
Translating OCL to Graph Patterns�

Gábor Bergmann

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

1117 Budapest, Magyar tudósok krt. 2
bergmann@mit.bme.hu

Abstract. Model-driven tools use model queries for many purposes,
including validation of well-formedness rules and specification of de-
rived features. The majority of declarative model query corpus avail-
able in industry appears to use the OCL language. Graph pattern based
queries, however, would have a number of advantages due to their more
abstract specification, such as performance improvements through ad-
vanced query evaluation techniques. As query performance can be a key
issue with large models, evaluating graph patterns instead of OCL queries
could be useful in practice.

The current paper presents an automatic mapping from a large sub-
language of OCL expressions to equivalent graph patterns in the dialect
of EMF-IncQuery. Validation of benefits is carried out by performance
measurements according to an existing benchmark.

Keywords: Model query, OCL, graph pattern, incremental evaluation.

1 Introduction

Model queries are important components in model-driven tool chains. They are
widely used for specifying reports, derived features, well-formedness constraints,
and guard conditions for behavioural models, design space rules or model trans-
formations. Although model queries can be implemented using a general-purpose
programming language (Java), declarative query languages may be more concise
and easier to learn, among other advantages. Popular modeling platforms (e.g.
the Eclipse Modeling Framework (EMF) [1]) support various query languages.

OCL [2] is a standard declarative model query language widely used in indus-
try. OCL queries specify chains of navigation among model objects in a functional
programming style. However, query languages inspired by graph patterns [3,4]
(such as SPAQL [5]) resemble logic programming, where the order of model ex-
ploration is freely determined by the query engine at evaluation time. Such more
abstract query specifications have numerous advantages. The steps of graph pat-
tern matching can be automatically optimized for performance in advance by a
� This work was partially supported by the European Union and the State of Hungary,

co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/-
11-1-2012-0001 ‘National Excellence Program’, and by the CERTIMOT (ERC_HU-
09-01-2010-0003) and EU FP7 MONDO (ICT-2013.1.2) projects.

J. Dingel et al. (Eds.): MODELS 2014, LNCS 8767, pp. 670–686, 2014.
c© Springer International Publishing Switzerland 2014



Translating OCL to Graph Patterns 671

Fig. 1. Ecore Diagram of State Machine metamodel package

query planner [6,7] or during evaluation by a dynamic strategy [8]. For fur-
ther performance gains in case of evolving models, incremental graph pattern
matcher techniques [9] can deeply analyze the query to store and maintain the
result of subqueries (as in EMF-IncQuery [10], see Sec. 2.3). In search-based
software engineering, if the goal condition is a graph pattern, its structure can
be inspected to automatically guide [11] the design space exploration towards
reaching the goal. When analyzing behavioural models, pre/post condition graph
patterns can be inspected for efficient model checking [12,13] or to prove conflu-
ence [14]. It is possible to automatically generate instance models (e.g. for tool
testing) that satisfy a given graph query [15] more efficiently than OCL [16].

Since the majority of declarative model query corpus available in industry ap-
pears to be OCL, the above mentioned benefits can only be reaped by translating
OCL queries into graph patterns. This is not always possible, as OCL is more
expressive. Nevertheless, by extending prior work [15], an automated mapping
is presented in the current paper that transforms a large sublanguage of OCL
expressions to equivalent graph patterns in the dialect of EMF-IncQuery.

From the benefits listed above, query performance was chosen for validating
the approach, as it can be a key issue with large models. This task is carried out
by performance measurements according to an existing benchmark [10].

The running example and query formalisms are introduced in Sec. 2. The map-
ping is specified in Sec. 3. Performance measurements are presented in Sec. 4,
Sec. 5 summarizes related work, and Sec. 6 adds concluding remarks.

2 Preliminaries

2.1 Running Example

Several concepts will be illustrated using a simple state machine modeling lan-
guage. The metamodel, defined in EMF [1] and depicted by Fig. 1, describes how
state automata contain states and transitions, where the latter have a source
state, a target state, and a triggering input symbol. Model queries can support
the application of this metamodel in many ways (such as simulation, model
checking, code generation, etc.), two of which will be explored in greater detail.

A sample instance model containing a single Automaton, States s1 . . . s6 and
the Transitions listed by Table 1a will be used to demonstrate model queries.



672 G. Bergmann

Table 1. Sample instance model with conflictingTransitions query results

Transition source trigger target
t1 s1 A s2
t2 s1 A s3
t3 s1 B s4
t4 s1 B s5
t5 s1 C s6
t6 s3 C s6

(a) Transitions

State return value
s1 {t1, t2, t3, t4}
s2 ∅
s3 ∅
s4 ∅
s5 ∅
s6 ∅
(b) OCL results

conflictingTransitions
self t1

s1 t1
s1 t2
s1 t3
s1 t4

(c) Pattern match set

An instance model of this Ecore package is only considered well-formed if
certain criteria are met. One such important sanity criterion is that the source
and target states of a transition must both belong to the same automaton that
contains the transition. A modeling environment could automatically validate
instance models by issuing a model query that finds violations of this constraint.

Another use case of model queries is the definition of derived features - ref-
erences or attributes that are not freely chosen, but are rather computed auto-
matically from the values of other features (i.e. via a model query). The derived
reference conflictingTransitions of class State identifies those outgoing tran-
sitions that are in conflict, i.e. share their triggering input symbol with one or
more other outgoing transitions from the same state. Such a derived reference
could be useful for exploring the nondeterminism of the behavioural model.

If the model is being continuously edited, the results of validation and derived
feature queries have to be repeatedly updated. In case of large models, this could
lead to performance problems unless incremental techniques are applied.

2.2 The OCL Language

OCL [17] is a pure functional language for defining expressions in context of a
metamodel, so that the expressions can be evaluated on instance models of the
metamodel. The language is very expressive, surpassing the power of first order
logic by constructs such as collection aggregation operations (sum(), etc.). OCL
queries taking a model element as input can be applied in use cases such as
specifying well-formedness constraints (invariants).

Example 1. The OCL version of the derived feature is included as Lst. 1. When
evaluated at a given State object, for each outgoing transition it collects the
other outgoing transitions with the same trigger symbol, and the returns the ac-
cumulated set. The Set-valued expression is built by navigating from the State
along references, and filtering the results according to attribute conditions. Re-
sults on the sample instance model are listed by Table 1b.

The rest of the section gives a basic overview of the most important charac-
teristics of OCL expressions that will be necessary for understanding the paper;
the reader is referred to the OMG standard [17] for more information.



Translating OCL to Graph Patterns 673

Listing 1 OCL expression specifying the derived feature conflictingTransitions

1 context State def: conflictingTransitions: Set(Transition) =
2 let a : Automaton = self.automaton in
3 a.transitions ->select(t1|t1. sourceState=self and
4 a.transitions ->exists(t2| t1<>t2 and
5 t2.sourceState = self and t1.triggerSymbol = t2.triggerSymbol))

OCL Values and Types. OCL can express values of various types. Primi-
tive types include character strings, integer and real numbers, etc.; Boolean is
especially significant, e.g. for expressing well-formedness constraints. Classes in
metamodels are OCL types; instance model elements are OCL values conforming
to them, with subclassing. OCL allows constructing tuple types and collection
types (Set, Bag, OrderedSet and Sequence) from any OCL type. In the current
paper, primitive and metamodel types are collectively referred as ground types,
while collection and tuple types are referred as structured types.

OCL Expressions. OCL expressions are functions expressed on a set of input
variables (also known as free variables), each with an associated type. When
a type-compatible OCL value is substituted for each of these input variables,
the expression evaluates to a single result value, which is compatible with
the type of the expression. For an OCL expression O taking input parame-
ters X1, X2, . . . , Xn, let G |= y = O(x1, x2, . . . , xn) denote that expression O
parametrized by actual parameter values x1, x2, . . . , xn yields the result y if
evaluated over model G.

Expressions are compositional: an expression may have sub-expressions whose
results contribute to the result of the expression. Input variables of sub-
expressions are often free variables of the whole expression as well.

OCL has literal expressions for various types. Primitive literals have no input
variables and return constants. Collection or tuple literals contain zero or more
sub-expressions yielding the elements of the collection or the tuple; note that
such a structure literal may have input variables due to these sub-expressions.

A variable reference OCL expression returns the value of its input variable.
The inputless allInstances() expression returns a Set of all instances of a given
metamodel type; oclIsKindOf() tests membership of this Set. The constructs
let-in and if-then-else combine the results of their subexpressions in the
expected way. Property call expressions express navigation from tuples to their
field values, or along (single- or multi-valued) model element features; the source
of navigation is identified by a single sub-expression called source.

Example 1 demonstrates a derived feature specification as a let-in OCL ex-
pression taking a State as input and yielding a Set of Transitions as output.
The first subexpression is navigation self.automaton, initializing variable a.

Operation call expressions evaluate operations associated with the type of
their source sub-expression. The operation takes the result of the source as its
argument, and in some cases the result of other sub-expressions as additional
arguments. Some significant operations will be discussed in the following.



674 G. Bergmann

OCL Operations. Classes may declare read-only model operations (such as
derived features) that OCL expressions can invoke on their instances. These
operations can be specified as model queries (often written in OCL).

OCL also supports built-in operations on primitive types, including arithmetic
operations, logical connectives, or comparisons (<> for inequality, <=, etc.).

Collection operations include membership testing, union, etc. of Sets. Oper-
ations that aggregate a collection into a single value include size() and sum().

Iterator expressions are a special kind of collection operations that take a
lambda expression (the body) as their argument. When evaluating the iterator
expression, the body is evaluated repeatedly, with collection members substi-
tuted for one or more of its input variables (called the iterator). The iterator
expression select() will evaluate a Boolean-valued body predicate on each el-
ement of a collection, and form a resulting subset/subsequence/etc. containing
those elements that evaluated to true. Similarly, exists() returns a Boolean
indicating whether any members of the collection satisfy the body predicate.

Example 1 demonstrates operations =, <>, and, select(), exists().

2.3 Graph Patterns and EMF-IncQuery

Graph Patterns as a QueryLanguage. The EMF-IncQuery framework [10]
aims at the efficient definition and evaluation of incremental model queries over
EMF-based models, building on the idea of graph patterns. The query language is
detailed in [18], only a brief overview is given here.

A basic graph pattern consists of pattern constraints expressed over pattern
variables that represent model elements or primitive values. The parameter vari-
ables of a graph pattern are a subset of the pattern variables that are exposed
to the query user. Pattern variables that are not parameters are called local
variables. Structural constraints prescribe the existence and interconnection of
graph nodes and edges of given types. Attribute constraints are defined by pure,
deterministic expressions given in a Java-based language.

Basic patterns can be composed in numerous ways, thus the query language
has the expressiveness [4] of first-order formulae over the model. Disjunction (OR)
is expressed by several basic patterns (pattern bodies) defining alternative con-
straint sets (and local variables) for the same parameters. A pattern call reuses
a pattern within another pattern as a single constraint expressed over its actual
parameters (quantifying away the local variables of the called pattern). A nega-
tive application condition (NAC) is a pattern call constraint with negation, i.e.
it is satisfied iff the called pattern isn’t.

A match of a graph pattern is a value substitution of the parameters, so that
the local variables of at least one pattern body can be assigned values to satisfy
all pattern constraints of that body. The result of an (unbound) model query is
the set of all matches, called the match set. Matches of a pattern are all tuples
of the same format (one entry for each pattern parameter), and the result of
pattern matching is the set of valid matches in the model, therefore the pattern
essentially evaluates to a mathematical relation on elements of the model and



Translating OCL to Graph Patterns 675

primitive values, where the arity of the relation corresponds to the number of
pattern parameters, and members of the relation are the matches of the pattern.

P (X1, X2, . . . , Xn) will denote a pattern P having parameters X1, X2, . . . , Xn.
The fact that the tuple 〈x1, x2, . . . , xn〉 is a match of the pattern P over model
G will be denoted as G |= 〈x1, x2, . . . , xn〉 ∈ MatchSetP .

Example 2. The derived feature in the example metamodel can be specified by
the pattern conflictingTransitions (Fig. 2). The single pattern body imposes
8 structural constraints (existence of connecting edges, inequality) on local pat-
tern variables a, t2, str and parameters self, t1. Each pattern match means
that transition t1 is included in the derived set conflictingTransitions of
state self. See Table 1c for the match set on the sample model.

1 pattern conflictingTransitions (
2 // parameters
3 self : State , t1 : Transition
4 ) = { // constraints of single body
5 State.automaton(self , a);
6 Automaton.transitions(a, t1);
7 Automaton.transitions(a, t2);
8 Transition.sourceState(t1, self);
9 Transition.sourceState(t2, self);

10 Transition.triggerSymbol(t1, str);
11 Transition.triggerSymbol(t2, str);
12 t1 != t2;
13 }

(a) Textual syntax

t1: Transition t2: Transition

a: Automaton

self: State

str: EString

automaton

transitions transitions

sourceState sourceState

triggerSymbol triggerSymbol

not 
equal

(b) Graphical form, parameters highlighted

Fig. 2. Graph pattern specifying the derived feature

Incremental Evaluation. A powerful feature of EMF-IncQuery is its in-
cremental query evaluation. This means that the match sets of graph patterns
are cached and continuously updated as the model evolves. This choice increases
memory consumption and imposes a run-time maintenance overhead on model
manipulation; on the other hand, query results can be instantaneously retrieved
without re-traversing the model. This characteristic can be beneficial in use cases
including model validation, simulation and derived feature computation [19,20].

The particular algorithm used in EMF-IncQuery is Rete [9], which caches
match sets of subpatterns as well, with the benefit that maintenance cost is
proportional to the change only, independently of model size (see [21]).

3 Mapping OCL Expressions to EMF-IncQuery

An approach for constructing semantically equivalent EMF-IncQuery graph
patterns for certain kinds of OCL expressions is proposed in the following sec-
tions. Note that the graph pattern of Example 2, disregarding minor beautifi-
cation, was automatically constructed from the OCL expression of Lst. 1 by a
partial prototype implementation of this strategy (available at [22]).



676 G. Bergmann

3.1 Overview of the Approach

Graph patterns evaluate to match sets that are relations in the mathemati-
cal sense, while OCL expressions are typed functions. Thus the proposed ap-
proach aims to find relations that are equivalent to the original OCL functions,
and then construct graph patterns that in turn express exactly these relations.
For instance, the pattern of Example 2 is equivalent to the OCL expression of
Example 1, as demonstrated on the sample instance model (Table 1).

One of the main challenges of defining such a mapping is making sure that
relation domains (columns) are of ground types, as the graph pattern formalism
does not support variables representing collections of model elements.

By structural recursion, the proposed approach first maps each OCL subex-
pression to a pattern; then these helper patterns are used for translating the
whole expression. The helper pattern will often be included via pattern compo-
sition. In lieu of positive pattern composition, it is also possible to construct the
whole pattern as a modified copy of the helper pattern, by augmenting it with
additional pattern constraints, and/or modifying the set of pattern parameters
- this approach may yield more concise output and potentially better run-time
query performance. In case of multiple such subexpressions, several helper pat-
terns can be unified into a single one that contains all their constraints.

An abstract specification of the proposed mapping will be provided in Sec. 3.2,
by introducing possible relational representations for various kinds of OCL ex-
pressions. Then Sec. 3.3 provides the actual mapping of OCL language elements
to graph patterns whose match sets will correspond to the appropriate mathe-
matical relation specified in Sec. 3.2. The mapping is applicable to many graph
query languages; only a few cases discussed in Sec. 3.4 require EMF-IncQuery-
specific constructs. For the sake of brevity, the complete coverage of the OCL
Standard was only included in [22]. Limitations will be discussed in Sec. 3.5.

3.2 Abstract Mapping to a Relational Representation

Single-ValuedNon-booleanExpressions. AnOCLexpressionOwithground-
typed inputs X1, X2, . . . , Xn and a ground-typed, non-Boolean result type will be
mapped to a graph pattern PO such that G |= y = O(x1, x2, . . . , xn) ⇔ G |=
〈x1, x2, . . . , xn, y〉 ∈ MatchSetPO for any instance model G and appropriately
typed x1, x2, . . . , xn, y. Simply speaking, the function is mapped to a relation ex-
pressed on the function inputs and results. From Example 1, the OCL subexpres-
sion t1.triggerSymbol (a function that maps a transition to a string) is equiva-
lent to the single-constraint pattern Transition.triggerSymbol(t1, str) that
evaluates to a relation between transitions and strings. For the instance model of
Table 1a, the relation is {〈t1, A〉, 〈t2, A〉, 〈t3, B〉, 〈t4, B〉, 〈t5, C〉, 〈t6, C〉}.

Note that if at least one of x1, x2, . . . , xn, y has a primitive type with prac-
tically infinite instance set (e.g. 264 integers), the above definition of PO may
appear to yield a practically infinite match set size, making it unfeasible to apply
fully incremental evaluation model query, where all matches have to be enumer-
ated and stored. However, as we will see below, the value of these primitive-typed



Translating OCL to Graph Patterns 677

variables are in many practical cases either equated to literal values, or available
as an attribute value of an instance model element, or (transitively) inferrable by
expression evaluation from other primitive variables that have these properties.
Augmentation also improves finiteness : even if a helper pattern for a subexpres-
sion does not meet this condition, its augmented version associated with the
composite expression may do so. Therefore typically the match set will still be
finite and computable by the query engine. The proposed approach does not
support cases where this condition is violated. Another limitation is that the
relation domains have to be of ground types, since domains of structured types
would put the relation beyond the expressive power of graph patterns.

Boolean-Valued Expressions. An OCL expression O with ground-typed in-
puts X1, X2, . . . , Xn and a Boolean result type can be mapped to a graph pattern
PO similarly as above. Additionally, it can also be mapped to graph patterns
P+
O or P−

O that match those inputs for which the expression evaluates to true
respectively false: G |= true = O(x1, x2, . . . , xn) ⇔ G |= 〈x1, x2, . . . , xn〉 ∈
MatchSetP

+
O ⇔ G |= 〈x1, x2, . . . , xn〉 �∈ MatchSetP

−
O for any instance model G

and appropriately typed x1, x2, . . . , xn, y. From Example 1, let O be the OCL
subexpression t1 <> t2 (a function that maps two transitions to a Boolean);
then binary pattern P+

O has the constraint t1 != t2 (and implicit type re-
strictions) and no Boolean variables; while P−

O has t1 == t2 and evaluates to
{〈t1, t1〉, 〈t2, t2〉, 〈t3, t3〉, 〈t4, t4〉, 〈t5, t5〉, 〈t6, t6〉} for the model of Table 1a.

For each Boolean-valued OCL expression O, it is sufficient to define one of the
three mappings PO, P+

O , P−
O , as it can then be trivially transformed into the other

two, unless a simpler mapping is known for them. P+
O (respectively P−

O ) can be
synthesized from PO by asserting y == true; (respectively y == false;) as an
additional pattern constraint, and removing y from the pattern parameters. P+

O

and P−
O transform into each other via negative pattern call. Finally, PO can be

derived from P+
O (respectively P−

O ) by counting its matches, and then evaluating
the Boolean expression that the number of matches is positive (respectively zero).

The reason for having three possible images PO, P+
O , P−

O for a Boolean-valued
expression O is that OCL often uses Boolean variables as conditions (e.g. in if,
select(), or logical connectives), in which cases it is natural to include a pattern
composition constraint of P+

O or P−
O (or augment it, as discussed before). Thus

the mapping result is simplified (potentially gaining run-time query performance
benefits as well) in case P+

O or P−
O are simpler to express than PO.

Tuple-Valued and Tuple-Consuming Expressions. Since tuples consist of
a statically known number of components, a tuple-typed variable can always be
substituted with a set of variables, one for each tuple field. This principle can
be applied to expression inputs and results in an analogous way; the latter case
is elaborated in more detail below.

An OCL expression O with ground-typed inputs X1, X2, . . . , Xn and a k-
ary tuple-typed result can be mapped to a graph pattern PO such that G |=
〈y1, y2, . . . , yk〉 = O(x1, x2, . . . , xn) ⇔ G |= 〈x1, x2, . . . , xn, y1, y2, . . . , yk〉 ∈



678 G. Bergmann

MatchSetPO for any instance model G and appropriately typed x1, x2, . . . , xn

as well as y1, y2, . . . , yk. Simply speaking, the function is mapped to a relation
expressed on the function inputs and tuple components of the result.

If the result is a tuple of ground-typed fields, then the domains of the relation
are of ground types. Tuples containing tuples can be trivially flattened before
the mapping to tuples containing ground-typed values only. For tuples having
one or more collections as components, see the following paragraphs.

Multi-valued Expressions. An OCL expression O with ground-typed inputs
X1, X2, . . . , Xn and a collection result type will be mapped to a graph pat-
tern PO such that G |= y ∈ O(x1, x2, . . . , xn) ⇔ G |= 〈x1, x2, . . . , xn, y〉 ∈
MatchSetPO for any instance model G and appropriately typed x1, x2, . . . , xn, y.
Simply speaking, the function is mapped to a relation expressed on the function
inputs and elements appearing in the result, where each element of the result
collection corresponds to a separate element of the associated relation. From
Example 1, the OCL subexpression a.transitions (a function that maps an
automaton to a set of transitions) is equivalent to the single-constraint pattern
Automaton.transitions(a, t1) that evaluates to a relation between automa-
tons and transitions, with one row for each transition. Similarly, the graph pat-
tern of Example 2 evaluates to a relation (see Table 1c) that associates a State
with individual Transitions, as opposed to a Set of transitions, which is what
the equivalent OCL derived feature of Example 1 yields (see Table 1b).

If the element type of the collection is a ground type, then the domains of the
relation are of ground types. Tuples can be dealt with as described in Sec. 3.2.
Collections of collections (as well as tuples of more than one collection) are not
supported by the approach due to the limitations discussed before.

Relations (pattern match sets) have set semantics, without multiplicity or or-
dering. Thus only Set collections can be faithfully mapped (and also Bags in case
input and internal variables together make the output unique); other collection
types are not supported in general. However, many collection operations (such
as isEmpty()) and iterator expressions (such as select()) behave equivalently
for the various collection types, in which case the collection can be implicitly
cast to a Set by asSet() for the sake of the mapping.

The proposed approach does not support collection-typed input variables in
OCL expressions, as collection operations are typically mapped to pattern com-
position constructs that call the pattern associated with the expression that
defines the collection. Note that a collection can be used as an argument of an
OCL operation, if it is provided as the result of a sub-expression (typically nav-
igation along a multi-valued property); collection types are unsupported for free
variables only. In practice, this limitation is not directly relevant for class invari-
ants and derived features (due to single non-collection input); so OCL-defined
model operations and preconditions are restricted only in their parametrization.
The iterator input variable of an iterator expression body can be a collection
only in case of a collection of collections, which is unsupported anyway. The only
other way a new variable can be introduced is a let expression, in which case



Translating OCL to Graph Patterns 679

the initialization expression of the variable can replace the variable references
in the in branch for the sake of the mapping, so once again it will not matter
whether the type is a collection.

3.3 Concrete Mappings for Simple Expressions

The following paragraphs construct mappings of the simplest OCL expression
into graph patterns according to the specifications in Sec. 3.1. The mappings
result in single-bodied patterns unless indicated otherwise.

Navigation and Variable References. If O is a navigation expression along
property edgeType and with source expression Osource, where Osource is mapped
to pattern POsource with parameters x1, x2, . . . , xn, y

source, then O is mapped to
PO with parameters x1, x2, . . . , xn, y. PO is constructed by augmenting POsource

by a new structural constraint edgeType(ysource, y) and replacing pattern pa-
rameter ysource with y. This works both for single-valued and multi-valued
(collection-typed) properties. Mapping variable references is trivial.

For instance, self.automaton from Example 1 is translated in Example 2 to
State.automaton(self, a); note the variable reference self as source expres-
sion. On the other hand, a hypothetical self.automaton.transitions, con-
taining the former OCL expression as its source expression, would augment this
pattern by a second pattern constraint Automaton.transitions(a, y).

Type Checks and Literals. If O is T.allInstances() for metamodel class T ,
it is mapped to the pattern PO with parameter y and single pattern constraint
T (y); the same pattern is P+

O if O is y.oclIsKindOf(T ). If O is a primitive-typed
literal of value c, it is mapped to the pattern PO with parameter y and the single
pattern constraint c==y. For treatment of tuple literals, see Sec. 3.2. Set literals
are mapped to a disjunction of helper patterns mapped from subexpressions.

Arithmetic Operations. If O is an arithmetic operation op on subexpressions
O1, O2, . . . , Om, then O is mapped to PO with parameters consisting of all in-
put parameters of PO1 , PO2 , . . . , POm in addition to y, and with the attribute
constraint y==eval(op(y1, y2, . . . , ym)) (where yi is the result variable of POi)
augmenting the unification of PO1 , PO2 , . . ., POm . For instance, OCL expression
p < q+r is mapped to pattern constraints y1==eval(q+r) and y==eval(p < y1).

If O is an equality, it can be more effectively mapped to P+
O using a pattern

constraint y1==y2 and to P−
O as y1!=y2 instead of the eval construct. Vice versa

for inequality; e.g. <> from Example 1 is mapped to a != constraint in Example 2.
Similarly, many Boolean operations have simpler mappings. In case of and,

the single body of P+
O is the unification of P+

O1 and P+
O2 (as applied repeatedly

in the running example); while P−
O would have two bodies: P−

O1 and P−
O2 .



680 G. Bergmann

If-Then-Else and Let-In. In a let-in expression, the result of the let subex-
pression is used to parameterize the in subexpression. If O is a let-in expression
with subexpressions Olet, Oin, then O is mapped to PO with parameters consist-
ing of y along with input variables of POlet and input variables of POin except for
the result variable of POlet ; with the pattern body unifying POlet with POin . For
instance, constraint State.automaton(self, a) in Example 2 is from POlet .

If O is an if-then-else expression with subexpressions Ocondition, Othen, Oelse,
then O is mapped to PO with parameters consisting of all input parameters of
POcondition , POthen , POelse in addition to y, and with two pattern bodies, one with
ythen==y augmenting the unification of POthen and P+

Ocondition , the other with
yelse==y augmenting the unification of POelse and P−

Ocondition . Can be simplified
to Boole-logic if the result type is Boolean.

First-Order Collection Expressions. Many collection operations and iter-
ator expressions are trivial to translate to first-order logic formulae, which are
within the power of graph patterns [4]. A few cases will be briefly outlined below.

For instance, a collection is non-empty iff the mapped pattern has any matches
with the given values of input variables. If O is an isEmpty() expression with
subexpression Osource, then O is mapped to P−

O , which is the same as POsource ,
with its result variable removed (quantified away) from the parameters.

If O is a select() expression with subexpressions Osource, Obody, then PO is
POsource and P+

Obody unified, with the result variable of the former substituted
for the iterator variable of the latter (and both removed from the parameters).
For exists(), P+

O is constructed similarly, but the result variable is removed
from the parameters. Example 1 demonstrates both cases.

3.4 Mapping Higher-Order OCL Constructs

Some OCL constructs are not expressible using first-order formulae, but the
EMF-IncQuery language provides extensions over conventional graph patterns
that may suffice in some cases. As above, details will be omitted here.

EMF-IncQuery supports transitive closure [23], so a closure() iterator ex-
pression can be mapped by (1) mapping first the body expression to a graph
pattern, (2) taking the transitive closure of this graph pattern, and (3) augment-
ing the graph pattern mapped from the source expression with the transitive call.

The simplest case of aggregation is the size() collection operation returning
the number of elements of a set. A count find constraint in EMF-IncQuery
can aggregate matches of the graph pattern corresponding to the source expres-
sion defining said set. An analogous solution is proposed for OCL aggregation op-
erations sum(), etc.; but the corresponding EMF-IncQuery aggregators, while
included in the language specification, are not fully implemented as of today.

3.5 Miscellaneous Cases and Limitations

Operation calls toward metamodel-defined custom (read-only) operations are
trivial to support if they are defined as OCL expressions (or EMF-IncQuery



Translating OCL to Graph Patterns 681

patterns, as in [20]). Operations implemented in a generic-purpose programming
language are not supported in general, as there is no universal way to ensure that
the incremental engine is notified of changes in the computation result, which is
necessary for incremental maintenance. A solution [24] has been proposed which
records all model reads during the computation to invalidate the result when
these parts of the model are affected by a change, but this approach has its
own practical limitations, as it would require wrapping all model processing -
including the implementation of the metamodel-defined read-only operation -
into a compliant model access layer.

As discussed throughout Sec. 3, the proposed approach has limitations. Due to
the lack of support for ordering in the relational representation, iterator expres-
sions sortedBy() and iterate() cannot be mapped, similarly to order-sensitive
operations (e.g. first(), at()) on ordered collections. Representation of mul-
tiplicity (i.e. Bag collection) has limitations as well. Support for collections of
collections is also lost due to the relational approach. As discussed before, the
usage of collections of primitive types and primitive-typed top-level arguments
is restricted due to finiteness / computability limitations of EMF-IncQuery.

OCL has two special undefined values, null and invalid, which conform to
(almost) all OCL types, but are not equivalent to each other. The proposed ap-
proach does not support them at the moment, partly due to type system incom-
patibility, and also due to semantic issues [25]; see [16] for a possible workaround.

Altogether it is clear that the mapped sublanguage is significantly weaker than
OCL. Still, practice has shown that the supported OCL constructs are expressive
enough to be useful in many cases.

4 Performance Measurements

The justification of the proposed mapping is that one can deliver efficient, in-
cremental query evaluation for a subset of OCL expressions by transforming
them to graph patterns of equivalent semantics, and applying EMF-IncQuery.
To demonstrate this, a subset of an existing performance benchmark for well-
formedness (invariant) constraint checking was applied.

4.1 Measurement Setup

The Train Benchmark [10] defines a number of well-formedness constraints (of
which only SignalNeighbor is used here) in a custom metamodel, and measures
the constraint checking performance of various model query tools as they pro-
cess automatically generated instance models of various sizes conforming to the
metamodel. The goal is to provide near instantaneous feedback on constraint
violations as the (simulated) user is editing a large model. The workload and
measured performance indicators involve: (phase 1 ) reading the model, (phase
2 ) checking it for any inconsistencies as defined by the well-formedness con-
straint, (phase 3 ) simulating a transformation / manual editing of the model
that performs a predefined sequence of modifications, and (phase 4 ) checking



682 G. Bergmann

Table 2. SignalNeighbor evaluation times for the instance model of 213K elements

Tool Java OCL OCL-CG OCL-IA EIQ OCL2IQ
Batch Validation [ms] 169 867 36 157 126 461 36 444 6 142 6 205
Continuous Validation Time [ms] 167 891 32 237 126 723 331 523 2 1
Memory Footprint [kB] 14 009 15 304 17 755 26 073 108 435 118 319

the updated model as well for inconsistencies. For fair comparison [10] of state-
less tools against incremental ones, the most relevant performance indicators are
phase 1+2 ("Batch Validation") execution time and phase 3+4 ("Continuous
Validation") execution time (and of course the memory footprint). The workflow
actually executes phase 3+4 repeatedly; the reported values are the average time
of one repetition (small modification + 1 query).

The run-time performance of the following solutions were compared1. Java:
a naive Java implementation of the constraint check, as a hypothetical pro-
grammer would quickly implement it, without any special effort to improve
performance. EIQ: hand-written graph patterns evaluated incrementally by
EMF-IncQuery. OCL: the OCL interpreter [2] of Eclipse, as it evaluates the
OCL representation of the constraint check. OCL-CG: is Java code generated
from the same OCL expression by Eclipse OCL [2]. OCL-IA: the OCL Impact
Analyzer [26] toolkit, as it incrementally evaluates the same OCL expression.
OCL2IQ: graph patterns automatically derived from the same OCL expression
by a prototype partial implementation of the proposed mapping, likewise inter-
preted incrementally by EMF-IncQuery (new contribution extending [10]).

4.2 Results

Results obtained from the input model of 213K elements (nodes+edges) are
presented in Table 2; details and further experiments are reported at [22] along
with instructions for reproduction.

The incremental strategy of EMF-IncQuery performs extremely well in the
"Continuous Validation" workload, delivering practically immediate feedback af-
ter model manipulation, at the cost of increased memory footprint. Furthermore,
comparison against benchmark instances with different model sizes [22] confirms
the theoretical result that this "Continuous Validation" time is practically inde-
pendent of the size of unchanging parts of the model; EMF-IncQuery memory
consumption and "Batch Validation" time was found to scale approximately
proportionally to model size, while OCL execution times are between a linear
and quadratic proportion to model size. Finally, the graph queries automati-
cally generated using the proposed transformation (OCL2IQ) perform similarly

1 Experimental setup: Dell Latitude E5420 Laptop, Intel Core i5-2430M @ 2.4Ghz
CPU, 16GB of DDR3-1066/1333 RAM, Samsung SSD 830; Eclipse Kepler on Java
SE 1.7.0_05-b06 (with 2G maximum heap size) on Windows 7 x64; Eclipse OCL pre-
release version 3.4.0.v20140124-1452, EMF-IncQuery 0.8.0 (nightly at 2014-03-05).



Translating OCL to Graph Patterns 683

to manually written EMF-IncQuery code (EIQ), outperforming pure Java as
well as stateless or incremental OCL-based approaches.

The advantage of graph patterns at “Batch Validation" time likely stems from
automatic query planning, while "Continuous Validation" times are a conse-
quence of the deep caching of the Rete incremental evaluation strategy; these
are two of the benefits of the proposed approach foreseen in Sec. 1. Thus trans-
lating OCL code to graph patterns is justified in this scenario.

4.3 Remarks and Threats to Validity

Diverging from [10] at the suggestion of Eclipse OCL leader Ed Willink, OCL
evaluation was not invoked by substituting each model element as self, but
only on a prefiltered list of instances of the context type of the constraint.

The performance of incremental techniques may depend on what kind of changes
are performed in phase 3. The presented results were obtained from the UserSce-
nario mode of Train Benchmark. The “Continuous Validation” times for OCL-IA
are significantly worse in this case than with the alternative model manipulation
workload ModelXFormScenario (see [22]), where OCL-IA re-evaluation is quick
after a change, leading to efficient incrementality. EIQ and OCL2IQ are much less
sensitive to this option, in line with theoretical predictions [21].

Note that the OCL query was produced by non-experts. Hand-optimized
queries may perform better. However, the OCL2IQ approach received the same
unoptimized query as input, so the comparison is fair.

The benchmark scenario was deliberately chosen as one where incremental
approaches have potential advantages, and the selected query was complex to
increase the role of automatic query optimization. Therefore the results do not
show universal superiority of one tool over another, merely produce evidence
that the proposed approach has legitimate use cases.

5 Related Work

5.1 Translating OCL to Logic-Based Languages

A similar translation procedure from OCL to graph patterns was utilized in [15],
focusing on providing a means to automatically generate large instance models
(e.g. for testing) that conform to a metamodel with OCL invariants. Compared
to the proposed approach, [15] handles a smaller subset of OCL, translates it
into a slightly different graph query language, and does not investigate query
performance. Due to conceptual differences, the translation method proposed
here is not a straightforward extension of theirs, even if there are some common
elements. Particularly focusing on differences between the supported subsets of
OCL, [15] has the following shortcomings: (i) support is focused on Boolean-
valued OCL expressions only (though non-Boolean navigations can be used in
certain ways); (ii) set operations such as select(), collect(), union(), etc.
are not supported; (iii) aggregations such as sum() are not supported; (iv) the



684 G. Bergmann

result of size() can only be compared against constants; (iv) the result of two
paths of navigation can only be compared for equality. Thus e.g. the derived
feature of Lst. 1 cannot be translated for multiple reasons.

Metamodel consistency checkers UML2Alloy [16] and UMLtoCSP [27] com-
pile OCL to a constraint or logic language, similarly to the proposed approach;
but without “flattening" collections to relational semantics (contrast Sec. 3.2).
Thus the expressive power of OCL is preserved (at least for [27]), but the Rete
algorithm (and some other benefits foreseen in Sec. 1) cannot be applied.

Mappings to formal semantic domains such as HOL (higher-order-logic) re-
vealed [25] inconsistencies and ambiguities in the OCL standard. Fortunately,
they have low impact on the OCL sublanguage supported in the current paper.
Such transformations could not be directly reused for the same reason as above.

5.2 Incremental Evaluation of OCL

Due to the expressive power of OCL constructs, the Rete-based approach used in
EMF-IncQuery is not applicable for all queries formulated as OCL expressions.
There are, however, alternative approaches for incremental evaluation of OCL
queries, though they have a lower level of incrementality [21] than Rete.

Cabot’s approach [28] and the Impact Analyzer [26] extension of the freely
available query engine Eclipse OCL [2] rely on static analysis of OCL expressions
when computing an over-estimate of query inputs that need to be re-evaluated
from scratch for given elementary model change.

The Groher-Reder-Egyed approach [24] for incremental constraint checking is
independent from the constraint language, but can be instantiated for OCL. The
strategy is to wrap the model into a model access layer that records elementary
model access operations, such as retrieving the value of an attribute, during the
query evaluation; later the query can be re-evaluated for the given input if any
of the recorded elementary queries are affected by a change. Some re-evaluations
can be saved by language-specific maintenance [29] of a Boolean validation tree.

Case study-driven comparative performance benchmarking of incremental
model query evaluation technologies is a currently ongoing effort [30,31,10].

6 Conclusion

The paper presented a general specification for mapping a large subset of OCL
expressions to equivalent graph patterns, and provided concrete translations
conforming to this scheme for numerous OCL constructs and Standard Library
operations, while clearly indicating any limitations of the approach.

Experiments have demonstrated that query performance can be increased
by evaluating the generated graph patterns (using EMF-IncQuery) instead
of the original OCL expressions, which was one of the benefits of the approach
foreseen in Sec. 1. Although the measurements do not constitute a comprehensive
performance assessment of the various tools, they suffice for proving the existence
of cases where the proposed mapping can be directly useful.

The author wishes to thank Ed Willink for his advice on Eclipse OCL.



Translating OCL to Graph Patterns 685

References

1. The Eclipse Foundation: Eclipse Modeling Framework,
http://www.eclipse.org/emf/

2. Eclipse Model Development Tools Project: MDT-OCL website (2011),
http://www.eclipse.org/modeling/mdt/?project=ocl

3. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.): Handbook on Graph
Grammars and Computing by Graph Transformation: Applications, Languages and
Tools, 2nd edn. World Scientific (1999)

4. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G.,
Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335.
Springer, Heidelberg (2004)

5. W3C SPARQL Working Group: SPARQL Query Language for RDF. Technical
report, W3C (2008), http://www.w3.org/TR/rdf-sparql-query/

6. Horváth, Á., Varró, G., Varró, D.: Generic search plans for matching advanced
graph patterns. In: Proc. of the Sixth International Workshop on Graph Transfor-
mation and Visual Modeling Techniques (GT-VMT 2007), pp. 57–68. Electornic
Communications of the EASST, Braga (2007)

7. Veit Batz, G., Kroll, M., Geiß, R.: A first experimental evaluation of search
plan driven graph pattern matching. In: Schürr, A., Nagl, M., Zündorf, A. (eds.)
AGTIVE 2007. LNCS, vol. 5088, pp. 471–486. Springer, Heidelberg (2008)

8. Giese, H., Hildebrandt, S., Seibel, A.: Improved flexibility and scalability by inter-
preting story diagrams. ECEASST 18 (2009)

9. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19(1), 17–37 (1982)

10. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári,
Z., Varró, D.: EMF-IncQuery: An integrated development environment for live
model queries. Science of Computer Programming (0) (2014)

11. Hegedüs, Á., Horváth, Á., Ráth, I., Varró, D.: A model-driven framework for guided
design space exploration. In: 26th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2011). IEEE Computer Society, Lawrence (2011)

12. Rensink, A., Distefano, D.: Abstract graph transformation. Electron. Notes Theor.
Comput. Sci. 157(1), 39–59 (2006)

13. Baldan, P., Corradini, A., König, B.: Unfolding graph transformation systems:
Theory and applications to verification. In: Degano, P., De Nicola, R., Meseguer,
J. (eds.) Montanari Festschrift. LNCS, vol. 5065, pp. 16–36. Springer, Heidelberg
(2008)

14. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of typed attributed graph trans-
formation systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G.
(eds.) ICGT 2002. LNCS, vol. 2505, pp. 161–176. Springer, Heidelberg (2002)

15. Winkelmann, J., Taentzer, G., Ehrig, K., Küster, J.M.: Translation of Restricted
OCL Constraints into Graph Constraints for Generating Meta Model Instances by
Graph Grammars. In: Proceedings of the Fifth International Workshop on Graph
Transformation and Visual Modeling Techniques (GT-VMT 2006), vol. 211, pp.
159–170. Elsevier Science Publishers B. V., Amsterdam (2008)

16. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A challenging
model transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.)
MODELS 2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007)

17. Object Management Group: Object Constraint Language Specification, Version 2.4
(2014), http://www.omg.org/spec/OCL/2.4/

http://www.eclipse.org/emf/
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.w3.org/TR/rdf-sparql-query/
http://www.omg.org/spec/OCL/2.4/


686 G. Bergmann

18. Bergmann, G., Ujhelyi, Z., Ráth, I., Varró, D.: A graph query language for EMF
models. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 167–182.
Springer, Heidelberg (2011)

19. Bergmann, G., Horváth, Á., Ráth, I., Varró, D.: A benchmark evaluation of in-
cremental pattern matching in graph transformation. In: Ehrig, H., Heckel, R.,
Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 396–410.
Springer, Heidelberg (2008)

20. Ráth, I., Hegedüs, Á., Varró, D.: Derived features for EMF by integrating advanced
model queries. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos,
D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 102–117. Springer, Heidelberg (2012)

21. Bergmann, G.: Incremental model queries in model-driven design. Ph.D. disserta-
tion, Budapest University of Technology and Economics, Budapest (October 2013)

22. Bergmann, G.: Graph patterns from OCL: A performance evaluation (March 2014),
https://incquery.net/content/graph-patterns-ocl-performance-evaluation

23. Bergmann, G., Ráth, I., Szabó, T., Torrini, P., Varró, D.: Incremental pattern
matching for the efficient computation of transitive closure. In: Ehrig, H., En-
gels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp.
386–400. Springer, Heidelberg (2012)

24. Groher, I., Reder, A., Egyed, A.: Incremental consistency checking of dynamic
constraints. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013,
pp. 203–217. Springer, Heidelberg (2010)

25. Brucker, A.D., Doser, J., Wolff, B.: Semantic issues of OCL: Past, present, and
future. In: 6th OCL Workshop at the UML/MoDELS Conference (2006)

26. Uhl, A., Goldschmidt, T., Holzleitner, M.: Using an OCL Impact Analysis Algo-
rithm for View-Based Textual Modelling. In: Proc. 11th workshop on OCL and
Textual Modelling (OCL 2011), vol. 44. ECEASST (2011)

27. Cabot, J., Clarisó, R., Riera, D.: Verification of UML/OCL class diagrams using
constraint programming. In: Proceedings of the 2008 IEEE International Confer-
ence on Software Testing Verification and Validation Workshop, ICSTW 2008, pp.
73–80. IEEE Computer Society, Washington, DC (2008)

28. Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual
schemas. J. Syst. Softw. 82(9), 1459–1478 (2009)

29. Reder, A., Egyed, A.: Incremental consistency checking for complex design rules
and larger model changes. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C.
(eds.) MODELS 2012. LNCS, vol. 7590, pp. 202–218. Springer, Heidelberg (2012)

30. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös,
A.: Incremental evaluation of model queries over EMF models. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp.
76–90. Springer, Heidelberg (2010)

31. Izsó, B., Szatmári, Z., Bergmann, G., Horváth, Á., Ráth, I.: Towards precise metrics
for predicting graph query performance. In: 2013 IEEE/ACM 28th International
Conference on Automated Software Engineering (ASE), pp. 412–431. IEEE Com-
puter Society Press, Silicon Valley (2013)

https://incquery.net/content/graph-patterns-ocl-performance-evaluation

	Translating OCL to Graph Patterns
	1 Introduction
	2 Preliminaries
	2.1 Running Example
	2.2 The OCL Language
	2.3 Graph Patterns and EMF-IncQuery

	3 Mapping OCL Expressions to EMF-IncQuery
	3.1 Overview of the Approach
	3.2 Abstract Mapping to a Relational Representation
	3.3 Concrete Mappings for Simple Expressions
	3.4 Mapping Higher-Order OCL Constructs
	3.5 Miscellaneous Cases and Limitations

	4 Performance Measurements
	4.1 Measurement Setup
	4.2 Results
	4.3 Remarks and Threats to Validity

	5 Related Work
	5.1 Translating OCL to Logic-Based Languages
	5.2 Incremental Evaluation of OCL

	6 Conclusion
	References




