
Semantic Model Differencing Utilizing Behavioral
Semantics Specifications

Philip Langer, Tanja Mayerhofer, and Gerti Kappel

Business Informatics Group, Vienna University of Technology, Vienna, Austria
{langer,mayerhofer,gerti}@big.tuwien.ac.at

Abstract. Identifying differences among models is a crucial prerequisite for sev-
eral development and change management tasks in model-driven engineering.
The majority of existing model differencing approaches focus on revealing syn-
tactic differences which can only approximate semantic differences among mod-
els. Significant advances in semantic model differencing have been recently made
by Maoz et al. [16] who propose semantic diff operators for UML class and activ-
ity diagrams. In this paper, we present a generic semantic differencing approach
which can be instantiated to realize semantic diff operators for specific model-
ing languages. Our approach utilizes the behavioral semantics specification of
the considered modeling language, which enables to execute models and capture
execution traces representing the models’ semantic interpretation. Based on this
semantic interpretation, semantic differences can be revealed.

1 Introduction

The identification of differences among independently developed or consecutive ver-
sions of software artifacts is not only a crucial prerequisite for several important devel-
opment and change management tasks, such as merging and incremental testing, but
also for enabling developers to efficiently comprehend an artifact’s evolution. As in
model-driven engineering the main software artifacts are models, techniques for identi-
fying differences among models are of major importance.

The challenge of model differencing has attracted much research in the past years,
which lead to significant advances and a variety of approaches. The majority of them use
a syntactic differencing approach, which applies a fine-grained comparison of models
based on their abstract syntax representation. As shown by Alanen and Porres [1] and
later by Lin et al. [14], syntactic differencing algorithms can be designed in a generic
manner—that is, they can be applied to models conforming to any modeling language.
The result of such a differencing approach is a set of syntactic differences, such as
model elements that only exist in one model. Although syntactic differences constitute
valuable and efficiently processable information sufficient for several application do-
mains, they are only an approximation of the semantic differences among models with
respect to their meaning [10]. In fact, few syntactic differences among models may in-
duce many semantic differences, whereas also syntactically different models may still
exhibit the same semantics [16]. The identification of semantic differences is crucial
for understanding the evolution of a model, as it enables to reason about the meaning
of a change. Compared to syntactic differencing, semantic differencing enables several

J. Dingel et al. (Eds.): MODELS 2014, LNCS 8767, pp. 116–132, 2014.
c© Springer International Publishing Switzerland 2014

Semantic Model Differencing Utilizing Behavioral Semantics Specifications 117

additional analyses, such as the verification of the semantic preservation of changes like
of refactorings and the identification of semantic conflicts among concurrent changes.

Significant advances towards semantic model differencing have been recently made
by Maoz et al. [16]. They propose semantic diff operators yielding so-called diff wit-
nesses, which are interpretations over a model that are valid in only one of the two com-
pared models. The semantic diff operator has to be realized specifically for each mod-
eling language by transforming models into an adequate semantic domain, performing
dedicated analyses within this semantic domain, translating the results of the analyses
back again, and representing them in the form of diff witnesses. Following this proce-
dure, Maoz et al. presented dedicated diff operators for UML activity diagrams [17] and
class diagrams [18]. Developing such diff operators for a specific modeling language,
however, still remains a major challenge, as one has to develop often non-trivial trans-
formations encoding the semantics of the modeling language into a semantic domain,
perform analyses dedicated to semantic differencing in this semantic domain, and trans-
late the results into diff witnesses on the level of the modeling language—notably, this
challenging process has to be repeated for every modeling language.

To mitigate this challenge, we present a generic semantic differencing approach that
can be instantiated to realize semantic diff operators for specific modeling languages.
This approach follows the spirit of generic syntactic differencing, which utilizes meta-
models to obtain the necessary information on the syntactic structure of the models to
be compared. Accordingly, we propose to utilize the behavioral semantics of a model-
ing language to support the semantic model differencing. In particular, we exploit the
executability of the behavioral semantics to obtain execution traces for the models to
be compared. These traces are considered as semantic interpretations over the models
and, thus, act as input to the semantic comparison. The actual comparison logics is
specified in terms of dedicated match rules defining which differences among these in-
terpretations constitute semantic differences. Semantic diff operators defined with our
approach are enumerative yielding diff witnesses, which constitute manifestations of
semantic differences among models and enable modeler’s to reason about a model’s
evolution. Hence, the diff operators constitute a crucial basis for supporting collabora-
tive work on models as well as for carrying out model management activities, such as
model versioning and refactoring, which can be supported by an automated analysis of
diff witnesses for identifying conflicting changes and causes of semantic differences.

In Section 2, we discuss existing work in the area of model differencing, before we
introduce our semantic differencing approach in Section 3. Subsequently, we show in
Section 4 how semantic diff operators can be implemented by applying our approach to
an existing semantics specification approach. In Section 5, we address the issue of gen-
erating model inputs relevant to semantic differencing. Finally, we present an evaluation
of the feasibility of our approach in Section 6 and draw conclusions in Section 7.

2 Related Work

Most of the existing model differencing approaches compare two models based on their
abstract syntax representation (e.g., [1,2,14,25,26,31]). In particular, a match between
two models is computed yielding the correspondences between their model elements,

118 P. Langer, T. Mayerhofer, and G. Kappel

before a fine-grained comparison of all corresponding model elements is performed.
The result of this syntactic differencing is the set of model elements present in only one
model and a description of differences among model elements present in both models.

However, to determine whether two syntactically different models also differ in their
meaning, the semantics of the modeling language they conform to has to be taken into
account [10]. Few semantic model differencing approaches have been proposed in the
past. Generally, we can distinguish enumerative and non-enumerative approaches. Enu-
merative approaches calculate semantic interpretations of two compared models called
diff witnesses, which are only valid for one of the two models and, hence, provide evi-
dence about the existence of semantic differences among the models. Non-enumerative
approaches do not calculate and enumerate diff witnesses directly, but instead compute
an aggregated description of the semantic difference among the compared models [8].

Significant advances in semantic differencing have been achieved by Mazo et al.,
who propose an approach for defining enumerative semantic diff operators [16]. In this
approach, two models to be compared are translated into an adequate semantic domain
whereupon dedicated algorithms are used to calculate semantic differences in the form
of diff witnesses. Following this approach, they define the diff operators CDDiff [18]
and ADDiff [17], for UML class diagrams and UML activity diagrams, respectively.
CDDiff translates UML class diagrams into an Alloy module to generate object dia-
grams that are valid instances of one class diagram but not of the other. ADDiff trans-
lates two UML activity diagrams into SMV modules to identify execution traces which
are possible only in one of the two activity diagrams. Gerth et al. [9] developed an enu-
merative semantic diff operator similar to ADDiff for detecting semantic differences
among process models. Therefore, the process models are translated into process model
terms, which are subsequently compared to identify execution traces valid only for one
of the two compared models. Another approach for defining enumerative semantic diff
operators was presented by Reiter et al. [28]. In their approach, two models that shall
be compared are translated into a common semantic domain. The resulting so-called
semantic views of the two models are subsequently compared by syntactic differencing
techniques to identify semantic differences.

Unlike the approaches discussed so far, Fahrenberg et al. [8] propose an approach
for defining non-enumerative semantic diff operators. Therefore, the models to be com-
pared are mapped into a semantic domain having an algebraic structure that enables
to define the difference among two models in the form of an operator on the seman-
tic domain. Thereby, the difference is captured in the form of a model conform to the
same modeling language as the two compared models. Fahrenberg et al. applied this
approach for defining semantic diff operators for feature models as well as automata
specifications [8], and later also for UML class diagrams [7].

3 Overview

Developing semantic diff operators using the discussed existing semantic differencing
approaches poses a major challenge, because one has to develop non-trivial transfor-
mations encoding the semantics of the modeling language into an adequate seman-
tic domain, in which then specific semantic comparison algorithms have to be imple-

Semantic Model Differencing Utilizing Behavioral Semantics Specifications 119

Syntactic Differencing

M1

M2

Model
Execution

Syntactic
Matching

Match
Rules
Syn

Match
Rules
Sem

Semantic
Matching

M1

M2

Semantic Differencing

CM1,M2
semCM1,M2

syn

CM1,M2

syn

TM2

TM1

IM1
IM2

Fig. 1. Overview of semantic differencing approach

mented. To mitigate this challenge, we propose a generic semantic differencing ap-
proach that can be instantiated to realize semantic diff operators for specific modeling
languages. Therefore, we utilize the behavioral semantics specification of a modeling
language, which can be defined using existing semantics specification approaches, such
as xMOF [20], Kermeta [22], or DMM [5]. Such semantics specifications can be used
for various application domains, ranging from model simulation, verification, through
to validation. In this work, we aim at reusing such semantics specifications also for se-
mantic model differencing. In particular, we exploit the fact that behavioral semantics
specifications enable the execution of models and that the identification of semantic
differences among models is possible based on execution traces, since they reflect the
models’ behavior and, hence, constitute the semantic interpretation of the models.

Figure 1 depicts an overview of our semantic model differencing approach consisting
of three steps: syntactic matching, model execution, and semantic matching. In the syn-
tactic matching step, syntactically corresponding elements of the two compared models
M1 and M2 are identified based on syntactic match rules MatchRulesSyn for estab-
lishing syntactic correspondences Csyn

M1,M2
between the models. In the model execution

step, the models M1 and M2 are executed for relevant inputs IM1 and IM2 based on the
behavioral semantics specification of the modeling language. During model execution,
the traces TM1 and TM2 are captured, which constitute the semantic interpretation of
the executed models M1 and M2. We assume that the model execution is deterministic,
meaning that the model execution yields for a given input always the same execution
trace, and that the number of possible traces is finite. In the semantic matching step, the
captured execution traces TM1 and TM2 are compared based on semantic match rules
MatchRulesSem, which define the semantic equivalence criteria, to establish seman-
tic correspondences Csem

M1,M2
between the models M1 and M2. Thereby, two models

M1 and M2 are semantically equivalent, if the traces captured during their execution
TM1 and TM2 match according to the semantic match rules. In the semantic matching,
also the syntactic correspondences of the examined models Csyn

M1,M2
may be taken into

account.
Our semantic model differencing approach is generic, because it enables to imple-

ment semantic diff operators for any modeling languages whose behavioral semantics
is defined such that conforming models can be executed and execution traces can be
obtained. From all artifacts involved in the semantic differencing, only the semantic

120 P. Langer, T. Mayerhofer, and G. Kappel

match rules are specific to the realization of a semantic diff operator for a modeling
language. This is an important differentiator of our approach compared to currently
existing semantic model differencing approaches.

4 Semantic Model Differencing

In this section, we show how the proposed semantic model differencing approach can
be realized for the behavioral semantics specification language xMOF [20]. Therefore,
we first introduce how the behavioral semantics of modeling languages can be defined
with xMOF and how this definition is used to execute models. Second, we present
which trace information is needed for semantically differencing models. Third, we show
how semantic match rules can be defined for semantically comparing models based on
execution traces. For illustrating the presented techniques, we use the Petri net language
as a running example throughout the paper.

4.1 Behavioral Semantics Specification with xMOF

The semantics specification language xMOF integrates existing metamodeling
languages, in particular Ecore, with the action language of UML [23]. This enables
the definition of the behavioral semantics of the concepts of a modeling language by
introducing operations for the respective metaclasses and defining their behavior with
UML activities. UML’s action language for defining activities provides a predefined
set of actions for expressing the manipulation of objects and links (e.g., CreateObject-
Action) and the communication between objects (e.g., CallOperationAction), as well as a
model library of primitive behaviors (e.g., IntegerPlus). xMOF enables the execution of
models by executing the activities defined in the modeling language’s semantics spec-
ification based on the fUML virtual machine. fUML [24] is a standard of the OMG,
which defines the semantics of a subset of UML activity diagrams formally and pro-
vides a virtual machine enabling the execution of fUML-compliant models.

Example. In the upper left part of Figure 2, the Ecore-based metamodel of the Petri
net language is depicted. A Petri net (Net) consists of a set of uniquely named places
(Place) and transitions (Transition), whereas transitions reference their input and output
places (input, output). The initial marking of the Petri net is captured by an Integer
attribute (initialTokens) of the Place metaclass.

In xMOF, the behavioral semantics of a modeling language is defined in an xMOF-
based configuration. This xMOF-based configuration contains for each metaclass in the
metamodel a configuration class, which extends the respective metaclass with its behav-
ioral semantics by introducing additional attributes and references for capturing runtime
information, as well as additional operations and activities for defining behavior. In the
lower left part of Figure 2, the configuration classes contained by the xMOF-based con-
figuration of the Petri net language are shown. To capture the number of held tokens
of a Petri net during its execution, the Integer attribute tokens is introduced in the con-
figuration class PlaceConfiguration. The main() operation of NetConfiguration serves as
entry point for executing a Petri net model. It first calls the operation initializeMark-
ing(), which initializes the tokens attribute of each Place instance with the value of the

Semantic Model Differencing Utilizing Behavioral Semantics Specifications 121

NetConfiguration

main() : void

PlaceConfiguration

tokens : EInt

addToken() : void
removeToken() : void

TransitionConfiguration

fire() : void
isEnabled() : EBoolean

Net

Place

name : EString

Transition

Ecore-based Metamodel (Syntax)

transitions*
places *

output

1..*

input

1..*

initialTokens : EInt
name : EString

read self

ReadSelf

result

read transitions

ReadStructuralFeature

object

result

«iterative»

call isEnabled

target

result

call ListGet

list
index

result

specify 1

ValueSpecification

result

determine enabled transitions

call fire

target

decisionInputFlow
[true]

CallOperation

CallOperationCallBehavior

xMOF-based Configuration (Semantics)

run

initializeMarking() : void
run() : void

main() calls first initializeMarking() and second run()
initializeMarking() sets tokens = initialTokens for each Place
isEnabled() returns true if tokens > 0 for each input Place,

false otherwise

fire() calls removeToken() for each input Place and
addToken() for each output Place

addToken() increments tokens
removeToken() decrements tokens

enabled

Fig. 2. Petri net language specification

initialTokens attribute, before the operation run() is invoked. The activity defining the
behavior of run() is depicted in the right part of Figure 2. It determines in a loop the set
of enabled transitions (ExpansionRegion “determine enabled transitions”), selects the
first enabled transition (CallBehaviorAction “call ListGet”), and calls the operation fire()
(CallOperationAction “call fire”) for this transition. Subsequently, the operation fire() calls
for each input place of the transition the operation removeToken() to decrement its to-
kens value and addToken() for each output place to increment its tokens value.

Based on this behavioral semantics specification, a Petri net model can be executed.
Therefore, the configuration classes are instantiated for each model element in the Petri
net model and the resulting instances are initialized according to the attribute values and
references of the respective model element. These instances are then provided to the

Trace Information for Semantic Differencing

Trace

State

Transition
Event

qualifiedName : EString

EObject
states *

transitions *
event 1

source1

outgoing0..1

target 1

incoming 0..1

objects *

Fig. 3. Trace information format specification

122 P. Langer, T. Mayerhofer, and G. Kappel

fUML virtual machine as input before the main() operation is invoked. Consequently,
during the execution, the values of the tokens attribute of the PlaceConfiguration in-
stances are updated accordingly by the fUML virtual machine.

4.2 Trace Information

In our approach, trace information obtained from executing the two models to be com-
pared constitutes the basis for reasoning about semantic differences among the models.
The format of the trace information is defined by the metamodel depicted in Figure 3.
A trace (Trace) consists of states (State) capturing the runtime state of the executed
model (objects) at a specific point in time of the execution. Transitions (Transition) are
labeled with the event (Event) that caused a state change of the executed model leading
from one state (source) to another (target). This trace information format constitutes
the interface for using our semantic differencing approach. Hence, our approach does
not directly depend on a specific behavioral semantics specification language or on a
specific virtual machine; it only operates on traces conforming to this very basic trace
format.

4.3 Semantic Model Differencing Based on Trace Information

For semantically differencing two models, the trace information captured by executing
these models are compared according to semantic match rules. These match rules de-
cide based on the states of the compared models and based on the events causing state
transitions which model elements semantically correspond to each other and whether
the two models are semantically equivalent. The semantic match rules are specific to
the considered modeling language as well as to the relevant semantic equivalence cri-
teria. Thereby our approach is flexible in the sense that match rules can be expressed
for different equivalence criteria. This is an important property because, depending on
the usage scenario of a modeling language, different equivalence criteria for models
may apply. For Petri nets, for instance, different equivalence criteria are marking equiv-
alence, trace equivalence, and bisimulation equivalence [6]. If Petri nets are used to
define production processes, where the tokens residing in places represent production
resources, the marking equivalence criteria might be the most suitable equivalence cri-
teria. However, if Petri nets are used to define business processes, the trace equivalence
criteria might be more adequate.

For defining match rules, our implementation integrates the model comparison lan-
guage ECL [12]. In ECL, model comparison algorithms are specified with declarative
rules which are used to identify pairs of matching elements in two models.

Example. We now consider two different semantic equivalence criteria for Petri nets:
final marking equivalence (which we defined for illustration purposes) and marking
equivalence (adopted from literature [6]). Two Petri net models with the same set of
places are final marking equivalent if they have the same final marking, whereas they
are marking equivalent, if they have the same set of reachable markings. The example
Petri net models PN1 and PN2 depicted in Figure 4 are not final marking equivalent
because their final markings M2,PN1 and M2,PN2 are different. However, they are

Semantic Model Differencing Utilizing Behavioral Semantics Specifications 123

marking equivalent, as they have the same set of reachable markings (M0,PN1 matches
with M1,PN2, M1,PN1 with M2,PN2, and M2,PN1 with M0,PN2).

Listing 1 shows the semantic match rules expressed in ECL for determining whether
two Petri net models are final marking equivalent. The semantic match rule Match
Trace (lines 1-8) is responsible for matching the traces captured for the execution
of two compared Petri net models. If the models are final marking equivalent, this
rule has to return true, otherwise false. Therefore, the respective final states of the
two traces markingStatesLeft and markingStatesRight are obtained using the
operation getMarkingStates() (lines 10-12). These retrieved final states are then
matched with each other (line 6) and if they match, the Petri net models are final
marking equivalent and true is returned. The two final states are matched by the rule
MatchState (line 14-22). Therefore, the final runtime states of the PlaceConfigu-
ration instances from the respective final state are retrieved by calling the operation
getP laceConfigurations() (lines 24-30) and true is returned if the PlaceConfigura-
tion instances match (line 20). The PlaceConfiguration instances are matched by the rule
MatchP laceConfiguration (lines 32-37), which defines that two PlaceConfiguration
instances match, if they match syntactically (this is checked by the extended syntactic
match rule MatchP lace not shown here, which defines that two Place instances match
if they have the same name) and if they contain the same amount of tokens (line 36).
Thus, in the end, the match rule MatchTrace returns true, if the two compared Petri
net models have the same markings in the end of the execution and are, hence, final
marking equivalent.

For realizing the marking equivalence criteria, the operation getMarkingStates()
has to be adapted as shown in Listing 2. It retrieves the state after the initializeMark-
ing activity has been executed for the NetConfiguration instance (line 3) and after each
execution of the fire activity for any TransitionConfiguration instance (line 4). There-
fore, the operation getStatesAfterEvent() provided by the trace is used, which re-
trieves the states caused by an event corresponding to the provided qualified name.
Thus, the operation getMarkingStates() returns the runtime states of the compared
models after initializing the marking of the net and after each transition firing, i.e.,
each state after reaching a new marking. These sets of states markingStatesLeft and
markingStatesRight match (cf. line 6 in Listing 1), if each state in markingStates-
Left has a corresponding state in markingStatesRight and vice versa; that is, if each
marking reachable in PN1 is also reachable in PN2 and vice versa. Please note that
we restrict ourselves in this example to conflict-free and terminating Petri nets.

t1p1 p2

p3

t2p4

PN1 PN2

M0,PN1: p1=1, p2=0, p3=0, p4=0
M1,PN1: p1=0, p2=1, p3=1, p4=0
M2,PN1: p1=0, p2=0, p3=0, p4=1

M0,PN2: p1=0, p2=0, p3=0, p4=1
M1,PN2: p1=1, p2=0, p3=0, p4=0
M2,PN2: p1=0, p2=1, p3=1, p4=0

t1p1 p2

p3

p4t2

Fig. 4. Example Petri net models

124 P. Langer, T. Mayerhofer, and G. Kappel

1 rule MatchTrace
2 match left : Left!Trace with right : Right!Trace {
3 compare {
4 var markingStatesLeft : Set = left.getMarkingStates() ;
5 var markingStatesRight : Set = right.getMarkingStates() ;
6 return markingStatesLeft.matches(markingStatesRight) ;
7 }
8 }
9

10 operation Trace getMarkingStates() : Set {
11 return self .states.at(se lf .states.size() − 1) .asSet() ;
12 }
13

14 @lazy
15 rule MatchState
16 match left : Left!State with right : Right!State {
17 compare {
18 var placeConfsLeft : Set = left.getPlaceConfigurations () ;
19 var placeConfsRight : Set = right.getPlaceConfigurations () ;
20 return placeConfsLeft.matches(placeConfsRight) ;
21 }
22 }
23

24 operation State getPlaceConfigurations () : Set {
25 var placeConfs : Set = new Set () ;
26 for (object : Any in se lf .objects)
27 i f (object.isKindOf(PlaceConfiguration))
28 placeConfs.add(object) ;
29 return placeConfs;
30 }
31

32 @lazy
33 rule MatchPlaceConfiguration
34 match left : Left!PlaceConfiguration with right : Right!PlaceConfiguration
35 extends MatchPlace {
36 compare : left.tokens = right.tokens
37 }

Listing 1. Semantic match rules for Petri net final marking equivalence

1 operation Trace getMarkingStates() : Set {
2 var markingStates : Set = new Set () ;
3 markingStates.addAll(se lf .getStatesAfterEvent (”petrinetConfiguration . NetConfiguration .

↪→ initializeMarking ”)) ;
4 markingStates.addAll(se lf .getStatesAfterEvent (”petrinetConfiguration .

↪→TransitionConfiguration . f i re ”)) ;
5 return markingStates;
6 }

Listing 2. Adaptation of semantic match rules for Petri net marking equivalence

5 Input Generation Using Symbolic Execution

In Section 4, we showed how a semantic diff operator can be specified with match
rules that are applied to concrete execution traces for determining whether two models
are semantically equivalent. However, for several modeling languages additional input
is required—alongside the actual model—before it can be executed. For instance, the
Petri net language depicted in Figure 2 could take the initial token distribution as input
instead of representing it in the model directly (Place.initialTokens). Enumerating all
possible inputs and performing the semantic differencing for all resulting traces is not
feasible for several scenarios, as the number of possible inputs may quickly become

Semantic Model Differencing Utilizing Behavioral Semantics Specifications 125

large or even infinite. In fact, we are interested only in inputs that cause distinct and for
the semantic differencing relevant execution traces. Having obtained such inputs, the
models to be compared can be executed for these inputs and the semantic match rules
can be applied on the captured traces for semantically differencing the models. Thereby,
two models are semantically equivalent, if they exhibit the same behavior for the same
inputs as defined by the semantic match rules. If they behave differently for the same
input, they differ semantically and the respective input constitutes a diff witness.

For automatically generating relevant inputs from the semantics specification of the
modeling language for the two models to be compared, we apply an adaptation of
symbolic execution [3]. The basic idea behind symbolic execution, as introduced by
Clarke [4], is to execute a program—in our case, the semantics specification for a spe-
cific model—with symbolic values in place of concrete values and to record a path con-
straint, which is a quantifier-free first-order formula, for each conditional statement that
is evaluated over symbolic values along an execution path. For each symbolic value, a
symbolic state is maintained during the symbolic execution, which maps symbolic val-
ues to symbolic expressions. After executing a path symbolically, we obtain a sequence
of path constraints, which can be conjuncted and solved by a constraint solver to obtain
concrete inputs. An execution with these inputs will consequently exercise the path that
has been recorded symbolically. If a conjunction of path constraints is unsatisfiable, the
execution path can never occur. Using backtracking and negations of path constraints,
we may further obtain all feasible paths represented as an execution tree, which is a
binary tree, where each node denotes a path constraint and each edge a Boolean value.

More recently, several extensions and flavors of traditional symbolic execution have
been proposed (cf. [3] for a survey). For this work, we apply a combination of concolic
execution [29] and generalized symbolic execution [11]. Concolic execution signifi-
cantly decreases the number of path constraints by distinguishing between concrete and
symbolic values. The program is essentially executed as normal and only statements
that depend on symbolic values are handled differently. As we execute the semantics
specification with a concrete model (to be compared) and additional input, we may
consider only the additional input as symbolic values—statements that interact with the
executed model itself are executed as normal. One of the key ideas behind generalized
symbolic execution also used in this work is to use lazy initialization of symbolic values.
Thus, we execute the model as normal and initialize empty objects for symbolic values
only when the execution accesses the object for the first time. Similarly, attribute values
of objects are only initialized on their first access during the execution with dedicated
values to induce a certain path during the execution.

Example: Initial tokens as input. Before we discuss how we apply symbolic execution
on our running example, we have to slightly modify the Petri net language depicted in
Figure 2 such that it takes the initial token distribution as input. Therefore, we add a
class Token, which owns a reference named place to Place denoting the token’s initial
place. Additionally, we change the operation NetConfiguration.main() and add a param-
eter initialTokens of type EList<Token> to this operation. The activity specifying the
behavior of the operation main() passes the list of initial tokens to the operation initialize-
Marking(), which in turn sets the number of tokens for each place p to p.tokens =
initialTokens->select(t | t.place = p).size(); note that we define

126 P. Langer, T. Mayerhofer, and G. Kappel

$initialTokens = List<Token>()// symbolic input
p1.tokens = $p1Tokens <- $initialTokens->select(t | t.place = p1).size()
p2.tokens = $p2Tokens <- $initialTokens->select(t | t.place = p2).size()
p3.tokens = $p3Tokens <- $initialTokens->select(t | t.place = p3).size()
p4.tokens = $p4Tokens <- $initialTokens->select(t | t.place = p4).size()

p1.tokens == 0

$enabled = List(t1)

false

$enabled = List()

true

p4.tokens == 0 p4.tokens == 0

$enabled = List(t1, t2)

false

$enabled = List(t1)

true

$enabled.size > 0 $enabled.size > 0

false

// t1 fires
p1.tokens = $p1Tokens - 1
p2.tokens = $p2Tokens + 1
p3.tokens = $p3Tokens + 1

true

// t2 fires
p4.tokens = $p4Tokens - 1

p1.tokens = $p1Tokens - 1 + 1

// t1 fires
p1.tokens = $p1Tokens - 1 + 1 - 1

p2.tokens = $p2Tokens + 1 + 1
p3.tokens = $p3Tokens + 1 + 1

termination

false

// t1 fires
p1.tokens = $p1Tokens - 1
p2.tokens = $p2Tokens + 1
p3.tokens = $p3Tokens + 1

true

termination

$enabled = List(t2)

false

$enabled = List()

true

$enabled.size > 0 termination

false

// t2 fires
p4.tokens = $p4Tokens - 1
p1.tokens = $p1Tokens + 1

true

initializeMarkings

run -> isEnabled for t1

run -> isEnabled for t2

run

run -> fire

// t1 fires
p1.tokens = $p1Tokens + 1 - 1

p2.tokens = $p2Tokens + 1
p3.tokens = $p3Tokens + 1

termination

Fig. 5. Excerpt of the execution tree for PN2 (cf. Figure 4)

this assignment here in OCL syntax for the sake of brevity, in an operational semantics
specification, this assignment is specified in terms of an action language, such as fUML.

Example: Symbolic execution. To derive input values that cause all distinct execution
traces, we symbolically execute the operational semantics of the Petri net language
with both models to be compared, whereas the input of the execution—that is, the pa-
rameter initialTokens of type EList<Token>—is represented as a symbolic value. Fig-
ure 5 shows an excerpt of the resulting execution tree for PN2 (cf. Figure 4). Note
that we bound the symbolic execution to at most one initial token per place in this
example. We depict path constraints as diamonds and the symbolic states of sym-
bolic values in boxes; symbolic values are prefixed with a $ symbol. The uppermost
box shows the symbolic states after executing the operation initializeMarking(initial-
Tokens). As this operation assigns the number of tokens based on the symbolic in-
put initialTokens to the tokens attribute of each place, also the values assigned to this
attribute are handled symbolically. The initial symbolic values for this attribute are
mapped to the symbolic expression $initialTokens->select(t | t.place

Semantic Model Differencing Utilizing Behavioral Semantics Specifications 127

= pX).size(). In Figure 5, this expression is abbreviated with $pXTokens. After
the markings are initialized, the operation run() is called (cf. Figure 2). This operation
iterates through the transitions of the net and checks whether they are enabled. There-
fore, in the first iteration, isEnabled() is called on transition t1, which in turn iterates
through all of its incoming places (p1 in our example) and checks whether there is an
incoming place without tokens. Therefore, the symbolic value p1.tokens is accessed
and the condition p1.tokens == 0 is evaluated. We do not interfere with the con-
crete execution except for the access of the symbolic value and the evaluation of the
condition in order to record the path condition, update the execution tree (cf. Figure 5),
and solve the constraint to compute concrete values for the involved symbolic values
inducing the true branch and the false branch, respectively. After that, we continue
with the concrete execution with the respective concrete values for both branches. De-
pending on which branch is taken (i.e., t1 is enabled or not), t1 is added to the output
expansion node enabled of the expansion region in the activity run (cf. Figure 2). In the
symbolic execution of activities, we handle expansion nodes as list variables. As the ad-
dition of t1 to the expansion node depends on symbolic values, we also consider the list
variable, denoted with $enabled, as symbolic. In the next iteration of run, the same
procedure is applied to transition t2 and its input place p4; thus, the execution tree is
updated accordingly. Next, the execution checks whether the list of enabled transitions
contains at least one element with the condition $enabled.size > 0. As this con-
dition accesses $enabled, which is considered as symbolic value, we record it in the
execution tree and try to produce values for the true and false branch. However,
the constraint solver cannot find a solution for the false branch, denoted with ⊥ in
Figure 5, because in three paths $enabled will always contain at least one transition
according to the path conditions and symbolic states. Thus, in three of the six branches,
fire() is called for the first transition in the list $enabled causing changes in the tokens
attribute of the incoming and outgoing places. As the tokens attribute is considered as
symbolic, we update their symbolic states. Finally, the execution proceeds with iter-
ating through transitions again and firing them, if they are enabled. As we bound the
symbolic execution to at most one initial token per place, all branches either terminate
eventually or lead to an unsatisfiable state (e.g., violating the bound condition).

The final execution tree contains four satisfiable execution paths. The path conditions
of these paths represent symbolically all relevant initial token markings for this net
inducing all distinct execution traces. Using a constraint solver, we can generate Token
objects with corresponding links to the places in the net such that the initial markings of
the four inputs are: {p1 = 1}, {p1 = 1, p4 = 1}, {p4 = 1}, and {} (no tokens at all).
When repeating the symbolic execution for the Petri net PN1 in Figure 4, we obtain
two additional inputs: {p1 = 1, p2 = 1} (or p3 instead of p2), and {p1 = 1, p2 =
1, p3 = 1}. With this total of six inputs, we invoke the semantic differencing based on
the semantic match rules to obtain all diff witnesses (cf. Section 4).

6 Evaluation

We evaluated our approach regarding three aspects. First, we investigate whether our
generic approach is powerful enough to specify semantic diff operators equivalent to

128 P. Langer, T. Mayerhofer, and G. Kappel

those specifically designed for particular modeling languages. Second, we examine the
performance of applying semantic diff operators realized with our approach. Third, we
evaluate the feasibility of realizing symbolic execution of models based on an opera-
tional semantics specification, in particular, using fUML.

Expressive power of generic semantic differencing. To assess whether our generic ap-
proach provides the necessary expressive power to define non-trivial semantic diff oper-
ators, we carried out two case studies, in which we implemented diff operators for UML
activity diagrams and class diagrams according to ADDiff [17] and CDDiff [18] devel-
oped by Maoz et al. This allows us to evaluate whether our generic approach is powerful
enough to compare to one of the most sophisticated language-specific approaches in the
semantic differencing domain. Therefore, we implemented the same semantics of UML
activity diagrams and class diagrams as defined by Maoz et al. using xMOF. While the
focus of the evaluation lies on the expressive power of our approach regarding the defi-
nition of diff operators, the following figures shall indicate, that the semantics specifica-
tions developed for the case studies are of high complexity. The semantics specification
of activity diagrams comprises 38 configuration classes consisting of 60 activities in
total, which contain altogether 380 activity nodes. The semantics specification of class
diagrams comprises 56 configuration classes, 119 activities, and 1003 nodes. For real-
izing the semantic diff operators we implemented semantic match rule corresponding to
the semantic differencing algorithms defined by Maoz et al. They enabled us to detect
the same diff witnesses as Maoz et al. among their case study example models published
in [17,18]. The interested reader can find our case studies at our project website [21].
For brevity, we discuss only the results of the case studies in the following.

From the case studies, we conclude that the expressive power of our generic seman-
tic differencing approach is sufficient for defining non-trivial semantic diff operators.
Implementing the semantic match rules requires besides knowledge about model com-
parison languages, such as ECL, knowledge about the behavioral semantics specifica-
tion of the considered modeling language. Hence, defining semantic diff operators is a
task that has to be performed by someone experienced with language engineering.

Performance of applying the semantic matching. We measured the performance of the
implemented diff operators in terms of time needed for evaluating whether the example
models are semantically different for a given set of input values. This experiment was
performed on a Intel Dual Core i5-2520M CPU, 2.5 GHz, with 8 GB RAM, running
Windows 7. Table 1 shows the time needed for syntactic matching (SynMatching),
model execution (Execution), and semantic matching (SemMatching), as well as
the total time needed (Total). Please note that these figures do not include the time
needed for generating all relevant inputs because an implementation of symbolic model
execution for fUML is not integrated yet with our semantic differencing prototype. For
activity diagrams, Table 1 also provides the number of activity nodes (#Nodes), as
well as the number of input values to consider (#Inputs), as they have a significant
influence on the execution time. For class diagrams, we provide the number of objects
(#Objects) as well as links (#Links) of the input object diagram. The performance
results indicate that the model execution is the most expensive step in the semantic
model differencing as it takes around 95% of the overall time. Thus, the main reason

Semantic Model Differencing Utilizing Behavioral Semantics Specifications 129

Table 1. Performance results for semantically differencing example models

UML activity diagram
Example #Nodes #Inputs SynMatching Execution SemMatching Total
Anon V1/V2 15/15 2 51 ms 7905 ms 341 ms 8297 ms
Anon V2/V3 15/19 1 72 ms 7374 ms 246 ms 7692 ms
hire V1/V2 14/15 1 47 ms 5259 ms 283 ms 5589 ms
hire V2/V3 15/15 1 47 ms 5745 ms 304 ms 6096 ms
hire V3/V4 15/15 1 48 ms 2011 ms 95 ms 2154 ms
IBM2557 V1/V2 18/16 3 85 ms 25889 ms 1159 ms 27133 ms

UML class diagram
Example #Objects #Links SynMatching Execution SemMatching Total
EMT V1/V2 2 1 17 ms 1203 ms 119 ms 1339 ms
EMT V1/V2 4 3 16 ms 6790 ms 275 ms 7081 ms
EMT V1/V2 6 5 15 ms 26438 ms 543 ms 26996 ms

for the weaker performance result compared to the approach of Maoz et al. [17,18] is
the performance of the model execution carried out by the fUML virtual machine.

Symbolic execution of fUML. An important prerequisite for realizing symbolic exe-
cution is the identification of conditional executions, as well as the extraction of the
condition in terms of a quantifier free path constraint. Therefore, we analyzed the fea-
sibility of identifying and mapping conditional language concepts of fUML’s action
language to corresponding OCL path constraint templates. In this analysis, we faced
several challenges, since the execution flow is driven by offering and accepting object
tokens through input and output pins of actions; if an action, e.g., a ReadStructural-
FeatureValueAction, reads a non-existing value, no token is placed on its output pin,
which in turn prevents the execution of the action that waits for the token. Thus, actions
that take inputs from actions reading symbolic values, have to be considered as condi-
tional and, therefore, a dedicated path constraint has to be generated. Besides, we have
to map the different ways of using DecisionNodes to path constraints, which was, how-
ever, mostly straightforward. Nevertheless, we were able to map the fUML concepts
used in the case studies to corresponding path conditions. Moreover, in the semantics
specifications of our two case studies, we only used the standardized primitive operators
and behaviors of fUML, such as greater than, logical AND, list size, etc. As all of these
operators and behaviors are supported in OCL, it is straightforward to represent the
symbolic state of symbolic variables entirely in OCL, which enabled us to avoid suffer-
ing from symbolic imprecision. For realizing generalized concolic execution [29,11] of
fUML, it is moreover crucial to distinguish among concrete and symbolic values and,
therefore, to extract a value dependency graph for determining whether a value depends
directly or indirectly on a symbolic value. Therefore, we performed an experimental
implementation for analyzing the dependencies of values, which is, in comparison to
usual programming languages, easily possible thanks to the explicit representation of
the object flow in fUML. The support for explicating data dependencies has been inte-
grated in our execution trace for fUML [19].

Constraint solving with symbolic execution paths. To enable finding concrete objects
and links that satisfy a sequence of path conditions, we implemented an integration of
xMOF and fUML with the model validator plug-in for USE [13] by Kuhlmann et al.

130 P. Langer, T. Mayerhofer, and G. Kappel

Therefore, we translate the (configuration) metamodel of the modeling language into a
UML class diagram in USE, transform the models to be compared into object diagrams,
and represent path constraints as OCL invariants. Now, we may start the model validator
plug-in, which internally translates those diagrams and the constraints into the relational
logics of Kodkod [30] to apply an efficient SAT-based search for an object diagram
that satisfies all constraints. Note that constraint solving is an inherently computation-
intensive task. Although our experiments showed that this plug-in of USE is comparably
efficient, the constraint solving took up to several seconds in our case studies, which
may impair the runtime of symbolic execution drastically. Nevertheless, the runtime
of the constraint solving significantly depends on the bounds (e.g., number of objects
per class, range of Integer values); thus, there is a large potential for optimizing the
constraint solving by extracting heuristics from the operational semantics specification
to limit the bounds automatically. Moreover, a feature of this plug-in that significantly
improved its application for our purpose is its support for extending specified object
diagrams incrementally for validating additional constraints.

7 Conclusion

We proposed a generic semantic model differencing approach that—in contrast to ex-
isting approaches—makes use of the behavioral semantics specifications of modeling
languages for supporting the semantic comparison of models. Thus, non-trivial transfor-
mations into a semantic domain specifically for enabling semantic differencing can be
avoided. Instead, the behavioral semantics specifications of modeling languages, which
may also be employed, e.g., for simulation, are reused to enable semantic differencing.

We showed how our approach can be realized for the operational semantics specifica-
tion approach xMOF to enable the implementation of semantic diff operators. Further-
more, we presented a solution for generating relevant inputs required for the underlying
model execution based on symbolic execution. The evaluation of our approach with
two case studies revealed that our approach is expressive enough to define different se-
mantic equivalence criteria for specific modeling languages. However, it also turned out
that we face serious performance issues caused by the slow model execution, but also
by the inherently time-consuming constraint solving task in the symbolic execution. To
address this issue we plan to improve the virtual machine for executing models, but
also envision an adaptation of directed and differential symbolic execution [15,27] for
generating relevant inputs more efficiently. One idea behind those symbolic execution
strategies is to consider syntactic differences in the models to be compared and direct
the symbolic execution towards those differences, whereas unchanged parts are pruned,
if possible. Moreover, we will investigate whether it is possible to avoid the genera-
tion of concrete inputs at all and, instead, analyze the symbolic representations of the
execution trees of both models directly for reasoning about semantic differences.

Acknowledgments. This work is partly funded by the European Commission under the
ICT Policy Support Programme grant no. 317859 and by the Austrian Federal Ministry
of Transport, Innovation and Technology (BMVIT) under the FFG BRIDGE program
grant no. 832160.

Semantic Model Differencing Utilizing Behavioral Semantics Specifications 131

References

1. Alanen, M., Porres, I.: Difference and union of models. In: Stevens, P., Whittle, J., Booch,
G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg (2003)

2. Brun, C., Pierantonio, A.: Model Differences in the Eclipse Modeling Framework. UP-
GRADE, The European Journal for the Informatics Professional 9(2), 29–34 (2008)

3. Cadar, C., Sen, K.: Symbolic Execution for Software Testing: Three Decades Later. Com-
munications of the ACM 56(2), 82–90 (2013)

4. Clarke, L.A.: A Program Testing System. In: Proceedings of the 1976 Annual Conference
(ACM 1976), pp. 488–491. ACM (1976)

5. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic Meta Modeling: A Graphical
Approach to the Operational Semantics of Behavioral Diagrams in UML. In: Evans, A.,
Caskurlu, B., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 323–337. Springer, Heidelberg
(2000)

6. Esparza, J., Nielsen, M.: Decidability Issues for Petri Nets. Technical Report, BRICS RS948,
BRICS Report Series, Department of Computer Science, University of Aarhus (1994),
http://www.brics.dk

7. Fahrenberg, U., Acher, M., Legay, A., Wasowski, A.: Sound Merging and Differencing for
Class Diagrams. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 63–78.
Springer, Heidelberg (2014)

8. Fahrenberg, U., Legay, A., Wasowski, A.: Vision Paper: Make a Difference (Semantically).
In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 490–500.
Springer, Heidelberg (2011)

9. Gerth, C., Küster, J.M., Luckey, M., Engels, G.: Precise Detection of Conflicting Change
Operations Using Process Model Terms. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.)
MODELS 2010, Part II. LNCS, vol. 6395, pp. 93–107. Springer, Heidelberg (2010)

10. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of “Semantics”? Com-
puter 37(10), 64–72 (2004)

11. Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized Symbolic Execution for Model
Checking and Testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 553–568. Springer, Heidelberg (2003)

12. Kolovos, D., Rose, L., Garcı́a-Domı́nguez, A., Paige, R.: The Epsilon Book (March 2014),
https://www.eclipse.org/epsilon/doc/book/

13. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive Validation of OCL Models by Inte-
grating SAT Solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011. LNCS,
vol. 6705, pp. 290–306. Springer, Heidelberg (2011)

14. Lin, Y., Gray, J., Jouault, F.: DSMDiff: A Differentiation Tool for Domain-Specific Models.
European Journal of Information Systems 16(4), 349–361 (2007)

15. Ma, K.-K., Yit Phang, K., Foster, J.S., Hicks, M.: Directed Symbolic Execution. In: Yahav,
E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 95–111. Springer, Heidelberg (2011)

16. Maoz, S., Ringert, J.O., Rumpe, B.: A Manifesto for Semantic Model Differencing. In:
Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS, vol. 6627, pp. 194–203. Springer,
Heidelberg (2011)

17. Maoz, S., Ringert, J.O., Rumpe, B.: ADDiff: Semantic Differencing for Activity Diagrams.
In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering (ESEC/FSE 2011), pp. 179–189. ACM (2011)

18. Maoz, S., Ringert, J.O., Rumpe, B.: CDDiff: Semantic Differencing for Class Diagrams. In:
Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 230–254. Springer, Heidelberg (2011)

http://www.brics.dk
https://www.eclipse.org/epsilon/doc/book/

132 P. Langer, T. Mayerhofer, and G. Kappel

19. Mayerhofer, T., Langer, P., Kappel, G.: A Runtime Model for fUML. In: Proceedings of the
7th Workshop on Models@run.time (MRT) co-located with the 15th International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS 2012), pp. 53–58.
ACM (2012)

20. Mayerhofer, T., Langer, P., Wimmer, M., Kappel, G.: xMOF: Executable DSMLs Based on
fUML. In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp.
56–75. Springer, Heidelberg (2013)

21. Moliz project, http://www.modelexecution.org
22. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving Executability into Object-Oriented Meta-

languages. In: Briand, L.C., Williams, C. (eds.) MODELS 2005. LNCS, vol. 3713, pp.
264–278. Springer, Heidelberg (2005)

23. Object Management Group. OMG Unified Modeling Language (OMG UML), Superstruc-
ture, Version 2.4.1 (August 2011), http://www.omg.org/spec/UML/2.4.1

24. Object Management Group. Semantics of a Foundational Subset for Executable UML Mod-
els (fUML), Version 1.0 (February 2011), http://www.omg.org/spec/FUML/1.0

25. Ohst, D., Welle, M., Kelter, U.: Differences Between Versions of UML Diagrams. SIGSOFT
Software Engineering Notes 28(5), 227–236 (2003)

26. Oliveira, H., Murta, L., Werner, C.: Odyssey-VCS: A Flexible Version Control System for
UML Model Elements. In: Proceedings of the 12th International Workshop on Software
Configuration Management (SCM 2005), pp. 1–16. ACM (2005)

27. Person, S., Dwyer, M.B., Elbaum, S.G., Pasareanu, C.S.: Differential Symbolic Execution.
In: Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE 2008), pp. 226–237. ACM (2008)

28. Reiter, T., Altmanninger, K., Bergmayr, A., Schwinger, W., Kotsis, G.: Models in Conflict –
Detection of Semantic Conflicts in Model-based Development. In: Proceedings of the 3rd In-
ternational Workshop on Model-Driven Enterprise Information Systems (MDEIS) co-located
with the 9th International Conference on Enterprise Information Systems (ICEIS 2007), pp.
29–40 (2007)

29. Sen, K.: Concolic Testing. In: Proceedings of the 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2007), pp. 571–572. ACM (2007)

30. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)

31. Xing, Z., Stroulia, E.: UMLDiff: An Algorithm for Object-oriented Design Differencing.
In: Proceedings of the 20th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2005), pp. 54–65. ACM (2005)

http://www.modelexecution.org
http://www.omg.org/spec/UML/2.4.1
http://www.omg.org/spec/FUML/1.0

	Semantic Model Differencing Utilizing Behavioral Semantics Specifications
	1 Introduction
	2 Related Work
	3 Overview
	4 Semantic Model Differencing
	4.1 Behavioral Semantics Specification with xMOF
	4.2 Trace Information
	4.3 Semantic Model Differencing Based on Trace Information

	5 Input Generation Using Symbolic Execution
	6 Evaluation
	7 Conclusion
	References

