLAB R2013b on a computer with Intel(R) 
Xeon(R) CPU X3450@2.67GHz 2.66 GHz, and windows 7 operating system. We 
repeat each experiment 10 times and the accuracy is averaged. We examine the  
performance of our method when dealing with different illuminations, expressions, 
occlusions and different amounts of training samples. Compared with several state- 
of-the-art methods, such as SRC [3], LRC [12], and FDDL [13], our proposed ap-
proach achieves a better performance in terms of high recognition accuracy and  
robustness. 
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4.2 Extended Yale B Face Database 

The Extended Yale B database consists of 2414 frontal-face images of 38 individuals. 
The images were captured under various laboratory-controlled illumination condi-
tions. For each class, there are about 64 images, half of the images are randomly se-
lected as training images, and the rest as testing images. Fig. 6 shows some facial 
images from the Extended Yale B database. We compute the recognition rates in the 
feature space dimensions 30, 56, 120, and 224, according to the down sampling ratios 
of 1/32, 1/24, 1/16, and 1/12, respectively. Table 2 shows the recognition rates of 
different feature dimensions, our method outperforms SRC about 8% on average. 

 

 

 

Fig. 6. Samples of different illuminations from the Extended Yale B database 

Table 2. Recognition rates of different feature dimensions 

Algorithm 

Feature dimension 

30 56 120 224 

LRC[12] 49.6% 61.9% 71.2% 75.2% 

SRC[3] 53.8% 67.0% 81.6% 88.2% 

FDDL[13] 25.0% 40.0% 81.5% 92.7% 

Our method 67.5% 77.4% 88.5% 91.7% 

4.3 Robustness to Occlusion Samples 

In this part of the experiments, we choose a subset of the AR database consisting of 
both neutral and corrupted images. We consider the following scenarios: 

Sunglasses: We consider corrupted training images due to the occlusion of sun-
glasses. We use seven neutral images plus one image with sunglasses for training, and 
the remainder as test images. Note that the presence of sunglasses occludes about 
20% of the facial image. 
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Scarf: We consider the training images corrupted by scarves, occluding roughly 
40% of the facial images. We apply a similar training/test set choice, and have a total 
of eight training images (seven neutral plus one randomly selected image with scarf) 
and the remainder as test images.  

Sunglasses+Scarf: We consider the case that both sunglasses and scarves are pre-
sented in the images during training. We choose all seven neutral images and two 
corrupted images (one with sunglasses and the other with scarf) for training. A total of 
two test images (one with sunglasses and the other with scarf) are available for this 
case. 

Comparing our method with SRC and FDDL under three different scenarios, Table 
3 summarizes the comparison of three approaches. Our approach achieves the best 
result and outperforms other approaches more than 7% for the sunglass scenario, 2% 
for scarf scenario, and 10% for the mixed scenario when the sizes of dictionaries are 
the same. 

Table 3. Recognition rates of different occlusion samples 

Dimension300 Sunglass Scarf Sunglass+scarf 

SRC[3] 82% 69% 76% 

FDDL[13] 83% 60% 75% 

Our method 90% 71% 86% 

4.4 Influence of Training Samples 

We conduct experiments according to different amounts of training samples, compare 
the recognition rate of our algorithm with that of SRC and FDDL. Table 4 illustrates 
the results. The recognition rate of our method is higher than that of SRC and almost 
equal to FDDL by the same amount of training samples, but our method performs 
better when there are few samples. 

Table 4. Recognition rates of different amounts of training samples 

Algorithm 1 2 3 4 5 6 7 

SRC[3] 45.0% 60.2% 68.5% 77.1% 79.9% 83.5% 87.0% 

FDDL[13] ---- 67.4% 73.4% 79.9% 88.4% 90.7% 92.0% 

Our method 53.0% 68.9% 80.2% 83.8% 87.1% 90.0% 91.2% 

 
In all the experiments, we can find that our method outperforms others. The dictio-

nary constructed via NSCT can optimize the discriminative features and is more  
robust. Compared with SRC and FDDL, our method is higher in recognition rate, 
especially, when the training samples are limited. It can reduce the training time and 
also suitable for lack samples situation. 
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5 Conclusion 

In this paper, we propose an efficient discriminative sparse representation face recog-
nition method. The proposed method obtains fused discriminative features according 
to the characteristics of coefficients in different subbands and their contributions, and 
constructs a dictionary by learning discriminative features. The dictionary constructed 
by our method has two characteristics: Firstly, the subdictionary can optimize discri-
minative features in each class. Secondly, the dictionary has low-rank optimized  
features. The discriminative power of the dictionary comes from minimizing the cha-
racteristic of shift invariable, multi-direction and multi-scale of NSCT. It can reduce 
the influence of illumination, pose, expression and occlusion in both training and 
testing samples and performs well when there are few training samples. We apply our 
algorithm to face recognition and the experimental results clearly demonstrate its 
superiority to numerous other state-of-the-art methods. 
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Abstract. There are many difficulties facing a handwritten Arabic recognition 
system such as unlimited variation in character shapes. This paper describes a 
new method for handwritten Arabic character recognition. We propose a novel 
efficient approach for the recognition of off-line Arabic handwritten characters. 
The approach is based on novel preprocessing operations, structural statistical 
and topological features from the main body of the character and also from the 
secondary components. Evaluation of the importance and accuracy of the se-
lected features was made. Our method based on the selected features and the 
system was built, trained and tested by CENPRMI dataset. We used SVM 
(RBF) and KNN for classification to find the recognition accuracy. The pro-
posed algorithm obtained promising results in terms of accuracy; with recogni-
tion rates of 89.2% for SVM. Compared with other related works and also our 

recently published work we find that our result is the highest among them.  

Keywords: Arabic OCR, Noise removal, Secondaries. 

1 Introduction 

The Arabic alphabet is used by a wide variety of languages besides Arabic (especially 
in Africa and Asia) such as Persian, Kurdish, Malay and Urdu. Thus, the ability to 
automate the interpretation of written Arabic would have widespread benefits. The 
calligraphic nature of the Arabic script is distinguished from other languages in sever-
al ways. 

Optical character recognition (OCR) problems can be distinguished into two do-
mains. Off-line recognition; which deals with the image of the character after it inputs 
to the system for instant scanning. On-line recognition which has different input way, 
                                                           
* Corresponding author. 
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where the writer writes directly to the system using, for example, light pen as a tool of 
input. These two domains (offline & online) can be further divided into two areas 
according to the way that the character itself has been written (by hand or by ma-
chine) to handwritten or printed character .In this paper we deal with the Off-line 
handwritten OCR. Offline recognition of handwritten cursive text is more difficult 
than online recognition because more information is available in online recognition, 
like the movement of the pen may be used as a feature of the character, on the con-
trary the Offline recognition systems must deal with two-dimensional images of the 
text after it has already been written. Although there are a few commercial Arabic 
OCR systems for printed text (like Sakhr, IRIS, ABBYY, etc.), there is no commer-
cial product for handwritten Arabic OCR available in the market. 

There are many other applications for analysis of human handwriting such as writ-
er identification and verification, form processing, interpreting handwritten postal 
addresses on envelopes and reading currency amounts on bank checks etc. The main 
problems encountered when dealing with handwritten Arabic characters are:  

─ The letters are joined together along a writing line. This big difference between 
Arabic handwriting and English handwriting, is that the English characters are easier 
to separate but Arabic are not. 
─ More than half the Arabic letters are composed of main body and secondary com-
ponents. The secondary components are letter components that are disconnected from 
the main body. That secondary component s should be taken into account by any 
computerized recognition system. Also the type and position of the secondary com-
ponents are very important features of Arabic letters. 
─ Each character is drawn in three or four forms when it is written connected to other 
characters in the word depending on his position of the word. The same letter at the 
beginning and end of a word can have a completely different appearance. 

Various approaches have been proposed to deal with this problem. Many 
approaches have been adopted in various ways to improve accuracy and efficiency. 

In our literature review, we focus on offline Arabic handwritten characters. As for 
printed Arabic text recognition, some of the recently used techniques can be found in 
Benjelil et al. [1], Ben Cheikh et al. [2], Kanoun et al. [3], Khan et al. [4], Ben Moussa 
et al. [5], Prasad et al. [6], Saeeda and Albakoor [7],  and Slimane et al. [8]. 

Also for Recent attempts for online recognition of Arabic characters can be seen in 
Kherallah et al. [9], [10], Mezghani and Mitiche [11], Saabni and El-Sana [12], and 
Sternby et al. [13]. 

Benouareth et al. [14] described an offline Arabic handwritten word recognition 
system based on segmentation-free approach and hidden Markov models.  

Abandah et al. [15] extracted 96 features from the letter’s secondary components, 
main body, skeleton, and boundary. These features are evaluated and best subsets of 
varying sizes are selected using five feature selection techniques.  The evolutionary 
algorithm has the highest time complexity but it selects feature subsets that give the 
highest recognition accuracies. 

Abdelazeem et al [16] used vertical and horizontal projections which gave more 
valuable information to capture the distribution of ink along one of the two dimensions 
in the character. Another kind of useful feature is topological features.  

Aburas [17] presented new construction of OCR system for handwriting Arabic  
characters using the technique similar to that is used in wavelet compression.  
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The proposed algorithm obtained promising results in terms of accuracy (reaches 
97.9% for some letters at average 80%) as well as in terms of time consuming. 

Bluche and Ney [18] and [19].made a combination of a convolutional neural 
network with a HMM gave better results compared with recurrent neural networks, 
instead of using only HMM in [20].  

Prum et al [21] introduced a novel discriminative method that relies, in contrast, on 
explicit grapheme segmentation and SVM-based character recognition. In addition to 
single character recognition with rejection, bi-characters are recognized in order to 
refine the recognition hypotheses. In particular, bi-character recognition is able to cope 
with the problem of shared character parts. Whole word recognition is achieved with 
an efficient dynamic programming method similar to the Viterbi algorithm. 

Chowdhury et al [22] formulated a distance function based on Levenshtein metric to 
compute the similarity between an unknown character sample and each training 
sample. He studied also the effect of pruning the training sample set based on the 
above distance between individual training samples of the same character class. The 
proposed approach has been simulated on different publicly available sample databases 
of online handwritten characters. The recognition accuracies are acceptable. 

Chherawala et al [23] built a recognition model is based on the long short-term 
memory (LSTM) and connectionist temporal classification (CTC) neural networks. 
This model has been shown to outperform the well-known HMM model for various 
handwriting tasks, In its multidimensional form, called MDLSTM, this network is able 
to automatically learn features from the input image. The IFN/ENIT database has been 
used as benchmark for Arabic word recognition, where the results are promising. A 
more recent survey on Arabic handwritten text recognition can be found in was 
presented in [24]. 

The goal of this work is to develop a reliable offline OCR system for handwritten 
Arabic characters. In order to overcome the writing variations described before: 

First we make different kind of noise removal then we used different kind of features 
(Whole body features, Main body features and Secondary component features): 

Support vector machine and K-nearest neighbor are then used to classify the 
characters based on the features that were extracted from the input character. Figure 1 
summarizes the methodology adopted in this paper. 

 

 

Fig. 1. The proposed method 
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2 Materials and Methods 

2.1 Binarization 

We use Otsu’s method [25] to convert the grey character image to a binary image 
which is a normalized intensity value that lies in the range [0, 1]. We don’t use this 
default value of binarization (0.5) because by experiment we find out that useful in-
formation have been lost from the character, so we compute the level of intensity for 
each character and then replace all pixels in the input image with luminance greater 
than level with the value 1 (white) and replaces all other pixels with the value 0 
(black). 

2.2 Noise Removal 

Although that noise removal techniques have the effect of slightly distorting the ac-
tual image, but often this is a small price to pay for the removal of distracting noise 
and also we were so circumspect when choosing suitable techniques and their para-
meters. 

We remove from character all connected components (objects) that have fewer 
than 5 pixels. By experience we find that less than 5 connected pixels can be deter-
mined as noise and this operation has no bad effect on character main shape or any 
secondary components. 

Median Filtering 
Median filtering [26] is an image processing filter used to reduce the effects of ran-
dom noise. We adopt a 3 × 3 median filter was because it gave us the best result. 

Dilation [27] 
It is an operation that grows or thickens objects in a binary image the specific manner 
and extent of this thickening is controlled by a shape referred to as a structuring ele-
ment. In this paper we use a square of 2x2 of ones as a structuring element as it gives 
us the best dilation job. 

Morphological Noise Removal 

• Filling: fill isolated interior pixels, for each pixel p if the number of non-zero 
neighbors are 7 pixels. 
• Cleaning: Remove isolated pixels. For each pixel p if all neighbors are zeros.  
• Adjacent neighbors and Diagonal neighbors: For each pixel we check each pixel 
diagonal ({(x−1,y−1 (x−1,y+1), (x+1,y+1), (x+1,y−1)}) and  adjacent ({(x−1,y), 
(x,y+1), (x+1,y), (x,y−1)}) neighbors. 

If three from its four neighbors are zeroes, so it become zero. 
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2.3 Normalization 

Size normalization is an important pre-processing technique in character recognition 
because the character image is mapped onto a predefined size so as to give a represen-
tation of fixed dimensionality for classification. 

We use the Linear Backward mapping method [28]. 

2.4 Feature Extraction 

We divide our features into 3 groups in terms of the kind of information we want to 
extract: 

Features from Whole Character (main body and secondaries) 

Vertical and Horizontal Projections. 
Vertical profile is the sum of white pixels perpendicular to the y axis. Similarly, the 
horizontal projection profile is sum of black pixels but it is perpendicular to the x 
axis.  

Right and Left Diagonal of Each Part of the Four Triangular Character Parts. 
We divide each character into four triangular and crop each part by determining the 
boundaries for the last non-zero pixel as shown in Figure 1. 

 

Fig. 2. a. Upper triangle b. Right triangle c. Left triangle d. Lower triangle 

Then we get the right and the left diagonal for each triangle of the character by: 
The columns of the first output matrix contain the nonzero diagonals of the charac-

ter. See Figure2 “the dark blue arrow”. 
The longest nonzero diagonal in the character is determined. 
For the nonzero diagonals below the main diagonal of the character, extra zeros are 

added at the tops of columns.  
 

 

Fig. 3. a. Right diagonal of “Haa” b. Matrix for non-zero diagonals 
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Number of Secondaries. 
This feature recognizes the connected components and number of them like Hamza 
and dots. 

We use the connected component labeling techniques [29].  
We identify the main body easily as it is usually the largest component so any oth-

er connected components are considered as secondaries. 

Features from Only Main Body of the Character 
Which represent only the character body without any secondaries. 

Number of Holes. 
We see that this feature can give accurate results if we eliminate all secondaries 

with the character correctly. So we keep only the main body for this feature and re-
move any secondaries connected with the character: 

We use again the algorithm [29] but in another way: 
1. After getting labels of all connected components. 
2. Sort the secodaries by size so that the largest is the first. 
3. Keep only the largest connected-components; at this point we eliminate all secon-

daries. 
4. Trace the boundaries of holes inside the character by using Moore-Neighbor tracing 

algorithm modified by Jacob's stopping criteria [30].  

By experiments we find some defects resulted from quick hand written as shown in 
the figure below  

 

Fig. 4. Number of holes for “Haa” a. Num =1 b. Num =2 c. Num = 3 d. Num =4 

Although the above figures represent the same character (  after preprocessing yet (هـ
we unfortunately extract different number of holes from each of them. 

Feature from the biggest secondary component of the character (dots and hamzas). 

Position of Secondaries. 
As we said before that secondary position is the only way to distinguish between a 
character and another. Those groups of characters ( ج , خ , نــ, بــ , يــ ,ـ تـ ) can be  
distinguished by machine or by human eye only by the position of the secondary 
component 

We utilize again the connected component labeling techniques [29]. 
We get easily the largest component so any other connected components are consi-

dered as secondaries then eliminate the largest component which is considered the 
main body of the character then eliminate all the other smallest components after 
sorting them by size so we start by the smallest, except for the last one B (which is 
considered the big connected component after the main body) then determine the row 
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and the column for this component, then divide height of B by width of B to get the 
height/width feature, then count the total number of white and black pixels of B to get 
Density feature. 
Normalization of Feature Data: The attribute data which might have different ranges 
(min to max) is scaled to fit in a specific range 0, 1. We use Min–max method [31] for 
normalization. 

Handwritten Arabic Characters Dataset: Our database of handwritten Arabic sam-
ples is CENPRMI dataset [32]. It includes Arabic off-line isolated handwritten  
characters. The database contains 11620 characters. These characters were written 
according to 12 different templates by 13 writers, with each template adopted by 5–8 
writers. 

2.5 Classification 

Support Vector Machine 
The Support Vector Machine (SVM) was proposed by Vapnik in [33]. SVM classifies 
data by finding the best hyperplane that separates all data points of one class from 
those of the other classes. The best hyperplane for an SVM means the one with the 
largest margin among the classes. The RBF kernel is a measure of similarity between 
two examples (training and testing data).We use SVM package called LIBSVM [34].  

The SVM uses RBF kernel parameters C and γ where C (cost) is a regularization 
parameter which controls the penalty for imperfect fit to training labels, and gamma 
(γ) controls the shape of the separating hyperplane. Increasing gamma usually in-
creases number of the support vectors. Using grid search several experiments were 
carried out. After several trials of tuning parameters we find that c= 12 and gamma 
parameter γ= 0.04 give the best results; Accuracy = 89.2 %. Figure 4 below shows the 
relation between gamma value and recognition rate. 

 

Fig. 5. The relationship between gamma γ and the classification rate 

It is obvious from the previous figure that Gamma γ affects significantly in the 
classification rate. 
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K-Nearest Neighbor (k-NN) [35] 
K-NN Calculates distances of all training vectors and picks k closest vectors Calcu-
late average/majority. Classification using an instance-based classifier can be a simple 
matter of locating the nearest neighbor in instance space and labeling the unknown 
instance with the same class label as that of the located (known) neighbor.  

The k-nearest-neighbor classifier is commonly based on the Euclidean distance be-
tween a test sample and the specified training samples. More robust models can be 
achieved by locating k, where k > 1, neighbors and letting the majority vote decide 
the outcome of class labeling. A higher value of k results in a smoother, less locally 
sensitive, function. We tried to tune neighbor parameter on our Arabic handwritten 
database and from the figure below we can see the effect of number of neighbors on 
accuracy. 

 

Fig. 6. The relationship between number of neighbors and recognition rate 

As shown above. K=10 gives us the best results, but more than 10 neighbors the 
results get worst. 

3 Results and Discussions 

The recognition results of KNN were compared to those of the SVM classifier. Table I 
shows the recognition rate of KNN and SVM. 

Table 1. Comparison between the Used Classifiers 

Classifier KNN SVM (RBF) 
Accuracy Rate (%) 82.5 89.2 

 
Table II shows summarized the most recent work in the isolated handwritten Arab-

ic characters. As we can see they are sorted according to the published date. The data 
used, the feature set and the improvement of recognition rate can also be seen. 
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Table 2. Comparison between Previous Results and Ours 

Previous study Approach Results 
A.A. Aburas et al [36] Haar Wavelet transform 70% 

 
M. Z. Khedher, et al [37] Not mentioned  73.4% 
G. Abandah et al [15]   Combination of multi-objective genetic 

algorithm and SVM 
not mentioned exactly 
 

A. T. Al-Taani et al [38] Decision tree 75.3% 
 

G. A. Abandah et al [39] 
 

Linear Discriminant Analysis 87% 

Our previous work [40] Feed forward neural network. 88% 
Proposed method SVM  89.2% 

 
From the previous table, it is obvious that our system does the best when compared 

with other systems in terms of recognition rate, although other systems make great 
contributions especially in terms of accuracy and using of modern classification tech-
niques.  

The main contribution of this research includes building of a new offline Arabic 
handwritten character recognition system which is developed based on the novel ex-
tracted feature after some new techniques of preprocessing operations. The evaluation 
of our system is done by applying those features on SVM as well as KNN. The pro-
posed method obtained competitive accuracy rates at 89.2%.  

The results illustrate that higher recognition accuracies are achieved using the pro-
posed feature extraction technique. The proposed method (by SVM) gives a recogni-
tion rate of about 100 % for ( أ, ي, ت , ن, م, ل, خ, ج, ح, ه ـ   ). 

The worst recognized characters was (ف) by SVM and also by KNN. It was mis-
classified as (ن and ق) this is because the similarities between those two characters in 
some writing styles and also they all have upper secondaries and holes. The second 
misclassified character is (ع) was misclassified as (ح) by SVM as well as by KNN. 
We think that this is because the similarities in their shapes especially at the lower 
part. The third misclassified character is (س) was misclassified as (ص) by SVM as 
well as by KNN. We think that this is because the similarities in their left part. 

We think that preprocessing operations as well as selecting most proper feature can 
minimize classification error. For example we use different kinds of noise removal 
(statistical and morphological) for erasing useless parts of the character which can 
occur during hand writing process, ink stain or even by digitizing the image.  We 
make also dilation for fixing damaged pixels of the character occurred as a result of 
preprocessing operations (binarization- noise removing) or during the digitizing 
process. Any of those preprocessing operations could have bad effects on character 
shape if they don’t used properly and this can reflect on the quality of the extracted 
features for example if we overuse of noise removal techniques we can easily remove 
a dot if it was written slightly and consequently we lose very important information of 
this character dots. 

We extract features from the whole character, as well as, its main body and sec-
ondary components themselves which provide more valuable features that exploit the 
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recognition potential of the secondary components of handwritten Arabic letters. 
These results also confirm the importance of the secondary components of the 
handwritten Arabic characters. For example if we make a comparison between س and 
 we will find no differences between each pair of them except for the ض and ص ,ش
secondary component.  

We use not only different kinds of features (structural features, statistical features, 
topological features) which represent different aspects of the character’s characteris-
tic, but also (after many trials) we choose the most significant features for distinguish-
ing between characters. After careful examination of the samples that were incorrectly 
recognized, we concluded that most of these samples are hard to recognize by native 
or even by a human expert reader. However, we think that the door is open to search 
for extracting new features that capture subtle differences in loop shapes and second-
ary types. 

4 Conclusion 

This paper presents a novel approach for extracting features to achieve high recogni-
tion accuracy of handwritten Arabic characters. We tune the used parameters during 
the preprocessing phase including binarization, normalization and some noise remov-
al methods accurately to preserve all useful information that can be extracted from the 
character.  

Selecting proper features for recognizing handwritten Arabic characters can give 
better recognition accuracies, therefore we included statistical, morphological and 
topological features. Also we pay more attention to the secondaries like secondary 
position, ratios and density because we think that may overcome some of handwritten 
characters variations. Although, there are some challenges with some characters, the 
overall recognition rate is encouraging especially when compared to other handwrit-
ten Arabic character systems.  

After examining the recognition accuracy of each character using SVM and KNN 
we found that the best accuracy is given by SVM which is 89.2%. The other misre-
cognized characters such as (ع ,ف) we think that this is because those characters simi-
larities between those characters and others in some writing styles and also they have 
secondaries and holes. Our future work includes increasing the efficiency of the pro-
posed approach especially for the characters that were not recognized well by finding 
out more powerful features, also including variations in writing the main body of the 
character and also the secondaries.  
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Abstract. Human motion analysis is a vital research area for healthcare sys-
tems. The increasing need for automated activity analysis inspired the design of 
low cost wireless sensors that can capture information under free living condi-
tions. Body and Visual Sensor Networks can easily record human behavior 
within a home environment. In this paper we propose a multiple classifier sys-
tem that uses time series data for human motion analysis. The proposed ap-
proach adaptively integrates feature extraction and distance based techniques 
for classifying impaired and normal walking gaits. Information from body sen-
sors and multiple vision nodes are used to extract local and global features. Our 
proposed method is tested against various classifiers trained using different fea-
ture spaces. The results for the different training schemes are presented. We 
demonstrate that the proposed model outperforms the other presented classifica-
tion methods. 

Keywords: human motion analysis, time series classification, multiple classifi-
er systems. 

1 Introduction 

Human health monitoring continues to be an increasingly active research area. Ubi-
quitous healthcare systems provide information necessary to recognize emerging 
physical problems. This is useful for monitoring and controlling the elderly and 
chronically ill patients inside their homes [1]. In general, human activity can be cap-
tured within a home environment. This can automatically provide an online analysis 
of the user’s health status [2]. One of the most promising health care areas is human 
motion analysis. Understanding user walking patterns and identifying changes in eve-
ryday behavior can reveal the onset of adverse health problems. Moreover, capturing 
walking abnormalities is important for assessing people who may have a greater risk 
of falling [3]. A set of sensors is used to capture information of human activity pat-
terns. Recognizing various activities requires different sensors at different locations 
and time. Among sensors that are helpful in context recognition tasks are Body Sen-
sor Networks and Visual Sensor Networks. Body Sensor Networks (BSNs) are wire-
less wearable sensors that capture continuous data over extended periods of time [4]. 
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BSNs can be easily worn with minimal inconvenience. Wearable sensors prove to be 
helpful in health monitoring of patients in ambulatory settings [5,6] and in measuring 
gait parameters [7,8]. Visual Sensor Networks (VSNs) are ambient sensors that con-
tain a number of low cost vision sensor nodes [9]. Information computed from distri-
buted multiple vision nodes can monitor the movement of human body. 

In this paper we address the problem of human motion analysis from a time series 
perspective. Sensor data is a typical form of time series observations captured along a 
period of time. We propose a new methodology for classification of human motion 
activity by retaining the temporal aspect found in sensor captured measurements. The 
proposed architecture performs automated differentiation between impaired and nor-
mal walking gaits. Real time motion monitoring and recognition is implemented for 
gait analysis. The objective is to identify walking patterns for unseen individuals us-
ing a training set of different subjects. We previously tested the model on character 
and sign language recognition applications and produced satisfactory results [10]. 

The proposed model uses multiple classifiers to integrate feature and distance 
based methods extracted from body sensor and multiple vision nodes. The aim of this 
study is to investigate the different classifier integration methods for the problem of 
human motion analysis.  Different types of local and global features are explored. 
Our model is mainly though for real time classification, however we also investigate 
the performance in an offline setting and discuss impact of preprocessing and feature 
effectiveness in this case.  

The data set used represents information captured by an ear worn body sensor node 
and four wireless cameras. A home care environment is simulated to record motion 
information for different targets.  

The paper is organized as follows: The following section highlights important 
background related to human motion analysis, time series classification and multiple 
classifier systems. Section 3 presents the proposed ensemble. Section 4 introduces the 
data set, experimental setup and results. The discussion is presented in section 5. The 
final section concludes the paper and discusses future work. 

2 Background 

2.1 Human Motion Analysis 

The process of human motion analysis can be classified into three parts: human detec-
tion, tracking and behavior recognition [11]. In this work, we are concerned with hu-
man behavior understanding. Most techniques for activity recognition using sensor 
data follow a number of steps [12]:  First the captured signal is divided into windows. 
The windowing technique segments the signal sequentially into smaller parts with or 
without overlap [13-16]. The second step is to extract features from each window. 
These features should be able to discriminate between different classes of action. 
Widely used features include mean, variance, entropy, energy, skewness and kurtosis 
[16-20]. Also the frequency content of a signal is analyzed using extracted frequency 
domain features. Some of these features such as the fast Fourier transform entropy can 
be used to differentiate between actions with highly varying acceleration patterns [13]. 
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Finally, the generated features are used as input to a classification process. The last 
step is applying a classification algorithm to distinguish between different human ac-
tivities. Comparisons of different classifiers for activity recognition are found in [13] 
and [21]. 

2.2 Time Series Classification 

Time series data is a sequence of observation values ordered with respect to time in 
ascending order [22]. Time series analysis studies the structural dependencies be-
tween the observations. Among the challenging tasks in time series analysis is time 
series classification. Similar to conventional supervised classification, each series is 
associated with a class label. During training phase, examples of series with known 
classes are presented. The goal is to learn patterns and assign unlabeled time series 
into predefined classes.  

Three main approaches are used along the literature for time series classification; 
distance based methods, feature extraction followed by a classification method, and 
finally model based classification [23]. In the distance based method approach a dis-
tance function is used to define the similarity between time series data [24]. Many 
methods have been proposed to define similarity between time series data. Some of 
these techniques are listed in [24]. The most widely popular techniques are Euclidean 
distance (ED) and Dynamic Time warping (DTW) [25]. Another approach for time 
series classification is transforming the observations into a feature vector thus allow-
ing the usage of a conventional pattern recognition scheme [26,27]. Global and local 
features are extracted from each time series sample. These features represent the 
global characteristics and the temporal aspect of a time series respectively [26]. Other 
methods include classifying time series using modeled based algorithms such as Re-
current Neural Networks (RNN) [28,29] and Hidden Markov Models (HMM) [30]. 

The field of Multiple Classifier Systems (MCS) has attracted great interest in pat-
tern recognition research. The main objective is based on the continuous need for 
improving the classification accuracy. The idea of MCS is combining learners to gen-
erate more precise results than individual classifiers [31]. The decision aggregation is 
dependent on using competitive experts as single classifier, and combining their dif-
ferent predictions to provide complementary information about the problem. MCS 
works best when base classifiers produce accurate and diverse results [32]. 

3 Proposed Ensemble Model 

A multiple classifier systems approach is proposed for human motion recognition 
using time series analysis. The proposed architecture is a two layer ensemble; it com-
bines classifiers trained with different features and distance measures. The decision 
fusion is performed using a trainable combiner that learns the class from the outputs 
of classifiers in the first layer. 

Figure 1 shows the model architecture. Initially three base classifiers are trained 
independently with a different set of features. The first classifier is trained using local 
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features while the second classifier is trained using global features. The third classifier 
is a K Nearest Neighbor classifier with Dynamic Time Warping similarity distance 
function. Next, a fusion layer is trained to perform mapping of the classifiers’ outputs 
into the set of desired class labels. 

 

 

Fig. 1. Ensemble Architecture Block Diagram 

The success of the ensemble depends on the use of different models and feature 
spaces for training the base classifiers. This provides complementary and diverse 
information about each subject’s walking pattern. The model captures differing in-
formation from sensors, and uses them to train individual classifiers to produce inde-
pendent errors. The outputs of the three base classifiers are used as training data for 
the fusion classifier to make an improved estimate of the activity pattern. The com-
biner classifier is adaptive enough to learn the weights of different classifiers and the 
best combination of base classifiers’ decisions. As follows we present the details of 
the proposed ensemble model.  

3.1 Feature Extraction 

The precision of the classification process is highly related to the selection of 
attributes. Both local and global features are used in order to capture the fundamental 
trends in the motion activity. Each type will represent a different aspect of the struc-
ture of patterns, thus generate accurate approximations. 

Local features are features extracted from interval regions of a time series [33]. 
Sliding time windows are used to divide the sensor signals into segments. A sliding 
window covers a small portion and moves along the series, extracting a set of features 
from each window. The number of windows varies from a time series to another. For 
time series T, a sliding window WJ is moved along the series dividing it into parts Tሺiሻ୧ୀଵI  for each windowW୨, j ൌ 1, … J. Starting from the first observation, the sliding 
window extracts the features until the whole time series is covered. This method will 
reveal temporal information in BSN and VSN sequences. Spikes, edges or sudden 
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abrupt changes in time domain of a walking pattern are defined. Local features ex-
tracted are the average of raw values, minimum, maximum, amplitude and standard 
deviation. 

Global features are based on the global characteristics and information of the 
whole time series instead of the temporal property [26]. Global features give a meas-
ure of the overall properties of a subject’s complete walking activity. By following 
the general trend of the entire movement, valuable gait information is extracted. This 
information is not affected by the contrasting sub regions in the pattern. Each se-
quence is analyzed independently and also the association between different series is 
examined. The total distance covered by each time series is calculated. Also we com-
pute the Euclidean distance between each pair of series, the minimum and maximum 
of each attribute and the mean of each sequence. 

3.2 Similarity Measure 

Dynamic time warping (DTW) [25] is an algorithm that measures the similarity 
among sequences of data. The algorithm computes the best alignment between two 
walking patterns that can be of different length. DTW can find the likeness between 
sequences that are warped non-linearly in time dimension. Unlike Euclidean distance, 
if two similar gait measurements are not exactly timely aligned, DTW algorithm can 
map them to the same class. In other words, the algorithm is able to examine two 
series very much like the way humans may compare and recognize the similarity be-
tween them. 

The DTW algorithm can be formulated as follows: 
Given two sequences X and Y of length m and n respectively: X ൌ xଵ, xଶ, … , x୫  Y ൌ yଵ, yଶ, … , y୬ 
The goal is to find a path which minimizes the total distance between the two se-
quences. 
The sequences are used to form a matrix M of size [m, n]. Each cell in M denotes an 
alignment between elements  x୧ Ԗ X and y୨ Ԗ Y where: 0 ൑  i ൏ ݉ ܽ݊݀ 0 ൑  ݆ ൏ ݊  
This alignment is denoted by the squared distance between the points x୧ and y୨.  dሺx୧,y୨ ሻ ൌ ሺx୧ െ  y୨ ሻଶ 
The matrix is searched to find an optimal distance path W between the two sequences. W ൌ wଵ, wଶ, … , wK 
Each w୩corresponds to a d(i, j) point in the matrix M. The optimal path is the one 
that minimizes the distance: DTWሺX, Yሻ ൌ minሾ෍ሺw୩ሻK

୩ୀଵ ሿ 
Where (w୩) is the k୲୦ matrix element in the warping path W. 

Dynamic programming is used to find the minimal warping path W. Dynamic Pro-
gramming divides the problem into sub problems, and uses the solutions repeatedly to 
solve the original problem [34]. 
The path is discovered using the following recurrence: 
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γ (i,j) = d(i,j) + min{ γ(i-1,j-1) , γ(i-1,j ) , γ(i,j-1)} 
For each element in the matrix d(i,j), the three adjacent elements are examined, and 
the minimum cumulative distance γ (i,j) is selected in a recursive way. 

The proposed ensemble uses KNN classifier with DTW algorithm applied as a si-
milarity measure. When minimal distance is found between a given sequence and a 
class label, the pattern is assigned to this particular label. A warping path is calculated 
between each series in the training data and in the test sequence. An unknown input 
pattern is compared to all labeled series. The classification is based on ranking the 
labeled instances by their similarity measure to the unlabeled pattern. 

3.3 Ensemble Fusion 

The fusion layer for the architecture is a classifier which adaptively combines the 
outputs of the three classifiers to produce the final class label. The fusion classifier is 
trained on a separate data set that has not been used to train the base classifiers. This 
means that a training set is used to build the base classifiers, and a validation set is 
used to train the combiner classifier using the outputs from the base classifiers as 
features. This two layered ensemble architecture allows the combiner classifier to 
learn the mapping between the labels produced from the base classifiers and the de-
sired class labels. Since the base classifiers are trained using different feature spaces, 
each classifier makes different mistakes and produces independent errors. Thus, the 
trainable combiner learns the different outputs of each classifier (including their indi-
vidual errors). After training level one and two of the architecture, a separate test set 
is used to evaluate the classification process. 

4 Data and Experiments 

4.1 Data Set 

The data set represents motion information of different targets. It is obtained from 
[35] and experiments were carried out in a lab-based home monitoring environment. 
The data set contains accelerometer information from a wearable body sensor and 
information from multiple vision nodes. The cameras simulate visual information 
from vision sensor nodes by capturing and sending images at 10 frames per second. 
The proposed framework in [35] employs ubiquitous sensing to acquire non redun-
dant, complimentary features for improved motion analysis. The data set consists of 
two classes; impaired walking (limping) and normal walking patterns. Ten subjects 
are used, and for each subject four different examples for each limping and walking 
patterns are recorded. 

4.2 Setup and Results 

Data from body and visual sensors are captured in frames per second. Thus informa-
tion from each sensor is considered a time series sample. The temporal aspect in the 
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measured data is used to build the classification model. A set of experiments are car-
ried out for evaluating the proposed model. Experiments are performed for real time 
and offline motion classification. 

For the DTW approach, data abstraction is performed for reducing the size of the 
input time series. This helps in speeding up the algorithm. The time series is reduced 
and the warping path is found by DTW on lower resolution time series. Each pair of 
adjacent observations in the series is averaged, this way the size is reduced by the 
factor of two every time resolution is decreased.  

In the first experiment we test the efficiency of our proposed ensemble compared 
to conventional single classification techniques using both local and global features. 
The effect of these features on classification accuracy is analyzed. In this experiment, 
our objective is real time classification; to recognize the motion pattern instantly. We 
also test the impact of different sensor nodes on motion analysis and present the re-
sults for training with BSN and VSN data. Next we explain the set up for the first 
experiment followed by the results. 

The following single classifiers are used: support vector machines, decision trees, 
K - Nearest Neighbor and naïve bayes classifiers. As for the proposed ensemble, it’s 
diversity depends on the different feature representations. Two base classifiers are 
trained using local and global features, and a KNN classifier that uses DTW as the 
similarity measure. To train the combiner classifier the output labels from the base 
classifiers are used as features. These features along with the actual labels from the 
training set are the input to the second fusion layer. Support vector machine classifier 
with polynomial kernel is used for combination due to its generalization capability. 
WEKA [36] is used for our implementation. All experiments are conducted using 
leave one out method. The classification accuracy of the proposed framework is tested 
using unseen subjects.  

A window of three seconds is used for training. This decreases the delay, and also 
increases the number of training samples used in classification, since each subject’s 
recordings are divided into many training samples, three seconds each. We test 
whether the time series model can represent the short window well enough to recog-
nize the subject’s motion pattern. Global features are extracted from the whole motion 
sample. Windows representing one second each are defined concurrently, these win-
dows are used to extract local features.  

Below are the findings of the first experiment. Tables 1 and 2 present the results 
for classification using BSN and VSN respectively. The tables demonstrate the results 
for classification using local and global features. Also, the accuracy of the proposed 
ensemble architecture (section 2) is presented. The mean and standard deviation for 
the different classification accuracies are shown. 

Table 1. Percentage accuracy for single classifiers and proposed ensemble - BSN data set – real 
time experiments 

Single Classifiers Local Features Global Features 

Naïve Bayes 72.03% ±8.42 84.78% ±2.11 

Decision Tree 78.89% ±6.34 81.20% ±2.53 



284 R. Salaheldin, M. ElHelw, and N. El Gayar 

Table1. (Continued) 

KNN 80.01% ±3.52 92.94% ±1.90 

SVM 80.66% ±3.54 93.94% ±0.9 

Proposed Ensemble 96.48±0.47 

Table 2. Percentage accuracy for single classifiers and proposed ensemble - VSN data set – real 
time experiments 

Single Classifiers Local Features Global Features 

Naïve Bayes 74.64±12.76 81.45±1.89 

Decision Tree 79.34±10.40 93.75±0.9 

KNN 84.2±9.48 93.23±0.89 

SVM 86.43±8.58 94.11±0.88 

Proposed Ensemble 98.48±0.52 
 
In general, results reveal that using global features outperforms local features. Ad-

ditionally, Support Vector Machine is the winning ‘single’ model using local and 
global features for both data sets. As for the sensor recordings, training using BSN 
and VSN data yield similar results. We should note that the result of training single 
classifiers using both BSN and VSN data yields close results to when only BSN data 
is used. Finally, the proposed ensemble architecture outperforms the performance of 
single classifiers. The classification is improved significantly by combining feature 
and distance based techniques and introducing the trainable fusion layer. 

The second experiment is presented next. To verify the usefulness of our approach, 
we test offline classification using the whole sensor recordings. In some applications 
it is useful to use the whole subject’s motion pattern as input data, this provides more 
information about the motion pattern, but does not allow online classification. Similar 
to real time classification, smaller windows are moved along each sensor recording to 
extract the local features. The number of windows varies for each series under con-
sideration; and depends on the number of instances produced from each subject’s 
recordings.  

Table 3. Percentage accuracy for single classifiers trained using different features – BSN and VSN 
combined – offline experiments 

Single Classifiers Local Features Global Features 

Naïve Bayes 91.78±6.2 85.34±4.81 

Decision Tree 93.52±5.95 81.89±7.29 

KNN 89.65± 7.23 76.72±9.25 

SVM 90.89±6.11 84.91±5.29 

 
Table 3 shows the accuracies of single classifiers trained using local and global 

features from both sensors. Here, global features are clearly performing worse in of-
fline experiments than in real time results. The table also indicates that Decision Tree 
produces best results for local features while Naïve Bayes outputs the best results for 
global features. This is different from previous experiments where Support Vector 
Machines outperformed other single classifiers.  
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Finally, studies have indicated the need for preprocessing the data before classifi-
cation [35]. In the next experiment we evaluate the usefulness of preprocessing. We 
note that the preprocessing is performed for the offline experiment, which makes this 
step unsuitable for real time continuous classification. 

The average and variance of the signals are used as features instead of the raw data. 
For each sensor signal, a time window of size 4 seconds and a step of one eighth of a 
second are used to calculate the average and variance of each time series. The average 
and variance of the features from the four cameras and from the BSN node are aug-
mented together to form the feature vector used for classification.  

Consistent with the previous experiments, the results of training using individual 
sensors is not different from combining them together. We choose to present the re-
sult of concatenating BSN and VSN data. Below are the results for single classifiers 
using data from both sensors. 

Table 4. Percentage accuracy for single classifiers trained using different features – BSN and 
VSN combined – offline experiments- with preprocessing 

Single Classifiers Local Features Global Features 

Naïve Bayes 100.00±0.00 91.25±13.93 

Decision Tree 100.00±0.00 95.00±10.05

KNN 97.50±7.54 77.00±20.93 

SVM 100.00±0.00 92.25±14.08 

 

Table 4 presents the results for training single classifiers using the offline recogni-
tion scheme. Most classifiers trained using local and concatenated features achieve 
accuracies close to 100%. Also, in this experiment the local features produce better 
results than global features for all classifiers. This result will be further analyzed in 
the discussion section. The table displays the results for using both BSN and VSN 
data combined. The K Nearest Neighbor yields worse results than other three single 
models using local features. 

5 Discussion 

The results show that the proposed ensemble architecture outperforms the single clas-
sification methods in case of real time experiments. The classification is improved 
because of the multiple representation of information extracted from each sensor. 

In particular, the classification is boosted by combining feature and distance based 
techniques and introducing the trainable fusion layer. The combiner classifier can ef-
fectively learn the errors of the base classifiers. The choice of diverse base classifiers 
produces independent errors and the process of aggregating the decisions results in 
better accuracy.  

It is worth noting that our experiments reveal that there is a relation between the 
time series length and the impact of both local and global feature vectors. As the size 
of the data set decreases the global features become more effective than the local 
features. This happens because as the width of the local feature windows decreases, 
the features become less meaningful and do not truly discriminate among the  
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extracted subsets, thus the trained model is unable to describe the classes at hand. To 
illustrate this observation, we note that the offline experiments are performed with the 
whole data series, while the real time experiments use a shorter window. In offline 
experiments, local features seem to outperform global features since the temporal 
aspect is fully maintained in the time series data. Alternatively, in the real time expe-
riments, when only a significantly smaller portion of the series is used for training, 
global features have better impact on classification accuracy over other features. 

Combining the two sensor data together does not boost the accuracy of classifiers. 
There is no significant difference over the results using BSN or VSN individually.  

It is clear that classification accuracy increases significantly when preprocessing 
the data before classification instead of using the raw series. The processed values 
provide more useful information about the motion pattern over the individual  
samples.  

6 Conclusion and Future Work 

The focus of this work is using pattern recognition techniques to analyze human mo-
tion patterns and classify an unknown motion sequence. In this paper, an efficient 
multiple classifier design is proposed. The ensemble is capable of recognizing the 
difference between normal and impaired walking gaits. We show the results for train-
ing classifiers using local and global features extracted from sensor data. Future work 
includes speeding up the distance calculations for reducing the computational cost of 
real time experiments [37]. Also we are going to analyze the effect of different com-
ponents of the ensemble on the results and compare it to other techniques such as 
Recurrent Neural Networks. Also the dataset will be extended to cover a wider range 
of subjects. Finally, the proposed method is intended to be tested in a wider range of 
applications in the ubiquitous computing field, such as activity recognition. 
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Kächele, Markus 83, 153
Kamal, Eslam 23
Karali, Abubakrelsedik 23

Kessler, Viktor 165
Kestler, Hans A. 141
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