
Modelling Adaptation Policies

as Domain-Specific Constraints�

Hui Song1, Xiaodong Zhang2, Nicolas Ferry1, Franck Chauvel1,
Arnor Solberg1, and Gang Huang2

1 SINTEF ICT, Oslo, Norway
{first.last}@sintef.no

2 Peking University, Beijing, China
{xdzh,hg}@pku.edu.cn

Abstract. In order to develop appropriate adaptation policies for self-
adaptive systems, developers usually have to accomplish two main tasks:
(i) identify the application-level constraints that regulate the desired sys-
tem states for the various contexts, and (ii) figure out how to transform
the system to satisfy these constraints. The second task is challenging
because typically there is complex interaction among constraints, and a
significant gap between application domain expertice and state transi-
tion expertice. In this paper, we present a model-driven approach that
relieves developers from this second task, allowing them to directly write
domain-specific constraints as adaptation policies. We provide a language
to model both the domain concepts and the application-level constraints.
Our runtime engine transforms the model into a Satisfiability Modulo
Theory problem, optimises it by pre-processing on the current system
state at runtime, and computes required modifications according to the
specified constraints using constraints solving. We evaluate the approach
addressing a virtual machine placement problem in cloud computing.

1 Introduction

As software systems and their interactions with the executing environments are
becoming more and more complex, many systems are required to adjust them-
selves at runtime to harmonize with their dynamic environments. Such self-
adaptations can be seen as guided transitions between system states (such as
the system’s structure, configuration, environments, etc.). A key challenge to
build such self-adaptive systems [1] is to develop the adaptation policies that
guide such transitions [2,3]. To develop appropriate policies, developers usually
need to cope with the following two concerns: (i) to identify the constraints on
the system states for the various contexts, which determine when the system
needs to be adapted, and what are the desired states after adaptation. (ii) to

� This work is partially funded by the European Communitys Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement numbers: 318484 (MODAClouds),
600654 (DIVERSIFY) and 318392 (Broker@Cloud), and the National Natural Sci-
ence Foundation of China (Grant No. 61361120097, 61222203, U1201252).

J. Dingel et al. (Eds.): MODELS 2014, LNCS 8767, pp. 269–285, 2014.
c© Springer International Publishing Switzerland 2014

270 H. Song et al.

figure out the appropriate transitions between system states that satisfy these
constraints. Developers specify these transitions in a policy language (e.g., in
event, condition, action (ECA) rules). Figuring out the transitions is partic-
ularly challenging, because the constraints usually have complex interactions
with each other, i.e., a transition that satisfies one constraint may violates an-
other. Moreover, there is typically a conceptual gap between constraints in the
application domain (e.g., cloud computing, health care, etc.), and transitions in
a state-transition model (e.g., ECA or state machines).

In this paper, we propose a model-driven approach where developers can di-
rectly specify the constraints as adaptation policies, using concepts specific to
the application domain and applying the object oriented constraint specifica-
tion language, the OCL [4]. Our runtime engine then dynamically computes the
required modifications on the current system to satisfy the constraints.

This approach is based on our previous work [5], which showed that SMT
(Satisfiability Modulo Theory) constraint solving [6] can be used to compute
adaptation decisions from constraints in First Order Logic (FOL). However, we
used a simple SMT theory based on variables and operations, and therefore it
only supports adaptation of numeric configurations. To support domain-specific
modelling of constraints, more expressive theories to encode structural informa-
tion such as objects and references between them, are needed. This implicates
the challenge to transform expressive OCL constraints to SMT. Moreover, the
previous work lacks a way to assist developers in specifying the constraints. To
address these challenges, we present the following contributions in this paper.

– A modelling language based on MOF and OCL to specify adaptation policies
as application domain concepts and constraints applying these concepts;

– A new method to encode object-oriented models and constraints to SMT
instances, to enable the use of SMT constraint solving for adaptation.

– A new partial evaluation semantics on OCL, which realises the systematic
transformation from OCL constraints to formulas used by SMT, and opti-
mizes the formulas by embedding the current system states into them.

We have applied the approach on a representative self-adaptation problem, the
dynamic mapping of virtual machines to physical machines in clouds. The case
study shows that the approach is able to specify classical adaptation policies,
and produces desired adaptation decisions. The partial evaluation significantly
improves the performance of constraint solving, making it applicable at runtime.

The rest of this paper is organised as follows. Section 2 introduces a running
example, and outlines the approach. Sections 3, 4 and 5 present our modelling
language, the generation of SMT instances and the computation of adaptation
decision using SMT solving, respectively. Section 6 shows our case study. Section
7 discusses related approaches and Section 8 concludes the paper.

Modelling Adaptation Policies as Domain-Specific Constraints 271

2 Approach Overview

2.1 Motivating Example

Managment of the mapping of virtual machines (VM) to physical machines (PM)
in private clouds can be treated as a dynamic adaptation problem. Different from
renting VMs from public clouds, an organisation that sets up its own private
cloud has the full control of the infrastructures (i.e., PMs) behind the VMs. As
the system keeps evolving (e.g., new VMs are provisioned, applications are de-
ployed on VMs), the infrastructure administrators need to adjust the placement
and configuration of VMs, in order to optimise the overall deployment.

frequent
comm

vm1
core=8
mem=6

vm2
core=8
mem=8

vm3
core=4
mem=4

pm1
core=8

mem=20

pm2
core=4

mem=10

mysql mysql web

backup

not close

Fig. 1. A simplified VM placement problem

Figure 1 illustrates a simplified
private cloud, where three VMs are
placed on two PMs, each VM re-
quires and provides different numbers
of CPU cores and memory sizes (unit
in GB). We assume that the adapta-
tion engine is capable of altering the
VM placement and the provided CPU
cores. Early approaches on VM place-
ment mainly consider resource limita-
tions and consolidations (e.g., a sin-
gle VM’s CPU core number should
not exceed its hosting PM, total VM
memory should not exceed the PM’s
capacity, and using as few PMs as pos-
sible to save energy) [7]. These concerns implies migrating vm3 to pm1.

However, there are other concerns that impact the adaptation decisions. For
example, based on the applications shown in Figure 1 we can see that vm1 and
vm2 are replicated for backup purposes (we simplified the identification of backup
relations between VMs: Any two VMs that host applications with the same name
are backup to each other). The two VMs should be placed in different PMs so
that a physical crash would not halt both VMs and makes the application data
unavailable. Moreover, if vm2 and vm3 are communicating frequently, they should
ideally be deployed on two PMs that are “close” in terms of latency, or even the
same PM. Considering these two objectives, a potential modification is to swap
vm1 and vm3, and decrease the CPU cores of vm1, even though this violates the
objective of consolidation. Finally, migrating VMs is an expensive operation,
depends on their memory sizes. When a to-be-migrated VM is big, a better
choice may be to keep the current configuration.

As highlighted by the example, an adaptive system typically have many con-
straints, and an action that satisfies one constraint may violate others. Manually
developing adaptation policies by exhausting all the constraints to figure out ap-
propriate actions is not practical for complex systems.

272 H. Song et al.

main contents in this paper

adaptation
model

- concepts
- capability
- constraints

instance
model

system

solve

instance
model'

domain experts

m@rt

transform

CSP
(SMT)language transformation Legend

component

input

intermediate
result

automated
data flow

human input
timed, or on

events

Fig. 2. Approach architecture

2.2 The Approach

In this paper, we propose a model-driven approach to enable specifying adapta-
tion policies as domain specific constraints. The overall architecture is illustrated
in Figure 2. Developers (domain experts) apply their knowledge of the domain to
specify an adaptation model. This includes the base domain concepts, the adap-
tation capability (i.e., what can be changed by adaptation), and the constraints
applying the domain concepts to specify what are the desired system states
for various contexts. From the adaptation model, we perform an automated
adaptation at runtime, using three components. The models@runtime engine
maintains an updated instance model monitoring the system state (through a
causal connection). From the current instance model and the adaptation model,
the transformation engine interprets what the constraints imply on the current
system state, and generates an SMT instance, which is fed to the constraint
solver to compute the appropriate target system state, taking into account the
constraints, their priorities, and the cost of system modifications. Finally, the
models@runtime engine propagates the changes to the real system.

On the basis of our previous work on models@runtime engine [8] and con-
straint solving for adaptation [5], this paper is focused on the front-end of this
approach, i.e., the modelling language for domain-specific constraints, and the
transformation to an SMT instance. At this stage, we base our work on the
closed world assumption, i.e., the number of objects under each type is not sub-
jected to be changed by the adaptation. This assumption is reasonable in our
VM placement example: It is the administrator’s duty to provision or terminate
VMs, whereas the adaptation engine optimises the deployment of them.

3 Constraint Modelling

We provide a prototype language based on MOF and OCL to assist the modelling
of adaptation policies as constraints. Figure 3 is a snapshot of the model for the

Modelling Adaptation Policies as Domain-Specific Constraints 273

Fig. 3. Constraints for VM placement

VM placement problem, taken from our text-based modelling editor with syntax
checking and auto-completion. The modelling process has two steps: defining the
concepts in the domain, and specifying the constraints applying the concepts.

The concept modelling is to specify the types of elements that compose the
system states (e.g., the concepts VMs, PMs at Line 9 and 20), the attributes of
these types (such as VM.mem at Line 10, for the memory required by a VM), and
the relations between them (e.g., VM.plc at Line 12 records on which PM a VM
is placed).

A property (attribute or relation) marked by “[*]” is a multi-valued one.
Derived property can be defined by an OCL query. For example, the set of
backups of an VM is the subset of VM instances that host Apps with the same
name. Developers also need to define what properties can be changed by adap-
tation (which are marked by keyword config, such as VM.plc at Line 12), and
the changing scope of such a property (which is defined by an OCL expression
in type of collection, such as the domain of VM.core at 11).

Constraint modelling captures the developers’ concerns regarding what are the
desired system states, such as MemoryLimit (Line 24) and BackupSplit (Line
17), with the meanings discussed above. In our language, a constraint is defined
as an boolean-typed OCL expression, inside a target class. Take the MemLimit

constraint as an example, the direct meaning of the OCL expression is as follows:
For each PM, we get the hosted VMs on it (which in turn is derived from the
configurable reference VM.plc), collect the mem of these VMs, and calculate
the sum of them. Then we claim that this summary should be less than or equal
to the mem of the PM. Each constraint is assigned with a priority between 0 and
100, indicating how important it is. A hard constraint is the one that must be
satisfied. Each configurable property has a cost, indicating the importance to
maintain the current values, e.g., the cost of changing a VM’s placement (i.e.,
VM migration) is proportional to its memory size.

274 H. Song et al.

4 SMT Instance Generation

In this section, we first give an overview about SMT, illustrated by our running
example. After that, we summarise the mapping from an adaptation model to
the SMT instance. Finally, we present a partial evaluation approach to transform
and simplify OCL constraints into formulas in SMT.

4.1 SMT Overview

In order to apply automated constraint solving for adaptation, we convert the
adaptation problem into an SMT instance composed of functions and con-
straints, based on the theories of uninterpreted functions [9], algebraic data types
[10], linear arithmetic, and first order logic (FOL). An uninterpreted function is
a function that declares domains and a codomain, but without a definition about
the concrete mapping between them. A domain or codomain can be a primitive
data type (integer, real or boolean), or an enumeration. Here we define enumer-
ations using algebraic type theory, which supports defining a type from limited
and disjoint constructors1. The constraints are boolean-valued FOL formulas on
these functions, connected by arithmetic and logic operators. An SMT solver
searches possible interpretations for the functions, satisfying all the constraints.

Figure 4 shows a sample SMT instance. It is divided in three parts.

VM : {vm1, vm2, vm3}, PM : {pm1, pm2}, int, boolean
vc : VM → int, pc : PM → int, vmem : VM → int, pmem : PM → int

plc : VM → PM, frqt : VM× VM → bool, near : PM× PM → bool
∀vm, pm. (plc(vm) = pm ⇒ vc(vm) ≤ pc(pm))

∀pm.

(∑
vm∈V M

ite(plc(vm) = pm, vmem(vm), 0)) ≤ pmem(pm)

)

∀vm, vm′. (frqt(vm, vm′) ⇒ near(plc(vm), plc(vm′))) , ∀pm. (near(pm, pm))
vc(vm1) = 8, vmem(vm1) = 6, plc(vm2) = pm1, frqt(vm2, vm3)...

Fig. 4. VM placement in SMT

The first part defines the realm of this VM placement problem, in the form of
functions and their domain types. Under a closed-world assumption, the number
of objects of type VM or PM is not subject to change by the adaptation,
and therefore each type is an enumeration of its current objects (Of course,
administrators can still add or remove VMs and PMs, and the new VMs can

1 For example, an enumeration Colour with red, green, and blue can be defined as
(type C::=r|g|b), meaning that the type C has three unique constructors. Algebraic
type theory is supported by SMT solvers such as Z3 [11]

Modelling Adaptation Policies as Domain-Specific Constraints 275

be moved between PMs by our adaptation engine). The functions for virtual
cores (vc), physical cores (pc), virtual memory (vmem) and physical memory
(pmem) from the enumerations to primitive types represent states of objects.
The functions placement (plc), frequent (frqt) and near (near) represent the
relations between objects. Placement (plc) is a functional relation, specifying
that a VM is placed on one and only one PM. By contrast, frequent (fqrt) is
an example of binary relation. For two VMs vm and vm′, frqt(vm, vm′) = true
means they are communicating frequently.

The second part of the SMT instance defines the constraints applying FOL
formulas. The first constraint specifies that the number of CPU cores required by
a vm cannot exceed the one provided by its hosting pm. The second constraint
specifies that the total memory size of VMs hosted on the same PM should not
exceed the memory provided by this PM. The constraint computes the sum of
VM’s memories utilizing a predefined ite(if-then-else) function from the SMT-
LIB standard [12], which returns the second or the third parameter based on if
the first one is true or false, respectively. The constraint denotes to iterate over
all vms, and if and only if a vm is placed on the specific pm its memory is added
to the sum. The third constraint depicts that two frequently communicating vms
should be deployed to pms that are near to each other (remark that a PM is
also considered to be near to itself).

The third part of the SMT instance expresses the current state of the model
instance as a set of equations between function calls and values. The excerpt of
Figure 4 is according to the state shown in Figure 1.

Solving these SMT constraints can be very time-consuming. However, the
constraints can be simplified significantly based on knowledge of the current
system state (i.e., the third part), making the solving much more efficient. For
example, according to Figure 1, we know that there is one and only one pair
of VMs (vm2 and vm3) that are frequently communicating, and this will not
be changed after the adaptation. Therefore, we can weave this known informa-
tion into the constraints and rewrite the third constraint in Figure 4 simply as
near(plc(vm2), plc(vm3)). In our approach, we provide to directly generate such
simplified constraints.

4.2 Mapping from Adaptation Model to SMT

In order to transform the adaptation model into an SMT instance, we need
systematic mappings from the elements in the adaptation model to their corre-
sponding representations in SMT. Table 1 summarises these mapping rules. A
class is mapped into an enumeration, with its objects as the enumerable items,
and primitive types are transformed to the corresponding integer, real or boolean
types in SMT (according to mc in Table 1). Objects and primitive data are
mapped to enumeration items or primitive values (mo). A C2-typed single-valued
property p defined in class C1 is mapped to an uninterpreted function with one
parameter, while a multi-valued one (marked by a “*” in the table) is mapped
to a function with two parameters (mp). The two functions plc and frqt in Fig-
ure 4 are examples for the two categories, respectively. The OCL constraints,

276 H. Song et al.

Table 1. Mapping from adaptation model to SMT instance.

model SMT name
class C with objects o1, o2 enum C {o1, o2} mc

types int, real, boolean SMT types: Z, R, B
object o: C enum item o ∈ C mo

value v: literal value v
single property: C1.p:C2 function p : C1 → C2 mp

multiple property: C1.p:C2[*] function p : C1 × C2 → B

constraint, derivation, domain FOL formula PE
property value: o.p=d p(o) = d ms

o.p=D={di|i ∈ 1..n} (
∧

di
a(o, di)) ∧ (

∧
dj
¬a(o, dj))dj ∈ C2 −D

and the derivation and domain definitions are mapped to FOL formulas (such
as the ones shown in the second part of Figure 4). The transformation (named
PE) will be shown in the next section. Finally, we generate constraints from the
current values of properties (ms). If a single valued property p of object o has
value d, we enforce p(o) = d. However, for a multi-valued p, the value will be a
set D of data or enumeration items. The generated constraint enforces that for
any di ∈ D, p(o, di) is true, and for any other dj , p(o, dj) is false.

4.3 Partial Evaluation of OCL Constraints

We use partial evaluation (PE) [13] to transform the OCL constraints into SMT
predicates such as the ones shown in the second part of Figure 4, and simplify
the results based on the static information in the current model instance. In
particular, PE takes three inputs: an OCL expression, a static model and a
context, and outputs FOL formulas. The following example illustrates how we
notate partial evaluation in our approach.

[[self.core<self.mem-2]]{self �→vm2}(ms) = (< (core vm2) 6)

The OCL expression is written inside the brackets [[]]2. The static model ms is
the part of a model instance that does not change after adaptation, e.g., below
is the static model corresponding to Figure 1

vm2:VM{mem=8, frqt=[vm3], app=[app1], core =_, plc=_}

pm2:PM{mem=10, core=4, near=[]}

Here we give every dynamic property (defined by config in Figure 3) an unde-
fined value “ ”. The context τ is a map from variables to values or objects in
ms, and in this example, τ = {self �→ vm2}, meaning that the variable self in
the OCL expression represents vm2. The output of PE is a FOL formula, written

2 We borrow the “[[]]” notation from denotational semantics, which indicates that PE
can be understood as another semantics to OCL language, i.e., a function from a
static model to a FOL formula, depending on a context.

Modelling Adaptation Policies as Domain-Specific Constraints 277

in the standard SMT-LIB language [12] following the style of prefix notation.
This output has the same meaning of core(vm2) < 63. In this example, since
vm2.mem=8 is known in ms, we directly evaluate self.mem-2 into a value 6,
whereas since vm2.core is unknown, we translate it into a function call.

The Fidelity Property PE should guarantee the fidelity of the transformation
from OCL to SMT, which means any adaptation result that satisfies the gener-
ated SMT should also satisfy the original OCL constraints, and vice versa. Specif-
ically, a static model ms can be complemented with dynamic information (no-
tated asmd), so thatms+md is a complete model and therefore can be fully eval-
uated by a common OCL engine. Fidelity means that no matter whatmd we give
on ms, ([[e]]τ (ms) = [[e]]τ (ms+md))∧ms(md) is always true. Here, [[e]]τ (ms+md)
degrades into normal OCL evaluation, and ms(md), as defined in Table 1, is a set
of predicates encoding the dynamic information. For example, the sample above
satisfies fidelity, because if we give vm2.core a value smaller than 6 (say 5), then
the full evaluation results true, and (core(vm2) < 6 = true) ∧ core(vm2) = 5
holds. It is the same when vm2.core > 6.

PE is executed in a recursive way, following the OCL syntax tree [4]. For
example, the first step to evaluate the example above will be:
[[self.core<self.mem-2]]τ (ms) = (< [[self.core]]τ (ms) [[self.mem-2]]τ (ms)),
and after that [[self.mem-2]]τ (ms) = (− [[self.mem]]τ (ms) 2) = (− 8 2) = 6.

In the following, we explain how we do PE by defining the transformation
rules on the typical OCL syntax structures.

We start from the basic building blocks of OCL expressions. For a literal
constant of primitive value, we directly transform it into the corresponding value
(Equation 1). For the reference to a variable v, we obtain its value from the
context τ and return it (2). The let statement (3) introduces a new variable
into the main expression. We evaluate the source expression e1 into result r, and
add a new variable mapping v �→ r into the context dictionary τ , so that the
variable v in e2 will be r in the subsequent evaluation.

[[literal]]τ (ms) = mo(literal)

[[v]]τ (ms) = r, (v �→ r) ∈ τ

[[let v=e1 in e2]]τ (ms) = [[e2]]τ∪{v �→r}(ms) where r = [[e1]]τ (ms)

(1)

(2)

(3)

The transformation of OCL property calls is the main point to encode object-
oriented structures into FOL formulas (4). We first evaluate the source expres-
sion e into result r. If r is an object (which means that e purely depends on
the static model), and r.p has a value v in the static model, we directly return
v. However, if r.p is undefined, or if r is a formula (which means that e de-
pends on dynamic information), we compose a new formula using the functions

3 We use SMT-LIB to distinguish the transformation outputs (i.e., an SMT “pro-
gram”) from the calculations within the evaluation. For example (f 5) means a SMT
formula that call function f with parameter 5, while mo(o) means that PE obtains
the enumeration item for object o

278 H. Song et al.

and constants resolved from p and r, respectively. The composition method pc
(Equation 5) creates a function call if the property is single-valued. Otherwise,
it enumerates all the objects oi in the property type, and creates an ite for
each of them: if f(s, oi) is true then oi is returned, otherwise, an empty value
⊥ is returned. We introduce an empty value ⊥ whose semantics is that for any
binary operation ∗ and value x, x ∗ ⊥ = x. For example, [[self.plc]]self �→vm2 =
{(ite (= (plc vm2) pm1) pm1 ⊥), (ite (= (plc vm2) pm2) pm2 ⊥)}. This result
satisfies Fidelity, because if we place vm2 to an arbitrary PM, the result will
be this PM plus ⊥, equivalent to the result of a full OCL evaluation. Equation
(6) defines the derivation: the property call e.p will be replaced by the expression
ed defined for p, with self redirected to the source expression e.

[[e.p]]τ (ms) =
(r = [[e]]τ (ms))

⎧⎪⎨
⎪⎩
v if (r.p �→ v) ∈ ms

pc(mp(p), mo(r), mc(p.type)) if (r.p �→) ∈ ms

pc(mp(p), r, mc(p.type)) if r is a formula

pc(f, s, c) =

{
(f s) single-valued

{(ite (f s oi) oi ⊥)|oi ∈ c} multi-valued

[[e.p]]τ = [[let self=e in ed]]τ , if ed is the derivation expression of p

(4)

(5)

(6)

PE handles and simplifies structural OCL syntax rules. For an if expression
(7), we first evaluate the condition expression e1 into r1. If it is determined to
either true or false, we return either result of the two sub expressions. Only
when r1 is a formula, we transfer the OCL branch into an ite . The second sample
is the binary operation (8), such as +, ×, and etc. If both results r1 and r2 of
the two operands are values, we calculate the result and return it. If either r1 or
r2 is a formula, we compose a corresponding binary operation in SMT.

[[if e1 then e2 else e3]]τ (ms) =
(ri = [[ei]]τ (ms), i ∈ {1, 2, 3})

⎧⎪⎨
⎪⎩
r2 if r1 = true

r3 if r1 = false

(ite r1 r2 r3) if r1 ∈ F

[[e1 + e2]]τ = λms.
(ri = [[ei]]τ (ms), i ∈ {1, 2})

{
r1 + r2 if both r1 and r2 are values

(+ r1 r2) if r1 or r2 is a formula

(7)

(8)

We handle composite OCL syntax rules on the basis of the primitive ones
above. The collect operation (9) is a combination of let (i.e., we evaluate the
main expression e2 repeatedly, each time with a si from the source result). The
select operation (10) is a combination of if-then-else. The resulted set will
be simplified if any ri is resolved to a true or false: For the former case, si will
be included into the resulted set, and for the latter case, it will be ⊥. Similarly,
forAll (11) is an extension of the binary and operation to multiple inputs. We
divide the source set s into a single element sh and the remaining set st. Then
we evaluate sh and st recursively, and combine the results by an and. The sum

Modelling Adaptation Policies as Domain-Specific Constraints 279

operation (12) is a similar extension to the binary operation +. We regard the
size operation (13) as equivalent to first mapping each element to an integer
1, and then calculate the summary. The last important collection operations is
include (14), which is often used to check if a relation holds upon two objects
(e.g., Line 12 in Figure 3). We inspect the source set r1 from e1, and see if there
is an item related to the target value r2 evaluated from e2. If there is an item
r equal to r2, the result is true; If there is an ite item in r1 whose main branch
equals to r2, then whether r2 ∈ r1 depends on the condition r3, and we simplify
the whole operation to this condition r3. Finally, we transform domain definition
on a property into the following equivalent OCL expression (15): the value of
self.p on context τ must equal to one of the values limited by e.

[[e1->collect(v|e2)]](ms) = {[[e2]]τ∪{v �→si}(ms)|si ∈ [[e1]]τ}
[[e1->select(v|e2)]]τ (ms) = λms.{[[if ri then si else ⊥]]τ (ms)}

si ∈ s = [[e1]]τ (ms), ri = [[e2]]τ∪{v �→si}(ms)

[[e1->forAll(v|e2)]]τ (ms) = [[rh and st->forAll(v|e2)]]τ (ms),
rh = [[e1]]τ∪{v �→sh}(ms), {sh} ∪ st = s = [[e1]]τ (ms);

[[e1->sum()]]τ = [[rh + rt->sum()]]τ ; {rh} ∪ rt = [[e1]]τ

[[e->size()]]τ = [[e->collect(1)->sum()]]τ

[[e1->include(e2)]]τ (ms) =
(ri = [[ei]]τ (ms), i ∈ {1, 2})

⎧⎪⎨
⎪⎩
true if ∃r ∈ r1 : r = r2

r3 if ∃ite(r3, r2,) ∈ r1

false otherwise

[[domain e on p]]τ = [[e->exists(x|x=self.p)]]τ

(9)

(10)

(11)

(12)

(13)

(14)

(15)

We use the MemLimit constraint at Line 24 in Figure 3 as an example to
show how PE works. The constraint is evaluated on the two PM objects, and
Figure 5 shows the main steps on pm1. The PE starts from self.hosting, and
is redirected to its derivation (the two OCL constraints are shown in the first
two lines of Figure 5). From allInstances, the engine obtains a set of three
VM objects, and the following select transforms it into a set of if-then-else.
Inside it, v.plc calls a configurable property, and is therefore evaluated to a ite.
After that, we push the following equation into the ite. As pm1=pm1 is always
true, and ite(x, true,⊥) = x, the set is simplifed again. Getting back to the
main expression, collect substitutes the mem value for each VM object, and
sum joins the three elements by “+”, and replace ⊥ by 0. Finally, we get the
inequality as the final output.

5 SMT Solving

Using the generated SMT instance, we leverage an extended constraint solving
approach [5] to calculate the appropriate adaptation actions. The generated SMT
instance is composed of FOL formulas (SMT constraints), originating from the
current context values, configuration values, and adaptation constraints. The

280 H. Song et al.

self.hosting->collect(e|e.mem)->sum() <= self.mem
derive PM.hosting: VM.allInstances()->select(v|v.plc=self)

:
allInstance: {vm1, vm2, vm3} v.plc: (ite (plc v pm1) pm1 ⊥) self: pm1

v.plc=self: {(ite (= (ite (plc v pm1) pm1 ⊥) pm1) vm1 ⊥)... }
{(ite (ite (plc v pm1) (= pm1 pm1) ⊥) vm1 ⊥)... }

select: {(ite (plc vm1 pm1) vm1 ⊥), (ite (plc vm2 pm1) vm2 ⊥), (ite (plc vm3 pm1) vm3 ⊥)}
collect: {(ite (plc vm1 pm1) 6 ⊥), (ite (plc vm1 pm1) 8 ⊥), (ite (plc vm1 pm1) 4 ⊥)}

sum: (<= (+ (ite (plc vm1 pm1) 6 0) (ite (plc vm2 pm1) 8 0) (ite (plc vm3 pm1) 4 0)) 20)

Fig. 5. Sample partial evaluation steps

latter two categories are weak constraints, meaning that they can be violated
when necessary. Each weak constraint has a weight generated from a constraint
priority or a property cost. The first step is to identify a subset of constraints that
we need to remove from the SMT instance in order to make the rest satisfiable.
We use a weighted constraint diagnosing approach to find such a subset with
the lowest total weight. The second step is to compute the system modifications
to satisfy the remaining constraints. Details of this constraint solving approach
can be found in our earlier publication [5].

Going back to our running example in Section 2.1, we have shown three
potential adaptation solutions, i.e., migrating vm3 to pm1, switching vm2 and
vm3 (and decrease pm2.core), and do nothing. They correspond to three di-
agnosis: {BackupSlipt, FrequentNear, mem-cost}, {mem-cost×2, core-cost,
Consolidation}, {BackupSlipt, FreqentNear}, respectively, and the second
one has the lowest total weight of 120 (4 × 10 and 8 × 10 for migrating two
VMs, and 20 for decreasing vm2.core). The corresponding adaptation solution
is vm1.plc=pm2, vm3.plc=pm1, and vm1.core=4.

6 Case Study

We apply the approach on the VM placement problem extended from the running
example, and use this case study to evaluate: (i) the expressive power of the
adaptation modelling language; (ii) the effect of transformation and constraint
solving; (iii) the performance improvement achieved by our partial evaluation.

Implementation. We implement the adaptation modelling language on the
Xtext framework and DresdenOCL toolkit [14], with a text-based syntax and
a fully functioning editor (as is shown in Figure 3). We choose Z3 [6] as our
constraint solver, and implement the OCL partial evaluation to generate SMT
instance in Z3Py, a python-based SMT representation. The generated result is
fed into the constraint solving based adaptation engine that we presented in our
previous work [5]. The source code is hosted at github.com/songhui/cspadapt

Adaptation Modelling. Our adaptation model on VM placement is based on
the general cloud computing concepts from CloudML [15]. We use OCL con-
straints to model the policies that originate from the following research ap-
proaches: 1) Deployment constraints from CloudML, such as 64 bit VM should

github.com/songhui/cspadapt

Modelling Adaptation Policies as Domain-Specific Constraints 281

run on 64 bit PM. 2) Resource limitation and consolidation [7]. 3) Cost of mi-
gration [16]. 4) Load balancing between PMs [17], e.g., immigrating VMs out of
overloaded PMs, and scatter the VMs with synchronized peak times. 5) Run-time
observed logical relations [18], such as frequently communicating VMs should be
placed closely. 6) SLA matching [18], such as VMs with high stability requirement
should be placed to specially protected PMs. The final adaptation model can be
downloaded from thingml.org/dist/diversify/casestudy.constraint. The
adaptation modelling shows the language’s expressive power to specify different
adaptation policies, and also reveals a major benefit, i.e., to ease the combination
of the policies from different origins.

Adaptation Behaviour. We test the adaptation model on simulated cloud
configurations. From a starting model instance, we randomly generate changes
to the system, and feed the changed model to the adaptation engine. The engine
outputs the suggested changes, and records the main constraints it followed and
discarded when making the decision. Table 2 lists some sample traces. We choose
the ones that are from the same starting state (as shown in Figure 6, where m

and t stand for memory and throughput, respectively), and are only involved
in 8 particular constraints. When we enlarge vm2 (see #1 in Table 2), vm1 is
migrated, because it is smaller and therefore cheaper to move. However, when
vm2 exceeds the capacity of pm1 (#2), itself is migrated. Their destinations are
different because of the constraints we listed in the table. When we enlarge vm4
(#3), the more expensive vm5 is moved, because moving vm3 to any PMs would
break more expensive constraints. When vm5 has bigger throughput (#4), vm4 is
moved out to the sole valid destination pm6. But since it has synchronised peak
time with vm6, the latter is moved to pm2 to avoid vm4. When vm7 has bigger
throughput (#5), considering its high stability requirement, the engine moves
vm9 and vm10 out of the other stable PM to make a room for vm7. However,
when vm7’s stability requirement is lowered down (#6), the engine will move it
to a not-so-stable PM, to avoid the cost of moving two VMs. #7 illustrates how
we do consolidation: when v8 is not active, the engine moves it out to free pm4,
because the cost of immigration is lower than the weight of the consolidation
constraint. When vm6 and vm9 are observed to be frequently communicating,
the engine moves vm9 to a nearby PM, and brings vm10 as well. The numbers of
constraints in follows and discards imply the complexity of making the decision.

Performance. The runtime performance of constraint-driven adaptation is ac-
ceptable for medium sized systems. We create 6 model instances from the adap-
tation model on VM placement. In this models, the total number of VMs and
PMs are from 15 to 60, and total number of properties are from 140 to 560.
For each case, we launch the standard adaptation process for 50 cycles, each
started from randomly generated changes (0.5 to 8.5 changes in average), and
the average adaptation durations are 0.1, 1.4, 2.2, 7.1, 7.9 and 12.3 seconds, for
each model instance. The experiments are performed on a MacBook Pro with
Intel i5 CPU and 4G memory. The performance is acceptable since it is still a

thingml.org/dist/diversify/casestudy.constraint

282 H. Song et al.

vm1
m:2, t:2

vm2
m:2, t:2

pm1
m:4 t:10

64bit

pm2
m:4 t:10

64bit

pm3
m:16 t:5

64bit, stable

pm4
m:4 t:20

pm5
m:4 t:10
stable

vm3
m:1, t:3

64bit

vm4
m:3, t:3

64bit

vm5
m:6, t:2

vm6
m:2, t:1

sta:1

vm7
m:2, t:2

sta:9

vm8
m:1,t:10

vm10
m:2, t:1

sta:9

vm9
m:1, t:1

sync

sync syncbackup frqt frqtbackup

near near

Fig. 6. Starting system status of the sample results

Table 2. Sample adaptation actions from the VM placement case study.

MC=Migration Cost, SP=Synchronized Peaktime, LB=Load Balance, ML=Memory Limit,

BU=Backup, FR=Frequent Communication, ST=Stability, CS=Consolidation, B64=64 bit

change adaptation follows discards

#1 vm2.m:3 vm1->pm4 MC SP LB BU CS

#2 vm2.m:5 vm2->pm3 ML BU MC CS

#3 vm4.m:4 vm5->pm3 MC ML FR BU B64 MC CS

#4 vm5.t:5 vm4->pm3, vm6->p2 B64 BU ML FR LB MC ST CS

#5 vm7.t:6 vm7->pm5, vm9vm10->pm3 FR ST LB MC CS

#6 vm7.t:6, vm7.st:1 vm7->pm4 MC LB ST CS

#7 vm8.t:1 vm8->pm2 CS BU MC

#8 frqt(vm6,vmm9) vm9->pm2, vm10->pm3 MC LB FR MC CS

short time relative to the time it takes to modify topologies and configurations
in cloud. Typically migrating one virtual machine in a cloud takes from a half
to several minutes. In order to inspect the improvement caused by partial eval-
uation, we run another 50 cycles for each case from random changes, but with
partial evaluation switched off, generating FOL formulas as shown in Figure 4.
The adaptation durations are then 0.3, 8.2, 31.5, 49.3, 51.3 are 129.2 seconds,
which are significantly longer than the ones with PE. Furthermore, the fraction
of reduction increases with the larger models (e.g., the fraction is 3 times faster
for the simplest model and about 10 times faster for the largest one)

7 Related Work

Research approaches on self-adaptive systems provide many different ways to
define adaptation policies. The ECA type of rules are most widely adopted, such
as the event triggering in [19] and [20], the guard-action rules in [21], etc. Kephart
and Walsh [22] discussed the advantage of declarative policies over imperative
ECA rules. Floch et al. [23] utilise declarative properties and utilities functions to
capture adaptation policies, but they require predefined system configurations
instead of calculate them at runtime. The DiVA project [24] defines a small
language to capture constraints as policies, and utilises the Alloy constraint
solver to obtain the result. In this work, we support the general purpose OCL
language with higher expressive power, and tolerate the conflicts in constraints.

Modelling Adaptation Policies as Domain-Specific Constraints 283

Model driven engineering is widely used to tame the complexity of developing
adaptive systems. One branch is to model the system states in high-level archi-
tectures, such as in [25] and [26]. But the policies on top of their architectures
are essentially ECA rules. Another branch is to support the development process
of self-adaptive system. Brun et al. [27] propose a programming model for self-
adaptive systems, based on control loops. Cheng et al. [28] and Baresi et al. [29]
use goal-based modelling to help derive adaptation policies from requirements.
Such approaches are complementary to the work in this paper, and our future
plan is to utilise goal models to elicit adaptation constraints from requirements.

The transformation from constraints to SMT instances is related to the ap-
proaches that generate constraint satisfiability problems from class diagrams
[30,31] or OCL constraints [32], for the purposes of design time verification.
When using constraints to guide adaptation at runtime, the searching space for
constraint solving is much smaller than at design time, because the context data
are known and not changeable. This is the main idea behind our partial eval-
uation to optimise the generated SMT problem, and differentiate our approach
from the existing ones. Partial evaluation [13] is a compiling technique to op-
timise target code by pre-processing constant values in the source code, and is
widely used to support domain specific languages [33]. In our approach, we widen
the concept of “constant values” to the current context in an adaptive system.

The modelling process for adaptation constraints is inspired by the construc-
tion of domain-specific modelling languages [34,35]: We support domain experts
in defining the concepts in a particular application domain, and then the con-
straints are specified in a domain-specific way, applying these concepts.

8 Conclusion

This paper presents a model-driven approach to developing self-adaptative sys-
tems. We provide a language for modeling declarative adaptation polices, in the
form of domain-specific constraints. Our runtime engine generates an SMT prob-
lem from the constraints, optimises it based on the current system state, and
calculates the appropriate system reconfigurations. From our previous work, the
new contributions in this paper include a modelling language, a new method to
encode structural information in object oriented models into SMT, and a new
partial evaluation semantics on OCL based on the encoding.

The main limitation of the current approach is the closed world assumption.
In practice, we loosen this assumption by adding a small number of stub objects
before constraint solving, and if any stub object is referred by a real object after
the solving, we launch a create-object request to the system. Our future work
on this is to generalise this approach and assist developers in customising where
a new object is required. The approach can be also used together with an outer
adaptation loop that adds or removes VMs, either a manual or an automated
one. The case study in the current stage is still a proof of the idea. We will seek
for bigger scale applications involving third-party developers, based on our cloud
computing research projects.

284 H. Song et al.

References

1. de Lemos, R., et al.: Software engineering for self-adaptive systems: A research
roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M., et al. (eds.) Self-
Adaptive Systems. LNCS, vol. 7475, pp. 1–32. Springer, Heidelberg (2013)

2. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 4(2),
14 (2009)

3. Kephart, J.: Research challenges of autonomic computing. In: ICSE, pp. 15–22.
IEEE (2005)

4. Object Management Group: OMG Object Constraint Language (OCL),
http://www.omg.org/spec/OCL/2.3.1/PDF/

5. Song, H., Barrett, S., Clarke, A., Clarke, S.: Self-adaptation with end-user pref-
erences: Using run-time models and constraint solving. In: Moreira, A., Schätz,
B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol. 8107, pp.
555–571. Springer, Heidelberg (2013)

6. de Moura, L., Bjørner, N.S.: Z3: An efficient smt solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

7. Hermenier, F., Lorca, X., Menaud, J.M., Muller, G., Lawall, J.: Entropy: A consoli-
dation manager for clusters. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, pp. 41–50. ACM
(2009)

8. Song, H., Xiong, Y., Chauvel, F., Huang, G., Hu, Z., Mei, H.: Generating synchro-
nization engines between running systems and their model-based views. Models in
Software Engineering, 140–154 (2010)

9. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a
logic of counter arithmetic with lambda expressions and uninterpreted functions.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 78–92.
Springer, Heidelberg (2002)

10. Guttag, J.V., Horning, J.J.: The algebraic specification of abstract data types.
Acta Informatica 10(1), 27–52 (1978)

11. Microsoft Research, http://rise4fun.com/z3/tutorial/guide
12. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. Tech-

nical report, Department of Computer Science, The University of Iowa (2010),
http://www.SMT-LIB.org

13. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial evaluation and automatic program
generation. Prentice-Hall, New York (1993)

14. Demuth, B.: The dresden ocl toolkit and its role in information systems devel-
opment. In: Proc. of the 13th International Conference on Information Systems
Development, ISD 2004 (2004)

15. Ferry, N., Rossini, A., Chauvel, F., Morin, B., Solberg, A.: Towards model-driven
provisioning, deployment, monitoring, and adaptation of multi-cloud systems.
In: CLOUD 2013: IEEE 6th International Conference on Cloud Computing, pp.
887–894 (2013)

16. Meng, X., Pappas, V., Zhang, L.: Improving the scalability of data center networks
with traffic-aware virtual machine placement. In: INFOCOM, 2010 Proceedings
IEEE, pp. 1–9. IEEE (2010)

17. Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for
managing sla violations. In: 10th IFIP/IEEE International Symposium on Inte-
grated Network Management, IM 2007, pp. 119–128. IEEE (2007)

http://www.omg.org/spec/OCL/2.3.1/PDF/
http://rise4fun.com/z3/tutorial/guide
http://www.SMT-LIB.org

Modelling Adaptation Policies as Domain-Specific Constraints 285

18. Zhang, X., Zhang, Y., Chen, X., Liu, K., Huang, G., Zhan, J.: A relationship-based
vm placement framework of cloud environment. In: Proceedings of the 2013 IEEE
37th Annual Computer Software and Applications Conference, pp. 124–133. IEEE
Computer Society (2013)

19. Keeney, J., Cahill, V.: Chisel: A policy-driven, context-aware, dynamic adaptation
framework. In: Proceedings of the IEEE 4th International Workshop on Policies
for Distributed Systems and Networks, POLICY 2003, pp. 3–14. IEEE (2003)

20. Kephart, J.O., Das, R.: Achieving self-management via utility functions. IEEE
Internet Computing 11(1), 40–48 (2007)

21. David, P.C., Ledoux, T., et al.: Safe dynamic reconfigurations of fractal archi-
tectures with fscript. In: Proceeding of Fractal CBSE Workshop, ECOOP, vol. 6
(2006)

22. Kephart, J., Walsh, W.: An artificial intelligence perspective on autonomic comput-
ing policies. In: IEEE International Workshop on Policies for Distributed Systems
and Networks, pp. 3–12. IEEE (2004)

23. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using
architecture models for runtime adaptability. IEEE Software 23(2), 62–70 (2006)

24. Morin, B., Barais, O., Jezequel, J., Fleurey, F., Solberg, A.: Models@ run. time to
support dynamic adaptation. Computer 42(10), 44–51 (2009)

25. Garlan, D., Cheng, S., Huang, A., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer 37(10),
46–54 (2004)

26. Sicard, S., Boyer, F., De Palma, N.: Using components for architecture-based man-
agement: The self-repair case. In: ICSE, pp. 101–110. ACM (2008)

27. Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. In:
Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Self-
Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg (2009)

28. Cheng, B.H.C., Sawyer, P., Bencomo, N., Whittle, J.: A goal-based modeling ap-
proach to develop requirements of an adaptive system with environmental uncer-
tainty. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 468–483.
Springer, Heidelberg (2009)

29. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy goals for requirements-driven adapta-
tion. In: RE, pp. 125–134. IEEE (2010)

30. Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: Class diagrams analysis using al-
loy revisited. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS,
vol. 6981, pp. 592–607. Springer, Heidelberg (2011)

31. Cabot, J., Clarisó, R., Riera, D.: Verification of UML/OCL class diagrams using
constraint programming. In: Software Testing Verification and Validation Work-
shop, pp. 73–80. IEEE (2008)

32. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: A tool for the formal verification of
uml/ocl models using constraint programming. In: ASE, pp. 547–548. ACM (2007)

33. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Computing Surveys (CSUR) 37(4), 316–344 (2005)

34. Kelly, S., Tolvanen, J.P.: Domain-specific modeling: enabling full code generation.
John Wiley & Sons (2008)

35. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: 2007 Future of Software Engineering, pp. 37–54. IEEE Computer
Society (2007)

	Modelling Adaptation Policiesas Domain-Specific Constraints
	1 Introduction
	2 Approach Overview
	2.1 Motivating Example
	2.2 The Approach

	3 Constraint Modelling
	4 SMTInstanceGeneration
	4.1 SMT Overview
	4.2 Mapping from Adaptation Model to SMT
	4.3 Partial Evaluation of OCL Constraints

	5 SMT Solving
	6 Case Study
	7 Related Work
	8 Conclusion
	References

