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Abstract. The paper explores a vision in modeling the behavior of com-
plex systems by modular units hosting state machines arranged in part-
whole hierarchies and communicating through event flows. Each modular
unit plays at the same time the double role of part and whole, i.e. it is
inspired by the philosophical idea of holon, providing both an interface
and an implementation by which other component state machines may be
controlled in order to achieve a global behavior. It is moreover observed
that it is possible to assign a formal characterization to such state mod-
ules, due to their part-whole arrangement, since higher-level behaviors
can derive formally their meaning from lower-level component behaviors.
Such a way of arranging behavioral modules allows to establish directly
correct-by-construction safety and liveness properties of state-based sys-
tems thus challenging the current approach by which state machines
interact at the same level and have to be model-checked for ensuring
correctness.

Keywords: state-based modeling, holons, component-based modeling,
model checking, correctness by construction.

1 Introduction

Holons, in the terminology of Arthur Koestler in his 1967 book The Ghost in the
Machine [1] are entities which are, at the same time, both parts and wholes. Ac-
cordingly, complex phenomena and entities can be decomposed into part/whole
hierarchies, named holarchies, with holon nodes at each level. The main interest
in the holonic approach lies in the fact that it reconciles both the reductionist
and the holistic view in systems analysis.

By the reductionistic view, which dates back to Descartes and is sometimes
referred to as divide and conquer or more formally analytic reduction, a com-
plex system can be analyzed by “reduction” into distinct parts so that they
can be analysed separately. Such decomposition allows to deal effectively with
systems complexity, by recursively confining it into less complex and distinct
parts, namely subsystems. In order to be effective, analytic reduction implies the
following assumptions: the division into parts will not distort the phenomenon
being studied and the behavior of the components is the same when examined
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apart as when playing their part in the whole system. Additionally a third fun-
damental assumption is that it is possible to draw a clear boundary between the
interactions among the subsystems and the behavior of the subsystems them-
selves [2][3].

While it is easy to discover and model standalone entities and systems, dif-
ficulty arises in assembling more complex systems using such entities as com-
ponents, since there is no agreement on a composition model which allows full
composability of abstractions. By full composability we mean that the same ex-
act component should work in the whole without having to modify it in order to
adapt it to any composition context (off the shelf approach), thus fully satisfying
the second assumption of the reductionistic program reported above.

The current approach consists essentially of the composition model implicit
in the object-oriented paradigm, by which systems modeled by objects inter-
act and synchronize by invoking procedural methods on other objects, typically,
albeit not only, by direct message exchange through object-valued attributes,
called references. In other words, since there are no specific constructs for mod-
eling the composition of objects as a whole, the object-oriented paradigm is
inherently “component-oriented”. As stated by Rumbaugh, it may be therefore
observed that “in the current object-oriented paradigm interactions are buried
in the instance variables and methods of the classes, so that the overall structure
of the system is not readily apparent” [4]. A construct for modeling the overall
structure of systems is missing in the object-oriented paradigm. Such a “missing”
construct should be able to emphasize such a structure and to model its overall
dynamics as a whole, thus correcting its tendency to be component-oriented.

Finally, such a construct should be moreover able to act as a standalone
component into more complex wholes without further modifications. In other
words, it is desirable, for elegance and simplicity, not only to have an additional
modular construct for implementing wholes from components, but to have a
single constructs playing both roles seaminglessy.

1.1 The “Missing Whole” Problem

The major difficulty in achieving effective object composition lies in missing the
semantic distinction between intra- and inter -object behavior. While the former
pertains naturally to the object itself, the latter acts as some sort of glue in the
assembly of object components into more complex wholes.

Current object-oriented modeling techniques do not make any semantic dis-
tinction amongst the two kinds of behavior, since both are modeled by the same
object construct, that is by mutual object references and remote method invoca-
tion through message passing. In this way, as observed, most of current modeling
object oriented development methodologies and formalisms in analysis and im-
plementation make the object construct semantically overloaded, since it hosts
both its endogenous behavior as a component and, at the same time, the exoge-
nous behavior of the system being assembled, resulting in the tight coupling of
abstractions and implementations.
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The “missing whole” problem has been moreover partially dealt with by means
of different external mechanisms patched to the object-oriented paradigm in
order to enhance it. for example, by specific object patterns and communication
mechanisms, like the Mediator and the Observer design pattern [5] as well as the
Model View Controller (MVC) mechanism [6]. The Mediator pattern decouples
interacting classes by gathering their interacting portion of behavior within a
single “mediator” class, thus improving the overall understandability and self-
containment of the original classes. The role and the meaning of such “mediator”
class has interesting interpretations beyond its immediate pragmatic one, which
consists in laying a bridge among different behaviors. Such a bridging role is
achieved by prescribing changes to other classes in reaction to other changes
happening in the original classes. In other words such a bridging class hosts, as
a matter of fact, a behavior on its own.

On the other hand, any systemic behavior can be seen abstractly as a re-
active, coordinating behavior: it must in fact specify which actions have to be
undertaken in reaction to specific changes in system components in order to pre-
scribe additional changes to other system components. In other words a systemic
behavior links different behaviors, and it can be modeled either by a specific
modular construct of the language or it may be embedded within the original
behaviors. The two approaches in modeling systemic behavior can be named
respectively “explicit” versus “implicit” [7][8] depending on whether or not the
system dynamics is hosted within a single modular unit of behavior. By the im-
plicit approach an aggregate is modeled through a web of references by which the
component objects refer one to another. This way the associative knowledge be-
tween the component objects is modeled directly (by object-valued attributes),
hiding the structure and the behavior of the aggregate which is therefore not
identified as a relevant object. By the explicit approach, an explicit additional
object is inserted in the modeling instead, holding part-of relationships to the
component objects. The two approaches bear consequences on software quality
factors, for example implicit modeling tends to produce software artifacts which
are tightly coupled and not self contained, thus producing software which is
difficult to maintain, reuse, understand, and so on.

By adopting the explicit view, communication among systems has moreover
to be revised accordingly, due to the presence of an additional centralized unit
of behavior. In other words, components, which are no more tightly coupled one
with another are now tightly coupled with the mediator class itself. The original
tightly coupled modules have in fact to maintain static references to the class
implementing the centralized behavior in order to notify them of changes in their
internal status, allowing the mediator class to react appropriately through other
static references. The Observer design pattern and the MVC mechanism may
then be used in order to patch a reactive event-based communication framework
to the object paradigm, with the aim of decoupling components classes from
such specialized controller classes.

Object-oriented methodologies in the last two decades presented different ap-
proaches to the joint modeling of structural and behavioral aspects, essentially
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by encapsulating behavior around already discovered structures, with the result
that not readily apparent systems and wholes were often missing in the final
design. In other words, since components are self-evident while systems are of-
ten not, such methodologies provided very few support in discovering enclosing
wholes, thus committing themselves towards the implicit modeling approach. A
slightly different approach may be found instead in the Object Modeling Tech-
nique (OMT) by Rumbaugh [4] and in the Fusion method by Coleman et al. [9]
which emphasized the role played by mutual relationships in discovering new
encapsulating classes. Most of such work eventually merged into the UML [10]
and the UML 2 [11] standards, which partly corrected the implicit tendency by
a wealth of modeling constructs, for example by distinguishing between “weak”
aggregation and “strong” composition relationships and introducing suitable “as-
sociation” classes, albeit missing, in some sense, a unifying and comprehensive
theoretical framework.

The aim of this paper is to show that a different paradigm may be pur-
sued by going beyond the existing, partial, solutions towards a vision of the
object paradigm which coherently combines components and wholes through a
revised communication mechanism. The paper employs the Part-Whole Stat-
echarts (PWS) formalism [12] in order to illustrate the more general idea of
holonic modeling. Part-Whole Statecharts have already been used in pioneer-
ing the feasibility of holarchies of unmanned vehicles and of multiagent sys-
tems [13][14][15]. The same formalism has been endowed recently [16] with a
formal syntax and semantics which allows, by construction, to build correct
modules without using model checking techniques.

1.2 Structure of the Work

Section 2 discusses and compares general principles of behavioral composition,
interaction and synchronization. Section 3 presents a modular construct which
implements the general idea of holon and Section 4 discusses the feasibility of
modeling real-world cases through Part-Whole Statecharts.

2 Behavioral-Driven Composition

It may be observed that entities which exhibit a peer to peer coordinated be-
havior act, globally, as a new aggregated entity. This is true both of entities
communicating and coordinating through exchange of signals as well as of enti-
ties having a mechanical connection which trivially constrains them to behavioral
coordination. Process algebras [17][18] furnish an interesting example in Hoare’s
CSP seminal work, where a customer CUST is modeled by a process which inter-
act with a vending machine VM, the interaction becoming a new single process
P = CUST||VM, with || being the concurrency operator in CSP. In the rest of
the paper we will use, with no loss of generality with respect to process alge-
bras, a state-based formalism which lends itself to a very readable, albeit formal,
diagrammatic form through the concepts of states and state transitions.
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Focusing directly on entities without considering their joint behavior, a prac-
tice inspired by common-sense real-world observation, may be misleading in
finding higher level, more complex entities and systems. A system is in fact as-
sembled from a set of physical components, which exercise physical control one
upon another and exhibit individual state changes induced by mutual and direct
physical interactions. The point is that local state changes can be seen, alterna-
tively, as a global single state change at the system level, since an aggregate of
coordinated entities moves from one global state to the another as its distinct
components move from one state to the another.

The final step consists in hypothesizing that since each entity hosts a behavior,
each behavior implies the existence of a suitable entity which hosts it. Looking at
behavioral aggregation represents therefore a challenging clue in developing new
modeling paradigms and constructs built according to the principle of explicit
modeling of associative behavior.
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Fig. 1. The behavioral assemblage of three standalone Statecharts (a), into a complex
system (b), obtained by modifying their behavior through direct event forwarding
and mutual state condition testing. Grey arrows emphasizing mutual interactions and
dependences visually depict the global systemic behavior.

2.1 The Explicit Modeling Conjecture

Statecharts, by David Harel [19], allow to model compound behaviors by a set of
interacting parallel state machines, each state machine hosted within an AND-
decomposed state, each single state of the machine being an XOR-decomposed
state. Statecharts may then be used in a straightforward way to represent sin-
gle behaviors. Such behaviors in turn may be composed into more complex
ones through mutual coordination and synchronization, by forwarding command
events from one machine to the another as well as by requiring state conditions to
be satisfied before a transition is taken. As an example consider Figure 1 where
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three Statecharts automata taken in isolation in (a) form, globally, a system
in (b) once automata are modified in order to mutually implement the following
behavior:

“The pump may be started and stopped, and the valve is opened and
closed accordingly in order to allow the flow of liquid into tank. A sensor
detects tank pressure and inhibits valve opening when the pressure is
too high, in order to avoid reflux from the tank. When the opening of
the valve is not permitted, a stop signal is sent back to the pump.”

Behavioral interdependences which implement the behavior above are de-
picted in Figure 1 (b) by grey arrows: it may be easily observed that in such a
form, the whole behavior is hardly understandable, modifiable, testable and not
easily amenable to be checked for safety analysis. In other words, the Statecharts
construct requires to modify the internal behavior of components, thus contra-
vening Parnas’ principle of information hiding [20]. It may be also observed that
Statecharts’ state-based modeling is subject to “the missing whole problem” of
Section 1.1.

It may be conjectured, although a formal demonstration is outside of the
scope of the paper, that it is always possible to obtain, through a single coor-
dinating state machine W , called “whole”, the same exact behavior that would
be obtained by the direct interaction of a finite number of state machines.
Let A = {m1,m2, . . . ,mN} be a set of self contained state machine, and let
A′ = {m′

1,m
′
2, . . . ,m

′
N} be the corresponding set with m′

i being state machine
mi ∈ A extended in order to interact with other state machines in the same set
by event forwarding and mutual condition testing. For example, Figure 1 depicts
both the original self-contained machines (a) as well as the modified ones (b)
(compare for example pump with pump′). Figure 2 shows a state machine W
which implements the same behavior of Figure 1 (b) through the syntax and the
semantics of the Part-Whole Statecharts formalism.

State machine W plays a coordination role towards the original interacting
state machines, by labeling its state transitions with coordination commands
directed to state machines belonging to the set A and reacting to state changes
coming from the machines in the same set. Additionally, a definite semantics can
be assigned to the states in W as shown in [16].

3 Holons

Holons are modular units which host a behavioral construct, in the case at hand
a state machine, playing, at the same time, a twofold role:

1. the statemachine coordinates the behavior of other component holons through
their state machine interface;

2. the state machine provides an interface to other holons which coordinate the
holon.
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Fig. 2. The complex behavior of Figure 1 (b) modeled through a coordinating state ma-
chine, obtained as the “whole” section of an extend PW Statecharts machine (adapted
from [21]). The automaton coordinates the behavior of the pump (p) and of the valve
(v) depending on the pressure sensor (ps). State HTP denotes the exceptional case
of “high tank-pressure”. Transitions t4 and t6 are taken automatically as the tank
pressure changes.

The two points match the general notion which stands behind the holonic
paradigm (the so called “Janus”, i.e., double face, paradigm). Holons are at the
same time both whole (i.e., coordinating) and part (i.e., coordinated) entities.
Holons are arranged in part-whole hierarchies called holarchies by the recursive
pattern of composition depicted in Figure 3 (b). In such a pattern holon W
coordinates the joint behavior of its component holons A,B,C.

The proposed holonic pattern of composition is asymmetrical, since wholes
know their parts, but parts are forbidden to know the whole in order to maximize
self containment and reusability.

Such an asymmetry is achieved by having two typologies of signals which
travel from parts to whole and viceversa, as shown in Figure 3 (b):

1. the (whole section of the) holon has to prescribe coordinated behavior to
each of its component holons: this is depicted by grey arrows in the picture;

2. the holon has to react to changes happening in its component parts: this is
depicted by white arrows in the same picture.

Such a feature heavily relies on a suitable communication mechanism which
implements both event delivery from the whole to a recipient (grey arrows) as
well as a notification mechanism of any change happening within a component
towards the whole (white arrows in the picture). Aim of the mechanism is, be-
yond carrying events, to decouple component holons from their coordinating
counterparts, since the holon interface does not contain any reference to them.
If, on one hand, such a holon implementation is tightly coupled to its component
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Fig. 3. The implicit modeling of three interacting entities through the reference con-
struct (a) and the correspondent explicit modeling through four holons (b). The picture
suggests that triangle-shaped associative behavior may be gathered within holon W
thus freeing holons A,B and C from unnecessary details.

parts, holon interface does not contain any reference to any other holon in order
to achieve loose coupling among them. Parts do not know the whole, since they
have to be composed in many different, not foreseeable, contexts. The whole
does know its parts, instead, in order to achieve a useful composition.

For example, state transitions in the Part-Whole Statecharts formalism (cho-
sen for illustrating holons’ features in the paper) contain event commands of the
form 〈c.e〉: once the transition is triggered, event e is delivered to component c
whose interface contains a transition which has e as trigger (Figure 4 (a)). Vice
versa, any change in a component holon, say d, is “notified” to the holon which
has d as component, where a transition may have d.f as trigger, meaning that
holon W has to react to event f from holon d (Figure 4 (b)).

4 Formal Specification and Semantics

It is possible to annotate state-based holons at design time in such a way that
the behavior implemented at each level of composition can be formally specified
and verified. Part-Whole Statecharts, as observed, already provide the formal
instruments for performing formal specification of the semantics of state-based
holons. This marks an evolutionary advantage with respect to traditional object-
oriented and state-based modeling, where interacting and mutually referring
modules have no semantics, as observed in the Statecharts case [22].



Modeling Systemic Behavior by State-Based Holonic Modular Units 107

d

communication 
medium

W

c

R
<c.e>

S

T e U
t1

t2

(a)

communication 
medium

Q
f

R
t1

W

A
d.f

B
t2

(b)

Fig. 4. The double role played by a communication medium among holons. (a) The
“delivery” role, by which a command c.e is dispatched, by the occurrence of state tran-
sition t2, from the whole automaton of holon W to component holon c, activating,
through its interface, state transition t1 triggered by e. (b) The reverse “notification”
role, by which the occurrence of state transition t1, labelled by f in the interface of com-
ponent holon d, is notified to the whole section of holon W activating state transition
t2 triggered by d.f (Figure 4 (b)).

It is presumable that part-whole arrangement of modules in combination with
hierarchical rules of control are at the basis of this important property of holons.
Coordinating state-based holons, each referring to a finite and fixed number of
component holons, allows in fact to map each of its states at a given composition
level to a well defined configuration of states belonging to the next composition
level. Such configurations can be equivalently expressed by a propositional for-
mula in a suitable boolean algebra [16].

Correctness, and consequently safety and liveness, may thus be achieved by
construction, by computing such propositions state by state as already shown
in Part-Whole Statecharts. It can be hypothesized that checking correctness of
each holon by construction may be also achieved by employing other formalisms
for expressing holons dynamics, for example by procedural languages, since any
state automaton may be deterministically translated into plain code. It may
be finally observed that state based specifications and models may be directly
executed.

4.1 Example

An automated car has to be controlled in order to start and stop depending on a
traffic light on a track. The same car has a system of automated doors which can
be operated either by a controller or manually. The car can be therefore seen
as a holon having the automated doors and the engine as component holons
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(Figure 5); at the same time the car holon can be composed into a higher level
holon which has the car and the traffic light as components (Figure 6). Moreover
safety and liveness constraints have to be met by the whole system and will be
be enforced, compositionally, at different levels of the holarchy:

1. The doors have to be closed while the car is moving;
2. The car has to be stopped when the traffic light is red, restarted when green.

Doors holon module: The doors may be opened and closed either by a signal
from the car controller or manually. In both cases the module moves from the
Open to the Closed state and vice versa. In the former case, the doors system
works as an actuator, by receiving event signals open and close which trigger
state transitions t3 and t4. In case doors are opened and closed manually, the
same holon may be seen as a sensor, since it takes autonomously state transitions
t2 and t5 and emits event signals open and close towards the holon which has the
doors as components, namely Car in the example. Autonomous state transitions
such as t2 and t5 are denoted by a small white circle near the starting state.
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Fig. 5. A holarchy controlling a safe automated car on a track

Engine holon module: The car engine may be simply turned on and off by
receiving event signals on and off which trigger state transitions t2 and t3 and
move the holon into the corresponding states On and Off.

Car holon module: this holon has two regular working states, Stop and Go. An
additional FailSafe state takes into account the exceptional behavior resulting



Modeling Systemic Behavior by State-Based Holonic Modular Units 109

from the manual opening of the doors while the car is moving. As in PW State-
charts, states are annotated by state propositions which are guaranteed to hold
when the system is within that state. For example, d.Open & eng.Off associated
to state Stop means that when in such a state the doors have to be opened and
the engine must be turned off. State proposition d.Close & eng.On associated
to state Go means conversely that when the car is moving the doors have to
be closed and the engine turned on. Transitions t2 and t3 are externally trig-
gerable by events go and stop which will be part of the interface of the holon
(see holon Car in the context of the holarchy in Figure 6). Transitions t2 and
t3, once triggered, propagate respectively command events 〈d.close, eng.on〉 and
〈d.open, eng.off〉 towards component holons Doors and Engine. It can be easily
verified that both transitions agree with the state propositions of the starting
and arrival states. Finally, when in the Go state, the manual opening of the doors
causes event open belonging to transition t2 of holon Doors to be sent towards
holon Car. This in turn triggers transition t4, which sends an off command event
〈eng.off〉 to the Engine holon which then moves to state FailSafe. Since transition
t4 is triggered by an event coming from a component, the resulting transition t4
will be seen by external contexts as autonomously triggered (see the interface
of Car in Figure 6). The system may be restarted by sending a restart event
from external composition contexts (such as holon GlobalTrackMonitor of Fig-
ure 6) which triggers transition t5 which in turns closes the doors and restarts
the engine by commands 〈d.close, eng.on〉.
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Fig. 6. The holarchy coordinating the automated car of Figure 5 and a traffic light
which enables either a main (Main) or a crossing secondary (Sec) road. Holon Car is now
employed in the model through its interface, obtained by simply hiding its components’
holons as well as any reference to them from the implementation of Figure 5.

Once holon Car has been designed and verified against the first of the two
safety constraints listed above, its interface may be employed in higher level
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composition contexts without any concern for safety. In other words, any of the
go-, stop- and restart-triggered state transitions may asked to be taken in holon
Car without having doors opened while the car is moving. We then model a
global monitor for the track system, which has in charge both the automated
car and a traffic light in order to stop it when a secondary road is enabled
(Figure 6). Since it employs the holon Car which has been already verified for
safety, it now suffices to employ it for implementing the final behavior checking
only for the second safety constraint.

Traffic Light holon module: the state machine is the interface of a sensor which
detects the current color of the lights from the main road, by changing state
(Red and Green) by taking the two autonomous transitions t2 and t3. The traffic
light device enables and prevents access to the secondary road accordingly.

Global Track Monitor holon module: as red and green events are emitted by the
Traffic Light, autonomous transitions t2 and t3 are triggered, which in turn send
actions go and stop to the car (〈c.go〉 and 〈c.stop〉). It may be easily verified
that state propositions c.Stop & tl.Red c.Go & tl.Green, associated respectively
to states Sec and Main are trivially verified by such state transitions. When in
state Main the event unsafe signaling that a a door has been opened while the
car is moving, brings the system to state Emergency where additional actions
can be taken (not shown in the example): the car is restarted by transition t4
through action 〈c.restart〉 as soon as such additional actions are completed and
the traffic light is green.

4.2 Application to Incremental Modeling of Safety Constraints

The holonic approach allows to partition safety tasks and to model them into
hierarchically arranged modules, which can be checked incrementally by visiting
a single finite state diagram in constant time instead of having to unfold all
feasible behaviors of a set of many interacting machines, as in current model
checking techniques, which leads to exponential visiting time. Once designed
and checked for safety, the module can be used “as is” in further composition
contexts. In general a safe holon module can be arranged from already-designed
safe modules by specifying that their interaction will occur in a safe manner,
that is, as observed, by checking a single state machine in constant time. In case
of physical systems which inherently fail, a suitable fault management strategy
can be hosted at each level of decomposition, provided a sound decomposition
has been carried out in the entire design phase. It becomes thus possible to defeat
the overall complexity given by the concurrent modeling of operating modes and
failure management policies. For example, fail silently sub-devices may be used
as components for assembling a device behavior, which is able, at the higher
level to reduce the fail silent behavior to a more tractable fail explicit behavior.
The latter, in turn, may be used, at the next composition level, to obtain a fail
safe or fail operational behavior. Examples of such hierarchical arrangement of
failure modes and related devices are given in [23][24][25] and are summarized
in Figure 7.



Modeling Systemic Behavior by State-Based Holonic Modular Units 111

A - device 
components

(e.g. pump engine, 
flow sensors)

B - single device
(e.g. pump)

D - redundant 
devices

(e.g. multiple 
pumps)

fail silent

fail explicit

fail
operational

E - nuclear plant 
management

fail safe

C - redundant 
voting sensors

fail 
operational

fail silent

fail 
operational

co
m

pl
ex

ityclinical
guideline

fault

fail explicit

fail safe

component
behavior

counterrotating
engines

fail silent

subdevice
behavior

engine module

device
blood pump

byzantine 
behavior

fail operational

Fig. 7. Fault management strategies and devices tend to be placed at different levels
of complexity in hierarchically decomposed behavior(adapted from [24])

5 Conclusions and Further Research

The paper main thesis is that an unifying paradigm may be founded upon differ-
ent empirical and theoretical evidences, among which already existing improve-
ments to the current OO paradigm.

Interacting modules synchronize system behavior by message exchange. Such
messages, however, denote different kinds of information. Typically, systems
communicate either by “peer to peer” or “part to whole” message exchange,
the latter case pertaining to systems composed of other systems. The problem
consists, at the ontological level, in determining whether two systems stand in
the former or in the latter relationship. The object oriented paradigm, for exam-
ple, do not distinguish amongst the two cases, thus giving rise to the “semantic
overloading” of the reference mechanism.

As observed, vertical, part-whole, system composition is asymmetrical in na-
ture and preserves model reusability. On the other hand, horizontal, peer to peer
message exchange hinders model reusability, since it forces system modelers to
introduce exogenous details within systems being modeled, bringing severe limi-
tations to the overall software quality of the modeled systems. Physical interac-
tions among physical systems denote in fact conceptual structures, not evident at
first sight, which are well suited in order to host the overall interaction and syn-
chronization knowledge among the component parts. By introducing additional
system entities with the aim of lodging such a knowledge in a localized and
compact manner, we obtain a part-whole hierarchy of systems, called holarchy.
Such systems are, at the same time, both parts and wholes within a holarchy,
thus giving a formal characterization to the notion of holon [26][27] which may
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give, in turn, further impulse to use of holarchies in distributed agent-based
manufacturing systems[28][29][30][31].

The paper presents an explicit construct for the recursive modeling of systems.
The approach forces the modeler to express the behavior of composition by a
single unit of behavior. Such a behavioral unit plays the double role of being
both a specification of the behavior of the system of interacting parts, as well
as an interface for further composition of the entire assembled system as whole.
This double side, “Janus”-like feature makes such kind of construct suitable for
modeling, as observed, the behavior of holons.

The presented approach may be finally used in order to partition safety tasks
into hierarchically arranged modules, each checked incrementally. Real-time crit-
ical systems, for example, may benefit from the approach since it allows to de-
compose a single, monolithic, control program into smaller, safe, reusable and
composable systems, each hosting a different safety policy.

5.1 Further Research

Peer-to-peer (P2P) direct modeling is of paramount importance in expressing
mutual interaction among entities and systems. Peer-to-peer interacting enti-
ties may be seen in many cases as playing specific roles within an implicit
whole/holon. For example, “husband” and “wife” are both entities playing the
respective roles in a P2P cooperation. Peer-to-peer modeling however does not
allow to compute an exact state semantics, while part-to-whole (P2W) modeling
instead does, as suggested by the paper. It seems evident that any peer-to-peer
modeling corresponds to a specific part-to-whole modeling. For example, wife
and husband are both part of a “family”, which may be represented by an ex-
plicit entity/holon having two “humans” as components playing the “husband”
and “wife” roles as components of the family holon.

As observed in the paper, it may be conjectured that it is always possible to
obtain through the holonic P2W approach the same exact behavior that would
be obtained by the direct P2P interaction of a finite number of state machines. It
would then be interesting to investigate further whether an equivalence theorem
between P2P and P2W modeling could be show to hold. Any P2P cooperation
could then be checked by transforming it in a P2W holonic model for the sake
of verification, and back for the sake of readability.

Another point which is worth further investigating and is not covered in the
paper deals with inheritance. It is worth noting that the more we model state con-
straints within single modules the more we restrict the resulting global cartesian
automaton [32]. A starting point towards a novel notion of holonic inheritance
should therefore take into account, among possible other aspects, adding or re-
moving behavioral restrictions to state machines in moving along inheritance
hierarchies.

Finally, more research is needed in order to move towards more complex com-
position structures albeit retaining the part-whole hierarchical arrangement. For
example, what if the same component is part of two different holons? Figure 8-(a)
shows two different cross road controllers (CrossRoad1 and CrossRoad2) which
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share traffic light main1:TLight1. In order to avoid race conditions, the idea is to
restrict control of main1 to a single holon (CrossRoad1 in the picture) through
triggerable transitions t2 and t3 by command events go and stop (b). The rule,
to be further investigated, is that transitions controlled by a given holon become
simply observable by other holons in the composition graph. In this way, holon
CrossRoad2 would acquire the same traffic light with transitions t2 and t3 seen as
autonomous and non controllable (c), i.e. by simply “sensing” its state changes
and taking decisions accordingly. Holarchies, by such a perspective, may be thus
thought as acyclic direct graphs instead of simple partonomic trees, thus gaining
more flexibility in modeling complex scenarios.

main2

go, stopstopped
stopped stopping,

stopped

TLight1 TLight2

CrossRoad1

go, stop

stopped
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go
go, stop,
stopped

CrossRoad2

TLight1

go, stop

TLight1

main3

t3

t4

t2

t1

R G Y
go stop
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t2

t1

R G Y
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t3

main1

(a)

(b) (c)

restricted as 
observable 

only

Fig. 8. (a) The same traffic light holon main1:TLight1 may be shared by two crossroad
controller holons, with the restriction that at most one is allowed to trigger its transi-
tions in order to avoid race conditions. (b) The interface of main1 as seen by CrossRoad1
with transitions t2 and t3 triggerable by events go and stop. (c) The interface of main1
as seen by CrossRoad2 with autonomous transitions t2 and t3 emitting events go and
stop.
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