Formalizing Execution Semantics of UML
Profiles with fUML Models

Jérémie Tatibouét, Arnaud Cuccuru, Sébastien Gérard, and Frangois Terrier

CEA, LIST, Laboratory of Model Driven Engineering for Embedded Systems,
P.C. 174, Gif-sur-Yvette, 91191, France
{j eremie.tatibouet, arnaud.cuccuru, sebastien.gerard,
francois.terrier}@cea.fr

Abstract. UML Profiles are not only sets of annotations. They have se-
mantics. Executing a model on which a profile is applied requires seman-
tics of this latter to be considered. The issue is that in practice semantics
of profiles are mainly specified in prose. In this form it cannot be pro-
cessed by tools enabling model execution. Although latest developments
advocate for a standard way to formalize semantics of profiles, no such
approach could be found in the literature. This paper addresses this issue
with a systematic approach based on fUML to formalize the execution
semantics of UML profiles. This approach is validated by formalizing the
execution semantics of a subset of the MARTE profile. The proposal is
compatible with any tool implementing UML and clearly identifies the
mapping between stereotypes and semantic definitions.

Keywords: fUML, Alf, Profile, Semantics, Execution, MARTE.

1 Introduction

A model of a system relies on a particular language. This language (i.e. its ab-
stract syntax) may support syntactic constructs enabling engineers to describe
structure and/or behavior. Choices made by engineers at design time usually
have an important impact on how the future system behave at runtime. The
interest for them is to put confidence in their modeling choices [19]. Model ex-
ecution is a solution to help obtaining such confidence. By enabling engineers
to have a direct insight in the models at runtime, it enables them to evaluate
impact of their modeling choices. This approach by execution is complementary
with formal technics. For instance, in the context of a large applicative model, it
can be used to run a set of well identified scenarios to ensure about correctness
of a particular behavior instead of trying to explore a huge state space.
Executability of a language is a property provided both by the way a language
semantics is formalized and by the language chosen to formalize it. The semantics
in itself only defines the meaning of a language [8] regardless of the form (e.g.
operational, axiomatic, translational) it is formalized. Interest of having well-
formalized semantics for our languages is widely admitted by the model-driven
engineering (MDE) community. Beyond executability, the semantic formalization

J. Dingel et al. (Eds.): MODELS 2014, LNCS 8767, pp. 133-148, 2014.
© Springer International Publishing Switzerland 2014



134 J. Tatibouét et al.

ensures language users share a common understanding of artifacts (e.g. models)
built with the language and that verification techniques can be applied to assess
correctness of the semantics.

Since 2010 and the release of foundational UML [1] (fUML) a subset of UML
limited to composite structures, classes (structure) and activities (behavior) has
a precise execution semantics. This semantics is formalized as a class model called
semantic model. Application models designed with this subset of UML are de-
facto executable. However if these models have applied profiles, semantics of
these latter have no influence in the execution. There are two reasons for that.
First fUML is agnostic of stereotypes. Next, most of the time profiles semantics
remain specified in prose (at the best). For instance, this is the case for MARTE
[3] and SysML [4] which are widely used profiles. This observation is highlighted
by [6] and confirmed by Pardillo in [7]. In this systematic review of UML profiles,
the author identifies reasons that may lead language designers to keep semantic
definitions informal. The lack of guidelines and tool support to assist language
designers in this task are the main reasons. This considerably limits interest of
profiles and their practical usability in a context in which engineers look for
rapid prototyping and evaluation of their modeling choices at early stages of
their design flows.

Although latest developments advocate [9] for a standard way to formalize
semantics of profiles, no such approach could be found in the literature. This pa-
per addresses this issue with a systematic approach based on fUML to formalize
the execution semantics of UML profiles. The central idea is that if a profile has
execution semantics, it can be specified as a fUML model being an extension
of the f{UML semantic model. The approach aims to guide language designer to
designing semantics with fUML. It is completely model-driven and compatible
with any tools implementing UML.

This paper is organized as follows. In section 2 we provide key points to un-
derstand fUML and the architecture of its semantic model. Next, in section 3
we review the approaches proposing to formalize language semantics and espe-
cially those related to UML profiles. According to this analysis, we define the
objectives a systematic approach to define profile semantics must fulfill. Section
4 describes the process of extending the f{UML semantic model and semantics
relationships with the profile. In section 5 we validate our approach by defining
the execution of semantics of a subset of MARTE [3]. Benefits and limitations
of the approach are discussed. Finally, section 6 presents the tooling built to
support the methodology and section 7 concludes the paper.

2 fUML Background

This section provides an overview of the fUML semantic model and identifies
its extension points. The fUML semantic model defines a hierarchy of semantic
visitors specified by UML classes. There are three fundamental types of visitors:
Value, Activation and Ezecution.



Formalizing Execution Semantics of UML Profiles with f{UML Models 135

— Visitors defined as sub-classes of Value define how instances of UML struc-

tural elements are represented and handled at runtime. For instance, Object
is a visitor which captures the execution semantics of Class (cf. Figure 1).
This means Object is the representation of an instance of Class. It is ex-
tended by CS Object in the context of composite structures to capture a
wider semantics.

— Visitors defined as sub-classes of ActivityNodeActivation implement the ex-

ecution semantics of activity nodes. For instance, AcceptEventActionActiva-
tion (cf. Figure 1) captures the semantics of AcceptEventAction which is an
action node and so an activity node.

— Visitors defined as sub-classes of Ezrecution are not related to a particular

element of the abstract syntax considered by fUML. Instead, they are in
charge of managing a set of activation nodes capturing a behavior.

In fUML, each semantic visitor (associated or not to an element of the UML

abstract syntax subset) captures execution semantics through its operations.
Extending the execution semantics captured in the fUML semantic model can

be

Structure |

! Behavior !

Others

realized by extending (i.e. inheriting) one or more visitors.
Syntax : Semantics : Semantics for CS
I I
' £ Object }{}—H £ s Object
I I
: - :
| ‘ ;;EExerufion | |
I I
_______________1 _____________________ : _____________________
(UML) +nodd [ b e
o 11 = ActivityNodeActivation :
) I
I 2 I
‘ = ActionActivation I :
I
a2 |
I
I

g | =
‘ = Executor h—y—{ = CS_Executor ‘
|

|

|

|

|

|

|

|

|

| re—,

: ‘ =l Locus iﬂ—:—‘ =i €S_Locus ‘
|

|

|

|

| s | -

: ‘ I"I ExecutionFactoryl3 i(]—H = (S_ExecutionFactory ‘
1

Fig. 1. foundational UML background

The fUML semantic model also provides key classes (i.e. Locus, Executor and

EzecutionFactory shown in Figure 1) that are responsible for instantiation and
storage of semantic visitors.

— Locus defines a virtual memory keeping track of values created at runtime.

It is reponsible for instantiation of classifiers. This formalizes the semantic
mapping exisiting between Class and Object.



136 J. Tatibouét et al.

— FEzecutor defines the entry point of an execution in the f{UML semantics.

— FExecutionFactory is responsible for the instantiation of visitors inheriting
from FEzecution and ActivityNodeActivation. The instantiation strategy for-
malizes the relation between visitors (e.g. AcceptEventActionActivation) and
abstract syntax elements (e.g. AcceptEventAction).

Providing these key classes with extensions enables integration of new se-
mantic visitors and specification of their instantiation rules. Details on fUML
architecture can be found in [1] and [2].

3 Related Works Analysis

Language semantics can be specified with different techniques: operational, ax-
iomatic, denotational or translational. Although it is possible to execute models
from axiomatic semantics as shown in [12], in practice languages requiring to be
executable have a semantics defined using either the operational technique or
the translational technique.

The operational technique enables the definition of an interpreter for a par-
ticular language. This latter captures the semantics of each statement of the
language in a simple set of operations. These operations can be expressed with
any language having an execution semantics.

In the area of MOF-based Domain Specific Modeling Languages (DSMLs)
two approaches have been proposed to define execution semantics using the op-
erational technique: Kermeta [10] and zMOF [11]. The main difference between
these two approaches is the formalism used to specify behavioral concerns at
the metamodel level. Kermeta provides its own action language and zMOF pro-
poses to use fUML. In the first case the formalism is not standardized while
in the second case it is standardized which is an important aspect to ensure
the semantic description can be supported by different tools. Although both
approaches are interesting they do not address the problem of formalizing the
execution semantics of UML profiles. Indeed, profiles are not standalone lan-
guages but extensions to UML enabling expression of domain specific concerns
over UML models. Consequence is that their semantics must be expressed as
compliant extensions to UML standard semantics regardless the formalism used
to formalize these extensions.

Few proposals have been made in the area of UML-based languages to system-
atize the way execution semantics are described. According to what we found in
the litterature, proposed approaches rely on translational semantics. The trans-
lational technique aims to map a language abstract syntax to another language
abstract syntax which is intented to have a formalized semantics. It exists dif-
ferent solution to implement the translational approach. Contributions trying
to provide UML semantics with an execution semantics seem to focus on code
generation and model transformation.

Code generation approaches (e.g. the one presented in [13]) have the drawback
to encapsulate the semantics of the language within the code generator. The



Formalizing Execution Semantics of UML Profiles with f{UML Models 137

consequence is that UML profile users have to study the implementation to
understand its semantics [9]. In addition, during generated code analysis a strong
technical effort will be required to distinguish what represents the semantics and
what represents the model.

The probably most complete approach proposing to use model tranforma-
tions for specifying UML profiles execution semantics is the one presented in
[15]. Authors proposal is to represent UML abstract syntax and its extensions
(i.e. stereotypes) as an ASM [14] domain whose semantics is then described op-
erationally using abstract state-machines (i.e. extended Finite State Machines).
The ASM language seems to be a good target to express equivalent UML mod-
els. It has formal basis, it is known by the community and supported by tools.
However the approach implies models produced by users are transformed into
equivalent ASM representations. Therefore the execution is performed on trans-
formed models and not on the users models. The consequence is that users will
have to investigate the transformation program to understand the impacts of
their modeling choices in terms of execution.

According to the analysis of the related works, our working context and ex-
perience, we derive a set of objectives a systematic approach to formalize the
execution semantics of UML profiles must provide. In addition we motivate our
choice to use fUML as semantic pivot.

1. Semantic designed through the methodology must be tool agnostic. Ratio-
nale: To enable language users to share a common understanding of the
semantic, the description must be compatible between different tools. The
best way to achieve this goal is to rely on a standard.

2. Semantic specification must be based on standard UML semantics. Ratio-
nale: Profiles are UML based languages. Extensions made to UML have im-
pacts on its semantics. This latter is formalized by fUML therefore profiles
semantics should be extensions to fUML.

3. Effort required to understand the semantics must be minimized. Rationale:
Translational approach increases the technical effort to understand a se-
mantic specification. Indeed, they introduce intermediate steps (e.g. model
transformations) to obtain an executable model from the source model. This
step must be investigated in addition to the semantics of the target lan-
guage to enable the designer to understand impact of his modeling choices
at runtime.

4. Clear relationships between stereotypes and semantics definitions must be
defined. Rationale: Providing a language with a semantics means the abstract
syntax elements of this language are mapped to their semantic definitions
(i.e. meanings). Profiles do not escape the rule. It must possible to identify
elements of the specification capturing the semantic of a stereotype.

5. Verification techniques must be applicable to ensure the correctness of the
semantic specification. Rationale: Languages used to describe critical sys-
tems (e.g. real-time systems) may have to demonstrate their conformance to
a specific semantics. UML base semantics is based on mathematical founda-
tions which ensures verification techniques are applicable.



138 J. Tatibouét et al.

4 Extending fUML Semantic Model: A Model-Driven
Approach

This section presents the process of extending the f{UML semantic model to for-
malize profile execution semantics. In sub-section 4.1 we present the relationships
existing between a profile, the fUML semantic model and its extensions. Next,
in section 4.2, we provide a detailed description of the methodology enabling
the construction of a semantic model formalizing profile execution semantics. To
improve readability of this section, f{UML concepts or extensions are followed by
quote SV (i.e. semantic visitor) while UML concepts are followed by quote MC
(i.e. meta-class).

4.1 Concepts

Guidelines to define profile abstract syntax are identified by Selic in [16]. The
profile design process starts with the construction of a domain model capturing
the concepts of the domain under study. Then, this model is projected on the
UML metamodel. The projection consists in selecting the metaclasses that will
be extended to support domain concepts over UML. Extensions are defined as
stereotypes with an expressiveness limited to what the domain must support.

In rectangle number 1 of Figure 2, a profile specified through this method-
ology is represented. It provides the Broadcast concept which is formalized as
a stereotype only applicable on action nodes of type SendSignalAction (MC).
Here starts the specification of the profile execution semantics.

2 Semantic visitor defined in the 1

Compostte Structures semantics

ification.The doAction()
(s tics:C iteStructures) | | method specifies how a ﬁ
P "
3 InvocationActions SendSignalAction must be [ MyProfile
executed
T
= CS_SendSignalActionActivation [ — _:
5 + doAction() O (UMU .
i=| SendSignalAction
AN
+ base_SendSignalAction
o]
£ MySemanticSpecification | Iﬁ
N
\\
=) BroadcastSendSignalActionActivation % Broadcast
m = " «JemanticM; > -
#3 + doAction(Nredefines doAction} 131 ke "_'"_ * '_“"_ _ 1 & +base_SendSignalAction: SendSignalAction (1]
: £ + targetType: Classifier [1]
|
I
! |
: |
|
Defines the execution semantics of a SendSignalAction element L — << 4 The dependency relationship existing between a stereotype and AN
having the "Broadcast" stereotype applied an element of the semantic model indicates the execution semantics
of this latter in the context of a UML element

]

Fig. 2. Conceptual Approach



Formalizing Execution Semantics of UML Profiles with f{UML Models 139

activity doAction() {
UML::5endSignalAction action = (UML:5end5ignalAction)this.node;
UML::5tereotype stereotype = action.getAppliedStereotype("MyProfile:Broadcast”);
UML:Property p = null;
UML::Class targetType = null;
fUML:Semantics: CommonBehaviors:Communications:Signallnstance signallnstance = null;
fUML:Semantics:Locii:Locill:locus locus = this.getExecutionLocus();
if(stereotype!=null){
targetType = (UML::Class) action.getValue(stereotype, "targetType");
for(extent in locus.getExtent(targetType)lf
signallnstance = new fUML:5emantics: CommonBehaviors: Communications:Signallnstance();
signallnstance.type = action.'signal’;
((fUML::5emantics: Classes:Kernel:: Object)extent) . send(signallnstance);

}

Fig. 3. Execution semantics captured by BroadcastSendSignalActionActivation

Formalizing the Execution Semantics of Stereotypes. In the fUML se-
mantic model SendSignalAction (MC) has a formalized execution semantics
which states “When all the prerequisites of the action erecution are satisfied,
a signal instance of the type specified by the signal property is generated from the
argument values and this signal instance is transmitted to the identified target
object” . This execution semantics is captured by CS SendSignalActionActivation
(SV) through the behavior specified for its doAction operation (cf. rectangle 2
of Figure 2). Applying the stereotype Broadcast on a SendSignalAction (MC)
changes its execution semantics. Indeed the semantics associated to such stereo-
type could be “When all the prerequisites of the action execution are satisfied, a
signal instance of the type specified by signal is generated from the argument val-
ues and this signal instance is transmitted concurrently to every object classified
under the type specified by the argument target Type” .

If we want the application of the stereotype to be reflected at runtime, the
fUML semantics model must be extended. An extension is the formalization of
the execution semantics associated to each stereotype of a profile. It is a f{UML
model (i.e. a class model) that can be used to parameterize the standard semantic
model.

The general process of formalizing the execution semantics of a stereotypes
consists in extending visitors defined in the fUML semantic model using standard
object oriented mechanisms (e.g. inheritance, polymorphism). Visitors that can
be extended have been identified in Section 2. As an exemple, The formalization
of the Broadcast stereotype is presented in the rectangle 3 of Figure 2.

1. We identify the semantic visitor (cf. rectangle 2) capturing the execution
semantics of SendSignalAction (MC).

2. In a new model this semantic visitor is specialized (cf. BroadcastSendSig-
nalActionActivation (SV) in rectangle 3).

3. The new semantic visitor implements the execution semantics by redefining
behaviors associated to its generalization (cf. Figure 3). This can be realized
using Alf [5] (i.e. the textual notation for f{UML) or activity models. Both
are equivalent.



140 J. Tatibouét et al.

4. The stereotype is linked with its semantic definition using a Dependency
(MC) stereotyped SemanticMapping. This is illustrated in Figure 2.

Dependencies and Instantiation. The role of dependencies stereotyped Se-
manticMapping is also to indicate the context in which a new semantic visitor
can be instantiated in the fUML runtime. A stereotype can depend on multiple
semantic visitors. This is the case when a stereotype is defined as being applica-
ble on an abstract UML element (i.e. an abstract UML metaclass). For example,
if a stereotype is applicable on any action nodes (i.e. Action (MC)).

Depending on the concrete action this stereotype is applied on, the execution
semantics can be different. As an example if the stereotype Trace is applied on a
CallBehaviorAction (MC) we will trace the call to a specific behavior. Meanwhile
if it is applied on an AcceptEventAction (MC) we will trace the signals that are
received. This implies that the stereotype has two associated visitors extending
the basic execution semantics defined for these kinds of action nodes in the
extended semantic model.

Core Extensions of the fUML Semantic Model. Specific classes of the
fUML semantic model are in charge of organizing the instantiation of semantic
visitors, their execution and the management of runtime values. These classes
are Locus, Execution and EzecutionFactory. They have been introduced in Sec-
tion 2. Extensions to these classes are usually implied by the definition of new
semantic visitors. This sub-section identifies cases in which these classes need to
be extended.

— Extension to Locus class and its instantiate operation is implied by the
specification of a specialization of CS Object (SV) which is a particular type
of Value. This case occurs when the profile has a stereotype defining a new
semantics for Classifier (MC). An extension to this class and its associated
behaviors can be automatically derived from the dependencies stereotyped
SemanticMapping specified in the extended semantic model.

— Extension to Ezecution (SV) class and its execute operation can be required
by the definition of a stereotype targeting Behavior (MC) or any of its sub-
classes. Likewise it can be implied by the contextual visitor requiring an
Ezecution (SV) to be instantiated (e.g. Object (SV)).

— ExecutionFactory is responsible for instantiating any other semantic visitors.
Extension to this class is required as soon as one ore more semantic visitors
have been defined in the semantic specification. As for Locus, a full extension
to this class can be automatically derived from dependencies stereotyped
SemanticMapping.

4.2 Semantic Model Extension: Detailed Construction Process

In the previous section, we have presented how we formalize stereotypes seman-
tics with fUML and the implications on core classes defined in the standard



Formalizing Execution Semantics of UML Profiles with f{UML Models 141

semantic model. In this section, we define a fine grained process to formalize the
execution semantics of a UML profile.

S1 The first step consists in selecting the definition of one stereotype of a profile.

(a) If the meta-class extended by the stereotype does not have sub-meta-
classes and is not abstract then the designer of the semantic model can
start step 2.

(b) If the meta-class extended by the stereotype has concrete sub-meta-
classes this implies the stereotype can be applied on every syntax element
defined from that meta-class. Consequently, the designer of the semantic
model must select every concrete sub-meta-classes of that meta-class for
which an execution semantics should be formalized. Note that if the
base meta-class is not abstract then it belongs to the set of selected
meta-classes. For this set the step 2 must be applied.

S2 The second step describes how to extend a semantic visitor existing in the
fUML semantic model and to link this extension to a particular stereotype
defined in the profile. It consists in the following tasks.

(a) The designer must select in the standard fUML semantic model the
visitor defining the execution semantics of the current meta-class.

(b) To capture the execution semantics related to the stereotype application
the designer must create a new class extending that semantic visitor.

(c¢) Operation(s) of the newly created visitor must be defined using activi-
ties (specified textually using AIf[5]) in order to perform the expected
behavior when interpreting the profiled element.

(d) Finally the relationship between the current stereotype and the semantic
visitor is formalized using a dependency link. The stereotype plays the
client role while the opposite end (i.e. the semantic visitor) plays the
supplier role.

S3 Steps S1 and S2 must be repeated for every stereotype of the profile. When
all stereotypes have been considered, then the specification of extensions re-
lated either to the management or the instantiation strategy of the semantic
visitors must be defined.

5 Formalizing the Execution Semantics of a Subset of the
HLAM MARTE Sub-profile

Based-on the concepts presented in section 4, we validated our approach on a
subset of the MARTE profile [3]: HLAM (i.e. High-Level Application Modeling).
This case study has been chosen by the OMG in the context of composite struc-
tures semantic specification (cf. annex A of [2]). It is representative to validate
our approach. Indeed, it implies extensions to all visitors of the f{UML seman-
tic model except to ActivityNodeActivation which has already been extended in
Figure 2.



142 J. Tatibouét et al.

UML) c I:ccEnumeralior;(x: ;
BehavioredClassifier SO Mr ey
sequential
guarded
concurrent
uStereotypen
PpUnit
E& + concPolicy: CallConcurrencyKind [0..1]

Fig. 4. The sub-profile under consideration

5.1 Presentation of the HLAM Subset

HLAM is a sub-profile of MARTE. It provides high-level modeling concepts to
deal with real-time and embedded feature modeling. An excerpt of this sub-
profile is shown on Figure 4. It contains the definition of the stereotype PpUnit
and an enumeration CallConcurencyKind.

The stereotype PpUnit (i.e. protected passive unit) can be applied on syn-
tactic elements inheriting from BehavioredClassifier (MC) (e.g. Class (MC)). A
protected passive unit is used to represent shared information among execution
threads. It provides protection mechanisms to support concurrent accesses from
these latter. This implies to capture an execution semantics that is different than
for regular Class (MC). We can distinguish three different cases :

1. If the concPolicy value is sequential, only one execution thread can access
a feature (e.g. property) of a PpUnit. In this case the PpUnit does not own
the access control mechanism. Each client of this object must deal with
concurrent conflicts.

2. If the concPolicy value is concurrent then multiple execution threads at a
time can access a PpUnit.

3. If the concPolicy value is guarded then only one execution thread at a time
can access a feature of a PpUnit while concurrent ones are suspended.

Among the three semantics presented above, the second is already captured
by fUML. No assumption is made in the execution semantics to avoid concur-
rent access to features of a particular instance. With respect to the two other
semantics (i.e. sequential and guarded) they are extensions of the fUML stan-
dard execution semantics. In the case study we will define required extensions
to handle the guarded semantics.

5.2 Construction of the Semantic Model

This section describes the construction of the semantic model formalizing the
execution semantics of the HLAM subset shown in Figure 4.

The first step (cf. item S1 of sub-section 4.2) consists in selecting a stereo-
type of the profile. We select PpUnit. It can be applied on BehavioredClassifier



Formalizing Execution Semantics of UML Profiles with f{UML Models 143

(MC) which is abstract. Step S1-b applies: we search in fUML syntactic sub-
set all concrete meta-classes of BehavioredClassifier (MC). We obtain the set
» = {Class, Activity, Opaque Behavior}.

Each meta-class in ¢ requiring a specific execution semantics must have its
corresponding semantic visitor extended (cf. item S2 of sub-section 4.2). Here we
only consider Class (MC) which semantics is captured by Object (SV) because
MARTE profile [3] does not define semantics when stereotype PpUnit is applied
on Actiity (MC) or OpagueBehavior (MC).

Object (SV) captures the access semantics to feature values through the op-
erations getFeature Value and setFeature Value. Semantics captured in these op-
erations does not constrain concurrent access to features. Constraining access
control to the features requires Object (SV) to be extended. Using standard ob-
ject oriented inheritance mechanism we define PpUnitObject (SV) as a subclass
of CS Object (cf. Figure 5). One can notice the extension is done over CS Object
(SV) instead of Object (SV). This makes the extension usable in the composites
structures context. To enable PpUnitObject (SV) class to provide access control
to its features values we add a property guard representing a mutex. The mutex
library is itself an f{UML model.

{CompositeStructuresSemantics:Semantics:CompositeStructures:StructuredClasses) (MARTE:MARTE DesignModel::HLAM)
_Object = nit
E cs_obj = ppuni
T
i
T |
|
EIPpUnitOhject : «SemanticMapping»
I

£z + guard: Mutex [1]

& - getFeatureValuel + in feature: StructuralFeature{unique}) FeatureValuefred...
& + setFeatureValue( + in feature: StructuralFeaturefunique}, + in values: Value{...

Fig. 5. Definition of a PpUnitObject as an extension of CS Object

The next step of the methodology (cf. item S2-c of sub-section 4.2) consists in
formalizing the behavioral part of the execution semantics captured by PpUni-
tObject. Semantic limitations where identified in getFeature Value and setFea-
ture Value operations. Both are extended to implement an access control mecha-
nism based on the property: guard. Figure 6, shows the behavior specification of
the operation getFeature Value. This specification clearly states that if the con-
cPolicy of a class is guarded then only one active object at a time can access
a feature of the PpUnitObject. The same pattern applies for the specification of
the operation setFeature Value.

PpUnitObject (SV) extension is not sufficient to ensure that operations that
are also features of a Class will not be executed concurrently. In fUML runtime
when an operation is called, an ActivityEzecution (SV) is produced. This visitor
is in charge of executing the behavior associated to an operation and encapsulates
informations about the execution context. In the standard fUML semantics, two
active objects can execute operations concurrently.



144 J. Tatibouét et al.

activity getFeatureValue(in feature: UML::Feature): fUML:5emantics:Classes:Kernel:FeatureValue]

UML::5tereotype pplnit = this.types[0].getAppliedStereotype("MARTE:MARTE_DesignModel:HLAM:PpUnit");
MARTE:MARTE_DesignModel:HLAM:CallConcurrencyKind concPolicy =this.types.getValue(ppUnit, "concPolicy™);
fUML::Semantics:; Classes:Kernel:FeatureValue featureValue = null;
if(concPolicy==MARTE:MARTE_DesignModel:HLAM: CallConcurrencyKind:: guarded){

this.guard.lock();

featureValue = super.getFeatureValue(feature);

this.guard.unlock(;
lelsef

featureValue = super.getFeatureValue(feature);

return featureValue;

Fig. 6. Behavioral specification of getFeatureValue operation

Formalizing this constraint implies the definition of a new semantic visitor cap-
turing how operations must be executed in the context of a PpUnitObject (SV).
This is typical application of derived semantic visitor definition as explained
in sub-section 4.1. Figure 7 shows the definition of the MarteGuardedExecution
(SV) extending ActivityEzecution (SV). Behavioral extension to the execution
semantics is defined in the execute operation of the new visitor. Again the be-
havior specification relies on the access control mechanism introduced by the
property guard.

activity execute() {
PpUnitObject ppUnitContext =null;
(fUML::Se mantics:Activities:IntermediateActivities) if(this.context instanceof PpUnitObject){
E' ActivityExecution ppUnitContext = (PpUnitObject)this.context;
ppUnitContext.guard.lock();
Zﬁ super.execute();
ppUnitContext.guard.unlock();
Q MarteGuardedExecution lelse]
& + executelfredefines execute} & super.execute();
1
i

Fig. 7. Constrain concurrency between operation call

The last part of the methodology (cf item S3 in sub-section 4.2) consists in
specifying under which conditions the semantic visitors defined in the context of
the MARTE HLAM profile will be instantiated. As presented in sub-section 4.1,
classes instantiation is handled by the Locus. A PpUnitObject (SV) is the repre-
sentation at runtime of a instance of Class stereotyped PpUnit. Consequently its
instantiation must be handled by the Locus. Therefore we define MarteLocus (cf.
Figure 8) as an extension of CS Locus. The instantiation logic is then captured
in the behavior of the instantiate operation.

Visitors capturing execution semantics of behavioral specifications (e.g. Read-
SelfActionActivation (SV)) or controlling execution of other semantic visitors
(e.g. Ezecution (SV)) are instantiated by the EzecutionFactory. We defined
MarteGuardedExecution (SV) which falls into this category. This implies the



Formalizing Execution Semantics of UML Profiles with f{UML Models 145

(CompositeStructuresS: ics:SemanticszLocizLocil 3)
Q €5 _Locus
Q Martelocus
+ instantiate( + in type: Class): Object

[activity instantiate(in type: UML:Class): fUML:Semantics::Classes::Kernel:: Object {
fUML::5emantics:Classes:Kernel: Object o = null;
if(type instanceof UML::Behavior){
o = super.instantiate(type);
lelse{
if( type.getAppliedStereotype(" MARTE:MARTE_DesignModel:HLAM:PpUnit")!=null){
o = new PpUnitObject();
o.types = new UML:Class[]{type):
o.createFeatureValues();
((PpUnitObject)o).guard =GetConcurrencyService().createMutex();
this.add(o);
Jelsef
0 = super.instantiate(type);
1
i

return o;

Fig. 8. Definition of MarteLocus as an extension of CS Locus

(CompositeStructuresSe mantics:Semantics::Loci:Lodl3)
Q CS_ExecutionFactory

I

= MarteExecutionFactory

?} +il iateVisitor{ + in el 1: El 1: S icVisit...

activity instantiateVisiter(in element : UML:Element):  fUML:Semantics:Loci:Locill:SemanticVisitor]
fUML:Semantics::LocizLocill:SemanticVisitor visitor = null;
UML::BehavioredClassifier context = null;
UML::Stereotype ppUnit = null;
if(element instanceof UML:: Activity){
context = ((UML:Activity)element].context();
ppUnit = context. getAppliedStereotype(” MARTE:MARTE_DesignModel: HLAM: PpUnit");
if(ppUnit!=null &8& context.getValue(ppUnit, "cencPolicy”)==
MARTE:MARTE_DesignModel:HLAM: CallConcurrencyKind: guarded
i
visitor = new MarteGuardedExecution();
lelse{
visitor = super.instantiateVisitor{element);
j
telse]
wvisitor = super.instantiateVisitor(element);
H

return visitor;

Fig. 9. Definition of MarteExecutionFactory as an extension of CS ExecutionFactory

extension of the regular EzecutionFactory. Instantiation rule is expressed in Alf
[5] in the operation instantiateVisitor. This rule is: a Marte Guarded Execution
(SV) can only be instantiated when an operation is called in the context of
a PpUnitObject (SV) constraining the concurrency with a guarded semantics.
Figure 9 shows the specification.



146 J. Tatibouét et al.

5.3 Benefits of the Approach

The semantics is defined once as an extension of the fUML semantic model
expressed with fUML models and enables any profile models to be executed
without any intermediate step.

The semantic model is a standard UML class model. This kind of model is
known by UML practicioners and is the main interface of communication with
stakeholders from other modeling communities. This makes specifications easily
understandable from a structural point of view.

Behavioral specification of visitors can be specified in Alf[5] which is close
to c-like programming languages. This enables a large community to read and
verify the specification.

Our approach is model-driven and promotes reuse of standards. Semantic
models can be used by any tool implementing UML and fUML (e.g., Papyrus,
Entreprise Architect, Magic Draw). In addition, the approach benefits from an
integration within Papyrus (cf. Section 6).

fUML has formal foundations. As stated in [17], these foundations can be used
to verify properties of f{UML models “applying the theorem proving approach”.
Since the semantic model is a f{UML model verification techniques can be applied
to check semantic consistency.

The specification provides a clear separation between syntax and semantics
and identifies the relations between stereotypes and semantic definitions.

5.4 Limitations of the Approach

The approach requires a background in f{UML to be usable. This implies a tech-
nical effort to realize the first specification.

The semantic specification does not handle cases were multiple stereotypes
are applied over the same modeling construct. This mean there are no rules to
compose the execution of multiple semantic visitors for the same model element.

The problem of semantic consistency is not adressed since we do not have
mechanisms to ensure a profile semantics does not contradict f{UML semantics.
However it may be possible to develop automatic consistency check based on the
axiomatic foundations of fUML.

The current version of tools supporting the methodlogy does not support
automated generation of extensions to ExecutionFactory and Locus.

6 Tool support

Papyrus modeler provides an fUML engine called MOKA (cf. Figure 10). This
latter implements the standard fUML semantics. What we have added to MOKA
is the possibility to be parameterized by an fUML model implementing the se-
mantics of a particular profile (inspired from [18]). Thus on requesting a fUML
profiled model to be executed a designer can choose the adequate semantic exten-
sion. Contributions found in the extension are dynamically injected at runtime



Formalizing Execution Semantics of UML Profiles with f{UML Models 147

SemanticsRepository

«SomanticLibrary » R &
UML-RT Semantics s

| ——— % extends ©

|

] S > SemanticLibrary
TUML Semantics « SemanticLibrary »
MARTE Semantics ®
«bind »
<= « extends »{ [ S->MARTESemantics

) «SemanticLibrary »
|
!
|

Another Semantics

— — < extends »

of

Fig. 10. Make use of formalized execution semantics through MOKA

to reflect the execution semantics applied by stereotype application. Portions of
the extended semantic model injected at runtime are executed as fUML models.
Although our approach advocates for specifying the entire semantics of a pro-
file as a f{UML model, we also let the opportunity to the designer to define exten-
sions as implementations. An eclipse plugin can be generated from a semantic
specification placed in a fUML model. This plugin will contains glue classes re-
quired to interface the model execution and an implementation of f{UML. Other
semantic contributions can be placed as regular Java classes in the plugin.

7 Conclusions and Future Works

In this paper, we have presented a methodology to formalize UML profiles se-
mantics. Our approach relies on the fUML standard. It proposes to specify the
semantics of a particular profile as an extension of the semantic model defined
by fUML.

Our approach is entirely model-driven. An extension to the semantic model is
formalized by the definition of new semantic visitors extending those considered
by fUML. New visitors are UML classes which override behaviors provided in
their parent classes using standard object oriented mechanisms. The semantic
specification is an fUML model which is by construction compliant with the
design of the standard.

Models using profiles with a semantics formalized using our approach are
directly executable and observable executions reflect the semantics introduced
by the profile. This enables engineers to evaluate impacts of their modeling
choices by executing their profiled models at early stages of their design flows.

For future works, we plan to support the automatic generation of extensions
related to classes responsibles for instantiating visitors specified in a extended
semantic model. Next, the main challenge is to consider cases were a single model
element can have multiple stereotypes applied. This implies multiple semantic
visitors to be defined and composed at runtime which actually not supported by
fUML. Furthermore, to ensure a consistent execution, semantic compatibility of
these visitors will have to be evaluated.



148

J. Tatibouét et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Object Management Group. Semantics of a Foundational Subset for Executable
UML Models. Technical Report (2010)

Object Management Group. Precise Semantics of Composite Structures. Technical
Report (2010)

Object Management Group. Modeling And Analysis Of Real-Time Embedded Sys-
tems. Technical Report (2011)

Object Management Group. Systems Modeling Language. Technical Report (2012)
Object Management Group. Action Language for Foundational UML. Technical
Report (2012)

Partsch, H., Dausend, M., Gessenharter, D.: From Formal Semantics to Executable
Models: A pragmatic Approach to Model-Driven Development. International Jour-
nal of Software and Informatics 5, 291-312 (2011)

Pardillo, J.: A Systematic Review on the definition of UML profiles. Model Driven
Engineering Languages and Systems, 407-422 (2010)

Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of “Semantics”.
Computer 37, 64-72 (2004)

Graph, S., Ober, I.: How useful is the UML profile SPT without Semantics? In:
International Workshop on Model, Design and Validation (2004)

Muller, P.A., Fleurey, F., Jezequel, J.M.: Weaving Executability into Object-
Oriented Meta-languages. Model Driven Engineering Languages and Systems 8§,
264-278 (2005)

Mayerhofer, T., Langer, P., Wimmer, M.: Towards xMOF: Executable DSMLs
based on fUML. In: Proceedings of the 2012 Workshop on Domain-Specific Mod-
eling, vol. 12, pp. 1-6 (2005)

Wouters, L., Gervais, M.-P.: xOWL: An Executable Modeling Language for Do-
main Experts. International Entreprise Distributed Object Computing 15, 215-222
(2011)

Mraidha, C., Tanguy, Y., Jouvray, C., Terrier, F., Gerard, S.: An Execution Frame-
work for MARTE-based Models. Engineering of Complex Computer Systems 13,
222-227 (2008)

Borger, E.: The ASM Method for System Design and Analysis. A Tutorial Intro-
duction. Frontiers of Combining Systems, 264-283 (2005)

Riccobene, E., Scandurra, P.: An Executable Semantics of the SystemC UML pro-
file. Abstract State Machines, Alloy, B and Z, 75-90 (2010)

Selic, B.: A Systematic Approach to Domain-Specific Language Design Using UML.
In: International Symposium on Object and Component-Oriented Real-Time Dis-
tributed Computing, pp. 2-9 (2007)

Romero, A., Schneider, K., Ferreira, M.: Using the Base Semantics given by fUML
for Verification. MODELSWARD (2014)

Cuccuru, A., Mraidha, C., Terrier, F., Gérard, S.: Enhancing UML Extensions with
Operational Semantics. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.)
MODELS 2007. LNCS, vol. 4735, pp. 271-285. Springer, Heidelberg (2007)

Selic, B.: Elements of Model-Based Engineering with UML2: What They Don’t
Teach You About UML, Technical Report (2009)



	Formalizing Execution Semantics of UML
Profiles with fUML Models

	1 Introduction
	2 fUML Background
	3 Related Works Analysis
	4 Extending fUML Semantic Model: A Model-Driven Approach
	4.1 Concepts
	4.2 Semantic Model Extension: Detailed Construction Process

	5 Formalizing the Execution Semantics of a Subset of the HLAM MARTE Sub-profile
	5.1 Presentation of the HLAM Subset
	5.2 Construction of the Semantic Model
	5.3 Benefits of the Approach
	5.4 Limitations of the Approach

	6 Tool support
	7 Conclusions and Future Works




